30.10.2014 Views

Fungi on the grasses, Thysanolaena latifolia and Saccharum ...

Fungi on the grasses, Thysanolaena latifolia and Saccharum ...

Fungi on the grasses, Thysanolaena latifolia and Saccharum ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Mycosphere<br />

<str<strong>on</strong>g>Fungi</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> <strong>grasses</strong>, <strong>Thysanolaena</strong> <strong>latifolia</strong> <strong>and</strong> <strong>Saccharum</strong> sp<strong>on</strong>taneum, in<br />

nor<strong>the</strong>rn Thail<strong>and</strong><br />

Bhilabutra W 1 , McKenzie EHC 2 , Hyde KD 3 <strong>and</strong> Lumy<strong>on</strong>g S 1*<br />

1 Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thail<strong>and</strong>.<br />

2 L<strong>and</strong>care Research, Private Bag 92170, Auckl<strong>and</strong>, New Zeal<strong>and</strong>.<br />

3 School of Science, Mae Fah Luang University, Chiang Rai, Thail<strong>and</strong>.<br />

Bhilabutra W, McKenzie EHC, Hyde KD, Lumy<strong>on</strong>g S. 2010 – <str<strong>on</strong>g>Fungi</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> <strong>grasses</strong>, <strong>Thysanolaena</strong><br />

<strong>latifolia</strong> <strong>and</strong> <strong>Saccharum</strong> sp<strong>on</strong>taneum, in nor<strong>the</strong>rn Thail<strong>and</strong>. Mycosphere 1(4), 301–314.<br />

<str<strong>on</strong>g>Fungi</str<strong>on</strong>g> associated with dead leaves <strong>and</strong> stems of <strong>Thysanolaena</strong> <strong>latifolia</strong> <strong>and</strong> <strong>Saccharum</strong> sp<strong>on</strong>taneum<br />

were collected <strong>and</strong> identified at two sites. T. <strong>latifolia</strong> yielded 67 taxa, comprising 24 ascomycetes,<br />

33 hyphomycetes, 9 coelomycetes <strong>and</strong> 1 myxomycete. The most comm<strong>on</strong> genera were Leptosphaeria,<br />

Niptera, Peric<strong>on</strong>ia, Septoria, Stachybotrys, Tetraploa, <strong>and</strong> Verticillium. S. sp<strong>on</strong>taneum<br />

yielded 79 taxa comprising 32 ascomycetes, 37 hyphomycetes, <strong>and</strong> 10 coelomycetes. The most<br />

comm<strong>on</strong> genera were Cladosporium, Massarina, Peric<strong>on</strong>ia <strong>and</strong> Tetraploa. The highest species<br />

diversity index was recorded <strong>on</strong> S. sp<strong>on</strong>taneum (H = 6.5), while T. <strong>latifolia</strong> was lower (H = 5.5).<br />

The mycota at <strong>the</strong> two sites differed significantly in species compositi<strong>on</strong>. Percentage similarity for<br />

T. <strong>latifolia</strong> between <strong>the</strong> two sites was 50.5% while for S. sp<strong>on</strong>taneum it was 52.3 %. A comparis<strong>on</strong><br />

of <strong>the</strong> fungi occurring <strong>on</strong> <strong>the</strong>se <strong>grasses</strong> with those <strong>on</strong> o<strong>the</strong>r m<strong>on</strong>ocotyled<strong>on</strong>ous host from tropical<br />

regi<strong>on</strong>s is presented. Drumopama mo<strong>on</strong>seti <strong>and</strong> Pycnothyriopsis sp. were reported as rare species in<br />

this study. Dendrographium thysanolaenae ined. is c<strong>on</strong>sidered new to science.<br />

Key words – diversity – graminicolous fungi – saprobes – tropical fungi<br />

Article Informati<strong>on</strong><br />

Received 1 October 2010<br />

Accepted 4 November 2010<br />

Published <strong>on</strong>line 12 December 2010<br />

*Corresp<strong>on</strong>ding author: Saisamorn Lumy<strong>on</strong>g – e-mail –scboi009@chiangmai.ac.th<br />

Introducti<strong>on</strong><br />

There is <strong>on</strong>going interest in <strong>the</strong> biodiversity<br />

of fungi in Thail<strong>and</strong> (e.g., Lumy<strong>on</strong>g et<br />

al. 2000, Photita et al. 2001a,b, Promputha et al.<br />

2002, 2004a, Bussaban et al. 2001, 2004, J<strong>on</strong>es<br />

et al. 2004, Pinnoi et al. 2006, Aptroot et al.<br />

2007, Pinruan et al. 2007, Aung et al. 2008,<br />

Du<strong>on</strong>g et al. 2008, Kodsueb et al. 2008, Th<strong>on</strong>gkantha<br />

et al. 2008, Os<strong>on</strong>o et al. 2009, Fournier<br />

et al. 2010). There have been several reports <strong>on</strong><br />

saprobic fungal diversity <strong>on</strong> tropical substrates<br />

such as bamboo, banana, gingers, <strong>grasses</strong>,<br />

Magnoliaceae <strong>and</strong> palms (Lumy<strong>on</strong>g et al. 2000,<br />

Bussaban et al. 2001, 2003, 2004, Photita et al.<br />

2001a, 2002a, 2003b, W<strong>on</strong>g & Hyde 2001,<br />

Yanna et al. 2002a, Promputtha et al. 2003,<br />

2004a,c, 2005, J<strong>on</strong>es et al. 2004). The results<br />

have shown that many of <strong>the</strong> saprobic fungi<br />

occurring <strong>on</strong> <strong>the</strong>se hosts are unique to <strong>the</strong> host<br />

family, genus <strong>and</strong>/or species (Photita et al.<br />

2001a, W<strong>on</strong>g & Hyde 2001, Hyde et al. 2002a,<br />

b, McKenzie et al. 2002, Whitt<strong>on</strong> et al. 2002,<br />

2003, Yanna et al. 2002a,b). Many novel fungi<br />

have been reported from <strong>the</strong>se studies (e.g.,<br />

Photita et al. 2002b, 2003a, Bussaban et al.<br />

2003, Pinnoi et al. 2003a, b, 2004, 2006, 2007,<br />

Promputtha et al. 2003, 2004a,b, 2005, Pinruan<br />

et al. 2004a,b,c, 2008, Bhilabutra et al. 2006,<br />

Kodsueb et al. 2006, 2007a,b). Such studies<br />

help to accumulate <strong>the</strong> number of fungi known<br />

301


in Thail<strong>and</strong> <strong>and</strong> provide data for improving <strong>the</strong><br />

accuracy when estimating <strong>the</strong> number of fungi<br />

in <strong>the</strong> world.<br />

Hawksworth (1991) provided a widely<br />

accepted estimate of 1.5 milli<strong>on</strong> fungal species.<br />

This estimate relied heavily <strong>on</strong> extrapolati<strong>on</strong><br />

from a suggested ratio of six fungi to each<br />

vascular plant species (Hawksworth 1991,<br />

Fröhlich & Hyde 1999). This ratio is dependent<br />

<strong>on</strong> whe<strong>the</strong>r fungi are host specific or whe<strong>the</strong>r<br />

<strong>the</strong>y occur more frequently <strong>on</strong> certain hosts<br />

(Yanna et al. 2001). Several investigati<strong>on</strong>s<br />

have provided evidence which suggests that<br />

certain fungi are host specific or host recurrent<br />

(Zhou & Hyde 2001, McKenzie et al. 2002,<br />

Santana et al. 2005), or at least occur frequently<br />

<strong>on</strong> certain hosts (Yanna et al. 2001).<br />

Specificity at host family level is undeniable<br />

(Cann<strong>on</strong> 1991, Fröhlich & Hyde 2000). The<br />

problem with proving specificity at <strong>the</strong> host<br />

species level is that too few studies have been<br />

carried out, especially in <strong>the</strong> tropics, to c<strong>on</strong>firm<br />

that <strong>on</strong>e fungus species is c<strong>on</strong>fined to a<br />

particular host. Many examples of fungal taxa<br />

are recorded as comm<strong>on</strong> <strong>on</strong> a single plant host,<br />

family or order (e.g., Francis 1975, Hawksworth<br />

& Boise 1985, G<strong>on</strong>zales & Rogers 1989,<br />

Læssøe & Lodge 1994, Tokumasu et al. 1994,<br />

Fröhlich & Hyde 1995, Ju & Rogers 1996,<br />

Polishook et al. 1996, Huhndorf & Lodge 1997,<br />

Lodge 1997, Hyde & Alias 2000, Bucheli et al.<br />

2001, McKenzie et al. 2002). However, Zhou<br />

& Hyde (2001) reported that saprobes are<br />

perhaps less host specific when compared to<br />

pathogenic <strong>and</strong> endophytic fungi.<br />

Whe<strong>the</strong>r fungi are host specific, are<br />

recurrent <strong>on</strong> certain hosts, or are restricted to<br />

certain tissue types, will have c<strong>on</strong>siderable<br />

impact <strong>on</strong> biodiversity estimates. We <strong>the</strong>refore<br />

initiated a study to establish: 1) whe<strong>the</strong>r <strong>the</strong><br />

fungi <strong>on</strong> two <strong>grasses</strong> in Thail<strong>and</strong>, <strong>Thysanolaena</strong><br />

<strong>latifolia</strong> <strong>and</strong> <strong>Saccharum</strong> sp<strong>on</strong>taneum vary<br />

according to tissue types; 2) whe<strong>the</strong>r <strong>the</strong> fungi<br />

<strong>on</strong> T. <strong>latifolia</strong> <strong>and</strong> S. sp<strong>on</strong>ta-neum differ<br />

significantly between two sites; <strong>and</strong> 3) whe<strong>the</strong>r<br />

<strong>the</strong> fungi occurring <strong>on</strong> T. latifo-lia <strong>and</strong> S.<br />

sp<strong>on</strong>taneum are likely to be host or family<br />

specific.<br />

Methods<br />

Sample collecti<strong>on</strong><br />

Dead leaves <strong>and</strong> stems of <strong>Thysanolaena</strong><br />

<strong>latifolia</strong>, a terrestrial grass, were collected from<br />

Doi Su<strong>the</strong>p-Pui Nati<strong>on</strong>al Park, Thail<strong>and</strong>. Two<br />

sites were chosen: (1) Chiang Mai Zoo regi<strong>on</strong><br />

(300 m above sea level) <strong>and</strong> (2) Phu Phing<br />

Ratchaniwat Palace regi<strong>on</strong> (1400 m above sea<br />

level). Dead leaves <strong>and</strong> stems of <strong>Saccharum</strong><br />

sp<strong>on</strong>taneum, a riparian grass, were also collected<br />

from two sites: (1) Chiang Dao district (500<br />

m above sea level) <strong>and</strong> (2) Mae Rim district<br />

(300 m above sea level). Samples were taken in<br />

<strong>the</strong> dry seas<strong>on</strong> (February) <strong>and</strong> <strong>the</strong> wet seas<strong>on</strong><br />

(September). At each site 50 dead leaves (each<br />

about 10 cm wide <strong>and</strong> 30 cm l<strong>on</strong>g) <strong>and</strong> 50 dead<br />

stem samples (each 20 cm l<strong>on</strong>g) were r<strong>and</strong>omly<br />

collected. Material was returned to <strong>the</strong><br />

laboratory in zip lock plastic bags. Samples<br />

were incubated individually in plastic chambers,<br />

with an additi<strong>on</strong> of tissue paper moistened<br />

with sterilized water. Samples were examined<br />

for <strong>the</strong> presence of microfungi after <strong>on</strong>e week<br />

of incubati<strong>on</strong> <strong>and</strong> <strong>the</strong>n periodically for up to<br />

<strong>on</strong>e m<strong>on</strong>th following <strong>the</strong> methods detailed by<br />

Hyde & Goh (1998) <strong>and</strong> Hyde et al. (1998).<br />

Statistical analysis<br />

A 3-dimensi<strong>on</strong>al corresp<strong>on</strong>dence analysis<br />

(JMP) was performed to examine <strong>the</strong> differences<br />

in fungal communities at different sites<br />

(An<strong>on</strong>ymous 1995). The results of this study<br />

are presented in terms of percentage occurrence<br />

of fungi. Fungal taxa with a percentage occurrence<br />

higher than 2 are regarded as dominant<br />

species. These fungal taxa were used to plot<br />

changes in <strong>the</strong> dominant species throughout <strong>the</strong><br />

experimental period. Shann<strong>on</strong> indices (H') were<br />

used to calculate fungal species diversity <strong>on</strong><br />

each grass host (Shann<strong>on</strong> & Weaver 1949).<br />

Percentage occurrence =<br />

number of leaf/stem samples from<br />

which fungus was detected<br />

total number of leaves or stem samples<br />

examined in each site<br />

× 100<br />

Percentage similarity index = 2c/a+b × 100<br />

a: <strong>the</strong> number of species in habitat A<br />

b: <strong>the</strong> number of species in habitat B<br />

c: <strong>the</strong> number of species in comm<strong>on</strong> to<br />

habitat A <strong>and</strong> B<br />

Shann<strong>on</strong> index (H’) = - Σ Pi log2 Pi<br />

302


Mycosphere<br />

Where;<br />

Pi: is <strong>the</strong> probability of finding each<br />

tax<strong>on</strong> in a collecti<strong>on</strong>.<br />

Results<br />

Numbers of records <strong>and</strong> percentage<br />

occurrence of fungal taxa <strong>on</strong> T. <strong>latifolia</strong> <strong>and</strong> S.<br />

sp<strong>on</strong>taneum at each site are given in Tables 1<br />

<strong>and</strong> 2. For T. <strong>latifolia</strong>, 67 taxa were identified,<br />

comprising 24 ascomycetes, 42 anamorphic<br />

taxa (33 hyphomycetes <strong>and</strong> 9 coelomycetes)<br />

<strong>and</strong> 1 myxomycete. The most comm<strong>on</strong> taxa<br />

identified in this study were Peric<strong>on</strong>ia spp.<br />

(occurring <strong>on</strong> 51.7% of samples), Verticillium<br />

sp. 1 (29.2%), Niptera exselsior (29.2%),<br />

Tetraploa aristata (20.0%), Stachybotrys spp.<br />

(24.2%), Septoria sp. (20.0%), <strong>and</strong> Leptosphaeria<br />

compositarum (22.5%). For S. sp<strong>on</strong>taneum,<br />

79 taxa were identified, comprising 32<br />

ascomycetes <strong>and</strong> 47 anamorphic taxa (37<br />

hyphomycetes <strong>and</strong> 10 coelomycetes). The most<br />

comm<strong>on</strong> taxa were Peric<strong>on</strong>ia spp. (occurring<br />

<strong>on</strong> 19.6 % of samples), Tetraploa aristata<br />

(9.6%), Massarina spp. (6.6%), Cladosporium<br />

cladosporioides (4.2%), <strong>and</strong> Halosphaeria<br />

hamata (3.8%).<br />

Three-dimensi<strong>on</strong>al corresp<strong>on</strong>dence analysis<br />

was performed to visualize <strong>the</strong> effect of<br />

tissue type <strong>and</strong> site <strong>on</strong> <strong>the</strong> col<strong>on</strong>izati<strong>on</strong> by fungi.<br />

For T. <strong>latifolia</strong> (Fig. 1), <strong>the</strong> first three principal<br />

axes accounted for 100% of <strong>the</strong> variability in<br />

<strong>the</strong> data matrix. X-axis clearly separated <strong>the</strong><br />

two tissue type (leaves <strong>and</strong> stems), while Z-<br />

axis separated <strong>the</strong> two sites, indicating that<br />

<strong>the</strong>re are tissue preferences <strong>and</strong> site differences<br />

for fungi <strong>on</strong> this plant. The result of <strong>the</strong><br />

analysis also showed that <strong>the</strong> sites are effected<br />

to fungal communities ra<strong>the</strong>r than <strong>the</strong> tissue<br />

types. This is indicated by <strong>the</strong> cluster distances<br />

of <strong>the</strong> samples from <strong>the</strong> same site than samples<br />

from different tissue types. Percentage similarity<br />

index between fungi <strong>on</strong> leaves <strong>and</strong> stems in<br />

T. <strong>latifolia</strong> were 56.6% <strong>and</strong> 61.1%, respectively.<br />

Similar three-dimensi<strong>on</strong>al corresp<strong>on</strong>dence analysis<br />

was performed for S. spotaneum (Fig. 2).<br />

Variability between sites was similar in leaves<br />

<strong>and</strong> stems, as expressed by <strong>the</strong> similar distances<br />

between <strong>the</strong> points representing leaves<br />

<strong>and</strong> stems from <strong>the</strong> two sites. Percentage<br />

similarity index between fungi <strong>on</strong> leaves <strong>and</strong><br />

stems in S. sp<strong>on</strong>taneum were 46.2% <strong>and</strong> 56.5%,<br />

respectively.<br />

The highest species diversity was recorded<br />

<strong>on</strong> S. sp<strong>on</strong>taneum (Shan<strong>on</strong> diversity<br />

index, H = 6.5 average), while for T. <strong>latifolia</strong> it<br />

was lower (H = 5.5 average) (Table 3). Fur<strong>the</strong>r<br />

statistical analyses of species richness, species<br />

evenness, number of fungi per sample, <strong>and</strong><br />

Simps<strong>on</strong>’s diversity index of each collecti<strong>on</strong><br />

were calculated (Table 3).<br />

Discussi<strong>on</strong><br />

Fungal tax<strong>on</strong>omic compositi<strong>on</strong><br />

Generic c<strong>on</strong>cepts for loculoascomycetes<br />

are presently in a state of flux (Zhang et al.<br />

2008, 2009a,b, Schoch et al. 2009, Suetr<strong>on</strong>g et<br />

al. 2009) <strong>and</strong> we thus use a wide underst<strong>and</strong>ing<br />

of each genus (e.g., Botryosphaeria, Massarina,<br />

Phaeosphaeria) until taxa can be sequenced to<br />

establish <strong>the</strong>ir natural phylogenetic affinities.<br />

We have also used wide species c<strong>on</strong>cepts for<br />

some speciose anamorphic genera (e.g., Colletotrichum,<br />

Pestalotiopsis, Phoma, Verticillium).<br />

These require sequence data for exact determinati<strong>on</strong><br />

(Aveskamp et al. 2008, Crouch & Beirn<br />

2009, Cai et al. 2009, Hyde et al. 2009, Tejesvi<br />

et al. 2009) <strong>and</strong> such methodology was not<br />

possible in this study.<br />

The fungi were dominated by anamorphic<br />

taxa, <strong>and</strong> perhaps <strong>the</strong>re were undescribed<br />

species in genera such as Chaetophoma, Colletotrichum,<br />

Fusarium, Peric<strong>on</strong>ia, Pestalotiopsis,<br />

Phoma, Phomopsis, Pyricularia <strong>and</strong> Verticillium.<br />

The Shan<strong>on</strong> diversity index for both<br />

<strong>grasses</strong> was higher than those found by W<strong>on</strong>g<br />

& Hyde (2001), indicating <strong>the</strong> high species<br />

diversity <strong>on</strong> <strong>the</strong>se <strong>grasses</strong>.<br />

The comm<strong>on</strong> fungi found <strong>on</strong> both T.<br />

<strong>latifolia</strong> <strong>and</strong> S. sp<strong>on</strong>taneum were Colletotrichum,<br />

Fusarium, Massarina, Nipteria, Phoma,<br />

Phomopsis, Septoria <strong>and</strong> Tetaploa, genera also<br />

found comm<strong>on</strong>ly <strong>on</strong> o<strong>the</strong>r terrestrial <strong>grasses</strong> by<br />

W<strong>on</strong>g & Hyde (2001). The most comm<strong>on</strong><br />

fungal genera recorded <strong>on</strong> various m<strong>on</strong>ocotyled<strong>on</strong>ous<br />

substrates, especially from Thail<strong>and</strong><br />

<strong>and</strong> nearby tropical regi<strong>on</strong>s, are summarized in<br />

Table 4.<br />

303


Table 1 Percentage occurrence of fungal taxa <strong>on</strong> Thysanoleana <strong>latifolia</strong> at two sites in Thail<strong>and</strong>.<br />

Taxa<br />

Chiang Mai Zoo Phu Phing Palace Overall % occurrence<br />

Leaves Stems Leaves Stems<br />

Ascomycetes<br />

Annulatascus triseptatus 3.3 0.8<br />

Anthostomella punctulata 23.3 26.7 12.5<br />

Astrosphaeriella sp. 3.3 3.3 6.7 3.3<br />

Apiospora camptospora 3.3 0.8<br />

Arecophila sp. 3.3 3.3 1.7<br />

Chaetosphaeria lentomita 3.3 3.3 1.7<br />

Didymella sp. # 3.3 3.3 1.7<br />

Gaeumannomyces graminis 10.0 10.0 5.0<br />

Gl<strong>on</strong>ium sp.<br />

Leptosphaeria compositarum 6.7 33.3 10.0 10.0 22.5<br />

Lophaeostoma macrostomum 3.3 0.8<br />

Lophiosphaera sp.# 6.7 1.7<br />

Lophiostoma sp. 3.3 0.8<br />

Magnapor<strong>the</strong> salvinii 3.3 0.8<br />

Massarina chamaecyparidi 3.3 6.7 2.5<br />

Massarina papulosa 6.7 1.7<br />

Massarina phragmiticola 3.3 0.8<br />

Niptera excelsior 6.7 50 6.6 53.3 29.2<br />

Ophiobolus leptosporus 6.7 30 6.7 40 19.7<br />

Oxydothis sp.# 3.3 0.8<br />

Phaeosphaeria sp. 3.3 0.8<br />

Pleospora penicillus 3.3 0.8<br />

Terriera sp. 3.3 3.3 6.7 3.3<br />

Xylaria sp. 3.3 10.0 3.3 13.3 7.5<br />

Anamorphic fungi<br />

Coelomycetes<br />

Chaetophoma sp.# 3.3 0.8<br />

Colletotrichum sp. 13.3 16.7 10.0 20.0 15.0<br />

Pestalotiopsis versicolor 6.7 3.3 2.5<br />

Pestalotiopsis sp. 3.3 3.3 1.7<br />

Phoma sp. 1 3.3 1.7<br />

Phoma sp. 2 3.3 0.8<br />

Phomopsis sp. 6.7 1.7<br />

Pycnothyriopsis sp.* 3.3 0.8<br />

Septoria sp. 10.0 23.3 10.0 36.7 20.0<br />

Hyphomycetes<br />

Acrem<strong>on</strong>ium kiliense 3.3 0.8<br />

Acrem<strong>on</strong>ium masseei 6.7 26.7 10.0 23.3 15.8<br />

Alternaria alternata 3.3 3.3 1.7<br />

Arthrinium sp. 6.7 10.0 6.7 3.3 6.7<br />

Cladosporium cladosporioides 10.0 23.3 3.3 26.7 15.8<br />

Curvularia lunata 3.3 0.8<br />

Dactylaria dimorphospora 3.3 3.3 1.7<br />

Dactylaria triseptata 3.3 0.8<br />

Dactylaria sp. 3.3 3.3 1.7<br />

Dactylella ellipsospora 3.3 0.8<br />

Dendrographium thysanolaenae * 3.3 0.8<br />

Dictyochaeta simplex 10.0 5.0<br />

Drumopama m<strong>on</strong>oseta* 6.7 1.7<br />

Fusarium oxysporum 13.3 16.7 13.3 20.0 15.8<br />

Memn<strong>on</strong>iella subsimplex 3.3 13.3 20.0 9.2<br />

Nigrospora oryzae 3.3 0.8<br />

Peric<strong>on</strong>ia byssoides 33.3 9.9 26.6 13.3 20.8<br />

304


Mycosphere<br />

Table 1 (C<strong>on</strong>tinued) Percentage occurrence of fungal taxa <strong>on</strong> Thysanoleana <strong>latifolia</strong> at two sites in<br />

Thail<strong>and</strong>.<br />

Taxa<br />

Chiang Mai Zoo Phu Phing Palace Overall % occurrence<br />

Leaves Stems Leaves Stems<br />

Peric<strong>on</strong>ia cookei 40.0 6.7 11.7<br />

Peric<strong>on</strong>ia digitata 6.7 1.7<br />

Peric<strong>on</strong>ia echinochloae 3.3 13.3 23.3 16.7 14.2<br />

Peric<strong>on</strong>ia macrospinosa 3.3 9.9 3.3<br />

Phaeoisaria clematidis 3.3 0.8<br />

Pleurophragmium simplex 6.7 1.7<br />

Pseudocercospora sp. 3.3 0.8<br />

Pyricularia sp.# 3.3 0.8<br />

Spegazzinia deight<strong>on</strong>ii 3.3 6.7 2.5<br />

Sporidesmium cookei 9.9 2.5<br />

Stachybotrys echinata 6.7 33.3 9.9 40.0 22.5<br />

Stachybotrys parvispora 6.7 1.7<br />

Stachylidium bicolor 6.7 1.7<br />

Stilbella sp. 13.3 16.7 7.5<br />

Tetraploa aristata 56.7 20.0 10.0 26.7 20.0<br />

Verticillium sp. 36.7 30.0 23.3 26.7 29.2<br />

Myxomycetes<br />

Dictydium cancellatum 3.3 0.8<br />

Total no. taxa = 67 31 42 29 30<br />

*Known <strong>on</strong>ly from Thysanoleana sp.<br />

# Unidentified species, possibly known <strong>on</strong>ly from Thysanoleana sp.<br />

y<br />

y<br />

PL<br />

z<br />

CS<br />

PS<br />

CL<br />

x<br />

x<br />

PS<br />

PL<br />

z<br />

CL<br />

CS<br />

a<br />

b<br />

Figs 1 – Three-dimensi<strong>on</strong>al corresp<strong>on</strong>dence ordinati<strong>on</strong> of taxa <strong>and</strong> fungal communities recorded<br />

from leaves (L) <strong>and</strong> stems (S) of Thysanoleana <strong>latifolia</strong> from Phu Phing Ratchaniwat Palace (P) <strong>and</strong><br />

Chiang Mai Zoo (C) a. Diagram oriented at x- <strong>and</strong> y- axes b. Diagram oriented at y- <strong>and</strong> z- axes.<br />

Do fungi <strong>on</strong> T. <strong>latifolia</strong> <strong>and</strong> S. sp<strong>on</strong>taneum<br />

vary according to tissue types?<br />

Different fungal communities were found<br />

<strong>on</strong> leaves <strong>and</strong> stems of <strong>the</strong> two woody <strong>grasses</strong>,<br />

with higher species diversity <strong>on</strong> stems. Several<br />

fungi showed a preference for stems of T. <strong>latifolia</strong><br />

including <strong>the</strong> ascomycetes, Anthostomella<br />

punctulata, Leptosphaeria compositarum, Niptera<br />

exselsior <strong>and</strong> Ophiobolus leptosporus, <strong>and</strong><br />

<strong>the</strong> anamorphic fungi, Acrem<strong>on</strong>ium masseei,<br />

305


Table 2 Number of records <strong>and</strong> percentage occurrence of fungal taxa <strong>on</strong> <strong>Saccharum</strong> sp<strong>on</strong>taneum at<br />

two sites in Thail<strong>and</strong>.<br />

Taxa<br />

Chiang Dao district Mae Rim district Overall % occurrence<br />

Leaves Stems Leaves Stems<br />

Ascomyce<br />

Annulatascus sp. 1 1 0.2<br />

Apiospora m<strong>on</strong>tagnei 1 0.2<br />

Arecophila sp. 1 1 4 1<br />

Arecophila sp. 2 1 0.2<br />

Arecophila sp. 5 (CMUGS2033) # 3 0.6<br />

Ascomycetes 1 (CMUGS2028)# 1 0.2<br />

Ascomycetes 2 (CMUGS2041)# 2 0.4<br />

Botryosphaeria festucae 5 1 1.2<br />

Didymella glacialis 7 2 1 1 2.2<br />

Didymosphaeria c<strong>on</strong>oidea 1 2 2 1<br />

Gaeumannomyces graminis 5 3 1.6<br />

Gibberella zeae 1 0.2<br />

Halosphaeria hamata 11 2 5 1 3.8<br />

Lewia infectoria 1 0.2<br />

Linocarp<strong>on</strong> sp. 1 3 0.6<br />

Lophiostoma arundinis 10 2 2.4<br />

Lophiostoma sp. 2 0.4<br />

Massarina arundinacea 14 2 8 1 5<br />

Massarina fluviatilis 1 0.2<br />

Massarina sp. 1 2 0.4<br />

Massarina sp. 2 3 0.6<br />

Massarina sp. 3 1 0.2<br />

Massarina sp. 4 (CMUGS2011)# 1 0.2<br />

Mycosphaerella lineolata 7 6 2.6<br />

Nectria graminicola 1 1 0.4<br />

Ophiobolus leptosporus 1 0.2<br />

Oxydothis sp. 1 2 1 0.6<br />

Paraphaeosphaeria sp. 1 0.2<br />

Phaeosphaeria eustoma 2 2 1 1<br />

Phaeosphaeria p<strong>on</strong>tiformis 1 2 0.6<br />

Phomatospora berkeleyi 3 1 1 1<br />

Stictis sp.# 11 2.2<br />

Coelomycetes<br />

Coelomycete 2 0.4<br />

Colletotrichum sp. 1 10 3 2 5 4<br />

Microsphaeropsis sp. 7 1.4<br />

Phaeoseptoria sp. 1 0.2<br />

Phialophorophoma sp. 1 0.2<br />

Phoma sp. 1 5 3 1.6<br />

Phoma sp. 2 1 14 5 4<br />

Phomatospora sp. 4 0.8<br />

Phomopsis sp. 5 4 1.8<br />

Septoria sp. 1# 1 0.2<br />

Hyphomycetes<br />

Acrem<strong>on</strong>ium masseei 2 0.4<br />

Acrodictys sacchari 1 0.2<br />

Arthrinium phaeospermum 2 7 4 2.6<br />

Arthrinium saccharicola 1 0.2<br />

Bactrodesmium atrum 3 0.6<br />

Bipolaris stenospila 1 0.2<br />

Cercospora l<strong>on</strong>gipes 2 0.2<br />

Cladosporium cladosporioides 9 4 7 1 4.2<br />

Curvularia brachyspora 1 0.2<br />

Curvularia geniculata 1 3 2 1.2<br />

Deight<strong>on</strong>iella papuana 2 0.4<br />

306


Mycosphere<br />

Table 2 (C<strong>on</strong>tinued) Number of records <strong>and</strong> percentage occurrence of fungal taxa <strong>on</strong> <strong>Saccharum</strong><br />

sp<strong>on</strong>taneum at two sites in Thail<strong>and</strong>.<br />

Taxa Chiang Dao district Mae Rim district Overall % occurrence<br />

Leaves Stems Leaves Stems<br />

Dictyoarthrinium sacchari 1 0.2<br />

Dictyosporium obl<strong>on</strong>gum 3 1 1 1<br />

Dictyosporium sp. 1# 2 0.4<br />

Fusarium sp. 1 1 0.2<br />

Lacellina graminicola 2 0.4<br />

Myro<strong>the</strong>cium cinctum. 2 0.4<br />

Myro<strong>the</strong>cium indicum 11 6 7 3 5.4<br />

Myro<strong>the</strong>cium sp. 1# 1 0.2<br />

Nigrospora sacchari 3 0.6<br />

Passalora koepkei 5 1<br />

Peric<strong>on</strong>ia digitata 3 12 1 7 4.6<br />

Peric<strong>on</strong>ia echinochloae 10 8 5 8 6.2<br />

Peric<strong>on</strong>ia minutissima 1 5 2 7 3<br />

Peric<strong>on</strong>ia sacchari 2 2 0.8<br />

Peric<strong>on</strong>ia state Didymosphaeria igniari 2 0.4<br />

Peric<strong>on</strong>ia sp. 1 11 2.2<br />

Peric<strong>on</strong>ia sp. 2 3 9 2.4<br />

Phialophora sp. 1 1 0.2<br />

Pithomyces graminicola 1 0.2<br />

Pithomyces sacchari 1 0.2<br />

Pteroc<strong>on</strong>ium state Apiospora camptospora 1 0.2<br />

Solheimia sp. 1 1 1 0.4<br />

Spegazzinia deight<strong>on</strong>ii. 2 0.4<br />

Spegazzinia tessarthra 2 0.4<br />

Tetraploa aristata 17 11 12 8 9.6<br />

Thielaviopsis state Ceratocystis m<strong>on</strong>iliformis 1 7 1.6<br />

Total no. taxa = 79 31 55 21 30<br />

# Unidentified species, possibly known <strong>on</strong>ly from <strong>Saccharum</strong> sp<strong>on</strong>taneum.<br />

y<br />

y<br />

z<br />

ML<br />

CS<br />

MS x<br />

CL<br />

x<br />

CL<br />

ML<br />

MS<br />

CS<br />

z<br />

a<br />

b<br />

Fig 2 – Three-dimensi<strong>on</strong>al corresp<strong>on</strong>dence ordinati<strong>on</strong> of taxa <strong>and</strong> fungal communities recorded<br />

from leaves (L) <strong>and</strong> stems (S) of <strong>Saccharum</strong> sp<strong>on</strong>taneum from Mae Rim district (M) <strong>and</strong> Chiang<br />

Dao district (C). a. Diagram oriented at x- <strong>and</strong> y- axes. b. Diagram oriented at y- <strong>and</strong> z- axes.<br />

307


Table 3 Diversity indices of saprobic fungi recovered from <strong>Thysanolaena</strong> <strong>latifolia</strong> <strong>and</strong> <strong>Saccharum</strong> sp<strong>on</strong>taneum during dry <strong>and</strong> wet seas<strong>on</strong>s.<br />

Host/seas<strong>on</strong> <str<strong>on</strong>g>Fungi</str<strong>on</strong>g>/sample Shann<strong>on</strong>-Wiener indices Simps<strong>on</strong> indices Species evenness Species richness<br />

T. <strong>latifolia</strong> dry 2.9 5.6 0.9477 0.921 30<br />

T. <strong>latifolia</strong> wet 2.7 5.4 0.9637 0.964 43<br />

S. sp<strong>on</strong>taneum dry 3.3 6.6 0.9822 0.969 31<br />

S. sp<strong>on</strong>taneum wet 3.5 6.4 0.9764 0.962 55<br />

Average 3.1 6 0.9675 0.954 39.75<br />

Table 4 Most comm<strong>on</strong> fungal genera recorded <strong>on</strong> various m<strong>on</strong>ocotyled<strong>on</strong>ous substrates from tropical regi<strong>on</strong>s (updated post W<strong>on</strong>g & Hyde 2001).<br />

Bamboo a Banana b Gingers c Grasses d Grasses e Palms f P<strong>and</strong>anaceae g<br />

Acrem<strong>on</strong>ium Anthostomella Acrem<strong>on</strong>ium *** Colletotrichum** Acrem<strong>on</strong>ium #, ** Annulatascus** Acrem<strong>on</strong>ium<br />

Acrodictys Canalisporium Aspergillus** Diapor<strong>the</strong>** Anthostomella Astrosphaeriella** Aspergillus<br />

Anthostomella Chaetomium Canalisporium*** Didymosphaeria Cladosporium** Cancellidium Botryodiplodia<br />

Apiospora Cladosporium Chloridium*** Fusarium Colletotrichum #, ** Didymobotryum Canalisporium<br />

Arecophila Deight<strong>on</strong>iella Cladosporium *** Linocarp<strong>on</strong>*** Fusarium # Gaeumannomyces Ellisembia<br />

Astrosphaeriella Memn<strong>on</strong>iella Colletotrichum*** Macrospora Gaeumannomyces # Helicoma Microthyrium<br />

Chaetomium Mycosphaerella Curvularia*** Massarina*** Leptosphaeria Jahnula** Nectria<br />

Cladosporium Peric<strong>on</strong>ia Dactylaria*** Nigrospora Massarina** Lophiostoma Oxydothis<br />

Corynespora Peric<strong>on</strong>iella Dactylella *** Niptera Niptera Massarina Penicillium<br />

Curvularia Pseudobotrytis Dictyoarthrinium*** Paraphaeosphaeria Ophiobolus Microthyrium** Phaeosphaeria<br />

Ellisembia Pyriculariopsis Fusarium *** Petrakia Phaeoisaria** Morenoina Phoma<br />

Gliomastix** Stachybotrys Paecilomyces *** Phaeoisaria** Peric<strong>on</strong>ia #, ** Nectria Phomatospora<br />

Hypoxyl<strong>on</strong> Stachylidium Phaeosphaeria Phaeosphaeria Phoma** Nemania Stachybotrys<br />

Massarina Torula Phomopsis *** Phoma** Phomopsis #, ** Phaeoisaria** Trichoderma<br />

Phaeoisaria Verticillium Phyllosticta*** Phomopsis** Septoria** Phruensis Zygosporium<br />

Podosporium Zygosporium Verticillium *** Phragmitensis Stachybotrys # Solheimia<br />

Trichocladium Pleospora Terriera Submersisphaeria**<br />

Septoria Tetraploa** Thailiomyces<br />

Sporidesmium** Verticillium Xylomyces**<br />

Tetraploa Xylaria<br />

***Comm<strong>on</strong> genera <strong>on</strong> three or more hosts., **Comm<strong>on</strong> genera <strong>on</strong> two hosts, # = <str<strong>on</strong>g>Fungi</str<strong>on</strong>g> also record as endophyte in grass (Bhilabutra et al., in press).<br />

a = Hyde et al. (2001), b = Photita et al. (2001a, 2003b), c = Bussaban et al. (2004), d = W<strong>on</strong>g <strong>and</strong> Hyde (2001), e = this study, f = Pinnoi et al. (2006), Pinruan et al. (2007), g =<br />

Th<strong>on</strong>gkantha et al. (2008)<br />

308


Mycosphere<br />

Cladosporium cladosporioides, Memn<strong>on</strong>iella<br />

subsimplex, Septoria sp. <strong>and</strong> Stachybotrys<br />

echinata. On S. sp<strong>on</strong>taneum, <strong>the</strong> difference is<br />

largely due to species such as Halosphaeria<br />

hamata, Lophiostoma arundinis, <strong>and</strong> Massarina<br />

arundinacea showing a preference for<br />

leaves, while <strong>on</strong> T. <strong>latifolia</strong>, Peric<strong>on</strong>ia byssoides<br />

<strong>and</strong> P. cookei were more comm<strong>on</strong> <strong>on</strong><br />

leaves. Different fungal communities <strong>on</strong> different<br />

tissue types has also been shown with<br />

o<strong>the</strong>r <strong>grasses</strong> <strong>and</strong> sedges (W<strong>on</strong>g & Hyde 2001)<br />

<strong>and</strong> o<strong>the</strong>r m<strong>on</strong>ocotyled<strong>on</strong>ous hosts, e.g., palms<br />

(Yanna et al. 2001), banana (Photita et al.<br />

2001a) <strong>and</strong> gingers (Bussaban et al. 2002,<br />

2004). The less comm<strong>on</strong> fungal species may<br />

also show tissue specificity, e.g., Gaeumannomyces<br />

graminis <strong>and</strong> Phomopsis sp., were found<br />

<strong>on</strong>ly <strong>on</strong> some parts of <strong>the</strong> stems of both <strong>grasses</strong>,<br />

especially in <strong>the</strong> thickest regi<strong>on</strong>s. Pestalotiopsis<br />

versicolor was found <strong>on</strong>ly <strong>on</strong> some parts<br />

of leaves of T. <strong>latifolia</strong> while Peric<strong>on</strong>ia sp. 1<br />

<strong>and</strong> Peric<strong>on</strong>ia sp. 2 were found <strong>on</strong>ly <strong>on</strong> some<br />

parts of leaves of S. sp<strong>on</strong>taneum.<br />

Do fungi <strong>on</strong> T. <strong>latifolia</strong> <strong>and</strong> S. sp<strong>on</strong>taneum<br />

differ significantly between sites?<br />

Of <strong>the</strong> 67 species identified from T.<br />

<strong>latifolia</strong>, 23 species were identified from both<br />

sites, <strong>and</strong> <strong>the</strong> percentage similarity between <strong>the</strong><br />

two sites was 50.5%. For S. sp<strong>on</strong>taneum, 79<br />

species were found, 30 species were identified<br />

from both sites, <strong>and</strong> <strong>the</strong> percentage similarity<br />

between <strong>the</strong> two sites was 52.3%. Taxa restricted<br />

to Chiang Mai Zoo regi<strong>on</strong> site, <strong>and</strong> with a<br />

high percentage of occurrence were four<br />

hyphomycetes, Peric<strong>on</strong>ia cookei, P. macrospinosa,<br />

Spegazzinia deight<strong>on</strong>ii <strong>and</strong> Sporidesmium<br />

cookei, while those <strong>on</strong>ly found at Phu<br />

Ping Ratchaniwat Palace regi<strong>on</strong> site were<br />

Dactylaria dimorphospora, Didymella sp.,<br />

Massarina chamaecyparissi, Pestalotiopsis sp.,<br />

Pleurophragmium simplex, <strong>and</strong> Stachylidium<br />

bicolor. Taylor (1997) also found very few<br />

overlapping fungi when she examined fungi <strong>on</strong><br />

a single species of palm, Arch<strong>on</strong>tophoenix<br />

alex<strong>and</strong>rae in H<strong>on</strong>g K<strong>on</strong>g, north Queensl<strong>and</strong><br />

<strong>and</strong> Malaysia. However, with A. alex<strong>and</strong>rae,<br />

<strong>the</strong> differences in fungal communities may be<br />

<strong>the</strong> result of removal of <strong>the</strong> host from its<br />

natural habitat to o<strong>the</strong>r geographic locati<strong>on</strong>s.<br />

Differences in frequency of occurrence of<br />

fungal taxa <strong>on</strong> <strong>the</strong> same host at different sites<br />

were noted for some <strong>grasses</strong> in H<strong>on</strong>g K<strong>on</strong>g<br />

(W<strong>on</strong>g & Hyde 2001). This is more likely to<br />

result from differences in envir<strong>on</strong>mental<br />

factors than to be host related (Alias et al. 1995,<br />

Hyde & Lee 1995, W<strong>on</strong>g & Hyde 2001). W<strong>on</strong>g<br />

& Hyde (2001) reported that Anthostomella,<br />

Diapor<strong>the</strong>, Linocarp<strong>on</strong>, Massarina, Oxydothis<br />

<strong>and</strong> Stictis are comm<strong>on</strong> ascomycete genera <strong>on</strong><br />

m<strong>on</strong>ocotyled<strong>on</strong>ous hosts. All of <strong>the</strong>se, except<br />

Diapor<strong>the</strong>, were found in <strong>the</strong> present study.<br />

W<strong>on</strong>g & Hyde (2001) reported ten comm<strong>on</strong><br />

anamorphic fungal genera <strong>on</strong> <strong>grasses</strong> <strong>and</strong><br />

sedges. Of <strong>the</strong>se, nine genera Colletotrichum,<br />

Fusarium, Nigrospora, Phaeoisaria, Phoma,<br />

Phomopsis, Septoria, Sporidesmium <strong>and</strong> Tetraploa<br />

were also collected <strong>on</strong> T. <strong>latifolia</strong> or S.<br />

sp<strong>on</strong>taneum; <strong>the</strong> <strong>on</strong>e excepti<strong>on</strong> was Petrakia.<br />

The results suggest that <strong>the</strong> species<br />

comm<strong>on</strong> to T. <strong>latifolia</strong> <strong>and</strong> S. sp<strong>on</strong>taneum in<br />

Thail<strong>and</strong> may be widespread, although <strong>the</strong>ir<br />

abundance differs between sites. Some of <strong>the</strong><br />

fungi (e.g., Dendrographium thysanolaenae,<br />

Drumopama m<strong>on</strong>oseta, Pycnothyriopsis sp.,<br />

Arecophila sp. 5, Stictis sp. 1 <strong>and</strong> Septoria sp.<br />

1 recorded in this study are rare species <strong>and</strong> it<br />

is unknown whe<strong>the</strong>r <strong>the</strong>y are specific to T.<br />

<strong>latifolia</strong> or to S. sp<strong>on</strong>taneum. It is important to<br />

clarify if <strong>the</strong>se rare species are ubiquitous taxa<br />

or specific to <strong>grasses</strong> such as T. <strong>latifolia</strong> or S.<br />

sp<strong>on</strong>taneum before we can really underst<strong>and</strong><br />

global species numbers.<br />

Are fungi occurring <strong>on</strong> T. <strong>latifolia</strong> <strong>and</strong> S.<br />

sp<strong>on</strong>taneum likely to be host/family specific?<br />

Of <strong>the</strong> 67 species recorded in this study<br />

Dendrographium thysanolaenae, Drumopama<br />

m<strong>on</strong>oseta <strong>and</strong> Pycnothyriopsis sp. 1, are know<br />

<strong>on</strong>ly from T. <strong>latifolia</strong> (Table 1), although<br />

several o<strong>the</strong>r species, not identified to species<br />

level, may also be specific to T. <strong>latifolia</strong>. Many<br />

fungi from S. sp<strong>on</strong>taneum, which were not<br />

determined to species, are presented in Table 2.<br />

Some, such as Peric<strong>on</strong>ia spp. <strong>and</strong> Tetraploa<br />

aristata are probably ubiquitous as <strong>the</strong>y have<br />

been recorded from numerous o<strong>the</strong>r hosts (Ellis<br />

1971).<br />

W<strong>on</strong>g & Hyde (2001) studied six <strong>grasses</strong><br />

<strong>and</strong> <strong>on</strong>e sedge in H<strong>on</strong>g K<strong>on</strong>g <strong>and</strong> reported that<br />

some fungi showed explicit host-exclusivity or<br />

specificity, <strong>and</strong> occurred with frequencies<br />

around 50% <strong>on</strong> <strong>on</strong>ly <strong>on</strong>e host during all of <strong>the</strong><br />

sample periods. These included Niptera<br />

309


excelsior <strong>on</strong> <strong>Thysanolaena</strong> maxima; Ceratosporella<br />

sp., Linocarp<strong>on</strong> augustatum, Massarina<br />

purpurascens, Phaeoisaria clematidis <strong>and</strong><br />

Stachybotrys kampalensis <strong>on</strong> Miscanthus floridulus;<br />

<strong>and</strong> Paraphaeosphaeria schoenoplecti<br />

<strong>and</strong> Septoria-like sp. <strong>on</strong> Schoenoplectus litoralis.<br />

W<strong>on</strong>g & Hyde (2001) hypo<strong>the</strong>sized that<br />

<strong>the</strong>se fungi may be host-specific endophytes<br />

that later become saprobes, or that <strong>the</strong>y may be<br />

host-exclusive saprobes that are resp<strong>on</strong>ding to<br />

differences in physical structure or nutrient<br />

levels of <strong>the</strong> potential hosts.<br />

Although c<strong>on</strong>clusi<strong>on</strong>s from our study<br />

must be treated with cauti<strong>on</strong>, it is apparent that<br />

several fungi have, to date, <strong>on</strong>ly been found<br />

associated with <strong>the</strong> <strong>grasses</strong> T. <strong>latifolia</strong> <strong>and</strong> S.<br />

sp<strong>on</strong>taneum. However, we cannot be sure that<br />

<strong>the</strong>se fungi are host-specific. The data also<br />

shows that some fungi occur predominantly <strong>on</strong><br />

stems, while o<strong>the</strong>rs occur more comm<strong>on</strong>ly <strong>on</strong><br />

leaves. The recurrence of fungi <strong>on</strong> certain<br />

tissue types has also been shown with palms<br />

(Yanna et al. 2001) <strong>and</strong> o<strong>the</strong>r <strong>grasses</strong> <strong>and</strong><br />

sedges (W<strong>on</strong>g & Hyde 2001). This indicates<br />

ano<strong>the</strong>r parameter that should be taken into<br />

account when estimating fungal diversity.<br />

Acknowledgements<br />

Funds for this research were provided by<br />

<strong>the</strong> Royal Golden Jubilee Ph.D. Program under<br />

The Thail<strong>and</strong> Research fund (Grant No. 4. B.<br />

CM/45/D1). Dr Ho Wai H<strong>on</strong>g (Wellcome) is<br />

thanked for comment <strong>and</strong> helpful identificati<strong>on</strong><br />

of mitosporic fungi. Helen Leung is thanked<br />

for help with technical assistance. Nakarin<br />

Suwanarach <strong>and</strong> Jatur<strong>on</strong>g Kumla are thanked<br />

for helping preparing manuscript.<br />

References<br />

Alias SA, Kuthubu<strong>the</strong>en AJ, J<strong>on</strong>es EBG. 1995<br />

– Frequency of occurrence of fungi <strong>on</strong><br />

wood in Malaysian mangrove. Hydrobiologia<br />

295, 97–105.<br />

An<strong>on</strong>ymous. 1995 – JMP® Statistics <strong>and</strong><br />

Graphics Guide. Versi<strong>on</strong> 3.1 of JMP,<br />

SAS Institute Inc., Cary, NC.<br />

Aptroot A, Saipunkaew W, Sipman HJM,<br />

Sparrius LB, Wolseley PA. 2007 – New<br />

lichens from Thail<strong>and</strong>, mainly microlichens<br />

from Chiang Mai. Fungal Diversity<br />

24, 75–134.<br />

Aung OM, Soyt<strong>on</strong>g K, Hyde KD, 2008 –<br />

Diversity of entomopathogenic fungi in<br />

rainforests of Chiang Mai Province,<br />

Thail<strong>and</strong>. Fungal Diversity 30, 15–22.<br />

Aveskamp MM, Gruyter J, Crous PW. 2008 –<br />

Biology <strong>and</strong> recent developments in <strong>the</strong><br />

systematics of Phoma, a complex genus<br />

of major quarantine significance. Fungal<br />

Diversity 31, 1–18.<br />

Bhilabutra W, Lumy<strong>on</strong>g S, Jeew<strong>on</strong> R,<br />

McKenzie EHC, Hyde KD. 2006 –<br />

Neolinocarp<strong>on</strong> penniseti sp. nov. <strong>on</strong> <strong>the</strong><br />

grass Pennisetum purpureum (Poaceae).<br />

Cryptogamie Mycologie 27, 305–310.<br />

Bucheli E, Gautschi B, Shykoff JA. 2001 –<br />

Differences in populati<strong>on</strong> structure of <strong>the</strong><br />

an<strong>the</strong>r smut fungus Microbotryum violaceum<br />

<strong>on</strong> two closely related host species,<br />

Silene <strong>latifolia</strong> <strong>and</strong> S. dioica. Molecular<br />

Ecology 10, 285–294.<br />

Bussaban B, Lumy<strong>on</strong>g P, McKenzie EHC,<br />

Hyde KD, Lumy<strong>on</strong>g S. 2002 – Index of<br />

fungi described from <strong>the</strong> Zingiberaceae.<br />

Mycotax<strong>on</strong> 83, 165–182.<br />

Bussaban B, Lumy<strong>on</strong>g P, McKenzie EHC,<br />

Hyde KD, Lumy<strong>on</strong>g S. 2004 – <str<strong>on</strong>g>Fungi</str<strong>on</strong>g> <strong>on</strong><br />

Zingiberaceae (ginger). In: Thai fungal<br />

diversity (eds. EBG J<strong>on</strong>es <strong>and</strong> T Tanticharoen).<br />

BIOTEC, Thail<strong>and</strong>. 189–195.<br />

Bussaban B, Lumy<strong>on</strong>g S, Lumy<strong>on</strong>g P, Hyde<br />

KD, McKenzie EHC. 2003 – Three new<br />

species of Pyricularia are isolated as zingiberaceous<br />

endophytes from Thail<strong>and</strong>.<br />

Mycologia 95, 521–526.<br />

Bussaban B, Lumy<strong>on</strong>g S, Lumy<strong>on</strong>g P,<br />

McKenzie EHC, Hyde KD. 2001 –<br />

Endophytic fungi from Am<strong>on</strong>um siamense.<br />

Canadian Journal of Microbiology 47,<br />

1–6.<br />

Cai L, Hyde KD, Taylor PWJ, Weir B, Waller<br />

J, Abang MM, Zhang JZ, Yang YL,<br />

Phouliv<strong>on</strong>g S, Liu ZY, Prihastuti H,<br />

Shivas RG, McKenzie EHC, Johnst<strong>on</strong> PR.<br />

2009 – A polyphasic approach for studying<br />

Colletotrichum. Fungal Diversity 39,<br />

183–204.<br />

Cann<strong>on</strong> PF. 1991 – A revisi<strong>on</strong> of Phyllachora<br />

<strong>and</strong> some similar genera <strong>on</strong> <strong>the</strong> host<br />

family Leguminosae. Mycological Papers<br />

163, 1–302.<br />

310


Mycosphere<br />

Crouch JA, Beirn LA. 2009 – Anthracnose of<br />

cereals <strong>and</strong> <strong>grasses</strong>. Fungal Diversity 39,<br />

19–44.<br />

Du<strong>on</strong>g LM, McKenzie EHC, Lumy<strong>on</strong>g S,<br />

Hyde KD. 2008 – Fungal successi<strong>on</strong> <strong>on</strong><br />

senescent leaves of Castanopsis diversifolia<br />

in Doi Su<strong>the</strong>p-Pui Nati<strong>on</strong>al Park,<br />

Thail<strong>and</strong>. Fungal Diversity 30, 23–36.<br />

Ellis MB. 1971 Dematiaceous Hyphomycetes.<br />

CAB Internati<strong>on</strong>al, Kew.<br />

Fournier J, Stadler M, Hyde KD, Du<strong>on</strong>g ML.<br />

2010 – The new genus Rostrohypoxyl<strong>on</strong><br />

<strong>and</strong> two new Annulohypoxyl<strong>on</strong> species<br />

from Nor<strong>the</strong>rn Thail<strong>and</strong>. Fungal Diversity<br />

40, 23–36.<br />

Francis SM. 1975. Anthostomella Sacc. (Part I).<br />

Mycological Papers 139, 1–97.<br />

FrÖhlich J, Hyde KD. 1995 – <str<strong>on</strong>g>Fungi</str<strong>on</strong>g> from<br />

palms XIX. Caudatispora palmicola gen.<br />

et sp. nov. from Ecuador. Sydowia 47,<br />

38–43.<br />

FrÖhlich J, Hyde KD. 1999 – Biodiversity of<br />

palm fungi in <strong>the</strong> tropics: are global<br />

fungal diversity estimates realistic? Biodiversity<br />

<strong>and</strong> C<strong>on</strong>servati<strong>on</strong> 8, 977–1004.<br />

FrÖhlich J, Hyde KD. 2000 – Palm Microfungi.<br />

Fungal Diversity Press, H<strong>on</strong>g K<strong>on</strong>g SAR.<br />

G<strong>on</strong>zales SMF, Rogers JD. 1989 — A<br />

preliminary account of Xylaria of Mexico.<br />

Mycotax<strong>on</strong> 34, 283–374.<br />

Hawksworth DL. 1991 – The fungal dimensi<strong>on</strong><br />

of biodiversity: magnitude, significance,<br />

<strong>and</strong> c<strong>on</strong>servati<strong>on</strong>. Mycological Research<br />

95, 641–655.<br />

Hawksworth DL, Bolse JR. 1985 – Some<br />

additi<strong>on</strong>al species of Astrosphaeriella,<br />

with a key to <strong>the</strong> members of <strong>the</strong> genus.<br />

Sydowia 38, 114–124.<br />

Huhndorf SM, Lodge DJ. 1997 – Host<br />

specificity am<strong>on</strong>g wood-inhabiting pyrenomycetes<br />

(fungi, ascomycetes) in a wet<br />

tropical forest in Puerto Rico. Tropical<br />

Ecology 38, 307–315.<br />

Hyde KD, Alias SA 2000 – Biodiversity <strong>and</strong><br />

distributi<strong>on</strong> of fungi associated with<br />

decomposing Nypa fruticans. Biodiversity<br />

<strong>and</strong> C<strong>on</strong>servati<strong>on</strong> 9, 393–402.<br />

Hyde KD, Cai L, Cann<strong>on</strong> PF, Crouch JA,<br />

Crous PW, Damm U, Goodwin PH, Chen<br />

H, Johnst<strong>on</strong> PR, J<strong>on</strong>es EBG, Lil ZY,<br />

McKenzie EHC, Moriwani J, Noireung P,<br />

Pennycook SR, Pfenning LH, Prihastuti<br />

H, Sato T, Shivas RG, Taylor PWJ, Tan<br />

YP, Weir BS, Yang YL, Zhang JZ. 2009<br />

– Colletotrichum – names in current use.<br />

Fungal Diversity 39, 147–182.<br />

Hyde KD, Goh TK. 1998 – <str<strong>on</strong>g>Fungi</str<strong>on</strong>g> <strong>on</strong><br />

submerged wood in Lake Barrine, north<br />

Queenl<strong>and</strong>, Australia. Mycological<br />

Research 102, 739–749.<br />

Hyde KD, Goh TK, Steinke TD. 1998 – <str<strong>on</strong>g>Fungi</str<strong>on</strong>g><br />

<strong>on</strong> submerged wood in <strong>the</strong> Palmeit River,<br />

Durban, South Africa. South Africa<br />

Journal of Botany 64, 151–162.<br />

Hyde KD, Lee SY. 1995 – Ecology of<br />

mangrove fungi <strong>and</strong> <strong>the</strong>ir role in nutrient<br />

cycling. What gaps occur in our<br />

knowledge? Hydrobiologia 295, 107–118.<br />

Hyde KD, Zhou DQ, Dalisay TE. 2002a –<br />

Bambusicolous fungi: a review. Fungal<br />

Diversity 9, 1–14.<br />

Hyde KD, Zhou DQ, McKenzie EHC, Ho WH,<br />

Dalisay TE 2002b – Vertical distributi<strong>on</strong><br />

of saprobic fungi <strong>on</strong> bamboo culms.<br />

Fungal Diversity 11, 109–118.<br />

J<strong>on</strong>es EBG, Tantichare<strong>on</strong> M, Hyde KD. 2004 –<br />

Thai Fungal Diversity. BIOTEC,<br />

Thail<strong>and</strong>.<br />

Ju YM, Rogers JD. 1996 – A Revisi<strong>on</strong> of <strong>the</strong><br />

Genus Hypoxyl<strong>on</strong>. USA, APS Press.<br />

Kodsueb R, Lumy<strong>on</strong>g S, Ho WH., Hyde KD,<br />

McKenzie EHC, Jeew<strong>on</strong> R. 2007a –<br />

Morphological <strong>and</strong> molecular characterizati<strong>on</strong><br />

of Aquaticheirospora <strong>and</strong> phylogenetics<br />

of Massarinaceae (Pleosporales).<br />

Botanical Journal of <strong>the</strong> Linnean Society<br />

155, 283–296.<br />

Kodsueb R, Lumy<strong>on</strong>g S, Hyde KD, Lumy<strong>on</strong>g<br />

P, McKenzie EHC. 2006 – Acrodictys<br />

micheliae <strong>and</strong> Dictyosporium manglietiae,<br />

two new anamorphic fungi from woody<br />

litter of Magnoliaceae in nor<strong>the</strong>rn<br />

Thail<strong>and</strong>. Cryptogamie Mycologie 27,<br />

111–119.<br />

Kodsueb R, McKenzie EHC, Ho WH, Hyde<br />

KD, Lumy<strong>on</strong>g P, Lumy<strong>on</strong>g S. 2007b –<br />

New anamorphic fungi from decaying<br />

woody litter of Michelia baill<strong>on</strong>ii<br />

(Magnoliaceae) in nor<strong>the</strong>rn Thail<strong>and</strong>.<br />

Cryptogamie Mycologie 28, 237– 245.<br />

Kodsueb R, McKenzie EHC, Lumy<strong>on</strong>g S,<br />

Hyde KD. 2008 – Diversity of saprobic<br />

fungi <strong>on</strong> Magnoliaceae. Fungal Diversity<br />

30, 37–53.<br />

311


Læssøe T, Lodge DJ. 1994 – Three hostspecific<br />

Xylaria species. Mycologica 86,<br />

436–446.<br />

Lodge DJ. 1997 – Factors related to diversity<br />

of decomposer fungi in tropical forests.<br />

Biodiversity <strong>and</strong> C<strong>on</strong>servati<strong>on</strong> 6, 681–<br />

688.<br />

Lumy<strong>on</strong>g S, Th<strong>on</strong>gantha S, Lumy<strong>on</strong>g P,<br />

Tomita F. 2000 – Endophytic fungi from<br />

13 bamboo species in Thail<strong>and</strong>. Biotechnology<br />

for Sustainable Utilizati<strong>on</strong> of<br />

Biological Resources in <strong>the</strong> Tropics 14,<br />

96–101.<br />

McKenzie EHC, Whitt<strong>on</strong> SR, Hyde KD. 2002<br />

– The P<strong>and</strong>anaceae: does it have a<br />

diverse <strong>and</strong> unique fungal biota? In:<br />

Tropical Mycology 2, Micromycota (eds.<br />

R Watling, JC Franklin, AM Ainsworth,<br />

S Isaac <strong>and</strong> CH Robins<strong>on</strong>). CAB<br />

Internati<strong>on</strong>al, Wallingford. 51–61.<br />

Os<strong>on</strong>o T, Ishii Y, Takeda H, Seramethakun T,<br />

Khamy<strong>on</strong>g S, To-Anun C, Hirose D,<br />

Tokumasu S, Kakishima M. 2009 – Fungal<br />

successi<strong>on</strong> <strong>and</strong> lignin decompositi<strong>on</strong><br />

<strong>on</strong> Shorea obtusa leaves in a tropical<br />

seas<strong>on</strong>al forest in nor<strong>the</strong>rn Thail<strong>and</strong>.<br />

Fungal Diversity 36, 101–119.<br />

Photita W, Lumy<strong>on</strong>g P, McKenzie EHC, Hyde<br />

KD, Lumy<strong>on</strong>g S. 2002b – A new Dictyosporium<br />

species from Musa acuminata in<br />

Thail<strong>and</strong>. Mycotax<strong>on</strong> 82, 415–419.<br />

Photita W, Lumy<strong>on</strong>g P, McKenzie EHC, Hyde<br />

KD, Lumy<strong>on</strong>g S. 2003a – Memn<strong>on</strong>iella<br />

<strong>and</strong> Stachybotrys species from Musa<br />

acuminata. Cryptogamie Mycologie 24,<br />

147–152.<br />

Photita W, Lumy<strong>on</strong>g P, McKenzie EHC, Hyde<br />

KD, Lumy<strong>on</strong>g S. 2003b – Saprobic fungi<br />

<strong>on</strong> dead wild banana. Mycotax<strong>on</strong> 80,<br />

345–356.<br />

Photita W, Lumy<strong>on</strong>g S, Lumy<strong>on</strong>g P, Hyde KD.<br />

2001a – <str<strong>on</strong>g>Fungi</str<strong>on</strong>g> <strong>on</strong> Musa acuminata in<br />

H<strong>on</strong>g K<strong>on</strong>g. Fungal Diversity 6, 99–106.<br />

Photita W, Lumy<strong>on</strong>g S, Lumy<strong>on</strong>g P, Hyde KD.<br />

2001b – Endophytic fungi of wild banana<br />

(Musa acuminata) at Doi Su<strong>the</strong>p Pui<br />

Nati<strong>on</strong>al Park, Thail<strong>and</strong>. Mycological<br />

Research 105, 1508–1513.<br />

Photita W, Lumy<strong>on</strong>g S, Lumy<strong>on</strong>g P, Hyde KD,<br />

McKenzie EHC. 2002a – Index of fungi<br />

described from Musaceae. Mycotax<strong>on</strong> 81,<br />

491–503.<br />

Pinnoi A, Jeew<strong>on</strong> R, Sakayaroj J, Hyde KD,<br />

J<strong>on</strong>es EBG. 2007 – Berkleasmium<br />

crunisia sp. nov. <strong>and</strong> its phylogenetic<br />

affinities to <strong>the</strong> Pleosporales based <strong>on</strong><br />

18S <strong>and</strong> 28S rDNA sequence analyses.<br />

Mycologia 99, 378–384.<br />

Pinnoi A, J<strong>on</strong>es EBG, McKenzie EHC, Hyde<br />

KD. 2003a – Aquatic fungi from peat<br />

swamp palms: Unisetosphaeria penguinoides<br />

gen. et sp. nov., <strong>and</strong> three new<br />

Dactylaria species. Mycoscience 44,<br />

377–382.<br />

Pinnoi A, Lumy<strong>on</strong>g S, Hyde KD, J<strong>on</strong>es EBG.<br />

2006 – Biodiversity of fungi <strong>on</strong> <strong>the</strong> palm<br />

Eleiodoxa c<strong>on</strong>ferta in Sirindhorn peat<br />

swamp forest, Narathiwat, Thail<strong>and</strong>.<br />

Fungal Diversity 22, 205–218.<br />

Pinnoi A, McKenzie EHC, J<strong>on</strong>es EBG, Hyde<br />

KD. 2003b – Palm fungi from Thail<strong>and</strong>:<br />

Custingophora undulatistipes sp. nov.<br />

<strong>and</strong> Vanakripa minutiellipsoidea sp. nov.<br />

Nova Hedwigia 77, 213–219.<br />

Pinnoi A, Pinruan U, Hyde KD, McKenzie<br />

EHC, Lumy<strong>on</strong>g S. 2004 – Submersisphaeria<br />

palmae sp. nov. with a key to<br />

species <strong>and</strong> notes <strong>on</strong> Helicoubisia.<br />

Sydowia 56, 72–78.<br />

Pinruan U, Hyde KD, Lumy<strong>on</strong>g S, McKenzie<br />

EHC, J<strong>on</strong>es EBG. 2007 – Occurrence of<br />

fungi <strong>on</strong> tissues of <strong>the</strong> peat swamp palm<br />

Licuala l<strong>on</strong>gicalycata. Fungal Diversity<br />

25, 157–173.<br />

Pinruan U, Lumy<strong>on</strong>g S, McKenzie EHC, J<strong>on</strong>es<br />

EBG, Hyde KD. 2004a – Three new<br />

species of Craspedodidymum from palm<br />

in Thail<strong>and</strong>. Mycoscience 45, 177–180.<br />

Pinruan U, McKenzie EHC, J<strong>on</strong>es EBG, Hyde<br />

KD. 2004b – Two new species of<br />

Stachybotrys, <strong>and</strong> a key to <strong>the</strong> genus.<br />

Fungal Diversity 17, 145–157.<br />

Pinruan U, Sakayaroj J, Hyde KD, J<strong>on</strong>es EBG.<br />

2008 – Thail<strong>and</strong>iomyces bisetulosus gen.<br />

et sp. nov. (Diaporthales, Sordariomycetidae,<br />

Sordariomycetes) <strong>and</strong> its anamorph<br />

Craspedodidymum, is described based <strong>on</strong><br />

nuclear SSU <strong>and</strong> LSU rDNA sequences.<br />

Fungal Diversity 29, 89–98.<br />

Pinruan U, Sakayaroj J, J<strong>on</strong>es EBG, Hyde KD.<br />

2004c – Aquatic fungi from peat swamp<br />

palms: Phruensis brunniespora gen. et sp.<br />

nov. <strong>and</strong> its hyphomycete anamorph.<br />

312


Mycosphere<br />

Canadian Journal of Botany 96, 1161–<br />

1181.<br />

Polishook JD, Bills GF, Lodge DJ. 1996 –<br />

Microfungi from decaying leaves of two<br />

rain forest trees in Puerto Rico. Indian<br />

Journal of Microbiology 17, 284–294.<br />

Promputtha I, Hyde KD, Lumy<strong>on</strong>g P,<br />

McKenzie EHC, Lumy<strong>on</strong>g S. 2003 –<br />

Dokmaia m<strong>on</strong>thadangii gen. et sp. nov. a<br />

synnematous anamorphic fungus <strong>on</strong><br />

Manglietia garrettii. Sydowia 55, 99–103.<br />

Promputtha I, Hyde KD, Lumy<strong>on</strong>g P,<br />

McKenzie EHC, Lumy<strong>on</strong>g S. 2004a –<br />

<str<strong>on</strong>g>Fungi</str<strong>on</strong>g> <strong>on</strong> Magnolia liliifera: Cheiromyces<br />

magnoliae sp. nov. from dead branches.<br />

Nova Hedwigia 80, 527–532.<br />

Promputha I, Lumy<strong>on</strong>g S, Lumy<strong>on</strong>g P,<br />

McKenzie EHC, Hyde KD. 2002 –<br />

Fungal successi<strong>on</strong> <strong>on</strong> senescent leaves of<br />

Manglietia garrettii in Doi Su<strong>the</strong>p Pui<br />

Nati<strong>on</strong>al Park, nor<strong>the</strong>rn Thail<strong>and</strong>. Fungal<br />

Diversity 10, 89–100.<br />

Promputha I, Lumy<strong>on</strong>g S, Lumy<strong>on</strong>g P,<br />

McKenzie EHC, Hyde KD. 2004b – A<br />

new species of Pseudohal<strong>on</strong>ectria from<br />

Thail<strong>and</strong>. Cryptogamie Mycologie 25,<br />

43–47.<br />

Promputha I, Lumy<strong>on</strong>g S, Lumy<strong>on</strong>g P,<br />

McKenzie EHC, Hyde KD. 2004c –<br />

Fungal saprobes <strong>on</strong> dead leaves of<br />

Magnolia liliifera (Magnoliaceae) in<br />

Thail<strong>and</strong>. Cryptogamie Mycologie 25,<br />

315–321.<br />

Promputha I, Lumy<strong>on</strong>g S, Lumy<strong>on</strong>g P,<br />

McKenzie EHC, Hyde KD. 2005 – A<br />

new species of Anthostomella <strong>on</strong> Magnolia<br />

liliifera from nor<strong>the</strong>rn Thail<strong>and</strong>.<br />

Mycotax<strong>on</strong> 91, 413–418.<br />

Santana ME, Lodge DJ, Lebow P. 2005 –<br />

Relati<strong>on</strong>ship of host recurrence in fungi<br />

to rates of tropical leaf decompositi<strong>on</strong>.<br />

Pedobiologia 49, 549–564.<br />

Schoch CL, Crous PW, Groenewald JZ,<br />

Boehm EWA, Burgess TI, de Gruyter J,<br />

de Hoog GS, Dix<strong>on</strong> LJ, Grube M,<br />

Gueidan C, Harada Y, Hatakeyama S,<br />

Hirayama K, Hosoya T, Huhndorf SM,<br />

Hyde KD, J<strong>on</strong>es EBG, Kohlmeyer J,<br />

Kruys Å, Li YM, Lücking R, Lumbsch<br />

HT, Marvanová L, Mbatchou JS, Mcvay<br />

AH, Miller AN, Mugambi GK, Muggia L,<br />

Nelsen MP, Nels<strong>on</strong> P, Owensby CA,<br />

Phillips AJL, Ph<strong>on</strong>gpaichit S, Pointing<br />

SB, Pujade-Renaud V, Raja HA, Rivas<br />

Plata E, Robbertse B, Ruibal C,<br />

Sakayaroj J, Sano T, Selbmann L,<br />

Shearer CA, Shirouzu T, Slippers B,<br />

Suetr<strong>on</strong>g S, Tanaka K, Volkmann-<br />

Kohlmeyer B, Wingfield MJ, Wood AR,<br />

Woudenberg JHC, Y<strong>on</strong>ezawa H, Zhang<br />

Y, Spatafora JW. 2009 – A class-wide<br />

phylogenetic assessment of Dothideomycetes.<br />

Studies in Mycology 64, 1–15.<br />

Shann<strong>on</strong> CE, Weaver W. 1949 – The<br />

Ma<strong>the</strong>matical Theory of Communicati<strong>on</strong>.<br />

University of Illinois Press, Urbana.<br />

Suetr<strong>on</strong>g S, Schoch CL, Spatofora JW,<br />

Kohlmeyer J, Volkmann-Kohlmeyer B,<br />

Sakayaroj J, Ph<strong>on</strong>gpaichit S, Tanaka K,<br />

Hirayama K, J<strong>on</strong>es EBG. 2009 –<br />

Molecular systematics of <strong>the</strong> marine<br />

Dothideomycetes. Studies in Mycology<br />

64, 155–173.<br />

Taylor J. 1997 – Biodiversity <strong>and</strong> distributi<strong>on</strong><br />

of microfungi <strong>on</strong> palms. Ph.D. Thesis.<br />

The University of H<strong>on</strong>g K<strong>on</strong>g.<br />

Tejesvi MV, Tamhankar SA, Kini KR, Rao VS,<br />

Prakash HS. 2009 – Phylogenetic analysis<br />

of endophytic Pestalotiopsis species<br />

from ethnopharmaceutically important<br />

medicinal trees. Fungal Diversity 38,<br />

167–183.<br />

Th<strong>on</strong>gkantha S, Lumy<strong>on</strong>g S, McKenzie EHC,<br />

Hyde KD. 2008 – Fungal saprobes <strong>and</strong><br />

pathogens occurring <strong>on</strong> tissues of Dracaena<br />

lourieri <strong>and</strong> P<strong>and</strong>anus spp. in<br />

Thail<strong>and</strong>. Fungal Diversity 30, 149–169.<br />

Tokumasu S, Aoki T, Oberwinkler F. 1994 –<br />

Fungal successi<strong>on</strong>s <strong>on</strong> pine needles in<br />

Germany. Mycoscience 35, 29–37.<br />

Whitt<strong>on</strong> SR, McKenzie EHC, Hyde KD. 2002<br />

– Microfungi <strong>on</strong> <strong>the</strong> P<strong>and</strong>anaceae: two<br />

new species of Camposporium, <strong>and</strong> a key<br />

to <strong>the</strong> genus. Fungal Diversity 11, 177–<br />

187.<br />

Whitt<strong>on</strong> SR, McKenzie EHC, Hyde KD. 2003<br />

– Microfungi <strong>on</strong> <strong>the</strong> P<strong>and</strong>anaceae:<br />

Zygosporium, a review of <strong>the</strong> genus <strong>and</strong><br />

two new species. Fungal Diversity 12,<br />

207–222.<br />

W<strong>on</strong>g KM, Hyde KD. 2001 – Diversity of<br />

fungi <strong>on</strong> six species of Gramineae<br />

(Roman) <strong>and</strong> <strong>on</strong>e species of Cyperaceae<br />

313


in H<strong>on</strong>g K<strong>on</strong>g. Mycological Research<br />

105, 1485–1491.<br />

Yanna, Ho WH, Hyde. KD 2001 – Occurrence<br />

of fungi <strong>on</strong> tissue of Livist<strong>on</strong>a chinensis.<br />

Fungal Diversity 6, 167–180.<br />

Yanna, Ho WH, Hyde KD. 2002a – Fungal<br />

successi<strong>on</strong> <strong>on</strong> fr<strong>on</strong>ds of Phoenix hanceana<br />

in H<strong>on</strong>g K<strong>on</strong>g. Fungal Diversity<br />

10, 185–211.<br />

Yanna, Ho WH, Hyde KD. 2002b – New<br />

saprobic fungi <strong>on</strong> palm fr<strong>on</strong>ds from north<br />

Queensl<strong>and</strong>, Australia. Australian Systematic<br />

Botany 15, 755–764.<br />

Zhang Y, Fournier J, Pointing SB, Hyde KD.<br />

2008 – Are Melanomma pulvis-pyrius<br />

<strong>and</strong> Trematosphaeria pertusa c<strong>on</strong>generic?<br />

Fungal Diversity 33, 47–60.<br />

Zhang Y, Schoch CL, Fournier J, Crous PW,<br />

De Gruyter J, Woudenberg JHC,<br />

Hirayama K, Tanaka K, Pointing SB,<br />

Spatafora JW, Hyde KD. 2009b – Multilocus<br />

phylogeny of Pleosporales: a<br />

tax<strong>on</strong>omic, ecological <strong>and</strong> evoluti<strong>on</strong>ary<br />

re-evaluati<strong>on</strong>. Studies in Mycology 64,<br />

85–102.<br />

Zhang Y, Wang HK, Fournier J, Crous PW,<br />

Jeew<strong>on</strong> R, Pointing SB, Hyde KD. 2009a<br />

– Towards a phylogenetic clarificati<strong>on</strong> of<br />

Lophiostoma/Massarina <strong>and</strong> morphologically<br />

similar genera in <strong>the</strong> Pleosporales.<br />

Fungal Diversity 38, 225–251.<br />

Zhou DQ, Hyde KD. 2001 – Host-specificity,<br />

host-exclusively <strong>and</strong> host-recurrence in<br />

saprobic fungi. Mycological Research<br />

105, 1449–1457.<br />

314

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!