26.10.2014 Views

Current Results on Biological Activities of Lichen ... - Lichens and Me

Current Results on Biological Activities of Lichen ... - Lichens and Me

Current Results on Biological Activities of Lichen ... - Lichens and Me

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Review<br />

<str<strong>on</strong>g>Current</str<strong>on</strong>g> <str<strong>on</strong>g>Results</str<strong>on</strong>g> <strong>on</strong> <strong>Biological</strong> <strong>Activities</strong> <strong>of</strong> <strong>Lichen</strong> Sec<strong>on</strong>dary<br />

<strong>Me</strong>tabolites: a Review<br />

Katalin Molnár a, * <strong>and</strong> Edit Farkas b<br />

a<br />

Duke University, Department <strong>of</strong> Biology, Durham, NC 27708-0338, USA.<br />

Fax: +1 91 96 60 72 93. E-mail: kmcz100@gmail.com<br />

b<br />

Institute <strong>of</strong> Ecology <strong>and</strong> Botany, Hungarian Academy <strong>of</strong> Sciences, H-2163 Vácrátót,<br />

Hungary<br />

* Author for corresp<strong>on</strong>dence <strong>and</strong> reprint requests<br />

Z. Naturforsch. 65 c, 157 – 173 (2010); received October 2/November 4, 2009<br />

<strong>Lichen</strong>s are symbiotic organisms <strong>of</strong> fungi <strong>and</strong> algae or cyanobacteria. <strong>Lichen</strong>-forming<br />

fungi synthesize a great variety <strong>of</strong> sec<strong>on</strong>dary metabolites, many <strong>of</strong> which are unique. Developments<br />

in analytical techniques <strong>and</strong> experimental methods have resulted in the identificati<strong>on</strong><br />

<strong>of</strong> about 1050 lichen substances (including those found in cultures). In additi<strong>on</strong><br />

to their role in lichen chemotax<strong>on</strong>omy <strong>and</strong> systematics, lichen sec<strong>on</strong>dary compounds have<br />

several possible biological roles, including photoprotecti<strong>on</strong> against intense radiati<strong>on</strong>, as well<br />

as allelochemical, antiviral, antitumor, antibacterial, antiherbivore, <strong>and</strong> antioxidant acti<strong>on</strong>.<br />

These compounds are also important factors in metal homeostasis <strong>and</strong> polluti<strong>on</strong> tolerance<br />

<strong>of</strong> lichen thalli. Although our knowledge <strong>of</strong> the c<strong>on</strong>tributi<strong>on</strong> <strong>of</strong> these extracellular products<br />

to the success <strong>of</strong> the lichen symbiosis has increased significantly in the last decades, their<br />

biotic <strong>and</strong> abiotic roles have not been entirely explored.<br />

Key words: <strong>Lichen</strong>s, Sec<strong>on</strong>dary Compounds<br />

Introducti<strong>on</strong><br />

Biochemical research <strong>of</strong> lichenized fungi went<br />

through “exp<strong>on</strong>ential” development as it was<br />

summarized in a review by Culbers<strong>on</strong> <strong>and</strong> W. L.<br />

Culbers<strong>on</strong> (2001) who forecasted development<br />

in various directi<strong>on</strong>s. They greatly c<strong>on</strong>tributed to<br />

the development <strong>of</strong> this field by establishing new<br />

methods <strong>of</strong> chemical analysis (Culbers<strong>on</strong>, 1972a,<br />

1974; Culbers<strong>on</strong> <strong>and</strong> Kristinss<strong>on</strong>, 1970), compiling<br />

known compounds <strong>and</strong> structures (Culbers<strong>on</strong>,<br />

1969a, 1970; Culbers<strong>on</strong> et al., 1977a), <strong>and</strong> c<strong>on</strong>tinuing<br />

research over decades (from W. L. Culbers<strong>on</strong>,<br />

1955, 1957, 1958; Culbers<strong>on</strong> 1963a, b; W. L. Culbers<strong>on</strong><br />

<strong>and</strong> Culbers<strong>on</strong>, 1956; Culbers<strong>on</strong> <strong>and</strong> W.<br />

L. Culbers<strong>on</strong>, 1958; to Brodo et al., 2008). They<br />

emphasized that, while most <strong>of</strong> this research c<strong>on</strong>cerned<br />

the discovery <strong>and</strong> study <strong>of</strong> new substances,<br />

that knowledge was incomplete, even with the development<br />

<strong>of</strong> analytical methods.<br />

However, substantial changes are expected in<br />

this field with the explorati<strong>on</strong> <strong>of</strong> the biological/<br />

ecological role <strong>of</strong> lichen substances, al<strong>on</strong>g with increased<br />

use <strong>and</strong> importance <strong>of</strong> lichens. Molecular<br />

biological research <strong>on</strong> fungi (Fehrer et al., 2008;<br />

Lutz<strong>on</strong>i et al., 2004; Nelsen <strong>and</strong> Gargas, 2008, 2009;<br />

Nordin et al., 2007; Stenroos et al., 2002; Zhou et<br />

al., 2006) <strong>and</strong> experimental techniques (e.g., culturing:<br />

Brunauer et al., 2006, 2007; Culbers<strong>on</strong> <strong>and</strong><br />

Armaleo, 1992; Hager <strong>and</strong> Stocker-Wörgötter,<br />

2005; Hamada, 1989; J<strong>on</strong>es<strong>on</strong> <strong>and</strong> Lutz<strong>on</strong>i, 2009;<br />

Stocker-Wörgötter, 2001) are becoming more<br />

easily <strong>and</strong> widely adaptable to lichenology. These<br />

techniques have already revoluti<strong>on</strong>ized research<br />

<strong>on</strong> the use <strong>of</strong> lichen substances. This paper focuses<br />

<strong>on</strong> recent studies d<strong>on</strong>e since previous reviews<br />

(Boustie <strong>and</strong> Grube, 2005; Lawrey, 1986; Romagni<br />

<strong>and</strong> Dayan, 2002; Rundel, 1978), <strong>and</strong> shows various<br />

new possible applicati<strong>on</strong>s for currently more<br />

than a thous<strong>and</strong> known lichen substances.<br />

The <strong>Lichen</strong>s: <strong>Lichen</strong>ized Fungi<br />

A lichen is a stable, ecologically obligate, selfsupporting<br />

mutualism between an exhabitant<br />

fungus (the mycobi<strong>on</strong>t) <strong>and</strong> <strong>on</strong>e or more inhabitant,<br />

extracellulary located unicellular or filamentous<br />

photoautotrophic partners (the photobi<strong>on</strong>t:<br />

alga or cyanobacterium) (after Hawksworth<br />

<strong>and</strong> H<strong>on</strong>egger, 1994). <strong>Lichen</strong> thalli are complex<br />

ecosystems rather than organisms (Farrar, 1976;<br />

0939 – 5075/2010/0300 – 0157 $ 06.00 © 2010 Verlag der Zeitschrift für Naturforschung, Tübingen · http://www.znaturforsch.com · D


158 K. Molnár <strong>and</strong> E. Farkas · <strong>Biological</strong> <strong>Activities</strong> <strong>of</strong> <strong>Lichen</strong> Substances<br />

Lumbsch, 1998). According to recent estimati<strong>on</strong>s,<br />

lichens comprise about 18 500 species (Boustie<br />

<strong>and</strong> Grube, 2005; Feuerer <strong>and</strong> Hawksworth, 2007;<br />

Kirk et al., 2008). Since 1983, the name <strong>of</strong> a lichen<br />

refers to its mycobi<strong>on</strong>t (Voss et al., 1983). Names<br />

<strong>of</strong> lichens in this paper follow the <strong>on</strong>line database<br />

www.indexfungorum.org, the names originally<br />

used in the cited papers are in brackets.<br />

The fungal partners are mostly (98%) Ascomycota<br />

(Gilbert, 2000; H<strong>on</strong>egger, 1991) <strong>and</strong> the others<br />

bel<strong>on</strong>g to the Basidiomycota <strong>and</strong> anamorphic<br />

fungi. Approximately 21% <strong>of</strong> all fungi are able to<br />

act as a mycobi<strong>on</strong>t (H<strong>on</strong>egger, 1991), thus lichens<br />

form the largest mutualistic group am<strong>on</strong>g fungi.<br />

Only 40 genera are involved as photosynthetic<br />

partners in lichen formati<strong>on</strong>: 25 algae <strong>and</strong> 15 cyanobacteria<br />

(Kirk et al., 2008). The photobi<strong>on</strong>ts in<br />

approximately 98% <strong>of</strong> lichens are not known at<br />

the species level (H<strong>on</strong>egger, 2001).<br />

<strong>Lichen</strong>ized fungi occur in a wide range <strong>of</strong><br />

habitats: from arctic to tropical regi<strong>on</strong>s, from the<br />

plains to the highest mountains (Müller, 2001),<br />

<strong>and</strong> from aquatic to xeric c<strong>on</strong>diti<strong>on</strong>s. <strong>Lichen</strong>s<br />

can be found <strong>on</strong> or within rocks, <strong>on</strong> soil, <strong>on</strong> tree<br />

trunks <strong>and</strong> shrubs, <strong>on</strong> the surface <strong>of</strong> living leaves,<br />

<strong>on</strong> animal carapaces, <strong>and</strong> <strong>on</strong> any stati<strong>on</strong>ary, undisturbed<br />

man-made surface such as wood, leather,<br />

b<strong>on</strong>e, glass, metal, c<strong>on</strong>crete, mortar, brick, rubber,<br />

<strong>and</strong> plastic (Brightman <strong>and</strong> Seaward, 1977;<br />

Seaward, 2008). Lisická (2008) reported 18 lichen<br />

species <strong>on</strong> an acrylic-coated aluminum ro<strong>of</strong>. Most<br />

lichens are terrestrial, but a few species occur in<br />

freshwater streams <strong>and</strong> others in marine intertidal<br />

z<strong>on</strong>es (Nash, 2008). <strong>Lichen</strong>s are able to survive<br />

in extreme envir<strong>on</strong>mental c<strong>on</strong>diti<strong>on</strong>s; they can<br />

adapt to extreme temperatures, drought, inundati<strong>on</strong>,<br />

salinity, high c<strong>on</strong>centrati<strong>on</strong>s <strong>of</strong> air pollutants,<br />

<strong>and</strong> nutrient-poor, highly nitrified envir<strong>on</strong>ments<br />

(Nash, 2008), <strong>and</strong> they are the first col<strong>on</strong>izers <strong>of</strong><br />

terrestrial habitats (pi<strong>on</strong>eers). In additi<strong>on</strong>, both<br />

fungal <strong>and</strong> algal cells in the lichen thallus are<br />

known for their ability to survive in space (Sancho<br />

et al., 2007). Interacti<strong>on</strong>s between the symbiotic<br />

partners partially explain this spectacular success<br />

<strong>of</strong> lichens in unusual envir<strong>on</strong>ments (Bačkor<br />

<strong>and</strong> Fahselt, 2008). Nevertheless, many lichens are<br />

very sensitive to various air pollutants, especially<br />

nitrogen-, sulfur- <strong>and</strong> heavy metal-based compounds;<br />

therefore they are widely used as bioindicators<br />

(Fernández-Salegui et al., 2007; Glavich<br />

<strong>and</strong> Geiser, 2008; Gries, 1996; Sheppard et al.,<br />

2007 – <strong>on</strong>ly a few <strong>of</strong> many studies).<br />

The <strong>Lichen</strong> Substances: Sec<strong>on</strong>dary <strong>Me</strong>tabolic<br />

Products<br />

<strong>Lichen</strong>s produce a great variety <strong>of</strong> sec<strong>on</strong>dary<br />

metabolites, <strong>and</strong> most <strong>of</strong> them are unique to<br />

lichen-forming fungi. These chemically diverse<br />

(aliphatic <strong>and</strong> aromatic) lichen substances have<br />

relatively low molecular weight (Türk et al.,<br />

2003). They are produced by the mycobi<strong>on</strong>t (Elix,<br />

1996; Huneck, 1999), <strong>and</strong> accumulate in the cortex<br />

(such as atranorin, parietin, usnic acid, fungal<br />

melanins) or in the medullary layer (such as physodic<br />

acid, physodalic acid, protocetraric acid) as<br />

extracellular tiny crystals <strong>on</strong> the outer surfaces <strong>of</strong><br />

the hyphae (Figs. 1, 2). The photobi<strong>on</strong>t might also<br />

have an influence <strong>on</strong> the sec<strong>on</strong>dary metabolism <strong>of</strong><br />

the mycobi<strong>on</strong>t (Brunauer et al., 2007; Yamamoto<br />

et al., 1993; Yoshimura et al., 1994).<br />

Approximately 1050 sec<strong>on</strong>dary compounds<br />

have been identified to date (Stocker-Wörgötter,<br />

2008). This number is much higher than that<br />

found in previous literature sources (e.g., Culbers<strong>on</strong><br />

<strong>and</strong> Elix, 1989; Elix, 1996; Elix <strong>and</strong> Stocker-<br />

Wörgötter, 2008; Galun <strong>and</strong> Shomer-Ilan, 1988;<br />

Huneck, 1999; Huneck <strong>and</strong> Yoshimura, 1996;<br />

Lumbsch, 1998). The large increase is due to the<br />

fact that, previously, <strong>on</strong>ly “natural” substances oc-<br />

Fig. 1. Cross-secti<strong>on</strong> <strong>of</strong> the stratified foliose thallus <strong>of</strong><br />

Umbilicaria mammulata. (Micrograph by K. Molnár.)


K. Molnár <strong>and</strong> E. Farkas · <strong>Biological</strong> <strong>Activities</strong> <strong>of</strong> <strong>Lichen</strong> Substances 159<br />

Fig. 2. Cross-secti<strong>on</strong> <strong>of</strong> the foliose thallus <strong>of</strong> Hypogymnia<br />

physodes. Hyphae are covered by the extracellular<br />

crystals <strong>of</strong> sec<strong>on</strong>dary metabolites. (SEM micrograph by<br />

K. Bóka <strong>and</strong> K. Molnár.)<br />

curring in intact lichen thalli were counted, but<br />

now, substances identified from cultures are also<br />

being included. Mycobi<strong>on</strong>ts grown without their<br />

photobi<strong>on</strong>ts synthesize specific sec<strong>on</strong>dary lichen<br />

compounds under certain c<strong>on</strong>diti<strong>on</strong>s (Culbers<strong>on</strong><br />

<strong>and</strong> Armaleo, 1992; Fazio et al., 2007; Hager et al.,<br />

2008; Mattss<strong>on</strong>, 1994; Stocker-Wörgötter <strong>and</strong> Elix,<br />

2002), but can also produce substances that are<br />

different from the metabolites found in symbiosis<br />

(Brunauer et al., 2007; Yoshimura et al., 1994).<br />

Each lichen mycobi<strong>on</strong>t prefers specially adapted<br />

culture c<strong>on</strong>diti<strong>on</strong>s (such as nutrient medium,<br />

added sugars or polyols, pH, temperature, light,<br />

stress) to produce the specific sec<strong>on</strong>dary metabolites<br />

(Hager et al., 2008). Similarly, lichen “tissue”<br />

cultures, in many cases, can produce sec<strong>on</strong>dary<br />

substances (Yamamoto et al., 1985, 1993), but the<br />

chemistry is usually different from the chemosyndrome<br />

<strong>of</strong> the corresp<strong>on</strong>ding natural lichen thalli<br />

(Yamamoto et al., 1993). <strong>Lichen</strong>ized Basidiomycota<br />

do not c<strong>on</strong>tain lichen substances (Lumbsch,<br />

1998).<br />

<strong>Lichen</strong> products are restricted to specific areas<br />

<strong>of</strong> the thallus (Feige <strong>and</strong> Lumbsch, 1995; Lawrey,<br />

1995; Nybakken <strong>and</strong> Gauslaa, 2007), which correlate<br />

with the different functi<strong>on</strong>s <strong>of</strong> lichen metabolites.<br />

These patterns are c<strong>on</strong>sistent within certain<br />

tax<strong>on</strong>omic units (Lawrey, 1995). Hyvärinen<br />

et al. (2000) reported that the c<strong>on</strong>centrati<strong>on</strong>s <strong>of</strong><br />

sec<strong>on</strong>dary compounds in the foliose lichens Hypogymnia<br />

physodes, Vulpicida pinastri, <strong>and</strong> Xanthoria<br />

parietina are higher in sexual (apothecia <strong>of</strong><br />

X. parietina) <strong>and</strong> asexual (soredia <strong>of</strong> H. physodes<br />

<strong>and</strong> V. pinastri) reproductive structures than in the<br />

vegetative parts <strong>of</strong> the thallus. This pattern is c<strong>on</strong>cordant<br />

with the optimal defense theory (ODT),<br />

which states that the structures most important<br />

for fitness should be chemically better defended.<br />

Fluorescence microscopy is used to determine<br />

the locati<strong>on</strong> <strong>of</strong> fluorescent substances in lichen<br />

thalli (Kauppi <strong>and</strong> Verseghy-Patay, 1990). Scanning<br />

electr<strong>on</strong> microscopy (SEM) <strong>and</strong> laser microprobe<br />

mass spectrometry (LMMS), together with<br />

fluorescence microscopy <strong>and</strong> transmissi<strong>on</strong> electr<strong>on</strong><br />

microscopy (TEM), have also been used to<br />

locate compounds (Elix, 1996; Elix <strong>and</strong> Stocker-<br />

Wörgötter, 2008). Additi<strong>on</strong>ally, FT-Raman spectroscopy<br />

is a n<strong>on</strong>-destructive analytical method<br />

used to identify lichen substances spatially in the<br />

intact lichen thallus (Edwards et al., 2005). <strong>Lichen</strong>s<br />

may c<strong>on</strong>tain substantial amounts <strong>of</strong> sec<strong>on</strong>dary<br />

metabolites, usually between 0.1 – 10% <strong>of</strong> the<br />

dry weight, but sometimes up to 30% (Galun <strong>and</strong><br />

Shomer-Ilan, 1988; Solhaug et al., 2009; Stocker-<br />

Wörgötter, 2008).<br />

The distributi<strong>on</strong> patterns <strong>of</strong> sec<strong>on</strong>dary metabolites<br />

are usually tax<strong>on</strong>-specific <strong>and</strong>, therefore,<br />

have been widely used in lichen tax<strong>on</strong>omy <strong>and</strong><br />

systematics (Carlin, 1987; W. L. Culbers<strong>on</strong>, 1969b;<br />

Fehrer et al., 2008; Hawksworth, 1976; Nelsen<br />

<strong>and</strong> Gargas, 2008; Nordin et al., 2007; Nyl<strong>and</strong>er,<br />

1866; Piercey-Normore, 2007; Schmitt <strong>and</strong> Lumbsch,<br />

2004). However, it has been shown that the<br />

producti<strong>on</strong> <strong>of</strong> lichen compounds can be homoplasious<br />

<strong>and</strong>, therefore, similarities in sec<strong>on</strong>dary<br />

chemistry may not necessarily indicate close<br />

phylogenetic relati<strong>on</strong>ships (Nelsen <strong>and</strong> Gargas,<br />

2008). The producti<strong>on</strong> <strong>of</strong> sec<strong>on</strong>dary compounds is<br />

genetically c<strong>on</strong>trolled (Culbers<strong>on</strong> <strong>and</strong> W. L. Culbers<strong>on</strong>,<br />

2001), <strong>and</strong> in some instances is correlated<br />

with morphology <strong>and</strong> geography in individuals at<br />

the species <strong>and</strong> genus levels (Egan, 1986; Zhou et<br />

al., 2006).<br />

Asahina <strong>and</strong> Shibata (1954) published a classificati<strong>on</strong><br />

<strong>of</strong> about 80 lichen substances based <strong>on</strong><br />

their chemical structures <strong>and</strong> biosynthetic pathways.<br />

This system was modified from time to<br />

time, as more was known about lichen chemistry<br />

through improved analytical methods. <strong>Lichen</strong><br />

substances were reclassified by Culbers<strong>on</strong> <strong>and</strong><br />

Elix (1989) according to their biosynthetic origins<br />

<strong>and</strong> chemical structural features. Most sec<strong>on</strong>dary


160 K. Molnár <strong>and</strong> E. Farkas · <strong>Biological</strong> <strong>Activities</strong> <strong>of</strong> <strong>Lichen</strong> Substances<br />

lichen metabolites are derived from the acetylpolymal<strong>on</strong>yl<br />

pathway (including the polyketide<br />

pathway), while others originate from the meval<strong>on</strong>ic<br />

acid <strong>and</strong> shikimic acid pathways.<br />

The Development <strong>of</strong> Analytical <strong>Me</strong>thods (<strong>and</strong><br />

their Applicati<strong>on</strong> in <strong>Lichen</strong>ology)<br />

Nyl<strong>and</strong>er (1866) was the first lichenologist to<br />

use chemistry for tax<strong>on</strong>omical purposes. He detected<br />

the presence <strong>of</strong> various lichen substances<br />

by color spot tests. In the early 20th century, Zopf<br />

(1907) <strong>and</strong> Hesse (1912) described numerous lichen<br />

compounds, mostly without their structural<br />

characterizati<strong>on</strong>, as organic chemistry was in its<br />

infancy (Shibata, 2000). Asahina developed the<br />

microcrystallizati<strong>on</strong> technique to identify lichen<br />

metabolites (Asahina, 1936 – 1940). This simple<br />

<strong>and</strong> rapid technique allowed lichenologists to<br />

identify the major c<strong>on</strong>stituents in hundreds <strong>of</strong><br />

lichen species, but it was not useful for detecting<br />

minor comp<strong>on</strong>ents <strong>and</strong> analyzing mixtures <strong>of</strong><br />

lichen substances. In 1952, Wachtmeister introduced<br />

paper chromatography for the separati<strong>on</strong><br />

<strong>and</strong> characterizati<strong>on</strong> <strong>of</strong> lichen substances. Mitsuno<br />

(1953) explained the relati<strong>on</strong>ship between<br />

the chemical structures <strong>of</strong> lichen compounds <strong>and</strong><br />

their paper chromatographic Rf values. Since paper<br />

chromatography could not always separate<br />

individual compounds, Ramaut (1963a, b) began<br />

using thin layer chromatography (TLC) with<br />

Pastuska’s solvent phase for depsides <strong>and</strong> depsid<strong>on</strong>es.<br />

According to Lumbsch (1998), the vast majority<br />

<strong>of</strong> lichen sec<strong>on</strong>dary metabolites, especially<br />

substances which are unique to lichens, bel<strong>on</strong>g to<br />

these two groups.<br />

TLC has been used to study specific groups <strong>of</strong><br />

lichen products (Bendz et al., 1965, 1966, 1967;<br />

Santess<strong>on</strong>, 1965, 1967a, b). Different authors used<br />

different solvent systems <strong>and</strong> chromatographic<br />

c<strong>on</strong>diti<strong>on</strong>s, making it impossible to compare their<br />

results. This problem was solved when a st<strong>and</strong>ardized<br />

method was developed by Chicita F. Culbers<strong>on</strong><br />

<strong>and</strong> Hör-Dur Kristinss<strong>on</strong> in 1970. They<br />

introduced Rf classes, which depend <strong>on</strong>ly <strong>on</strong> the<br />

relative order <strong>of</strong> spots, <strong>and</strong> which are more reliably<br />

c<strong>on</strong>stant. This st<strong>and</strong>ardized method has<br />

been used for routine analyses <strong>of</strong> lichen products<br />

in chemotax<strong>on</strong>omic <strong>and</strong> phytochemical studies,<br />

with various updates over time (Culbers<strong>on</strong>,<br />

1972b, 1974; Culbers<strong>on</strong> <strong>and</strong> Johns<strong>on</strong>, 1976, 1982;<br />

Culbers<strong>on</strong> et al., 1981). Later the use <strong>of</strong> high-performance<br />

thin layer chromatography (HPTLC) in<br />

screening lichen substances was developed (Arup<br />

et al., 1993). HPTLC is more sensitive, allows the<br />

running <strong>of</strong> more samples in a shorter period <strong>of</strong><br />

time, <strong>and</strong> requires smaller amounts <strong>of</strong> solvent. Because<br />

<strong>of</strong> its simplicity, this technique has become<br />

the most widely used microchemical method for<br />

identifying lichen substances (Fig. 3).<br />

The first use <strong>of</strong> high-performance liquid chromatography<br />

(HPLC) <strong>on</strong> crude lichen extracts was<br />

tried by Culbers<strong>on</strong> (1972a), because most <strong>of</strong> the<br />

sec<strong>on</strong>dary natural products <strong>of</strong> lichens have low<br />

volatility <strong>and</strong> low thermal stability, <strong>and</strong> thus gas<br />

chromatography is not able to analyze them. She<br />

used normal-phase silica columns <strong>and</strong> isocratic<br />

eluti<strong>on</strong> with mobile phases <strong>of</strong> mixtures <strong>of</strong> hexane,<br />

isopropyl alcohol <strong>and</strong> acetic acid. Reversephase<br />

HPLC was first used for the separati<strong>on</strong><br />

<strong>of</strong> orcinol <strong>and</strong> β-orcinol depsides <strong>and</strong> depsid<strong>on</strong>es<br />

<strong>on</strong> a C18 column <strong>and</strong> with a water/methanol/<br />

acetic acid mobile phase (Culbers<strong>on</strong> <strong>and</strong> W. L.<br />

Culbers<strong>on</strong>, 1978a; W. L. Culbers<strong>on</strong> <strong>and</strong> Culbers<strong>on</strong>,<br />

1978b).<br />

Although these isocratic methods yielded excellent<br />

results for the separati<strong>on</strong> <strong>and</strong> identifica-<br />

Fig. 3. <strong>Lichen</strong> substances <strong>on</strong> an HPTLC plate developed<br />

in solvent system B (cyclohexane/methyl tert-butyl<br />

ether/formic acid, 6.5:5:1) after being treated with sulfuric<br />

acid (according to Arup et al., 1993). A, atranorin<br />

(c<strong>on</strong>trol); Z, zeorin (c<strong>on</strong>trol); N, norstictic acid (c<strong>on</strong>trol);<br />

P, physodic acid; O, oxyphysodic (= 3-hydroxyphysodic)<br />

<strong>and</strong> physodalic acids; Pr, protocetraric acid. (Scanned<br />

image.)


K. Molnár <strong>and</strong> E. Farkas · <strong>Biological</strong> <strong>Activities</strong> <strong>of</strong> <strong>Lichen</strong> Substances 161<br />

Fig. 4. HPLC chromatogram <strong>of</strong> the acet<strong>on</strong>e extract <strong>of</strong> Hypogymnia physodes (collected <strong>on</strong> the mountain Látóhegy,<br />

Budapest, Hungary, collecti<strong>on</strong> no. 208/a) at 245 nm. Peaks: a, acet<strong>on</strong>e; b, benzoic acid (internal st<strong>and</strong>ard); c,<br />

protocetraric acid; d, 3-hydroxyphysodic acid; e, physodalic acid; f, 2’-O-methylphysodic acid; g, physodic acid; h,<br />

atranorin; i, chloroatranorin; j, bis-(2-ethylhexyl)-phthalate (internal st<strong>and</strong>ard).<br />

ti<strong>on</strong> <strong>of</strong> lichen substances, gradient eluti<strong>on</strong> is more<br />

effective for HPLC analysis <strong>of</strong> crude lichen extracts,<br />

which frequently c<strong>on</strong>tain compounds <strong>of</strong><br />

wide-ranging hydrophobicities (Culbers<strong>on</strong> <strong>and</strong><br />

Elix, 1989). Gradient eluti<strong>on</strong> was introduced in<br />

lichenology by Strack et al. (1979), who separated<br />

13 phenolic lichen products, including examples <strong>of</strong><br />

depsides, depsid<strong>on</strong>es, dibenz<strong>of</strong>urans <strong>and</strong> pulvinic<br />

acid derivatives, using an RP-8 column with a 70-<br />

min linear gradient from water c<strong>on</strong>taining 2%<br />

acetic acid (solvent A) to 100% methanol (solvent<br />

B). Huovinen (1987) developed a st<strong>and</strong>ard<br />

HPLC method for the identificati<strong>on</strong> <strong>and</strong> accurate<br />

quantificati<strong>on</strong> <strong>of</strong> aromatic lichen compounds <strong>on</strong><br />

three different reverse-phase columns (RP-8, RP-<br />

18 <strong>and</strong> RP-phenyl) using gradient eluti<strong>on</strong> with<br />

methanol <strong>and</strong> orthophosphoric acid, as well as<br />

two internal st<strong>and</strong>ards: benzoic acid (low retenti<strong>on</strong><br />

time) <strong>and</strong> bis-(2-ethyl-hexyl)-phthalate (high<br />

retenti<strong>on</strong> time) (Fig. 4). Retenti<strong>on</strong> indices (R.I.)<br />

in relati<strong>on</strong> to the internal st<strong>and</strong>ards were defined,<br />

which are more c<strong>on</strong>sistent markers than retenti<strong>on</strong><br />

times. Later the st<strong>and</strong>ard method was improved<br />

by Feige et al. (1993), using benzoic acid <strong>and</strong> solorinic<br />

acid [more hydrophobic compound than bis-<br />

(2-ethyl-hexyl)-phthalate] as internal st<strong>and</strong>ards,<br />

making the method suitable for the identificati<strong>on</strong><br />

<strong>of</strong> lichen extracts c<strong>on</strong>taining chloroxanth<strong>on</strong>es or<br />

l<strong>on</strong>g-chain depsides as well.<br />

The use <strong>of</strong> 1 H <strong>and</strong> 13 C NMR spectroscopy, mass<br />

spectrometry <strong>and</strong> X-ray crystal analysis in structural<br />

elucidati<strong>on</strong> have also increased the number<br />

<strong>of</strong> known lichen metabolites (Culbers<strong>on</strong> <strong>and</strong> Elix,<br />

1989).<br />

The Significance <strong>of</strong> <strong>Lichen</strong> Substances<br />

Sec<strong>on</strong>dary metabolites are not absolutely essential<br />

for the survival <strong>and</strong> growth <strong>of</strong> lichens<br />

(Bentley, 1999), nevertheless, their study has revealed<br />

many possible advantages. We know more<br />

about these substances through experimental<br />

studies, but the functi<strong>on</strong>s <strong>of</strong> these compounds in<br />

the lichen symbioses are still poorly understood<br />

(Hager et al., 2008). They may impact biotic <strong>and</strong><br />

abiotic interacti<strong>on</strong>s <strong>of</strong> lichens with their envir<strong>on</strong>ment.<br />

They may help to protect the thalli against<br />

herbivores, pathogens, competitors <strong>and</strong> external<br />

abiotic factors, such as high UV irradiati<strong>on</strong>. Many<br />

<strong>of</strong> them exhibit multiple biological activities, such<br />

as the dibenz<strong>of</strong>uran usnic acid (e.g., antimicrobial<br />

<strong>and</strong> larvicidal effects, anticancer activities, known<br />

also for its UV absorpti<strong>on</strong>) (Fig. 5). When we analyze<br />

the biological activities <strong>of</strong> lichen substances,<br />

we must c<strong>on</strong>sider <strong>and</strong> observe their role in natural<br />

processes, but also study their role in special<br />

circumstances seldom occurring in nature, e.g.,<br />

in experimental situati<strong>on</strong>s <strong>and</strong> with their use as<br />

medicines in humans or animals.<br />

Fig. 5. Chemical structure <strong>of</strong> usnic acid.


162 K. Molnár <strong>and</strong> E. Farkas · <strong>Biological</strong> <strong>Activities</strong> <strong>of</strong> <strong>Lichen</strong> Substances<br />

Structurally closely related metabolites <strong>of</strong>ten<br />

have essentially different biological acti<strong>on</strong>s. Hager<br />

et al. (2008) reported that barbatic <strong>and</strong> diffractaic<br />

acids, which differ in <strong>on</strong>ly <strong>on</strong>e functi<strong>on</strong>al<br />

unit, have diverging biological effects. Barbatic<br />

acid (extracted from a metabolite-forming Heterodea<br />

muelleri mycobi<strong>on</strong>t culture) str<strong>on</strong>gly inhibits<br />

the growth <strong>of</strong> Trebouxia jamesii (the photobi<strong>on</strong>t<br />

in H. muelleri) <strong>and</strong> slows down the mitosis rate<br />

<strong>of</strong> the alga at a c<strong>on</strong>centrati<strong>on</strong> comparable to the<br />

quantity found in the lichen thallus (in nature). It<br />

can cause cell death in higher c<strong>on</strong>centrati<strong>on</strong>s. At<br />

the same time, diffractaic acid (from a mycobi<strong>on</strong>t<br />

culture, as before) has no effect <strong>on</strong> algal growth<br />

at all. On the basis <strong>of</strong> this result, barbatic acid<br />

may regulate algal growth <strong>and</strong> mitosis in the lichen<br />

thalli.<br />

Antioxidant Activity<br />

Free radicals (reactive oxygen species, such as<br />

the hydroxyl radical, superoxide ani<strong>on</strong>, <strong>and</strong> hydrogen<br />

peroxide, <strong>and</strong> reactive nitrogen species, such<br />

as nitric oxide) play an important role in many<br />

chemical processes in the cells, but they are also<br />

associated with unwanted side effects, causing cell<br />

damage. They attack proteins <strong>and</strong> nucleic acids, as<br />

well as unsaturated fatty acids in cell membranes.<br />

Food deteriorati<strong>on</strong>, aging processes <strong>and</strong> several<br />

human chr<strong>on</strong>ic diseases, such as Alzheimer’s disease,<br />

atherosclerosis, emphysema, hemochromatosis,<br />

many forms <strong>of</strong> cancer (for example, melanoma),<br />

Parkins<strong>on</strong>’s disease, <strong>and</strong> schizophrenia, may<br />

be related to free radicals. Oxidative stress occurs<br />

also in lichen thalli, <strong>and</strong> sec<strong>on</strong>dary compounds afford<br />

protecti<strong>on</strong> against free radicals generated by<br />

UV light (Marante et al., 2003).<br />

The damaging effects <strong>of</strong> free radicals can be<br />

ameliorated by free radical scavengers <strong>and</strong> chain<br />

reacti<strong>on</strong> terminators – enzymes such as superoxide<br />

dismutase, catalase, glutathi<strong>on</strong>e peroxidase,<br />

<strong>and</strong> glutathi<strong>on</strong>e reductase, as well as antioxidants<br />

such as glutathi<strong>on</strong>e, polyphenols (lignins, flav<strong>on</strong>oids),<br />

carotenoids, melanins, <strong>and</strong> vitamins E <strong>and</strong><br />

C.<br />

Since synthetic antioxidants are <strong>of</strong>ten carcinogenic,<br />

finding natural substitutes is <strong>of</strong> great interest.<br />

<strong>Lichen</strong>s have been found to c<strong>on</strong>tain a variety<br />

<strong>of</strong> sec<strong>on</strong>dary lichen substances with str<strong>on</strong>g antioxidant<br />

activity. These are substances which have<br />

high ability to scavenge toxic free radicals due<br />

their phenolic groups. Hidalgo et al. (1994) reported<br />

the antioxidant activity <strong>of</strong> some depsides, such<br />

as atranorin (isolated from Placopsis sp.) <strong>and</strong> divaricatic<br />

acid (isolated from Protousnea malacea),<br />

<strong>and</strong> depsid<strong>on</strong>es, such as pannarin (isolated from<br />

Psoroma pallidum) <strong>and</strong> 1’-chloropannarin (isolated<br />

from Erioderma chilense). All <strong>of</strong> these sec<strong>on</strong>dary<br />

compounds inhibited rat brain homogenate<br />

auto-oxidati<strong>on</strong> <strong>and</strong> β-carotene oxidati<strong>on</strong>, <strong>and</strong><br />

depsid<strong>on</strong>es were found to be the most effective.<br />

Russo et al. (2008) found that both sphaerophorin<br />

(depside) <strong>and</strong> pannarin (depsid<strong>on</strong>e) inhibited superoxide<br />

ani<strong>on</strong> formati<strong>on</strong> in vitro, pannarin being<br />

more efficient, c<strong>on</strong>firming Hidalgo et al. (1994).<br />

A methanol extract <strong>of</strong> Lobaria pulm<strong>on</strong>aria reduced<br />

the oxidative stress induced by indomethacin<br />

in the stomachs <strong>of</strong> rats, increasing the levels<br />

<strong>of</strong> superoxide dismutase <strong>and</strong> glutathi<strong>on</strong>e peroxidase<br />

(Karakus et al., 2009). Similarly, usnic acid<br />

was shown to be a gastroprotective compound,<br />

since it reduced oxidative damage <strong>and</strong> inhibited<br />

neutrophil infiltrati<strong>on</strong> in indomethacin-induced<br />

gastric ulcers in rats (Odabasoglu et al., 2006).<br />

<strong>Me</strong>thanol extracts <strong>of</strong> Dolichousnea l<strong>on</strong>gissima<br />

(as Usnea l<strong>on</strong>gissima) <strong>and</strong> Lobaria pulm<strong>on</strong>aria<br />

have been shown to have significant antioxidant<br />

effects in vitro (Odabasoglu et al., 2004). According<br />

to Luo et al. (2009), the extreme c<strong>on</strong>diti<strong>on</strong>s<br />

in Antarctica (such as low temperature, drought,<br />

winter darkness, high UV-B <strong>and</strong> solar irradiati<strong>on</strong>)<br />

increase oxidative stress, c<strong>on</strong>sequently, antarctic<br />

lichens c<strong>on</strong>tain larger amounts <strong>of</strong> antioxidant<br />

substances <strong>and</strong> have higher antioxidant activity<br />

than tropical or temperate lichens. An acet<strong>on</strong>e<br />

extract <strong>of</strong> Umbilicaria antarctica was found to<br />

be the most effective antioxidant in free radical<br />

<strong>and</strong> superoxide ani<strong>on</strong> scavenging, as well as in reducing<br />

power assays am<strong>on</strong>g tested lichen species<br />

collected from King George Isl<strong>and</strong>, Antarctica.<br />

Lecanoric acid was identified as the main active<br />

compound. <strong>Me</strong>thanol-water extracts <strong>of</strong> five lichens<br />

(Caloplaca regalis, Caloplaca sp., Lecanora<br />

sp., Ramalina terebrata, Stereocaul<strong>on</strong> alpinum)<br />

from Antarctica were screened for their antioxidant<br />

effects by Bhattarai et al. (2008), who found<br />

varying antioxidant success against the stable free<br />

radical diphenylpicrylhydrazyl (DPPH) <strong>on</strong> a TLC<br />

plate.<br />

All <strong>of</strong> these studies show that lichens <strong>and</strong> lichen<br />

substances might be novel sources <strong>of</strong> natural<br />

antioxidants.


K. Molnár <strong>and</strong> E. Farkas · <strong>Biological</strong> <strong>Activities</strong> <strong>of</strong> <strong>Lichen</strong> Substances 163<br />

Effect <strong>on</strong> <strong>Me</strong>tal Homeostasis <strong>and</strong> Polluti<strong>on</strong><br />

Tolerance<br />

<strong>Lichen</strong> sec<strong>on</strong>dary metabolites are sensitive<br />

to heavy metal accumulati<strong>on</strong> <strong>and</strong> might play a<br />

general role in metal homeostasis <strong>and</strong> polluti<strong>on</strong><br />

tolerance. Their sensitivity to heavy metals is species-specific.<br />

Remarkable changes in the levels <strong>of</strong> sec<strong>on</strong>dary<br />

compounds were found in Hypogymnia physodes<br />

thalli transplanted to areas polluted with heavy<br />

metals <strong>and</strong> acidic inorganic sulfur compounds<br />

(Biał<strong>on</strong>ska <strong>and</strong> Dayan, 2005). For example, the<br />

levels <strong>of</strong> atranorin, physodic acid <strong>and</strong> hydroxyphysodic<br />

acid were significantly decreased in<br />

thalli transplanted to the vicinity <strong>of</strong> a chemical<br />

plant producing chromium, phosphorous <strong>and</strong> sulfur<br />

compounds. In c<strong>on</strong>trast, the level <strong>of</strong> physodalic<br />

acid was significantly increased, suggesting<br />

that this compound might be effective against<br />

polluti<strong>on</strong> stress. The present authors have found<br />

similar results with the analyses <strong>of</strong> thalli growing<br />

naturally under various envir<strong>on</strong>mental c<strong>on</strong>diti<strong>on</strong>s<br />

<strong>and</strong> polluti<strong>on</strong> levels (Molnár <strong>and</strong> Farkas, manuscript<br />

under preparati<strong>on</strong>). Hauck <strong>and</strong> Huneck<br />

(2007a) dem<strong>on</strong>strated the i<strong>on</strong>-specific increase or<br />

decrease <strong>of</strong> heavy metal adsorpti<strong>on</strong> at cati<strong>on</strong> exchange<br />

sites (hydroxy groups) <strong>on</strong> cellulose filters<br />

coated with four lichen substances produced by<br />

Hypogymnia physodes (atranorin, physodic acid,<br />

physodalic acid <strong>and</strong> protocetraric acid). They<br />

used this model system to imitate lichen cell walls,<br />

which c<strong>on</strong>tain many hydroxy <strong>and</strong> carboxy groups<br />

as binding sites for metal cati<strong>on</strong>s. The alkali metal<br />

i<strong>on</strong> Na + , the alkaline earth metal i<strong>on</strong>s Ca 2+ <strong>and</strong><br />

Mg 2+ , <strong>and</strong> the transiti<strong>on</strong> metal i<strong>on</strong>s Cu 2+ , Fe 2+ ,<br />

Fe 3+ <strong>and</strong> Mn 2+ were studied. <strong>Lichen</strong> compounds<br />

significantly inhibited the adsorpti<strong>on</strong> <strong>of</strong> Na + , Ca 2+ ,<br />

Mg 2+ , Cu 2+ <strong>and</strong> Mn 2+ , whereas they increased the<br />

adsorpti<strong>on</strong> <strong>of</strong> Fe 3+ . The level <strong>of</strong> Fe 2+ was not affected.<br />

The depsid<strong>on</strong>e physodalic acid was found<br />

to be the most effective.<br />

Hauck <strong>and</strong> Huneck (2007b) also used cellulose<br />

filter strips to simulate cell wall surfaces.<br />

The depsid<strong>on</strong>e fumarprotocetraric acid, the main<br />

lichen compound in Lecanora c<strong>on</strong>izaeoides, has<br />

been shown to reduce Mn 2+ adsorpti<strong>on</strong> at cati<strong>on</strong><br />

exchange sites in vitro. This capability <strong>of</strong> fumarprotocetraric<br />

acid may be a key factor in the high<br />

Mn tolerance <strong>of</strong> this lichen species.<br />

Similar results have been found by Hauck<br />

(2008) using lichen thalli instead <strong>of</strong> an artificial<br />

system. The intracellular uptake <strong>of</strong> Cu 2+ <strong>and</strong> Mn 2+<br />

was significantly lower in intact Hypogymnia<br />

physodes thalli c<strong>on</strong>taining a set <strong>of</strong> seven lichen<br />

metabolites compared to lichens treated with acet<strong>on</strong>e.<br />

The intracellular uptake <strong>of</strong> Fe 2+ <strong>and</strong> Zn 2+<br />

was not affected by the lichen substances. These<br />

impacts are c<strong>on</strong>sistent with the ecology <strong>of</strong> Hypogymnia<br />

physodes, i.e., Cu 2+ <strong>and</strong> Mn 2+ might be<br />

toxic in ambient c<strong>on</strong>centrati<strong>on</strong>s <strong>on</strong> acidic bark<br />

(the preferred substrate <strong>of</strong> H. physodes), but Fe 2+<br />

<strong>and</strong> Zn 2+ have never been found to limit the survival<br />

<strong>of</strong> this species.<br />

The dibenz<strong>of</strong>uran usnic acid <strong>and</strong> the depside<br />

divaricatic acid were both found to significantly<br />

increase the intracellular uptake <strong>of</strong> Cu 2+ in Evernia<br />

mesomorpha <strong>and</strong> in Ramalina menziesii (usnic<br />

acid <strong>on</strong>ly) originating from nutrient-poor habitats<br />

(Hauck et al., 2009). At the same time, the intracellular<br />

uptake <strong>of</strong> Mn 2+ was reduced. Since Cu 2+<br />

is <strong>on</strong>e <strong>of</strong> the rarest micr<strong>on</strong>utrients in acidic tree<br />

bark <strong>and</strong> Mn 2+ <strong>of</strong>ten reaches toxic c<strong>on</strong>centrati<strong>on</strong>,<br />

the influence <strong>of</strong> the compounds facilitates the survival<br />

<strong>of</strong> the two lichen species.<br />

These results show that lichen metabolites c<strong>on</strong>trol<br />

metal homeostasis in lichens by promoting<br />

the uptake <strong>of</strong> certain metal cati<strong>on</strong>s, reducing the<br />

adsorpti<strong>on</strong> <strong>of</strong> others, thereby enhancing the tolerance<br />

<strong>of</strong> lichens to heavy metals in polluted areas.<br />

Photoprotecti<strong>on</strong><br />

<strong>Lichen</strong>s use a number <strong>of</strong> strategies to protect<br />

the light-sensitive algal symbi<strong>on</strong>ts against high<br />

levels <strong>of</strong> light <strong>and</strong> the damaging effects <strong>of</strong> UV radiati<strong>on</strong>,<br />

mainly the xanthophyll cycle in the algal<br />

thylakoid membranes, as well as light screening<br />

<strong>and</strong> UV-B protecti<strong>on</strong> by lichen compounds.<br />

The light-screening theory was formulated by<br />

Ertl (1951), who found that cortical lichen compounds<br />

increase the opacity <strong>of</strong> the upper cortex,<br />

<strong>and</strong> thus decrease high incident irradiance reaching<br />

the algal layer.<br />

Light-screening pigments (such as parietin,<br />

usnic acid, vulpinic acid) regulate the solar irradiance<br />

reaching the algal layer (Galloway, 1993;<br />

Rao <strong>and</strong> LeBlanc, 1965; Rundel, 1978; Solhaug<br />

<strong>and</strong> Gauslaa, 1996) by absorbing much <strong>of</strong> the<br />

incident light <strong>and</strong> thus protecting the photosynthetic<br />

partner from intense radiati<strong>on</strong> (Rao <strong>and</strong><br />

LeBlanc, 1965).<br />

UV-B light inhibits photosynthesis <strong>and</strong> damages<br />

DNA. Several lichen sec<strong>on</strong>dary metabolites


164 K. Molnár <strong>and</strong> E. Farkas · <strong>Biological</strong> <strong>Activities</strong> <strong>of</strong> <strong>Lichen</strong> Substances<br />

(including atranorin, calycin, pinastric acid, pulvinic<br />

acid, rhizocarpic acid, usnic acid, vulpinic<br />

acid) have str<strong>on</strong>g UV absorpti<strong>on</strong> abilities <strong>and</strong><br />

might functi<strong>on</strong> as filters for excessive UV-B irradiati<strong>on</strong><br />

(Galloway, 1993; Rundel, 1978; Solhaug<br />

<strong>and</strong> Gauslaa, 1996). UV-B light might be essential<br />

for the synthesis <strong>of</strong> UV-B absorbing pigments<br />

(Nybakken <strong>and</strong> Julkunen-Tiitto, 2006; Nybakken<br />

et al., 2004). Rao <strong>and</strong> LeBlanc reported (1965) that<br />

the fluorescence spectrum <strong>of</strong> the cortical depside<br />

atranorin coincides with the absorpti<strong>on</strong> spectrum<br />

<strong>of</strong> algal chlorophyll; therefore, the light emitted<br />

by atranorin can be used in photosynthesis.<br />

Allelopathy<br />

<strong>Lichen</strong> sec<strong>on</strong>dary metabolites can functi<strong>on</strong> as<br />

allelopathic agents (called allelochemicals), i.e.,<br />

they may affect the development <strong>and</strong> growth <strong>of</strong><br />

neighboring lichens, mosses <strong>and</strong> vascular plants,<br />

as well as microorganisms (Kershaw, 1985; Lawrey,<br />

1986, 1995; Macías et al., 2007; Romagni et al.,<br />

2004; Rundel, 1978). Allelopathic compounds are<br />

released into the envir<strong>on</strong>ment <strong>and</strong> might influence<br />

other organisms’ photosynthesis, respirati<strong>on</strong>,<br />

transpirati<strong>on</strong>, protein <strong>and</strong> nucleic acid synthesis,<br />

i<strong>on</strong> membrane transport, <strong>and</strong> permeability (Chou,<br />

2006; Macías et al., 2007).<br />

Culbers<strong>on</strong> et al. (1977b) reported that Lepraria<br />

sp. had a n<strong>on</strong>-r<strong>and</strong>om distributi<strong>on</strong> <strong>on</strong> two morphologically<br />

similar but chemically very different<br />

Xanthoparmelia species, which were growing<br />

together. The lichenicolous Lepraria sp. occurred<br />

comm<strong>on</strong>ly <strong>on</strong> 73% <strong>of</strong> the thalli <strong>of</strong> Xanthoparmelia<br />

verruculifera (as Parmelia verruculifera) examined.<br />

In c<strong>on</strong>trast, <strong>on</strong>ly 13% <strong>of</strong> Xanthoparmelia<br />

loxodes (as Parmelia loxodes) specimens served as<br />

a host for the same species <strong>of</strong> Lepraria. The lichen<br />

substances presumably had allelopathic effects<br />

<strong>on</strong> Lepraria, <strong>and</strong> the sec<strong>on</strong>dary metabolites <strong>of</strong> X.<br />

loxodes were more detrimental to the growth <strong>of</strong><br />

Lepraria. Whit<strong>on</strong> <strong>and</strong> Lawrey (1984) found that<br />

vulpinic <strong>and</strong> evernic acids severely inhibited ascospore<br />

germinati<strong>on</strong> <strong>of</strong> the crustose lichens Graphis<br />

scripta <strong>and</strong> Caloplaca citrina. Atranorin had<br />

an inhibitory effect <strong>on</strong>ly <strong>on</strong> C. citrina, completely<br />

eliminating its spore germinati<strong>on</strong>. Neither species<br />

was affected by stictic acid. Spore germinati<strong>on</strong> <strong>of</strong><br />

Clad<strong>on</strong>ia cristatella was also inhibited by vulpinic<br />

acid, but not by evernic <strong>and</strong> stictic acids (Whit<strong>on</strong><br />

<strong>and</strong> Lawrey, 1982).<br />

Competiti<strong>on</strong> occurs between lichen thalli for<br />

space <strong>and</strong> light <strong>on</strong> a variety <strong>of</strong> substrates, <strong>and</strong><br />

plays important roles in determining the structure<br />

<strong>of</strong> lichen communities <strong>and</strong> the distributi<strong>on</strong> <strong>of</strong><br />

individual species (Armstr<strong>on</strong>g <strong>and</strong> Welch, 2007).<br />

<strong>Lichen</strong> sec<strong>on</strong>dary chemistry might play a role in<br />

this competiti<strong>on</strong> (Armstr<strong>on</strong>g <strong>and</strong> Welch, 2007).<br />

Populati<strong>on</strong>s <strong>of</strong> mosses <strong>and</strong> lichens frequently<br />

occur together <strong>on</strong> rocks, soil, <strong>and</strong> trees, <strong>and</strong> they<br />

compete for light, substrate, nutrients, <strong>and</strong> water<br />

(Lawrey, 1977). <strong>Lichen</strong> substances also have inhibitory<br />

effects against other cryptogams in overlapping<br />

niches, such as mosses, <strong>and</strong> might significantly<br />

influence the competitive interacti<strong>on</strong>s in<br />

cryptogam communities. In the Great Smoky<br />

Mountains <strong>of</strong> the eastern United States, Heilman<br />

<strong>and</strong> Sharp (1963) observed that the lichen<br />

Thelotrema petractoides (as Ocellularia subtilis)<br />

was inhibiting <strong>and</strong> overgrowing a col<strong>on</strong>y <strong>of</strong> Frullania<br />

eboracensis <strong>on</strong> the bark <strong>of</strong> Aesculus oct<strong>and</strong>ra.<br />

Similarly, the saxicolous lichen Lecidea albocaerulescens<br />

inhibited a community <strong>of</strong> bryophytes<br />

<strong>on</strong> greywacke boulders (including Anomod<strong>on</strong> attenuatus,<br />

Hedwigia ciliata, Porella platyphylla, <strong>and</strong><br />

Sematophyllum sp.). The 4-O-methylated depsides<br />

evernic <strong>and</strong> squamatic acids retarded spore<br />

germinati<strong>on</strong> <strong>and</strong> prot<strong>on</strong>emal growth <strong>of</strong> three<br />

comm<strong>on</strong> moss species occurring with the lichens:<br />

Ceratod<strong>on</strong> purpureus, Funaria hygrometrica <strong>and</strong><br />

Mnium cuspidatum (Lawrey, 1977).<br />

<strong>Lichen</strong>s have also l<strong>on</strong>g been known to inhibit<br />

or greatly retard the growth <strong>of</strong> higher plants (Pyatt,<br />

1967). Clad<strong>on</strong>ia stellaris (as C. alpestris) <strong>and</strong> C.<br />

rangiferina, two comm<strong>on</strong> species in boreal forests,<br />

have been shown to have allelopathic effects <strong>on</strong><br />

jack pine (Pinus banksiana) <strong>and</strong> white spruce (Picea<br />

glauca) (Fisher, 1979). <strong>Lichen</strong> mulch c<strong>on</strong>taining<br />

both species significantly reduced the growth<br />

as well as N <strong>and</strong> P c<strong>on</strong>centrati<strong>on</strong>s <strong>of</strong> both seedlings<br />

<strong>and</strong> transplants <strong>of</strong> these c<strong>on</strong>iferous trees. Compared<br />

to c<strong>on</strong>trol plants, the roots <strong>of</strong> the seedlings<br />

treated with lichen mulch were l<strong>on</strong>ger, but less<br />

massive, <strong>and</strong> have significantly less mycorrhizae.<br />

Marante et al. (2003) reported that twelve lichen<br />

substances identified in “Letharal,” the phenolic<br />

fracti<strong>on</strong> <strong>of</strong> Lethariella canariensis, showed allelopathic<br />

activity against the seeds <strong>of</strong> comm<strong>on</strong> garden<br />

plants, <strong>and</strong> inhibited the germinati<strong>on</strong> process<br />

<strong>of</strong> cabbage, lettuce, pepper, <strong>and</strong> tomato. It was<br />

also dem<strong>on</strong>strated that rainwater carries the lichen<br />

compounds into the soil by lixiviati<strong>on</strong>.


K. Molnár <strong>and</strong> E. Farkas · <strong>Biological</strong> <strong>Activities</strong> <strong>of</strong> <strong>Lichen</strong> Substances 165<br />

<strong>Lichen</strong> substances were found to inhibit mycorrhizal<br />

fungi <strong>and</strong> their plant hosts (Fisher, 1979;<br />

Lawrey, 1995; Rundel, 1978). Henningss<strong>on</strong> <strong>and</strong><br />

Lundström (1970) stated that the epiphytic lichen<br />

Hypogymnia physodes had a fungistatic effect <strong>on</strong><br />

various wood-decaying fungi, <strong>and</strong> in this way lichens<br />

can protect their substrates from decay.<br />

Antimicrobial Activity<br />

<strong>Lichen</strong>s produce antibiotic sec<strong>on</strong>dary metabolites<br />

that provide defense against most <strong>of</strong> the<br />

pathogens in nature. Several examples (from the<br />

species indicated) are described below.<br />

Atranorin (from Physcia aipolia), fumarprotocetraric<br />

acid (from Clad<strong>on</strong>ia furcata), gyrophoric<br />

acid (from Umbilicaria polyphylla), lecanoric<br />

acid (from Ochrolechia <strong>and</strong>rogyna), physodic<br />

acid (from Hypogymnia physodes), protocetraric<br />

acid [from Flavoparmelia caperata (as Parmelia<br />

caperata)], stictic acid [from Xanthoparmelia<br />

c<strong>on</strong>spersa (as Parmelia c<strong>on</strong>spersa)] <strong>and</strong> usnic acid<br />

(from Flavoparmelia caperata) showed relatively<br />

str<strong>on</strong>g antimicrobial effects against six bacteria<br />

<strong>and</strong> ten fungi, am<strong>on</strong>g which were human, animal<br />

<strong>and</strong> plant pathogens, mycotoxin producers <strong>and</strong><br />

food-spoilage organisms (Ranković <strong>and</strong> Mišić,<br />

2008; Ranković et al., 2008). Usnic acid was found<br />

to be the str<strong>on</strong>gest antimicrobial agent (comparable<br />

to streptomycin), <strong>and</strong> physodic <strong>and</strong> stictic<br />

acids the weakest.<br />

According to Schmeda-Hirschmann et al.<br />

(2008), dichloromethane <strong>and</strong> methanol extracts <strong>of</strong><br />

Protousnea poeppigii had str<strong>on</strong>g antifungal effects<br />

against the fungal pathogens Microsporum gypseum,<br />

Trichophyt<strong>on</strong> mentagrophytes <strong>and</strong> T. rubrum.<br />

The extracts were also active against the yeasts<br />

C<strong>and</strong>ida albicans, C. tropicalis, Saccharomyces<br />

cerevisiae <strong>and</strong> the filamentous fungi Aspergillus<br />

niger, A. flavus <strong>and</strong> A. fumigatus, but with much<br />

higher strength. Isodivaricatic acid, divaricatinic<br />

acid <strong>and</strong> usnic acid, the main lichen metabolites<br />

in Protousnea poeppigii, also displayed antifungal<br />

acti<strong>on</strong> against Microsporum gypseum, Trichophyt<strong>on</strong><br />

mentagrophytes <strong>and</strong> T. rubrum, usnic acid<br />

being less active. In the same assay, extracts <strong>of</strong><br />

Usnea florida also showed str<strong>on</strong>g antifungal properties.<br />

<strong>Me</strong>thanol extracts <strong>of</strong> five lichens from Antarctica<br />

(Caloplaca regalis, Caloplaca sp., Lecanora sp.,<br />

Ramalina terebrata, Stereocaul<strong>on</strong> alpinum) exhibited<br />

target-specific antibacterial activity, especially<br />

str<strong>on</strong>g against Gram-positive bacteria, compared<br />

to previously described lichen compounds (Paudel<br />

et al., 2008).<br />

Whit<strong>on</strong> <strong>and</strong> Lawrey (1982) reported that ascospore<br />

germinati<strong>on</strong> <strong>of</strong> Sordaria fimicola was significantly<br />

inhibited by evernic <strong>and</strong> vulpinic acids.<br />

Aqueous, ethanol <strong>and</strong> ethyl acetate extracts <strong>of</strong><br />

Alectoria sarmentosa <strong>and</strong> Clad<strong>on</strong>ia rangiferina<br />

were found to have moderate antifungal acti<strong>on</strong><br />

against different species <strong>of</strong> fungi, including human<br />

pathogens (Ranković <strong>and</strong> Mišić, 2007), ethanol<br />

extracts showing the highest activity.<br />

Halama <strong>and</strong> Van Haluwin (2004) reported that<br />

acet<strong>on</strong>e extracts <strong>of</strong> Evernia prunastri <strong>and</strong> Hypogymnia<br />

physodes showed a str<strong>on</strong>g inhibitory effect<br />

<strong>on</strong> the growth <strong>of</strong> some plant pathogenic fungi,<br />

i.e., Phytophthora infestans, Pythium ultimum,<br />

<strong>and</strong> Ustilago maydis.<br />

Since microorganisms have developed resistance<br />

to many antibiotics, pharmacologists need to<br />

pursue new sources for antimicrobial agents. All<br />

these results suggest that lichens <strong>and</strong> their metabolites<br />

yield significant new bioactive substances<br />

for the treatment <strong>of</strong> various diseases caused by<br />

microorganisms.<br />

<strong>Lichen</strong> compounds can provide protecti<strong>on</strong><br />

against lichenicolous fungi, but some <strong>of</strong> these<br />

fungi are tolerant <strong>of</strong> the lichen metabolites. Lawrey<br />

(2000) showed that Fusarium sp., a lichen<br />

inhabitant, enzymatically degrades lecanoric<br />

acid in Punctelia subflava (as Punctelia rudecta),<br />

thus permiting Nectriopsis parmeliae (as Nectria<br />

parmeliae), an obligate lichenicolous fungus, to<br />

col<strong>on</strong>ize the lichen thallus.<br />

Antiherbivore <strong>and</strong> Insecticidal Activity<br />

<strong>Lichen</strong>s are grazed by herbivores, e.g., insects,<br />

mites, snails, slugs, lepidopteran larvae, caribou,<br />

<strong>and</strong> reindeer. However, herbivory <strong>on</strong> lichens<br />

seems to be rare, presumably due to their low<br />

nutriti<strong>on</strong>al quality, specific structural features<br />

(for example, the gelatinous sheath in Collemataceae,<br />

thick cortex), <strong>and</strong> the producti<strong>on</strong> <strong>of</strong> defense<br />

compounds (Lawrey, 1986; Rundel, 1978). Zukal<br />

(1895) first proposed that sec<strong>on</strong>dary compounds<br />

might protect lichens from herbivory, <strong>and</strong> this<br />

idea was later supported by str<strong>on</strong>g experimental<br />

evidence (e.g., Asplund <strong>and</strong> Gauslaa, 2007, 2008;<br />

Gauslaa, 2005; Nimis <strong>and</strong> Skert, 2006; Pöykkö et<br />

al., 2005). <strong>Lichen</strong> sec<strong>on</strong>dary compounds also play<br />

an important role in the food preference <strong>of</strong> her-


166 K. Molnár <strong>and</strong> E. Farkas · <strong>Biological</strong> <strong>Activities</strong> <strong>of</strong> <strong>Lichen</strong> Substances<br />

bivores (Baur et al., 1994; Pöykkö <strong>and</strong> Hyvärinen,<br />

2003; Reutimann <strong>and</strong> Scheidegger, 1987).<br />

Both enantiomers <strong>of</strong> usnic acid, a widespread<br />

cortical dibenz<strong>of</strong>uran, exhibited str<strong>on</strong>g larvicidal<br />

activity against the third <strong>and</strong> fourth instar larvae<br />

<strong>of</strong> the house mosquito (Culex pipiens), <strong>and</strong> larval<br />

mortality was dose-dependent (Cetin et al., 2008).<br />

Antifeedant activity <strong>and</strong> acute toxicity (injected<br />

into the larval haemolymph) <strong>of</strong> (–)- <strong>and</strong> (+)-usnic<br />

acids <strong>and</strong> vulpinic acid against the polyphagous<br />

larvae <strong>of</strong> the herbivorous insect Spodoptera littoralis<br />

have also been reported (Emmerich et al.,<br />

1993). All three lichen compounds caused severe<br />

growth retardati<strong>on</strong> at c<strong>on</strong>centrati<strong>on</strong>s comparable<br />

or even below those present in lichens, as well as<br />

increased the larval period (delayed the pupati<strong>on</strong>)<br />

in a dose-dependent manner.<br />

It is known that natural plant-derived products<br />

have a less detrimental impact <strong>on</strong> the envir<strong>on</strong>ment<br />

than synthetic chemicals, <strong>and</strong> thus lichen<br />

substances could be good c<strong>and</strong>idates for new pesticides<br />

(Cetin et al., 2008; Dayan <strong>and</strong> Romagni,<br />

2001; Fahselt, 1994; Romagni <strong>and</strong> Dayan, 2002).<br />

Harmful effects <strong>of</strong> lichen substances <strong>on</strong> vertebrate<br />

herbivores have also been reported. Pois<strong>on</strong>ing<br />

<strong>and</strong> subsequent death <strong>of</strong> an estimated<br />

400 – 500 elk (Cervus canadensis) was reported in<br />

Wyoming during the winter <strong>of</strong> 2004 (Cook et al.,<br />

2007; Dailey et al., 2008), putatively due to ingesti<strong>on</strong><br />

<strong>of</strong> the lichen Xanthoparmelia chlorochroa.<br />

This lichen was found in the area <strong>and</strong> in the rumen<br />

<strong>of</strong> elks as well (Cook et al., 2007). Clinical<br />

signs were red urine, ataxia, <strong>and</strong> muscular weakness,<br />

which rapidly progressed to recumbency<br />

<strong>and</strong> myodegradati<strong>on</strong>. To identify the toxin, ewes<br />

were dosed with (+)-usnic acid extracted from X.<br />

chlorochroa. It was shown that high doses caused<br />

selective skeletal muscle damage in these animals.<br />

Since the toxic dose was very high, other lichen<br />

substance(s), in additi<strong>on</strong> to (+)-usnic acid, may<br />

have interacted to cause the pois<strong>on</strong>ing in elks.<br />

This sort <strong>of</strong> pois<strong>on</strong>ing takes place periodically in<br />

western North America, when elks have to leave<br />

their regular winter habitats <strong>and</strong> move to lower<br />

elevati<strong>on</strong>s due to harsh weather c<strong>on</strong>diti<strong>on</strong>s (Elix<br />

<strong>and</strong> Stocker-Wörgötter, 2008).<br />

Effects <strong>on</strong> Human Organisms<br />

Cytotoxic, antitumor, <strong>and</strong> antiviral activity<br />

Many lichen sec<strong>on</strong>dary metabolites exhibit cytotoxic<br />

<strong>and</strong> antiviral properties <strong>and</strong> could be potential<br />

sources <strong>of</strong> pharmaceutically useful chemicals.<br />

The cytotoxic activity <strong>of</strong> eight lichens [Clad<strong>on</strong>ia<br />

c<strong>on</strong>voluta, C. rangiformis, Evernia prunastri, Flavoparmelia<br />

caperata (as Parmelia caperata), Parmotrema<br />

perlatum (as Parmelia perlata), Platismatia<br />

glauca, Ramalina cuspidata, Usnea rubicunda]<br />

<strong>on</strong> two murine <strong>and</strong> four human cancer cell lines<br />

was reported by Bézivin et al. (2003). The lichens<br />

were extracted with three solvents (n-hexane,<br />

diethyl ether, <strong>and</strong> methanol). Only three <strong>of</strong> the<br />

24 extracts were not cytotoxic against any <strong>of</strong> the<br />

tested cell lines (diethyl ether extracts <strong>of</strong> E. prunastri<br />

<strong>and</strong> P. glauca, <strong>and</strong> methanolic extract <strong>of</strong> U.<br />

rubicunda). The n-hexane extracts were usually<br />

the most active <strong>and</strong> methanolic fracti<strong>on</strong>s were<br />

generally less selective. C. c<strong>on</strong>voluta (diethyl ether<br />

fracti<strong>on</strong>), C. rangiformis (diethyl ether fracti<strong>on</strong>),<br />

<strong>and</strong> F. caperata (n-hexane fracti<strong>on</strong>) were the most<br />

active species. Diethyl ether <strong>and</strong> methanolic extracts<br />

<strong>of</strong> C. c<strong>on</strong>voluta <strong>and</strong> C. rangiformis showed<br />

the highest selectivity <strong>on</strong> various cell lines.<br />

(+)-Usnic acid was found to be a str<strong>on</strong>g hepatotoxic<br />

agent against m<strong>on</strong>ogastric murine hepatocytes,<br />

due to its ability to uncouple <strong>and</strong> inhibit<br />

the electr<strong>on</strong> transport chain in mitoch<strong>on</strong>dria<br />

<strong>and</strong> induce oxidative stress in cells (Han et al.,<br />

2004). The (–)-enantiomer <strong>of</strong> usnic acid (isolated<br />

from Clad<strong>on</strong>ia c<strong>on</strong>voluta) induced apoptotic<br />

cell death in murine lymphocytic leukemia cells<br />

<strong>and</strong> was moderately cytotoxic to various cancer<br />

cell lines, such as murine Lewis lung carcinoma,<br />

human chr<strong>on</strong>ic myelogenous leukemia, human<br />

brain metastasis <strong>of</strong> a prostate carcinoma, human<br />

breast adenocarcinoma <strong>and</strong> human glioblastoma<br />

(Bézivin et al., 2004). Usnic acid also decreased<br />

proliferati<strong>on</strong> <strong>of</strong> human breast cancer cells <strong>and</strong> human<br />

lung cancer cells without any DNA damage<br />

(Mayer et al., 2005). Finding cancer therapies that<br />

do not have DNA-damaging effects <strong>and</strong> that do<br />

not cause the development <strong>of</strong> sec<strong>on</strong>dary malignancies<br />

later in life, is <strong>of</strong> great interest. Accordingly,<br />

usnic acid may represent a novel source for<br />

a natural n<strong>on</strong>-genotoxic anticancer drug (chemotherapeutic<br />

agent).<br />

Russo et al. (2008) reported that the depside<br />

sphaerophorin (isolated from Sphaerophorus globosus)<br />

<strong>and</strong> the depsid<strong>on</strong>e pannarin [isolated from<br />

Psoroma pholidotoides (as Psoroma reticulatum),<br />

P. pulchrum, <strong>and</strong> P. pallidum] inhibited the growth<br />

<strong>of</strong> M14 human melanoma cells, triggering apoptotic<br />

cell death. The anticancer activities <strong>of</strong> these


K. Molnár <strong>and</strong> E. Farkas · <strong>Biological</strong> <strong>Activities</strong> <strong>of</strong> <strong>Lichen</strong> Substances 167<br />

lichen metabolites are promising in the treatment<br />

<strong>of</strong> this aggressive, therapy-resistant skin tumor.<br />

An ethyl acetate-soluble fracti<strong>on</strong> (ET4) <strong>of</strong> the<br />

crude methanolic extract <strong>of</strong> Ramalina farinacea<br />

was found to be a broad-spectrum antiviral agent<br />

against RNA (respiratory syncytal virus <strong>and</strong> HIV-<br />

1) <strong>and</strong> DNA (adenovirus <strong>and</strong> herpes simplex virus<br />

type 1) viruses (Esim<strong>on</strong>e et al., 2009). Anti-HIV<br />

effects <strong>of</strong> ET4 target both entry <strong>and</strong> post-entry<br />

stages in the viral replicati<strong>on</strong> cycle.<br />

Usnic acid (isolated from the aposymbiotic mycobi<strong>on</strong>ts<br />

<strong>of</strong> Ramalina celastri) exhibited specific<br />

antiviral activity against the Junin virus (Arenaviridae),<br />

which is the agent <strong>of</strong> Argentine hemorrhagic<br />

fever in humans, as well as against Tacaribe<br />

virus, a n<strong>on</strong>-pathogenic arenavirus (Fazio et<br />

al., 2007). Parietin (isolated from the aposymbiotic<br />

mycobi<strong>on</strong>ts <strong>of</strong> Teloschistes chrysophthalmus)<br />

showed virucidal effects against the same viruses.<br />

Allergy to lichen substances<br />

<strong>Lichen</strong>s <strong>and</strong> lichen substances can be c<strong>on</strong>tact<br />

allergens in people who are susceptible. They can<br />

cause occupati<strong>on</strong>al allergic c<strong>on</strong>tact dermatitis in<br />

forestry <strong>and</strong> horticultural workers (“woodcutter’s<br />

eczema”), <strong>and</strong> in lichen harvesters, as well as<br />

cause n<strong>on</strong>-occupati<strong>on</strong>al allergic dermatitis during<br />

all kinds <strong>of</strong> outdoor activities, such as cutting <strong>and</strong><br />

h<strong>and</strong>ling firewood, picking berries, hunting, <strong>and</strong><br />

using cosmetics (perfumes, after-shave loti<strong>on</strong>s,<br />

deodorants, <strong>and</strong> sunscreen products) that c<strong>on</strong>tain<br />

lichen metabolites (Aalto-Korte et al., 2005); see<br />

data for 11 lichen substances that cause allergic<br />

reacti<strong>on</strong>s (Table I).<br />

C<strong>on</strong>tact dermatitis seems to be immunologically<br />

specific, inasmuch as the pers<strong>on</strong> is sensitive<br />

to <strong>on</strong>ly a single lichen compound or to a group<br />

<strong>of</strong> structurally similar compounds (Mitchell <strong>and</strong><br />

Champi<strong>on</strong>, 1965). Various skin <strong>and</strong> respiratory<br />

symptoms have been observed, such as erythema,<br />

itching, scaling, c<strong>on</strong>tact urticaria, rhinitis, <strong>and</strong> asthma<br />

(Aalto-Korte et al., 2005; Mitchell <strong>and</strong> Champi<strong>on</strong>,<br />

1965). Several lichen compounds (such as<br />

atranorin <strong>and</strong> stictic acid) are able to photosensitize<br />

human skin causing photoc<strong>on</strong>tact dermatitis,<br />

where the exposure to sunlight leads to an aggravati<strong>on</strong><br />

<strong>of</strong> symptoms (Elix <strong>and</strong> Stocker-Wörgötter,<br />

2008; Thune <strong>and</strong> Solberg, 1980).<br />

C<strong>and</strong>idates for antipyretic <strong>and</strong> analgesic drugs<br />

Some lichen substances have been shown to relieve<br />

pain effectively or reduce fever <strong>and</strong> inflammati<strong>on</strong><br />

in various mammals, <strong>and</strong> it is reas<strong>on</strong>able<br />

to assume that these compounds also could be<br />

effective in humans. Vijayakumar et al. (2000) reported<br />

that (+)-usnic acid, isolated from Roccella<br />

m<strong>on</strong>tagnei, showed significant, dose-dependent<br />

anti-inflammatory activity in rats, reducing carrageenin-induced<br />

paw edema. Diffractaic <strong>and</strong> usnic<br />

acids have an analgesic effect in mice in vitro<br />

(Okuyama et al., 1995), <strong>and</strong> usnic acid also is an<br />

antipyretic against lipopolysaccharide-induced fever.<br />

Table I. Literature sources menti<strong>on</strong>ing data for 11 lichen substances resp<strong>on</strong>sible for allergic reacti<strong>on</strong>s to lichens.<br />

<strong>Lichen</strong> substance Reference<br />

Atranorin Dahlquist <strong>and</strong> Fregert, 1980; Thune <strong>and</strong> Solberg, 1980; G<strong>on</strong>çalo et al., 1988;<br />

Hausen et al., 1993; Stinchi et al., 1997; Aalto-Korte et al., 2005; Cabanillas et al., 2006<br />

Diffractaic acid Thune <strong>and</strong> Solberg, 1980<br />

Evernic acid Dahlquist <strong>and</strong> Fregert, 1980; Thune <strong>and</strong> Solberg, 1980; G<strong>on</strong>çalo et al., 1988;<br />

Hausen et al., 1993; Aalto-Korte et al., 2005; Cabanillas et al., 2006<br />

Fumarprotocetraric acid Dahlquist <strong>and</strong> Fregert, 1980; Thune <strong>and</strong> Solberg, 1980; G<strong>on</strong>çalo et al., 1988;<br />

Hausen et al., 1993<br />

Lobaric acid Thune <strong>and</strong> Solberg, 1980<br />

Perlatolic acid Hausen et al., 1993<br />

Physodalic acid Thune, 1977; Thune <strong>and</strong> Solberg, 1980<br />

Physodic acid Thune, 1977; Thune <strong>and</strong> Solberg, 1980<br />

Salazinic acid Thune <strong>and</strong> Solberg, 1980<br />

Stictic acid Thune <strong>and</strong> Solberg, 1980; Hausen et al., 1993<br />

Usnic acid Mitchell <strong>and</strong> Champi<strong>on</strong>, 1965; Thune <strong>and</strong> Solberg, 1980; G<strong>on</strong>çalo et al., 1988;<br />

Hausen et al., 1993; Stinchi et al., 1997; Aalto-Korte et al., 2005; Cabanillas et al., 2006


168 K. Molnár <strong>and</strong> E. Farkas · <strong>Biological</strong> <strong>Activities</strong> <strong>of</strong> <strong>Lichen</strong> Substances<br />

C<strong>on</strong>clusi<strong>on</strong>s<br />

More than 1000 sec<strong>on</strong>dary products have been<br />

identified to date in lichens, <strong>and</strong> new compounds<br />

will certainly be found from poorly studied or<br />

newly discovered lichens, especially from the<br />

under-collected tropics. Here we have shown that<br />

lichen sec<strong>on</strong>dary substances exhibit a huge array<br />

<strong>of</strong> remarkable biological activities, <strong>and</strong> many <strong>of</strong><br />

them have important ecological roles. Some <strong>of</strong> the<br />

activities already menti<strong>on</strong>ed (e.g., photoprotecti<strong>on</strong>,<br />

reacti<strong>on</strong> to polluti<strong>on</strong>) should be thoroughly<br />

studied. Furthermore, the properties <strong>of</strong> lichen<br />

substances make them possible pharmaceuticals.<br />

At the same time, we have to be aware that lichens<br />

are slow-growing ecosystems, <strong>and</strong> exploitati<strong>on</strong><br />

<strong>of</strong> their sec<strong>on</strong>dary products could threaten<br />

their survival. However, improved culture methods<br />

<strong>and</strong> varied growing c<strong>on</strong>diti<strong>on</strong>s can positively<br />

influence sec<strong>on</strong>dary metabolite producti<strong>on</strong> in<br />

aposymbiotically grown mycobi<strong>on</strong>ts (Stocker-<br />

Wörgötter, 2008) <strong>and</strong> in cultured lichens (Behera<br />

et al., 2009), without having to harvest <strong>and</strong> put at<br />

risk the extincti<strong>on</strong> <strong>of</strong> natural communities.<br />

Acknowledgements<br />

Our sincere thanks are due to Chicita F. Culbers<strong>on</strong><br />

for her invaluable help with the literature<br />

<strong>and</strong> useful comments <strong>on</strong> the manuscript. The authors<br />

are grateful to Molly McMullen for revisi<strong>on</strong><br />

<strong>of</strong> the text. We would like to thank Lucyna Śliwa,<br />

Suzanne J<strong>on</strong>es<strong>on</strong>, <strong>and</strong> Ester Gaya for their helpful<br />

comments <strong>on</strong> an earlier versi<strong>on</strong> <strong>of</strong> the manuscript.<br />

K. M. is also thankful to François Lutz<strong>on</strong>i<br />

for his support during the completi<strong>on</strong> <strong>of</strong> her thesis<br />

<strong>on</strong> Hypogymnia physodes. Special thanks are<br />

due to Duke University Libraries for providing<br />

the literature. The preparati<strong>on</strong> <strong>of</strong> this paper was<br />

supported also by the Hungarian Scientific Research<br />

Fund (OTKA T047160).<br />

Aalto-Korte K., Lauerma A., <strong>and</strong> Alanko K. (2005), Occupati<strong>on</strong>al<br />

allergic c<strong>on</strong>tact dermatitis from lichens in<br />

present-day Finl<strong>and</strong>. C<strong>on</strong>tact Derm. 52, 36 – 38.<br />

Armstr<strong>on</strong>g R. A. <strong>and</strong> Welch A. R. (2007), Competiti<strong>on</strong><br />

in lichen communities. Symbiosis 43, 1 – 12.<br />

Arup U., Ekman S., Lindblom L., <strong>and</strong> Mattss<strong>on</strong> J.<br />

(1993), High performance thin layer chromatography<br />

(HPTLC), an improved technique for screening<br />

lichen substances. <strong>Lichen</strong>ologist 25, 61 – 71.<br />

Asahina Y. (1936 – 1940), Mikrochemischer Nachweis<br />

der Flechtenst<strong>of</strong>fe I–XI. J. Jpn. Bot. 12, 516 – 525,<br />

859 – 872; 13, 529 – 536, 855 – 861; 14, 39 – 44, 244 – 250,<br />

318 – 323, 650 – 659, 767 – 773; 15, 465 – 472; 16,<br />

185 – 193.<br />

Asahina Y. <strong>and</strong> Shibata S. (1954), Chemistry <strong>of</strong> <strong>Lichen</strong><br />

Substances. Japan Society for the Promoti<strong>on</strong> <strong>of</strong> Science,<br />

Tokyo. (English translati<strong>on</strong> <strong>of</strong> the original Japanese<br />

versi<strong>on</strong> <strong>of</strong> 1949.)<br />

Asplund J. <strong>and</strong> Gauslaa Y. (2007), C<strong>on</strong>tent <strong>of</strong> sec<strong>on</strong>dary<br />

compounds depends <strong>on</strong> thallus size in the foliose<br />

lichen Lobaria pulm<strong>on</strong>aria. <strong>Lichen</strong>ologist 39,<br />

273 – 278.<br />

Asplund J. <strong>and</strong> Gauslaa Y. (2008), Mollusc grazing limits<br />

growth <strong>and</strong> early development <strong>of</strong> the old forest<br />

lichen Lobaria pulm<strong>on</strong>aria in broadleaved deciduos<br />

forests. Oecologia 155, 93 – 99.<br />

Bačkor M. <strong>and</strong> Fahselt D. (2008), <strong>Lichen</strong> photobi<strong>on</strong>ts<br />

<strong>and</strong> metal toxicity. Symbiosis 46, 1 – 10.<br />

Baur A., Baur B., <strong>and</strong> Fröberg L. (1994), Herbivory <strong>on</strong><br />

calcicolous lichens: different food preferences <strong>and</strong><br />

growth rates in two co-existing l<strong>and</strong> snails. Oecologia<br />

98, 313 – 319.<br />

Behera B. C., Verma N., S<strong>on</strong><strong>on</strong>e A., <strong>and</strong> Makhija U.<br />

(2009), Optimizati<strong>on</strong> <strong>of</strong> culture c<strong>on</strong>diti<strong>on</strong>s for lichen<br />

Usnea ghattensis G. Awasthi to increase biomass <strong>and</strong><br />

antioxidant metabolite producti<strong>on</strong>. Food Technol.<br />

Biotechnol. 47, 7 – 12.<br />

Bendz G., Santess<strong>on</strong> J., <strong>and</strong> Wachtmeister C.A. (1965),<br />

Studies <strong>on</strong> the chemistry <strong>of</strong> lichens 23. Thin layer<br />

chromatography <strong>of</strong> pulvic acid derivatives. Acta<br />

Chem. Sc<strong>and</strong>. 19, 1776 – 1777.<br />

Bendz G., Santess<strong>on</strong> J., <strong>and</strong> Tibell L. (1966), Chemical<br />

studies <strong>on</strong> lichens 2. Thin layer chromatography <strong>of</strong><br />

aliphatic lichen acids. Acta Chem. Sc<strong>and</strong>. 20, 1181.<br />

Bendz G., Bohman G., <strong>and</strong> Santess<strong>on</strong> J. (1967), Chemical<br />

studies <strong>on</strong> lichens 5. Separati<strong>on</strong> <strong>and</strong> identificati<strong>on</strong><br />

<strong>of</strong> the antipodes <strong>of</strong> usnic acid by thin layer chromatography.<br />

Acta Chem. Sc<strong>and</strong>. 21, 1376 – 1377.<br />

Bentley R. (1999), Sec<strong>on</strong>dary metabolite biosynthesis:<br />

the first century. Crit. Rev. Biotechnol. 19, 1 – 40.<br />

Bézivin C., Tomasi S., Lohézic-Le Dévéhat F., <strong>and</strong><br />

Boustie J. (2003), Cytotoxic activity <strong>of</strong> some lichen<br />

extracts <strong>on</strong> murine <strong>and</strong> human cancer cell lines. Phytomedicine<br />

10, 499 – 503.<br />

Bézivin C., Tomasi S., Rouaud I., Delcros J., <strong>and</strong> Boustie<br />

J. (2004), Cytotoxic activity <strong>of</strong> compounds from the lichen:<br />

Clad<strong>on</strong>ia c<strong>on</strong>voluta. Planta <strong>Me</strong>d. 70, 874 – 877.<br />

Bhattarai H. D., Paudel B., H<strong>on</strong>g S. G., Lee H. K., <strong>and</strong><br />

Yim J. H. (2008), Thin layer chromatography analysis<br />

<strong>of</strong> antioxidant c<strong>on</strong>stituents <strong>of</strong> lichens from Antarctica.<br />

J. Nat. <strong>Me</strong>d. 62, 481 – 484.<br />

Biał<strong>on</strong>ska D. <strong>and</strong> Dayan F. E. (2005), Chemistry <strong>of</strong> the<br />

lichen Hypogymnia physodes transplanted to an industrial<br />

regi<strong>on</strong>. J. Chem. Ecol. 31, 2975 – 2991.<br />

Boustie J. <strong>and</strong> Grube M. (2005), <strong>Lichen</strong>s – a promising<br />

source <strong>of</strong> bioactive sec<strong>on</strong>dary metabolites. Plant<br />

Genet. Resour. 3, 273 – 287.<br />

Brightman F. H. <strong>and</strong> Seaward M. R. D. (1977), <strong>Lichen</strong>s<br />

<strong>of</strong> man-made substrates. In: <strong>Lichen</strong> Ecology (Sea-


K. Molnár <strong>and</strong> E. Farkas · <strong>Biological</strong> <strong>Activities</strong> <strong>of</strong> <strong>Lichen</strong> Substances 169<br />

ward M. R. D., ed.). Academic Press, L<strong>on</strong>d<strong>on</strong>, pp.<br />

253 – 293.<br />

Brodo I. M., Culbers<strong>on</strong> W. L., <strong>and</strong> Culbers<strong>on</strong> C. F.<br />

(2008), Haematomma (Lecanoraceae) in North <strong>and</strong><br />

Central America, including the West Indies. Bryologist<br />

111, 363 – 423.<br />

Brunauer G., Hager A., Krautgartner W. D., Türk R.,<br />

<strong>and</strong> Stocker-Wörgötter E. (2006), Experimental studies<br />

<strong>on</strong> Lecanora rupicola (L.) Zahlbr.: chemical <strong>and</strong><br />

microscopical investigati<strong>on</strong>s <strong>of</strong> the mycobi<strong>on</strong>t <strong>and</strong><br />

re-synthesis stages. <strong>Lichen</strong>ologist 38, 577 – 585.<br />

Brunauer G., Hager A., Grube M., Türk R., <strong>and</strong> Stocker-Wörgötter<br />

E. (2007), Alterati<strong>on</strong>s in sec<strong>on</strong>dary<br />

metabolism <strong>of</strong> aposymbiotically grown mycobi<strong>on</strong>ts<br />

<strong>of</strong> Xanthoria elegans <strong>and</strong> cultured resynthesis stages.<br />

Plant Physiol. Biochem. 45, 146 – 151.<br />

Cabanillas M., Fernández-Red<strong>on</strong>do V., <strong>and</strong> Toribio<br />

J. (2006), Allergic c<strong>on</strong>tact dermatitis to plants in a<br />

Spanish dermatology department: a 7-year review.<br />

C<strong>on</strong>tact Derm. 55, 84 – 91.<br />

Carlin G. (1987), On the use <strong>of</strong> chemical characters in<br />

lichen tax<strong>on</strong>omy. Graph. Scr. 1, 72 – 76.<br />

Cetin H., Tufan-Cetin O., Türk A. O., Tay T., C<strong>and</strong>an<br />

M., Yanikoglu A., <strong>and</strong> Sumbul H. (2008), Insecticidal<br />

activity <strong>of</strong> major lichen compounds, (–)- <strong>and</strong> (+)-usnic<br />

acid, against the larvae <strong>of</strong> house mosquito, Culex<br />

pipiens L. Parasitol. Res. 102, 1277 – 1279.<br />

Chou C. H. (2006), Introducti<strong>on</strong> to allelopathy. In: Allelopathy:<br />

A Physiological Process with Ecological<br />

Implicati<strong>on</strong>s (Reigosa M. J., Pedrol N., <strong>and</strong> G<strong>on</strong>zález<br />

L., eds.). Springer, Dordrecht, The Netherl<strong>and</strong>s, pp.<br />

1 – 9.<br />

Cook W. E., Raisbeck M. F., Cornish T. E., Williams E. S.,<br />

Brown B., Hiatt G., <strong>and</strong> Kreeger T. J. (2007), Paresis<br />

<strong>and</strong> death in elk (Cervus elaphus) due to lichen intoxicati<strong>on</strong><br />

in Wyoming. J. Wildlife Dis. 43, 498 – 503.<br />

Culbers<strong>on</strong> W. L. (1955), Note sur la nomenclature, répartiti<strong>on</strong><br />

et phytosociologie du Parmeliopsis placorodia<br />

(Ach.) Nyl. Rev. Bryol. Lichénol. 24, 334 – 337.<br />

Culbers<strong>on</strong> W. L. (1957), Parmelia caroliniana Nyl. <strong>and</strong> its<br />

distributi<strong>on</strong>. J. Elisha Mitchell Sci. Soc. 73, 443 – 446.<br />

Culbers<strong>on</strong> W. L. (1958), The chemical strains <strong>of</strong> the lichen<br />

Parmelia cetrarioides Del. in North America.<br />

Phyt<strong>on</strong> 11, 85 – 92.<br />

Culbers<strong>on</strong> C. F. (1963a), Sensitivities <strong>of</strong> some microchemical<br />

tests for usnic acid <strong>and</strong> atranorin. Microchem.<br />

J. 7, 153 – 159.<br />

Culbers<strong>on</strong> C. F. (1963b), The lichen substances <strong>of</strong> the<br />

genus Evernia. Phytochemistry 2, 335 – 340.<br />

Culbers<strong>on</strong> C. F. (1969a), Chemical <strong>and</strong> Botanical Guide<br />

to <strong>Lichen</strong> Products. The University <strong>of</strong> North Carolina<br />

Press, Chapel Hill.<br />

Culbers<strong>on</strong> W. L. (1969b), The use <strong>of</strong> chemistry in the<br />

systematics <strong>of</strong> the lichens. Tax<strong>on</strong> 18, 152 – 166.<br />

Culbers<strong>on</strong> C. F. (1970), Supplement to “Chemical <strong>and</strong><br />

botanical guide to lichen products”. Bryologist 73,<br />

177 – 377.<br />

Culbers<strong>on</strong> C. F. (1972a), High-speed liquid chromatography<br />

<strong>of</strong> lichen extracts. Bryologist 75, 54 – 62.<br />

Culbers<strong>on</strong> C. F. (1972b), Improved c<strong>on</strong>diti<strong>on</strong>s <strong>and</strong> new<br />

data for the identificati<strong>on</strong> <strong>of</strong> lichen products by a<br />

st<strong>and</strong>ardized thin-layer chromatographic method. J.<br />

Chromatogr. 72, 113 – 125.<br />

Culbers<strong>on</strong> C. F. (1974), C<strong>on</strong>diti<strong>on</strong>s for the use <strong>of</strong> <strong>Me</strong>rck<br />

silica gel 60 F 254 plates in the st<strong>and</strong>ardized thin-layer<br />

chromatographic technique for lichen products. J.<br />

Chromatogr. 97, 107 – 108.<br />

Culbers<strong>on</strong> W. L. <strong>and</strong> Culbers<strong>on</strong> C. F. (1956), The systematics<br />

<strong>of</strong> the Parmelia dubia group in North America.<br />

Am. J. Bot. 43, 678 – 687.<br />

Culbers<strong>on</strong> C. F. <strong>and</strong> Culbers<strong>on</strong> W. L. (1958), Age <strong>and</strong><br />

chemical c<strong>on</strong>stituents <strong>of</strong> individuals <strong>of</strong> the lichen Lasallia<br />

papulosa. Lloydia 21, 189 – 192.<br />

Culbers<strong>on</strong> C. F. <strong>and</strong> Kristinss<strong>on</strong> H.-D. (1970), A st<strong>and</strong>ardized<br />

method for the identificati<strong>on</strong> <strong>of</strong> lichen products.<br />

J. Chromatogr. 46, 85 – 93.<br />

Culbers<strong>on</strong> C. F. <strong>and</strong> Johns<strong>on</strong> A. (1976), A st<strong>and</strong>ardized<br />

two-dimensi<strong>on</strong>al thin-layer chromatographic method<br />

for lichen products. J. Chromatogr. 128, 253 – 259.<br />

Culbers<strong>on</strong> C. F. <strong>and</strong> Culbers<strong>on</strong> W. L. (1978a), β-Orcinol<br />

derivatives in lichens: biogenetic evidence from Oropog<strong>on</strong><br />

loxensis. Exp. Mycol. 2, 245 – 257.<br />

Culbers<strong>on</strong> W. L. <strong>and</strong> Culbers<strong>on</strong> C. F. (1978b), Cetrelia<br />

cetrarioides <strong>and</strong> C. m<strong>on</strong>achorum (Parmeliaceae) in<br />

the New World. Bryologist 81, 517 – 523.<br />

Culbers<strong>on</strong> C. F. <strong>and</strong> Johns<strong>on</strong> A. (1982), Substituti<strong>on</strong><br />

<strong>of</strong> methyl tert-butyl ether in the st<strong>and</strong>ardized thinlayer<br />

chromatographic method for lichen products. J.<br />

Chromatogr. 238, 483 – 487.<br />

Culbers<strong>on</strong> C. F. <strong>and</strong> Elix J. A. (1989), <strong>Lichen</strong> substances.<br />

In: <strong>Me</strong>thods in Plant Biochemistry, Vol. 1, Plant Phenolics<br />

(Dey P. M. <strong>and</strong> Harborne J. B., eds.). Academic<br />

Press, L<strong>on</strong>d<strong>on</strong>, pp. 509 – 535.<br />

Culbers<strong>on</strong> C. F. <strong>and</strong> Armaleo D. (1992), Inducti<strong>on</strong> <strong>of</strong> a<br />

complete sec<strong>on</strong>dary-product pathway in a cultured<br />

lichen fungus. Exp. Mycol. 16, 52 – 63.<br />

Culbers<strong>on</strong> C. F. <strong>and</strong> Culbers<strong>on</strong> W. L. (2001), Future directi<strong>on</strong>s<br />

in lichen chemistry. Bryologist 104, 230 – 234.<br />

Culbers<strong>on</strong> C. F., Culbers<strong>on</strong> W. L., <strong>and</strong> Johns<strong>on</strong> A.<br />

(1977a), Sec<strong>on</strong>d Supplement to “Chemical <strong>and</strong> Botanical<br />

Guide to <strong>Lichen</strong> Products”. The American<br />

Bryological <strong>and</strong> <strong>Lichen</strong>ological Society, St. Louis.<br />

Culbers<strong>on</strong> C. F., Culbers<strong>on</strong> W. L., <strong>and</strong> Johns<strong>on</strong> A.<br />

(1977b), N<strong>on</strong>r<strong>and</strong>om distributi<strong>on</strong> <strong>of</strong> an epiphytic<br />

Lepraria <strong>on</strong> two species <strong>of</strong> Parmelia. Bryologist 80,<br />

201 – 203.<br />

Culbers<strong>on</strong> C. F., Culbers<strong>on</strong> W. L., <strong>and</strong> Johns<strong>on</strong> A. (1981),<br />

A st<strong>and</strong>ardized TLC analysis <strong>of</strong> β-orcinol depsid<strong>on</strong>es.<br />

Bryologist 84, 16 – 29.<br />

Dahlquist I. <strong>and</strong> Fregert S. (1980), C<strong>on</strong>tact allergy to<br />

atranorin in lichens <strong>and</strong> perfumes. C<strong>on</strong>tact Derm. 6,<br />

111 – 119.<br />

Dailey R. N., M<strong>on</strong>tgomery D. L., Ingram J. T., Siemi<strong>on</strong><br />

R., Vasquez M., <strong>and</strong> Raisbeck M. F. (2008), Toxicity<br />

<strong>of</strong> the lichen sec<strong>on</strong>dary metabolite (+)-usnic acid in<br />

domestic sheep. Vet. Pathol. 45, 19 – 25.<br />

Dayan F. E. <strong>and</strong> Romagni J. G. (2001), <strong>Lichen</strong>s as a<br />

potential source <strong>of</strong> pesticides. Pestic. Outlook 12,<br />

229 – 232.<br />

Edwards H. G. M., De Oliveira L. F. C., <strong>and</strong> Seaward<br />

M. R. D. (2005), FT-Raman spectroscopy <strong>of</strong> the<br />

Christmas wreath lichen, Cryptothecia rubrocincta<br />

(Ehrenb.:Fr.) Thor. <strong>Lichen</strong>ologist 37, 181 – 189.<br />

Egan R. S. (1986), Correlati<strong>on</strong>s <strong>and</strong> n<strong>on</strong>-correlati<strong>on</strong>s <strong>of</strong><br />

chemical variati<strong>on</strong> patterns with lichen morphology<br />

<strong>and</strong> geography. Bryologist 89, 99 – 110.


170 K. Molnár <strong>and</strong> E. Farkas · <strong>Biological</strong> <strong>Activities</strong> <strong>of</strong> <strong>Lichen</strong> Substances<br />

Elix J. A. (1996), Biochemistry <strong>and</strong> sec<strong>on</strong>dary metabolites.<br />

In: <strong>Lichen</strong> Biology, 1st ed. (Nash T. H. III,<br />

ed.). Cambridge University Press, Cambridge, pp.<br />

155 – 180.<br />

Elix J. A. <strong>and</strong> Stocker-Wörgötter E. (2008), Biochemistry<br />

<strong>and</strong> sec<strong>on</strong>dary metabolites. In: <strong>Lichen</strong> Biology,<br />

2nd ed. (Nash T. H. III, ed.). Cambridge University<br />

Press, Cambridge, pp. 104 – 133.<br />

Emmerich R., Giez I., Lange O. L., <strong>and</strong> Proksch P. (1993),<br />

Toxicity <strong>and</strong> antifeedant activity <strong>of</strong> lichen compounds<br />

against the polyphagous herbivorous insect Spodoptera<br />

littoralis. Phytochemistry 33, 1389 – 1394.<br />

Ertl L. (1951), Über die Lichtverhältnisse in Laubflechten.<br />

Planta 39, 245 – 270.<br />

Esim<strong>on</strong>e C. O., Grunwald T., Nworu C. S., Kuate S.,<br />

Proksch P., <strong>and</strong> Überla K. (2009), Broad spectrum<br />

antiviral fracti<strong>on</strong>s from the lichen Ramalina farinacea<br />

(L.) Ach. Chemotherapy 55, 119 – 126.<br />

Fahselt D. (1994), Sec<strong>on</strong>dary biochemistry <strong>of</strong> lichens.<br />

Symbiosis 16, 117 – 165.<br />

Farrar J. F. (1976), The lichen as an ecosystem: observati<strong>on</strong><br />

<strong>and</strong> experiment. In: <strong>Lichen</strong>ology: Progress <strong>and</strong><br />

Problems. The Systematics Associati<strong>on</strong>, Special Vol.<br />

8 (Brown D. H., Hawksworth D. L., <strong>and</strong> Bailey R.<br />

H., eds.). Academic Press, L<strong>on</strong>d<strong>on</strong> <strong>and</strong> New York, pp.<br />

385 – 406.<br />

Fazio A. T., Adler M. T., Bert<strong>on</strong>i M. D., Sepúlveda C. S.,<br />

Dam<strong>on</strong>te E. B., <strong>and</strong> Maier M. S. (2007), <strong>Lichen</strong> sec<strong>on</strong>dary<br />

metabolites from the cultured lichen mycobi<strong>on</strong>ts<br />

<strong>of</strong> Teloschistes chrysophthalmus <strong>and</strong> Ramalina<br />

celastri <strong>and</strong> their antiviral activities. Z. Naturforsch.<br />

62c, 543 – 549.<br />

Fehrer J., Slavíková-Bayerová Š., <strong>and</strong> Orange A. (2008),<br />

Large genetic divergence <strong>of</strong> new, morphologically<br />

similar species <strong>of</strong> sterile lichens from Europe (Lepraria,<br />

Stereocaulaceae, Ascomycota): c<strong>on</strong>cordance<br />

<strong>of</strong> DNA sequence data with sec<strong>on</strong>dary metabolites.<br />

Cladistics 24, 443 – 458.<br />

Feige G. B. <strong>and</strong> Lumbsch T. H. (1995), Some types <strong>of</strong><br />

chemical variati<strong>on</strong> in lichens. Cryptogamic Bot. 5,<br />

31 – 35.<br />

Feige G. B., Lumbsch H. T., Huneck S., <strong>and</strong> Elix J. A.<br />

(1993), Identificati<strong>on</strong> <strong>of</strong> lichen substances by a st<strong>and</strong>ardized<br />

high-performance liquid chromatographic<br />

method. J. Chromatogr. 646, 417 – 427.<br />

Fernández-Salegui A. B., Terrón A., Barreno E., <strong>and</strong><br />

Nimis P. L. (2007), Biom<strong>on</strong>itoring with cryptogams<br />

near the power stati<strong>on</strong> <strong>of</strong> La Robla (León, Spain).<br />

Bryologist 110, 723 – 737.<br />

Feuerer T. <strong>and</strong> Hawksworth D. L. (2007), Biodiversity<br />

<strong>of</strong> lichens, including a world-wide analysis <strong>of</strong> checklist<br />

data based <strong>on</strong> Takhtajan’s floristic regi<strong>on</strong>s. Biodivers.<br />

C<strong>on</strong>serv. 16, 85 – 98.<br />

Fisher R. F. (1979), Possible allelopathic effects <strong>of</strong> reindeer-moss<br />

(Clad<strong>on</strong>ia) <strong>on</strong> jack pine <strong>and</strong> white spruce.<br />

Forest Sci. 25, 256 – 260.<br />

Galloway D. J. (1993), Global envir<strong>on</strong>mental change:<br />

lichens <strong>and</strong> chemistry. Bibl. <strong>Lichen</strong>ol. 53, 87 – 95.<br />

Galun M. <strong>and</strong> Shomer-Ilan A. (1988), Sec<strong>on</strong>dary metabolic<br />

products. In: CRC H<strong>and</strong>book <strong>of</strong> <strong>Lichen</strong>ology,<br />

Vol. III (Galun M., ed.). CRC Press Inc., Boca Rat<strong>on</strong>,<br />

Florida, pp. 3 – 8.<br />

Gauslaa Y. (2005), <strong>Lichen</strong> palatability depends <strong>on</strong> investments<br />

in herbivore defence. Oecologia 143,<br />

94 – 105.<br />

Gilbert O. (2000), <strong>Lichen</strong>s. Harper Collins Pubishers,<br />

L<strong>on</strong>d<strong>on</strong>.<br />

Glavich D. A. <strong>and</strong> Geiser L. H. (2008), Potential approaches<br />

to developing lichen-based critical loads<br />

<strong>and</strong> levels for nitrogen, sulfur <strong>and</strong> metal-c<strong>on</strong>taining<br />

atmospheric pollutants in North America. Bryologist<br />

111, 638 – 649.<br />

G<strong>on</strong>çalo S., Cabral F., <strong>and</strong> G<strong>on</strong>çalo M. (1988), C<strong>on</strong>tact<br />

sensitivity to oak moss. C<strong>on</strong>tact Derm. 19, 355 – 357.<br />

Gries C. (1996), <strong>Lichen</strong>s as indicators <strong>of</strong> air polluti<strong>on</strong>.<br />

In: <strong>Lichen</strong> Biology, 1st ed. (Nash T. H. III, ed.). Cambridge<br />

University Press, Cambridge, pp. 240 – 254.<br />

Hager A. <strong>and</strong> Stocker-Wörgötter E. (2005), Sec<strong>on</strong>dary<br />

chemistry <strong>and</strong> DNA-analyses <strong>of</strong> the Australian lichen<br />

Heterodea muelleri (Hampe) Nyl. <strong>and</strong> culture <strong>of</strong> the<br />

symbi<strong>on</strong>ts. Symbiosis 39, 13 – 19.<br />

Hager A., Brunauer G., Türk R., <strong>and</strong> Stocker-Wörgötter<br />

E. (2008), Producti<strong>on</strong> <strong>and</strong> bioactivity <strong>of</strong> comm<strong>on</strong> lichen<br />

metabolites as exemplified by Heterodea muelleri<br />

(Hampe) Nyl. J. Chem. Ecol. 34, 113 – 120.<br />

Halama P. <strong>and</strong> Van Haluwin C. (2004), Antifungal activity<br />

<strong>of</strong> lichen extracts <strong>and</strong> lichenic acids. BioC<strong>on</strong>trol<br />

49, 95 – 107.<br />

Hamada N. (1989), The effect <strong>of</strong> various culture c<strong>on</strong>diti<strong>on</strong>s<br />

<strong>on</strong> depside producti<strong>on</strong> by an isolated lichen<br />

mycobi<strong>on</strong>t. Bryologist 92, 310 – 313.<br />

Han D., Matsumaru K., Rettori D., <strong>and</strong> Kaplowitz N.<br />

(2004), Usnic acid-induced necrosis <strong>of</strong> cultured mouse<br />

hepatocytes: inhibiti<strong>on</strong> <strong>of</strong> mitoch<strong>on</strong>drial functi<strong>on</strong> <strong>and</strong><br />

oxidative stress. Biochem. Pharmacol. 67, 439 – 451.<br />

Hauck M. (2008), <strong>Me</strong>tal homeostasis in Hypogymnia<br />

physodes is c<strong>on</strong>trolled by lichen substances. Envir<strong>on</strong>.<br />

Pollut. 153, 304 – 308.<br />

Hauck M. <strong>and</strong> Huneck S. (2007a), <strong>Lichen</strong> substances<br />

affect metal adsorpti<strong>on</strong> in Hypogymnia physodes. J.<br />

Chem. Ecol. 33, 219 – 223.<br />

Hauck M. <strong>and</strong> Huneck S. (2007b), The putative role <strong>of</strong><br />

fumarprotocetraric acid in the manganese tolerance<br />

<strong>of</strong> the lichen Lecanora c<strong>on</strong>izaeoides. <strong>Lichen</strong>ologist<br />

39, 301 – 304.<br />

Hauck M., Willenbruch K., <strong>and</strong> Leuschner C. (2009),<br />

<strong>Lichen</strong> substances prevent lichens from nutrient deficiency.<br />

J. Chem. Ecol. 35, 71 – 73.<br />

Hausen B. M., Emde L., <strong>and</strong> Marks V. (1993), An investigati<strong>on</strong><br />

<strong>of</strong> the allergic c<strong>on</strong>stituents <strong>of</strong> Clad<strong>on</strong>ia<br />

stellaris (Opiz) Pous & Vězda (‘silver moss,’ ‘reindeer<br />

moss’ or ‘reindeer lichen’). C<strong>on</strong>tact Derm. 28,<br />

70 – 76.<br />

Hawksworth D. L. (1976), <strong>Lichen</strong> chemotax<strong>on</strong>omy. In:<br />

<strong>Lichen</strong>ology: Progress <strong>and</strong> Problems. The Systematics<br />

Associati<strong>on</strong>, Special Vol. 8 (Brown D. H., Hawksworth<br />

D. L., <strong>and</strong> Bailey R. H., eds.). Academic Press,<br />

L<strong>on</strong>d<strong>on</strong> <strong>and</strong> New York, pp. 139 – 184.<br />

Hawksworth D. L. <strong>and</strong> H<strong>on</strong>egger R. (1994), The lichen<br />

thallus: a symbiotic phenotype <strong>of</strong> nutriti<strong>on</strong>ally specialized<br />

fungi <strong>and</strong> its resp<strong>on</strong>se to gall producers. In:<br />

Plant Galls. The Systematics Associati<strong>on</strong>, Special Vol.<br />

49 (Williams M. A. J., ed.). Clarend<strong>on</strong> Press, Oxford,<br />

pp. 77 – 98.


K. Molnár <strong>and</strong> E. Farkas · <strong>Biological</strong> <strong>Activities</strong> <strong>of</strong> <strong>Lichen</strong> Substances 171<br />

Heilman A. S. <strong>and</strong> Sharp A. J. (1963), A probable antibiotic<br />

effect <strong>of</strong> some lichens <strong>on</strong> bryophytes. Rev. Bryol.<br />

Lichénol. 32, 215.<br />

Henningss<strong>on</strong> B. <strong>and</strong> Lundström H. (1970), The influence<br />

<strong>of</strong> lichens, lichen extracts <strong>and</strong> usnic acid <strong>on</strong> wood destroying<br />

fungi. Mater. Org. 5, 19 – 31.<br />

Hesse O. (1912), Die Flechtenst<strong>of</strong>fe. In: Biochemisches<br />

H<strong>and</strong>lexik<strong>on</strong>, Bd. VII (Abderhalden E., ed.). Julius<br />

Springer, Berlin, pp. 32 – 144.<br />

Hidalgo M. E., Fernández E., Quilhot W., <strong>and</strong> Lissi E.<br />

(1994), Antioxidant activity <strong>of</strong> depsides <strong>and</strong> depsid<strong>on</strong>es.<br />

Phytochemistry 37, 1585 – 1587.<br />

H<strong>on</strong>egger R. (1991), Functi<strong>on</strong>al aspects <strong>of</strong> the lichen<br />

symbioses. Annu. Rev. Plant Physiol. Plant Mol. Biol.<br />

42, 553 – 578.<br />

H<strong>on</strong>egger R. (2001), The symbiotic phenotype <strong>of</strong><br />

lichen-forming Ascomycetes. In: The Mycota IX<br />

(Hock B., ed.). Springer-Verlag, Berlin, Heidelberg,<br />

pp. 165 – 188.<br />

Huneck S. (1999), The significance <strong>of</strong> lichens <strong>and</strong> their<br />

metabolites. Naturwissenschaften 86, 559 – 570.<br />

Huneck S. <strong>and</strong> Yoshimura I. (1996), Identificati<strong>on</strong> <strong>of</strong> lichen<br />

substances. Springer-Verlag, Berlin, Heidelberg.<br />

Huovinen K. (1987), A st<strong>and</strong>ard HPLC method for the<br />

analyses <strong>of</strong> aromatic lichen compounds. Progress <strong>and</strong><br />

problems in lichenology in the eighties. Bibl. <strong>Lichen</strong>ol.<br />

25, 457 – 466.<br />

Hyvärinen M., Koopmann R., Hormi O., <strong>and</strong> Tuomi J.<br />

(2000), Phenols in reproductive <strong>and</strong> somatic structures<br />

<strong>of</strong> lichens: a case <strong>of</strong> optimal defence? Oikos<br />

91, 371 – 375.<br />

J<strong>on</strong>es<strong>on</strong> S. <strong>and</strong> Lutz<strong>on</strong>i F. (2009), Compatibility <strong>and</strong><br />

thigmotropism in the lichen symbiosis: A reappraisal.<br />

Symbiosis 47, 109 – 115.<br />

Karakus B., Odabasoglu F., Cakir A., Halici Z., Bayir<br />

Y., Halici M., Aslan A., <strong>and</strong> Suleyman H. (2009), The<br />

effects <strong>of</strong> methanol extract <strong>of</strong> Lobaria pulm<strong>on</strong>aria,<br />

a lichen species, <strong>on</strong> indometacin-induced gastric mucosal<br />

damage, oxidative stress <strong>and</strong> neutrophil infiltrati<strong>on</strong>.<br />

Phytother. Res. 23, 635 – 639.<br />

Kauppi M. <strong>and</strong> Verseghy-Patay K. (1990), Determinati<strong>on</strong><br />

<strong>of</strong> the distributi<strong>on</strong> <strong>of</strong> lichen substances in the<br />

thallus by fluorescence microscopy. Ann. Bot. Fenn.<br />

27, 189 – 202.<br />

Kershaw K. A. (1985), Physiological Ecology <strong>of</strong> <strong>Lichen</strong>s.<br />

Cambridge University Press, Cambridge.<br />

Kirk P. M., Cann<strong>on</strong> P. F., Minter D. W., <strong>and</strong> Stalpers J. A.<br />

(eds.) (2008), Dicti<strong>on</strong>ary <strong>of</strong> the Fungi, 10th ed. CAB<br />

Internati<strong>on</strong>al, Wallingford, Ox<strong>on</strong>, UK.<br />

Lawrey J. D. (1977), Adaptive significance <strong>of</strong> O-methylated<br />

lichen depsides <strong>and</strong> depsid<strong>on</strong>es. <strong>Lichen</strong>ologist<br />

9, 137 – 142.<br />

Lawrey J. D. (1986), <strong>Biological</strong> role <strong>of</strong> lichen substances.<br />

Bryologist 89, 111 – 122.<br />

Lawrey J. D. (1995), <strong>Lichen</strong> allelopathy: A review. In:<br />

Allelopathy: Organisms, Processes, <strong>and</strong> Applicati<strong>on</strong>s<br />

(Inderjit, Dakshini K. M. M., <strong>and</strong> Einhellig F. A.,<br />

eds.). ACS Symposium Series 582. American Chemical<br />

Society, Washingt<strong>on</strong>, DC, pp. 26 – 38.<br />

Lawrey J. D. (2000), Chemical interacti<strong>on</strong>s between<br />

two lichen-degrading fungi. J. Chem. Ecol. 26,<br />

1821 – 1831.<br />

Lisická E. (2008), <strong>Lichen</strong>s <strong>on</strong> an acrylic-coated aluminium<br />

ro<strong>of</strong>. Graph. Scr. 20, 9 – 12.<br />

Lumbsch H. T. (1998), Tax<strong>on</strong>omic use <strong>of</strong> metabolic data<br />

in lichen-forming fungi. In: Chemical Fungal Tax<strong>on</strong>omy<br />

(Frisvad J. C., Bridge P. D., <strong>and</strong> Arora D. K., eds.).<br />

Marcel Dekker Inc., New York, pp. 345 – 387.<br />

Luo H., Yamamoto Y., Kim J. A., Jung J. S., Koh Y. J.,<br />

<strong>and</strong> Hur J.-S. (2009), Lecanoric acid, a sec<strong>on</strong>dary<br />

lichen substance with antioxidant properties from<br />

Umbilicaria antarctica in maritime Antarctica (King<br />

George Isl<strong>and</strong>). Polar Biol. 32, 1033 – 1040.<br />

Lutz<strong>on</strong>i F., Kauff F., Cox C. J., Mclaughlin D., Celio<br />

G., Dentinger B., Padamsee M., Hibbett D., James<br />

T. Y., Baloch E., Grube M., Reeb V., H<strong>of</strong>stetter V.,<br />

Schoch C., Arnold A. E., Miadlikowska J., Spatafora<br />

J., Johns<strong>on</strong> D., Hamblet<strong>on</strong> S., Crockett M., Shoemaker<br />

R., Sung G., Lücking R., Lumbsch T., O’D<strong>on</strong>nell<br />

K., Binder M., Diederich P., Ertz D., Gueidan C.,<br />

Hansen K., Harris R. C., Hosaka K., Lim Y., Matheny<br />

B., Nishida H., Pfister D., Rogers J., Rossman A.,<br />

Schmitt I., Sipman H., St<strong>on</strong>e J., Sugiyama J., Yahr R.,<br />

<strong>and</strong> Vilgalys R. (2004), Assembling the fungal tree <strong>of</strong><br />

life: progress, classificati<strong>on</strong>, <strong>and</strong> evoluti<strong>on</strong> <strong>of</strong> subcellular<br />

traits. Am. J. Bot. 91, 1446 – 1480.<br />

Macías F. A., Molinillo J. M. G., Varela R. M., <strong>and</strong> Galindo<br />

J. C. G. (2007), Allelopathy – a natural alternative<br />

for weed c<strong>on</strong>trol. Pest Manag. Sci. 63, 327 – 348.<br />

Marante F. J. T., Castellano A. G., Rosas F. E., Aguiar J.<br />

Q., <strong>and</strong> Barrera J. B. (2003), Identificati<strong>on</strong> <strong>and</strong> quantitati<strong>on</strong><br />

<strong>of</strong> allelochemicals from the lichen Lethariella<br />

canariensis: phytotoxicity <strong>and</strong> antioxidative activity. J.<br />

Chem. Ecol. 29, 2049 – 2071.<br />

Mattss<strong>on</strong> J.-E. (1994), <strong>Lichen</strong> proteins, sec<strong>on</strong>dary products<br />

<strong>and</strong> morphology: a review <strong>of</strong> protein studies in<br />

lichens with special emphasis <strong>on</strong> tax<strong>on</strong>omy. J. Hattori<br />

Bot. Lab. 76, 235 – 248.<br />

Mayer M., O’Neill M. A., Murry K. E., Santos-Magalhães<br />

N. S., Carneiro-Leão A. M. A., Thomps<strong>on</strong> A. M.,<br />

<strong>and</strong> Appleyard V. C. L. (2005), Usnic acid: a n<strong>on</strong>-genotoxic<br />

compound with anti-cancer properties. Anti-<br />

Cancer Drugs 16, 805 – 809.<br />

Mitchell J. C. <strong>and</strong> Champi<strong>on</strong> R. H. (1965), Human allergy<br />

to lichens. Bryologist 68, 116 – 118.<br />

Mitsuno M. (1953), Paper chromatography <strong>of</strong> lichen<br />

substances. I. Pharm. Bull. 1, 170 – 173.<br />

Müller K. (2001), Pharmaceutically relevant metabolites<br />

from lichens. Appl. Microbiol. Biotechnol. 56, 9 – 16.<br />

Nash T. H. III (ed.) (2008), <strong>Lichen</strong> Biology, 2nd ed.<br />

Cambridge University Press, Cambridge.<br />

Nelsen M. P. <strong>and</strong> Gargas A. (2008), Phylogenetic distributi<strong>on</strong><br />

<strong>and</strong> evoluti<strong>on</strong> <strong>of</strong> sec<strong>on</strong>dary metabolites in<br />

the lichenized fungal genus Lepraria (Lecanorales:<br />

Stereocaulaceae). Nova Hedwigia 86, 115 – 131.<br />

Nelsen M. P. <strong>and</strong> Gargas A. (2009), Assessing cl<strong>on</strong>ality<br />

<strong>and</strong> chemotype m<strong>on</strong>ophyly in Thamnolia (Icmadophilaceae).<br />

Bryologist 112, 42 – 53.<br />

Nimis P. L. <strong>and</strong> Skert N. (2006), <strong>Lichen</strong> chemistry <strong>and</strong><br />

selective grazing by the coleopteran Lasioderma serricorne.<br />

Envir<strong>on</strong>. Exp. Bot. 55, 175 – 182.<br />

Nordin A., Tibell L., <strong>and</strong> Owe-Larss<strong>on</strong> B. (2007), A preliminary<br />

phylogeny <strong>of</strong> Aspicilia in relati<strong>on</strong> to morphological<br />

<strong>and</strong> sec<strong>on</strong>dary product variati<strong>on</strong>. Bibl.<br />

<strong>Lichen</strong>ol. 96, 247 – 266.<br />

Nybakken L. <strong>and</strong> Julkunen-Tiitto R. (2006), UV-B induces<br />

usnic acid in reindeer lichens. <strong>Lichen</strong>ologist 38,<br />

477 – 485.


172 K. Molnár <strong>and</strong> E. Farkas · <strong>Biological</strong> <strong>Activities</strong> <strong>of</strong> <strong>Lichen</strong> Substances<br />

Nybakken L. <strong>and</strong> Gauslaa Y. (2007), Difference in sec<strong>on</strong>dary<br />

compounds <strong>and</strong> chlorophylls between fibrils<br />

<strong>and</strong> main stems in the lichen Usnea l<strong>on</strong>gissima suggests<br />

different functi<strong>on</strong>al roles. <strong>Lichen</strong>ologist 39,<br />

491 – 494.<br />

Nybakken L., Solhaug K. A., Bilger W., <strong>and</strong> Gauslaa Y.<br />

(2004), The lichens Xanthoria elegans <strong>and</strong> Cetraria<br />

isl<strong>and</strong>ica maintain a high protecti<strong>on</strong> against UV-B<br />

radiati<strong>on</strong> in arctic habitats. Oecologia 140, 211 – 216.<br />

Nyl<strong>and</strong>er W. (1866), Circa novum in studio <strong>Lichen</strong>um<br />

critericum chemicum. Flora 49, 198 – 201.<br />

Odabasoglu F., Aslan A., Cakir A., Suleyman H., Karagoz<br />

Y., Halici M., <strong>and</strong> Bayir Y. (2004), Comparis<strong>on</strong><br />

<strong>of</strong> antioxidant activity <strong>and</strong> phenolic c<strong>on</strong>tent <strong>of</strong> three<br />

lichen species. Phytother. Res. 18, 938 – 941.<br />

Odabasoglu F., Cakir A., Suleyman H., Aslan A., Bayir<br />

Y., Halici M., <strong>and</strong> Kazaz C. (2006), Gastroprotective<br />

<strong>and</strong> antioxidant effects <strong>of</strong> usnic acid <strong>on</strong> indomethacin-induced<br />

gastric ulcer in rats. J. Ethnopharmacol.<br />

103, 59 – 65.<br />

Okuyama E., Umeyama K., Yamazaki M., Kinoshita Y.,<br />

<strong>and</strong> Yamamoto Y. (1995), Usnic acid <strong>and</strong> diffractaic<br />

acid as analgesic <strong>and</strong> antipyretic comp<strong>on</strong>ents <strong>of</strong> Usnea<br />

diffracta. Planta <strong>Me</strong>d. 61, 113 – 115.<br />

Paudel B., Bhattarai H. D., Lee J. S., H<strong>on</strong>g S. G., Shin<br />

H. W., <strong>and</strong> Yim J. H. (2008), Antibacterial potential<br />

<strong>of</strong> antarctic lichens against human pathogenic Grampositive<br />

bacteria. Phytother. Res. 22, 1269 – 1271.<br />

Piercey-Normore M. (2007), The genus Clad<strong>on</strong>ia in<br />

Manitoba: exploring tax<strong>on</strong>omic trends with sec<strong>on</strong>dary<br />

metabolites. Mycotax<strong>on</strong> 101, 189 – 199.<br />

Pöykkö H. <strong>and</strong> Hyvärinen M. (2003), Host preference<br />

<strong>and</strong> performance <strong>of</strong> lichenivorous Eilema spp. larvae<br />

in relati<strong>on</strong> to lichen sec<strong>on</strong>dary metabolites. J. Anim.<br />

Ecol. 72, 383 – 390.<br />

Pöykkö H., Hyvärinen M., <strong>and</strong> Bačkor M. (2005), Removal<br />

<strong>of</strong> lichen sec<strong>on</strong>dary metabolites affects food<br />

choice <strong>and</strong> survival <strong>of</strong> lichenivorous moth larvae.<br />

Ecology 86, 2623 – 2632.<br />

Pyatt F. B. (1967), The inhibitory influence <strong>of</strong> Peltigera<br />

canina <strong>on</strong> the germinati<strong>on</strong> <strong>of</strong> graminaceous seeds<br />

<strong>and</strong> the subsequent growth <strong>of</strong> the seedlings. Bryologist<br />

70, 326 – 329.<br />

Ramaut J. L. (1963a), Chromatographie en couche<br />

mince des depsid<strong>on</strong>es du ß orcinol. B. Soc. Chim.<br />

Belg. 72, 97 – 101.<br />

Ramaut J. L. (1963b), Chromatographie sur couche<br />

mince des depsides et des depsid<strong>on</strong>es. B. Soc. Chim.<br />

Belg. 72, 316 – 321.<br />

Ranković B. <strong>and</strong> Mišić M. (2007), Antifungal activity <strong>of</strong><br />

extracts <strong>of</strong> the lichens Alectoria sarmentosa <strong>and</strong> Clad<strong>on</strong>ia<br />

rangiferina. Mikol. Fitopatol. 41, 276 – 281.<br />

Ranković B. <strong>and</strong> Mišić M. (2008), The antimicrobial activity<br />

<strong>of</strong> the lichen substances <strong>of</strong> the lichens Clad<strong>on</strong>ia<br />

furcata, Ochrolechia <strong>and</strong>rogyna, Parmelia caperata<br />

<strong>and</strong> Parmelia c<strong>on</strong>spersa. Biotechnol. Biotechnol.<br />

Equip. 22, 1013 – 1016.<br />

Ranković B., Mišić M., <strong>and</strong> Sukdolak S. (2008), The<br />

antimicrobial activity <strong>of</strong> substances derived from<br />

the lichens Physcia aipolia, Umbilicaria polyphylla,<br />

Parmelia caperata <strong>and</strong> Hypogymnia physodes. World<br />

J. Microbiol. Biotechnol. 24, 1239 – 1242.<br />

Rao D. N. <strong>and</strong> LeBlanc B. F. (1965), A possible role<br />

<strong>of</strong> atranorin in the lichen thallus. Bryologist 68,<br />

284 – 289.<br />

Reutimann P. <strong>and</strong> Scheidegger C. (1987), Importance<br />

<strong>of</strong> lichen sec<strong>on</strong>dary products in food choice <strong>of</strong> two<br />

oribatid mites (Acari) in alpine meadow ecosystem.<br />

J. Chem. Ecol. 13, 363 – 369.<br />

Romagni J. G. <strong>and</strong> Dayan F. E. (2002), Structural diversity<br />

<strong>of</strong> lichen metabolites <strong>and</strong> their potential use.<br />

In: Advances in Microbial Toxin Research <strong>and</strong> its<br />

Biotechnological Exploitati<strong>on</strong> (Upadhyay R. K., ed.).<br />

Kluwer Academic/Plenum Publishers, New York, pp.<br />

151 – 169.<br />

Romagni J. G., Rosell R. C., Nanayakkara N. P. D., <strong>and</strong><br />

Dayan F. E. (2004), Ecophysiology <strong>and</strong> potential<br />

modes <strong>of</strong> acti<strong>on</strong> for selected lichen sec<strong>on</strong>dary metabolites.<br />

In: Allelopathy: Chemistry <strong>and</strong> Mode <strong>of</strong><br />

Acti<strong>on</strong> <strong>of</strong> Allelochemicals (Macías F. A., Galindo J.<br />

C. G., Molinillo J. M. G., <strong>and</strong> Cutler H. G., eds.). CRC<br />

Press LLC, Boca Rat<strong>on</strong>, pp. 13 – 33.<br />

Rundel P. W. (1978), The ecological role <strong>of</strong> sec<strong>on</strong>dary<br />

lichen substances. Biochem. Syst. Ecol. 6, 157 – 170.<br />

Russo A., Piovano M., Lombardo L., Garbarino J., <strong>and</strong><br />

Cardile V. (2008), <strong>Lichen</strong> metabolites prevent UV<br />

light <strong>and</strong> nitric oxide-mediated plasmid DNA damage<br />

<strong>and</strong> induce apoptosis in human melanoma cells.<br />

Life Sci. 83, 468 – 474.<br />

Sancho L. G., De La Torre R., Horneck G., Ascaso<br />

C., De Los Rios A., Pintado A., Wierzchos J., <strong>and</strong><br />

Schuster M. (2007), <strong>Lichen</strong>s survive in space: <str<strong>on</strong>g>Results</str<strong>on</strong>g><br />

from the 2005 LICHENS experiment. Astrobiology<br />

7, 443 – 454.<br />

Santess<strong>on</strong> J. (1965), Studies <strong>on</strong> the chemistry <strong>of</strong> lichens<br />

24. Thin layer chromatography <strong>of</strong> aldehydic aromatic<br />

lichen substances. Acta Chem. Sc<strong>and</strong>. 19, 2254 – 2255.<br />

Santess<strong>on</strong> J. (1967a), Chemical studies <strong>on</strong> lichens 4.<br />

Thin layer chromatography <strong>of</strong> lichen substances.<br />

Acta Chem. Sc<strong>and</strong>. 21, 1162 – 1172.<br />

Santess<strong>on</strong> J. (1967b), Chemical studies <strong>on</strong> lichens – III.<br />

The pigments <strong>of</strong> Thelocarp<strong>on</strong> epibolum, T. laureri<br />

<strong>and</strong> Ahlesia lichenicola. Phytochemistry 6, 685 – 686.<br />

Schmeda-Hirschmann G., Tapia A., Lima B., Pertino<br />

M., Sortino M., Zacchino S., Rojas De Arias A., <strong>and</strong><br />

Feresin G. E. (2008), A new antifungal <strong>and</strong> antiprotozoal<br />

depside from the Andean lichen Protousnea<br />

poeppigii. Phytother. Res. 22, 349 – 355.<br />

Schmitt I. <strong>and</strong> Lumbsch H. T. (2004), Molecular phylogeny<br />

<strong>of</strong> the Pertusariaceae supports sec<strong>on</strong>dary<br />

chemistry as an important systematic character set in<br />

lichen forming ascomycetes. Mol. Phylogenet. Evol.<br />

33, 43 – 55.<br />

Seaward M. R. D. (2008), Envir<strong>on</strong>mental role <strong>of</strong> lichens.<br />

In: <strong>Lichen</strong> Biology, 2nd ed. (Nash T. H. III, ed.). Cambridge<br />

University Press, Cambridge, pp. 274 – 298.<br />

Sheppard P. R., Speakman R. J., Ridenour G., <strong>and</strong> Witten<br />

M. L. (2007), Using lichen chemistry to assess<br />

airborne tungsten <strong>and</strong> cobalt in Fall<strong>on</strong>, Nevada. Envir<strong>on</strong>.<br />

M<strong>on</strong>it. Assess. 130, 511 – 518.<br />

Shibata S. (2000), Yasuhiko Asahina (1880 – 1975) <strong>and</strong><br />

his studies <strong>on</strong> lichenology <strong>and</strong> chemistry <strong>of</strong> lichen<br />

metabolites. Bryologist 103, 710 – 719.<br />

Solhaug K. A. <strong>and</strong> Gauslaa Y. (1996), Parietin, a photoprotective<br />

sec<strong>on</strong>dary product <strong>of</strong> the lichen Xanthoria<br />

parietina. Oecologia 108, 412 – 418.


K. Molnár <strong>and</strong> E. Farkas · <strong>Biological</strong> <strong>Activities</strong> <strong>of</strong> <strong>Lichen</strong> Substances 173<br />

Solhaug K. A., Lind M., Nybakken L., <strong>and</strong> Gauslaa Y.<br />

(2009), Possible functi<strong>on</strong>al roles <strong>of</strong> cortical depsides<br />

<strong>and</strong> medullary depsid<strong>on</strong>es in the foliose lichen Hypogymnia<br />

physodes. Flora 204, 40 – 48.<br />

Stenroos S., Hyvönen J., Myllys L., Thell A., <strong>and</strong> Ahti<br />

T. (2002), Phylogeny <strong>of</strong> the genus Clad<strong>on</strong>ia s. lat.<br />

(Clad<strong>on</strong>iaceae, Ascomycetes) inferred from molecular,<br />

morphological, <strong>and</strong> chemical data. Cladistics 18,<br />

237 – 278.<br />

Stinchi C., Guerrini V., Ghetti E., <strong>and</strong> Tosti A. (1997),<br />

C<strong>on</strong>tact dermatitis from lichens. C<strong>on</strong>tact Derm. 36,<br />

309 – 310.<br />

Stocker-Wörgötter E. (2001), Experimental lichenology<br />

<strong>and</strong> microbiology <strong>of</strong> lichens: culture experiments, sec<strong>on</strong>dary<br />

chemistry <strong>of</strong> cultured mycobi<strong>on</strong>ts, resynthesis,<br />

<strong>and</strong> thallus morphogenesis. Bryologist 104, 576 – 581.<br />

Stocker-Wörgötter E. (2008), <strong>Me</strong>tabolic diversity<br />

<strong>of</strong> lichen-forming ascomycetous fungi: culturing,<br />

polyketide <strong>and</strong> shikimate metabolite producti<strong>on</strong>, <strong>and</strong><br />

PKS genes. Nat. Prod. Rep. 25, 188 – 200.<br />

Stocker-Wörgötter E. <strong>and</strong> Elix J. A. (2002), Sec<strong>on</strong>dary<br />

chemistry <strong>of</strong> cultured mycobi<strong>on</strong>ts: formati<strong>on</strong> <strong>of</strong><br />

a complete chemosyndrome by the lichen fungus <strong>of</strong><br />

Lobaria spathulata. <strong>Lichen</strong>ologist 34, 351 – 359.<br />

Strack D., Feige G. B., <strong>and</strong> Kroll R. (1979), Screening<br />

<strong>of</strong> aromatic sec<strong>on</strong>dary lichen substances by high<br />

performance liquid chromatography. Z. Naturforsch.<br />

34c, 695 – 698.<br />

Thune P. (1977), C<strong>on</strong>tact allergy due to lichens in patients<br />

with history <strong>of</strong> photosensitivity. C<strong>on</strong>tact Derm.<br />

3, 267 – 272.<br />

Thune P. <strong>and</strong> Solberg Y. J. (1980), Photosensitivity <strong>and</strong><br />

allergy to aromatic lichen acids, Compositae oleoresins<br />

<strong>and</strong> other plant substances. C<strong>on</strong>tact Derm. 6,<br />

81 – 87.<br />

Türk A. Ö., Yilmaz M., Kivanç M., <strong>and</strong> Türk H. (2003),<br />

The antimicrobial activity <strong>of</strong> extracts <strong>of</strong> the lichen<br />

Cetraria aculeata <strong>and</strong> its protolichesterinic acid c<strong>on</strong>stituent.<br />

Z. Naturforsch. 58c, 850 – 854.<br />

Vijayakumar C. S., Viswanathan S., Reddy M. K., Parvathavarthini<br />

S., Kundu A. B., <strong>and</strong> Sukumar E.<br />

(2000), Anti-inflammatory activity <strong>of</strong> (+)-usnic acid.<br />

Fitoterapia 71, 564 – 566.<br />

Voss E. G., Burdet H. M., Chal<strong>on</strong>er W. G., Demoulin V.,<br />

Hiepko P., Mcneill J., <strong>Me</strong>ikle R. D., Nicols<strong>on</strong> D. H.,<br />

Rollins R. C., Silva P. C., <strong>and</strong> Greuter W. (1983), Internati<strong>on</strong>al<br />

code <strong>of</strong> botanical nomenclature (Sydney<br />

Code). Regnum Veg. 111, 1 – 472.<br />

Wachtmeister C. A. (1952), Studies <strong>on</strong> the chemistry <strong>of</strong><br />

lichens I. Separati<strong>on</strong> <strong>of</strong> depside comp<strong>on</strong>ents by paper<br />

chromatography. Acta Chem. Sc<strong>and</strong>. 6, 818 – 825.<br />

Whit<strong>on</strong> J. C. <strong>and</strong> Lawrey J. D. (1982), Inhibiti<strong>on</strong> <strong>of</strong> Clad<strong>on</strong>ia<br />

cristatella <strong>and</strong> Sordaria fimicola ascospore germinati<strong>on</strong><br />

by lichen acids. Bryologist 85, 222 – 226.<br />

Whit<strong>on</strong> J. C. <strong>and</strong> Lawrey J. D. (1984), Inhibiti<strong>on</strong> <strong>of</strong> crustose<br />

lichen spore germinati<strong>on</strong> by lichen acids. Bryologist<br />

87, 42 – 43.<br />

Yamamoto Y., Mizuguchi R., <strong>and</strong> Yamada Y. (1985), Tissue<br />

cultures <strong>of</strong> Usnea rubescens <strong>and</strong> Ramalina yasudae<br />

<strong>and</strong> producti<strong>on</strong> <strong>of</strong> usnic acid in their cultures.<br />

Agr. Biol. Chem. Tokyo 49, 3347 – 3348.<br />

Yamamoto Y., Miura Y., Higuchi M., <strong>and</strong> Kinoshita Y.<br />

(1993), Using lichen tissue cultures in modern biology.<br />

Bryologist 96, 384 – 393.<br />

Yoshimura I., Kurokawa T., Kinoshita Y., Yamamoto Y.,<br />

<strong>and</strong> Miyawaki H. (1994), <strong>Lichen</strong> substances in cultured<br />

lichens. J. Hattori Bot. Lab. 76, 249 – 261.<br />

Zhou Q., Guo S., Huang M., <strong>and</strong> Wei J. (2006), A study<br />

<strong>of</strong> the genetic variability <strong>of</strong> Rhizoplaca chrysoleuca<br />

using DNA sequences <strong>and</strong> sec<strong>on</strong>dary metabolic substances.<br />

Mycologia 98, 57 – 67.<br />

Zopf W. (1907), Die Flechtenst<strong>of</strong>fe in chemischer, botanischer,<br />

pharmakologischer und technischer Beziehung.<br />

Gustav Fischer, Jena.<br />

Zukal H. (1895), Morphologische und biologische Untersuchungen<br />

über die Flechten. II. Abh<strong>and</strong>lung. Sitzungsber.<br />

Kaiserlichen Akad. Wiss. Math. Naturwiss.<br />

Kl. 104, 1303 – 1395.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!