04.07.2015 Views

The genus Cladosporium and similar dematiaceous ... - CBS - KNAW

The genus Cladosporium and similar dematiaceous ... - CBS - KNAW

The genus Cladosporium and similar dematiaceous ... - CBS - KNAW

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Studies in Mycology 58 (2007)<br />

<strong>The</strong> <strong>genus</strong> <strong>Cladosporium</strong> <strong>and</strong> <strong>similar</strong><br />

<strong>dematiaceous</strong> hyphomycetes<br />

Pedro W. Crous, Uwe Braun, Konstanze Schubert<br />

<strong>and</strong> Johannes Z. Groenewald<br />

Centraalbureau voor Schimmelcultures,<br />

Utrecht, <strong>The</strong> Netherl<strong>and</strong>s<br />

An institute of the Royal Netherl<strong>and</strong>s Academy of Arts <strong>and</strong> Sciences


<strong>The</strong> <strong>genus</strong> <strong>Cladosporium</strong> <strong>and</strong> <strong>similar</strong> <strong>dematiaceous</strong> hyphomycetes<br />

Studies in Mycology 58, 2007


Studies in Mycology<br />

<strong>The</strong> Studies in Mycology is an international journal which publishes systematic monographs of filamentous fungi <strong>and</strong> yeasts, <strong>and</strong> in rare<br />

occasions the proceedings of special meetings related to all fields of mycology, biotechnology, ecology, molecular biology, pathology <strong>and</strong><br />

systematics. For instructions for authors see www.cbs.knaw.nl.<br />

Executive Editor<br />

Prof. dr Robert A. Samson, <strong>CBS</strong> Fungal Biodiversity Centre, P.O. Box 85167, 3508 AD Utrecht, <strong>The</strong> Netherl<strong>and</strong>s.<br />

E-mail: r.samson@cbs.knaw.nl<br />

Layout Editor<br />

Manon van den Hoeven-Verweij, <strong>CBS</strong> Fungal Biodiversity Centre, P.O. Box 85167, 3508 AD Utrecht, <strong>The</strong> Netherl<strong>and</strong>s.<br />

E-mail: m.verweij@cbs.knaw.nl<br />

Scientific Editors<br />

Prof. dr Uwe Braun, Martin-Luther-Universität, Institut für Biologie, Geobotanik und Botanischer Garten, Neuwerk 21,<br />

D-06099 Halle, Germany.<br />

E-mail: uwe.braun@botanik.uni-halle.de<br />

Prof. dr Pedro W. Crous, <strong>CBS</strong> Fungal Biodiversity Centre, P.O. Box 85167, 3508 AD Utrecht, <strong>The</strong> Netherl<strong>and</strong>s.<br />

E-mail: p.crous@cbs.knaw.nl<br />

Prof. dr David M. Geiser, Department of Plant Pathology, 121 Buckhout Laboratory, Pennsylvania State University, University Park, PA, U.S.A. 16802.<br />

E-mail: dgeiser@psu.edu<br />

Dr Lorelei L. Norvell, Pacific Northwest Mycology Service, 6720 NW Skyline Blvd, Portl<strong>and</strong>, OR, U.S.A. 97229-1309.<br />

E-mail: llnorvell@pnw-ms.com<br />

Dr Erast Parmasto, Institute of Zoology & Botany, 181 Riia Street, Tartu, Estonia EE-51014.<br />

E-mail: e.parmasto@zbi.ee<br />

Prof. dr Alan J.L. Philips, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Quinta de Torre, 2829-516 Caparica, Portugal.<br />

E-mail: alp@mail.fct.unl.pt<br />

Dr Amy Y. Rossman, Rm 304, Bldg 011A, Systematic Botany & Mycology Laboratory, Beltsville, MD, U.S.A. 20705.<br />

E-mail: amy@nt.ars-grin.gov<br />

Dr Keith A. Seifert, Research Scientist / Biodiversity (Mycology <strong>and</strong> Botany), Agriculture & Agri-Food Canada, KW Neatby Bldg, 960 Carling Avenue,<br />

Ottawa, ON, Canada K1A OC6.<br />

E-mail: seifertk@agr.gc.ca<br />

Prof. dr Jeffrey K. Stone, Department of Botany & Plant Pathology, Cordley 2082, Oregon State University, Corvallis, OR, U.S.A. 97331-2902.<br />

E-mail: stonej@bcc.orst.edu<br />

Dr Richard C. Summerbell, 27 Hillcrest Park, Toronto, Ont. M4X 1E8, Canada.<br />

E-mail: summerbell@aol.com<br />

Copyright 2007 Centraalbureau voor Schimmelcultures, Fungal Biodiversity Centre, P.O. Box 85167, 3508 AD Utrecht, <strong>The</strong> Netherl<strong>and</strong>s.<br />

You are free to share — to copy, distribute <strong>and</strong> transmit the work, under the following conditions:<br />

Attribution:<br />

You must attribute the work in the manner specified by the author or licensor (but not in any way that suggests that they endorse you<br />

or your use of the work).<br />

Non-commercial: You may not use this work for commercial purposes.<br />

No derivative works: You may not alter, transform, or build upon this work.<br />

For any reuse or distribution, you must make clear to others the license terms of this work, which can be found at http://creativecommons.org/licenses/bync-nd/3.0/legalcode.<br />

Any of the above conditions can be waived if you get permission from the copyright holder. Nothing in this license impairs or restricts<br />

the author’s moral rights.<br />

Publication date: 31 August 2007<br />

Published <strong>and</strong> distributed by <strong>CBS</strong> Fungal Biodiversity Centre, P.O. Box 85167, 3508 AD Utrecht, <strong>The</strong> Netherl<strong>and</strong>s. Internet: www.cbs.knaw.nl.<br />

E-mail: info@cbs.knaw.nl.<br />

ISBN/EAN : 978-90-70351-61-0<br />

Online ISSN : 1872-9797<br />

Print ISSN : 0166-0616<br />

Cover: Top: page 137, Fig. 30C <strong>Cladosporium</strong> pseudiridis (<strong>CBS</strong> 116463), conidiophores <strong>and</strong> conidia; page 40, Fig. 4D Toxicocladosporium irritans (type<br />

material), macroconidiophores; page 70, Fig. 11C Ramichloridium musae (<strong>CBS</strong> 365.36), sympodially proliferating conidiogenous cells, resulting in a long<br />

conidium-bearing rachis; Bottom: page 19, Fig. 8F Penidiella columbiana (type material), conidiophores with chains of disarticulating conidia; page 120, Fig.<br />

12C <strong>Cladosporium</strong> bruhnei (CPC 12211), conidial chains; page 126, Fig. 18L Davidiella tassiana (CPC 12181), asci in culture.


<strong>The</strong> <strong>genus</strong> <strong>Cladosporium</strong> <strong>and</strong> <strong>similar</strong><br />

<strong>dematiaceous</strong> hyphomycetes<br />

edited by<br />

Pedro W. Crous<br />

<strong>CBS</strong> Fungal Biodiversity Centre, P.O. Box 85167, 3508 AD Utrecht, <strong>The</strong> Netherl<strong>and</strong>s<br />

Uwe Braun<br />

Martin-Luther-Universität Institut für Biologie, Geobotanik und Botanischer Garten, Neuwerk 21, D-06099 Halle (Saale), Germany<br />

Konstanze Schubert<br />

Botanische Staatssammlung München, Menzinger Strasse 67, D-80638 München, Germany<br />

<strong>and</strong><br />

Johannes Z. Groenewald<br />

<strong>CBS</strong> Fungal Biodiversity Centre, P.O. Box 85167, 3508 AD Utrecht, <strong>The</strong> Netherl<strong>and</strong>s<br />

Centraalbureau voor Schimmelcultures,<br />

Utrecht, <strong>The</strong> Netherl<strong>and</strong>s<br />

An institute of the Royal Netherl<strong>and</strong>s Academy of Arts <strong>and</strong> Sciences


CONTENTS<br />

P.W. Crous, U. Braun <strong>and</strong> J.Z. Groenewald: Mycosphaerella is polyphyletic ...................................................................................................1<br />

P.W. Crous, U. Braun, K. Schubert <strong>and</strong> J.Z. Groenewald: Delimiting <strong>Cladosporium</strong> from morphologically <strong>similar</strong> genera ............................33<br />

M. Arzanlou, J.Z. Groenewald, W. Gams, U. Braun, H.-D Shin <strong>and</strong> P.W. Crous: Phylogenetic <strong>and</strong> morphotaxonomic revision of Ramichloridium<br />

<strong>and</strong> allied genera............................................................................................................................................................................................. 57<br />

K. Schubert, U. Braun, J.Z. Groenewald <strong>and</strong> P.W. Crous: <strong>Cladosporium</strong> leaf-blotch <strong>and</strong> stem rot of Paeonia spp. caused by Dichocladosporium<br />

chlorocephalum gen. nov.................................................................................................................................................................................95<br />

K. Schubert, J.Z. Groenewald, U. Braun, J. Dijksterhuis, M. Starink, C.F. Hill, P. Zalar, G.S. de Hoog <strong>and</strong> P.W. Crous: Biodiversity in<br />

the <strong>Cladosporium</strong> herbarum complex (Davidiellaceae, Capnodiales), with st<strong>and</strong>ardisation of methods for <strong>Cladosporium</strong> taxonomy<br />

<strong>and</strong> diagnostics............................................................................................................................................................................................. 105<br />

P. Zalar, G.S. de Hoog, H.-J. Schroers, P.W. Crous, J.Z. Groenewald <strong>and</strong> N. Gunde-Cimerman: Phylogeny <strong>and</strong> ecology of the<br />

ubiquitous saprobe <strong>Cladosporium</strong> sphaerospermum, with descriptions of seven new species from hypersaline environments<br />

...................................................................................................................................................................................................................... 157<br />

P.W. Crous, K. Schubert, U. Braun, G.S. de Hoog, A.D. Hocking, H.-D. Shin <strong>and</strong> J.Z. Groenewald: Opportunistic, humanpathogenic<br />

species in the Herpotrichiellaceae are phenotypically <strong>similar</strong> to saprobic or phytopathogenic species in the<br />

Venturiaceae ..............................................................................................................................................................................................185<br />

G.S. de Hoog, A.S. Nishikaku, G. Fern<strong>and</strong>ez Zeppenfeldt, C. Padín-González, E. Burger, H. Badali <strong>and</strong> A.H.G. Gerrits van den Ende:<br />

Molecular analysis <strong>and</strong> pathogenicity of the Cladophialophora carrionii complex, with the description of a novel species.......................... 219<br />

K.A. Seifert, S.J. Hughes, H. Boulay <strong>and</strong> G. Louis-Seize: Taxonomy, nomenclature <strong>and</strong> phylogeny of three cladosporiumlike<br />

hyphomycetes, Sorocybe resinae, Seifertia azalea <strong>and</strong> the Hormoconis anamorph of Amorphotheca resinae<br />

...................................................................................................................................................................................................................... 235


PREFACE<br />

DEDICATION<br />

This volume of the Studies in Mycology is dedicated to the memory<br />

of Gerardus Albertus de Vries (1919–2005), who spent his scientific<br />

career as mycologist at the <strong>CBS</strong>, where he was appointed as<br />

medical mycologist.<br />

of loyal friends <strong>and</strong> fellow mycologists dating back to the “Baarnera”<br />

of <strong>CBS</strong>. To the very end the <strong>CBS</strong> received a yearly Christmas<br />

card, which was always a water colour painting depicting some<br />

fascinating birds that he happened to be studying at the time. <strong>The</strong><br />

<strong>Cladosporium</strong> notebooks, annotations <strong>and</strong> live cultures are still at<br />

the <strong>CBS</strong>. It is thus with great joy that we dedicate this volume to<br />

Gerard de Vries, <strong>and</strong> build on his <strong>Cladosporium</strong> legacy, most of<br />

which is still sporulating, <strong>and</strong> will be available for scientific debate<br />

for generations to come.<br />

<strong>The</strong> <strong>genus</strong> <strong>Cladosporium</strong> <strong>and</strong> <strong>similar</strong> <strong>dematiaceous</strong><br />

hyphomycetes<br />

INTRODUCTION<br />

Fig. 1. Gerard de Vries studying <strong>Cladosporium</strong> spp. on different cultural growth<br />

media.<br />

On the 10 th of July 1952, Gerard de Vries graduated from the<br />

University of Utrecht, where he completed his Ph.D. on the topic<br />

“Contribution to the knowledge of the <strong>genus</strong> <strong>Cladosporium</strong> Link<br />

ex Fr.” under the guidance of the then director of the <strong>CBS</strong>, Prof.<br />

dr Johanna Westerdijk. At this time, his thesis (de Vries 1952)<br />

represented a benchmark <strong>and</strong> synthesis of our knowledge <strong>and</strong><br />

underst<strong>and</strong>ing of <strong>Cladosporium</strong> spp. studied in culture (Fig. 1).<br />

Gerard de Vries learned the basics of mycology by working during<br />

the 1930’s with mushroom taxonomy under the guidance of<br />

Abraham van Luyk. Via van Luyk he was also introduced to the<br />

Dutch Mycological Society, who organised excursions, also around<br />

Baarn, which is where the de Vries family lived. For the rest of his<br />

career, Gerard would retain his love for studying <strong>and</strong> collecting<br />

mushrooms. In 1948 he was employed at <strong>CBS</strong> under Johanna<br />

Westerdijk, <strong>and</strong> given the task of establishing <strong>and</strong> heading a<br />

new division called Medical Mycology. This he did, right up to his<br />

retirement in 1984. For several years de Vries played an important<br />

role in this discipline, <strong>and</strong> attended numerous medical congresses<br />

<strong>and</strong> workshops, <strong>and</strong> also published extensively on the topic. De<br />

Vries loved the outdoors <strong>and</strong> traveling, <strong>and</strong> combined this with his<br />

other passion, which was ornithology (van der Aa 2005). In 1952<br />

he graduated from the University of Utrecht, producing a revision<br />

of major species in the <strong>genus</strong> <strong>Cladosporium</strong> of importance to the<br />

medical, industrial <strong>and</strong> plant pathology disciplines. His book soon<br />

became highly popular, <strong>and</strong> with a strong dem<strong>and</strong> for additional<br />

copies, resulting in it being reprinted by J. Cramer. His contribution<br />

to <strong>Cladosporium</strong> was also recently acknowledged with the<br />

introduction of the cladosporium-like heat-tolerant <strong>genus</strong>, Devriesia<br />

by Seifert et al. (2004). Additional books published by de Vries dealt<br />

with mushrooms for amateur mycologists (1955) <strong>and</strong> a treatment of<br />

Hypogaea <strong>and</strong> truffels published in 1971 as part 3 of the “Fungi of<br />

the Netherl<strong>and</strong>s” (van der Aa 2005).<br />

Gerard de Vries was a well tempered, softly spoken man,<br />

who avoided conflicts, except when it dealt with scientific issues.<br />

He never married, <strong>and</strong> died a bachelor, surrounded by a circle<br />

Species of <strong>Cladosporium</strong> are common <strong>and</strong> widespread, <strong>and</strong> interact<br />

with humans in every phase of life, from growing behind your bed<br />

or bedroom cupboard <strong>and</strong> producing allergens, or growing on the<br />

bathroom ceiling, to the fruit decay happening in the fruit basket in<br />

the kitchen, to colonising the debris lying outside your house, <strong>and</strong><br />

even the plant diseases observed on some of the shrubs, trees, or<br />

flowers cultivated in your garden. However, scientists generally shy<br />

away from trying to identify these <strong>similar</strong> looking organisms, <strong>and</strong><br />

therefore the main aims of this volume were to:<br />

1) Establish st<strong>and</strong>ardised conditions <strong>and</strong> protocols for studying<br />

cladosporioid species <strong>and</strong> their teleomorphs in culture;<br />

2) Determine how they can morphologically be distinguished in<br />

culture, <strong>and</strong> highlight important diagnostic features;<br />

3) Circumscribe the <strong>genus</strong>, <strong>and</strong> delineate it from morphologically<br />

<strong>similar</strong> <strong>dematiaceous</strong> hyphomycetes;<br />

4) Determine which DNA gene loci are informative to accurately<br />

distinguish species of <strong>Cladosporium</strong>, <strong>and</strong> initiate a database of<br />

<strong>Cladosporium</strong> sequences that can in future be used to set up an<br />

online polyphasic identification key.<br />

Although <strong>Cladosporium</strong> is one of the largest <strong>and</strong> most<br />

heterogeneous genera of hyphomycetes, currently comprising<br />

more than 772 names (Dugan et al. 2004), only a mere fraction of<br />

these species are known from culture, <strong>and</strong> thus the real number<br />

of taxa that exist remains unknown. Species of <strong>Cladosporium</strong> are<br />

commonly encountered on plant <strong>and</strong> other kinds of debris, frequently<br />

colonising lesions of plant pathogenic fungi, <strong>and</strong> are also isolated<br />

from air, soil, food, paint, textiles <strong>and</strong> other organic matters (Ellis<br />

1971, 1976; Schubert 2005a), they are also common endophytes<br />

(Brown et al. 1998, El-Morsy 2000) as well as phylloplane fungi<br />

(Islam & Hasin 2000, de Jager et al. 2001, Inacio et al. 2002,<br />

Stohr & Dighton 2004, Levetin & Dorsey 2006). Some species of<br />

<strong>Cladosporium</strong> have a medical relevance in clinical laboratories,<br />

<strong>and</strong> also cause allergic lung mycoses (de Hoog et al. 2000). In<br />

spite of its obvious importance, species of <strong>Cladosporium</strong> are still<br />

poorly understood.<br />

Taxonomy of the anamorph<br />

<strong>The</strong> first binominal introduced for this group of fungi was that of<br />

Dematium herbarum Pers. (Persoon 1794) (Fig. 2). <strong>Cladosporium</strong><br />

herbarum (Pers.) Link was subsequently selected to serve as


lectotype for the <strong>genus</strong> by Clements & Shear (1931), a proposal<br />

which was accepted by de Vries (1952), Hughes (1958), <strong>and</strong> others<br />

(Prasil & de Hoog 1988). In subsequent years the number of taxa<br />

described in the <strong>genus</strong> grew rapidly, though the generic concept<br />

was rather vague. As a consequence, numerous morphologically<br />

<strong>similar</strong> <strong>dematiaceous</strong> hyphomycetes with catenulate conidia were<br />

incorrectly assigned to <strong>Cladosporium</strong>, making this one of the largest<br />

genera of hyphomycetes.<br />

In an attempt to circumscribe some of the more well-known taxa,<br />

de Vries (1952) published a revision of nine <strong>Cladosporium</strong> species in<br />

vivo <strong>and</strong> in vitro, <strong>and</strong> 13 additional taxa in an appendix. Ellis (1971,<br />

1976) described <strong>and</strong> illustrated 43 species, while Morgan-Jones<br />

<strong>and</strong> McKemy dealt with selected species in the series “Studies in<br />

the <strong>genus</strong> <strong>Cladosporium</strong> s. lat.” (Morgan-Jones & McKemy 1990,<br />

McKemy & Morgan-Jones 1990, 1991a–c). Other significant works<br />

that also treated <strong>Cladosporium</strong> species include Ho et al. (1999),<br />

<strong>and</strong> Zhang et al. (2003), though these authors still followed a<br />

wider generic concept. David (1997) followed the taxonomy of de<br />

Vries (1952), who first considered Heterosporium as a synonym<br />

of <strong>Cladosporium</strong>, <strong>and</strong> introduced the combination <strong>Cladosporium</strong><br />

subgen. Heterosporium. Subsequent to this publication, further<br />

monographic studies on the <strong>genus</strong> <strong>Cladosporium</strong> s. lat. were<br />

initiated by Braun <strong>and</strong> co-workers (Braun et al. 2003, 2006, Dugan<br />

et al. 2004, Schubert & Braun 2004, 2005a, b, 2006, 2007, Schubert<br />

2005a, b, Heuchert et al. 2005).<br />

Treatments of human pathogenic <strong>Cladosporium</strong> species<br />

(Masclaux et al. 1995, Untereiner 1997, Gerrits van den Ende & de<br />

Hoog 1999, Untereiner & Naveau 1999, Untereiner et al. 1999; de<br />

Hoog et al. 2000), concluded that they represent species belonging<br />

to the Herpotrichiellaceae (Capronia Sacc./Cladophialophora<br />

Borelli). Saprobic species, which appear morphologically <strong>similar</strong>,<br />

were found to belong to the Venturiaceae (Caproventuria U. Braun/<br />

Pseudocladosporium U. Braun; Braun et al. 2003, Schubert et al.<br />

2003, Beck et al. 2005) (see Crous et al. 2007 – this volume). Further<br />

genera that were separated from <strong>Cladosporium</strong> include Sorocybe<br />

resinae (Fr.) Fr. [≡ <strong>Cladosporium</strong> resinae (Lindau) G.A. de Vries,<br />

teleomorph: Amorphotheca resinae Parbery; Partridge & Morgan-<br />

Jones 2002] (see Seifert et al. 2007 – this volume), Devriesia Seifert<br />

& N.L. Nickerson, erected for heat tolerant species (Seifert et al.<br />

2004), Cladoriella Crous, erected for saprobic species (Crous et<br />

al. 2006b), Metulocladosporiella Crous, Schroers, Groenewald, U.<br />

Braun & K. Schub., erected for the causal agent of banana speckle<br />

disease (Crous et al. 2006a), Digitopodium U. Braun, Heuchert &<br />

K. Schub. <strong>and</strong> Parapericoniella U. Braun, Heuchert & K. Schub.,<br />

Fig. 2. Type specimen of Dematium herbarum Pers. (1794), preserved in the<br />

National Herbarium of the Netherl<strong>and</strong>s in Leiden.<br />

representing two genera of hyperparasitic hyphomycetes (Heuchert<br />

et al. 2005).<br />

Taxonomy of the teleomorph<br />

Teleomorphs of <strong>Cladosporium</strong> have traditionally been described in<br />

Mycosphaerella Johanson. <strong>The</strong> first indication that this may not be<br />

the case was the rDNA ITS sequence data presented by Crous et<br />

al. (2001), which revealed cladosporium-like taxa to cluster basal<br />

to Mycosphaerella s. str. This finding was further strengthened by<br />

adding 18S rDNA data, which clearly distinguished the <strong>Cladosporium</strong><br />

clade from Mycosphaerella (Braun et al. 2003). <strong>The</strong>se results<br />

lead to the erection of the <strong>genus</strong> Davidiella Crous & U. Braun for<br />

teleomorphs of <strong>Cladosporium</strong>, though it was largely established<br />

based on its unique anamorphs, rather than distinct teleomorph<br />

features. In a revision of the <strong>genus</strong> Mycosphaerella, Aptroot (2006)<br />

provided the first clear morphological characteristics to distinguish<br />

Davidiella from Mycosphaerella, referring to their sole-shaped<br />

ascospores, <strong>and</strong> angular lumina that are to be seen in Davidiella<br />

ascospores. Further phylogenetic evidence for the distinction was<br />

found by Schoch et al. (2006), which led to the erection of the<br />

family Davidiellaceae (Capnodiales). Detailed cultural studies of<br />

Davidiella teleomorphs, however, were still lacking (see Schubert<br />

et al. 2007 – this volume).<br />

What is <strong>Cladosporium</strong>?<br />

David (1997) provided the first modern concept of <strong>Cladosporium</strong> by<br />

conducting comprehensive scanning electron microscopic (SEM)<br />

examinations of the scar <strong>and</strong> hilum structure in <strong>Cladosporium</strong> <strong>and</strong><br />

Heterosporium, thereby confirming the observations of Roquebert<br />

(1981). He introduced the term “coronate” for the <strong>Cladosporium</strong><br />

scar type, which is characterised by having a central convex part<br />

(dome), surrounded by a raised periclinal rim (Fig. 3), <strong>and</strong> proved<br />

that these anamorphs are linked to teleomorphs now placed in<br />

Davidiella (see David 1997, fig. 12).<br />

This new concept of <strong>Cladosporium</strong> s. str. <strong>and</strong> Davidiella<br />

(David 1997, Braun et al. 2003, Aptroot 2006), supported by<br />

morphological <strong>and</strong> molecular data, rendered it possible to initiate<br />

a comprehensive revision of the <strong>genus</strong>. <strong>The</strong> first step was the<br />

preparation of a general, annotated check-list of <strong>Cladosporium</strong><br />

names (Dugan et al. 2004), followed by revisions of fungicolous<br />

(Heuchert et al. 2005) <strong>and</strong> foliicolous species of <strong>Cladosporium</strong> s.<br />

lat. (Schubert 2005b, Braun et al. 2006, Schubert & Braun 2004,<br />

2005a, b, 2006, 2007). <strong>The</strong> present study is the first to integrate<br />

these concepts on cladosporioid species in culture, in an attempt to<br />

further elucidate species of <strong>Cladosporium</strong>, <strong>and</strong> delineate the <strong>genus</strong><br />

from other, morphologically <strong>similar</strong> <strong>dematiaceous</strong> genera that have<br />

traditionally been confused with <strong>Cladosporium</strong> s. str.<br />

How natural should anamorph genera be?<br />

Article 59 of the International Code of Botanical Nomenclature<br />

was introduced to enable mycologists to name the asexual states<br />

of fungi that they encountered, <strong>and</strong> for which no teleomorph<br />

association was known. It was <strong>and</strong> remains a completely artificial<br />

system, complicated further by the evolution of the same anamorph<br />

morphology in different families, <strong>and</strong> even orders. In 1995 Gams<br />

discussed “How natural should anamorph genera be”, concluding<br />

that paraphyletic genera should be an acceptable option, <strong>and</strong> that<br />

anamorphs cannot reflect natural relationships. In a special volume<br />

dedicated at integrating molecular data <strong>and</strong> morphology, Seifert et<br />

al. (2000) proposed using anamorph names as adjectives, e.g.,<br />

acremonium-like, when they clustered in different clades, or were<br />

linked to different teleomorphs than the type species of the <strong>genus</strong>


Fig. 3. Coronate scar structure of <strong>Cladosporium</strong> herbaroides, visible by means of<br />

Scanning Electron Microscopy. Scale bar = 5 µm (Photo: Jan Dijksterhuis).<br />

Acremonium. In a phylogenetic study of the Herpotrichiellaceae,<br />

Haase et al. (1999) proposed to accept anamorphs as poly- <strong>and</strong><br />

paraphyletic within the order Chaetothyriales, as their taxonomy<br />

was unsupported by phylogeny, <strong>and</strong> Cook et al. (1997) as well as<br />

Braun et al. (2002) followed this methodology in naming anamorphs<br />

of the Erysiphaceae (Erysiphales). After much debate, we have<br />

chosen to use the same approach in this volume, <strong>and</strong> will refrain<br />

from introducing different anamorph genera for the same phenotype<br />

clustering within different clades of the same order. It is hoped that<br />

this approach will stop the unnecessary proliferation of names, until<br />

we can move to a single nomenclature for ascomycetous fungi.<br />

Anamorphs are just form taxa, established for the sole purpose<br />

of enabling mycologists to name asexual states that occur in<br />

the absence of their teleomorphs. Anamorph genera are simply<br />

phenotypic concepts that lack phylogenetic relevance within the<br />

order.<br />

REFERENCES<br />

Aa HA van der (2005). In memoriam Gerard de Vries (1919–2005). Coolia 48(4):<br />

173–175.<br />

Aptroot A (2006). Mycosphaerella <strong>and</strong> its anamorphs: 2. Conspectus of<br />

Mycosphaerella. <strong>CBS</strong> Biodiversity Series 5: 1–231.<br />

Beck A, Ritschel A, Schubert K, Braun U, Triebel D (2005). Phylogenetic relationship<br />

of the anamorphic <strong>genus</strong> Fusicladium s. lat. as inferred by ITS data. Mycological<br />

Progress 4: 111–116.<br />

Braun U, Cook RTA, Inman AJ, Shin HD (2002). <strong>The</strong> taxonomy of the powdery<br />

mildew fungi. In: <strong>The</strong> powdery mildews, a comprehensive treatise (Bélanger<br />

RR, Bushnell WR, Dik AJ, Carver TLW, eds). APS Press, St. Paul, U.S.A.:<br />

13–55.<br />

Braun U, Crous PW, Dugan FM, Groenewald JZ, Hoog GS de (2003). Phylogeny<br />

<strong>and</strong> taxonomy of cladosporium-like hyphomycetes, including Davidiella gen.<br />

nov., the teleomorph of <strong>Cladosporium</strong> s. str. Mycological Progress 2: 3–18.<br />

Braun U, Hill CF, Schubert K (2006). New species <strong>and</strong> new records of biotrophic<br />

micromycetes from Australia, Fiji, New Zeal<strong>and</strong> <strong>and</strong> Thail<strong>and</strong>. Fungal Diversity<br />

22: 13–35.<br />

Brown KB, Hyde KD, Guest DI (1998). Preliminary studies on endophytic fungal<br />

communities of Musa acuminata species complex in Hong Kong <strong>and</strong> Australia.<br />

Fungal Diversity 1: 27–51.<br />

Clements FE, Shear CL (1931). <strong>The</strong> Genera of Fungi. H.W. Wilson, New York.<br />

Cook RTA, Inman AJ, Billings C (1997). Identification <strong>and</strong> classification of powdery<br />

mildew anamorphs using light <strong>and</strong> scanning electron microscopy <strong>and</strong> host<br />

range data. Mycological Research 101: 975–1002.<br />

Crous PW, Kang JC, Braun U (2001). A phylogenetic redefinition of anamorph<br />

genera in Mycosphaerella based on ITS rDNA sequences. Mycologia 93:<br />

1081–1101.<br />

Crous PW, Schroers HJ, Groenewald JZ, Braun U, Schubert K (2006a).<br />

Metulocladosporiella gen. nov. for the causal organism of <strong>Cladosporium</strong><br />

speckle disease of banana. Mycological Research 110: 264–275.<br />

Crous PW, Schubert K, Braun U, de Hoog GS, Hocking AD, Shin H-D, Groenewald<br />

JZ (2007). Opportunistic, human-pathogenic species in the Herpotrichiellaceae<br />

are phenotypically <strong>similar</strong> to saprobic or phytopathogenic species in the<br />

Venturiaceae. Studies in Mycology 58: 185–217.<br />

Crous PW, Verkley GJM, Groenewald JZ (2006b). Eucalyptus microfungi known<br />

from culture. 1. Cladoriella <strong>and</strong> Fulvoflamma genera nova, with notes on some<br />

other poorly known taxa. Studies in Mycology 55: 53–63.<br />

David JC (1997). A contribution to the systematics of <strong>Cladosporium</strong>. Revision of the<br />

fungi previously referred to Heterosporium. Mycological Papers 172: 1–157.<br />

Dugan FM, Schubert K, Braun U (2004). Check-list of <strong>Cladosporium</strong> names.<br />

Schlechtendalia 11: 1–103.<br />

El-Morsy EM (2000). Fungi isolated from the endorhizosphere of halophytic plants<br />

from the Red Sea Coast of Egypt. Fungal Diversity 5: 43–54.<br />

Ellis MB (1971). Dematiaceous Hyphomycetes. Commonwealth Mycological<br />

Institute, Kew.<br />

Ellis MB (1976). More Dematiaceous Hyphomycetes. Commonwealth Mycological<br />

Institute, Kew.<br />

Gams W (1995). How natural should anamorph genera be? Canadian Journal of<br />

Botany 73: S747–S753.<br />

Gerrits van den Ende AHG, Hoog GS de (1999). Variability <strong>and</strong> molecular diagnostics<br />

of the neurotrophic species Cladophialophora bantiana. Studies in Mycology<br />

43: 151–162.<br />

Haase G, Sonntag L, Melzer-Krick B, Hoog GS de (1999). Phylogenetic inference<br />

by SSU-gene analysis of members of the Herpotrichiellaceae with special<br />

reference to human pathogenic species. Studies in Mycology 43: 80–97.<br />

Heuchert B, Braun U, Schubert K (2005). Morphotaxonomic revision of fungicolous<br />

<strong>Cladosporium</strong> species (hyphomycetes). Schlechtendalia 13: 1–78.<br />

Ho MH-M, Castañeda RF, Dugan FM, Jong, SC (1999). <strong>Cladosporium</strong> <strong>and</strong><br />

Cladophialophora in culture: descriptions <strong>and</strong> an exp<strong>and</strong>ed key. Mycotaxon<br />

72: 115–157.<br />

Hoog GS de, Guarro, J, Gené J, Figueras MJ (2000). Atlas of clinical fungi. 2 nd ed.<br />

Centralbureau voor Schimmelcultures, Utrecht <strong>and</strong> Universitat rovira I virgili,<br />

Reus.<br />

Hughes SJ (1958). Revisiones hyphomycetum aliquot cum appendice de nominibus<br />

rejiciendis. Canadian Journal of Botany 36: 727–836.<br />

Inacio J, Pereira P, de Cavalho M, Fonseca A, Amaral-Collaco MT, Spencer-Martins<br />

I (2002). Estimation <strong>and</strong> diversity of phylloplane mycobiota on selected plants in<br />

a Mediterranean-type ecosystem in Portugal. Microbial Ecology 44: 344–353.<br />

Islam M, Hasin F (2000). Studies on phylloplane mycoflora of Amaranthus viridis L.<br />

National Academy Science Letters, India 23: 121–123.<br />

Jager ES de, Wehner FC, Karsten L (2001). Microbial ecology of the mango<br />

phylloplane. Microbial Ecology 42: 201–207.<br />

Levetin E, Dorsey K (2006). Contribution to leaf surface fungi to the air spora.<br />

Aerobiologia 22: 3–12.<br />

Masclaux F, Guého E, Hoog GS de, Christen R (1995). Phylogenetic relationship of<br />

human-pathogenic <strong>Cladosporium</strong> (Xylohypha) species. Journal of Medical <strong>and</strong><br />

Veterinary Mycology 33: 327–338.<br />

McKemy JM, Morgan-Jones G (1990). Studies in the <strong>genus</strong> <strong>Cladosporium</strong> sensu<br />

lato II. Concerning Heterosporium gracile, the causal organism of leaf spot<br />

disease of Iris species. Mycotaxon 39: 425–440.<br />

McKemy JM, Morgan-Jones G (1991a). Studies in the <strong>genus</strong> <strong>Cladosporium</strong><br />

sensu lato III. Concerning <strong>Cladosporium</strong> chlorocephalum <strong>and</strong> its synonym<br />

<strong>Cladosporium</strong> paeoniae, the causal organism of leaf-blotch of peony.<br />

Mycotaxon 41: 135–146.<br />

McKemy JM, Morgan-Jones G (1991b). Studies in the <strong>genus</strong> <strong>Cladosporium</strong> sensu<br />

lato IV. Concerning <strong>Cladosporium</strong> oxysporum, a plurivorous predominantly<br />

saprophytic species in warm climates. Mycotaxon 41: 397–405.<br />

McKemy JM, Morgan-Jones G (1991c). Studies in the <strong>genus</strong> <strong>Cladosporium</strong> sensu<br />

lato V. Concerning the type species <strong>Cladosporium</strong> herbarum. Mycotaxon 42:<br />

307–317.<br />

Morgan-Jones G, McKemy JM (1990). Studies in the <strong>genus</strong> <strong>Cladosporium</strong> sensu<br />

lato I. Concerning <strong>Cladosporium</strong> uredinicola, occurring on telial columns of<br />

Cronartium quercuum <strong>and</strong> other rusts. Mycotaxon 39: 185–202.<br />

Partridge EC, Morgan-Jones G (2002). Notes on hyphomycetes, LXXXVIII. New<br />

genera in which to classify Alysidium resinae <strong>and</strong> Pycnostysanus azaleae, with<br />

a consideration of Sorocybe. Mycotaxon 83: 335–352.<br />

Persoon CH (1794). Neuer Versuch einer systematischen Eintheilung der<br />

Schwämme. Neues Magazin fur die Botanik 1: 63–128.<br />

Prasil K, Hoog GS de (1988). Variability in <strong>Cladosporium</strong> herbarum. Transactions of<br />

the British Mycological Society 90: 49–54.<br />

Roquebert MF (1981). Analyse des phénoménes pariétaux au cours de la<br />

conidiogenése chez quelques champignon microscopiques. Memoires du<br />

Museum d’Histoire Naturelle, Sér B, Botanique 28: 3–79.<br />

Schoch C, Shoemaker RA, Seifert KA, Hambleton S, Spatafora JW, Crous PW<br />

(2006). A multigene phylogeny of the Dothideomycetes using four nuclear loci.<br />

Mycologia 98: 1041–1052.


Schubert K (2005a). Morphotaxonomic revision of foliicolous <strong>Cladosporium</strong> species<br />

(hyphomycetes). PhD thesis, Martin-Luther-University, Halle.<br />

Schubert K (2005b). Taxonomic revision of the <strong>genus</strong> <strong>Cladosporium</strong> s. lat. 3. A<br />

revision of <strong>Cladosporium</strong> species described by J.J. Davis <strong>and</strong> H.C. Greene<br />

(WIS). Mycotaxon 92: 55–76.<br />

Schubert K, Braun U (2004). Taxonomic revision of the <strong>genus</strong> <strong>Cladosporium</strong> s. lat. 2.<br />

Morphotaxonomic examination of <strong>Cladosporium</strong> species occurring on hosts of<br />

the families Bignoniaceae <strong>and</strong> Orchidaceae. Sydowia 56: 76–97.<br />

Schubert K, Braun U (2005a). Taxonomic revision of the <strong>genus</strong> <strong>Cladosporium</strong><br />

s. lat. 1. Species reallocated to Fusicladium, Parastenella, Passalora,<br />

Pseudocercospora <strong>and</strong> Stenella. Mycological Progress 4: 101–109.<br />

Schubert K, Braun U (2005b). Taxonomic revision of the <strong>genus</strong> <strong>Cladosporium</strong> s.<br />

lat. 4. Species reallocated to Asperisporium, Dischloridium, Fusicladium,<br />

Passalora, Pseudasperisporium <strong>and</strong> Stenella. Fungal Diversity 20: 187–208.<br />

Schubert K, Braun U (2006). Taxonomic revision of the <strong>genus</strong> <strong>Cladosporium</strong> s. lat. 5.<br />

Validation <strong>and</strong> description of new species. Schlechtendalia 14: 55–83.<br />

Schubert K, Braun U (2007). Taxonomic revision of the <strong>genus</strong> <strong>Cladosporium</strong> s. lat.<br />

6. New species, reallocations to <strong>and</strong> synonyms of Cercospora, Fusicladium,<br />

Passalora, Septonema <strong>and</strong> Stenella. Nova Hedwigia 84(1–2): 189–208.<br />

Schubert K, Groenewald JZ, Braun U, Dijksterhuis J, Starink M, Hill CF, Zalar P,<br />

Hoog GS de, Crous PW (2007). Biodiversity in the <strong>Cladosporium</strong> herbarum<br />

complex (Davidiellaceae, Capnodiales), with st<strong>and</strong>ardisation of methods for<br />

<strong>Cladosporium</strong> taxonomy <strong>and</strong> diagnostics. Studies in Mycology 58: 105–156.<br />

Schubert K, Ritschel A, Braun U (2003). A monograph of Fusicladium s. lat.<br />

(hyphomycetes). Schlechtendalia 9: 1–132.<br />

Seifert KA, Gams W, Crous PW, Samuels GJ (2000). Molecules, morphology <strong>and</strong><br />

classification: Towards monophyletic genera in the Ascomycetes. Studies in<br />

Mycology 45: 1–230.<br />

Seifert KA, Hughes SJ, Boulay H, Louis-Seize G (2007). Taxonomy, nomenclature<br />

<strong>and</strong> phylogeny of three cladosporium-like hyphomycetes, Sorocybe resinae,<br />

Seifertia azalea <strong>and</strong> the Hormoconis anamorph of Amorphotheca resinae.<br />

Studies in Mycology 58: 235–245.<br />

Seifert KA, Nickerson NL, Corlett M, Jackson ED, Lois-Seize G, Davies RJ (2004).<br />

Devriesia, a new hyphomycete <strong>genus</strong> to accommodate heat-resistant,<br />

cladosporium-like fungi. Canadian Journal of Botany 82: 914–926.<br />

Stohr SN, Dighton J (2004). Effects of species diversity on establishment <strong>and</strong><br />

coexistence: A phylloplane fungal community model system. Microbial Ecology<br />

48: 431–438.<br />

Untereiner WA (1997). Taxonomy of selected members of the ascomycete <strong>genus</strong><br />

Capronia with notes on anamorph-teleomorph connection. Mycologia 89:<br />

120–131.<br />

Untereiner WA, Gerrits van den Ende AHG, Hoog GA de (1999). Nutritional<br />

physiology of species of Capronia. Studies in Mycology 43: 98–106.<br />

Untereiner WA, Naveau FA (1999). Molecular systematic of the Herpotrichiellaceae<br />

with an assessment of the phylogenetic position of Exophiala dermatitidis <strong>and</strong><br />

Phialophora americana. Mycologia 91: 67–83.<br />

Vries GA de (1952). Contribution to the Knowledge of the Genus <strong>Cladosporium</strong> Link<br />

ex Fr. Centraalbureau voor Schimmelcultures, Baarn.<br />

Vries GA de (1955). Paddestoelen (en schimmels). WJ Thieme & Cie. Zutputen.<br />

Vries GA de (1971). De Fungi van Nederl<strong>and</strong>. 3. Hypogaea. Wetenschappelijke<br />

mededelingen van de Koninklijke Nederl<strong>and</strong>se Natuurhistorische Vereniging.<br />

Hoogwoud.<br />

Zhang ZY, Liu YL, Zhang T, Li TF, Wang G, Zhang H, He YH, Peng HH (2003).<br />

<strong>Cladosporium</strong>, Fusicladium, Pyricularia. Flora Fungorum Sinicorum 14: 1–<br />

297.<br />

<strong>The</strong> Editors 1 July 2007<br />

Propositions for this volume:<br />

“Evolution gives rise to lineages, which we try to recognise as genera <strong>and</strong> species”<br />

“<strong>The</strong> most interesting fungi are those isolated by accident”


available online at www.studiesinmycology.org<br />

doi:10.3114/sim.2007.58.01<br />

Studies in Mycology 58: 1–32. 2007.<br />

Mycosphaerella is polyphyletic<br />

P.W. Crous 1* , U. Braun 2 <strong>and</strong> J.Z. Groenewald 1<br />

1<br />

<strong>CBS</strong> Fungal Biodiversity Centre, P.O. Box 85167, 3508 AD, Utrecht, <strong>The</strong> Netherl<strong>and</strong>s; 2 Martin-Luther-Universität, Institut für Biologie, Geobotanik und Botanischer Garten,<br />

Herbarium, Neuwerk 21, D-06099 Halle, Germany<br />

*Correspondence: Pedro W. Crous, p.crous@cbs.knaw.nl<br />

Abstract: Mycosphaerella, one of the largest genera of ascomycetes, encompasses several thous<strong>and</strong> species <strong>and</strong> has anamorphs residing in more than 30 form genera.<br />

Although previous phylogenetic studies based on the ITS rDNA locus supported the monophyly of the <strong>genus</strong>, DNA sequence data derived from the LSU gene distinguish several<br />

clades <strong>and</strong> families in what has hitherto been considered to represent the Mycosphaerellaceae. Several important leaf spotting <strong>and</strong> extremotolerant species need to be disposed<br />

to the <strong>genus</strong> Teratosphaeria, for which a new family, the Teratosphaeriaceae, is introduced. Other distinct clades represent the Schizothyriaceae, Davidiellaceae, Capnodiaceae,<br />

<strong>and</strong> the Mycosphaerellaceae. Within the two major clades, namely Teratosphaeriaceae <strong>and</strong> Mycosphaerellaceae, most anamorph genera are polyphyletic, <strong>and</strong> new anamorph<br />

concepts need to be derived to cope with dual nomenclature within the Mycosphaerella complex.<br />

Taxonomic novelties: Batcheloromyces eucalypti (Alcorn) Crous & U. Braun, comb. nov., Catenulostroma Crous & U. Braun, gen. nov., Catenulostroma abietis (Butin &<br />

Pehl) Crous & U. Braun, comb. nov., Catenulostroma chromoblastomycosum Crous & U. Braun, sp. nov., Catenulostroma elginense (Joanne E. Taylor & Crous) Crous & U.<br />

Braun, comb. nov., Catenulostroma excentricum (B. Sutton & Ganap.) Crous & U. Braun, comb. nov., Catenulostroma germanicum Crous & U. Braun, sp. nov., Catenulostroma<br />

macowanii (Sacc.) Crous & U. Braun, comb. nov., Catenulostroma microsporum (Joanne E. Taylor & Crous) Crous & U. Braun, comb. nov., Catenulostroma protearum (Crous<br />

& M.E. Palm) Crous & U. Braun, comb. nov., Penidiella Crous & U. Braun, gen. nov., Penidiella columbiana Crous & U. Braun, sp. nov., Penidiella cubensis (R.F. Castañeda) U.<br />

Braun, Crous & R.F. Castañeda, comb. nov., Penidiella nect<strong>and</strong>rae Crous, U. Braun & R.F. Castañeda, nom. nov., Penidiella rigidophora Crous, R.F. Castañeda & U. Braun, sp.<br />

nov., Penidiella strumelloidea (Milko & Dunaev) Crous & U. Braun, comb. nov., Penidiella venezuelensis Crous & U. Braun, sp. nov., Readeriella blakelyi (Crous & Summerell)<br />

Crous & U. Braun, comb. nov., Readeriella brunneotingens Crous & Summerell, sp. nov., Readeriella considenianae (Crous & Summerell) Crous & U. Braun, comb. nov.,<br />

Readeriella destructans (M.J. Wingf. & Crous) Crous & U. Braun, comb. nov., Readeriella dimorpha (Crous & Carnegie) Crous & U. Braun, comb. nov., Readeriella epicoccoides<br />

(Cooke & Massee) Crous & U. Braun, comb. nov., Readeriella gauchensis (M.-N. Cortinas, Crous & M.J. Wingf.) Crous & U. Braun, comb. nov., Readeriella molleriana (Crous<br />

& M.J. Wingf.) Crous & U. Braun, comb. nov., Readeriella nubilosa (Ganap. & Corbin) Crous & U. Braun, comb. nov., Readeriella pulcherrima (Gadgil & M. Dick) Crous &<br />

U. Braun, comb. nov., Readeriella stellenboschiana (Crous) Crous & U. Braun, comb. nov., Readeriella toledana (Crous & Bills) Crous & U. Braun, comb. nov., Readeriella<br />

zuluensis (M.J. Wingf., Crous & T.A. Cout.) Crous & U. Braun, comb. nov., Teratosphaeria africana (Crous & M.J. Wingf.) Crous & U. Braun, comb. nov., Teratosphaeria alistairii<br />

(Crous) Crous & U. Braun, comb. nov., Teratosphaeria associata (Crous & Carnegie) Crous & U. Braun, comb. nov., Teratosphaeria bellula (Crous & M.J. Wingf.) Crous & U.<br />

Braun, comb. nov., Teratosphaeria cryptica (Cooke) Crous & U. Braun, comb. nov., Teratosphaeria dentritica (Crous & Summerell) Crous & U. Braun, comb. nov., Teratosphaeria<br />

excentrica (Crous & Carnegie) Crous & U. Braun, comb. nov., Teratosphaeria fimbriata (Crous & Summerell) Crous & U. Braun, comb. nov., Teratosphaeria flexuosa (Crous<br />

& M.J. Wingf.) Crous & U. Braun, comb. nov., Teratosphaeria gamsii (Crous) Crous & U. Braun, comb. nov., Teratosphaeria jonkershoekensis (P.S. van Wyk, Marasas &<br />

Knox-Dav.) Crous & U. Braun, comb. nov., Teratosphaeria maxii (Crous) Crous & U. Braun, comb. nov., Teratosphaeria mexicana (Crous) Crous & U. Braun, comb. nov.,<br />

Teratosphaeria molleriana (Thüm.) Crous & U. Braun, comb. nov., Teratosphaeria nubilosa (Cooke) Crous & U. Braun, comb. nov., Teratosphaeria ohnowa (Crous & M.J. Wingf.)<br />

Crous & U. Braun, comb. nov., Teratosphaeria parkiiaffinis (Crous & M.J. Wingf.) Crous & U. Braun, comb. nov., Teratosphaeria parva (R.F. Park & Keane) Crous & U. Braun,<br />

comb. nov., Teratosphaeria perpendicularis (Crous & M.J. Wingf.) Crous & U. Braun, comb. nov., Teratosphaeria pluritubularis (Crous & Mansilla) Crous & U. Braun, comb.<br />

nov., Teratosphaeria pseudafricana (Crous & T.A. Cout.) Crous & U. Braun, comb. nov., Teratosphaeria pseudocryptica (Crous) Crous & U. Braun, comb. nov., Teratosphaeria<br />

pseudosuberosa (Crous & M.J. Wingf.) Crous & U. Braun, comb. nov., Teratosphaeria quasicercospora (Crous & T.A. Cout.) Crous & U. Braun, comb. nov., Teratosphaeria<br />

readeriellophora (Crous & Mansilla) Crous & U. Braun, comb. nov., Teratosphaeria secundaria (Crous & Alfenas) Crous & U. Braun, comb. nov., Teratosphaeria stramenticola<br />

(Crous & Alfenas) Crous & U. Braun, comb. nov., Teratosphaeria suberosa (Crous, F.A. Ferreira, Alfenas & M.J. Wingf.) Crous & U. Braun, comb. nov., Teratosphaeria suttonii<br />

(Crous & M.J. Wingf.) Crous & U. Braun, comb. nov., Teratosphaeria toledana (Crous & Bills) Crous & U. Braun, comb. nov., Teratosphaeriaceae Crous & U. Braun, fam. nov.<br />

Key words: Ascomycetes, Batcheloromyces, Colletogloeopsis, Readeriella, Teratosphaeria, Trimmatostroma, DNA sequence comparisons, systematics.<br />

Introduction<br />

<strong>The</strong> <strong>genus</strong> Mycosphaerella Johanson as presently circumscribed<br />

contains close to 3 000 species (Aptroot 2006), excluding its<br />

anamorphs, which represent thous<strong>and</strong>s of additional species<br />

(Crous et al. 2000, 2001, 2004a, b, 2006a, b, 2007b, Crous &<br />

Braun 2003). Crous (1998) predicted that Mycosphaerella would<br />

eventually be split according to its anamorph genera, <strong>and</strong> Crous<br />

et al. (2000) recognised six sections, as originally defined by Barr<br />

(1972). This was followed by a set of papers (Crous et al. 2001,<br />

Goodwin et al. 2001), where it was concluded, based on ITS DNA<br />

sequence data, that Mycosphaerella was monophyletic. A revision<br />

of the various coelomycete <strong>and</strong> hyphomycete anamorph concepts<br />

led Crous & Braun (2003) to propose a system whereby the asexual<br />

morphs could be allocated to various form genera affiliated with<br />

Mycosphaerella holomorphs.<br />

In a recent study that formed part of the US “Assembling<br />

the Fungal Tree of Life” project, Schoch et al. (2006) were able<br />

to show that the Mycosphaerellaceae represents a family within<br />

Capnodiales. Furthermore, some variation was also depicted within<br />

the family, which supported <strong>similar</strong> findings in other recent papers<br />

employing LSU sequence data, such as Hunter et al. (2006), <strong>and</strong><br />

Batzer et al. (2007). To further elucidate the phylogenetic variation<br />

observed within the Mycosphaerellaceae in these studies, a<br />

subset of isolates was selected for the present study, representing<br />

the various species recognised as morphologically distinct from<br />

Mycosphaerella s. str.<br />

<strong>The</strong> <strong>genus</strong> Mycosphaerella has in recent years been linked<br />

to approximately 30 anamorph genera (Crous & Braun 2003,<br />

Crous et al. 2007b). Many of these anamorph genera resulted<br />

from a reassessment of cercosporoid forms. Chupp (1954) was<br />

of the opinion that they all represented species of the <strong>genus</strong><br />

Cercospora Fresen., although he clearly recognised differences in<br />

their morphology. In a series of papers by Deighton, as well as<br />

others such as Sutton, Braun <strong>and</strong> Crous, the <strong>genus</strong> Cercospora<br />

was delimited based on its type species, Cercospora penicillata<br />

(Ces.) Fresen., while taxa formerly included in the <strong>genus</strong> by Chupp<br />

(1954) but differing in conidiophore arrangement, conidiogenesis,<br />

pigmentation, conidial catenulation, septation, <strong>and</strong> scar/hilum<br />

structure were allocated to other genera. Similar studies in which<br />

the type species were recollected <strong>and</strong> subjected to DNA sequence


Crous et al.<br />

Table 1. Isolates for which new sequences were generated.<br />

Anamorph Teleomorph Accession number 1 Host Country Collector GenBank Accession number<br />

Batcheloromyces eucalypti <strong>CBS</strong> 313.76; CPC 3632 Eucalyptus tessellaris Australia J.L. Alcorn EU019245<br />

Batcheloromyces leucadendri <strong>CBS</strong> 110892; CPC 1837 Leucadendron sp. South Africa L. Swart EU019246<br />

Batcheloromyces proteae <strong>CBS</strong> 110696; CPC 1518 Protea cynaroides South Africa L. Viljoen EU019247<br />

Capnobotryella renispora <strong>CBS</strong> 214.90*; <strong>CBS</strong> 176.88; IAM 13014; JCM 6932 Capnobotrys neessii Japan J. Sugiyama EU019248<br />

Catenulostroma abietis <strong>CBS</strong> 290.90 Man, skin lesion Netherl<strong>and</strong>s R.G.F. Wintermans EU019249<br />

Catenulostroma castellanii <strong>CBS</strong> 105.75*; ATCC 24788 Man, tinea nigra Venezuela — EU019250<br />

Catenulostroma chromoblastomycosum <strong>CBS</strong> 597.97 Man, chromoblastomycosis Zaire V. de Brouwere EU019251<br />

Catenulostroma elginense <strong>CBS</strong> 111030; CPC 1958 Protea gr<strong>and</strong>iceps South Africa J.E. Taylor EU019252<br />

Catenulostroma germanicum <strong>CBS</strong> 539.88 Stone Germany — EU019253<br />

Catenulostroma macowanii <strong>CBS</strong> 110756; CPC 1872 Protea nitida South Africa J.E. Taylor EU019254<br />

Catenulostroma microsporum Teratosphaeria microspora <strong>CBS</strong> 110890; CPC 1832 Protea cynaroides South Africa L. Swart EU019255<br />

Catenulostroma sp. Teratosphaeria<br />

<strong>CBS</strong> 118911; CPC 12085 Eucalyptus sp. Uruguay M.J. Wingfield EU019256<br />

pseudosuberosa<br />

Cercosporella centaureicola <strong>CBS</strong> 120253 Centaurea solstitiales Greece D. Berner EU019257<br />

Cibiessia dimorphospora <strong>CBS</strong> 120034; CPC 12636 Eucalyptus nitens Australia — EU019258<br />

Cibiessia minutispora CPC 13071* Eucalyptus henryii Australia A.J. Carnegie EU019259<br />

Cibiessia nontingens Teratosphaeria sp. <strong>CBS</strong> 120725*; CPC 13217 Eucalyptus tereticornis Australia B. Summerell EU019260<br />

<strong>Cladosporium</strong> bruhnei Davidiella allicina <strong>CBS</strong> 115683; ATCC 66670; CPC 5101 CCA-treated Douglas-fire pole U.S.A., New York C.J. Wang EU019261<br />

<strong>Cladosporium</strong> cladosporioides <strong>CBS</strong> 109.21; ATCC 11277; ATCC 200940; IFO 6368; IMI 049625 Sooty mould on Hedera helix U.K. — EU019262<br />

<strong>Cladosporium</strong> sphaerospermum <strong>CBS</strong> 188.54; ATCC 11290; IMI 049638 — — — EU019263<br />

<strong>Cladosporium</strong> uredinicola ATCC 46649 Hyperparasite on Cronartium<br />

fusiforme f. sp. quercum<br />

U.S.A., Alabama — EU019264<br />

Coccodinium bartschii <strong>CBS</strong> 121708; CPC 13861–13863 Sooty mould on unidentified tree Canada K.A. Seifert EU019265<br />

Dissoconium aciculare <strong>CBS</strong> 342.82*; CPC 1534 Erysiphe, on Medicago lupulina Germany T. Hijwegen EU019266<br />

Dissoconium commune “Mycosphaerella” communis <strong>CBS</strong> 114238*; CPC 10440 Eucalyptus globulus Spain J.P.M. Vazquez EU019267<br />

Dissoconium dekkeri “Mycosphaerella” lateralis <strong>CBS</strong> 567.89*; CPC 1535 Juniperus chinensis Netherl<strong>and</strong>s T. Hijwegen EU019268<br />

Fumagospora capnodioides Capnodium salicinum <strong>CBS</strong> 131.34 Sooty mould on Bursaria spinosa Indonesia — EU019269<br />

Hortaea werneckii <strong>CBS</strong> 107.67* Man, tinea nigra Portugal — EU019270<br />

Nothostrasseria dendritica Teratosphaeria dendritica CPC 12820 Eucalyptus nitens Australia A.J. Carnegie EU019271<br />

“Passalora” zambiae <strong>CBS</strong> 112970*; CPC 1228 Eucalyptus globulus Zambia T. Coutinho EU019272<br />

<strong>CBS</strong> 112971*; CMW 14782; CPC 1227 Eucalyptus globulus Zambia T. Coutinho EU019273<br />

Penidiella columbiana <strong>CBS</strong> 486.80 Paepalanthus columbianus Colombia W. Gams EU019274


Phylogenetic lineages in the Capnodiales<br />

Anamorph Teleomorph Accession number 1 Host Country Collector GenBank Accession number<br />

Penidiella nect<strong>and</strong>rae <strong>CBS</strong> 734.87*; ATCC 200932; INIFAT 87/45 Nect<strong>and</strong>ra coriacea Cuba R.F. Castañeda & EU019275<br />

G. Arnold<br />

Penidiella rigidophora <strong>CBS</strong> 314.95* Leaf litter of Smilax sp. Cuba R.F. Castañeda EU019276<br />

Penidiella strumelloidea <strong>CBS</strong> 114484*; VKM F-2534 Carex leaf, from stagnant water Russia S. Ozerskaya EU019277<br />

Penidiella venezuelensis <strong>CBS</strong> 106.75* Man, tinea nigra Venezuela D. Borelli EU019278<br />

Phaeotheca triangularis <strong>CBS</strong> 471.90* Wet surface of humidifier of<br />

airconditioning<br />

Belgium H. Beguin EU019279<br />

Phaeothecoidea eucalypti CPC 13010 Corymbia henryii Australia B. Summerell EU019280<br />

CPC 12918* Eucalyptus botryoides Australia B. Summerell EU019281<br />

Pleurophoma sp. Teratosphaeria fibrillosa CPC 1876 Protea nitida South Africa J.E. Taylor EU019282<br />

Pseudotaeniolina globosa <strong>CBS</strong> 109889* Rock Italy C. Urzi EU019283<br />

Ramularia pratensis var. pratensis CPC 11294 Rumex crispus Korea H.D. Shin EU019284<br />

Ramularia sp. <strong>CBS</strong> 324.87 On Mycosphaerella sp., leaf spot<br />

on Brassica sp.<br />

Netherl<strong>and</strong>s — EU019285<br />

Readeriella brunneotingens CPC 13303 Eucalyptus tereticornis Australia P.W. Crous EU019286<br />

Readeriella destructans <strong>CBS</strong> 111369*; CPC 1366 Eucalyptus gr<strong>and</strong>is Indonesia M.J. Wingfield EU019287<br />

Readeriella epicoccoides Teratosphaeria suttonii CPC 12352 Eucalyptus sp. U.S.A.,Hawaii W. Gams EU019288<br />

Readeriella eucalypti CPC 11186 Eucalyptus globulus Spain M.J. Wingfield EU019289<br />

Readeriella gauchensis <strong>CBS</strong> 120303*; CMW 17331 Eucalyptus gr<strong>and</strong>is Uruguay M.J. Wingfield EU019290<br />

Readeriella mirabilis <strong>CBS</strong> 116293; CPC 10506 Eucalyptus fastigata New Zeal<strong>and</strong> W. Gams EU019291<br />

Readeriella molleriana Teratosphaeria molleriana <strong>CBS</strong> 111164*; CMW 4940; CPC 1214 Eucalyptus globulus Portugal M.J. Wingfield EU019292<br />

Readeriella ovata complex CPC 18 Eucalyptus cladocalyx South Africa P.W. Crous EU019293<br />

<strong>CBS</strong> 111149; CPC 23 Eucalyptus cladocalyx South Africa P.W. Crous EU019294<br />

Readeriella stellenboschiana <strong>CBS</strong> 116428; CPC 10886 Eucalyptus sp. South Africa P.W. Crous EU019295<br />

Readeriella zuluensis <strong>CBS</strong> 120301*; CMW 17321 Eucalyptus gr<strong>and</strong>is South Africa M.J. Wingfield EU019296<br />

Septoria tritici Mycosphaerella graminicola <strong>CBS</strong> 100335; IPO 69001.61 Triticum aestivum — G.H.J. Kema EU019297<br />

<strong>CBS</strong> 110744; CPC 658 Triticum sp. South Africa P.W. Crous EU019298<br />

Trimmatostroma betulinum <strong>CBS</strong> 282.74 Betula verrucosa Netherl<strong>and</strong>s W.M. Loerakker EU019299<br />

Trimmatostroma salicis CPC 13571 Salix alba Germany U. Braun EU019300<br />

Teratosphaeria bellula <strong>CBS</strong> 111700; CPC 1821 Protea eximia South Africa J.E. Taylor EU019301<br />

Teratosphaeria mexicana CPC 12349 Eucalyptus sp. U.S.A.,Hawaii W. Gams EU019302<br />

Teratosphaeria nubilosa <strong>CBS</strong> 114419; CPC 10497 Eucalyptus globulus New Zeal<strong>and</strong> — EU019303<br />

<strong>CBS</strong> 116005*; CMW 3282; CPC 937 Eucalyptus globulus Australia A. Carnegie EU019304<br />

www.studiesinmycology.org


Crous et al.<br />

Table 1. (Continued).<br />

Anamorph Teleomorph Accession number 1 Host Country Collector GenBank Accession number<br />

Teratosphaeria ohnowa <strong>CBS</strong> 112896*; CMW 4937; CPC 1004 Eucalyptus gr<strong>and</strong>is South Africa M.J. Wingfield EU019305<br />

Teratosphaeria secundaria <strong>CBS</strong> 115608; CPC 504 Eucalyptus gr<strong>and</strong>is Brazil A.C. Alfenas EU019306<br />

Teratosphaeria sp. <strong>CBS</strong> 208.94; CPC 727 Eucalyptus gr<strong>and</strong>is Indonesia A.C. Alfenas EU019307<br />

1 ATCC: American Type Culture Collection, Virginia, U.S.A.; <strong>CBS</strong>: Centraalbureau voor Schimmelcultures, Utrecht, <strong>The</strong> Netherl<strong>and</strong>s; CPC: Culture collection of Pedro Crous, housed at <strong>CBS</strong>; CMW: Culture collection of Mike Wingfield, housed at FABI,<br />

Pretoria, South Africa; IAM: Institute of Applied Microbiology, University of Tokyo, Institute of molecular <strong>and</strong> cellular bioscience, Tokyo, Japan; IFO: Institute For Fermentation, Osaka, Japan; IMI: International Mycological Institute, CABI-Bioscience,<br />

Egham, Bakeham Lane, U.K.; INIFAT: Alex<strong>and</strong>er Humboldt Institute for Basic Research in Tropical Agriculture, Ciudad de La Habana, Cuba; JCM: Japan Collection Of Microorganisms, RIKEN BioResource Center, Japan; VKM: All-Russian Collection of<br />

Microorganisms, Institute of Biochemistry <strong>and</strong> Physiology of Microorganisms, Russian Academy of Sciences, Pushchino, Russia.<br />

*Ex-type cultures.<br />

analysis were undertaken to characterise Mycosphaerella (Verkley<br />

et al. 2004), <strong>and</strong> anamorph genera such as Pseudocercospora<br />

Speg., Stigmina Sacc., Phaeoisariopsis Ferraris (Crous et al.<br />

2006a), Ramulispora Miura (Crous et al. 2003), Batcheloromyces<br />

Marasas, P.S. van Wyk & Knox-Dav. (Taylor et al. 2003),<br />

Phaeophleospora Rangel <strong>and</strong> Dothistroma Hulbary (Crous et al.<br />

2000, 2001, Barnes et al. 2004).<br />

To assess the phylogeny of the species selected for the present<br />

study, DNA sequences were generated of the 28S rRNA (LSU)<br />

gene. In a further attempt to address monophyletic groups within<br />

this complex, these data were integrated with their morphological<br />

characteristics. To further resolve pleomorphism among the species<br />

studied, isolates were examined on a range of cultural media to<br />

induce possible synanamorphs.<br />

Materials <strong>and</strong> methods<br />

Isolates<br />

Chosen isolates represent various species previously observed to<br />

be morphologically distinct from Mycosphaerella s. str. (Crous 1998,<br />

Crous et al. 2004a, b, 2006a, b, 2007b). In a few cases, specifically<br />

Teratosphaeria fibrillosa Syd. & P. Syd. <strong>and</strong> Coccodinium bartschii<br />

A. Massal., fresh material had to be collected from South Africa<br />

<strong>and</strong> Canada, respectively. Excised tissue pieces bearing ascomata<br />

were soaked in water for approximately 2 h, after which they were<br />

placed in the bottom of Petri dish lids, with the top half of the<br />

dish containing 2 % malt extract agar (MEA) (Gams et al. 2007).<br />

Ascospore germination patterns were examined after 24 h, <strong>and</strong><br />

single-ascospore <strong>and</strong> conidial cultures established as described by<br />

Crous (1998). Colonies were sub-cultured onto synthetic nutrientpoor<br />

agar (SNA), potato-dextrose agar (PDA), oatmeal agar (OA),<br />

MEA (Gams et al. 2007), <strong>and</strong> incubated at 25 °C under continuous<br />

near-ultraviolet light to promote sporulation.<br />

DNA phylogeny<br />

Fungal colonies were established on agar plates, <strong>and</strong> genomic<br />

DNA was isolated following the CTAB-based protocol described<br />

in Gams et al. (2007). <strong>The</strong> primers V9G (de Hoog & Gerrits van<br />

den Ende 1998) <strong>and</strong> LR5 (Vilgalys & Hester 1990) were used to<br />

amplify part of the nuclear rDNA operon spanning the 3’ end of<br />

the 18S rRNA gene (SSU), the first internal transcribed spacer<br />

(ITS1), the 5.8S rRNA gene, the second ITS region (ITS2) <strong>and</strong> the<br />

5’ end of the 28S rRNA gene (LSU). <strong>The</strong> primers ITS4 (White et<br />

al. 1990), LR0R (Rehner & Samuels 1994), LR3R (www.biology.<br />

duke.edu/fungi/mycolab/primers.htm), <strong>and</strong> LR16 (Moncalvo et al.<br />

1993), were used as internal sequence primers to ensure good<br />

quality sequences over the entire length of the amplicon. <strong>The</strong><br />

ITS1, ITS2 <strong>and</strong> 5.8S rRNA gene (ITS) were only sequenced for<br />

isolates of which these data were not available. <strong>The</strong> ITS data<br />

were not included in the analyses but deposited in GenBank<br />

where applicable. <strong>The</strong> PCR conditions, sequence alignment <strong>and</strong><br />

subsequent phylogenetic analysis using parsimony, distance <strong>and</strong><br />

Bayesian analyses followed the methods of Crous et al. (2006c).<br />

Gaps longer than 10 bases were coded as single events for the<br />

phylogenetic analyses; the remaining gaps were treated as new<br />

character states. Sequence data were deposited in GenBank<br />

(Table 1) <strong>and</strong> alignments in TreeBASE (www.treebase.org).<br />

Taxonomy<br />

Wherever possible, 30 measurements (× 1 000 magnification)


Phylogenetic lineages in the Capnodiales<br />

were made of structures mounted in lactic acid, with the extremes<br />

of spore measurements given in parentheses. Ascospores were<br />

frequently also mounted in water to observe mucoid appendages<br />

<strong>and</strong> sheaths. Colony colours (surface <strong>and</strong> reverse) were assessed<br />

after 1–2 mo on MEA at 25 °C in the dark, using the colour charts of<br />

Rayner (1970). All cultures obtained in this study are maintained in<br />

the culture collection of the Centraalbureau voor Schimmelcultures<br />

(<strong>CBS</strong>) in Utrecht, the Netherl<strong>and</strong>s (Table 1). Nomenclatural<br />

novelties <strong>and</strong> descriptions were deposited in MycoBank (www.<br />

MycoBank.org).<br />

Results<br />

DNA phylogeny<br />

Amplification products of approximately 1 700 bases were obtained<br />

for the isolates listed in Table 1. <strong>The</strong> LSU region of the sequences<br />

was used to obtain additional sequences from GenBank which<br />

were added to the alignment. <strong>The</strong> manually adjusted alignment<br />

contained 97 sequences (including the two outgroup sequences)<br />

<strong>and</strong> 844 characters including alignment gaps. Of the 844 characters<br />

used in the phylogenetic analysis, 308 were parsimony-informative,<br />

105 were variable <strong>and</strong> parsimony-uninformative, <strong>and</strong> 431 were<br />

constant.<br />

<strong>The</strong> parsimony analysis of the LSU region yielded 1 135 equally<br />

most parsimonious trees (TL = 1 502 steps; CI = 0.446; RI = 0.787;<br />

RC = 0.351), one of which is shown in Fig. 1. Three orders are<br />

represented by the ingroup isolates, namely Chaetothyriales (100<br />

% bootstrap support), Helotiales (100 % bootstrap support) <strong>and</strong><br />

Capnodiales (100 % bootstrap support). <strong>The</strong>se are discussed in<br />

detail in the Taxonomy <strong>and</strong> Discussion sections. A new collection of<br />

Coccodinium bartschii A. Massal clusters (100 % bootstrap support)<br />

with members of the Herpotrichiellaceae (Chaetothyriales), whereas<br />

the type species of the <strong>genus</strong> Trimmatostroma Corda, namely<br />

T. salicis Corda, as well as T. betulinum (Corda) S. Hughes, are<br />

allied (99 % bootstrap support) with the Dermateaceae (Helotiales).<br />

<strong>The</strong> Capnodiales encompasses members of the Capnodiaceae,<br />

Trichosphaeriaceae, Davidiellaceae, Schizothyriaceae <strong>and</strong> taxa<br />

traditionally placed in the Mycosphaerellaceae, which is divided<br />

here into the Teratosphaeriaceae, (65 % bootstrap support), <strong>and</strong><br />

the Mycosphaerellaceae (76 % bootstrap support), which contains<br />

several subclades. Also included in the Capnodiales are Devriesia<br />

staurophora (W.B. Kendr.) Seifert & N.L. Nick., Staninwardia<br />

suttonii Crous & Summerell <strong>and</strong> Capnobotryella renispora Sugiy.<br />

as sister taxa to Teratosphaeriaceae s. str. Neighbour-joining<br />

analysis using three substitution models on the sequence data<br />

yielded trees supporting the same topologies, but differed from<br />

the parsimony tree presented with regard to the order of the<br />

families <strong>and</strong> orders at the deeper nodes, e.g., the Helotiales <strong>and</strong><br />

Chaetothyriales are swapped around, as are the Capnodiaceae <strong>and</strong><br />

the Trichosphaeriaceae / Davidiellaceae (data not shown). Using<br />

neighbour-joining analyses, the Mycosphaerellaceae s. str. clade<br />

obtained 71 %, 70 % <strong>and</strong> 70 % bootstrap support respectively with<br />

the uncorrected “p”, Kimura 2-parameter <strong>and</strong> HKY85 substitution<br />

models wherease the Teratosphaeriaceae clade obtained 74 %, 79<br />

% <strong>and</strong> 78 % bootstrap support respectively with the same models.<br />

<strong>The</strong> Schizothyriaceae clade appeared basal in the Capnodiales,<br />

irrespective of which substitution model was used.<br />

Bayesian analysis was conducted on the same aligned LSU<br />

dataset using a general time-reversible (GTR) substitution model<br />

with inverse gamma rates <strong>and</strong> dirichlet base frequencies. <strong>The</strong><br />

Markov Chain Monte Carlo (MCMC) analysis of 4 chains started<br />

from a r<strong>and</strong>om tree topology <strong>and</strong> lasted 23 881 500 generations.<br />

Trees were saved each 100 generations, resulting in 238 815 saved<br />

trees. Burn-in was set at 22 000 000 generations after which the<br />

likelihood values were stationary, leaving 18 815 trees from which<br />

the consensus tree (Fig. 2) <strong>and</strong> posterior probabilities (PP’s) were<br />

calculated. <strong>The</strong> average st<strong>and</strong>ard deviation of split frequencies<br />

was 0.011508 at the end of the run. <strong>The</strong> same overall topology as<br />

that observed using parsimony was obtained, with the exception of<br />

the inclusion of Staninwardia suttonii in the Mycosphaerellaceae<br />

(PP value of 0.74) <strong>and</strong> not in the Teratosphaeriaceae. <strong>The</strong><br />

Mycosphaerellaceae s. str. clade, as well as the Teratosphaeriaceae<br />

clade, obtained a PP value of 1.00.<br />

Taxonomy<br />

Based on the dataset generated in this study, several well-supported<br />

genera could be distinguished in the Mycosphaerella complex (Figs<br />

1–2), for which we have identified morphological characters. <strong>The</strong>se<br />

genera, <strong>and</strong> a selection of their species, are treated below.<br />

Key to Mycosphaerella, <strong>and</strong> Mycosphaerella-like genera treated<br />

1. Ascomata thyrothecial; anamorph Zygosporium ................................................................................................................. Schizothyrium<br />

1. Ascomata pseudothecial ............................................................................................................................................................................ 2<br />

2. Ascospores with irregular, angular lumens typical of Davidiella; anamorph <strong>Cladosporium</strong> s. str. .............................................. Davidiella<br />

2. Ascospores guttulate or not, lacking angular lumens; anamorph other than <strong>Cladosporium</strong> ...................................................................... 3<br />

3. Ascomata frequently linked by superficial stroma; hamathecial tissue, ascospore sheath, multi-layered endotunica, prominent<br />

periphysoids, <strong>and</strong> ascospores turning brown in asci frequently observed ......................................................................... Teratosphaeria<br />

3. Ascomata not linked by superficial stroma; hamathecial tissue, ascospore sheath, multi-layered endotunica, prominent periphysoids,<br />

ascospores turning brown in asci not observed ......................................................................................................................................... 4<br />

4. Conidiophores solitary, pale brown, giving rise to primary <strong>and</strong> secondary, actively discharged conidia; anamorph Dissoconium<br />

.................................................................................................................................................................... teleomorph Mycosphaerella-like<br />

4. Conidiomata variable from solitary conidiophores to sporodochia, fascicles to pycnidia, but conidia not actively discharged .....................<br />

.................................................................................................................................................................................. Mycosphaerella s. str.<br />

www.studiesinmycology.org


Crous et al.<br />

100<br />

10 changes<br />

65<br />

100<br />

Athelia epiphylla AY586633<br />

Paullicorticium ansatum AY586693<br />

65<br />

63<br />

68<br />

100<br />

99<br />

100<br />

91<br />

67<br />

94<br />

Coccodinium bartschii CPC 13861<br />

Exophiala oligosperma AF050289<br />

Exophiala jeanselmei AF050271<br />

Fonsecaea pedrosoi AF050276<br />

Capronia mansonii AY004338<br />

Exophiala dermatitidis DQ823100<br />

Vibrissea flavovirens AY789426<br />

Vibrissea truncorum AY789402<br />

Trimmatostroma salicis CPC 13571<br />

Mollisia cinerea DQ470942<br />

Trimmatostroma betulinum <strong>CBS</strong> 282.74<br />

Phaeotheca triangularis <strong>CBS</strong> 471.90<br />

Capnodium coffeae DQ247800<br />

Capnodium salicinum <strong>CBS</strong> 131.34<br />

Scorias spongiosa DQ678075<br />

63<br />

68<br />

73<br />

92<br />

65<br />

98<br />

100<br />

56<br />

58<br />

100 87<br />

100<br />

100<br />

76<br />

Trichosphaeria pilosa AY590297 Trichosphaeriaceae<br />

<strong>Cladosporium</strong> cladosporioides <strong>CBS</strong> 109.21<br />

<strong>Cladosporium</strong> uredinicola ATCC 46649<br />

<strong>Cladosporium</strong> bruhnei <strong>CBS</strong> 115683<br />

<strong>Cladosporium</strong> sphaerospermum <strong>CBS</strong> 188.54<br />

64<br />

Schizothyrium pomi EF134947<br />

Schizothyrium pomi EF134948<br />

80 100<br />

100<br />

99<br />

100<br />

100<br />

100<br />

63<br />

64<br />

61<br />

100<br />

Herpotrichiellaceae,<br />

Chaetothyriales,<br />

Chaetothyriomycetes<br />

Vibrisseaceae<br />

Dermateaceae<br />

Capnodiaceae<br />

Schizothyriaceae<br />

“Passalora” zambiae <strong>CBS</strong> 112970<br />

“Passalora” zambiae <strong>CBS</strong> 112971<br />

Dissoconium aciculare <strong>CBS</strong> 342.82<br />

“Mycosphaerella” communis <strong>CBS</strong> 114238<br />

“Mycosphaerella” lateralis <strong>CBS</strong> 567.89<br />

Mycosphaerella graminicola <strong>CBS</strong> 100335<br />

Septoria tritici <strong>CBS</strong> 110744<br />

Cercosporella centaureicola <strong>CBS</strong> 120253<br />

Mycosphaerella punctiformis AY490776<br />

Ramularia sp. <strong>CBS</strong> 324.87<br />

Ramularia miae DQ885902<br />

Ramularia pratensis var. pratensis CPC 11294<br />

Capnobotryella renispora <strong>CBS</strong> 214.90<br />

100<br />

94<br />

88<br />

80<br />

99<br />

81<br />

Staninwardia suttonii DQ923535<br />

Devriesia staurophora DQ008150<br />

Devriesia staurophora DQ008151<br />

Pseudotaeniolina globosa <strong>CBS</strong> 109889<br />

Batcheloromyces proteae <strong>CBS</strong> 110696<br />

Batcheloromyces leucadendri <strong>CBS</strong> 110892<br />

Teratosphaeria alistairii DQ885901<br />

Penidiella columbiana <strong>CBS</strong> 486.80<br />

Teratosphaeria sp. <strong>CBS</strong> 208.94<br />

Teratosphaeria ohnowa <strong>CBS</strong> 112896<br />

Teratosphaeria secundaria <strong>CBS</strong> 115608<br />

Teratosphaeria flexuosa DQ246232<br />

Hortaea werneckii <strong>CBS</strong> 107.67<br />

Catenulostroma castellanii <strong>CBS</strong> 105.75<br />

Teratosphaeria bellula <strong>CBS</strong> 111700<br />

Catenulostroma elginense <strong>CBS</strong> 111030<br />

Teratosphaeria parva DQ246240<br />

100 Teratosphaeria parva DQ246243<br />

Catenulostroma germanicum <strong>CBS</strong> 539.88<br />

100<br />

Catenulostroma microsporum <strong>CBS</strong> 110890<br />

Catenulostroma abietis <strong>CBS</strong> 290.90<br />

Catenulostroma chromoblastomycosum <strong>CBS</strong> 597.97<br />

Phaeothecoidea eucalypti CPC 13010<br />

Phaeothecoidea eucalypti CPC 12918<br />

Teratosphaeria suberosa DQ246235<br />

Teratosphaeria pseudosuberosa <strong>CBS</strong> 118911<br />

93<br />

Teratosphaeria mexicana CPC 12349<br />

97 Teratosphaeria mexicana DQ246237<br />

Teratosphaeria readeriellophora DQ246238<br />

100<br />

93 Readeriella eucalypti CPC 11186<br />

Cibiessia minutispora CPC 13071<br />

Cibiessia dimorphospora <strong>CBS</strong> 120034<br />

Readeriella mirabilis <strong>CBS</strong> 116293<br />

Readeriella novaezel<strong>and</strong>iae DQ246239<br />

57 Nothostrasseria dendritica CPC 12820<br />

Batcheloromyces eucalypti <strong>CBS</strong> 313.76<br />

99 Readeriella ovata complex <strong>CBS</strong> 111149<br />

Readeriella ovata complex CPC 18<br />

Readeriella destructans <strong>CBS</strong> 111369<br />

Readeriella pulcherrima DQ246224<br />

Readeriella brunneotingens CPC 13303<br />

Readeriella dimorpha DQ923528<br />

Teratosphaeria molleriana DQ246219<br />

Teratosphaeria molleriana DQ246221<br />

Teratosphaeria molleriana <strong>CBS</strong> 111164<br />

Teratosphaeria fibrillosa CPC 1876<br />

Teratosphaeria maxii DQ885899<br />

Catenulostroma macowanii <strong>CBS</strong> 110756<br />

Teratosphaeria nubilosa <strong>CBS</strong> 114419<br />

Teratosphaeria nubilosa <strong>CBS</strong> 116005<br />

Readeriella stellenboschiana <strong>CBS</strong> 116428<br />

Readeriella gauchensis <strong>CBS</strong> 120303<br />

Teratosphaeria cryptica DQ246222<br />

Readeriella considenianae DQ923527<br />

Cibiessia nontingens <strong>CBS</strong> 120725<br />

Readeriella zuluensis <strong>CBS</strong> 120301<br />

Readeriella blakelyi DQ923526<br />

Teratosphaeria toledana DQ246230<br />

100<br />

Teratosphaeria suttonii DQ246227<br />

Readeriella epicoccoides CPC 12352<br />

Helotiales, Leotiomycetes<br />

Davidiellaceae<br />

Mycosphaerellaceae<br />

Teratosphaeriaceae<br />

Capnodiales, Dothideomycetes<br />

Fig. 1. One of 1 135 equally most parsimonious trees obtained from a heuristic search with 100 r<strong>and</strong>om taxon additions of the LSU sequence alignment using PAUP v. 4.0b10.<br />

<strong>The</strong> scale bar shows 10 changes, <strong>and</strong> bootstrap support values from 1 000 replicates are shown at the nodes. Thickened lines indicate the strict consensus branches <strong>and</strong> extype<br />

sequences are printed in bold face. <strong>The</strong> tree was rooted to two sequences obtained from GenBank (Athelia epiphylla AY586633 <strong>and</strong> Paullicorticium ansatum AY586693).


Phylogenetic lineages in the Capnodiales<br />

1.00<br />

0.62<br />

0.1 expected changes per site<br />

Athelia epiphylla AY586633<br />

Paullicorticium ansatum AY586693<br />

0.62<br />

1.00<br />

0.75<br />

1.00<br />

1.00<br />

0.99<br />

0.99<br />

0.85<br />

0.97<br />

Capronia mansonii AY004338<br />

Exophiala dermatitidis DQ823100<br />

Fonsecaea pedrosoi AF050276<br />

Coccodinium bartschii CPC 13861<br />

Exophiala oligosperma AF050289<br />

Exophiala jeanselmei AF050271<br />

Vibrisseaceae<br />

0.97<br />

Vibrissea flavovirens AY789426<br />

Vibrissea truncorum AY789402<br />

1.00<br />

Trimmatostroma salicis CPC 13571<br />

Mollisia cinerea DQ470942<br />

Trimmatostroma betulinum <strong>CBS</strong> 282.74<br />

Phaeotheca triangularis <strong>CBS</strong> 471.90<br />

Capnodium coffeae DQ247800<br />

Capnodium salicinum <strong>CBS</strong> 131.34<br />

1.00<br />

1.00<br />

1.00<br />

0.80<br />

0.74<br />

1.00<br />

0.55<br />

1.00<br />

1.00<br />

0.91<br />

Dermateaceae<br />

Herpotrichiellaceae,<br />

Chaetothyriales,<br />

Chaetothyriomycetes<br />

Helotiales,<br />

Leotiomycetes<br />

Capnodiaceae<br />

Scorias spongiosa DQ678075<br />

1.00<br />

Trichosphaeria pilosa AY590297 Trichosphaeriaceae<br />

<strong>Cladosporium</strong> cladosporioides <strong>CBS</strong> 109.21<br />

<strong>Cladosporium</strong> uredinicola ATCC 46649<br />

1.00 <strong>Cladosporium</strong> bruhnei <strong>CBS</strong> 115683<br />

0.95 <strong>Cladosporium</strong> sphaerospermum <strong>CBS</strong> 188.54<br />

Staninwardia suttonii DQ923535<br />

1.00 Schizothyrium pomi EF134947<br />

Schizothyrium pomi EF134948<br />

Schizothyriaceae<br />

1.00<br />

1.00<br />

0.83 1.00<br />

0.72 1.00<br />

1.00 0.58<br />

0.79<br />

0.89 0.62 1.00<br />

0.99<br />

1.00<br />

0.58<br />

0.94<br />

0.56<br />

0.83<br />

0.94<br />

0.77<br />

0.51<br />

1.00<br />

1.00<br />

0.77<br />

0.85<br />

Dissoconium aciculare <strong>CBS</strong> 342.82<br />

“Mycosphaerella” communis <strong>CBS</strong> 114238<br />

“Mycosphaerella” lateralis <strong>CBS</strong> 567.89<br />

Passalora zambiae <strong>CBS</strong> 112970<br />

Passalora zambiae <strong>CBS</strong> 112971<br />

Cercosporella centaureicola <strong>CBS</strong> 120253<br />

Mycosphaerella punctiformis AY490776<br />

Ramularia sp. <strong>CBS</strong> 324.87<br />

Ramularia miae DQ885902<br />

Ramularia pratensis var. pratensis CPC 11294<br />

0.57 Mycosphaerella graminicola <strong>CBS</strong> 100335<br />

1.00 Septoria tritici <strong>CBS</strong> 110744<br />

Capnobotryella renispora <strong>CBS</strong> 214.90<br />

Pseudotaeniolina globosa <strong>CBS</strong> 109889<br />

Catenulostroma chromoblastomycosum <strong>CBS</strong> 597.97<br />

Teratosphaeria bellula <strong>CBS</strong> 111700<br />

Hortaea werneckii <strong>CBS</strong> 107.67<br />

Catenulostroma castellanii <strong>CBS</strong> 105.75<br />

Batcheloromyces proteae <strong>CBS</strong> 110696<br />

Batcheloromyces leucadendri <strong>CBS</strong> 110892<br />

Teratosphaeria alistairii DQ885901<br />

Penidiella columbiana <strong>CBS</strong> 486.80<br />

Teratosphaeria sp. <strong>CBS</strong> 208.94<br />

Teratosphaeria ohnowa <strong>CBS</strong> 112896<br />

Teratosphaeria secundaria <strong>CBS</strong> 115608<br />

Teratosphaeria flexuosa DQ246232<br />

Catenulostroma elginense <strong>CBS</strong> 111030<br />

Teratosphaeria parva DQ246240<br />

1.00<br />

1.00<br />

1.00<br />

1.00<br />

1.00<br />

1.00<br />

0.66<br />

0.76<br />

Teratosphaeria parva DQ246243<br />

Devriesia staurophora DQ008150<br />

Devriesia staurophora DQ008151<br />

Catenulostroma germanicum <strong>CBS</strong> 539.88<br />

Catenulostroma microsporum <strong>CBS</strong> 110890<br />

Catenulostroma abietis <strong>CBS</strong> 290.90<br />

Phaeothecoidea eucalypti CPC 13010<br />

Phaeothecoidea eucalypti CPC 12918<br />

Teratosphaeria pseudosuberosa <strong>CBS</strong> 118911<br />

Teratosphaeria suberosa DQ246235<br />

0.97<br />

Teratosphaeria mexicana CPC 12349<br />

Teratosphaeria mexicana <strong>CBS</strong> 110502<br />

Readeriella novaezel<strong>and</strong>iae DQ246239<br />

Nothostrasseria dendritica CPC 12820<br />

Readeriella mirabilis <strong>CBS</strong> 116293<br />

Cibiessia dimorphospora <strong>CBS</strong> 120034<br />

Cibiessia minutispora CPC 13071<br />

Teratosphaeria readeriellophora DQ246238<br />

Readeriella eucalypti CPC 11186<br />

1.00<br />

Readeriella brunneotingens CPC 13303<br />

Readeriella stellenboschiana <strong>CBS</strong> 116428<br />

Readeriella gauchensis <strong>CBS</strong> 120303<br />

Readeriella considenianae DQ923527<br />

Teratosphaeria cryptica DQ246222<br />

Cibiessia nontingens <strong>CBS</strong> 120725<br />

Readeriella zuluensis <strong>CBS</strong> 120301<br />

Teratosphaeria toledana DQ246230<br />

Teratosphaeria suttonii DQ246227<br />

Readeriella epicoccoides CPC 12352<br />

1.00<br />

Readeriella blakelyi DQ923526<br />

Readeriella ovata complex <strong>CBS</strong> 111149<br />

Readeriella ovata complex CPC 18<br />

Batcheloromyces eucalypti <strong>CBS</strong> 313.76<br />

Readeriella destructans <strong>CBS</strong> 111369<br />

Readeriella pulcherrima DQ246224<br />

Teratosphaeria nubilosa <strong>CBS</strong> 114419<br />

Teratosphaeria nubilosa <strong>CBS</strong> 116005<br />

Readeriella dimorpha DQ923528<br />

Teratosphaeria molleriana DQ246219<br />

Teratosphaeria molleriana DQ246221<br />

Teratosphaeria molleriana <strong>CBS</strong> 111164<br />

Teratosphaeria fibrillosa CPC 1876<br />

Catenulostroma macowanii <strong>CBS</strong> 110756<br />

Teratosphaeria maxii DQ885899<br />

Davidiellaceae<br />

Mycosphaerellaceae Teratosphaeriaceae<br />

Capnodiales, Dothideomycetes<br />

Fig. 2. Consensus phylogram (50 % majority rule) of 18 815 trees resulting from a Bayesian analysis of the LSU sequence alignment using MrBayes v. 3.1.2. Bayesian posterior<br />

probabilities are indicated at the nodes. Ex-type sequences are printed in bold face. <strong>The</strong> tree was rooted to two sequences obtained from GenBank (Athelia epiphylla AY586633<br />

<strong>and</strong> Paullicorticium ansatum AY586693).<br />

www.studiesinmycology.org


Crous et al.<br />

Treatment of phylogenetic clades<br />

Davidiellaceae clade<br />

Davidiella Crous & U. Braun, Mycol. Progr. 2: 8. 2003.<br />

Type species: Davidiella tassiana (De Not.) Crous & U. Braun,<br />

Mycol. Progr. 2: 8. 2003.<br />

Basionym: Sphaerella tassiana De Not., Sferiacei Italici 1: 87.<br />

1863.<br />

Description: Schubert et al. (2007 – this volume).<br />

Anamorph: <strong>Cladosporium</strong> Link, Ges. Naturf. Freunde Berlin Mag.<br />

Neuesten Entdeck. Gesammten Naturk. 7: 37. 1816.<br />

Type species: <strong>Cladosporium</strong> herbarum (Pers. : Fr.) Link, Ges.<br />

Naturf. Freunde Berlin Mag. Neuesten Entdeck. Gesammten<br />

Naturk. 7: 37. 1816.<br />

Basionym: Dematium herbarum Pers., Ann. Bot. (Usteri), 11 Stück:<br />

32. 1794: Fr., Syst. Mycol. 3: 370. 1832.<br />

Description: Schubert et al. (2007 – this volume).<br />

Notes: <strong>The</strong> <strong>genus</strong> Davidiella (Davidiellaceae) was recently<br />

introduced for teleomorphs of <strong>Cladosporium</strong> s. str. (Braun et al.<br />

2003). <strong>The</strong> <strong>genus</strong> <strong>Cladosporium</strong> is well-established, <strong>and</strong> contains<br />

around 772 names (Dugan et al. 2004), while Davidiella presently<br />

has 33 names (www.MycoBank.org), of which only around five<br />

have acknowledged <strong>Cladosporium</strong> states.<br />

Teratosphaeriaceae clade<br />

Teratosphaeria Syd. & P. Syd., Ann. Mycol. 10: 39. 1912.<br />

Type species: Teratosphaeria fibrillosa Syd. & P. Syd., Ann. Mycol.<br />

10: 40. 1912. Fig. 3.<br />

Description: Crous et al. (2004a; figs 182–185).<br />

Notes: Although <strong>similar</strong> in morphology, the <strong>genus</strong> Teratosphaeria<br />

was separated from Mycosphaerella based on its ascomatal<br />

arrangement, <strong>and</strong> periphysate ostioles (Müller & Oehrens 1982).<br />

It was later synonymised under Mycosphaerella by Taylor et<br />

al. (2003), who showed that the type species clustered within<br />

Mycosphaerella based on ITS DNA sequence data. <strong>The</strong> LSU<br />

sequence data generated in the present study, has clearly shown<br />

that Mycosphaerella is polyphyletic, thus contradicting earlier<br />

reports of monophyly by Crous et al. (2000) <strong>and</strong> Goodwin et al.<br />

(2001), which were based on ITS data.<br />

A re-examination of T. fibrillosa, the type species of<br />

Teratosphaeria, revealed several morphological features that<br />

characterise the majority of the taxa clustering in the clade, though<br />

several characters have been lost in some of the small-spored<br />

species. <strong>The</strong>se characters are discussed below:<br />

1. Teratosphaeria fibrillosa has a superficial stroma linking<br />

ascomata together, almost appearing like a spider’s web on the leaf<br />

surface. Although this feature is not seen in other taxa in this clade,<br />

some species, such as M. suberosa Crous, F.A. Ferreira, Alfenas<br />

& M.J. Wingf. <strong>and</strong> M. pseudosuberosa Crous & M.J. Wingf. have<br />

a superficial stroma, into which the ascomata are inbedded (Crous<br />

1998, Crous et al. 2006b).<br />

2. Ascospores of Teratosphaeria become brown <strong>and</strong><br />

verruculose while still in their asci. This feature is commonly<br />

observed in species such as M. jonkershoekensis P.S. van Wyk,<br />

Marasas & Knox-Dav., M. alistairii Crous, M. mexicana Crous, M.<br />

maxii Crous <strong>and</strong> M. excentricum Crous & Carnegie (Crous 1998,<br />

Crous & Groenewald 2006a, b, Crous et al. 2007b).<br />

3. A few ascomata of T. fibrillosa were found to have<br />

some pseudoparaphysoidal remnants (cells to distinguish<br />

pseudoparaphyses), though they mostly disappear with age. This<br />

feature is rather uncommon, though pseudoparaphyses were<br />

observed in ascomata of M. eucalypti (Wakef.) Hansf.<br />

4. Ascospores of Teratosphaeria were found to be covered in<br />

a mucous sheath, which is commonly observed in other taxa in this<br />

clade, such as M. bellula Crous & M.J. Wingf., M. pseudocryptica<br />

Crous, M. suberosa, M. pseudosuberosa, M. associata Crous &<br />

Carnegie, M. dendritica Crous & Summerell <strong>and</strong> M. fimbriata Crous<br />

& Summerell (Crous et al. 2004b, 2006b, 2007b). Re-examination<br />

of fresh collections also revealed ascospores of M. cryptica (Cooke)<br />

Hansf. <strong>and</strong> M. nubilosa (Cooke) Hansf. to have a weakly definable<br />

sheath. Germinating ascospores of species in this clade all exhibit<br />

a prominent mucoid sheath.<br />

5. Asci of T. fibrillosa were observed to have a multi-layered<br />

endotunica, which, although not common, can be seen in species<br />

such as M. excentrica, M. maxii, M. alistairii, M. pseudosuberosa,<br />

M. fimbriata (Crous et al. 2006b, 2007b, Crous & Groenewald<br />

2006a, b), <strong>and</strong> also M. nubilosa.<br />

6. Finally, ascomata of T. fibrillosa <strong>and</strong> T. proteae-arboreae<br />

P.S. van Wyk, Marasas & Knox-Dav. have well-developed<br />

ostiolar periphyses, which are also present in species such as M.<br />

suberosa, M. pseudosuberosa, M. maxii <strong>and</strong> T. microspora Joanne<br />

E. Taylor & Crous (Crous 1998, Crous et al. 2004a, b, 2006b).<br />

Morphologically thus, the Teratosphaeria clade is distinguishable<br />

from Mycosphaerella s. str., though these differences are less<br />

pronounced in some of the smaller-spored species. Based on<br />

these distinct morphological features, as well as its phylogenetic<br />

position within the Capnodiales, a new family is herewith proposed<br />

to accommodate species of Teratosphaeria:<br />

Teratosphaeriaceae Crous & U. Braun, fam. nov. MycoBank<br />

MB504464.<br />

Ascomata pseudotheciales, superficiales vel immersa, saepe in stromate ex cellulis<br />

brunneis pseudoparenchymatibus disposita, globulares, uniloculares, papillata,<br />

apice ostiolato, periphysata, saepe cum periphysoidibus; tunica multistratosa, ex<br />

cellulis brunneis angularibus composita, strato interiore ex cellulis applanatis hyalinis;<br />

saepe cum pseudoparaphysibus subcylindricis, ramosis, septatis, anastomosibus.<br />

Asci fasciculati, octospori, bitunicati, saepe cum endotunica multistratosa.<br />

Ascosporae ellipsoideae-fusiformes vel obovoideae, 1-septatae, hyalinae, deinde<br />

pallide brunneae et verruculosae, saepe mucosae.<br />

Ascomata pseudothecial, superficial to immersed, frequently<br />

situated in a stroma of brown pseudoparenchymatal cells,<br />

globose, unilocular, papillate, ostiolate, canal periphysate, with<br />

periphysoids frequently present; wall consisting of several layers<br />

of brown textura angularis; inner layer of flattened, hyaline cells.<br />

Pseudoparaphyses frequently present, subcylindrical, branched,<br />

septate, anastomosing. Asci fasciculate, 8-spored, bitunicate,<br />

frequently with multi-layered endotunica. Ascospores ellipsoidfusoid<br />

to obovoid, 1-septate, hyaline, but becoming pale brown <strong>and</strong><br />

verruculose, frequently covered in mucoid sheath.<br />

Typus: Teratosphaeria Syd. & P. Syd., Ann. Mycol. 10: 39. 1912.<br />

Teratosphaeria africana (Crous & M.J. Wingf.) Crous & U. Braun,<br />

comb. nov. MycoBank MB504466.


Phylogenetic lineages in the Capnodiales<br />

Fig. 3. Teratosphaeria fibrillosa (epitype material). A. Leaf spots. B. Subepidermal ascomata linked by means of stromatic tissue. C. Paraphyses among asci. D. Periphysoids. E.<br />

Ascospores becoming brown in asci. F–G. Multi-layered endotunica. H–K. Ascospores, becoming brown <strong>and</strong> verruculose. L–M. Germinating ascospores. Scale bars = 10 µm.<br />

Basionym: Mycosphaerella africana Crous & M.J. Wingf., Mycologia<br />

88: 450. 1996.<br />

Teratosphaeria associata (Crous & Carnegie) Crous & U. Braun,<br />

comb. nov. MycoBank MB504467.<br />

Basionym: Mycosphaerella associata Crous & Carnegie, Fungal<br />

Diversity 26: 159. 2007.<br />

Teratosphaeria alistairii (Crous) Crous & U. Braun, comb. nov.<br />

MycoBank MB504468.<br />

Basionym: Mycosphaerella alistairii Crous, in Crous & Groenewald,<br />

Fungal Planet, No. 4. 2006.<br />

Anamorph: Batcheloromyces sp.<br />

www.studiesinmycology.org


Crous et al.<br />

Teratosphaeria bellula (Crous & M.J. Wingf.) Crous & U. Braun,<br />

comb. nov. MycoBank MB504469.<br />

Basionym: Mycosphaerella bellula Crous & M.J. Wingf., Mycotaxon<br />

46: 20. 1993.<br />

Teratosphaeria cryptica (Cooke) Crous & U. Braun, comb. nov.<br />

MycoBank MB504470.<br />

Basionym: Sphaerella cryptica Cooke, Grevillea 20: 5. 1891.<br />

≡ Mycosphaerella cryptica (Cooke) Hansf., Proc. Linn. Soc. New South<br />

Wales 81: 35. 1956.<br />

Anamorph: Readeriella nubilosa (Ganap. & Corbin) Crous & U.<br />

Braun, comb. nov. MycoBank MB504471.<br />

Basionym: Colletogloeum nubilosum Ganap. & Corbin, Trans. Brit.<br />

Mycol. Soc. 72: 237. 1979.<br />

≡ Colletogloeopsis nubilosum (Ganap. & Corbin) Crous & M.J. Wingf.,<br />

Canad. J. Bot. 75: 668. 1997.<br />

Teratosphaeria dendritica (Crous & Summerell) Crous & U.<br />

Braun, comb. nov. MycoBank MB504472.<br />

Basionym: Mycosphaerella dendritica Crous & Summerell, Fungal<br />

Diversity 26: 161. 2007.<br />

Anamorph: Nothostrasseria dendritica (Hansf.) Nag Raj, Canad.<br />

J. Bot. 61: 25. 1983.<br />

Basionym: Spilomyces dendriticus Hansf., Proc. Linn. Soc. New<br />

South Wales 81: 32. 1956.<br />

Teratosphaeria excentrica (Crous & Carnegie) Crous & U. Braun,<br />

comb. nov. MycoBank MB504473.<br />

Basionym: Mycosphaerella excentrica Crous & Carnegie, Fungal<br />

Diversity 26: 164. 2007.<br />

Anamorph: Catenulostroma excentricum (B. Sutton & Ganap.)<br />

Crous & U. Braun, comb. nov. MycoBank MB504475.<br />

Basionym: Trimmatostroma excentricum B. Sutton & Ganap., New<br />

Zeal<strong>and</strong> J. Bot. 16: 529. 1978.<br />

Teratosphaeria fibrillosa Syd. & P. Syd., Ann. Mycol. 10: 40.<br />

1912.<br />

≡ Mycosphaerella fibrillosa (Syd. & P. Syd.) Joanne E. Taylor & Crous,<br />

Mycol. Res. 107: 657. 2003.<br />

Specimens examined: South Africa, Western Cape Province, Bains Kloof near<br />

Wellington, on living leaves of Protea gr<strong>and</strong>iflora, 26 Feb. 1911, E.M. Doidge,<br />

holotype PREM; Stellenbosch, Jonkershoek valley, S33° 59’ 44.7”, E18° 58’ 50.6”,<br />

1 Apr. 2007, on leaves of Protea sp., P.W. Crous & L. Mostert, epitype designated<br />

here <strong>CBS</strong> H-19913, culture ex-epitype <strong>CBS</strong> 121707 = CPC 13960.<br />

Teratosphaeria fimbriata (Crous & Summerell) Crous & U. Braun,<br />

comb. nov. MycoBank MB504476.<br />

Basionym: Mycosphaerella fimbriata Crous & Summerell, Fungal<br />

Diversity 26: 166. 2007.<br />

Teratosphaeria flexuosa (Crous & M.J. Wingf.) Crous & U. Braun,<br />

comb. nov. MycoBank MB504477.<br />

Basionym: Mycosphaerella flexuosa Crous & M.J. Wingf., Mycol.<br />

Mem. 21: 58. 1998.<br />

Teratosphaeria gamsii (Crous) Crous & U. Braun, comb. nov.<br />

MycoBank MB504478.<br />

Basionym: Mycosphaerella gamsii Crous, Stud. Mycol. 55: 113.<br />

2006.<br />

Teratosphaeria jonkershoekensis (P.S. van Wyk, Marasas &<br />

Knox-Dav.) Crous & U. Braun, comb. nov. MycoBank MB504479.<br />

Basionym: Mycosphaerella jonkershoekensis P.S. van Wyk,<br />

Marasas & Knox-Dav., J. S. African Bot. 41: 234. 1975.<br />

Teratosphaeria maxii (Crous) Crous & U. Braun, comb. nov.<br />

MycoBank MB504480.<br />

Basionym: Mycosphaerella maxii Crous, in Crous & Groenewald,<br />

Fungal Planet No. 6. 2006.<br />

Teratosphaeria mexicana (Crous) Crous & U. Braun, comb. nov.<br />

MycoBank MB504481.<br />

Basionym: Mycosphaerella mexicana Crous, Mycol. Mem. 21: 81.<br />

1998.<br />

Teratosphaeria microspora Joanne E. Taylor & Crous, Mycol.<br />

Res. 104: 631. 2000.<br />

≡ Mycosphaerella microspora (Joanne E. Taylor & Crous) Joanne E.<br />

Taylor & Crous, Mycol. Res. 107: 657. 2003.<br />

Anamorph: Catenulostroma microsporum (Joanne E. Taylor &<br />

Crous) Crous & U. Braun, comb. nov. MycoBank MB504482.<br />

Basionym: Trimmatostroma microsporum Joanne E. Taylor &<br />

Crous, Mycol. Res. 104: 631. 2000.<br />

Teratosphaeria molleriana (Thüm.) Crous & U. Braun, comb.<br />

nov. MycoBank MB504483.<br />

Basionym: Sphaerella molleriana Thüm., Revista Inst. Sci. Lit.<br />

Coimbra 28: 31. 1881.<br />

≡ Mycosphaerella molleriana (Thüm) Lindau, Nat. Pfanzenfam. 1: 424.<br />

1897.<br />

= Mycosphaerella vespa Carnegie & Keane, Mycol. Res. 102: 1275. 1998.<br />

= Mycosphaerella ambiphylla A. Maxwell, Mycol. Res. 107: 354. 2003.<br />

Anamorph: Readeriella molleriana (Crous & M.J. Wingf.) Crous &<br />

U. Braun, comb. nov. MycoBank MB504484.<br />

Basionym: Colletogloeopsis molleriana Crous & M.J. Wingf.,<br />

Canad. J. Bot. 75: 670. 1997.<br />

Teratosphaeria nubilosa (Cooke) Crous & U. Braun, comb. nov.<br />

MycoBank MB504485.<br />

Basionym: Sphaerella nubilosa Cooke, Grevillea 19: 61. 1892.<br />

≡ Mycosphaerella nubilosa (Cooke) Hansf., Proc. Linn. Soc. New South<br />

Wales 81: 36. 1965.<br />

= Mycosphaerella juvenis Crous & M.J. Wingf., Mycologia 88: 453. 1996.<br />

Teratosphaeria ohnowa (Crous & M.J. Wingf.) Crous & U. Braun,<br />

comb. nov. MycoBank MB504486.<br />

Basionym: Mycosphaerella ohnowa Crous & M.J. Wingf., Stud.<br />

Mycol. 50: 206. 2004.<br />

Teratosphaeria parkiiaffinis (Crous & M.J. Wingf.) Crous & U.<br />

Braun, comb. nov. MycoBank MB504487.<br />

Basionym: Mycosphaerella parkiiaffinis Crous & M.J. Wingf., Fungal<br />

Diversity 26: 168. 2007.<br />

Teratosphaeria parva (R.F. Park & Keane) Crous & U. Braun,<br />

comb. nov. MycoBank MB504488.<br />

Basionym: Mycosphaerella parva R.F. Park & Keane, Trans. Brit.<br />

Mycol. Soc. 79: 99. 1982.<br />

= Mycosphaerella gr<strong>and</strong>is Carnegie & Keane, Mycol. Res. 98: 414. 1994.<br />

Teratosphaeria perpendicularis (Crous & M.J. Wingf.) Crous & U.<br />

Braun, comb. nov. MycoBank MB504489.<br />

Basionym: Mycosphaerella perpendicularis Crous & M.J. Wingf.,<br />

Stud. Mycol. 55: 113. 2006.<br />

Teratosphaeria pluritubularis (Crous & Mansilla) Crous & U.<br />

Braun, comb. nov. MycoBank MB504490.<br />

Basionym: Mycosphaerella pluritubularis Crous & Mansilla, Stud.<br />

Mycol. 55: 114. 2006.<br />

10


Phylogenetic lineages in the Capnodiales<br />

Teratosphaeria pseudafricana (Crous & T.A. Cout.) Crous & U.<br />

Braun, comb. nov. MycoBank MB504491.<br />

Basionym: Mycosphaerella pseudafricana Crous & T.A. Cout.,<br />

Stud. Mycol. 55: 115. 2006.<br />

Teratosphaeria pseudocryptica (Crous) Crous & U. Braun, comb.<br />

nov. MycoBank MB504492.<br />

Basionym: Mycosphaerella pseudocryptica Crous, Stud. Mycol. 55:<br />

6. 2006.<br />

Anamorph: Readeriella sp.<br />

Teratosphaeria pseudosuberosa (Crous & M.J. Wingf.) Crous &<br />

U. Braun, comb. nov. MycoBank MB504493.<br />

Basionym: Mycosphaerella pseudosuberosa Crous & M.J. Wingf.,<br />

Stud. Mycol. 55: 118. 2006.<br />

Anamorph: Catenulostroma sp.<br />

Teratosphaeria quasicercospora (Crous & T.A. Cout.) Crous & U.<br />

Braun, comb. nov. MycoBank MB504494.<br />

Basionym: Mycosphaerella quasicercospora Crous & T.A. Cout.,<br />

Stud. Mycol. 55: 119. 2006.<br />

Teratosphaeria readeriellophora (Crous & Mansilla) Crous & U.<br />

Braun, comb. nov. MycoBank MB504495.<br />

Basionym: Mycosphaerella readeriellophora Crous & Mansilla,<br />

Stud. Mycol. 50: 207. 2004.<br />

Anamorph: Readeriella readeriellophora Crous & Mansilla, Stud.<br />

Mycol. 50: 207. 2004. Fig. 18.<br />

Teratosphaeria secundaria (Crous & Alfenas) Crous & U. Braun,<br />

comb. nov. MycoBank MB504496.<br />

Basionym: Mycosphaerella secundaria Crous & Alfenas, Stud.<br />

Mycol. 55: 122. 2006.<br />

Teratosphaeria stramenticola (Crous & Alfenas) Crous & U.<br />

Braun, comb. nov. MycoBank MB504497.<br />

Basionym: Mycosphaerella stramenticola Crous & Alfenas, Stud.<br />

Mycol. 55: 123. 2006.<br />

Teratosphaeria suberosa (Crous, F.A. Ferreira, Alfenas & M.J.<br />

Wingf.) Crous & U. Braun, comb. nov. MycoBank MB504498.<br />

Basionym: Mycosphaerella suberosa Crous, F.A. Ferreira, Alfenas<br />

& M.J. Wingf., Mycologia 85: 707. 1993.<br />

Teratosphaeria suttonii (Crous & M.J. Wingf.) Crous & U. Braun,<br />

comb. nov. MycoBank MB504499.<br />

Basionym: Mycosphaerella suttonii Crous & M.J. Wingf. (suttoniae),<br />

Canad. J. Bot. 75: 783. 1997.<br />

Anamorph: Readeriella epicoccoides (Cooke & Massee) Crous &<br />

U. Braun, comb. nov. MycoBank MB504500.<br />

Basionym: Cercospora epicoccoides Cooke & Massee apud Cooke,<br />

Grevillea 19: 91. 1891.<br />

≡ Phaeophleospora epicoccoides (Cooke & Massee) Crous, F.A. Ferreira<br />

& B. Sutton, S. African J. Bot. 63: 113. 1997.<br />

≡ Kirramyces epicoccoides (Cooke & Massee) J. Walker, B. Sutton &<br />

Pascoe, Mycol. Res. 96: 919. 1992.<br />

= Hendersonia gr<strong>and</strong>ispora McAlp., Proc. Linn. Soc. New South Wales 28:<br />

99. 1903.<br />

= Phaeoseptoria eucalypti Hansf., Proc. Linn. Soc. New South Wales 82: 225.<br />

1957.<br />

= Phaeoseptoria luzonensis T. Kobayashi, Trans. Mycol. Soc. Japan 19: 377.<br />

1978.<br />

Synanamorph: Pseudocercospora sp.<br />

Teratosphaeria toledana (Crous & Bills) Crous & U. Braun, comb.<br />

nov. MycoBank MB504501.<br />

Basionym: Mycosphaerella toledana Crous & Bills, Stud. Mycol. 50:<br />

208. 2004.<br />

Anamorph: Readeriella toledana (Crous & Bills) Crous & U. Braun,<br />

comb. nov. MycoBank MB504502.<br />

Basionym: Phaeophleospora toledana Crous & Bills, Stud. Mycol.<br />

50: 208. 2004.<br />

Key to treated anamorph genera of Teratosphaeria (Teratosphaeriaceae)<br />

1. Hyphae submerged to superficial, disarticulating into arthroconidia .......................................................................................................... 2<br />

1. Hyphae not disarticulating into arthroconidia ............................................................................................................................................. 3<br />

2. Mature, brown hyphae disarticulating into thick-walled, spherical, smooth to verruculose 0(–2) transversely septate,<br />

brown conidia ............................................................................................................................ Pseudotaeniolina (= Friedmanniomyces)<br />

2. Hyphae superficial, brown to green-brown, smooth, disarticulating to form pale brown, cylindrical, 0–3-septate conidia with subtruncate<br />

ends, frequently with a Readeriella synanamorph ....................................................................................................................... Cibiessia<br />

3. Hyphal ends forming endoconidia; hyphae pale to medium brown, verruculose, end cells dividing into several brown, verruculose,<br />

thick-walled, ellipsoid to obovoid endoconidia ................................................................................................................. Phaeothecoidea<br />

3. Endoconidia absent.................................................................................................................................................................................... 4<br />

4. Conidiogenous cells integrated in hyphae; well-developed conidiomata or long, solitary, macronematous, terminally penicillate<br />

conidiophores absent ................................................................................................................................................................................. 5<br />

4. Conidiomata well-developed or with long, solitary, terminally penicillate conidiophores ........................................................................... 7<br />

5. Conidia in chains, holoblastic, pseudocladosporium-like in morphology, but scars <strong>and</strong> hila not excessively thickened, nor refractive,<br />

producing chlamydospores in culture; species are mostly heat resistant .................................................................................... Devriesia<br />

5. Conidia solitary on indistict to well defined phialides on hyphae ............................................................................................................... 6<br />

6. Conidiogenous cells integrated in the distal ends of hyphae; conidia thick-walled, brown, smooth,<br />

-septate ......................................................................................................................................................................... Capnobotryella<br />

www.studiesinmycology.org<br />

11


Crous et al.<br />

6. Conidiophores short <strong>and</strong> frequently reduced to conidiogenous cells that proliferate percurrently via wide necks, giving rise to hyaline, 0(–2)-<br />

septate, broadly ellipsoidal conidia ................................................................................................................................................ Hortaea<br />

7. Conidia brown, with hyaline basal appendages; conidiomata pycnidial, conidiogenous cells phialidic, but also percurrent,<br />

subhyaline ....................................................................................................................................................................... Nothostrasseria<br />

7. Conidia brown, but basal appendages lacking, amero- to scolecospores ................................................................................................. 8<br />

8. Conidiomata pycnidial to acervular ............................................................................................................................................................ 9<br />

8. Conidiomata not enclosed by host tissue, fasciculate to sporodochial or solitary, hyphomycetous ........................................................ 10<br />

9. Conidia solitary, dry, without mucilaginous sheath .................................................................................................................... Readeriella<br />

9. Conidia catenulate, with persistant mucilaginous sheath ..................................................................................................... Staninwardia<br />

10. Conidiophores usually solitary, rarely densely fasciculate to synnematous (in vivo), penicillate, with a branched, apical conidiogenous<br />

apparatus giving rise to ramoconidia <strong>and</strong> branched chains of secondary conidia; scars not to slightly thickened <strong>and</strong> darkened-refractive<br />

..................................................................................................................................................................................................... Penidiella<br />

10. Conidiophores not penicillate, without a branched conidiogenous apparatus, in vivo fasciculate to sporodochial .................................. 11<br />

11. Biotrophic; fruiting composed of sporodochia <strong>and</strong> radiating layers of hyphae arising from the stromata, conidiophores arising from<br />

superficial sporodochia <strong>and</strong> radiating hyphae, conidiogenous cells unilocal, with conspicuous annellations, conidia solitary or in fragile<br />

disarticulating chains, aseptate or transversely 1–3-septate, usually with distinct frills, secession rhexolytic ............... Batcheloromyces<br />

. Biotrophic, leaf-inhabiting, with distinct, subepidermal to erumpent, well-developed sporodochia, or saxicolous, saprobic, sometimes<br />

causing opportunistic human infections; radiating layers of hyphae arising from sporodochia; conidiogenous cells without<br />

annellations; conidia in true simple or branched basipetal chains, transversely 1- to pluriseptate or with longitudinal <strong>and</strong> oblique septa<br />

(dictyosporous), occasionally distoseptate ...................................................................................................................... Catenulostroma<br />

To explain the arguments behind the selection <strong>and</strong> synonymies<br />

of some of these anamorphic genera, they are briefly discussed<br />

below:<br />

Acidomyces Baker et al., Appl. Environ. Microbiol. 70: 6270. 2004.<br />

(nom. inval.)<br />

Type species: Acidomyces richmondensis Baker et al., Appl.<br />

Environ. Microbiol. 70: 6270. 2004. (nom. inval.)<br />

Notes: <strong>The</strong> <strong>genus</strong> presently clusters among isolates in the<br />

Teratosphaeria clade based on sequences deposited in GenBank.<br />

Acidomyces lacks a Latin description <strong>and</strong> holotype specimen, <strong>and</strong><br />

is thus invalidly described. <strong>The</strong> <strong>genus</strong>, which was distinguished<br />

from other taxa based on its DNA phylogeny (Dothideomycetes),<br />

forms filamentous hyphae with disarticulating cells. It is unclear<br />

how it differs from Friedmanniomyces Onofri <strong>and</strong> Pseudotaeniolina<br />

J.L. Crane & Schokn.<br />

Batcheloromyces Marasas, P.S. van Wyk & Knox-Dav., J. S.<br />

African Bot. 41: 41. 1975.<br />

Type species: Batcheloromyces proteae Marasas, P.S. van Wyk &<br />

Knox-Dav., J. S. African Bot. 41: 43. 1975.<br />

Description: Crous et al. (2004a; figs 4–26).<br />

Notes: Batcheloromyces is presently circumscribed as a <strong>genus</strong><br />

that forms emergent hyphae, giving rise to superficial sporodochial<br />

plates, forming brown, verrucose, erect conidiophores that<br />

proliferate holoblastically, with ragged percurrent proliferations that<br />

become visible with age. Conidia are produced singly or in fragile,<br />

disarticulating chains, are brown, thick-walled, 0–3 transversely<br />

euseptate (though at times they appear as distoseptate). <strong>The</strong> <strong>genus</strong><br />

Batcheloromyces has in recent years been confused with Stigmina<br />

(Sutton & Pascoe 1989) on the basis that some collections showed<br />

conidiophores to give rise to solitary conidia only, though conidial<br />

catenulation was clearly illustrated by Taylor et al. (1999). In culture<br />

colonies tend to sporulate in a slimy mass (on OA), though a<br />

synanamorph can be seen (in B. leucadendri, Fig. 4) to sporulate<br />

via holoblastic conidiogenesis on hyphal tips of the aerial mycelium,<br />

forming elongate-globose to ellipsoid, muriformly septate, thickwalled<br />

conidia, that occur in clusters.<br />

<strong>The</strong> finding that Stigmina s. str. [based on S. platani (Fuckel)<br />

Sacc., the type species] is a generic synonym of Pseudocercospora<br />

Speg. (Crous et al. 2006a), <strong>and</strong> that the type species of<br />

Trimmatostroma (T. salicis, Fig. 5) belongs to the Helotiales<br />

(Fig. 1), raises the question of where to place stigmina- <strong>and</strong><br />

trimmatostroma-like anamorphs that reside in the Teratosphaeria<br />

clade. Although the stigmina-like species can be accommodated<br />

in Batcheloromyces (see Sutton & Pascoe 1989), a new <strong>genus</strong> is<br />

required for Teratosphaeria anamorphs that have a trimmatostromalike<br />

morphology. <strong>The</strong> recognition of Batcheloromyces <strong>and</strong> the<br />

introduction of a new anamorph <strong>genus</strong> for trimmatostroma-like<br />

anamorphs of Teratosphaeria are also morphologically justified.<br />

Batcheloromyces is easily distinguishable from Stigmina s.<br />

str. by its special structure of the fruiting body, composed of<br />

sporodochia <strong>and</strong> radiating layers of hyphae arising from the<br />

sporodochia <strong>and</strong> the conidia often formed in delicate disarticulating<br />

chains. Trimmatostroma-like anamorphs of Teratosphaeria are<br />

morphologically also sufficently distinct from Trimmatostroma s. str.<br />

(see notes under Catenulostroma Crous & U. Braun) as well as<br />

Batcheloromyces (see key above).<br />

Batcheloromyces eucalypti (Alcorn) Crous & U. Braun, comb.<br />

nov. MycoBank MB504503.<br />

Basionym: Stigmina eucalypti Alcorn, Trans. Brit. Mycol. Soc. 60:<br />

151. 1973.<br />

Capnobotryella Sugiy., in Sugiyama, Pleomorphic Fungi: <strong>The</strong><br />

Diversity <strong>and</strong> its Taxonomic Implications (Tokyo): 148. 1987.<br />

Type species: Capnobotryella renispora Sugiy., in Sugiyama,<br />

Pleomorphic Fungi: <strong>The</strong> Diversity <strong>and</strong> its Taxonomic Implications<br />

(Tokyo): 148. 1987.<br />

Description: Sugiyama & Amano (1987, figs 7.5–7.8).<br />

12


Phylogenetic lineages in the Capnodiales<br />

Fig. 4. Batcheloromyces leucadendri in vitro. A–B. Batcheloromyces state with synanamorph (arrows). C–D. Conidia occurring solitary or in short chains. Scale bar = 10 µm.<br />

Fig. 5. Trimmatostroma salicis. A. Sporodochia on twig. B–E. Chains of disarticulating conidia. Scale bars = 10 µm.<br />

Notes: <strong>The</strong> <strong>genus</strong> forms brown, septate, thick-walled hyphae, with<br />

ellipsoidal, 0–1-septate conidia forming directly on the hyphae, via<br />

minute phialides. Hambleton et al. (2003) also noted the occurrence<br />

of endoconidiation.<br />

Catenulostroma Crous & U. Braun, gen. nov. MycoBank<br />

MB504474.<br />

Etymology: Named after its catenulate conidia, <strong>and</strong> stromata giving<br />

rise to sporodochia.<br />

Hyphomycetes. Differt a Trimmatostromate habitu phytoparasitico, maculis<br />

formantibus, conidiophoris saepe fasciculatis, per stoma emergentibus vel habitu<br />

saxiphilo-saprophytico, interdum sejunctis ex mycosibus humanis.<br />

www.studiesinmycology.org<br />

13


Crous et al.<br />

Habit plant pathogenic, leaf-spotting or saxicolous-saprobic,<br />

occasionally isolated from opportunistic human mycoses.<br />

Mycelium internal <strong>and</strong> external; hyphae dark brown, septate,<br />

branched. Conidiomata in vivo vary from acervuli to sporodochia or<br />

fascicles of conidiophores arising from well-developed or reduced,<br />

pseudoparenchymatal stromata. Setae <strong>and</strong> hyphopodia absent.<br />

Conidiophores arising from hyphae or stromata, solitary, fasciculate<br />

to sporodochial, in biotrophic, plant pathogenic species emerging<br />

through stomata, little differentiated, semimacronematous, branched<br />

or not, continuous to septate, brown, smooth to verruculose.<br />

Conidiogenous cells integrated, terminal or conidiophores reduced<br />

to conidiogenous cells, holoblastic-thalloblastic, meristematic,<br />

unilocal, delimitation of conidium by a single septum with<br />

retrogressive delimitation of next conidium giving an unconnected<br />

chain of conidia, brown, smooth to verruculose, conidiogenous<br />

scars (conidiogenous loci) inconspicuous, truncate, neither<br />

thickened nor darkened. Conidia solitary or usually forming simple<br />

to branched basipetal chains of transversely to muriformly eu- or<br />

distoseptate, 1– to multiseptate, brown, smooth, verruculose to<br />

verrucose conidia, conidial secession schizolytic.<br />

Type species: Catenulostroma protearum (Crous & M.E. Palm)<br />

Crous & U. Braun, comb. nov.<br />

Description: Crous & Palm (1999), Crous et al. (2004a; figs 364–<br />

365).<br />

Notes: Catenulostroma contains several plant pathogenic species<br />

previously placed in Trimmatostroma, a morphologically <strong>similar</strong> but,<br />

based on its type species, phylogenetically distinct <strong>genus</strong> belonging<br />

to Helotiales (Fig. 1). Trimmatostroma s. str. is well-distinguished<br />

from most Catenulostroma species by being saprobic, living on<br />

twigs <strong>and</strong> branches of woody plants, or occasionally isolated<br />

from leaf litter, i.e., they are not associated with leaf spots. <strong>The</strong><br />

conidiomata of Trimmatostroma species are subepidermal,<br />

acervular-sporodochial with a well defined wall of textura angularis,<br />

little differentiated, micronematous conidiophores giving rise to long<br />

chains of conidia that disarticulate at the surface to form a greyblack<br />

to brown powdery mass. <strong>The</strong> generic affinity of other species<br />

assigned to Trimmatostroma, e.g. those having a lichenicolous<br />

habit, is unresolved.<br />

Trimmatostroma abietis Butin & Pehl (Butin et al. 1996) clusters<br />

together with the plant pathogenic Catenulostroma species, but<br />

differs from these species in having a more complex ecology.<br />

Trimmatostroma abietis is usually foliicolous on living or necrotic<br />

conifer needles on which characteristic acervuli to sporodochia<br />

with densely arranged, fasciculate fertile hyphae are formed,<br />

comparable to the fasciculate conidiomata of the plant pathogenic<br />

species of Catenulostroma (Butin et al. 1996: 205, fig. 1). Although<br />

not discussed by Butin et al. (1996), T. abietis needs to be compared<br />

to T. abietina Doherty, which was orginally described from Abies<br />

balsamea needles collected in Guelph, Canada (Doherty 1900).<br />

Morphologically the two species appear to be synonymous, except<br />

for reference to muriformly septate conidia, which is a feature not<br />

seen in vivo in the type of T. abietis. Furthermore, as this is clearly<br />

a species complex, this matter can only be resolved once fresh<br />

Canadian material has been collected to serve as epitype for T.<br />

abietina.<br />

Isolates from stone, agreeing with T. abietis in cultural,<br />

morphological <strong>and</strong> physiological characteristics, have frequently<br />

been found (Wollenzien et al. 1995, Butin et al. 1996, Gorbushina<br />

et al. 1996, Kogej et al. 2006, Krumbein et al. 1996). Furthermore,<br />

isolates from humans (ex skin lesions <strong>and</strong> ex chronic osteomycelitis<br />

of human patients) <strong>and</strong> Ilex leaves are known (Butin et al. 1996). De<br />

Hoog et al. (1999) included strains of T. abietis from stone, man <strong>and</strong><br />

Ilex leaves in molecular sequence analyses <strong>and</strong> demonstrated their<br />

genetical identity based on 5.8S rDNA <strong>and</strong> ITS2 data, but strains<br />

from conifer needles were not included. Furthermore, we consider<br />

T. abietis, as presently defined, to represent a species complex,<br />

with Dutch isolates from Pinus again appearing distinct from<br />

German Abies isolates, suggesting that different conifer genera<br />

could harbour different Catenulostroma species. Isolates from<br />

stone form stromatic, durable microcolonies, which are able to grow<br />

under extreme xerophilic environmental conditions. Cultural growth<br />

resembles that of other meristematic black yeasts (Butin et al. 1996,<br />

Kogej et al. 2006). Another fungus isolated from stone in Germany<br />

is in vitro morphologically close to C. abietis, but differs in forming<br />

conidia with oblique septa. Furthermore, a human pathogenic<br />

isolate from Africa clusters together with other Catenulostroma<br />

species. <strong>The</strong> habit <strong>and</strong> origin of this human pathogenic fungus in<br />

nature <strong>and</strong> its potential morphology on “natural” substrates, which<br />

typically deviates strongly from the growth in vitro, are still unknown.<br />

However, C. abietis, usually growing as a foliicolous <strong>and</strong> saxicolous<br />

fungus, has already shown the potential ability of Catenulostroma<br />

species to cause opportunistic human infections.<br />

Key to Catenulostroma species<br />

1. Conidia formed in basipetal chains, smooth, 4-celled, consisting of two basal cells with truncate lateral sides, each giving rise to a<br />

secondary globose apical cell, that can extend <strong>and</strong> develop additional septa, appearing as two lateral arms ................. C. excentricum<br />

1. Conidia variable in shape, but without two basal cells giving rise to two lateral arms ............................................................................... 2<br />

2. Conidia smooth or almost so, at most very faintly rough-walled; usually foliicolous on conifer needles or saxicolous, forming stromatic,<br />

xerophilic durable microcolonies on stone, occasionally causing opportunistic human infections ............................................................ 3<br />

2. Conidia distinctly verruculose to verrucose; plant pathogenic, forming leaf spots ..................................................................................... 5<br />

3. Conidia (8–)20–35(–60) × 4–5(–7) µm, 1–10-septate .................................................................................... C. chromoblastomycosum<br />

3. Conidia much shorter, 8–20 µm long, 0–5-septate .................................................................................................................................... 4<br />

4. Conidia 0–5 times transversely septate, mostly two-celled; usually foliicolous on conifer needles or saxicolous ....................... C. abietis<br />

4. Conidia 2–4 times transversely septate <strong>and</strong> often with 1–2 oblique septa; isolated from stone ........................................ C. germanicum<br />

5. Conidia rather broad, usually wider than 10 µm ........................................................................................................................................ 6<br />

14


Phylogenetic lineages in the Capnodiales<br />

Fig. 6. Catenulostroma chromoblastomycosum (type material). A. Sporodochium on pine needle in vitro. B–H. Chains of disarticulating conidia. Scale bars: A = 350, B, E, G,<br />

H = 10 µm.<br />

5. Conidia narrower, width below 10 µm ....................................................................................................................................................... 7<br />

6. Conidia distoseptate, rather long, (12–)25–35(–45) × (7–)10–15(–25) µm; conidiomata large, up to 250 µm diam, on Protea anceps<br />

............................................................................................................................................................................................... C. protearum<br />

6. Conidia euseptate, shorter, (9–)16–20(–36) × (10–)14–18(–27) µm; sporodochia 90–100 × 40–80 µm; on Protea gr<strong>and</strong>iceps<br />

................................................................................................................................................................................................. C. elginense<br />

7. Conidia 1- to multiseptate, (10–)15–17(–23) × (5–)6.5–7(–9) µm; on various Proteaceae .................................................. C. macowanii<br />

7. Conidia in vivo predominantly 1-septate, (8–)13–15(–21) × (3.5–)5.5–6(–8) µm; on Protea cynaroides<br />

......................................................................................................................................... C. microsporum (Teratosphaeria microspora)<br />

Catenulostroma abietis (Butin & Pehl) Crous & U. Braun, comb.<br />

nov. MycoBank MB504504.<br />

Basionym: Trimmatostroma abietis Butin & Pehl, Antonie van<br />

Leeuwenhoek 69: 204. 1996.<br />

Notes: Catenulostroma abietis needs to be compared to<br />

Trimmatostroma abietina Doherty (Abies balsamea needles<br />

Canada), which is either an older name for this species, or a closely<br />

related taxon. Presently T. abietina is not known from culture, <strong>and</strong><br />

needs to be recollected.<br />

Catenulostroma chromoblastomycosum Crous & U. Braun, sp.<br />

nov. MycoBank MB504505. Fig. 6.<br />

Etymology: Named after the disease symptoms observed due to<br />

opportunistic human infection.<br />

Differt a C. abieti et C. germanico conidiis longioribus, (8–)20–35(–60) × 4–5(–7)<br />

µm, 1–10-septatis.<br />

Description based on cultures sporulating on WA supplemented<br />

with sterile pine needles. Mycelium consisting of branched,<br />

septate, smooth to finely verruculose, medium to dark brown,<br />

thick-walled, 3–4 µm wide hyphae. Conidiomata brown, superficial,<br />

www.studiesinmycology.org<br />

15


Crous et al.<br />

Fig. 7. Catenulostroma germanicum (type material). A–D. Chains of disarticulating conidia in vitro. Scale bars = 10 µm.<br />

sporodochial, up to 350 µm diam. Conidiophores reduced to<br />

inconspicuous conidiogenous loci on hyphae, 2–4 µm wide, neither<br />

darkened nor thickened or refractive. Conidia occurring in branched<br />

chains, that tend to remain attached to each other, subcylindrical<br />

with subtruncate ends, straight to slightly curved, (8–)20–35(–60)<br />

× 4–5(–7) µm, 1–10-septate, medium brown, smooth to finely<br />

verruculose.<br />

Cultural characteristics: Colonies on PDA erumpent, spreading,<br />

slow growing, with sparse to moderate aerial mycelium <strong>and</strong> smooth,<br />

irregular, submerged margins; greenish black (surface).<br />

Specimen examined: Zaire, Pawa, isolated from man with chromoblastomycosis,<br />

Mar. 1997, V. de Brouwere, holotype <strong>CBS</strong> H-19935, culture ex-type <strong>CBS</strong> 597.97.<br />

Notes: Catenulostroma chromoblastomycosum was originally<br />

identified as an isolate of Stenella araguata Syd. <strong>The</strong> latter fungus<br />

is morphologically distinct, however, having much shorter <strong>and</strong><br />

narrower conidia, formed in acropetal chains, as well as quite<br />

different conidiogenous loci <strong>and</strong> conidial hila which are small,<br />

thickened <strong>and</strong> darkened.<br />

Catenulostroma elginense (Joanne E. Taylor & Crous) Crous &<br />

U. Braun, comb. nov. MycoBank MB504506.<br />

Basionym: Trimmatostroma elginense Joanne E. Taylor & Crous,<br />

Mycol. Res. 104: 633. 2000.<br />

Catenulostroma excentricum, see Teratosphaeria excentrica.<br />

Catenulostroma germanicum Crous & U. Braun, sp. nov.<br />

MycoBank MB504507. Fig. 7.<br />

Etymology: Named after the geographic location of its type strain<br />

in Germany.<br />

Differt a C. abieti conidiis 1–2 oblique septatis.<br />

Mycelium consisting of branched, septate, smooth, pale to<br />

medium brown, 2–4 µm wide hyphae, giving rise to conidial<br />

chains. Conidiophores integrated, subcylindrical, branched or not,<br />

septate, little differentiated, micronematous, 3–5 µm wide, 3- to<br />

multiseptate, medium brown, thick-walled; conidiogenous cells<br />

integrated, terminal, inconspicuous, unilocal, conidiogenous loci<br />

16


Phylogenetic lineages in the Capnodiales<br />

inconspicuous. Conidia in simple or branched basipetal chains,<br />

subcylindrical, straight to flexuous, (8–)10–15(–20) × 4–5(–6) µm,<br />

2–4 transversely septate or with 1–2 oblique septa, medium to dark<br />

brown, thick-walled, smooth.<br />

Cultural characteristics: Colonies on OA erumpent, spreading, with<br />

even, smooth margins <strong>and</strong> sparse to moderate aerial mycelium;<br />

olivaceous-grey, with iron-grey margins (surface). Colonies reaching<br />

12 mm diam after 1 mo at 25 °C in the dark; colonies fertile.<br />

Specimen examined: Germany (former West-Germany), isolated from stone, Oct.<br />

1988, J. Kuroczkin, holotype <strong>CBS</strong> H-19936, culture ex-type <strong>CBS</strong> 539.88.<br />

Notes: Catenulostroma germanicum was originally deposited as<br />

Taeniolina scripta (P. Karst.) P.M. Kirk. It is clearly distinct, however,<br />

as the latter fungus forms intricate, branched, brown conidia<br />

(Kirk 1981), unlike those of C. germanicum. Phylogenetically C.<br />

germanicum forms part of the C. abietis species complex.<br />

Catenulostroma macowanii (Sacc.) Crous & U. Braun, comb.<br />

nov. MycoBank MB504508.<br />

Basionym: Coniothecium macowanii Sacc., Syll. Fung. 4: 512.<br />

1886.<br />

≡ Coniothecium punctiforme G. Winter, Hedwigia 24: 33. 1885, non C.<br />

punctiforme Corda, Icones Fungorum (Prague) 1: 2. 1837.<br />

≡ Trimmatostroma macowanii (Sacc.) M.B. Ellis, More Dematiacous<br />

Hyphomycetes: 29. 1976.<br />

Catenulostroma microsporum, see Teratosphaeria microspora.<br />

Catenulostroma protearum (Crous & M.E. Palm) Crous & U.<br />

Braun, comb. nov. MycoBank MB504509.<br />

Basionym: Trimmatostroma protearum Crous & M.E. Palm, Mycol.<br />

Res. 103: 1303. 1999.<br />

Cibiessia Crous, Fungal Diversity 26: 151. 2007.<br />

Type species: Cibiessia dimorphospora Crous & C. Mohammed,<br />

Fungal Diversity 26: 151. 2007.<br />

Description: Crous et al. (2007b; figs 3–5).<br />

Notes: <strong>The</strong> <strong>genus</strong> Cibiessia was introduced to accommodate<br />

species with chains of disarticulating conidia (arthroconidia). Some<br />

species have been shown to have a Readeriella synanamorph.<br />

Devriesia Seifert & N.L. Nick., Can. J. Bot. 82: 919. 2004.<br />

Type species: Devriesia staurophora (W.B. Kendr.) Seifert & N.L.<br />

Nick., Canad. J. Bot. 82: 919. 2004.<br />

Description: Seifert et al. (2004; figs 2–42).<br />

Notes: <strong>The</strong> <strong>genus</strong> is characterised by producing chains of pale<br />

brown, subcylindrical to fusiform, 0–1-septate conidia with<br />

somewhat thickened, darkened hila, forming chlamydospores in<br />

culture, <strong>and</strong> being heat resistant. Morphologically they resemble<br />

taxa placed in Pseudocladosporium U. Braun (= Fusicladium<br />

Bonord.; Venturiaceae), though phylogenetically Devriesia is not<br />

allied to this family.<br />

Hortaea Nishim. & Miyaji, Jap. J. Med. Mycol. 26: 145. 1984.<br />

Type species: Hortaea werneckii (Horta) Nishim. & Miyaji, Jap. J.<br />

Med. Mycol. 26: 145. 1984.<br />

Description: de Hoog et al. (2000, illust. p. 721).<br />

www.studiesinmycology.org<br />

Notes: <strong>The</strong> <strong>genus</strong> forms brown, septate, thick-walled hyphae, with<br />

ellipsoidal, 0–1-septate (becoming muriformly septate), hyaline to<br />

pale brown conidia forming directly on the hyphae, via phialides<br />

with percurrent proliferation. Isolates of H. werneckii are restricted<br />

to tropical or subtropical areas, where they occur as halophilic<br />

saprobes, frequently being associated with tinea nigra of humans<br />

(de Hoog et al. 2000). <strong>The</strong> generic distinction with Capnobotryella<br />

is less clear, except that the latter tends to have darker, thick-walled<br />

conidia, <strong>and</strong> reduced, less prominent phialides.<br />

Penidiella Crous & U. Braun, gen. nov. MycoBank MB504463.<br />

Etymology: Named after its penicillate conidiophores.<br />

Differt a Periconiellae conidiophoris apice penicillato ex cellulis conidiogenis et<br />

ramoconidiis compositis, cellulis conidiogenis saepe 1–3(–4) locis conidiogenis,<br />

terminalibus vel subterminalibus, subdenticulatis, non vel subincrassatis, non vel<br />

leviter fuscatis-refractivis, ramoconidiis praesentibus, saepe numerosis, conidiis<br />

ramicatenatis.<br />

Mycelium consisting of branched, septate, smooth to verruculose,<br />

subhyaline to pale brown hyphae. Conidiophores macronematous,<br />

occasionally also with some micronematous conidiophores;<br />

macronematous conidiophores arising from superficial mycelium<br />

or stromata, solitary, fasciculate or in synnemata, erect, brown,<br />

thin- to thick-walled, smooth to finely verruculose; terminally<br />

penicillate, branched terminal part consisting of a conidiogenous<br />

apparatus composed of a series of conidiogenous cells <strong>and</strong>/or<br />

ramoconidia. Conidiogenous cells integrated, terminal, intercalary<br />

or pleurogenous, unbranched, pale to medium brown, smooth<br />

to finely verruculose, tapering to a flattened or rounded apical<br />

region or tips slightly inflated, polyblastic, sympodial, giving rise<br />

to a single or several sets of ramoconidia on different levels; with<br />

relatively few conidiogenous loci, 1–3(–4), terminal or subterminal,<br />

subdenticulate, denticle-like loci usually conical, terminally<br />

truncate, usually unthickened or at most very slightly thickened, not<br />

to slightly darkened or somewhat refractive. Conidia in branched<br />

acropetal chains. Ramoconidia 0–1-septate, pale to medium brown,<br />

smooth to verruculose, thin-walled, ellipsoidal, obovoid, fusiform,<br />

subcylindrical to obclavate; conidia subcylindrical, fusiform to<br />

ellipsoid-ovoid, 0–1-septate, pale olivaceous to brown, smooth to<br />

verruculose, thin-walled, catenate; hila truncate, unthickened or<br />

almost so, barely to somewhat darkened-refractive.<br />

Type species: Penidiella columbiana Crous & U. Braun, sp. nov.<br />

Notes: Three ramichloridium-like genera cluster within Capnodiales,<br />

namely Periconiella Sacc. [type: P. velutina (G. Winter) Sacc.],<br />

Ramichloridium Stahel ex de Hoog [type: R. apiculatum (J.H.<br />

Mill., Giddens & A.A. Foster) de Hoog] <strong>and</strong> Penidiella [type: P.<br />

columbiana Crous & U. Braun]. All three genera have brown,<br />

macronematous conidiophores with <strong>similar</strong> conidial scars. Within<br />

this complex, Ramichloridium is distinct in having a prominent<br />

rachis giving rise to solitary conidia. Periconiella <strong>and</strong> Penidiella<br />

are branched in the apical part of their conidiophores, <strong>and</strong> lack<br />

a rachis. In Periconiella conidia are solitary or formed in short,<br />

mostly simple chains, ramoconidia are lacking. <strong>The</strong> apical<br />

conidiogenous apparatus is composed of conidiogenous cells or<br />

branches with integrated, usually terminal conidiogenous cells,<br />

which are persistent. <strong>The</strong> conidiogenous cells are subcylindrical<br />

to somewhat clavate, usually not distinctly attenuated towards the<br />

tip, <strong>and</strong> have several, often numerous loci, aggregated or spread<br />

over the whole cell, terminal to usually lateral, flat, non-protuberant,<br />

not denticle-like, usually distinctly thickened <strong>and</strong> darkened, at least<br />

at the rim. In contrast, Penidiella has a quite distinct branching<br />

17


Crous et al.<br />

system, consisting of a single terminal conidiogenous cell giving<br />

rise to several ramoconidia that form secondary ramoconidia, etc.,<br />

or the branched apparatus is composed of several terminal <strong>and</strong><br />

sometimes lateral conidiogenous cells giving rise to sequences of<br />

ramoconidia (conidiogenous cells <strong>and</strong> ramoconidia are often barely<br />

distinguishable, with conidiogenous cells disarticulating, becoming<br />

ramoconidia). <strong>The</strong> branched apparatus may be loose to dense,<br />

metula-like. <strong>The</strong> conidiogenous cells have only few, usually 1–3<br />

(–4), terminal or subterminal subdenticulate loci, <strong>and</strong> ramoconidia<br />

are prominent <strong>and</strong> numerous, giving rise to branched chains of<br />

secondary conidia with flat-tipped hila. Some species of Penidiella<br />

with compact, metula-like branched apices are morphologically<br />

close to Metulocladosporiella Crous, Schroers, J.Z. Groenew., U.<br />

Braun & K. Schub. (Crous et al. 2006d). This <strong>genus</strong> encompasses<br />

two species of banana diseases belonging to Herpotrichiellaceae<br />

(Chaetothyriales), characterised by having conidiophore bases<br />

with rhizoid hyphal appendages <strong>and</strong> abundant micronematous<br />

conidiophores. Penidiella species with less pronounced penicillate<br />

apices, e.g. P. strumelloidea (Milko & Dunaev) Crous & U. Braun, are<br />

comparable with species of the <strong>genus</strong> Pleurotheciopsis B. Sutton<br />

(see Ellis 1976). <strong>The</strong> latter <strong>genus</strong> is distinct in having unbranched,<br />

often percurrently proliferating conidiophores, lacking ramoconidia<br />

<strong>and</strong> colourless conidia formed in simple chains.<br />

<strong>Cladosporium</strong> helicosporum R.F. Castañeda & W.B. Kendr.<br />

(Castañeda et al. 1997) is another penidiella-like fungus with<br />

terminally branched conidiophores, subdenticulate conidiogenous<br />

loci <strong>and</strong> conidia in long acropetal chains, but its affinity to Penidiella<br />

has still to be proven.<br />

Key to Penidiella species<br />

1. Conidiophores in vivo in well-developed, dense fascicles <strong>and</strong> distinct synnemata arising from a basal stroma; on fallen leaves of Ficus<br />

sp., Cuba ............................................................................................................................................................................... P. cubensis<br />

1. Conidiophores solitary, at most loosely aggregated .................................................................................................................................. 2<br />

2. Conidiophores with a terminal conidiogenous cell, often somewhat swollen, giving rise to several ramoconidia (on one level) that form<br />

chains of straight to distinctly curved conidia; isolated from leaf of Carex sp., Russia ..................................................... P. strumelloidea<br />

2. Penicillate apex of the conidiophores composed of a system of true branchlets, conidiogenous cells <strong>and</strong> ramoconidia or at least a sequence<br />

of ramoconidia on several levels; conidia usually straight ......................................................................................................................... 3<br />

3. Mycelium verruculose; long filiform conidiophores ending with a subdenticulate cell giving rise to sets of penicillate conidiogenous cells or<br />

ramoconidia which are barely distinguishable <strong>and</strong> turn into each other; ramoconidia <strong>and</strong> conidia consistently narrow, (1.5–)2(–2.5) µm<br />

wide, <strong>and</strong> aseptate, ramoconidia sometimes heterochromous; on living leaves of Nect<strong>and</strong>ra coriacea, Cuba ................... P. nect<strong>and</strong>rae<br />

3. Mycelium more or less smooth; penicillate apex at least partly with true branchlets; conidia wider, 2–5 µm, at least partly septate, uniformly<br />

pigmented ................................................................................................................................................................................................. 4<br />

4. Hyphae, conidiophores <strong>and</strong> conidia frequently distinctly constricted at the septa; penicillate apex of the conidiophores sparingly developed,<br />

branchlets more or less divergent; isolated from leaf litter of Smilax sp., Cuba .................................................................. P. rigidophora<br />

4. Hyphae <strong>and</strong> conidia without distinct constrictions at the septa; penicillate apex of the conidiophores usually well-developed, with abundant<br />

branchings ................................................................................................................................................................................................. 5<br />

5. Conidiophores short, up to 120 × 3–4 µm, frequently with intercalary conidiogenous cell, swollen at the conidiogenous portion just below<br />

the upper septum which render the conidiophores subnodulose to distinctly nodulose, apex ± loosely penicillate; conidia (4–)5–7(–8) µm<br />

long; occasionally with micronematous conidiophores; isolated from man with tinea nigra, Venezuela .......................... P. venezuelensis<br />

5. Conidiophores much longer, up to 800 µm, 7–9 µm wide at the base, not distinctly nodulose, penicillate apex loose to often more<br />

compact, tight, metula-like; conidia longer, 7–25 × 2–5 µm; micronematous conidiophores lacking; isolated from dead leaf of Paepalanthus<br />

columbianus, Colombia ........................................................................................................................................................ P. columbiana<br />

Penidiella columbiana Crous & U. Braun, sp. nov. MycoBank<br />

MB504510. Figs 8–9.<br />

Etymology: Named after its country of origin, Colombia.<br />

Mycelium ex hyphis ramosis, septatis, levibus, pallide brunneis, 2–3 µm latis<br />

compositum. Conidiophora ex hyphis superficialibus oriunda, penicillata, erecta,<br />

brunnea, crassitunicata, minute verruculosa, ad 800 µm longa, ad basim 7–9<br />

µm lata, ad apicem pluriramosa, ex ramibus diversibus et cellulis conidiogenis<br />

composita, ramibus primariis (–2) subcylindraceis, 1–7-septatis, 50–120 × 4–6 µm;<br />

ramibus secundariis (–2) subcylindraceis, 1–5-septatis, 40–60 × 4–6 µm; ramibus<br />

tertiariis et subsequentibus 1–4-septatis, 10–30 × 3–5 µm. Cellulae conidiogenae<br />

terminales vel laterales, non ramosae, 5–15 × 3–5 µm, modice brunneae, minute<br />

verruculosae, apicem versus attenuatae, truncatae vel rotundatae, polyblasticae,<br />

sympodiales, cicatrices conidiales incrassatae, sed leviter fuscatae et non<br />

refractivae. Ramoconidia 0–1-septata, modice brunnea, levia, ellipsoidea, obclavata<br />

vel obovoidea, cum 1–3 hilis terminalibus, 10–20 × 3–5 µm; conidia subcylindrica<br />

vel ellipsoidea, 0–1-septata, pallide brunnea, catenata (–10), hila truncata, non<br />

incrassata, vix vel leviter fuscata.<br />

Mycelium consisting of branched, septate, smooth, pale brown, 2–3<br />

µm wide hyphae. Conidiophores arising from superficial mycelium,<br />

terminally penicillate, erect, brown, wall up to 1 µm wide, almost<br />

smooth to finely verruculose, up to 800 µm tall, 7–9 µm wide at<br />

the base; conidiogenous region consisting of a series of branches<br />

composed of true branchlets, conidiogenous cells <strong>and</strong> ramoconidia,<br />

branched portion usually rather compact, even metula-like, but<br />

also looser, with divergent branches; primary branches (–2),<br />

subcylindrical, 1–7-septate, 50–120 × 4–6 µm; secondary branches<br />

(–2), subcylindrical, 1–5-septate, 40–60 × 4–6 µm; tertiary <strong>and</strong><br />

additional branches 1–4-septate, 10–30 × 3–5 µm. Conidiogenous<br />

cells terminal, intercalary or lateral, unbranched, 5–15 × 3–5<br />

µm, medium brown, finely verruculose, tapering to a flattened or<br />

rounded (frequently swollen) apical region, scars thickened, but<br />

only somewhat darkened, not refractive. Ramoconidia 0–1-septate,<br />

18


Phylogenetic lineages in the Capnodiales<br />

Fig. 8. Penidiella columbiana (type material). A. Conidiophores on pine needle in vitro. B–H. Conidiophores with chains of disarticulating conidia. Scale bars: A = 450, B–C =<br />

10 µm.<br />

medium brown, smooth, wall ≤ 1 µm wide, ellipsoidal to obclavate<br />

or obovoid, with 1–3 apical hila, 10–25 × 3–5 µm, ramoconidia<br />

with broadly truncate base, not or barely attenuated, up to 4 µm<br />

wide, or at least somewhat attenuated at the base, hila 1.5–3 µm<br />

wide. Conidia subcylindrical to ellipsoid, 0(–1)-septate, pale brown,<br />

in chains of up to 10, 7–15 × 2–3 µm, hila truncate, unthickened,<br />

barely to somewhat darkened, 1–2 µm wide.<br />

Cultural characteristics: Colonies on PDA erumpent, spreading,<br />

with moderate aerial mycelium <strong>and</strong> smooth, even, submerged<br />

margins; olivaceous-grey in central part, iron-grey in outer region<br />

(surface); colonies fertile.<br />

Specimen examined: Colombia, Páramo de Guasca, 3400 m alt., isolated from<br />

dead leaf of Paepalanthus columbianus (Eriocaulaceae), Aug. 1980, W. Gams,<br />

holotype <strong>CBS</strong> H-19937, culture ex-type <strong>CBS</strong> 486.80.<br />

Notes: This isolate was originally identified as belonging to the<br />

Stenella araguata species complex. <strong>The</strong> latter name has been<br />

somewhat confused in the literature, <strong>and</strong> has been incorrectly<br />

applied to isolates associated with opportunistic human infections<br />

(de Hoog et al. 2000). <strong>The</strong> “araguata” species complex is treated<br />

elsewhere in the volume (see Crous et al. 2007a – this volume).<br />

www.studiesinmycology.org<br />

Penidiella cubensis (R.F. Castañeda) U. Braun, Crous & R.F.<br />

Castañeda, comb. nov. MycoBank MB504511. Fig. 10.<br />

Basionym: <strong>Cladosporium</strong> cubense R.F. Castañeda, Fungi Cubenses<br />

II (La Habana): 4. 1987.<br />

In vivo: Colonies on fallen leaves, amphigenous, effuse, pilose,<br />

brown. Mycelium usually external, superficial, but also internal,<br />

composed of branched, septate, brown, thin-walled, smooth to<br />

rough-walled hyphae, 2–3 µm wide. Stromata present, 40–80 µm<br />

diam, brown, immersed. Conidiophores densely fasciculate or in<br />

distinct synnemata, arising from stromata, erect, synnemata up<br />

to about 1000 µm long <strong>and</strong> (10–)20–40(–50) µm wide, individual<br />

threads filiform, pluriseptate throughout, brown, thin-walled (≤<br />

0.5 µm), smooth or almost so to distinctly verruculose, apically<br />

penicillate. Conidiogenous cells integrated, terminal <strong>and</strong> intercalary,<br />

10–30 µm long, subcylindrical, terminal conidiogenous cells often<br />

slightly enlarged at the tip, with (1–)2–3(–4) terminal or subterminal<br />

subdenticulate conidiogenous loci, short conically truncate, 1–2<br />

µm diam, unthickened or almost so, but often slightly refractive or<br />

darkened-refractive, intercalary conidiogenous cells usually with a<br />

single lateral locus just below the upper septum, conidiogenous cells<br />

giving rise to a single set of primary ramoconidia, or a sequence<br />

of ramoconidia at different levels. Ramoconidia cylindrical to<br />

ellipsoid-fusoid, 8–18(–25) × 2–3 µm, aseptate, pale olivaceous,<br />

olivaceous-brown to brown, thin-walled, smooth or almost so to<br />

19


Crous et al.<br />

Fig. 9. Penidiella columbiana (type material). A.<br />

Conidiophores. B. Ramoconidia. C. Secondary conidia.<br />

Scale bar = 10 µm. U. Braun del.<br />

faintly verruculose, ramoconidia with broadly truncate base, barely<br />

narrowed, or ramoconidia more or less attenuated at the base, hila<br />

1–2 µm wide, unthickened or almost so, but often slightly refractive<br />

or darkened-refractive. Conidia in long acropetal chains, narrowly<br />

ellipsoid-ovoid, fusiform, 5–12(–15) × (1–)1.5–3 µm, aseptate, pale<br />

olivaceous to brownish, thin-walled, smooth to faintly rough-walled,<br />

ends attenuated, hila 1–1.5 µm wide, unthickened, not darkened,<br />

at most somewhat refractive.<br />

Specimen examined: Cuba, Guantánamo, Maisí, on fallen leaves of Ficus sp., 24<br />

Apr. 1986, M. Camino, holotype INIFAT C86/134 (HAL 2019 F, ex holotype).<br />

Notes: <strong>Cladosporium</strong> cubense was not available in culture <strong>and</strong><br />

molecular sequence data are not available, but type material could<br />

be re-examined <strong>and</strong> revealed that this species is quite distinct from<br />

<strong>Cladosporium</strong> s. str., but agreeing with the concept of the <strong>genus</strong><br />

Penidiella. Penidiella cubensis differs from all other species of this<br />

<strong>genus</strong> in having densely fasciculate conidiophores to synnematous<br />

conidiomata, arising from stromata.<br />

Penidiella nect<strong>and</strong>rae Crous, U. Braun & R.F. Castañeda, nom.<br />

nov. MycoBank MB504512. Fig. 11.<br />

Basionym: <strong>Cladosporium</strong> ferrugineum R.F. Castañeda, Fungi<br />

Cubenses II (La Habana): 4. 1987, homonym, non C. ferrugineum<br />

Allesch., 1895.<br />

In vivo: Colonies amphigenous, brown. Mycelium internal <strong>and</strong><br />

external, superficial, composed of sparingly branched hyphae,<br />

septate, 1–3 µm wide, pale olivaceous-brown or brown, thinwalled<br />

(≤ 0.5 µm), smooth or almost so to distinctly verruculose,<br />

fertile cells giving rise to conidiophores somewhat swollen at the<br />

branching point, up to 5 µm diam, <strong>and</strong> somewhat darker. Stromata<br />

lacking. Conidiophores erect, straight, filiform, up to 350 µm long,<br />

2.5–4 µm wide, pluriseptate throughout, brown, darker below <strong>and</strong><br />

paler above, thin-walled, smooth, apex penicillate, terminal cell of<br />

the conidiophore with 2–4 short denticle-like loci giving rise to sets<br />

of conidiogenous cells or ramoconidia that then form a sequence of<br />

new sets of ramoconidia on different levels, i.e., the loose to dense,<br />

metula-like branching system is composed of conidiogenous cells<br />

<strong>and</strong> ramoconidia which are often barely distinguishable <strong>and</strong> turn<br />

into each other; conidiogenous loci terminal or subterminal, usually<br />

1–3(–4), subdenticulate, 1–2 µm diam, conical, apically truncate,<br />

unthickened or almost so, not to somewhat darkened-refractive.<br />

Ramoconidia with truncate base, barely attenuated, or ramoconidia<br />

distinctly attenuated at the truncate base, up to 20 × 2 µm, aseptate,<br />

at the apex with 2–3(–4) subdenticulate hila, subcylindrical,<br />

20


Phylogenetic lineages in the Capnodiales<br />

very pale olivaceous, olivaceous-brown to brown, sometimes<br />

with different shades of brown (heterochromatous), thin-walled<br />

(≤ 0.5 µm), smooth to faintly verruculose. Conidia in long acropetal<br />

chains, narrowly ellipsoid-ovoid, fusiform to cylindrical, 5–16 ×<br />

(1.5–)2(–2.5) µm, aseptate, very pale olivaceous, olivaceousbrown<br />

to brown, thin-walled, smooth to very faintly rough-walled,<br />

primary conidia with rounded apex <strong>and</strong> trunacte base, somewhat<br />

attenuated, secondary conidia truncate at both ends, hila 1–1.5<br />

µm diam, unthickened or almost so, at most slightly darkenedrefractive.<br />

Cultural characteristics: Colonies on PDA slimy, smooth, spreading;<br />

aerial mycelium absent, margins smooth, irregular; surface black<br />

with patches of cream. Colonies reaching 20 mm diam after 1 mo<br />

at 25 °C in the dark; colonies sterile on PDA, SNA <strong>and</strong> OA.<br />

Specimen examined: Cuba, Matanzas, San Miguel de los Baños, isolated from<br />

living leaves of Nect<strong>and</strong>ra coriacea (Lauraceae), 24 Jan. 1987, R.F. Castañeda <strong>and</strong><br />

G. Arnold, holotype INIFAT C87/45, culture ex-type <strong>CBS</strong> 734.87, <strong>and</strong> HAL 2018 F<br />

(ex-holotype).<br />

Notes: Although the ex-type strain of <strong>Cladosporium</strong> ferrugineum<br />

is sterile, its LSU DNA phylogeny reveals it to be unrelated to<br />

<strong>Cladosporium</strong> s. str. (see Fig. 1 in Crous et al. 2007a – this volume).<br />

Based on a re-examination of the type material it could clearly be<br />

shown that the morphology of this species fully agrees with the<br />

concept of the new <strong>genus</strong> Penidiella, which is supported by its<br />

phylogenetic position within Capnodiales.<br />

Fig. 10. Penidiella cubensis (type material). A. Swollen stromatic base of synnema.<br />

B. Conidiophores. C. Ramoconidia. D. Secondary conidia. Scale bar = 10 µm.<br />

U. Braun del.<br />

Penidiella rigidophora Crous, R.F. Castañeda & U. Braun, sp.<br />

nov. MycoBank MB504513. Figs 12–13.<br />

≡ <strong>Cladosporium</strong> rigidophorum R.F. Castañeda, nom. nud. (herbarium<br />

name).<br />

Differt a specibus Penidiellae conidiophoris dimorphosis, hyphis et conidiis ad septa<br />

saepe distincte constrictis.<br />

Mycelium consisting of strongly branched, septate, smooth or<br />

almost so, pale olivaceous to medium brown, guttulate, commonly<br />

constricted at septa, 2–6 µm wide hyphae, swollen cells up to 8<br />

µm wide, wall up to 1(–1.5) µm wide. Conidiophores dimorphic.<br />

Macronematous conidiophores separate, erect, subcylindrical,<br />

predominantly straight to slightly curved, terminally loosely<br />

penicillate, up to 120 µm long, <strong>and</strong> 4–5 µm wide at the base, which<br />

is neither lobed nor swollen, <strong>and</strong> lacks rhizoids, up to 10-septate,<br />

medium to dark brown, wall up to 1(–1.5) µm wide. Micronematous<br />

conidiophores erect, subcylindrical, up to 40 µm tall, 3–4 µm wide,<br />

1–3-septate, pale to medium brown (concolorous with hyphae).<br />

Conidiogenous cells predominantly terminal, rarely intercalary,<br />

medium brown, smooth, subcylindrical, but frequently swollen at<br />

apex, 10–20 × 5–6 µm, loci (predominantly single in micronematous<br />

conidiophores, but up to 4 in macronematous conidiophores) flattipped,<br />

sub-denticulate or not, 1–1.5 µm wide, barely to slightly<br />

darkened <strong>and</strong> thickened-refractive. Conidia in branched chains,<br />

medium brown, verruculose, (appearing like small spines under<br />

light microscope), ellipsoid to cylindrical-oblong, up to 1(–1.5)<br />

µm wide, frequently constricted at septa, which turn dark with<br />

age; ramoconidia (10–)13–17(–25) × 3–4(–5) µm, 1(–3)-septate;<br />

secondary conidia (7–)8–10(–12) × 3–4(–5); hila unthickened to<br />

very slightly thickened <strong>and</strong> darkened, not refractive, (0.5–)1(–1.5)<br />

µm.<br />

Fig. 11. Penidiella nect<strong>and</strong>rae (type material). A. Conidiophores. B. Ramoconidia.<br />

C. Secondary conidia. Scale bar = 10 µm. U. Braun del.<br />

Cultural characteristics: Colonies on PDA erumpent, spreading,<br />

with lobate margins <strong>and</strong> moderate aerial mycelium; iron-grey<br />

(surface), with a greenish black margin; reverse greenish black.<br />

Colonies reaching 20 mm diam after 1 mo at 25 °C in the dark;<br />

colonies fertile.<br />

www.studiesinmycology.org<br />

21


Crous et al.<br />

Fig. 12. Penidiella rigidophora (type material). A–F. Micronematous conidiophores giving rise to chains of conidia. G–H. Macronematous conidiophores (note base in G, <strong>and</strong><br />

apex in H). I. Conidia. Scale bars = 10 µm.<br />

Specimen examined: Cuba, isolated from leaf litter of Smilax sp. (Smilacaceae), 6.<br />

Nov. 1994, R.F. Castañeda, holotype <strong>CBS</strong> H-19938, culture ex-type <strong>CBS</strong> 314.95.<br />

Notes: <strong>Cladosporium</strong> rigidophorum is a herbarium name, which was<br />

never validly published. <strong>The</strong> ex-type strain, however, represents a<br />

new species of Penidiella, for which a valid name with Latin diagnosis<br />

is herewith provided. This species is easily distinguishable from all<br />

other taxa of Penidiella by forming distinct constrictions at hyphal<br />

<strong>and</strong> conidial septa as well as micronematous conidiophores (except<br />

for P. venezuelensis in which a few micronematous conidiophores<br />

have been observed). It is also phylogenetically distinct from the<br />

other taxa of Penidiella (see Fig. 1 in Crous et al. 2007a – this<br />

volume).<br />

22


Phylogenetic lineages in the Capnodiales<br />

Penidiella strumelloidea (Milko & Dunaev) Crous & U. Braun,<br />

comb. nov. MycoBank MB504514. Figs 14–15.<br />

Basionym: <strong>Cladosporium</strong> strumelloideum Milko & Dunaev, Novosti<br />

Sist. Nizsh. Rast. 23: 134. 1986.<br />

Mycelium consisting of branched, septate, smooth, hyaline to<br />

pale olivaceous, 1–4 µm wide hyphae, sometimes constricted at<br />

somewhat darker septa. Conidiophores solitary, erect, arising from<br />

superficial mycelium, micronematous, i.e., reduced to conidiogenous<br />

cells, or macronematous, subcylindrical, straight to slightly curved,<br />

subcylindrical throughout or often somewhat attenuated towards the<br />

apex, 12–80 × (2–)2.5–4 µm, 0–6-septate, medium brown, smooth,<br />

wall ≤ 0.75 µm, penicillate apex formed by a terminal conidiogenous<br />

cell giving rise to a single set of ramoconidia. Conidiogenous cells<br />

terminal, integrated, subcylindrical, straight, 8–12 × 1.5–2(–2.5)<br />

µm, pale brown, thin-walled, smooth, apex obtusely rounded to<br />

somewhat clavate; loci terminal, occasionally subterminal or lateral,<br />

unthickened or almost so to slightly thickened <strong>and</strong> darkened, not<br />

refractive, 1–1.5 µm wide. Conidia in branched chains; ramoconidia<br />

subcylindrical, with 1–3 terminal loci, olivaceous-brown, smooth;<br />

secondary conidia ellipsoidal, with one side frequently straight <strong>and</strong><br />

the other convex, straight to slightly curved, (8–)10–12(–20) × 2(–<br />

3) µm, subhyaline to olivaceous-brown, smooth, thin-walled; hila<br />

unthickened or almost so to somewhat thickened <strong>and</strong> darkened,<br />

not refractive, 1 µm wide.<br />

Cultural characteristics: Colonies on PDA erumpent, spreading,<br />

with abundant, dense to woolly aerial mycelium, <strong>and</strong> uneven,<br />

feathery margins; surface pale olivaceous grey, reverse iron-grey.<br />

Colonies reaching 25 mm diam after 1 mo at 25 °C in the dark;<br />

colonies fertile.<br />

Fig. 13. Penidiella rigidophora (type material). A. Hyphae. B. Conidiophores. C.<br />

Ramoconidia. D. Secondary conidia. Scale bar = 10 µm. U. Braun del.<br />

Specimen examined: Russia, Yaroslavl Region, Rybinsk Reservoir, mouth of<br />

Sutka River, isolated from leaf of Carex sp. (Cyperaceae), from stagnant water, S.<br />

Ozerskaya, holotype BKMF-2534, culture ex-type <strong>CBS</strong> 114484.<br />

Fig. 14. Penidiella strumelloidea (type<br />

material). A–B. Micronematous conidiophores.<br />

C–D. Macronematous conidiophores. E–G.<br />

Conidia. Scale bars = 10 µm.<br />

www.studiesinmycology.org<br />

23


Crous et al.<br />

conidiophores, about 10–15 × 2–3 µm. Conidiogenous cells<br />

terminal <strong>and</strong> intercalary, unbranched, subcylindrical, 5–12 × 3–4<br />

µm, medium brown, smooth or almost so to finely verruculose,<br />

apex of conidiogenous cells frequently swollen, up to 6 µm diam,<br />

with 1–3(–4) flat-tipped, non to slightly thickened, non to slightly<br />

darkened-refractive loci, 1–1.5 µm wide, frequently appearing<br />

subdenticulate, up to 1.5 µm long, intercalary conidiogenous cells<br />

also slightly swollen at the conidiogenous portion just below the<br />

upper septum, which render the conidiophores subnodulose to<br />

nodulose, swellings round about the conidiophore axis or unilateral.<br />

Conidia ellipsoid-ovoid, subcylindrical, pale to medium olivaceousbrown<br />

or brown, finely verruculose, wall ≤ 0.5 µm wide, guttulate or<br />

not, occurring in branched chains. Ramoconidia 0–1(–3)-septate,<br />

5–15(–22) × 3–4(–5) µm, with 1–3 subdenticulate apical hila;<br />

secondary conidia 0(–1)-septate, ellipsoid, obovoid to irregular,<br />

(4–)5–7(–8) × (2–)2.5–3(–4) µm; hila non to slightly thickened, non<br />

to slightly darkened-refractive, (0.5–)1(–1.5) µm wide.<br />

Cultural characteristics: Colonies on OA erumpent, spreading,<br />

with dense, compact aerial mycelium, <strong>and</strong> even, smooth margins;<br />

olivaceous-grey (surface), margins iron-grey. Colonies reaching 22<br />

mm diam after 1 mo at 25 °C in the dark.<br />

Specimen examined: Venezuela, isolated from man with tinea nigra, Jan. 1975, D.<br />

Borelli, holotype <strong>CBS</strong> H-19934, culture ex-type <strong>CBS</strong> 106.75.<br />

Fig. 15. Penidiella strumelloidea (type material). A. Hyphae. B. Conidiophores. C.<br />

Ramoconidia. D. Secondary conidia. Scale bars = 10 µm. U. Braun del.<br />

Notes: Penidiella strumelloidea resembles other species of<br />

Penidiella by having penicillate conidiophores with a conidiogenous<br />

apparatus giving rise to branched conidial chains. It differs, however,<br />

from all other species of this <strong>genus</strong> in having a rather simple<br />

penicillate apex composed of a single terminal conidiogenous<br />

cell giving rise to one set of ramoconidia which form frequently<br />

somewhat curved conidia. It is also phylogenetically distinct from<br />

the other taxa of Penidiella (see Fig. 1 in Crous et al. 2007a – this<br />

volume).<br />

Penidiella venezuelensis Crous & U. Braun, sp. nov. MycoBank<br />

MB504515. Figs 16–17.<br />

Etymology: Named after the geographic location of its type strain,<br />

Venezuela.<br />

Differt a P. columbiana conidiophoris bevioribus et angustioribus, ad 120 × 3–4 µm,<br />

subnodulosis, apice plus minusve laxe penicillatis et conidiis brevioribus, (4–)5–7(–<br />

8) µm longis.<br />

Mycelium consisting of branched, septate, smooth to faintly<br />

rough-walled, thin-walled, subhyaline, pale olivaceous to medium<br />

brown, (1.5–)2–3 µm wide hyphae. Conidiophores solitary, erect,<br />

macronematous, subcylindrical, straight to flexuous to once<br />

geniculate, up to 120 µm long, 3–4 µm wide, 1–12-septate, pale to<br />

medium olivaceous-brown or brown, thin-walled (up to about 1 µm),<br />

terminally penicillate, branched portion composed of true branchlets<br />

<strong>and</strong>/or a single set or several sets of ramoconidia, branchlets up<br />

to 50 µm long; occasionally with a few additional micronematous<br />

Notes: <strong>The</strong> type culture of Penidiella venezuelensis was originally<br />

determined as Stenella araguata from which it is, however,<br />

quite distinct by having smooth mycelium, long penicillate<br />

conidiophores with subdenticulate conidiogenous loci, smaller<br />

conidia, <strong>and</strong> agreeing with the concept of the <strong>genus</strong> Penidiella. It is<br />

phylogenetically distinct from the other taxa of Penidiella (see Fig.<br />

1 in Crous et al. 2007a – this volume).<br />

Pseudotaeniolina J.L. Crane & Schokn., Mycologia 78: 88. 1986.<br />

? = Friedmanniomyces Onofri, Nova Hedwigia 68: 176. 1999.<br />

Type species: Pseudotaeniolina convolvuli (Esf<strong>and</strong>.) J.L. Crane &<br />

Schokn., Mycologia 78: 88. 1986.<br />

Description: Crane & Schoknecht (1986, figs 3–19).<br />

Notes: No cultures or sequence data are available of the type<br />

species, <strong>and</strong> Pseudotaeniolina globosa De Leo, Urzì & de Hoog was<br />

placed in Pseudotaeniolina based on its morphology <strong>and</strong> ecology.<br />

<strong>The</strong> <strong>genus</strong> Friedmanniomyces is presently known from two species<br />

(Selbmann et al. 2005). Morphologically Friedmanniomyces is<br />

<strong>similar</strong> to Pseudotaeniolina, but fresh material of Pseudotaeniolina<br />

convolvuli needs to be recollected before this can be clarified.<br />

Readeriella Syd. & P. Syd., Ann. Mycol. 6: 484. 1908.<br />

= Kirramyces J. Walker, B. Sutton & Pascoe, Mycol. Res. 96: 919. 1992.<br />

= Colletogloeopsis Crous & M.J. Wingf., Canad. J. Bot. 75: 668. 1997.<br />

Synanamorphs: Cibiessia Crous, Fungal Diversity 26: 151. 2007;<br />

also pseudocercospora-like, see Crous (1998).<br />

Type species: Readeriella mirabilis Syd. & P. Syd., Ann. Mycol. 6:<br />

484. 1908.<br />

Description: Crous et al. (2004b; figs 36–38).<br />

Notes: Several coelomycete genera are presently available<br />

to accommodate anamorphs of Capnodiales that reside in<br />

Teratosphaeriaceae, for which Readeriella is the oldest name. Other<br />

genera such as Phaeophleospora Rangel, Sonderhenia H.J. Swart<br />

& J. Walker <strong>and</strong> Lecanosticta Syd. belong to Mycosphaerellaceae.<br />

24


Phylogenetic lineages in the Capnodiales<br />

Fig. 16. Penidiella venezuelensis (type material). A. Microconidiophore. B. Apical part of macroconidiophore. C–F. Chains of conidia. Scale bars = 10 µm.<br />

Readeriella is polyphyletic within Teratosphaeriaceae. <strong>The</strong><br />

recognition <strong>and</strong> circumscription (synonymy) of this <strong>genus</strong> follows the<br />

principles for anamorph genera within Capnodiales as outlined in the<br />

introduction to this volume. <strong>The</strong> only unifying character is conidial<br />

pigmentation, <strong>and</strong> the mode of conidiogenesis. Conidiogenous<br />

cells range from mono- to polyphialides with periclinal thickening,<br />

to phialides with percurrent proliferation, as observed in the type<br />

species, R. mirabilis (Fig. 18). Within the form <strong>genus</strong> conidia vary<br />

from aseptate to multiseptate, smooth to rough, <strong>and</strong> have a range<br />

of synanamorphs. Readeriella mirabilis has a synanamorph with<br />

cylindrical, aseptate conidia, while other species of Readeriella<br />

again have Cibiessia synanamorphs (scytalidium-like, with chains<br />

of dry, disarticulating conidia), suggesting the conidial morphology<br />

to be quite plastic. A re-examination of R. readeriellophora Crous &<br />

Mansilla revealed pycnidia to form a central cushion on which the<br />

conidiogenous cells are arranged (Fig. 18). This unique feature is<br />

commonly known in genera such as Coniella Höhn. <strong>and</strong> Pilidiella<br />

Petr. & Syd. (Diaporthales) (Van Niekerk et al. 2004), <strong>and</strong> has never<br />

been observed among anamorphs of the Capnodiales. Another<br />

species of Readeriella, namely “Phaeophleospora” toledana Crous<br />

& Bills, again forms paraphyses interspersed among conidiogenous<br />

cells, a rare feature in this group of fungi, while several species<br />

Fig. 17. Penidiella venezuelensis (type material). A. Hypha. B. Micronematous<br />

conidiophores. C. Macronematous conidiophores. D–E. Ramoconidia. F. Secondary<br />

conidia. Scale bar = 10 µm. U. Braun del.<br />

www.studiesinmycology.org<br />

25


Crous et al.<br />

have conidiomata ranging from acervuli to pycnidia (Cortinas et<br />

al. 2006). Phylogenetically this coelomycete morphology, with<br />

its characteristic conidiogenesis, has evolved several times in<br />

Teratosphaeriaceae.<br />

Readeriella blakelyi (Crous & Summerell) Crous & U. Braun,<br />

comb. nov. MycoBank MB504516.<br />

Basionym: Colletogloeopsis blakelyi Crous & Summerell, Fungal<br />

Diversity 23: 342. 2006.<br />

Readeriella brunneotingens Crous & Summerell, sp. nov.<br />

MycoBank MB504517. Fig. 19.<br />

Etymology: Named after the diffuse brown pigment visible in agar<br />

when cultivated on MEA.<br />

Readeriellae gauchensi similis, sed coloniis viridi-atris et pigmento brunneo in agaro<br />

diffundente distinguenda.<br />

Leaf spots amphigenous, irregular specks up to 3 mm diam,<br />

medium brown with a thin, raised, concolorous border. Conidiomata<br />

amphigenous, substomatal, exuding conidia in black masses;<br />

conidiomata pycnidial in vivo <strong>and</strong> in vitro, globose, brown to black,<br />

up to 120 µm diam; wall consisting of 3–4 cell layers of brown<br />

cells of textura angularis. Conidiogenous cells brown, verruculose,<br />

aseptate, doliiform to ampulliform, or reduced to inconspicuous loci<br />

on hyphae (in vitro), proliferating percurrently near the apex, 5–7 ×<br />

3–5 µm; sympodial proliferation also observed in culture. Conidia<br />

brown, smooth to finely verruculose, ellipsoidal to subcylindrical,<br />

apex obtuse to subobtuse, tapering to a subtruncate or truncate<br />

base (1–1.5 µm wide) with inconspicuous, minute marginal frill,<br />

(5–)6–7(–8) × 2–3(–3.5) µm in vitro, becoming 1-septate; in older<br />

cultures becoming swollen, <strong>and</strong> up to 2-septate, 15 µm long <strong>and</strong><br />

5 µm wide.<br />

Cultural characteristics: Colonies on MEA reaching 20 mm diam<br />

after 2 mo at 25 °C; colonies erumpent, aerial mycelium sparse to<br />

absent, margins smooth but irregularly lobate; surface irregularly<br />

folded, greenish black, with profuse sporulation, visible as oozing<br />

black conidial masses; a diffuse dark-brown pigment is also<br />

produced, resulting in inoculated MEA plates appearing darkbrown.<br />

Specimen examined: Australia, Queensl<strong>and</strong>, Cairns, Eureka Creek, 48 km from<br />

Mareeba, S 17° 11’ 13.2”, E 145° 02’ 27.4”, 468 m, on leaves of Eucalyptus<br />

tereticornis, 26 Aug. 2006, P.W. Crous, <strong>CBS</strong>-H 19838 holotype, culture ex-type<br />

CPC 13303 = <strong>CBS</strong> 120747.<br />

Notes: Conidial dimensions of R. brunneotingens closely<br />

match those of Readeriella gauchensis (M.-N. Cortinas, Crous<br />

& M.J. Wingf.) Crous (Cortinas et al. 2006). <strong>The</strong> two species<br />

can be distinguished in culture, however, in that colonies of R.<br />

brunneotingens are greenish black in colour, sporulate profusely,<br />

<strong>and</strong> exude a diffuse, brown pigment into the agar, whereas colonies<br />

of R. gauchensis are more greenish olivaceous, <strong>and</strong> exude a yellow<br />

pigment into the agar (Cortinas et al. 2006).<br />

Readeriella considenianae (Crous & Summerell) Crous & U.<br />

Braun, comb. nov. MycoBank MB504518.<br />

Basionym: Colletogloeopsis considenianae Crous & Summerell,<br />

Fungal Diversity 23: 343. 2006.<br />

≡ Phaeophleospora destructans (M.J. Wingf. & Crous) Crous, F.A. Ferreira<br />

& B. Sutton, S. African J. Bot. 63: 113. 1997.<br />

Readeriella dimorpha (Crous & Carnegie) Crous & U. Braun,<br />

comb. nov. MycoBank MB504520.<br />

Basionym: Colletogloeopsis dimorpha Crous & Carnegie, Fungal<br />

Diversity 23: 345. 2006.<br />

Readeriella gauchensis (M.-N. Cortinas, Crous & M.J. Wingf.)<br />

Crous & U. Braun, comb. nov. MycoBank MB504521.<br />

Basionym: Colletogloeopsis gauchensis M.-N. Cortinas, Crous &<br />

M.J. Wingf., Stud. Mycol. 55: 143. 2006.<br />

Readeriella pulcherrima (Gadgil & M. Dick) Crous & U. Braun,<br />

comb. nov. MycoBank MB504522.<br />

Basionym: Septoria pulcherrima Gadgil & M. Dick, New Zeal<strong>and</strong> J.<br />

Bot. 21: 49. 1983.<br />

≡ Stagonospora pulcherrima (Gadgil & M. Dick) H.J. Swart, Trans. Brit.<br />

Mycol. Soc. 90: 285. 1988.<br />

= Cercospora eucalypti Cooke & Massee, Grevillea 18: 7. 1889.<br />

≡ Kirramyces eucalypti (Cooke & Massee) J. Walker, B. Sutton & Pascoe,<br />

Mycol. Res. 96: 920. 1992.<br />

≡ Phaeophleospora eucalypti (Cooke & Massee) Crous, F.A. Ferreira & B.<br />

Sutton, S. African J. Bot. 63: 113. 1997.<br />

Notes: <strong>The</strong> epithet “eucalypti” is preoccupied by Readeriella<br />

eucalypti (Gonz. Frag.) Crous (Summerell et al., 2006), <strong>and</strong> thus<br />

the synonym “pulcherrima” becomes the next available name for<br />

this species.<br />

Readeriella readeriellophora, see Teratosphaeria readeriellophora.<br />

Fig. 18.<br />

Readeriella stellenboschiana (Crous) Crous & U. Braun, comb.<br />

nov. MycoBank MB504523.<br />

Basionym: Colletogloeopsis stellenboschiana Crous, Stud. Mycol.<br />

55: 110. 2006.<br />

Readeriella zuluensis (M.J. Wingf., Crous & T.A. Cout.) Crous &<br />

U. Braun, comb. nov. MycoBank MB504524.<br />

Basionym: Coniothyrium zuluense M.J. Wingf., Crous & T.A. Cout.,<br />

Mycopathologia 136: 142. 1997.<br />

≡ Colletogloeopsis zuluensis (M.J. Wingf., Crous & T.A. Cout.) M.-N.<br />

Cortinas, M.J. Wingf. & Crous (zuluense), Mycol. Res. 110: 235. 2006.<br />

Staninwardia B. Sutton, Trans. Br. Mycol. Soc. 57: 540. 1971.<br />

Type species: Staninwardia breviuscula B. Sutton, Trans. Br. Mycol.<br />

Soc. 57: 540. 1971.<br />

Description: Sutton (1971; fig. 1).<br />

Notes: <strong>The</strong> <strong>genus</strong> Staninwardia presently contains two species,<br />

namely S. breviuscula <strong>and</strong> Staninwardia suttonii Crous & Summerell<br />

(Summerell et al. 2006), though its placement in Capnodiales was<br />

less well resolved. <strong>The</strong> <strong>genus</strong> forms acervuli on brown leaf spots,<br />

with brown, catenulate conidia covered in a mucilaginous sheath.<br />

Readeriella destructans (M.J. Wingf. & Crous) Crous & U. Braun,<br />

comb. nov. MycoBank MB504519.<br />

Basionym: Kirramyces destructans M.J. Wingf. & Crous, S. African<br />

J. Bot. 62: 325. 1996.<br />

26


Phylogenetic lineages in the Capnodiales<br />

Fig. 18. A–E. Readeriella mirabilis. A. Conidium with conidial cirrus. B. Conidiogenous cells with percurrent proliferation. C. Macroconidia. D. Slightly pigmented, verruculose<br />

conidiogenous cell. E. Macro- <strong>and</strong> microconidia. F–I. Readeriella readeriellophora (type material). F. Colony on OA. G. Central stromatal tissue giving rise to conidiophores. H.<br />

Conidiogenous cells. I. Conidia. Scale bars = 10 µm.<br />

Fig. 19. Readeriella brunneotingens (type material). A. Leaf spot. B. Colony on MEA. C–D. Conidia. Scale bar = 10 µm.<br />

www.studiesinmycology.org<br />

27


Crous et al.<br />

Schizothyriaceae clade<br />

Schizothyrium Desm., Ann. Sci. Nat., Bot., sér. 3: 11. 1849.<br />

Type species: Schizothyrium acerinum Desm., Ann. Sci. Nat., Bot.,<br />

sér. 3: 11. 1849.<br />

Description: Batzer et al. (2007; figs 3–7).<br />

Notes: Species of Schizothyrium (Schizothyriaceae) have<br />

Zygophiala E.W. Mason anamorphs, <strong>and</strong> were recently shown to<br />

be allied to Mycosphaerellaceae (Batzer et al. 2007). Although<br />

species of Schizothyrium have thyrothecia, they cluster among<br />

genera with pseudothecial ascomata, questioning the value of this<br />

character at the family level. Based on its bitunicate asci <strong>and</strong> 1-<br />

septate ascospores, the teleomorph is comparable to others in the<br />

Capnodiales.<br />

Mycosphaerellaceae clade<br />

Mycosphaerella subclade<br />

Mycosphaerella Johanson, Öfvers. Förh. Kongl. Svenska<br />

Vetensk.-Akad. 41(9): 163. 1884.<br />

Type species: Mycosphaerella punctiformis (Pers. : Fr.) Starbäck,<br />

Bih. Kongl. Svenska Vetensk.-Akad. H<strong>and</strong>l. 15(3, 2): 9. 1889.<br />

Anamorph: Ramularia endophylla Verkley & U. Braun, Mycol. Res.<br />

108: 1276. 2004.<br />

Description: Verkley et al. (2004; figs 3–16).<br />

Notes: <strong>The</strong> <strong>genus</strong> Mycosphaerella has in the past been linked to 23<br />

anamorph genera (Crous et al. 2000), while additional genera have<br />

been linked via DNA-based studies, bringing the total to at least 30<br />

genera (Crous & Braun 2003, Crous et al. 2007b). However, based<br />

on ITS <strong>and</strong> SSU DNA phylogenetic studies <strong>and</strong> a reassessment of<br />

morphological characters <strong>and</strong> conidiogenesis, several anamorph<br />

genera have recently been reduced to synonymy (Crous & Braun<br />

2003, Crous et al. 2006a). Furthermore, the DNA sequence data<br />

generated to date clearly illustrate that the anamorph genera in<br />

Mycosphaerella are polyphyletic, residing in several clades within<br />

Mycosphaerella. If future collections not known from culture or DNA<br />

sequences are to be described in form genera, we recommend that<br />

the concepts as explained in Crous & Braun (2003) be used until<br />

such stage as they can be placed in Mycosphaerella, pending<br />

a modification of Art. 59 of the International Code of Botanical<br />

Nomenclature. <strong>The</strong> <strong>genus</strong> Mycosphaerella <strong>and</strong> its anamorphs<br />

represent a future topical issue of the Studies in Mycology, <strong>and</strong> will<br />

thus be treated separately.<br />

Dissoconium subclade<br />

Dissoconium de Hoog, Oorschot & Hijwegen, Proc. K. Ned. Akad.<br />

Wet., Ser. C, Biol. Med. Sci. 86(2): 198. 1983.<br />

Type species: Dissoconium aciculare de Hoog, Oorschot &<br />

Hijwegen, Proc. K. Ned. Akad. Wet., Ser. C, Biol. Med. Sci. 86(2):<br />

198. 1983.<br />

? = Uwebraunia Crous & M.J. Wingf., Mycologia 88: 446. 1996.<br />

Teleomorph: Mycosphaerella-like.<br />

Description: de Hoog et al. (1983), Crous (1998), Crous et al.<br />

(2004b; figs 3–10).<br />

Notes: <strong>The</strong> <strong>genus</strong> Dissoconium presently encompasses six<br />

species (Crous et al. 2007b), of which two, M. lateralis Crous &<br />

M.J. Wingf. (D. dekkeri de Hoog & Hijwegen), <strong>and</strong> M. communis<br />

Crous & Mansilla (D. commune Crous & Mansilla) are also known<br />

from their Mycosphaerella-like teleomorphs. No teleomorph <strong>genus</strong><br />

will be introduced for this clade, however, until more sexual species<br />

have been collected to help clarify the morphological features of<br />

this <strong>genus</strong>. A further complication lies in the fact that yet other<br />

species, morphologically distinct from Dissoconium, also cluster in<br />

this clade (Crous, unpubl. data).<br />

“Passalora” zambiae subclade<br />

“Passalora” zambiae Crous & T.A. Cout., Stud. Mycol. 50: 209.<br />

2004.<br />

Description: Crous et al. (2004b; figs 32–33).<br />

Notes: This fungus was placed in the form <strong>genus</strong> “Passalora”<br />

based on its smooth mycelium, giving rise to conidiophores forming<br />

branched chains of brown conidia with thickened, darkened,<br />

refractive hila. Although derived from single ascospores, the<br />

teleomorph material was lost, <strong>and</strong> thus it needs to be recollected<br />

before the relavance of its phylogenetic position can be fully<br />

understood.<br />

Additional teleomorph genera considered<br />

Coccodinium A. Massal., Atti Inst. Veneto Sci. Lett. Arti, Série 2,<br />

5: 336. 1860. (Fig. 20).<br />

Type species: Coccodinium bartschii A. Massal., Atti Inst. Veneto<br />

Sci. Lett. Arti, Série 2, 5: 337. 1860.<br />

Description: Eriksson (1981, figs 34–35).<br />

Notes: <strong>The</strong> <strong>genus</strong> Coccodinium (Coccodiniaceae) is characterised<br />

by having ascomata that are sessile on a subiculum, or somewhat<br />

immersed, semiglobose, collapsed when dry, brownish, uniloculate,<br />

with a centrum that stains blue in IKI (iodine potassium iodide).<br />

Asci are bitunicate, stalked, 8-spored, saccate, <strong>and</strong> have a thick,<br />

undifferentiated endotunica. Periphyses <strong>and</strong> periphysoids are<br />

well-developed <strong>and</strong> numerous. Ascospores are elongate, fusiform,<br />

ellipsoidal or clavate, transversely septate or muriform, hyaline or<br />

brownish (Eriksson 1981), <strong>and</strong> lack a mucous sheath. Based on a<br />

SSU sequence (GenBank accession U77668) derived from a strain<br />

identified as C. bartschii (Winka et al. 1998), Coccodinium appears<br />

to be allied to the taxa treated here in Teratosphaeria. Freshly<br />

collected cultures are relatively slow growing, <strong>and</strong> on MEA they<br />

form erumpent round, black colonies with sparse hyphal growth. On<br />

the surface of these colonies hyphal str<strong>and</strong>s, consisting of brown,<br />

globose cells, give rise to conidia. Older cells (up to 15 µm diam)<br />

become fertile, giving rise to 1–3 conidia via inconspicuous phialidic<br />

loci. Conidia are fusoid-ellipsoidal to clavate, 3–5-septate, becoming<br />

constricted at the transverse septa, apex obtuse, base subtruncate,<br />

guttulate, smooth, widest in the upper third of the conidium, 15–<br />

40 × 4–7 µm. Phylogenetically Coccodinium is thus allied to the<br />

Chaetothyriales (Fig. 1), <strong>and</strong> not the Teratosphaeriaceae.<br />

28


Phylogenetic lineages in the Capnodiales<br />

Fig. 20. Coccodinium bartschii. A. Ascomata on host. B. Ostiolar area. C. Periphysoids. D–E. Ascospores shot onto agar. F–I. Asci with thick ectotunica. J–K. Young ascospores.<br />

L–M. Mature ascospores. N. Colony on MEA. O–Q. Conidiogenous cells giving rise to conidia. R–S. Conidia. Scale bars: A, N = 250, B, D, F–G, I, L–M, O = 10 µm.<br />

www.studiesinmycology.org<br />

29


Crous et al.<br />

Fig. 21. Stigmidium schaereri. A. Lichenicolous habit on Dacampia hookeri. B. Vertical section through an ascoma. C–D. Asci. E–G. Ascospores. H. Older, brown ascospores.<br />

Scale bars = 10 µm.<br />

Stigmidium Trevis., Consp. Verruc.: 17. 1860. (Fig. 21).<br />

Type species: Stigmidium schaereri (A. Massal.) Trevis., Consp.<br />

Verruc.: 17. 1860.<br />

Description: Roux & Triebel (1994, figs 47–50).<br />

Notes: <strong>The</strong> type species of the <strong>genus</strong> is lichenicolous, characterised<br />

by semi-immersed, black, globose ascomata with ostiolar<br />

periphyses <strong>and</strong> periphysoids. Asci are 8-spored, fasciculate,<br />

bitunicate, (endotunica not giving a special reaction in Congo red<br />

or toluidine blue). Ascospores are fusoid-ellipsoidal, medianly 1-<br />

septate, guttulate, thin-walled, lacking a sheath. Presently no<br />

culture is available, <strong>and</strong> thus the placement of Stigmidium remains<br />

unresolved.<br />

Discussion<br />

From the LSU sequence data presented here, it is clear that<br />

Mycosphaerella is not monophyletic as previously suggested (Crous<br />

et al. 2001, Goodwin et al. 2001). <strong>The</strong> first step to circumscribe<br />

natural genera within this complex was taken by Braun et al. (2003),<br />

who separated <strong>Cladosporium</strong> anamorphs from this complex,<br />

<strong>and</strong> erected Davidiella (Davidiellaceae; Schoch et al. 2006) to<br />

accommodate their teleomorphs. <strong>The</strong> present study reinstates<br />

the <strong>genus</strong> Teratosphaeria for a clade of largely extremotolerant<br />

fungi (Selbmann et al. 2005) <strong>and</strong> foliar pathogens of Myrtaceae<br />

<strong>and</strong> Proteaceae (Crous et al. 2004a, b, 2006b, 2007b), <strong>and</strong> further<br />

separates generic subclades within the Mycosphaerellaceae,<br />

while Batzer et al. (2007) again revealed Schizothyrium Desm.<br />

(Schizothyriaceae) to cluster within the Mycosphaerellaceae. Our<br />

results, however, provide support for recognition of Schizothyrium as<br />

a distinct <strong>genus</strong>, although Schizothyriaceae was less well supported<br />

as being separate from Mycosphaerellaceae (Capnodiales).<br />

Although pleomorphism represents a rather unstudied<br />

phenomenon in this group of fungi, it has been observed in several<br />

species. Within the Teratosphaeria clade, Crous et al. (2007b)<br />

recently demonstrated teleomorphs to have Readeriella <strong>and</strong><br />

Cibiessia synanamorphs, while the black yeast genera that belong<br />

to this clade, commonly have more than one anamorph state in<br />

culture. <strong>The</strong> present study also revealed Readeriella mirabilis to<br />

have two conidial types in culture, <strong>and</strong> to be highly plastic regarding<br />

its mode of conidiogenesis, <strong>and</strong> Readeriella to be the oldest generic<br />

name available for a large group of leaf-spotting coelomycetes in<br />

the Teratosphaeriaceae (Capnodiales).<br />

Although not commonly documented, there are ample<br />

examples of synanamorphs in Capnodiales. Within Mycosphaerella,<br />

Beilharz et al. (2004) described Passalora perplexa Beilharz,<br />

Pascoe, M.J. Wingf. & Crous as a species with a coelomycete<br />

<strong>and</strong> yeast synanamorph, while Crous & Corlett (1998) described<br />

Mycosphaerella stigmina-platani F.A. Wolf to have a Cercostigmina<br />

U. Braun <strong>and</strong> Xenostigmina Crous synanamorph, <strong>and</strong> recent<br />

collections also revealed the presence of a <strong>similar</strong> species that has<br />

typical “Stigmina” (distoseptate conidia) <strong>and</strong> Pseudocercospora<br />

(euseptate conidia) synanamorphs (Crous, unpubl. data), <strong>and</strong><br />

Crous (1998) reported Readeriella epicoccoides (coelomycete) to<br />

30


Phylogenetic lineages in the Capnodiales<br />

have a Cercostigmina (hyphomycete) synanamorph in culture.<br />

Although the Mycosphaerella complex encompasses<br />

thous<strong>and</strong>s of names, it may appear strange that it is only now that<br />

more clarity is obtained regarding the phylogenetic relationships<br />

among taxa in this group. This is partly due to the fact that these<br />

organisms are cultivated with difficulty, <strong>and</strong> also that the first paper<br />

to address the taxonomy of this complex based on DNA sequence<br />

data was only relatively recently published (Stewart et al. 1999).<br />

In the latter study, the <strong>genus</strong> Paracercospora Deighton (scars<br />

minutely thickened along the rim), was shown to be synonymous<br />

with the older <strong>genus</strong> Pseudocercospora. Similarily, Crous et al.<br />

(2001) showed that Cercostigmina (rough, irregular percurrent<br />

proliferations) was also synonymous with Pseudocercospora.<br />

This led Crous & Braun (2003) to conclude that conidiomatal type,<br />

conidial catenulation, septation <strong>and</strong> proliferation of conidiogenous<br />

cells were of less importance in separating species at the generic<br />

level. Mycovellosiella Rangel <strong>and</strong> Phaeoramularia Munt.-Cvetk.<br />

were subsequently reduced to synonymy with the older name,<br />

Passalora Fr., <strong>and</strong> characters identified as significant at the generic<br />

level were pigmentation (Cercospora vs. Passalora), scar structure<br />

(Passalora vs. Pseudocercospora), <strong>and</strong> verruculose superficial<br />

hyphae (Stenella vs. Passalora). Due to the unavailability of<br />

cultures, no decision was made regarding Stenella (verrucose<br />

conidia <strong>and</strong> mycelium), Stigmina (distoseptate conidia), <strong>and</strong><br />

several other, less well-known genera such as Asperisporium<br />

Maubl., Denticularia Deighton, Distocercospora N. Pons & B.<br />

Sutton, Prathigada Subram., Ramulispora, Pseudocercosporidium<br />

Deighton, Stenellopsis B. Huguenin <strong>and</strong> Verrucisporota D.E. Shaw<br />

& Alcorn. In a recent study, however, Crous et al. (2006a) were<br />

able to show that Phaeoisariopsis (synnemata, conidia with slightly<br />

thickened hila) <strong>and</strong> Stigmina (distoseptate conidia) were also<br />

synonyms of Pseudocercospora.<br />

<strong>The</strong> present study shows that most anamorph genera are<br />

polyphyletic within Teratosphaeria, <strong>and</strong> paraphyletic within<br />

Capnodiales. In some cases, generic concepts of anamorphs<br />

based on morphology <strong>and</strong> conidium ontogeny conform well with<br />

phylogenetic relationships, though this is not true in all cases due<br />

to convergence. Nevertheless, anamorphs still convey valuable<br />

morphological information that is contained in the anamorph name,<br />

<strong>and</strong> naming anamorphs continue to provide a practical system to<br />

identify the various asexual taxa encountered.<br />

Acknowledgements<br />

We gratefully acknowledge several colleagues in different countries who have<br />

collected the material studied here, without which this work would not have been<br />

possible. We thank M. Vermaas for preparing the photographic plates. M. Grube is<br />

gratefully acknowledged for sending us fresh material of Stigmidium to include in<br />

this study, <strong>and</strong> D. Triebel <strong>and</strong> M. Grube are thanked for advice regarding the strain of<br />

hamathecial tissue in Stigmidium. K.A. Seifert is thanked for numerous discussions<br />

about anamorph concepts <strong>and</strong> advice pertaining to this paper, <strong>and</strong> for recollecting<br />

Coccodinium bartschii to enable us to clarify its phylogeny. J.K. Stone is thanked for<br />

commenting on an earlier draft version of this paper.<br />

References<br />

Aptroot A (2006). Mycosphaerella <strong>and</strong> its anamorphs: 2. Conspectus of<br />

Mycosphaerella. <strong>CBS</strong> Biodiversity Series 5: 1–231.<br />

Barnes I, Crous PW, Wingfield BD, Wingfield MJ (2004). Multigene phylogenies<br />

reveal that red b<strong>and</strong> needle blight of Pinus is caused by two distinct species of<br />

Dothistroma, D. septosporum <strong>and</strong> D. pini. Studies in Mycology 50: 551–565.<br />

Barr ME (1972). Preliminary studies on the Dothideales in temperate North America.<br />

Contributions from the University of Michigan Herbarium 9: 523–638.<br />

Batzer JC, Mercedes Diaz Arias M, Harrington TC, Gleason ML, Groenewald JZ,<br />

Crous PW (2007). Four species of Zygophiala (Schizothyriaceae, Capnodiales)<br />

are associated with the sooty blotch <strong>and</strong> flyspeck complex on apple. Mycologia:<br />

in press.<br />

Beilharz VC, Pascoe IG, Wingfield MJ, Tjahjono B, Crous PW (2004). Passalora<br />

perplexa, an important pleoanamorphic leaf blight pathogen of Acacia<br />

crassicarpa in Australia <strong>and</strong> Indonesia. Studies in Mycology 50: 471–479.<br />

Braun U, Crous PW, Dugan F, Groenewald JZ, Hoog GS de (2003). Phylogeny <strong>and</strong><br />

taxonomy of cladosporium-like hyphomycetes, including Davidiella gen. nov.,<br />

the teleomorph of <strong>Cladosporium</strong> s.str. Mycological Progress 2: 3–18.<br />

Butin H, Pehl L, Hoog GS de, Wollenzien U (1996). Trimmatostroma abietis sp. nov.<br />

(hyphomycetes) <strong>and</strong> related species. Antonie van Leeuwenhoek 69: 203–209.<br />

Castañeda RF, Kendrick B, Gené J (1997). Notes on conidial fungi. XIII. A new<br />

species of <strong>Cladosporium</strong> from Cuba. Mycotaxon 63: 183–187.<br />

Chupp C (1954). A monograph of the fungus <strong>genus</strong> Cercospora. Ithaca, New York.<br />

Published by the author.<br />

Cortinas M-N, Crous PW, Wingfield BD, Wingfield MJ (2006). Multi-gene phylogenies<br />

<strong>and</strong> phenotypic characters distinguish two species within the Colletogloeopsis<br />

zuluensis complex associated with Eucalyptus stem cankers. Studies in<br />

Mycology 55: 133–146.<br />

Crane JL, Schoknecht JD (1986). Revision of Torula <strong>and</strong> Hormiscium species.<br />

New names for Hormiscium undulatum, Torula equina, <strong>and</strong> Torula convolvuli.<br />

Mycologia 78: 86–91.<br />

Crous PW (1998). Mycosphaerella spp. <strong>and</strong> their anamorphs associated with leaf<br />

spot diseases of Eucalyptus. Mycologia Memoir 21: 1–170.<br />

Crous PW, Aptroot A, Kang JC, Braun U, Wingfield MJ (2000). <strong>The</strong> <strong>genus</strong><br />

Mycosphaerella <strong>and</strong> its anamorphs. Studies in Mycology 45: 107–121.<br />

Crous PW, Braun U (2003). Mycosphaerella <strong>and</strong> its anamorphs. 1. Names published<br />

in Cercospora <strong>and</strong> Passalora. <strong>CBS</strong> Biodiversity Series 1: 1–571.<br />

Crous PW, Braun U, Schubert K, Groenewald JZ (2007a). Delimiting <strong>Cladosporium</strong><br />

from morphologically <strong>similar</strong> genera. Studies in Mycology 58: 33–56.<br />

Crous PW, Corlett M (1998). Reassessment of Mycosphaerella spp. <strong>and</strong> their<br />

anamorphs occurring on Platanus. Canadian Journal of Botany 76: 1523–<br />

1532.<br />

Crous PW, Denman S, Taylor JE, Swart L, Palm ME (2004a). Cultivation <strong>and</strong><br />

diseases of Proteaceae: Leucadendron, Leucospermum <strong>and</strong> Protea. <strong>CBS</strong><br />

Biodiversity Series 2: 1–228.<br />

Crous PW, Groenewald JZ (2006a). Mycosphaerella alistairii. Fungal Planet No. 4.<br />

(www.fungalplanet.org).<br />

Crous PW, Groenewald JZ (2006b). Mycosphaerella maxii. Fungal Planet No. 6.<br />

(www.fungalplanet.org).<br />

Crous PW, Groenewald JZ, Gams W (2003). Eyespot of cereals revisited: ITS<br />

phylogeny reveals new species relationships. European Journal of Plant<br />

Pathology 109: 841–850.<br />

Crous PW, Groenewald JZ, Mansilla JP, Hunter GC, Wingfield MJ (2004b).<br />

Phylogenetic reassessment of Mycosphaerella spp. <strong>and</strong> their anamorphs<br />

occurring on Eucalyptus. Studies in Mycology 50: 195–214.<br />

Crous PW, Kang JC, Braun U (2001). A phylogenetic redefinition of anamorph<br />

genera in Mycosphaerella based on ITS rDNA sequence <strong>and</strong> morphology.<br />

Mycologia 93: 1081–1101.<br />

Crous PW, Liebenberg MM, Braun U, Groenewald JZ (2006a). Re-evaluating the<br />

taxonomic status of Phaeoisariopsis griseola, the causal agent of angular leaf<br />

spot of bean. Studies in Mycology 55: 163–173.<br />

Crous PW, Palm ME (1999). Systematics of selected foliicolous fungi associated<br />

with leaf spots of Proteaceae. Mycological Research 103: 1299–1304.<br />

Crous PW, Schroers HJ, Groenewald JZ, Braun U, Schubert K (2006d).<br />

Metulocladosporiella gen. nov. for the causal organism of <strong>Cladosporium</strong><br />

speckle disease of banana. Mycological Research 110: 264–275.<br />

Crous PW, Summerell BA, Carnegie AJ, Mohammed C, Himaman W, Groenewald<br />

JZ (2007b). Foliicolous Mycosphaerella spp. <strong>and</strong> their anamorphs on Corymbia<br />

<strong>and</strong> Eucalyptus. Fungal Diversity 26: 143–185.<br />

Crous PW, Wingfield MJ, Mansilla JP, Alfenas AC, Groenewald JZ (2006b).<br />

Phylogenetic reassessment of Mycosphaerella spp. <strong>and</strong> their anamorphs<br />

occurring on Eucalyptus. II. Studies in Mycology 55: 99–131.<br />

Crous PW, Slippers B, Wingfield MJ, Rheeder J, Marasas WFO, Phillips AJL, Alves<br />

A, Burgess T, Barber P, Groenewald JZ (2006c). Phylogenetic lineages in the<br />

Botryosphaeriaceae. Studies in Mycology 55: 235–253.<br />

Doherty MW (1900). New Species of Trimmatostroma. Botanical Gazette 30: 400–<br />

403.<br />

Dugan FM, Schubert K, Braun U (2004). Check-list of <strong>Cladosporium</strong> names.<br />

Schlechtendalia 11: 1–103.<br />

Ellis MB (1976). More <strong>dematiaceous</strong> hyphomycetes. Commonwealth Mycological<br />

Institute, Kew.<br />

Eriksson O (1981). <strong>The</strong> families of bitunicate ascomycetes. Opera Botanica 60:<br />

1–220.<br />

www.studiesinmycology.org<br />

31


Crous et al.<br />

Gams W, Verkley GJM, Crous PW (2007). <strong>CBS</strong> course of mycology, 5 th ed.<br />

Centraalbureau voor Schimmelcultures, Utrecht.<br />

Goodwin SB, Dunkley LD, Zismann VL (2001). Phylogenetic analysis of Cercospora<br />

<strong>and</strong> Mycosphaerella based on the internal transcribed spacer region of<br />

ribosomal DNA. Phytopathology 91: 648–658.<br />

Gorbushina AA, Panina LK, Vlasov DY, Krumbein WE (1996). Fungi deteriorating<br />

Chersonessus marbles. Mikologia i Fitopatologia 30: 23–28.<br />

Hambleton S, Tsuneda A, Currah RS (2003). Comparative morphology <strong>and</strong><br />

phylogenetic placement of two microsclerotial black fungi from Sphagnum.<br />

Mycologia 95: 959–975.<br />

Hoog GS de, Gerrits van den Ende AHG (1998). Molecular diagnostics of clinical<br />

strains of filamentous Basidiomycetes. Mycoses 41: 183–189.<br />

Hoog GS de, Guarro J, Gené J, Figueras MJ (2000). Atlas of Clinical Fungi. 2 nd<br />

Edn. Centraalbureau voor Schimmelcultures, Utrecht, <strong>and</strong> Universitat Rovira<br />

I Virgili, Reus.<br />

Hoog GS de, Oorschot CAN van, Hijwegen T (1983). Taxonomy of the Dactylaria<br />

complex. II. Proceedings van de Koninklijke Nederl<strong>and</strong>se Akademie van<br />

Wetenschappen, Series C, 86(2): 197–206.<br />

Hoog GS de, Zalar P, Urzì C, Leo de F, Yurlova NA, Sterflinger K (1999). Relationships<br />

of dothideaceous black yeasts <strong>and</strong> meristematic fungi based on 5.8S <strong>and</strong> ITS2<br />

rDNA sequence comparision. Studies in Mycology 43: 31–37.<br />

Hunter GC, Wingfield BD, Crous PW, Wingfield MJ (2006). A multi-gene phylogeny<br />

for species of Mycosphaerella occurring on Eucalyptus leaves. Studies in<br />

Mycology 55: 147–161.<br />

Kirk PM (1981). New or interesting microfungi. 1. Dematiaceous hyphomycetes from<br />

Devon. Transactions of the British Mycological Society 76: 71–87.<br />

Kogej T, Gorbushina AA, Gunde-Cimerman N (2006). Hypersaline conditions<br />

induce changes in cell-wall melanization <strong>and</strong> colony structure in a halophilic<br />

<strong>and</strong> a xerophilic black yeast species of the <strong>genus</strong> Trimmatostroma. Mycological<br />

Research 110: 713–724.<br />

Krumbein WE, Gorbushina AA, Sterflinger K, Haroska U, Kunert U, Drewello R,<br />

Weißmann R (1996). Biodetorioration of historical window panels of the<br />

former Cistercian Monastery church of Haina (Hessen, Germany). DECHEMA<br />

Monographs 133: 417–424.<br />

Moncalvo J-M, Rehner SA, Vilgalys R (1993). Systematics of Lyophyllum section<br />

Difformia based on evidence from culture studies <strong>and</strong> ribosomal DNA<br />

sequences. Mycologia 85: 788–794.<br />

Müller E, Oehrens E (1982). On the <strong>genus</strong> Teratosphaeria (Ascomycetes). Sydowia<br />

35: 138–142.<br />

Niekerk JM van, Groenewald JZ, Verkley GJM, Fourie PH, Wingfield MJ, Crous PW<br />

(2004). Systematic reappraisal of Coniella <strong>and</strong> Pilidiella, with specific reference<br />

to species occurring on Eucalyptus <strong>and</strong> Vitis in South Africa. Mycological<br />

Research 108: 283–303.<br />

Rayner RW (1970). A mycological colour chart. CMI <strong>and</strong> British Mycological Society.<br />

Kew.<br />

Rehner SA, Samuels GJ (1994). Taxonomy <strong>and</strong> phylogeny of Gliocladium analysed<br />

from nuclear large subunit ribosomal DNA sequences. Mycological Research<br />

98: 625–634.<br />

Roux C, Triebel D (1994). Révision des espèces de Stigmidium et de<br />

Sphaerellothecium (champignons lichénicoles non lichénisés, Ascomycetes)<br />

correspondant à Pharcidia epicymatia sensu Keissler ou à Stigmidium schaereri<br />

auct. Bulletin de la Societe Linneenne de Provence 45: 451–542.<br />

Schoch C, Shoemaker RA, Seifert, KA, Hambleton S, Spatafora JW, Crous PW<br />

(2006). A multigene phylogeny of the Dothideomycetes using four nuclear loci.<br />

Mycologia 98: 1043–1054.<br />

Schubert K, Groenewald JZ, Braun U, Dijksterhuis J, Starink M, Hill CF, Zalar P,<br />

Hoog GS de, Crous PW (2007). Biodiversity in the <strong>Cladosporium</strong> herbarum<br />

complex (Davidiellaceae, Capnodiales), with st<strong>and</strong>ardisation of methods for<br />

<strong>Cladosporium</strong> taxonomy <strong>and</strong> diagnostics. Studies in Mycology 58: 105–156.<br />

Seifert KA, Nickerson NL, Corlett M, Jackson ED, Louis-Seize G, Davies RJ<br />

(2004). Devriesia, a new hyphomycete <strong>genus</strong> to accommodate heat-resistant,<br />

cladosporium-like fungi. Canadian Journal of Botany 82: 914–926.<br />

Selbmann L, Hoog GS de, Mazzaglia A, Friedmann EI, Onofri S (2005). Fungi at<br />

the edge of life: cryptoendolithic black fungi from Antarctic desert. Studies in<br />

Mycology 51: 1–32.<br />

Stewart EL, Liu Z, Crous PW, Szabo L (1999). Phylogenetic relationships among<br />

some cercosporoid anamorphs of Mycosphaerella based on rDNA sequence<br />

analysis. Mycological Research 103: 1491–1499.<br />

Sugiyama J, Amano N (1987). Two metacapnodiaceous sooty moulds from Japan:<br />

their identity <strong>and</strong> behavior in pure culture. In: Pleomorphic fungi: the diversity<br />

<strong>and</strong> its taxonomic implications. (Sugiyama J, ed.). Kodansha, Tokyo/Elsevier,<br />

Amsterdam: 141–156.<br />

Summerell BA, Groenewald JZ, Carnegie AJ, Summerbell RC, Crous PW (2006).<br />

Eucalyptus microfungi known from culture. 2. Alysidiella, Fusculina <strong>and</strong><br />

Phlogicylindrium genera nova, with notes on some other poorly known taxa.<br />

Fungal Diversity 23: 323–350.<br />

Sutton BC (1971). Staninwardia gen. nov. (Melanconiales) on Eucalyptus.<br />

Transactions of the British Mycological Society 57: 539–542.<br />

Sutton BC, Pascoe IG (1989). Reassessment of Peltosoma, Stigmina <strong>and</strong><br />

Batcheloromyces <strong>and</strong> description of Hyphothyrium gen. nov. Mycological<br />

Research 92: 210–222.<br />

Taylor JE, Crous PW, Wingfield MJ (1999). <strong>The</strong> <strong>genus</strong> Batcheloromyces on<br />

Proteaceae. Mycological Research 103: 1478–1484.<br />

Taylor JE, Groenewald JZ, Crous PW (2003). A phylogenetic analysis of<br />

Mycosphaerellaceae leaf spot pathogens of Proteaceae. Mycological Research<br />

107: 653–658.<br />

Verkley GJM, Crous PW, Groenewald JZ, Braun U, Aptroot A (2004). Mycosphaerella<br />

punctiformis revisited: morphology, phylogeny, <strong>and</strong> epitypification of the type<br />

species of the <strong>genus</strong> Mycosphaerella (Dothideales, Ascomycota). Mycological<br />

Research 108: 1271–1282.<br />

Vilgalys R, Hester M (1990). Rapid genetic identification <strong>and</strong> mapping of<br />

enzymatically amplified ribosomal DNA from several Cryptococcus species.<br />

Journal of Bacteriology 172: 4238–4246.<br />

White TJ, Bruns T, Lee S, Taylor J (1990). Amplification <strong>and</strong> direct sequencing of<br />

fungal ribosomal RNA genes for phylogenetics. In: PCR Protocols: a guide to<br />

methods <strong>and</strong> applications (Innis MA, Gelf<strong>and</strong> DH, Sninsky JJ, White TJ, eds).<br />

Academic Press, San Diego, California: 315–322.<br />

Winka K, Eriksson OE, Bång Å (1998). Molecular evidence for recognizing the<br />

Chaetothyriales. Mycologia 90: 822–830.<br />

Wollenzien U, Hoog GS de, Krumbein WE, Urzì C (1995). On the isolation of<br />

microcolonial fungi occurring on <strong>and</strong> in marble <strong>and</strong> other calcareous rocks.<br />

Science of the Total Environment 167: 287–294.<br />

32


available online at www.studiesinmycology.org<br />

doi:10.3114/sim.2007.58.02<br />

Studies in Mycology 58: 33–56. 2007.<br />

Delimiting <strong>Cladosporium</strong> from morphologically <strong>similar</strong> genera<br />

P.W. Crous 1* , U. Braun 2 , K. Schubert 3 <strong>and</strong> J.Z. Groenewald 1<br />

1<br />

<strong>CBS</strong> Fungal Biodiversity Centre, P.O. Box 85167, 3508 AD Utrecht, <strong>The</strong> Netherl<strong>and</strong>s; 2 Martin-Luther-Universität, Institut für Biologie, Geobotanik und Botanischer Garten,<br />

Herbarium, Neuwerk 21, D-06099 Halle (Saale), Germany; 3 Botanische Staatssammlung München, Menzinger Straße 67, D-80638 München, Germany<br />

*Correspondence: Pedro Crous, p.crous@cbs.knaw.nl<br />

Abstract: <strong>The</strong> <strong>genus</strong> <strong>Cladosporium</strong> is restricted to <strong>dematiaceous</strong> hyphomycetes with a coronate scar type, <strong>and</strong> Davidiella teleomorphs. In the present study numerous<br />

cladosporium-like taxa are treated, <strong>and</strong> allocated to different genera based on their morphology <strong>and</strong> DNA phylogeny derived from the LSU nrRNA gene. Several species are<br />

introduced in new genera such as Hyalodendriella, Ochrocladosporium, Rachicladosporium, Rhizocladosporium, Toxicocladosporium <strong>and</strong> Verrucocladosporium. A further new<br />

taxon is described in Devriesia (Teratosphaeriaceae). Furthermore, <strong>Cladosporium</strong> castellanii, the etiological agent of tinea nigra in humans, is confirmed as synonym of Stenella<br />

araguata, while the type species of Stenella is shown to be linked to the Teratosphaeriaceae (Capnodiales), <strong>and</strong> not the Mycosphaerellaceae as formerly presumed.<br />

Taxonomic novelties: Devriesia americana Crous & Dugan, sp. nov., Hyalodendriella Crous, gen. nov., Hyalodendriella betulae Crous sp. nov., Ochrocladosporium Crous &<br />

U. Braun, gen. nov., Ochrocladosporium elatum (Harz) Crous & U. Braun, comb. nov., Ochrocladosporium frigidarii Crous & U. Braun, sp. nov., Rachicladosporium Crous, U.<br />

Braun & Hill, gen. nov., Rachicladosporium luculiae Crous, U. Braun & Hill, sp. nov., Rhizocladosporium Crous & U. Braun, gen. nov., Rhizocladosporium argillaceum (Minoura)<br />

Crous & U. Braun, comb. nov., Toxicocladosporium Crous & U. Braun, gen. nov., Toxicocladosporium irritans Crous & U. Braun, sp. nov., Verrucocladosporium K. Schub., Aptroot<br />

& Crous, gen. nov., Verrucocladosporium dirinae K. Schub., Aptroot & Crous, sp. nov.<br />

Key words: <strong>Cladosporium</strong>, Davidiella, food spoilage, hyphomycetes, indoor air, LSU phylogeny, taxonomy.<br />

Introduction<br />

Cladosporioid hyphomycetes are common, widespread fungi.<br />

<strong>The</strong> <strong>genus</strong> <strong>Cladosporium</strong> Link is based on the type species,<br />

<strong>Cladosporium</strong> herbarum (Pers. : Fr.) Link, which in turn has been<br />

linked to Davidiella Crous & U. Braun teleomorphs (Braun et al.<br />

2003, Schubert et al. 2007b – this volume). <strong>Cladosporium</strong> is one<br />

of the largest, most heterogeneous genera of hyphomycetes,<br />

comprising more than 772 names (Dugan et al. 2004), <strong>and</strong> including<br />

endophytic, fungicolous, human pathogenic, phytopathogenic <strong>and</strong><br />

saprobic species. Species of this <strong>genus</strong> affect daily human life in<br />

various ways. <strong>The</strong> common saprobic members of <strong>Cladosporium</strong><br />

occur on all kinds of senescing <strong>and</strong> dead leaves <strong>and</strong> stems of<br />

herbaceous <strong>and</strong> woody plants, as secondary invaders on necrotic<br />

leaf lesions caused by other fungi, are frequently isolated from air,<br />

soil, food stuffs, paint, textiles <strong>and</strong> other organic matters, are also<br />

known to be common endophytes (Riesen & Sieber 1985, Brown<br />

et al. 1998, El-Morsy 2000) as well as phylloplane fungi (Islam &<br />

Hasin 2000, De Jager et al. 2001, Inacio et al. 2002, Stohr & Dighton<br />

2004, Levetin & Dorsey 2006). Furthermore, some <strong>Cladosporium</strong><br />

species are known to be potential agents of medical relevance.<br />

<strong>Cladosporium</strong> herbarum is, for instance, a common contaminant in<br />

clinical laboratories <strong>and</strong> causes allergic lung mycoses (de Hoog et<br />

al. 2000, Schubert et al. 2007b – this volume).<br />

In spite of the enormous relevance of this <strong>genus</strong>, there is<br />

no comprehensive modern revision of <strong>Cladosporium</strong>, but some<br />

attempts to revise <strong>and</strong> monograph parts of it have been initiated<br />

during the last decade (David 1997, Partridge & Morgan-Jones<br />

2002, Wirsel et al. 2002, Braun et al. 2003, Dugan et al. 2004, Park<br />

et al. 2004, Seifert et al. 2004, Schubert & Braun 2004, 2005a,<br />

b, 2007, Heuchert et al. 2005, Schubert 2005a, b, Schubert et al.<br />

2006).<br />

Previous molecular studies employing rDNA ITS sequence<br />

data (Crous et al. 2001) have shown <strong>Cladosporium</strong> spp. to cluster<br />

adjacent to the main monophyletic Mycosphaerella Johanson<br />

cluster, suggesting a position apart from the latter <strong>genus</strong>. Braun<br />

et al. (2003) carried out more comprehensive sequence analyses,<br />

based on ITS (ITS-1, 5.8S <strong>and</strong> ITS-2) <strong>and</strong> 18S rDNA data, providing<br />

further evidence that <strong>Cladosporium</strong> s. str. represents a sister clade<br />

of Mycosphaerella.<br />

Various authors discussed the taxonomy <strong>and</strong> circumscription<br />

of <strong>Cladosporium</strong> (von Arx 1981, 1983, McKemy & Morgan-Jones<br />

1990, Braun 1995), reaching different conclusions. However, a<br />

first decisive revision of <strong>Cladosporium</strong>, leading to a more natural<br />

concept of this <strong>genus</strong>, was published by David (1997), who carried<br />

out comprehensive scanning electron microscopic examinations of<br />

the scar <strong>and</strong> hilum structure in <strong>Cladosporium</strong> <strong>and</strong> Heterosporium<br />

Klotzsch ex Cook. <strong>The</strong> first Scanning Electron Micrograph (SEM)<br />

studies of these structures, published by Roquebert (1981), indicated<br />

that the conidiogenous loci <strong>and</strong> conidial hila in <strong>Cladosporium</strong> are<br />

characterised by having a unique structure. David (1997) confirmed<br />

these observations, based on a wide range of <strong>Cladosporium</strong> <strong>and</strong><br />

Heterosporium species, <strong>and</strong> demonstrated that the structures of the<br />

conidiogenous loci <strong>and</strong> hila in the latter <strong>genus</strong> fully agree with those<br />

of <strong>Cladosporium</strong>, proving that Heterosporium was indeed a synonym<br />

of <strong>Cladosporium</strong> s. str. He introduced the term “coronate” for the<br />

<strong>Cladosporium</strong> scar type, which is characterised by having a central<br />

convex part (dome), surrounded by a raised periclinal rim (David<br />

1997), <strong>and</strong> showed that this type is confined to anamorphs, as far<br />

as experimentally proven, connected with teleomorphs belonging<br />

in “Mycosphaerella” s. lat. <strong>The</strong>se results were confirmed in a later<br />

phylogenetic study by Braun et al. (2003). <strong>Cladosporium</strong> s. str. was<br />

shown to be a sister clade to Mycosphaerella s. str., for which the<br />

new teleomorph <strong>genus</strong> Davidiella was proposed. Although no clear<br />

morphological differences were reported between Davidiella <strong>and</strong><br />

Mycosphaerella, a further study by Aptroot (2006) found ascospores<br />

of Davidiella to have characteristic irregular cellular inclusions<br />

(lumina), which are absent in species of Mycosphaerella, along with<br />

periphysoids <strong>and</strong> pseudoparaphyses (Schubert et al. 2007b – this<br />

volume). Furthermore, a higher order phylogeny study by Schoch<br />

et al. (2006), which employed DNA sequence data of four loci (SSU<br />

nrDNA, LSU nrDNA, EF-1α, RPB2), revealed species of Davidiella<br />

to cluster in a separate family (Davidiellaceae) from species of<br />

Mycosphaerella (Mycosphaerellaceae), with both families residing<br />

in the Capnodiales (Dothideomycetes), <strong>and</strong> not Dothideales as<br />

always presumed.<br />

33


Crous et al.<br />

Table 1. Isolates for which new sequences were generated.<br />

Anamorph Teleomorph Accession number 1 Host Country Collector GenBank numbers 2<br />

(ITS, LSU)<br />

Cladoriella eucalypti <strong>CBS</strong> 115899*; CPC 10954 Eucalyptus sp. South Africa P.W. Crous EU040224, EU040224<br />

Coniothyrium palmarum <strong>CBS</strong> 758.73; CMW 5283 Phoenix dactylifera Israel Y. Pinkas DQ240000, EU040225<br />

Devriesia acadiensis <strong>CBS</strong> 115874; DAOM 232211 Soil Canada N. Nickerson AY692095, EU040226<br />

Devriesia americana <strong>CBS</strong> 117726; ATCC 96545; CPC 5121 Air U.S.A. F.M. Dugan AY251068, EU040227<br />

Devriesia shelburniensis <strong>CBS</strong> 115876; DAOM 232217 Soil Canada N. Nickerson AY692093, EU040228<br />

Devriesia thermodurans <strong>CBS</strong> 115878*; DAOM 225330 Soil Canada N. Nickerson AY692087, EU040229<br />

Hormoconis resinae <strong>CBS</strong> 365.86 – – – EU040230, EU040230<br />

<strong>CBS</strong> 184.54; ATCC 11841; CPC 3692; IMI 089837; IFO 31706 Creosote-treated wooden pole U.S.A. – AY251067, EU040231<br />

Hyalodendriella betulae <strong>CBS</strong> 261.82* Alnus glutinosa Netherl<strong>and</strong>s W. Gams EU040232, EU040232<br />

Ochrocladosporium elatum <strong>CBS</strong> 146.33*; ATCC 11280; ATHUM 2862; IFO 6372; IMI 049629; Wood pulp Sweden E. Melin EU040233, EU040233<br />

MUCL 10094<br />

Ochrocladosporium frigidarii <strong>CBS</strong> 103.81* Cooled room Germany B. Ahlert EU040234, EU040234<br />

Parapleurotheciopsis inaequiseptata MUCL 41089; INIFAT C98/30-1 Rotten leaf Brazil R.F. Castañeda EU040235, EU040235<br />

Passalora daleae <strong>CBS</strong> 113031* Dalea spinosa Mexico L.B. Sparrius EU040236, EU040236<br />

Rachicladosporium luculiae CPC 11407* Luculia sp. New Zeal<strong>and</strong> F. Hill EU040237, EU040237<br />

Ramularia aplospora Mycosphaerella alchemillicola <strong>CBS</strong> 545.82* Powdery mildew on Alchemilla vulgaris Germany T. Hijwegen EU040238, EU040238<br />

Retroconis fusiformis <strong>CBS</strong> 330.81; IMI 170799 Gossypium sp. Pakistan – EU040239, EU040239<br />

Rhizocladosporium argillaceum <strong>CBS</strong> 241.67*; ATCC 38103; IFO 7055; OUT 4262 Decayed myxomycete Japan K. Tubaki EU040240, EU040240<br />

Subramaniomyces fusisaprophyticus <strong>CBS</strong> 418.95; INIFAT C94/134 Leaf litter Cuba R.F. Castañeda EU040241, EU040241<br />

<strong>The</strong>dgonia ligustrina W1877 Ligustrum sp. – H. Evans EU040242, EU040242<br />

Toxicocladosporium irritans <strong>CBS</strong> 185.58* Mouldy paint Suriname M.B. Schol-Schwarz EU040243, EU040243<br />

Verrucocladosporium dirinae <strong>CBS</strong> 112794* Dirina massiliensis U.K. A. Aptroot EU040244, EU040244<br />

1 ATCC: American Type Culture Collection, Virginia, U.S.A.; ATHUM: Culture Collection of Fungi, University of Athens, Department of Biology, Section of Ecology <strong>and</strong> Systematics, Athens, Greece; <strong>CBS</strong>: Centraalbureau voor Schimmelcultures, Utrecht,<br />

<strong>The</strong> Netherl<strong>and</strong>s; CMW: Culture collection of Mike Wingfield, housed at FABI, Pretoria, South Africa; CPC: Culture collection of Pedro Crous, housed at <strong>CBS</strong>; DAOM: Plant Research Institute, Department of Agriculture (Mycology), Ottawa, Canada; IFO:<br />

Institute For Fermentation, Osaka, Japan; IMI: International Mycological Institute, CABI-Bioscience, Egham, Bakeham Lane, U.K.; INIFAT: Alex<strong>and</strong>er Humboldt Institute for Basic Research in Tropical Agriculture, Ciudad de La Habana, Cuba; MUCL:<br />

Mycotheque de l’ Université Catholique de Louvain, Louvain-la-Neuve, Belgium; OUT: Department of Fermentation Technology, Faculty of Engineering, Osaka University, Yamadaue, Suita-shi, Osaka, Japan.<br />

2 ITS: internal transcribed spacer regions <strong>and</strong> 5.8S rRNA gene; LSU: partial 28S rRNA gene.<br />

*Ex-type cultures.<br />

34


<strong>Cladosporium</strong> <strong>and</strong> morphologically <strong>similar</strong> genera<br />

<strong>The</strong> current circumscription of <strong>Cladosporium</strong> emend. can be<br />

summarised as follows: Dematiaceous hyphomycetes; Davidiella<br />

anamorphs; mycelium internal <strong>and</strong> external; hyphae branched,<br />

septate, pigmented; stromata lacking or occasionally present;<br />

conidiophores mononematous, solitary to fasciculate, cylindrical,<br />

geniculate-sinuous to nodulose, simple to branched, subhyaline<br />

to usually distinctly pigmented, continuous to septate, smooth<br />

to verruculose; conidiogenous cells integrated, terminal <strong>and</strong><br />

intercalary, usually sympodial, with a single to several scars;<br />

conidiogenesis holoblastic; conidiogenous loci coronate, i.e.,<br />

more or less protuberant, composed of a central convex dome,<br />

surrounded by a raised periclinal rim, barely to distinctly darkened;<br />

conidia solitary or in short to long, simple to branched acropetal<br />

chains, amero- to phragmosporous, subhyaline to usually distinctly<br />

pigmented, smooth, verruculose, verrucose, echinulate, cristate,<br />

hila coronate, more or less protuberant.<br />

<strong>The</strong> new concept of <strong>Cladosporium</strong> s. str., supported by<br />

molecular data <strong>and</strong> typical coronate conidiogenous loci <strong>and</strong> conidial<br />

hila, rendered it possible to initiate a comprehensive revision<br />

of <strong>Cladosporium</strong> s. lat. <strong>The</strong> preparation of a general, annotated<br />

check-list of <strong>Cladosporium</strong> s. lat. was the first step in this direction<br />

(Dugan et al. 2004). <strong>The</strong> aim of the present study, therefore, was to<br />

delineate <strong>Cladosporium</strong> s. str. from other taxa that have in recent<br />

years been described in <strong>Cladosporium</strong> s. lat. To attain this goal<br />

isolates were studied under st<strong>and</strong>ardised conditions on a set of<br />

predescribed media (Schubert et al. 2007b – this volume), <strong>and</strong><br />

subjected to DNA sequence analysis of the LSU nrRNA gene.<br />

were only sequenced for isolates of which these data were not<br />

available. <strong>The</strong> ITS data were not included in the analyses but<br />

deposited in GenBank where applicable. Gaps longer than 10<br />

bases were coded as single events for the phylogenetic analyses;<br />

the remaining gaps were treated as missing data. Sequence data<br />

were deposited in GenBank (Table 1) <strong>and</strong> alignments in TreeBASE<br />

(www.treebase.org).<br />

Morphology<br />

Wherever possible, 30 measurements (× 1 000 magnification)<br />

were made of structures mounted in lactic acid or Shear’s solution<br />

(Gams et al. 2007), with the extremes of spore measurements<br />

given in parentheses. Microscopic observations were made from<br />

colonies cultivated for 7 d under continuous near-ultraviolet light<br />

at 25 °C on SNA as explained in Schubert et al. (2007b – this<br />

volume). Three classes of conidia are distinguished. Ramoconidia<br />

are defined as short apical branches (often conidiogenous cells)<br />

of a conidiophore which secede <strong>and</strong> function as conidia. <strong>The</strong>y are<br />

characterised by having a truncate, undifferentiated base, i.e.,<br />

they differ from true conidia by lacking characteristic basal hila<br />

caused by conidiogenesis. Ramoconidia give rise to branched or<br />

unbranched conidia. Secondary ramoconidia are branched conidia<br />

with a narrowed base, bearing a true hilum, that can occur in chains,<br />

giving rise to conidia, which differ from secondary ramoconidia<br />

with regards to shape, size <strong>and</strong> septation. In previous literature on<br />

<strong>Cladosporium</strong> <strong>and</strong> allied genera, the true ramoconidia have often<br />

been classified as “ramoconidia s. str.” whereas the secondary<br />

ramoconidia have been named “ramoconidia s. lat.”<br />

Materials <strong>and</strong> methods<br />

Isolates<br />

Isolates used were obtained from the Centraalbureau voor<br />

Schimmelcultures (<strong>CBS</strong>), or freshly isolated from various<br />

substrates (Table 1). Strains were cultured on 2 % malt extract<br />

plates (MEA; Gams et al. 2007), by obtaining single conidial<br />

colonies as explained in Crous (1998). Colonies were subcultured<br />

onto fresh MEA, oatmeal agar (OA), potato-dextrose agar (PDA)<br />

<strong>and</strong> synthetic nutrient-poor agar (SNA) (Gams et al. 2007), <strong>and</strong><br />

incubated under near-ultraviolet light to study their morphology.<br />

Cultural characteristics were assessed after 2–4 wk on OA <strong>and</strong><br />

PDA at 25 °C in the dark, using the colour charts of Rayner (1970).<br />

Nomenclatural novelties <strong>and</strong> descriptions were deposited in<br />

MycoBank (www.MycoBank.org).<br />

DNA isolation, sequencing <strong>and</strong> phylogeny<br />

Fungal colonies were established on agar plates, <strong>and</strong> genomic<br />

DNA was isolated following the CTAB-based protocol described in<br />

Gams et al. (2007). <strong>The</strong> primers V9G (de Hoog & Gerrits van den<br />

Ende 1998) <strong>and</strong> LR5 (Vilgalys & Hester 1990) were used to amplify<br />

part of the nuclear rDNA operon spanning the 3’ end of the 18S<br />

rRNA gene (SSU), the first internal transcribed spacer (ITS1), the<br />

5.8S rRNA gene, the second ITS region <strong>and</strong> the 5’ end of the 28S<br />

rRNA gene (LSU). Four internal primers, namely ITS4 (White et al.<br />

1990), LR0R (Rehner & Samuels 1994), LR3R (www.biology.duke.<br />

edu/fungi/mycolab/primers.htm), <strong>and</strong> LR16 (Moncalvo et al. 1993),<br />

were used for sequencing to ensure that good quality overlapping<br />

sequences are obtained. <strong>The</strong> PCR conditions, sequence alignment<br />

<strong>and</strong> subsequent phylogenetic analysis followed the methods of<br />

Crous et al. (2006d). <strong>The</strong> ITS1, ITS2 <strong>and</strong> 5.8S rRNA gene (ITS)<br />

www.studiesinmycology.org<br />

Results<br />

DNA extraction, amplification <strong>and</strong> phylogeny<br />

Amplicons of approximately 1 700 bases were obtained for the<br />

isolates listed in Table 1. <strong>The</strong> newly generated sequences were<br />

used to obtain additional sequences from GenBank, which were<br />

added to the alignment. <strong>The</strong> manually adjusted LSU alignment<br />

contained 73 sequences (including the two outgroup sequences)<br />

<strong>and</strong> 996 characters including alignment gaps. Of the 849 characters<br />

used in the phylogenetic analysis, 336 were parsimony-informative,<br />

77 were variable <strong>and</strong> parsimony-uninformative, <strong>and</strong> 436 were<br />

constant. Neighbour-joining analyses using three substitution<br />

models on the sequence data yielded trees with identical topologies<br />

to one another. <strong>The</strong> neighbour-joining trees support the same<br />

clades as obtained from the parsimony analysis, but with a different<br />

arrangement at the deeper nodes, which were poorly supported<br />

in the bootstrap analyses or not at all (for example, the Helotiales<br />

<strong>and</strong> Pleosporales are swapped around). Performing a parsimony<br />

analysis with gaps treated as new characters increases the number<br />

of equally parsimonious trees to 94; the same topology is observed<br />

but with less resolution for the taxa in the Helotiales (data not<br />

shown). Forty-four equally most parsimonious trees (TL = 1 572<br />

steps; CI = 0.436; RI = 0.789; RC = 0.344), one of which is shown<br />

in Fig. 1, were obtained from the parsimony analysis of the LSU<br />

sequence data. <strong>The</strong> cladosporium-like taxa were found to belong to<br />

the Helotiales, Pleosporales, Sordariales <strong>and</strong> as sister taxa to the<br />

Davidiellaceae in the Capnodiales.<br />

<strong>The</strong> LSU alignment used for parsimony <strong>and</strong> distance analysis<br />

was supplemented with sequences for Parapleurotheciopsis<br />

inaequiseptata (Matsush.) P.M. Kirk <strong>and</strong> Subramaniomyces<br />

fusisaprophyticus (Matsush.) P.M. Kirk, as well as related sequences<br />

35


Crous et al.<br />

100<br />

61<br />

100<br />

52<br />

100<br />

10 changes<br />

Athelia epiphylla AY586633<br />

Paullicorticium ansatum AY586693<br />

Rhizocladosporium argillaceum <strong>CBS</strong> 241.67<br />

Myxotrichum deflexum AY541491<br />

Hormoconis resinae <strong>CBS</strong> 365.86<br />

Hormoconis resinae <strong>CBS</strong> 184.54<br />

56<br />

99<br />

99<br />

67<br />

100 84<br />

90<br />

93<br />

81<br />

100<br />

65<br />

75<br />

100<br />

Bisporella citrina AY789385<br />

Sarcoleotia turficola AY789277<br />

Torrendiella eucalypti DQ195799<br />

Torrendiella eucalypti DQ195800<br />

Hyalodendriella betulae <strong>CBS</strong> 261.82<br />

<strong>The</strong>dgonia ligustrina W1877<br />

Blumeria graminis f. sp. bromi AB022362 Erysiphaceae<br />

Neofabraea alba AY064705 Dermateaceae<br />

Neofabraea malicorticis AY544662<br />

Phoma herbarum DQ678066<br />

Ascochyta pisi DQ678070<br />

Didymella bryoniae AB266850<br />

Didymella cucurbitacearum AY293792<br />

Leptospora rubella DQ195792<br />

Phaeosphaeria avenaria AY544684<br />

Coniothyrium palmarum <strong>CBS</strong> 758.73<br />

Ochrocladosporium frigidarii <strong>CBS</strong> 103.81<br />

Ochrocladosporium elatum <strong>CBS</strong> 146.33<br />

Cladoriella eucalypti DQ195790<br />

100 Cladoriella eucalypti <strong>CBS</strong> 115899<br />

100<br />

83<br />

87<br />

85<br />

69<br />

Helotiaceae<br />

Chaetomium homopilatum AF286404<br />

Retroconis fusiformis <strong>CBS</strong> 330.81<br />

Chaetomium globosum AF286403<br />

Aporothielavia leptoderma AF096186<br />

Rachicladosporium luculiae CPC 11407<br />

Dichocladosporium chlorocephalum EU009456<br />

Dichocladosporium chlorocephalum EU009458<br />

Dichocladosporium chlorocephalum EU009457<br />

Dichocladosporium chlorocephalum EU009455<br />

Verrucocladosporium dirinae <strong>CBS</strong> 112794<br />

Toxicocladosporium irritans <strong>CBS</strong> 185.58<br />

97<br />

93<br />

89<br />

100<br />

<strong>Cladosporium</strong> cladosporioides DQ008145<br />

<strong>Cladosporium</strong> uredinicola DQ008147<br />

<strong>Cladosporium</strong> bruhnei DQ008149<br />

<strong>Cladosporium</strong> iridis DQ008148<br />

<strong>Cladosporium</strong> cladosporioides DQ008146<br />

Mycosphaerella marksii AF309578<br />

Penidiella nect<strong>and</strong>rae EU019275<br />

“Stenella” cerophilum AF050286<br />

84<br />

55<br />

100<br />

75<br />

94<br />

100<br />

99<br />

100<br />

94<br />

58<br />

52<br />

58<br />

Incertae sedis<br />

Myxotrichaceae<br />

Amorphotecaceae<br />

Incertae sedis<br />

Incertae sedis<br />

“Mycosphaerella” lateralis AF309583<br />

Pseudocercospora paraguayensis AF309574<br />

Passalora eucalypti AF309575<br />

Mycosphaerella irregulariramosa AF309576<br />

Mycosphaerella punctiformis AY490776<br />

Ramularia aplospora <strong>CBS</strong> 545.82<br />

Passalora daleae <strong>CBS</strong> 113031<br />

Mycosphaerella africana AF309581<br />

Passalora fulva DQ008163<br />

Staninwardia suttonii DQ923535<br />

Devriesia americana <strong>CBS</strong> 117726<br />

Penidiella strumelloidea EU019277<br />

Devriesia thermodurans <strong>CBS</strong> 115878<br />

64<br />

66<br />

Devriesia shelburniensis <strong>CBS</strong> 115876<br />

Devriesia acadiensis <strong>CBS</strong> 115874<br />

Devriesia staurophora DQ008150<br />

Devriesia staurophora DQ008151<br />

Catenulostroma germanicum EU019253<br />

Catenulostroma chromoblastomycosum EU019251<br />

Penidiella rigidophora EU019276<br />

Teratosphaeria alistairii DQ885901<br />

Penidiella columbiana EU019274<br />

Penidiella venezuelensis EU019278<br />

Catenulostroma castellanii EU019250<br />

Teratosphaeria suttonii AF309587<br />

Teratosphaeria molleriana AF309584<br />

Teratosphaeria cryptica AF309585<br />

Teratosphaeria juvenis AF309586<br />

Phaeosphaeriaceae<br />

Leptosphaeriaceae<br />

Incertae sedis<br />

Incertae sedis<br />

Chaetomiaceae, Sordariales<br />

Incertae sedis<br />

Davidiellaceae<br />

Pleosporales<br />

Fig. 1. One of 44 equally most parsimonious trees obtained from a heuristic search with 100 r<strong>and</strong>om taxon additions of the LSU sequence alignment using PAUP v. 4.0b10. <strong>The</strong><br />

scale bar shows 10 changes, <strong>and</strong> bootstrap support values from 1 000 replicates are shown at the nodes. Thickened lines indicate the strict consensus branches <strong>and</strong> ex-type<br />

sequences are printed in bold face. <strong>The</strong> tree was rooted to two sequences obtained from GenBank (Athelia epiphylla AY586633 <strong>and</strong> Paullicorticium ansatum AY586693).<br />

Mycosphaerellaceae<br />

Teratosphaeriaceae<br />

Helotiales<br />

Capnodiales<br />

36


<strong>Cladosporium</strong> <strong>and</strong> morphologically <strong>similar</strong> genera<br />

Athelia epiphylla AY586633<br />

Paullicorticium ansatum AY586693<br />

Blumeria graminis f. sp. bromi AB022362 Erysiphaceae<br />

Bisporella citrina AY789385 Helotiaceae<br />

0.80<br />

Hyalodendriella betulae <strong>CBS</strong> 261.82<br />

<strong>The</strong>dgonia ligustrina W1877<br />

Incertae sedis<br />

1.00<br />

0.69 Neofabraea alba AY064705<br />

Dermateaceae<br />

1.00 Neofabraea malicorticis AY544662<br />

Helotiales<br />

0.60 Sarcoleotia turficola AY789277 Helotiaceae<br />

1.00 Torrendiella eucalypti DQ195799<br />

0.90<br />

Incertae sedis<br />

Torrendiella eucalypti DQ195800<br />

1.00 Hormoconis resinae <strong>CBS</strong> 365.86<br />

Amorphotecaceae<br />

Hormoconis resinae <strong>CBS</strong> 184.54<br />

0.94<br />

Rhizocladosporium argillaceum <strong>CBS</strong> 241.67 Incertae sedis<br />

Myxotrichum deflexum AY541491 Myxotrichaceae<br />

1.00 Chaetomium globosum AF286403<br />

0.88<br />

Aporothielavia leptoderma AF096186<br />

0.95<br />

Chaetomiaceae, Sordariales<br />

1.00 0.79<br />

Chaetomium homopilatum AF286404<br />

Retroconis fusiformis <strong>CBS</strong> 330.81<br />

1.00 Fasciatispora petrakii AY083828 Xylariaceae<br />

0.81<br />

Phlogicylindrium eucalypti DQ923534 Incertae sedis<br />

Plectosphaera eucalypti DQ923538 Phyllachoraceae<br />

0.72<br />

Xylariales<br />

0.74 Subramaniomyces fusisaprophyticus <strong>CBS</strong> 418.95 Incertae sedis<br />

0.68 Parapleurotheciopsis inaequiseptata MUCL 41089 Incertae sedis<br />

Pseudomassaria carolinensis DQ810233 Hyponectriaceae<br />

Phoma herbarum DQ678066<br />

0.63 1.00 Ascochyta pisi DQ678070<br />

1.00 0.97<br />

Incertae sedis<br />

Didymella bryoniae AB266850<br />

1.00 Didymella cucurbitacearum AY293792<br />

Leptospora rubella DQ195792<br />

Pleosporales<br />

1.00<br />

Phaeosphaeriaceae<br />

Phaeosphaeria avenaria AY544684<br />

0.78 Coniothyrium palmarum <strong>CBS</strong> 758.73 Leptosphaeriaceae<br />

0.93 Ochrocladosporium frigidarii <strong>CBS</strong> 103.81<br />

1.00 Ochrocladosporium elatum <strong>CBS</strong> 146.33<br />

Incertae sedis<br />

1.00 Cladoriella eucalypti <strong>CBS</strong> 115899<br />

Incertae sedis<br />

1.00 Cladoriella eucalypti DQ195790<br />

Rachicladosporium luculiae CPC 11407<br />

0.85 Dichocladosporium chlorocephalum EU009456<br />

Dichocladosporium chlorocephalum EU009458<br />

0.68 Dichocladosporium chlorocephalum EU009457 Incertae sedis<br />

Dichocladosporium chlorocephalum EU009455<br />

0.89 Verrucocladosporium dirinae <strong>CBS</strong> 112794<br />

Toxicocladosporium irritans <strong>CBS</strong> 185.58<br />

0.90 <strong>Cladosporium</strong> cladosporioides DQ008145<br />

1.00 <strong>Cladosporium</strong> uredinicola DQ008147<br />

0.97 1.00 <strong>Cladosporium</strong> bruhnei DQ008149<br />

Davidiellaceae<br />

0.61 <strong>Cladosporium</strong> iridis DQ008148<br />

1.00 <strong>Cladosporium</strong> cladosporioides DQ008146<br />

Mycosphaerella marksii AF309578<br />

1.00 Penidiella nect<strong>and</strong>rae EU019275<br />

“Stenella” cerophilum AF050286<br />

0.71 “Mycosphaerella” lateralis AF309583<br />

1.00 Pseudocercospora paraguayensis AF309574<br />

0.99 Passalora eucalypti AF309575<br />

0.51 Mycosphaerella irregulariramosa AF309576<br />

1.00 Mycosphaerella punctiformis AY490776<br />

0.86 Ramularia aplospora <strong>CBS</strong> 545.82<br />

Passalora daleae <strong>CBS</strong> 113031<br />

1.00 Mycosphaerella africana AF309581<br />

1.00 Passalora fulva DQ008163<br />

0.94 1.00 Staninwardia suttonii DQ923535<br />

Devriesia americana <strong>CBS</strong> 117726<br />

Penidiella strumelloidea EU019277<br />

1.00 Devriesia thermodurans <strong>CBS</strong> 115878<br />

1.00<br />

Devriesia shelburniensis <strong>CBS</strong> 115876<br />

0.99 Devriesia acadiensis <strong>CBS</strong> 115874<br />

0.86 Devriesia staurophora DQ008150<br />

Devriesia staurophora DQ008151<br />

0.67<br />

Catenulostroma germanicum EU019253<br />

0.65 Penidiella venezuelensis EU019278<br />

Catenulostroma castellanii EU019250<br />

0.1 expected changes per site 0.73 Teratosphaeria suttonii AF309587<br />

1.00 Teratosphaeria molleriana AF309584<br />

1.00 Teratosphaeria cryptica AF309585<br />

Teratosphaeria juvenis AF309586<br />

1.00 Catenulostroma chromoblastomycosum EU019251<br />

0.64<br />

1.00<br />

Penidiella rigidophora EU019276<br />

Teratosphaeria alistairii DQ885901<br />

Penidiella columbiana EU019274<br />

Mycosphaerellaceae<br />

Teratosphaeriaceae<br />

Capnodiales<br />

Fig. 2. Consensus phylogram (50 % majority rule) of 800 trees resulting from a Bayesian analysis of the LSU sequence alignment using MrBayes v. 3.1.2. Bayesian posterior<br />

probabilities are indicated at the nodes. Ex-type sequences are printed in bold face. <strong>The</strong> tree was rooted to two sequences obtained from GenBank (Athelia epiphylla AY586633<br />

<strong>and</strong> Paullicorticium ansatum AY586693).<br />

www.studiesinmycology.org<br />

37


Crous et al.<br />

Fig. 3. Rachicladosporium luculiae (type material). A–F. Conidiophores with conidial chains, <strong>and</strong> conidiogenous loci aggregated in the upper region. G. Conidia. Scale bar =<br />

10 µm.<br />

from GenBank. This alignment was subjected to a Bayesian<br />

analysis using a general time-reversible (GTR) substitution model<br />

with inverse gamma rates <strong>and</strong> dirichlet base frequencies <strong>and</strong> the<br />

temp value set to 0.5. <strong>The</strong> Markov Chain Monte Carlo (MCMC)<br />

analysis of 4 chains started from a r<strong>and</strong>om tree topology <strong>and</strong> lasted<br />

1 000 000 generations. Trees were saved each 1 000 generations,<br />

resulting in 1 000 trees. Burn-in was set at 200 000 generations<br />

after which the likelihood values were stationary, leaving 800 trees<br />

from which the consensus tree (Fig. 2) <strong>and</strong> posterior probabilities<br />

(PP’s) were calculated. <strong>The</strong> average st<strong>and</strong>ard deviation of split<br />

frequencies was 0.018459 at the end of the run. <strong>The</strong> same overall<br />

topology as that observed using parsimony was obtained, with<br />

the main exception that the Helotiales <strong>and</strong> Pleosporales swapped<br />

around, as observed with the distance analysis.<br />

Taxonomy<br />

<strong>The</strong> present study has delineated several cladosporium-like genera<br />

which are phylogenetically unrelated to, <strong>and</strong> morphologically distinct<br />

from <strong>Cladosporium</strong> s. str. (Davidiellaceae, Capnodiales). <strong>The</strong>se are<br />

treated below:<br />

Capnodiales, incertae sedis<br />

Rachicladosporium Crous, U. Braun & C.F. Hill, gen. nov.<br />

MycoBank MB504430.<br />

Etymology: Named after the apical rachis on conidiophores, <strong>and</strong> its<br />

cladosporium-like appearance.<br />

Differt a Cladosporio conidiophoris cum rachibus terminalibus, locis conidiogenis<br />

inconspicuis vel subconspicuis, margine leviter incrassatis, non fuscatis et non<br />

refractivis, hilis inconspicuis.<br />

Mycelium consisting of branched, septate, smooth, hyaline to<br />

pale brown, thin-walled hyphae. Conidiophores erect, solitary,<br />

macronematous, arising from superficial hyphae, subcylindrical,<br />

straight to somewhat geniculate-sinuous, medium brown,<br />

finely verruculose; basal foot cell without swelling or rhizoids.<br />

Conidiogenous cells integrated, terminal, subcylindrical or tips<br />

slightly swollen, forming an apical rachis, multilocal, loci terminal<br />

<strong>and</strong> lateral, without evident sympodial proliferation (non-geniculate);<br />

conidiogenous loci inconspicuous or subconspicuous by being very<br />

slightly thickened along the rim, but neither darkened nor refractive,<br />

giving rise to simple or branched chains or solitary conidia.<br />

Ramoconidia medium brown, finely verruculose, 0–1-septate,<br />

subcylindrical to narrowly ellipsoid; conidia ellipsoid, pale brown,<br />

0(–1)-septate, smooth to finely verruculose; hila inconspicuous;<br />

secession schizolytic.<br />

Type species: Rachicladosporium luculiae Crous, U. Braun & C.F.<br />

Hill, sp. nov.<br />

38


<strong>Cladosporium</strong> <strong>and</strong> morphologically <strong>similar</strong> genera<br />

Rachicladosporium luculiae Crous, U. Braun & C.F. Hill, sp. nov.<br />

MycoBank MB504431. Fig. 3.<br />

Etymology: Named after its host <strong>genus</strong>, Luculia.<br />

Mycelium ex hyphis ramosis, septatis, levibus, hyalinis vel pallide brunneis, 2–3<br />

µm latis compositum. Conidiophora erecta, solitaria, macronemata, ex hyphis<br />

superficialibis oriunda, subcylindrica, recta to geniculata-sinuosa, ad 60 µm longa et<br />

6 µm lata, 3–6-septata, modice brunnea, subtiliter verruculosa, non crassitunicata, ad<br />

basim non inflatae et non rhizoideae. Cellulae conidiogenae integratae, terminales,<br />

8–15 × 4–5 µm, subcylindricae, apicem versus attenuatae, apice obtuso, rachidi<br />

terminali, locis conidialibus numerosis, 1–2 µm latis, margine leviter incrassatis,<br />

non fuscatis et non refractivis. Conidia catenata vel solitaria. Ramoconidia modice<br />

brunnea, subtile verruculosa, 0–1-septata, subcylindrica vel anguste ellipsoidea,<br />

10–17 × 4–5 µm; conidia secundaria ellipsoidea, pallide brunnea, 0(–1)-septata,<br />

levia vel subtile verruculosa, interdum guttulata, (7–)9–12(–15) × 3(–4) µm; hila<br />

inconspicua.<br />

Mycelium consisting of branched, septate, smooth, thin-walled,<br />

hyaline to pale brown, 2–3 µm wide hyphae. Conidiophores<br />

erect, solitary, macronematous, arising from superficial hyphae,<br />

subcylindrical, straight to somewhat geniculate-sinuous, up to 60 µm<br />

long, <strong>and</strong> 6 µm wide, 3–6-septate, medium brown, finely verruculose,<br />

thin-walled (≤ 1 µm), rarely with a single percurrent proliferation;<br />

basal foot cell without swelling or rhizoids. Conidiogenous cells<br />

integrated, terminal, 8–15 × 4–5 µm, subcylindrical, tapering to an<br />

obtuse apex, occasionally slightly swollen at the tip, without distinct<br />

sympodial proliferation (non-geniculate), forming a rachis, with<br />

several conidiogenous loci, terminal <strong>and</strong> lateral, 1–2 µm wide, nonprotuberant,<br />

quite inconspicuous to subconspicuous, very slightly<br />

thickened along the rim, but not darkened <strong>and</strong> refractive; giving rise<br />

to simple or branched chains or solitary conidia, thin-walled (≤ 0.75<br />

µm). Ramoconidia medium brown, finely verruculose, 0–1-septate,<br />

subcylindrical to narrowly ellipsoid, 10–17 × 4–5 µm; conidia<br />

ellipsoid, pale brown, 0(–1)-septate, smooth to finely verruculose,<br />

at times guttulate, (7–)9–12(–15) × 3(–4) µm; hila inconspicuous,<br />

neither thickened nor darkened-refractive.<br />

Cultural characteristics: Colonies on PDA erumpent, spreading,<br />

with moderate aerial mycelium <strong>and</strong> smooth, even margins; irongrey<br />

in the centre, olivaceous-grey in the outer region (surface);<br />

iron-grey underneath. Colonies reaching 4 cm diam after 1 mo at<br />

25 °C in the dark.<br />

Specimen examined: New Zeal<strong>and</strong>, Auckl<strong>and</strong>, isolated from leaf spots on Luculia<br />

sp. (Rubiaceae), 25 Jul. 2004, F. Hill 1059, holotype <strong>CBS</strong> H-19891, culture ex-type<br />

<strong>CBS</strong> 121620 = CPC 11407.<br />

Notes: Rachicladosporium is morphologically quite distinct from<br />

<strong>Cladosporium</strong> s. str. <strong>and</strong> allied cladosporioid genera by having an<br />

apical conidiophore rachis with inconspicuous to subconspicuous<br />

scars <strong>and</strong> unthickened, not darkened-refractive conidial hila. Due<br />

to the structure of the conidiogenous cells, R. luculiae superficially<br />

resembles species of the tretic <strong>genus</strong> Diplococcium Grove (Ellis<br />

1971, 1976; Goh & Hyde 1998). However, there is no evidence<br />

for a tretic conidiogenesis in R. luculiae. <strong>The</strong> conidia are formed<br />

holoblastically <strong>and</strong> separated by a thin septum. Furthermore,<br />

in Diplococcium the conidiogenous cells are terminal as well as<br />

intercalary, the conidiophores are often branched, <strong>and</strong> branched<br />

conidial chains are lacking or at least less common. Molecular<br />

sequence data about Diplococcium species are not yet available,<br />

though taxa that have been analysed show affinities to the<br />

Pleosporaceae <strong>and</strong> Helotiales (Wang et al., unpubl. data), whereas<br />

Rachicladosporium is allied with the Capnodiales. <strong>The</strong> ecology<br />

of R. luculiae is still unclear, although it has been isolated from<br />

lesions on Luculia sp. Fruiting of this species in vivo has not yet<br />

been observed, <strong>and</strong> its pathogenicity remains unproven.<br />

www.studiesinmycology.org<br />

Toxicocladosporium Crous & U. Braun, gen. nov. MycoBank<br />

MB504426.<br />

Etymology: Named after ample volatile metabolites produced in<br />

culture, <strong>and</strong> cladosporium-like morphology.<br />

Differt a Cladosporio locis conidiogenis denticulatis, incrassatis et fuscatis-refractivis,<br />

sed non coronatis, conidiophoris et conidiis cum septis incrassatis et atrofuscis, et<br />

culturis cum metabolitis volaticis toxicis.<br />

Mycelium consisting of branched, septate, dark brown, finely<br />

verruculose hyphae. Conidiophores solitary, dimorphic, solitary,<br />

macronematous or micronematous, reduced to conidiogenous<br />

cells. Macronematous conidiophores subcylindrical, straight<br />

to geniculate-sinuous, or irregularly curved, unbranched or<br />

branched above, septate, dark brown, finely verruculose, walls<br />

thick, septa dark brown; micronematous conidiophores reduced<br />

to conidiogenous cells, erect, doliiform to subcylindrical, with slight<br />

taper towards the apex. Conidiogenous cells integrated, terminal or<br />

lateral, subcylindrical with slight taper towards apex; proliferating<br />

sympodially with apical loci protruding <strong>and</strong> denticle-like, thickened,<br />

darkened <strong>and</strong> refractive, but not coronate. Conidia catenulate in<br />

branched or unbranched chains, medium to dark brown, thickwalled,<br />

with dark, thick septa, smooth to finely verruculose;<br />

ramoconidia septate, prominently constricted at septa, broadly<br />

ellipsoid to subcylindrical; conidia ellipsoid to ovoid, pale to medium<br />

brown, 0(–1)-septate; hila not coronate, but protruding, thickened,<br />

darkened <strong>and</strong> refractive in ramoconidia, but less obvious in young<br />

conidia.<br />

Type species: Toxicocladosporium irritans Crous & U. Braun, sp.<br />

nov.<br />

Toxicocladosporium irritans Crous & U. Braun, sp. nov.<br />

MycoBank MB504427. Fig. 4.<br />

Etymology: Named after the skin irritation resulting from exposure<br />

to the fungus.<br />

Mycelium (in PDA) ex hyphis ramosis, septatis, atro-brunneis, minute verruculosis,<br />

(2–)3–4 µm latis, ultimo crassitunicatis et crassiseptatis. Conidiophora solitaria,<br />

dimorphosa, macronemata et solitaria vel micronemata. Conidiophora macronemata<br />

ex hyphis modice brunneis lateraliter oriunda, erecta, subcylindrica, recta,<br />

geniculata-sinuosa vel irregulariter curvata, non ramosa vel ad apicem ramosa,<br />

2–7-septata, atro-brunnea, leviter verruculosa, crassitunicata, septa atro-brunnea,<br />

30–60 × 4–6 µm; conidiophora micronemata saepe non septata, raro 1–2-septata,<br />

erecta, doliiformes vel subcylindrica, apicem versus leviter attenuata, 10–30 × 2.5–<br />

4 µm. Cellulae conidiogenae integratae, terminales vel laterales, subcylindricae,<br />

apicem versus leviter attenuatae, 7–12 × 3–4 µm, sympodiales, cum 1–3 locis<br />

conidiogenibus, denticulatis, 1–1.5 µm latis, incrassatis, fuscatis-refractivis. Conidia<br />

catenulata vel rami-catenulata, modice vel atro-brunnea, crassitunicata, septis<br />

incrassatis, fuscatis, levia vel subtile verruculosa; ramoconidia (0–)1(–3)-septata,<br />

constricta, late ellipsoidea vel subcylindrica, 7–15 × 3–5 µm; conidia secundaria<br />

ellipsoidea vel ovoidea, pallide vel modice brunnea, 0(–1)-septata, (5–)6–8(–10) ×<br />

(3–)4(–5) µm; hila protuberantes, 1–1.5 µm lata, hila ramoconidiorum incrassata<br />

et fuscata-refractiva, vel hila conidiorum secundariorum 0.5–1 µm lata et<br />

subconspicua.<br />

Mycelium on PDA consisting of branched, septate, dark brown, finely<br />

verruculose, (2–)3–4 µm wide hyphae; walls <strong>and</strong> septa becoming<br />

thickened <strong>and</strong> darkened with age. Conidiophores solitary, dimorphic,<br />

macronematous <strong>and</strong> solitary, or micronematous, reduced to<br />

conidiogenous cells. Macronematous conidiophores subcylindrical,<br />

straight to geniculate-sinuous, or irregularly curved, unbranched<br />

or branched above, 2–7-septate, dark brown, finely verruculose,<br />

walls thick, septa dark brown, 30–60 × 4–6 µm; medium brown<br />

hyphae giving rise to lateral, erect branches that become swollen,<br />

dark brown, <strong>and</strong> develop into macronematous conidiophores<br />

with thick-walled <strong>and</strong> dark septa; micronematous conidiophores<br />

39


Crous et al.<br />

Fig. 4. Toxicocladosporium irritans (type material). A–B, F. Microconidiophores. C–E. Macroconidiophores. G–H. Ramoconidia <strong>and</strong> conidia. Scale bars = 10 µm.<br />

aseptate, reduced to conidiogenous cells (rarely 1–2-septate, i.e.,<br />

with 1–2 supporting cells), erect, doliiform to subcylindrical, with<br />

slight taper towards the apex, 10–30 × 2.5–4 µm. Conidiogenous<br />

cells integrated, terminal or lateral, subcylindrical with slight taper<br />

towards apex, 7–12 × 3–4 µm; proliferating sympodially with 1–3<br />

apical loci that can be slightly protruding <strong>and</strong> denticle-like, 1–1.5<br />

µm wide, thickened, darkened <strong>and</strong> refractive. Conidia catenulate<br />

in branched or unbranched chains, medium to dark brown, thickwalled,<br />

with dark, thick septa, smooth to finely verruculose;<br />

ramoconidia (0–)1(–3)-septate, prominently constricted at septa,<br />

broadly ellipsoid to subcylindrical, 7–15 × 3–5 µm; conidia ellipsoid<br />

to ovoid, younger apical conidia pale to medium brown, 0(–1)-<br />

septate, (5–)6–8(–10) × (3–)4(–5) µm; hila protruding, 1–1.5 µm<br />

wide, thickened, darkened <strong>and</strong> refractive in ramoconidia, but less<br />

obvious in young conidia, where hila are 0.5–1 µm wide.<br />

Cultural characteristics: Colonies on PDA erumpent, spreading,<br />

with dense aerial mycelium <strong>and</strong> smooth, even margins; surface<br />

olivaceous-black (centre), olivaceous-grey in outer region; reverse<br />

olivaceous-black. Colonies reaching 35 mm diam after 1 mo at 25<br />

°C in the dark; colonies fertile.<br />

40


<strong>Cladosporium</strong> <strong>and</strong> morphologically <strong>similar</strong> genera<br />

Specimen examined: Suriname, Paramaribo, isolated from mouldy paint, Feb.<br />

1958, M.B. Schol-Schwarz, holotype <strong>CBS</strong>-H 19892, culture ex-type <strong>CBS</strong> 185.58.<br />

Notes: Toxicocladosporium irritans produces ample amounts<br />

of volatile metabolites, which cause a skin rash within minutes<br />

of opening an inoculated dish for microscopic examination.<br />

Morphologically <strong>and</strong> phylogenetically it is very <strong>similar</strong> to<br />

<strong>Cladosporium</strong> s. str., <strong>and</strong> produces dimorphic conidiophores, which<br />

is also commonly observed in <strong>Cladosporium</strong>. It is distinct by having<br />

dark, thick-walled conidial <strong>and</strong> conidiophore septa, <strong>and</strong> lacking the<br />

typical coronate <strong>Cladosporium</strong> scar type (David 1997).<br />

Verrucocladosporium K. Schub., Aptroot & Crous, gen. nov.<br />

MycoBank MB504432.<br />

Etymology: Named after its frequently coarsely verrucose to<br />

warted hyphae, conidiophores <strong>and</strong> conidia, <strong>and</strong> cladosporium-like<br />

morphology.<br />

Differt a Cladosporio hyphis saepe verrucosis, hyalinis, conidiophoris cylindraceisfiliformibus,<br />

rectis, non vel vix geniculatis, non nodulosis, locis conidiogenis leviter<br />

incrassatis, distincte fuscatis-refractivis, sed non coronatis, conidiis saepe valde<br />

variantibus, saepe irregulariter formatis, grosse verrucosis-rugosis.<br />

Mycelium sparingly branched, hyphae septate, not constricted at<br />

septa, hyaline, almost smooth to irregularly rough-walled, coarsely<br />

verrucose to warted. Conidiophores arising laterally from creeping<br />

hyphae, erect, straight, or somewhat flexuous, narrowly cylindrical<br />

to filiform, neither geniculate nor nodulose, unbranched, septate,<br />

pale brown, thin-walled, smooth to often irregularly rough-walled or<br />

verrucose. Conidiogenous cells integrated, terminal or intercalary,<br />

cylindrical, polyblastic, with sympodial proliferation, with loci often<br />

crowded at the apex, truncate, barely to slightly thickened, but<br />

distinctly darkened-refractive. Ramoconidia cylindrical, aseptate,<br />

concolorous with conidiophores, thin-walled, irregularly roughwalled,<br />

coarsely verruculose to verrucose-rugose; hila unthickened<br />

but somewhat refractive. Conidia in long unbranched or loosely<br />

branched chains, obovoid, ellipsoid, fusiform to subcylindrical, with<br />

swollen <strong>and</strong> constricted parts, often appearing irregular in shape<br />

<strong>and</strong> outline, 0–1-septate, pale brown, thin-walled <strong>and</strong> irregularly<br />

rough-walled, verruculose-rugose; hila truncate, barely to slightly<br />

thickened, but distinctly darkened-refractive.<br />

Type species: Verrucocladosporium dirinae K. Schub., Aptroot &<br />

Crous, sp. nov.<br />

Verrucocladosporium dirinae K. Schub., Aptroot & Crous, sp.<br />

nov. MycoBank MB504433. Fig. 5.<br />

Etymology: Named after its host, Dirina massiliensis.<br />

Mycelium sparse ramosum. Hyphae 1–3 µm latae, septatae, non constrictae,<br />

hyalinae, leviae, vel irregulariter verruculosae, interdum verrucosae, tuberculatae,<br />

tenuitunicatae. Conidiophora ex hyphis repentibus lateraliter oriunda, erecta,<br />

recta, interdum leviter flexuosa, anguste cylindrica vel filiformes, non geniculta,<br />

non nodulosa, non ramosa, ad 85 µm longa, 2–3 µm lata, septata, tenuitunicata<br />

(≤ 0.75 µm), pallide brunnea, levia vel saepe irregulariter verrucosa, leviter<br />

crassitunicata. Cellulae conidiogenae integratae, saepe terminales, interdum<br />

intercalares, cylindricae, angustae, 9–20 µm longae, holoblasticae, sympodiales,<br />

locis conidiogenibus 1–3, saepe ad apicem aggregatis, interdum protuberantibus,<br />

truncatis, 1–1.8(–2) µm latis, incrassatis et fuscatis-refractivis. Ramoconidia<br />

cylindrica, 16–21 × (2–)2.5–3 µm, non septata, pallide brunnea, tenuitunicata,<br />

irregulariter verruculosa vel crosse verrucosa-rugosa, ad 4 hilis terminalibus,<br />

ad basim late truncata, non attenuata, 2–2.5 µm lata, non incrassata, sed leviter<br />

refractiva. Conidia catenata, in catenis longis, non ramosis vel laxe ramosis, plus<br />

minusve recta, obovoidea, ellipsoidea, fusiformes vel subcylindricae, sed saepe<br />

irregulares, 4–18(–23) × (2–)2.5–3.5 µm, 0–1-septata, ad septa interdum constricta,<br />

pallide brunnea, tenuitunicata (≤ 0.5 µm), irregulariter verruculosa-rugosa, utrinque<br />

leviter attenuata, hila truncata, (0.5–)0.8–1.5(–2) µm lata, vix vel leniter incrassata,<br />

sed distincte fuscata-refractiva.<br />

Mycelium sparingly branched; hyphae 1–3 µm wide, septate, not<br />

constricted at septa, hyaline, smooth to irregularly rough-walled,<br />

sometimes coarsely verrucose, with small to large drop-like,<br />

tuberculate warts, walls unthickened. Conidiophores arising laterally<br />

from creeping hyphae, erect, straight, sometimes slightly flexuous,<br />

narrowly cylindrical to filiform, not geniculate, non nodulose,<br />

unbranched, up to 85 µm long, 2–3 µm wide, septate, thin-walled<br />

(≤ 0.75 µm), pale brown, smooth to often irregularly rough-walled,<br />

verrucose, walls slightly thickened. Conidiogenous cells integrated,<br />

mostly terminal, sometimes also intercalary, cylindrical, narrow,<br />

9–20 µm long, conidiogenesis holoblastic, proliferation sympodial,<br />

with a single or up to three conidiogenous loci, often crowded at<br />

the apex, sometimes situated on small lateral prolongations, loci<br />

truncate, 1–1.8(–2) µm wide, thickened <strong>and</strong> darkened-refractive.<br />

Ramoconidia cylindrical, 16–21 × (2–)2.5–3 µm, aseptate,<br />

concolorous with conidiophores, thin-walled, irregularly roughwalled,<br />

verruculose to coarsely verrucose-rugose, apically with up<br />

to 4 hila, with a broadly truncate, non-attenuated base, 2–2.5 µm<br />

wide, unthickened but somewhat refractive. Conidia catenate, in<br />

long unbranched or loosely branched chains, more or less straight,<br />

obovoid, ellipsoid, fusiform to subcylindrical, but often appearing<br />

to form b<strong>and</strong>-like structures, with swollen <strong>and</strong> constricted parts,<br />

accordion or fir tree-like <strong>and</strong> also due to ornamentation often<br />

appearing irregular in shape <strong>and</strong> outline, 4–18(–23) × (2–)2.5–<br />

3.5 µm, 0–1-septate, sometimes constricted at the more or less<br />

median septum, pale brown, thin-walled (≤ 0.5 µm), irregularly<br />

rough-walled, verruculose-rugose, somewhat attenuated towards<br />

apex <strong>and</strong> base, hila truncate, (0.5–)0.8–1.5(–2) µm wide, barely<br />

or slightly thickened, but distinctly darkened-refractive; microcyclic<br />

conidiogenesis not observed.<br />

Cultural characteristics: Colonies erumpent, spreading, with<br />

catenate, feathery margins <strong>and</strong> moderate aerial mycelium on PDA.<br />

Surface grey-olivaceous, reverse iron-grey. Colonies reaching 25<br />

mm after 1 mo at 25 °C.<br />

Specimen examined: U.K., Somerset, Kingsbury Episcopi, isolated from the lichen<br />

Dirina massiliensis (Roccelaceae, Arthoniales), Mar. 2003, A. Aptroot, holotype<br />

<strong>CBS</strong>-H 19883, culture ex-type <strong>CBS</strong> 112794.<br />

Notes: Verrucocladosporium dirinae was deposited as<br />

<strong>Cladosporium</strong> arthoniae M. Christ. & D. Hawksw., but the name<br />

was misapplied. <strong>The</strong> latter species, described from apothecia of<br />

Arthonia impolita on Quercus from Sweden, does not possess<br />

clearly visible, distinct conidiogenous loci <strong>and</strong> hila, <strong>and</strong> therefore<br />

has to be excluded from the <strong>genus</strong> <strong>Cladosporium</strong> s. str. <strong>and</strong> is also<br />

easily distinguishable from the newly introduced species above.<br />

Furthermore the conidiophores are apically frequently branched <strong>and</strong><br />

the catenate, ellipsoid conidia are smaller <strong>and</strong> wider, 6–10 × 4–5 µm<br />

(Hawksworth 1979). Due to the conidiogenesis <strong>and</strong> the structure of<br />

the conidiogenous loci <strong>and</strong> conidia, C. arthoniae is rather close to<br />

lichenicolous Taeniolella S. Hughes species. <strong>The</strong> unique feature<br />

of the new <strong>genus</strong> Verrucocladosporium is its unusual conidial <strong>and</strong><br />

hyphal ornamentation. Furthermore, it differs from <strong>Cladosporium</strong><br />

s. str. in having cylindrical-filiform conidiophores, which are neither<br />

geniculate nor nodulose, quite distinct, thickened <strong>and</strong> darkened,<br />

but non-coronate conidiogenous loci <strong>and</strong> often irregularly shaped<br />

conidia. Phylogenetially, it is also distinct as a sister taxon to<br />

<strong>Cladosporium</strong> s. str. Concerning differences to other cladosporioid<br />

genera, see “key to the genera”. Verrucocladosporium dirinae has<br />

been isolated from the lichen species Dirina massiliensis, i.e., this<br />

species is probably lichenicolous, although its ecology is not quite<br />

clear. Fruiting of this species in vivo has not yet been observed. A<br />

second unnamed, taeniolella-like, lichenicolous hyphomycete was<br />

also present on the thallus of this lichen.<br />

www.studiesinmycology.org<br />

41


Crous et al.<br />

Fig. 5. Verrucocladosporium dirinae (type material). A. Colonies on MEA. B–C. Conidial chains. D–H. Ramoconidia <strong>and</strong> conidia. Scale bars = 10 µm.<br />

Capnodiales, Teratosphaeriaceae<br />

Devriesia americana Crous & Dugan, sp. nov. MycoBank<br />

MB504434. Fig. 6.<br />

Etymology: Named after the geographic location of its type strain,<br />

New York, U.S.A.<br />

Differt a D. shelburniensi conidiophoris brevioribus (ad 30 µm longis), leviter<br />

latioribus (2–3 µm), ramoconidiis saepe nullis et conidiis 0–1-septatis.<br />

Mycelium consisting of branched, septate, 1.5–3 µm wide hyphae,<br />

irregular in width, predominantly guttulate, smooth, forming hyphal<br />

str<strong>and</strong>s <strong>and</strong> hyphal coils; hyphae frequently forming dark brown,<br />

thick-walled, intercalary, muriformly septate chlamydospores on<br />

PDA in culture. Conidiophores subcylindrical, medium brown,<br />

straight to irregularly curved, up to 7-septate <strong>and</strong> 30 µm tall, 2–3<br />

µm wide, or reduced to conidiogenous cells. Conidiogenous cells<br />

terminal or lateral on hyphae, 5–12 × 2–3 µm, medium brown,<br />

smooth, guttulate, subcylindrical, mono- to polyblastic; scars<br />

somewhat darkened <strong>and</strong> thickened, but not refractive. Conidia<br />

medium brown, guttulate, smooth, in mostly unbranched chains,<br />

subcylindrical to narrowly ellipsoidal, tapering towards subtruncate<br />

ends, 0–1-septate, (7–)8–12(–16) × 2(–2.5) µm; hila darkened,<br />

somewhat thickened, not refractive, 1–1.5 µm wide.<br />

42


<strong>Cladosporium</strong> <strong>and</strong> morphologically <strong>similar</strong> genera<br />

Fig. 6. Devriesia americana (type material). A–B. Chlamydospore-like structures formed in culture. C–F. Conidiophores giving rise to conidial chains. G–H. Conidia. Scale bars<br />

= 10 µm<br />

Cultural characteristics: Colonies erumpent, with sparse aerial<br />

mycelium on PDA, <strong>and</strong> smooth, uneven, wide margins, submerged<br />

under the agar surface; greenish-black (surface); reverse<br />

olivaceous-black; on OA iron-grey (surface). Colonies reaching<br />

8–15 mm diam on PDA after 14 d at 25 °C in the dark; colonies<br />

fertile, but sporulation sparse.<br />

Specimen examined: U.S.A., New York, Long Isl<strong>and</strong>, isolated from air, F.M. Dugan,<br />

holotype <strong>CBS</strong>-H 19894, culture ex-type <strong>CBS</strong> 117726 = ATCC 96545 = CPC 5121.<br />

Notes: Until recently, this species was treated as part of the<br />

“Phaeoramularia” hachijoensis species complex (Braun et al.<br />

2003). <strong>The</strong> present strain has conidia that are smaller than those<br />

of “Phaeoramularia” hachijoensis, which has ramoconidia that are<br />

1–3-septate, up to 30 µm long, <strong>and</strong> conidia that are predominantly<br />

1-septate, 10–21 × 2–4 µm (Matsushima 1975). From the illustration<br />

provided by Matsushima, it appears that “Phaeoramularia”<br />

hachijoensis is indeed a species of Pseudocladosporium U. Braun,<br />

a finding which is in agreement with the name Pseudocladosporium<br />

hachijoense (Matsush.) U. Braun proposed by Braun (1998).<br />

Devriesia americana is both morphologically <strong>and</strong> phylogenetically<br />

more allied to Teratosphaeria Syd. & P. Syd. than Venturia<br />

Sacc. Based on its pigmented conidiophores <strong>and</strong> catenulate<br />

conidia, <strong>and</strong> scars that are somewhat darkened <strong>and</strong> thickened,<br />

<strong>and</strong> the formation of chlamydospores in culture, it is allocated to<br />

Devriesia Seifert & N.L. Nick. Species of the <strong>genus</strong> Devriesia are<br />

ecologically different, however (Seifert et al. 2004), being soil-borne<br />

www.studiesinmycology.org<br />

<strong>and</strong> thermotolerant. It is possible, therefore, that further collections<br />

of this fungus may eventually indicate that it needs to be placed in a<br />

distinct <strong>genus</strong> within the Teratosphaeriaceae. Devriesia americana<br />

is the second species of Devriesia with muriform chlamydospores,<br />

beside D. shelburniensis N.L. Nick. & Seifert, but the latter species<br />

is easily distinguishable by its long <strong>and</strong> narrow conidiophores (ca<br />

100–200 × 1.5–2.5 µm) <strong>and</strong> abundant ramoconidia, up to 25.5<br />

µm long, with 0–3 septa. Furthermore, D. shelburniensis is a<br />

thermotolerant soil-borne hyphomycete.<br />

Stenella araguata Syd., Ann. Mycol. 28(1/2): 205. 1930. Figs 7–8.<br />

≡ <strong>Cladosporium</strong> araguatum (Syd.) Arx, Genera of Fungi Sporulating in<br />

pure Culture, Edn 2 (Vaduz): 224. 1974.<br />

= <strong>Cladosporium</strong> castellanii Borelli & Marcano, Castellania 1: 154. 1973.<br />

Leaf spots hypophyllous, irregular to subcircular, up to 8 mm<br />

diam, indistinct, yellow to pale brown with indistinct margins on<br />

IMI 15728(a); on IMI 34905 (Fig. 7) lesions are amphigenous, <strong>and</strong><br />

fascicles <strong>and</strong> sporodochia are rare, with superficial mycelium being<br />

predominant. Mycelium consisting of internal <strong>and</strong> external, medium<br />

brown, septate, branched, verruculose, 3–4 µm wide hyphae.<br />

Caespituli fasciculate to sporodochial, hypophyllous, medium brown,<br />

up to 120 µm wide <strong>and</strong> 60 µm high. Conidiophores arising singly<br />

from superficial mycelium, or aggregated in loose to dense fascicles<br />

arising from the upper cells of a brown stroma up to 70 µm wide <strong>and</strong><br />

30 µm high; conidiophores medium brown, finely verruculose, 1–5-<br />

septate, subcylindrical, straight to geniculate-sinuous, unbranched<br />

43


Crous et al.<br />

Fig. 7. Stenella araguata (syntype material, IMI 34905). A. Leaf spot. B. Conidiophore, conidia <strong>and</strong> verruculose hypha on leaf surface. C–D. Conidiophore with terminal<br />

conidiogenous cells. E–G. Ramoconidia <strong>and</strong> conidia. Scale bars = 10 µm.<br />

or branched, 20–40 × 3–4 µm. Conidiogenous cells terminal or<br />

lateral, unbranched, medium brown, finely verruculose, tapering<br />

to slightly or flat-tipped loci, proliferating sympodially, 5–20 × 3–4<br />

µm; scars thickened, darkened <strong>and</strong> refractive. Conidia solitary<br />

or catenulate, in simple chains, medium brown, verruculose,<br />

subcylindrical to narrowly obclavate, apex obtuse, base bluntly<br />

rounded with truncate hilum, straight, 0–3-septate, (7–)13–20(–25)<br />

× 3(–3.5) µm; hila thickened, darkened, refractive, 1–1.5 µm wide.<br />

Description based on <strong>CBS</strong> 105.75 (Fig. 8): Mycelium consisting<br />

of branched, septate, verruculose, medium brown, 2–4 µm wide<br />

hyphae. Conidiomata brown, superficial, sporodochial, up to 200 µm<br />

diam Conidiophores solitary, erect, micro- to macronematous, 1–12-<br />

septate, subcylindrical, straight to geniculate-sinuous or irregularly<br />

curved, 10–70 × 3–4 µm; frequently swollen <strong>and</strong> constricted at<br />

septa, thick-walled, medium brown, verruculose. Conidiogenous<br />

cells terminal <strong>and</strong> intercalary, subcylindrical, straight, but frequently<br />

branched laterally, 6–20 × 3–4 µm, with 1–3 flat-tipped loci that<br />

can be subdenticulate, 1.5–2 µm wide, somewhat darkened <strong>and</strong><br />

thickened, not prominently refractive. Conidia medium brown, thickwalled,<br />

verruculose, septa becoming darkly pigmented, occurring in<br />

branched chains. Ramoconidia subcylindrical to narrowly ellipsoid,<br />

12–25 × 3.5–4(–5) µm, 1(–4)-septate. Conidia occurring in short<br />

chains (–8), subcylindrical to narrowly ellipsoid, 0–1(–3)-septate,<br />

(7–)10–15(–20) × (2–)3–3.5(–4) µm; hila somewhat thickened,<br />

darkened but not refractive, 1.5–2(–2.5) µm wide.<br />

Cultural characteristics: Colonies on OA erumpent, spreading, with<br />

moderate aerial mycelium <strong>and</strong> smooth, even margins; olivaceousgrey<br />

(surface); on PDA olivaceous-black (surface), margins<br />

feathery, uneven, with moderate aerial mycelium; reverse iron-grey.<br />

Colonies reaching 20 mm diam after 1 mo at 25°C in the dark on<br />

OA.<br />

Specimens examined: Venezuela, Aragua, La Victoria, on leaf spots of<br />

Pithecellobium lanceolatum (Mimosaceae), Jan. 1928, H. Sydow, lectotype of S.<br />

araguata (selected here!) IMI 15728(a); 3 Feb. 1928, syntype of S. araguata, IMI<br />

34905. Venezuela, isolated from man with tinea nigra, 1973, D. Borelli, holotype of<br />

C. castellanii, IMI 183818, culture ex-type <strong>CBS</strong> 105.75.<br />

Notes: Stenella araguata is a leaf spot pathogen of Pithecellobium<br />

in Venezuela, <strong>and</strong> represents the type species of the <strong>genus</strong> Stenella<br />

[Two collections were cited, viz. no. 407, ‘La Victoria’, <strong>and</strong> no. 370,<br />

‘inter La Victoria et Suata’, both without any date, <strong>and</strong> without<br />

any specific type indication. Thus, the two collections have to be<br />

considered syntypes. <strong>The</strong> two IMI collections with different dates<br />

are parts of the syntypes, of which IMI 15728(a) is proposed here<br />

to serve as lectotype]. Stenella araguata was incorrectly seen as<br />

a species of <strong>Cladosporium</strong> by von Arx (1974), which has recently<br />

been morphologically circumscribed (Braun et al. 2003, Schubert et<br />

al. 2007b – this volume), <strong>and</strong> is linked to Davidiella teleomorphs.<br />

In a study by McGinnis & Padhye (1978), <strong>Cladosporium</strong><br />

castellanii (tinea nigra of human in Venezuela) was shown to be<br />

synonymous to Stenella araguata (leaf spots of Pithecellobium<br />

lanceolatum in Venezuela). In the present study we re-examined<br />

the ex-type strain of C. castellanii (<strong>CBS</strong> 105.75), <strong>and</strong> found conidia<br />

to be 0–1(–3)-septate, (7–)10–15(–20) × (2–)3–3.5(–4) µm, while<br />

those of the type specimen of S. araguata were <strong>similar</strong>, namely<br />

0–3-septate, (7–)13–20(–25) × 3(–3.5) µm. Furthermore, both<br />

collections have verruculose hyphae, which is the primary feature<br />

distinguishing Stenella from Passalora Fr. (Crous & Braun 2003).<br />

44


<strong>Cladosporium</strong> <strong>and</strong> morphologically <strong>similar</strong> genera<br />

Fig. 8. Stenella araguata (<strong>CBS</strong> 105.75). A–B. Conidiophore fascicles on a pine needle <strong>and</strong> tap-water agar, respectively. C–D, G. Conidiophores giving rise to conidial chains.<br />

E–F, H–J. Conidial chains with ramoconidia <strong>and</strong> conidia. Scale bars = 10 µm.<br />

Stenella has always been used for anamorphs of Mycosphaerella<br />

(Crous et al. 2004, 2006c), <strong>and</strong> the fact that it belongs to<br />

Teratosphaeria (Teratosphaeriaceae), <strong>and</strong> not Mycosphaerella<br />

(Mycosphaerellaceae), raised the question of how to treat stenellalike<br />

anamorphs in Mycosphaerella. Due to insufficient availability of<br />

cultures (Crous et al. 2000, 2001), the status of Stenella was left<br />

unresolved (Crous & Braun 2003). Presently (Crous & Groenewald,<br />

unpubl. data), it is clear that the stenella-like morphology type is<br />

polyphyletic within the Mycosphaerellaceae, <strong>and</strong> paraphyletic<br />

within the Capnodiales. Several species are known that represent<br />

morphological transitions between Stenella <strong>and</strong> Passalora. It<br />

seems logical, therefore, that future studies should favour using<br />

Passalora to also accommodate Mycosphaerella anamorphs with<br />

superficial, verruculose hyphae, which have traditionally been<br />

placed in Stenella. This is in spite of the fact that there are other<br />

generic names available within the Mycosphaerellaceae for taxa<br />

with a stenella-like morphology (pigmented structures, darkened,<br />

thickened, refractive scars, <strong>and</strong> superficial, verruculose mycelium),<br />

namely Zasmidium Fr. (1849) (see Arzanlou et al. 2007 – this<br />

volume), <strong>and</strong> Verrucisporota D.E. Shaw & Alcorn (1993). Based<br />

on the phylogenetic position of the type species, Stenella s. str.<br />

is an anamorph of Teratosphaeria (Teratosphaeriaceae). Using<br />

the generic concept as employed in this volume of the Studies in<br />

Mycology, however, the anamorph <strong>genus</strong> is accepted as being<br />

poly- <strong>and</strong> paraphyletic within the order Capnodiales.<br />

www.studiesinmycology.org<br />

45


Crous et al.<br />

Helotiales, incertae sedis<br />

Hyalodendriella Crous, gen. nov. MycoBank MB504435.<br />

Etymology: Morphologically <strong>similar</strong> to Hyalodendron Diddens.<br />

Differt a Hyalodendro et Retroconi conidiophoris dimorphis, cicatricibus incrassatis<br />

et conidiis ultimo brunneis.<br />

Morphologically <strong>similar</strong> to Hyalodendron <strong>and</strong> Retroconis, but<br />

distinct in that it has dimorphic conidiophores, conidia that turn<br />

brown with age, <strong>and</strong> have thickened scars. Microconidiophores<br />

forming as lateral branches on hyphae, subcylindrical, subhyaline<br />

to pale brown, smooth, septate, with terminal conidiogenous cells.<br />

Macroconidiophores septate, subcylindrical, straight to curved,<br />

subhyaline to pale brown, smooth, with an apical rachis that is pale<br />

brown, smooth, subcylindrical, with numerous, aggregated loci.<br />

Conidia limoniform to ellipsoid, aseptate, smooth, pale brown, in<br />

short chains, tapering towards ends that are prominently apiculate,<br />

prominently thickened <strong>and</strong> darkened, but not refractive.<br />

Type species: Hyalodendriella betulae Crous, sp. nov.<br />

Hyalodendriella betulae Crous sp. nov. MycoBank MB504436.<br />

Fig. 9.<br />

Mycelium ex hyphis ramosis, septatis, 1.5–2 µm latis, levibus, hyalinis vel pallide<br />

brunnei compositum. Conidiophora dimorphosa: (A) Conidiophora ex hyphis<br />

lateraliter oriunda, subcylindrical, subhyalina vel pallide brunnea, levia, 1–6-<br />

septata, ad 40 µm longa et 2–3 µm lata. Cellulae conidiogenae terminales, 5–15<br />

× 2–3 µm, loco conidiogeno singulare et terminale, cellula ellipsoidea (conidio ?),<br />

persistente, interdum cellulis catenulatis (ad 6), pallide brunneo, apice subacute<br />

rotundato, basi truncata, 5–7 × 3–4 µm. (B) Conidiophoris 10–20 × 2–3 µm,<br />

1–2-septatis, subcylindraceis, rectis vel curvatis, subhyalinis vel pallide brunneis,<br />

levibus. Cellulae conidiogenae pallide brunneae, leviae, subcylindraceae, locis<br />

numerosis, aggregatis, inconspicuis vel subdenticulatis, leviter protuberantes, 0.5<br />

µm diam, incrassatis et fuscatis. Conidia catenulata (2–3), (4–)5–6(–7) × 2.5–3 µm,<br />

limoniformes vel ellipsoidea, non septata, levia, pallide brunnea, utrinque attenuata,<br />

apiculata, 0.5–1 × 0.5 µm, incrassata et fuscata, non refractiva.<br />

Mycelium consisting of branched, septate, 1.5–2 µm wide<br />

hyphae, smooth, hyaline to pale brown. Conidiophores dimorphic.<br />

Type A: Conidiophores forming as lateral branches on hyphae,<br />

subcylindrical, subhyaline to pale brown, smooth, 1–6-septate, up<br />

to 40 µm long, <strong>and</strong> 2–3 µm wide. Conidiogenous cells terminal, 5–<br />

15 × 2–3 µm, with a single, apical locus, giving rise to an ellipsoidal<br />

cell (conidium?) which mostly remains attached, pale brown, with<br />

a subacutely rounded apex <strong>and</strong> truncate base, 5–7 × 3–4 µm, at<br />

times forming chains of up to 6 such cells. Type B: Conidiophores<br />

10–20 × 2–3 µm, 1–2-septate, subcylindrical, straight to curved,<br />

subhyaline to pale brown, smooth. Conidiogenous cells pale<br />

brown, smooth, subcylindrical with numerous, aggregated loci,<br />

inconspicuous to subdenticulate <strong>and</strong> somewhat protruding, 0.5 µm<br />

wide, somewhat thickened <strong>and</strong> darkened. Conidia in chains of 2–3,<br />

limoniform to ellipsoid, widest in the middle, aseptate, smooth, pale<br />

brown, tapering towards ends that are prominently apiculate, 0.5–1<br />

µm long, 0.5 µm wide, prominently thickened <strong>and</strong> darkened, but<br />

not refractive.<br />

Cultural characteristics: Colonies on PDA slimy, spreading,<br />

somewhat erumpent in the centre, with even, catenulate margins,<br />

lacking aerial mycelium; surface fuscous-black to olivaceous-black,<br />

with patches of cream; reverse fuscous-black with patches of<br />

cream. Colonies reaching 25 mm diam on PDA after 1 mo at 25 °C<br />

in the dark; colonies fertile with profuse sporulation on SNA.<br />

Specimen examined: Netherl<strong>and</strong>s, Oostelijk Flevol<strong>and</strong>, Jagersveld, isolated from<br />

Alnus glutinosa (Betulaceae), May 1982, W. Gams, holotype <strong>CBS</strong>-H 19895, culture<br />

ex-type <strong>CBS</strong> 261.82.<br />

Notes: Morphologically Hyalodendriella resembles the genera<br />

Hyalodendron <strong>and</strong> Retroconis de Hoog & Bat. Vegte (de Hoog<br />

& Batenburg van der Vegte 1989). It is distinct, however, in its<br />

pigmentation, dimorphic conidiophores <strong>and</strong> conidia. Furthermore,<br />

a strain of Retroconis fusiformis (S.M. Reddy & Bilgrami) de Hoog<br />

& Bat. Vegte (<strong>CBS</strong> 330.81) clusters apart from Hyalodendriella,<br />

namely in the Chaetomiaceae, Sordariales.<br />

Pleosporales, incertae sedis<br />

Ochrocladosporium Crous & U. Braun, gen. nov. MycoBank<br />

MB504437.<br />

Etymology: Named after its pale brown, cladosporium-like conidia.<br />

Differt a Cladosporio et generis cladosporioidibus diversis conidiophoris cum cellulis<br />

basalibus T-formibus et/vel cicatricibus non incrassatis, non vel leviter fuscatisrefractivis.<br />

Mycelium consisting of branched, septate hyphae, subhyaline to<br />

pale brown, smooth, giving rise to two types of conidiophores.<br />

Macronematous conidiophores solitary, erect, arising from<br />

superficial hyphae, composed of a subcylindrical stipe, without a<br />

swollen or lobed base or rhizoids, with or without a T-shaped foot cell,<br />

pale to dark brown; apical conidiogenous apparatus with or without<br />

additional branches, branched part, if present, with short branchlets<br />

composed of conidiogenous cells <strong>and</strong> ramoconidia, continuous to<br />

septate, wall thin or slightly thicked, pale brown. Conidiogenous cells<br />

integrated, terminal or intercalary, subcylindrical to doliiform, pale<br />

brown, thin-walled, smooth; unilocal or multilocal, determinate to<br />

sympodial, loci conically truncate, subdenticulate, neither thickened,<br />

nor darkened-refractive or only slightly darkened-refractive.<br />

Micronematous conidiophores integrated in hyphae, reduced to a<br />

lateral peg-like locus or erect, frequently reduced to conidiogenous<br />

cells, pale brown, smooth, subcylindrical. Conidia occurring in<br />

branched chains, fusiform, ellipsoid-ovoid to subcylindrical, 0(–1)-<br />

septate, ramoconidia present, pale brown, thin-walled, smooth to<br />

finely verruculose, ends attenuated, hila obconically truncate to<br />

almost pointed, neither thickened nor darkened-refractive.<br />

Type species: Ochrocladosporium elatum (Harz) Crous & U. Braun,<br />

comb. nov.<br />

Ochrocladosporium elatum (Harz) Crous & U. Braun, comb.<br />

nov. MycoBank MB504438. Fig. 10.<br />

Basionym: Hormodendrum elatum Harz, Bull. Soc. Imp. Naturalistes<br />

Moscou 44: 140. 1871.<br />

≡ <strong>Cladosporium</strong> elatum (Harz) Nannf., in Melin & Nannfeldt, Svenska<br />

Skogsvardsfoereren Tidskr. 32: 397. 1934.<br />

≡ Cadophora elatum (Harz) Nannf., in Melin & Nannfeldt, Svenska<br />

Skogsvardsfoereren Tidskr. 32: 422. 1934.<br />

Mycelium consisting of branched, septate, smooth, hyaline, 2–4<br />

µm wide, thin-walled, hyphae, becoming darker brown in places,<br />

giving rise to erect conidiophores. Conidiophores either reduced<br />

to conidiogenous cells, or well-differentiated, terminal <strong>and</strong> lateral<br />

on hyphae, erect, highly variable, arising from superficial <strong>and</strong><br />

submerged hyphae, reduced to subdenticulate loci, 1–1.5 µm<br />

wide, or well-differentiated, up to 60 µm long, 1–3-septate, 3–4<br />

µm wide, hyaline to medium brown, smooth, thin-walled (≤ 1 µm).<br />

Conidiogenous cells integrated as lateral peg-like loci on hyphal<br />

cells, or erect, subcylindrical, up to 25 µm long, 2.5–4 µm wide,<br />

with 1–3 terminal loci, occasionally also lateral, 1–1.5 µm wide,<br />

not thickened <strong>and</strong> darkened, but frequently somewhat refractive<br />

(mounted in Shear’s solution, not lactic acid). Ramoconidia<br />

46


<strong>Cladosporium</strong> <strong>and</strong> morphologically <strong>similar</strong> genera<br />

Fig. 9. Hyalodendriella betulae (type material). A. Conidiophores on PDA. B–C. Microconidiophores. D–H. Macroconidiophores with fascicles of conidiogenous cells. I. Conidia<br />

with darkened, thickened hila. Scale bars = 10 µm.<br />

subcylindrical to ellipsoid, hyaline to pale brown, smooth to finely<br />

verruculose, 10–40 × 3–5 µm, 0(–1)-septate, giving rise to branched<br />

chains of conidia (up to 20 per chain) that are subcylindrical to<br />

ellipsoid, aseptate, (7–)8–10(–14) × (3–)4(–4.5) µm, smooth to<br />

finely verruculose, olivaceous-brown, thin-walled (up to 0.5 µm),<br />

hila 0.5–1 µm wide, neither thickened nor, or barely, darkened<br />

refractive.<br />

Cultural characteristics: Colonies erumpent, spreading, fast<br />

growing, covering the plate within 1 mo at 25 °C; aerial mycelium<br />

abundant, margins smooth on PDA; surface isabelline in centre,<br />

umber in outer region; olivaceous-black in reverse.<br />

Specimen examined: Sweden, Iggesund, isolated from wood pulp, Jan. 1976, E.<br />

Melin, specimen <strong>CBS</strong>-H 19896, culture <strong>CBS</strong> 146.33.<br />

Notes: “Hormodendrum” elatum was originally described from<br />

a wooden stump in Germany. <strong>The</strong> culture examined here was<br />

deposited by Melin in 1933 as culture 389:14, isolated from wood<br />

chips in Sweden, <strong>and</strong> described by Nannfeldt, <strong>and</strong> has since<br />

been accepted as authentic for the species. Earlier publications<br />

(de Vries 1952, Ho et al. 1999, de Hoog et al. 2000), clearly state<br />

that this species does not belong in <strong>Cladosporium</strong> s. str., <strong>and</strong> this<br />

statement is supported by the phylogenetic analysis placing it in<br />

the Pleosporales.<br />

www.studiesinmycology.org<br />

Ochrocladosporium frigidarii Crous & U. Braun, sp. nov.<br />

MycoBank MB504439. Fig. 11.<br />

Etymology: Named after it collection site, within a cooled incubation<br />

room.<br />

Differt a O. elato conidiophoris distincte dimorphis, macroconidiophoris majoribus,<br />

ad 600 × 5–7 µm, septis incrassates, cellulis basalibus T-formibus et conidiis leniter<br />

brevioribus et latioribus, (6–)7–8(–10) × (4–)4.5–5(–6) µm.<br />

Mycelium consisting of branched, septate, 2–7 µm wide hyphae,<br />

occasionally constricted at septa with hyphal swellings, subhyaline<br />

to pale brown, smooth, thin-walled, giving rise to two types of<br />

conidiophores. Macronematous conidiophores solitary, erect,<br />

arising from superficial hyphae, up to 600 µm long, composed of<br />

a subcylindrical stipe, 5–7 µm wide, 10–15(–20)-septate, without<br />

a swollen or lobed base or rhizoids, but with a T-shaped foot cell,<br />

wall ≤ 1 µm wide, guttulate, with thick septa, dark brown, finely<br />

verruculose, apical 1–2 cells at times medium brown, giving rise<br />

to 1–2 primary branches, 0–1-septate, subcylindrical, thin-walled,<br />

pale brown, smooth to finely verruculose, 10–20 × 4–6 µm, giving<br />

rise to (1–)2–4 secondary branches, 0–1-septate, subcylindrical,<br />

8–13(–20) × 4–5 µm, or giving rise directly to conidiogenous cells.<br />

Conidiogenous cells subcylindrical to doliiform, pale brown, smooth,<br />

8–15 × 3–4 µm, loci somewhat protruding 1–2 µm wide, neither<br />

47


Crous et al.<br />

Fig. 10. Ochrocladosporium elatum (<strong>CBS</strong> 146.33). A–C, E. Microconidiophores. D. Macro- <strong>and</strong> microconidiophore. F–H. Macroconidiophores. I–J. Ramoconidia <strong>and</strong> conidia.<br />

Scale bars = 10 µm.<br />

thickened, darkened, nor refractive. Micronematous conidiophores<br />

erect, pale brown, smooth, subcylindrical, reduced to conidiogenous<br />

cells, or up to 4-septate, 15–90 × 2–3.5 µm, mostly unbranched,<br />

rarely branched below; conidiogenous cells subcylindrical,<br />

pale brown, smooth to finely verruculose, tapering at apex <strong>and</strong><br />

sometimes at base, proliferating sympodially via 1(–3) loci, 1–1.5<br />

µm wide, denticle-like, which can appear somewhat darkened;<br />

micronematous conidiophores frequently occurring at the base of<br />

macronematous conidiophores. Ramoconidia, if present, up to 30<br />

µm long, 0–1-septate. Conidia <strong>and</strong> ramoconidia ellipsoid to ovoid,<br />

aseptate, pale brown, thin-walled (≤ 0.75 µm), finely verruculose,<br />

occurring in branched chains; conidia (6–)7–8(–10) × (4–)4.5–5(–6)<br />

µm; hila 0.5–1 µm wide, not darkened, thickened or refractive.<br />

Cultural characteristics: Colonies on PDA erumpent, spreading, with<br />

profuse sporulation <strong>and</strong> moderate aerial mycelium, even margins,<br />

olivaceous-grey (surface); reverse olivaceous-black. Colonies<br />

covering the dish after 1 mo at 25 °C in the dark.<br />

Specimen examined: Germany, Hannover, isolated from a cooled room, Jan. 1981,<br />

B. Ahlert, holotype <strong>CBS</strong>-H 19897, culture ex-type <strong>CBS</strong> 103.81.<br />

Notes: Ochrocladosporium frigidarii is characterised by its<br />

dimorphic fruiting, <strong>and</strong> inconspicuous scars <strong>and</strong> conidial hila, which<br />

48


<strong>Cladosporium</strong> <strong>and</strong> morphologically <strong>similar</strong> genera<br />

Fig. 11. Ochrocladosporium frigidarii (type material). A. Macro- <strong>and</strong> microconidiophores. B. Foot cell of macroconidiophore. C–D. Microconidiophore. E–J. Macroconidiophores.<br />

K. Conidia. Scale bars = 10 µm.<br />

are distinct from <strong>Cladosporium</strong> s. str. <strong>The</strong> phylogenetic analysis of<br />

its LSU sequence places it in the Pleosporales, together with O.<br />

elatum.<br />

<strong>The</strong> dimorphic conidiophores seen in O. frigidarii (<strong>CBS</strong> 103.81)<br />

are less obvious in O. elatum (<strong>CBS</strong> 146.33), but the scars <strong>and</strong> hila<br />

are <strong>similar</strong>. <strong>The</strong> macronematous conidiophores of O. frigidarii are<br />

much longer <strong>and</strong> wider <strong>and</strong> the conidia are shorter <strong>and</strong> slightly<br />

wider, (6–)7–8(–10) × (4–)4.5–5(–6) µm, than those of O. elatum<br />

which are (7–)8–10(–14) × (3–)4(–4.5) µm.<br />

www.studiesinmycology.org<br />

49


Crous et al.<br />

Fig. 12. Rhizocladosporium argillaceum (type material). A–E. Conidiophores with pigmented ramoconidia <strong>and</strong> hyaline conidia. F. Rhizoids forming at the foot cells of<br />

macroconidiophores. Scale bar = 10 µm.<br />

Incertae sedis<br />

Rhizocladosporium Crous & U. Braun, gen. nov. MycoBank<br />

MB504440.<br />

Etymology: Named after the presence of rhizoids on its<br />

conidiophores, <strong>and</strong> cladosporium-like conidia.<br />

Differt a Cladosporio et generis cladosporioidibus diversis hyphis hyalinis,<br />

conidiophoris cum cellulis basalibus lobatis vel rhizoidibus, cellulis conidiogenis<br />

monoblasticis, determinatis, locis margine leviter incrassatis et fuscatis, non<br />

refractivis, non coronatis, ramoconidiis brunneis sed conidiis hyalinis, hilis non<br />

incrassatis, non fuscatis-refractivis.<br />

Mycelium consisting of branched, septate, smooth, hyaline hyphae.<br />

Conidiophores solitary, macronematous, subcylindrical, erect,<br />

arising from superficial mycelium, septate, pigmented, smooth;<br />

base somewhat inflated, lobed or with rhizoids. Conidiogenous<br />

cells integrated, terminal, monoblastic, determinate, subcylindrical,<br />

tapering towards a single flat-tipped locus, straight to once<br />

geniculate, occasionally with two loci, pigmented, smooth; locus<br />

flattened, undifferentiated to somewhat darkened <strong>and</strong> thickened<br />

along the rim, not refractive, giving rise to a single conidial chain<br />

or a single ramoconidium with several simple acropetal chains of<br />

secondary ramoconidia or conidia. Conidia occurring in branched<br />

chains; ramoconidia subcylindrical to narrowly ellipsoidal, straight<br />

to geniculate-sinuous, with apical <strong>and</strong> lateral conidial hila;<br />

ramoconidia with broadly truncate base medium brown; secondary<br />

ramoconidia with narrowed base subhyaline or hyaline, smooth;<br />

conidia aseptate, in chains, hyaline, guttulate, ellipsoidal with<br />

obtuse ends; hila inconspicuous, neither darkened nor refractive<br />

or thickened.<br />

Type species: Rhizocladosporium argillaceum (Minoura) Crous &<br />

U. Braun, comb. nov.<br />

Rhizocladosporium argillaceum (Minoura) Crous & U. Braun,<br />

comb. nov. MycoBank MB504441. Fig. 12.<br />

Basionym: <strong>Cladosporium</strong> argillaceum Minoura, J. Ferment. Technol.<br />

44: 140. 1966.<br />

Mycelium consisting of branched, septate, smooth, hyaline,<br />

thin-walled, 1.5–2 µm wide hyphae. Conidiophores solitary,<br />

macronematous, erect, arising from superficial mycelium; base<br />

somewhat inflated, lobed or with rhizoids, up to 10 µm wide;<br />

conidiophore stipe subcylindrical, straight to curved, rarely<br />

geniculate-sinuous, wall up to 1 µm wide, medium brown,<br />

sometimes paler towards the tip, smooth, 1–6-septate, 35–160<br />

50


<strong>Cladosporium</strong> <strong>and</strong> morphologically <strong>similar</strong> genera<br />

µm tall, 4–6 µm wide. Conidiogenous cells terminal, straight,<br />

subcylindrical, tapering towards a flat-tipped locus, occasionally<br />

once geniculate, with two loci, medium brown, smooth, 15–35 ×<br />

4–6 µm; locus flattened, undifferentiated or very slightly darkened<br />

<strong>and</strong> thickened along the rim, not refractive, 1.5–2 µm wide. Conidia<br />

occurring in branched chains. Ramoconidia subcylindrical to<br />

narrowly ellipsoidal, straight to geniculate-sinuous, 17–35 × 4–5<br />

µm, medium brown, smooth, thin-walled, frequently branching<br />

laterally, with apical <strong>and</strong> lateral subdenticulate conidial hila, 1.5–2.5<br />

µm wide; secondary ramoconidia hyaline or subhyaline. Conidia<br />

aseptate, (10–)12–17(–20) × (3.5–)4(–4.5) µm, in branched<br />

chains (–6), hyaline or subhyaline, guttulate, ellipsoidal-fusiform,<br />

with obtuse ends, or tapering to obconically subtruncate ends with<br />

hila that are inconspicuous (neither darkened nor refractive or<br />

thickened), 0.5–1 µm wide.<br />

Cultural characteristics: Colonies on PDA spreading, erumpent, with<br />

smooth, even margins <strong>and</strong> sparse to moderate aerial mycelium;<br />

hazel to fawn (surface); reverse hazel to fawn. Colonies reaching<br />

35 mm diam after 1 mo at 25 °C in the dark; colonies fertile.<br />

Specimen examined: Japan, Yoku Isl<strong>and</strong>, isolated from decayed myxomycete, 21<br />

Oct. 1961, K. Tubaki No. 4262 holotype, culture ex-type <strong>CBS</strong> 241.67 = IFO 7055.<br />

Notes: <strong>The</strong> lobed-rhizoid conidiophore base, <strong>and</strong> brown,<br />

disarticulating ramoconidia, with hyaline chains of conidia, are<br />

characteristic of Rhizocladosporium. Although Minoura (1966)<br />

illustrated some conidiophores that were micronematous (reduced<br />

to conidiogenous cells on superficial mycelium), these were<br />

not observed in the present study. Metulocladosporiella Crous,<br />

Schroers, J.Z. Groenew., U. Braun & K. Schub. (Crous et al.<br />

2006a) (Herpotrichiellaceae), comprising two banana leaf-spotting<br />

pathogens, is another cladosporioid hyphomycete <strong>genus</strong> having<br />

distinct rhizoid hyphae at the swollen base of conidiophores. It<br />

differs, however, in having conidiophores terminally branched in<br />

a metula-like manner <strong>and</strong> distinct conidiogenous loci <strong>and</strong> conidial<br />

hila. Pleurotheciopsis B. Sutton (Ellis 1976) is also characterised<br />

by having pigmented conidiophores <strong>and</strong> hyaline or pale, septate<br />

conidia formed in acropetal chains, but the conidiophores<br />

proliferate percurrently, the conidiogenous cells are polyblastic <strong>and</strong><br />

ramoconidia are lacking, i.e., the conidia are formed in unbranched<br />

chains. Parapleurotheciopsis P.M. Kirk (Kirk 1982) is very <strong>similar</strong> to<br />

Rhizocladosporium. <strong>The</strong> conidiophores possess a single terminal<br />

unilocal conidiogenous cell giving rise to a single ramoconidium<br />

which forms several chains of acropetal, aseptate, hyaline to pale<br />

olivaceous conidia. <strong>The</strong> base of the conidiophores is somewhat<br />

swollen <strong>and</strong> lobed [except for Parapleurotheciopsis coccolobae<br />

R.F. Castañeda & B. Kendr., Castañeda & Kendrick (1990), with at<br />

most slightly swollen, but unlobed base]. However, R. argillaceum<br />

occasionally has once-geniculate conidiogenous cells with two<br />

loci. Furthermore, it clusters in the Helotiales (Fig. 1), whereas a<br />

sequenced strain of Parapleurotheciopsis inaequiseptata (MUCL<br />

41089), belongs to the Xylariales (Fig. 2). <strong>The</strong> occasionally<br />

occurring conidiogenous cells with two loci <strong>and</strong> the aseptate conidia<br />

connect Rhizocladosporium with Subramaniomyces Varghese &<br />

V.G. Rao (Varghese & Rao 1979, Kirk 1982) in which, however,<br />

terminal ramoconidia are lacking. Furthermore, the type species,<br />

S. fusisaprophyticus (Matsush.) P.M. Kirk, frequently has branched<br />

conidiophores. Subramaniomyces simplex U. Braun & C.F. Hill<br />

(Braun & Hill 2002), a species with unbranched conidiophores is,<br />

however, morphologically <strong>similar</strong> to R. argillaceum, but the <strong>genus</strong><br />

Subramaniomyces is phylogenetically distinct <strong>and</strong> also belongs to<br />

the Xylariales (<strong>CBS</strong> 418.95, Fig. 2).<br />

Key to <strong>Cladosporium</strong> <strong>and</strong> morphologically <strong>similar</strong> genera<br />

(bearing simple or branched acropetal chains of amero- to phragmosporous blastoconidia)<br />

1. Conidiophores <strong>and</strong> conidia hyaline............................................................................................................................................................. 2<br />

1. At least conidiophores pigmented .............................................................................................................................................................. 4<br />

2. Conidia in simple chains ........................................................................................................................................................... Hormiactis<br />

2. Conidia in branched chains ....................................................................................................................................................................... 3<br />

3. Conidiogenous cells sympodial, with distinct conidiogenous loci (scars), thickened <strong>and</strong> darkened; conidia amero- to phragmosporous;<br />

plant pathogenic, leaf-spotting fungi (Mycosphaerella anamorphs; Mycosphaerellaceae) ......................................................... Ramularia<br />

3. Terminal conidiogenous cells with denticle-like loci, giving rise to ramoconidia which form simple or branched conidial chains;<br />

lignicolous ........................................................................................................................................................................... Hyalodendron<br />

[Conidiophores dimorphic; mycelium, conidiophores <strong>and</strong> conidia at first hyaline, later turning pale brown; conidia in short chains, see<br />

Hyalodendriella]<br />

4(1). Conidia distoseptate, in simple chains .............................................................................................................................................. Lylea<br />

4. Conidia aseptate or euseptate ................................................................................................................................................................... 5<br />

5. Conidiophores little differentiated, micronematous to semimacronematous; conidiogenous loci undifferentiated, truncate, neither<br />

distinctly thickened nor darkened or only very slightly so .......................................................................................................................... 6<br />

5. Conidiophores well-differentiated, semimacronematous (but multilocal <strong>and</strong>/or conidiogenous loci well-differentiated) to<br />

macronematous ....................................................................................................................................................................................... 12<br />

6. Conidiophores <strong>and</strong> conidia delicate, thin-walled, in long, easily disarticulating chains .............................................................................. 7<br />

6. Conidiophores <strong>and</strong> conidia robust, wall thickened, dark, conidial chains often seceding with difficulty .................................................... 9<br />

7. Conidiophores semimacronematous, simple to often irregularly branched; conidia delicate, narrow, 1–3 µm wide, hyaline to pale<br />

olivaceous ............................................................................................................................................................................ Polyscytalum<br />

www.studiesinmycology.org<br />

51


Crous et al.<br />

7. Conidiophores unbranched, micronematous or semimicronematous, integrated in ordinary hyphae, forming minute, lateral,<br />

monoblastic, determinate, peg-like protuberances to semimacronematous, forming short lateral branches (conidiophores) with several<br />

inconspicuous to denticle-like loci .............................................................................................................................................................. 8<br />

8. Phialidic synanamorphs often present, but sometimes also lacking; saprobic, rarely plant pathogenic, often human pathogenic<br />

(Herpotrichiellaceae, Chaetothyriales) .......................................................................................................................... Cladophialophora<br />

8. Without phialidic synanamorphs; saprobic or plant pathogenic (Venturia, Venturiaceae)..............................................................................<br />

.......................................................................................................................................... Fusicladium s. lat. (incl. Pseudocladosporium)<br />

9(6). Conidia aseptate, rarely 1-septate; lignicolous, on dead wood ............................................................................................... Xylohypha<br />

9. Conidia septate ........................................................................................................................................................................................ 10<br />

10. Conidia 1-septate, with a dark brown to blackish b<strong>and</strong> at the septum; on dead wood .................................................................. Bispora<br />

10. Conidia at least partly 2- to pluriseptate <strong>and</strong>/or without dark brown to blackish b<strong>and</strong> at the septum ...................................................... 11<br />

11. Conidia branched ....................................................................................................................................................................... Taeniolina<br />

11. Conidia unbranched ................................................................................................................................................................... Taeniolella<br />

12(5). Conidiogenous loci <strong>and</strong> conidial hila distinctly coronate, i.e., composed of a central convex dome surrounded by a periclinal raised rim,<br />

mostly at least somewhat protuberant (anamorphs of Davidiella, Davidiellaceae, Capnodiales) ............................. <strong>Cladosporium</strong> s. str.<br />

12. Conidiogenous loci non-coronate (either inconspicuous, thickened <strong>and</strong> darkened or denticle-like) ........................................................ 13<br />

13. Mycelium, conidiophores <strong>and</strong> conidia at first hyaline or subhyaline, later turning pale brown; conidiophores dimorphic, either<br />

conidiogenous cells with a single conidiogenous locus, giving rise to an ellipsoid cell (conidium?) which mostly remains attached,<br />

base truncate, apex subacutely rounded, at times forming chains of such cells; or conidiophores with numerous aggregated loci,<br />

inconspicuous to subdenticulate; conidia in short chains, of mostly 2–3 (isolated from Alnus in Europe) ........................ Hyalodendriella<br />

13. Fruiting different; at least conidiophores consistently pigmented or conidiophores uniform or loci distinct; conidia mostly in long, often<br />

branched chains ...................................................................................................................................................................................... 14<br />

14. Conidiophores with verruculose conidiogenous apices, otherwise smooth; conidia distinctly verruculose-verrucose; conidiogenous loci<br />

<strong>and</strong> conidial hila inconspicuous ............................................................................................................................................................... 15<br />

14. Conidiophores either smooth throughout or verruculose below <strong>and</strong> smooth above or verruculose throughout; <strong>and</strong>/or conidiogenous loci<br />

conspicuous, i.e., thickened <strong>and</strong> darkened or denticle-like ...................................................................................................................... 16<br />

15. Conidiophores macronematous, unbranched, base swollen, with percurrent regenerative proliferations, unrelated to conidiation;<br />

conidiogenous cells terminal, occasionally also subterminal; conidia terminally <strong>and</strong> laterally formed, aseptate (saprobic on leaves)<br />

................................................................................................................................................................................................ Castanedaea<br />

15. Conidiophores little differentiated, semimacronematous, unbranched or with short lateral branchlets, base undifferentiated,<br />

without percurrent proliferations; conidiogenous cells terminal <strong>and</strong> occasionally intercalary-pleurogenous; conidia terminally <strong>and</strong><br />

subterminally formed, 0–2-septate (lignicolous, on decorticated wood) .......................................................................... Websteromyces<br />

16(14). Conidiophores unbranched, with a simple terminal conidiogenous cell, non-geniculate-sinuous, subcylindrical to somewhat inflated at<br />

the tip; conidiogenous loci terminal <strong>and</strong> lateral, inconspicuous or subconspicuous, neither thickened nor darkened, non-protuberant;<br />

conidia attached with a very narrow, pointed hilum ................................................................................................................................. 17<br />

16. Conidiophores with a branched terminal conidiogenous apparatus, composed of conidiogenous cells <strong>and</strong>/or ramoconidia or conidiophores<br />

unbranched, with a single terminal conidiogenous cell or additional intercalary ones, but conidiogenous loci different, conspicuous,<br />

thickened <strong>and</strong> darkened or denticle-like .................................................................................................................................................. 18<br />

17. Conidiophores with distinct rhizoid-digitate base; tips of the conidiogenous cells somewhat swollen, usually unilaterally swollen or<br />

somewhat curved; conidia solitary or only in very short unbranched chains; hyperparasitic on rusts .................................. Digitopodium<br />

17. Conidiophores without rhizoid-digitate base; tips of the conidiogenous cells subcylindrical to somewhat swollen, but swellings not unilateral<br />

<strong>and</strong> not curved; conidia solitary <strong>and</strong> in simple or branched chains; associated with leaf spots ................................. Rachicladosporium<br />

18(16). Conidiophores in synnematous conidiomata ..................................................................................................................................... 19<br />

18. Synnemata lacking .................................................................................................................................................................................. 20<br />

19. Conidiogenous cells with a single or several truncate to subdenticulate, relatively broad conidiogenous loci; conidia with truncate, flat hila;<br />

on wood, resin ............................................................................................................................................................................ Sorocybe<br />

19. Conidiogenous loci with few, mostly 1–2 conidiogenous loci formed as minute spicules; conidia with narrow hila (shallowly apiculate);<br />

plant pathogenic, causing bud blast <strong>and</strong> twig blight ....................................................................................................................... Seifertia<br />

20(18). Conidiophores unbranched or occasionally branched; conidiogenous cells distinctly inflated, ampulliform, doliiform or clavate, nondenticulate;<br />

conidia at least partly globose, dark brown when mature; colonies effuse, dark; wood-inhabiting .......... Phaeoblastophora<br />

52


<strong>Cladosporium</strong> <strong>and</strong> morphologically <strong>similar</strong> genera<br />

20. Conidiogenous cells not inflated, if somewhat inflated, loci denticle-like or conidia non-globose ............................................................ 21<br />

21. Conidiophores penicillate, i.e., with an unbranched stipe <strong>and</strong> distinct terminal branched “head” composed of branchlets, conidiogenous<br />

cells <strong>and</strong>/or ramoconidia .......................................................................................................................................................................... 22<br />

21. Conidiophores non-penicillate, i.e., irregularly <strong>and</strong> loosely branched, branchings not confined to the apical portion, sometimes only with<br />

short lateral branchlets, or unbranched ................................................................................................................................................... 27<br />

22. Penicillate apex simple, only composed of a single terminal conidiogenous cells giving rise to several ramoconidia which form secondary<br />

ramoconidia <strong>and</strong> conidia ......................................................................................................................... Penidiella p.p. [P. strumelloidea]<br />

22. Penicillate apex more complex, composed of true branchlets <strong>and</strong>/or conidiogenous cells <strong>and</strong> ramoconidia .......................................... 23<br />

23. Conidiophores with a compact, dense, subglobose to broadly ovoid head; conidiogenous loci <strong>and</strong> conidial hila unthickened or almost so,<br />

but distinct by being darkened-refractive [fruiting dimorphic, periconioid branched conidiophores formed on overwintered<br />

stem of Paeonia spp., unbranched cladosporioid conidiophores on leaf spots, biotrophic] (belonging to the Capnodiales)<br />

.................................................................................................................................................................................... Dichocladosporium<br />

23. Penicillate apex looser, neither compact nor subglobose ........................................................................................................................ 24<br />

24. Branched head composed of short branchlets <strong>and</strong> conidiogenous cells; ramoconidia lacking; conidiogenous cells subcylindrical to<br />

subclavate, non-geniculate; conidiogenous loci usually numerous <strong>and</strong> aggregated, terminal <strong>and</strong> lateral, non-protuberant, flat, conspicuous,<br />

thickened <strong>and</strong> darkened, at least around the rim; conidia solitary or in short chains ............................................................... Periconiella<br />

24. Ramoconidia often present; conidiogenous cells distinct, sympodial, somewhat geniculate or subdenticulate; conidiogenous loci<br />

inconspicuous or somewhat protruding, denticle-like, unthickened or almost so, not or somewhat darkened-refractive; conidia in long,<br />

often branched chains ............................................................................................................................................................................. 25<br />

25. Branched apex composed of short branchlets consisting of conidiogenous cells or ramoconidia, in pairs or whorls of 3–4, mostly distinctly<br />

constricted at the base; hyperparasitic on Asterina spp. ................................................................................................. Parapericoniella<br />

25. Branched apex distinct, composed of branchlets, conidiogenous cells <strong>and</strong>/or ramoconidia, if true branchlets lacking conidiogenous cells<br />

<strong>and</strong> ramoconidia not in whorls <strong>and</strong> not distinctly constricted at the base; saprobic or biotrophic ............................................................ 26<br />

26. Penicillate apex of the conidiophores loosely to densely branched, occasionally metula-like, base of the conidiophores simple,<br />

undifferentiated; saprobic or biotrophic (Teratosphaeriaceae, Capnodiales) .............................................................................. Penidiella<br />

26. Penicillate apex always dense, metula-like, base of the conidiophores swollen or lobed, often with rhizoid hyphae; plant pathogenic [on<br />

banana] (Chaetothyriales) ........................................................................................................................................ Metulocladosporiella<br />

27(21). Conidiophores simple or branched; septa of the conidiophores <strong>and</strong> conidia becoming thick-walled <strong>and</strong> dark; conidiogenous loci<br />

subdenticulate, somewhat thickened <strong>and</strong> conspicuously darkened-refractive; cultures producing ample amounts of volatile metabolites<br />

causing skin irritation after exposure to the fungus; saprobic (isolated from mouldy paint) ...................................... Toxicocladosporium<br />

27. Without conspicuously thickened-darkened septa; cultures without irritant, volatile metabolites ............................................................ 28<br />

28. Conidiogenous loci conspicuous, distinctly thickened <strong>and</strong> darkened (visible as small dark circles when viewed upon the scar), sometimes<br />

on small shoulders formed by sympodial proliferation, but not distinctly denticulate (Capnodiales) ....................................................... 29<br />

28. Conidiogenous loci inconspicuous or conspicuous by being denticle-like, not or barely thickened, not darkened or at most upper truncate<br />

end very slightly thickened <strong>and</strong> somewhat darkened-refractive .............................................................................................................. 31<br />

29. Mycelium smooth; conidiophores <strong>and</strong> conidia smooth or almost so, at most faintly rough-walled; conidiophores solitary, fasciculate,<br />

sporodochial to synnematous; biotrophic, usually leaf-spotting (Mycosphaerella anamorphs, Mycosphaerellaceae)<br />

................................................................................................................. Passalora emend. (incl. Mycovellosiella, Phaeoramularia, etc.)<br />

29. At least mycelium distinctly verruculose .................................................................................................................................................. 30<br />

30. Mycelium, conidiophores <strong>and</strong> conidia coarsely verruculose-verrucose; conidial shape variable, often irregular; isolated from a lichen<br />

(Dirina) .................................................................................................................................................................... Verrucocladosporium<br />

30. Mycelium verruculose; conidiophores mostly smooth, sometimes somewhat rough-walled, conidia smooth to distinctly verruculose;<br />

biotrophic, often leaf-spotting ......................................................................................................................................................... Stenella<br />

31(28). Conidiophores with swollen, often lobed base ................................................................................................................................... 32<br />

31. Conidiophores without swollen base, at most slightly swollen, but not lobed .......................................................................................... 35<br />

32. Conidia septate ........................................................................................................................................................................................ 33<br />

32. Conidia aseptate ...................................................................................................................................................................................... 34<br />

33. Conidiophores with a single, terminal, monoblastic, determinate conidiogenous cell giving rise to a single ramoconidium that forms<br />

simple or branched chains of conidia ...................................................................................................................... Parapleurotheciopsis<br />

www.studiesinmycology.org<br />

53


Crous et al.<br />

33. Terminal conidiogenous cells polyblastic, with several denticle-like conidiogenous loci ................. Anungitea p.p. (e.g. A. longicatenata)<br />

34(32). Conidiogenous cells terminal, monoblastic, with a single ramoconidium giving rise to conidial chains or occasionally with 2(–3)<br />

denticle-like loci; base of the conidiophores often with rhizoid hyphae ...................................................................... Rhizocladosporium<br />

34. Conidiogenous cells polyblastic, with two or several denticle-like loci; base of the conidiophores without rhizoid hyphae<br />

...................................................................................................................................................................................... Subramaniomyces<br />

35(31). Conidiophores unbranched, with a terminal monoblastic conidiogenous cell, determinate or percurrent ......................................... 36<br />

35. Conidiophores branched or unbranched, but conidiogenous cells at least partly polyblastic .................................................................. 38<br />

36. Conidiogenous cell giving rise to a single ramoconidium which forms simple or branched chains of 0(–1)-septate conidia<br />

................................................................................................................................................ Parapleurotheciopsis p.p. (P. coccolobae)<br />

36. Conidiogenous cells giving rise to simple conidial chains without ramoconidia; conidia septate ............................................................ 37<br />

37. Conidiophores sometimes with percurrent proliferations; conidiophores <strong>and</strong> conidia with somewhat thickened, dark walls; conidia 1–10-<br />

septate, width usually exceeding 4 µm ................................................................................................................................ Heteroconium<br />

37. Percurrent proliferations lacking; conidiophores <strong>and</strong> conidia delicate, thin-walled <strong>and</strong> paler; conidia usually 0–1(–3)-septate <strong>and</strong> narrow,<br />

usually below 4 µm wide (Chaetothyriales) ......................................................................... Cladophialophora p.p. (e.g. C. chaetospira)<br />

[<strong>similar</strong> anamorphs of the Venturiaceae, see Fusicladium (incl. Pseudocladosporium)]<br />

38(35). Conidiophores often branched; conidiogenous loci distinctly denticle-like or subdenticulate; conidia aseptate; lignicolous, on dead<br />

wood, resin or isolated from hydrocarbone-rich substrates (jet-fuel, cosmetics, etc.) ............................................................................. 39<br />

38. Either with unbranched conidiophores or conidiogenous loci not distinctly denticle-like, or conidia septate, or on other substrates<br />

.................................................................................................................................................................................................................. 42<br />

39. Conidiogenous cells distinctly denticulate; conidia rather broad, approx. 7–13 µm ............................................................. Haplotrichum<br />

39. Conidiogenous cells non-denticulate or at most subdenticulate; conidia narrower, approx. 3–6 µm ...................................................... 40<br />

40. Colonies effuse, dense, but felted, black, brittle <strong>and</strong> appearing carbonaceous when dry; conidiophores solitary, brown; conidiogenous cells<br />

terminal <strong>and</strong> pleurogenous; conidia pale to dark brown, lateral walls conspicuously thicker than the hila; on conifer resin<br />

......................................................................................................................... Sorocybe (mononematous form, Hormodendrum resinae)<br />

40. Colonies effuse, dense, resupinate, hypochnoid, powdery, chocolate-brown <strong>and</strong>/or conidiophores lightly pigmented; conidia subhyaline<br />

to lightly pigmented <strong>and</strong>/or lateral walls not thickener than poles; on dead wood or isolated from hydrocarbone-rich substrates (jet-fuel,<br />

cosmetics, etc.) ........................................................................................................................................................................................ 41<br />

41. Colonies effuse, dense, resupinate, hypochnoid, powdery, chocolate-brown; conidiophores smooth; conidia subhyaline to very pale<br />

yellowish, hila very thin; on dead wood ......................................................................................................................... Parahaplotrichum<br />

41. Colonies neither resupinate nor hypochnoid; conidiophores warty; lateral walls of the conidia not thicker than the hila; isolated from<br />

hydrocarbone-rich substrates (jet-fuel, cosmetics, etc.) ......................................................................................................... Hormoconis<br />

42(38). Conidiophores simple or branched; conidiogenous cells monoblastic or occasionally polyblastic; conidiogenous loci subdenticulate,<br />

neither thickened nor darkened, forming simple or branched chains of regular conidia, uniform in shape, size <strong>and</strong> septation<br />

................................................................................................................................................................................................... Septonema<br />

42. Conidia not uniform in shape, size <strong>and</strong> septation; conidiogenous loci flat-tipped, subdenticulate, unthickened or slightly so, not to<br />

somewhat darkened-refractive ................................................................................................................................................................. 43<br />

43. Conidiophores simple or branched; in culture forming abundant chlamydospores; mostly soil-borne <strong>and</strong> heat-resistant (Teratosphaeriaceae,<br />

Capnodiales) ................................................................................................................................................................................ Devriesia<br />

43. Without chlamydospores in culture; phylogenetically distinct .................................................................................................................. 44<br />

44. Conidiophores dimorphic; conidia mostly aseptate, hila inconspicuous, neither thickened nor darkened (Pleosporales)<br />

.................................................................................................................................................................................... Ochrocladosporium<br />

44. Conidiophores either uniform or conidia at least partly septate or hila more conspicuous by being slightly thickened or at least somewhat<br />

darkened or refractive; phylogenetically distinct ...................................................................................................................................... 45<br />

45. Phialidic synanamorphs often present, but sometimes also lacking; saprobic, rarely plant pathogenic, often human pathogenic<br />

(Herpotrichiellaceae, Chaetothyriales) .......................................................................................................................... Cladophialophora<br />

45. Without phialidic synanamorphs; saprobic or plant pathogenic; phylogenetically distinct ....................................................................... 46<br />

46. Conidiophores usually unbranched (Venturia, Venturiaceae) .......................................... Fusicladium s. lat. (incl. Pseudocladosporium)<br />

[<strong>similar</strong>, barely distinguishable taxa, also clustering in the Venturiaceae, but apart from the Venturia clade are tentatively referred to as<br />

Anungitea until this <strong>genus</strong> will be resolved by sequences of its type species]<br />

54


<strong>Cladosporium</strong> <strong>and</strong> morphologically <strong>similar</strong> genera<br />

46. Conidiophores simple to often irregularly branched; conidia delicate, narrow, 1–3 µm wide, hyaline to pale olivaceous (not belonging to<br />

the Venturiaceae) .................................................................................................................................................................. Polyscytalum<br />

Discussion<br />

Phylogenetic studies conducted on species of <strong>Cladosporium</strong> s. lat.<br />

proved the <strong>genus</strong> to be highly heterogeneous (Braun et al. 2003). It<br />

could be demonstrated that various anamorphs, previously referred<br />

to as <strong>Cladosporium</strong>, e.g. <strong>Cladosporium</strong> fulvum Cooke [≡ Passalora<br />

fulva (Cooke) U. Braun & Crous], have to be excluded since they<br />

clustered in the Mycosphaerella clade (Mycosphaerellaceae).<br />

Previous re-examinations <strong>and</strong> reassessments of human pathogenic<br />

<strong>Cladosporium</strong> species, including morphology, biology/ecology,<br />

physiology <strong>and</strong> molecular data (Masclaux et al. 1995, Untereiner<br />

1997, Gerrits van den Ende & de Hoog 1999, Untereiner & Naveau<br />

1999, Untereiner et al. 1999; de Hoog et al. 2000), could also be<br />

confirmed. In all phylogenetic analyses, it could be shown that the<br />

human pathogenic fungi concerned formed a clade belonging to<br />

the Herpotrichiellaceae (Capronia Sacc./Cladophialophora Borelli).<br />

Venturia anamorphs with catenate conidia, previously often<br />

assigned to <strong>Cladosporium</strong> s. lat., clustered together with other<br />

anamorphs of the Venturiaceae, <strong>and</strong> formed a monophyletic clade<br />

(Braun et al. 2003, Schubert et al. 2003, Beck et al. 2005). Venturia<br />

has now also been shown to accommodate less well-known<br />

anamorph genera such as Pseudocladosporium, which represent<br />

an additional synonym of Fusicladium Bonord. (Crous et al. 2007<br />

– this volume).<br />

Seifert et al. (2004) examined morphological, ecological <strong>and</strong><br />

molecular characters of <strong>Cladosporium</strong> staurophorum (W.B. Kendr.)<br />

M.B. Ellis <strong>and</strong> three allied heat-resistant species <strong>and</strong> placed them<br />

in the new <strong>genus</strong> Devriesia, which formed a monophyletic group<br />

apart from the <strong>Cladosporium</strong> clade. Crous et al. (2006b) erected<br />

the <strong>genus</strong> Cladoriella Crous for a saprobic species (incertae sedis)<br />

characterised by having narrowly ellipsoidal to cylindrical or fusoid,<br />

0–1-septate, medium brown, thick-walled, finely verruculose<br />

conidia arranged in simple or branched chains, with thickened,<br />

darkened, refractive hila, with a minute central pore. <strong>Cladosporium</strong><br />

musae E.W. Mason, the causal agent of banana speckle disease,<br />

has recently been shown to be allied to the Chaetothyriales (Crous<br />

et al. 2006a), <strong>and</strong> was placed in a new <strong>genus</strong>, Metulocladosporiella<br />

with C. musae as type species. Digitopodium U. Braun, Heuchert<br />

& K. Schub. (type species: <strong>Cladosporium</strong> hemileiae Steyaert)<br />

<strong>and</strong> Parapericoniella U. Braun, Heuchert & K. Schub. (type<br />

species: <strong>Cladosporium</strong> asterinae Deighton) represent two new<br />

genera of hyperparasitic hyphomycetes, introduced due to unique<br />

morphological features <strong>and</strong> striking differences to <strong>Cladosporium</strong> s.<br />

str. (Heuchert et al. 2005), but have as yet been excluded from<br />

DNA-based studies due to the absence of cultures. Schubert et al.<br />

(2007a – this volume) introduced a new <strong>genus</strong>, Dichocladosporium<br />

K. Schub., U. Braun & Crous (allied to the Davidiellaceae, Capnodiales)<br />

to accommodate a fungus with dimorphic fruiting that is<br />

pathogenic to Paeonia spp. <strong>The</strong> present study introduced yet several<br />

additional cladosporium-like genera, which could be distinguished<br />

based on their morphology <strong>and</strong> distinct DNA phylogeny, namely<br />

Ochrocladosporium (Pleosporales), Rhizocladosporium<br />

(incertae sedis), Rachicladosporium, Toxicocladosporium <strong>and</strong><br />

Verrucocladosporium (Capnodiales).<br />

Although all these genera are cladosporium-like, <strong>and</strong> many<br />

have in the past been confused with <strong>Cladosporium</strong> s. str., the unique<br />

www.studiesinmycology.org<br />

coronate scar type of <strong>Cladosporium</strong> s. str. allows a critical revision<br />

of cladosporioid hyphomycetes, based on reliable, distinctive<br />

morphological characters. In all cases where cladosporium-like<br />

(<strong>Cladosporium</strong> s. lat.) hyphomycetes clearly clustered apart<br />

from <strong>Cladosporium</strong> s. str. in the phylogenetic analyses, it could<br />

be demonstrated that the fungal groups concerned were also<br />

morphologically unambiguously distinguished, above all with regard<br />

to the structure of the conidiogenous hila. Hence, the excluded<br />

groups of species, belonging in other genera, sometimes even<br />

in new genera, are genetically as well as morphologically clearly<br />

distinct from <strong>Cladosporium</strong> s. str.<br />

Acknowledgements<br />

We thank F. Hill, A. Aptroot, F.M. Dugan, R.F. Castañeda <strong>and</strong> W. Gams for providing<br />

collections <strong>and</strong> cultures of <strong>Cladosporium</strong> <strong>and</strong> cladosporium-like species over the<br />

past few years, without which this study would not have been possible. A research<br />

visit of K. Schubert to <strong>CBS</strong> was supported by a Synthesys grant (No. 2559), <strong>and</strong><br />

the Odo van Vloten Stichting. We thank M. Vermaas for preparing the photographic<br />

plates, <strong>and</strong> A. van Iperen for preparing all the fungal cultures for examination. H.-J.<br />

Schroers is thanked for generating some of the sequence data used in this paper.<br />

A.J.L. Phillips is thanked for providing comments on an earlier draft of the paper.<br />

References<br />

Aptroot A (2006). Mycosphaerella <strong>and</strong> its anamorphs: 2. Conspectus of<br />

Mycosphaerella. <strong>CBS</strong> Biodiversity Series 5: 1–231.<br />

Arzanlou M, Groenewald JZ, Gams W, Braun U, Shin H-D, Crous PW (2007).<br />

Phylogenetic <strong>and</strong> morphotaxonomic revision of Ramichloridium <strong>and</strong> allied<br />

genera. Studies in Mycology 58: 57–93.<br />

Arx JA von (1974). <strong>The</strong> Genera of Fungi Sporulating in Pure Culture. 2 nd edn. J.<br />

Cramer, Vaduz.<br />

Arx JA von (1981). <strong>The</strong> Genera of Fungi Sporulating in Pure Culture. 3 rd edn. J.<br />

Cramer, Vaduz.<br />

Arx JA von (1983). Mycosphaerella <strong>and</strong> its anamorphs. Proceedings of the<br />

Koninklijke Nederl<strong>and</strong>se Akademie van Wetenschappen, Ser. C, 86(1): 15–54.<br />

Beck A, Ritschel A, Schubert K, Braun U, Triebel D (2005). Phylogenetic relationship<br />

of the anamorphic <strong>genus</strong> Fusicladium s. lat. as inferred by ITS data. Mycological<br />

Progress 4: 111–116.<br />

Braun U (1995). A monograph of Cercosporella, Ramularia <strong>and</strong> allied genera<br />

(phytopathogenic hyphomycetes) Vol. 1. IHW-Verlag, Eching.<br />

Braun U (1996). Taxonomic notes on some species of the Cercospora complex (IV).<br />

Sydowia 48: 205–217.<br />

Braun U (1998). A monograph of Cercosporella, Ramularia <strong>and</strong> allied genera<br />

(phytopathogenic hyphomycetes) Vol. 2. IHW-Verlag, Eching.<br />

Braun U, Crous PW, Dugan FM, Groenewald JZ, Hoog GS de (2003). Phylogeny<br />

<strong>and</strong> taxonomy of cladosporium-like hyphomycetes, including Davidiella gen.<br />

nov., the teleomorph of <strong>Cladosporium</strong> s. str. Mycological Progress 2: 3–18.<br />

Braun U, Hill CF (2002). Some new micromycetes from New Zeal<strong>and</strong>. Mycological<br />

Progress 1: 19–30.<br />

Brown KB, Hyde KD, Guest DI (1998). Preliminary studies on endophytic fungal<br />

communities of Musa acuminata species complex in Hong Kong <strong>and</strong> Australia.<br />

Fungal Diversity 1: 27–51.<br />

Castañeda RF, Kendrick B (1990). Conidial fungi from Cuba II. University of Waterloo<br />

Biological Series 33: 1–61.<br />

Crous PW (1998). Mycosphaerella spp. <strong>and</strong> their anamorphs associated with leaf<br />

spot diseases of Eucalyptus. Mycologia Memoir 21: 1–170.<br />

Crous PW, Aptroot A, Kang J-C, Braun U, Wingfield MJ (2000). <strong>The</strong> <strong>genus</strong><br />

Mycosphaerella <strong>and</strong> its anamorphs. Studies in Mycology 45: 107–121.<br />

Crous PW, Braun U (2003). Mycosphaerella <strong>and</strong> its anamorphs: 1. Names published<br />

in Cercospora <strong>and</strong> Passalora. <strong>CBS</strong> Biodiversity Series 1: 1–569.<br />

Crous PW, Groenewald JZ, Mansilla JP, Hunter GC, Wingfield MJ (2004).<br />

Phylogenetic reassessment of Mycosphaerella spp. <strong>and</strong> their anamorphs<br />

occurring on Eucalyptus. Studies in Mycology 50: 195–214.<br />

55


Crous et al.<br />

Crous PW, Kang JC, Braun U (2001). A phylogenetic redefinition of anamorph<br />

genera in Mycosphaerella based on ITS rDNA sequences. Mycologia 93:<br />

1081–1101.<br />

Crous PW, Schroers HJ, Groenewald JZ, Braun U, Schubert K (2006a).<br />

Metulocladosporiella gen. nov. for the causal organism of <strong>Cladosporium</strong><br />

speckle disease of banana. Mycological Research 110: 264–275.<br />

Crous PW, Schubert K, Braun U, Hoog GS de, Hocking AD, Shin H-D, Groenewald<br />

JZ (2007). Opportunistic, human-pathogenic species in the Herpotrichiellaceae<br />

are phenotypically <strong>similar</strong> to saprobic or phytopathogenic species in the<br />

Venturiaceae. Studies in Mycology 58: 185–217.<br />

Crous PW, Slippers B, Wingfield MJ, Rheeder J, Marasas WFO, Phillips AJL, Alves<br />

A, Burgess T, Barber P, Groenewald JZ (2006d). Phylogenetic lineages in the<br />

Botryosphaeriaceae. Studies in Mycology 55: 235–253.<br />

Crous PW, Verkley GJM, Groenewald JZ (2006b). Eucalyptus microfungi known<br />

from culture. 1. Cladoriella <strong>and</strong> Fulvoflamma genera nova, with notes on some<br />

other poorly known taxa. Studies in Mycology 55: 53–63.<br />

Crous PW, Wingfield MJ, Mansilla JP, Alfenas AC, Groenewald JZ (2006c).<br />

Phylogenetic reassessment of Mycosphaerella spp. <strong>and</strong> their anamorphs<br />

occurring on Eucalyptus. II. Studies in Mycology 55: 99–131.<br />

David JC (1997). A contribution to the systematics of <strong>Cladosporium</strong>. Revision of the<br />

fungi previously referred to Heterosporium. Mycological Papers 172: 1–157.<br />

Dugan FM, Schubert K, Braun U (2004). Check-list of <strong>Cladosporium</strong> names.<br />

Schlechtendalia 11: 1–103.<br />

Ellis MB (1971). Dematiaceous hyphomycetes. Commonwealth Mycological<br />

Institute, Kew.<br />

Ellis MB (1976). More <strong>dematiaceous</strong> hyphomycetes. Commonwealth Mycological<br />

Institute, Kew.<br />

El-Morsy EM (2000). Fungi isolated from the endorhizosphere of halophytic plants<br />

from the Red Sea Coast of Egypt. Fungal Diversity 5: 43–54<br />

Gams W, Verkley GJM, Crous PW (2007). <strong>CBS</strong> Course of Mycology, 5 th ed.<br />

Centraalbureau voor Schimmelcultures, Utrecht.<br />

Gerrits van den Ende AHG, Hoog GS de (1999). Variability <strong>and</strong> molecular diagnostics<br />

of the neurotropic species Cladophialophora bantiana. Studies in Mycology 43:<br />

151–162.<br />

Goh T-K, Hyde KD (1998). A synopsis of <strong>and</strong> key to Diplococcium species, based on<br />

the literature, with a description of a new species. Fungal Diversity 1: 65–83.<br />

Hawksworth DL (1979). <strong>The</strong> lichenicolous hyphomycetes. Bulletin of the British<br />

Museum (Natural History), Botany 6: 183–300.<br />

Heuchert B, Braun U, Schubert K (2005). Morphotaxonomic revision of fungicolous<br />

<strong>Cladosporium</strong> species (hyphomycetes). Schlechtendalia 13: 1–78.<br />

Ho MH-M, Castañeda RF, Dugan FM, Jong, SC (1999). <strong>Cladosporium</strong> <strong>and</strong><br />

Cladophialophora in culture: descriptions <strong>and</strong> an exp<strong>and</strong>ed key. Mycotaxon<br />

72: 115–157.<br />

Hoog GS de, Batenburg van der Vegte WH (1989). Retroconis, a new <strong>genus</strong> of<br />

ascomycetous hyphomycetes. Studies in Mycology 31: 99–105.<br />

Hoog GS de, Gerrits van den Ende AHG (1998). Molecular diagnostics of clinical<br />

strains of filamentous Basidiomycetes. Mycoses 41: 183–189.<br />

Hoog GS de, Guarro, J, Gené J, Figueras MJ (2000). Atlas of clinical fungi, 2 nd ed.<br />

Centraalbureau voor Schimmelcultures, Utrecht <strong>and</strong> Universitat rovira I virgili,<br />

Reus.<br />

Inacio J, Pereira P, de Cavalho M, Fonseca A, Amaral-Collaco MT, Spencer-Martins<br />

I (2002). Estimation <strong>and</strong> diversity of phylloplane mycobiota on selected plants in<br />

a Mediterranean-type ecosystem in Portugal. Microbial Ecology 44: 344–353.<br />

Islam M, Hasin F (2000). Studies on phylloplane mycoflora of Amaranthus viridis L.<br />

National Academy Science Letters, India 23: 121–123.<br />

Jager ES de, Wehner FC, Karsten L (2001). Microbial ecology of the mango<br />

phylloplane. Microbial Ecology 42: 201–207.<br />

Kirk PM (1982). New or interesting microfungi. IV. Dematiaceous hyphomycetes<br />

from Devon. Transactions of the Britisch Mycological Society 78: 55–74.<br />

Levetin E, Dorsey K (2006). Contribution to leaf surface fungi to the air spora.<br />

Aerobiologia 22: 3–12.<br />

Masclaux F, Guého E, Hoog GS de, Christen R (1995). Phylogenetic relationship of<br />

human-pathogenic <strong>Cladosporium</strong> (Xylohypha) species. Journal of Medical <strong>and</strong><br />

Veterinary Mycology 33: 327–338.<br />

Matsushima T (1975). Icones microfungorum a Matsushima lectorum. Kobe.<br />

McGinnis MR, Padhye AA (1978). <strong>Cladosporium</strong> castellanii is a synonym of Stenella<br />

araguata. Mycotaxon 7: 415–418.<br />

McKemy JM, Morgan-Jones G (1990). Studies in the <strong>genus</strong> <strong>Cladosporium</strong> sensu<br />

lato II. Concerning Heterosporium gracile, the causal organism of leaf spot<br />

disease of Iris species. Mycotaxon 39: 425–440.<br />

Minoura K (1966). Taxonomic studies on cladosporia (IV). Morphological properties<br />

(part II). Journal of Fermentation Technology 44: 137–149.<br />

Moncalvo J-M, Rehner SA, Vilgalys R (1993). Systematics of Lyophyllum section<br />

Difformia based on evidence from culture studies <strong>and</strong> ribosomal DNA<br />

sequences. Mycologia 85: 788–794.<br />

Park HG, Managbanag JR, Stamenova EK, Jong SC (2004). Comparative analysis<br />

of common indoor <strong>Cladosporium</strong> species based on molecular data <strong>and</strong> conidial<br />

characters. Mycotaxon 89: 441–451.<br />

Partridge EC, Morgan-Jones G (2002). Notes on hyphomycetes, LXXXVIII. New<br />

genera in which to classify Alysidium resinae <strong>and</strong> Pycnostysanus azaleae, with<br />

a consideration of Sorocybe. Mycotaxon 83: 335–352.<br />

Rayner RW (1970). A mycological colour chart. CMI <strong>and</strong> British Mycological Society.<br />

Kew.<br />

Rehner SA, Samuels GJ (1994). Taxonomy <strong>and</strong> phylogeny of Gliocladium analysed<br />

from nuclear large subunit ribosomal DNA sequences. Mycological Research<br />

98: 625–634.<br />

Riesen T, Sieber T (1985). Endophytic fungi in winter wheat (Triticum aestivum L.).<br />

Swiss Federal Institute of Technology, Zürich.<br />

Roquebert MF (1981). Analyse des phénoménes pariétaux au cours de la<br />

conidiogenése chez quelques champignon microscopiques. Memoires du<br />

Museum d’Histoire Naturelle, Sér B, Botanique 28: 3–79.<br />

Schoch C, Shoemaker RA, Seifert KA, Hambleton S, Spatafora JW, Crous PW<br />

(2006). A multigene phylogeny of the Dothideomycetes using four nuclear loci.<br />

Mycologia 98: 1041–1052.<br />

Schubert K (2005a). Morphotaxonomic revision of foliicolous <strong>Cladosporium</strong> species<br />

(hyphomycetes). PhD thesis, Martin-Luther-University, Halle.<br />

Schubert K (2005b). Taxonomic revision of the <strong>genus</strong> <strong>Cladosporium</strong> s. lat. 3. A<br />

revision of <strong>Cladosporium</strong> species described by J.J. Davis <strong>and</strong> H.C. Greene<br />

(WIS). Mycotaxon 92: 55–76.<br />

Schubert K, Braun U (2004). Taxonomic revision of the <strong>genus</strong> <strong>Cladosporium</strong> s. lat. 2.<br />

Morphotaxonomic examination of <strong>Cladosporium</strong> species occurring on hosts of<br />

the families Bignoniaceae <strong>and</strong> Orchidaceae. Sydowia 56: 76–97.<br />

Schubert K, Braun U (2005a). Taxonomic revision of the <strong>genus</strong> <strong>Cladosporium</strong><br />

s. lat. 1. Species reallocated to Fusicladium, Parastenella, Passalora,<br />

Pseudocercospora <strong>and</strong> Stenella. Mycological Progress 4: 101–109.<br />

Schubert K, Braun U (2005b). Taxonomic revision of the <strong>genus</strong> <strong>Cladosporium</strong> s.<br />

lat. 4. Species reallocated to Asperisporium, Dischloridium, Fusicladium,<br />

Passalora, Pseudasperisporium <strong>and</strong> Stenella. Fungal Diversity 20: 187–208.<br />

Schubert K, Braun U (2007). Taxonomic revision of the <strong>genus</strong> <strong>Cladosporium</strong> s. lat.<br />

6. New species, reallocations to <strong>and</strong> synonyms of Cercospora, Fusicladium,<br />

Passalora, Septonema <strong>and</strong> Stenella. Nova Hedwigia 84: 189–208.<br />

Schubert K, Braun U, Groenewald JZ, Crous PW (2007a). <strong>Cladosporium</strong> leaf-blotch<br />

<strong>and</strong> stem rot of Paeonia spp. caused by Dichocladosporium chlorocephalum<br />

gen. nov. Studies in Mycology 58: 95–104.<br />

Schubert K, Braun U, Mułenko W (2006). Taxonomic revision of the <strong>genus</strong><br />

<strong>Cladosporium</strong> s. lat. 5. Validations <strong>and</strong> descriptions of new species.<br />

Schlechtendalia 14: 55–83.<br />

Schubert K, Groenewald JZ, Braun U, Dijksterhuis J, Starink M, Hill CF, Zalar P,<br />

Hoog GS de, Crous PW (2007b). Biodiversity in the <strong>Cladosporium</strong> herbarum<br />

complex (Davidiellaceae, Capnodiales), with st<strong>and</strong>ardisation of methods for<br />

<strong>Cladosporium</strong> taxonomy <strong>and</strong> diagnostics. Studies in Mycology 58: 105–156.<br />

Schubert K, Ritschel A, Braun U (2003). A monograph of Fusicladium s. lat.<br />

(hyphomycetes). Schlechtendalia 9: 1–132.<br />

Seifert K, Nickerson NL, Corlett M, Jackson ED, Lois-Seize G, Davies RJ (2004).<br />

Devriesia, a new hyphomycete <strong>genus</strong> to accommodate heat-resistant,<br />

cladosporium-like fungi. Canadian Journal of Botany 82: 914–926.<br />

Stohr SN, Dighton J (2004). Effects of species diversity on establishment <strong>and</strong><br />

coexistence: A phylloplane fungal community model system. Microbial Ecology<br />

48: 431–438.<br />

Untereiner WA (1997). Taxonomy of selected members of the ascomycete <strong>genus</strong><br />

Capronia with notes on anamorph-teleomorph connections. Mycologia 89:<br />

120–131.<br />

Untereiner WA, Gerrits van den Ende AHG, Hoog GS de (1999). Nutritional<br />

physiology of species of Capronia. Studies in Mycology 43: 98–106.<br />

Untereiner WA, Naveau FA (1999). Molecular systematics of the Herpotrichiellaceae<br />

with an assessment of the phylogenetic positions of Exophiala dermatitidis <strong>and</strong><br />

Phialophora americana. Mycologia 91: 67–83.<br />

Varghese KIM, Rao VG (1979). Forest microfungi – I. Subramaniomyces, a new<br />

<strong>genus</strong> of Hyphomycetes. Kavaka 7: 83–85.<br />

Vilgalys R, Hester M (1990). Rapid genetic identification <strong>and</strong> mapping of<br />

enzymatically amplified ribosomal DNA from several Cryptococcus species.<br />

Journal of Bacteriology 172: 4238–4246.<br />

Vries GA de (1952). Contribution to the Knowledge of the Genus <strong>Cladosporium</strong> Link<br />

ex Fr. Centraalbureau voor Schimmelcultures, Baarn.<br />

White TJ, Bruns T, Lee S, Taylor J (1990). Amplification <strong>and</strong> direct sequencing of<br />

fungal ribosomal RNA genes for phylogenetics. In: PCR Protocols: a guide to<br />

methods <strong>and</strong> applications (Innis MA, Gelf<strong>and</strong> DH, Sninsky JJ, White TJ, eds).<br />

Academic Press, San Diego, California: 315–322.<br />

Wirsel SGR, Runge-Froböse C, Ahrén DG, Kemen E, Oliver RP, Mendgen<br />

KW (2002). Four or more species of <strong>Cladosporium</strong> sympatrically colonize<br />

Phragmites australis. Fungal Genetics <strong>and</strong> Biology 35: 99–113.<br />

56


available online at www.studiesinmycology.org<br />

doi:10.3114/sim.2007.58.03<br />

Studies in Mycology 58: 57–93. 2007.<br />

Phylogenetic <strong>and</strong> morphotaxonomic revision of Ramichloridium <strong>and</strong> allied<br />

genera<br />

M. Arzanlou 1,2 , J.Z. Groenewald 1 , W. Gams 1 , U. Braun 3 , H.-D Shin 4 <strong>and</strong> P.W. Crous 1,2*<br />

1<br />

<strong>CBS</strong> Fungal Biodiversity Centre, Uppsalalaan 8, 3584 CT Utrecht, <strong>The</strong> Netherl<strong>and</strong>s; 2 Laboratory of Phytopathology, Wageningen University, Binnenhaven 5, 6709 PD<br />

Wageningen, <strong>The</strong> Netherl<strong>and</strong>s; 3 Martin-Luther-Universität, Institut für Biologie, Geobotanik und Botanischer Garten, Neuwerk 21, D-06099 Halle (Saale), Germany; 4 Division of<br />

Environmental Science & Ecological Engineering, Korea University, Seoul 136-701, Korea<br />

*Correspondence: Pedro W. Crous, p.crous@cbs.knaw.nl<br />

Abstract: <strong>The</strong> phylogeny of the genera Periconiella, Ramichloridium, Rhinocladiella <strong>and</strong> Veronaea was explored by means of partial sequences of the 28S (LSU) rRNA<br />

gene <strong>and</strong> the ITS region (ITS1, 5.8S rDNA <strong>and</strong> ITS2). Based on the LSU sequence data, ramichloridium-like species segregate into eight distinct clusters. <strong>The</strong>se include the<br />

Capnodiales (Mycosphaerellaceae <strong>and</strong> Teratosphaeriaceae), the Chaetothyriales (Herpotrichiellaceae), the Pleosporales, <strong>and</strong> five ascomycete clades with uncertain affinities.<br />

<strong>The</strong> type species of Ramichloridium, R. apiculatum, together with R. musae, R. biverticillatum, R. cerophilum, R. verrucosum, R. pini, <strong>and</strong> three new species isolated from<br />

Strelitzia, Musa <strong>and</strong> forest soil, respectively, reside in the Capnodiales clade. <strong>The</strong> human-pathogenic species R. mackenziei <strong>and</strong> R. basitonum, together with R. fasciculatum<br />

<strong>and</strong> R. anceps, cluster with Rhinocladiella (type species: Rh. atrovirens, Herpotrichiellaceae, Chaetothyriales), <strong>and</strong> are allocated to this <strong>genus</strong>. Veronaea botryosa, the type<br />

species of the <strong>genus</strong> Veronaea, also resides in the Chaetothyriales clade, whereas Veronaea simplex clusters as a sister taxon to the Venturiaceae (Pleosporales), <strong>and</strong> is placed<br />

in a new <strong>genus</strong>, Veronaeopsis. Ramichloridium obovoideum clusters with Carpoligna pleurothecii (anamorph: Pleurothecium sp., Chaetosphaeriales), <strong>and</strong> a new combination<br />

is proposed in Pleurothecium. Other ramichloridium-like clades include R. subulatum <strong>and</strong> R. epichloës (incertae sedis, Sordariomycetes), for which a new <strong>genus</strong>, Radulidium<br />

is erected. Ramichloridium schulzeri <strong>and</strong> its varieties are placed in a new <strong>genus</strong>, Myrmecridium (incertae sedis, Sordariomycetes). <strong>The</strong> <strong>genus</strong> Pseudovirgaria (incertae sedis)<br />

is introduced to accommodate ramichloridium-like isolates occurring on various species of rust fungi. A veronaea-like isolate from Bertia moriformis with phylogenetic affinity to<br />

the Annulatascaceae (Sordariomycetidae) is placed in a new <strong>genus</strong>, Rhodoveronaea. Besides Ramichloridium, Periconiella is also polyphyletic. Thysanorea is introduced to<br />

accommodate Periconiella papuana (Herpotrichiellaceae), which is unrelated to the type species, P. velutina (Mycosphaerellaceae).<br />

Taxonomic novelties: Myrmecridium Arzanlou, W. Gams & Crous, gen. nov., Myrmecridium flexuosum (de Hoog) Arzanlou, W. Gams & Crous, comb. et stat. nov., Myrmecridium<br />

schulzeri (Sacc.) Arzanlou, W. Gams & Crous var. schulzeri, comb. nov., Myrmecridium schulzeri var. tritici (M.B. Ellis) Arzanlou, W. Gams & Crous, comb. nov., Periconiella<br />

arcuata Arzanlou, S. Lee & Crous, sp. nov., Periconiella levispora Arzanlou, W. Gams & Crous, sp. nov., Pleurothecium obovoideum (Matsush.) Arzanlou & Crous, comb. nov.,<br />

Pseudovirgaria H.D. Shin, U. Braun, Arzanlou & Crous, gen. nov., Pseudovirgaria hyperparasitica H.D. Shin, U. Braun, Arzanlou & Crous, sp. nov., Radulidium Arzanlou, W.<br />

Gams & Crous, gen. nov., Radulidium epichloës (Ellis & Dearn.) Arzanlou, W. Gams & Crous, comb. nov., Radulidium subulatum (de Hoog) Arzanlou, W. Gams & Crous, comb.<br />

nov., Ramichloridium australiense Arzanlou & Crous, sp. nov., Ramichloridium biverticillatum Arzanlou & Crous, nom. nov., Ramichloridium brasilianum Arzanlou & Crous, sp.<br />

nov., Ramichloridium strelitziae Arzanlou, W. Gams & Crous, sp. nov., Rhinocladiella basitona (de Hoog) Arzanlou & Crous, comb. nov., Rhinocladiella fasciculata (V. Rao &<br />

de Hoog) Arzanlou & Crous, comb. nov., Rhinocladiella mackenziei (C.K. Campb. & Al-Hedaithy) Arzanlou & Crous, comb. nov., Rhodoveronaea Arzanlou, W. Gams & Crous,<br />

gen. nov., Rhodoveronaea varioseptata Arzanlou, W. Gams & Crous, sp. nov., Thysanorea Arzanlou, W. Gams & Crous, gen. nov., Thysanorea papuana (Aptroot) Arzanlou, W.<br />

Gams & Crous, comb. nov., Veronaea japonica Arzanlou, W. Gams & Crous, sp. nov., Veronaeopsis Arzanlou & Crous, gen. nov., Veronaeopsis simplex (Papendorf) Arzanlou<br />

& Crous, comb.nov.<br />

Key words: Capnodiales, Chaetothyriales, Mycosphaerella, Periconiella, phylogeny, Rhinocladiella, Veronaea.<br />

Introduction<br />

<strong>The</strong> anamorph <strong>genus</strong> Ramichloridium Stahel ex de Hoog 1977<br />

presently accommodates a wide range of species with erect, dark,<br />

more or less differentiated, branched or unbranched conidiophores<br />

<strong>and</strong> predominantly aseptate conidia produced on a sympodially<br />

proliferating rachis (de Hoog 1977). This heterogeneous group<br />

of anamorphic fungi includes species with diverse life styles, viz.<br />

saprobes, human <strong>and</strong> plant pathogens, most of which were classified<br />

by Schol-Schwarz (1968) in Rhinocladiella Nannf. according to a<br />

very broad generic concept. Ramichloridium was originally erected<br />

by Stahel (1937) with R. musae Stahel as type species. However,<br />

because his publication lacked a Latin diagnosis, the <strong>genus</strong> was<br />

invalid. Stahel also invalidly described Chloridium musae Stahel for<br />

a fungus causing leaf spots (tropical speckle disease) on banana.<br />

Ellis (1976) validated Chloridium musae as Veronaea musae M.B.<br />

Ellis, <strong>and</strong> Ramichloridium musae as Periconiella musae Stahel ex<br />

M.B. Ellis.<br />

Periconiella Sacc. (1885) [type species P. velutina (G. Winter)<br />

Sacc.] differs from Veronaea Cif. & Montemart. chiefly based<br />

on its dark brown, apically branched conidiophores. However,<br />

de Hoog (1977) observed numerous specimens of V. musae to<br />

exhibit branched conidiophores in culture, as did Stahel (1937)<br />

for Ramichloridium musae. De Hoog (1977) subsequently reintroduced<br />

Ramichloridium, but typified it with R. apiculatum (J.H.<br />

Mill., Giddens & A.A. Foster) de Hoog. He regarded V. musae <strong>and</strong><br />

P. musae to be conspecific, <strong>and</strong> applied the name R. musae (Stahel<br />

ex M.B. Ellis) de Hoog to both species, regarding Periconiella<br />

musae as basionym. <strong>The</strong> circumscription by de Hoog was based<br />

on their <strong>similar</strong> morphology <strong>and</strong> ecology. Central in his <strong>genus</strong><br />

concept was the observed presence of more or less differentiated<br />

<strong>and</strong> pigmented conidiophores, with predominantly aseptate conidia<br />

produced on a sympodially proliferating rachis. De Hoog (1977)<br />

also used some ecological features as additional characters to<br />

discriminate Ramichloridium from other genera, noting, for instance,<br />

that species in Ramichloridium were non-pathogenic to humans<br />

(de Hoog 1977, Campbell & Al-Hedaithy 1993). This delimitation,<br />

however, was not commonly accepted (McGinnis & Schell 1980).<br />

De Hoog et al. (1983) further discussed the problematic separation<br />

of Ramichloridium from genera such as Rhinocladiella, Veronaea<br />

<strong>and</strong> <strong>Cladosporium</strong> Link. It was further noted that the main feature to<br />

distinguish Ramichloridium from Rhinocladiella, was the presence<br />

of exophiala-type budding cells in species of Rhinocladiella (de<br />

Hoog 1977, de Hoog et al. 1983, Veerkamp & Gams 1983). <strong>The</strong><br />

separation of Veronaea from this complex is more problematic, as<br />

the circumscriptions provided by Ellis (1976) <strong>and</strong> Morgan-Jones<br />

(1979, 1982) overlap with that of Ramichloridium sensu de Hoog<br />

(1977). <strong>Cladosporium</strong> is more distinct, having very conspicuous,<br />

protuberant, darkened <strong>and</strong> thickened, coronate conidial scars, <strong>and</strong><br />

catenate conidia (David 1997, Braun et al. 2003, Schubert et al.<br />

2007 – this volume).<br />

57


Arzanlou et al.<br />

To date 26 species have been named in Ramichloridium; they<br />

not only differ in morphology, but also in life style. Ramichloridium<br />

mackenziei C.K. Campb. & Al-Hedaithy is a serious human<br />

pathogen, causing cerebral phaeohyphomycosis (Al-Hedaithy et al.<br />

1988, Campbell & Al-Hedaithy 1993), whereas R. musae causes<br />

tropical speckle disease on members of the Musaceae (Stahel 1937,<br />

Jones 2000). Another plant-pathogenic species, R. pini de Hoog &<br />

Rahman, causes a needle disease on Pinus contorta (de Hoog et<br />

al. 1983). Other clinically relevant species of Ramichloridium are R.<br />

basitonum de Hoog <strong>and</strong> occasionally R. schulzeri (Sacc.) de Hoog,<br />

while the remaining species tend to be common soil saprobes.<br />

No teleomorph has thus far been linked to species of<br />

Ramichloridium. <strong>The</strong> main question that remains is whether shared<br />

morphology among the species in this <strong>genus</strong> reflects common<br />

ancestry (Seifert 1993, Untereiner & Naveau 1999). To delineate<br />

anamorphic genera adequately, morphology <strong>and</strong> conidial ontogeny<br />

alone are no longer satisfactory (Crous et al. 2006a, b), <strong>and</strong> DNA<br />

data provide additional characters to help delineate species <strong>and</strong><br />

genera (Taylor et al. 2000, Mostert et al. 2006, Zipfel et al. 2006).<br />

<strong>The</strong> aim of the present study was to integrate morphological<br />

<strong>and</strong> cultural features with DNA sequence data to resolve the<br />

species concepts <strong>and</strong> generic limits of the taxa currently placed in<br />

Periconiella, Ramichloridium, Rhinocladiella <strong>and</strong> Veronaea, <strong>and</strong> to<br />

resolve the status of several new cultures that were isolated during<br />

the course of this study.<br />

Materials <strong>and</strong> Methods<br />

Isolates<br />

Species names, substrates, geographical origins <strong>and</strong> GenBank<br />

accession numbers of the isolates included in this study are listed<br />

in Table 1. Fungal isolates are maintained in the culture collection<br />

of the Centraalbureau voor Schimmelcultures (<strong>CBS</strong>) in Utrecht, the<br />

Netherl<strong>and</strong>s.<br />

DNA extraction, amplification <strong>and</strong> sequence analysis<br />

Genomic DNA was extracted from colonies grown on 2 % malt<br />

extract agar (MEA, Difco) (Gams et al. 2007) using the FastDNA kit<br />

(BIO101, Carlsbad, CA, U.S.A.). <strong>The</strong> primers ITS1 <strong>and</strong> ITS4 (White<br />

et al. 1990) were used to amplify the internal transcribed spacer<br />

region (ITS) of the nuclear ribosomal RNA operon, including: the<br />

3’ end of the 18S rRNA gene, the first internal transcribed spacer<br />

region (ITS1), the 5.8S rRNA gene, the second internal transcribed<br />

spacer region (ITS2) <strong>and</strong> the 5’ end of 28S rRNA gene. Part of<br />

the large subunit 28S rRNA (LSU) gene was amplified with primers<br />

LR0R (Rehner & Samuels 1994) <strong>and</strong> LR5 (Vilgalys & Hester 1990).<br />

<strong>The</strong> ITS region was sequenced only for those isolates for which<br />

these data were not available. <strong>The</strong> ITS analyses confirmed the<br />

proposed classification based on LSU analysis for each major<br />

clade <strong>and</strong> are not presented here in detail; but the sequences are<br />

deposited in GenBank where applicable. <strong>The</strong> PCR reaction was<br />

performed in a mixture with 0.5 units Taq polymerase (Bioline,<br />

London, U.K.), 1× PCR buffer, 0.5 mM MgCl 2<br />

, 0.2 mM of each<br />

dNTP, 5 pmol of each primer, approximately 10–15 ng of fungal<br />

genomic DNA, with the total volume adjusted to 25 µL with<br />

sterile water. Reactions were performed on a GeneAmp PCR<br />

System 9700 (Applied Biosystems, Foster City, CA) with cycling<br />

conditions consisting of 5 min at 96 °C for primary denaturation,<br />

followed by 36 cycles at 96 °C (30 s), 52 °C (30 s), <strong>and</strong> 72 °C<br />

(60 s), with a final 7 min extension step at 72 °C to complete the<br />

reaction. <strong>The</strong> amplicons were sequenced using BigDye Terminator<br />

v. 3.1 (Applied Biosystems, Foster City, CA) or DYEnamicET<br />

Terminator (Amersham Biosciences, Freiburg, Germany) Cycle<br />

Sequencing Kits <strong>and</strong> analysed on an ABI Prism 3700 (Applied<br />

Biosystems, Foster City, CA) under conditions recommended by<br />

the manufacturer. Newly generated sequences were subjected<br />

to a Blast search of the NCBI databases, sequences with high<br />

<strong>similar</strong>ity were downloaded from GenBank <strong>and</strong> comparisons<br />

were made based on the alignment of the obtained sequences.<br />

Sequences from GenBank were also selected for <strong>similar</strong> taxa. <strong>The</strong><br />

LSU tree was rooted using sequences of Athelia epiphylla Pers.<br />

<strong>and</strong> Paullicorticium ansatum Liberta as outgroups. Phylogenetic<br />

analysis was performed with PAUP (Phylogenetic Analysis Using<br />

Parsimony) v. 4.0b10 (Swofford 2003), using the neighbour-joining<br />

algorithm with the uncorrected (“p”), the Kimura 2-parameter <strong>and</strong><br />

the HKY85 substitution models. Alignment gaps longer than 10<br />

bases were coded as single events for the phylogenetic analyses;<br />

the remaining gaps were treated as missing data. Any ties were<br />

broken r<strong>and</strong>omly when encountered. Phylogenetic relationships<br />

were also inferred with the parsimony algorithm using the heuristic<br />

search option with simple taxon additions <strong>and</strong> tree bisection <strong>and</strong><br />

reconstruction (TBR) as the branch-swapping algorithm; alignment<br />

gaps were treated as a fifth character state <strong>and</strong> all characters were<br />

unordered <strong>and</strong> of equal weight. Branches of zero length were<br />

collapsed <strong>and</strong> all multiple, equally parsimonious trees were saved.<br />

Only the first 5 000 equally most parsimonious trees were saved.<br />

Other measures calculated included tree length, consistency<br />

index, retention index <strong>and</strong> rescaled consistency index (TL, CI, RI<br />

<strong>and</strong> RC, respectively). <strong>The</strong> robustness of the obtained trees was<br />

evaluated by 1 000 bootstrap replications. Bayesian analysis was<br />

performed following the methods of Crous et al. (2006c). <strong>The</strong> best<br />

nucleotide substitution model was determined using MrModeltest<br />

v. 2.2 (Nyl<strong>and</strong>er 2004). MrBayes v. 3.1.2 (Ronquist & Huelsenbeck<br />

2003) was used to perform phylogenetic analyses, using a general<br />

time-reversible (GTR) substitution model with inverse gamma<br />

rates, dirichlet base frequencies <strong>and</strong> the temp value set to 0.5. New<br />

sequences were lodged with NCBI’s GenBank (Table 1) <strong>and</strong> the<br />

alignment <strong>and</strong> trees with TreeBASE (www.treebase.org).<br />

Morphology<br />

Cultural growth rates <strong>and</strong> morphology were recorded from colonies<br />

grown on MEA for 2 wk at 24 ºC in the dark, <strong>and</strong> colony colours<br />

were determined by reference to the colour charts of Rayner (1970).<br />

Microscopic observations were made from colonies cultivated on<br />

MEA <strong>and</strong> OA (oatmeal agar, Gams et al. 2007), using a slide culture<br />

technique. Slide cultures were set up in Petri dishes containing 2<br />

mL of sterile water, into which a U-shaped glass rod was placed,<br />

extending above the water surface. A block of freshly growing<br />

fungal colony, approx. 1 cm square was placed onto a sterile<br />

microscope slide, covered with a somewhat larger, sterile glass<br />

cover slip, <strong>and</strong> incubated in the moist chamber. Fungal sporulation<br />

was monitored over time, <strong>and</strong> when optimal, images were captured<br />

by means of a Nikon camera system (Digital Sight DS-5M, Nikon<br />

Corporation, Japan). Structures were mounted in lactic acid, <strong>and</strong><br />

30 measurements (× 1 000 magnification) determined wherever<br />

possible, with the extremes of spore measurements given in<br />

parentheses.<br />

58


Ramichloridium <strong>and</strong> allied genera<br />

Table 1. Isolates of Ramichloridium <strong>and</strong> <strong>similar</strong> genera used for DNA analysis <strong>and</strong> morphological studies.<br />

Species Accession number 1 Source Origin GenBank numbers<br />

(LSU, ITS)<br />

Myrmecridium flexuosum <strong>CBS</strong> 398.76*; IMI 203547 Soil Suriname EU041825, EU041768<br />

Myrmecridium schulzeri <strong>CBS</strong> 100.54; JCM 6974 Soil Zaire EU041826, EU041769<br />

<strong>CBS</strong> 134.68; ATCC 16310 Soil Germany EU041827, EU041770<br />

<strong>CBS</strong> 156.63 Homo sapiens Netherl<strong>and</strong>s EU041828, EU041771<br />

<strong>CBS</strong> 188.96 Soil Papua New Guinea EU041829, EU041772<br />

<strong>CBS</strong> 304.73 Wheat straw South Africa EU041830, EU041773<br />

<strong>CBS</strong> 305.73; JCM 6967 Wheat straw South Africa EU041831, EU041774<br />

<strong>CBS</strong> 325.74; JCM 7234 Triticum aestivum Netherl<strong>and</strong>s EU041832, EU041775<br />

<strong>CBS</strong> 381.87 — Australia EU041833, EU041776<br />

<strong>CBS</strong> 642.76 Malus sylvestris Switzerl<strong>and</strong> EU041834, EU041777<br />

<strong>CBS</strong> 114996 Cannomois virgata South Africa EU041835, EU041778<br />

Periconiella arcuata <strong>CBS</strong> 113477* Ischyrolepsis subverticellata South Africa EU041836, EU041779<br />

Periconiella levispora <strong>CBS</strong> 873.73* Turpinia pomifera Sri Lanka EU041837, EU041780<br />

Periconiella velutina <strong>CBS</strong> 101948*; CPC 2262 Brabejum stellatifolium South Africa EU041838, EU041781<br />

<strong>CBS</strong> 101949; CPC 2263 Brabejum stellatifolium South Africa EU041839, EU041782<br />

<strong>CBS</strong> 101950; CPC 2264 Brabejum stellatifolium South Africa EU041840, EU041783<br />

Pleurothecium obovoideum <strong>CBS</strong> 209.95*; MFC 12477 Pasania edulis Japan EU041841, EU041784<br />

Pseudovirgaria hyperparasitica <strong>CBS</strong> 121735; CPC 10702 On Phragmidium sp. on Rubus coreanus Korea EU041822, EU041765<br />

<strong>CBS</strong> 121738; CPC 10704 On Phragmidium sp. on Rubus coreanus Korea EU041823, EU041766<br />

<strong>CBS</strong> 121739*; CPC 10753<br />

On Pucciniastrum agrimoniae on<br />

Korea<br />

EU041824, EU041767<br />

Agrimonia pilosa<br />

Radulidium epichloës <strong>CBS</strong> 361.63*; MUCL 3124 Epichloë typhina U.S.A. EU041842, EU041785<br />

Radulidium sp. <strong>CBS</strong> 115704 Poaceae Guyana EU041843, EU041786<br />

Radulidium subulatum <strong>CBS</strong> 287.84 Puccinia allii U.K. EU041844, EU041787<br />

Ramichloridium apiculatum<br />

<strong>CBS</strong> 405.76* Phragmites australis Czech Republic EU041845, EU041788<br />

<strong>CBS</strong> 912.96 Incubator for cell cultures Germany EU041846, EU041789<br />

<strong>CBS</strong> 101010 Lasioptera arundinis Czech Republic EU041847, EU041790<br />

<strong>CBS</strong> 156.59*; ATCC 13211; IMI Forest soil U.S.A. EU041848, EU041791<br />

100716; JCM 6972; MUCL 7991;<br />

MUCL 15753; QM 7716<br />

<strong>CBS</strong> 390.67 Cucumis sativus South Africa EU041849, EU041792<br />

<strong>CBS</strong> 391.67; JCM 6966 Aloe sp. South Africa EU041850, EU041793<br />

<strong>CBS</strong> 400.76; IMI 088021 Soil Pakistan EU041851, EU041794<br />

Ramichloridium australiense <strong>CBS</strong> 121710 Musa banksii Australia EU041852, EU041795<br />

Ramichloridium biverticillatum <strong>CBS</strong> 335.36 Musa sapientum — EU041853, EU041796<br />

Ramichloridium brasilianum <strong>CBS</strong> 283.92* Forest soil Brazil EU041854, EU041797<br />

Ramichloridium cerophilum <strong>CBS</strong> 103.59* Sasa sp. Japan EU041855, EU041798<br />

Ramichloridium indicum <strong>CBS</strong> 171.96 — — EU041856, EU041799<br />

Ramichloridium musae <strong>CBS</strong> 190.63; MUCL 9557 Musa sapientum — EU041857, EU041800<br />

<strong>CBS</strong> 365.36*; JCM 6973; MUCL 9556 Musa sapientum Surinam EU041858, EU041801<br />

Ramichloridium pini <strong>CBS</strong> 461.82*; MUCL 28942 Pinus contorta U.K. EU041859, EU041802<br />

Ramichloridium strelitziae <strong>CBS</strong> 121711 Strelitzia sp. South Africa EU041860, EU041803<br />

Rhinocladiella anceps<br />

<strong>CBS</strong> 157.54; ATCC 15680; MUCL Fagus sylvatica France EU041861, EU041804<br />

1081; MUCL 7992; MUCL 15756<br />

<strong>CBS</strong> 181.65*; ATCC 18655; DAOM Soil Canada EU041862, EU041805<br />

84422; IMI 134453; MUCL 8233; OAC<br />

10215<br />

Rhinocladiella basitona <strong>CBS</strong> 101460*; IFM 47593 Homo sapiens Japan EU041863, EU041806<br />

Rhinocladiella fasciculata <strong>CBS</strong> 132.86* Decayed wood India EU041864, EU041807<br />

Rhinocladiella mackenziei <strong>CBS</strong> 367.92; NCPF 2738; UTMB 3169 Homo sapiens Israel EU041865, EU041808<br />

www.studiesinmycology.org<br />

59


Arzanlou et al.<br />

Table 1. (Continued).<br />

Species Accession number 1 Source Origin GenBank numbers<br />

(LSU, ITS)<br />

<strong>CBS</strong> 368.92; UTMB 3170 Homo sapiens Israel EU041866, EU041809<br />

<strong>CBS</strong> 102590; NCPF 2853 Homo sapiens United Arab Emirates EU041867, EU041810<br />

Rhinocladiella phaeophora <strong>CBS</strong> 496.78*; IMI 287527 Soil Colombia EU041868, EU041811<br />

Rhinocladiella sp. <strong>CBS</strong> 264.49; MUCL 9904 Honey France EU041869, EU041812<br />

Rhodoveronaea varioseptata <strong>CBS</strong> 431.88* Bertia moriformis Germany EU041870, EU041813<br />

Thysanorea papuana <strong>CBS</strong> 212.96* — Papua New Guinea EU041871, EU041814<br />

Veronaea botryosa <strong>CBS</strong> 121.92 Xanthorrhoea preissii Australia EU041872, EU041815<br />

<strong>CBS</strong> 254.57*; IMI 070233; MUCL 9821 — Italy EU041873, EU041816<br />

<strong>CBS</strong> 350.65; IMI 115127; MUCL 7972 Goat dung India EU041874, EU041817<br />

Veronaea compacta <strong>CBS</strong> 268.75* — South Africa EU041876, EU041819<br />

Veronaea japonica <strong>CBS</strong> 776.83* On dead bamboo culm Japan EU041875, EU041818<br />

Veronaeopsis simplex <strong>CBS</strong> 588.66*; IMI 203547 Acacia karroo South Africa EU041877, EU041820<br />

Zasmidium cellare <strong>CBS</strong> 146.36 Wine cellar — EU041878, EU041821<br />

1<br />

ATCC: American Type Culture Collection, Virginia, U.S.A.; <strong>CBS</strong>: Centraalbureau voor Schimmelcultures, Utrecht, <strong>The</strong> Netherl<strong>and</strong>s; CPC: Culture collection of Pedro Crous,<br />

housed at <strong>CBS</strong>; DAOM: Plant Research Institute, Department of Agriculture (Mycology), Ottawa, Canada; IFM: Research Center for Pathogenic Fungi <strong>and</strong> Microbial Toxicoses,<br />

Chiba University, Chiba, Japan; IMI: International Mycological Institute, CABI-Bioscience, U.K.; JCM: Japan Collection of Microorganism, RIKEN BioResource Center, Japan;<br />

MFC: Matsushima Fungus Collection, Kobe, Japan; MUCL: Mycotheque de l’ Université Catholique de Louvain, Louvain-la-Neuve, Belgium; NCPF: <strong>The</strong> National Collection of<br />

Pathogenic Fungi, Holborn, London, U.K.; OAC: Department of Botany <strong>and</strong> Genetics, University of Guelph, Ont., Canada; QM: Quartermaster Research <strong>and</strong> Developement<br />

Center, U.S. Army, MA, U.S.A.; UTMB: University of Texas Medical Branch, Texas, U.S.A.<br />

*Ex-type cultures.<br />

Results<br />

Phylogeny<br />

<strong>The</strong> manually adjusted alignment of the 28S rDNA data contained<br />

137 sequences (including the two outgroups) <strong>and</strong> 995 characters<br />

including alignment gaps. Of the 748 characters used in the<br />

phylogenetic analysis, 373 were parsimony-informative, 61 were<br />

variable <strong>and</strong> parsimony-uninformative, <strong>and</strong> 314 were constant.<br />

Neighbour-joining analysis using the three substitution models on<br />

the LSU alignment yielded trees with <strong>similar</strong> topology <strong>and</strong> bootstrap<br />

values. Parsimony analysis of the alignment yielded 5 000 equally<br />

most parsimonious trees, one of which is shown in Fig. 1 (TL =<br />

2 157, CI = 0.377, RI = 0.875, RC = 0.330). <strong>The</strong> Markov Chain<br />

Monte Carlo (MCMC) analysis of four chains started from a r<strong>and</strong>om<br />

tree topology <strong>and</strong> lasted 2 000 000 generations. Trees were saved<br />

each 1 000 generations, resulting in 2 000 trees. Burn-in was set<br />

at 500 000 generations after which the likelihood values were<br />

stationary, leaving 1 500 trees from which the consensus tree (Fig.<br />

2) <strong>and</strong> posterior probabilities (PP’s) were calculated. <strong>The</strong> average<br />

st<strong>and</strong>ard deviation of split frequencies was 0.043910 at the end<br />

of the run. Among the neighbour-joining, Bayesian <strong>and</strong> parsimony<br />

analyses, the trees differed in the hierarchical order of the main<br />

families <strong>and</strong> the support values (data not shown; e.g. the support<br />

within of the Capnodiales in Figs 1–2).<br />

<strong>The</strong> phylogenetic trees (Figs 1–2) show that the Ramichloridium<br />

species segregate into eight distinct clades, residing in the<br />

Capnodiales (Mycosphaerellaceae <strong>and</strong> Teratosphaeriaceae), the<br />

Chaetothyriales (Herpotrichiellaceae), the Pleosporales, <strong>and</strong> five<br />

other clades of which the relationships remain to be elucidated. <strong>The</strong><br />

type species of Ramichloridium, R. apiculatum, together with R.<br />

musae, R. cerophilum (Tubaki) de Hoog, R. indicum (Subram.) de<br />

Hoog, R. pini <strong>and</strong> three new species respectively isolated from Musa<br />

banksii, Strelitzia nicolai, <strong>and</strong> forest soil, reside in different parts of<br />

the Capnodiales clade (all in the Mycosphaerellaceae, except for the<br />

species from forest soil which clusters in the Teratosphaeriaceae).<br />

<strong>The</strong> second clade (in the Chaetothyriomycetes clade), including<br />

the human-pathogenic species R. mackenziei <strong>and</strong> R. basitonum,<br />

together with R. fasciculatum V. Rao & de Hoog <strong>and</strong> R. anceps<br />

(Sacc. & Ellis) de Hoog, groups together with Rhinocladiella in the<br />

Herpotrichiellaceae. <strong>The</strong> third clade (in the Sordariomycetes clade)<br />

includes R. obovoideum (Matsush.) de Hoog, which in a Blast<br />

search was found to have affinity with Carpoligna pleurothecii F.A.<br />

Fernández & Huhndorf (Chaetosphaeriales). <strong>The</strong> fourth clade (in<br />

the Sordariomycetes clade) includes a veronaea-like isolate from<br />

Bertia moriformis, with phylogenetic affinity to the Annulatascaceae<br />

(Sordariomycetidae). <strong>The</strong> fifth clade (in the Sordariomycetes clade)<br />

includes R. schulzeri var. schulzeri <strong>and</strong> R. schulzeri var. flexuosum<br />

de Hoog, the closest relatives being Thyridium vestitum (Fr.)<br />

Fuckel in the Thyridiaceae <strong>and</strong> Magnaporthe grisea (T.T. Hebert)<br />

M.E. Barr in the Magnaporthaceae. <strong>The</strong> sixth clade (in the Incertae<br />

sedis clade) includes R. subulatum de Hoog, R. epichloës (Ellis &<br />

Dearn.) de Hoog <strong>and</strong> a species isolated from the Poaceae. Three<br />

ramichloridium-like isolates from Rubus coreanus <strong>and</strong> Agrimonia<br />

pilosa form another unique clade (in the Incertae sedis clade)<br />

with uncertain affinity. Veronaea simplex Papendorf clusters as<br />

sister taxon to the Venturiaceae representing the eighth clade<br />

(Dothideomycetes). <strong>The</strong> type species of Periconiella, P. velutina,<br />

clusters within the Mycosphaerellaceae (Capnodiales clade),<br />

whereas P. papuana Aptroot resides in the Herpotrichiellaceae<br />

(Chaetothyriales clade). Veronaea botryosa Cif. & Montemart., the<br />

type species of Veronaea, also resides in the Herpotrichiellaceae.<br />

Taxonomy<br />

<strong>The</strong> species previously described in Ramichloridium share<br />

some morphological features, including erect, pigmented, more<br />

or less differentiated conidiophores, sympodially proliferating<br />

conidiogenous cells <strong>and</strong> predominantly aseptate conidia. Other than<br />

conidial morphology, features of the conidiogenous apparatus that<br />

60


Ramichloridium <strong>and</strong> allied genera<br />

appear to be more phylogenetically informative include pigmentation<br />

of vegetative hyphae, conidiophores <strong>and</strong> conidia, denticle density<br />

on the rachis, <strong>and</strong> structure of the scars. By integrating these data<br />

with the molecular data set, more natural genera are delineated,<br />

which are discussed below.<br />

Key to ramichloridium-like genera<br />

1. Conidiogenous cells integrated, terminal <strong>and</strong> lateral on creeping or ascending hyphae (differentiation between branched vegetative<br />

hyphae <strong>and</strong> conidiophores barely possible); conidiogenous loci bulging, more or less umbonate, apex rounded; occurring on rust<br />

pustules ......................................................................................................................................................................... Pseudovirgaria<br />

1. Conidiogenous cells integrated in distinct conidiophores; conidiogenous loci non-umbonate (flat, not prominent; subcylindrical or conical<br />

denticles; or terminally flat-tipped; or thickened <strong>and</strong> darkened); rarely occurring on rust pustules, but if so, with a raduliform rachis <strong>and</strong><br />

distinct denticles......................................................................................................................................................................................... 2<br />

2. Conidia 0–2(–3)-septate, conidial base truncate, retaining a marginal frill after liberation [anamorphs of Sordariomycetes]<br />

........................................................................................................................................................................................... Rhodoveronaea<br />

2. Conidial base without marginal frill ............................................................................................................................................................ 3<br />

3. Conidiophores composed of a well-developed erect stalk <strong>and</strong> a terminal branched head ........................................................................ 4<br />

3. Conidiophores unbranched or, if branched, branches loose, irregular or dichotomous, but not distinctly separated into stalk <strong>and</strong> branched<br />

head ........................................................................................................................................................................................................... 5<br />

4. Conidiophores dimorphic, either macronematous, dark brown with a dense apical cluster of branches or micronematous, undifferentiated,<br />

resembling vegetative hyphae; both kinds with a denticulate rachis; conidia predominantly 1-septate [anamorph of Chaetothyriales]<br />

.................................................................................................................................................................................................. Thysanorea<br />

4. Conidiophores monomorphic; branched head with fewer branches <strong>and</strong> looser; conidiogenous loci usually flat, non-prominent, less<br />

denticle-like; conidia aseptate to pluriseptate [anamorphs of Capnodiales] ............................................................................ Periconiella<br />

5. Rachis with denticles 1–1.5 µm long, denticles almost cylindrical; conidia at least partly in short chains ......................... Pleurothecium<br />

5. Rachis with denticles less than 1 µm long, denticles not cylindrical or denticles lacking, rachis with flat, barely prominent scars ........... 6<br />

6. Conidia predominantly septate .................................................................................................................................................................. 7<br />

6. Conidia predominantly aseptate ................................................................................................................................................................ 8<br />

7. Conidiophores up to 200 µm long; rachis straight, not to slightly geniculate; conidiogenous loci more or less flat, barely prominent,<br />

unthickened, slightly darkened [anamorphs of Chaetothyriales, Herpotrichiellaceae] ................................................................. Veronaea<br />

7. Conidiophores up to 60 µm long; rachis distinctly geniculate; conidiogenous loci denticle-like, prominent, up to 0.5 µm high, slightly<br />

thickened <strong>and</strong> darkened [anamorph of Pleosporales, Venturiaceae] ................................................................................... Veronaeopsis<br />

8. Vegetative mycelium entirely hyaline; rachis long, hyaline, with widely scattered pimple-shaped, terminally pointed, unpigmented<br />

denticles .............................................................................................................................................................................. Myrmecridium<br />

8. Vegetative mycelium at least partly pigmented; conidiogenous loci distinct, non-denticulate, somewhat darkened-refractive, or denticles,<br />

if present, neither pimple-shaped nor pointed ............................................................................................................................................ 9<br />

9. Rachis distinctly raduliform, with distinct, prominent blunt denticles, 0.5–1 µm long; scars <strong>and</strong> hila unthickened, but pigmented<br />

.................................................................................................................................................................................................. Radulidium<br />

9. Rachis not distinctly raduliform, at most subdenticulate; scars flat or only slightly prominent (subdenticulate), shorter ......................... 10<br />

10. Conidiophores usually poorly differentiated from the vegetative hyphae; conidial apparatus often loosely branched; exophiala-like<br />

budding cells usually present in culture [anamorphs of Chaetothyriales, Herpotrichiellaceae] .......................................... Rhinocladiella<br />

10. Conidiophores usually well differentiated from the vegetative mycelium (macronematous), usually unbranched; without exophiala-like<br />

states [anamorphs of Capnodiales] .................................................................................................................................. Ramichloridium<br />

Capnodiales (Mycosphaerellaceae, Teratosphaeriaceae)<br />

<strong>The</strong> type species of Ramichloridium, R. apiculatum, together<br />

with R. indicum cluster as a sister group to the Dissoconium de<br />

Hoog, Oorschot & Hijwegen clade in the Mycosphaerellaceae.<br />

Some other Ramichloridium species, including R. musae, R.<br />

biverticillatum Arzanlou & Crous, R. pini <strong>and</strong> R. cerophilum, are<br />

also allied with members of the Mycosphaerellaceae. Three<br />

additional new species are introduced for Ramichloridium isolates<br />

www.studiesinmycology.org<br />

from Musa banksii, Strelitzia nicolai, <strong>and</strong> forest soil. Periconiella<br />

velutina, the type species of Periconiella, which also resides in the<br />

Mycosphaerellaceae, is morphologically sufficiently distinct to retain<br />

its generic status. Two new species of Periconiella are introduced<br />

for isolates obtained from Turpinia pomifera <strong>and</strong> Ischyrolepis<br />

subverticellata in South Africa. Zasmidium cellare (Pers.) Fr., the<br />

type species of Zasmidium (Pers.) Fr., is also shown to cluster<br />

within the Mycosphaerellaceae.<br />

61


Arzanlou et al.<br />

10 changes<br />

Athelia epiphylla AY586633<br />

Paullicorticium ansatum AY586693<br />

100 Conioscyphascus varius AY484512<br />

100<br />

Conioscypha lignicola AY484513<br />

100 Carpoligna pleurothecii AF064645<br />

78<br />

Carpoligna pleurothecii AF064646<br />

Carpoligna pleurothecii AY544685<br />

98<br />

74 Pleurothecium obovoideum <strong>CBS</strong> 209.95<br />

Ascotaiwania hughesii AY316357<br />

100 Ascotaiwania hughesii AY094189<br />

Ophiostoma stenoceras DQ836904<br />

96<br />

Magnaporthe grisea AB026819<br />

100 Cryptadelphia polyseptata AY281102<br />

Cryptadelphia groenendalensis AY281103<br />

100<br />

100 82<br />

86<br />

96<br />

89<br />

Rhodoveronaea varioseptata <strong>CBS</strong> 431.88<br />

Annulatascus triseptatus AY780049<br />

Annulatascus triseptatus AY346257<br />

Thyridium vestitum AY544671<br />

Capronia pulcherrima AF050256<br />

Exophiala dermatitidis AF050270<br />

Capronia mansonii AY004338<br />

Rhinocladiella sp. <strong>CBS</strong> 264.49<br />

100<br />

100<br />

Myrmecridium schulzeri <strong>CBS</strong> 114996<br />

Myrmecridium flexuosum <strong>CBS</strong> 398.76<br />

Myrmecridium schulzeri <strong>CBS</strong> 188.96<br />

Myrmecridium schulzeri <strong>CBS</strong> 381.87<br />

Myrmecridium schulzeri <strong>CBS</strong> 305.73<br />

Myrmecridium schulzeri <strong>CBS</strong> 304.73<br />

Myrmecridium schulzeri <strong>CBS</strong> 100.54<br />

Myrmecridium schulzeri <strong>CBS</strong> 642.76<br />

Myrmecridium schulzeri <strong>CBS</strong> 134.68<br />

Myrmecridium schulzeri <strong>CBS</strong> 156.63<br />

Myrmecridium schulzeri <strong>CBS</strong> 325.74<br />

Rhinocladiella mackenziei <strong>CBS</strong> 368.92<br />

Rhinocladiella mackenziei AF050288<br />

Rhinocladiella mackenziei <strong>CBS</strong> 367.92<br />

Rhinocladiella mackenziei <strong>CBS</strong>102590<br />

Capronia coronata AF050242<br />

Rhinocladiella fasciculata <strong>CBS</strong> 132.86<br />

Rhinocladiella phaeophora <strong>CBS</strong> 496.78<br />

Rhinocladiella anceps AF050284<br />

Rhinocladiella anceps <strong>CBS</strong> 181.65<br />

Rhinocladiella anceps AF050285<br />

Rhinocladiella anceps <strong>CBS</strong> 157.54<br />

Fonsecaea pedrosoi AF050276<br />

Veronaea botryosa <strong>CBS</strong> 350.65<br />

Veronaea botryosa <strong>CBS</strong> 121.92<br />

Veronaea botryosa <strong>CBS</strong> 254.57<br />

Thysanorea papuana <strong>CBS</strong> 212.96<br />

Veronaea japonica <strong>CBS</strong> 776.83<br />

Veronaea compacta <strong>CBS</strong> 268.75<br />

99<br />

80 60<br />

100<br />

95<br />

88<br />

Rhinocladiella basitona <strong>CBS</strong> 101460<br />

Rhinocladiella atrovirens AF050289<br />

Exophiala jeanselmei AF050271<br />

Veronaeopsis simplex <strong>CBS</strong> 588.66<br />

Repetophragma goidanichii DQ408574<br />

Venturia pyrina EF114715<br />

Metacoleroa dickiei DQ384100<br />

Venturia chlorospora DQ384101<br />

Venturia inaequalis EF114713<br />

Venturia hanliniana AF050290<br />

54<br />

Venturia asperata EF114711<br />

Venturia carpophila AY849967<br />

Sordariomycetes<br />

Herpotrichiellaceae,<br />

Chaetothyriales,<br />

Chaetothyriomycetes<br />

Venturiaceae,<br />

Pleosporales,<br />

Dothideomycetes<br />

Fig. 1. (Page 62–63). One of 5 000 equally most parsimonious trees obtained from a heuristic search with simple taxon additions of the LSU sequence alignment using PAUP v.<br />

4.0b10. <strong>The</strong> scale bar shows 10 changes; bootstrap support values from 1 000 replicates are shown at the nodes. Thickened lines indicate the strict consensus branches <strong>and</strong> extype<br />

sequences are printed in bold face. <strong>The</strong> tree was rooted to two sequences obtained from GenBank (Athelia epiphylla AY586633 <strong>and</strong> Paullicorticium ansatum AY586693).<br />

Periconiella Sacc., in Sacc. & Berlese, Atti Ist. Veneto Sci., Ser. 6,<br />

3: 727. 1885.<br />

In vitro: Colonies with entire margin; aerial mycelium rather<br />

compact, raised, velvety, olivaceous-grey; reverse olivaceousblack.<br />

Submerged hyphae verrucose, hyaline, thin-walled, 1–3 µm<br />

wide; aerial hyphae subhyaline, later becoming dark brown, thickwalled,<br />

smooth. Conidiophores arising vertically from creeping<br />

hyphae, straight or flexuose, up to 260 µm long, dark brown at<br />

the base, paler towards the apex, thick-walled; in the upper part<br />

bearing short branches. Conidiogenous cells terminally integrated,<br />

polyblastic, smooth or verrucose, subcylindrical, mostly not or barely<br />

geniculate-sinuous, variable in length, subhyaline, later becoming<br />

pale brown, fertile part as wide as the basal part, proliferating<br />

sympodially, sometimes becoming septate <strong>and</strong> forming a short,<br />

straight rachis with pigmented, slightly thickened <strong>and</strong> hardly<br />

prominent, more or less flat scars. Conidia solitary, occasionally in<br />

short chains, 0–multi-septate, subhyaline to rather pale olivaceous<br />

or olivaceous-brown, smooth to verrucose, globose, ellipsoidal to<br />

obovoid or obclavate, with a slightly darkened <strong>and</strong> thickened hilum;<br />

conidial secession schizolytic.<br />

Type species: P. velutina (G. Winter) Sacc., Miscell. mycol. 2: 17.<br />

1884.<br />

62


Ramichloridium <strong>and</strong> allied genera<br />

54<br />

10 changes<br />

Fig. 1. (Continued).<br />

52<br />

76<br />

100 100<br />

98<br />

94<br />

71<br />

100<br />

77<br />

99<br />

90<br />

98<br />

Radulidium sp. <strong>CBS</strong> 115704<br />

Pseudovirgaria hyperparasitica CPC 10702<br />

Pseudovirgaria hyperparasitica CPC 10753<br />

Pseudovirgaria hyperparasitica CPC 10704<br />

96 Radulidium subulatum <strong>CBS</strong> 287.84<br />

99 Radulidium subulatum <strong>CBS</strong> 912.96<br />

Radulidium epichloës <strong>CBS</strong> 361.63<br />

78<br />

Radulidium epichloës AF050287<br />

64<br />

Radulidium subulatum <strong>CBS</strong> 405.76<br />

Radulidium subulatum <strong>CBS</strong> 101010<br />

Sporidesmium pachyanthicola DQ408557<br />

Staninwardia suttonii DQ923535<br />

Ramichloridium brasilianum <strong>CBS</strong> 283.92<br />

Batcheloromyces proteae <strong>CBS</strong> 110696<br />

Teratosphaeria alistairii DQ885901<br />

Teratosphaeria toledana DQ246230<br />

Readeriella considenianae DQ923527<br />

Teratosphaeria molleriana EU019292<br />

Teratosphaeria fibrillosa EU019282<br />

Catenulostroma macowanii EU019254<br />

67<br />

58 100<br />

100<br />

87<br />

100<br />

56<br />

52<br />

99 54<br />

99<br />

87<br />

Teratosphaeria suberosa DQ246235<br />

Cibiessia dimorphospora EU019258<br />

Teratosphaeria readeriellophora DQ246238<br />

Xenomeris juniperi EF114709<br />

Catenulostroma abietis EU019249<br />

Devriesia staurophora DQ008150<br />

Teratosphaeria parva DQ246240<br />

69<br />

78<br />

64<br />

Teratosphaeria parva DQ246243<br />

<strong>Cladosporium</strong> cladosporioides EU019262<br />

<strong>Cladosporium</strong> uredinicola EU019264<br />

<strong>Cladosporium</strong> bruhnei EU019261<br />

<strong>Cladosporium</strong> sphaerospermum EU019263<br />

Ramichloridium indicum <strong>CBS</strong> 171.96<br />

Dissoconium aciculare EU019266<br />

“Mycosphaerella” communis EU019267<br />

“Mycosphaerella” lateralis EU019268<br />

Ramichloridium apiculatum <strong>CBS</strong> 390.67<br />

Ramichloridium apiculatum <strong>CBS</strong> 400.76<br />

Ramichloridium apiculatum <strong>CBS</strong> 391.67<br />

Ramichloridium apiculatum <strong>CBS</strong> 156.59<br />

100<br />

100<br />

95<br />

99<br />

56<br />

55<br />

80<br />

Ramichloridium pini <strong>CBS</strong> 461.82<br />

Mycosphaerella endophytica DQ246252<br />

Mycosphaerella endophytica DQ246255<br />

Mycosphaerella gregaria DQ246251<br />

Mycosphaerella graminicola EU019297<br />

Septoria tritici EU019298<br />

Cercosporella centaureicola EU019257<br />

Mycosphaerella punctiformis AY490776<br />

Ramularia sp. EU019285<br />

Ramularia miae DQ885902<br />

Ramularia pratensis var. pratensis EU019284<br />

Mycosphaerella walkeri DQ267574<br />

Mycosphaerella parkii DQ246245<br />

Mycosphaerella madeirae DQ204756<br />

Periconiella levispora <strong>CBS</strong> 873.73<br />

Mycosphaerella marksii DQ246249<br />

Pseudocercospora epispermogonia DQ204758<br />

Pseudocercospora epispermogonia DQ204757<br />

Mycosphaerella intermedia DQ246248<br />

Mycosphaerella marksii DQ246250<br />

Periconiella arcuata <strong>CBS</strong> 113477<br />

Rasutoria pseudotsugae EF114704<br />

Rasutoria tsugae EF114705<br />

Periconiella velutina <strong>CBS</strong> 101950<br />

Periconiella velutina <strong>CBS</strong> 101948<br />

Periconiella velutina <strong>CBS</strong> 101949<br />

Ramichloridium biverticillatum <strong>CBS</strong> 335.36<br />

Ramichloridium musae <strong>CBS</strong> 365.36<br />

Ramichloridium musae <strong>CBS</strong> 190.63<br />

56<br />

56<br />

77<br />

66<br />

97<br />

Ramichloridium australiense <strong>CBS</strong> 121710<br />

Ramichloridium strelitziae <strong>CBS</strong> 121711<br />

Zasmidium cellare <strong>CBS</strong> 146.36<br />

Ramichloridium cerophilum <strong>CBS</strong> 103.59<br />

Ramichloridium cerophilum AF050286<br />

Incertae sedis<br />

Teratosphaeriaceae<br />

Davidiellaceae<br />

Mycosphaerellaceae<br />

Capnodiales, Dothideomycetes<br />

Notes: Periconiella is distinct from other ramichloridium-like genera<br />

by its conidiophores that are prominently branched in the upper<br />

part, <strong>and</strong> by its darkened, thickened conidial scars, that are more<br />

or less flat <strong>and</strong> non-prominent. Although conidiophores are also<br />

branched in the upper part in Thysanorea Arzanlou, W. Gams &<br />

Crous, the branching pattern in the latter <strong>genus</strong> is different from<br />

that of Periconiella. Thysanorea has a complex head consisting of<br />

up to six levels of branches, while in Periconiella the branching is<br />

limited, with mainly primary <strong>and</strong> secondary branches. Furthermore,<br />

Thysanorea is characterised by having dimorphic conidiophores<br />

<strong>and</strong> more or less prominent denticle-like conidiogenous loci.<br />

www.studiesinmycology.org<br />

63


Arzanlou et al.<br />

Athelia epiphylla AY586633<br />

Paullicorticium ansatum AY586693<br />

Veronaeopsis simplex <strong>CBS</strong> 588.66<br />

0.98 Repetophragma goidanichii DQ408574<br />

Metacoleroa dickiei DQ384100<br />

0.79 Venturia pyrina EF114715<br />

1.00 Venturia hanliniana AF050290<br />

Venturia inaequalis EF114713<br />

0.84 Venturia chlorospora DQ384101<br />

Venturia asperata EF114711<br />

1.00<br />

0.1 expected changes per site<br />

0.99<br />

0.52<br />

0.74<br />

1.00<br />

1.00<br />

0.97<br />

1.00<br />

0.80<br />

0.63<br />

0.99<br />

0.50<br />

0.68<br />

0.69<br />

1.00<br />

0.58<br />

Venturia carpophila AY849967<br />

Capronia pulcherrima AF050256<br />

Capronia coronata AF050242<br />

Rhinocladiella phaeophora <strong>CBS</strong> 496.78<br />

Rhinocladiella fasciculata <strong>CBS</strong> 132.86<br />

1.00<br />

Exophiala dermatitidis AF050270<br />

Capronia mansonii AY004338<br />

Rhinocladiella mackenziei <strong>CBS</strong> 368.92<br />

Rhinocladiella mackenziei AF050288<br />

Rhinocladiella mackenziei <strong>CBS</strong> 367.92<br />

Rhinocladiella mackenziei <strong>CBS</strong> 102590<br />

1.00<br />

Rhinocladiella anceps AF050284<br />

Rhinocladiella anceps <strong>CBS</strong> 181.65<br />

Rhinocladiella anceps AF050285<br />

Rhinocladiella anceps <strong>CBS</strong> 157.54<br />

Rhinocladiella sp. <strong>CBS</strong> 264.49<br />

Exophiala jeanselmei AF050271<br />

Rhinocladiella atrovirens AF050289<br />

Rhinocladiella basitona <strong>CBS</strong> 101460<br />

Fonsecaea pedrosoi AF050276<br />

Thysanorea papuana <strong>CBS</strong> 212.96<br />

Veronaea japonica <strong>CBS</strong> 776.83<br />

Veronaea compacta <strong>CBS</strong> 268.75<br />

Veronaea botryosa <strong>CBS</strong> 350.65<br />

Veronaea botryosa <strong>CBS</strong> 121.92<br />

Veronaea botryosa <strong>CBS</strong> 254.57<br />

0.84<br />

0.99<br />

0.96<br />

0.99<br />

0.91<br />

1.00<br />

1.00 Conioscyphascus varius AY484512<br />

Conioscypha lignicola AY484513<br />

1.00 Carpoligna pleurothecii AF064646<br />

1.00<br />

Carpoligna pleurothecii AF064645<br />

Carpoligna pleurothecii AY544685<br />

0.99 1.00 Pleurothecium obovoideum <strong>CBS</strong> 209.95<br />

1.00 Ascotaiwania hughesii AY316357<br />

Ascotaiwania hughesii AY094189<br />

Magnaporthe grisea AB026819<br />

Ophiostoma stenoceras DQ836904<br />

Cryptadelphia polyseptata AY281102<br />

Cryptadelphia groenendalensis AY281103<br />

1.00<br />

1.00<br />

1.00<br />

0.61<br />

0.87<br />

0.71<br />

0.92<br />

1.00<br />

Venturiaceae,<br />

Pleosporales,<br />

Dothideomycetes<br />

Rhodoveronaea varioseptata <strong>CBS</strong> 431.88<br />

Annulatascus triseptatus AY780049<br />

Annulatascus triseptatus AY346257<br />

Thyridium vestitum AY544671<br />

Myrmecridium schulzeri <strong>CBS</strong> 114996<br />

Myrmecridium schulzeri <strong>CBS</strong> 188.96<br />

Myrmecridium schulzeri <strong>CBS</strong> 381.87<br />

Myrmecridium schulzeri <strong>CBS</strong> 305.73<br />

Myrmecridium schulzeri <strong>CBS</strong> 304.73<br />

Myrmecridium flexuosum <strong>CBS</strong> 398.76<br />

Myrmecridium schulzeri <strong>CBS</strong> 100.54<br />

Myrmecridium schulzeri <strong>CBS</strong> 642.76<br />

Myrmecridium schulzeri <strong>CBS</strong> 134.68<br />

Myrmecridium schulzeri <strong>CBS</strong> 156.63<br />

Myrmecridium schulzeri <strong>CBS</strong> 325.74<br />

Herpotrichiellaceae,<br />

Chaetothyriales,<br />

Chaetothyriomycetes<br />

Sordariomycetes<br />

Fig. 2. (Page 64–65). Consensus phylogram (50 % majority rule) of 1 500 trees resulting from a Bayesian analysis of the LSU sequence alignment using MrBayes v. 3.1.2.<br />

Bayesian posterior probabilities are indicated at the nodes. Ex-type sequences are printed in bold face. <strong>The</strong> tree was rooted to two sequences obtained from GenBank (Athelia<br />

epiphylla AY586633 <strong>and</strong> Paullicorticium ansatum AY586693).<br />

Periconiella velutina (G. Winter) Sacc., Miscell. mycol. 2: 17.<br />

1884. Fig. 3.<br />

Basionym: Periconia velutina G. Winter, Hedwigia 23: 174. 1884.<br />

In vitro: Submerged hyphae verrucose, hyaline, thin-walled, 1–3<br />

µm wide; aerial hyphae subhyaline, later becoming dark brown,<br />

thick-walled, smooth. Conidiophores arising vertically from creeping<br />

hyphae, straight or flexuose, up to 260 µm long, dark brown at the<br />

base, paler towards the apex, thick-walled; in the upper part bearing<br />

short branches, 10–35 µm long. Conidiogenous cells mostly<br />

terminally integrated, sometimes discrete, smooth or verrucose,<br />

cylindrical, variable in length, subhyaline, later becoming pale<br />

brown, fertile part as wide as the basal part, proliferating sympodially,<br />

sometimes becoming septate <strong>and</strong> forming a short, straight rachis<br />

with pigmented, slightly thickened <strong>and</strong> hardly prominent, more<br />

or less flat scars, less than 1 µm diam. Conidia 0(–1)-septate,<br />

subhyaline, thin-walled, verrucose or smooth, globose, ellipsoidal<br />

to obovoid, (7–)8–9(–11) × (2.5–)3(–4) µm, with a slightly darkened<br />

<strong>and</strong> thickened hilum, 1.5–2 µm diam.<br />

Cultural characteristics: Colonies on MEA slow-growing, reaching<br />

4 mm diam after 14 d at 24 °C, with entire margin; aerial mycelium<br />

rather compact, raised, velvety, olivaceous-grey; reverse<br />

olivaceous-black.<br />

Specimens examined: South Africa, Cape Town, on Brabejum stellatifolium, P.<br />

MacOwan, herb. G. Winter (B), lectotype selected here; Cape Town, on leaves<br />

of Brabejum stellatifolium (= B. stellatum), P. Mac-Owan, PAD, F42165, F462166,<br />

isolectotypes; Stellenbosch, Jonkershoek Nature Reserve, on Brabejum<br />

stellatifolium, 21 Jan. 1999, J.E. Taylor, epitype designated here <strong>CBS</strong> H-15612,<br />

cultures ex-epitype <strong>CBS</strong> 101948–101950.<br />

64


Ramichloridium <strong>and</strong> allied genera<br />

0.1 expected changes per site<br />

Fig. 2. (Continued).<br />

0.64<br />

0.61<br />

0.96<br />

0.99<br />

0.87<br />

1.00<br />

1.00<br />

1.00<br />

0.68<br />

0.99<br />

1.00<br />

1.00<br />

1.00<br />

1.00<br />

0.99<br />

0.86<br />

Pseudovirgaria hyperparasitica CPC 10702<br />

Pseudovirgaria hyperparasitica CPC 10753<br />

Pseudovirgaria hyperparasitica CPC 10704<br />

Radulidium sp. <strong>CBS</strong> 115704<br />

0.95 Radulidium subulatum <strong>CBS</strong> 287.84<br />

Radulidium subulatum <strong>CBS</strong> 912.96<br />

Radulidium epichloës <strong>CBS</strong> 361.63<br />

Radulidium epichloës AF050287<br />

Radulidium subulatum <strong>CBS</strong> 405.76<br />

Radulidium subulatum <strong>CBS</strong> 101010<br />

0.60<br />

0.57<br />

<strong>Cladosporium</strong> cladosporioides EU019262<br />

0.91<br />

<strong>Cladosporium</strong> uredinicola EU019264<br />

1.00 <strong>Cladosporium</strong> bruhnei EU019261<br />

0.81 <strong>Cladosporium</strong> sphaerospermum EU019263<br />

1.00 Sporidesmium pachyanthicola DQ408557<br />

Staninwardia suttonii DQ923535<br />

1.00 Ramichloridium brasilianum <strong>CBS</strong> 283.92<br />

1.00 Batcheloromyces proteae EU019247<br />

Teratosphaeria alistairii DQ885901<br />

Readeriella considenianae DQ923527<br />

Teratosphaeria toledana DQ246230<br />

Teratosphaeria molleriana EU019292<br />

Teratosphaeria fibrillosa EU019282<br />

Catenulostroma macowanii EU019254<br />

0.63<br />

0.73<br />

0.72<br />

0.95<br />

1.00<br />

1.00<br />

1.00<br />

1.00<br />

0.64<br />

1.00<br />

1.00<br />

Teratosphaeria suberosa DQ246235<br />

Cibiessia dimorphospora EU019258<br />

Teratosphaeria readeriellophora DQ246238<br />

Teratosphaeria parva DQ246240<br />

Teratosphaeria parva DQ246243<br />

Devriesia staurophora DQ008150<br />

Xenomeris juniperi EF114709<br />

Catenulostroma abietis EU019249<br />

Ramichloridium indicum <strong>CBS</strong> 171.96<br />

Dissoconium aciculare EU019266<br />

“Mycosphaerella” communis EU019267<br />

“Mycosphaerella” lateralis EU019268<br />

Ramichloridium apiculatum <strong>CBS</strong> 390.67<br />

Ramichloridium apiculatum <strong>CBS</strong> 400.76<br />

Ramichloridium apiculatum <strong>CBS</strong> 391.67<br />

Ramichloridium apiculatum <strong>CBS</strong> 156.59<br />

0.99<br />

0.72<br />

1.00<br />

Mycosphaerella endophytica DQ246252<br />

Mycosphaerella endophytica DQ246255<br />

Mycosphaerella gregaria DQ246251<br />

Cercosporella centaureicola EU019257<br />

Mycosphaerella punctiformis AY490776<br />

Ramularia sp. EU019285<br />

Ramularia miae DQ885902<br />

Ramularia pratensis var. pratensis EU019284<br />

Mycosphaerella graminicola EU019297<br />

Septoria tritici EU019298<br />

Ramichloridium pini <strong>CBS</strong> 461.82<br />

1.00 Mycosphaerella walkeri DQ267574<br />

Mycosphaerella parkii DQ246245<br />

Mycosphaerella madeirae DQ204756<br />

0.95 Periconiella levispora <strong>CBS</strong> 873.73<br />

0.76<br />

0.60<br />

0.97<br />

0.64<br />

0.80<br />

1.00<br />

0.90<br />

0.95<br />

0.97<br />

1.00<br />

0.64<br />

0.99<br />

0.94<br />

0.97<br />

0.57<br />

Mycosphaerella marksii DQ246249<br />

Pseudocercospora epispermogonia DQ204758<br />

Pseudocercospora epispermogonia DQ204757<br />

Mycosphaerella intermedia DQ246248<br />

Mycosphaerella marksii DQ246250<br />

Periconiella arcuata <strong>CBS</strong> 113477<br />

Rasutoria pseudotsugae EF114704<br />

Rasutoria tsugae EF114705<br />

Periconiella velutina <strong>CBS</strong> 101950<br />

Periconiella velutina <strong>CBS</strong> 101948<br />

Periconiella velutina <strong>CBS</strong> 101949<br />

0.96<br />

0.97<br />

0.97<br />

0.96<br />

Ramichloridium biverticillatum <strong>CBS</strong> 335.36<br />

Ramichloridium musae <strong>CBS</strong> 365.36<br />

Ramichloridium musae <strong>CBS</strong> 190.63<br />

Ramichloridium australiense <strong>CBS</strong> 121710<br />

Ramichloridium strelitziae <strong>CBS</strong> 121711<br />

Zasmidium cellare <strong>CBS</strong> 146.36<br />

Ramichloridium cerophilum <strong>CBS</strong> 103.59<br />

Ramichloridium cerophilum AF050286<br />

Incertae sedis<br />

Davidiellaceae<br />

Teratosphaeriaceae<br />

Mycosphaerellaceae<br />

Capnodiales, Dothideomycetes<br />

Periconiella arcuata Arzanlou, S. Lee & Crous, sp. nov. MycoBank<br />

MB504547. Figs 4, 7A.<br />

Etymology: Named after its curved conidia.<br />

Ab aliis speciebus Periconiellae conidiis obclavatis, rectis vel curvatis, (30–)53–61(–<br />

79) × (3–)5(–7) µm, distinguenda.<br />

Submerged hyphae smooth, hyaline, thin-walled, 2 µm wide;<br />

aerial hyphae pale brown, smooth or verrucose, slightly narrower.<br />

Conidiophores arising vertically from creeping hyphae, straight<br />

or flexuose, up to 300 µm long, dark brown at the base, paler<br />

www.studiesinmycology.org<br />

towards the apex, thick-walled; loosely branched in the upper part,<br />

bearing short branches. Conidiogenous cells integrated, cylindrical,<br />

variable in length, 20–50 µm long, subhyaline, later becoming<br />

pale brown, fertile part as wide as the basal part, proliferating<br />

sympodially, forming a geniculate conidium-bearing rachis with<br />

pigmented <strong>and</strong> thickened, prominent, cone-shaped scars, 1 µm<br />

diam. Conidia formed singly, obclavate, straight or mostly curved,<br />

0(–4)-septate, coarsely verrucose, pale olive, thin-walled, tapering<br />

towards the apex, (30–)53–61(–79) × (3–)5(–7) µm, with a narrowly<br />

truncate base <strong>and</strong> a darkened, hardly thickened hilum, 2 µm diam;<br />

microcyclic conidiation observed in culture.<br />

65


Arzanlou et al.<br />

Fig. 3. Periconiella velutina (<strong>CBS</strong> 101948). A–B. Macronematous conidiophores with short branches in the upper part. C. Sympodially proliferating conidiogenous cell with<br />

darkened <strong>and</strong> slightly thickened scars. D. Conidia. Scale bar = 10 µm.<br />

Fig. 4. Periconiella arcuata (<strong>CBS</strong> 113477). A–B. Sympodially proliferating conidiogenous cells with darkened, thickened <strong>and</strong> cone-shaped scars. C–E. Macronematous<br />

conidiophores with loose branches in the upper part. F–I. Conidia. Scale bar = 10 µm.<br />

66


Ramichloridium <strong>and</strong> allied genera<br />

Fig. 5. Periconiella levispora (<strong>CBS</strong> 873.73). A–C. Conidial apparatus at different stages of development, which gives rise to macronematous conidiophores with dense branches<br />

in the upper part. D. Sympodially proliferating conidiogenous cells with darkened <strong>and</strong> somewhat protruding scars. E–F. Conidia with truncate base <strong>and</strong> darkened hilum. Scale<br />

bar = 10 µm.<br />

Fig. 6. A. Pseudovirgaria hyperparasitica (<strong>CBS</strong> 121739 = CPC 10753). B. Periconiella levispora (<strong>CBS</strong> 873.73). Scale bar = 10 µm.<br />

www.studiesinmycology.org<br />

67


Arzanlou et al.<br />

Cultural characteristics: Colonies on MEA reaching 12 mm diam<br />

after 14 d at 24 °C, with entire, smooth, sharp margin; mycelium<br />

compacted, becoming hairy, colonies up to 1 mm high; surface<br />

olivaceous to olivaceous-grey, reverse dark grey-olivaceous to<br />

olivaceous-black.<br />

Specimen examined: South Africa, Western Cape Province, Kogelberg, on dead<br />

culms of Ischyrolepis subverticillata, May 2001, S. Lee, holotype <strong>CBS</strong> H-19927,<br />

culture ex-type <strong>CBS</strong> 113477.<br />

Periconiella levispora Arzanlou, W. Gams & Crous, sp. nov.<br />

MycoBank MB504546. Figs 5–6B.<br />

Etymology: (Latin) levis = smooth.<br />

A simili Periconiella velutina conidiis levibus et maioribus, ad 23 μm longis<br />

distinguenda.<br />

In vitro: Submerged hyphae smooth, hyaline, thin-walled, 2–2.5 µm<br />

wide; aerial hyphae subhyaline, later becoming dark brown, thickwalled,<br />

smooth. Conidiophores arising vertically from creeping<br />

aerial hyphae, dark brown at the base, paler towards the apex,<br />

thick-walled; in the upper part bearing several short branches,<br />

up to 120 µm long. Conidiogenous cells integrated, occasionally<br />

discrete, cylindrical, variable in length, 10–20 µm long, subhyaline,<br />

later becoming pale brown, fertile part as wide as the basal part,<br />

proliferating sympodially, forming a short rachis with pigmented<br />

<strong>and</strong> slightly thickened, somewhat protruding scars, less than 1<br />

µm diam. Conidia solitary, 0(–2)-septate, smooth, pale olivaceous,<br />

cylindrical, ellipsoidal, pyriform to clavate, (7–)11–14(–23) × (3–)4–<br />

5(–6) µm, with a truncate base <strong>and</strong> a darkened, slightly thickened<br />

hilum, 2 µm diam.<br />

Cultural characteristics: Colonies on MEA slow-growing, reaching<br />

5 mm diam after 14 d at 24 °C, with entire margin; aerial mycelium<br />

compact, raised, velvety, olivaceous-grey; reverse olivaceousblack.<br />

Basionym: Chloridium apiculatum J.H. Mill., Giddens & A.A. Foster,<br />

Mycologia 49: 789. 1957.<br />

≡ Veronaea apiculata (J.H. Mill., Giddens & A.A. Foster) M.B. Ellis, in Ellis,<br />

More Dematiaceous Hyphomycetes: 209. 1976.<br />

[non Rhinocladiella apiculata Matsush., in Matsushima, Icon.<br />

Microfung. Mats. lect.: 122. 1975].<br />

= Rhinocladiella indica Agarwal, Lloydia 32: 388. 1969.<br />

[non Chloridium indicum Subram., Proc. Indian Acad. Sci., Sect. B,<br />

42: 286. 1955].<br />

In vitro: Submerged hyphae hyaline to subhyaline, thin-walled,<br />

1–2.5 µm wide; aerial hyphae slightly darker, smooth-walled.<br />

Conidiophores generally arising at right angles from creeping aerial<br />

hyphae, straight, unbranched, thick-walled, dark brown, continuous<br />

or with 1–2(–3) additional thin septa, up to 100 µm long; intercalary<br />

cells 10–28 µm long. Conidiogenous cells integrated, terminal,<br />

smooth, thick-walled, golden-brown, straight, cylindrical, 25–37(–<br />

47) × 2–3.5 µm; proliferating sympodially, resulting in a straight<br />

rachis with conspicuous conidiogenous loci; scars prominent,<br />

crowded, slightly pigmented, less than 1 µm diam. Conidia solitary,<br />

obovate to obconical, pale brown, finely verrucose, (3–)5–5.5(–7.5)<br />

× (2–)2.5–3(–4) µm, hilum conspicuous, slightly pigmented, about<br />

1 µm diam.<br />

Cultural characteristics: Colonies on MEA reaching 35 mm diam<br />

after 14 d at 24 °C; minimum temperature for growth above 6 °C,<br />

optimum 24 °C, maximum 30 °C. Colonies raised, velvety, dense,<br />

with entire margin; surface olivaceous-green, reverse olivaceousblack,<br />

often with a diffusing citron-yellow pigment.<br />

Specimens examined: Pakistan, Lahore, from soil, A. Kamal, <strong>CBS</strong> 400.76 = IMI<br />

088021. South Africa, from preserved Cucumis sativus in 8-oxyquinoline sulphate,<br />

M.C. Papendorf, <strong>CBS</strong> 390.67; Potchefstroom, from Aloe sp., M.C. Papendorf, <strong>CBS</strong><br />

391.67. U.S.A., Georgia, isolated from forest soil, <strong>CBS</strong> 156.59 = ATCC 13211 = IMI<br />

100716 = QM 7716, ex-type culture.<br />

Specimen examined: Sri Lanka, Hakgala Botanic Gardens, on dead leaves of<br />

Turpinia pomifera, Jan. 1973, W. Gams, holotype <strong>CBS</strong> H-15611, culture ex-type<br />

<strong>CBS</strong> 873.73.<br />

Ramichloridium Stahel ex de Hoog, Stud. Mycol. 15: 59. 1977.<br />

In vitro: Colonies flat to raised, with entire margin; surface<br />

olivaceous-green to olivaceous-black. Mycelium consisting of<br />

submerged <strong>and</strong> aerial hyphae; submerged hyphae hyaline to<br />

subhyaline, thin-walled, aerial hyphae smooth or verrucose.<br />

Conidiophores straight, unbranched, rarely branched, thick-walled,<br />

dark brown (darker than the subtending hyphae), continuous or<br />

with several additional thin septa. Conidiogenous cells integrated,<br />

terminal, polyblastic, smooth, thick-walled, golden-brown, apical<br />

part subhyaline, with sympodial proliferation, straight or flexuose,<br />

geniculate or nodose, with conspicuous conidiogenous loci;<br />

scars crowded or scattered, unthickened, unpigmented to faintly<br />

pigmented, or slightly prominent denticles. Conidia solitary, 0–1-<br />

septate, subhyaline to pale brown, smooth to coarsely verrucose,<br />

rather thin-walled, obovate, obconical or globose to ellipsoidal,<br />

fusiform, with a somewhat prominent, slightly pigmented hilum;<br />

conidial secession schizolytic.<br />

Type species: R. apiculatum (J.H. Mill., Giddens & A.A. Foster) de<br />

Hoog, Stud. Mycol. 15: 69. 1977.<br />

Ramichloridium apiculatum (J.H. Mill., Giddens & A.A. Foster) de<br />

Hoog, Stud. Mycol. 15: 69. 1977. Fig. 8.<br />

Fig. 7. A. Periconiella arcuata (<strong>CBS</strong> 113477). B. Myrmecridium schulzeri (<strong>CBS</strong><br />

325.74). C. Thysanorea papuana (<strong>CBS</strong> 212.96). Scale bars = 10 µm.<br />

68


Ramichloridium <strong>and</strong> allied genera<br />

Fig. 8. Ramichloridium apiculatum (<strong>CBS</strong> 156.59). A–C. Macronematous conidiophores with sympodially proliferating conidiogenous cells, which give rise to a conidium-bearing<br />

rachis with crowded <strong>and</strong> prominent scars. D. Conidia. Scale bar = 10 µm.<br />

Fig. 9. Ramichloridium australiense (<strong>CBS</strong> 121710). A–C. Macronematous conidiophores with thick-walled <strong>and</strong> warted subtending hyphae. D. Sympodially proliferating<br />

conidiogenous cell, which results in a short rachis with darkened <strong>and</strong> slightly thickened scars. E. Conidia. Scale bar = 10 µm.<br />

Ramichloridium australiense Arzanlou & Crous, sp. nov.<br />

MycoBank MB504548. Figs 9–10A.<br />

Etymology: Named after its country of origin, Australia.<br />

Ab aliis speciebus Ramichloridii conidiophoris ex hyphis verrucosis, crassitunicatis<br />

ortis distinguendum.<br />

In vitro: Submerged hyphae hyaline, smooth, thin-walled, 1–2 µm<br />

wide; aerial hyphae pale brown, warted. Conidiophores arising<br />

vertically <strong>and</strong> clearly differentiated from creeping aerial hyphae, up<br />

to 400 µm tall, with several additional thin septa; intercalary cells,<br />

8–40 × 2–5 µm, from the broadest part at the base tapering towards<br />

the apex, subhyaline, later becoming pale brown <strong>and</strong> warted in the<br />

lower part. Subtending hyphae thick-walled, warted. Conidiogenous<br />

cells integrated, terminal, 10–18 µm long, proliferating sympodially,<br />

www.studiesinmycology.org<br />

giving rise to a short rachis with conspicuous conidiogenous loci;<br />

scars slightly thickened <strong>and</strong> darkened, about 1 µm diam. Conidia<br />

solitary, aseptate, thin-walled, smooth, subhyaline, subcylindrical<br />

to obclavate, (10–)12–15(–23) × 2.5–3 µm, with a truncate base<br />

<strong>and</strong> a slightly darkened <strong>and</strong> thickened hilum,1.5–2 µm diam, rarely<br />

fusing at the basal part.<br />

Cultural characteristics: Colonies on MEA rather slow growing,<br />

reaching 8 mm diam after 14 d at 24 °C, with entire, smooth<br />

margin; mycelium flat, olivaceous-grey, becoming granular, with<br />

gelatinous droplets at the margin developing with aging; reverse<br />

pale olivaceous-grey.<br />

Specimen examined: Australia, Queensl<strong>and</strong>, Mount Lewis, Mount Lewis Road,<br />

16°34’47.2” S, 145°19’7” E, 538 m alt., on Musa banksii leaf, Aug. 2006, P.W. Crous<br />

<strong>and</strong> B. Summerell, holotype <strong>CBS</strong> H-19928, culture ex-type <strong>CBS</strong> 121710.<br />

69


Arzanlou et al.<br />

Fig. 10. A. Ramichloridium australiense (<strong>CBS</strong> 121710). B. Ramichloridium brasilianum (<strong>CBS</strong> 283.92). C. Radulidium subulatum (<strong>CBS</strong> 405.76). D. Rhodoveronaea varioseptata<br />

(<strong>CBS</strong> 431.88). Scale bar = 10 µm.<br />

Fig. 11. Ramichloridium musae (<strong>CBS</strong> 365.36). A. Conidiophores with loose branches. B–D. Sympodially proliferating conidiogenous cells, resulting in a long conidium-bearing<br />

rachis. E. Rachis with hardly prominent, slightly darkened scars. F. Conidia. Scale bars = 10 µm.<br />

70


Ramichloridium <strong>and</strong> allied genera<br />

Fig. 12. Ramichloridium biverticillatum (<strong>CBS</strong> 335.36). A–B. Profusely branched <strong>and</strong> biverticillate conidiophores. C. Sympodially proliferating conidiogenous cells,<br />

which give rise to a conidium-bearing rachis with crowded, slightly pigmented <strong>and</strong> thickened scars. D. Conidia. Scale bar = 10 µm.<br />

Fig. 13. Ramichloridium brasilianum (<strong>CBS</strong> 283.92). A–B. Macronematous conidiophores with sympodially proliferating conidiogenous cells, resulting in a conidiumbearing<br />

rachis. C. Rachis with crowded <strong>and</strong> slightly pigmented scars. D. Conidia. Scale bar = 10 µm.<br />

Fig. 14. Ramichloridium cerophilum (<strong>CBS</strong> 103.59). A–C. Conidial apparatus at different stages of development, resulting in macronematous conidiophores <strong>and</strong><br />

sympodially proliferating conidiogenous cells. D–E. Formation of secondary conidia. F. Conidia. Scale bar = 10 µm.<br />

www.studiesinmycology.org<br />

71


Arzanlou et al.<br />

Ramichloridium musae (Stahel ex M.B. Ellis) de Hoog, Stud.<br />

Mycol. 15: 62. 1977. Fig. 11.<br />

Basionym: Veronaea musae Stahel ex M.B. Ellis, in Ellis, More<br />

Dematiaceous Hyphomycetes: 209. 1976.<br />

≡ Chloridium musae Stahel, Trop. Agric., Trinidad 14: 43. 1937 (nom.<br />

inval. Art. 36).<br />

Misapplied name: Chloridium indicum Subram., sensu Batista &<br />

Vital, Anais Soc. Biol. Pernambuco 15: 379. 1957.<br />

In vitro: Submerged hyphae smooth, hyaline, thin-walled, 1–2 µm<br />

wide; aerial hyphae subhyaline, smooth. Conidiophores arising<br />

vertically <strong>and</strong> mostly sharply differentiated from creeping aerial<br />

hyphae, golden-brown; unbranched, rarely branched in the upper<br />

part, up to 250 µm tall, with up to 6 additional thin septa, cells<br />

23–40 × 2–2.5 µm, basal cell occasionally inflated. Conidiogenous<br />

cells terminally integrated, cylindrical, variable in length, 10–40 µm<br />

long, golden-brown near the base, subhyaline to pale brown near<br />

the end, fertile part as wide as the basal part, later also becoming<br />

septate; rachis elongating sympodially, 2–2.5 µm wide, with hardly<br />

prominent, scattered, slightly pigmented scars, about 0.5 µm diam.<br />

Conidia solitary, aseptate, hyaline to subhyaline, ellipsoidal, (4–)7–<br />

8(–12) × 2–3 µm, smooth or verruculose, thin-walled, with slightly<br />

darkened hilum, about 1 µm diam.<br />

Cultural characteristics: Colonies on MEA slow-growing, reaching<br />

27 mm diam after 14 d at 24 °C, with entire, smooth, sharp margin;<br />

mycelium mostly submerged, some floccose to lanose aerial<br />

mycelium in the olivaceous-grey centre, becoming pale pinkish<br />

olivaceous towards the margin; reverse pale orange.<br />

Specimens examined: Cameroon, from Musa sapientum, J.E. Heron, <strong>CBS</strong> 169.61<br />

= ATCC 15681 = IMI 079492 = DAOM 84655 = MUCL 2689; from Musa sapientum,<br />

J. Brun, <strong>CBS</strong> 190.63 = MUCL 9557. Surinam, Paramaribo, from Musa sapientum<br />

leaf, G. Stahel, <strong>CBS</strong> 365.36 = JCM 6973 = MUCL 9556, ex-type strain of Chloridium<br />

musae; from Musa sapientum, G. Stahel, <strong>CBS</strong> 365.36; dried culture preserved as<br />

<strong>CBS</strong> H-19933.<br />

Ramichloridium biverticillatum Arzanlou & Crous, nom. nov.<br />

MycoBank MB504549. Fig. 12.<br />

Basionym: Periconiella musae Stahel ex M.B. Ellis, Mycol. Pap.<br />

111: 5. 1967.<br />

[non Ramichloridium musae (Stahel ex M.B. Ellis) de Hoog, 1977].<br />

≡ Ramichloridium musae Stahel, Trop. Agric., Trinidad 14: 43. 1937 (nom.<br />

inval. Art. 36).<br />

= Ramichloridium musae (Stahel ex M.B. Ellis) de Hoog, Stud. Mycol. 15: 62.<br />

1977, sensu de Hoog, p.p.<br />

Etymology: Named after its biverticillate conidiophores.<br />

In vitro: Submerged hyphae smooth, hyaline, thin-walled, 1–2<br />

µm wide; aerial hyphae subhyaline, smooth, slightly darker.<br />

Conidiophores arising vertically from creeping aerial hyphae, pale<br />

brown, profusely branched, biverticillate, with up to three levels<br />

of main branches; branches tapering distally, 2–3 µm wide at the<br />

base, approx. 2 µm wide in the upper part, up to 250 µm long.<br />

Conidiogenous cells terminally integrated, cylindrical, variable in<br />

length, 15–50 µm long, rachis straight or geniculate, pale brown,<br />

as wide as the basal part; elongating sympodially, forming a rachis<br />

with crowded, slightly darkened <strong>and</strong> thickened minute scars, less<br />

than 0.5 µm wide. Conidia solitary, aseptate, hyaline to subhyaline,<br />

dacryoid to pyriform, (2–)3–4(–6) × (1.5–)2(–2.5) µm, smooth, thinwalled,<br />

with an inconspicuous hilum.<br />

Cultural characteristics: Colonies on MEA slow-growing, reaching<br />

16 mm diam after 14 d at 24 °C, with entire, smooth, sharp margin,<br />

rather compact, velvety; surface vinaceous-buff to olivaceous-buff;<br />

reverse buff.<br />

Specimen examined: Surinam, from Musa sapientum, Aug. 1936, G. Stahel, <strong>CBS</strong><br />

335.36.<br />

Notes: Ramichloridium biverticillatum is a new name based on<br />

Periconiella musae. <strong>The</strong> species is distinct from R. musae because<br />

of its profusely branched conidiophores, <strong>and</strong> conidia that are smaller<br />

(2–5 × 1.5–2.5 µm) than those of R. musae (5–11 × 2–3 µm).<br />

Ramichloridium brasilianum Arzanlou & Crous, sp. nov.<br />

MycoBank MB504550. Figs 10B, 13.<br />

Etymology: Named after its country of origin, Brazil.<br />

A simili Ramichloridio cerophilo conidiis minoribus, ad 8 μm longis, et conidiis<br />

secundariis absentibus distinguendum.<br />

In vitro: Submerged hyphae pale olivaceous, smooth or slightly<br />

rough, 1.5–2 µm wide; aerial hyphae olivaceous, smooth or rough,<br />

narrower <strong>and</strong> darker than the submerged hyphae. Conidiophores<br />

unbranched, arising vertically from creeping aerial hyphae, straight<br />

or flexuose, dark brown, with up to 10 additional septa, thick-walled,<br />

cylindrical, 2–2.5 µm wide <strong>and</strong> up to 70 µm long. Conidiogenous<br />

cells integrated, terminal, 10–30 µm long, proliferating sympodially,<br />

giving rise to a long, straight rachis with crowded, slightly darkened<br />

minute scars, about 0.5 µm diam. Conidia solitary, obovoid<br />

to fusiform with the widest part below the middle, thin-walled,<br />

verruculose, aseptate, pale brown, slightly rounded at the apex,<br />

truncate at the base, (4–)5–6(–8.5) × 2–2.5(–3) µm, with a slightly<br />

thickened <strong>and</strong> darkened hilum, 1–1.5 µm diam.<br />

Cultural characteristics: Colonies on MEA slow-growing, reaching<br />

6 mm diam after 14 d at 24 °C, velvety to hairy, colonies with entire<br />

margin, surface dark olivaceous-grey; black gelatinous exudate<br />

droplets produced on OA.<br />

Specimen examined: Brazil, São Paulo, Peruibe, Jureia Ecological Reserve, forest<br />

soil, Jan. 1991, D. Attili, holotype <strong>CBS</strong> H-19929, culture ex-type <strong>CBS</strong> 283.92.<br />

Ramichloridium cerophilum (Tubaki) de Hoog, Stud. Mycol. 15:<br />

74. 1977. Fig. 14.<br />

Basionym: Acrotheca cerophila Tubaki, J. Hattori Bot. Lab. 20: 143.<br />

1958.<br />

≡ <strong>Cladosporium</strong> cerophilum (Tubaki) Matsush., in Matsushima, Icon.<br />

Microfung. Matsush. lect. (Kobe): 34. 1975.<br />

In vitro: Submerged hyphae pale olivaceous-brown, smooth or<br />

slightly rough, 1.5–3 µm wide; aerial hyphae olivaceous-brown,<br />

smooth or slightly rough, somewhat narrower <strong>and</strong> darker than the<br />

submerged hyphae. Conidiophores unbranched, arising vertically<br />

from creeping aerial hyphae, dark brown, thick-walled, smooth or<br />

verruculose, hardly tapering towards the apex, 2–3 µm wide, up<br />

to 50 µm long, with up to 3 additional septa. Conidiogenous cells<br />

integrated, terminal, proliferating sympodially, rachis short <strong>and</strong><br />

straight, with crowded, prominent, pigmented unthickened scars,<br />

minute, approx. 0.5 µm diam. Conidia solitary, fusiform to clavate,<br />

thin-walled, smooth, 0(–1)-septate, subhyaline, (4–)6–7(–11) × (2–)<br />

2.5(–3) µm, with a conspicuous hilum, about 0.5 µm diam, slightly<br />

raised with an inconspicuous marginal frill, somehow resembling<br />

those of <strong>Cladosporium</strong>. Conidia sometimes producing 1–3(–4)<br />

short secondary conidia.<br />

Cultural characteristics: Colonies on MEA rather slow-growing,<br />

reaching 12 mm diam after 14 d at 24 °C, velvety to hairy, with<br />

entire margin; surface dark olivaceous-grey, with black gelatinous<br />

exudate droplets on OA.<br />

Specimen examined: Japan, isolated from Sasa sp., K. Tubaki, <strong>CBS</strong> 103.59, extype.<br />

72


Ramichloridium <strong>and</strong> allied genera<br />

Fig. 15. Ramichloridium indicum (<strong>CBS</strong> 171.96). A–B. Macronematous conidiophores. C–E. Sympodially proliferating conidiogenous cells, resulting in a conidium-bearing rachis<br />

with pigmented <strong>and</strong> thickened scars. F. Conidia. Scale bar = 10 µm.<br />

Fig. 16. Ramichloridium strelitziae (<strong>CBS</strong> 121711). A–C. Conidial apparatus at different stages of development, resulting in macronematous conidiophores <strong>and</strong> sympodially<br />

proliferating conidiogenous cells. D–E. Rachis with crowded, slightly pigmented, thickened, circular scars. F. Conidia. Scale bars = 10 µm.<br />

Notes: Phylogenetically, this species together with Ramichloridium<br />

apiculatum <strong>and</strong> R. musae cluster within the Mycosphaerellaceae<br />

clade. Ramichloridium cerophilum can be distinguished from its<br />

relatives by the production of secondary conidia <strong>and</strong> its distinct<br />

conidial hila.<br />

Ramichloridium indicum (Subram.) de Hoog, Stud. Mycol. 15:<br />

70. 1977. Fig. 15.<br />

Basionym: Chloridium indicum Subram., Proc. Indian Acad. Sci.,<br />

Sect. B, 42: 286. 1955 [non Rhinocladiella indica Agarwal, Lloydia<br />

32: 388. 1969].<br />

≡ Veronaea indica (Subram.) M.B. Ellis, in Ellis, More Dematiaceous<br />

Hyphomycetes: 209. 1976.<br />

= Veronaea verrucosa Geeson, Trans. Brit. Mycol. Soc. 64: 349. 1975.<br />

In vitro: Submerged hyphae smooth, thin-walled, hyaline, 1–2.5<br />

µm wide, with thin septa; aerial hyphae coarsely verrucose,<br />

olivaceous-green, rather thick-walled, 2–2.5 µm wide, with thin<br />

septa. Conidiophores arising vertically from creeping hyphae at right<br />

angles, straight, unbranched, thick-walled, smooth, dark brown,<br />

with up to 10 thin septa, up to 250 µm long, 2–4 µm wide, often<br />

with inflated basal cells. Conidiogenous cells terminally integrated,<br />

up to 165 µm long, smooth, dark brown, sympodially proliferating,<br />

rachis straight or flexuose, geniculate or nodose, subhyaline; scars<br />

thickened <strong>and</strong> darkened, clustered at nodes, approx. 0.5 µm diam.<br />

Microcyclic conidiation observed in culture. Conidia solitary, (0–)1-<br />

septate, not constricted at the septum, subhyaline to pale brown,<br />

smooth or coarsely verrucose, rather thin-walled, broadly ellipsoidal<br />

to globose, (5–)7–8(–10) × (4–)6–6.5(–9) µm, with truncate base;<br />

hilum conspicuous, slightly darkened, not thickened, about 1 µm<br />

diam.<br />

www.studiesinmycology.org<br />

73


Arzanlou et al.<br />

Cultural characteristics: Colonies on MEA reaching 35 mm diam<br />

after 14 d at 24 °C. Colonies velvety, rather compact, slightly<br />

elevated, with entire, smooth, whitish margin, dark olivaceousgreen<br />

in the central part.<br />

Specimen examined: Living culture, Feb. 1996, L. Marvanová, <strong>CBS</strong> 171.96.<br />

Ramichloridium pini de Hoog & Rahman, Trans. Brit. Mycol. Soc.<br />

81: 485. 1983.<br />

Specimen examined: U.K., Scotl<strong>and</strong>, Old Aberdeen, branch of Pinus contorta<br />

(Pinaceae), 1982, M.A. Rahman, ex-type strain, <strong>CBS</strong> 461.82 = MUCL 28942.<br />

Note: <strong>The</strong> culture examined (<strong>CBS</strong> 461.82) was sterile. For a full<br />

description see de Hoog et al. (1983).<br />

Ramichloridium strelitziae Arzanlou, W. Gams & Crous, sp. nov.<br />

MycoBank MB504551. Figs 16–17A.<br />

Etymology: Named after its host, Strelitzia.<br />

Ab aliis speciebus Ramichloridii conidiophoris brevibus, ad 40 μm longis, et<br />

cicatricibus rotundis, paulo protrudentibus distinguendum.<br />

In vitro: Submerged hyphae smooth, hyaline, thin-walled, 2–2.5 µm<br />

wide; aerial hyphae pale brown, verrucose. Conidiophores arising<br />

vertically from creeping aerial hyphae, clearly differentiated from the<br />

vegetative hyphae, subhyaline, later becoming pale brown, thickwalled,<br />

smooth or verruculose, with 1–3 additional septa; up to 40<br />

µm long <strong>and</strong> 2 µm wide. Conidiogenous cells integrated, terminal,<br />

cylindrical, variable in length, 10–35 µm long, subhyaline, later<br />

turning pale brown, fertile part as wide as the basal part, proliferating<br />

sympodially, forming a straight rachis with slightly thickened <strong>and</strong><br />

darkened, circular, somewhat protruding scars, approx. 0.5 µm<br />

diam. Conidia solitary, aseptate, smooth or verruculose, subhyaline,<br />

oblong, ellipsoidal to clavate, (3–)4–5(–5.5) × (1–)2(–2.5) µm, with<br />

truncate base <strong>and</strong> unthickened, non-pigmented hilum.<br />

Cultural characteristics: Colonies on MEA slow-growing, reaching<br />

5 mm diam after 14 d at 24 °C, with entire margin; aerial mycelium<br />

rather compact, raised, dense, olivaceous-grey; reverse olivaceousblack.<br />

Specimen examined: South Africa, KwaZulu-Natal, Durban, near Réunion,<br />

on leaves of Strelitzia nicolai, 5 Feb. 2005, W. Gams & H. Glen, <strong>CBS</strong>-H 19776,<br />

holotype, culture ex-type <strong>CBS</strong> 121711.<br />

Zasmidium Fr., Summa Veg. Sc<strong>and</strong>. 2: 407. 1849.<br />

Fig. 17. A. Ramichloridium strelitziae (<strong>CBS</strong> 121711). B. Veronaea japonica (<strong>CBS</strong><br />

776.83). C. Veronaeopsis simplex (<strong>CBS</strong> 588.66). Scale bar = 10 µm.<br />

In vitro: Submerged hyphae smooth, thin-walled, hyaline, with<br />

thin septa; aerial hyphae coarsely verrucose, olivaceous-green,<br />

thick-walled, with thin septa. Conidiophores not differentiated<br />

from vegetative hyphae, often reduced to conidiogenous<br />

Fig. 18. Zasmidium cellare (<strong>CBS</strong> 146.36). A–D. Micronematous conidiophores with terminal, integrated conidiogenous cells. E. Conidiogenous cell with pigmented, thickened<br />

<strong>and</strong> refractive scars. F–G. Primary <strong>and</strong> secondary conidia. Scale bar = 10 µm.<br />

74


Ramichloridium <strong>and</strong> allied genera<br />

Fig. 19. Rhinocladiella anceps (<strong>CBS</strong> 181.65). A. Macronematous conidiophores. B–D. Conidial apparatus at different stages of development, resulting in semi-micronematous<br />

conidiophores <strong>and</strong> sympodially proliferating conidiogenous cells. E. Conidiogenous loci. F. Conidia. Scale bars = 10 µm.<br />

cells. Conidiogenous cells integrated, predominantly terminal,<br />

sometimes lateral, arising from aerial hyphae, cylindrical, pale<br />

brown; polyblastic, proliferating sympodially producing crowded,<br />

conspicuously pigmented, almost flat, darkened, somewhat<br />

refractive scars. Conidia in short chains, cylindrical to fusiform,<br />

verrucose, obovate to obconical, pale brown, base truncate,<br />

with a conspicuous, slightly pigmented, thickened <strong>and</strong> refractive<br />

hilum. Primary conidia sometimes larger, subhyaline, verrucose<br />

or smooth-walled, 0–4-septate, variable in length, fusiform to<br />

cylindrical; conidial secession schizolytic.<br />

Type species: Zasmidium cellare (Pers. : Fr.) Fr., Summa Veg.<br />

Sc<strong>and</strong>. 2: 407. 1849.<br />

Zasmidium cellare (Pers. : Fr.) Fr., Summa Veg. Sc<strong>and</strong>. 2: 407.<br />

1849. Fig. 18.<br />

Basionym: Racodium cellare Pers., Neues Mag. Bot. 1: 123. 1794.<br />

≡ Antennaria cellaris (Pers. : Fr.) Fr., Syst. Mycol. 3: 229. 1829.<br />

≡ <strong>Cladosporium</strong> cellare (Pers. : Fr.) Sch<strong>and</strong>erl, Zentralbl. Bakteriol., 2.<br />

Abt., 94: 117. 1936.<br />

≡ Rhinocladiella cellaris (Pers. : Fr.) M.B. Ellis, in Ellis, Dematiaceous<br />

Hyphomycetes: 248. 1971.<br />

In vitro: Submerged hyphae smooth, thin-walled, hyaline, 2–3<br />

µm wide, with thin septa; aerial hyphae coarsely verrucose,<br />

olivaceous-green, rather thick-walled, 2–2.5 µm wide, with thin<br />

septa. Conidiophores not differentiated from vegetative hyphae,<br />

often reduced to conidiogenous cells. Conidiogenous cells<br />

integrated, predominantly terminal, sometimes lateral, arising from<br />

aerial hyphae, cylindrical, 20–60 µm long <strong>and</strong> 2–2.5 µm wide, pale<br />

brown, proliferating sympodially producing crowded, conspicuously<br />

pigmented scars that are thickened <strong>and</strong> refractive, about 1 µm diam.<br />

Conidia cylindrical to fusiform, verrucose, obovate to obconical,<br />

pale brown, with truncate base, (6–)9–14(–27) × 2–2.5 µm, with<br />

a conspicuous, slightly pigmented, refractive hilum, approx. 1 µm<br />

diam. Primary conidia sometimes subhyaline, verrucose or smoothwalled,<br />

thin-walled, 0–1(–4)-septate, variable in length, fusiform to<br />

cylindrical.<br />

www.studiesinmycology.org<br />

Cultural characteristics: Colonies reaching 7 mm diam after 14 d<br />

at 24 °C. Colonies velvety, rather compact, slightly elevated with<br />

entire margin; surface dark olivaceous-green in the central part,<br />

margin smooth, whitish.<br />

Specimen examined: Wall in wine cellar, Jun. 1936, H. Sch<strong>and</strong>erl, ATCC 36951<br />

= IFO 4862 = IMI 044943 = LCP 52.402 = LSHB BB274 = MUCL 10089 = <strong>CBS</strong><br />

146.36.<br />

Notes: <strong>The</strong> name Racodium Fr., typified by Ra. rupestre Pers. : Fr.,<br />

has been conserved over the older one by Persoon, with Ra. cellare<br />

as type species. De Hoog (1979) defended the use of Zasmidium in<br />

its place for the well-known wine-cellar fungus.<br />

Morphologically Zasmidium resembles Stenella Syd., <strong>and</strong><br />

both reside in the Capnodiales, though the type of Stenella, S.<br />

araguata Syd., clusters in the Teratosphaeriaceae, <strong>and</strong> the type of<br />

Zasmidium, Z. cellare, in the Mycosphaerellaceae. When accepting<br />

anamorph genera as polyphyletic within an order, preference would<br />

be given to the well-known name Stenella over the less known<br />

Zasmidium, even though the latter name is older. Further studies<br />

are required, however, to clarify if all stenella-like taxa should be<br />

accommodated in a single <strong>genus</strong>, Stenella. If this is indeed the<br />

case, a new combination for Zasmidium cellare will be proposed<br />

in Stenella, <strong>and</strong> the latter <strong>genus</strong> will have to be conserved over<br />

Zasmidium.<br />

Chaetothyriales (Herpotrichiellaceae)<br />

<strong>The</strong> four “Ramichloridium” species residing in the Chaetothyriales<br />

clade do not differ sufficiently in morphology to separate them from<br />

Rhinocladiella (type Rh. atrovirens). Because of the pale brown<br />

conidiophores, conidiogenous cells with crowded, slightly prominent<br />

scars <strong>and</strong> the occasional presence of an Exophiala J.W. Carmich.<br />

synanamorph, Rhinocladiella is a suitable <strong>genus</strong> to accommodate<br />

them. <strong>The</strong>se four species chiefly differ from Ramichloridium in the<br />

morphology of their conidial apparatus, which is clearly differentiated<br />

from the vegetative hyphae. <strong>The</strong> appropriate combinations are<br />

therefore introduced for Ramichloridium anceps, R. mackenziei, R.<br />

fasciculatum <strong>and</strong> R. basitonum.<br />

75


Arzanlou et al.<br />

Fig. 20. Rhinocladiella basitona (<strong>CBS</strong> 101460). A–B. Semi-micronematous conidiophores with verticillate branching pattern. C–D. Sympodially proliferating conidiogenous cells,<br />

giving rise to a long rachis with slightly prominent, truncate conidium-bearing denticles. E. Intercalary conidiogenous cell. F. Conidia. Scale bars = 10 µm.<br />

<strong>The</strong> <strong>genus</strong> Veronaea (type species: V. botryosa) also resides<br />

in the Chaetothyriales clade. Veronaea can be distinguished from<br />

Rhinocladiella by the absence of exophiala-type budding cells <strong>and</strong><br />

its predominantly 1-septate conidia. Furthermore, the conidiogenous<br />

loci in Veronaea are rather flat, barely prominent.<br />

Rhinocladiella Nannf., Svensk Skogsvårdsfören. Tidskr., Häfte 32:<br />

461. 1934.<br />

In vitro: Colonies dark olivaceous-brown, slow-growing, almost<br />

moist. Submerged hyphae hyaline to pale olivaceous, smooth;<br />

aerial hyphae, if present, more darkly pigmented. Exophialatype<br />

budding cells usually present in culture. Conidial apparatus<br />

usually branched, olivaceous-brown, consisting of either slightly<br />

differentiated tips of ascending hyphae or septate, markedly<br />

differentiated conidiophores. Conidiogenous cells intercalary or<br />

terminal, polyblastic, cylindrical to acicular, with a sympodially<br />

proliferating, subdenticulate rachis; scars unthickened, nonpigmented<br />

to somewhat darkened-refractive. Conidia solitary,<br />

hyaline to subhyaline, aseptate, thin-walled, smooth, subglobose,<br />

with a slightly pigmented hilum; conidial secession schizolytic.<br />

Type species: Rh. atrovirens Nannf., Svenska Skogsvårdsfören.<br />

Tidskr. 32: 461. 1934.<br />

Rhinocladiella anceps (Sacc. & Ellis) S. Hughes, Canad. J. Bot.<br />

36: 801. 1958. Fig. 19.<br />

Basionym: Sporotrichum anceps Sacc. & Ellis, Michelia 2: 576.<br />

1882.<br />

= Veronaea parvispora M.B. Ellis, in Ellis, More Dematiaceous Hyphomycetes:<br />

210. 1976.<br />

Misapplied name: Chloridium minus Corda sensu Mangenot, Rev.<br />

Mycol. (Paris) 18: 137. 1953.<br />

In vitro: Submerged hyphae subhyaline, smooth, thick-walled, 2–<br />

2.5 µm wide; aerial hyphae pale brown. Swollen germinating cells<br />

often present on MEA, giving rise to an Exophiala synanamorph.<br />

Conidiophores slightly differentiated from vegetative hyphae, arising<br />

from prostrate aerial hyphae, consisting of either unbranched or<br />

loosely branched stalks, thick-walled, golden to dark-brown, up<br />

to 350 µm tall, which may have up to 15 thin, additional septa,<br />

intercalary cells 9–14 µm long. Conidiogenous cells terminal,<br />

rarely lateral, cylindrical, occasionally intercalary, variable in length,<br />

smooth, golden to dark brown at the base, paler toward the apex,<br />

later becoming inconspicuously septate, fertile part as wide as the<br />

basal part, 15–40 × 1.5–2 µm; with crowded, slightly prominent,<br />

unpigmented, conidium-bearing denticles, about 0.5 µm diam.<br />

Conidia solitary, subhyaline, thin-walled, smooth, subglobose to<br />

ellipsoidal, 2.5–4 × 2–2.5 µm, with a less conspicuous, slightly<br />

darkened hilum, less than 0.5 µm diam.<br />

Cultural characteristics: Colonies on MEA reaching 6–12 mm diam<br />

after 14 d at 24 °C, with entire, smooth, sharp margin; mycelium<br />

powdery, becoming hairy at centre; olivaceous-green to brown,<br />

reverse dark-olivaceous.<br />

Specimens examined: Canada, Ontario, Campbellville, from soil under Thuja plicata,<br />

Apr. 1965, G. L. Barron, <strong>CBS</strong> H-7715 (isoneotype); <strong>CBS</strong> H-7716 (isoneotype); <strong>CBS</strong><br />

H-7717 (isoneotype); <strong>CBS</strong> H-7718 (isoneotype); <strong>CBS</strong> H-7719 (isoneotype), ex-type<br />

strain, <strong>CBS</strong> 181.65 = ATCC 18655 = DAOM 84422 = IMI 134453 = MUCL 8233 =<br />

OAC 10215. France, from stem of Fagus sylvatica, 1953, F. Mangenot, <strong>CBS</strong> 157.54<br />

= ATCC 15680= MUCL 1081= MUCL 7992 = MUCL 15756.<br />

Notes: Rhinocladiella anceps (conidia 2.5–4 µm long) resembles<br />

Rh. phaeophora Veerkamp & W. Gams (1983) (conidia 5.5–6 µm<br />

long), but has shorter conidia.<br />

76


Ramichloridium <strong>and</strong> allied genera<br />

Fig. 21. Rhinocladiella fasciculata (<strong>CBS</strong> 132.86). A. Conidiophores. B. Sympodially proliferating conidiogenous cells, which give rise to a long rachis with slightly prominent,<br />

unthickened scars. C. Conidia. D–E. Synanamorph consisting of conidiogenous cells with percurrent proliferation. F. Conidia. Scale bars = 10 µm.<br />

Rhinocladiella basitona (de Hoog) Arzanlou & Crous, comb. nov.<br />

MycoBank MB504552. Fig. 20.<br />

Basionym: Ramichloridium basitonum de Hoog, J. Clin. Microbiol.<br />

41: 4774. 2003.<br />

In vitro: Submerged hyphae hyaline, smooth, thin-walled, 2 µm<br />

wide; aerial hyphae rather thick-walled, pale brown. Conidiophores<br />

slightly differentiated from vegetative hyphae, profusely <strong>and</strong> mostly<br />

verticillately branched, straight or flexuose, pale-brown, 2–2.5 µm<br />

wide. Conidiogenous cells terminal, variable in length, 10–100 µm<br />

long, pale brown, straight or geniculate, proliferating sympodially,<br />

giving rise to a long, 2–2.5 µm wide rachis, with slightly prominent,<br />

truncate conidium-bearing denticles, slightly darkened. Conidia<br />

solitary, hyaline, thin-walled, smooth, pyriform to clavate, with a<br />

round apex, <strong>and</strong> slightly truncate base, (1–)3–4(–5) × 1–2 µm,<br />

hilum conspicuous, slightly darkened <strong>and</strong> thickened, less than 0.5<br />

µm diam.<br />

Cultural characteristics: Colonies on MEA reaching 19 mm diam<br />

after 14 d at 24 °C, with entire, smooth, sharp margin; mycelium<br />

rather flat <strong>and</strong> slightly elevated in the centre, pale olivaceous-grey<br />

to olivaceous-grey; reverse olivaceous-black.<br />

Specimen examined: Japan, Hamamatsu, from subcutaneous lesion with fistula on<br />

knee of 70-year-old male, Y. Suzuki, ex-type culture <strong>CBS</strong> 101460 = IFM 47593.<br />

Rhinocladiella fasciculata (V. Rao & de Hoog) Arzanlou & Crous,<br />

comb. nov. MycoBank MB504553. Fig. 21.<br />

Basionym: Ramichloridium fasciculatum V. Rao & de Hoog, Stud.<br />

Mycol. 28: 39. 1986.<br />

www.studiesinmycology.org<br />

In vitro: Submerged hyphae subhyaline, smooth, thick-walled,<br />

2–2.5 µm wide; aerial hyphae pale brown. Conidiophores arising<br />

vertically from ascending hyphae in loose fascicles, unbranched or<br />

loosely branched at acute angles, cylindrical, smooth, brown <strong>and</strong><br />

thick-walled at the base, up to 220 µm long <strong>and</strong> 2–3 µm wide, with<br />

0–5 thin additional septa. Conidiogenous cells terminal, cylindrical,<br />

30–100 µm long, thin-walled, smooth, pale brown, fertile part as<br />

wide as the basal part, up to 2 µm wide, proliferating sympodially,<br />

giving rise to a rachis with hardly prominent, slightly pigmented,<br />

not thickened scars, less than 0.5 µm diam. Conidia solitary,<br />

smooth, thin-walled, subhyaline, ellipsoidal, (2.5–)4–5(–6) × 2–3<br />

µm, with truncate, slightly pigmented hilum, about 0.5 µm diam.<br />

Synanamorph forming on torulose hyphae originating from giant<br />

cells; compact heads of densely branched hyphae forming thinwalled,<br />

lateral, subglobose cells, on which conidiogenous cells are<br />

formed; conidiogenous cells proliferating percurrently, giving rise to<br />

tubular annellated zones with inconspicuous annellations, up to 12<br />

µm long, 1–1.5 µm wide. Conidia smooth, thin-walled, aseptate,<br />

subhyaline, globose, 2–2.5 µm diam.<br />

Cultural characteristics: Colonies on MEA reaching 8 mm diam after<br />

14 d at 24 °C, with entire, smooth, sharp margin; mycelium velvety,<br />

becoming farinose in the centre due to abundant sporulation,<br />

olivaceous-green to brown, reverse dark olivaceous. Blackish<br />

droplets often produced at the centre, which contain masses of<br />

Exophiala conidia.<br />

Specimen examined: India, Karnataka, Thirathahalli, isolated by V. Rao from<br />

decayed wood, holotype <strong>CBS</strong>-H 3866, culture ex-type <strong>CBS</strong> 132.86.<br />

77


Arzanlou et al.<br />

Fig. 22. Rhinocladiella mackenziei (<strong>CBS</strong> 368.92). A. Intercalary conidiogenous cell. B–E. Semi-micronematous conidiophores <strong>and</strong> sympodially proliferating conidiogenous cells,<br />

resulting in a rachis with slightly prominent, unthickened scars. F. Conidia. Scale bar = 10 µm.<br />

78


Ramichloridium <strong>and</strong> allied genera<br />

Fig. 24. Thysanorea papuana (<strong>CBS</strong> 212.96), periconiella-like synanamorph. A. Macronematous conidiophores. B–C. Conidiophores with dense apical branches. D. Branches<br />

with different levels of branchlets. E–I. Conidiogenous cells at different stages of development; sympodially proliferating conidiogenous cells give rise to a denticulate rachis.<br />

J–K. Conidia. Scale bars = 10 µm.<br />

Fig. 23. (Page 78). Thysanorea papuana (<strong>CBS</strong> 212.96). A. Intercalary conidiogenous cell. B–I. Semi-micronematous conidiophores <strong>and</strong> sympodially proliferating conidiogenous<br />

cells, resulting in a rachis with prominent conidium bearing denticles. J–K. Microcyclic conidiation observed in slide cultures. L. Conidia. Scale bar = 10 µm.<br />

www.studiesinmycology.org<br />

79


Arzanlou et al.<br />

Rhinocladiella mackenziei (C.K. Campb. & Al-Hedaithy) Arzanlou<br />

& Crous, comb. nov. MycoBank MB504554. Fig. 22.<br />

Basionym: Ramichloridium mackenziei C.K. Campb. & Al-Hedaithy,<br />

J. Med. Veterin. Mycol. 31: 330. 1993.<br />

In vitro: Submerged hyphae subhyaline, smooth, thin-walled, 2–3<br />

µm wide; aerial hyphae pale brown, slightly narrower. Conidiophores<br />

slightly or not differentiated from vegetative hyphae, arising<br />

laterally from aerial hyphae, with one or two additional septa, often<br />

reduced to a discrete or intercalary conidiogenous cell, pale-brown,<br />

10–25 × 2.5–3.5 µm. Conidiogenous cells terminal or intercalary,<br />

variable in length, 5–15 µm long <strong>and</strong> 3–5 µm wide, occasionally<br />

slightly wider than the basal part, pale brown, rachis with slightly<br />

prominent, unpigmented, non-thickened scars, about 0.5 µm diam.<br />

Conidia golden-brown, thin-walled, smooth, ellipsoidal to obovate,<br />

subcylindical, (5–)8–9(–12) × (2–)3–3.5(–5) µm, with darkened,<br />

inconspicously thickened, protuberant or truncate hilum, less than<br />

1 µm diam.<br />

Cultural characteristics: Colonies on MEA reaching 5 mm diam<br />

after 14 d at 24 °C, with entire, smooth, sharp margin; mycelium<br />

densely lanose <strong>and</strong> elevated in the centre, olivaceous-green to<br />

brown; reverse dark olivaceous.<br />

Specimens examined: Israel, Haifa, isolated from brain abscess, <strong>CBS</strong> 368.92 =<br />

UTMB 3170; human brain abscess, E. Lefler, <strong>CBS</strong> 367.92 = NCPF 2738 = UTMB<br />

3169. Saudi Arabia, from phaeohyphomycosis of the brain, S.S.A. Al-Hedaithy,<br />

ex-type strain, <strong>CBS</strong> 650.93 = MUCL 40057 = NCPF 2808; from brain abscess,<br />

Pakistani male who travelled to Saudi Arabia, <strong>CBS</strong> 102592 = NCPF 7460. United<br />

Arab Emirates, from fatal brain abscess, <strong>CBS</strong> 102590 = NCPF 2853.<br />

Notes: Morphologically Rhinocladiella mackenziei is somewhat<br />

<strong>similar</strong> to Pleurothecium obovoideum (Matsush.) Arzanlou &<br />

Crous, which was originally isolated from dead wood. However, P.<br />

obovoideum has distinct conidiophores, <strong>and</strong> the ascending hyphae<br />

are thick-walled, <strong>and</strong> the denticles cylindrical, up to 1.5 µm long.<br />

In contrast, Rh. mackenziei has only slightly prominent denticles.<br />

Rhinocladiella mackenziei is a member of the Chaetothyriales,<br />

while P. obovoideum clusters in the Chaetosphaeriales.<br />

Thysanorea Arzanlou, W. Gams & Crous, gen. nov. MycoBank<br />

MB504555.<br />

Etymology: (Greek) thysano = brush, referring to the brush-like<br />

branching pattern, suffix derived from Veronaea.<br />

Veronaeae similis sed conidiophoris partim Periconiae similibus dense ramosis<br />

distinguenda.<br />

In vitro: Submerged hyphae subhyaline, smooth, thin-walled; aerial<br />

hyphae pale brown, smooth or verrucose. Conidiophores dimorphic;<br />

micronematous conidiophores slightly differentiated from vegetative<br />

hyphae, branched or simple, multiseptate. Conidiogenous cells<br />

terminal, polyblastic, variable in length, smooth, golden- to dark<br />

brown at the base, paler towards the apex, later sometimes<br />

inconspicuously septate; fertile part often wider than the basal<br />

part, clavate to doliiform, with crowded, more or less prominent<br />

conidium-bearing denticles, unpigmented, but slightly thickened.<br />

Macronematous conidiophores consisting of well-differentiated,<br />

thick-walled, dark brown stalks; apically repeatedly densely<br />

branched, forming a complex head, each branchlet giving rise<br />

to a conidium-bearing denticulate rachis with slightly pigmented,<br />

thickened scars. Conidia of both kinds of conidiophore formed<br />

singly, smooth, pale brown, obovoidal to pyriform, (0–)1-septate,<br />

with a truncate base <strong>and</strong> darkened hilum; conidial secession<br />

schizolytic.<br />

Type species: Thysanorea papuana (Aptroot) Arzanlou, W. Gams<br />

& Crous, comb. nov.<br />

Thysanorea papuana (Aptroot) Arzanlou, W. Gams & Crous,<br />

comb. nov. MycoBank MB504556. Figs 7C, 23–24.<br />

Basionym: Periconiella papuana Aptroot, Nova Hedwigia 67: 491.<br />

1998.<br />

In vitro: Submerged hyphae subhyaline, smooth, thin-walled, 1.5–3<br />

µm wide; aerial hyphae pale brown, smooth to verrucose, 1.5–2<br />

µm wide. Conidiophores dimorphic; micronematous conidiophores<br />

slightly differentiated from vegetative hyphae, branched or simple,<br />

up to 6-septate. Conidiogenous cells terminal or intercalary, variable<br />

in length, 5–20 µm long, thin-walled, smooth, golden- to dark brown<br />

at the base, paler toward the apex, later sometimes becoming<br />

inconspicuously septate, fertile part wider than basal part, often<br />

clavate, with crowded, more or less prominent conidium-bearing<br />

denticles, about 1 µm diam, unpigmented but slightly thickened.<br />

Conidia solitary, subhyaline, thin-walled, smooth, cylindrical to<br />

pyriform, rounded at the apex <strong>and</strong> truncate at the base, pale brown,<br />

(0–)1-septate, (5–)7–8(–11) × (2–)3(–4) µm, with a truncate base<br />

<strong>and</strong> darkened hilum, 1 µm diam. Macronematous conidiophores<br />

present in old cultures after 1 mo of incubation, consisting of welldifferentiated,<br />

thick-walled, dark brown stalks, up to 220 µm long,<br />

(4–)5–6(–7) µm wide, with up to 15 additional septa, often with<br />

inflated basal cells; apically densely branched, forming a complex<br />

head, with up to five levels of branchlets, 20–50 µm long, each<br />

branchlet giving rise to a denticulate conidium-bearing rachis; scars<br />

slightly pigmented, thickened, about 1 µm diam. Conidia solitary,<br />

thin-walled, smooth, pale brown, obovoidal to pyriform, (0–)1-<br />

septate, (4–)5–6(–8) × (2–)3(–4) µm, with a truncate base <strong>and</strong><br />

darkened hilum, 1–2 µm diam.<br />

Cultural characteristics: Colonies on MEA reaching 10 mm diam<br />

after 14 d at 24 °C, with entire, sharp margin; mycelium velvety,<br />

elevated, with colonies up to 2 mm high, surface olivaceous-grey to<br />

iron-grey; reverse greenish black.<br />

Specimen examined: Papua New Guinea, Madang Province, foothill of Finisterre<br />

range, 40.8 km along road Madang-Lae, alt. 200 m, isolated from unknown stipe, 2<br />

Nov. 1995, A. Aptroot, holotype <strong>CBS</strong>-H 6351, culture ex-type <strong>CBS</strong> 212.96.<br />

Veronaea Cif. & Montemart., Atti Ist. Bot. Lab. Crittog. Univ. Pavia,<br />

sér. 5, 15: 68. 1957.<br />

In vitro: Colonies velvety, pale olivaceous-brown, moderately<br />

fast-growing. Submerged hyphae hyaline to pale olivaceous,<br />

smooth; aerial hyphae, more darkly pigmented. Exophiala-type<br />

budding cells absent in culture. Conidiophores erect, straight or<br />

flexuose, unbranched or occasionally loosely branched, sometimes<br />

geniculate, smooth-walled, pale to medium- or olivaceous-brown.<br />

Conidiogenous cells terminally integrated, polyblastic, occasionally<br />

intercalary, cylindrical, pale brown, later often becoming septate,<br />

fertile part subhyaline, often as wide as the basal part, rachis with<br />

crowded, flat to slightly prominent, faintly pigmented, unthickened<br />

scars. Conidia solitary, smooth, cylindrical to pyriform, rounded<br />

at the apex <strong>and</strong> truncate at the base, pale brown, 1(–2)-septate;<br />

conidial secession schizolytic.<br />

Type species: Veronaea botryosa Cif. & Montemart., Atti Ist. Bot.<br />

Lab. Crittog. Univ. Pavia, sér. 5, 15: 68. 1957.<br />

Veronaea botryosa Cif. & Montemart., Atti Ist. Bot. Lab. Crittog.<br />

Univ. Pavia, sér. 5, 15: 68. 1957. Fig. 25.<br />

80


Ramichloridium <strong>and</strong> allied genera<br />

Fig. 25. Veronaea botryosa (<strong>CBS</strong> 254.57). A–C. Semi-micronematous conidiophores <strong>and</strong> sympodially proliferating conidiogenous cells. D–E. Rachis with crowded <strong>and</strong> flat<br />

scars. F–G. Microcyclic conidiation. H. Conidia. Scale bars = 10 µm.<br />

In vitro: Submerged hyphae hyaline to pale olivaceous, smooth;<br />

aerial hyphae more darkly pigmented. Conidiophores erect,<br />

straight or flexuose, unbranched or occasionally loosely branched,<br />

sometimes geniculate, smooth-walled, pale brown to olivaceousbrown,<br />

2–3 µm wide <strong>and</strong> up to 200 µm long. Conidiogenous cells<br />

terminal, occasionally intercalary, cylindrical, 10–100 µm long,<br />

pale brown, later often becoming septate, fertile part subhyaline,<br />

often as wide as the basal part, rachis with crowded, flat to slightly<br />

prominent, faintly pigmented, unthickened scars. Conidia solitary,<br />

smooth, cylindrical to pyriform, (3–)6.5–8.5(–12) × (1.5–)2–2.5(–3)<br />

µm, rounded at the apex <strong>and</strong> truncate at the base, pale brown,<br />

1(–2)-septate, with a faintly darkened, unthickened hilum, about 0.5<br />

µm diam.<br />

Cultural characteristics: Colonies on MEA reaching 30 mm diam<br />

after 14 d at 24 °C, with entire, sharp margin; mycelium velvety,<br />

slightly elevated in the centre, surface olivaceous-grey to greyishbrown;<br />

reverse greenish black.<br />

Specimens examined: India, Ramgarh, about 38 km from Jaipur, isolated from goat<br />

dung, 1 Sep. 1963, B.C. Lodha, <strong>CBS</strong> 350.65 = IMI 115127 = MUCL 7972. Italy,<br />

Tuscany, Pisa, isolated from Sansa olive slag, 1954, O. Verona, ex-type strain, <strong>CBS</strong><br />

254.57 = IMI 070233 = MUCL 9821.<br />

Veronaea compacta Papendorf, Bothalia 12: 119. 1976. Fig. 26.<br />

In vitro: Submerged hyphae subhyaline, smooth, thin-walled,<br />

1.5–3 µm wide; aerial hyphae rather thick-walled, pale brown.<br />

Conidiophores slightly differentiated from vegetative hyphae,<br />

lateral or occasionally terminal, often wider than the supporting<br />

hypha, up to 4 µm wide, unbranched or branched at acute angles,<br />

with 1–3 adititional septa, cells often inflated <strong>and</strong> flask-shaped,<br />

pale-brown, up to 60 µm long. Conidiogenous cells terminal,<br />

occasionally intercalary, variable in length, up to 10 µm long,<br />

pale brown, cylindrical to doliiform or flask-shaped, with hardly<br />

prominent denticles; scars flat, slightly pigmented, not thickened,<br />

about 0.5 µm diam. Conidia solitary, pale brown, smooth, thinwalled,<br />

ellipsoidal to ovoid, 0–1(–2)-septate, often constricted at<br />

the septa, (4–)6–7(–9) × 2–3 µm, with a round apex <strong>and</strong> truncate<br />

base; hilum prominent, slightly darkened, unthickened, about 0.5<br />

µm diam.<br />

Cultural characteristics: Colonies rather slow growing, reaching 15<br />

mm diam on MEA after 14 d at 24 °C; surface velvety to lanose,<br />

slightly raised in the centre, pale grey to pale brownish grey; reverse<br />

dark grey.<br />

Specimen examined: South Africa, soil, M.C. Papendorf, ex-type culture <strong>CBS</strong><br />

268.75.<br />

www.studiesinmycology.org<br />

81


Arzanlou et al.<br />

Fig. 26. Veronaea compacta (<strong>CBS</strong> 268.75). A–B. Semi-micronematous conidiophores <strong>and</strong> sympodially proliferating conidiogenous cells. C–D. Rachis with hardly prominent<br />

denticles. E. Conidia. Scale bar = 10 µm.<br />

Fig. 27. Veronaea japonica (<strong>CBS</strong> 776.83). A. Intercalary conidiogenous cells. B–D. Semi-micronematous conidiophores <strong>and</strong> sympodially proliferating conidiogenous cells. E.<br />

Conidia. F. Thick-walled, dark brown hyphal cells. Scale bar = 10 µm.<br />

Veronaea japonica Arzanlou, W. Gams & Crous, sp. nov.<br />

MycoBank MB504557. Figs 17B, 27.<br />

Etymology: Named after the country of origin, Japan.<br />

Veronaeae compactae similis, sed cellulis inflatis, aggregatis, crassitunicatis, fuscis<br />

in vitro formatis distinguenda.<br />

In vitro: Submerged hyphae subhyaline, smooth, thin-walled, 1.5–3<br />

µm wide; aerial hyphae slightly narrower, pale brown; hyphal cells<br />

later becoming swollen, thick-walled, dark brown, often aggregated.<br />

Conidiophores slightly differentiated from aerial vegetative hyphae,<br />

lateral, or terminal, often wider than the supporting hypha, 2–3 µm<br />

wide, up to 65 µm long, unbranched or occasionally branched,<br />

82


Ramichloridium <strong>and</strong> allied genera<br />

Fig. 28. Pleurothecium obovoideum (<strong>CBS</strong> 209.95). A–C. Conidial apparatus<br />

consisting of conidiophores with sympodially proliferating conidiogenous cells as<br />

seen in slide cultures of ca. 14 d. D. Short chain of conidia. E–G. Sympodially<br />

proliferating conidiogenous cells, resulting in a short rachis with subcylindrical to<br />

cylindrical denticles. H. Conidia. Scale bar = 10 µm.<br />

pale brown, thin-walled, smooth, with 1–3 additional septa.<br />

Conidiogenous cells terminal, occasionally intercalary, variable in<br />

length, up to 15 µm long, pale brown, cylindrical to clavate, with<br />

hardly prominent denticles; scars flat, slightly pigmented, not<br />

thickened, about 0.5 µm diam. Conidia solitary, pale brown, smooth,<br />

thin-walled, ellipsoidal to ovoid, (0–)1-septate, often constricted at<br />

the septum, (6–)7–8(–10) × 2–2.5(–4) µm, with a round apex <strong>and</strong><br />

truncate base; hilum unthickened but slightly darkened, about 1 µm<br />

diam.<br />

Cultural characteristics: Colonies rather slow growing, reaching 7.5<br />

mm diam on MEA after 14 d at 24 °C; surface velvety to lanose,<br />

slightly raised in the centre, olivaceous-brown, with entire margin;<br />

reverse dark-olivaceous.<br />

Specimen examined: Japan, Kyoto, Daitokuji Temple, Kyoto, inside dead bamboo<br />

culm, Dec. 1983, W. Gams, holotype <strong>CBS</strong>-H 3490, ex-type culture <strong>CBS</strong> 776.83.<br />

Note: This species is morphologically <strong>similar</strong> to V. compacta<br />

(Papendorf 1976), but can be distinguished based on the presence<br />

of dark brown, swollen hyphal cells in culture, which are absent in<br />

V. compacta.<br />

Pleurothecium obovoideum clade (Chaetosphaeriales)<br />

Ramichloridium obovoideum was regarded as <strong>similar</strong> to<br />

“Ramichloridium” (Rhinocladiella) mackenziei by some authors,<br />

<strong>and</strong> subsequently reduced to synonymy (Ur-Rahman et al. 1988).<br />

However, R. obovoideum clusters with Carpoligna pleurothecii,<br />

the teleomorph of Pleurothecium Höhn. Because it is also<br />

morphologically <strong>similar</strong> to other species of Pleurothecium, we<br />

herewith combine it into that <strong>genus</strong>.<br />

Pleurothecium obovoideum (Matsush.) Arzanlou & Crous, comb.<br />

nov. MycoBank MB504558. Fig. 28.<br />

Basionym: Rhinocladiella obovoidea Matsush., Icones Microfung.<br />

Mats. lect.: 123. 1975.<br />

≡ Ramichloridium obovoideum (Matsush.) de Hoog, Stud. Mycol. 15: 73.<br />

1977.<br />

In vitro: Submerged hyphae smooth, hyaline, thin-walled, 1–2 µm<br />

wide; aerial hyphae hyaline to subhyaline, smooth. Conidiophores<br />

arising vertically from creeping hyphae, ascending hyphae thickwalled<br />

<strong>and</strong> dark brown; conidiophores 10–35 µm long, 1–2-septate,<br />

often reduced to a conidiogenous cell, unbranched, thick-walled,<br />

smooth, tapering towards the apex, pale brown. Conidiogenous<br />

cells integrated, cylindrical to ampulliform, 5–20 µm long, pale<br />

brown, elongating sympodially, with a short rachis giving rise to<br />

denticles, 1 µm long, slightly pigmented. Conidia aseptate, solitary<br />

or in short chains of up to 3, smooth, pale brown, ellipsoidal to<br />

obovate, (9–)11–12(–14.5) × (3–)4(–5) µm, smooth, thin-walled,<br />

with a more or less rounded apex, a truncate base <strong>and</strong> a slightly<br />

darkened, unthickened hilum, 1.5 µm diam.<br />

www.studiesinmycology.org<br />

83


Arzanlou et al.<br />

Cultural characteristics: Colonies slow-growing, reaching 15 diam<br />

after 14 d at 24 °C, with entire, smooth margin; surface rather<br />

compact, mycelium mainly flat, submerged, some floccose to<br />

lanose aerial mycelium in the centre, buff; reverse honey.<br />

Specimen examined: Japan, Kobe Municipal Arboretum, T. Matsushima, from dead<br />

leaf of Pasania edulis, <strong>CBS</strong> 209.95 = MFC 12477.<br />

Incertae sedis (Sordariomycetes)<br />

Ramichloridium schulzeri clade<br />

Ramichloridium schulzeri, including its varieties, clusters<br />

near Thyridium Nitschke <strong>and</strong> the Magnaporthaceae, <strong>and</strong> is<br />

phylogenetically as well as morphologically distinct from the other<br />

genera in the Ramichloridium complex. To accommodate these<br />

taxa, a new <strong>genus</strong> is introduced below.<br />

Myrmecridium Arzanlou, W. Gams & Crous, gen. nov. MycoBank<br />

MB504559.<br />

Etymology: (Greek) myrmekia = wart, referring to the wart-like<br />

denticles on the rachis, suffix -ridium from Chloridium.<br />

Genus ab allis generibus Ramichloridii similibus rachide recta longa, subhyalina,<br />

denticulis distantibus, verruciformibus praedita distinguendum.<br />

In vitro: Colonies moderately fast-growing, flat, with mainly<br />

submerged mycelium, <strong>and</strong> entire margin, later becoming powdery<br />

to velvety, pale orange to orange. Mycelium rather compact, mainly<br />

submerged, in the centre velvety with fertile bundles of hyphae.<br />

Conidiophores arising vertically <strong>and</strong> clearly distinct from creeping<br />

hyphae, unbranched, straight or flexuose, brown, thick-walled.<br />

Conidiogenous cells terminally integrated, polyblastic, cylindrical,<br />

straight or flexuose, pale brown, sometimes secondarily septate,<br />

fertile part subhyaline, as wide as the basal part, with scattered<br />

pimple-shaped, apically pointed, unpigmented, conidium-bearing<br />

denticles. Conidia solitary, subhyaline, smooth or finely verrucose,<br />

rather thin-walled, with a wing-like gelatinous sheath, obovoidal or<br />

fusiform, tapering towards a narrowly truncate base with a slightly<br />

prominent, unpigmented hilum; conidial secession schizolytic.<br />

Type species: Myrmecridium schulzeri (Sacc.) Arzanlou, W. Gams<br />

& Crous, comb. nov.<br />

Notes: Myrmecridium schulzeri was fully described as Acrotheca<br />

acuta Grove by Hughes (1951). <strong>The</strong> author discussed several<br />

genera, none of which is suitable for the present fungus for various<br />

reasons as analysed by de Hoog (1977). Only Gomphinaria Preuss<br />

is not yet sufficiently documented. Our examination of G. amoena<br />

Preuss (B!) showed that this is an entirely different fungus, of which<br />

no fresh material is available to ascertain its position.<br />

Myrmecridium can be distinguished from other ramichloridiumlike<br />

fungi by having entirely hyaline vegetative hyphae, <strong>and</strong> widely<br />

scattered, pimple-shaped denticles on the long hyaline rachis.<br />

<strong>The</strong> conidial sheath is visible in lactic acid mounts with brightfield<br />

microscopy. <strong>The</strong> Myrmecridium clade consists of several<br />

subclusters, which are insufficiently resolved based on the ITS<br />

sequence data. However, two morphologically distinct varieties of<br />

Myrmecridium are treated here. <strong>The</strong> status of the other isolates in<br />

this clade will be dealt with in a future study incorporating more<br />

strains, <strong>and</strong> using a multi-gene phylogenetic approach.<br />

Myrmecridium schulzeri (Sacc.) Arzanlou, W. Gams & Crous,<br />

comb. nov. MycoBank MB504560. var. schulzeri Figs 7B, 29.<br />

Basionym: Psilobotrys schulzeri Sacc., Hedwigia 23: 126. 1884.<br />

≡ Chloridium schulzerii (Sacc.) Sacc., Syll. Fung. 4: 322. 1886.<br />

≡ Rhinocladiella schulzeri (Sacc.) Matsush., Icon. Microfung. Mats. lect.<br />

(Kobe): 124. 1975.<br />

≡ Ramichloridium schulzeri (Sacc.) de Hoog, Stud. Mycol. 15: 64. 1977<br />

var. schulzeri.<br />

= Acrotheca acuta Grove, J. Bot., Lond. 54: 222. 1916.<br />

≡ Pleurophragmium acutum (Grove) M.B. Ellis in Ellis, More Dematiaceous<br />

Hyphomycetes: 165. 1976.<br />

= Rhinotrichum multisporum Doguet, Rev. Mycol., Suppl. Colon. 17: 78. 1953<br />

(nom. inval. Art. 36) [non Acrotheca multispora (Preuss) Sacc., Syll. Fung. 4:<br />

277. 1886].<br />

[non Acrothecium (?) multisporum G. Arnaud, Bull. Trimestriel Soc.<br />

Mycol. France 69: 288. 1953 (nom. inval. Art. 36)].<br />

[non Acrothecium multisporum G. Arnaud sensu Tubaki, J. Hattori<br />

Bot. Lab. 20: 145. 1958].<br />

In vitro: Submerged hyphae hyaline, thin-walled, 1–2 µm wide;<br />

aerial hyphae, if present, pale olivaceous-brown. Conidiophores<br />

arising vertically from creeping aerial hyphae, unbranched, straight,<br />

reddish brown, thick-walled, septate, up to 250 µm tall, 2.5–3.5<br />

µm wide, with 2–7 additional septa, basal cell often inflated, 3.5–5<br />

µm wide. Conidiogenous cells integrated, cylindrical, variable in<br />

length, 15–110 µm long, subhyaline to pale brown, later becoming<br />

inconspicuously septate, fertile part subhyaline, as wide as the<br />

basal part, forming a straight rachis with scattered, pimple-shaped<br />

denticles less than 1 µm long <strong>and</strong> approx. 0.5 µm wide, apically<br />

pointed, unpigmented, slightly thickened scars. Conidia solitary,<br />

subhyaline, thin-walled, smooth or finely verrucose, surrounded<br />

by a wing-like, gelatinous conidial sheath, up to 0.5 µm thick,<br />

ellipsoid, obovoid or fusiform, (6–)9–10(–12) × 3–4 µm, tapering to<br />

a subtruncate base; hilum unpigmented, inconspicuous.<br />

Cultural characteristics: Colonies reaching 29 mm diam after 14<br />

d at 24 °C, pale orange to orange, with entire margin; mycelium<br />

flat, rather compact, later becoming farinose or powdery due to<br />

sporulation, which occurs in concentric zones when incubated on<br />

the laboratory bench.<br />

Specimens examined: Germany, Kiel-Kitzeberg, from wheat-field soil, W. Gams,<br />

<strong>CBS</strong> 134.68 = ATCC 16310. <strong>The</strong> Netherl<strong>and</strong>s, isolated from a man, bronchial<br />

secretion, A. Visser, <strong>CBS</strong> 156.63 = MUCL 1079; Lienden, isolated from Triticum<br />

aestivum root, C.L. de Graaff, <strong>CBS</strong> 325.74 = JCM 7234.<br />

Myrmecridium schulzeri var. tritici (M.B. Ellis) Arzanlou, W.<br />

Gams & Crous, comb. nov. MycoBank MB504562.<br />

Basionym: Pleurophragmium tritici M.B. Ellis, in Ellis, More<br />

Dematiaceous Hyphomycetes: 165. 1976.<br />

≡ Ramichloridium schulzeri var. tritici (M.B. Ellis) de Hoog, Stud. Mycol.<br />

15: 68. 1977.<br />

Specimen examined: Irel<strong>and</strong>, Dublin, on wheat stem, Oct. 1960, J.J. Brady,<br />

holotype IMI 83291.<br />

Notes: No reliable living culture is available of this variety. Based<br />

on a re-examination of the type specimen in this study, the variety<br />

appears sufficiently distinct from Myrmecridium schulzeri var.<br />

schulzeri based on the frequent production of septate conidia.<br />

Myrmecridium flexuosum (de Hoog) Arzanlou, W. Gams & Crous,<br />

comb. et stat. nov. MycoBank MB504563. Fig. 30.<br />

Basionym: Ramichloridium schulzeri var. flexuosum de Hoog, Stud.<br />

Mycol. 15: 67. 1977.<br />

In vitro: Submerged hyphae hyaline, thin-walled, 1–2 µm wide.<br />

Conidiophores unbranched, flexuose, arising from creeping aerial<br />

84


Ramichloridium <strong>and</strong> allied genera<br />

Fig. 29. Myrmecridium schulzeri (<strong>CBS</strong> 325.74). A. Macronematous conidiophores. B. Inflated basal cells visible in some conidiophores. C–E. Conidial apparatus at different<br />

stages of development, resulting in macronematous conidiophores <strong>and</strong> sympodially proliferating conidiogenous cells. F–G. Rachis with scattered, pimple-shaped denticles.<br />

H. Conidia. Scale bars: A =100 µm, B–H = 10 µm.<br />

hyphae, pale brown, up to 250 µm tall, 3–3.5 µm wide, thick-walled,<br />

smooth, with up to 24 thin septa, delimiting 8–12 µm long cells.<br />

Conidiogenous cells integrated, elongating sympodially, cylindrical,<br />

20–150 µm long, flexuose, brown at the base, subhyaline in the<br />

upper part, later becoming inconspicuously septate; rachis slightly<br />

flexuose, subhyaline, as wide as the basal part, thick-walled near<br />

the base, hyaline <strong>and</strong> thin-walled in the apical part, with scattered<br />

pimple-shaped, unpigmented, approx. 0.5 µm long denticles.<br />

Conidia solitary, subhyaline, thin-walled, finely verrucose, with<br />

a wing-like gelatinous sheath, approx. 0.5 µm wide, ellipsoid<br />

to obovoid, (5–)6–7(–9) × 3–4 µm; hilum slightly prominent,<br />

unpigmented, approx. 0.5 µm diam.<br />

Cultural characteristics: Colonies reaching 40 mm diam after 14 d<br />

at 24 °C; mycelium submerged, flat, smooth; centrally orange, later<br />

becoming powdery to velvety <strong>and</strong> greyish brown due to sporulation,<br />

with sharp, smooth, entire margin; reverse yellowish orange.<br />

Specimen examined: Surinam, isolated from soil, J.H. van Emden, ex-type culture<br />

<strong>CBS</strong> 398.76 = JCM 6968.<br />

www.studiesinmycology.org<br />

Note: This former variety is sufficiently distinguished from M.<br />

schulzeri s. str. by its flexuose conidiophores <strong>and</strong> conidia which<br />

lack an acuminate base, to be regarded as a separate species.<br />

Ramichloridium torvi (Ellis & Everh.) de Hoog, Stud. Mycol. 15:<br />

79. 1977.<br />

≡ Ramularia torvi Ellis & Everh., Rep. Missouri Bot. Gard. 9: 119. 1898.<br />

≡ Hansfordia torvi (Ellis & Everh.) Deighton & Piroz., Mycol. Pap. 101:<br />

39. 1965.<br />

= Acladium biophilum Cif., Sydowia 10: 164. 1956.<br />

≡ Hansfordia biophila (Cif.) M.B. Ellis, in Ellis, More Dematiaceous<br />

Hyphomycetes: 199. 1976.<br />

Specimen: Jamaica, Port Marant, Dec. 1890, on leaves of Solanum torvum,<br />

holotype of Ramularia torvi (NY) (specimen not examined).<br />

Notes: According to the description <strong>and</strong> illustration of R. torvi<br />

provided by de Hoog (1977), this appears to be an additional<br />

species of Myrmecridium. Although it is morphologically <strong>similar</strong> to<br />

M. flexuosum in having a flexuose rachis, it differs from the other<br />

species of the <strong>genus</strong> by having smooth, clavate conidia. Fresh<br />

collections <strong>and</strong> cultures would be required to resolve its status.<br />

85


Arzanlou et al.<br />

Fig. 30. Myrmecridium flexuosum (<strong>CBS</strong> 398.76). A–C. Conidial apparatus at different stages of development, resulting in macronematous conidiophores with sympodially<br />

proliferating conidiogenous cells. D–H. Sympodially proliferating conidiogenous cells giving rise to a flexuose conidium-bearing rachis with pimple-shaped denticles. I. Conidia.<br />

Scale bar = 10 µm.<br />

Fig. 31. Pseudovirgaria hyperparasitica (<strong>CBS</strong> 121739). A–D. Conidial apparatus at different stages of development; conidiogenous cells with geniculate proliferation. E. Conidia.<br />

Scale bar = 10 µm.<br />

86


Ramichloridium <strong>and</strong> allied genera<br />

Pseudovirgaria H.D. Shin, U. Braun, Arzanlou & Crous, gen. nov.<br />

MycoBank MB504564.<br />

Etymology: Named after its morphological <strong>similar</strong>ity to Virgaria.<br />

Hyphomycetes. Uredinicola. Coloniae in vivo pallide vel modice brunneae,<br />

ferrugineae vel cinnamomeae, in vitro lentissime crescentes, murinae. Mycelium<br />

immersum et praecipue externum, ex hyphis ramosis et cellulis conidiogenis<br />

integratis compositum, conidiophoris ab hyphis vegetativis vix distinguendis.<br />

Hyphae ramosae, septatae, leves, tenuitunicatae, hyalinae vel pallide brunneae.<br />

Cellulae conidiogenae integratae in hyphis repentibus, terminales et intercalares,<br />

polyblasticae, sympodialiter proliferentes, subcylindricae vel geniculatae, cicatricibus<br />

conspicuis, solitariis vel numerosis, dispersis vel aggregatis, subdenticulatis,<br />

prominentibus, umbonatis vel apicem versus paulo attenuatis, non inspissatis,<br />

non vel parce fuscatis-refringentibus. Conidia solitaria, holoblastica, plus minusve<br />

obovoidea, recta vel leniter curvata, asymmetrica, continua, hyalina, subhyalina<br />

vel pallidissime olivaceo-brunnea, hilo subconspicuo vel conspicuo, truncato<br />

vel rotundato, non inspissato, non vel lenissime fuscato-refringente; secessio<br />

schizolytica.<br />

Hyperparasitic on uredosori of rust fungi. Colonies in vivo pale<br />

to medium brown, rusty or cinnamom, in vitro slow-growing,<br />

pale to dark mouse-grey. Mycelium immersed <strong>and</strong> mainly aerial,<br />

composed of branched hyphae with integrated conidiogenous<br />

cells, differentiation between vegetative hyphae <strong>and</strong> conidiophores<br />

barely possible. Hyphae branched, septate, smooth, thin-walled,<br />

hyaline to pale brown. Conidiogenous cells <strong>similar</strong>ly hyaline to<br />

pale brown, integrated in creeping threads (hyphae), terminal <strong>and</strong><br />

intercalary, polyblastic, proliferation sympodial, rachis subcylindrical<br />

to geniculate, conidiogenous loci (scars) conspicuous, solitary to<br />

numerous, scattered to aggregated, subdenticulate, bulging out,<br />

umbonate or slightly attenuated towards a rounded apex, wall<br />

unthickened, not to slightly darkened-refractive. Conidia solitary,<br />

formation holoblastic, more or less obovoid, straight to somewhat<br />

curved, asymmetrical, aseptate, hyaline, subhyaline to very pale<br />

olivaceous-brown, with more or less conspicuous hilum, truncate to<br />

rounded, unthickened, not or slightly darkened-refractive; conidial<br />

secession schizolytic.<br />

Type species: Pseudovirgaria hyperparasitica H.D. Shin, U. Braun,<br />

Arzanlou & Crous, sp.nov.<br />

Notes: Other ramichloridium-like isolates from various rust species<br />

form another unique clade, sister to Radulidium subulatum (de<br />

Hoog) Arzanlou, W. Gams & Crous <strong>and</strong> Ra. epichloës (Ellis &<br />

Dearn.) Arzanlou, W. Gams & Crous in the Sordariomycetidae.<br />

Although Pseudovirgaria is morphologically <strong>similar</strong> to Virgaria Nees,<br />

it has hyaline to pale brown hyphae, conidia <strong>and</strong> conidiogenous<br />

cells. <strong>The</strong> conidiogenous cells are integrated in creeping threads<br />

(hyphae), terminal <strong>and</strong> intercalary, <strong>and</strong> the proliferation is distinctly<br />

sympodial. <strong>The</strong> subdenticulate conidiogenous loci are scattered,<br />

solitary, at small shoulders of geniculate conidiogenous cells,<br />

caused by sympodial proliferation, or aggregated, forming slight<br />

swellings of the rachis, i.e., a typical raduliform rachis as in Virgaria<br />

is lacking. Furthermore, the conidiogenous loci of Pseudovirgaria<br />

are bulging, convex, slightly attenuated towards the rouded apex,<br />

in contrast to more cylindrical denticles in Virgaria (Ellis 1971).<br />

<strong>The</strong> scar type of Pseudovirgaria is peculiar due to its convex,<br />

papilla-like shape <strong>and</strong> reminiscent of conidiogenous loci in plantpathogenic<br />

genera like Neoovularia U. Braun <strong>and</strong> Pseudodidymaria<br />

U. Braun (Braun 1998). <strong>The</strong> superficially <strong>similar</strong> <strong>genus</strong> Veronaea is<br />

quite distinct from Pseudovirgaria by having erect conidiophores<br />

with a typical rachis <strong>and</strong> crowded conidiogenous loci which are<br />

flat or only slightly prominent <strong>and</strong> darkened. Pseudovirgaria is<br />

characterised by its mycelium which is composed of branched<br />

hyphae with integrated, terminal <strong>and</strong> intercalary conidiogenous<br />

cells. A differentiation between branched hyphae <strong>and</strong> “branched<br />

www.studiesinmycology.org<br />

conidiophores” is difficult <strong>and</strong> barely possible. It remains unclear<br />

if the “creeping threads” <strong>and</strong> terminal branches of hyphae are<br />

to be interpreted as “creeping conidiophores”. In any case, the<br />

mycelium forms complex fertile branched hyphal structures in which<br />

individual conidiophores are barely discernable. <strong>The</strong>se structures<br />

<strong>and</strong> difficulties in discerning individual conidiophores remind one of<br />

some species of Pseudocercospora Speg. <strong>and</strong> other cercosporoid<br />

genera with abundant superficial mycelium in vivo.<br />

Pseudovirgaria hyperparasitica H.D. Shin, U. Braun, Arzanlou &<br />

Crous, sp. nov. MycoBank MB504565. Figs 6A, 31.<br />

Etymology: Named after its hyperparasitic habit on rust fungi.<br />

Hyphae 1.5–4 µm latae, tenuitunicatae, ≤ 0.5 µm crassae. Cellulae conidiogenae<br />

15–50 × 2–5 µm, tenuitunicatae (≤ 0.5 µm), cicatricibus (0.5–)1.0(–1.5) µm diam,<br />

0.5–1 µm altis. Conidia saepe obovoidea, interdum subclavata, 10–20 × 5–9 µm,<br />

apice rotundato vel paulo attenuato, basi truncata vel rotundata, hilo ca 1 µm<br />

diam.<br />

In vivo: Colonies on rust sori, thin to moderately thick, loose,<br />

cobwebby, to dense, tomentose, pale to medium brown, rusty<br />

or cinnamon. Mycelium partly immersed in the sori, but mainly<br />

superficial, composed of a system of branched hyphae with<br />

integrated conidiogenous cells (fertile threads), distinction between<br />

conidiophores <strong>and</strong> vegetative hyphae difficult <strong>and</strong> barely possible.<br />

Hyphae 1.5–4 µm wide, hyaline, subhyaline to pale yellowish,<br />

greenish or very pale olivaceous, light brownish in mass, thin-walled<br />

(≤ 0.5 µm), smooth, pluriseptate, occasionally slightly constricted<br />

at the septa. Conidiogenous cells integrated in creeping fertile<br />

threads, terminal or intercalary, 15–50 µm long, 2–5 µm wide,<br />

subcylindrical to geniculate, subhyaline to very pale brownish, wall<br />

thin, ≤ 0.5 µm, smooth, proliferation sympodial, with a single to<br />

usually several conidiogenous loci per cell, often crowded, causing<br />

slight swellings, up to 6 µm wide, subdenticulate loci, formed by the<br />

slightly bulging wall, convex, slightly narrowed towards the rounded<br />

apex, (0.5–)1.0(–1.5) µm diam <strong>and</strong> 0.5–1 µm high, wall of the loci<br />

unthickened, not or slightly darkened-refractive, in surface view<br />

visible as minute circle (only rim visible <strong>and</strong> dark). Conidia solitary,<br />

obovoid, often slightly curved with ± unequal sides, 10–20 × 5–9<br />

µm, aseptate, subhyaline, pale yellowish greenish to very pale<br />

olivaceous, wall ≤ 0.5 µm thick, smooth, apex slightly attenuated<br />

to usually broadly rounded, base rounded to somewhat attenuated<br />

towards a more or less conspicuous hilum, (0.5–)1(–1.5) µm<br />

diam, convex to truncate, unthickened, not to slightly darkenedrefractive.<br />

In vitro: Submerged hyphae hyaline to subhyaline, smooth; aerial<br />

hyphae smooth, subhyaline, up to 4 µm wide. Conidiogenous cells<br />

arising imperceptably from aerial vegetative hyphae, terminal,<br />

occasionally intercalary, holoblastic, proliferating sympodially in a<br />

geniculate pattern, with more or less long intervals between groups<br />

of scars; loci slightly darkened, unthickened, approx. 0.5 µm diam.<br />

Conidia hyaline to subhyaline, aseptate, ovoid, often somewhat<br />

curved, (10–)13–15(–17) × (5–)6–7(–8) µm, with truncate base<br />

<strong>and</strong> acutely rounded apex; hila unthickened, slightly darkenedrefractive.<br />

Cultural characteristics: Colonies on MEA rather slow-growing,<br />

reaching 11 mm diam after 14 d at 24 °C, pale to dark mouse-grey,<br />

velvety, compacted, with colonies being up to 1 mm high.<br />

Specimens examined: Korea, Seoul, on uredosori of Frommeëlla sp., on Duchesnea<br />

chrysantha, 17 Sep. 2003, H.D. Shin, paratype, 4/10, CPC 10702–10703 = <strong>CBS</strong><br />

121735–121736, HAL 2053 F; Chunchon, on Phragmidium griseum on Rubus<br />

crataegifolius, 20 Jul. 2004, H.D. Shin, paratype, 2/8, HAL 2057 F; Suwon,<br />

87


Arzanlou et al.<br />

Fig. 32. Radulidium subulatum (<strong>CBS</strong> 405.76). A–B. Macronematous conidiophores with sympodially proliferating conidiogenous cells, resulting in a conidium-bearing rachis.<br />

C–D. Rachis with crowded, blunt conidium-bearing denticles. E. Conidia. Scale bar = 10 µm.<br />

Fig. 33. Radulidium epichloës (<strong>CBS</strong> 361.63). A–C. Conidial apparatus at different stages of development, resulting in semi-micronematous conidiophores <strong>and</strong> sympodially<br />

proliferating conidiogenous cells. D. Rachis with crowded, blunt conidium-bearing denticles. E–F. Conidiophores with acute branches in the lower part. G. Conidia. Scale bar<br />

= 10 µm.<br />

88


Ramichloridium <strong>and</strong> allied genera<br />

on Phragmidium pauciloculare on Rubus parvifolius, 14 Oct. 2003, H.D. Shin,<br />

paratype, 23/10, HAL 2055 F; Hongchon, on Phragmidium rosae-multiflorae on<br />

Rosa multiflora, 11 Aug. 2004, H.D. Shin, paratype, 23/8, HAL 2056 F; Yangpyong,<br />

on Phragmidium sp. on Rubus coreanus, 30 Sep. 2003, H.D. Shin, paratype, 11/10-<br />

1, CPC 10704–10705 = <strong>CBS</strong> 121737–121738, HAL 2052 F, <strong>and</strong> the same locality,<br />

23 Jul. 2004, HAL 2058 F; Chunchon, on Pucciniastrum agrimoniae on Agrimonia<br />

pilosa, 7 Oct. 2002, H.D. Shin, holotype, HAL 2054 F, culture ex-type CPC 10753–<br />

10755 = <strong>CBS</strong> 121739–121741.<br />

Radulidium subulatum <strong>and</strong> Ra. epichloës clade<br />

Ramichloridium subulatum <strong>and</strong> R. epichloës form a distinct, wellsupported<br />

clade with uncertain affinity. This clade is morphologically<br />

distinct <strong>and</strong> a new <strong>genus</strong> is introduced below to accommodate it.<br />

Radulidium Arzanlou, W. Gams & Crous, gen. nov. MycoBank<br />

MB504566.<br />

Etymology: Latin radula = A flexible tongue-like organ in gastropods,<br />

referring to the radula-like denticles on the rachis.<br />

Genus ab aliis generibus Ramichloridii similibus denticulis densissimis, prominentibus,<br />

hebetibus in rachide e cellula conidiogena aculeata orta distinguendum.<br />

Type species: Radulidium subulatum (de Hoog) Arzanlou, W. Gams<br />

& Crous, comb. nov.<br />

In vitro: Colonies fast-growing, velvety, floccose near the margin,<br />

centrally with fertile hyphal bundles up to 10 mm high, about 2<br />

mm diam, with entire but vague margin; mycelium whitish, later<br />

becoming greyish brown. Submerged hyphae smooth, thin-walled.<br />

Conidiophores usually reduced to polyblastic conidiogenous cells<br />

arising from undifferentiated or slightly differentiated aerial hyphae,<br />

terminally integrated or lateral, rarely a branched conidiophore<br />

present, smooth, slightly thick-walled, pale brown, cylindrical to<br />

acicular, widest at the base <strong>and</strong> tapering towards the apex; apical<br />

part forming a pale brown, generally straight rachis, with crowded,<br />

prominent, blunt denticles, suggesting a gastropod radula; denticles<br />

0.5–1 µm long, apically pale brown. Conidia solitary, subhyaline,<br />

thin- or slightly thick-walled, smooth or verrucose, obovoidal,<br />

fusiform to subcylindrical, base subtruncate <strong>and</strong> with a slightly<br />

prominent, conspicuously pigmented hilum; conidial secession<br />

schizolytic.<br />

Notes: Radulidium can be distinguished from other ramichloridiumlike<br />

fungi by its slightly differentiated conidiophores <strong>and</strong> prominent,<br />

blunt, very dense conidium-bearing denticles. Although the<br />

Radulidium clade consists of several subclusters that correlate<br />

with differences in morphology, the ITS sequence data appear<br />

insufficient to resolve this species complex. <strong>The</strong>refore, only two<br />

species of Radulidium with clear morphological <strong>and</strong> molecular<br />

differences are treated here. <strong>The</strong> phylogenetic situation of other<br />

taxa in this clade will be treated in a further study employing a multigene<br />

approach.<br />

Radulidium subulatum (de Hoog) Arzanlou, W. Gams & Crous,<br />

comb. nov. MycoBank MB504567. Figs 10C, 32.<br />

Basionym: Ramichloridium subulatum de Hoog, Stud. Mycol. 15:<br />

83. 1977.<br />

Misapplied name: Rhinocladiella elatior Mangenot sensu dal Vesco<br />

& B. Peyronel, Allionia 14: 38. 1968.<br />

In vitro: Submerged hyphae hyaline, thin-walled, 1–2.5 µm wide;<br />

aerial hyphae brownish. Conidiogenous cells arising laterally from<br />

vegetative hyphae, pale brown, smooth, thick-walled, sometimes<br />

without a basal septum, cylindrical to aculeate, tapering gradually<br />

towards the apex, widest at the base, 25–40 × 2–3 µm; proliferating<br />

sympodially, forming a pale brown rachis, with densely crowded,<br />

prominent, blunt conidium-bearing denticles, with pale brown apex.<br />

Conidia solitary, subhyaline, thin-walled, smooth, ellipsoidal to<br />

almost clavate, 5–7 × 1.5–2 µm, with a slightly pigmented, nonrefractive<br />

hilum, about 1 µm diam.<br />

Cultural characteristics: Colonies on MEA rather fast growing,<br />

reaching 50 mm diam after 14 d at 24 °C, with entire but vague<br />

margin, velvety, floccose near the margin, centrally with fertile<br />

hyphal bundles up to 10 mm high, about 2 mm diam; mycelium<br />

whitish, later becoming greyish brown; reverse grey, zonate.<br />

Specimens examined: Czech Republic, on Phragmites australis, A. Samšiňáková,<br />

ex-type culture <strong>CBS</strong> 405.76; Opatovicky pond, from Lasioptera arundinis (gall<br />

midge) mycangia on Phragmites australis, M. Skuhravá, <strong>CBS</strong> 101010.<br />

Radulidium epichloës (Ellis & Dearn.) Arzanlou, W. Gams &<br />

Crous, comb. nov. MycoBank MB504568. Fig. 33.<br />

Basionym: Botrytis epichloës Ellis & Dearn., Canad. Record Sci.<br />

9: 272. 1893.<br />

≡ Ramichloridium epichloës (Ellis & Dearn.) de Hoog, Stud. Mycol. 15:<br />

81. 1977.<br />

In vitro: Submerged hyphae hyaline, thin-walled, 1–2.5 µm wide;<br />

aerial hyphae somewhat darker. Conidiogenous cells arising<br />

laterally or terminally from undifferentiated or slightly differentiated<br />

aerial hyphae, occasionally acutely branched in the lower part,<br />

smooth, thick-walled, pale brown, more or less cylindrical, later<br />

with thin septa, 25–47 µm long; proliferating sympodially, forming<br />

a rather short, pale brown, straight or somewhat geniculate<br />

rachis, with crowded, prominent, blunt denticles with pale brown<br />

apex. Conidia solitary, subhyaline, rather thin-walled, verruculose,<br />

obovoidal to fusiform, (4.5–)7–8(–11) × 2–3 µm, with a pigmented<br />

hilum, 1–1.5 µm diam.<br />

Cultural characteristics: Colonies reaching 45 mm diam after 14 d<br />

at 24 °C, with smooth, rather vague, entire margin; velvety, centrally<br />

floccose <strong>and</strong> elevated up to 2 mm high; surface mycelium whitish,<br />

later becoming greyish brown; reverse pale ochraceous.<br />

Specimen examined: U.S.A., Cranberry Lake, Michigan, isolated from Epichloë<br />

typhina on Glyceria striata, G.L. Hennebert, <strong>CBS</strong> 361.63 = MUCL 3124; specimen<br />

in MUCL designated here as epitype.<br />

Veronaea-like clade, allied to the Annulatascaceae<br />

A veronaea-like isolate from Bertia moriformis clusters near the<br />

Annulatascaceae, <strong>and</strong> is morphologically distinct from other known<br />

anamorph genera in the Ramichloridium complex, <strong>and</strong> therefore a<br />

new <strong>genus</strong> is introduced to accommodate it.<br />

Rhodoveronaea Arzanlou, W. Gams & Crous, gen. nov. MycoBank<br />

MB504569.<br />

Etymology: (Greek) rhodon = the rose, referring to the red-brown<br />

conidiophores, suffix -veronaea from Veronaea.<br />

Genus ab aliis generibus Ramichloridii similibus basi condiorum late truncata et<br />

marginata distinguenda.<br />

In vitro: Colonies slow-growing, velvety, floccose; surface<br />

olivaceous-grey to dark olivaceous-green; reverse olivaceousblack.<br />

Hyphae smooth, thin-walled, pale olivaceous. Conidiophores<br />

arising vertically from creeping hyphae, straight or flexuose, simple,<br />

thick-walled, red-brown, with inflated basal cell. Conidiogenous<br />

cells terminally integrated, polyblastic, sympodial, smooth, thick-<br />

www.studiesinmycology.org<br />

89


Arzanlou et al.<br />

Fig. 34. Rhodoveronaea varioseptata (<strong>CBS</strong> 431.88). A–D. Macronematous conidiophores with sympodially proliferating conidiogenous cells, resulting in conidium bearing rachis<br />

with slightly prominent conidium-bearing denticles. E–F. Conidia with minute marginal frill. Scale bar = 10 µm.<br />

Fig. 35. Veronaeopsis simplex (<strong>CBS</strong> 588.66). A–C. Conidial apparatus at different stages of development, resulting in semi-micronematous conidiophores <strong>and</strong> sympodially<br />

proliferating conidiogenous cells. D–E. Rachis with crowded, prominent denticles. F. Intercalary conidiogenous cells. G. Conidia. Scale bar = 10 µm.<br />

walled, pale brown, rachis straight, occasionally geniculate, with<br />

crowded, slightly prominent conidium-bearing denticles; denticles<br />

flat-tipped, slightly pigmented. Conidia solitary, pale brown, thinor<br />

slightly thick-walled, smooth, ellipsoidal to obovoidal, 0–multiseptate,<br />

with a protruding base <strong>and</strong> a marginal basal frill; conidial<br />

secession schizolytic.<br />

Type species: Rhodoveronaea varioseptata Arzanlou, W. Gams &<br />

Crous, sp. nov.<br />

Notes: Rhodoveronaea differs from other ramichloridium-like fungi<br />

by the presence of a basal, marginal conidial frill, <strong>and</strong> variably<br />

septate conidia.<br />

90


Ramichloridium <strong>and</strong> allied genera<br />

Rhodoveronaea varioseptata Arzanlou, W. Gams & Crous, sp.<br />

nov. MycoBank MB504570. Figs 10D, 34.<br />

Etymology: Named for its variably septate conidia.<br />

Hyphae 2–3 µm latae. Conidiophora ad 125 µm longa et 3–5 µm lata. Cellulae<br />

conidiogenae 30–70 µm longae et 3–5 µm latae. Conidia 0–2(–3)-septata, (8–)11–<br />

13(–15) × (2–)3–4(–6) µm.<br />

In vitro: Submerged hyphae smooth, thin-walled, pale olivaceous,<br />

2–3 µm wide; aerial hyphae smooth, brownish <strong>and</strong> slightly narrower.<br />

Conidiophores arising vertically from creeping hyphae, straight or<br />

flexuose, simple, smooth, thick-walled, red-brown, up to 125 µm<br />

long, 3–5 µm wide, often with inflated basal cell. Conidiogenous<br />

cells terminally integrated, smooth, thick-walled, pale brown at the<br />

base, paler towards the apex, straight, variable in length, 30–70<br />

µm long <strong>and</strong> 3–5 µm wide, rachis straight, occasionally geniculate;<br />

slightly prominent conidium-bearing denticles, crowded, with slightly<br />

pigmented apex, about 1 µm diam. Conidia solitary, pale brown,<br />

thin- or slightly thick-walled, smooth, ellipsoid to obovoid, 0–2(–3)-<br />

septate, (8–)11–13(–15) × (2–)3–4(–6) µm with a protruding base,<br />

1.5 µm wide, <strong>and</strong> marginal frill.<br />

Cultural characteristics: Colonies reaching 12 mm diam after 14<br />

d at 24 °C, velvety, floccose; surface olivaceous-grey to dark<br />

olivaceous-green; reverse olivaceous-black.<br />

Specimen examined: Germany, Eifel, Berndorf, on Bertia moriformis, Sep. 1987, W.<br />

Gams, holotype <strong>CBS</strong>-H 19932, culture ex-type <strong>CBS</strong> 431.88.<br />

Venturiaceae (Pleosporales)<br />

<strong>The</strong> ex-type strain of Veronaea simplex (Papendorf 1969) did not<br />

cluster with the <strong>genus</strong> Veronaea (Herpotrichiellaceae), but is allied<br />

to the Venturiaceae. Veronaea simplex is distinct from species<br />

of Fusicladium Bonord. by having a well-developed rachis with<br />

densely aggregated scars. A new <strong>genus</strong> is thus introduced to<br />

accommodate this taxon.<br />

Veronaeopsis Arzanlou & Crous, gen. nov. MycoBank<br />

MB504571.<br />

Etymology: <strong>The</strong> suffix -opsis refers to its <strong>similar</strong>ity with Veronaea.<br />

Genus Veronaeae simile sed conidiophoris brevioribus (ad 60 μm longis) et rachide<br />

dense denticulata distinguendum.<br />

In vitro: Colonies moderately fast-growing; surface velvety, floccose,<br />

greyish sepia to hazel, with smooth margin; reverse mouse-grey<br />

to dark mouse-grey. Conidiophores arising vertically from aerial<br />

hyphae, lateral or intercalary, simple or branched, occasionally<br />

reduced to conidiogenous cells, pale brown. Conidiogenous<br />

cells terminally integrated on simple or branched conidiophores,<br />

polyblastic, smooth, thin-walled, pale brown; rachis commonly<br />

straight, geniculate, with densely crowded, prominent denticles,<br />

<strong>and</strong> slightly pigmented scars. Conidia solitary, subhyaline to pale<br />

brown, thin- or slightly thick-walled, smooth, oblong-ellipsoidal to<br />

subcylindrical, (0–)1-septate, with a slightly darkened, thickened,<br />

hilum; conidial secession schizolytic.<br />

Type species: Veronaeopsis simplex (Papendorf) Arzanlou &<br />

Crous, comb. nov.<br />

Veronaeopsis simplex (Papendorf) Arzanlou & Crous, comb.<br />

nov. MycoBank MB504572. Figs 17C, 35.<br />

Basionym: Veronaea simplex Papendorf, Trans. Brit. Mycol. Soc.<br />

52: 486. 1969.<br />

www.studiesinmycology.org<br />

In vitro: Submerged hyphae smooth, thin-walled, pale brown; aerial<br />

hyphae aggregated in bundles. Conidiophores arising vertically<br />

from aerial hyphae, lateral or intercalary, simple or branched,<br />

occasionally reduced to conidiogenous cells, pale brown, rather<br />

short, up to 60 µm long, 1.5–2 µm wide. Conidiogenous cells<br />

terminally integrated in the conidiophores, smooth, thin-walled, pale<br />

brown, variable in length, 5–25 µm long, rachis generally straight<br />

or irregularly geniculate, with crowded, prominent denticles, about<br />

0.5 µm long, flat-tipped, with slightly pigmented apex. Conidia<br />

solitary, subhyaline to pale brown, thin- or slightly thick-walled,<br />

smooth, oblong-ellipsoidal to subcylindrical, (0–)1-septate, slightly<br />

constricted at the septum, (6–)10–12(–15) × (2–)2.5–3(–4) µm;<br />

hilum slightly darkened <strong>and</strong> thickened, not refractive, about 1 µm<br />

diam.<br />

Cultural characteristics: Colonies reaching 25 mm diam after 14<br />

d at 24 °C; surface velvety, floccose, greyish sepia to hazel, with<br />

smooth margin; reverse mouse-grey to dark mouse-grey.<br />

Specimen examined: South Africa, Potchefstroom, on leaf litter of Acacia karroo,<br />

1966, M.C. Papendorf, holotype, <strong>CBS</strong> H-7810; culture ex-type <strong>CBS</strong> 588.66 = IMI<br />

203547.<br />

Notes: <strong>The</strong> presence of 1-septate conidia in Veronaeopsis overlaps<br />

with Veronaea. However, Veronaeopsis differs from Veronaea<br />

based on its conidiophore <strong>and</strong> conidiogenous cell morphology.<br />

Veronaea has much longer, macronematous conidiophores than<br />

Veronaeopsis. Furthermore, Veronaea has a more or less straight<br />

rachis, whereas in Veronaeopsis the rachis is often geniculate.<br />

<strong>The</strong> conidiogenous loci in Veronaea are less prominent, i.e., less<br />

denticle-like.<br />

Discussion<br />

<strong>The</strong> present study was initiated chiefly to clarify the status of<br />

Ramichloridium musae, the causal organism of tropical speckle<br />

disease of banana (Jones 2000). Much confusion surrounded this<br />

name in the past, relating, respectively, to its validation, species<br />

<strong>and</strong> generic status. As was revealed in the present study, however,<br />

two species are involved in banana speckle disease, namely R.<br />

musae <strong>and</strong> R. biverticillatum. Even more surprising was the fact<br />

that Ramichloridium comprises anamorphs of Mycosphaerella<br />

Johanson (Mycosphaerellaceae), though no teleomorphs have<br />

thus far been conclusively linked to any species of Ramichloridium.<br />

By investigating the Ramichloridium generic complex as outlined<br />

by de Hoog (1977), another <strong>genus</strong> associated with leaf spots,<br />

namely Periconiella, was also shown to represent an anamorph<br />

of Mycosphaerella. Although no teleomorph connections have<br />

been proven for ramichloridium-like taxa, de Hoog et al. (1983)<br />

refer to the type specimen of Wentiomyces javanicus Koord.<br />

(Pseudoperisporiaceae), on the type specimen of which (PC)<br />

some ramichloridium-like conidiophores were seen. Without<br />

fresh material <strong>and</strong> an anamorph-teleomorph connection proven<br />

in culture, however, this matter cannot be investigated further. It<br />

is interesting to note, however, that Wentiomyces Koord. shows<br />

a strong resemblance to Mycosphaerella, except for the external<br />

perithecial appendages.<br />

<strong>The</strong> <strong>genus</strong> Mycosphaerella is presently one of the largest genera<br />

of ascomycetes, containing close to 3 000 names (Aptroot 2006), to<br />

which approximately 30 anamorph genera have already been linked<br />

(Crous et al. 2006a, b, 2007). By adding two additional anamorph<br />

genera, the Mycosphaerella complex appears to be exp<strong>and</strong>ing<br />

91


Arzanlou et al.<br />

even further, though some taxa have been shown to reside in other<br />

families in the Capnodiales, such as Davidiella Crous & U. Braun<br />

(Davidiellaceae) <strong>and</strong> Teratosphaeria (Teratosphaeriaceae) (Braun<br />

et al. 2003, Crous et al. 2007, Schubert et al. 2007 – this volume).<br />

Another family, which proved to accommodate several<br />

ramichloridium-like taxa, is the Herpotrichiellaceae (Chaetothyriales).<br />

Members of the Chaetothyriales are regularly encountered as<br />

causal agents of human mycoses (Haase et al. 1999, de Hoog<br />

et al. 2003), whereas species of the Capnodiales are common<br />

plant pathogens, or chiefly associated with plants. Species in the<br />

Chaetothyriales have consistently melanized thalli, which is a factor<br />

enabling them to invade humans, <strong>and</strong> cause a wide diversity of<br />

mycoses, such as chromoblastomycosis, mycetoma, brain infection<br />

<strong>and</strong> subcutaneous phaeohyphomycosis (de Hoog et al. 2003). <strong>The</strong><br />

only known teleomorph connection in this <strong>genus</strong> is Capronia Sacc.<br />

(Untereiner & Naveau 1999).<br />

Rhinocladiella <strong>and</strong> Veronaea were in the past frequently<br />

confused with the <strong>genus</strong> Ramichloridium. However, Rhinocladiella,<br />

as well as Veronaea <strong>and</strong> Thysanorea, were shown to cluster in the<br />

Chaetothyriales, while Ramichloridium clusters in the Capnodiales.<br />

Rhinocladiella mackenziei, which causes severe cerebral<br />

phaeohyphomycosis in humans (Sutton et al. 1998), has in the<br />

past been confused with Pleurothecium obovoideum (Ur-Rahman<br />

et al. 1988). Data presented here reveal, however, that although<br />

morphologically <strong>similar</strong>, these species are phylogenetically<br />

separate, with P. obovoideum belonging to the Sordariales, where<br />

it clusters with sexual species of Carpoligna F.A. Fernández &<br />

Huhndorf that have Pleurothecium anamorphs (Fernández et al.<br />

1999).<br />

In addition to the genera clustering in the Capnodiales <strong>and</strong><br />

Chaetothyriales, several ramichloridium-like genera are newly<br />

introduced to accommodate species that cluster elsewhere<br />

in the ascomycetes, namely Pseudovirgaria, Radulidium <strong>and</strong><br />

Myrmecridium, Veronaeopsis, <strong>and</strong> Rhodoveronaea. Although the<br />

ecological role of these taxa is much less known than that of taxa in<br />

the Capnodiales <strong>and</strong> Chaetothyriales, some exhibit an interesting<br />

ecology. For instance, the fungicolous habit of Pseudovirgaria, as<br />

well as some species in Radulidium, which are found on various<br />

rust species, suggests that these genera should be screened<br />

further to establish if they have any potential biocontrol properties.<br />

Furthermore, these two genera share a common ancestor, <strong>and</strong><br />

further work is required to determine whether speciation was shaped<br />

by co-evolution with the rusts. A further species of “Veronaea” that<br />

might belong to Pseudovirgaria is Veronaea harunganae (Hansf.)<br />

M.B. Ellis, which is known to occur on Hemileia harunganae<br />

Cummins on Harungana in Tanzania <strong>and</strong> Ug<strong>and</strong>a (Ellis 1976). <strong>The</strong><br />

latter species, however, is presently not known from culture, <strong>and</strong><br />

needs to be recollected to facilitate further study.<br />

<strong>The</strong> genera distinguished here represent homogeneous clades<br />

in the phylogenetic analysis. Only the species of Rhinocladiella are<br />

dispersed among others morphologically classified in Exophiala or<br />

other genera.<br />

By integrating the phylogenetic data generated here with<br />

the various morphological data sets, we were able to resolve<br />

eight clades for taxa formerly regarded as representative of the<br />

Ramichloridium complex. According to the phylogeny inferred<br />

from 28S rDNA sequence data, the genera Ramichloridium <strong>and</strong><br />

Periconiella were heterogeneous, requiring the introduction of<br />

several novel genera. Although the present 11 odd genera can<br />

still be distinguished based on their morphology, it is unlikely that<br />

morphological identifications without the supplement of molecular<br />

data would in the future be able to accurately identify all the novel<br />

isolates that undoubtably await description. <strong>The</strong> integration of<br />

morphology with phylogenetic data not only helps to resolve generic<br />

affinities, but it also assists in discriminating between the various<br />

cryptic species that surround many of these well-known names that<br />

are presently freely used in the literature. To that end it is interesting<br />

to note that for the majority of the taxa studied here, the ITS domain<br />

(Table 1) provided good species resolution. However, more genes<br />

will have to be screened in future studies aimed at characterising<br />

some of the species complexes where the ITS domain provided<br />

insufficient phylogenetic signal (data not shown) to resolve all of the<br />

observed morphological species.<br />

ACKNOWLEDGEMENTS<br />

<strong>The</strong> work of Mahdi Arzanlou was funded by the Ministry of Science, Research <strong>and</strong><br />

Technology of Iran, which we gratefully acknowledge. Several colleagues from<br />

different countries provided material without which this work would not have been<br />

possible. We thank Marjan Vermaas for preparing the photographic plates, <strong>and</strong><br />

Arien van Iperen for taking care of the cultures.<br />

REFERENCES<br />

Al-Hedaithy SSA, Jamjoom ZAB, Saeed ES (1988). Cerebral phaeohyphomycosis<br />

caused by Fonsecaea pedrosoi in Saudi-Arabia. Acta Pathologica Microbiologica<br />

Sc<strong>and</strong>inaviae 96 Suppl. 3: 94–100.<br />

Aptroot A (2006). Mycosphaerella <strong>and</strong> its anamorphs: 2. Conspectus of<br />

Mycosphaerella. <strong>CBS</strong> Biodiversity Series 5: 1–231.<br />

Braun U (1998). A monograph of Cercosporella, Ramularia <strong>and</strong> allied genera<br />

(phytopathogenic hypomycetes). Vol. 2. IHW-Verlag, Eching.<br />

Braun U, Crous PW, Dugan F, Groenewald JZ, Hoog GS de (2003). Phylogeny <strong>and</strong><br />

taxonomy of cladosporium-like hyphomycetes, including Davidiella gen. nov.,<br />

the teleomorph of <strong>Cladosporium</strong> s. str. Mycological Progress 2: 3–18.<br />

Campbell CK, Al-Hedaithy SSA (1993). Phaeohyphomycosis of the brain caused<br />

by Ramichloridium mackenziei sp. nov. in middle eastern countries. Journal of<br />

Medical <strong>and</strong> Veterinary Mycology 31: 325–332.<br />

Crous PW, Groenewald JZ, Groenewald M, Caldwell P, Braun U, Harrington TC<br />

(2006a). Species of Cercospora associated with grey leaf spot of maize.<br />

Studies in Mycology 55: 189–197.<br />

Crous PW, Groenewald JZ, Risède J-M, Simoneau P, Hyde KD (2006b). Calonectria<br />

species <strong>and</strong> their Cylindrocladium anamorphs: species with clavate vesicles.<br />

Studies in Mycology 55: 213–226.<br />

Crous PW, Slippers B, Wingfield MJ, Rheeder J, Marasas WFO, Phillips AJL, Alves<br />

A, Burgess T, Barber P, Groenewald JZ (2006c). Phylogenetic lineages in the<br />

Botryosphaeriaceae. Studies in Mycology 55: 235–253.<br />

Crous PW, Summerell BA, Carnegie AJ, Mohammed C, Himaman W, Groenewald<br />

JZ (2007). Foliicolous Mycosphaerella spp. <strong>and</strong> their anamorphs on Corymbia<br />

<strong>and</strong> Eucalyptus. Fungal Diversity 26: 143–185.<br />

David JC (1997). A contribution to the systematics of <strong>Cladosporium</strong>. Revision of the<br />

fungi previously referred to Heterosporium. Mycological Papers 172: 1–157.<br />

Ellis MB (1971). Dematiaceous Hyphomycetes. Commonwealth Mycological<br />

Institute, Kew.<br />

Ellis MB (1976). More Dematiaceous Hyphomycetes. Commonwealth Mycological<br />

Institute, Kew.<br />

Fernández FA, Lutzoni FM, Huhndorf SM (1999). Teleomorph-anamorph<br />

connections: the new pyrenomycetous <strong>genus</strong> Carpoligna <strong>and</strong> its Pleurothecium<br />

anamorph. Mycologia 91: 251–262.<br />

Gams W, Verkleij GJM, Crous PW (eds) (2007). <strong>CBS</strong> Course of Mycology, 5 th ed.<br />

Centraalbureau voor Schimmelcultures, Utrecht.<br />

Haase G, Sonntag L, Melzer-Krick B, Hoog GS de (1999). Phylogenetic inference<br />

by SSU-gene analysis of members of the Herpotrichiellaceae with special<br />

reference to human pathogenic species. Studies in Mycology 47: 80–97.<br />

Hoog GS de (1977). Rhinocladiella <strong>and</strong> allied genera. Studies in Mycology 15:<br />

1–140.<br />

Hoog GS de (1979). Nomenclatural notes on some black yeast-like hyphomycetes.<br />

Taxon 28: 347–348.<br />

Hoog GS de, Rahman MA, Boekhout T (1983). Ramichloridium, Veronaea <strong>and</strong><br />

Stenella: generic delimitation, new combinations <strong>and</strong> two new species.<br />

Transactions of the British Mycological Society 81: 485–490.<br />

Hoog GS de, Vicente V, Caligiorne RB, Kantarcioglu S, Tintelnot KA, Gerrits van<br />

den Ende AHG, Haase G (2003). Species diversity <strong>and</strong> polymorphism in<br />

92


Ramichloridium <strong>and</strong> allied genera<br />

the Exophiala spinifera clade containing opportunistic black yeast-like fungi.<br />

Journal of Clinical Microbiology 41: 4767–4778.<br />

Hughes SJ (1951). Studies on Microfungi. 5. Acrotheca. Mycological Papers 38:<br />

1–8.<br />

Jones RD (2000). Tropical speckle. In: Disease of Banana, Abaca <strong>and</strong> Enset (Jones<br />

RD, ed.). CABI Publishing, Wallingford: 116–120.<br />

McGinnis MR, Schell WA (1980). <strong>The</strong> <strong>genus</strong> Fonsecaea <strong>and</strong> its relationship to the<br />

genera <strong>Cladosporium</strong>, Phialophora, Ramichloridium, <strong>and</strong> Rhinocladiella. Pan<br />

American Health Organisation Scientific Publication 396: 215–234.<br />

Morgan-Jones G (1979). Notes on hyphomycetes. 28. Veronaea bambusae sp. nov.<br />

Mycotaxon 8: 149–151.<br />

Morgan-Jones G (1982). Notes on Hyphomycetes. 40. New species of Codinaea<br />

<strong>and</strong> Veronaea. Mycotaxon 14: 175–180.<br />

Mostert L, Groenewald JZ, Summerbell RC, Gams W, Crous PW (2006). Taxonomy<br />

<strong>and</strong> pathology of Togninia (Diaporthales) <strong>and</strong> its Phaeoacremonium anamorphs.<br />

Studies in Mycology 54: 1–113.<br />

Nyl<strong>and</strong>er JAA (2004). MrModeltest v2.2. Program distributed by the author.<br />

Evolutionary Biology Centre, Uppsala University.<br />

Papendorf MC (1969). New South African soil Fungi. Transactions of the British<br />

Mycological Society 52: 483–489.<br />

Papendorf MC (1976). Notes on Veronaea including V. compacta sp. nov. Bothalia<br />

12: 119–121.<br />

Rayner RW (1970). A mycological colour chart. CMI <strong>and</strong> British Mycological Society.<br />

Kew.<br />

Rehner SA, Samuels GJ (1994). Taxonomy <strong>and</strong> phylogeny of Gliocladium analysed<br />

from nuclear large subunit ribosomal DNA sequences. Mycological Research<br />

98: 625–634.<br />

Ronquist F, Huelsenbeck JP (2003). MrBayes 3: Bayesian phylogenetic inference<br />

under mixed models. Bioinformatics 19: 1572–1574.<br />

Saccardo PA, Berlese AN (1885). Miscellanea mycologica. Ser. II. Atti dell’Istituto<br />

Veneto di Scienze, Lettere ed Arti Ser. 6 3: 711–742.<br />

Schol-Schwarz MB (1968). Rhinocladiella, its synonym Fonsecaea <strong>and</strong> its relation<br />

to Phialophora. Antonie van Leeuwenhoek 34: 119–152.<br />

Schubert K, Groenewald JZ, Braun U, Dijksterhuis J, Starink M, Hill CF, Zalar P,<br />

Hoog GS de, Crous PW (2007). Biodiversity in the <strong>Cladosporium</strong> herbarum<br />

complex (Davidiellaceae, Capnodiales), with st<strong>and</strong>ardisation of methods for<br />

<strong>Cladosporium</strong> taxonomy <strong>and</strong> diagnostics. Studies in Mycology 58: 105–156.<br />

Seifert KA (1993). Integrating anamorphic fungi into the fungal system. In: <strong>The</strong><br />

Fungal Holomorph: Mitotic, Meiotic <strong>and</strong> Pleomorphic Speciation in Fungal<br />

Systematics (Reynolds DR, Taylor JW, eds). International Mycological Institute,<br />

Egham: 79–85.<br />

Stahel G (1937). <strong>The</strong> banana leaf speckle in Surinam caused by Chloridium musae<br />

nov. spec. <strong>and</strong> another related banana disease. Tropical Agriculture 14: 42–<br />

44.<br />

Sutton DA, Slifkin M, Yakulis R, Rinaldi MG (1998). U.S. case report of cerebral<br />

phaeohyphomycosis caused by Ramichloridium obovoideum (R. mackenziei):<br />

Criteria for identification, therapy, <strong>and</strong> review of other known <strong>dematiaceous</strong><br />

neurotropic taxa. Journal of Clinical Microbiology 36: 708–715.<br />

Swofford DL (2003). PAUP*. Phylogenetic Analysis Using Parsimony (*<strong>and</strong> other<br />

Methods). Version 4. Sinauer Associates, Sunderl<strong>and</strong>, Massachusetts.<br />

Taylor JW, Jacobson DJ, Kroken S, Kasuga T, Geiser DM, Hibbett DS, Fisher MC<br />

(2000). Phylogenetic species recognition <strong>and</strong> species concepts in fungi. Fungal<br />

Genetics <strong>and</strong> Biology 31: 21–32.<br />

Untereiner WA, Naveau FA (1999). Molecular systematics of the Herpotrichiellaceae<br />

with an assessment of the phylogenetic positions of Exophiala dermatitidis <strong>and</strong><br />

Phialophora americana. Mycologia 91: 67–83.<br />

Ur-Rahman N, Mahgoub E, Chagla AH (1988). Fatal brain abscesses caused by<br />

Ramichloridium obovoideum – Report of three cases. Acta Neurochirurgica 93:<br />

92–95.<br />

Veerkamp J, Gams W (1983). Los hongos de Colombia – VIII. Some new species of<br />

soil fungi from Colombia. Caldasia 13: 709–717.<br />

Vilgalys R, Hester M (1990). Rapid genetic identification <strong>and</strong> mapping of<br />

enzymatically amplified ribosomal DNA from several Cryptococcus species.<br />

Journal of Bacteriology 172: 4238–4246.<br />

White TJ, Bruns T, Lee S, Taylor J (1990). Amplification <strong>and</strong> direct sequencing of<br />

fungal ribosomal RNA genes for phylogenetics. In: PCR Protocols: a guide to<br />

methods <strong>and</strong> applications (Innis MA, Gelf<strong>and</strong> DH, Sninsky JJ, White TJ, eds).<br />

Academic Press, San Diego, California: 315–322.<br />

Zipfel RD, Beer W de, Jacobs K, Wingfield BD, Wingfield MJ (2006). Multi-gene<br />

phylogenies define Ceratocystiopsis <strong>and</strong> Grosmannia distinct from Ophiostoma.<br />

Studies in Mycology 55: 75–97.<br />

www.studiesinmycology.org<br />

93


available online at www.studiesinmycology.org<br />

doi:10.3114/sim.2007.58.04<br />

Studies in Mycology 58: 95–104. 2007.<br />

<strong>Cladosporium</strong> leaf-blotch <strong>and</strong> stem rot of Paeonia spp. caused by Dichocladosporium<br />

chlorocephalum gen. nov.<br />

K. Schubert 1* , U. Braun 2 , J.Z. Groenewald 3 <strong>and</strong> P.W. Crous 3<br />

1<br />

Botanische Staatssammlung München, Menzinger Strasse 67, D-80638 München, Germany; 2 Martin-Luther-Universität, Institut für Biologie, Geobotanik und Botanischer Garten,<br />

Herbarium, Neuwerk 21, D-06099 Halle (Saale), Germany; 3 <strong>CBS</strong> Fungal Biodiversity Centre, P.O. Box 85167, 3508 AD Utrecht, <strong>The</strong> Netherl<strong>and</strong>s<br />

*Correspondence: Konstanze Schubert, konstanze.schubert@gmx.de<br />

Abstract: <strong>Cladosporium</strong> chlorocephalum (= C. paeoniae) is a common, widespread leaf-spotting hyphomycete of peony (Paeonia spp.), characterised by having dimorphic<br />

conidiophores. During the season, one stage of this fungus causes distinct, necrotic leaf-blotch symptoms on living leaves of Paeonia spp. In late autumn, winter or after<br />

overwintering, a second morphologically distinct conidiophore type occurs on dead, blackish, rotting stems. Conspecificity of the two morphs, previously proposed on the basis<br />

of observations in culture, was supported by DNA sequence data from the ITS <strong>and</strong> LSU gene regions, using cultures obtained from leaf-blotch symptoms on living leaves, as<br />

well as from dead stems of Paeonia spp. Sequence data were identical, indicating a single species with two morphs. On account of its distinct conidiogenous loci <strong>and</strong> conidial<br />

hila, as well as its sequence-based phylogenetic position separate from the Davidiella/<strong>Cladosporium</strong> clade, the peony fungus has to be excluded from <strong>Cladosporium</strong> s. str., but<br />

still belongs to the Davidiellaceae (Capnodiales). <strong>The</strong> leaf-blotching (cladosporioid) morph of this fungus morphologically resembles species of Fusicladium, but differs in having<br />

dimorphic fruiting, <strong>and</strong> is phylogenetically distant from the Venturiaceae. <strong>The</strong> macronematous (periconioid) morph resembles Metulocladosporiella (Chaetothyriales), but lacks<br />

rhizoid conidiophore hyphae, <strong>and</strong> has 0–5-septate conidia. Hence, C. chlorocephalum is assigned to the new <strong>genus</strong> Dichocladosporium.<br />

Taxonomic novelties: Dichocladosporium K. Schub., U. Braun & Crous, gen. nov., Dichocladosporium chlorocephalum (Fresen.) K. Schub., U. Braun & Crous, comb. nov.<br />

Key words: Anamorphic fungi, <strong>Cladosporium</strong> chlorocephalum, C. paeoniae, hyphomycetes, new <strong>genus</strong>, phylogeny, taxonomy.<br />

Introduction<br />

Fresenius (1850) described Periconia chlorocephala Fresen. from<br />

Germany on dead stems of Paeonia sp. Mason & Ellis (1953)<br />

examined this species in vitro <strong>and</strong> in vivo <strong>and</strong> stated that it only<br />

occurred on dead stems of Paeonia spp. <strong>The</strong>y described, illustrated<br />

<strong>and</strong> discussed this species in detail, <strong>and</strong> reallocated it to the <strong>genus</strong><br />

<strong>Cladosporium</strong> Link.<br />

A second, cladosporioid hyphomycete on Paeonia spp.,<br />

<strong>Cladosporium</strong> paeoniae Pass., was collected by Passerini on living<br />

leaves of P. albiflora (as P. edulis) in Italy, <strong>and</strong> distributed in Thümen,<br />

Herbarium mycologicum oeconomicum, Fasc. IX, No. 416 (1876),<br />

together with the first valid description, which was repeated by<br />

Passerini (1876). Later, Passerini collected this fungus on Paeonia<br />

officinalis at Parma in Italy <strong>and</strong> distributed it in Thümen, Mycotheca<br />

universalis, No. 670 (1877). Saccardo (1882) listed a collection of<br />

this species on Paeonia anomala from Russia, Siberia, which he<br />

later described as <strong>Cladosporium</strong> paeoniae var. paeoniae-anomalae<br />

Sacc. (Saccardo 1886). A first examination of C. paeoniae in culture<br />

was accomplished by Meuli (1937), followed by a treatment in vitro<br />

by de Vries (1952). Mason & Ellis (1953) described <strong>and</strong> illustrated in<br />

their treatment of C. chlorocephalum macroconidiophores, agreeing<br />

with those of the original diagnosis <strong>and</strong> illustration of Periconia<br />

chlorocephala, as well as semi-macronematous conidiophores<br />

concurring with those of C. paeoniae, although no mention was<br />

made of the latter name. McKemy & Morgan-Jones (1991) carried<br />

out comprehensive studies on <strong>Cladosporium</strong> on Paeonia spp. in<br />

vitro <strong>and</strong> in vivo, including detailed discussions of the history of<br />

the taxa concerned, taxonomic implications <strong>and</strong> comprehensive<br />

descriptions <strong>and</strong> illustrations. <strong>The</strong>y concluded that <strong>Cladosporium</strong><br />

paeoniae, found in culture together with C. chlorocephalum, was<br />

a semi-macronematous form (synanamorph) of the latter species,<br />

<strong>and</strong> reduced C. paeoniae to synonymy with the latter species.<br />

In the present study, re-examination <strong>and</strong> reassessment of<br />

morphological characters, conidiogenesis, <strong>and</strong> DNA sequence<br />

data of the ITS <strong>and</strong> 28S nrDNA were used to confirm the identity<br />

of <strong>Cladosporium</strong> chlorocephalum (the periconioid morph) <strong>and</strong> C.<br />

paeoniae (the cladosporioid morph), <strong>and</strong> clarify their relation to<br />

<strong>Cladosporium</strong> s. str. (Davidiellaceae) (emend. David 1997, Braun<br />

et al. 2003).<br />

Materials <strong>and</strong> methods<br />

Isolates<br />

Single-conidial isolates were obtained from symptomatic leaves<br />

<strong>and</strong> dead stems, <strong>and</strong> cultured as detailed in Crous (1998). Cultural<br />

characteristics <strong>and</strong> morphology of isolates (Table 1) were recorded<br />

from plates containing either 2 % potato-dextrose agar (PDA) or<br />

synthetic nutrient-poor agar (SNA) (Gams et al. 2007). Plates were<br />

incubated at 25 °C under continuous near-UV light to promote<br />

sporulation.<br />

DNA isolation, amplification <strong>and</strong> sequencing<br />

Fungal colonies were established on agar plates, <strong>and</strong> genomic<br />

DNA was isolated following the protocol of Lee & Taylor (1990).<br />

<strong>The</strong> primers V9G (de Hoog & Gerrits van den Ende 1998) <strong>and</strong> LR5<br />

(Vilgalys & Hester 1990) were used to amplify part (ITS) of the nuclear<br />

rDNA operon spanning the 3’ end of the 18S rRNA gene (SSU), the<br />

first internal transcribed spacer (ITS1), the 5.8S rRNA gene, the<br />

second ITS region <strong>and</strong> the 5’ end of the 28S rRNA gene (LSU).<br />

<strong>The</strong> primers ITS4 (White et al. 1990), LR0R (Rehner & Samuels<br />

1994), LR3R (www.biology.duke.edu/fungi/mycolab/primers.htm)<br />

<strong>and</strong> LR16 (Moncalvo et al. 1993) were used as internal sequence<br />

primers to ensure good quality sequences over the entire length<br />

of the amplicon. <strong>The</strong> PCR conditions, sequence alignment <strong>and</strong><br />

subsequent phylogenetic analysis followed the methods of Crous<br />

et al. (2006b). Gaps longer than 10 bases were coded as single<br />

events for the phylogenetic analyses; the remaining gaps were<br />

treated as new character states. Sequence data were deposited<br />

in GenBank (Table 1) <strong>and</strong> alignments in TreeBASE (www.treebase.<br />

org).<br />

95


Schubert et al.<br />

Morphology<br />

Morphological examinations were made from herbarium samples,<br />

fresh symptomatic leaves <strong>and</strong> stems, as well as cultures sporulating<br />

on SNA. Structures were mounted in water or Shear’s solution<br />

(Dhingra & Sinclair 1985), <strong>and</strong> 30 measurements at × 1 000<br />

magnification were made of each structure under an Olympus BX<br />

50 microscope (Hamburg, Germany). <strong>The</strong> 95 % confidence levels<br />

were determined <strong>and</strong> the extremes of spore measurements given<br />

in parentheses. Scanning electron microscopic examinations were<br />

conducted at the Institute of Zoology, Martin-Luther-University,<br />

Halle (Saale), Germany, using a Hitachi S-2400. Samples were<br />

coated with a thin layer of gold applied with a sputter coater SCD<br />

004 (200 s in an argon atmosphere of 20 mA, 30 mm distant<br />

from the electrode). Colony colours were noted after 2 wk growth<br />

on PDA at 25 °C in the dark, using the colour charts of Rayner<br />

(1970). All cultures studied were deposited in the culture collection<br />

of the Centraalbureau voor Schimmelcultures (<strong>CBS</strong>), Utrecht,<br />

the Netherl<strong>and</strong>s (Table 1). Taxonomic novelties were lodged with<br />

MycoBank (www.MycoBank.org).<br />

Results<br />

DNA phylogeny<br />

Amplification products of approximately 1 700 bases were obtained<br />

for the isolates listed in Table 1. <strong>The</strong> ITS region of the sequences<br />

was used to obtain additional sequences from GenBank which were<br />

added to the alignment. <strong>The</strong> manually adjusted alignment contained<br />

26 sequences (including the two outgroup sequences) <strong>and</strong> 518<br />

characters including alignment gaps. Of the 518 characters used<br />

in the phylogenetic analysis, 226 were parsimony-informative, 33<br />

were variable <strong>and</strong> parsimony-uninformative, <strong>and</strong> 259 were constant.<br />

Neighbour-joining analysis using three substitution models on the<br />

sequence data yielded trees supporting the same clades but with<br />

a different arrangement at the deeper nodes. <strong>The</strong>se nodes were<br />

supported poorly in the bootstrap analyses (the highest value<br />

observed for one of these nodes was 64 %; data not shown).<br />

Two equally most parsimonious trees (TL = 585 steps; CI =<br />

0.761; RI = 0.902; RC = 0.686), one of which is shown in Fig. 1,<br />

was obtained from the parsimony analysis of the ITS region. <strong>The</strong><br />

Dichocladosporium K. Schub., U. Braun & Crous isolates formed a<br />

well-supported clade (100 % bootstrap support), distinct from clades<br />

containing species of Davidiella Crous & U. Braun, Mycosphaerella<br />

Johanson <strong>and</strong> Teratosphaeria Syd. & P. Syd. This placement was<br />

also supported by analyses of the first part of the 28S rRNA gene<br />

(see Crous et al. 2007 – this volume).<br />

Taxonomy<br />

Because conidia formed holoblastically in simple or branched<br />

acropetal chains, <strong>Cladosporium</strong> chlorocephalum <strong>and</strong> C. paeoniae<br />

coincided with previous concepts of <strong>Cladosporium</strong> s. lat. (Braun<br />

et al. 2003, Schubert 2005), belonging to a wide assemblage of<br />

genera classified by Kiffer & Morelet (1999) as “Acroblastosporae”.<br />

Previous studies conducted in vitro concluded that <strong>Cladosporium</strong><br />

chlorocephalum <strong>and</strong> C. paeoniae represent two developmental<br />

stages (morphs) of a single species, a result confirmed here by<br />

DNA sequence analyses. A detailed analysis of conidiogenesis,<br />

structure of the conidiogenous loci <strong>and</strong> conidial hila, <strong>and</strong> a<br />

comparison with <strong>Cladosporium</strong> s. str., typified by C. herbarum<br />

(Pers. : Fr.) Link, revealed obvious differences: <strong>The</strong> conidiogenous<br />

loci <strong>and</strong> conidial hila of C. chlorocephalum are quite distinct from<br />

those of <strong>Cladosporium</strong> s. str. by being denticulate or subdenticulate,<br />

apically broadly truncate, unthickened or slightly thickened, but<br />

somewhat darkened-refractive. <strong>The</strong> scars in <strong>Cladosporium</strong> s.<br />

str. are, however, characteristically coronate, i.e., with a central<br />

convex dome surrounded by a raised periclinal rim (David 1997,<br />

Braun et al. 2003, Schubert 2005). Hence, the peony fungus<br />

has to be excluded from <strong>Cladosporium</strong> s. str. A comparison with<br />

phaeoblastic hyphomycetous genera revealed a close <strong>similar</strong>ity of<br />

this fungus with the <strong>genus</strong> Metulocladosporiella Crous, Schroers,<br />

J.Z. Groenew., U. Braun & K. Schub. recently introduced for the<br />

<strong>Cladosporium</strong> speckle disease of banana (Crous et al. 2006a).<br />

Both fungi have dimorphic fruiting, pigmented macronematous<br />

conidiophores often with distinct basal swellings <strong>and</strong> densely<br />

branched terminal heads composed of short branchlets <strong>and</strong><br />

ramoconidia, denticulate or subdenticulate unthickened, but<br />

somewhat darkened-refractive conidiogenous loci, as well as<br />

phaeoblastic conidia, formed in simple or branched acropetal<br />

chains. <strong>The</strong> semi-macronematous leaf-blotching morph is close<br />

to <strong>and</strong> barely distinguishable from Fusicladium Bonord. However,<br />

unlike Metulocladosporiella, the peony fungus does not form rhizoid<br />

hyphae at the base of conidiophore swellings <strong>and</strong> the conidia are<br />

amero- to phragmosporous [0–5-septate versus 0(–1)-septate<br />

in Metulocladosporiella]. Furthermore, the peony fungus neither<br />

clusters within the Chaetothyriales (with Metulocladosporiella)<br />

nor within the Venturiaceae (with Fusicladium), but clusters basal<br />

to the Davidiellaceae (see also Crous et al. 2007 – this volume).<br />

Hence, we propose to place C. chlorocephalum in the new <strong>genus</strong><br />

Dichocladosporium.<br />

Dichocladosporium K. Schub., U. Braun & Crous, gen. nov.<br />

MycoBank MB504428. Figs 2–5.<br />

Etymology: dicha in Greek = twofold.<br />

Differt a Metulocladosporiella conidiophoris cum cellulis basalibus saepe inflatis,<br />

sed sine hyphis rhizoidibus, conidiis amero- ad phragmosporis (0–5-septatis).<br />

Type species: Dichocladosporium chlorocephalum (Fresen.) K.<br />

Schub., U. Braun & Crous, comb. nov.<br />

Dichocladosporium chlorocephalum (Fresen.) K. Schub., U.<br />

Braun & Crous, comb. nov. MycoBank MB504429. Figs 2–5.<br />

Basionym: Periconia chlorocephala Fresen., Beiträge zur Mykologie<br />

1: 21. 1850.<br />

≡ Haplographium chlorocephalum (Fresen.) Grove, Sci. Gossip 21: 198.<br />

1885.<br />

≡ Graphiopsis chlorocephala (Fresen.) Trail, Scott. Naturalist (Perth) 10:<br />

75. 1889.<br />

≡ <strong>Cladosporium</strong> chlorocephalum (Fresen.) E.W. Mason & M.B. Ellis,<br />

Mycol. Pap. 56: 123. 1953.<br />

= <strong>Cladosporium</strong> paeoniae Pass., in Thümen, Herb. Mycol. Oecon., Fasc. IX,<br />

No. 416. 1876, <strong>and</strong> in Just´s Bot. Jahresber. 4: 235. 1876.<br />

= Periconia ellipsospora Penz. & Sacc., Atti Reale Ist. Veneto Sci. Lett. Arti,<br />

Ser. 6, 2: 596. 1884.<br />

= <strong>Cladosporium</strong> paeoniae var. paeoniae-anomalae Sacc., Syll. Fung. 4: 351.<br />

1886.<br />

= Haplographium chlorocephalum var. ovalisporum Ferraris, Fl. Ital. Cryptog.,<br />

Hyphales: 875. 1914.<br />

Descriptions: Mason & Ellis (1953: 123–126), McKemy & Morgan-<br />

Jones (1991: 140–144), Schubert (2005: 216).<br />

Illustrations: Fresenius (1850: Pl. IV, figs 10–15), Mason & Ellis<br />

(1953: 124–125, figs 42–43), McKemy & Morgan-Jones (1991:<br />

137, fig. 1; 141, fig. 2; 139, pl. 1; 143, pl. 2), Schubert (2005: 217,<br />

fig. 113; 275, pl. 34).<br />

96


Dichocladosporium gen. nov.<br />

10 changes<br />

Botryosphaeria ribis DQ316076<br />

Botryosphaeria stevensii AY343484<br />

100<br />

97<br />

70<br />

100<br />

100<br />

100<br />

97<br />

100<br />

100<br />

69<br />

<strong>Cladosporium</strong> tenellum CPC 12053<br />

<strong>Cladosporium</strong> variabile CPC 12753<br />

<strong>Cladosporium</strong> herbarum CPC 11600<br />

<strong>Cladosporium</strong> macrocarpum <strong>CBS</strong> 299.67<br />

<strong>Cladosporium</strong> bruhnei CPC 12211<br />

<strong>Cladosporium</strong> ossifragi <strong>CBS</strong> 842.91<br />

<strong>Cladosporium</strong> iridis <strong>CBS</strong> 138.40<br />

CPC 11383<br />

CPC 11969<br />

<strong>CBS</strong> 213.73<br />

<strong>CBS</strong> 100405<br />

100<br />

91<br />

Mycosphaerella punctiformis AY490763<br />

Passalora arachidicola AF297224<br />

Mycosphaerella aurantia AY509744<br />

Passalora fulva AF393701<br />

Cercospora apii AY840512<br />

Cercospora beticola AY840527<br />

Readeriella mirabilis AY725529<br />

Readeriella novaezel<strong>and</strong>iae DQ267603<br />

Teratosphaeria readeriellophora AY725577<br />

Teratosphaeria microspora AY260098<br />

Trimmatostroma abietis AY559362<br />

Trimmatostroma abietina AJ244267<br />

Trimmatostroma salicis AJ244264<br />

Dichocladosporium chlorocephalum<br />

Fig. 1. One of two equally most parsimonious trees obtained from a heuristic search with 100 r<strong>and</strong>om taxon additions of the ITS sequence alignment. <strong>The</strong> scale bar shows<br />

10 changes, <strong>and</strong> bootstrap support values from 1 000 replicates are shown at the nodes. Thickened lines indicate the strict consensus branches. <strong>The</strong> tree was rooted to two<br />

Botryosphaeria species.<br />

Characters of the cladosporioid morph: Leaf-blotch symptoms on<br />

living leaves amphigenous, variable in shape <strong>and</strong> size, subcircularoval<br />

to irregular, broad, oblong to exp<strong>and</strong>ed, up to 30 mm long<br />

<strong>and</strong> 20 mm wide, at times covering the entire leaf surface, forming<br />

olivaceous-brown to blackish brown patches, rarely violet-brown,<br />

margin usually indefinite, attacked areas turning dry with age,<br />

also occurring on young, green stems. Colonies amphigenous,<br />

punctiform to effuse, loose to dense, caespitose, brown, villose.<br />

Mycelium immersed, subcuticular to intraepidermal; hyphae<br />

sparingly branched, 4–7(–10) µm wide, septate, sometimes with<br />

swellings <strong>and</strong> constrictions, swollen cells up to 13 µm diam,<br />

subhyaline to pale brown, smooth, walls thickened, hyphae<br />

sometimes aggregated; in vitro mycelium at first mainly immersed,<br />

later also superficial, branched, 1–5(–7) µm wide, pluriseptate,<br />

often constricted at septa <strong>and</strong> with swellings <strong>and</strong> constrictions,<br />

therefore irregular in outline, smooth to verruculose or irregularly<br />

rough-walled, loosely verruculose with distinct large warts. Semimacronematous<br />

conidiophores formed on leaf-blotches solitary<br />

or in small, loose groups, arising from internal hyphae or swollen<br />

hyphal cells, erumpent through the cuticle, occasionally emerging<br />

through stomata, erect, straight to somewhat flexuous, oblongcylindrical,<br />

usually unbranched or occasionally branched, 13–80<br />

(–120) × (4–)5–8(–10) µm, slightly attenuated towards the apex,<br />

septate, septa often dense, unconstricted, pale to medium brown,<br />

sometimes paler towards the apex, smooth, thick-walled, wall often<br />

with two distinct layers, often somewhat inflated at the very base,<br />

up to 14 µm diam, occasionally proliferating enteroblastically; in<br />

vitro conidiophores arising laterally from plagiotropous hyphae or<br />

terminally from ascending hyphae, the latter usually appearing<br />

more filiform than those arising laterally from plagiotropous hyphae,<br />

erect, straight to slightly flexuous, cylindrical-oblong, not geniculate,<br />

usually unbranched, rarely with a short lateral prolongation near<br />

the apex, 18–60(–100) × 3–6 µm, slightly attenuated towards<br />

the apex, septate, pale to medium brown or olivaceous-brown,<br />

smooth to asperulate, walls somewhat thickened. Conidiogenous<br />

cells integrated, terminal or intercalary, subcylindrical, 7–45 µm<br />

www.studiesinmycology.org<br />

97


Schubert et al.<br />

Fig. 2. Dichocladosporium chlorocephalum (HAL 1924 F), periconioid, stem rotting morph. Conidiophores <strong>and</strong> conidia. Scale bar = 10 µm.<br />

Table 1. Isolates subjected to DNA analysis <strong>and</strong> morphological examination.<br />

Species Accession number 1 Host Country Collector GenBank accession<br />

number<br />

Dichocladosporium chlorocephalum <strong>CBS</strong> 213.73; IMI 048108a Paeonia sp. United Kingdom F. Rilstone EU009455<br />

<strong>CBS</strong> 100405 Paeonia sp. New Zeal<strong>and</strong> M. Braithwaite EU009456<br />

<strong>CBS</strong> 121522; CPC 11383 Paeonia delavayi Germany K. Schubert EU009457<br />

<strong>CBS</strong> 121523*; CPC 11969 Paeonia officinalis Germany K. Schubert EU009458<br />

1<br />

<strong>CBS</strong>: Centraalbureau voor Schimmelcultures, Utrecht, <strong>The</strong> Netherl<strong>and</strong>s; CPC: Culture collection of Pedro Crous, housed at <strong>CBS</strong>; IMI: International<br />

Mycological Institute, CABI-Bioscience, Egham, Bakeham Lane, U.K.<br />

*Ex-type cultures.<br />

98


Dichocladosporium gen. nov.<br />

Fig. 3. Dichocladosporium chlorocephalum (<strong>CBS</strong> 121523 = CPC 11969). A–B. Symptoms of the periconioid, stem rotting morph. C–E, H. Macroconidiophores <strong>and</strong> conidia. F–G.<br />

Semi-macronematous conidiophores <strong>and</strong> conidia. I–J. Ramoconidia <strong>and</strong> conidia. K–M. Scanning electron microscopic photographs. K. Conidiophores. L. Conidial chain. M.<br />

Single conidium showing the surface ornamentation <strong>and</strong> scar structure. Scale bars: C–J, L = 10 µm; K = 100 µm; M = 2 µm.<br />

www.studiesinmycology.org<br />

99


Schubert et al.<br />

Fig. 4. Dichocladosporium chlorocephalum (HAL 2011 F), cladosporioid, leaf-spotting morph. Conidiophores <strong>and</strong> conidia. Scale bar = 10 µm.<br />

long, proliferation sympodial, with one to several conidiogenous<br />

loci, subdenticulate or denticulate, protuberant, terminally broadly<br />

truncate, 1.5–3 µm wide, unthickened or almost so, somewhat<br />

darkened-refractive. Conidia catenate, in simple or branched<br />

chains, polymorphous, small conidia globose, subglobose, broadly<br />

obovoid, 3–9 × 3–5 µm, aseptate, pale to medium brown, smooth,<br />

intercalary conidia limoniform, ellipsoid-fusiform, oblong, 5–23<br />

× 3.5–6.5 µm, 0–2-septate, medium brown, smooth to minutely<br />

verruculose or irregularly rough-walled, large conidia ellipsoid,<br />

oblong-cylindrical, ampulliform, 22–45(–52) × (4.5–)5–8 µm,<br />

0–5-septate, medium brown, smooth to minutely verruculose or<br />

irregularly rough-walled, walls somewhat thickened, hila truncate,<br />

1–3 µm wide, unthickened or almost so, somewhat darkenedrefractive;<br />

occasionally with microcyclic conidiogenesis; in vitro<br />

numerous, polymorphous, catenate, in loosely branched chains,<br />

small conidia globose, subglobose, or obovoid, 3–8 × 3–4 µm,<br />

aseptate, intercalary conidia limoniform to ellipsoid-fusiform, 9–18<br />

× 3.5–4.5 µm, 0–1-septate, large conidia ellipsoid to cylindricaloblong,<br />

14–30(–38) × 3–6(–7) µm, 0–3-septate, pale to medium<br />

brown, asperulate, minutely verruculose to irregularly roughwalled,<br />

walls thickened, hila usually short denticle-like, protuberant,<br />

truncate, in smaller conidia 0.5–1.8 µm wide, in larger conidia<br />

(1.5–)2–3 µm wide, unthickened or almost so but usually darkenedrefractive;<br />

with occasional microcyclic conidiogenesis.<br />

Characters of the periconioid morph: Macronematous conidiophores<br />

formed on faded or dead stems in late autumn, winter or after<br />

overwintering; colonies at first visible as reddish brown streaks, later<br />

turning olivaceous-brown to black, sometimes linear, sometimes<br />

encircling the stems, often occupying large stem segments, effuse,<br />

densely caespitose, velvety. Mycelium immersed, subcuticular<br />

100


Dichocladosporium gen. nov.<br />

to intraepidermal; hyphae at first sparsely branched, 3–7 µm<br />

wide, septate, not constricted at the septa, becoming swollen<br />

<strong>and</strong> wider, up to 11 µm wide, often branched, pale to medium<br />

olivaceous-brown, walls thickened, forming loose to dense hyphal<br />

aggregations; in vitro mycelium immersed to superficial, loosely<br />

branched, 2–6(–7) µm wide, pluriseptate, usually without swellings<br />

<strong>and</strong> constrictions, subhyaline to medium brown or olivaceousbrown,<br />

almost smooth to asperulate or irregularly rough-walled, in<br />

older colonies on PDA up to 10 µm wide, sometimes single hyphal<br />

cells distinctly swollen, up to 16(–20) µm wide, mainly at the base<br />

of conidiophores, sometimes covered by a slime coat or enveloped<br />

in a polysaccharide-like layer. Stromata well-developed, large <strong>and</strong><br />

exp<strong>and</strong>ed, up to about 50–320 µm in length, 15–30 µm deep,<br />

composed of a single to several layers of swollen pale to medium<br />

brown stromatic cells, 5–18 µm diam, thick-walled. Conidiophores<br />

solitary or in loose groups, arising from swollen hyphal cells or<br />

stromata, erumpent through the cuticle, erect, straight, rigid to<br />

slightly flexuous, 150–680 µm long, composed of a subcylindrical<br />

stipe, 13–24 µm wide at the base, slightly attenuated towards<br />

the apex, 5–15 µm just below the branched head, pluriseptate,<br />

not constricted at the septa, young conidiophores pale medium<br />

olivaceous-brown, later medium to usually dark brown, sometimes<br />

slightly paler at the distal end, smooth or almost so, often appearing<br />

somewhat granular, roughened, walls distinctly thickened, 1.5–3(–<br />

4) µm wide; apex with a roughly subglobose to ovoid head, about<br />

35–70 µm diam, composed of dense branchlets <strong>and</strong> ramoconidia,<br />

primary branchlets close to the apex <strong>and</strong> below the first <strong>and</strong><br />

sometimes second <strong>and</strong> third septa, solitary, in pairs or small verticils,<br />

appressed against the stipe or somewhat divergent, subcylindrical<br />

to ellipsoid-oval, aseptate, rarely 1-septate, pale olivaceous to dark<br />

brown, 10–20 × 5–8.5 µm; in vitro conidiophores initially micro<strong>and</strong><br />

semimacronematous, then progressively macronematous<br />

as colonies age, arising laterally from plagiotropous hyphae or<br />

terminally from ascending hyphae, sometimes also from swollen<br />

hyphal cells; micronematous conidiophores filiform, narrowly<br />

cylindrical-oblong, unbranched, up to 150 µm long, 2–3.5 µm wide,<br />

septate, septa often appear to be darkened, pale to pale medium<br />

olivaceous-brown, asperulate, walls slightly thickened; semimacronematous<br />

conidiophores often resembling those formed<br />

by the leaf-blotching (cladosporioid) morph on the natural host,<br />

subcylindrical to cylindrical-oblong, straight to slightly flexuous,<br />

unbranched, rarely branched, (10–)15–120 × 3–5(–6) µm, slightly<br />

attenuated towards the apex, septate, medium brown, minutely<br />

verruculose to irregularly rough-walled, walls more or less thickened;<br />

macronematous conidiophores formed in older cultures on SNA,<br />

PDA <strong>and</strong> also MEA (according to McKemy & Morgan-Jones 1991),<br />

but more prominent on PDA <strong>and</strong> MEA, resembling those formed<br />

by the stem-rotting morph (i.e., the periconioid morph, in planta),<br />

consisting of a long unbranched stipe <strong>and</strong> a subglobose head, but<br />

in culture the heads are often more loosely branched than on the<br />

natural substratum, not always forming a compact head, up to 580<br />

µm long, 5–13 µm wide, attenuated towards the apex, 4–8 µm<br />

just below the branched upper part, somewhat swollen at the base,<br />

septate, medium to very dark brown, minutely verruculose, walls<br />

distinctly thickened, two distinct wall layers visible, 1–2 µm thick.<br />

Conidiogenous cells holoblastic, integrated, terminal, intercalary or<br />

even discrete, ellipsoid to cylindrical or doliiform, subdenticulate,<br />

proliferation sympodial, multilocal, conidiogenous loci truncate,<br />

flat, unthickened, 1–3 µm wide, somewhat darkened-refractive; in<br />

culture conidiogenous loci appearing to be somewhat thickened<br />

<strong>and</strong> distinctly darkened-refractive, 1–2.5(–3) µm wide. Conidia<br />

catenate, in long, branched chains, straight, subglobose, aseptate,<br />

3.5–7 µm diam, or ellipsoid-ovoid, 6–15 × 4–9 µm, 0(–1)-septate,<br />

pale olivaceous to olivaceous-brown, smooth to verruculose (under<br />

the light microscope), hila flat, truncate, unthickened, (0.5–)1–<br />

2(–2.5) µm wide, not darkened, but somewhat refractive; in vitro<br />

conidia numerous, catenate, formed in long, branched chains, small<br />

conidia globose to subglobose, (2–)3–7 × (2–)3–4 µm, aseptate,<br />

intercalary ones ellipsoid-ovoid, 6–16 × 3.5–5 µm, 0(–1)-septate,<br />

secondary ramoconidia ellipsoid to cylindrical-oblong, (13–)<br />

15–34(–47) × (3–)4–6(–7) µm, 0–2-septate, sometimes slightly<br />

constricted at the septa, medium olivaceous-brown, verruculose or<br />

irregularly rough-walled, walls slightly to distinctly thickened, hila<br />

more or less protuberant, subdenticulate to denticulate, in small <strong>and</strong><br />

intercalary conidia 0.5–1(–1.5) µm, in secondary ramoconidia 1–2.5<br />

(–3) µm, unthickened or somewhat thickened, darkened-refractive;<br />

occasional microcyclic conidiogenesis.<br />

Cultural characteristics: Colonies on PDA at first whitish or smoke<br />

grey, reverse smoke-grey to olivaceous-grey, with age smoke-grey<br />

to olivaceous or olivaceous-grey, sometimes even dark mouse-grey,<br />

reverse iron-grey to dark mouse-grey or black, felty; margin white<br />

to smoke-grey, narrow to more or less broad, regular to slightly<br />

undulate, glabrous to somewhat feathery; aerial mycelium at first<br />

mainly in the colony centre, with age abundantly formed, covering<br />

almost the whole colony, whitish, smoke-grey to olivaceous, felty;<br />

growth low convex to raised; numerous small exudates formed,<br />

sometimes becoming prominent; fertile.<br />

Specimens examined: Czechoslovakia, Bohemia, Turnau, on leaves of Paeonia<br />

arborea, 15 Sep. 1905, J.E. Kabát, Kabát & Bubák, Fungi Imperf. Exs. 396, B 70-<br />

6669. France, on dead stems of Paeonia sp., 1901, ex Herbario Musei Parisiensis,<br />

ex herb. Magnus, exs. Desmazières, Pl. Crypt. N. France, Ed. 2, Ser. 1, 1621, HBG,<br />

as “Periconia atra”; Chailly-en-Biere, Seine-et-Marne, Feuilleaubois, on stems of<br />

P. officinalis, 27 Mar. 1881, Roumeguère, Fungi Sel. Gall. Exs. 1803, HBG, as<br />

“Periconia atra”. Germany, Baden-Würtemberg, Kreis Tübingen, Drusslingen, on<br />

leaves of P. officinalis, Jun. 1935, Raabe, B 70-6670; Bayern, Freising, on leaves<br />

of P. officinalis, Sep. 1918, Prof. Dr. J.E. Weiß, Herbarium pathologicum, B 70-<br />

6663; Br<strong>and</strong>enburg, Schloßpark zu Tamsel, on leaves of P. officinalis, 15 Aug.<br />

1924, P. Vogel, Sydow, Mycoth. Germ. 2447, M-57751, PH; Triglitz, on leaves of<br />

P. officinalis, 3 Oct. 1909, Jaap, B 70-6668; Hessen, Frankfurt am Main, botanical<br />

garden, on leaves of P. potaninii, 7 Oct. 2004, R. Kirschner, HAL, RoKi 2222; Kreis<br />

Kassel, Hofgeismar, Garten von Prof. Grupe, on leaves of P. officinalis, 3 Sep.<br />

1947, Schulz, B 70-6658; Mecklenburg-Vorpommern, Rostock, neuer botanischer<br />

Garten, on leaves of P. corallina (= P. mascula), 27 Aug. 1950, Becker, B 70-6662;<br />

Nordrhein-Westfalen, Duisburg, Dinslake, private garden, on leaves of P. anomala,<br />

9 Aug. 2005, N. Ale-Agha, HAL 2014 F; Hamborn, botanical garden, on leaves of P.<br />

obovata, 10 Aug. 2005, N. Ale-Agha, HAL 2017 F; Essen, botanical garden of the<br />

university of Essen, on leaves of P. mlokosewitschii, 10 Aug. 2005, N. Ale-Agha,<br />

HAL 2013 F; on leaves of P. officinalis <strong>and</strong> P. suffruticosa, 11 Aug. 2005, N. Ale-<br />

Agha, HAL 2016, 2017 F; Sachsen, Königstein, in Gärten, verbreitet, on leaves of<br />

P. officinalis, Aug. 1896, W. Krieger, Krieger, Fungi Saxon. Exs. 1545, M-57749;<br />

Aug., Sep. 1896, 1915, W. Krieger, Krieger, Schädliche Pilze, B 70-6666, 70-6667;<br />

Sachsen-Anhalt, Halle (Saale), Botanical Garden, on leaves of P. delavayi, 22<br />

Jun. 2004, K. Schubert, HAL 2011 F, culture deposited at the <strong>CBS</strong>, <strong>CBS</strong> 121522 =<br />

CPC 11383; on leaves of P. officinalis, 22 Jun. 2004, K. Schubert, HAL 2012 F; on<br />

stems of P. officinalis, 16 Mar. 2005, K. Schubert, neotype of Dichocladosporium<br />

chlorocephalum designated here HAL 1924 F, isoneotype <strong>CBS</strong>-H 19869, culture<br />

ex-neotype <strong>CBS</strong> 121523 = CPC 11969; on dead stems of Paeonia sp., Jan. 1873,<br />

G. Winter, Rabenhorst, Fungi Eur. Exs. 1661, HBG, as “Periconia chlorocephala”;<br />

Thüringen, Fürstlicher Park zu Sondershausen, on leaves of P. arborea, 20 Aug.<br />

1903, G. Oertel, Sydow, Mycoth. Germ. 196, PH. Italy, Thümen, Herb. Mycol.<br />

Oecon. 416, on living leaves of Paeonia lactiflora [= P. edulis] (M-57753), lectotype<br />

of “<strong>Cladosporium</strong> paeoniae” designated here; isolectotypes: Thümen, Herb.<br />

Mycol. Oecon. 416; Padova, on leaves of P. officinalis, Aug. 1902, P.A. Saccardo,<br />

Saccardo, Mycoth. Ital. 1186, B 70-6660, SIENA; Parma, on leaves of P. officinalis,<br />

Jul. 1876, Prof. Passerini, Thümen, Mycoth. Univ. 670, B 70-6654, 70-6655, M-<br />

57752; Pavia, botanical garden, on leaves of P. officinalis, summer 1889, Briosi &<br />

Cavara, Fung. Paras. Piante Colt. Utili Ess. 78, M-57748; F. Cavara, Roumeguère,<br />

Fungi Sel. Gall. Exs. 5193, mixed infection with <strong>Cladosporium</strong> herbarum, B 70-<br />

6656; Siena, Hort. Bot., on leaves of Paeonia sp., Nov. 1899, SIENA. Latvia, prov.<br />

Vidzeme, Kreis Riga, Riga, in a garden, on leaves of P. foemina [= P. officinalis], 28<br />

Aug. 1936, J. Smarods, Fungi Lat. Exs. 799, M-57747. New Zeal<strong>and</strong>, isolated from<br />

www.studiesinmycology.org<br />

101


Schubert et al.<br />

Fig. 5. Dichocladosporium chlorocephalum (<strong>CBS</strong> 121522 = CPC 11383). A–B. Symptoms on leaves of Paeonia officinalis <strong>and</strong> P. delavayi caused by the cladosporioid, leaf spotting<br />

morph. C–D. Conidiophores <strong>and</strong> conidia. E. Ramoconidia <strong>and</strong> conidia. F–G. Scanning electron microscopic photographs. F. Conidial chain still attached to a conidiophore.<br />

G. Conidia showing surface ornamentation <strong>and</strong> scar structure. Scale bars: C–E, G = 10 µm; F = 5 µm.<br />

red leaf <strong>and</strong> stem lesions on Paeonia sp., M. Braithwaite, <strong>CBS</strong> 100405. Romania,<br />

Râmnicu-Vâlcea, distr. Vâlcea, Oltenia, on leaves of P. officinalis, 17 Aug. 1930,<br />

Tr. Săvulescu & C. S<strong>and</strong>u, Săvulescu, Herb. Mycol. Roman. 298, M-57742. U.K.,<br />

Engl<strong>and</strong>, Cornwall, Lambounce Hill, Perranzubuloe, isolated from dead stems of<br />

Paeonia sp., isol. F. Rilstone, <strong>CBS</strong> 213.73 = IMI 048108a. U.S.A., on leaves of<br />

Paeonia sp., Sep. 1878, Ellis, N. Amer. Fungi 543, B 70-6659, M-57744, PH; Illinois,<br />

Cobden, on leaves of Paeonia sp., 8 Aug. 1882, F.S. Earle, No. 91, B 70-6657;<br />

Kansas, Topeka, on leaves of P. officinalis, 7 Jul. 1922, C.F. Menninger, US Dept.<br />

Agric., Pathol. Mycol. Coll. 60085, B 70-6661, F; Montana, Columbia, on leaves of<br />

P. officinalis, Aug. 1886, B.T. Galloway, Ellis & Everh., N. Amer. Fungi Ser. II, 1991,<br />

PH; on leaves of Paeonia sp., 18 Oct. 1931, W.E. Maneval, F.<br />

Host range <strong>and</strong> distribution: On Paeonia anomala, P. arborea, P.<br />

delavayi, P. hybrida, P. lactiflora, P. mascula, P. mlokosewitschii,<br />

P. moutan, P. obovata, P. obovata var. willmotiae, P. officinalis,<br />

P. potaninii, P. suffruticosa, Paeonia spp. (Paeoniaceae), Asia<br />

(Armenia, China, Georgia, Kazakhstan, Russia), Europe (Belgium,<br />

102


Dichocladosporium gen. nov.<br />

Czechoslovakia, Denmark, France, Germany, Italy, Latvia, Moldova,<br />

Pol<strong>and</strong>, Romania, Switzerl<strong>and</strong>, U.K., Ukraine), North America<br />

(Canada, U.S.A.), New Zeal<strong>and</strong>.<br />

Notes: Type material of Periconia chlorocephala is not preserved<br />

in the herbarium of G. Fresenius at FR (Forschungsinstitut<br />

Senkenberg, Frankfurt a. M., Germany). Hence, a new specimen<br />

collected in the Botanical Garden of the Martin-Luther-University<br />

Halle (Saale), Germany, is proposed to serve as neotype. A culture<br />

derived from this collection is deposited at the <strong>CBS</strong>, Utrecht, the<br />

Netherl<strong>and</strong>s as ex-neotype culture. A leaf-blotch sample, also<br />

collected in the Botanical Garden at Halle (Saale), from which we<br />

also derived a living culture, is designated as representative of the<br />

synanamorph, <strong>Cladosporium</strong> paeoniae. Both cultures have been<br />

used to generate DNA sequence data.<br />

<strong>The</strong> two stages (morphs) of this fungus are usually ecologically<br />

<strong>and</strong> seasonally separated, but sometimes conidiophores of the<br />

leaf-blotching (cladosporioid) morph also occur on dead stems of<br />

peony intermixed with the macronematous conidiophores of the<br />

periconioid morph. In culture conidiophore <strong>and</strong> conidial width tends<br />

to be narrower than on the natural substratum, <strong>and</strong> the conidia are<br />

not as frequently septate.<br />

DISCUSSION<br />

Cultural studies by ourselves <strong>and</strong> McKemy & Morgan-Jones<br />

(1991), <strong>and</strong> molecular sequence analyses documented herein<br />

clearly demonstrate that <strong>Cladosporium</strong> chlorocephalum, occurring<br />

on necrotic stems, <strong>and</strong> C. paeoniae, causing leaf-blotch symptoms<br />

on living leaves of Paeonia spp., are two synanamorphs of a single<br />

species, which has to be excluded from <strong>Cladosporium</strong> s. str. since<br />

the conidiogenous loci are quite distinct from the characteristically<br />

coronate scars in the latter <strong>genus</strong> <strong>and</strong> because ITS sequences<br />

indicate clear separation from <strong>Cladosporium</strong> s. str.<br />

Analysis of the morphology <strong>and</strong> conidiogenesis showed that<br />

the macronematous stage of this fungus (C. chlorocephalum, the<br />

periconioid morph) closely resembles Metulocladosporiella, recently<br />

introduced for the <strong>Cladosporium</strong> speckle disease of banana. <strong>The</strong>re<br />

are, however, some differences. In Metulocladosporiella musae<br />

(E.W. Mason) Crous et al., the type species, micronematous<br />

conidiophores occur in vitro <strong>and</strong> in vivo, <strong>and</strong> macronematous<br />

conidiophores occur on leaf-spots, whereas in C. chlorocephalum<br />

the semi-macronematous conidiophores usually accompany<br />

leaf-blotch symptoms on living leaves <strong>and</strong> the macronematous<br />

conidiophores occur in saprobic growth on old necrotic stems.<br />

Rhizoid hyphae arising from the swollen basal cells of the<br />

macronematous conidiophores are characteristic for M. musae, but<br />

lacking in C. chlorocephalum, <strong>and</strong> the conidia in the latter species<br />

are 0–5-septate, but only 0(–1)-septate in M. musae. <strong>The</strong> semimacronematous,<br />

leaf-blotching stage (the cladosporioid morph)<br />

is barely distinguishable from the present concept of Fusicladium,<br />

which includes species with catenate conidia (Schubert et al. 2003).<br />

However, the peony fungus does not cluster within the Venturiaceae.<br />

Since C. chlorocephalum clusters apart of the Chaetothyriales,<br />

the clade to which Metulocladosporiella belongs, the differences<br />

observed here seem to be sufficient to place this fungus in a new<br />

<strong>genus</strong> (also see Crous et al. 2007 – this volume). Crous et al.<br />

(2006a) discussed differences between Metulocladosporiella <strong>and</strong><br />

allied <strong>dematiaceous</strong> hyphomycete genera <strong>and</strong> provided a key to<br />

the latter <strong>genus</strong> <strong>and</strong> morphologically <strong>similar</strong> genera. Using this key,<br />

attempts to determine the macronematous morph of <strong>Cladosporium</strong><br />

www.studiesinmycology.org<br />

chlorocephalum lead to Metulocladosporiella. Differences between<br />

morphologically <strong>similar</strong> genera have been discussed in the paper<br />

by Crous et al. (2006a) <strong>and</strong> are also valid for the new <strong>genus</strong><br />

Dichocladosporium. Parapericoniella U. Braun, Heuchert & K.<br />

Schub., a fungicolous <strong>genus</strong> recently introduced to accommodate<br />

<strong>Cladosporium</strong> asterinae Deighton, is also morphologically <strong>similar</strong><br />

in having apically, densely branched conidiophores <strong>and</strong> truncate,<br />

unthickened conidiogenous loci <strong>and</strong> hila, but is quite distinct in not<br />

having micronematous conidiophores (Heuchert et al. 2005).<br />

ACKNOWLEDGEMENTS<br />

We are much obliged to the curators of B, F, HBG, M, PH <strong>and</strong> SIENA for the<br />

loans of the collections studied. R. Kirschner <strong>and</strong> N. Ale-Agha are thanked for<br />

sending collections <strong>and</strong> cultures on Paeonia spp. We are very grateful to the<br />

Institute of Zoology of the Martin-Luther-University, above all to G. Tschuch, for<br />

providing access to SEM facilities. This work was supported in part by a grant of<br />

the “Graduiertenförderung des L<strong>and</strong>es Sachsen-Anhalt” <strong>and</strong> a grant of Synthesys<br />

(No. 2559) awarded to K.S. We thank M. Vermaas for preparing the photographic<br />

plates.<br />

REFERENCES<br />

Braun U, Crous PW, Dugan FM, Groenewald JZ, Hoog GS de (2003). Phylogeny<br />

<strong>and</strong> taxonomy of cladosporium-like hyphomycetes, including Davidiella gen.<br />

nov., the teleomorph of <strong>Cladosporium</strong> s.str. Mycological Progress 2: 3–18.<br />

Crous PW (1998). Mycosphaerella spp. <strong>and</strong> their anamorphs associated with leaf<br />

spot diseases of Eucalyptus. Mycologia Memoir 21: 1–170.<br />

Crous PW, Braun U, Schubert K, Groenewald JZ (2007). Delimiting <strong>Cladosporium</strong><br />

from morphologically <strong>similar</strong> genera. Studies in Mycology 58: 33–56.<br />

Crous PW, Schroers HJ, Groenewald JZ, Braun U, Schubert K (2006a).<br />

Metulocladosporiella gen. nov. for the causal organism of <strong>Cladosporium</strong><br />

speckle disease of banana. Mycological Research 110: 264–275.<br />

Crous PW, Slippers B, Wingfield MJ, Rheeder J, Marasas WFO, Phillips AJL, Alves<br />

A, Burgess T, Barber P, Groenewald JZ (2006b). Phylogenetic lineages in the<br />

Botryosphaeriaceae. Studies in Mycology 55: 235–253.<br />

David JC (1997). A contribution to the systematics of <strong>Cladosporium</strong>. Revision of the<br />

fungi previously referred to Heterosporium. Mycological Papers 172: 1–157.<br />

Dhingra OD, Sinclair JB (1985). Basic plant pathology methods. CRC Press, Boca<br />

Raton, Florida.<br />

Fresenius JBGW (1850). Beiträge zur Mykologie 1. Heinrich Ludwig Brömmer<br />

Verlag, Frankfurt.<br />

Gams W, Verkley GJM, Crous PW (2007). <strong>CBS</strong> Course of Mycology. 5 th ed. <strong>CBS</strong>,<br />

Utrecht.<br />

Heuchert B, Braun U, Schubert K (2005). Morphotaxonomic revision of fungicolous<br />

<strong>Cladosporium</strong> species (hyphomycetes). Schlechtendalia 13: 1–78.<br />

Hoog GS de, Gerrits van den Ende AHG (1998). Molecular diagnostics of clinical<br />

strains of filamentous Basidiomycetes. Mycoses 41: 183–189.<br />

Kiffer E, Morelet M (1999). <strong>The</strong> Deuteromycetes. Mitosporic Fungi, Classification<br />

<strong>and</strong> Generic Key. Science Publishers, Enfield, NJ.<br />

Lee SB, Taylor JW (1990). Isolation of DNA from fungal mycelia <strong>and</strong> single spores.<br />

In: PCR Protocols: a guide to methods <strong>and</strong> applications (Innis MA, Gelf<strong>and</strong> DH,<br />

Sninsky JJ, White TJ, eds). Academic Press, San Diego, California: 282–287.<br />

Mason EW, Ellis MB (1953). British species of Periconia. Mycological Papers 56:<br />

1–127.<br />

McKemy JM, Morgan-Jones G (1991). Studies in the <strong>genus</strong> <strong>Cladosporium</strong> sensu lato<br />

III. Concerning <strong>Cladosporium</strong> chlorocephalum <strong>and</strong> its synonym <strong>Cladosporium</strong><br />

paeoniae, the causal organism of leaf-blotch of peony. Mycotaxon 41: 135–<br />

146.<br />

Meuli LJ (1937). <strong>Cladosporium</strong> leaf blotch of peony. Phytopathology 27: 172–182.<br />

Moncalvo J-M, Rehner SA, Vilgalys R (1993). Systematics of Lyophyllum section<br />

Difformia based on evidence from culture studies <strong>and</strong> ribosomal DNA<br />

sequences. Mycologia 85: 788–794.<br />

Passerini G (1876). <strong>Cladosporium</strong> paeoniae. Just’s Botanische Jahresberichte 4:<br />

235.<br />

Rayner RW (1970). A mycological colour chart. CMI <strong>and</strong> British Mycological Society.<br />

Kew.<br />

Rehner SA, Samuels GJ (1994). Taxonomy <strong>and</strong> phylogeny of Gliocladium analysed<br />

from nuclear large subunit ribosomal DNA sequences. Mycological Research<br />

98: 625–634.<br />

103


Schubert et al.<br />

Saccardo PA (1882). Fungorum extra-europaeorum Pugillus. Michelia 2(6): 136–<br />

149 ‘1880’.<br />

Saccardo PA (1886). Sylloge Fungorum vol. 4. Padova.<br />

Schubert K (2005). Morphotaxonomic revision of foliicolous <strong>Cladosporium</strong> species<br />

(hyphomycetes). Ph.D. dissertation. Martin-Luther-University Halle-Wittenberg.<br />

http://sundoc.bibliothek.uni-halle.de/diss-online/05/05H208/index.htm<br />

Schubert K, Ritschel A, Braun U (2003). A monograph of Fusicladium s. lat.<br />

(hyphomycetes). Schlechtendalia 9: 1–132.<br />

Vilgalys R, Hester M (1990). Rapid genetic identification <strong>and</strong> mapping of<br />

enzymatically amplified ribosomal DNA from several Cryptococcus species.<br />

Journal of Bacteriology 172: 4238–4246.<br />

Vries GA de (1952). Contribution to the knowledge of the <strong>genus</strong> <strong>Cladosporium</strong> Link<br />

ex Fr. <strong>CBS</strong>, Baarn.<br />

White TJ, Bruns T, Lee S, Taylor J (1990). Amplification <strong>and</strong> direct sequencing of<br />

fungal ribosomal RNA genes for phylogenetics. In: PCR Protocols: a guide to<br />

methods <strong>and</strong> applications (Innis MA, Gelf<strong>and</strong> DH, Sninsky JJ, White TJ, eds).<br />

Academic Press, San Diego, California: 315–322.<br />

104


available online at www.studiesinmycology.org<br />

doi:10.3114/sim.2007.58.05<br />

Studies in Mycology 58: 105–156. 2007.<br />

Biodiversity in the <strong>Cladosporium</strong> herbarum complex (Davidiellaceae, Capnodiales),<br />

with st<strong>and</strong>ardisation of methods for <strong>Cladosporium</strong> taxonomy <strong>and</strong> diagnostics<br />

K. Schubert 1* , J. Z. Groenewald 2 , U. Braun 3 , J. Dijksterhuis 2 , M. Starink 2 , C.F. Hill 4 , P. Zalar 5 , G.S. de Hoog 2 <strong>and</strong> P.W. Crous 2<br />

1<br />

Botanische Staatssammlung München, Menzinger Strasse 67, D-80638 München, Germany; 2 <strong>CBS</strong> Fungal Biodiversity Centre, P.O. Box 85167, 3508 AD Utrecht, <strong>The</strong> Netherl<strong>and</strong>s;<br />

3<br />

Martin-Luther-Universität, Institut für Biologie, Geobotanik und Botanischer Garten, Herbarium, Neuwerk 21, D-06099 Halle (Saale), Germany; 4 Plant & Environment Laboratory<br />

Biosecurity NZ, Ministry of Agriculture & Forestry, P.O. Box 2095, Auckl<strong>and</strong> 1140, New Zeal<strong>and</strong>; 5 Biotechnical Faculty, Department of Biology, Večna pot 111, SI-1000 Ljubljana,<br />

Slovenia<br />

*Correspondence: Konstanze Schubert, konstanze.schubert@gmx.de<br />

Abstract: <strong>The</strong> <strong>Cladosporium</strong> herbarum complex comprises five species for which Davidiella teleomorphs are known. <strong>Cladosporium</strong> herbarum s. str. (D. tassiana), C.<br />

macrocarpum (D. macrocarpa) <strong>and</strong> C. bruhnei (D. allicina) are distinguishable by having conidia of different width, <strong>and</strong> by teleomorph characters. Davidiella variabile is<br />

introduced as teleomorph of C. variabile, a homothallic species occurring on Spinacia, <strong>and</strong> D. macrospora is known to be the teleomorph of C. iridis on Iris spp. <strong>The</strong> C. herbarum<br />

complex combines low molecular distance with a high degree of clonal or inbreeding diversity. Entities differ from each other by multilocus sequence data <strong>and</strong> by phenetic<br />

differences, <strong>and</strong> thus can be interpreted to represent individual taxa. Isolates of the C. herbarum complex that were formerly associated with opportunistic human infections,<br />

cluster with C. bruhnei. Several species are newly described from hypersaline water, namely C. ramotenellum, C. tenellum, C. subinflatum, <strong>and</strong> C. herbaroides. <strong>Cladosporium</strong><br />

pseudiridis collected from Iris sp. in New Zeal<strong>and</strong>, is also a member of this species complex <strong>and</strong> shown to be distinct from C. iridis that occurs on this host elsewhere in the<br />

world. A further new species from New Zeal<strong>and</strong> is C. sinuosum on Fuchsia excorticata. <strong>Cladosporium</strong> antarcticum is newly described from a lichen, Caloplaca regalis, collected<br />

in Antarctica, <strong>and</strong> C. subtilissimum from grape berries in the U.S.A., while the new combination C. ossifragi, the oldest valid name of the <strong>Cladosporium</strong> known from Narthecium<br />

in Europe, is proposed. St<strong>and</strong>ard protocols <strong>and</strong> media are herewith proposed to facilitate future morphological examination of <strong>Cladosporium</strong> spp. in culture, <strong>and</strong> neotypes or<br />

epitypes are proposed for all species treated.<br />

Taxonomic novelties: <strong>Cladosporium</strong> antarcticum K. Schub., Crous & U. Braun, sp. nov., C. herbaroides K. Schub., Zalar, Crous & U. Braun, sp. nov., C. ossifragi (Rostr.) U.<br />

Braun & K. Schub., comb. nov., C. pseudiridis K. Schub., C.F. Hill, Crous & U. Braun, sp. nov., C. ramotenellum K. Schub., Zalar, Crous & U. Braun, sp. nov., C. sinuosum K.<br />

Schub., C.F. Hill, Crous & U. Braun, sp. nov., C. subinflatum K. Schub., Zalar, Crous & U. Braun, sp. nov., C. subtilissimum K. Schub., Dugan, Crous & U. Braun, sp. nov., C.<br />

tenellum K. Schub., Zalar, Crous & U. Braun sp. nov., Davidiella macrocarpa Crous, K. Schub. & U. Braun, sp. nov., D. variabile Crous, K. Schub. & U. Braun, sp. nov.<br />

Key words: Clonality, Davidiella, homothallism, new species, phylogeny, recombination, taxonomy.<br />

Introduction<br />

<strong>Cladosporium</strong> herbarum (Pers. : Fr.) Link, type species of the <strong>genus</strong><br />

<strong>Cladosporium</strong> Link, is one of the most common environmental fungi<br />

to be isolated worldwide. It abundantly occurs on fading or dead<br />

leaves of herbaceous <strong>and</strong> woody plants, as secondary invader<br />

on necrotic leaf spots, <strong>and</strong> has frequently been isolated from<br />

air (Samson et al. 2000), soil (Domsch et al. 1980), foodstuffs,<br />

paints, textiles, humans (de Hoog et al. 2000) <strong>and</strong> numerous<br />

other substrates. It is also known to occur on old carpophores<br />

of mushrooms <strong>and</strong> other fungi (Heuchert et al. 2005) <strong>and</strong> to be<br />

a common endophyte (Riesen & Sieber 1985, Brown et al. 1998,<br />

El-Morsy 2000), especially in temperate regions. Under favourable<br />

climatic conditions C. herbarum also germinates <strong>and</strong> grows as an<br />

epiphyte on the surface of green, healthy leaves (Schubert 2005).<br />

Persoon (1794) introduced C. herbarum as Dematium<br />

herbarum Pers., which was later reclassified by Link (1809) as<br />

Acladium herbarum (Pers.) Link. In 1816, Link included C. herbarum<br />

together with three additional species in his newly described <strong>genus</strong><br />

<strong>Cladosporium</strong>. Clements & Shear (1931) proposed C. herbarum<br />

as lectotype species of the latter <strong>genus</strong>, a decision followed by de<br />

Vries (1952) <strong>and</strong> Hughes (1958). Several authors provided detailed<br />

treatments of C. herbarum (de Vries 1952, Ellis 1971, Domsch et al.<br />

1980, Prasil & de Hoog 1988), <strong>and</strong> there are literally thous<strong>and</strong>s of<br />

records of this species in the literature. McKemy & Morgan-Jones<br />

(1991) <strong>and</strong> Ho et al. (1999) examined C. herbarum in culture <strong>and</strong><br />

published detailed descriptions of its features in vitro.<br />

<strong>Cladosporium</strong> macrocarpum Preuss, a second component<br />

within the herbarum complex, has hitherto been known <strong>and</strong> treated<br />

as an allied, but morphologically distinct species on the basis of its<br />

wider <strong>and</strong> somewhat larger, frequently 2–3-septate, more regularly<br />

verrucose conidia, shorter conidial chains <strong>and</strong> more pronounced<br />

prolongations of the conidiophores. Dugan & Roberts (1994) carried<br />

out examinations of morphological <strong>and</strong> reproductive aspects of both<br />

species, <strong>and</strong> in so doing demonstrated a morphological continuum<br />

between C. macrocarpum <strong>and</strong> C. herbarum, concluding that the<br />

name herbarum should have preference. <strong>The</strong>refore, Ho et al. (1999)<br />

introduced the new combination C. herbarum var. macrocarpum<br />

(Preuss) M.H.M. Ho & Dugan. Although transitional forms have<br />

been discussed to occur between the two species, several authors<br />

still prefer to retain C. macrocarpum as a separate species.<br />

In an attempt to elucidate the species within the C. herbarum<br />

complex, therefore, a multilocus DNA sequence typing approach<br />

was used, employing five genes, namely the internal transcribed<br />

spacers of the rDNA genes (ITS), actin, calmodulin, translation<br />

elongation factor 1-α, <strong>and</strong> histone H3. <strong>The</strong>se data were<br />

supplemented with morphological examinations under st<strong>and</strong>ardised<br />

conditions, using light <strong>and</strong> scanning electron microscopy, as well as<br />

cultural characteristics <strong>and</strong> growth studies.<br />

Material <strong>and</strong> methods<br />

Isolates<br />

Isolates included in this study were obtained from the culture<br />

collection of the Centraalbureau voor Schimmelcultures (<strong>CBS</strong>),<br />

Utrecht, Netherl<strong>and</strong>s, or were freshly isolated from a range of<br />

different substrates. Single-conidial <strong>and</strong> ascospore isolates were<br />

obtained using the techniques as explained in Crous (1998) for<br />

species of Mycosphaerella Johanson <strong>and</strong> its anamorphs. Isolates<br />

105


Schubert et al.<br />

were inoculated onto 2 % potato-dextrose agar (PDA), synthetic<br />

nutrient-poor agar (SNA), 2 % malt extract agar (MEA) <strong>and</strong> oatmeal<br />

agar (OA) (Gams et al. 2007), <strong>and</strong> incubated under continuous<br />

near-ultraviolet light at 25 °C to promote sporulation. All cultures<br />

obtained in this study are maintained in the culture collection of<br />

the <strong>CBS</strong> (Table 1). Nomenclatural novelties <strong>and</strong> descriptions were<br />

deposited in MycoBank (www.MycoBank.org).<br />

DNA isolation, amplification <strong>and</strong> sequence analysis<br />

Fungal colonies were established on agar plates, <strong>and</strong> genomic<br />

DNA was isolated as described in Gams et al. (2007). Partial gene<br />

sequences were determined as described by Crous et al. (2006)<br />

for actin (ACT), calmodulin (CAL), translation elongation factor 1-<br />

alpha (EF), histone H3 (HIS) <strong>and</strong> part (ITS) of the nuclear rDNA<br />

operon spanning the 3’ end of the 18S rRNA gene (SSU), the<br />

first internal transcribed spacer, the 5.8S rRNA gene, the second<br />

internal transcribed spacer <strong>and</strong> the 5’ end of the 28S rRNA gene<br />

(LSU). <strong>The</strong> nucleotide sequences were generated using both PCR<br />

primers to ensure good quality sequences over the entire length of<br />

the amplicon. Subsequent sequence alignment <strong>and</strong> phylogenetic<br />

analysis followed the methods of Crous et al. (2006). Gaps longer<br />

than 10 bases were coded as single events for the phylogenetic<br />

analyses; the remaining gaps were treated as new character<br />

states. Sequence data were deposited in GenBank (Table 1) <strong>and</strong><br />

the alignment <strong>and</strong> tree in TreeBASE (www.treebase.org).<br />

Data analysis<br />

<strong>The</strong> number of entities in the dataset of 79 strains was inferred<br />

with Structure v. 2.2 software (Pritchard et al. 2000, Falush et al.<br />

2003) using an UPGMA tree of data of the ACT gene compared<br />

with CAL, EF <strong>and</strong> HIS with the exclusion of the nearly invariant ITS<br />

region. For this analysis group indications were derived from a tree<br />

produced with MrAic (Nyl<strong>and</strong>er 2004). <strong>The</strong> length of the burn-in<br />

period was set to 1 000 000, number of MCMC repeats after burn-in<br />

10 000, with admixture ancestry <strong>and</strong> allele frequencies correlated<br />

models, assuming that all groups diverged from a recent ancestral<br />

population <strong>and</strong> that allele frequencies are due to drift. Uniform prior<br />

for ALPHA was set to 1.0 (default) <strong>and</strong> allele frequencies with λ set to<br />

1.0 (default). <strong>The</strong> numbers of MCMC repetitions after burn-in were<br />

set as 10 000 <strong>and</strong> 100 000. <strong>The</strong> number of clusters (K) in Structure<br />

was assumed from 5 to 7. Population differentiation F ST<br />

(index: θ)<br />

was calculated with 1–6 runs using the same software. <strong>The</strong> null<br />

hypothesis for this analysis is no population differentiation. When<br />

observed theta (θ) is significantly different from those of r<strong>and</strong>om<br />

data sets (p < 0.05), population differentiation is considered.<br />

Association of multilocus genotypes was screened with the<br />

multilocus option in BioNumerics v. 4.5. To test for reproductive<br />

mode in each population, the st<strong>and</strong>ardised index of association<br />

(I S ; Haubold et al. 1998) was calculated with start2 software<br />

A<br />

(Jolley et al. 2001). <strong>The</strong> null hypothesis for this analysis is complete<br />

panmixia. <strong>The</strong> values of I S were compared between observed <strong>and</strong><br />

A<br />

r<strong>and</strong>omised datasets. <strong>The</strong> hypothesis would be rejected when p <<br />

0.05. Mean genetic diversity (H) <strong>and</strong> diversities of individual loci<br />

were calculated with lian v. 3.5 (Haubold & Hudson 2000). Degrees<br />

of recombination or horizontal gene transfer were also visualised<br />

using SplitsTree v. 4.8 software (Huson & Bryant 2006). Split<br />

decomposition was carried out with default settings, i.e., character<br />

transformation using uncorrected (observed, “P”) distances, splits<br />

transformation using “equal angle”, <strong>and</strong> optimise boxes iteration set<br />

to 2.<br />

Morphology<br />

As the present study represents the first in a series dealing<br />

with <strong>Cladosporium</strong> spp. <strong>and</strong> their Davidiella Crous & U. Braun<br />

teleomorphs in culture, a specific, st<strong>and</strong>ardised protocol was<br />

established by which all species complexes will be treated in<br />

future.<br />

Morphology of the anamorph: Microscopic observations were made<br />

from colonies cultivated for 7 d under continuous near-ultraviolet<br />

light at 25 °C on SNA. Preparations were mounted in Shear’s<br />

solution (Gams et al. 2007). To study conidial development <strong>and</strong><br />

branching patterns, squares of transparent adhesive tape (Titan<br />

Ultra Clear Tape, Conglom Inc., Toronto, Canada) were placed on<br />

conidiophores growing in the zone between the colony margin <strong>and</strong><br />

2 cm inwards, <strong>and</strong> mounted between two drops of Shear’s solution<br />

under a glass coverslip. Different types of conidia are formed by<br />

<strong>Cladosporium</strong> species for which different terms need to be adopted.<br />

Ramoconidia are conidia with usually more than one (mostly 2<br />

or 3) conidial hilum, which typically accumulate at the tip of these<br />

conidia. Conidiogenous cells with more than one conidiogenous<br />

locus are first formed as apical parts of conidiophores. Such apical<br />

Fig. 1. <strong>Cladosporium</strong> conidiophore with ramoconidia, secondary ramoconidia,<br />

intercalary conidia, <strong>and</strong> small, terminal conidia. Scale bar = 10 µm. K. Schubert<br />

del.<br />

106


<strong>Cladosporium</strong> herbarum species complex<br />

Aculeate<br />

Spinulose<br />

Digitate<br />

Muricate<br />

Granulate<br />

Colliculate<br />

Pustulate<br />

Pedicellate<br />

Fig. 2. Terms used to describe conidium wall ornamentation under the cryo-electron<br />

microscope. Adapted from David (1997).<br />

than the small terminal conidia. In older literature true ramoconidia<br />

were often cited as “ramoconidia s. str.”, whereas secondary<br />

ramoconidia have been referred to as “ramoconidia s. lat.”<br />

Morphology of the teleomorph: Teleomorphs were induced by<br />

inoculating plates of 2 % tap water agar onto which autoclaved<br />

stem pieces of Urtica dioica (European stinging nettle) were placed.<br />

Inoculated plates were incubated on the laboratory bench for 7 d,<br />

after that period they were further incubated at 10 °C in the dark for<br />

1–2 mo to stimulate teleomorph development. Wherever possible,<br />

30 measurements (× 1 000 magnification) were made of conidia<br />

<strong>and</strong> ascospores, with the extremes of spore measurements given<br />

in parentheses. Cultural characteristics: Colonies were cultivated<br />

on PDA, MEA <strong>and</strong> OA plates for 14 d at 25 °C in the dark, after<br />

which the surface <strong>and</strong> reverse colours were rated using the charts<br />

of Rayner (1970). Linear growth was determined on MEA, PDA <strong>and</strong><br />

OA plates by inoculating three plates per isolate for each medium,<br />

<strong>and</strong> incubating them for 14 d at 25 ºC, after that period colony<br />

diameters were determined.<br />

Low-temperature scanning electron microscopy<br />

Isolates of <strong>Cladosporium</strong> spp. were grown on SNA with 30 g agar/L<br />

for 3–4 d at room temperature under black light. Relevant parts of<br />

the small colonies with conidiophores <strong>and</strong> conidia were selected<br />

under a binocular, excised with a surgical blade as small agar (3<br />

× 3 mm) blocks, <strong>and</strong> transferred to a copper cup for snap-freezing<br />

in nitrogen slush. Agar blocks were glued to the copper surface<br />

with frozen tissue medium (KP-Cryoblock, Klinipath, Duiven,<br />

Netherl<strong>and</strong>s) mixed with 1 part colloidal graphite (Agar Scientific,<br />

Stansted, U.K.). Samples were examined in a JEOL 5600LV<br />

scanning electron microscope (JEOL, Tokyo, Japan) equipped<br />

with an Oxford CT1500 Cryostation for cryo-electron microscopy<br />

(cryoSEM). Electron micrographs were acquired from uncoated<br />

frozen samples, or after sputter-coating by means of a gold/<br />

palladium target for 3 times during 30 s (Fig. 2). Micrographs of<br />

uncoated samples were taken at an acceleration voltage of 3 kV,<br />

<strong>and</strong> consisted out of 30 averaged fast scans (SCAN 2 mode), <strong>and</strong><br />

at 5 kV in case of the coated samples (PHOTO mode).<br />

parts of conidiophores are called ramoconidia if they secede at<br />

a septum from the conidiophore (Kirk et al. 2001). <strong>The</strong> septum at<br />

which the ramoconidium secedes often appears to be somewhat<br />

refractive or darkened. Ramoconidia are characterised by having<br />

a truncate, undifferentiated base (thus they lack a differentiated,<br />

coronate basal hilum formed in the context of conidiogenesis)<br />

<strong>and</strong> they can be very long, aseptate to sometimes multi-septate.<br />

Although they were formed initially as part of the conidiophore,<br />

they function as propagules. Only few of the species known<br />

until now have the ability to form true ramoconidia. Secondary<br />

ramoconidia also have more than one distal conidial hilum but<br />

they always derive from a conidiogenous locus of an earlier formed<br />

cell, which can be either a conidiogenous cell or a ramoconidium.<br />

Secondary ramoconidia are often shorter but somewhat wider than<br />

ramoconidia; they are often septate, <strong>and</strong> typically have a narrowed<br />

base with a coronate hilum (Fig. 1). Conidia in <strong>Cladosporium</strong> are<br />

cells with a coronate basal hilum, which is formed in the context of<br />

conidiogenesis <strong>and</strong> with either a single (when formed as intercalary<br />

units in unbranched parts of chains) or without any distal conidial<br />

hilum (when formed at the tip of conidial chains). For the first, the<br />

term “intercalary conidium” <strong>and</strong> for the latter, “small terminal<br />

conidium” is used. Intercalary conidia typically are larger <strong>and</strong> more<br />

pigmented <strong>and</strong> have a more differentiated surface ornamentation<br />

RESULTS<br />

Phylogeny <strong>and</strong> differentiation<br />

<strong>The</strong> manually adjusted alignment contained 80 sequences (including<br />

the outgroup sequence) <strong>and</strong> the five loci were represented by a<br />

total of 1 516 characters including alignment gaps which were<br />

used in the analysis. Of the 1 516 characters, 369 were parsimonyinformative,<br />

259 were variable <strong>and</strong> parsimony-uninformative, <strong>and</strong><br />

888 were constant.<br />

Forty equally most parsimonious trees (TL = 1 933 steps; CI<br />

= 0.569; RI = 0.786; RC = 0.447), one of which is shown in Fig.<br />

3, were obtained from the parsimony analysis of the combined<br />

genes. Neighbour-joining analysis using three substitution models<br />

(uncorrected “p”, Kimura 2-parameter <strong>and</strong> HKY85) on the sequence<br />

data yielded trees with identical topologies. <strong>The</strong>se differed from<br />

the tree presented in Fig. 3 with regard to the placement of C.<br />

macrocarpum strain CPC 12054 which was placed as a sister<br />

branch to the C. bruhnei Linder clade in the distance analyses<br />

(results not shown) because it shares an identical CAL sequence.<br />

All cryptic species consisting of multiple strains are clustering in<br />

well-supported clades with bootstrap support values ranging from<br />

71 % (C. herbarum) to 100 % [e.g. C. ramotenellum K. Schub.,<br />

www.studiesinmycology.org<br />

107


Schubert et al.<br />

Table 1. Isolates subjected to DNA sequence analyses <strong>and</strong> morphological examinations.<br />

Anamorph Teleomorph Accession number 1 Host Country Collector GenBank numbers 2<br />

(ITS, EF, ACT, CAL, HIS)<br />

<strong>Cladosporium</strong> antarcticum — <strong>CBS</strong> 690.92* (ex-type) Caloplaca regalis Antarctica C. Möller EF679334, EF679405, EF679484, EF679560, EF679636<br />

<strong>Cladosporium</strong> bruhnei Davidiella allicina <strong>CBS</strong> 134.31 = ATCC 11283 — Germany — EF679335, EF679406, EF679485, EF679561, EF679637<br />

<strong>CBS</strong> 157.82 Quercus robur Belgium — EF679336, EF679407, EF679486, EF679562, EF679638<br />

<strong>CBS</strong> 159.54 = ATCC 36948 Man, skin <strong>The</strong> Netherl<strong>and</strong>s — EF679337, EF679408, EF679487, EF679563, EF679639<br />

<strong>CBS</strong> 161.55 Man, sputum <strong>The</strong> Netherl<strong>and</strong>s — EF679338, EF679409, EF679488, EF679564, EF679640<br />

<strong>CBS</strong> 177.71 Thuja tincture <strong>The</strong> Netherl<strong>and</strong>s — EF679339, EF679410, EF679489, EF679565, EF679641<br />

<strong>CBS</strong> 188.54 = ATCC 11290 = IMI 049638 = CPC — — — AY251077, EF679411, EF679490, EF679566, EF679642<br />

3686<br />

<strong>CBS</strong> 366.80 Man, skin <strong>The</strong> Netherl<strong>and</strong>s — EF679340, EF679412, EF679491, EF679567, EF679643<br />

<strong>CBS</strong> 399.80 Man, skin <strong>The</strong> Netherl<strong>and</strong>s — AJ244227, EF679413, EF679492, EF679568, EF679644<br />

<strong>CBS</strong> 521.68 Air <strong>The</strong> Netherl<strong>and</strong>s — EF679341, EF679414, EF679493, EF679569, EF679645<br />

<strong>CBS</strong> 572.78 Polyporus radiatus Russia V.K. Melnik DQ289799, EF679415, DQ289866, DQ289831, EF679646<br />

<strong>CBS</strong> 813.71 Polygonatum odoratum Czech Republic — EF679342, EF679416, EF679494, EF679570, EF679647<br />

<strong>CBS</strong> 110024 Industrial water Germany, Nordrhein-Westfalen — EF679343, EF679417, EF679495, EF679571, EF679648<br />

<strong>CBS</strong> 115683 = ATCC 66670 = CPC 5101 CCA-treated Douglas-fire pole U.S.A., New York C.J. Wang AY361959, EF679418, AY752193, AY752224, AY752255<br />

<strong>CBS</strong> 121624* = CPC 12211 (neotype) Hordeum vulgare Belgium J.Z. Groenewald EF679350, EF679425, EF679502, EF679578, EF679655<br />

CPC 11386 Tilia cordata Germany, Sachsen-Anhalt K. Schubert EF679344, EF679419, EF679496, EF679572, EF679649<br />

CPC 11840 Ourisia macrophylla New Zeal<strong>and</strong> A. Blouin EF679345, EF679420, EF679497, EF679573, EF679650<br />

CPC 12042 = EXF-389 Hypersaline water from salterns Slovenia P. Zalar EF679346, EF679421, EF679498, EF679574, EF679651<br />

CPC 12045 = EXF-594 Hypersaline water from salterns Spain P. Zalar EF679347, EF679422, EF679499, EF679575, EF679652<br />

CPC 12046 = EXF-680 Air conditioning system Slovenia P. Zalar EF679348, EF679423, EF679500, EF679576, EF679653<br />

CPC 12139 Hordeum vulgare <strong>The</strong> Netherl<strong>and</strong>s — EF679349, EF679424, EF679501, EF679577, EF679654<br />

CPC 12212 Hordeum vulgare Belgium J.Z. Groenewald EF679351, EF679426, EF679503, EF679579, EF679656<br />

CPC 12921 Eucalyptus sp. Australia — EF679352, EF679427, EF679504, EF679580, EF679657<br />

<strong>Cladosporium</strong> cladosporioides — <strong>CBS</strong> 673.69 Air <strong>The</strong> Netherl<strong>and</strong>s — EF679353, EF679428, EF679505, EF679581, EF679658<br />

complex<br />

Davidiella sp. <strong>CBS</strong> 109082 Silene maritima United Kingdom A. Aptroot EF679354, EF679429, EF679506, EF679582, EF679659<br />

— CPC 11606 Musa sp. India M. Arzanlou EF679355, EF679430, EF679507, EF679583, EF679660<br />

— CPC 11609 Musa sp. India M. Arzanlou EF679356, EF679431, EF679508, EF679584, EF679661<br />

<strong>Cladosporium</strong> herbaroides — <strong>CBS</strong> 121626* = CPC 12052 = EXF-1733 (ex-type) Hypersaline water from salterns Israel P. Zalar EF679357, EF679432, EF679509, EF679585, EF679662<br />

<strong>Cladosporium</strong> herbarum Davidiella tassiana <strong>CBS</strong> 111.82 Arctostaphylos uva-ursi Switzerl<strong>and</strong> E. Müller AJ238469, EF679433, EF679510, EF679586, EF679663<br />

<strong>CBS</strong> 300.49 Biscutella laevigata Switzerl<strong>and</strong> J.A. von Arx EF679358, EF679434, EF679511, EF679587, EF679664<br />

<strong>CBS</strong> 121621* = CPC 12177 (epitype) Hordeum vulgare <strong>The</strong> Netherl<strong>and</strong>s — EF679363, EF679440, EF679516, EF679592, EF679670<br />

CPC 11600 Delphinium barbeyi U.S.A., Colorado A. Ramalay DQ289800, EF679435, DQ289867, DQ289832, EF679665<br />

CPC 11601 Delphinium barbeyi U.S.A., Colorado A. Ramalay EF679359, EF679436, EF679512, EF679588, EF679666<br />

CPC 11602 Delphinium barbeyi U.S.A., Colorado A. Ramalay EF679360, EF679437, EF679513, EF679589, EF679667<br />

CPC 11603 Delphinium barbeyi U.S.A., Colorado A. Ramalay EF679361, EF679438, EF679514, EF679590, EF679668<br />

108


<strong>Cladosporium</strong> herbarum species complex<br />

<strong>Cladosporium</strong> iridis Davidiella<br />

macrospora<br />

<strong>Cladosporium</strong> macrocarpum Davidiella<br />

macrocarpa<br />

CPC 11604 Delphinium barbeyi U.S.A., Colorado A. Ramalay EF679362, EF679439, EF679515, EF679591, EF679669<br />

CPC 12178 Hordeum vulgare <strong>The</strong> Netherl<strong>and</strong>s — EF679364, EF679441, EF679517, EF679593, EF679671<br />

CPC 12179 Hordeum vulgare <strong>The</strong> Netherl<strong>and</strong>s — EF679365, EF679442, EF679518, EF679594, EF679672<br />

CPC 12180 Hordeum vulgare <strong>The</strong> Netherl<strong>and</strong>s — EF679366, EF679443, EF679519, EF679595, EF679673<br />

CPC 12181 Hordeum vulgare <strong>The</strong> Netherl<strong>and</strong>s — EF679367, EF679444, EF679520, EF679596, EF679674<br />

CPC 12183 Hordeum vulgare <strong>The</strong> Netherl<strong>and</strong>s — EF679368, EF679445, EF679521, EF679597, EF679675<br />

<strong>CBS</strong> 107.20 Iris sp. — — EF679369, EF679446, EF679522, EF679598, EF679676<br />

<strong>CBS</strong> 138.40* (epitype) Iris sp. <strong>The</strong> Netherl<strong>and</strong>s — EF679370, EF679447, EF679523, EF679599, EF679677<br />

<strong>CBS</strong> 175.82 Water Romania — EF679371, EF679448, EF679524, EF679600, EF679678<br />

<strong>CBS</strong> 223.31 = ATCC 11287 Mycosphaerella tulasnei — — AF222830, EF679449, EF679525, EF679601, EF679679<br />

<strong>CBS</strong> 299.67 Triticum aestivum Turkey — EF679372, EF679450, EF679526, EF679602, EF679680<br />

<strong>CBS</strong> 121811* = CPC 12755 (neotype) Spinacia oleracea U.S.A. — EF679376, EF679454, EF679530, EF679606, EF679684<br />

CPC 11817 Corylus sp. U.S.A. — EF679373, EF679451, EF679527, EF679603, EF679681<br />

CPC 12054 = EXF-2287 Hypersaline water from salterns Slovenia P. Zalar EF679374, EF679452, EF679528, EF679604, EF679682<br />

<strong>CBS</strong> H-19855 = CPC 12752 = <strong>CBS</strong> 121623 Spinacia oleracea U.S.A. — EF679375, EF679453, EF679529, EF679605, EF679683<br />

CPC 12756 Spinacia oleracea U.S.A. — EF679377, EF679455, EF679531, EF679607, EF679685<br />

CPC 12757 Spinacia oleracea U.S.A. — EF679378, EF679456, EF679532, EF679608, EF679686<br />

CPC 12758 Spinacia oleracea U.S.A. — EF679379, EF679457, EF679533, EF679609, EF679687<br />

CPC 12759 Spinacia oleracea U.S.A. — EF679380, EF679458, EF679534, EF679610, EF679688<br />

<strong>Cladosporium</strong> ossifragi — <strong>CBS</strong> 842.91* (epitype) Narthecium ossifragum Norway M. di Menna EF679381, EF679459, EF679535, EF679611, EF679689<br />

<strong>CBS</strong> 843.91 Narthecium ossifragum Norway M. di Menna EF679382, EF679460, EF679536, EF679612, EF679690<br />

<strong>Cladosporium</strong> pseudiridis — <strong>CBS</strong> 116463* = LYN 1065 = ICMP 15579 (ex-type) Iris sp. New Zeal<strong>and</strong> C.F. Hill EF679383, EF679461, EF679537, EF679613, EF679691<br />

<strong>Cladosporium</strong> ramotenellum — <strong>CBS</strong> 121628* = CPC 12043 = EXF-454 (ex-type) Hypersaline water from salterns Slovenia P. Zalar EF679384, EF679462, EF679538, EF679614, EF679692<br />

CPC 12047 = EXF-967 Air conditioning system Slovenia P. Zalar EF679385, EF679463, EF679539, EF679615, EF679693<br />

Fuchsia excorticata New Zeal<strong>and</strong> A. Blouin EF679386, EF679464, EF679540, EF679616, EF679694<br />

<strong>Cladosporium</strong> sinuosum — <strong>CBS</strong> 121629* = CPC 11839 = ICMP 15819 (extype)<br />

<strong>Cladosporium</strong> spinulosum — <strong>CBS</strong> 102044 Hypersaline water from salterns Slovenia S. Soujak EF679387, EF679465, EF679541, EF679617, EF679695<br />

<strong>CBS</strong> 119907* = CPC 12040 = EXF-334 (ex-type) Hypersaline water from salterns Slovenia P. Zalar EF679388, EF679466, EF679542, EF679618, EF679696<br />

<strong>Cladosporium</strong> subinflatum — <strong>CBS</strong> 121630* = CPC 12041 = EXF-343 (ex-type) Hypersaline water from salterns Slovenia P. Zalar EF679389, EF679467, EF679543, EF679619, EF679697<br />

<strong>Cladosporium</strong> sp. — <strong>CBS</strong> 172.52 = ATCC 11320 Carya illinoensis U.S.A. — EF679390, EF679468, EF679544, EF679620, EF679698<br />

<strong>CBS</strong> 113741 Grape berry U.S.A. — EF679391, EF679469, EF679545, EF679621, EF679699<br />

<strong>CBS</strong> 113742 Grape berry U.S.A. — EF679392, EF679470, EF679546, EF679622, EF679700<br />

<strong>CBS</strong> 113744 Grape bud U.S.A. — EF679393, EF679471, EF679547, EF679623, EF679701<br />

CPC 12484 Pinus ponderosa Argentina A. Greslebin EF679394, EF679472, EF679548, EF679624, EF679702<br />

CPC 12485 Pinus ponderosa Argentina A. Greslebin EF679395, EF679473, EF679549, EF679625, EF679703<br />

<strong>Cladosporium</strong> subtilissimum — <strong>CBS</strong> 113753 Bing cherry fruits U.S.A. — EF679396, EF679474, EF679550, EF679626, EF679704<br />

<strong>CBS</strong> 113754* Grape berry U.S.A. — EF679397, EF679475, EF679551, EF679627, EF679705<br />

CPC 12044 = EXF-462 Hypersaline water from salterns Slovenia P. Zalar EF679398, EF679476, EF679552, EF679628, EF679706<br />

<strong>Cladosporium</strong> tenellum — <strong>CBS</strong> 121634* = CPC 12053 = EXF-1735 (ex-type) Hypersaline water from salterns Israel P. Zalar EF679401, EF679479, EF679555, EF679631, EF679709<br />

www.studiesinmycology.org<br />

109


Schubert et al.<br />

Table 1. (Continued).<br />

Anamorph Teleomorph Accession number 1 Host Country Collector GenBank numbers 2<br />

(ITS, EF, ACT, CAL, HIS)<br />

CPC 11813 Phyllactinia sp. on Corylus sp. U.S.A. D. Glawe EF679399, EF679477, EF679553, EF679629, EF679707<br />

CPC 12051 = EXF-1083 Hypersaline water from salterns Israel P. Zalar EF679400, EF679478, EF679554, EF679630, EF679708<br />

<strong>Cladosporium</strong> variabile Davidiella variabile <strong>CBS</strong> 121636* = CPC 12751 (epitype) Spinacia oleracea U.S.A. — EF679402, EF679480, EF679556, EF679632, EF679710<br />

CPC 12753 Spinacia oleracea U.S.A. — EF679403, EF679481, EF679557, EF679633, EF679711<br />

— Davidiella sp. <strong>CBS</strong> 289.49 Allium schoenoprasum Switzerl<strong>and</strong> E. Müller AY152552, EF679482, EF679558, EF679634, EF679712<br />

<strong>CBS</strong> 290.49 Trisetum distichophyllum Switzerl<strong>and</strong> E. Müller EF679404, EF679483, EF679559, EF679635, EF679713<br />

1 ATCC: American Type Culture Collection, Virginia, U.S.A.; <strong>CBS</strong>: Centraalbureau voor Schimmelcultures, Utrecht, <strong>The</strong> Netherl<strong>and</strong>s; CPC: Culture collection of Pedro Crous, housed at <strong>CBS</strong>; EXF: Extremophilic Fungi Culture Collection of the Department<br />

of Biology, Biotechnical Faculty, University of Ljubljana, Slovenia; ICMP: International Collection of Micro-organisms from Plants, L<strong>and</strong>care Research, Private Bag 92170, Auckl<strong>and</strong>, New Zeal<strong>and</strong>; IMI: International Mycological Institute, CABI-Bioscience,<br />

Egham, Bakeham Lane, U.K.<br />

2 ACT: partial actin gene, CAL: partial calmodulin gene, EF: partial elongation factor 1-alpha gene, HIS: partial histone H3 gene, ITS: internal transcribed spacer region.<br />

*Ex-type cultures.<br />

Zalar, Crous & U. Braun <strong>and</strong> C. ossifragi (Rostr.) U. Braun & K.<br />

Schub.]. <strong>The</strong> intraspecific variation in the C. bruhnei clade is due<br />

to genetic variation present in the sequence data of all loci except<br />

for ITS, those in the C. macrocarpum clade in all loci except for ITS<br />

<strong>and</strong> ACT, <strong>and</strong> those in the C. herbarum clade in all loci except for<br />

ITS <strong>and</strong> CAL (data not shown). However, none of the variation for<br />

these species could be linked to host specificity or morphological<br />

differences. In general, ITS data did not provide any resolution<br />

within the C. herbarum complex, whereas EF data provided species<br />

clades with very little intraspecific variation <strong>and</strong> ACT, CAL <strong>and</strong> HIS<br />

revealed increasing intraspecific variation (ACT the least <strong>and</strong> HIS<br />

the most).<br />

<strong>The</strong> mean genetic diversity (H) of the entire data set excluding<br />

the nearly invariant ITS region was 0.9307, with little difference<br />

between genes (ACT = 0.9257, CAL = 0.9289, EF = 0.9322, HIS<br />

= 0.9361). <strong>The</strong> loci showed different numbers of alleles (ACT: 22,<br />

CAL: 16, EF: 21, HIS: 20, ITS: 6). Differentiation of entities when<br />

calculated with Structure software using the admixture/correlated<br />

model showed highest value with K = 6. At this value F ST<br />

varied<br />

between 0.1362 <strong>and</strong> 0.3381. Linkage disequilibrium calculated<br />

using the st<strong>and</strong>ardised index of association (I S ) for the entire<br />

A<br />

dataset (observed variance V o<br />

= 0.5602, expected variance V e<br />

=<br />

0.2576) was 0.3914 (P = 0.0001), consistent with a small amount<br />

of recombination that did not destroy the linkage between alleles.<br />

Only few groups appeared to be separated for all alleles; degrees<br />

of gene flow are indicated in Fig. 4. SplitsTree software produced<br />

unresolved star-shaped structures for all genes, without any sign of<br />

reticulation (Fig. 5).<br />

110


<strong>Cladosporium</strong> herbarum species complex<br />

100<br />

74<br />

100<br />

10 changes<br />

Cercospora beticola CPC11557<br />

CPC 11609<br />

<strong>CBS</strong> 109082<br />

<strong>CBS</strong> 673.69<br />

<strong>Cladosporium</strong> cladosporioides complex<br />

98<br />

CPC 11606<br />

Davidiella sp. <strong>CBS</strong> 290.49<br />

100 CPC 12043<br />

CPC 12047 <strong>Cladosporium</strong> ramotenellum<br />

100 <strong>CBS</strong> 842.91<br />

80<br />

<strong>Cladosporium</strong> ossifragi<br />

<strong>CBS</strong> 843.91<br />

Davidiella sp. <strong>CBS</strong> 289.49<br />

CPC 12053<br />

91<br />

100<br />

CPC 11813 <strong>Cladosporium</strong> tenellum<br />

64<br />

CPC 12051<br />

<strong>Cladosporium</strong> sp. <strong>CBS</strong> 113744<br />

63<br />

54<br />

94<br />

100<br />

98<br />

72 62<br />

81<br />

66<br />

67<br />

54<br />

67<br />

91<br />

51<br />

<strong>CBS</strong> 113753<br />

<strong>CBS</strong> 113754<br />

CPC 12044<br />

CPC 12139<br />

<strong>CBS</strong> 159.54<br />

<strong>CBS</strong> 188.54<br />

<strong>CBS</strong> 177.71<br />

<strong>CBS</strong> 399.80<br />

<strong>CBS</strong> 521.68<br />

63<br />

<strong>CBS</strong> 115683<br />

<strong>CBS</strong> 366.80<br />

<strong>CBS</strong> 134.31<br />

<strong>CBS</strong> 813.71<br />

<strong>CBS</strong> 110024<br />

CPC 12921<br />

CPC 12046<br />

<strong>CBS</strong> 572.78<br />

CPC 12045<br />

CPC 11840<br />

<strong>CBS</strong> 157.82<br />

CPC 12212<br />

CPC 12211<br />

CPC 12042<br />

CPC 11386<br />

<strong>CBS</strong> 161.55<br />

<strong>Cladosporium</strong> sp. CPC 12485<br />

74<br />

83<br />

58<br />

85<br />

<strong>CBS</strong> 102044<br />

CPC 12040<br />

<strong>Cladosporium</strong> sp. CPC 12484<br />

<strong>Cladosporium</strong> sp. <strong>CBS</strong> 172.52<br />

<strong>Cladosporium</strong> sp. <strong>CBS</strong> 113741<br />

<strong>Cladosporium</strong> antarcticum <strong>CBS</strong> 690.92<br />

<strong>Cladosporium</strong> sp. <strong>CBS</strong> 113742<br />

<strong>Cladosporium</strong> subinflatum CPC 12041<br />

<strong>Cladosporium</strong> pseudiridis <strong>CBS</strong> 116463<br />

<strong>Cladosporium</strong> sinuosum CPC 11839<br />

93<br />

100<br />

51<br />

66<br />

81<br />

94<br />

65<br />

<strong>CBS</strong> 107.20 <strong>Cladosporium</strong> iridis<br />

<strong>CBS</strong> 138.40<br />

<strong>Cladosporium</strong> herbaroides CPC 12052<br />

100<br />

64<br />

95<br />

71<br />

61<br />

99<br />

CPC 12751<br />

CPC 12753<br />

CPC 11817<br />

CPC 12758<br />

CPC 12759<br />

CPC 12054<br />

<strong>CBS</strong> 175.82<br />

<strong>CBS</strong> 223.31<br />

51 CPC 12757<br />

56 <strong>CBS</strong> 299.67<br />

CPC 12756<br />

67 CPC 12755<br />

CPC 12752<br />

CPC 11603<br />

<strong>CBS</strong> 300.49<br />

CPC 11600<br />

CPC 11604<br />

CPC 11602<br />

CPC 11601<br />

<strong>CBS</strong> 111.82<br />

CPC 12177<br />

CPC 12183<br />

100<br />

CPC 12181<br />

CPC 12180<br />

CPC 12179<br />

CPC 12178<br />

<strong>Cladosporium</strong> subtilissimum<br />

<strong>Cladosporium</strong> bruhnei<br />

<strong>Cladosporium</strong> spinulosum<br />

<strong>Cladosporium</strong> variabile<br />

<strong>Cladosporium</strong> macrocarpum<br />

<strong>Cladosporium</strong> herbarum<br />

Fig. 3. One of 40 equally most parsimonious trees obtained from a heuristic search with 100 r<strong>and</strong>om taxon additions of the combined sequence alignment (ITS, ACT, CAL, EF,<br />

HIS). <strong>The</strong> scale bar shows ten changes, <strong>and</strong> bootstrap support values from 1 000 replicates are shown at the nodes. Thickened lines indicate the strict consensus branches<br />

<strong>and</strong> strain numbers in bold represent ex-type sequences. <strong>The</strong> tree was rooted to sequences of Cercospora beticola strain CPC 11557 (GenBank accession numbers AY840527,<br />

AY840458, AY840425, AY840494, AY840392, respectively).<br />

www.studiesinmycology.org<br />

111


Schubert et al.<br />

Davidiella sp.<br />

Global (Gapcost:0%)<br />

ACT<br />

80<br />

85<br />

D. macrosporum D. tassiana<br />

D. macrocarpa<br />

D. macrocarpa<br />

90<br />

D. macrospora<br />

Davidiella sp.<br />

D. variabile<br />

D. Variabile<br />

D. tassiana<br />

D. allicina<br />

D. alliacea<br />

95<br />

100<br />

• . <strong>CBS</strong> 673.69<br />

• . CPC 11606<br />

• . <strong>CBS</strong> 109082<br />

• . CPC 11609<br />

<br />

. <strong>CBS</strong> 110024<br />

<br />

. <strong>CBS</strong> 157.82<br />

<br />

. <strong>CBS</strong> 161.55<br />

<br />

. <strong>CBS</strong> 572.78<br />

<br />

. CPC 11386<br />

<br />

. CPC 12042<br />

<br />

. CPC 12046<br />

<br />

. CPC 12211<br />

<br />

. CPC 12212<br />

<br />

. CPC 11840<br />

<br />

. <strong>CBS</strong> 188.54<br />

<br />

. <strong>CBS</strong> 366.80<br />

<br />

. CPC 12921<br />

<br />

. <strong>CBS</strong> 159.54<br />

<br />

. <strong>CBS</strong> 177.71<br />

<br />

. <strong>CBS</strong> 399.80<br />

<br />

. <strong>CBS</strong> 521.68<br />

<br />

. CPC 12139<br />

<br />

. <strong>CBS</strong> 115683<br />

<br />

. CPC12041<br />

<br />

. CPC 11839<br />

<br />

. <strong>CBS</strong> 134.31<br />

<br />

<br />

. <strong>CBS</strong> 813.71<br />

<br />

. CPC 12045<br />

<br />

. <strong>CBS</strong> 113753<br />

<br />

. <strong>CBS</strong> 113754<br />

<br />

. CPC 12044<br />

<br />

. CPC 12485<br />

<br />

. <strong>CBS</strong> 690.92<br />

<br />

. <strong>CBS</strong> 113742<br />

<br />

. <strong>CBS</strong> 113741<br />

<br />

. <strong>CBS</strong> 172.52<br />

<br />

. <strong>CBS</strong> 116463<br />

<br />

. <strong>CBS</strong> 102044<br />

<br />

. CPC 12040<br />

<br />

. <strong>CBS</strong> 289.49<br />

<br />

. <strong>CBS</strong> 842.91<br />

<br />

. <strong>CBS</strong> 843.91<br />

<br />

. <strong>CBS</strong> 113744<br />

<br />

. CPC 12484<br />

<br />

. CPC 12751<br />

<br />

. CPC 12753<br />

•<br />

. <strong>CBS</strong> 107.20<br />

•<br />

. <strong>CBS</strong> 138.40<br />

<br />

. CPC 11600<br />

<br />

. CPC 11601<br />

<br />

. CPC 11602<br />

<br />

. CPC 11604<br />

<br />

. <strong>CBS</strong> 111.82<br />

<br />

. <strong>CBS</strong> 300.49<br />

<br />

. CPC 11603<br />

•<br />

. <strong>CBS</strong> 175.82<br />

•<br />

. <strong>CBS</strong> 223.31<br />

•<br />

. <strong>CBS</strong> 299.67<br />

•<br />

. CPC 11817<br />

•<br />

. CPC 12054<br />

<br />

. CPC 12752<br />

<br />

. CPC 12755<br />

<br />

. CPC 12756<br />

•<br />

. CPC 12758<br />

•<br />

. CPC 12759<br />

•<br />

. CPC 12757<br />

<br />

. CPC 12177<br />

<br />

. CPC 12178<br />

<br />

. CPC 12179<br />

<br />

. CPC 12180<br />

<br />

. CPC 12181<br />

<br />

. CPC 12183<br />

•<br />

. CPC 12052<br />

<br />

. CPC 11813<br />

<br />

. CPC 12051<br />

<br />

. CPC 12053<br />

<br />

. CPC 12043<br />

<br />

. CPC 12047<br />

<br />

. <strong>CBS</strong> 290.49<br />

<strong>Cladosporium</strong> cladosporioides complex<br />

<strong>Cladosporium</strong> cladosporioides complex<br />

<strong>Cladosporium</strong> cladosporioides complex<br />

<strong>Cladosporium</strong> cladosporioides complex<br />

<strong>Cladosporium</strong> bruhnei<br />

<strong>Cladosporium</strong> bruhnei<br />

<strong>Cladosporium</strong> bruhnei<br />

<strong>Cladosporium</strong> bruhnei<br />

<strong>Cladosporium</strong> bruhnei<br />

<strong>Cladosporium</strong> bruhnei<br />

<strong>Cladosporium</strong> bruhnei<br />

<strong>Cladosporium</strong> bruhnei<br />

<strong>Cladosporium</strong> bruhnei<br />

<strong>Cladosporium</strong> bruhnei<br />

<strong>Cladosporium</strong> bruhnei<br />

<strong>Cladosporium</strong> bruhnei<br />

<strong>Cladosporium</strong> bruhnei<br />

<strong>Cladosporium</strong> bruhnei<br />

<strong>Cladosporium</strong> bruhnei<br />

<strong>Cladosporium</strong> bruhnei<br />

<strong>Cladosporium</strong> bruhnei<br />

<strong>Cladosporium</strong> bruhnei<br />

<strong>Cladosporium</strong> bruhnei<br />

<strong>Cladosporium</strong> subinflatum<br />

<strong>Cladosporium</strong> sinuosum<br />

<strong>Cladosporium</strong> bruhnei<br />

<strong>Cladosporium</strong> bruhnei<br />

<strong>Cladosporium</strong> bruhnei<br />

<strong>Cladosporium</strong> subtilissimum s.str.<br />

<strong>Cladosporium</strong> subtilissimum s.str.<br />

<strong>Cladosporium</strong> subtilissimum s.str.<br />

<strong>Cladosporium</strong> subtilissimum s.lat.<br />

<strong>Cladosporium</strong> antarcticum<br />

<strong>Cladosporium</strong> subtilissimum s.lat.<br />

<strong>Cladosporium</strong> subtilissimum s.lat.<br />

<strong>Cladosporium</strong> subtilissimum s.lat.<br />

<strong>Cladosporium</strong> pseudiridis<br />

<strong>Cladosporium</strong> spinulosum<br />

<strong>Cladosporium</strong> spinulosum<br />

Davidiella sp.<br />

<strong>Cladosporium</strong> ossifragi<br />

<strong>Cladosporium</strong> ossifragi<br />

<strong>Cladosporium</strong> subtilissimum s.lat.<br />

<strong>Cladosporium</strong> subtilissimum s.lat.<br />

<strong>Cladosporium</strong> variabile<br />

<strong>Cladosporium</strong> variabile<br />

<strong>Cladosporium</strong> iridis<br />

<strong>Cladosporium</strong> iridis<br />

<strong>Cladosporium</strong> herbarum<br />

<strong>Cladosporium</strong> herbarum<br />

<strong>Cladosporium</strong> herbarum<br />

<strong>Cladosporium</strong> herbarum<br />

<strong>Cladosporium</strong> herbarum<br />

<strong>Cladosporium</strong> herbarum<br />

<strong>Cladosporium</strong> herbarum<br />

<strong>Cladosporium</strong> macrocarpum<br />

<strong>Cladosporium</strong> macrocarpum<br />

<strong>Cladosporium</strong> macrocarpum<br />

<strong>Cladosporium</strong> macrocarpum<br />

<strong>Cladosporium</strong> macrocarpum<br />

<strong>Cladosporium</strong> macrocarpum<br />

<strong>Cladosporium</strong> macrocarpum<br />

<strong>Cladosporium</strong> macrocarpum<br />

<strong>Cladosporium</strong> macrocarpum<br />

<strong>Cladosporium</strong> macrocarpum<br />

<strong>Cladosporium</strong> macrocarpum<br />

<strong>Cladosporium</strong> herbarum<br />

<strong>Cladosporium</strong> herbarum<br />

<strong>Cladosporium</strong> herbarum<br />

<strong>Cladosporium</strong> herbarum<br />

<strong>Cladosporium</strong> herbarum<br />

<strong>Cladosporium</strong> herbarum<br />

<strong>Cladosporium</strong> herbaroides<br />

<strong>Cladosporium</strong> tenellum<br />

<strong>Cladosporium</strong> tenellum<br />

<strong>Cladosporium</strong> tenellum<br />

<strong>Cladosporium</strong> ramotenellum<br />

<strong>Cladosporium</strong> ramotenellum<br />

Davidiella sp.<br />

Water<br />

Germany<br />

Wood<br />

Belgium<br />

Human<br />

Netherl<strong>and</strong>s<br />

Fungus<br />

Russia<br />

Tree<br />

Germany<br />

Hypersaline Slovenia<br />

Airco<br />

Slovenia<br />

Grass<br />

Belgium<br />

Grass<br />

Belgium<br />

Plant<br />

Australia<br />

? ?<br />

Human<br />

Netherl<strong>and</strong>s<br />

Tree<br />

Australia<br />

Human<br />

Netherl<strong>and</strong>s<br />

Chemical Netherl<strong>and</strong>s<br />

Human<br />

Netherl<strong>and</strong>s<br />

Air<br />

Netherl<strong>and</strong>s<br />

Grass<br />

Netherl<strong>and</strong>s<br />

Treated pole USA<br />

Hypersaline Slovenia<br />

Plant<br />

New Zeal<strong>and</strong><br />

? Germany<br />

Plant<br />

Czechia<br />

Hypersaline Spain<br />

Cherry<br />

USA .<br />

Grape<br />

USA<br />

Hypersaline Slovenia<br />

.<br />

Wood<br />

Argentina<br />

Lichen<br />

Antarctica<br />

Grape<br />

USA<br />

Grape<br />

USA<br />

Plant<br />

USA<br />

Plant<br />

New Zeal<strong>and</strong><br />

Hypersaline Slovenia<br />

Hypersaline Slovenia<br />

Plant<br />

Switzerl<strong>and</strong><br />

Plant<br />

Norway<br />

Plant<br />

Norway<br />

Grape<br />

USA<br />

Wood<br />

Argentina<br />

Spinach<br />

USA<br />

Spinach<br />

USA<br />

Plant<br />

Netherl<strong>and</strong>s<br />

Plant<br />

Netherl<strong>and</strong>s<br />

Plant<br />

USA<br />

Plant<br />

USA<br />

Plant<br />

USA<br />

Plant<br />

USA<br />

Plant<br />

Switzerl<strong>and</strong><br />

Plant<br />

Switzerl<strong>and</strong><br />

Plant<br />

USA<br />

Water<br />

Romania<br />

? ?<br />

Straw<br />

Turkey<br />

Branch<br />

USA<br />

Hypersaline Slovenia<br />

Spinach<br />

USA<br />

Spinach<br />

USA<br />

Spinach<br />

USA<br />

Spinach<br />

USA<br />

Spinach<br />

USA<br />

Spinach<br />

USA<br />

Grass<br />

Netherl<strong>and</strong>s<br />

Grass<br />

Netherl<strong>and</strong>s<br />

Grass<br />

Netherl<strong>and</strong>s<br />

Grass<br />

Netherl<strong>and</strong>s<br />

Grass<br />

Netherl<strong>and</strong>s<br />

Grass<br />

Netherl<strong>and</strong>s<br />

Saltern<br />

Israel<br />

Fungus<br />

USA<br />

Hypersaline Slovenia<br />

Hypersaline Slovenia<br />

Hypersaline Slovenia<br />

Airco<br />

Slovenia<br />

Plant<br />

Switzerl<strong>and</strong><br />

Fig. 4. Distance tree of the <strong>Cladosporium</strong> herbarum complex based on ACT sequence data generated with UPGMA, showing Structure analysis at K = 6 under admixture model<br />

with correlated allele frequencies. Group indications (18) are taken from a tree based on EF sequences with AIC under the HKYG model.<br />

112


<strong>Cladosporium</strong> herbarum species complex<br />

B<br />

A<br />

C<br />

D<br />

Fig. 5. Split decomposition of the <strong>Cladosporium</strong> herbarum complex using SplitsTree of 16–22 unique alleles obtained from 79 <strong>Cladosporium</strong> isolates for four loci. <strong>The</strong> star-like<br />

structures suggest clonal development. A = ACT, B = CAL, C = HIS, D = EF. Scale bars = 0.01 nucleotide substitutions per site.<br />

Taxonomy<br />

Key to the <strong>Cladosporium</strong> species treated<br />

Morphological features used in the key to distinguish the species treated in this study were determined after 7 d growth at 25 ºC on SNA using<br />

light microscopy, <strong>and</strong> cultural characteristics after 14 d incubation on PDA.<br />

1. Conidia usually smooth, rarely minutely verruculose ..................................................................... C. cladosporioides (species complex)<br />

1. Conidia with different surface ornamentation, minutely to distinctly verruculose, verrucose to echinulate or spiny<br />

.................................................................................................................................................................................................................... 2<br />

2. Conidiophores uniform, macronematous; conidia solitary, sometimes formed in short unbranched chains .............................................. 3<br />

2. Conidiophores both macronematous <strong>and</strong> micronematous; conidia always catenate, usually formed in branched chains<br />

.................................................................................................................................................................................................................... 5<br />

www.studiesinmycology.org<br />

113


Schubert et al.<br />

3. Conidiophores due to geniculations often growing zigzag-like, (4–)5–7 µm wide; conidia 9–21 × (5–)6–8 µm, 0–1-septate;<br />

conidiogenous loci <strong>and</strong> conidial hila 1.2–2(–2.2) µm diam .................................................................................................... C. sinuosum<br />

3. Conidiophores not growing zigzag-like, wider, 6–11 µm; conidia very large <strong>and</strong> wide, 15–75(–87) × (7–)10–19(–21) µm, often with more<br />

septa; conidiogenous loci <strong>and</strong> hila wider, (2–)2.5–4 µm diam ................................................................................................................... 4<br />

4. Conidia (18–)30–75(–87) × (7–)10–16(–18) µm, (0–)2–6(–7)-septate, walls thickened, especially in older conidia, up to 1 µm thick<br />

......................................................................................................................................................................................................... C. iridis<br />

4. Conidia shorter <strong>and</strong> wider, 15–55 × (9–)11–19(–21) µm, 0–3-septate, walls distinctly thickened, up to 2 µm, usually appearing zonate<br />

.............................................................................................................................................................................................. C. pseudiridis<br />

5(2) Macronematous conidiophores nodulose or nodose with conidiogenous loci usually confined to swellings ........................................... 6<br />

5. Macronematous conidiophores non-nodulose or only occasionally subnodulose due to geniculate proliferation, but conidiogenous loci not<br />

confined to swellings ................................................................................................................................................................................ 11<br />

6. Macronematous conidiophores 3–6 µm wide, swellings 5–11 µm wide .................................................................................................... 7<br />

6. Macronematous conidiophores somewhat narrower, (1.5–)2.5–5 µm wide, swellings 3–8 µm wide ........................................................ 8<br />

7. Aerial mycelium twisted; conidial septa often distinctly darkened, becoming sinuous with age, apex <strong>and</strong> base of the conidia often appear<br />

to be distinctly darkened; slower growing in culture (29 mm after 14 d on PDA) ...................................................................... C. variabile<br />

7. Aerial mycelium not twisted; conidial septa as well as apex <strong>and</strong> base not distinctly darkened, septa not sinuous with age; faster growing<br />

in culture (on average 38 mm after 14 d on PDA) .......................................................................................................... C. macrocarpum<br />

8. Macronematous conidiophores (1.5–)2.5–4.5(–5.5) µm wide, swellings 3–6.5 µm wide; conidia 4–17(–22) µm long, ornamentation<br />

variable, but usually densely echinulate, spines up to 0.8 µm long .................................................................................... C. subinflatum<br />

8. Macronematous conidiophores slightly wider, 3–5 µm, swellings (4–)5–8(–9) µm wide; conidia longer, up to 25(–35) µm, ornamentation<br />

minutely verruculose to verrucose, but not echinulate or spiny ................................................................................................................. 9<br />

9. Conidia formed by macronematous conidiophores 3–33 × (2–)3–6(–7) µm, with age becoming wider, (3.5–)5–9(–11) µm, darker <strong>and</strong><br />

more thick-walled ................................................................................................................................................................ C. herbaroides<br />

9. Conidia formed by macronematous conidiophores not becoming wider <strong>and</strong> darker with age, usually up to 7 µm wide<br />

.................................................................................................................................................................................................................. 10<br />

10. Conidiophores usually with small head-like swellings, sometimes also with a second intercalary nodule; small terminal conidia<br />

4–9 × 2.5–3.5 µm, secondary ramoconidia <strong>and</strong> occasionally formed ramoconidia 10–24(–31) × 3–5(–7) µm ........................ C. bruhnei<br />

10. Conidiophores with a single or often numerous swellings in short succession giving the stalk a knotty/gnarled appearance;<br />

conidia wider, small terminal conidia 4–10 × 3–5(–6) µm, intercalary conidia 6–16 × 4–6 µm, secondary ramoconidia 12–25(–35) ×<br />

(3–)5–7(–9) µm ....................................................................................................................................................................... C. herbarum<br />

11(5) Small terminal <strong>and</strong> intercalary conidia 4–15 × 3–5 µm, secondary ramoconidia 16–36(–40) × (4–)5–8 µm, 0–3(–4)-septate,<br />

ramoconidia absent ................................................................................................................................................................. C. ossifragi<br />

11. Small terminal conidia, ramoconidia <strong>and</strong> secondary ramoconidia distinctly narrower, 2–5(–6) µm wide, 0–2(–3)-septate<br />

.................................................................................................................................................................................................................. 12<br />

12. Mycelium dimorphic, narrow hyphae 1–3 µm wide, hyaline to subhyaline, thin-walled, hyphae of the second type wider, 3.5–8(–9)<br />

µm, pale to dark greyish olivaceous or olivaceous-brown, thick-walled, sometimes even two-layered, 1(–1.5) µm thick, hyphae<br />

appearing consistently enveloped in polysaccharide-like material or covered by a slime coat; conidiophores usually several times slightly<br />

to distinctly geniculate towards the apex, with numerous conidiogenous loci crowded towards the apex, up to 14 per conidiogenous cell<br />

............................................................................................................................................................................................. C. antarcticum<br />

12. Mycelium not dimorphic, neither enveloped in polysaccharide-like material nor covered by a slime coat; conidiophores usually not<br />

geniculate, occasionally only slightly so ................................................................................................................................................... 13<br />

13. Conidial ornamentation distinctly echinulate, spiny (baculate, digitate or capitate under SEM), spines 0.5–1.3 µm long, loose to moderately<br />

dense, conidial hila usually situated on small peg-like prolongations or denticles .............................................................. C. spinulosum<br />

13. Conidial ornamentation different, minutely verruculose to verruculose, conidial hila not situated on peg-like prolongations<br />

.................................................................................................................................................................................................................. 14<br />

14. Small terminal conidia narrowly obovoid, limoniform or fusiform, but neither globose nor subglobose; conidiogenous loci <strong>and</strong> conidial hila<br />

0.5–2(–2.5) µm diam ........................................................................................................................ C. subtilissimum (species complex)<br />

14. Numerous small globose or subglobose terminal conidia formed, also ovoid or limoniform; conidiogenous loci <strong>and</strong> conidial hila somewhat<br />

smaller, 0.5–1.5(–2) µm diam .................................................................................................................................................................. 15<br />

114


<strong>Cladosporium</strong> herbarum species complex<br />

15. Conidiophores usually with numerous conidiogenous loci forming sympodial clusters of pronounced scars at the apex, sometimes up to<br />

10 or even more denticulate loci; conidia 3–20(–28) × 2.5–5(–6) µm, 0–1(–2)-septate, often with several apically crowded hila, up to 7(–9)<br />

.................................................................................................................................................................................................. C. tenellum<br />

15. Conidiophores usually only with few conidiogenous loci, mostly 1–3; conidia longer <strong>and</strong> narrower, 2.5–35 × 2–4(–5) µm, 0–3-septate,<br />

usually with up to three distal conidial hila ....................................................................................................................... C. ramotenellum<br />

Key to the Davidiella species treated<br />

1. Ascospores frequently wider than 7 µm when mounted in Shear’s solution or lactic acid, apical cell obtusely rounded<br />

.................................................................................................................................................................................................................... 2<br />

1. Ascospores not wider than 7 µm when mounted in Shear’s solution or lactic acid, apical cell acutely rounded, ascospores (20–)25–27<br />

(–30) × (5.5–)6–7 µm ................................................................................................................................................................. D. allicina<br />

2. Pseudoparaphyses prominent; asci frequently >95 µm; ascospores (22–)23–26(–28) × (6–)6.5–7(–8) µm...................... D. macrocarpa<br />

2. Pseudoparaphyses mostly absent in older ascomata; asci


Schubert et al.<br />

Fig. 6. <strong>Cladosporium</strong> antarcticum (<strong>CBS</strong> 690.92). Macro- <strong>and</strong> micronematous conidiophores <strong>and</strong> conidia. Scale bar = 10 µm. K. Schubert del.<br />

geniculate with several conidiogenous loci at the apex, 2–22 ×<br />

2–3 µm, pale greyish olivaceous, loci denticulate. Ramoconidia<br />

occasionally occurring, cylindrical, up to 30 µm long, 4–5 µm<br />

wide, 0–1-septate, concolorous with the tips of conidiophores, with<br />

a broadly truncate, unthickened <strong>and</strong> not darkened base, without<br />

dome <strong>and</strong> rim, 2.5 µm wide. Conidia catenate, in branched chains,<br />

straight, small terminal conidia obovoid, limoniform or narrowly<br />

ellipsoid, 4–14 × 2.5–4 µm [av. ± SD, 8.5 (± 3.3) × 3.5 (± 0.6)],<br />

0(–1)-septate, secondary ramoconidia ellipsoid to cylindrical, often<br />

with several or numerous conidial hila crowded at the distal end, up<br />

to 12, 13–30 × 4–5 µm [av. ± SD, 20.1 (± 5.8) × 4.3 (± 0.5) µm],<br />

0–3-septate, sometimes slightly constricted at the median septum,<br />

pale olivaceous-brown or greyish brown, minutely verruculose to<br />

verrucose (granulate under SEM), walls more or less thickened,<br />

rounded or slightly attenuated towards apex <strong>and</strong> base, hila<br />

protuberant, denticulate, 0.8–1.5(–2) µm diam, thickened <strong>and</strong><br />

darkened-refractive; microcyclic conidiogenesis occurring.<br />

Cultural characteristics: Colonies on PDA attaining 9 mm diam after<br />

14 d at 25 ºC, greenish olivaceous to grey-olivaceous, at the margin<br />

becoming dull green, reverse with a pale olivaceous-grey centre<br />

<strong>and</strong> a broad olivaceous-black margin, margin narrow, regular,<br />

entire edge, white, feathery, aerial mycelium sparse but colonies<br />

appearing felty, growth flat with somewhat elevated colony centre,<br />

prominent exudates not formed, sporulation dense, covering almost<br />

the whole colony. Colonies on MEA attaining 12 mm diam after 14<br />

d at 25 ºC, olivaceous-grey to iron-grey, iron-grey reverse, velvety<br />

to powdery, aerial mycelium sparse, sporulation profuse. Colonies<br />

on OA attaining 4 mm after 14 d at 25 ºC, olivaceous-grey, aerial<br />

mycelium sparse, diffuse, growth flat, without prominent exudates,<br />

sporulating.<br />

Specimen examined: Antarctica, King George, Arctowski, isolated from the lichen<br />

Caloplaca regalis (Teloschistaceae), C. Möller, No. 32/12, 1991, <strong>CBS</strong>-H 19857,<br />

holotype, isotype HAL 2024 F, culture ex-type <strong>CBS</strong> 690.92.<br />

Substrate <strong>and</strong> distribution: On the lichen Caloplaca regalis;<br />

Antarctica.<br />

Notes: This is the second genuine lichenicolous species of the<br />

<strong>genus</strong> <strong>Cladosporium</strong>. <strong>Cladosporium</strong> licheniphilum Heuchert & U.<br />

Braun, occurring on apothecia of Pertusaria alpina in Russia, is<br />

quite distinct from C. antarcticum by having subcylindrical or only<br />

slightly geniculate-sinuous, wider conidiophores, 5–8 µm, with<br />

numerous characteristic terminal branches <strong>and</strong> much shorter, 0–<br />

1-septate, smooth conidia, 3.5–13 × 3–7 µm (Heuchert & Braun<br />

2006). <strong>Cladosporium</strong> lichenicola Linds. was invalidly published <strong>and</strong><br />

C. arthoniae M.S. Christ. & D. Hawksw. as well as C. lichenum<br />

Keissl. are to be excluded from the <strong>genus</strong> <strong>Cladosporium</strong> since<br />

they do not possess the typical cladosporioid scar structure but<br />

inconspicuous, unthickened conidiogenous loci <strong>and</strong> conidial hila<br />

(Hawksworth 1979, Heuchert et al. 2005). <strong>The</strong> fungicolous species<br />

C. uredinicola Speg. <strong>and</strong> the foliicolous species C. alneum Pass.<br />

ex K. Schub. <strong>and</strong> C. psoraleae M.B. Ellis are morphologically<br />

superficially <strong>similar</strong>. However, C. uredinicola, a widespread fungus<br />

on rust fungi, downy mildews <strong>and</strong> powdery mildew fungi, differs<br />

in having somewhat longer <strong>and</strong> wider, smooth conidia, 3–39 × 2–<br />

6.5(–8) µm, <strong>and</strong> wider conidiogenous loci <strong>and</strong> conidial hila, 0.5–3<br />

116


<strong>Cladosporium</strong> herbarum species complex<br />

Fig. 7. <strong>Cladosporium</strong> antarcticum (<strong>CBS</strong> 690.92). A.<br />

Overview of the growth pattern on SNA. Note the very<br />

large bulbous cells formed at the base of different<br />

conidiophores. Other conidiophores sprout from the<br />

agar surface. B. Overview of conidiophores <strong>and</strong> conidia.<br />

Note the large distance of the scars on the conidiophore<br />

<strong>and</strong> the different stages of conidial formation on the<br />

tips of other conidia. <strong>The</strong> long secondary ramoconidia<br />

are also visible, <strong>and</strong> sparse aerial hyphae. C. Detail<br />

of B with details of the ornamentation <strong>and</strong> scars. <strong>The</strong><br />

absence of ornamentation at the apical (spore-forming)<br />

end of the secondary ramoconidium is clearly visible. D–<br />

E. Tubular structures on coniophore (D) <strong>and</strong> secondary<br />

ramoconidium (E). Scale bars: A–B = 10 μm, C–D = 5<br />

µm, E = 2 µm.<br />

Fig. 8. <strong>Cladosporium</strong> antarcticum (<strong>CBS</strong> 690.92). A–B. Macronematous conidiophores. C, G. Mycelium enveloped by a polysaccharide-like layer. D, F. Conidia. E. Micronematous<br />

conidiophore. H. Ramoconidium with numerous distal scars. Scale bars = 10 µm.<br />

µm (Heuchert et al. 2005); C. alneum, which causes leaf spots on<br />

Alnus glutinosa, possesses longer <strong>and</strong> wider conidiophores, 25–<br />

260 × (2–)3–7(–8.5) µm, <strong>and</strong> somewhat shorter, smooth conidia<br />

(Schubert 2005, Schubert et al. 2006); <strong>and</strong> C. psoraleae, known<br />

from Myanmar on Psoralea corylifolia, can easily be distinguished<br />

from C. antarcticum by its smooth <strong>and</strong> wider conidia, 3.5–7 µm,<br />

<strong>and</strong> wider conidiogenous loci <strong>and</strong> conidial hila, 1–3 µm diam (Ellis<br />

1972, Schubert 2005).<br />

www.studiesinmycology.org<br />

117


Schubert et al.<br />

Fig. 9. <strong>Cladosporium</strong> bruhnei (CPC 12211). Macro- <strong>and</strong> micronematous conidiophores <strong>and</strong> conidia. Scale bar = 10 µm. K. Schubert del.<br />

<strong>Cladosporium</strong> bruhnei Linder, Bull. Natl. Mus. Canada 97: 259.<br />

1947. Figs 9–12.<br />

≡ Hormodendrum hordei Bruhne, in W. Zopf, Beitr. Physiol. Morph. nied.<br />

Org. 4: 1. 1894, non C. hordei Pass., 1887.<br />

≡ <strong>Cladosporium</strong> herbarum (Pers.: Fr.) Link var. (δ) cerealium Sacc. f.<br />

hordei (Bruhne) Ferraris, Flora Ital. Crypt., Pars I, Fungi, Fasc.13: 882.<br />

1914.<br />

≡ <strong>Cladosporium</strong> hordei (Bruhne) Pidopl., Gribnaja Flora Grubych Kormov:<br />

268. 1953, nom. illeg., homonym, non C. hordei Pass., 1887.<br />

Teleomorph: Davidiella allicina (Fr. : Fr.) Crous & Aptroot, in<br />

Aptroot, Mycosphaerella <strong>and</strong> its anamorphs: 2. Conspectus of<br />

Mycosphaerella. <strong>CBS</strong> Biodiversity Ser. 5: 30. 2006.<br />

Basionym: Sphaeria allicina Fr., Kongl. Vetensk. Acad. H<strong>and</strong>l. 38:<br />

247. 1817, sactioned by Fr., Syst. Mycol. 2: 437. 1823.<br />

≡ Sphaerella allicina (Fr. : Fr.) Auersw., in Gonn. & Rabenh., Mycol.<br />

Europaea 5–6: 19. 1869.<br />

Ascomata pseudothecial, black, superficial, situated on a small<br />

stroma, globose, up to 250 µm diam; ostioles periphysate, with<br />

apical periphysoids present; wall consisting of 3–6 layers of<br />

reddish brown textura angularis. Asci fasciculate, bitunicate,<br />

subsessile, obovoid to broadly ellipsoid, straight to slightly curved,<br />

8-spored, 65–90 × 16–25 µm; with pseudoparenchymatal cells<br />

of the hamathecium persistent. Ascospores tri- to multiseriate,<br />

overlapping, hyaline, with irregular lumina, thick-walled, straight<br />

to slightly curved, fusoid-ellipsoidal with obtuse basal end, <strong>and</strong><br />

acutely rounded apical end, widest near the middle of the apical<br />

cell, medianly 1-septate, not to slightly constricted at the septum,<br />

(20–)25–27(–30) × (5.5–)6–7 µm.<br />

Mycelium superficial, hyphae branched, 1.5–8 µm wide,<br />

pluriseptate, broader hyphae usually slightly constricted at the<br />

septa <strong>and</strong> somewhat swollen, hyaline to subhyaline, almost smooth<br />

to somewhat verruculose or irregularly rough-walled, sometimes<br />

appearing to have a slime coat, walls unthickened. Conidiophores<br />

macronematous, sometimes also micronematous, arising as lateral<br />

or terminal branches from plagiotropous or ascending hyphae, erect,<br />

straight to more or less flexuous, sometimes geniculate, nodulose,<br />

usually with small head-like swellings, sometimes also with<br />

intercalary nodules, sometimes swellings protruding <strong>and</strong> elongated<br />

to one side, unbranched, occasionally branched, (7–)20–330 µm,<br />

sometimes even longer, (2–)3–5 µm wide, swellings (4–)5–8 µm<br />

wide, pluriseptate, not constricted at the septa, septa sometimes<br />

not very conspicuous, subhyaline to pale brown or pale olivaceous,<br />

smooth or somewhat verruculose, walls unthickened or almost so,<br />

more thickened with age. Conidiogenous cells integrated, usually<br />

terminal, cylindrical with a terminal head-like swelling, sometimes<br />

with a second swelling, 15–40 µm long, proliferation sympodial,<br />

with few conidiogenous loci confined to swellings, up to five per<br />

swelling, loci protuberant, conspicuous, 1–2 µm diam, thickened<br />

<strong>and</strong> darkened-refractive. Conidia catenate, formed in branched<br />

chains, straight to slightly curved, small terminal conidia subglobose,<br />

ovoid to obovoid or somewhat limoniform, 4–9 × 2.5–3.5 µm [av. ±<br />

SD, 6.5 (± 1.5) × 3.1 (± 0.5) µm], aseptate; secondary ramoconidia<br />

<strong>and</strong> occasionally formed ramoconidia ellipsoid to subcylindrical<br />

or cylindrical, 10–24(–31) × 3–5(–7) µm [av. ± SD, 16.1 (± 4.1)<br />

× 4.1 (± 0.8) µm], rarely up to 40 µm long, 0–1(–3)-septate, very<br />

rarely 5-septate, subhyaline to pale brown or pale olivaceous,<br />

minutely verruculose to verrucose (mostly granulate with some<br />

muricate projections under SEM), walls unthickened or almost so,<br />

apex rounded or slightly attenuated towards apex <strong>and</strong> base, hila<br />

protuberant, conspicuous, 1–2 µm wide, up to 1 µm high, thickened<br />

<strong>and</strong> darkened-refractive; microcyclic conidiogenesis occurring.<br />

118


<strong>Cladosporium</strong> herbarum species complex<br />

Belgium, isolated from Quercus robur (Fagaceae), <strong>CBS</strong> 157.82; Kampenhout,<br />

isolated from Hordeum vulgare (Poaceae), 26 June 2005, J.Z. Groenewald, <strong>CBS</strong>-H<br />

19856, neotype designated here of C. bruhnei, isoneotype HAL 2023 F, cultures<br />

ex-type <strong>CBS</strong> 121624 = CPC 12211, CPC 12212. Czech Republic, Lisen, isolated<br />

from Polygonatum odoratum (Liliaceae), <strong>CBS</strong> 813.71, albino mutant of <strong>CBS</strong> 812.71.<br />

Germany, <strong>CBS</strong> 134.31 = ATCC 11283 = IMI 049632; Nordrhein-Westfalen, Mühlheim<br />

an der Ruhr, isolated from industrial water, IWW 727, <strong>CBS</strong> 110024; Sachsen-Anhalt,<br />

Halle (Saale), Robert-Franz-Ring, isolated from leaves of Tilia cordata (Tiliaceae),<br />

2004, K. Schubert, CPC 11386. Netherl<strong>and</strong>s, isolated from air, <strong>CBS</strong> 521.68; isolated<br />

from Hordeum vulgare, 1 Jan. 2005, P.W. Crous, CPC 12139; isolated from man,<br />

skin, <strong>CBS</strong> 159.54 = ATCC 36948; Amsterdam, isolated from Thuja tincture, <strong>CBS</strong><br />

177.71; Geleen, St. Barbara Ziekenhuis, isolated from man, skin, <strong>CBS</strong> 366.80, <strong>CBS</strong><br />

399.80; isolated from man, sputum, Aug. 1955, <strong>CBS</strong> 161.55. New Zeal<strong>and</strong>, Otago,<br />

Lake Harris, isolated from Ourisia macrophylla (Scrophulariaceae), 30 Jan. 2005,<br />

A. Blouin, Hill 1135, CPC 11840. Russia, Moscow region, isolated from Polyporus<br />

radiatus (Polyporaceae), Oct. 1978, <strong>CBS</strong> 572.78 = VKM F-405. Slovenia, Ljubljana,<br />

isolated from an air conditioning system, 2004, M. Butala, EXF-680 = CPC 12046;<br />

Sečovlje, isolated from hypersaline water from salterns (reserve pond), 2005, P.<br />

Zalar, EXF-389 = CPC 12042. Spain, Ebro Delta, isolated from hypersaline water<br />

from salterns (crystallisation pond), 2004, P. Zalar, EXF-594 = CPC 12045. Sweden,<br />

Skåne, on tip blight of living leaves of Allium sp. (Alliaceae), Fr. no. F-09810, UPS-<br />

FRIES, holotype of Davidiella allicina. U.S.A., New York, Geneva, isolated from<br />

CCA-treated Douglas-fir pole, <strong>CBS</strong> 115683 = ATCC 66670 = CPC 5101.<br />

Substrate <strong>and</strong> distribution: Living <strong>and</strong> decaying plant material, man,<br />

air, hypersaline <strong>and</strong> industrial water; widespread.<br />

Literature: Saccardo (1899: 1076), Linder (1947: 289).<br />

Fig. 10. <strong>Cladosporium</strong> bruhnei (CPC 12211). A. Conidiophore with characteristic<br />

long secondary ramoconidium <strong>and</strong> complex conidiophore. B. Detail of hila on<br />

secondary ramoconidia. C. Details of prominent ornamentation on conidia. Scale<br />

bars: A = 10 µm, B = 2 µm, C = 5 µm.<br />

Cultural characteristics: Colonies on PDA reaching 22–32 mm diam<br />

after 14 d at 25 ºC, olivaceous-grey to iron-grey, sometimes whitish,<br />

smoke-grey to pale olivaceous due to abundant aerial mycelium<br />

covering almost the whole colony, with age collapsing becoming<br />

olivaceous-grey, occasionally zonate, velvety to floccose, margin<br />

narrow, entire edge, white, glabrous to somewhat feathery, aerial<br />

mycelium sparse to abundant, white, fluffy, growth regular, flat to<br />

low convex, sometimes forming few exudates in the colony centre,<br />

sporulating. Colonies on MEA reaching 21–32 mm diam after 14<br />

d at 25 ºC, grey-olivaceous, olivaceous-grey to dull green or irongrey,<br />

sometimes whitish to pale smoke-grey due to abundant aerial<br />

mycelium, olivaceous-grey to iron-grey reverse, velvety, margin<br />

narrow, entire edge to slightly undulate, white, radially furrowed,<br />

glabrous to slightly feathery, aerial mycelium sparse to abundant,<br />

mainly in the centre, white, fluffy, growth convex to raised, radially<br />

furrowed, distinctly wrinkled in the colony centre, without prominent<br />

exudates, sporulating. Colonies on OA reaching 20–32 mm diam<br />

after 14 d at 25 ºC, smoke-grey, grey-olivaceous to olivaceous-grey,<br />

greenish black or iron-grey reverse, margin narrow, entire edge,<br />

colourless to white, glabrous, aerial mycelium sparse to abundant,<br />

dark smoke-grey, diffuse, high, later collapsed, felty, growth flat,<br />

without prominent exudates, sporulation profuse.<br />

Specimens examined: Sine loco et dato, <strong>CBS</strong> 188.54 = ATCC 11290 = IMI<br />

049638. Australia, N.S.W., Barrington Tops National Park, isolated from leaves<br />

of Eucalyptus stellulata (Myrtaceae), 3 Jan. 2006, B. Summerell, CPC 12921.<br />

Fig. 11. Davidiella allicina (F-09810, UPS-FRIES, holotype). Ascus <strong>and</strong> ascospores.<br />

Scale bar = 10 µm. P.W. Crous del.<br />

www.studiesinmycology.org<br />

119


Schubert et al.<br />

Fig. 12. <strong>Cladosporium</strong> bruhnei (CPC 12211) <strong>and</strong> its teleomorph Davidiella allicina. A–B. Macronematous conidiophores. C. Conidial chains. D. Micronematous conidiophore. E.<br />

Ascomata of the teleomorph formed on the host. F–G. Asci. Scale bars: A–B, D, F = 10 µm, E = 200 µm.<br />

Notes: <strong>Cladosporium</strong> bruhnei proved to be an additional component<br />

of the herbarum complex. <strong>The</strong> species resembles C. herbarum s.<br />

str. as already stated by Linder (1947), but possesses consistently<br />

narrower conidia, usually 2.5–5 µm wide, <strong>and</strong> the conidiophores<br />

often form only a single apical swelling. <strong>The</strong> species was described<br />

by Bruhne (l.c.) as Hormodendrum hordei from Germany but type<br />

material could not be located. Linder (1947) examined No. 1481a-5<br />

(Canada, N. Quebec, Sugluk, on Elymus arenarius var. villosus,<br />

31 Jul. 1936, E. Meyer), presumably in the National Museum, <strong>and</strong><br />

stated that this specimen agreed well with the description <strong>and</strong><br />

illustration given by Bruhne (l.c.). Although the species occurs<br />

on numerous substrates <strong>and</strong> is widely distributed, it has not yet<br />

been recognised as a distinct species since it has probably been<br />

interpreted as a narrow variant of C. herbarum.<br />

Based on morphology <strong>and</strong> DNA sequence data, the <strong>CBS</strong> strain<br />

<strong>CBS</strong> 177.71 chosen by Prasil & de Hoog (1988) as representative<br />

living strain of C. herbarum, rather clusters together with isolates<br />

of C. bruhnei. <strong>The</strong> strain <strong>CBS</strong> 813.71 is an albino mutant of the<br />

latter species as it does not appear to contain colour pigment.<br />

Furthermore, all isolates from humans treated until now as C.<br />

herbarum proved to be conspecific with the narrow-spored C.<br />

bruhnei.<br />

Although Davidiella tassiana (ascospores 17–25 × 6–8.5 µm,<br />

RO) was treated as synonymous to D. allicina (ascospores 20–27<br />

× 6–7 µm, UPS) in Aptroot (2006), they differ in apical ascospore<br />

taper, with ascospores of D. allicina being acutely rounded, while<br />

those of D. tassiana are obtusely rounded. <strong>The</strong> same ascospore<br />

taper was also observed in the teleomorph of C. bruhnei, <strong>and</strong> thus<br />

the name D. allicina is herewith linked to C. bruhnei, which is distinct<br />

from C. herbarum, having D. tassiana as teleomorph.<br />

<strong>Cladosporium</strong> herbaroides K. Schub., Zalar, Crous & U. Braun,<br />

sp. nov. MycoBank MB504574. Figs 13–15.<br />

Etymology: Refers to its morphological <strong>similar</strong>ity to <strong>Cladosporium</strong><br />

herbarum.<br />

Differt a Cladosporio herbaro conidiis polymorphis, 3–33 × (2–)3–6(–7) µm,<br />

postremo latioribus, (3.5–)5–9(–11) µm, fuscis et crassitunicatis; et a Cladosporio<br />

macrocarpo conidiophoris leniter angustioribus, 3–5 µm latis, nodulis angustioribus,<br />

5–8 µm latis.<br />

Mycelium branched, (1–)2–8 µm wide, septate, often with small<br />

swellings <strong>and</strong> constrictions, subhyaline to pale brown or pale<br />

olivaceous-brown, smooth or almost so to somewhat verruculose,<br />

walls unthickened or almost so. Conidiophores macronematous<br />

<strong>and</strong> micronematous, arising lateral from plagiotropous hyphae or<br />

terminally from ascending hyphae. Macronematous conidiophores<br />

erect, straight to slightly flexuous, often geniculate, nodulose, with<br />

unilateral or multilateral swellings, often numerous swellings in<br />

short succession giving them a gnarled appearance, often forming<br />

somewhat protruding or prolonged lateral swellings or a branch-<br />

120


<strong>Cladosporium</strong> herbarum species complex<br />

Fig. 13. <strong>Cladosporium</strong> herbaroides (CPC 12052). Macro- <strong>and</strong> micronematous conidiophores <strong>and</strong> conidia. Scale bar = 10 µm. K. Schubert del.<br />

like prolongation below the terminal swelling (due to sympodial<br />

proliferation), unbranched or sometimes branched, 30–230 µm<br />

long or even longer, 3–5 µm wide, swellings 5–8 µm wide, septate,<br />

not constricted at septa, pale to medium olivaceous-brown,<br />

smooth or almost so, walls slightly thickened. Conidiogenous cells<br />

integrated, terminal or intercalary, cylindrical, usually nodulose to<br />

nodose forming distinct swellings, sometimes geniculate, 15–55<br />

µm long, with numerous conidiogenous loci usually confined to<br />

swellings or situated on small lateral shoulders, sometimes on the<br />

top of short peg-like prolongations or denticles, loci protuberant,<br />

1–2 µm diam, thickened <strong>and</strong> darkened-refractive. Micronematous<br />

conidiophores much shorter, narrower, paler, neither nodulose nor<br />

geniculate, arising laterally from plagiotropous hyphae, often only<br />

as short lateral denticles or branchlets of hyphae, erect, straight,<br />

conical to cylindrical, unbranched, 3–65 × 2–3 µm, mostly aseptate,<br />

sometimes up to five septa, subhyaline, smooth, walls unthickened.<br />

Conidiogenous cells integrated, terminal or conidiophores reduced<br />

to conidiogenous cells, conidiogenous loci solitary or sometimes<br />

as sympodial clusters of pronounced denticles, protuberant, 1–1.5<br />

µm diam, thickened <strong>and</strong> somewhat darkened-refractive. Conidia<br />

polymorphous, two main morphological types recognisable, formed<br />

www.studiesinmycology.org<br />

by the two different types of conidiophores, conidia formed by<br />

macronematous conidiophores catenate, in branched chains,<br />

straight to slightly curved, subglobose, obovoid, limoniform, ellipsoid<br />

to cylindrical, 3–33 × (2–)3–6(–7) µm [av. ± SD, 14.5 (± 7.9) ×<br />

5.2 (± 1.2) µm], 0–2(–3)-septate, sometimes slightly constricted at<br />

septa, septa median or somewhat in the lower half, pale to medium<br />

olivaceous-brown, verruculose to verrucose (granulate under<br />

SEM), walls slightly thickened, with up to three rarely four distal<br />

scars, with age becoming medium or even dark brown (chocolate<br />

brown), wider <strong>and</strong> more thick-walled, 5.5–33 × (3.5–)5–9(–11) µm<br />

[av. ± SD, 14.4 (± 6.9) × 7.2 (± 1.9) µm], walls up to 1 µm thick,<br />

hila protuberant, 0.8–2(–2.5) µm diam, thickened <strong>and</strong> darkenedrefractive;<br />

microcyclic conidiogenesis occurring. Conidia formed by<br />

micronematous conidiophores paler <strong>and</strong> narrower, mostly formed<br />

in unbranched chains, sometimes in branched chains with up to<br />

three distal hila, straight to slightly curved, limoniform, narrowly<br />

fusiform, almost filiform to subcylindrical, 10–26(–35) × 2–3.5<br />

µm [av. ± SD, 15.6 (± 6.2) × 2.9 (± 0.5) µm], 0–1(–3)-septate,<br />

subhyaline to pale brown, almost smooth to minutely verruculose,<br />

walls unthickened, hila protuberant, 1–1.5 µm diam, thickened <strong>and</strong><br />

somewhat darkened-refractive.<br />

121


Schubert et al.<br />

Fig. 14. <strong>Cladosporium</strong> herbaroides (CPC 12052). A–B, D. Macronematous conidiophores. C. Conidial chain. E. Micronematous conidiophore. F. Microcyclic conidiogenesis. G.<br />

Conidia formed by micronematous conidiophores. Scale bars = 10 µm.<br />

Cultural characteristics: Colonies on PDA attaining 23 mm diam<br />

after 14 d at 25 ºC, grey-olivaceous to olivaceous, olivaceous-grey<br />

reverse, velvety, margin regular, entire edge, narrow, feathery, aerial<br />

mycelium abundantly formed, loose, with age covering large parts<br />

of the colony, woolly, growth flat with somewhat elevated colony<br />

centre, folded, regular, deep into the agar, with few prominent<br />

exudates, sporulation profuse. Colonies on MEA attaining 24 mm<br />

diam after 14 d at 25 ºC, grey- to greenish olivaceous, olivaceousgrey<br />

or iron-grey reverse, velvety to powdery, margin narrow,<br />

colourless, entire edge, somewhat feathery, aerial mycelium pale<br />

olivaceous-grey, sparse, growth convex, radially furrowed, folded<br />

in the colony centre, without prominent exudates, sporulating.<br />

Colonies on OA attaining 23 mm diam after 14 d at 25 ºC, greyolivaceous,<br />

margin more or less regular, entire edge, colourless,<br />

somewhat feathery, aerial mycelium whitish to smoke grey, at first<br />

sparse, later more abundantly formed, growth flat, without exudates,<br />

sporulation profuse.<br />

Specimen examined: Israel, from hypersaline water of Eilat salterns, 2004, coll.<br />

N. Gunde-Cimerman, isol. M. Ota, <strong>CBS</strong>-H 19858, holotype, isotype HAL 2025 F,<br />

culture ex-type <strong>CBS</strong> 121626 = EXF-1733 = CPC 12052.<br />

Substrate <strong>and</strong> distribution: Hypersaline water; Israel.<br />

Notes: <strong>Cladosporium</strong> herbaroides is morphologically <strong>similar</strong> to C.<br />

herbarum but differs in having somewhat longer conidia becoming<br />

wider, darker <strong>and</strong> even more thick-walled with age [at first conidia<br />

3–33 × (2–)3–6(–7) µm, with age (3.5–)5–9(–11) µm wide]. Besides<br />

that, the species often produces a second conidial type formed on<br />

micronematous conidiophores, giving rise to unbranched conidial<br />

chains which are almost filiform, limoniform, narrowly fusiform to<br />

subcylindrical, much narrower <strong>and</strong> paler than the ones formed by<br />

macronematous conidiophores, 10–26(–35) × 2–3.5 µm. In C.<br />

herbarum, conidia formed by micronematous conidiophores do not<br />

occur as frequently as in C. herbaroides, <strong>and</strong> differ in being often<br />

clavate <strong>and</strong> somewhat wider, up to 4(–5) µm wide. <strong>Cladosporium</strong><br />

macrocarpum is easily distinguishable by having somewhat wider<br />

conidiophores (3–)4–6 µm, with distinctly wider swellings, 5–10 µm<br />

wide, <strong>and</strong> the conidia are usually (3–)5–9(–10) µm wide.<br />

<strong>Cladosporium</strong> herbarum (Pers. : Fr.) Link, Ges. Naturf. Freunde<br />

Berlin Mag. Neuesten Entdeck. Gesammten Naturk. 7: 37. 1816:<br />

Fr., Syst. mycol. 3(2): 370. 1832. Figs 16–19.<br />

Basionym: Dematium herbarum Pers., Ann. Bot. (Usteri) 11: 32.<br />

1794: Fr., Syst. mycol. 3(2): 370. 1832.<br />

= Dematium epiphyllum var. (β) chionanthi Pers., Mycol. eur. 1: 16. 1822, syn.<br />

nov.<br />

For additional synonyms see Dugan et al. (2004), Schubert<br />

(2005).<br />

Teleomorph: Davidiella tassiana (De Not.) Crous & U. Braun,<br />

Mycol. Progr. 2: 8. 2003.<br />

Basionym: Sphaerella tassiana De Not., Sferiacei Italici 1: 87.<br />

1863.<br />

≡ Mycosphaerella tassiana (De Not.) Johanson, Öfvers. Förh. Kongl.<br />

Svenska Vetensk.-Akad. 41: 167. 1884.<br />

122


<strong>Cladosporium</strong> herbarum species complex<br />

Fig. 15. <strong>Cladosporium</strong> herbaroides (CPC 12052). A. Overview of the growth characteristics of this fungus. Broad hyphae run over the surface of the agar, <strong>and</strong> possibly give rise<br />

to conidiophore branches. <strong>The</strong> conidiophores of this fungus can be rather long, resembling aerial hyphae. Clusters of conidia are clearly visible in this micrograph. B. <strong>The</strong> very<br />

wide surface hyphae can anastomose. C. Conidiophore with secondary ramoconidia <strong>and</strong> conidia. Note the variation in scar size. D. A very elaborate, complex conidiophore with<br />

different scars of variable size, one being more than 2 μm wide! E. Details of secondary ramoconidia <strong>and</strong> hila. Note the rather strong ornamentation in which smaller “particles”<br />

are between larger ones. F. Three conidia in a row. Note the scar formation in the chain <strong>and</strong> the reduction of the size of the cells throughout the spore-chain. <strong>The</strong> inset shows<br />

the resemblance of the scars on a conidiophore <strong>and</strong> on a secondary ramoconidium. Scale bars: A = 50 µm, B–C, F (inset) = 10 µm, D–E = 5 µm, F = 2 µm.<br />

Ascomata pseudothecial, black, globose, erumpent to superficial,<br />

up to 200 µm diam, with 1(–3) short, periphysate ostiolar necks;<br />

wall consisting of 3–6 layers of medium red-brown textura<br />

angularis. Asci fasciculate, bitunicate, subsessile, obovoid to<br />

broadly ellipsoid, straight to slightly curved, 8-spored, 65–85 × 13–<br />

17 µm. Pseudoparaphyses absent in host material, but remnants<br />

observed when studied in culture, hyaline, septate, subcylindrical,<br />

anastomosing, 3–4 µm wide. Ascospores tri- to multiseriate,<br />

overlapping, hyaline, with irregular luminar inclusions, thickwalled,<br />

straight to slightly curved, fusoid-ellipsoidal with obtuse<br />

ends, widest near middle of apical cell, medianly 1-septate, not to<br />

slightly constricted at the septum, tapering towards both ends, but<br />

more prominently towards the lower end, (17–)20–23(–25) × (6–)<br />

7(–8) µm; becoming brown <strong>and</strong> verruculose in asci. Ascospores<br />

germinating after 24 h on MEA from both ends, with spore body<br />

becoming prominently constricted at the septum, but not distorting,<br />

up to 7 µm wide, hyaline to pale brown <strong>and</strong> appearing somewhat<br />

verruculose, enclosed in a mucoid sheath, with germ tubes being<br />

irregular, somewhat nodular.<br />

www.studiesinmycology.org<br />

123


Schubert et al.<br />

almost smooth to minutely verruculose or irregularly rough-walled,<br />

sometimes forming clavate conidia, up to 33 µm long, 0–2-septate.<br />

Conidiogenous cells integrated, terminal or conidiophores reduced<br />

to conidiogenous cells, narrowly cylindrical or filiform, with a single<br />

or two loci. Conidia catenate, in unbranched or loosely branched<br />

chains with branching mostly occurring in the lower part of the chain,<br />

straight to slightly curved, small terminal conidia without distal hilum<br />

obovoid, 4–10 × 3–5(–6) µm [av. ± SD, 7.8 (± 1.9) × 4.7 (± 0.9) µm],<br />

aseptate, intercalary conidia with a single or sometimes up to three<br />

distal hila limoniform, ellipsoid to subcylindrical, 6–16 × 4–6 µm<br />

[av. ± SD, 12.4 (± 1.6) × 5.3 (± 0.6) µm], 0–1-septate, secondary<br />

ramoconidia with up to four distal hila, ellipsoid to cylindrical-oblong,<br />

12–25(–35) × (3–)5–7(–9) µm [av. ± SD, 18.8 (± 4.5) × 6.2 (± 0.9)<br />

µm], 0–1(–2)-septate, rarely with up to three septa, sometimes<br />

distinctly constricted at the septum, septum median or somewhat<br />

in the upper or lower half, pale greyish brown or brown to medium<br />

brown or greyish brown, minutely verruculose to verrucose, walls<br />

slightly to distinctly thickened, guttulate to somewhat granular,<br />

usually only slightly attenuated towards apex <strong>and</strong> base, apex<br />

obtuse or slightly truncate, towards the base sometimes distinctly<br />

attenuated with hila situated on short stalk-like prolongations, hila<br />

slightly to distinctly protuberant, truncate to slightly convex, (0.8–)<br />

1–2.5(–3) µm wide, 0.5–1 µm high, somewhat thickened <strong>and</strong><br />

darkened-refractive; microcyclic conidiogenesis occurring, conidia<br />

forming micro- <strong>and</strong> macronematous secondary conidiophores.<br />

Fig. 16. Davidiella tassiana (RO, holotype). Ascus <strong>and</strong> ascospores. Scale bar = 10<br />

µm. P.W. Crous del.<br />

Mycelium superficial, loosely branched, (0.5–)1–5 µm wide, septate,<br />

sometimes constricted at septa, hyaline, subhyaline to pale brown,<br />

smooth or almost so to verruculose or irregularly rough-walled,<br />

sometimes appearing irregular in outline due to small swellings<br />

<strong>and</strong> constrictions, walls unthickened to somewhat thickened, cell<br />

lumen appearing to be granular. Conidiophores both macro- <strong>and</strong><br />

micronematous, arising laterally from plagiotropous hyphae or<br />

terminally from ascending hyphae. Macronematous conidiophores<br />

erect, straight to flexuous, somewhat geniculate-sinuous, nodulose<br />

to nodose with unilateral or multilateral swellings, with a single to<br />

numerous swellings in short succession giving the stalk a knotty/<br />

gnarled appearance, unbranched or occasionally branched, up to<br />

three times, sometimes with a lateral branch-like proliferation below<br />

or at the apex, 10–320 × 3.5–5 µm, swellings 5–8(–9) µm wide,<br />

pluriseptate, septa sometimes constricted when formed after a<br />

node, pale to medium brown, older ones almost dark brown, paler<br />

towards the apex, smooth or minutely verruculose, walls thickened,<br />

sometimes even two-layered. Conidiogenous cells integrated,<br />

terminal or intercalary, nodulose to nodose, with a single or up<br />

to five swellings per cell, 10–24 µm long, proliferation sympodial,<br />

with several conidiogenous loci confined to swellings, mostly<br />

situated on small lateral shoulders, more or less protuberant,<br />

broadly truncate to slightly convex, 1.5–2.5 µm diam, thickened<br />

<strong>and</strong> somewhat darkened-refractive. Micronematous conidiophores<br />

hardly distinguishable from hyphae, sometimes only as short lateral<br />

outgrowth with a single apical scar, short, conical to almost filiform<br />

or narrowly cylindrical, non-nodulose, not geniculate, unbranched,<br />

5–120 × 1.5–3(–4) µm, pluriseptate, not constricted at septa,<br />

cells usually very short, 5–15 µm long, subhyaline to pale brown,<br />

Cultural characteristics: Colonies on PDA reaching 19–37 mm diam<br />

after 14 d at 25 ºC, grey-olivaceous to olivaceous-grey, whitish<br />

to smoke-grey or pale olivaceous-grey due to abundant aerial<br />

mycelium, velvety, reverse olivaceous-grey or iron-grey, margin<br />

almost colourless, regular, entire edge, glabrous to feathery,<br />

aerial mycelium abundant mainly in the colony centre, dense,<br />

felty, woolly, sometimes becoming somewhat reddish brown,<br />

fawn coloured, growth regular, flat to low convex with an elevated<br />

colony centre, sometimes forming few large prominent exudates,<br />

sporulation profuse. Colonies on MEA reaching 17–37 mm diam<br />

after 14 d at 25 ºC, smoke-grey to pale olivaceous-grey towards<br />

margin, olivaceous-grey to iron-grey reverse, velvety, margin white,<br />

entire edge to slightly undulate, aerial mycelium abundant, dense,<br />

fluffy to felty, growth low convex or raised, radially furrowed, folded<br />

<strong>and</strong> wrinkled in the colony centre, without prominent exudates but<br />

sporulating. Colonies on OA reaching 12–28 mm diam after 14<br />

d at 25 ºC, olivaceous-grey to iron-grey, due to abundant aerial<br />

mycelium pale olivaceous-grey, olivaceous-grey reverse, margin<br />

narrow, more or less undulate, white, aerial mycelium white, loose to<br />

dense, high, fluffy to felty, covering large parts of the colony, growth<br />

flat to low convex, without prominent exudates, sporulating.<br />

Specimens examined: Sine loco, sine dato, L 910.225-733, lectotype of C.<br />

herbarum, selected by Prasil & de Hoog, 1988. Sine loco, on leaves of Chionanthus<br />

sp. (Oleaceae), L 910.255-872 = L-0115833, holotype of Dematium epiphyllum<br />

var. (β) chionanthi. Netherl<strong>and</strong>s, Wageningen, isolated from Hordeum vulgare<br />

(Poaceae), 2005, P.W. Crous, <strong>CBS</strong>-H 19853, epitype designated here of C.<br />

herbarum <strong>and</strong> D. tassiana, isoepitype HAL 2022 F, ex-type cultures, CPC 12177 =<br />

<strong>CBS</strong> 121621, CPC 12178–12179, 12181, 12183. Italy, on upper <strong>and</strong> lower surface<br />

of dead leaves of Carex nigra [“fusca”] (Cyperaceae), Tassi no. 862, RO, holotype<br />

of Davidiella tassiana. U.S.A., Colorado, San Juan Co., above Little Molas Lake,<br />

isolated from stems of Delphinium barbeyi (Ranunculaceae), 12 Sep. 2004, A.<br />

Ramaley, <strong>CBS</strong>-H 19868 (teleomorph), single ascospore isolates, <strong>CBS</strong> 121622 =<br />

CPC 11600, CPC 11601–11604.<br />

Substrate <strong>and</strong> distribution: On fading <strong>and</strong> decaying plant material,<br />

on living leaves (phylloplane fungus), as secondary invader, as an<br />

endophyte, isolated from air, soil, foodstuffs, paints, textiles <strong>and</strong><br />

numerous other materials; cosmopolitan.<br />

124


<strong>Cladosporium</strong> herbarum species complex<br />

Fig. 17. <strong>Cladosporium</strong> herbarum (CPC 11600). Macro- <strong>and</strong> micronematous conidiophores <strong>and</strong> conidia. Scale bar = 10 µm. K. Schubert del.<br />

Literature: de Vries (1952: 71), Hughes (1958: 750), Ellis (1971:<br />

313), Domsch et al. (1980: 204), Sivanesan (1984: 225), Ellis &<br />

Ellis (1985: 290, 468, 1988: 168), Prasil & de Hoog (1988), Wang<br />

& Zabel (1990: 202), McKemy & Morgan-Jones (1991), Dugan &<br />

Roberts (1994), David (1997: 59), Ho et al. (1999: 129), de Hoog et<br />

al. (2000: 587), Samson et al. (2000: 110), Samson et al. (2001).<br />

Notes: De Vries (1952) incorrectly selected a specimen of Link’s<br />

herbarium at herb. B as lectotype. Prasil & de Hoog (1988) discussed<br />

this typification <strong>and</strong> designated one of Persoon’s original specimens<br />

as lectotype in which C. herbarum could be recognised. <strong>The</strong> latter<br />

material, which is in poor condition, could be re-examined within<br />

the course of these investigations <strong>and</strong> showed conidia agreeing<br />

with the current species concept of C. herbarum being (6–)9.5–<br />

14.5(–21) × (5–)6–7(–8) µm. Since the identity of the strain <strong>CBS</strong><br />

177.71 chosen by Prasil & de Hoog (1988) as representative living<br />

strain of C. herbarum could not be corroborated, an epitype with<br />

a living ex-epitype culture is designated. <strong>The</strong> holotype specimen<br />

of D. tassiana (RO) is morphologically <strong>similar</strong> to that observed on<br />

the epitype of C. herbarum, having ascospores which are (17–)21–<br />

www.studiesinmycology.org<br />

23(–25) × (6–)7–8(–8.5) µm, turning brown <strong>and</strong> verruculose in asci<br />

with age. However, no hamathecial remnants were observed in<br />

ascomata in vivo.<br />

<strong>The</strong> connection to the teleomorph D. tassiana could be<br />

confirmed, which is in agreement with the findings of von Arx (1950)<br />

<strong>and</strong> Barr (1958). Ascospore isolates formed the typical C. herbarum<br />

anamorph in culture, <strong>and</strong> these anamorph cultures developed<br />

some immature fruiting bodies within the agar. When inoculated<br />

onto water agar plates with nettle stems, numerous ascomata with<br />

viable ascospores were formed in culture.<br />

<strong>Cladosporium</strong> iridis (Fautrey & Roum.) G.A. de Vries, Contr.<br />

Knowl. Genus <strong>Cladosporium</strong>: 49. 1952. Figs 20–21.<br />

Basionym: Scolicotrichum iridis Fautrey & Roum., Rev. Mycol.<br />

(Toulouse) 13: 82. 1891.<br />

≡ Heterosporium iridis (Fautrey & Roum.) J.E. Jacques, Contr. Inst. Bot.<br />

Univ. Montréal 39: 18. 1941.<br />

For additional synonyms see Dugan et al. (2004).<br />

Teleomorph: Davidiella macrospora (Kleb.) Crous & U. Braun,<br />

Mycol. Progr. 2: 10. 2003.<br />

125


Schubert et al.<br />

Fig. 18. <strong>Cladosporium</strong> herbarum (CPC 11600) <strong>and</strong> its teleomorph Davidiella tassiana (from the host <strong>and</strong> CPC 12181). A–B. Macronematous conidiophores. C. Micronematous<br />

conidiophore. D. Microcyclic conidiogenesis. E. Conidial chain. F. Ascomata on the leaf. G. Ascomata formed in culture on nettle stems. H–I. Asci on the host. J–K. Ascospores<br />

in culture. L. Asci in culture. Scale bars: A, E, H, J–L = 10 µm, F–G, I = 200 µm.<br />

Basionym: Didymellina macrospora Kleb., Ber. Deutsch. Bot. Ges.<br />

42: 60, 1924. 1925.<br />

≡ Mycosphaerella macrospora (Kleb.) Jørst., Meld. Stat. Plantepatol. Inst.<br />

1: 20. 1945.<br />

Mycelium branched, 2–8 µm wide, septate, not constricted at the<br />

septa, hyaline to pale brown, smooth, walls slightly thickened,<br />

sometimes guttulate. Conidiophores very long, usually terminally<br />

arising from ascending hyphae, erect to subdecumbent, slightly<br />

to distinctly flexuous, geniculate-sinuous, usually several times,<br />

subnodulose due to geniculate, sympodial proliferation forming<br />

swollen lateral shoulders, unbranched, rarely branched, up to<br />

720 µm long, 6–11 µm wide, swellings 8–11(–14) µm wide,<br />

pluriseptate, often very regularly septate, not constricted at<br />

the septa, pale to medium olivaceous-brown, somewhat paler<br />

towards the apex, smooth to minutely verruculose, walls only<br />

slightly thickened. Conidiogenous cells integrated, terminal as<br />

well as intercalary, cylindrical-oblong, 15–55 µm long, proliferation<br />

percurrent to sympodial, usually with a single geniculation forming<br />

laterally swollen shoulders often below a septum, conidiogenous<br />

loci confined to swellings, usually one locus per swelling, rarely<br />

two, protuberant, (2–)2.5–4 µm diam, somewhat thickened<br />

<strong>and</strong> darkened-refractive. Conidia solitary, sometimes in short,<br />

unbranched chains, straight to curved, young conidia pyriform to<br />

subcylindrical, connection between conidiophore <strong>and</strong> conidium<br />

being rather broad, subhyaline to pale olivaceous-brown, walls<br />

slightly thickened, then enlarging <strong>and</strong> becoming more thick-walled,<br />

cylindrical-oblong, soleiform with age, both ends rounded, usually<br />

with a slightly to distinctly bulbous base, visible from a very early<br />

stage, but broadest part often towards the apex not at the base, (18–)<br />

30–75(–87) × (7–)10–16(–18) µm [av. ± SD, 53.3 (± 17.8) × 12.6 (±<br />

2.2) µm], (0–)2–6(–7)-septate, usually not constricted at the septa,<br />

rarely slightly constricted, septa often becoming sinuous with age,<br />

pale to medium olivaceous-brown, sometimes darker, verrucose to<br />

echinulate, walls thickened, especially in older conidia, up to 1 µm<br />

thick, hila protuberant, often stalk-like or conically prolonged, up<br />

to 2 µm long, (2–)2.5–3.5(–4) µm diam, with age becoming more<br />

sessile, sometimes just visible as a thickened plate just below the<br />

outer wall layer, especially in distal scars of branched conidia,<br />

periclinal rim often distinctly visible, hila somewhat thickened <strong>and</strong><br />

darkened-refractive; microcyclic conidiogenesis not observed.<br />

126


<strong>Cladosporium</strong> herbarum species complex<br />

Fig. 19. <strong>Cladosporium</strong> herbarum (CPC 11600). A. Overview of hyphal growth <strong>and</strong> conidiophore formation of a colony on SNA. Conidiophores are often formed on very wide<br />

(approx. 10 μm), septate hyphae that often grow near the agar surface. B. A more detailed view on colony organisation reveals the ornamented conidia. Note the septum near the<br />

conidiophore (arrow). C. Detail of spore ornamentation <strong>and</strong> hila on a secondary ramoconidium (arrow). Ornamentation is visible during early stages of spore formation (arrow).<br />

D. Structure of the conidiophore, illustrating the complex morphology of the spore-forming apparatus. In addition, secondary ramoconidia, conidia, <strong>and</strong> a hilum on the conidium<br />

are visible. E. Complex structure of the spore-forming apparatus. F. Details of secondary ramoconidia with complex scar-pattern on the right cell. G. Details of a secondary<br />

ramoconidium giving rise to conidia. Note the lack of ornamentation at the location of spore formation. Scale bars: A = 50 µm, B, F = 10 µm, C–E, G = 5 µm.<br />

Cultural characteristics: Colonies on PDA reaching 19–23 mm<br />

diam after 14 d at 25 ºC, pale greenish olivaceous, smoke-grey<br />

to olivaceous-grey due to abundant aerial mycelium, greenish<br />

olivaceous to olivaceous reverse, margin broad, regular, entire<br />

edge to slightly undulate, feathery, aerial mycelium abundantly<br />

formed, felty, fluffy, covering large parts of the colony, mainly in<br />

the central parts, high, growth low convex with a somewhat raised<br />

colony centre. Colonies on MEA reaching 9–23 mm diam after 14 d<br />

at 25 ºC, pale olivaceous-grey to olivaceous-grey, olivaceous-grey<br />

reverse, felty, margin slightly undulate, white, somewhat raised,<br />

aerial mycelium abundant, loose, diffuse, high, growth low convex,<br />

radially furrowed, slightly folded. Colonies on OA reaching 10–19<br />

mm diam after 14 d at 25 ºC, olivaceous, margin broad, undulate,<br />

white, aerial mycelium white, very high, loose, diffuse, hairy, growth<br />

flat, due to the mycelium low convex, without prominent exudates<br />

<strong>and</strong> sporulating on all media.<br />

Specimens examined: Isolated from Iris sp. (Iridaceae), <strong>CBS</strong> 107.20. France,<br />

Cote d’Or, Jardin de Noidan, on leaves of Iris germanica, Jul. 1880, F. Fautrey,<br />

Roumeguère, Fungi Sel. Gall. Exs. No. 5689, PC, lectotype of C. iridis, selected<br />

by David, 1997; K, isolectotype. Netherl<strong>and</strong>s, Boterenbrood, isolated from leaves<br />

of Iris sp., Aug. 1940, <strong>CBS</strong>-H 19859, epitype designated here of C. iridis, culture<br />

ex-epitype <strong>CBS</strong> 138.40.<br />

www.studiesinmycology.org<br />

127


Schubert et al.<br />

Fig. 20. <strong>Cladosporium</strong> iridis (<strong>CBS</strong> 138.40). Conidiophores <strong>and</strong> conidia. Scale bar = 10 µm. K. Schubert del.<br />

Fig. 21. <strong>Cladosporium</strong> iridis (teleomorph Davidiella macrospora) (<strong>CBS</strong> 138.40). A–C. Conidiophores with conidia. D. Conidium. Scale bar = 10 µm.<br />

128


<strong>Cladosporium</strong> herbarum species complex<br />

Fig. 22. <strong>Cladosporium</strong> macrocarpum (<strong>CBS</strong> 299.67). Macro- <strong>and</strong> micronematous conidiophores <strong>and</strong> conidia. Scale bar = 10 µm. K. Schubert del.<br />

Substrates <strong>and</strong> distribution: Leaf spot <strong>and</strong> blotch of Iris spp.<br />

including I. crocea, I. florentina, I. foetidissima, I. germanica, I.<br />

gueldenstaedtiana, I. kamaonensis, I. pallida, I. plicata (= I. swertii<br />

Hort.), I. pseudacorus, I. pumila, I. spuria ssp. halophila, <strong>and</strong> other<br />

species, also on Belacam<strong>and</strong>a chinensis (= Gemmingia chinensis),<br />

Hemerocallis fulva, Gladiolus g<strong>and</strong>avensis; Africa (Algeria,<br />

Morocco, South Africa, Zambia, Zimbabwe), Asia (Armenia,<br />

Azerbaijan, China, Georgia, India, Iran, Israel, Japan, Kazakhstan,<br />

Kirgizstan, Korea, Russia, Turkey, Turkmenistan, Uzbekistan),<br />

Australasia (Australia, New Zeal<strong>and</strong>), Europe (Austria, Belgium,<br />

Belorussia, Cyprus, Czech Republic, Denmark, Estonia, France,<br />

Germany, Great Britain, Greece, Italy, Latvia, Lithuania, Malta,<br />

Moldavia, Montenegro, Netherl<strong>and</strong>s, Norway, Pol<strong>and</strong>, Romania,<br />

Russia, Serbia, Spain, Sweden, Ukraine), North America (Canada,<br />

U.S.A.), Central & South America (Argentina, Chile, Jamaica,<br />

Panama, Uruguay).<br />

Literature: Ellis (1971: 312), Ellis & Waller (1974), Sivanesan (1984:<br />

222), McKemy & Morgan-Jones (1990), David (1997: 43), Shin et<br />

al. (1999).<br />

Notes: <strong>The</strong> description of the morphological parameters in culture<br />

is based on the isolate sporulating on PDA, since sporulation on<br />

SNA was not observed. <strong>The</strong> conidiophores <strong>and</strong> conidia in vivo are<br />

usually wider than in culture [conidiophores (6–)9–15(–17) µm<br />

wide, conidia (11–)15–23(–28) µm].<br />

www.studiesinmycology.org<br />

<strong>Cladosporium</strong> macrocarpum Preuss, in Sturm, Deutsch. Fl.<br />

3(26): 27. 1848. Figs 22–25.<br />

≡ <strong>Cladosporium</strong> herbarum var. macrocarpum (Preuss) M.H.M. Ho &<br />

Dugan, in Ho et al., Mycotaxon 72: 131. 1999.<br />

= Dematium herbarum var. (β) brassicae Pers., Syn. meth. fung. 2: 699. 1801,<br />

syn. nov.<br />

= Dematium graminum Pers., Mycol. eur. 1: 16. 1822, syn. nov.<br />

= Dematium vulgare var. (δ) typharum Pers., Mycol. eur. 1: 14. 1822, syn.<br />

nov.<br />

= Dematium vulgare var. (β) foliorum Pers., Mycol. eur. 1: 14. 1822, syn. nov.<br />

For additional synonyms see Dugan et al. (2004), Schubert<br />

(2005).<br />

Teleomorph: Davidiella macrocarpa Crous, K. Schub. & U. Braun,<br />

sp. nov. MycoBank MB504582.<br />

Davidiellae tassianae similis, sed pseudoparaphysibus prominentibus et ascosporis<br />

maioribus, (22–)23–26(–28) × (6–)6.5–7(–8) µm.<br />

Ascomata superficial on a small stroma, black, up to 200 µm<br />

diam, globose, separate, but developing with 1–3 necks with age;<br />

ostioles consisting of pale brown to subhyaline cells, periphysate,<br />

with periphysoids growing into the cavity; wall consisting of 3–6<br />

layers of medium brown textura angularis. Pseudoparaphyses<br />

present, hyaline, subcylindrical, septate, anastomosing, 3–4<br />

µm diam; hamathecial cells persistent in cavity. Asci fasciculate,<br />

bitunicate, subsessile, broadly ellipsoid with a long tapered stalk,<br />

straight to curved, 8-spored, 70–110 × 15–20 µm. Ascospores<br />

tri- to multiseriate, overlapping, hyaline, guttulate, irregular lumina<br />

129


Schubert et al.<br />

Fig. 23. <strong>Cladosporium</strong> macrocarpum (<strong>CBS</strong> 299.67) <strong>and</strong> its teleomorph Davidiella macrocarpa (CPC 12755). A–C. Macronematous conidiophores <strong>and</strong> conidia. D–G.<br />

Micronematous conidiophores. H. Microcyclic conidiogenesis. I. Ascomata formed on nettle stems in culture. J. Periphyses. K, M–N. Asci. L. Ostiole. Scale bars: A, D–H, J–N<br />

= 10 µm, I = 200 µm.<br />

rarely observed, thick-walled, straight to slightly curved, fusoidellipsoidal<br />

with obtuse ends, widest in the middle of the apical<br />

cell, medianly 1-septate, not to slightly constricted at the septum,<br />

tapering towards both ends, but more prominently towards lower<br />

end, (22–)23–26(–28) × (6–)6.5–7(–8) µm; mucoid sheath rarely<br />

observed, mostly absent.<br />

Mycelium unbranched or loosely branched, 1–4.5(–5) µm wide,<br />

septate, sometimes slightly constricted at septa, hyaline to pale<br />

brown, smooth to minutely verruculose, walls unthickened or slightly<br />

thickened. Conidiophores micronematous <strong>and</strong> macronematous,<br />

solitary, arising terminally from plagiotropous hyphae or terminally<br />

from ascending hyphae. Macronematous conidiophores erect,<br />

straight to somewhat flexuous, cylindrical-oblong, nodulose to<br />

nodose, with a single apical or usually several swellings either<br />

somewhat distinct from each other or often in short succession giving<br />

conidiophores a knotty appearance, swellings sometimes laterally<br />

elongated or formed at the top of a branch-like outgrowth below<br />

the apical swelling, sometimes distinctly geniculate, unbranched,<br />

sometimes branched, 12–260 × (3–)4–6 µm, swellings 5–10 µm<br />

wide, pluriseptate, sometimes slightly constricted at septa, pale to<br />

medium brown or olivaceous-brown, somewhat paler at apices,<br />

130


<strong>Cladosporium</strong> herbarum species complex<br />

Fig. 24. <strong>Cladosporium</strong> macrocarpum (<strong>CBS</strong> 299.67). A. Survey of a conidiophore that forms several secondary ramoconidia <strong>and</strong> conidia. Several aerial hyphae are also visible<br />

in this picture. B. Conidiophore with broadly ellipsoid secondary ramoconidia <strong>and</strong> obovoid conidia. Note the different scars on the conidiophore at the lower left. C. Ellipsoid<br />

or obovoid conidia with notable areas of scar formation. <strong>The</strong> ornamentation is relatively widely distributed over the body of the cell <strong>and</strong> <strong>similar</strong> to C. variabile. D. Detail of<br />

a conidiophore (see B) with scars. Note the relatively shallow rings of the scars. E. Details of conidia <strong>and</strong> a secondary ramoconidium. F. Conidiophore with a secondary<br />

ramoconidium <strong>and</strong> conidia. Note the hila on several spores <strong>and</strong> the lack of ornamentation at the site where spores are formed. Scale bars: A–C, = 10 µm, D, F = 5 µm, E = 2<br />

µm.<br />

smooth to minutely verruculose or verruculose, walls somewhat<br />

thickened, sometimes even two-layered. Conidiogenous cells<br />

integrated, terminal or intercalary, cylindrical, nodulose with lateral<br />

shoulders or nodose with swellings round about the stalk, with<br />

conidiogenous loci confined to swellings, 12–37 µm long, with up to<br />

12 loci per cell, usually with up to six, loci conspicuous, protuberant,<br />

(1–)1.5–2 µm diam, somewhat thickened <strong>and</strong> darkened-refractive.<br />

Micronematous conidiophores almost indistinguishable from<br />

hyphae, straight, narrowly filiform, non-nodulose or with a single or<br />

few swellings, mostly with small head-like swollen apices, usually<br />

www.studiesinmycology.org<br />

131


Schubert et al.<br />

or branched chains, subglobose, obovoid to limoniform, ellipsoid<br />

or fusiform, 2.5–16 × 1.5–5 µm, 0(–1)-septate, few longer conidia<br />

subcylindrical to clavate, up to 37(–43) µm long, 0–2(–3)-septate,<br />

occasionally with up to four septa, sometimes slightly constricted<br />

at the septa, subhyaline to pale brown, almost smooth to minutely<br />

verruculose, walls unthickened, hila 0.8–1.2 µm diam, thickened<br />

<strong>and</strong> darkened-refractive.<br />

Cultural characteristics: Colonies on PDA reaching 30–43 mm<br />

in diam after 14 d at 25 ºC, dark dull green to olivaceous-grey,<br />

olivaceous-grey, dark olivaceous- to iron-grey reverse, pulvinate,<br />

velvety, sometimes somewhat zonate, paler zones towards the<br />

margin, margin regular, entire edge, almost colourless to white,<br />

glabrous to feathery, aerial mycelium sparse to more abundant<br />

in the colony centre or covering large areas of the colony, hairy,<br />

fluffy or felty, whitish to smoke-grey, sometimes becoming reddish,<br />

livid red to vinaceous, growth flat, regular, sometimes forming<br />

few prominent exudates, exudates sometimes slightly reddish,<br />

sporulation profuse with two kinds of conidiophores, low <strong>and</strong> high.<br />

Colonies on MEA reaching 31–50 mm in diam after 14 d at 25<br />

ºC, grey-olivaceous to olivaceous-grey or iron-grey, sometimes<br />

pale olivaceous-grey to whitish due to abundant aerial mycelium,<br />

olivaceous-grey or iron-grey reverse, velvety or powdery, margin<br />

narrow, entire edge, colourless to white, glabrous, aerial mycelium<br />

sparse to abundant, hairy or felty, growth regular, flat to low convex,<br />

radially furrowed, without prominent exudates, sporulation profuse.<br />

Colonies on OA reaching 29–40 mm in diam after 14 d at 25 ºC,<br />

grey-olivaceous, olivaceous-grey to dark smoke-grey, olivaceousblack<br />

or iron grey reverse, margin entire edge, narrow, colourless<br />

or white, glabrous, aerial mycelium sparse, mainly in the colony<br />

centre, felty, white to smoke-grey or grey-olivaceous, felty, growth<br />

flat, regular, without exudates, sporulating.<br />

Fig. 25. Davidiella macrocarpa (CPC 12755). Ascus <strong>and</strong> ascospores. Scale bar =<br />

10 µm. P.W. Crous del.<br />

only few micrometer long, 1.5–3 µm wide, aseptate or with only<br />

few septa, subhyaline, smooth or almost so, walls unthickened,<br />

with a single or only few conidiogenous loci, narrow, 0.8–1.2 µm<br />

diam, thickened <strong>and</strong> somewhat darkened-refractive. Conidia<br />

catenate, in branched chains, small terminal conidia subglobose,<br />

obovoid, oval, limoniform, 4–11 × (3–)4–6 µm [av. ± SD, 7.6 (±<br />

1.9) × 5.0 (± 0.8) µm], aseptate, intercalary conidia broadly ovoidellipsoid,<br />

10–17 × (4.5–)5–9 µm [av. ± SD, 12.7 (± 2.1) × 6.8 (±<br />

0.8) µm], 0–1-septate; secondary ramoconidia broadly ellipsoid<br />

to subcylindrical, 14–25(–30) × (5–)6–9(–10) µm [av. ± SD, 19.4<br />

(± 3.5) × 7.6 (± 1.0) µm], 0–2(–3)-septate, sometimes slightly<br />

constricted at the septa, septa somewhat sinuous with age, pale<br />

brown to medium olivaceous-brown or brown, sometimes even<br />

dark brown, verruculose to echinulate (muricate under SEM),<br />

walls thickened, up to 1 µm thick, mostly broadly rounded at<br />

apex <strong>and</strong> base, sometimes attenuated, sometimes guttulate<br />

by oil drops, with up to three apical hila, mostly 1–2, hila sessile<br />

(apparently somewhat immersed) to somewhat protuberant, 1–<br />

2(–2.5) µm diam, thickened <strong>and</strong> darkened-refractive; microcyclic<br />

conidiogenesis occurring with conidia forming secondary micro<strong>and</strong><br />

macronematous conidiophores, conidia often germinating with<br />

long hyphae. Conidia formed by micronematous conidiophores<br />

usually smaller, narrower <strong>and</strong> paler, catenate, in short unbranched<br />

Specimens examined: Sine loco et dato, L 910.255-723 = L-0115836, lectotype<br />

designated here of Dematium graminum. Sine loco, on dead stems of Brassica sp.<br />

(Brassicaceae), No. 601, L 910.255-716 = L-0115849, holotype of D. herbarum var.<br />

(β) brassicae. Sine loco, on leaves of Iris (Iridaceae), Quercus (Fagaceae), Brassica<br />

etc., L 910.255-736 = L-0115871, holotype of D. vulgare var. (β) foliorum, isotype L<br />

910.255-718 = L-0115872. Sine loco et dato, L 910.255-698 = L-0115852, lectotype<br />

designated here for D. vulgare var. (δ) typharum. Isolated from “Mycosphaerella<br />

tulasnei”, <strong>CBS</strong> 223.32 = ATCC 11287 = IMI 049635. Romania, isolated from water,<br />

<strong>CBS</strong> 175.82. Slovenia, Sečovlje, isolated from hypersaline water from salterns<br />

(precrystalisation pond), 2004, P. Zalar, EXF-2287 = CPC 12054. Turkey, Ankara,<br />

Tekeli, isolated from Triticum aestivum (Poaceae), isol. S. Tahsin, ident. A.C. Stolk,<br />

<strong>CBS</strong> 299.67. U.S.A., Seattle, University of Washington Campus, 47.6263530, -<br />

122.3331440, isolated from cleistothecia of Phyllactinia guttata (Erysiphaceae)<br />

on leaves of Corylus sp. (Corylaceae), 16 Sep. 2004, D. Glawe, CPC 11817;<br />

Washington, isolated from Spinacia oleracea (Chenopodiaceae), 1 Jan. 2003,<br />

L. DuToit, <strong>CBS</strong>-H 19855, neotype designated here for C. macrocarpum, <strong>and</strong><br />

holotype of D. macrocarpa, isoneotype HAL 2020 F, isotype HAL 2021 F, culture<br />

ex-type CPC 12752, 12756–12759, CPC 12755 = <strong>CBS</strong> 121623.<br />

Substrate <strong>and</strong> distribution: Decaying plant material, human,<br />

hypersaline water, water; widespread.<br />

Literature: de Vries (1952: 76), Ellis (1971: 315), Domsch et al.<br />

(1980: 208), Ellis & Ellis (1985: 290, 468), Matsushima (1985: 5),<br />

McKemy & Morgan-Jones (1991), Dugan & Roberts (1994), David<br />

(1997: 71), Samson et al. (2000: 112).<br />

Notes: In the absence of Preuss’s type material (not preserved)<br />

de Vries (1952) “lectotypified” C. macrocarpum by a specimen in<br />

Saccardo’s herbarum (Herb. Myc. P.A. Saccardo no. 419, PAD).<br />

This material, subsequently distributed in Mycotheca Italica no.<br />

1396, should correctly be regarded as neotype (David 1997). A<br />

single collection of Saccardo’s Mycotheca Italica no. 1396 from<br />

herb. HBG, which can be considered as isoneotype material,<br />

132


<strong>Cladosporium</strong> herbarum species complex<br />

Fig. 26. <strong>Cladosporium</strong> ossifragi (<strong>CBS</strong> 842.91). Conidiophores <strong>and</strong> conidia. Scale bar = 10 µm. K. Schubert del.<br />

was re-examined <strong>and</strong> proved to rather agree with the species<br />

concept of C. herbarum s. str. <strong>The</strong> conidia were formed in simple,<br />

rarely branched chains, 6–26 × (4–)5.5–8(–9) µm, 0–3-septate,<br />

almost smooth or minutely to densely verruculose or verrucose<br />

(Schubert 2005). However, since de Vries’ “lectotypification” was<br />

incorrect according to the code (ICBN, Art. 9.2, 9.17), a neotype is<br />

designated.<br />

<strong>The</strong> delimitation of C. macrocarpum as a morphologically<br />

distinct species from C. herbarum has been controversially<br />

discussed by several authors (McKemy & Morgan-Jones 1991,<br />

Dugan & Robert 1994, Ho et al. 1999). Based on molecular as well<br />

morphological studies, it can be shown that C. macrocarpum is a<br />

well-defined species distinguishable from C. herbarum s. str. by<br />

forming conidiophores with wider nodes, 5–10 µm, wider <strong>and</strong> more<br />

frequently septate conidia [small terminal conidia 4–11 × (3–)4–6<br />

µm versus 4–10 × 3–5(–6) µm in C. herbarum, intercalary conidia<br />

10–17 × (4.5–)5–9 µm versus 6–16 × 4–6 µm in C. herbarum,<br />

secondary ramoconidia 14–25(–30) × (5–)6–9(–10) µm versus 12–<br />

25(–35) × (3–)5–7(–9) µm in C. herbarum] <strong>and</strong> by being connected<br />

to Davidiella macrocarpa. On natural substrates the conidiophores<br />

are usually somewhat wider than in culture, 4–8(–10) µm wide, <strong>and</strong><br />

also the conidia can be somewhat wider, sometimes up to 13(–15) µm.<br />

<strong>Cladosporium</strong> graminum, described by Persoon (1822), as<br />

well as C. brunneum <strong>and</strong> C. gracile, introduced by Corda (1837),<br />

are older synonyms of C. macrocarpum <strong>and</strong>, according to the<br />

code, would have priority. However, since C. macrocarpum is a<br />

well established, currently used name with numerous records in<br />

literature, a proposal to conserve the name against these older<br />

names is in preparation for formal publication in Taxon.<br />

A characteristic difference between ascomata of C.<br />

macrocarpum in comparison to those of C. herbarum, are the<br />

smaller, globose pseudothecia, asci with longer stalks, prominence<br />

of pseudoparaphyses, <strong>and</strong> rather inconspicuous luminar ascospore<br />

inclusions.<br />

<strong>Cladosporium</strong> ossifragi (Rostr.) U. Braun & K. Schub., comb.<br />

nov. MycoBank MB504575. Figs 26–28.<br />

Basionym: Napicladium ossifragi Rostr., Bot. Fǽröes 1: 316.<br />

1901.<br />

≡ Heterosporium ossifragi (Rostr.) Lind, Dan. fung.: 531. 1913.<br />

= Heterosporium magnusianum Jaap, Schriften Naturwiss. Vereins Schleswig-<br />

Holstein 12: 346. 1902.<br />

≡ <strong>Cladosporium</strong> magnusianum (Jaap) M.B. Ellis in Ellis, More<br />

Dematiaceous Hyphomycetes: 337. 1976.<br />

www.studiesinmycology.org<br />

133


Schubert et al.<br />

Fig. 27. <strong>Cladosporium</strong> ossifragi (<strong>CBS</strong> 842.91). A. Macronematous conidiophore. B. Micronematous conidiophore. C–D. Conidia. E. Conidia <strong>and</strong> microcyclic conidiogenesis.<br />

Scale bars = 10 µm.<br />

Fig. 28. <strong>Cladosporium</strong> ossifragi (<strong>CBS</strong> 842.91). A. Survey on different secondary ramoconidia <strong>and</strong> conidia. B. Details of conidia <strong>and</strong> hila. Note the very pronounced ornamentation<br />

<strong>and</strong> the absence of ornamentation near the site of spore formation. C. Detail of the end of a secondary ramoconidium with pronounced hila. D. Formation of a new conidium.<br />

Note the broad scar behind it (> 1 μm). E. Formation of a new conidium from a smooth-walled stalk. F. Hila on a secondary ramoconidium. This micrograph is from the sample<br />

before coating with gold-palladium <strong>and</strong> shows <strong>similar</strong> features as the sample after sputter coating. Scale bars: A = 10 µm, B–D, F = 2 µm, E = 5 µm.<br />

134


<strong>Cladosporium</strong> herbarum species complex<br />

Mycelium abundantly formed, twisted, often somewhat aggregated,<br />

forming ropes, branched, 1–5 µm wide, septate, often irregularly<br />

swollen <strong>and</strong> constricted, hyaline or subhyaline to pale brown,<br />

smooth, walls unthickened or only slightly thickened. Conidiophores<br />

macronematous <strong>and</strong> micronematous, arising from plagiotropous<br />

hyphae, terminally or laterally, erect to subdecumbent, more<br />

or less straight to flexuous, cylindrical, sometimes geniculate,<br />

subnodulose with loci often situated on small lateral shoulders,<br />

unbranched, sometimes branched, often very long, up to 350 µm<br />

long, 3–4.5(–5) µm wide, pluriseptate, shorter ones aseptate, not<br />

constricted at septa, pale to pale medium brown, paler towards<br />

apices, sometimes subhyaline, smooth to minutely verruculose,<br />

especially towards apices, walls somewhat thickened, up to 0.5 µm,<br />

sometimes appearing two-layered. Conidiogenous cells integrated,<br />

terminal as well as intercalary, cylindrical, sometimes geniculate,<br />

subnodulose, 5–31 µm long, proliferation sympodial, with few<br />

loci (1–3) per cell, loci usually confined to small lateral shoulders,<br />

protuberant, conspicuous, short cylindrical, 1–2 µm wide, up to<br />

1 µm high, somewhat thickened, darkened-refractive. Conidia<br />

catenate, in short, unbranched or branched chains, straight, small<br />

terminal <strong>and</strong> intercalary conidia subglobose, obovoid to ellipsoid,<br />

4–15 × 3–5 µm [av. ± SD, 9.3 (± 3.7) × 4.0 (± 0.7) µm], 0–1-<br />

septate, not constricted at the septa, pale brown, hila 0.8–1 µm<br />

diam, secondary ramoconidia cylindrical, sometimes ellipsoid or<br />

subfusiform, 16–36(–40) × (4–)5–8 µm [av. ± SD, 26.6 (± 7.4) ×<br />

6.0 (± 1.2) µm], (0–)1–3(–4)-septate [in vivo wider, (6–)7–9(–11)<br />

µm, <strong>and</strong> with up to five, rarely seven septa], not constricted at<br />

the septa, septa sometimes slightly sinuous, pale brown to pale<br />

medium brown, densely verruculose, verrucose to echinulate<br />

(densely muricate under SEM), walls unthickened to somewhat<br />

thickened, rounded or somewhat attenuated at apex <strong>and</strong> base,<br />

hila protuberant, conspicuous, sometimes situated on short, small<br />

prolongations, 1–2.5 µm diam, somewhat thickened <strong>and</strong> darkenedrefractive;<br />

microcyclic conidiogenesis occasionally occurring.<br />

Cultural characteristics: Colonies on PDA reaching 53 mm diam<br />

after 14 d at 25 ºC, greenish olivaceous, grey-olivaceous to<br />

olivaceous-grey or iron-grey, appearing somewhat zonate, dull<br />

green to olivaceous-black reverse, margin colourless, regular,<br />

entire edge, aerial mycelium abundantly formed, covering at first<br />

the colony centre later most of the surface, dense, high, growth flat<br />

with elevated colony centre, somewhat folded. Colonies on MEA<br />

reaching 54 mm diam after 14 d at 25 ºC, pale olivaceous-grey<br />

to olivaceous-grey in the centre, iron-grey reverse, velvety, margin<br />

colourless to white, entire edge, radially furrowed, aerial mycelium<br />

abundantly formed, fluffy to felty, growth flat with somewhat raised,<br />

folded colony centre. Colonies on OA attaining 52 mm diam after<br />

14 d at 25 ºC, olivaceous-grey to iron-grey, iron-grey to greenish<br />

black reverse, margin white, entire edge, aerial mycelium diffuse,<br />

loose, growth flat, prominent exudates absent, sporulation profuse<br />

on all media.<br />

Specimens examined: Denmark, Undallslund, on leaves of Narthecium ossifragum<br />

(Melanthiaceae), 13 Sep. 1885, E. Rostrup, CP, neotype designated here of C.<br />

ossifragi; Tǿnder, Rǿmǿ near Twismark, 19 Aug. 1911, H. Sydow, Sydow, Mycoth.<br />

Germ. 1047, M. Germany, Hamburg, Eppendorfer Moor, on leaves of Narthecium<br />

ossifragum, 12 Sep. 1897, O. Jaap, HBG, lectotype selected here of C.<br />

magnusianum; 4 Sep. 1903, O. Jaap, Jaap, Fungi Sel. Exs. 49, M; Wernerwald near<br />

Cuxhaven, Aug. 1927, A. Ludwig, Petrak, Mycoth. Gen. 146, M. Norway, Bjerkreim<br />

County, isolated from leaves of Narthecium ossifragum, M. di Menna, <strong>CBS</strong>-H 19860,<br />

epitype designated here of C. ossifragi, culture ex-epitype <strong>CBS</strong> 842.91 = ATCC<br />

200946; Møre og Romsdal County, isolated from leaves of Narthecium ossifragum,<br />

M. di Menna, <strong>CBS</strong> 843.91.<br />

Substrate <strong>and</strong> distribution: Causing leaf spots on Narthecium<br />

ossifragum; Europe (Austria, Denmark, Germany, Great Britain,<br />

Irel<strong>and</strong>, Norway).<br />

Literature: Ellis & Ellis (1985: 390), David (1995a; 1997: 85–86,<br />

88), Ho et al. (1999: 132).<br />

Notes: Type material of Napicladium ossifragi is not preserved in<br />

Rostrup’s herbarium (on Narthecium ossifragum, Faeroe Isl<strong>and</strong>s,<br />

Viderö, Viderejde <strong>and</strong> Österö, Svinaa, sine dato, leg. Ostenfeld &<br />

Harz). However, other authentic collections seen <strong>and</strong> examined<br />

by Rostrup are deposited at CP. Lind (1913) re-examined these<br />

samples, synonymised N. ossifragi with H. magnusianum <strong>and</strong><br />

correctly introduced the combination H. ossifragi. Nevertheless,<br />

the correct oldest name for this fungus has been ignored by<br />

most authors. David (1997), who clearly stated that N. ossifragi is<br />

the earliest name for this species, preferred to use the name C.<br />

magnusianum because the typification of Rostrup’s name was still<br />

uncertain. Despite the lacking type material, there is no doubt about<br />

the correct identity of N. ossifragi since authentic material of this<br />

species, examined by <strong>and</strong> deposited in Rostrup’s herbarium (CP),<br />

is preserved. <strong>The</strong>refore, there is no reason to reject the oldest valid<br />

name for this species. <strong>The</strong> original collection of C. magnusianum<br />

cited by Jaap (1902) (on leaves of Narthecium ossifragum, Denmark,<br />

Tǿnder, Rǿmǿ, peatbog by Twismark, Jul.–Aug. 1901, Jaap), but<br />

not designated as type, is not preserved (David 1997). It is neither<br />

deposited at B, HBG nor S. However, in the protologue Jaap (1902)<br />

also referred to material of this species found near Hamburg, which<br />

is, hence, syntype material available for lectotypification.<br />

<strong>Cladosporium</strong> pseudiridis K. Schub., C.F. Hill, Crous & U. Braun,<br />

sp. nov. MycoBank MB504576. Figs 29–30.<br />

Etymology: Epithet derived from its <strong>similar</strong> morphology to<br />

<strong>Cladosporium</strong> iridis.<br />

Differt a Cladosporio iridis conidiis 0–3-septatis, brevioribus et latioribus, 15–55 ×<br />

(9–)11–19(–21) µm.<br />

Mycelium sparingly branched, 2–7 µm wide, septate, not constricted<br />

at the septa, subhyaline to pale brown, smooth or almost so, walls<br />

somewhat thickened, guttulate or protoplasm appearing granular,<br />

sometimes enveloped by a slime coat. Conidiophores arising<br />

mostly terminally from ascending hyphae, sometimes also laterally<br />

from plagiotropous hyphae, erect, more or less straight, broadly<br />

cylindrical-oblong, once or several times slightly to distinctly<br />

geniculate-sinuous, forming more or less pronounced lateral<br />

shoulders, nodulose, unbranched, 100–320(–500) × 7–11 µm,<br />

swellings 10–14 µm wide, becoming narrower <strong>and</strong> paler towards the<br />

apex, septate, not constricted at the septa, septa mainly basal, apical<br />

cell often very long, pale to medium olivaceous-brown, subhyaline<br />

at the apex, smooth or almost so, sometimes minutely verruculose,<br />

walls usually distinctly thickened, sometimes even two-layered, up<br />

to 1(–2) µm thick, protoplasm granular, often clearly contrasting<br />

from the outer wall. Conidiogenous cells integrated, terminal <strong>and</strong><br />

intercalary, cylindrical-oblong, slightly to distinctly geniculatesinuous,<br />

nodulose with conidiogenous loci confined to swellings<br />

or lateral shoulders, 30–110 µm long, proliferation percurrent to<br />

sympodial, with a single or three, sometimes up to five geniculations<br />

per cell, usually only a single locus per swelling, protuberant, very<br />

prominent, short cylindrical, peg-like, clearly composed of a dome<br />

<strong>and</strong> surrounding rim, dome often higher than the periclinal rim,<br />

broad, somewhat paler than rim, conically narrowed, (2–)2.5–4<br />

µm wide, up to 2 µm high, thickened <strong>and</strong> darkened-refractive.<br />

www.studiesinmycology.org<br />

135


Schubert et al.<br />

Fig. 29. <strong>Cladosporium</strong> pseudiridis (<strong>CBS</strong> 116463). Conidiophores <strong>and</strong> conidia. Scale bar = 10 µm. K. Schubert del.<br />

Conidia solitary, sometimes in short unbranched chains of two or<br />

three, straight to slightly curved, young conidia small, 0–1-septate,<br />

broadly ovoid to pyriform, 15–26 × (9–)11–16(–18) µm [av. ± SD,<br />

19.2 (± 4.3) × 14.2 (± 3) µm], first septum somewhat in the upper<br />

half, the upper cell is much smaller but gradually extending as the<br />

conidium matures, mature conidia 1–3-septate, broadly pyriform,<br />

cylindrical-oblong or soleiform, usually with a distinctly bulbous<br />

base, 30–55 × 12–19(–21) µm [av. ± SD, 41.5 (± 6.8) × 17.1 (± 2.1)<br />

µm], broadest part of conidia usually at the bulbous base, mostly<br />

attenuated towards the basal septum, septa becoming sinuous with<br />

age, pale to medium olivaceous-brown or brown, usually echinulate,<br />

sometimes coarsely verrucose, walls distinctly thickened, up to 2<br />

µm thick, often appearing layered with a large lumen in the centre<br />

of the cell, broadly rounded to flattened at apex <strong>and</strong> base, hila often<br />

very prominent, often peg-like elongated, up to 3 µm long, with age<br />

becoming less prominent, visible as a thickened flat plate just below<br />

the outer echinulate wall layer, slightly raised towards the middle,<br />

2–3.5 µm diam, thickened <strong>and</strong> darkened-refractive; microcyclic<br />

conidiogenesis not observed.<br />

Cultural characteristics: Colonies on PDA attaining 6 mm diam<br />

after 14 d at 25 ºC, whitish, smoke-grey to pale olivaceous-grey<br />

due to abundant aerial mycelium, olivaceous-black reverse, margin<br />

narrow, white, more or less crenate, aerial mycelium zonate, fluffy,<br />

covering most of the colony, mainly in the colony centre, growth<br />

136


<strong>Cladosporium</strong> herbarum species complex<br />

Fig. 30. <strong>Cladosporium</strong> pseudiridis (<strong>CBS</strong> 116463). A–C. Conidiophores <strong>and</strong> conidia. D. Part of a conidiogenous cell showing a protuberant cladosporioid conidiogenous locus.<br />

E–F. Conidia. Scale bars = 10 µm.<br />

convex to raised, deep into the agar, with age few large prominent<br />

exudates formed, sparingly sporulating. Colonies on MEA attaining<br />

7 mm diam after 14 d at 25 ºC, olivaceous-grey, pale olivaceousgrey<br />

to pale rosy-buff due to abundant aerial mycelium covering<br />

almost the whole colony, iron-grey reverse, margin colourless or<br />

white, broad, regular, more or less glabrous, aerial mycelium fluffy,<br />

dense, high, growth convex to umbonate, sometimes with elevated<br />

colony centre, prominent exudates lacking, sporulation sparse.<br />

Colonies on OA attaining 8 mm diam after 14 d at 25 ºC, white, pale<br />

buff to pale olivaceous-grey in the centre, margin grey-olivaceous,<br />

olivaceous- to iron-grey reverse, margin entire edge or somewhat<br />

undulate, somewhat feathery, growth raised with a somewhat<br />

depressed centre forming an elevated outer rim, without prominent<br />

exudates, sporulation more abundant.<br />

Specimen examined: New Zeal<strong>and</strong>, Auckl<strong>and</strong>, Mt. Albert, Carrington Road, Unitec<br />

Campus, isolated from large leaf lesions on Iris sp. (Iridaceae), 15 Aug. 2004, C.F.<br />

Hill, <strong>CBS</strong>-H 19861, holotype, culture ex-type <strong>CBS</strong> 116463 = LYN 1065 = ICMP<br />

15579.<br />

Substrate <strong>and</strong> distribution: On living leaves of Iris sp.; New<br />

Zeal<strong>and</strong>.<br />

Notes: <strong>Cladosporium</strong> pseudiridis closely resembles C. iridis, a<br />

common <strong>and</strong> widespread species causing leaf spots on numerous<br />

Iris spp. <strong>and</strong> a few additional hosts of the host family Iridaceae,<br />

but the latter species is easily distinguishable by having longer<br />

<strong>and</strong> narrower, more frequently septate conidia, (18–)30–75(–87) ×<br />

(7–)10–16(–18) µm, (0–)2–6(–7)-septate.<br />

www.studiesinmycology.org<br />

It is unlikely that C. pseudiridis is of New Zeal<strong>and</strong> origin since<br />

the <strong>genus</strong> Iris is not indigenous to New Zeal<strong>and</strong>. All Iris species<br />

that are found in this country have been introduced, mainly for<br />

horticultural purposes. <strong>The</strong> species is, therefore, probably more<br />

common than indicated above. However, within the course of the<br />

recent monographic studies in the <strong>genus</strong> <strong>Cladosporium</strong> numerous<br />

herbarium specimens, mainly of European origin, have been<br />

examined <strong>and</strong> proved to be correctly identified agreeing with the<br />

species concept of C. iridis. Additional collections <strong>and</strong> cultures are<br />

necessary to determine its distribution.<br />

<strong>Cladosporium</strong> ramotenellum K. Schub., Zalar, Crous & U. Braun,<br />

sp. nov. MycoBank MB504577. Figs 31–33.<br />

Etymology: Refers to the morphological <strong>similar</strong>ity with <strong>Cladosporium</strong><br />

tenellum.<br />

Differt a Cladosporio cladosporioide conidiophoris et conidiis leniter angustioribus,<br />

2–4(–5) µm latis, conidiis 0–2(–3)-septatis, semper verruculosis; et a Cladosporio<br />

tenello locis conidiogenis non numerosis et non aggregatos ad apicem, conidiis<br />

longioribus et angustioribus, 2.5–35 × 2–4(–5) µm, 0–3-septatis.<br />

Mycelium unbranched or only sparingly branched, 1.5–4 µm wide,<br />

septate, without swellings <strong>and</strong> constrictions, hyaline or subhyaline,<br />

smooth, sometimes irregularly rough-walled, walls unthickened.<br />

Conidiophores solitary, macronematous <strong>and</strong> micronematous,<br />

arising as lateral branches of plagiotropous hyphae or terminally<br />

from ascending hyphae, erect, straight or slightly flexuous,<br />

cylindrical, neither geniculate nor nodulose, without head-like<br />

swollen apices or intercalary swellings, unbranched, sometimes<br />

137


Schubert et al.<br />

Fig. 31. <strong>Cladosporium</strong> ramotenellum (CPC 12043). Conidiophores <strong>and</strong> conidia. Scale bar = 10 µm. K. Schubert del.<br />

branched, branches often only as short lateral prolongations,<br />

mainly formed below a septum, 14–110 × 2–4 µm, septate, not<br />

constricted at the septa, subhyaline to pale olivaceous or brown,<br />

smooth to minutely verruculose, walls unthickened, sometimes<br />

guttulate. Conidiogenous cells integrated, terminal, sometimes also<br />

intercalary, cylindrical, not geniculate, non-nodulose, 10–28(–50)<br />

µm long, proliferation sympodial, with few conidiogenous loci,<br />

mostly 1–3, loci sometimes situated on small lateral prolongations,<br />

protuberant, 0.5–1.5(–2) µm diam, thickened <strong>and</strong> somewhat<br />

darkened-refractive. Ramoconidia formed, cylindrical-oblong, up<br />

to 47 µm long, 2–4 µm wide, 0–1-septate, rarely up to 4-septate,<br />

subhyaline to very pale olivaceous, smooth or almost so, with a<br />

broadly truncate base, without any dome <strong>and</strong> raised rim, 2–3 µm<br />

wide, not thickened but somewhat refractive. Conidia numerous,<br />

polymorphous, catenate, in branched chains, straight, sometimes<br />

slightly curved, small terminal conidia numerous, globose,<br />

subglobose or ovoid, obovoid or limoniform, 2.5–7 × 2–4(–4.5) µm<br />

[av. ± SD, 5.1 (± 1.3) × 3.1 (± 0.6) µm], aseptate, without distal<br />

hilum or with a single apical scar, intercalary conidia ellipsoid to<br />

subcylindrical, 8–15 × 3–4(–4.5) µm [av. ± SD, 11.5 (± 2.4) × 3.6<br />

(± 0.5) µm], 0–1-septate; secondary ramoconidia subcylindrical<br />

to cylindrical-oblong, 17–35 × 3–4(–5) µm [av. ± SD, 22.5 (±<br />

5.6) × 3.7 (± 0.5) µm], 0–3-septate, not constricted at the septa,<br />

subhyaline to very pale olivaceous, minutely verruculose (granulate<br />

under SEM), walls unthickened or almost so, apex broadly rounded<br />

or slightly attenuated towards apex <strong>and</strong> base, sometimes guttulate,<br />

hila protuberant, conspicuous, 0.8–1.5(–2) µm diam, somewhat<br />

thickened <strong>and</strong> darkened-refractive; microcyclic conidiogenesis<br />

occurring.<br />

Cultural characteristics: Colonies on PDA reaching 46–49 mm diam<br />

after 14 d at 25 ºC, olivaceous to grey-olivaceous due to abundant<br />

sporulation, appearing zonate in forming concentric zones, margin<br />

entire edge to slightly undulate, white, glabrous, aerial mycelium<br />

absent or sparse, growth flat with a somewhat folded <strong>and</strong> wrinkled<br />

colony centre, without prominent exudates, sporulation profuse.<br />

Colonies on MEA reaching 48–49 mm diam after 14 d at 25 ºC,<br />

grey-olivaceous to olivaceous-grey, velvety, olivaceous-grey to<br />

138


<strong>Cladosporium</strong> herbarum species complex<br />

Fig. 32. <strong>Cladosporium</strong> ramotenellum (CPC 12043). A, C. Macronematous conidiophore. B. Conidial chain. D. Micronematous conidiophore. E. Ramoconidia <strong>and</strong> conidia. Scale<br />

bars = 10 µm.<br />

Fig. 33. <strong>Cladosporium</strong> ramotenellum (CPC 12043). A. Survey of colony development showing a large bulbous “foot cell” that gives rise to conidiophores, which can be branched.<br />

B. Details of conidiophores showing secondary ramoconidia <strong>and</strong> conidia. <strong>The</strong> inset shows scar formation on a conidiophore. C. Conidiophore <strong>and</strong> several conidia. D. Details<br />

of ornamentation on conidia. Note the wide, but relatively low ornamentation units. E. A micrograph illustrating the organisation within a conidiophore. Scale bars A–D = 5 µm,<br />

E = 10 µm.<br />

www.studiesinmycology.org<br />

139


Schubert et al.<br />

Fig. 34. <strong>Cladosporium</strong> sinuosum (CPC 11839). Conidiophores <strong>and</strong> conidia. Scale bar = 10 µm. K. Schubert del.<br />

iron-grey reverse, margin entire edge to undulate, radially furrowed,<br />

colourless, glabrous to feathery, aerial mycelium sparse, diffuse,<br />

growth flat with slightly elevated colony centre, distinctly wrinkled,<br />

prominent exudates not formed, abundantly sporulating. Colonies<br />

on OA attaining 40 mm diam after 14 d at 25 ºC, grey-olivaceous,<br />

margin entire edge, colourless or white, glabrous, aerial mycelium<br />

absent or sparse, growth flat, without exudates, sporulation<br />

profuse.<br />

Specimens examined: Slovenia, Ljubljana, isolated from an air conditioning system<br />

(bathroom), 2004, M. Butala, <strong>CBS</strong> 121627 = CPC 12047 = EXF-967; Sečovlje,<br />

isolated from hypersaline water from reverse ponds, salterns, 2005, P. Zalar, <strong>CBS</strong>-H<br />

19862, holotype, isotype HAL 2026 F, culture ex-type <strong>CBS</strong> 121628 = CPC 12043<br />

= EXF-454.<br />

Substrate <strong>and</strong> distribution: Hypersaline water, air; Slovenia.<br />

Notes: <strong>Cladosporium</strong> ramotenellum, which appears to be a<br />

saprobe in air <strong>and</strong> hypersaline water, morphologically resembles<br />

C. cladosporioides <strong>and</strong> C. tenellum K. Schub., Zalar, Crous &<br />

U. Braun, but is quite distinct from C. cladosporioides by having<br />

somewhat narrower conidiophores <strong>and</strong> conidia, 2–4(–5) µm<br />

wide, <strong>and</strong> 0–3-septate, always minutely verruculose conidia.<br />

<strong>Cladosporium</strong> tenellum, a newly introduced species (see below)<br />

isolated from hypersaline water <strong>and</strong> plant material, possesses<br />

conidiophores with numerous conidiogenous loci, usually crowded<br />

towards the apex forming sympodial clusters of pronounced scars,<br />

<strong>and</strong> shorter <strong>and</strong> somewhat wider, 0–1(–2)-septate conidia, 3–20(–<br />

28) × (2.5–)3–5(–6) µm. Besides these morphological differences,<br />

C. ramotenellum is faster growing in culture than C. tenellum.<br />

<strong>Cladosporium</strong> arthrinioides Thüm. & Beltr. <strong>and</strong> C. hypophyllum<br />

Fuckel are also close to C. ramotenellum, but C. arthrinioides,<br />

known from Italy on leaves of Bougainvillea spectabilis, deviates in<br />

having shorter <strong>and</strong> wider, 0–1(–2)-septate, mostly smooth conidia<br />

(2–18 × 2–6.5 µm) which become larger <strong>and</strong> more frequently<br />

septate with age (up to 32 µm long <strong>and</strong> with up to four septa);<br />

<strong>and</strong> C. hypophyllum occurring in Europe on leaves of Ulmus<br />

minor differs in having often mildly to distinctly geniculate-sinuous,<br />

sometimes subnodulose conidiophores <strong>and</strong> shorter <strong>and</strong> somewhat<br />

wider, 0–1(–3)-septate conidia, 4–17(–19) × 2–5 µm, becoming<br />

distinctly swollen, darker, longer <strong>and</strong> wider with age, 5–7 µm, with<br />

the septa often being constricted (Schubert 2005).<br />

140


<strong>Cladosporium</strong> herbarum species complex<br />

Fig. 35. <strong>Cladosporium</strong> sinuosum (CPC 11839). A–D. Conidiophores. E–F. Conidia. Scale bars = 10 µm.<br />

<strong>Cladosporium</strong> sinuosum K. Schub., C.F. Hill, Crous & U. Braun,<br />

sp. nov. MycoBank MB504578. Figs 34–35.<br />

Etymology: Refers to the usually distinctly sinuous conidiophores.<br />

Differt a Cladosporio herbaro conidiophoris distincte sinuosis, conidiis solitariis vel<br />

breve catenatis, catenis non ramosis, echinulatis.<br />

Mycelium sparingly branched, 1–7 µm wide, septate, not<br />

constricted at the septa, subhyaline to pale brown, smooth to<br />

minutely verruculose, walls unthickened or slightly thickened,<br />

sometimes with small swellings. Conidiophores arising laterally<br />

from plagiotropous hyphae or terminally from ascending hyphae,<br />

erect, more or less straight to flexuous, often once or several times<br />

slightly to distinctly geniculate-sinuous, sometimes even zigzag-like,<br />

nodulose with small to large lateral shoulders, shoulders somewhat<br />

distant from each other or in close succession giving them a knotty/<br />

gnarled appearance, unbranched or once branched, 25–260 × 5–7<br />

µm, shoulders up to 10 µm wide, pluriseptate, septa sometimes<br />

in short succession, not constricted at the septa, pale brown to<br />

medium brown, smooth to minutely verruculose, walls thickened,<br />

often distinctly two-layered, up to 1 µm thick. Conidiogenous<br />

cells integrated, terminal or intercalary, often slightly to distinctly<br />

geniculate-sinuous, nodulose with small to large laterally swollen<br />

shoulders, 8–30 µm long, proliferation sympodial, with a single<br />

or up to three conidiogenous loci, usually confined to lateral<br />

www.studiesinmycology.org<br />

shoulders, protuberant, often denticle-like or on the top of short<br />

cylindrical stalk-like prolongations, 1.2–2(–2.2) µm diam, mainly<br />

2 µm, somewhat thickened <strong>and</strong> darkened-refractive, dome often<br />

slightly higher than the surrounding rim. Conidia solitary or in short<br />

unbranched chains with up to three conidia, straight, obovoid, oval,<br />

broadly ellipsoid to subcylindrical or sometimes clavate (broader at<br />

the apex), 9–21 × (5–)6–8 µm [av. ± SD, 14.5 (± 2.5) × 6.6 (± 0.7)<br />

µm], 0–1-septate, not constricted at the septa, septum more or less<br />

median, pale greyish brown, densely echinulate, spines up to 1 µm<br />

long, walls thickened, apex mostly broadly rounded or sometimes<br />

attenuated, towards the base mostly distinctly attenuated forming a<br />

peg-like prolongation, up to 2 µm long, hila protuberant, 1.2–2 µm<br />

diam, mainly 2 µm, somewhat thickened <strong>and</strong> darkened-refractive;<br />

microcyclic conidiogenesis not observed.<br />

Cultural characteristics: Colonies on PDA attaining 20 mm<br />

diam after 14 d at 25 ºC, pale olivaceous-grey due to abundant<br />

aerial mycelium, olivaceous-grey towards margins, iron-grey<br />

to olivaceous-black reverse, margin regular, entire edge, aerial<br />

mycelium abundant, cottony, dense, high, growth regular, low<br />

convex, radially furrowed in the centre, growing deep into the agar,<br />

with age numerous small to large prominent exudates, sporulation<br />

sparse. Colonies on MEA attaining 16 mm diam after 14 d at 25 ºC,<br />

white to pale smoke-grey, fawn reverse, velvety, margin undulate,<br />

glabrous, aerial mycelium abundant, dense, high, fluffy, growth<br />

raised with elevated colony centre, laterally furrowed, without<br />

141


Schubert et al.<br />

Fig. 36. <strong>Cladosporium</strong> spinulosum (CPC 12040). A. Overview on agar surface with conidiophores arising from the surface. <strong>The</strong> spore clusters on the conidiophore are very<br />

compact. Note several simple, tubular conidiophore ends. <strong>The</strong> inset shows details of a conidium showing two pronounced hila <strong>and</strong> a unique, very distinct ornamentation on the<br />

cell wall. B. Conidiophore with globose or subsphaerical secondary ramoconidia <strong>and</strong> conidia. Note the newly forming cells <strong>and</strong> hila. C. Two conidiophores. D. Details of spores<br />

<strong>and</strong> spore formation. E. <strong>The</strong> end of a conidiophore <strong>and</strong> two scars. Scale bars: A = 20 µm, A (inset) = 1 µm, B, D–E = 5 µm, C = 10 µm.<br />

prominent exudates. Colonies on OA attaining 18 mm diam after 14<br />

d at 25 ºC, olivaceous, white to pale olivaceous-grey in the centre<br />

due to abundant aerial mycelium, olivaceous-grey reverse, margin<br />

white, entire edge, glabrous, aerial mycelium loose to dense, high,<br />

fluffy to felty, growth flat to low convex, regular, without prominent<br />

exudates, sporulating.<br />

Specimen examined: New Zeal<strong>and</strong>, Te Anau, isolated from leaves of Fuchsia<br />

excorticata (Onagraceae), 31 Jan. 2005, A. Blouin, Hill 1134A, <strong>CBS</strong>-H 19863,<br />

holotype, culture ex-type <strong>CBS</strong> 121629 = CPC 11839 = ICMP 15819.<br />

Substrate <strong>and</strong> distribution: On living leaves of Fuchsia excorticata;<br />

New Zeal<strong>and</strong>.<br />

Notes: This new species is well characterised by its slightly to<br />

distinctly geniculate-sinuous, often zigzag-like conidiophores <strong>and</strong><br />

its conidia formed solitary or rarely in short unbranched chains <strong>and</strong><br />

is therefore morphologically not comparable with any of the species<br />

described until now. Most <strong>Cladosporium</strong> species with conidia usually<br />

formed solitary or in short unbranched chains have previously<br />

been treated as species of the <strong>genus</strong> Heterosporium Klotzsch ex<br />

Cooke, now considered to be synonymous with <strong>Cladosporium</strong>. All<br />

of them, including the newly introduced C. arthropodii K. Schub.<br />

& C.F. Hill from New Zeal<strong>and</strong>, which also belongs to this species<br />

complex (Braun et al. 2006), possess very large <strong>and</strong> wide, often<br />

pluriseptate conidia quite distinct from those of C. sinuosum (David<br />

1997). <strong>Cladosporium</strong> alopecuri (Ellis & Everh.) U. Braun, known<br />

from the U.S.A. on Alopecurus geniculatus is also quite different by<br />

having larger <strong>and</strong> wider conidia, 20–40 × 7–13(–15) µm, <strong>and</strong> wider<br />

conidiogenous loci <strong>and</strong> conidial hila, 3.5–5 µm diam (Braun 2000).<br />

<strong>Cladosporium</strong> herbarum is superficially <strong>similar</strong> but the<br />

conidiophores of the latter species are sometimes only slightly<br />

geniculate-sinuous but never zigzag-like <strong>and</strong> the verruculose to<br />

verrucose conidia are frequently formed in unbranched or branched<br />

chains.<br />

<strong>Cladosporium</strong> spinulosum Zalar, de Hoog & Gunde-Cimerman,<br />

Studies in Mycology 58: 180. 2007 – this volume. Fig. 36.<br />

Note: This new species is described <strong>and</strong> illustrated in Zalar et al.<br />

(2007 – this volume).<br />

142


<strong>Cladosporium</strong> herbarum species complex<br />

Fig. 37. <strong>Cladosporium</strong> subinflatum (CPC 12041). Macro- <strong>and</strong> micronematous conidiophores <strong>and</strong> conidia. Scale bar = 10 µm. K. Schubert del.<br />

<strong>Cladosporium</strong> subinflatum K. Schub., Zalar, Crous & U. Braun,<br />

sp. nov. MycoBank MB504579. Figs 37–39.<br />

Etymology: Refers to its nodulose conidiophores.<br />

Differt a Cladosporio bruhnei conidiophoris cum nodulis angustioribus, 3–6.5 µm<br />

latis, conidiis brevioribus, 4–17(–22) µm longis, spinulosis, cum spinulis ad 0.8 µm<br />

longis; et a Cladosporio spinuloso conidiophoris nodulosis, conidiis spinulosis, cum<br />

spinulis brevioribus, ad 0.8 longis, locis conidiogenis et hilis latioribus, (0.5–)1–2<br />

µm latis.<br />

Mycelium unbranched or occasionally branched, 1.5–3 µm wide,<br />

later more frequently branched <strong>and</strong> wider, up to 7 µm wide,<br />

septate, not constricted at the septa, hyaline or subhyaline, almost<br />

smooth to somewhat verruculose or irregularly rough-walled, walls<br />

unthickened. Conidiophores mainly macronematous, sometimes<br />

also micronematous, arising terminally from ascending hyphae<br />

or laterally from plagiotropous hyphae, erect or subdecumbent,<br />

straight or flexuous, sometimes bent, cylindrical, nodulose, usually<br />

with small head-like swellings, sometimes swellings also on a<br />

lower level or intercalary, occasionally geniculate, unbranched,<br />

occasionally branched, (5–)10–270 × (1.5–)2.5–4.5(–5.5) µm,<br />

www.studiesinmycology.org<br />

swellings 3–6.5 µm wide, aseptate or with few septa, not constricted<br />

at the septa, pale brown, pale olivaceous-brown or somewhat<br />

reddish brown, smooth, usually verruculose or irregularly roughwalled<br />

<strong>and</strong> paler, subhyaline towards the base, walls thickened,<br />

sometimes appearing even two-layered, up to 1 µm thick.<br />

Conidiogenous cells integrated, usually terminal or conidiophores<br />

reduced to conidiogenous cells, cylindrical, nodulose, usually with<br />

small head-like swellings with loci confined to swellings, sometimes<br />

geniculate, 5–42 µm long, proliferation sympodial, with several loci,<br />

up to four situated at nodules or on lateral swellings, protuberant,<br />

conspicuous, denticulate, (0.8–)1–2 µm diam, thickened <strong>and</strong><br />

darkened-refractive. Conidia catenate, in branched chains, more<br />

or less straight, numerous globose <strong>and</strong> subglobose conidia, ovoid,<br />

obovoid, broadly ellipsoid to cylindrical, 4–17(–22) × (2.5–)3.5–<br />

5.5(–7) µm [av. ± SD, 11.7 (± 4.6) × 4.5 (± 0.8) µm], 0–1(–2)-<br />

septate, not constricted at septa, pale brown or pale olivaceousbrown,<br />

ornamentation variable, mainly densely verruculose to<br />

echinulate (loosely muricate under SEM), spines up to 0.8 µm<br />

high, sometimes irregularly verrucose with few scattered tubercles<br />

143


Schubert et al.<br />

Fig. 38. <strong>Cladosporium</strong> subinflatum (CPC 12041). A–C. Macronematous conidiophores. D–E. Conidia. Scale bar = 10 µm.<br />

Fig. 39. <strong>Cladosporium</strong> subinflatum<br />

(CPC 12041). A–G. Images of an 11-<br />

d-old culture on SNA. A. Overview of<br />

colony with clusters of conidia <strong>and</strong><br />

aerial hyphae. Many of the hyphae<br />

have a collapsed appearance. B.<br />

Detail of colony with conidiophores,<br />

conidia <strong>and</strong> aerial hyphae that<br />

are partly collapsed. C. Detail of a<br />

conidiophore end <strong>and</strong> a secondary<br />

ramoconidium. Note the scars at the<br />

end of the conidiophore. D. Details<br />

of conidia <strong>and</strong> ornamentation.<br />

<strong>The</strong> ornamentation consists out of<br />

markedly defined units, which have<br />

a relatively large distance from each<br />

other. Note the hilum on the right<br />

conidium. E. Conidiophore with<br />

large scars <strong>and</strong> conidia. F. Different<br />

blastoconidia with very early stages<br />

of new spore formation in the middle<br />

of the picture. G. Pattern of spore<br />

development. Scale bars: A = 20<br />

µm, B, E–G = 5 µm, C = 10 µm, D<br />

= 2 µm.<br />

144


<strong>Cladosporium</strong> herbarum species complex<br />

or irregularly echinulate, walls unthickened or slightly thickened,<br />

apex rounded or slightly attenuated towards apex <strong>and</strong> base, hila<br />

conspicuous, protuberant, denticulate, 0.5–2 µm diam, thickened<br />

<strong>and</strong> darkened-refractive; microcyclic conidiogenesis observed.<br />

Cultural characteristics: Colonies on PDA attaining 29 mm diam<br />

after 14 d at 25 ºC, olivaceous-black to olivaceous-grey towards<br />

margin, margin regular, entire edge, narrow, colourless to white,<br />

glabrous to feathery, aerial mycelium formed, fluffy, mainly near<br />

margins, growth flat, somewhat folded in the colony centre, deep<br />

into the agar, few prominent exudates formed with age, sporulation<br />

profuse. Colonies on MEA attaining 25 mm diam after 14 d at 25<br />

ºC, olivaceous-grey to olivaceous due to abundant sporulation<br />

in the colony centre, pale greenish grey towards margin, irongrey<br />

reverse, velvety to powdery, margin crenate, narrow, white,<br />

glabrous, radially furrowed, aerial mycelium diffuse, growth convex<br />

with papillate surface, wrinkled colony centre, without prominent<br />

exudates, sporulation profuse. Colonies on OA attaining 26 mm<br />

diam after 14 d at 25 ºC, olivaceous, iron-grey to greenish black<br />

reverse, growth flat, deep into the agar, with a single exudate,<br />

abundantly sporulating.<br />

Specimen examined: Slovenia, Sečovlje, isolated from hypersaline water from<br />

crystallization ponds, salterns, 2005, S. Sonjak, <strong>CBS</strong>-H 19864, holotype, isotype<br />

HAL 2027 F, culture ex-type <strong>CBS</strong> 121630 = CPC 12041 = EXF-343.<br />

Substrate <strong>and</strong> distribution: Hypersaline water; Slovenia.<br />

Notes: <strong>Cladosporium</strong> subinflatum, an additional saprobic species<br />

isolated from hypersaline water, was at first identified as C.<br />

spinulosum, but proved to be both morphologically as well as<br />

phylogenetically distinct from the latter species in having somewhat<br />

wider [(1.5–)2.5–4.5(–5.5) µm], nodulose macronematous<br />

conidiophores with conidiogenous loci confined to swellings, wider<br />

conidiogenous loci <strong>and</strong> hila, (0.8–)1–2 µm, <strong>and</strong> spiny conidia<br />

with shorter spines than in C. spinulosum (up to 0.8 µm versus<br />

0.5–1.3 µm long) (Zalar et al. 2007). With its narrow, nodulose<br />

macronematous conidiophores <strong>and</strong> catenate conidia, C. bruhnei<br />

is morphologically also <strong>similar</strong> but differs by having conidiophores<br />

with wider swellings, (4–)5–8 µm, <strong>and</strong> longer conidia 4–24(–31)<br />

µm, rarely up to 40 µm long which are minutely verruculose to<br />

verrucose but not spiny.<br />

Fig. 40. <strong>Cladosporium</strong> subtilissimum (<strong>CBS</strong> 113754). Macro- <strong>and</strong> micronematous conidiophores <strong>and</strong> conidia. Scale bar = 10 µm. K. Schubert del.<br />

www.studiesinmycology.org<br />

145


Schubert et al.<br />

Fig. 41. <strong>Cladosporium</strong> subtilissimum (<strong>CBS</strong> 113754). A–C. Macronematous conidiophores. D. Conidial chain. E. Micronematous conidiophore. F–G. Conidia. Scale bars = 10<br />

µm.<br />

<strong>Cladosporium</strong> subtilissimum K. Schub., Dugan, Crous & U.<br />

Braun, sp. nov. MycoBank MB504580. Figs 40–42.<br />

Etymology: Refers to its narrow conidiophores <strong>and</strong> conidia.<br />

Differt a Cladosporio cladosporioide conidiophoris et conidiis semper asperulatis ad<br />

verruculosis, conidiis 0–1(–2)-septatis.<br />

Mycelium unbranched or sparingly branched, 1–5 µm wide, septate,<br />

without swellings <strong>and</strong> constrictions, hyaline to subhyaline or pale<br />

brown, smooth to minutely verruculose, walls unthickened or almost<br />

so, protoplasm somewhat guttulate or granular. Conidiophores<br />

macronematous <strong>and</strong> micronematous, arising laterally from<br />

plagiotropous hyphae or terminally from ascending hyphae, erect,<br />

straight to slightly flexuous, filiform to cylindrical-oblong, nonnodulose,<br />

sometimes geniculate towards the apex, unbranched or<br />

once branched, branches short to somewhat longer, usually formed<br />

below a septum, sometimes only short, denticle-like or conical,<br />

25–140 × 2–4 µm, 0–4-septate, not constricted at the septa,<br />

subhyaline to pale brown, almost smooth, minutely verruculose<br />

to verruculose, sometimes irregularly rough-walled in the lower<br />

part, walls unthickened or slightly thickened, protoplasm guttulate<br />

or somewhat granular. Conidiogenous cells integrated, terminal<br />

or pleurogenous, sometimes also intercalary, filiform to narrowly<br />

cylindrical, non-nodulose, sometimes geniculate, 14–57 µm long,<br />

with usually sympodial clusters of pronounced conidiogenous loci<br />

at the apex or on a lower level, denticle-like or situated on short<br />

lateral prolongations, up to five loci, intercalary conidiogenous<br />

cells usually with a short denticle-like lateral outgrowth below a<br />

septum, protuberant, denticulate, somewhat truncate, 1.2–2 µm<br />

diam, thickened <strong>and</strong> darkened-refractive. Ramoconidia sometimes<br />

occurring, conidiogenous cells seceding at one of the upper septa<br />

of the conidiophore <strong>and</strong> behaving like conidia, filiform or cylindrical,<br />

20–40(–55) µm long, 1.5–4 µm wide, 0–1-septate, concolorous<br />

with conidiophores, not attenuated towards apex <strong>and</strong> base, base<br />

broadly truncate, non-cladosporioid, without any dome <strong>and</strong> raised<br />

rim, 2–3.5 µm wide, neither thickened nor darkened, sometimes<br />

slightly refractive. Conidia catenate, in branched chains, up to 12<br />

or even more in a chain, straight, small terminal conidia numerous,<br />

subglobose, narrowly obovoid, limoniform or fusiform, 4–9 × 2–3.5<br />

µm [av. ± SD, 6.4 (± 1.5) × 2.8 (± 0.4) µm], with up to three distal<br />

scars, aseptate, hila (0.5–)0.8–1 µm diam, intercalary conidia<br />

narrowly ellipsoid, fusiform to subcylindrical, 9–18 × 3–4(–6) µm<br />

[av. ± SD, 13.0 (± 2.5) × 3.8 (± 0.3) µm], 0(–1)-septate, hila 1–1.2(–<br />

1.8) µm diam, with up to four distal scars, secondary ramoconidia<br />

ellipsoid, fusiform or subcylindrical, (13–)17–32(–37) × 3–5(–6) µm<br />

[av. ± SD, 21.4 (± 4.4) × 4.1 (± 0.5) µm], 0–1(–2)-septate, septum<br />

median or somewhat in the lower half, usually not constricted at<br />

the septa, with up to six distal hila crowded at the apex, hila (1.2–)<br />

1.5–2(–2.5) µm diam, apex often somewhat laterally enlarged<br />

or prolonged with hila crowded there, very pale or pale brown or<br />

olivaceous-brown, minutely verruculose to verruculose (granulate<br />

under SEM), walls unthickened or only slightly thickened, often<br />

slightly attenuated towards apex <strong>and</strong> base, protoplasm often<br />

guttulate or granular, hila protuberant, denticulate, (0.5–)0.8–2(–<br />

2.2) µm diam, thickened <strong>and</strong> darkened-refractive; microcyclic<br />

conidiogenesis occasionally observed.<br />

Cultural characteristics: Colonies on PDA attaining 24 mm diam<br />

after 14 d at 25 °C, grey-olivaceous to olivaceous, olivaceousgrey,<br />

iron-grey or olivaceous-black reverse, velvety, margin<br />

regular, entire edge, white or pale greenish olivaceous, glabrous<br />

to feathery, aerial mycelium sparse, only few areas with abundant<br />

146


<strong>Cladosporium</strong> herbarum species complex<br />

Fig. 42. <strong>Cladosporium</strong> subtilissimum (<strong>CBS</strong> 113754). A. Overview on the organisation of spore formation. <strong>The</strong> micrograph shows a large basal secondary ramoconidium which<br />

has chains of secondary ramoconidia, intercalary <strong>and</strong> small terminal conidia. <strong>The</strong> conidia are formed in rows of often three cells. Note the size difference in the different cells.<br />

B. Conidiophore showing very pronounced scars that almost appear as branches. C. Detail of (A), illustrating the scar formation between the cells. D. Conidia during different<br />

stages of formation. E. Details of pronounced hila, <strong>and</strong> prominent ornamentation on secondary ramoconidia with the central dome-formed area. F. Different conidia <strong>and</strong> hila.<br />

Scale bars: A = 10 µm, B–D, F = 5 µm, E = 2 µm.<br />

mycelium, diffuse, growth regular, flat or with a raised <strong>and</strong> wrinkled<br />

colony centre, radially furrowed, effuse, usually without prominent<br />

exudates, with age several exudates formed, sporulation profuse,<br />

colonies consisting of two kinds of conidiophores, short <strong>and</strong> a few<br />

longer ones. Colonies on MEA reaching 25 mm diam after 14 d<br />

at 25 °C, greenish olivaceous to grey-olivaceous in the centre,<br />

olivaceous-grey to iron-grey reverse, velvety, margin entire edge,<br />

crenate or umbonate, narrow, pale greenish olivaceous, sometimes<br />

radially furrowed, aerial mycelium absent or sparse, growth low<br />

convex with distinctly wrinkled colony centre, without prominent<br />

exudates, abundantly sporulating. Colonies on OA attaining 25 mm<br />

diam after 14 d at 25 °C, dark grey-olivaceous to olivaceous due to<br />

profuse sporulation, iron-grey reverse, sometimes releasing some<br />

olivaceous-buff pigments into the agar, velvety, margin regular,<br />

entire edge or crenate, narrow, colourless or white, glabrous or<br />

feathery, aerial mycelium sparse, growth flat with slightly raised<br />

colony centre, prominent exudates lacking, sporulation profuse.<br />

www.studiesinmycology.org<br />

Specimens examined: Slovenia, Sečovlje, isolated from hypersaline water from<br />

salterns (reserve pond), 2005, P. Zalar, CPC 12044 = EXF-462. U.S.A., isolated<br />

from bing cherry fruits, F. Dugan, <strong>CBS</strong> 113753; isolated from a grape berry, F.<br />

Dugan, wf 99-2-9 sci 1, <strong>CBS</strong>-H 19865, holotype, isotype HAL 2028 F, culture extype<br />

<strong>CBS</strong> 113754.<br />

Excluded strains within the subtilissimum complex: Argentina,<br />

isolated from Pinus ponderosa (Pinaceae), 2005, A. Greslebin,<br />

CPC 12484, CPC 12485. U.S.A., isolated from grape berry, F.<br />

Dugan, <strong>CBS</strong> 113741, <strong>CBS</strong> 113742; isolated from grape bud, F.<br />

Dugan, <strong>CBS</strong> 113744.<br />

Substrate <strong>and</strong> distribution: Plant material <strong>and</strong> hypersaline water;<br />

Slovenia, U.S.A.<br />

Notes: <strong>Cladosporium</strong> cladosporioides is morphologically comparable<br />

with the new species but deviates in having usually smooth<br />

conidiophores <strong>and</strong> conidia, with the conidia being mainly aseptate.<br />

C. subtilissimum is represented by three isolates of different origins<br />

147


Schubert et al.<br />

Fig. 43. <strong>Cladosporium</strong> tenellum (CPC 12053). Macro- <strong>and</strong> micronematous conidiophores <strong>and</strong> conidia. Scale bar = 10 µm. K. Schubert del.<br />

Fig. 44. <strong>Cladosporium</strong> tenellum (CPC 12053). A–C, E. Macronematous conidiophore. D. Micronematous conidiophore. F. Ramoconidium <strong>and</strong> conidia. Scale bars = 10 µm.<br />

148


<strong>Cladosporium</strong> herbarum species complex<br />

Differt a Cladosporio cladosporioide conidiophoris et conidiis semper asperulatis,<br />

locis conidiogenis apicalibus, numerosis, hilis quoque numerosis, conidiophoris<br />

angustioribus, (1–)1.5–3.5(–4) µm latis; et a Cladosporio subtilissimo loci<br />

conidiogenis et hilis apicalibus, numerosis, angustioribus, saepe 1–1.5 µm latis,<br />

conidiis minutis numerosis, saepe globosis.<br />

Fig. 45. <strong>Cladosporium</strong> tenellum (CPC 12053). A. A bird’s eye view of a colony of<br />

C. tenellum with its very characteristic bundles of aerial hyphae. Numerous conidia<br />

are visible, formed on simple conidiophores. B. Hyphae that run on the agar surface<br />

give rise to conidiophores <strong>and</strong> numerous conidia, that are relatively rounded. C.<br />

Conidiophore ends are rather simple <strong>and</strong> have large scars. D. Hila on a secondary<br />

ramoconidium with non-ornamented area. E. Detail of the prominent ornamentation<br />

on a secondary ramoconidium. Scale bars: A = 20 µm, B = 10 µm, C, E = 2 µm,<br />

D = 5 µm.<br />

<strong>and</strong> substrates. Besides these strains, several additional isolates<br />

listed under excluded strains are morphologically indistinguishable<br />

from C. subtilissimum in culture, but genetically different, clustering<br />

in various subclades. <strong>The</strong>y are indicated as <strong>Cladosporium</strong> sp. in<br />

the tree (Fig. 3).<br />

<strong>Cladosporium</strong> tenellum K. Schub., Zalar, Crous & U. Braun, sp.<br />

nov. MycoBank MB504581. Figs 43–45.<br />

Etymology: Refers to its narrow conidiophores <strong>and</strong> conidia.<br />

www.studiesinmycology.org<br />

Mycelium sparingly branched, 1–3 µm wide, septate, septa often<br />

not very conspicuous, not constricted at the septa, sometimes<br />

slightly swollen, subhyaline, smooth, walls unthickened.<br />

Conidiophores macronematous <strong>and</strong> micronematous, solitary,<br />

arising terminally or laterally from plagiotropous or ascending<br />

hyphae, erect or subdecumbent, almost straight to more or less<br />

flexuous, cylindrical, sometimes geniculate towards the apex, but<br />

not nodulose, sometimes with short lateral prolongations at the<br />

apex, unbranched to once or twice branched (angle usually 30–45°<br />

degree, sometimes up to 90°), branches usually below a septum,<br />

6–200 × (1–)2–4(–5) µm, septate, septa not very conspicuous,<br />

not constricted at the septa, subhyaline to pale brown, almost<br />

smooth to usually asperulate, walls unthickened or almost so.<br />

Conidiogenous cells integrated, terminal or intercalary, sometimes<br />

conidiophores reduced to conidiogenous cells, cylindrical,<br />

sometimes geniculate, non-nodulose, 6–40 µm long, proliferation<br />

sympodial, with several conidiogenous loci often crowded at the<br />

apex <strong>and</strong> sometimes also at a lower level, situated on small lateral<br />

shoulders, unilateral swellings or prolongations, with up to 6(–10)<br />

denticulate loci, forming sympodial clusters of pronounced scars,<br />

intercalar conidiogenous cells with short or somewhat long lateral<br />

outgrowths, short denticle-like or long branches with several scars<br />

at the apex, usually below a septum, loci protuberant, 1–1.5(–2) µm<br />

diam, thickened <strong>and</strong> darkened-refractive. Ramoconidia sometimes<br />

occurring, cylindrical, up to 32 µm long, 2.5–4 µm wide, with a<br />

broadly truncate, unthickened base, about 2 µm wide. Conidia<br />

catenate, formed in branched chains, straight, small terminal<br />

conidia globose, subglobose, ovoid, oval, 3–6 × 2.5–3.5 µm [av.<br />

± SD, 4.5 (± 1.3) × 2.8 (± 0.4) µm], aseptate, asperulate, with 0–2<br />

distal hila, intercalary conidia <strong>and</strong> secondary ramoconidia ellipsoidovoid,<br />

ellipsoid to subcylindrical, 3.5–20(–28) × (2.5–)3–5(–6) µm<br />

[av. ± SD, 12.4 (± 5.4) × 4.1 (± 0.7) µm], 0–1-septate, rarely with<br />

up to three septa, sometimes slightly constricted at the septa,<br />

subhyaline, pale brown to medium olivaceous-brown, asperulate<br />

or verruculose (muricate, granulate or colliculate under SEM),<br />

walls unthickened or slightly thickened, apex rounded or slightly<br />

to distinctly attenuated towards apex <strong>and</strong> base, often forming<br />

several apical hila, up to 7(–9), crowded, situated on small lateral<br />

outgrowths giving them a somewhat irregular appearance, hila<br />

protuberant, 0.5–1.5 µm diam, thickened <strong>and</strong> darkened-refractive;<br />

microcyclic conidiogenesis sometimes occurring.<br />

Cultural characteristics: Colonies on PDA reaching 27–34 mm diam<br />

after 14 d at 25 ºC, smoke-grey, grey-olivaceous to olivaceous-grey,<br />

olivaceous-grey to iron-grey reverse, velvety to powdery, margin<br />

regular, entire edge, narrow, colourless to white, aerial mycelium<br />

absent or sparingly formed, felty, whitish, growth regular, flat,<br />

radially furrowed, with folded <strong>and</strong> elevated colony centre, deep into<br />

the agar, with age forming few to numerous prominent exudates,<br />

sporulation profuse, few high conidiophores formed. Colonies on<br />

MEA reaching 25–44 mm diam after 14 d at 25 ºC, olivaceous-grey<br />

to olivaceous- or iron-grey due to abundant sporulation in the colony<br />

centre, velvety, margin regular, entire edge, narrow, colourless,<br />

white to pale olivaceous-grey, aerial mycelium loose, diffuse,<br />

growth convex with papillate surface, radially furrowed, wrinkled,<br />

without prominent exudates, sporulating. Colonies on OA reaching<br />

23–32 mm diam after 14 d at 25 ºC, grey-olivaceous, olivaceous-<br />

149


Schubert et al.<br />

Fig. 46. <strong>Cladosporium</strong> variabile (CPC 12751). Macro- <strong>and</strong> micronematous conidiophores <strong>and</strong> conidia. Scale bar = 10 µm. K. Schubert del.<br />

grey to olivaceous due to abundant sporulation in the colony centre,<br />

olivaceous- or iron-grey reverse, velvety, margin regular, entire<br />

edge, narrow, colourless or white, aerial mycelium sparse, diffuse,<br />

floccose, growth flat to low convex, radially furrowed, wrinkled,<br />

without prominent exudates, sporulation profuse.<br />

Specimens examined: Israel, Eilat, isolated from hypersaline water from salterns,<br />

2004, N. Gunde-Cimerman, <strong>CBS</strong> 121633 = CPC 12051 = EXF-1083; Ein Bokek,<br />

isolated from hypersaline water of the Dead Sea, 2004, M. Ota, <strong>CBS</strong>-H 19866,<br />

holotype, isotype HAL 2029 F, culture ex-type <strong>CBS</strong> 121634 = CPC 12053 = EXF-<br />

1735. U.S.A., Seattle, University of Washington campus, isolated from Phyllactinia<br />

sp. (Erysiphaceae) on leaves of Corylus sp. (Corylaceae), 16 Sep. 2004, D. Glawe,<br />

CPC 11813.<br />

Substrates <strong>and</strong> distribution: Hypersaline water <strong>and</strong> plant material;<br />

Israel, U.S.A.<br />

Notes: <strong>Cladosporium</strong> subtilissimum <strong>and</strong> C. cladosporioides are<br />

morphologically comparable with the new species C. tenellum, but<br />

C. cladosporioides deviates in having usually smooth conidiophores<br />

<strong>and</strong> conidia with only few conidiogenous loci <strong>and</strong> conidial hila crowded<br />

at the apex <strong>and</strong> somewhat wider conidiophores, 3–5(–6) µm; <strong>and</strong><br />

in C. subtilissimum the small terminal conidia are not globose but<br />

rather narrowly obovoid to limoniform, the conidiogenous loci <strong>and</strong><br />

conidial hila are somewhat wider, (0.5–)0.8–2(–2.2) µm, <strong>and</strong> at the<br />

apices of conidiophores <strong>and</strong> conidia only few scars are formed.<br />

<strong>Cladosporium</strong> ramotenellum, which morphologically also<br />

resembles C. tenellum, possesses longer <strong>and</strong> narrower, 0–3-septate<br />

conidia, 2.5–35 × 2–4(–5) µm, but forms only few conidiogenous<br />

loci <strong>and</strong> conidial hila at the apices of conidiophores <strong>and</strong> conidia.<br />

<strong>Cladosporium</strong> variabile (Cooke) G.A. de Vries, Contr. Knowl.<br />

Genus <strong>Cladosporium</strong>: 85. 1952. Figs 46–48.<br />

Basionym: Heterosporium variabile Cooke, Grevillea 5(35): 123.<br />

1877.<br />

≡ Helminthosporium variabile Cooke, Fungi Brit. Exs. Ser. 1, No. 360.<br />

1870, nom. inval.<br />

= <strong>Cladosporium</strong> subnodosum Cooke, Grevillea 17(83): 67. 1889.<br />

150


<strong>Cladosporium</strong> herbarum species complex<br />

Fig. 47. <strong>Cladosporium</strong> variabile <strong>and</strong> its teleomorph Davidiella variabile (CPC 12751). A–C. Macronematous conidiophores. D, F. Micronematous conidiophores. E, G–H.<br />

Conidia. I. Twisted aerial mycelium. J. Ascomata formed on nettle stem in culture. K. Surface view of ascomal wall of textura epidermoidea. L–M. Asci. N–P. Ascospores. Q.<br />

Ascus with a sheath. Scale bars A, D, G–J, K–N = 10 µm, J = 250 µm.<br />

www.studiesinmycology.org<br />

151


Schubert et al.<br />

Fig. 48. <strong>Cladosporium</strong> variabile (CPC 12753). A. Survey of hyphae that grow on the agar surface. Some of the fungal cells have a swollen appearance <strong>and</strong> could develop into<br />

a “foot cell” that gives rise to a conidiophore. B. A number of aerial hyphae obstruct the swollen, large structures on the agar surface, which give rise to conidiophores. Some<br />

of them appear ornamented. C. A series of conidia formed on a conidiophore (bottom of the micrograph). D. Detail of the ornamented conidia. <strong>The</strong> ornamentations are isolated<br />

<strong>and</strong> dispersed. Note also the ornamentation-free scar zone <strong>and</strong> the hilum of the left cell. E. Two conidia behind an aerial hypha. F. Two conidiophores forming secondary<br />

ramoconidia. Note the bulbous shape of the spore-forming apparatus. This micrograph is from an uncoated sample. Scale bars: A–C, F = 10 µm, D = 2 µm, E = 5 µm.<br />

Teleomorph: Davidiella variabile Crous, K. Schub. & U. Braun, sp.<br />

nov. MycoBank MB504583.<br />

Davidiellae tassianae similis, sed ascosporis maioribus, (22–)26–30(–35) × (7–)7.5–<br />

8(–9) µm, et ascis latioribus, plus quam 18 µm.<br />

Ascomata pseudothecial, black, superficial, situated on a small<br />

stroma, globose, up to 250 µm diam, with 1–3 ostiolate necks;<br />

ostioles periphysate, with apical periphysoids present; wall<br />

consisting of 3–6 layers of dark brown textura angularis, textura<br />

epidermoidea in surface view. Asci fasciculate, bitunicate,<br />

subsessile, obovoid to broadly ellipsoid, straight to slightly curved,<br />

8-spored, 70–95 × 18–28 µm; with pseudoparenchymatal cells<br />

of the hamathecium persistent. Ascospores tri- to multiseriate,<br />

overlapping, hyaline, with irregular lumina, thick-walled, straight<br />

to slightly curved, fusoid-ellipsoidal with obtuse ends, widest near<br />

the middle of the apical cell, medianly 1-septate, not to slightly<br />

constricted at the septum, at times developing a second septum<br />

in each cell, several ascospores with persistent, irregular mucoid<br />

sheath, (22–)26–30(–35) × (7–)7.5–8(–9) µm.<br />

Mycelium immersed <strong>and</strong> superficial, irregularly branched, aerial<br />

mycelium twisted <strong>and</strong> spirally coiled, 1–3 µm wide, septate,<br />

sometimes with swellings or small lateral outgrowths, hyaline<br />

to subhyaline, smooth, walls unthickened, hyphae which give<br />

rise to conidiophores somewhat wider, 3–4.5 µm, subhyaline to<br />

pale brown, almost smooth to minutely verruculose, sometimes<br />

enveloped by a polysaccharide-like cover. Conidiophores usually<br />

macronematous, but also micronematous, arising terminally<br />

from ascending hyphae or laterally from plagiotropous hyphae.<br />

Macronematous conidiophores erect, more or less straight to<br />

flexuous, often distinctly geniculate-sinuous forming lateral<br />

shoulders or unilateral swellings, sometimes zigzag-like or<br />

somewhat coralloid, nodulose, swellings at first terminal, then<br />

becoming lateral due to sympodial proliferation, often as distinct<br />

lateral shoulders, unbranched, sometimes once branched, 6–<br />

180 × (2.5–)3–6 µm, swellings (3–)6–11 µm wide, septate, not<br />

constricted at the septa, pale to medium olivaceous-brown or<br />

brown, usually verruculose, walls somewhat thickened, about 1 µm<br />

thick, sometimes appearing to be two-layered. Conidiogenous cells<br />

integrated, terminal <strong>and</strong> intercalary, cylindrical, nodulose to nodose,<br />

152


<strong>Cladosporium</strong> herbarum species complex<br />

with a single or two swellings per cell, swellings apart from each<br />

other or formed in short succession, loci confined to swellings, up to<br />

six per node, protuberant, 1–2 µm diam, thickened <strong>and</strong> darkenedrefractive.<br />

Micronematous conidiophores erect, straight to slightly<br />

flexuous, unbranched, usually without swellings, filiform to narrowly<br />

cylindrical, sometimes only as short lateral outgrowths of hyphae,<br />

often almost indistinguishable from hyphae, up to 50 µm long,<br />

1.5–2.5(–3) µm wide, longer ones pluriseptate, septa appear to be<br />

somewhat more darkened, with very short cells, 4–12 µm long,<br />

subhyaline to pale brown, smooth, walls unthickened or almost so.<br />

Conidiogenous cells integrated, usually terminal, rarely intercalary,<br />

cylindrical, non-nodulose, with a single, two or few conidiogenous<br />

loci at the distal end, protuberant, up to 2 µm diam, thickened<br />

<strong>and</strong> darkened-refractive. Conidia catenate, in branched chains,<br />

straight, subglobose, obovoid, oval, broadly ellipsoid to cylindrical,<br />

sometimes clavate, 4–26(–30) × (3.5–)5–9(–10) µm [av. ± SD,<br />

16.8 (± 6.9) × 6.5 (± 1.4) µm], 0–3-septate, usually not constricted<br />

at the septa, septa becoming sinuous with age, often appearing to<br />

be darkened, pale to medium or even dark brown or olivaceousbrown,<br />

verruculose to densely verrucose or echinulate (granulate<br />

under SEM), walls slightly to distinctly thickened in larger conidia,<br />

apex <strong>and</strong> base broadly rounded, sometimes broadly truncate or<br />

somewhat attenuated, apex <strong>and</strong> base often appear to be darkened<br />

or at least refractive, hila protuberant to somewhat sessile (within<br />

the outer wall ornamentation), (0.8–)1–2 µm diam, thickened <strong>and</strong><br />

darkened-refractive; microcyclic conidiogenesis occurring.<br />

Cultural characteristics: Colonies on PDA attaining 29 mm diam<br />

after 14 d at 25 ºC, olivaceous to olivaceous-grey or iron-grey, irongrey<br />

or olivaceous-grey reverse, velvety to powdery, margin regular,<br />

entire edge to fimbriate, almost colourless, aerial mycelium whitish<br />

turning olivaceous-grey, sometimes reddish, greyish rose, woollyfelty,<br />

growth flat with elevated colony centre, somewhat folded or<br />

radially furrowed, with age forming several very small but prominent<br />

exudates, sporulation profuse. Colonies on MEA attaining 27 mm<br />

diam after 14 d at 25 ºC, olivaceous-grey to iron-grey, white to pale<br />

olivaceous-grey in the centre due to abundant aerial mycelium,<br />

velvety, margin very narrow, colourless, more or less entire edge,<br />

radially furrowed, aerial mycelium fluffy to floccose, dense, growth<br />

low convex with wrinkled <strong>and</strong> folded centre, without exudates,<br />

sporulation profuse. Colonies on OA attaining 25 mm diam after<br />

14 d at 25 ºC, iron-grey or olivaceous, margin regular, entire edge,<br />

narrow, white, glabrous, aerial mycelium whitish, at first mainly in<br />

the colony centre, high, dense, floccose, growth flat, abundantly<br />

sporulating, no exudates.<br />

Specimens examined: Great Britain, Wales, Montgomeryshire, Welshpool, Forden<br />

Vicarage, on Spinacia oleracea (Chenopodiaceae), J.E. Vize, Cooke, Fungi Brit. Exs.<br />

Ser. I, No. 360, K, holotype. U.S.A., Washington, isolated from Spinacia oleracea, 1<br />

Jan. 2003, L. DuToit, <strong>CBS</strong>-H 19867, epitype designated here of C. variabile <strong>and</strong> D.<br />

variabile, cultures ex-epitype <strong>CBS</strong> 121635 = CPC 12753, CPC 12751.<br />

Substrate <strong>and</strong> distribution: Leaf-spotting fungus on Spinacia<br />

oleracea; Asia (China, India, Iraq, Pakistan), Europe (Austria,<br />

Belgium, Cyprus, Denmark, France, Germany, Great Britain,<br />

Hungary, Italy, Montenegro, Netherl<strong>and</strong>s, Norway, Romania, Spain,<br />

Turkey), North America (U.S.A.).<br />

Literature: de Vries (1952: 85–88), Ellis (1971: 315), Ellis & Ellis<br />

(1985: 429), David (1995b; 1997: 94, 96–98), Ho et al. (1999:<br />

144).<br />

Notes: In vivo the conidia are usually longer, somewhat wider <strong>and</strong><br />

more frequently septate, (6.5–)10–45(–55) × (4.5–)6–14(–17) µm,<br />

www.studiesinmycology.org<br />

0–4(–5)-septate (Schubert 2005). In culture the dimensions tend to<br />

be smaller, which was already mentioned by de Vries (1952).<br />

This leaf-spotting fungus superficially resembles C.<br />

macrocarpum, but besides its pathogenicity to Spinacia, C.<br />

variabile differs from the latter species in having distinctly larger<br />

<strong>and</strong> more frequently septate conidia on the natural host, forming<br />

twisted <strong>and</strong> spirally coiled aerial mycelium in culture <strong>and</strong> in having<br />

lower growth rates in culture (29 mm after 14 d on PDA versus<br />

38 mm on average in C. macrocarpum). Furthermore, the conidial<br />

septa of C. variabile are often distinctly darkened, become sinuous<br />

with age <strong>and</strong> the apex <strong>and</strong> base of the conidia often appear to<br />

be distinctly darkened. A Davidiella teleomorph has not previously<br />

been reported for this species.<br />

<strong>The</strong> cladosporioides complex<br />

This species complex will be treated in an additional paper in<br />

this series, dealing with the epitypification of this common <strong>and</strong><br />

widespread species, <strong>and</strong> with numerous isolates identified <strong>and</strong><br />

deposited as C. cladosporioides.<br />

DISCUSSION<br />

In the present study, a multilocus genealogy supported by light<br />

<strong>and</strong> SEM microscopy, <strong>and</strong> cultural characteristics was used to<br />

redefine species borders within <strong>Cladosporium</strong>, especially within<br />

the C. herbarum complex. Most of the diagnostic features used<br />

for species delimitation on host material (Heuchert et al. 2005,<br />

Schubert 2005), proved to be applicable in culture. However,<br />

morphological features were often more pronounced in vivo than<br />

in vitro. For instance, conidiophore arrangement is not applicable<br />

to cultures, conidiophore <strong>and</strong> conidium widths were often<br />

narrower in culture than on the natural host, <strong>and</strong> macro- as well<br />

as microconidiophores were often observed in culture, but not on<br />

host material. All species belonging to the C. herbarum complex<br />

are characterised by possessing conidia which are ornamentated,<br />

the ornamentation ranging from minutely verruculose to verrucose,<br />

echinulate or spiny whereas in the C. sphaerospermum complex<br />

species with both smooth-walled as well as ornamented conidia<br />

are included (Zalar et al. 2007). <strong>The</strong> surface ornamentation varies<br />

based on the length of surface protuberances <strong>and</strong> in the density<br />

of ornamentation. Furthermore, the conidia are mainly catenate,<br />

formed in unbranched or branched chains. However, species<br />

previously referred to the <strong>genus</strong> Heterosporium, which usually<br />

produce solitary conidia or unbranched chains of two or three<br />

conidia at the most on the natural host, also belong to this species<br />

complex (e.g., C. iridis). In vitro these chains can become longer<br />

<strong>and</strong> may even be branched. <strong>The</strong> conidiophores formed in culture<br />

are mostly macro- but may also be micronematous, sometimes<br />

forming different types of conidia that vary in shape <strong>and</strong> size from<br />

each other. Most of the species possess nodulose conidiophores<br />

with the conidiogenesis confined to the usually lateral swellings.<br />

However, this phenetic trend is not consistently expressed in all<br />

of the species belonging to the C. herbarum complex. <strong>The</strong> various<br />

<strong>Cladosporium</strong> species within the C. herbarum complex were<br />

observed to have subtle differences in their phenotype which were<br />

visible via cryo-electron microscopy (cryoSEM), <strong>and</strong> are discussed<br />

below.<br />

Fungal colonies: CryoSEM provides the opportunity to study the<br />

organisation of the fungal colony at relatively low magnifications.<br />

<strong>Cladosporium</strong> tenellum proved to be the only fungus able to form<br />

153


Schubert et al.<br />

aerial hyphal str<strong>and</strong>s under the conditions studied. <strong>Cladosporium</strong><br />

variabile formed abundant aerial hyphae, but in C. spinulosum<br />

these were sparse, <strong>and</strong> only conidiophores were observed on the<br />

agar surface. Three-day-old colonies of C. subinflatum formed<br />

numerous, long aerial hyphae, <strong>and</strong> no conidiophores could be<br />

discerned under the binocular. After 11 d the aerial hyphae seemed<br />

to have disappeared, giving rise to conidiophores. <strong>Cladosporium</strong><br />

antarcticum, C. variabile <strong>and</strong> C. ramotenellum showed very large,<br />

swollen (> 10 μm) cells which gave rise to conidiophores. With C.<br />

variabile possible earlier stages of these cells were visible (Fig. 48),<br />

which gave rise to conidiophores. More than one conidiophore could<br />

be formed on such a structure (C. variabile <strong>and</strong> C. ramotenellum).<br />

<strong>Cladosporium</strong> herbarum has very wide hyphae on the agar surface,<br />

which gave rise to conidiophores as lateral branches. <strong>The</strong>se wide<br />

hyphae were observed to anastomose, which may provide a firm<br />

interconnected supporting mycelium for these conidiophores. In<br />

C. herbaroides these wide hyphae could also be discerned, but<br />

conidiophore formation was less obvious. Similarily, C. tenellum<br />

has wide, parallel hyphae that gave rise to conidiophores.<br />

<strong>The</strong>se observations reveal fungal structures in <strong>Cladosporium</strong><br />

that have not previously been reported on, <strong>and</strong> that raise intriguing<br />

biological questions. For instance, why are hyphal str<strong>and</strong>s observed<br />

in some species (C. tenellum), <strong>and</strong> not in others, <strong>and</strong> what happens<br />

to the aerial hyphae during incubation in some species such as C.<br />

subinflatum? Furthermore, these preliminary results suggest that<br />

CryoSEM provide additional features that can be used to distinguish<br />

the different species in the C. herbarum complex.<br />

Fine details of morphological stuctures: CryoSEM provides the<br />

opportunity to study fine details of the conidiophore, (ramo)conidia<br />

<strong>and</strong> scars. Samples can be studied at magnification up to<br />

× 8 000, revealing details at a refinement far above what is<br />

possible under the light microscope (LM) (Fig. 2). However, the LM<br />

micrographs provide information about the different compartments<br />

of ramoconidia, as well as the thickness <strong>and</strong> pigmentation of the<br />

cell wall of different structures. With other words, the different<br />

techniques are complementary, <strong>and</strong> both reveal fungal details that<br />

build up the picture that defines a fungal species.<br />

Conidiophores can vary with respect to their width <strong>and</strong> the<br />

length. <strong>Cladosporium</strong> ramotenellum, C. antarcticum <strong>and</strong> C. variabile<br />

have tapered conidiophores formed on large globoid “foot cells”.<br />

<strong>The</strong> conidiophore itself can be branched. <strong>Cladosporium</strong> spinulosum<br />

has conidiophores that rise from the agar surface, but can have<br />

a common point of origin. <strong>The</strong>se conidiophores are not tapered,<br />

but parallel <strong>and</strong> slender. <strong>The</strong> conidiophores of C. bruhnei <strong>and</strong> C.<br />

herbaroides are rather long, <strong>and</strong> can appear as aerial hyphae.<br />

An important feature of the conidiophore is the location were the<br />

conidia are formed. Conidiophore ends can be simple <strong>and</strong> tubular,<br />

or rounded to more complex, several times geniculate, with several<br />

scars. Conidiophore ends become more elaborate over time.<br />

<strong>Cladosporium</strong> spinulosum <strong>and</strong> C. tenellum have nearly tubular<br />

conidiophore ends, with often very closely aggregated scars. <strong>The</strong><br />

conidiophore ends of C. subinflatum are also near tubular with a<br />

hint of bulbousness. <strong>Cladosporium</strong> subtilissimum is <strong>similar</strong>, but with<br />

somewhat more elevated scars that look denticulate. <strong>Cladosporium</strong><br />

variabile has nodulose, somewhat swollen apices with often sessile,<br />

almost inconspicuous scars. In the case of C. macrocarpum, these<br />

structures are also nodulose to nodose <strong>and</strong> somewhat bent, with<br />

only slightly protuberant loci. <strong>Cladosporium</strong> ramotenellum has<br />

tubular conidiophore ends with pronounced scars. <strong>Cladosporium</strong><br />

antarcticum has very characteristic, tapered ends, <strong>and</strong> widely<br />

dispersed (5 μm) scars. More complex conidiophore ends are<br />

more irregular in shape, <strong>and</strong> have scars dispersed over a longer<br />

distance, such as observed in C. bruhnei, C. herbaroides, <strong>and</strong> C.<br />

herbarum.<br />

Secondary ramoconidia are usually the first conidia formed on<br />

a conidiophore. <strong>The</strong>y are often multicellular, <strong>and</strong> have one basal<br />

cladosporioid hilum, <strong>and</strong> more at the apex. Few <strong>Cladosporium</strong><br />

species additionally form true ramoconidia representing apical<br />

parts of the conidiophore which secede at a septum resulting in<br />

an undifferentiated non-coronate base <strong>and</strong> function as conidia.<br />

Ramification of conidial chains is realised through these conidia.<br />

<strong>The</strong>y can occur in up to three stages, which results in elaborated<br />

spore structures. <strong>The</strong> basal secondary ramoconidium is invariably<br />

the largest, <strong>and</strong> cell size decreases through a series of additional<br />

secondary ramoconidia, intercalary conidia, <strong>and</strong> small, terminal<br />

conidia. <strong>The</strong> elongation of secondary ramoconidia varies among<br />

the different species. <strong>Cladosporium</strong> macrocarpum has broadly<br />

ellipsoid to cylindrical secondary ramoconidia usually with broadly<br />

rounded ends, like C. variabile, while C. spinulosum has secondary<br />

ramoconidia that can often hardly be discerned from the conidia<br />

that are formed at later stages. <strong>The</strong> conidia of the other species<br />

roughly fall between these species. <strong>The</strong> most notable structures on<br />

these conidia are their ornamentation, scar pattern <strong>and</strong> morphology.<br />

<strong>Cladosporium</strong> spinulosum forms numerous globose to subsphaerical<br />

spores with digitate, non-tapered surface ornamentation, which<br />

is unique for all the species discussed here. In his study on<br />

<strong>Cladosporium</strong> wall ornamentation, David (1997) recognised three<br />

classes of echinulate surfaces (aculeate, spinulose, digitate), <strong>and</strong><br />

five classes of verrucose surfaces (muricate, granulate, colliculate,<br />

pustulate <strong>and</strong> pedicellate) (Fig. 2). <strong>The</strong> ornamentation particles vary<br />

in shape, width, height <strong>and</strong> density. <strong>The</strong> most strongly ornamented<br />

conidia of the species examined by SEM are formed by C. ossifragi,<br />

with the ornamentation both large (up to 0.5 μm wide) <strong>and</strong> high,<br />

<strong>and</strong> can be regarded as densely muricately ornamented. Strong<br />

ornamentation is also seen in C. herbaroides, which is mostly<br />

granulate. <strong>Cladosporium</strong> tenellum (with muricate, granulate <strong>and</strong><br />

colliculate tendencies) <strong>and</strong> C. bruhnei (mostly granulate with some<br />

muricate projections) have relatively large ornamentation structures<br />

with slightly more space between the units than the other two<br />

species. <strong>Cladosporium</strong> antarcticum, C. ramotenellum, C. variabile<br />

<strong>and</strong> C. subtilissimum exhibit rather large granulate ornamentations<br />

that have a more irregular <strong>and</strong> variable shape. <strong>Cladosporium</strong><br />

subinflatum shows the widest dispersed structures of the series,<br />

being muricate. In contrast, C. macrocarpum has a very neat <strong>and</strong><br />

regular pattern of muricate ornamentation. <strong>The</strong> area of formation<br />

of new spores on conidia is invariably not ornamented, <strong>and</strong> hila all<br />

have the typical <strong>Cladosporium</strong> morphology with a central dome <strong>and</strong><br />

a ring-like structure around it.<br />

Branching patterns: Spores usually show a “line of weakness”<br />

between them where the coronate scars form. It seems that scars at<br />

both sides of the line of weakness have the central dome structure,<br />

which appears to play a major role in the effective mechanism<br />

<strong>Cladosporium</strong> employs for spore dispersal, with the dome actively<br />

pushing the conidia apart. This mechanism is also illustrated in<br />

David (1997, fig. 2E). Indeed, conidia of <strong>Cladosporium</strong> are very<br />

easily dislodged; even snap freezing or the electrical forces inside<br />

the SEM often result in dislodgement of the spores in a powdery<br />

“wave”. It is no surprise, therefore, that <strong>Cladosporium</strong> conidia are<br />

to be found in most air samples. In <strong>Cladosporium</strong>, conidia are<br />

mostly formed in chains, with the size invariably decreasing from<br />

the base to the apex of the row. Upon formation each conidium is<br />

separated from the conidiophore, or previously formed conidium,<br />

<strong>and</strong> hence from its nutrients. <strong>The</strong> basal ramoconidium or secondary<br />

ramoconidia have the nutrients <strong>and</strong> metabolic power to produce<br />

154


<strong>Cladosporium</strong> herbarum species complex<br />

a number of additional secondary ramoconidia that in turn could<br />

produce a chain of intercalary conidia, <strong>and</strong> finally, some small,<br />

single-celled, terminal conidia. Further research is still necessary<br />

to determine if specific branching patterns can be linked to different<br />

species.<br />

A surprising finding from the present study is the huge diversity<br />

in species <strong>and</strong> genotypes that exist in nature, be it in the indoor<br />

environment, on fruit surfaces, or in extreme ecological niches such<br />

as salterns, etc. It is clear that detailed studies would be required<br />

to find <strong>and</strong> characterise other species of <strong>Cladosporium</strong> <strong>and</strong> obtain<br />

a better underst<strong>and</strong>ing of their host ranges <strong>and</strong> ecology. A further<br />

surprise lay in the fact that several of these species are capable<br />

of sexual reproduction, <strong>and</strong> readily form Davidiella teleomorphs in<br />

culture. <strong>The</strong> Davidiella states induced here were all from homothallic<br />

species. Further attention now needs to be given to elucidating<br />

teleomorphs from other species which, as in Mycosphaerella<br />

(Groenewald et al. 2006, Ware et al. 2007) could be heterothallic,<br />

<strong>and</strong> experiencing cl<strong>and</strong>estine sex.<br />

Despite the occurrence of many different genotypes in<br />

variable genes, the degree of diversity in the entire data set was<br />

low. For the majority of the species ITS was almost invariant, with<br />

only six genotypes in the entire dataset. This suggests a very<br />

recent evolution. <strong>The</strong> st<strong>and</strong>ardised index of association (I S A ) was<br />

high (0.3914), indicating an overabundance of clonality <strong>and</strong> / or<br />

inbreeding, the latter possibly matching with observed homothallism<br />

of Davidiella teleomorphs. Clonality was visualised with SplitsTree<br />

software, where star-shaped representations without any sign of<br />

reticulation were obtained for all genes, though at different branch<br />

lengths (Fig. 5). With Structure software an optimal subdivision<br />

was achieved at six putative groups. Some of them were distinctly<br />

separated, yielding a theta (θ) around 0.14, but in most cases there<br />

was considerable overlap in representation of motifs, with θ at<br />

significantly higher values. Results are difficult to interpret due to<br />

the small size of the data set compared to the number of predicted<br />

groups, <strong>and</strong> due to unknown but probably large sampling effects.<br />

With optimal subdivision of the 79 strains at a hypothesised value<br />

of K = 6 (Fig. 4), still a large degree of inter-group <strong>similar</strong>ity was<br />

noted, as was the case at any other level of K. This was particularly<br />

obvious when data from the most variable genes (EF <strong>and</strong> ACT) are<br />

superimposed (Fig. 4). <strong>The</strong> ACT groups are further subdivided by EF<br />

data, but in many cases the same EF motif (indicated with arrows)<br />

was encountered in different (multilocus) species, for example in C.<br />

antarcticum, C. spinulosum, Davidiella sp., <strong>and</strong> the various clusters<br />

comprising <strong>Cladosporium</strong> strains which are phenotypically almost<br />

indistinguishable but genetically distinct from C. subtilissimum. A<br />

<strong>similar</strong> situation was found with the distribution of EF genotypes<br />

(indicated with doughnuts) in C. herbarum <strong>and</strong> C. macrocarpum.<br />

Nevertheless, the data set showed significant structuring, partly<br />

correlating with geography, e.g. the EF-determined cluster of C.<br />

bruhnei that contained isolates from different sources in <strong>The</strong><br />

Netherl<strong>and</strong>s. Differences may be over-accentuated by known<br />

sampling effects, particularly in C. herbarum <strong>and</strong> C. macrocarpum,<br />

where single-spore isolates from a single collection are included.<br />

Taken together the data suggest a recent, preponderantly clonal<br />

evolution, combined with limited natural selection at a low level of<br />

evolutionary pressure. As a result, many genotypes produced by<br />

hot spots in the genes analysed have survived, leading to nearly<br />

r<strong>and</strong>om variation in the data set. Many combinations of motifs that<br />

possibly could emerge have maintained in the course of time due<br />

to the absence of recombination. This indicates that the observed<br />

structure is that of populations within a single species, <strong>and</strong><br />

consequently a distinction of clonal “species” could be redundant.<br />

This conclusion is underlined by the fact that a single source in<br />

a single location can be colonised by various genotypes, such<br />

as grapes in the U.S.A. containing three different, closely related<br />

genotypes. However, the phenomenon of co-inhabitation by<br />

different Mycosphaerella species on the same lesion of Eucalyptus<br />

has been described before (Crous 1998, Crous et al. 2004) <strong>and</strong> it<br />

is therefore not surprising that different genotypes occurring close<br />

together are also observed for the related <strong>genus</strong> <strong>Cladosporium</strong>.<br />

<strong>The</strong>re is no obvious ecological difference between genotypes, <strong>and</strong><br />

hence isolates seem to have equal fitness.<br />

However, in general we noticed a remarkable concordance<br />

of genetic <strong>and</strong> phenetic characters. <strong>The</strong> morphological study was<br />

done prior to sequencing, <strong>and</strong> nearly all morphotypes clustered<br />

in separate molecular entities. <strong>The</strong>re are some exceptions, such<br />

as with C. antarcticum with striking morphology that was almost<br />

identical on the molecular level to <strong>Cladosporium</strong> spp. that resemble<br />

C. subtilissimum <strong>and</strong> would normally have been interpreted to<br />

be a mutant. Conversely, nearly all genetically distinguishable<br />

groups proved to be morphologically different, with the exception<br />

of members of the C. subtilissimum s. lat. complex (indicated as<br />

<strong>Cladosporium</strong> sp. in Fig. 3 <strong>and</strong> Table 1). <strong>The</strong> possibility remains<br />

that the found genetic parameters correlate with phenetic markers<br />

other than morphology, such as virulence, toxins or antifungal<br />

susceptibilities. For this reason we introduce the established<br />

entities here as formal species. <strong>The</strong>y can be diagnosed by ACT<br />

sequencing or by phenetic characters provided in the key. For<br />

simple routine purposes, however, they can be seen <strong>and</strong> treated<br />

as the “C. herbarum complex”, based on their close phylogenetic<br />

relationships.<br />

ACKNOWLEDGEMENTS<br />

Several colleagues from different countries provided material <strong>and</strong> valuable cultures<br />

without which this work would not have been possible. In this regard, we thank<br />

particularly Alina G. Greslebin (CIEFAP, Esquel, Chubut, Argentina), Frank Dugan<br />

<strong>and</strong> Lindsey DuToit (Washington State Univ., U.S.A.), <strong>and</strong> Annette Ramaley<br />

(Colorado, U.S.A.). Konstanze Schubert was financially supported by a Synthesys<br />

grant (No. 2559) which is gratefully acknowledged. We thank Marjan Vermaas for<br />

preparing the photographic plates, Rianne van Dijken for the growth studies, <strong>and</strong><br />

Arien van Iperen for maintaining the cultures studied. Bert Gerrits van den Ende is<br />

acknowledged for assisting with the molecular data analyses.<br />

REFERENCES<br />

Aptroot A (2006). Mycosphaerella <strong>and</strong> its anamorphs: 2. Conspectus of<br />

Mycosphaerella. <strong>CBS</strong> Biodiversity Series 5: 1–231.<br />

Arx JA von (1950). Über die Ascusform von <strong>Cladosporium</strong> herbarum (Pers.) Link.<br />

Sydowia 4: 320–324.<br />

Barr ME (1958). Life history studies of Mycosphaerella tassiana <strong>and</strong> M. typhae.<br />

Mycologia 50: 501–513.<br />

Braun U (2000). Miscellaneous notes on some micromycetes. Schlechtendalia 5:<br />

31–56.<br />

Braun U, Crous PW, Dugan FM, Groenewald JZ, Hoog GS de (2003). Phylogeny<br />

<strong>and</strong> taxonomy of cladosporium-like hyphomycetes, including Davidiella gen.<br />

nov., the teleo-morph of <strong>Cladosporium</strong> s.str. Mycological Progress 2: 3–18.<br />

Braun U, Hill CF, Schubert K (2006). New species <strong>and</strong> new records of biotrophic<br />

micromycetes from Australia, Fiji, New Zeal<strong>and</strong> <strong>and</strong> Thail<strong>and</strong>. Fungal Diversity<br />

22: 13–35.<br />

Brown KB, Hyde KD, Guest DI (1998). Preliminary studies on endophytic fungal<br />

communities of Musa acuminata species complex in Hong Kong <strong>and</strong> Australia.<br />

Fungal Diversity 1: 27–51.<br />

Clements FE, Shear CL (1931). <strong>The</strong> genera of fungi. New York: H.W. Wilson Co.<br />

Corda ACJ (1837). Icones fungorum hucusque cognitorum. Vol. 1. Praha.<br />

Crous PW (1998). Mycosphaerella spp. <strong>and</strong> their anamorphs associated with leaf<br />

spot diseases of Eucalyptus. Mycologia Memoir 21: 1–170.<br />

www.studiesinmycology.org<br />

155


Schubert et al.<br />

Crous PW, Aptroot A, Kang JC, Braun U, Wingfield MJ (2000). <strong>The</strong> <strong>genus</strong><br />

Mycosphaerella <strong>and</strong> its anamorphs. Studies in Mycology 45: 107–121.<br />

Crous PW, Braun U, Schubert K, Groenewald JZ (2007a). Delimiting <strong>Cladosporium</strong><br />

from morphologically <strong>similar</strong> genera. Studies in Mycology 58: 33–56.<br />

Crous PW, Groenewald JZ, Groenewald M, Caldwell P, Braun U, Harrington TC<br />

(2006). Species of Cercospora associated with grey leaf spot of maize. Studies<br />

in Mycology 55: 189–197.<br />

Crous PW, Groenewald JZ, Mansilla JP, Hunter GC, Wingfield MJ (2004).<br />

Phylogenetic reassessment of Mycosphaerella spp. <strong>and</strong> their anamorphs<br />

occurring on Eucalyptus. Studies in Mycology 50: 195–214.<br />

Crous PW, Kang JC, Braun U (2001). A phylogenetic redefinition of anamorph<br />

genera in Mycosphaerella based on ITS rDNA sequences. Mycologia 93:<br />

1081–1101.<br />

David JC (1995a). <strong>Cladosporium</strong> magnusianum. Mycopathologia 129: 53–54.<br />

David JC (1995b). <strong>Cladosporium</strong> varibile. Mycopathologia 129: 57–58.<br />

David JC (1997). A contribution to the systematics of <strong>Cladosporium</strong>. Revision of the<br />

fungi previously referred to Heterosporium. Mycological Papers 172: 1–157.<br />

Domsch KH, Gams W, Anderson TH (1980). Compendium of soil fungi. Vols 1 & 2.<br />

Acad. Press, London.<br />

Dugan FM, Roberts RG (1994). Morphological <strong>and</strong> reproductive aspects of<br />

<strong>Cladosporium</strong> macrocarpum <strong>and</strong> C. herbarum from bing cherry fruits.<br />

Mycotaxon 52: 513–522.<br />

Dugan FM, Schubert K, Braun U (2004). Check-list of <strong>Cladosporium</strong> names.<br />

Schlechtendalia 11: 1–103.<br />

El-Morsy EM (2000). Fungi isolated from the endorhizosphere of halophytic plants<br />

from the Red Sea Coast of Egypt. Fungal Diversity 5: 43–54.<br />

Ellis MB (1971). Dematiaceous hyphomycetes. Commonwealth Mycological<br />

Institute, Kew.<br />

Ellis MB (1972). Dematiaceous hyphomycetes. XI. Mycological Papers 131: 1–25.<br />

Ellis MB, Ellis JP (1985). Microfungi on l<strong>and</strong> plants. An identification h<strong>and</strong>book.<br />

MacMillan, New York.<br />

Ellis MB, Ellis JP (1988). Microfungi on miscellaneous substrates. An identification<br />

h<strong>and</strong>book. Croom Helm, London, <strong>and</strong> Timber Press, Portl<strong>and</strong>, Oregon.<br />

Ellis MB, Waller JM (1974). Mycosphaerella macrospora (conidial state: <strong>Cladosporium</strong><br />

iridis). CMI Descriptions of Pathogenic Fungi <strong>and</strong> Bacteria No. 435.<br />

Falush D, Stephens M, Pritchard JK (2003). Inference of population structure:<br />

Extensions to linked loci <strong>and</strong> correlated allele frequencies. Genetics 164:<br />

1567–1587.<br />

Gams W, Verkleij GJM, Crous PW (2007). <strong>CBS</strong> Course of Mycology, 5 th ed.<br />

Centraalbureau voor Schimmelcultures, Utrecht, Netherl<strong>and</strong>s.<br />

Groenewald M, Groenewald JZ, Harrington TC, Abeln ECA, Crous PW (2006).<br />

Mating type gene analysis in apparently asexual Cercospora species is<br />

suggestive of cryptic sex. Fungal Genetics <strong>and</strong> Biology 43: 813–825.<br />

Haubold B, Hudson RR (2000). LIAN 3.0: detecting linkage disequilibrium in<br />

multilocus data. Bioinformatics Applications Note 16: 847–848.<br />

Haubold B, Travisano M, Raibey PB, Hudson RR (1998). Detecting linkage<br />

disequilibrium in bacterial populations. Genetics 50: 1341–1348.<br />

Hawksworth DL (1979). <strong>The</strong> lichenicolous hyphomycetes. Bulletin of the British<br />

Museum (Natural History), Botany 6: 183–300.<br />

Heuchert B, Braun U (2006). On some <strong>dematiaceous</strong> lichenicolous hyphomycetes.<br />

Herzogia 19: 11–21.<br />

Heuchert B, Braun U, Schubert K (2005). Morphotaxonomic revision of fungicolous<br />

<strong>Cladosporium</strong> species (hyphomycetes). Schlechtendalia 13: 1–78.<br />

Ho MHM, Castañeda RF, Dugan FM, Jong SC (1999). <strong>Cladosporium</strong> <strong>and</strong><br />

Cladophialophora in culture: descriptions <strong>and</strong> an exp<strong>and</strong>ed key. Mycotaxon<br />

72: 115–157.<br />

Hoog GS de, Guarro J, Gené J, Figueras MJ (2000). Atlas of clinical fungi, 2nd ed.<br />

Centraalbureau voor Schimmelcultures, Utrecht <strong>and</strong> Universitat rovira I virgili,<br />

Reus.<br />

Hughes SJ (1958). Revisiones hyphomycetum aliquot cum appendice de nominibus<br />

rejiciendis. Canadian Journal of Botany 36: 727–836.<br />

Huson DH, Bryant D (2006). Application of phylogenetic networks in evolutionary<br />

studies. Molecular Biology <strong>and</strong> Evolution 23: 254–267.<br />

Jaap O (1902). Abh<strong>and</strong>lungen. Schriften des Naturwissenschaftlichen Vereins<br />

Schleswig-Holstein 12: 346–347.<br />

Jolley KA, Feil EJ, Chan MS, Maiden MCJ (2001). Sequence type analysis <strong>and</strong><br />

recombinational tests (START). Bioinformatics Applications Notes 17: 1230–<br />

1231.<br />

Kirk PM, Cannon PF, David JC, Stalpers JA (2001). Dictionary of the fungi, 9 th edn.<br />

CABI Biosciences, Egham, U.K.<br />

Lind J (1913). Danish fungi as represented in the herbarium of E. Rostrup.<br />

Copenhagen.<br />

Linder DH (1947). Botany of the Canadian Eastern Arctic, part II Thallophyta <strong>and</strong><br />

Bryophyta. 4. Fungi. Bulletin of the National Museum of Canada 97, Biological<br />

Series 26: 234–297.<br />

Link HF (1809). Observationes in ordines plantarum naturales. Dissertatio I,<br />

complectens An<strong>and</strong>rarum ordines Epiphytas, Mucedines, Gastromycos et<br />

Fungos. Der Gesellschaft naturforschender Freunde zu Berlin Magazin für die<br />

neuesten Entdeckungen in der gesammten Naturkunde 3: 3–42.<br />

Link HF (1816). Observationes in ordines plantarum naturales. Dissertatio II, sistens<br />

nuperas de Mucedinum et Gastromycorum ordinibus observationes. Der<br />

Gesellschaft naturforschender Freunde zu Berlin Magazin für die neuesten<br />

Entdeckungen in der gesammten Naturkunde 7: 25–45.<br />

Matsushima T (1985). Matsushima Mycological Memoirs No. 4. Kobe.<br />

McKemy JM, Morgan-Jones G (1990). Studies in the <strong>genus</strong> <strong>Cladosporium</strong> sensu<br />

lato II. Concerning Heterosporium gracile, the causal organism of leaf spot<br />

disease of Iris species. Mycotaxon 39: 425–440.<br />

McKemy JM, Morgan-Jones G (1991). Studies in the <strong>genus</strong> <strong>Cladosporium</strong> sensu<br />

lato V. Concerning the type species <strong>Cladosporium</strong> herbarum. Mycotaxon 42:<br />

307–317.<br />

Nyl<strong>and</strong>er JAA (2004). MrAic.pl. Program distributed by the author (http://www.abc.<br />

se/~nyl<strong>and</strong>er/). Evolutionary Biology Centre, Uppsala University.<br />

Persoon CH (1794). Neuer Versuch einer systematischen Eintheilung der<br />

Schwämme. Neues Magazin für die Botanik in ihrem ganzen Umfange 1:<br />

63–128.<br />

Persoon CH (1822). Mycologia europaea. Sectio prima. Erlangen.<br />

Prasil K, Hoog GS de (1988). Variability in <strong>Cladosporium</strong> herbarum. Transactions of<br />

the British Mycological Society 90: 49–54.<br />

Pritchard JK, Stephens M, Donnelly P (2000). Inference of population structure<br />

using multilocus genotype data. Genetics 155: 945–959.<br />

Rayner RW (1970). A mycological colour chart. CMI <strong>and</strong> British Mycological Society.<br />

Kew, Surrey, Engl<strong>and</strong>.<br />

Riesen T, Sieber T (1985). Endophytic fungi in winter wheat (Triticum aestivum L.).<br />

Swiss Federal Institute of Technology, Zürich.<br />

Saccardo PA (1899). Sylloge Fungorum vol. 14 (Saccardo, P.A. & Sydow, P. eds.).<br />

Padova.<br />

Samson RA, Houbraken JAMP, Summerbell RC, Flannigan B, Miller JD (2001).<br />

Common <strong>and</strong> important species of Actinomycetes <strong>and</strong> fungi in indoor<br />

environments. In: Microorganisms in Home <strong>and</strong> Indoor Work Environments:<br />

Diversity, Health Impacts, Investigation <strong>and</strong> Control (Flannigan B, Samson RA,<br />

Miller JD, eds). Taylor & Francis, London: 287–473.<br />

Samson RA, Reenen-Hoekstra, ES van, Frisvad, JC, Filtenborg O (2000).<br />

Introduction to food- <strong>and</strong> airborne fungi, 6 th ed. Centraalbureau voor<br />

Schimmelcultures, Utrecht.<br />

Schoch C, Shoemaker RA, Seifert KA, Hambleton S, Spatafora JW, Crous PW<br />

(2006). A multigene phylogeny of the Dothideomycetes using four nuclear loci.<br />

Mycologia 98: 1041–1052.<br />

Schubert K (2005). Morphotaxonomic revision of foliicolous <strong>Cladosporium</strong> species<br />

(hyphomycetes). Ph.D. dissertation. Martin-Luther-University Halle-Wittenberg,<br />

Germany. http://sundoc.bibliothek.uni-halle.de/diss-online/05/05H208/index.<br />

htm.<br />

Schubert K, Braun U, Mułenko W (2006). Taxonomic revision of the <strong>genus</strong><br />

<strong>Cladosporium</strong> s. lat. 5. Validation <strong>and</strong> description of new species.<br />

Schlechtendalia 14: 55–83.<br />

Shin HD, Lee HT, Im DJ (1999). Occurence of German Iris leaf spot caused by<br />

<strong>Cladosporium</strong> iridis in Korea. Plant Pathology Journal 15: 124–126.<br />

Sivanesan A (1984). <strong>The</strong> bitunicate Ascomycetes <strong>and</strong> their anamorphs. Cramer<br />

Verlag, Vaduz.<br />

Vries GA de (1952). Contribution to the knowledge of the <strong>genus</strong> <strong>Cladosporium</strong> Link<br />

ex Fr. <strong>CBS</strong>, Baarn.<br />

Wang CJK, Zabel RA (1990). Identification manual for fungi from utility poles in the<br />

eastern United States. ATCC, Rockville, MD.<br />

Ware SB, Verstappen ECP, Breeden J, Cavaletto JR, Goodwin SB, Waalwijk C,<br />

Crous PW, Kema GHJ (2007). Discovery of a functional Mycosphaerella<br />

teleomorph in the presumed asexual barley pathogen Septoria passerinii.<br />

Fungal Genetics <strong>and</strong> Biology 44: 389–397.<br />

Zalar P, Hoog GS de, Schroers HJ, Crous PW, Groenewald JZ & Gunde-Cimerman<br />

N (2007). Phylogeny <strong>and</strong> ecology of the ubiquitous saprobe <strong>Cladosporium</strong><br />

sphaerospermum, with description of seven new species from hypersaline<br />

environments. Studies in Mycology 58: 157–183.<br />

156


available online at www.studiesinmycology.org<br />

doi:10.3114/sim.2007.58.06<br />

Studies in Mycology 58: 157–183. 2007.<br />

Phylogeny <strong>and</strong> ecology of the ubiquitous saprobe <strong>Cladosporium</strong> sphaerospermum,<br />

with descriptions of seven new species from hypersaline environments<br />

P. Zalar 1* , G.S. de Hoog 2,3 , H.-J. Schroers 4 , P.W. Crous 2 , J.Z. Groenewald 2 <strong>and</strong> N. Gunde-Cimerman 1<br />

1<br />

Biotechnical Faculty, Department of Biology, Večna pot 111, SI-1000 Ljubljana, Slovenia; 2 <strong>CBS</strong> Fungal Biodiversity Centre, P.O. Box 85167, 3508 AD Utrecht, <strong>The</strong> Netherl<strong>and</strong>s;<br />

3<br />

Institute for Biodiversity <strong>and</strong> Ecosystem Dynamics, University of Amsterdam, Kruislaan 315, 1098 SM Amsterdam, <strong>The</strong> Netherl<strong>and</strong>s; 4 Agricultural Institute of Slovenia,<br />

Hacquetova 17, p.p. 2553, 1001 Ljubljana, Slovenia<br />

*Correspondence: Polona Zalar, polona.zalar@bf.uni-lj.si<br />

Abstract: Saprobic <strong>Cladosporium</strong> isolates morphologically <strong>similar</strong> to C. sphaerospermum are phylogenetically analysed on the basis of DNA sequences of the ribosomal RNA<br />

gene cluster, including the internal transcribed spacer regions ITS1 <strong>and</strong> ITS2, the 5.8S rDNA (ITS) <strong>and</strong> the small subunit (SSU) rDNA as well as β-tubulin <strong>and</strong> actin gene introns<br />

<strong>and</strong> exons. Most of the C. sphaerospermum-like species show halotolerance as a recurrent feature. <strong>Cladosporium</strong> sphaerospermum, which is characterised by almost globose<br />

conidia, is redefined on the basis of its ex-neotype culture. <strong>Cladosporium</strong> dominicanum, C. psychrotolerans, C. velox, C. spinulosum <strong>and</strong> C. halotolerans, all with globoid conidia,<br />

are newly described on the basis of phylogenetic analyses <strong>and</strong> cryptic morphological <strong>and</strong> physiological characters. <strong>Cladosporium</strong> halotolerans was isolated from hypersaline<br />

water <strong>and</strong> bathrooms <strong>and</strong> detected once on dolphin skin. <strong>Cladosporium</strong> dominicanum <strong>and</strong> C. velox were isolated from plant material <strong>and</strong> hypersaline water. <strong>Cladosporium</strong><br />

psychrotolerans, which grows well at 4 °C but not at 30 °C, <strong>and</strong> C. spinulosum, having conspicuously ornamented conidia with long digitate projections, are currently only known<br />

from hypersaline water. We also newly describe C. salinae from hypersaline water <strong>and</strong> C. fusiforme from hypersaline water <strong>and</strong> animal feed. Both species have ovoid to ellipsoid<br />

conidia <strong>and</strong> are therefore reminiscent of C. herbarum. <strong>Cladosporium</strong> langeronii (= Hormodendrum langeronii) previously described as a pathogen on human skin, is halotolerant<br />

but has not yet been recorded from hypersaline environments.<br />

Taxonomic novelties: <strong>Cladosporium</strong> dominicanum Zalar, de Hoog & Gunde-Cimerman, sp. nov., C. fusiforme Zalar, de Hoog & Gunde-Cimerman, sp. nov., C. halotolerans<br />

Zalar, de Hoog & Gunde-Cimerman, sp. nov., C. psychrotolerans Zalar, de Hoog & Gunde-Cimerman, sp. nov., C. salinae Zalar, de Hoog & Gunde-Cimerman, sp. nov.,<br />

C. spinulosum Zalar, de Hoog & Gunde-Cimerman, sp. nov., C. velox Zalar, de Hoog & Gunde-Cimerman, sp. nov.<br />

Key words: Actin, β-tubulin, halotolerance, ITS rDNA, phylogeny, SSU rDNA, taxonomy.<br />

INTRODUCTION<br />

<strong>The</strong> halophilic <strong>and</strong> halotolerant mycobiota from hypersaline<br />

aqueous habitats worldwide frequently contain <strong>Cladosporium</strong><br />

Link isolates (Gunde-Cimerman et al. 2000, Butinar et al. 2005).<br />

Initially, they were considered as airborne contaminants, but<br />

surprisingly, many of these <strong>Cladosporium</strong> isolates were identified<br />

as C. sphaerospermum Penz. because they formed globoid conidia<br />

(data unpublished). <strong>Cladosporium</strong> sphaerospermum, known as<br />

one of the most common air-borne, cosmopolitan <strong>Cladosporium</strong><br />

species, was frequently isolated from indoor <strong>and</strong> outdoor air (Park<br />

et al. 2004), dwellings (Aihara et al. 2001), <strong>and</strong> occasionally from<br />

humans (Badillet et al. 1982) <strong>and</strong> plants (Pereira et al. 2002).<br />

Strains morphologically identified as C. sphaerospermum were<br />

able to grow at a very low water activity (a w<br />

0.816), while other<br />

cladosporia clearly preferred a higher, less extreme water activity<br />

(Hocking et al. 1994). This pronounced osmotolerance suggests<br />

a predilection for osmotically stressed environments although<br />

C. sphaerospermum is reported from a wide range of habitats<br />

including osmotically non-stressed niches.<br />

We therefore hypothesised that C. sphaerospermum<br />

represents a complex of species having either narrow or wide<br />

ecological amplitudes. <strong>The</strong> molecular diversity of strains identified<br />

as C. sphaerospermum has not yet been determined <strong>and</strong> isolates<br />

from humans have not yet been critically compared with those from<br />

environmental samples. <strong>The</strong>refore, a taxonomic study was initiated<br />

with the aim to define phylogenetically <strong>and</strong> morphologically distinct<br />

entities <strong>and</strong> to describe their in vitro osmotolerance <strong>and</strong> their natural<br />

ecological preferences.<br />

MATERIALS AND METHODS<br />

Sampling<br />

Samples of hypersaline water were collected from salterns located<br />

at different sites of the Mediterranean basin (Slovenia, Bosnia <strong>and</strong><br />

Herzegovina, Spain), different coastal areas along the Atlantic<br />

Ocean (Monte Cristy, Dominican Republic; Swakopmund, Namibia),<br />

the Red Sea (Eilat, Israel), the Dead Sea (Ein Gedi, Israel), <strong>and</strong><br />

the salt Lake Enriquillio (Dominican Republic). Samples from the<br />

Sečovlje salterns (Slovenia) were collected once per month in 1999.<br />

Samples from the Santa Pola salterns <strong>and</strong> Ebre delta river saltern<br />

(Spain) were taken twice (July <strong>and</strong> November) in 2000. A saltern in<br />

Namibia <strong>and</strong> one in the Dominican Republic were sampled twice<br />

(August <strong>and</strong> October) in 2002. Various salinities, ranging from 15 to<br />

32 % NaCl were encountered in these ponds.<br />

Isolation <strong>and</strong> maintenance of fungi<br />

Strains were isolated from salterns using filtration of hypersaline<br />

water through membrane filters (pore diam 0.45 μm), followed by<br />

incubation of the membrane filters on different culture media with<br />

lowered water activity (Gunde-Cimerman et al. 2000). Only colonies<br />

of different morphology on one particular selective medium per<br />

sample were analysed further. Strains were carefully selected from<br />

different evaporation ponds, collected at different times, in order to<br />

avoid sampling of identical clones. Subcultures were maintained<br />

at the Culture Collection of Extremophilic Fungi (EXF, Biotechnical<br />

Faculty, Ljubljana, Slovenia), while a selection was deposited at<br />

the Centraalbureau voor Schimmelcultures (<strong>CBS</strong>, Utrecht, <strong>The</strong><br />

Netherl<strong>and</strong>s) <strong>and</strong> the Culture Collection of the National Institute<br />

of Chemistry (MZKI, Ljubljana, Slovenia). Reference strains were<br />

obtained from <strong>CBS</strong>, <strong>and</strong> were selected either on the basis of the<br />

strain history, name, or on the basis of their ITS rDNA sequence.<br />

Strains were maintained on oatmeal agar (OA; diluted OA, Difco:<br />

15 g of Difco 255210 OA medium, 12 g of agar, dissolved in 1 L<br />

of distilled water) with or without 5 % additional NaCl. <strong>The</strong>y were<br />

preserved in liquid nitrogen or by lyophilisation. Strains studied are<br />

listed in Table 1.<br />

157


Zalar et al.<br />

Table 1. List of <strong>Cladosporium</strong> strains, with their current <strong>and</strong> original names, geography, GenBank accession numbers <strong>and</strong> references to earlier published sequences.<br />

Strain Nr. a Source Geography GenBank accession Nr. b<br />

ITS rDNA / 18S rDNA actin β-tubulin<br />

<strong>Cladosporium</strong> bruhnei<br />

<strong>CBS</strong> 177.71 Thuja tincture <strong>The</strong> Netherl<strong>and</strong>s, Amsterdam DQ780399 / DQ780938 EF101354 EF101451<br />

<strong>CBS</strong> 812.71 Polygonatum odoratum, leaf Czech Republic, Lisen DQ780401 / – – –<br />

<strong>Cladosporium</strong> cladosporioides<br />

<strong>CBS</strong> 170.54 NT Arundo, leaf U.K., Engl<strong>and</strong>, Kew AY213640 / DQ780940 EF101352 EF101453<br />

EXF-321 Hypersaline water Slovenia, Sečovlje saltern DQ780408 / – – –<br />

EXF-780 DQ780409 / – – –<br />

EXF-946 Hypersaline water Bosnia <strong>and</strong> Herzegovina, DQ780410 / – – –<br />

Ston saltern<br />

<strong>Cladosporium</strong> dominicanum<br />

CPC 11683 Citrus fruit (orange) Iran DQ780357 / – EF101369 EF101419<br />

EXF-696 Hypersaline water Dominican Republic, saltern DQ780358 / – EF101367 EF101420<br />

EXF-718 Hypersaline water Dominican Republic, salt lake DQ780356 / – EF101370 EF101418<br />

Enriquilio<br />

EXF-720 Hypersaline water Dominican Republic, saltern DQ780355 / – – EF101417<br />

EXF-727 Hypersaline water Dominican Republic, saltern DQ780354 / – – EF101416<br />

EXF-732 T; <strong>CBS</strong> 119415 Hypersaline water Dominican Republic, salt lake DQ780353 / – EF101368 EF101415<br />

Enriquilio<br />

<strong>Cladosporium</strong> fusiforme<br />

<strong>CBS</strong> 452.71 Chicken food Canada DQ780390 / – EF101371 EF101447<br />

EXF-397 Hypersaline water Slovenia, Sečovlje saltern DQ780389 / – EF101373 EF101445<br />

EXF-449 T; <strong>CBS</strong> 119414 Hypersaline water Slovenia, Sečovlje saltern DQ780388 / DQ780935 EF101372 EF101446<br />

<strong>Cladosporium</strong> herbarum<br />

ATCC 66670, as Davidiella tassiana CCA-treated Douglas-fir pole U.S.A., New York, Geneva AY361959 2 & DQ780400 / DQ780939 AY752193 11 EF101452<br />

<strong>Cladosporium</strong> halotolerans<br />

ATCC 26362 Liver <strong>and</strong> intestine of diseased frog U.S.A., New Jersey AY361982 2 / – – –<br />

ATCC 64726 Peanut cell suspension tissue culture U.S.A., Georgia AY361968 2 / – – –<br />

<strong>CBS</strong> 280.49<br />

Stem of Hypericum perforatum Switzerl<strong>and</strong>, Glarus,<br />

DQ780369 / – EF101402 EF101432<br />

identified as Mycosphaerella hyperici Mühlehorn<br />

<strong>CBS</strong> 191.54 Laboratory air Great Britain – / – – –<br />

<strong>CBS</strong> 573.78 Aureobasidium caulivorum Russia, Moscow region – / – – –<br />

<strong>CBS</strong> 626.82 – Sweden, Stockholm – / – – –<br />

dH 12862; EXF-2533 Culture contaminant Brazil DQ780371 / – EF101400 EF101422<br />

dH 12941; EXF-2534 Culture contaminant Turkey – / – EF101421<br />

dH 12991; EXF-2535 Brain Turkey DQ780372 / – EF101423<br />

dH 13911; EXF-2422 Ice Arctics DQ780370 / – EF101401 EF101430<br />

EXF-228; MZKI B-840 Hypersaline water Slovenia, Sečovlje saltern DQ780365 / DQ780930 EF101393 EF101425<br />

EXF-380 Hypersaline water Slovenia, Sečovlje saltern DQ780368 / – EF101394 EF101427<br />

EXF-564 Hypersaline water Namibia, saltern DQ780363 / – EF101395 EF101433<br />

EXF-565 Hypersaline water Namibia, saltern – / – – –<br />

EXF-567 Hypersaline water Namibia, saltern – / – – –<br />

EXF-571 Hypersaline water Namibia, saltern – / – – –<br />

EXF-572 T; <strong>CBS</strong> 119416 Hypersaline water Namibia, saltern DQ780364 / – EF101397 EF101424<br />

EXF-646 Hypersaline water Spain, Santa Pola saltern DQ780366 / – EF101398 EF101428<br />

EXF-698 Hypersaline water Dominican Republic, saltern – / – – –<br />

EXF-703 Hypersaline water Dominican Republic, salt lake DQ780367 / – EF101392 EF101426<br />

Enriquilio<br />

EXF-944 Hypersaline water Bosnia <strong>and</strong> Herzegovina, – / – – –<br />

Ston saltern<br />

EXF-972 Bathroom Slovenia – / – – –<br />

EXF-977 Bathroom Slovenia DQ780362 / – EF101396 EF101431<br />

158


<strong>Cladosporium</strong> sphaerospermum species complex<br />

Strain Nr. a Source Geography GenBank accession Nr. b<br />

ITS rDNA / 18S rDNA actin β-tubulin<br />

EXF-1072 Hypersaline water Israel, Dead Sea DQ780373 / – EF101399 EF101428<br />

EXF-2372 Hypersaline water Slovenia, Sečovlje saltern – / – – –<br />

UAMH 7686<br />

Indoor air ex RCS strip, from Apis<br />

mellifera overwintering facility<br />

U.S.A., Alta, Clyde Corner AY625063 5 / – – –<br />

– rDNA from bottlenose dolphin skin U.S.A., Texas AF035674 6 / – – –<br />

infected with Loboa loboi<br />

– Microcolony, on rock Turkey, Antalya AJ971409 7 / – – –<br />

– Microcolony, on rock Turkey, Antalya AJ971408 7 / – – –<br />

– Tomato leaves – L25433 8 / – – –<br />

<strong>Cladosporium</strong> langeronii<br />

<strong>CBS</strong> 189.54 NT Mycosis Brazil DQ780379 / DQ780932 EF101357 EF101435<br />

<strong>CBS</strong> 601.84 Picea abies, wood Germany, Göttingen DQ780382 / – EF101360 EF101438<br />

<strong>CBS</strong> 101880 Moist aluminium school window frame Belgium, Lichtervoorde DQ780380 / – EF101359 EF101440<br />

<strong>CBS</strong> 109868 Mortar of Muro Farnesiano Italy, Parma DQ780377 / – EF101362 EF101434<br />

dH 11736 Biomat in a lake Antarctics DQ780381 / – EF101363 EF101436<br />

dH 12459 Orig. face lesion Brazil DQ780378 / – EF101358 EF101439<br />

dH 13833 Ice Arctics DQ780383 / – EF101361 EF101437<br />

– Nasal mucus – AF455525 4 / – – –<br />

– Nasal mucus – AY345352 4 / – – –<br />

– Mycorrhizal roots – DQ068982 9 / – – –<br />

<strong>Cladosporium</strong> oxysporum<br />

ATCC 66669 Creosote-treated southern pine pole U.S.A., New York,<br />

AF393689 10 / DQ780395 AY752192 11 EF101454<br />

Binghamton<br />

ATCC 76499 Decayed leaf, Lespedeza bicolor – AF393720 – –<br />

<strong>CBS</strong> 125.80 Cirsium vulgare, seedcoat <strong>The</strong> Netherl<strong>and</strong>s AJ300332 12 / DQ780941 EF101351 EF101455<br />

EXF-697 Hypersaline water Dominican Republic, salt lake DQ780392 / – – –<br />

Enriquilio<br />

EXF-699 Hypersaline water Dominican Republic, saltern DQ780394 / – – –<br />

EXF-710 Hypersaline water Dominican Republic, saltern DQ780393 / – – –<br />

EXF-711 Hypersaline water Dominican Republic, saltern DQ780391 / – – –<br />

<strong>Cladosporium</strong> psychrotolerans<br />

EXF-326 Hypersaline water Slovenia, Sečovlje saltern DQ780387 / DQ780934 – EF101444<br />

EXF-332 Hypersaline water Slovenia, Sečovlje saltern DQ780385 / DQ780933 EF101364 EF101441<br />

EXF-391 T; <strong>CBS</strong> 119412 Hypersaline water Slovenia, Sečovlje saltern DQ780386 / – EF101365 EF101442<br />

EXF-714 Hypersaline water Dominican Republic DQ780384 / – EF101366 EF101443<br />

<strong>Cladosporium</strong> ramotenellum<br />

EXF-454 T; CPC 12043 Hypersaline water Slovenia, Sečovlje saltern DQ780403 / – – –<br />

<strong>Cladosporium</strong> salinae<br />

EXF-322 Hypersaline water Slovenia, Sečovlje DQ780375 / – EF101391 EF101403<br />

EXF-335 T; <strong>CBS</strong> 119413 Hypersaline water Slovenia, Sečovlje DQ780374 / DQ780931 EF101390 EF101405<br />

EXF-604 Hypersaline water Spain, Santa Pola DQ780376 / – EF101389 EF101404<br />

<strong>Cladosporium</strong> sp.<br />

<strong>CBS</strong> 300.96 Soil along coral reef coast Papua New Guinea, Madang, DQ780352 / – EF101385 –<br />

Jais Aben<br />

EXF-595 Hypersaline water Spain, Santa Pola saltern DQ780402 / – – –<br />

<strong>Cladosporium</strong> sphaerospermum<br />

ATCC 12092 Soil Canada AY361988 2 / – – –<br />

ATCC 200384 Compost biofilter <strong>The</strong> Netherl<strong>and</strong>s AY361991 2 / – – –<br />

<strong>CBS</strong> 109.14; ATCC 36950 Carya illinoensis leaf scale U.S.A. DQ780350 / – EF101384 EF101410<br />

<strong>CBS</strong> 122.47; IFO 6377; IMI 49640; Decaying stem of Begonia sp., <strong>The</strong> Netherl<strong>and</strong>s, Aalsmeer AJ244228 1 / – – –<br />

VKM F-772; ATCC 11292<br />

with Thielaviopsis basicola<br />

<strong>CBS</strong> 188.54; ATCC 11290; IMI de Vries (Engelhardt strain) – AY361990 2 & AY251077 3 / – – –<br />

049638<br />

<strong>CBS</strong> 190.54; ATCC 11293; IFO 6380; – – AY361992 2 / – – –<br />

IMI 49641<br />

<strong>CBS</strong> 192.54; ATCC 11288; IMI 49636 Nail of man – AY361989 2 / – – –<br />

www.studiesinmycology.org<br />

159


Zalar et al.<br />

Table 1. (Continued).<br />

Strain Nr. a Source Geography GenBank accession Nr. b<br />

<strong>CBS</strong> 193.54 NT; ATCC 11289; IMI<br />

49637<br />

ITS rDNA / 18S rDNA actin β-tubulin<br />

Human nails – DQ780343 & AY361958 2 / DQ780925 EF101380 EF101406<br />

<strong>CBS</strong> 122.63 Plywood of Betula sp. Finl<strong>and</strong>, Helsinki – / – – –<br />

<strong>CBS</strong> 102045; EXF-2524; MZKI B- Hypersaline water<br />

Spain, Barcelona, Salines de DQ780351 / – EF101378 EF101411<br />

1066<br />

la Trinitat<br />

<strong>CBS</strong> 114065 Outdoor air Germany, Stuttgart – / – – –<br />

CPC 10944 Gardening peat substrate Russia, Kaliningrad DQ780350 / – – –<br />

EXF-131; MZKI B-1005 Hypersaline water Slovenia, Sečovlje saltern AJ238670 1 / – – –<br />

EXF-328 Hypersaline water Slovenia, Sečovlje saltern – / – – –<br />

EXF-385 Hypersaline water Slovenia, Sečovlje saltern – / – – –<br />

EXF-446 Hypersaline water Slovenia, Sečovlje saltern – / – – –<br />

EXF-455 Hypersaline water Slovenia, Sečovlje saltern DQ780349 / – EF101375 EF101412<br />

EXF-458 Hypersaline water Slovenia, Sečovlje saltern DQ780345 / – EF101374 EF101409<br />

EXF-461 Hypersaline water Slovenia, Sečovlje saltern – / – – –<br />

EXF-464 Hypersaline water Slovenia, Sečovlje saltern – / DQ780927 – –<br />

EXF-465 Hypersaline water Slovenia, Sečovlje saltern – / – – –<br />

EXF-598 Hypersaline water Spain, Santa Pola – / – EF101377 –<br />

EXF-644 Hypersaline water Spain, Santa Pola – / – – –<br />

EXF-645 Hypersaline water Spain, Santa Pola – / – – –<br />

EXF-649 Hypersaline water Spain, Santa Pola – / – – –<br />

EXF-715 Hypersaline water Dominican Republic, saltern – / – – –<br />

EXF-738 Bathroom Slovenia DQ780348 / – EF101383 EF101414<br />

EXF-739 Bathroom Slovenia DQ780344 / – EF101381 EF101407<br />

EXF-781; MZKI B-899 Hypersaline water Slovenia, Sečovlje – / – – –<br />

EXF-788 Hypersaline water Slovenia, Sečovlje – / – – –<br />

EXF-962 Bathroom Slovenia DQ780347 / – EF101382 EF101413<br />

EXF-965 Bathroom Slovenia – / – – –<br />

EXF-1069 Hypersaline water Israel, Eilat saltern – / – EF101376 –<br />

EXF-1061 Hypersaline water Israel, Dead Sea DQ780346 / – EF101379 EF101408<br />

EXF-1726 Hypersaline water Israel, Dead Sea – / – – –<br />

EXF-1732 Hypersaline water Israel, Eilat saltern – / DQ780928 – –<br />

– Bryozoa sp. – AJ557744 / – – –<br />

– Nasal mucus – AF455481 4 / – – –<br />

<strong>Cladosporium</strong> spinulosum<br />

EXF-333 Hypersaline water Slovenia, Sečovlje saltern DQ780404 / – – –<br />

EXF-334 T Hypersaline water Slovenia, Sečovlje saltern DQ780406 / – EF101355 EF101450<br />

EXF-382 Hypersaline water Slovenia, Sečovlje saltern DQ780407 / DQ780936 EF101356 EF101449<br />

<strong>Cladosporium</strong> subinflatum<br />

EXF-343 T; CPC 12041 Hypersaline water Slovenia, Sečovlje saltern DQ780405 / – EF101353 EF101448<br />

<strong>Cladosporium</strong> tenuissimum<br />

ATCC 38027 Soil New Caledonia AF393724 / – – –<br />

EXF-324 Hypersaline water Slovenia, Sečovlje saltern – / DQ780926 – –<br />

EXF-371 Hypersaline water Slovenia, Sečovlje saltern DQ780396 / – – –<br />

EXF-452 Hypersaline water Slovenia, Sečovlje saltern DQ780397 / – – –<br />

EXF-563 Hypersaline water Namibia, saltern DQ780398 / – – –<br />

<strong>Cladosporium</strong> velox<br />

<strong>CBS</strong> 119417 T; CPC 11224 Bamboo sp. India, Charidij DQ780361 / DQ780937 EF101388 EF101456<br />

EXF-466 Hypersaline water Slovenia, Sečovlje saltern DQ780359 / – EF101386 –<br />

EXF-471 Hypersaline water Slovenia, Sečovlje saltern DQ780360 / – EF101387 –<br />

160


<strong>Cladosporium</strong> sphaerospermum species complex<br />

Cultivation <strong>and</strong> microscopy<br />

For growth rate determination <strong>and</strong> phenetic description of colonies,<br />

strains were point inoculated on potato-dextrose agar (PDA, Difco),<br />

OA <strong>and</strong> Blakeslee malt extract agar (MEA, Samson et al. 2002)<br />

<strong>and</strong> incubated at 25 °C for 14 d in darkness. Surface colours were<br />

rated using the colour charts of Kornerup & Wanscher (1967). For<br />

studies of microscopic morphology, strains were grown on synthetic<br />

nutrient agar (SNA, Gams et al. 2007) in slide cultures. SNA blocks<br />

of approximately 1 × 1 cm were cut out aseptically, placed upon<br />

sterile microscope slides, <strong>and</strong> inoculated at the upper four edges<br />

by means of a conidial suspension (Pitt 1979). Inoculated agar<br />

blocks were covered with sterile cover slips <strong>and</strong> incubated in moist<br />

chambers for 7 d at 25 °C in darkness. <strong>The</strong> structure <strong>and</strong> branching<br />

pattern of conidiophores were observed at magnifications × 100,<br />

× 200 <strong>and</strong> × 400 in intact slide cultures under the microscope<br />

without removing the cover slips from the agar blocks. For higher<br />

magnifications (× 400, × 1 000) cover slips were carefully removed<br />

<strong>and</strong> mounted in lactic acid with aniline blue.<br />

Morphological parameters<br />

Morphological terms follow David (1997), Kirk et al. (2001) <strong>and</strong><br />

Schubert et al. (2007 – this volume). Conidiophores in <strong>Cladosporium</strong><br />

are usually ascending <strong>and</strong> sometimes poorly differentiated. Though<br />

the initiation point of conidiophore stipes could sometimes be<br />

determined only approximately, their lengths were in some cases<br />

useful for distinguishing morphologically <strong>similar</strong> species when<br />

observed in slide cultures. <strong>The</strong> branching patterns can be rotationally<br />

symmetric or unilateral. Characters of conidial scars were studied<br />

by light <strong>and</strong> scanning electron microscopy (SEM). Conidial chains<br />

show different branching patterns, determined by the numbers of<br />

conidia in unbranched parts, the nature of ramoconidia as well as<br />

their distribution in conidial chains. Measurements are given as (i)<br />

n 1<br />

–n 2<br />

or (ii) (n 1<br />

–)n 3<br />

–n 4<br />

(–n 2<br />

), with n 1<br />

= minimum value observed; n 2<br />

= maximum value observed; n 3<br />

/n 4<br />

= first/third quartile. For conidia<br />

<strong>and</strong> ramoconidia also average values <strong>and</strong> st<strong>and</strong>ard deviations are<br />

listed. <strong>The</strong> values provided are based on at least 25 measurements<br />

for the conidiophores of each strain, <strong>and</strong> at least 50 measurements<br />

for conidia.<br />

Ecophysiology<br />

To determine the degree of halotolerance, strains were pointinoculated<br />

on MEA without <strong>and</strong> with additional NaCl at concentrations<br />

of 5, 10, 17 <strong>and</strong> 20 % NaCl (w/v) <strong>and</strong> incubated at 25 °C for 14 d.<br />

To determine cardinal temperature requirements for growth, plates<br />

were incubated at 4, 10, 25, 30 <strong>and</strong> 37 °C, <strong>and</strong> colony diameters<br />

measured after 14 d of incubation.<br />

DNA extraction, sequencing <strong>and</strong> analysis<br />

For DNA isolation strains were grown on MEA for 7 d. DNA was<br />

extracted according to Gerrits van den Ende & de Hoog (1999)<br />

by mechanical lysis of approx. 1 cm 2 of mycelium. A fragment of<br />

the rDNA including the Internal Transcribed Spacer region 1, 5.8S<br />

rDNA <strong>and</strong> the ITS 2 (ITS) was amplified using the primers V9G<br />

(de Hoog & Gerrits van den Ende 1998) <strong>and</strong> LS266 (Masclaux<br />

et al. 1995). Sequence reactions were done using primers ITS1<br />

<strong>and</strong> ITS4 (White et al. 1990). For amplification <strong>and</strong> sequencing<br />

of the partial actin gene, primers ACT-512F <strong>and</strong> ACT-783R were<br />

applied according to Carbone & Kohn (1999). For amplification <strong>and</strong><br />

sequencing of the β-tubulin gene primers T1 <strong>and</strong> T22 were used<br />

according to O’Donnell & Cigelnik (1997). A BigDye terminator<br />

cycle sequencing kit (Applied Biosystems, Foster City, CA, U.S.A.)<br />

was used in sequence reactions. Sequences were obtained with<br />

an ABI Prism 3700 DNA Analyzer (Applied Biosystems). <strong>The</strong>y<br />

were assembled <strong>and</strong> edited using SeqMan v. 3.61 (DNAStar,<br />

Inc., Madison, U.S.A.). Sequences downloaded from GenBank<br />

are indicated in the trees by their GenBank accession numbers;<br />

newly generated sequences are indicated by strain numbers<br />

(see also Table 1). Sequences were automatically aligned using<br />

ClustalX v. 1.81 (Jeanmougin et al. 1998). <strong>The</strong> alignments were<br />

adjusted manually using MEGA3 (Kumar et al. 2004). Phylogenetic<br />

relationships of the taxa were estimated from aligned sequences<br />

by the maximum parsimony criterion as implemented in PAUP v.<br />

4.0b10 (Swofford 2003). Data sets of the SSU rDNA, ITS rDNA<br />

<strong>and</strong> the β-tubulin <strong>and</strong> actin genes are analysed separately. Species<br />

of <strong>Cladosporium</strong> s. str. were compared with various taxa of the<br />

Mycosphaerellaceae using SSU rDNA sequences <strong>and</strong> Fusicladium<br />

effusum G. Winter (Venturiaceae) as outgroup. <strong>The</strong> other data sets<br />

focus on <strong>Cladosporium</strong> s. str., using <strong>Cladosporium</strong> salinae Zalar,<br />

de Hoog & Gunde-Cimerman as an outgroup, because this species<br />

was most deviant within <strong>Cladosporium</strong> in the SSU rDNA analysis<br />

(see below). Heuristic searches were performed on all characters,<br />

which were unordered <strong>and</strong> equally weighted. Gaps were treated<br />

as missing characters. Starting tree(s) were obtained via stepwise,<br />

r<strong>and</strong>om, 100 times repeated sequence addition. Other parameters<br />

included a “MaxTrees” setting to 9 000, the tree-bisectionreconnection<br />

as branch-swapping algorithm, <strong>and</strong> the “MulTrees”<br />

option set to active. Branch robustness was tested in the parsimony<br />

analysis by 10 000 search replications, each on bootstrapped data<br />

sets using a fast step-wise addition bootstrap analysis. Bootstrap<br />

values larger than 60 are noted near their respective branches.<br />

Newly generated sequences were deposited in GenBank (www.<br />

ncbi.nlm.nih.gov); their accession numbers are listed in Table 1.<br />

Alignments <strong>and</strong> trees were deposited in TreeBASE (www.treebase.<br />

org).<br />

Table 1. (Page 158–160).<br />

a<br />

Abbreviations used: ATCC = American Type Culture Collection, Virginia, U.S.A.; <strong>CBS</strong> = Centraalbureau voor Schimmelcultures, Utrecht, <strong>The</strong> Netherl<strong>and</strong>s; CPC = Culture<br />

Collection of Pedro Crous, housed at <strong>CBS</strong>, Utrecht, <strong>The</strong> Netherl<strong>and</strong>s; dH = de Hoog Culture Collection, housed at <strong>CBS</strong>, Utrecht, <strong>The</strong> Netherl<strong>and</strong>s; EXF = Culture Collection<br />

of Extremophilic Fungi, Ljubljana, Slovenia; IFO = Institute for Fermentation, Culture Collection of Microorganizms, Osaka, Japan; IMI = <strong>The</strong> International Mycological<br />

Institute, Egham, Surrey, U.K.; MZKI = Microbiological Culture Collection of the National Institute of Chemistry, Ljubljana, Slovenia; UAMH = University of Alberta Microfungus<br />

Collection, Alberta, Canada; VKM = All-Russian Collection of Microorganisms, Russian Academy of Sciences, Institute of Biochemistry <strong>and</strong> Physiology of Microorganisms,<br />

Pushchino, Russia; NT = ex-neotype strain; T = ex-type strain.<br />

b<br />

Reference: 1 de Hoog et al. 1999; 2 Park et al. 2004; 3 Braun et al. 2003; 4 Buzina et al. 2003; 5 Meklin et al. 2004; 6 Haubold et al. 1998; 7 Sert & Sterflinger, unpubl.; 8 Curtis et<br />

al. 1994; 9 Menkis et al. 2005; 10 Managbanag et al. unpubl.; 11 Crous et al. 2004; 12 Wirsel et al. 2002. All others are newly reported here.<br />

www.studiesinmycology.org<br />

161


Zalar et al.<br />

AY251097 <strong>Cladosporium</strong> uredinicola<br />

<strong>Cladosporium</strong> oxysporum <strong>CBS</strong> 125.80<br />

<strong>Cladosporium</strong> herbarum ATCC 66670<br />

<strong>Cladosporium</strong> bruhnei <strong>CBS</strong> 177.71<br />

<strong>Cladosporium</strong> spinulosum EXF-382<br />

<strong>Cladosporium</strong> psychrotolerans EXF-326<br />

<strong>Cladosporium</strong> psychrotolerans EXF-332<br />

<strong>Cladosporium</strong> langeronii <strong>CBS</strong> 189.54 T<br />

<strong>Cladosporium</strong> tenuissimum EXF-324<br />

<strong>Cladosporium</strong> cladosporioides <strong>CBS</strong> 170.54 NT<br />

AY251092 <strong>Cladosporium</strong> colocasiae<br />

AY251096 <strong>Cladosporium</strong> herbarum<br />

98<br />

<strong>Cladosporium</strong> halotolerans <strong>CBS</strong> 119416 T<br />

<strong>Cladosporium</strong> halotolerans EXF-228<br />

<strong>Cladosporium</strong> dominicanum <strong>CBS</strong> 119415 T<br />

<strong>Cladosporium</strong> velox <strong>CBS</strong> 119417 T<br />

66<br />

<strong>Cladosporium</strong> sphaerospermum EXF-464<br />

<strong>Cladosporium</strong> fusiforme <strong>CBS</strong> 119414 T<br />

<strong>Cladosporium</strong> sphaerospermum <strong>CBS</strong> 193.54 NT<br />

<strong>Cladosporium</strong> salinae <strong>CBS</strong> 119413 T<br />

AY251107 Pseudocercospora protearum<br />

80 AY251106 Pseudocercospora angolensis<br />

64<br />

AY251105 Cercospora cruenta<br />

AY251104 Cercospora zebrina<br />

AY251109 Passalora fulva<br />

79<br />

AY251108 Passalora dodonaeae<br />

AY251117 Mycosphaerella graminicola<br />

AY251110 Ramulispora sorghi<br />

100<br />

AY251114 Mycosphaerella latebrosa<br />

AY251102 Batcheloromyces proteae<br />

AY251101 Mycosphaerella lateralis<br />

76 AY251120 Teratosphaeria nubilosa<br />

AY251118 Catenulostroma macowanii<br />

AY251121 Devriesia staurophorum<br />

97 U42474 Dothidea insculpta<br />

93 AY016343 Dothidea ribesia<br />

AY016342 Discosphaerina fagi<br />

AY251126 Fusicladium effusum<br />

AY251122 Fusicladium amoenum Venturiaceae<br />

Dothioraceae & Dothideaceae<br />

10 steps<br />

Fig. 1. One of 30 equally most parsimonious <strong>and</strong> equally looking phylogenetic trees based on a heuristic tree search using aligned small subunit ribosomal DNA sequences.<br />

<strong>The</strong> tree was r<strong>and</strong>omly selected. Support based on 10 000 replicates of a fast step-wise addition bootstrap analysis is indicated near the branches. Species of <strong>Cladosporium</strong> s.<br />

str., including the seven newly described species, form a strongly supported monophyletic group among other taxa of the Mycosphaerellaceae (Dothideomycetes) (CI = 0.631,<br />

RI = 0.895, PIC = 50).<br />

Teratosphaeriaceae<br />

Davidiellaceae<br />

Mycosphaerellaceae<br />

Table 2. Statistical parameters describing phylogenetic analyses performed on sequence alignments of four different loci.<br />

Parameter SSU rDNA ITS rDNA 1 β-tubulin 2 Actin 3<br />

Number of alignment positions 1031 498 654 210<br />

Number of parsimony informative characters (PIC) 50 68 220 103<br />

Length of tree / number of steps 103 102 714 338<br />

Consistency Index (CI) 0.631 0.804 0.538 0.586<br />

Retention Index (RI) 0.895 0.975 0.883 0.885<br />

Rescaled Consistency Index (RC) 0.565 0.784 0.475 0.518<br />

Homoplasy index (HI) 0.369 0.196 0.462 0.414<br />

Number of equally parsimonious trees retained 30 600 90 32<br />

1<br />

Including the internal transcribed spacer region 1 <strong>and</strong> 2 <strong>and</strong> the 5.8S rDNA.<br />

2<br />

Including partial sequences of 4 exons <strong>and</strong> complete sequences of 3 introns.<br />

3<br />

Including partial sequences of 3 exons <strong>and</strong> 2 introns.<br />

162


<strong>Cladosporium</strong> sphaerospermum species complex<br />

69<br />

EXF-322<br />

<strong>CBS</strong> 119413<br />

EXF-604<br />

10 steps<br />

100<br />

85<br />

C. salinae<br />

62<br />

64<br />

79<br />

98<br />

EXF-780<br />

EXF-321<br />

EXF-946<br />

<strong>CBS</strong> 170.54<br />

ATCC 76499<br />

ATCC 66669<br />

EXF-699<br />

EXF-710<br />

EXF-697<br />

EXF-711<br />

<strong>CBS</strong> 125.80<br />

EXF-563<br />

EXF-452<br />

EXF-371<br />

Moricca et al.<br />

ATCC 38027<br />

EXF-714<br />

EXF-332<br />

EXF-391<br />

EXF-326<br />

87 <strong>CBS</strong> 109868<br />

dH 13833<br />

<strong>CBS</strong> 601.84<br />

dH 11736<br />

<strong>CBS</strong> 101880<br />

<strong>CBS</strong> 189.54<br />

dH 12459<br />

100 EXF-449<br />

<strong>CBS</strong> 452.71<br />

EXF-397<br />

EXF-466<br />

<strong>CBS</strong> 119417<br />

EXF-471<br />

EXF-739<br />

<strong>CBS</strong> 102045<br />

<strong>CBS</strong> 109.14<br />

EXF-455<br />

EXF-738<br />

EXF-962<br />

EXF-1061<br />

<strong>CBS</strong> 193.54<br />

EXF-458<br />

<strong>CBS</strong> 300.96 <strong>Cladosporium</strong> sp.<br />

EXF-732<br />

80<br />

90<br />

62<br />

100<br />

CPC 11683<br />

EXF-718<br />

EXF-720<br />

EXF-727<br />

72<br />

63<br />

79<br />

99<br />

EXF-977<br />

EXF-1072<br />

dH 12991<br />

dH 12862<br />

dH 13911<br />

EXF-564 C. halotolerans<br />

EXF-380<br />

EXF-703<br />

EXF-646<br />

EXF-228<br />

EXF-572<br />

<strong>CBS</strong> 280.49 “Mycosphaerella” hyperici<br />

<strong>CBS</strong> 177.71 C. bruhnei<br />

<strong>CBS</strong> 812.71<br />

EXF-595 <strong>Cladosporium</strong> sp.<br />

EXF-454 C. ramotenellum<br />

ATCC 66670 Davidiella tassiana<br />

EXF-333<br />

EXF-382<br />

EXF-334<br />

EXF-343 C. subinflatum<br />

C. spinulosum<br />

C. cladosporioides<br />

C. oxysporum<br />

C. tenuissimum<br />

C. sphaerospermum<br />

C. dominicanum<br />

C. psychrotolerans<br />

C. langeronii<br />

C. fusiforme<br />

C. velox<br />

Fig. 2. One of 600 equally most parsimonious <strong>and</strong> equally looking phylogenetic trees based on a heuristic tree search using aligned sequences of the internal transcribed<br />

spacer regions 1 <strong>and</strong> 2 <strong>and</strong> the 5.8S rDNA. <strong>The</strong> tree was r<strong>and</strong>omly selected. Support based on 10 000 replicates of a fast step-wise addition bootstrap analysis is indicated near<br />

the branches. Trees were rooted with the strains of <strong>Cladosporium</strong> salinae. Most monophyletic species clades received high, but some deeper branches moderate, bootstrap<br />

support (CI = 0.804, RI = 0.975, PIC = 68).<br />

RESULTS<br />

Descriptive statistical parameters of phylogenetic analyses <strong>and</strong><br />

calculated tree scores for each analysed sequence locus are<br />

summarised in Table 2. Mainly reference material such as extype<br />

or ex-neotype strains was analysed on the level of SSU<br />

rDNA sequences. Downloaded <strong>and</strong> newly generated SSU rDNA<br />

sequences of members of <strong>Cladosporium</strong> s. str. were compared<br />

with related taxa of the Mycosphaerellaceae, Dothioraceae <strong>and</strong><br />

Dothideaceae. <strong>The</strong> somewhat more distantly related Fusicladium<br />

effusum (Venturiaceae) (Braun et al. 2003: Fig. 2) was selected<br />

as outgroup. Anungitopsis amoena R.F. Castañeda & Dugan (now<br />

placed in Fusicladium Bonord., see Crous et al. 2007b), also a<br />

member of the Venturiaceae, was included in the analyses. All taxa<br />

included in the SSU rDNA analysis belong to the Dothideomycetes<br />

www.studiesinmycology.org<br />

(Schoch et al. 2006), within which the ingroup is represented by<br />

the orders Capnodiales (Davidiellaceae, Mycosphaerellaceae,<br />

Teratosphaeriaceae) <strong>and</strong> Dothideales (Dothioraceae, Dothideaceae)<br />

(see also Schoch et al. 2006). <strong>The</strong> <strong>genus</strong> <strong>Cladosporium</strong>, of which<br />

some species are linked to Davidiella Crous & U. Braun teleomorphs<br />

(Braun et al. 2003), forms a statistically strongly supported<br />

monophyletic group (Davidiellaceae). It also accommodates species<br />

newly described in this paper, namely, C. halotolerans Zalar, de<br />

Hoog & Gunde-Cimerman, C. fusiforme Zalar, de Hoog & Gunde-<br />

Cimerman, C. dominicanum Zalar, de Hoog & Gunde-Cimerman, C.<br />

salinae, C. psychrotolerans Zalar, de Hoog & Gunde-Cimerman, C.<br />

velox Zalar, de Hoog & Gunde-Cimerman <strong>and</strong> C. spinulosum Zalar,<br />

de Hoog & Gunde-Cimerman (Fig. 1). A sister group relationship<br />

of <strong>Cladosporium</strong> s. str. with a clade of taxa characterised,<br />

among others, by Mycosphaerella Johanson teleomorphs,<br />

containing various anamorphic genera such as Septoria Sacc.,<br />

163


Zalar et al.<br />

97 EXF-322<br />

<strong>CBS</strong> 119413<br />

EXF-604<br />

10 steps<br />

89<br />

C. salinae<br />

96<br />

61<br />

87<br />

93<br />

91<br />

98<br />

98 <strong>CBS</strong> 601.84<br />

<strong>CBS</strong> 101880<br />

dH 12459<br />

<strong>CBS</strong> 189.54<br />

<strong>CBS</strong> 109868<br />

100<br />

dH 13833<br />

dH 11736<br />

EXF-332<br />

EXF-326<br />

EXF-391<br />

EXF-714<br />

100 <strong>CBS</strong> 177.71 C. bruhnei<br />

ATCC 66670 Davidiella tassiana<br />

<strong>CBS</strong> 170.54 C. cladosporioides<br />

EXF-343 C. subinflatum<br />

EXF-382<br />

C. spinulosum<br />

EXF-334<br />

ATCC 66669<br />

<strong>CBS</strong> 125.80<br />

<strong>CBS</strong> 119417 C. velox<br />

C. oxysporum<br />

EXF-572<br />

EXF-564<br />

EXF-1072<br />

EXF-380<br />

C. halotolerans<br />

EXF-703<br />

EXF-228<br />

EXF-646<br />

EXF-977<br />

<strong>CBS</strong> 280.49 “Mycosphaerella” hyperici<br />

98<br />

dH 12862<br />

100<br />

63<br />

84<br />

100<br />

95 93 100<br />

100<br />

dH 12941<br />

dH 13911<br />

dH 12991<br />

EXF-727<br />

90 8862<br />

100<br />

99<br />

EXF-458<br />

98<br />

EXF-455<br />

<strong>CBS</strong> 102045<br />

EXF-1061<br />

<strong>CBS</strong> 193.54<br />

EXF-738<br />

<strong>CBS</strong> 109.14<br />

EXF-739<br />

EXF-962<br />

EXF-397<br />

EXF-449<br />

<strong>CBS</strong> 452.71<br />

78<br />

99<br />

EXF-720<br />

EXF-732<br />

EXF-718<br />

CPC 11683<br />

EXF-696<br />

C. halotolerans<br />

C. sphaerospermum<br />

C. fusiforme<br />

C. langeronii<br />

C. psychrotolerans<br />

C. dominicanum<br />

Fig. 3. One of 90 equally most parsimonious <strong>and</strong> equally looking phylogenetic trees based on a heuristic tree search using aligned exons <strong>and</strong> introns of a part of the β-tubulin<br />

gene. <strong>The</strong> tree was r<strong>and</strong>omly selected. Support based on 10 000 replicates of a fast step-wise addition bootstrap analysis is indicated near the branches. Trees were rooted with<br />

the strains of <strong>Cladosporium</strong> salinae. Most monophyletic species clades received high, but deeper branches weak or no, bootstrap support (CI = 0.538, RI = 0.883, PIC = 220).<br />

Ramularia Unger, Cercospora Fresen., Pseudocercospora Speg.,<br />

“Trimmatostroma” Corda (now Catenulostroma Crous & U. Braun)<br />

(see Crous et al. 2004, 2007a – this volume) <strong>and</strong> the somewhat<br />

cladosporium-like <strong>genus</strong> Devriesia Seifert & N.L. Nick. (Seifert et al.<br />

2004), was statistically only moderately supported (Fig. 1), whereas<br />

in an analogous analysis by Braun et al. (2003: Fig. 2) it was highly<br />

supported. <strong>The</strong>se data also support the conclusion by Braun et al.<br />

(2003) <strong>and</strong> Crous et al. (2006) that <strong>Cladosporium</strong> is not a member<br />

of the distantly related Herpotrichiellaceae (Chaetothyriomycetes),<br />

which is also rich in cladosporium-like taxa (Crous et al. 2006).<br />

None of the fungi isolated from hypersaline environments belonged<br />

to the Herpotrichiellaceae. <strong>The</strong> SSU rDNA sequences do not<br />

resolve a phylogenetic structure within <strong>Cladosporium</strong> s. str. Only<br />

a moderately supported clade comprising C. halotolerans, C.<br />

dominicanum, C. velox, C. sphaerospermum <strong>and</strong> C. fusiforme is<br />

somewhat distinguished from a statistically unsupported clade with<br />

C. herbarum (Pers. : Fr.) Link, C. cladosporioides (Fresen.) G.A.<br />

de Vries, C. oxysporum Berk. & Broome, C. spinulosum, <strong>and</strong> C.<br />

psychrotolerans, etc. Because C. salinae appeared most distinct<br />

within the <strong>genus</strong> <strong>Cladosporium</strong> in analyses of the SSU rDNA (Fig.<br />

1), it was used as outgroup in analyses of the ITS rDNA <strong>and</strong> the<br />

β-tubulin <strong>and</strong> actin genes.<br />

Analyses of the more variable ITS rDNA <strong>and</strong> partial β-tubulin<br />

<strong>and</strong> actin gene introns <strong>and</strong> exons supported the species clades of<br />

C. halotolerans, C. dominicanum, C. sphaerospermum, C. fusiforme<br />

<strong>and</strong> C. velox (Figs 2–4), of which C. velox was distinguished in<br />

the β-tubulin tree by a particular long terminal branch of the only<br />

sequenced strain (Fig. 3). <strong>Cladosporium</strong> salinae also clustered as a<br />

well-supported species clade in preliminary analyses using various<br />

Mycosphaerella species as outgroup (not shown). All strains of C.<br />

langeronii (Fonseca, Leão & Nogueira) Vuill. are particularly well<br />

distinguishable from other <strong>Cladosporium</strong> species by strikingly slow-<br />

164


<strong>Cladosporium</strong> sphaerospermum species complex<br />

EXF-322<br />

<strong>CBS</strong> 119413<br />

EXF-604<br />

60<br />

100<br />

C. salinae<br />

<strong>CBS</strong> 189.54<br />

71 <strong>CBS</strong> 601.84<br />

<strong>CBS</strong> 101880<br />

dH 12459<br />

dH 13833<br />

96 <strong>CBS</strong> 109868<br />

dH 11736<br />

62 EXF-332<br />

EXF-391<br />

77 EXF-714<br />

<strong>CBS</strong> 177.71 C. bruhnei<br />

66 89 ATCC 66670 Davidiella tassiana<br />

67 EXF-343 C. subinflatum<br />

85<br />

C. psychrotolerans<br />

87 EXF-696<br />

EXF-718<br />

100<br />

EXF-732<br />

C. dominicanum<br />

CPC 11683<br />

EXF-598<br />

100<br />

<strong>CBS</strong> 102045<br />

EXF-458<br />

EXF-1069<br />

EXF-455<br />

72<br />

EXF-1061<br />

77EXF-739<br />

76<br />

EXF-962<br />

C. sphaerospermum<br />

81 EXF-738<br />

76 <strong>CBS</strong> 109.14<br />

<strong>CBS</strong> 193.54<br />

<strong>CBS</strong> 300.96 <strong>Cladosporium</strong> sp.<br />

EXF-449<br />

100 90<br />

EXF-397 C. fusiforme<br />

<strong>CBS</strong> 452.71<br />

100<br />

EXF-466<br />

EXF-471<br />

<strong>CBS</strong> 119417<br />

C. velox<br />

84 98 EXF-334<br />

EXF-382<br />

C. spinulosum<br />

<strong>CBS</strong> 170.54 C. cladosporioides<br />

89<br />

<strong>CBS</strong> 125.80<br />

ATCC 66669<br />

C. oxysporum<br />

dH 12862<br />

dH 13911<br />

EXF-646<br />

EXF-703<br />

EXF-228<br />

EXF-1072 C. halotolerans<br />

EXF-572<br />

EXF-977<br />

EXF-564<br />

EXF-380<br />

<strong>CBS</strong> 280.49 “Mycosphaerella” hyperici<br />

C. langeronii<br />

10 steps<br />

Fig. 4. One of 32 equally most parsimonious <strong>and</strong> equally looking phylogenetic trees based on a heuristic tree search using aligned exons <strong>and</strong> introns of the partial actin gene.<br />

<strong>The</strong> tree was r<strong>and</strong>omly selected. Support based on 10 000 replicates of a fast step-wise addition bootstrap analysis is indicated near the branches. Trees were rooted with<br />

the strains of <strong>Cladosporium</strong> salinae. Most monophyletic species clades received high, but deeper branches weak or no, bootstrap support (CI = 0.586, RI = 0.885, PIC = 103).<br />

growing colonies at all tested temperatures <strong>and</strong> relatively large,<br />

oblong conidia. However, phylogenetic analyses of the β-tubulin <strong>and</strong><br />

actin gene indicate that C. langeronii presents two cryptic species<br />

(Figs 3–4). <strong>The</strong> species clade of C. psychrotolerans is moderately<br />

supported in analyses of the actin gene but highly by means of<br />

the β-tubulin gene. It is evident from all three analyses (Figs 2–<br />

4) that C. langeronii <strong>and</strong> C. psychrotolerans are closely related<br />

species. <strong>The</strong> species node of <strong>Cladosporium</strong> spinulosum, which is<br />

morphologically clearly distinguished from all other species by its<br />

conspicuous ornamentation consisting of digitate projections (Fig.<br />

5), is supported by β-tubulin (Fig. 3) <strong>and</strong> actin (Fig. 4) sequence<br />

data but not by those of the ITS rDNA (Fig. 2). Analyses of all loci,<br />

however, indicate that it is a member of the C. herbarum complex.<br />

<strong>The</strong> analyses of sequences of the ITS <strong>and</strong> the β-tubulin<br />

<strong>and</strong> actin gene introns <strong>and</strong> exons (Figs 2–4) do not allow the<br />

full elucidation of phylogenetic relationships among these<br />

<strong>Cladosporium</strong> species. Statistical support of the interior tree<br />

branches resulting from analyses of the β-tubulin <strong>and</strong> actin genes<br />

is low (bootstrap values mostly < 50 %). While the sister group<br />

relationship of C. sphaerospermum <strong>and</strong> C. fusiforme is highly<br />

supported in the analysis based on the β-tubulin gene, analysis<br />

of the ITS rDNA indicate that these two species are unrelated, <strong>and</strong><br />

that C. sphaerospermum is closely related to C. dominicanum. It is<br />

clear from the data that the species morphologically resembling C.<br />

sphaerospermum are not phylogenetically closely related <strong>and</strong> that<br />

the data we present here do not allow their classification in natural<br />

subgroups of the <strong>genus</strong> <strong>Cladosporium</strong>. Only C. spinulosum was<br />

placed in all analyses among species of the C. herbarum complex<br />

www.studiesinmycology.org<br />

165


Zalar et al.<br />

Fig. 5. Conidial scars <strong>and</strong> surface ornamentation of ramoconidia <strong>and</strong> conidia (SEM). A. C. dominicanum (strain EXF-732). B. C. fusiforme (strain EXF-449). C. C. halotolerans<br />

(strain EXF-572). D. C. langeronii (strain <strong>CBS</strong> 189.54). E. C. psychrotolerans (strain EXF-391). F. C. salinae (strain EXF-335 = <strong>CBS</strong> 119413). G. C. sphaerospermum (strain<br />

<strong>CBS</strong> 193.54). H. C. spinulosum (strain EXF-334). I. C. velox (strain <strong>CBS</strong> 119417). Scale bars = 5 µm. (Photos: K. Drašlar).<br />

<strong>and</strong> all analyses supported close relatedness of C. langeronii <strong>and</strong><br />

C. psychrotolerans.<br />

<strong>The</strong> majority of species described here have slightly<br />

ornamented conidia ranging from minutely verruculose (C.<br />

fusiforme, C. langeronii, C. psychrotolerans, C. sphaerospermum,<br />

C. velox) to verrucose (C. halotolerans) (Fig. 5). <strong>The</strong> verrucose<br />

conidia of C. halotolerans can be recognised also under the<br />

light microscope <strong>and</strong> used as a distinguishing character. Almost<br />

smooth to minutely verruculose conidia are encountered in C.<br />

dominicanum <strong>and</strong> C. salinae (Fig. 5). <strong>Cladosporium</strong> spinulosum,<br />

a member of the C. herbarum species complex, has conidia with<br />

a digitate ornamentation that can appear spinulose under the light<br />

microscope; however, when using the SEM it became clear that its<br />

projections have parallel sides <strong>and</strong> a blunt end (Fig. 5).<br />

DISCUSSION<br />

<strong>The</strong> <strong>genus</strong> <strong>Cladosporium</strong> was established by Link (1816) who<br />

originally included four species, of which C. herbarum is the<br />

type species of the <strong>genus</strong> (Clements & Shear 1931). In 1950,<br />

von Arx reported a teleomorph connection for this species with<br />

Mycosphaerella tassiana (De Not.) Johanson. Based on SSU<br />

rDNA data the majority of Mycosphaerella species, including<br />

the type species of the <strong>genus</strong>, M. punctiformis (Pers.) Starbäck,<br />

clustered within the Mycosphaerellaceae, a family separated<br />

from M. tassiana (Braun et al. 2003). <strong>The</strong>refore, Mycosphaerella<br />

tassiana was reclassified as Davidiella tassiana (De Not.) Crous<br />

& U. Braun, the type of the new <strong>genus</strong> Davidiella. All anamorphs<br />

with a cladosporium- <strong>and</strong> heterosporium-like appearance <strong>and</strong> with<br />

a supposed Dothideomycetes relationship were maintained under<br />

the anamorph name <strong>Cladosporium</strong>, morphologically characterised<br />

by scars with a protuberant hilum consisting of a central dome<br />

surrounded by a raised rim (David 1997).<br />

<strong>The</strong> concept of distinguishing ramoconidia from secondary<br />

ramoconidia has been adopted from Schubert et al. (2007). In<br />

the species described here, ramoconidia have been observed<br />

often in C. sphaerospermum, sometimes in C. psychrotolerans,<br />

C. langeronii <strong>and</strong> C. spinulosum, <strong>and</strong> only sporadically in all other<br />

species. <strong>The</strong>refore, ramoconidia can be seen as important for<br />

distinguishing species although sometimes, they can be observed<br />

only with difficulty. When using ramoconidia as a diagnostic<br />

criterion, colonies only from SNA <strong>and</strong> not older than 7 d should be<br />

taken into account.<br />

<strong>Cladosporium</strong> sphaerospermum was described by Penzig<br />

(1882) from decaying Citrus leaves <strong>and</strong> branches in Italy. He<br />

described C. sphaerospermum as a species with (i) branched,<br />

septate <strong>and</strong> dark conidiophores having a length of 150–300 µm <strong>and</strong><br />

a width of the main conidiophore stipe of 3.5–4 µm, (ii) spherical to<br />

ellipsoid, acrogenously formed conidia of 3.4–4 µm diam, <strong>and</strong> (iii)<br />

ramoconidia of 6–14 × 3.5–4 µm. Penzig’s original material is not<br />

known to be preserved. Later, a culture derived from <strong>CBS</strong> 193.54,<br />

originating from a human nail, was accepted as typical of C.<br />

sphaerospermum. However, de Vries (1952), incorrectly cited it as<br />

“lectotype”, <strong>and</strong> thus the same specimen is designated as neotype<br />

in this study (see below), with the derived culture (<strong>CBS</strong> 193.54)<br />

166


<strong>Cladosporium</strong> sphaerospermum species complex<br />

used as ex-neotype strain. Numerous strains with identical or very<br />

<strong>similar</strong> ITS rDNA sequences as <strong>CBS</strong> 193.54 were isolated from<br />

hypersaline water or organic substrata including plants or walls of<br />

bathrooms. It is not clear yet whether surfaces in bathrooms <strong>and</strong> of<br />

plants, colonised by C. sphaerospermum, can have a <strong>similar</strong> low<br />

water activity as salterns. In our experiments, the strains of this<br />

species, however, grew under in vitro conditions at a water activity<br />

of up to 0.860, while Hocking et al. (1994) <strong>and</strong> Aihara et al. (2002)<br />

reported that it can grow even at 0.815. <strong>The</strong>refore, we consider<br />

C. sphaerospermum as halo- or osmotolerant. Hardly any reports<br />

are available unambiguously proving that C. sphaerospermum is<br />

a human pathogen. It is therefore possible that <strong>CBS</strong> 193.54 was<br />

not involved in any disease process but rather occurred as a<br />

contaminant on dry nail material. <strong>Cladosporium</strong> sphaerospermum<br />

is a phylogenetically well-delineated species (Figs 2–4).<br />

Strains of C. halotolerans were isolated sporadically from<br />

substrata such as peanut cell suspension, tissue culture, bathroom<br />

walls <strong>and</strong> as culture contaminants. This surprising heterogeneity<br />

of substrata suggests that C. halotolerans is distributed by air <strong>and</strong><br />

that it can colonise whatever substrata available, although it may<br />

have its natural niche elsewhere. We have recurrently isolated it<br />

from hypersaline water of salterns <strong>and</strong> other saline environments<br />

<strong>and</strong> it was also detected with molecular methods (but not isolated)<br />

from skin of a salt water dolphin. <strong>The</strong>re are only few reports of<br />

this species from plants (Table 1). It is therefore possible that C.<br />

halotolerans is a species closely linked to salty or hypersaline<br />

environments although additional sampling is necessary to prove<br />

that. <strong>Cladosporium</strong> halotolerans is morphologically recognisable<br />

by relatively oblong to spherical, coarsely rough-walled conidia.<br />

<strong>The</strong> ITS rDNA sequence of a fungus in the skin of a bottlenose<br />

dolphin, suffering from lobomycosis, is identical to the sequences<br />

of C. halotolerans. This sequence was deposited as Lacazia<br />

loboi Taborda, V.A. Taborda & McGinnis (GenBank AF035674) by<br />

Haubold et al. (1998), who apparently concluded wrongly that a<br />

fungus with a cladosporium-like ITS rDNA sequence <strong>similar</strong> to that<br />

of C. halotolerans can be the agent of lobomycosis. Later, Herr<br />

et al. (2001) showed that Lacazia loboi phylogenetically belongs<br />

to the Onygenales on the basis of amplified SSU rDNA <strong>and</strong> chitin<br />

synthase-2 gene sequences generated from tissue lesions. By<br />

this, they confirmed an earlier supposition by Lacaz (1996) who<br />

reclassified the organism as Paracoccidioides loboi O.M. Fonseca<br />

& Silva Lacaz (Onygenales). It is therefore possible that C.<br />

halotolerans was not the main etiologic agent for the lobomycosis<br />

<strong>and</strong> it was colonising the affected dolphin skin secondarily while<br />

inhabiting other seawater habitats.<br />

<strong>Cladosporium</strong> langeronii <strong>and</strong> C. psychrotolerans are closely<br />

related but C. langeronii is particularly well distinguishable from<br />

all other <strong>Cladosporium</strong> species by its slow growing colonies<br />

(1–7 mm diam / 14 d) <strong>and</strong> relatively large conidia (4–5.5 × 3–4<br />

μm). <strong>Cladosporium</strong> psychrotolerans has smaller conidia (3–4 ×<br />

2.5–3 μm) but a <strong>similar</strong> length : width ratio <strong>and</strong> faster exp<strong>and</strong>ing<br />

colonies (8–18 mm diam / 14 d). <strong>Cladosporium</strong> langeronii is most<br />

likely a complex of at least two species. Strains isolated from the<br />

Arctic <strong>and</strong> the Antarctic may need to be distinguished from C.<br />

langeronii s. str. on species level. This inference is particularly<br />

supported by analyses of the β-tubulin <strong>and</strong> actin genes (Figs 3–4).<br />

<strong>Cladosporium</strong> langeronii s. str., represented by an authentic strain<br />

of Hormodendrum langeronii Fonseca, Leão & Nogueira, <strong>CBS</strong><br />

189.54 (Trejos 1954), has been isolated from a variety of substrata<br />

but is tolerating only up to 10 % NaCl. It was originally described<br />

by da Fonseca et al. (1927a, b) <strong>and</strong> subsequently reclassified<br />

as <strong>Cladosporium</strong> langeronii by Vuillemin (1931). <strong>The</strong> authentic<br />

www.studiesinmycology.org<br />

strain derived from an ulcerating nodular lesion on the arm of a<br />

human patient. Because other strains of this species are ubiquitous<br />

saprobes originating from various substrata, we suspect that C.<br />

langeronii is not an important human pathogen. <strong>Cladosporium</strong><br />

psychrotolerans has been isolated from hypersaline environments<br />

only, <strong>and</strong> tolerates up to 20 % NaCl in culture media.<br />

In general, the human- or animal-pathogenic role of the C.<br />

sphaerospermum-like species described here seems to be limited.<br />

It is possible that pathogenic species of Cladophialophora Sacc.<br />

have been misidentified as C. sphaerospermum or as other<br />

species of <strong>Cladosporium</strong> (de Hoog et al. 2000). Alternatively, true<br />

<strong>Cladosporium</strong> species isolated as clinical strains could have been<br />

secondary colonisers since they are able to dwell on surfaces poor<br />

in nutrients, possibly in an inconspicuous dormant phase <strong>and</strong> may<br />

then be practically invisible. More likely, they could be air-borne<br />

contaminations of lesions, affected nails etc. (Summerbell et al.<br />

2005) or are perhaps disseminated by insufficiently sterilised medical<br />

devices, as melanised fungi can be quite resistant to disinfectants<br />

(Phillips et al. 1992). <strong>The</strong>y can easily be isolated <strong>and</strong> rapidly<br />

become preponderant at isolation <strong>and</strong> thus difficult to exclude as<br />

etiologic agents of a disease. For example, in 2002, a case report<br />

on an intrabronchial lesion by C. sphaerospermum in a healthy,<br />

non-asthmatic woman was described (Yano et al. 2002), but we<br />

judge the identification of the causal agent to remain uncertain, as<br />

it was based on morphology alone <strong>and</strong> no culture is available. <strong>The</strong><br />

present authors have the opinion that all clinical cases ascribed to<br />

<strong>Cladosporium</strong> species need careful re-examination.<br />

General characteristics <strong>and</strong> description of <strong>Cladosporium</strong><br />

sphaerospermum-like species<br />

<strong>The</strong> present paper focuses on <strong>Cladosporium</strong> strains isolated from<br />

hypersaline environments. Comparison of data from deliberate<br />

sampling <strong>and</strong> analysis of reference strains from culture collections<br />

inevitably leads to statistical bias, <strong>and</strong> therefore a balanced<br />

interpretation of ecological preferences of the species presented is<br />

impossible. Nevertheless, some species appeared to be consistent<br />

in their choice of habitat, <strong>and</strong> for this reason we summarise<br />

isolation data for all species described. Strains belonging to a single<br />

molecular clade proved to have <strong>similar</strong> cultural characteristics <strong>and</strong><br />

microscopic morphology. Although within most of the species there<br />

was some molecular variation noted (particularly when intron-rich<br />

genes were analysed), some consistent phenetic trends could be<br />

observed.<br />

Conidiophores of all C. sphaerospermum-like species lack<br />

nodose inflations (McKemy & Morgan-Jones 1991). <strong>The</strong>y are<br />

usually ascending <strong>and</strong> can sometimes be poorly differentiated from<br />

their supporting hyphae. Though the initiation point of conidiophore<br />

stipes could sometimes be determined only approximately,<br />

their lengths were in some cases useful for distinguishing<br />

morphologically <strong>similar</strong> species when observed in slide cultures.<br />

Generally, the branched part of a conidiophore forms a complex<br />

tree-like structure. <strong>The</strong> number <strong>and</strong> orientation of early formed<br />

secondary ramoconidia, however, determines whether it is<br />

rotationally symmetric or unilateral.<br />

<strong>The</strong> variability in ITS rDNA sequences observed in all C.<br />

sphaerospermum-like species (about 10 %) spans the variation<br />

observed in all members of the <strong>genus</strong> <strong>Cladosporium</strong> sequenced<br />

to date. Thus, the C. sphaerospermum-like species described here<br />

may not present a single monophyletic group but may belong to<br />

various species complexes within <strong>Cladosporium</strong>. Verifying existing<br />

literature with sequence data of these species (Wirsel et al. 2002,<br />

Park et al. 2004), we noticed that names of the common saprobes<br />

seem to be distributed nearly at r<strong>and</strong>om over phylogenetic trees.<br />

167


Zalar et al.<br />

For most commonly used names, no type material is available for<br />

sequencing. Also verification of published reports is difficult without<br />

available voucher strains.<br />

<strong>Cladosporium</strong> cladosporioides was incorrectly lectotypified<br />

based on <strong>CBS</strong> 170.54 (de Vries 1952), which Bisby considered a<br />

st<strong>and</strong>ard culture of C. herbarum. <strong>The</strong> C. cladosporioides species<br />

complex requires revision, <strong>and</strong> will form the basis of a future study.<br />

<strong>Cladosporium</strong> herbarum is maintained as a dried specimen in the<br />

Leiden herbarium; Prasil & de Hoog (1988) selected <strong>CBS</strong> 177.71<br />

as a representative living strain. Strains, earlier accepted as living<br />

representatives of C. herbarum, <strong>CBS</strong> 177.71 <strong>and</strong> <strong>CBS</strong> 812.71<br />

(Prasil & de Hoog 1988, Wirsel et al. 2002) <strong>and</strong> ATCC 66670<br />

(Braun et al. 2003, as Davidiella tassiana) have been re-identified<br />

as C. bruhnei Linder by Schubert et al. (2007 – this volume). Ho<br />

et al. (1999) used strain ATCC 38027 as a representative of C.<br />

tenuissimum Cooke <strong>and</strong> this strain has identical ITS sequences as<br />

the non-deposited C. tenuissimum material used by Moricca et al.<br />

(1999). We tentatively accept this concept although we could not<br />

include ATCC 38027 in our analyses. <strong>The</strong> ITS sequence of strain<br />

<strong>CBS</strong> 125.80, identified by Wirsel et al. (2002) as C. oxysporum,<br />

is identical to the sequence of ATCC 38027. Strain ATCC 76499,<br />

published by Ho et al. (1999) as C. oxysporum, appears to be<br />

identical to a number of currently unidentified <strong>Cladosporium</strong> strains<br />

from Slovenian salterns that compose a cluster separate from all<br />

remaining species. Strains of this cluster, represented in Fig. 2 by<br />

strain ATCC 76499, morphologically resemble C. oxysporum.<br />

Strain <strong>CBS</strong> 300.96 has not been identified to species level<br />

in the present study. It clusters outside the species clade of<br />

C. sphaerospermum, with the latter being its nearest relative.<br />

<strong>CBS</strong> 300.96 differs from C. sphaerospermum by having smaller<br />

structures: conidiophore stipes [(5–)20–80(–150) × (2–)2.5–3(–4)<br />

μm], 0–1 septate ramoconidia [(13–)19–27(–32) × 2–2.5 μm],<br />

conidia [(2.5–)3–3.5(–4) × (2–)2–2.5(–3) μm] <strong>and</strong> secondary<br />

ramoconidia [(5–)9–18(–30) × (2–)2.5–2.5(–3) μm]. However,<br />

based on a single isolate, we currently refrain from describing it as<br />

a new species.<br />

Key to species treated in this study<br />

Macro-morphological characters used in the key are from colonies grown on PDA <strong>and</strong> MEA 14 d at 25 °C, if not stated otherwise; microscopical<br />

characters are from SNA slide cultures grown for 7 d at 25 °C.<br />

1. Conidial ornamentation conspicuously echinulate / digitate because of up to 1.3 µm long projections that have more or less parallel sides<br />

............................................................................................................................................................................................. C. spinulosum<br />

1. Conidial ornamentation verruculose to verrucose or smooth, not conspicuously echinulate or digitate .................................................... 2<br />

2. Conidiophores micronematous, poorly differentiated, once or several times geniculate-sinuous, short, up to 60 µm long; terminal conidia<br />

obovoid ....................................................................................................................................................................................... C. salinae<br />

2. Conidiophores micro- or macronematous, not geniculate or only slightly so, usually up to 100 µm or 220 µm long or even longer; terminal<br />

conidia globose, subglobose to ovoid or fusiform ...................................................................................................................................... 3<br />

3. Secondary ramoconidia 0–3(–4)-septate; septa of conidiophores <strong>and</strong> conidia darkened <strong>and</strong> thickened .................................................. 4<br />

3. Secondary ramoconidia 0–1(–2)-septate; septa neither darkened nor thickened ..................................................................................... 5<br />

4. Conidiophores (5–)10–50(–300) × (2–)2.5–3(–5.5) μm; terminal conidia (2–)3–4(–6) × (2–)2.5–3(–5) μm; secondary ramoconidia (5–)7–<br />

12(–37.5) × (2–)2.5–3(–6.5) μm; ramoconidia sporadically formed ................................................................................... C. halotolerans<br />

4. Conidiophores mostly longer <strong>and</strong> somewhat wider, (10–)45–130(–300) × (2.5–)3–4(–6) μm; terminal conidia mostly wider, (2.5–)3–4(–7)<br />

× (2–)3–3.5(–4.5) μm; secondary ramoconidia (4–)8.5–16(–37.5) × (2–)3–3.5(–5) μm; ramoconidia often formed, up to 40 µm long, with<br />

up to 5 septa ............................................................................................................................................................. C. sphaerospermum<br />

5. Terminal conidia usually fusiform ............................................................................................................................................ C. fusiforme<br />

5. Terminal conidia globose, subglobose or ovoid ......................................................................................................................................... 6<br />

6. Conidia <strong>and</strong> secondary ramoconidia irregularly verruculose to sometimes loosely verrucose; radial growth on PDA at 25 °C after 14 d<br />

typically less than 5 mm ......................................................................................................................................................... C. langeronii<br />

6. Conidia <strong>and</strong> secondary ramoconidia smooth to minutely verruculose; radial growth on PDA at 25 °C after 14 d typically more than 10 mm<br />

.................................................................................................................................................................................................................... 7<br />

7. Conidiophores (3–)3.5–4(–7.5) μm wide, thick-walled; conidiogenous loci <strong>and</strong> conidial hila 0.5–2 μm diam; ramoconidia sometimes<br />

formed with a broadly truncate, up to 2 µm wide non-cladosporioid base; no growth observed after 14 d at 30 °C on MEA<br />

..................................................................................................................................................................................... C. psychrotolerans<br />

7. Conidiophores mostly narrower, 2–4 μm wide, only with slightly thickened walls; conidiogenous loci <strong>and</strong> conidial hila narrower, 0.5–1.5<br />

μm diam; ramoconidia rarely formed; colony showing at least weak growth after 14 d at 30 °C on MEA ................................................. 8<br />

8. Secondary ramoconidia (4–)6.5–13(–24.5) μm long; no visible colony growth after 14 d at 10 °C on MEA.................... C. dominicanum<br />

8. Secondary ramoconidia mostly longer, (3.5–)5.5–19(–42) μm; radial growth of colonies after 14 d at 10 °C on MEA more than 5 mm<br />

........................................................................................................................................................................................................ C. velox<br />

168


<strong>Cladosporium</strong> sphaerospermum species complex<br />

Description of <strong>Cladosporium</strong> species<br />

<strong>Cladosporium</strong> dominicanum Zalar, de Hoog & Gunde-Cimerman,<br />

sp. nov. MycoBank MB510995. Fig. 6.<br />

Etymology: Refers to the the Dominican Republic, where most<br />

strains were encountered.<br />

Conidiophora lateralia vel terminalia ex hyphis rectis oriunda; stipes longitudine<br />

variabili, (5–)10–100(–200) × (1.5–)2–2.5(–3.5) μm, olivaceo-brunneus, levis vel<br />

leniter verruculosus, tenuitunicatus, plerumque unicellularis, simplex vel ramosus.<br />

Conidiorum catenae undique divergentes, ad 8 conidia in parte continua continentes.<br />

Cellulae conidiogenae indistinctae. Conidia levia vel leniter verruculosa, dilute<br />

brunnea, unicellularia, plerumque breviter ovoidea, utrinque angustata, (2.5–)<br />

3–3.5(–5.5) × (2–)2–2.5(–2.5) μm, long.: lat. 1.4–1.6; ramoconidia secundaria<br />

cylindrica vel quasi globosa, 0–1-septata, (4–)6.5–13(–24.5) × (2–)2.5–3(–4.5) μm,<br />

ad 4 cicatrices terminales ferentia; cicatrices inspissatae, protuberantes, 0.5–1.2 μm<br />

diam. Hyphae vagina polysaccharidica carentes.<br />

Mycelium without extracellular polysaccharide-like material.<br />

Conidiophores arising laterally <strong>and</strong> terminally on erect hyphae,<br />

micronematous <strong>and</strong> semimacronematous, stipes of variable length,<br />

(5–)10–100(–200) × (1.5–)2–2.5(–3.5) μm, olivaceous-brown,<br />

smooth to minutely verruculose, thin-walled, almost non-septate,<br />

unbranched or branched. Conidial chains branching in all directions,<br />

up to eight conidia in the unbranched parts. Conidiogenous cells<br />

undifferentiated. Ramoconidia rarely formed. Conidia smooth<br />

to minutely verruculose, subhyaline to light brown, non-septate,<br />

usually short-ovoid, narrower at both ends, length : width ratio =<br />

1.4–1.6; (2.5–)3–3.5(–5.5) × (2–)2–2.5(–2.5) μm [av. (± SD) 3.4<br />

(± 0.6) × 2.2 (± 0.2)]; secondary ramoconidia cylindrical to almost<br />

spherical, 0–1-septate, (4–)6.5–13(–24.5) × (2–)2.5–3(–4.5) μm<br />

[av. (± SD) 10.3 (± 5.2) × 2.7 (± 0.6)], with up to four distal scars.<br />

Conidiogenous scars thickened <strong>and</strong> conspicuous, protuberant,<br />

0.5–1.2 μm diam.<br />

Cultural characteristics: Colonies on PDA reaching 18–36 mm<br />

diam, olive-yellow (2D6), hairy granular, flat or slightly furrowed,<br />

with flat margin. Droplets of light reseda-green (2E6) exudate<br />

sometimes present. Reverse dark green to black. Colonies on OA<br />

reaching 19–34 mm diam, olive (2F5), loosely powdery with raised<br />

central part due to fasciculate bundles of conidiophores. Reverse<br />

dark green. Colonies on MEA reaching 30–32 mm diam, reseda<br />

green (2E6), velvety, furrowed, with undulate margin. Reverse dark<br />

green-brown. Colonies on MEA + 5 % NaCl reaching 37–41 mm<br />

diam, reseda-green (2E6), radially furrowed, velvety, sporulating in<br />

the central part or all over the colony, margin white <strong>and</strong> regular.<br />

Reverse brownish green.<br />

Maximum tolerated salt concentration: 75 % of tested strains<br />

develop colonies at 20 % NaCl after 7 d, while after 14 d all strains<br />

grow <strong>and</strong> sporulate.<br />

Cardinal temperatures: No growth at 4 <strong>and</strong> 10 °C, optimum 25 °C<br />

(30–32 mm diam), maximum 30 °C (2–15 mm diam), no growth at<br />

37 °C.<br />

Specimen examined: Dominican Republic, from hypersaline water of salt lake<br />

Enriquillo, coll. Nina Gunde-Cimerman, Jan. 2001, isol. P. Zalar 25 Feb. 2001, <strong>CBS</strong><br />

H-19733, holotype, culture ex-type EXF-732 = <strong>CBS</strong> 119415.<br />

Habitats <strong>and</strong> distribution: Fruit surfaces; hypersaline waters in<br />

(sub)tropical climates.<br />

Differential parameters: No growth at 10 °C, ovoid conidia, large<br />

amounts of sterile mycelium.<br />

Strains examined: CPC 11683, EXF-696, EXF-718, EXF-720, EXF-<br />

727, EXF-732 (= <strong>CBS</strong> 119415; ex-type strain).<br />

www.studiesinmycology.org<br />

Note: Cultures of C. dominicanum sporulate less abundantly than<br />

C. sphaerospermum <strong>and</strong> C. halotolerans <strong>and</strong> tend to lose their<br />

ability to sporulate with subculturing.<br />

<strong>Cladosporium</strong> fusiforme Zalar, de Hoog & Gunde-Cimerman, sp.<br />

nov. MycoBank MB510997. Fig. 7.<br />

Etymology: Refers to its usually fusiform conidia.<br />

Conidiophora erecta, lateralia vel terminalia ex hyphis rectis oriunda; stipes<br />

longitudine variabili, (10–)25–50(–100) × (2–)2–3.5(–4) μm, olivaceo-brunneus,<br />

levis, crassitunicatus, compluries septatus (cellulis 9–23 μm longis), plerumque<br />

simplex. Conidiorum catenae undique divergentes, in parte continua ad 5 conidia<br />

continentes. Cellulae conidiogenae indistinctae. Conidia leniter verruculosus, dilute<br />

brunnea, unicellularia, plerumque fusiformia, utrinque angustata, (2.5–)3.5–5(–<br />

6.5) × (2–)2–2.5(–3) μm, long. : lat. 1.8–2.0; ramoconidia secundaria cylindrica,<br />

0(–1)-septata, (5–)6–11(–22) × (2.5–)2.5–3(–3) μm, ad 4 cicatrices terminales<br />

ferentia; cicatrices inspissatae, conspicuae, 0.7–1.0 μm diam. Hyphae vagina<br />

polysaccharidica carentes.<br />

Mycelium without extracellular polysaccharide-like material.<br />

Conidiophores erect, arising laterally <strong>and</strong> terminally from straight<br />

hyphae, stipes of variable length, (10–)25–50(–100) × (2–)2–3.5(–<br />

4) μm, olivaceous-brown, smooth- <strong>and</strong> thick-walled, regularlyseptate<br />

(cell length 9–23 μm), mostly unbranched. Conidial chains<br />

branching in all directions, up to 5 conidia in the unbranched parts.<br />

Conidiogenous cells undifferentiated. Ramoconidia rarely formed.<br />

Conidia minutely verruculose, light brown, aseptate, usually fusiform<br />

<strong>and</strong> narrower at both ends, length : width ratio = 1.8–2.0; (2.5–)3.5–<br />

5(–6.5) × (2–)2–2.5(–3) μm [av. (± SD) 4.4 (± 0.8) × 2.2 (± 0.2)];<br />

secondary ramoconidia cylindrical, 0(–1)-septate, (5–)6–11(–22) ×<br />

(2.5–)2.5–3(–3) μm [av. (± SD) 9.0 (± 4.7) × 2.6 (± 0.3)], with up<br />

to 4 distal scars. Conidiogenous scars thickened <strong>and</strong> conspicuous,<br />

protuberant, 0.7–1.0 μm diam.<br />

Cultural characteristics: Colonies on PDA reaching 20–26 mm diam,<br />

dull green (30E3), granular due to profuse sporulation, flat, with flat<br />

margin. Sterile mycelium absent. Reverse blackish green. Colonies<br />

on OA reaching 24–28 mm diam, olive (3F3), granular in concentric<br />

circles, consisting of two kinds of conidiophores (low <strong>and</strong> high), flat,<br />

with flat margin. Reverse black. Colonies on MEA reaching 23–28<br />

mm diam, olive (3E5), deeply furrowed, velvety (sporulating all over)<br />

with undulate, white margin. Reverse brownish green. Colonies on<br />

MEA + 5 % NaCl reaching 28–43 mm diam, olive (3E6), granular<br />

due to profuse sporulation, slightly furrowed with flat, olive-grey<br />

(3F2) margin. Reverse dark green.<br />

Maximum tolerated salt concentration: Only one of three strains<br />

tested (<strong>CBS</strong> 452.71) developed colonies at 17 % NaCl after 14 d,<br />

the other two strains grew until 10 % NaCl.<br />

Cardinal temperatures: For one of three strains (<strong>CBS</strong> 452.71) the<br />

minimum temperature of growth was 4 °C (6 mm diam), for the<br />

other two 10 °C (8–9 mm diam); optimum 25 °C (23–28 mm diam),<br />

maximum 30 °C (only strain <strong>CBS</strong> 452.71 grew 5 mm diam), no<br />

growth at 37 °C.<br />

Specimen examined: Slovenia, from hypersaline water of Sečovlje salterns, coll.<br />

<strong>and</strong> isol. L. Butinar, Dec. 1999, <strong>CBS</strong> H-19732, holotype, culture ex-type EXF-449<br />

= <strong>CBS</strong> 119414.<br />

Habitats <strong>and</strong> distribution: Osmotic environments worldwide.<br />

Differential parameters: Oblong conidia, relatively low degree of<br />

halotolerance.<br />

Strains examined: <strong>CBS</strong> 452.71, EXF-397, EXF-449 (= <strong>CBS</strong> 119414;<br />

ex-type strain).<br />

169


Zalar et al.<br />

Fig. 6. <strong>Cladosporium</strong> dominicanum. Macro- <strong>and</strong> micromorphological characters. A–D. Colony surface grown on PDA (A), OA (B), MEA (C) <strong>and</strong> MEA plus 5 % NaCl (D) of strains<br />

incubated for 14 d at 25 ºC in darkness. E–F. Habit of conidiophores. G. Conidiophore. H–I. Secondary ramoconidia <strong>and</strong> conidia. E–I. All from 7-d-old SNA slide cultures. A, D,<br />

F–H, from EXF-2519; B, C, E from EXF-727; I, EXF-732 (ex-type strain). Scale bars A–D = 10 mm, E = 100 µm, F = 30 µm, G–I = 10 µm.<br />

170


<strong>Cladosporium</strong> sphaerospermum species complex<br />

Fig. 7. <strong>Cladosporium</strong> fusiforme. Macro- <strong>and</strong> micromorphological characters. A–D. Colony surface grown on PDA (A), OA (B), MEA (C) <strong>and</strong> MEA plus 5 % NaCl (D) of strains<br />

incubated for 14 d at 25 ºC in darkness. E–G. Habit of conidiophores. H–I. Ramoconidia <strong>and</strong> conidia. E–I. All from 7-d-old SNA slide cultures. A–H, from EXF-449 (ex-type strain);<br />

I, from <strong>CBS</strong> 452.71. Scale bars A–D = 10 mm, E = 100 µm, F–G = 30 µm, H–I = 10 µm.<br />

www.studiesinmycology.org<br />

171


Zalar et al.<br />

Fig. 8. <strong>Cladosporium</strong> halotolerans. Macro- <strong>and</strong> micromorphological characters. A–D. Colony surface grown on PDA (A), OA (B), MEA (C) <strong>and</strong> MEA plus 5 % NaCl (D) of strains<br />

incubated for 14 d at 25 ºC in darkness. E–H. Habit of conidiophores. I. Conidiophore. J. Succession of secondary ramoconidia. K. Conidia. E–K. All from 7-d-old SNA slide<br />

cultures. A–B, from EXF-572 (ex-type strain); C–D, from EXF-977; E, G, from EXF-972; F, from EXF-564; H, I, K, from EXF-1072; J, from dH 12862. Scale bars A–D = 10 mm,<br />

E = 100 µm, F–G = 50 µm, H = 30 µm, I–K = 10 µm.<br />

<strong>Cladosporium</strong> halotolerans Zalar, de Hoog & Gunde-Cimerman<br />

sp. nov. MycoBank MB492439. Fig. 8.<br />

Etymology: Refers to its halotolerant habit.<br />

Conidiophora erecta, lateralia vel terminalia ex hyphis rectis oriunda; stipes<br />

longitudine variabili, (5–)10–50(–300) × (2–)2.5–3(–5.5) μm, pallide olivaceobrunneus,<br />

levis vel leniter verruculosus, tenuitunicatus, 0–3-septatus, interdum<br />

pluriseptatus, simplex, denticulatus. Conidiorum catenae undique divergentes,<br />

terminales ad 9 conidia continentes. Cellulae conidiogenae indistinctae. Conidia<br />

verrucosa, brunnea vel fusca, unicellularia, plerumque subglobosa vel globosa,<br />

raro breviter ovoidea, utrinque angustata, (2–)3–4(–6) × (2–)2.5–3(–5) μm, long.<br />

: lat. 1.2–1.5; ramoconidia secundaria cylindrica vel quasi globosa, 0(–1)-septata,<br />

(5–)7–12(–37.5) × (2–)2.5–3(–6.5) μm , ad 4 cicatrices terminales ferentia; cicatrices<br />

inspissatae, conspicuae, protuberantes, 0.7–1.0(–1.5) μm diam. Hyphae vagina<br />

polysaccharidica carentes.<br />

172


<strong>Cladosporium</strong> sphaerospermum species complex<br />

Mycelium partly submerged, partly superficial; hyphae without<br />

extracellular polysaccharide-like material. Conidiophores erect,<br />

arising laterally <strong>and</strong> terminally from straight hyphae, stipes of<br />

variable length, (5–)10–50(–300) × (2–)2.5–3(–5.5) μm, pale<br />

olivaceous-brown, smooth to minutely verruculose, thin-walled, 0–<br />

3-septate, unbranched, with pronounced denticles. Conidial chains<br />

branching in all directions, terminal chains with up to 9 conidia.<br />

Conidiogenous cells undifferentiated. Ramoconidia rarely formed.<br />

Conidia verrucose, brown to dark brown, non-septate, usually<br />

subglobose to globose, less often short-ovoid, narrower at both<br />

ends, length : width ratio = 1.2–1.5; (2–)3–4(–6) × (2–)2.5–3(–5)<br />

μm [av. (± SD) 3.5 (± 0.7) × 2.7 (± 0.5)]; secondary ramoconidia<br />

cylindrical to almost spherical, 0–1-septate, (5–)7–12(–37.5) ×<br />

(2–)2.5–3(–6.5) μm [av. (± SD) 10.3 (± 4.8) × 2.9 (± 0.6)], with up<br />

to 4 distal scars. Conidiogenous scars thickened <strong>and</strong> conspicuous,<br />

protuberant, 0.7–1.0(–1.5) μm diam.<br />

Cultural characteristics: Colonies on PDA reaching 27–43 mm diam,<br />

olive (2F5), slightly furrowed, often covered with grey secondary<br />

mycelium, except at the marginal area where only sporulating<br />

structures can be observed. Margin white <strong>and</strong> regular, with<br />

submerged hyphae. Reverse pale green to black. Colonies on OA<br />

reaching 29–40 mm diam, olive (2F6), flat, uniform, granular due<br />

to profuse sporulation <strong>and</strong> fasciculate bundles of conidiophores,<br />

without sterile mycelium. Reverse dark green to black. Colonies on<br />

MEA reaching 18–44 mm diam, highly variable in colour, but mainly<br />

olive (2E5), <strong>and</strong> from flat with regular margin to deeply furrowed<br />

with undulate margin. Colony centre wrinkled with crater-shaped<br />

appearance. Reverse pale to dark green. Colonies on MEA + 5 %<br />

NaCl reaching 24–48 mm diam, olive (3E8), furrowed, velvety, with<br />

more pale, undulate margins. Reverse dark green to black.<br />

Maximum tolerated salt concentration: Only 15 % of tested strains<br />

develop colonies at 20 % NaCl after 7 d, whereas after 14 d all<br />

cultures grow <strong>and</strong> sporulate.<br />

Cardinal temperatures: No growth at 4 °C, optimum 25 °C (18–44<br />

mm diam), maximum 30 °C (6–23 mm diam). No growth at 37 °C.<br />

Specimen examined: Namibia, from hypersaline water of salterns, coll. Nina Gunde-<br />

Cimerman, 1 Sep. 2000, isol. P. Zalar, 1 Oct. 2000, <strong>CBS</strong> H-19734, holotype, culture<br />

ex-type EXF-572 = <strong>CBS</strong> 119416.<br />

Habitats <strong>and</strong> distribution: Hypersaline water in subtropical climates;<br />

indoor environments; Arctic ice; contaminant in lesions of humans<br />

<strong>and</strong> animals; plant phyllosphere; rock.<br />

Literature: Haubold et al. (1998), Meklin et al. (2004).<br />

Differential parameters: Verrucose conidia, short unbranched <strong>and</strong><br />

non-septate conidiophores which arise laterally alongside erect<br />

hyphae.<br />

Strains examined: <strong>CBS</strong> 191.54, <strong>CBS</strong> 573.78, <strong>CBS</strong> 626.82, dH<br />

12862, dH 12991, dH 13911, EXF-228, EXF-380, EXF-565, EXF-<br />

567, EXF-571, EXF-572 (= <strong>CBS</strong> 119416; ex-type strain), EXF-646,<br />

EXF-698, EXF-703, EXF-944, EXF-972, EXF-977, EXF-1072,<br />

EXF-2372.<br />

Notes: <strong>Cladosporium</strong> halotolerans strongly resembles C.<br />

sphaerospermum. Several strains of this species such as dH<br />

12862, dH 12941, <strong>CBS</strong> 191.54 <strong>and</strong> UAMH 7686 have been<br />

isolated sporadically from various indoor habitats in Europe, Brazil<br />

<strong>and</strong> the U.S.A. <strong>and</strong> repeatedly from bathrooms in Slovenia (Table<br />

1). Probably sometimes as uncertain culture contaminations, it<br />

has been isolated from plants (GenBank accession no. L25433),<br />

www.studiesinmycology.org<br />

inner organs of a diseased frog (AY361982) <strong>and</strong> human brain<br />

(Kantarcioglu et al. 2002). <strong>The</strong> presence of C. halotolerans<br />

species in gypsum sediments entrapped in Arctic ice, the fact that<br />

it was repeatedly isolated from hypersaline water <strong>and</strong> possibly its<br />

presence in dolphin skin (see Discussion) suggest that it has a<br />

clear preference for (hyper)osmotic habitats. This is supported by<br />

its ability to grow at 20 % NaCl.<br />

<strong>The</strong> teleomorph of C. halotolerans is predicted to be a<br />

Davidiella species. Strain <strong>CBS</strong> 280.49 was isolated by J.A. von Arx<br />

from teleomorphic material of a fungus labelled as Mycosphaerella<br />

hyperici (Auersw.) Starbäck on Hypericum perforatum in<br />

Switzerl<strong>and</strong>. According to Aptroot (2006) this species may belong<br />

in Davidiella <strong>and</strong> produces a Septoria anamorph. In the original<br />

herbarium specimen, <strong>CBS</strong> H-4867, a Mycosphaerella teleomorph<br />

was present, but no sign of a <strong>Cladosporium</strong> anamorph. We assume<br />

that <strong>CBS</strong> 280.49 was a culture contaminant.<br />

<strong>Cladosporium</strong> langeronii (Fonseca, Leão & Nogueira) Vuill.,<br />

Champ. Paras.: 78. 1931. Fig. 9.<br />

Basionym: Hormodendrum langeronii Fonseca, Leão & Nogueira,<br />

Sci. Med. 5: 563. 1927.<br />

≡ <strong>Cladosporium</strong> langeronii (Fonseca, Leão & Nogueira) Cif., Manuale di<br />

Micologia Medica, ed. 2: 488 (1960), comb. superfl.<br />

Mycelium partly submerged, partly superficial; hyphae sometimes<br />

enveloped in polysaccharide-like material. Conidiophores erect or<br />

ascending, micronematous <strong>and</strong> macronematous, stipes of variable<br />

length, (20–)50–130(–200) × (3–)3.5–4.5(–6.5) μm, dark brown,<br />

rough- <strong>and</strong> thick-walled, regularly septate (cell length 9–22 μm),<br />

arising laterally <strong>and</strong> terminally from submerged or aerial hyphae,<br />

branched. Conidial chains dichotomously branched, up to 6 conidia<br />

in the unbranched parts. Conidiogenous cells undifferentiated,<br />

sometimes seceding <strong>and</strong> forming ramoconidia. Ramoconidia<br />

cylindrical, 0–1 septate, (10–)11–22(–42) × (3–)3.5–4.5(–5) µm,<br />

base broadly truncate, 2–3.5 µm wide, slightly thickened <strong>and</strong><br />

somewhat darkened. Conidia irregularly verruculose to sometimes<br />

loosely verrucose, dark brown, non-septate, usually ovoid, length<br />

: width ratio = 1.3–1.5; conidial size (3–)4–5.5(–8) × (2–)3–4(–5)<br />

μm [av. (± SD) 4.8 (± 1.0) × 3.5 (± 0.6)]; secondary ramoconidia<br />

cylindrical to almost spherical, mostly 0–1(–2)-septate, (5.5–)7.5–<br />

12.5(–35.5) × (2.5–)3–4.5(–5.5) μm [av. (± SD) 10.7 (± 4.7) × 3.6 (±<br />

0.8)], with 2, rarely 3 distal scars. Conidiogenous scars thickened<br />

<strong>and</strong> conspicuous, protuberant, 0.9–1.5(–2.3) μm diam.<br />

Cultural characteristics: Colonies on PDA, OA <strong>and</strong> MEA with<br />

restricted growth, attaining 2.5–4.5, 1.5–7.0 <strong>and</strong> 1.0–5.5 mm<br />

diam, respectively. Colonies flat or heaped (up to 3 mm), dark<br />

green (30F4), with black reverse <strong>and</strong> slightly undulate margin with<br />

immersed mycelium. Sporulating on all media. On MEA + 5 % NaCl<br />

growth is faster, colonies attaining 8.5–12.0 mm diam, sporulating<br />

<strong>and</strong> growing deeply into the agar.<br />

Maximum tolerated salt concentration: All strains develop colonies<br />

at 17 % NaCl after 14 d.<br />

Cardinal temperatures: No growth at 4 °C, optimum / maximum 25<br />

°C (1.0–5.5 mm diam), no growth at 30 °C.<br />

Specimen examined: Brazil, from man ulcero-nodular mycosis of h<strong>and</strong> <strong>and</strong> arm,<br />

1927, coll. <strong>and</strong> isol. da Fonseca, <strong>CBS</strong> H-19737, holotype, culture ex-type <strong>CBS</strong><br />

189.54.<br />

Habitats <strong>and</strong> distribution: Polar ice <strong>and</strong> biomats; conifer wood <strong>and</strong><br />

window frame in Europe; humans; strains originating from nasal<br />

mucus (Buzina et al. 2003) have 100 % sequence homology with<br />

173


Zalar et al.<br />

Fig. 9. <strong>Cladosporium</strong> langeronii. Macro- <strong>and</strong> micromorphological characters. A–D. Colony surface grown on PDA (A), OA (B), MEA (C) <strong>and</strong> MEA plus 5 % NaCl (D) of strains<br />

incubated for 14 d at 25 ºC in darkness. E–F. Habit of conidiophores. G–I. Ramoconidia <strong>and</strong> conidia. E–I. All from 7-d-old SNA slide cultures. A–D, from <strong>CBS</strong> 189.54 (ex-type<br />

strain); E, from <strong>CBS</strong> 109868; F–I, from EXF-999. Scale bars A, C–D = 10 mm, B = 5 mm, E = 100 µm, F = 30 µm, G–I = 10 µm.<br />

the strains studied, as well as with a clone from mycorrhizal roots<br />

(Menkis et al. 2005). <strong>The</strong> species is distributed worldwide, without<br />

any apparent predilection for a particular habitat. <strong>The</strong> strains from<br />

clinical cases probably were culture contaminants.<br />

Literature: da Fonseca et al. (1927a, b).<br />

Differential parameters: Restricted growth; lowest salt halotolerance<br />

taxon of all C. sphaerospermum-like species.<br />

Strains examined: <strong>CBS</strong> 189.54 (ex-type strain), <strong>CBS</strong> 601.84, <strong>CBS</strong><br />

101880, <strong>CBS</strong> 109868, dH 11736, dH 12459 = EXF-999, dH 13833<br />

= EXF-1933.<br />

Notes: De Vries (1952) synonymised the isolate identified as<br />

Hormodendrum langeronii with C. sphaerospermum. Strains of this<br />

species have often been identified as C. cladosporioides (Buzina<br />

et al. 2003, Menkis et al. 2005) although it has slightly longer<br />

conidia.<br />

174


<strong>Cladosporium</strong> sphaerospermum species complex<br />

<strong>Cladosporium</strong> psychrotolerans Zalar, de Hoog & Gunde-<br />

Cimerman, sp. nov. MycoBank MB492428. Fig. 10.<br />

Etymology: Refers to its ability to grow at low temperatures.<br />

Mycelium partim submersum; hyphae vagina polysaccharidica carentes.<br />

Conidiophora erecta vel adscendentia; stipes (10–)50–100(–150) × (3–)3.5–4(–7.5)<br />

μm, olivaceo-brunneus, levis, crassitunicatus, compluries regulariter septatus<br />

(cellulis 10–40 μm longis), identidem dichotome ramosus. Conidiorum catenae<br />

undique divergentes, terminales partes simplices ad 4 conidia continentes. Cellulae<br />

conidiogenae indistinctae. Ramoconidia primaria cylindrica, (18–)19–22(–43) ×<br />

(2.5)3–3.5(–4.5) µm, 0(–1)-septata. Conidia leves vel leniter verruculosa, dilute<br />

brunnea, unicellularia, globosa vel ovoidea, (2.5–)3–4(–4.5) × (2–)2.5–3(–3) μm,<br />

long.: lat. 1.3–1.4; ramoconidia secundaria cylindrica, 0–1(–2)-septata, (5–)8–16(–<br />

36) × (2–)2.5–3(–5) μm, ad 4 cicatrices terminales ferentia; cicatrices inspissatae,<br />

conspicuae, 0.5–2 μm diam.<br />

Mycelium partly superficial partly submerged; hyphae without<br />

extracellular polysaccharide-like material. Conidiophores erect or<br />

ascending, macronematous, stipes (10–)50–100(–150) × (3–)3.5–<br />

4(–7.5) μm, olivaceous-brown, smooth or almost so, thick-walled,<br />

regularly septate (cell length 10–40 μm), arising laterally from<br />

aerial hyphae, repeatedly dichotomously branched. Conidial chains<br />

branching in all directions, up to 4 conidia in the unbranched parts.<br />

Ramoconidia sometimes formed, cylindrical, (18–)19–22(–43) ×<br />

(2.5)3–3.5(–4.5) µm, aseptate, rarely 1-septate, with a broadly<br />

truncate base, up to 2 µm wide, unthickened or slightly thickened,<br />

somewhat darkened-refractive. Conidia smooth to minutely<br />

verruculose, light brown, non-septate, spherical to ovoid, length :<br />

width ratio = 1.3–1.4; conidial size (2.5–)3–4(–4.5) × (2–)2.5–3(–3)<br />

μm [av. (± SD) 3.4 (± 0.5) × 2.5 (± 0.2)]; secondary ramoconidia<br />

cylindrical, 0–1(–2)-septate, (5–)8–16(–36) × (2–)2.5–3(–5) μm<br />

[av. (± SD) 12.7 (± 6.5) × 3.0 (± 0.5)], with up to 4 distal scars.<br />

Conidiogenous scars thickened <strong>and</strong> conspicuous, protuberant,<br />

0.5–2 μm diam.<br />

Cultural characteristics: Colonies on PDA reaching 13–18 mm<br />

diam, velvety, olive (3F4) due to profuse sporulation, flat with<br />

straight margin. Reverse dark green. Colonies on OA reaching 13–<br />

15 mm diam, olive (2F8), of granular appearance due to profuse<br />

sporulation; aerial mycelium sparse. Margin regular. Reverse black.<br />

Colonies on MEA reaching 8–15 mm diam, olive (2F4), velvety,<br />

radially furrowed with undulate white margin. Colonies on MEA<br />

with 5 % NaCl growing faster than on other media, reaching 25–27<br />

mm diam, olive (3E6) <strong>and</strong> granular due to profuse sporulation,<br />

either slightly furrowed or heavily wrinkled with regular or undulate<br />

margin. Reverse dark green.<br />

Maximum tolerated salt concentration: 17 % NaCl after 14 d.<br />

Cardinal temperatures: Minimum at 4 °C (5 mm diam), optimum<br />

<strong>and</strong> maximum at 25 °C (8–15 mm diam).<br />

Specimen examined: Slovenia, from hypersaline water of Sečovlje salterns, coll.<br />

<strong>and</strong> isol. S. Sonjak, May 1999, <strong>CBS</strong> H-19730, holotype, culture ex-type EXF-391<br />

= <strong>CBS</strong> 119412.<br />

Habitats <strong>and</strong> distribution: Hypersaline water in the Mediterranean<br />

basin.<br />

Differential parameters: Growth at 4 °C; maximal NaCl<br />

concentration 17 % NaCl, which differentiates it from other species<br />

with <strong>similar</strong> conidia, like C. sphaerospermum, C. halotolerans <strong>and</strong><br />

C. dominicanum.<br />

Strains examined: EXF-326, EXF-332, EXF-391 (= <strong>CBS</strong> 119412;<br />

ex-type strain), EXF-714.<br />

<strong>Cladosporium</strong> salinae Zalar, de Hoog & Gunde-Cimerman, sp.<br />

nov. MycoBank MB492438. Fig. 11.<br />

Etymology: Refers to salterns (= Latin salinae) as the habitat of<br />

this species.<br />

Mycelium partim submersum; hyphae multa rostra lateralia ferentes, hyphae vagina<br />

polysaccharidica involutae. Conidiophora vix distincta, lateralia vel terminalia ex<br />

hyphis aeriis oriunda; stipes longitudine variabili, (5–)25–50(–60) × (2–)2.5–3(–4)<br />

μm, olivaceo-brunneus, levis vel leniter verruculosus, crassitunicatus, irregulariter<br />

dense septatus (cellulis 6–29 μm longis), simplex, interdum ramosus. Conidiorum<br />

catenae undique divergentes, terminales ad 6 conidia continentes. Cellulae<br />

conidiogenae nonnumquam integratae, in summo sequentiam sympodialem<br />

denticulorum formantes. Conidia levia, interdum leniter verruculosa, dilute brunnea,<br />

unicellularia, plerumque fusiformia, (4.5–)5.5–7.5(–10) × (2–)2.5–3(–3.5) μm,<br />

long. : lat. 1.9–2.4; ramoconidia secundaria cylindrica, 0–1(–2)-septata, (7.5–)9.5–<br />

13.5(–19) × (2.5–)2.5–3.5(–4.5) μm, ad 5 cicatrices terminales ferentia; cicatrices<br />

inspissatae, conspicuae, protuberantes, 0.7–1.8 μm diam.<br />

Mycelium partly superficial partly submerged, with numerous<br />

lateral pegs, consistently enveloped in polysaccharide-like<br />

material. Conidiophores poorly differentiated, micronematous,<br />

stipes (5–)25–50(–60) × (2–)2.5–3(–4) μm, olivaceous-brown,<br />

smooth to often minutely verruculose or irregularly rough-walled,<br />

thick-walled, irregularly densely septate (length of cells 6–29 μm),<br />

arising laterally <strong>and</strong> terminally from aerial hyphae, unbranched,<br />

occasionally branched. Conidial chains branching in all directions,<br />

terminal chains with up to 6 conidia. Conidiogenous cells sometimes<br />

integrated, producing sympodial clusters of pronounced denticles<br />

at their distal ends. Conidia usually smooth, occasionally minutely<br />

verruculose, light brown, aseptate, usually oblong ellipsoidal to<br />

fusiform, length : width ratio = 1.9–2.4; (4.5–)5.5–7.5(–10) × (2–)<br />

2.5–3(–3.5) μm [av. (± SD) 6.7 (± 1.3) × 2.9 (± 0.4)]; secondary<br />

ramoconidia cylindrical, 0–1(–2)-septate, (7.5–)9.5–13.5(–19)<br />

× (2.5–)2.5–3.5(–4.5) μm [av. (± SD) 12.1 (± 3.3) × 3.2 (± 0.6)],<br />

with up to 5 distal scars. Conidiogenous scars thickened <strong>and</strong><br />

conspicuous, protuberant, 0.7–1.8 μm diam.<br />

Cultural characteristics: Colonies on PDA reaching 10–27 mm<br />

diam, granular, olive (2E4) due to profuse sporulation, with white<br />

undulate margin. Aerial mycelium absent. Colonies either heaped<br />

or radially furrowed, in the marginal area growing deeply into the<br />

agar. Reverse dark brown to dark green. Colonies on OA reaching<br />

7–20 mm diam, olive (3E6), of granular appearance due to profuse<br />

sporulation, aerial mycelium present. Margin either undulate or<br />

arachnoid, deeply furrowed. Reverse pale brown to dark green.<br />

Colonies on MEA reaching 8–19 mm diam, velvety, reseda-green<br />

(2E6), heaped. Margin furrowed, growing deeply into the agar.<br />

Colonies on MEA with 5 % NaCl growing much faster than on<br />

other media, reaching 25–38 mm diam, of different colours, mostly<br />

reseda-green (2E6) <strong>and</strong> granulate due to profuse sporulation,<br />

margin olive-yellow (2D6). Reverse yellow to dark green.<br />

Maximum tolerated salt concentration: MEA + 17 % NaCl after 14 d.<br />

Cardinal temperatures: No growth at 4 °C, optimum <strong>and</strong> maximum<br />

temperature at 25 °C (8–19 mm diam), no growth at 30 °C.<br />

Specimen examined: Slovenia, from hypersaline water of Sečovlje salterns, coll.<br />

<strong>and</strong> isol. S. Sonjak, Feb. 1999, <strong>CBS</strong> H-19731, holotype, culture ex-type EXF-335<br />

= <strong>CBS</strong> 119413.<br />

Habitats <strong>and</strong> distribution: Hypersaline water in the Mediterranean<br />

basin.<br />

Differential parameters: Sympodial conidiogenous cells with<br />

pronounced denticles, narrow temperature amplitude.<br />

www.studiesinmycology.org<br />

175


Zalar et al.<br />

Fig. 10. <strong>Cladosporium</strong> psychrotolerans. Macro- <strong>and</strong> micromorphological characters. A–D. Colony surface grown on PDA (A), OA (B), MEA (C) <strong>and</strong> MEA plus 5 % NaCl (D) of<br />

strains incubated for 14 d at 25 ºC in darkness. E–F. Conidiophores. G. Apical part of a conidiophore. H–I. Secondary ramoconidia <strong>and</strong> conidia. E–I. All from 7-d-old SNA slide<br />

cultures. All but C, from EXF-391 (ex-type strain); C, from EXF-714. Scale bars A–D = 10 mm, E = 100 µm, F = 50 µm, G–I = 10 µm.<br />

Strains examined: EXF-322, EXF-335 (= <strong>CBS</strong> 119413; ex-type<br />

strain), EXF-604.<br />

Notes: <strong>Cladosporium</strong> salinae morphologically resembles species<br />

of the <strong>genus</strong> Fusicladium because its conidia are oblong ellipsoidal<br />

to fusiform <strong>and</strong> conidiogenous loci of ramoconidia are placed<br />

closely together. As any other <strong>Cladosporium</strong> species, its conidia<br />

show typical cladosporioid scar structures, however. <strong>Cladosporium</strong><br />

salinae seems to have a separate position within the <strong>genus</strong><br />

<strong>Cladosporium</strong> since it seems to be distantly related to any other<br />

described <strong>Cladosporium</strong> species or currently known species<br />

complex within <strong>Cladosporium</strong>.<br />

176


<strong>Cladosporium</strong> sphaerospermum species complex<br />

Fig. 11. <strong>Cladosporium</strong> salinae. Macro- <strong>and</strong> micromorphological characters. A–D. Colony surface grown on PDA (A), OA (B), MEA (C) <strong>and</strong> MEA plus 5 % NaCl (D) of strains<br />

incubated for 14 d at 25 ºC in darkness. E–F. Habit of conidiophores. G. Conidiophore. H. Detail of apical part of conidiophore. I. Conidia. J. Secondary ramoconidia <strong>and</strong> conidia.<br />

E–J. All from 7-d-old SNA slide cultures. A–D, from EXF-604; E–J, from EXF-335 (ex-type strain). Scale bars A–C = 5 mm, D = 10 mm, E = 100 µm, F = 50 µm, G = 30 µm,<br />

H–J = 10 µm.<br />

<strong>Cladosporium</strong> sphaerospermum Penzig, Michelia 2(8): 473.<br />

1882. Fig. 12.<br />

Mycelium partly submerged, partly superficial; hyphae thick, darkly<br />

pigmented <strong>and</strong> densely septate in submerged mycelium, not<br />

enveloped in polysaccharide-like material. Conidiophores erect or<br />

ascending, micronematous <strong>and</strong> macronematous, stipes of variable<br />

length, (10–)45–130(–300) × (2.5–)3–4(–6) μm, olivaceous-brown,<br />

smooth to minutely verruculose, thick-walled, with relatively<br />

dense septation (cells mostly 4.5–23 long), septa darkened <strong>and</strong><br />

www.studiesinmycology.org<br />

somewhat thickened, arising laterally <strong>and</strong> terminally from immersed<br />

or aerial hyphae, either unbranched or branched. Conidial chains<br />

branching in all directions, up to 6 conidia in the unbranched parts.<br />

Conidiogenous cells not differentiated. Ramoconidia often formed,<br />

cylindrical, (11.5–)20.5–40(–48) × (2.5–)3(–3.5) µm, with up to 5<br />

septa, base broadly truncate, 2 µm wide, slightly thickened <strong>and</strong><br />

somewhat darkened-refractive. Conidia verruculose, brown to<br />

dark brown, non-septate, usually subspherical to spherical, less<br />

often short-ovoid, narrower at both ends, with length : width ratio<br />

= 1.1–1.5; conidial size (2.5–)3–4(–7) × (2–)3–3.5(–4.5) μm [av. (±<br />

177


Zalar et al.<br />

Fig. 12. <strong>Cladosporium</strong> sphaerospermum. Macro- <strong>and</strong> micromorphological characters. A–D. Colony surface grown on PDA (A), OA (B), MEA (C) <strong>and</strong> MEA plus 5 % NaCl (D) of<br />

strains incubated for 14 d at 25 ºC in darkness. E–F. Habit of conidiophores. G–I. Ramoconidia <strong>and</strong> conidia. E–I. All from 7-d-old SNA slide cultures. A, C–D, F–H, from <strong>CBS</strong><br />

193.54 (ex-neotype strain); B, from EXF-738; E, EXF-455; I, EXF-458. Scale bars A–D = 10 mm; E = 100 µm; F = 50 µm; G–I = 10 µm.<br />

SD) 3.8 (± 0.8) × 3.1 (± 0.4)]; secondary ramoconidia cylindrical to<br />

almost spherical, 0–3(–4) septate, (4–)8.5–16(–37.5) × (2–)3–3.5(–<br />

5) μm [av. (± SD) 13.1 (± 6.3) × 3.2 (± 0.5)], with up to 4, rarely up<br />

to 6 distal scars. Conidiogenous scars thickened <strong>and</strong> conspicuous,<br />

protuberant, 0.9–1.1(–1.4) μm diam.<br />

Cultural characteristics: Colonies on PDA reaching 21–44 mm diam,<br />

velvety, olive (2F5) due to profuse sporulation, either with white<br />

<strong>and</strong> regular, or exceptionally undulate margin. Aerial mycelium<br />

sparse. Colonies flat or rarely radially furrowed with elevated<br />

colony centre. Exudates not prominent, some strains release<br />

green soluble pigments into the agar. Reverse blackish blue to pale<br />

green. Growth deep into the agar. Colonies on OA reaching 21–<br />

38 mm diam, olive (2F8), of granular appearance due to profuse<br />

<strong>and</strong> uniform sporulation, almost no aerial mycelium. Margin either<br />

regular or arachnoid, deeply radially furrowed. Reverse black.<br />

Colonies on MEA reaching 15–35 mm diam, velvety, linden-green<br />

(2C5), radially furrowed. Colony centre wrinkled, forming a craterlike<br />

structure; margin furrowed, lighter in colour, consisting of<br />

178


<strong>Cladosporium</strong> sphaerospermum species complex<br />

Fig. 13. <strong>Cladosporium</strong> spinulosum. Macro- <strong>and</strong> micromorphological characters. A–D. Colony surface grown on PDA (A), OA (B), MEA (C) <strong>and</strong> MEA plus 5 % NaCl (D) of strains<br />

incubated for 14 d at 25 ºC in darkness. E. Habit of conidiophores. F–J. Conidiophores. K–L. Conidia (also visible in I–J). E–L. All from 7-d-old SNA slide cultures. A–L, from<br />

EXF-334 (ex-type strain). Scale bars A–D = 10 mm, E = 100 µm, F = 30 µm, G–L = 10 µm.<br />

submerged mycelium. Reverse pale to dark brown. Colonies on<br />

MEA with 5 % NaCl growing faster than on other media, reaching<br />

31–60 mm diam, mainly olive (2D4), either being almost flat or<br />

radially furrowed, with margin of superficial mycelium; sporulation<br />

dense. Reverse ochraceous or dark green.<br />

Maximum tolerated salt concentration: On MEA + 20 % NaCl 89 %<br />

of all strains tested develops colonies after 7 d, 96 % after 14 d.<br />

Cardinal temperatures: No growth at 4 °C, optimum 25 °C (15–35<br />

mm diam), maximum 30 °C (2–15 mm diam). No growth at 37 °C.<br />

Specimen examined: Netherl<strong>and</strong>s, from nail of man, 1949, coll. <strong>and</strong> isol. R.W.<br />

Zappey, <strong>CBS</strong> H-19738, neotype designated here, incorrectly selected by de Vries<br />

(1952) as “lectotype”, culture ex-neotype <strong>CBS</strong> 193.54 = ATCC 11289 = IMI 049637.<br />

Habitats <strong>and</strong> distribution: Hypersaline water in mediterranean<br />

<strong>and</strong> tropics; soil <strong>and</strong> plants in temperate climates; indoor wet<br />

cells; humans. <strong>The</strong> species does not seem to have any particular<br />

preference. Human isolates were probably culture contaminants.<br />

Literature: Penzig (1882), de Vries (1952), Ellis (1971), de Hoog et<br />

al. (2000), Samson et al. (2002).<br />

Diagnostic parameters: Thick-walled, melanised, densely septate<br />

mycelium, almost spherical, verruculose to verrucose terminal<br />

conidia, growth on 20 % NaCl after 7 d.<br />

Strains examined: <strong>CBS</strong> 109.14, <strong>CBS</strong> 122.63, <strong>CBS</strong> 190.54, <strong>CBS</strong><br />

192.54, <strong>CBS</strong> 193.54 (ex-neotype strain), <strong>CBS</strong> 102045, CPC 10944,<br />

EXF-131, EXF-328, EXF-385, EXF-446, EXF-455, EXF-458, EXF-<br />

461, EXF-464, EXF-465, EXF-598, EXF-644, EXF-645, EXF-649,<br />

EXF-715, EXF-738, EXF-739, EXF-781, EXF-962, EXF-965, EXF-<br />

1061, EXF-1726, EXF-1732.<br />

www.studiesinmycology.org<br />

179


Zalar et al.<br />

Fig. 14. <strong>Cladosporium</strong> velox. Macro- <strong>and</strong> micromorphological characters. A–D. Colony surface grown on PDA (A), OA (B), MEA (C) <strong>and</strong> MEA plus 5 % NaCl (D) of strains<br />

incubated for 14 d at 25 ºC in darkness. E–F. Habit of conidiophores. G. Conidiophore. H–I. Secondary ramoconidia <strong>and</strong> conidia. E–I. All from 7-d-old SNA slide cultures. A–D,<br />

G, from <strong>CBS</strong> 119417 (ex-type strain); E–F, H–I, from EXF-466. Scale bars A–D = 10 mm, E = 100 µm, F = 50 µm, G = 30 µm, H–I = 10 µm.<br />

<strong>Cladosporium</strong> spinulosum Zalar, de Hoog & Gunde-Cimerman,<br />

sp. nov. MycoBank MB501099. Fig. 13.<br />

Etymology: Refers to its conspicuously digitate conidia.<br />

Conidiophora erecta vel adscendentia; stipites longitudine variabili, (15–)25–50(–<br />

155) × (2.5–)3–4(–5) μm, olivaceo-brunneus, levis, crassitunicatus, 0–6(–9)-septatus<br />

(cellulis 6–20 μm longis), ex hyphis submersis vel aeriis lateraliter vel terminaliter<br />

oriundus, simplex vel ramosus. Conidiorum catenae undique ramosae, ad 4 conidiis<br />

in partibus linearibus continuis cohaerentibus. Cellulae conidiogenae integratae vel<br />

discretae, acervos distales denticulorum conspicuorum sympodialium proferentes.<br />

Conidia echinulata vel digitata, brunnea vel fusca, continua, vulgo subglobosa vel<br />

globosa, (4.5–)5.5–7(–8) × (3–)4–4.5(–5) μm, long.: lat. = 1.1–1.6, digiti 0.6–1.3<br />

μm longi; ramoconidia secundaria etiam digitata, cylindrica vel subglobosa, 0(–1)-<br />

septata, (6–)6.5–8(–18) × (4–)4.5–5(–5.5) μm, 1–3 cicatrices distales ferentia.<br />

Cicatrices inspissatae, conspicuae, protuberantes, 0.8–1.2 μm diam. Hyphae<br />

nonnumquam polysaccharido circumdatae.<br />

Hyphae sometimes enveloped in polysaccharide-like material.<br />

Conidiophores erect or ascending, stipes of variable length, (15–)<br />

180


<strong>Cladosporium</strong> sphaerospermum species complex<br />

25–50(–155) × (2.5–)3–4(–5) μm, olivaceous-brown, smooth,<br />

sometimes irregularly rough-walled to verrucose near the base,<br />

thick-walled, 0–6(–9)-septate (cells mostly 6–20 μm long), arising<br />

laterally <strong>and</strong> terminally from immersed or aerial hyphae, either<br />

unbranched or branched, somewhat tapering towards the apex.<br />

Conidial chains branching in all directions, up to 4 conidia in the<br />

unbranched parts. Conidiogenous cells sometimes integrated,<br />

producing sympodial clusters of pronounced denticles at their distal<br />

ends. Ramoconidia rarely formed. Conidial wall ornamentation<br />

conspicuously digitate, with up to 1.3 μm long projections having<br />

parallel sides <strong>and</strong> blunt ends. Conidia brown to dark brown,<br />

aseptate, usually subspherical to spherical, length : width ratio =<br />

1.1–1.6; conidial size (4.5–)5.5–7(–8) × (3–)4–4.5(–5) μm [av. (±<br />

SD) 6.2 (± 1.0) × 4.2 (± 0.5)]; secondary ramoconidia ornamented<br />

as conidia, cylindrical to almost spherical, 0(–1)-septate, (6–)6.5–<br />

8(–18) × (4–)4.5–5(–5.5) μm [av. (± SD) 8.6 (± 4.0) × 4.8 (± 0.4)],<br />

with up to 3 distal scars. Conidiogenous scars thickened <strong>and</strong><br />

conspicuous, protuberant, 0.8–1.2 μm diam.<br />

Cultural characteristics: Colonies on PDA reaching 20–30 mm<br />

diam, velvety, dull green (29E4) to dark green (29F6) due to profuse<br />

sporulation, either with white <strong>and</strong> regular, or undulate margin. Aerial<br />

mycelium sparse. Colonies flat or radially furrowed with elevated<br />

colony centre. Growth deep into the agar. Exudates not prominent.<br />

Colonies on OA reaching 20–25 mm diam, dull green (29E4) to dark<br />

green (29F6), sometimes olive (3D4), of granular appearance due<br />

to profuse <strong>and</strong> uniform sporulation; almost without aerial mycelium.<br />

Margin arachnoid. Reverse pale brown to black. Colonies on MEA<br />

reaching 17–28 mm diam, velvety, dull green (29E4) to dark green<br />

(29F6), either flat or radially furrowed. Colony centre wrinkled,<br />

forming a crater-like structure; margin furrowed, paler in colour,<br />

consisting of submerged mycelium only. Reverse pale to dark<br />

green. Colonies on MEA with 5 % NaCl reaching 12–18 mm diam,<br />

of different colours, greenish grey (29D2), greyish green (29D5)<br />

to dark green (29F6); colony appearance variable, mostly either<br />

being almost flat with immersed colony centre or radially furrowed,<br />

with white to dark green margin consisting of superficial mycelium;<br />

sporulation dense. Reverse pale to dark green.<br />

Maximum tolerated salt concentration: On MEA + 17 % NaCl, two<br />

of three strains tested developed colonies after 14 d.<br />

Cardinal temperatures: Growth at 4 °C, optimum <strong>and</strong> maximum at<br />

25 °C (17–28 mm). No growth at 30 °C.<br />

Specimen examined: Slovenia, from hypersaline water of Sečovlje salterns, coll.<br />

<strong>and</strong> isol. S. Sonjak, Feb. 1999, <strong>CBS</strong> H-19796, holotype, culture ex-type EXF-334<br />

= <strong>CBS</strong> 119907.<br />

Habitats <strong>and</strong> distribution: Hypersaline water in temperate climate.<br />

Diagnostic parameters: Conidia <strong>and</strong> ramoconidia with a digitate<br />

ornamentation.<br />

Strains examined: EXF-334 (= <strong>CBS</strong> 119907; ex-type strain), EXF-<br />

382.<br />

Notes: <strong>Cladosporium</strong> spinulosum is a member of the C. herbarum<br />

species complex (Figs 2–4) although its globoid conidia are<br />

reminiscent of C. sphaerospermum. Within <strong>Cladosporium</strong>, the<br />

species is unique in having conspicuously digitate conidia <strong>and</strong><br />

ramoconidia. <strong>The</strong> two strains are differing in the size of conidia.<br />

<strong>The</strong> average size of conidia in EXF-334 is 6.2 (± 0.9) × 4.2 (± 0.5)<br />

μm, <strong>and</strong> in EXF-382 it is 3.9 (± 0.6) × 3.3 (± 0.4) μm.<br />

<strong>Cladosporium</strong> velox Zalar, de Hoog & Gunde-Cimerman, sp. nov.<br />

MycoBank MB492435. Fig. 14.<br />

Etymology: Refers to the quick growth of strains of this species.<br />

Mycelium partim submersum; hyphae vagina polysaccharidica carentes.<br />

Conidiophora erecta, lateralia vel terminalia ex hyphis aeriis oriunda; stipes (10–)<br />

25–150(–250) × (2.5–)3–4(–4.5) μm, olivaceo-brunneus, levis, crassitunicatus, ad<br />

7–septatus (cellulis 10–60 μm longis), identidem dichotome ramosus. Conidiorum<br />

catenae undique divergentes, terminales partes simplices ad 5 conidia continentes.<br />

Cellulae conidiogenae indistinctae. Conidia levia vel leniter verruculosa, dilute<br />

brunnea, unicellularia, ovoidea, (2–)3–4(–5.5) × (1.5–)2–2.5(–3) μm, long. : lat.<br />

1.4–1.7; ramoconidia secundaria cylindrica, 0–1-septata, (3.5–)5.5–19(–42) ×<br />

(2–)2.5–3(–4.5) μm, ad 4(–5) cicatrices terminales ferentia; cicatrices inspissatae,<br />

protuberantes, conspicuae, 0.5–1.5 μm diam.<br />

Mycelium partly superficial partly submerged; hyphae without<br />

extracellular polysaccharide-like material. Conidiophores erect,<br />

stipes (10–)25–150(–250) × (2.5–)3–4(–4.5) μm, slightly attenuated<br />

towards the apex, olivaceous-brown, smooth- <strong>and</strong> thick-walled,<br />

arising terminally <strong>and</strong> laterally from aerial hyphae, dichotomously<br />

branched [up to 5(–7)-septate, cell length 10–60 μm]. Ramoconidia<br />

rarely formed. Conidial chains branching in all directions, terminal<br />

chains with up to 5 conidia. Conidia smooth to very finely<br />

verruculose, pale brown, non-septate, ovoid, length : width ratio<br />

= 1.4–1.7; (2–)3–4(–5.5) × (1.5–)2–2.5(–3) μm [av. (± SD) 3.6 (±<br />

0.6) × 2.3 (± 0.2)]; secondary ramoconidia cylindrical, 0–1-septate,<br />

(3.5–)5.5–19(–42) × (2–)2.5–3(–4.5) μm [av. (± SD) 13.4 (± 10.2)<br />

× 2.8 (± 0.5)], with up to 4(–5) distal scars. Conidiogenous scars<br />

thickened <strong>and</strong> conspicuous, protuberant, 0.5–1.5 μm diam.<br />

Cultural characteristics: Colonies on PDA reaching 35–45 mm<br />

diam, velvety, dark green due to profuse sporulation, on some parts<br />

covered with white sterile mycelium, flat with straight white margin.<br />

Reverse dark green to black. Colonies on OA reaching 30–43 mm<br />

diam, dark green, mycelium submerged, aerial mycelium sparse.<br />

Margin regular. Reverse black. Colonies on MEA reaching 30–42<br />

mm diam, pale green, radially furrowed, with raised, crater-shaped<br />

central part, with white, undulate, submerged margin. Sporulation<br />

poor. Colonies on MEA with 5 % NaCl reaching 35–45 mm diam,<br />

pale green, velvety, flat with regular margin. Reverse pale green.<br />

Sporulation poor.<br />

Maximum tolerated salt concentration: 20 % NaCl after 14 d.<br />

Cardinal temperatures: Minimum at 10 °C (9 mm diam), optimum at<br />

25 °C (30–42 mm diam) <strong>and</strong> maximum at 30 °C (5–18 mm diam).<br />

Specimen examined: India, Charidij, isolated from Bambusa sp., W. Gams, <strong>CBS</strong><br />

H-19735, holotype, culture ex-type <strong>CBS</strong> 119417.<br />

Habitats <strong>and</strong> distribution: Hypersaline water in Slovenia; bamboo,<br />

India.<br />

Strains examined: <strong>CBS</strong> 119417 (ex-type strain), EXF-466, EXF-<br />

471.<br />

ACKNOWLEDGEMENTS<br />

<strong>The</strong> authors are grateful to Walter Gams for his comments on the manuscript<br />

<strong>and</strong> for providing Latin diagnoses, <strong>and</strong> to Konstanze Schubert for contributions to<br />

species descriptions. We thank Kazimir Drašlar <strong>and</strong> Marko Lutar for preparing SEM<br />

illustrations, <strong>and</strong> Kasper Luijsterburg, Špela Štrekelj <strong>and</strong> Barbara Kastelic-Bokal for<br />

their technical assistance. <strong>The</strong> research was partially supported by the European<br />

Union-funded Integrated Infrastructure Initiative grant SYNTHESYS Project NL-<br />

TAF-1070.<br />

www.studiesinmycology.org<br />

181


Zalar et al.<br />

REFERENCES<br />

Aihara M, Tanaka T, Ohta T, Takatori K (2002). Effect of temperature <strong>and</strong> water<br />

activity on the growth of <strong>Cladosporium</strong> sphaerospermum <strong>and</strong> <strong>Cladosporium</strong><br />

cladosporioides. Biocontrol Science 7: 193–196.<br />

Aihara M, Tanaka T, Takatori K (2001). <strong>Cladosporium</strong> as the main fungal contaminant<br />

of locations in dwelling environments. Biocontrol Science 6: 49–52.<br />

Aptroot A (2006). Mycosphaerella <strong>and</strong> its anamorphs: 2. Conspectus of<br />

Mycosphaerella. <strong>CBS</strong> Biodiversity Series 5: 1–231.<br />

Arx JA von (1950). Über die Ascusform von <strong>Cladosporium</strong> herbarum (Pers.) Link.<br />

Sydowia 4: 320–324.<br />

Badillet G, Bièvre C de, Spizajzen S (1982). Isolement de dématiées à partir d’ongles<br />

et de squames. Bulletin de la Société Française de Mycologie 11: 69–72.<br />

Braun U, Crous PW, Dugan F, Groenewald JZ, Hoog GS de (2003). Phylogeny <strong>and</strong><br />

taxonomy of cladosporium-like hyphomycetes, including Davidiella gen. nov.,<br />

the teleomorph of <strong>Cladosporium</strong> s. str. Mycological Progress 2: 3–18.<br />

Butinar L, Sonjak S, Zalar P, Plemenitaš A, Gunde-Cimerman N (2005). Melanized<br />

halophilic fungi are eukaryotic members of microbial communities in hypersaline<br />

waters of solar salterns. Botanica Marina 48: 73–79.<br />

Buzina W, Braun H, Freudenschuss K, Lackner A, Stammberger H (2003). Fungal<br />

biodiversity as found in nasal mucus. Medical Mycology 41: 149–161.<br />

Carbone I, Kohn LM (1999). A method for designing primer sets for speciation<br />

studies in filamentous ascomycetes. Mycologia 91: 553–556.<br />

Clements FE, Shear CL (1931). <strong>The</strong> genera of fungi. New York: H.W. Wilson Co.<br />

Crous PW, Braun U, Groenewald JZ (2007a). Mycosphaerella is polyphyletic.<br />

Studies in Mycology 58: 1-32.<br />

Crous PW, Groenewald JZ, Pongpanich K, Himaman W, Arzanlou M, Wingfield MJ<br />

(2004). Cryptic speciation <strong>and</strong> host specificity among Mycosphaerella spp.<br />

occurring on Australian Acacia species grown as exotics in the tropics. Studies<br />

in Mycology 50: 457–469.<br />

Crous PW, Schubert K, Braun U, Hoog GS de, Hocking AD, Shin H-D, Groenewald<br />

JZ (2007b). Opportunistic, human-pathogenic species in the Herpotrichiellaceae<br />

are phenotypically <strong>similar</strong> to saprobic or phytopathogenic species in the<br />

Venturiaceae. Studies in Mycology 58: 185-217.<br />

Crous PW, Verkley GJM, Groenewald JZ (2006). Eucalyptus microfungi known from<br />

culture. 1. Cladoriella <strong>and</strong> Fulvoflamma genera nova, with notes on some other<br />

poorly known taxa. Studies in Mycology 55: 53–63.<br />

Curtis MD, Gore J, Oliver RP (1994). <strong>The</strong> phylogeny of the tomato leaf mould fungus<br />

<strong>Cladosporium</strong> fulvum syn. Fulvia fulva by analysis of rDNA sequences. Current<br />

Genetics 25: 318–322.<br />

David JC (1997). A contribution to the systematics of <strong>Cladosporium</strong>. Revision of the<br />

fungi previously referred to Heterosporium. Mycological Papers 172: 1–157.<br />

Ellis MB (1971). Dematiaceous Hyphomycetes. Commonwealth Mycological<br />

Institute, Kew.<br />

Fonseca FOOR da, Area Leão AE de, Peñido NJJC (1927a). Mycose de type<br />

ulcéro-nodulaire, semblable à la sporotrichose et produite par Hormodendrum<br />

langeronii. Comptes-rendus des Séances de la Société de Biologie 97: 1772–<br />

1774.<br />

Fonseca FOOR da, Area Leão AE de, Peñido NJJC (1927b). Mycose de type<br />

ulcéro-nodulaire, semlable à la sporotrichose et produite par Hormodendrum<br />

langeronii. Sciencia Medica 5: 563–573.<br />

Gams W, Verkleij GJM, Crous PW (2007). <strong>CBS</strong> Course of Mycology, 5 th ed.<br />

Centraalbureau voor Schimmelcultures, Utrecht, Netherl<strong>and</strong>s.<br />

Gerrits van den Ende AHG, Hoog GS de (1999). Variability <strong>and</strong> molecular diagnostics<br />

of the neurotropic species Cladophialophora bantiana. Studies in Mycology 43:<br />

151–162.<br />

Gunde-Cimerman N, Zalar P, Hoog GS de, Plemenitaš A (2000). Hypersaline<br />

water in salterns – natural ecological niches for halophilic black yeasts. FEMS<br />

Microbiology Ecology 32: 235–240.<br />

Haubold EM, Aronson JF, Cowan DF, McGinnis MR, Cooper CR (1998). Isolation<br />

of fungal rDNA from bottlenose dolphin skin infected with Loboa loboi. Medical<br />

Mycology 36: 263–267.<br />

Herr RA, Tarcha EJ, Taborda PR, Taylor JW, Ajello L, Mendoza L (2001).<br />

Phylogenetic analysis of Lacazia loboi places this previously uncharacterised<br />

pathogen within the dimorphic Onygenales. Journal of Clinical Microbiology<br />

39: 309–314.<br />

Ho MHM, Castañeda RF, Dugan FM, Jong SC (1999). <strong>Cladosporium</strong> <strong>and</strong><br />

Cladophialophora in culture: descriptions <strong>and</strong> an exp<strong>and</strong>ed key. Mycotaxon<br />

72: 115–157.<br />

Hocking AD, Miscamble BF, Pitt J (1994). Water relations of Alternaria alternata,<br />

<strong>Cladosporium</strong> cladosporioides, <strong>Cladosporium</strong> sphaerospermum, Curvularia<br />

lunata <strong>and</strong> Curvularia pallescens. Mycological Research 98: 91–94.<br />

Hoog GS de, Gerrits van den Ende AHG (1998). Molecular diagnostics of clinical<br />

strains of filamentous Basidiomycetes. Mycoses 41: 183–189.<br />

Hoog GS de, Guarro J, Gené J, Figueras MA (2000). Atlas of Clinical Fungi, 2 nd ed.<br />

Centraalbureau voor Schimmelcultures, Utrecht / Universitat Rovira i Virgili,<br />

Reus.<br />

Hoog GS de, Zalar P, Urzì C, Leo F de, Yurlova NA, Sterflinger K (1999). Relationships<br />

of dothideaceous black yeasts <strong>and</strong> meristematic fungi based on 5.8S <strong>and</strong> ITS2<br />

rDNA sequence comparison. Studies in Mycology 43: 31–37.<br />

Jeannmougin F, Thompson JD, Gouy M, Higgins DG, Gibson TJ (1998). Multiple<br />

sequence alignment with ClustalX. Trends in Biochemical Sciences 23: 403–<br />

405.<br />

Kantarcioglu AS, Yucel A, Hoog GS de (2002). Case report. Isolation of <strong>Cladosporium</strong><br />

cladosporioides from cerebrospinal fluid. Mycoses 45: 500–503.<br />

Kirk P, Cannon P, David J, Stalpers J (2001). Ainsworth <strong>and</strong> Bisby’s Dictionary of the<br />

Fungi. 9 th edn. Wallingford, UK. CAB International.<br />

Kornerup A, Wanscher JH (1967). Methuen H<strong>and</strong>book of Colour. 2 nd edn. Methuen<br />

Co., London.<br />

Kumar S, Tamura K, Nei M (2004). MEGA3: integrated software for molecular<br />

evolutionary genetics analysis <strong>and</strong> sequence alignment. Briefings in<br />

Bioinformatics 5: 150–163.<br />

Lacaz CS (1996). Paracoccidioides loboi (Fonseca Filho et Arêa Leão, 1940)<br />

Almeida et Lacaz, 1948–1949. Description of the fungus in Latin. Revista<br />

Instituto Medicina Tropical São Paulo 38: 229–231.<br />

Link HF (1816). Observationes in ordines plantarum naturales III. Magazin der<br />

Gesellschaft Naturforschender Freunde Berlin 7: 37–38.<br />

Masclaux F, Guého E, Hoog GS de, Christen R (1995). Phylogenetic relationships of<br />

human-pathogenic <strong>Cladosporium</strong> (Xylohypha) species inferred from partial LS<br />

rRNA sequences. Journal of Medical <strong>and</strong> Veterinary Mycology 33: 327–338.<br />

McKemy JM & Morgan-Jones G (1991). Studies in the <strong>genus</strong> <strong>Cladosporium</strong> sensu<br />

lato. V. Concerning the type species, <strong>Cladosporium</strong> herbarum. Mycotaxon 42:<br />

307–317.<br />

Meklin T, Haugl<strong>and</strong> RA, Reponen T, Varma M, Lummus Z, Bernstein D, Wymer<br />

LJ, Vesper SJ (2004). Quantitative PCR analysis of house dust can reveal<br />

abnormal mold conditions. Journal of Environmental Monitoring 6: 615–620.<br />

Menkis A, Vasiliauskas R, Taylor AFS, Stenlid J, Finlay R (2005). Fungal<br />

communities in mycorrhizal roots of conifer seedlings in forest nurseries under<br />

different cultivation systems, assessed by morphotyping, direct sequencing<br />

<strong>and</strong> mycelial isolation. Mycorrhiza 16: 33–41.<br />

Moricca S, Ragazzi A, Mitchelson KR (1999). Molecular <strong>and</strong> conventional detection<br />

<strong>and</strong> identification of <strong>Cladosporium</strong> tenuissimum on two-needle pine rust<br />

aeciospores. Canadian Journal of Botany 77: 339–347.<br />

O’Donnell K, Cigelnik E (1997). Two divergent intragenomic rDNA ITS2 types within<br />

a monophyletic lineage of the fungus Fusarium are nonorthologous. Molecular<br />

Phylogenetic Evolution 7: 103–116.<br />

Park HG, Managbanag JR, Stamenova EK, Jong SC (2004). Comparative analysis<br />

of common indoor <strong>Cladosporium</strong> species based on molecular data <strong>and</strong> conidial<br />

characters. Mycotaxon 89: 441–451.<br />

Penzig AJO (1882). Fungi Agromiculi. Michelia 2: 385–503.<br />

Pereira PT, Carvalho MM de, Girio FM, Roseiro JC, Amaral-Collaco MT (2002).<br />

Diversity of microfungi in the phylloplane of plants growing in a Mediterranean<br />

ecosystem. Journal of Basic Microbiology 42: 396–407.<br />

Phillips G, Hudson S, Stewart WK (1992). Microbial growth <strong>and</strong> blockage of subfloor<br />

drains in a renal dialysis centre: a problem highlighted. Journal of Hospital<br />

Infection 21: 193–198.<br />

Pitt JI (1979). <strong>The</strong> Genus Penicillium <strong>and</strong> its teleomorphic states Eupenicillium <strong>and</strong><br />

Talaromyces. Academic Press, London.<br />

Prasil K, Hoog GS de (1988). Variability in <strong>Cladosporium</strong> herbarum. Transactions of<br />

the British Mycological Society 90: 49–54.<br />

Samson RA, Hoekstra ES, Frisvad JC, Filtenborg O (2002). Introduction to Food<strong>and</strong><br />

Airborne Fungi, 6 th ed. Centraalbureau voor Schimmelcultures, Utrecht.<br />

Schoch C, Shoemaker RA, Seifert, KA, Hambleton S, Spatafora JW, Crous PW<br />

(2006). A multigene phylogeny of the Dothideomycetes using four nuclear loci.<br />

Mycologia 98: 1043–1054.<br />

Schubert K, Groenewald JZ, Braun U, Dijksterhuis J, Starink M, Hill CF, Zalar P,<br />

Hoog GS de, Crous PW (2007). Biodiversity in the <strong>Cladosporium</strong> herbarum<br />

(Davidiellaceae, Capnodiales), with st<strong>and</strong>ardisation of methods for<br />

<strong>Cladosporium</strong> taxonomy <strong>and</strong> diagnostics. Studies in Mycology 58: 105–156.<br />

Seifert KA, Nickerson NL, Corlett M, Jackson ED, Louis-Seize G, Davies RJ<br />

(2004). Devriesia, a new hyphomycete <strong>genus</strong> to accommodate heat-resistant,<br />

cladosporium-like fungi. Canadian Journal of Botany 82: 914–926.<br />

Summerbell RC, Cooper E, Bunn U, Jamieson F, Gupta AK (2005). Onychomycosis:<br />

a critical study of techniques <strong>and</strong> criteria confirming the etiologic significance of<br />

nondermatophytes. Medical Mycology 43: 39–59.<br />

Swofford DL (2003). PAUP*. Phylogenetic Analysis Using Parsimony (*<strong>and</strong> Other<br />

Methods). Version 4. Sinauer Associates, Sunderl<strong>and</strong>, Massachusetts.<br />

Trejos A (1954). <strong>Cladosporium</strong> carrionii n. sp. <strong>and</strong> the problem of cladosporia<br />

isolated from chromoblastomycosis. Revista de Biología Tropical 2: 75–112.<br />

Vries GA de (1952). Contribution to the knowledge of the <strong>genus</strong> <strong>Cladosporium</strong> Link<br />

ex Fr. Baarn, 121 pp. Dissertation, University of Utrecht.<br />

Vuillemin P (1931). Les champignons parasites et les mycoses de l’homme.<br />

Encyclopédie Mycologique 2: 1–290.<br />

182


<strong>Cladosporium</strong> sphaerospermum species complex<br />

White TJ, Bruns T, Lee S, Taylor J (1990). Amplification <strong>and</strong> direct sequencing of<br />

fungal ribosomal RNA genes for phylogenetics. In: PCR Protocols: a guide to<br />

methods <strong>and</strong> applications (Innis MA, Gelf<strong>and</strong> DH, Sninsky JJ, White TJ, eds).<br />

Academic Press, San Diego, California: 315–322.<br />

Wirsel SGR, Runge-Froböse C, Ahren DG, Kemen E, Oliver RP, Mendgen,<br />

KW (2002). Four or more species of <strong>Cladosporium</strong> sympatrically colonize<br />

Phragmites australis. Fungal Genetics <strong>and</strong> Biology 25: 99–113.<br />

Yano S, Koyabashi K, Kato K (2002). Intrabronchial lesion due to <strong>Cladosporium</strong><br />

sphaerospermum in a healthy, non-asthmatic woman. Mycoses 46: 348–350.<br />

www.studiesinmycology.org<br />

183


available online at www.studiesinmycology.org<br />

doi:10.3114/sim.2007.58.07<br />

Studies in Mycology 58: 185–217. 2007.<br />

Opportunistic, human-pathogenic species in the Herpotrichiellaceae are<br />

phenotypically <strong>similar</strong> to saprobic or phytopathogenic species in the<br />

Venturiaceae<br />

P.W. Crous 1* , K. Schubert 2 , U. Braun 3 , G.S. de Hoog 1 , A.D. Hocking 4 , H.-D. Shin 5 <strong>and</strong> J.Z. Groenewald 1<br />

1<br />

<strong>CBS</strong> Fungal Biodiversity Centre, P.O. Box 85167, 3508 AD, Utrecht, <strong>The</strong> Netherl<strong>and</strong>s; 2 Botanische Staatssammlung München, Menzinger Strasse 67, D-80638 München,<br />

Germany; 3 Martin-Luther-Universität, Institut für Biologie, Geobotanik und Botanischer Garten, Herbarium, Neuwerk 21, D-06099 Halle, Germany; 4 CSIRO Food Science<br />

Australia, 11 Julius Avenue, North Ryde, NSW 2113, Australia; 5 Division of Environmental Science & Ecological Engineering, Korea University, Seoul 136-701, Korea<br />

*Correspondence: Pedro W. Crous, p.crous@cbs.knaw.nl<br />

Abstract: Although morphologically <strong>similar</strong>, species of Cladophialophora (Herpotrichiellaceae) were shown to be phylogenetically distinct from Pseudocladosporium<br />

(Venturiaceae), which was revealed to be synonymous with the older <strong>genus</strong>, Fusicladium. Other than being associated with human disorders, species of Cladophialophora<br />

were found to also be phytopathogenic, or to occur as saprobes on organic material, or in water, fruit juices, or sports drinks, along with species of Exophiala. Caproventuria<br />

<strong>and</strong> Metacoleroa were confirmed to be synonyms of Venturia, which has Fusicladium (= Pseudocladosporium) anamorphs. Apiosporina, based on A. collinsii, clustered<br />

basal to the Venturia clade, <strong>and</strong> appears to represent a further synonym. Several species with a pseudocladosporium-like morphology in vitro represent a sister clade to the<br />

Venturia clade, <strong>and</strong> are unrelated to Polyscytalum. <strong>The</strong>se taxa are newly described in Fusicladium, which is morphologically close to Anungitea, a heterogeneous <strong>genus</strong> with<br />

unknown phylogenetic affinity. In contrast to the Herpotrichiellaceae, which were shown to produce numerous synanamorphs in culture, species of the Venturiaceae were<br />

morphologically <strong>and</strong> phylogenetically more uniform. Several new species <strong>and</strong> new combinations were introduced in Cladophialophora, Cyphellophora (Herpotrichiellaceae),<br />

Exophiala, Fusicladium, Venturia (Venturiaceae), <strong>and</strong> Cylindrosympodium (incertae sedis).<br />

Taxonomic novelties: Cladophialophora australiensis Crous & A.D. Hocking, sp. nov., Cladophialophora chaetospira (Grove) Crous & Arzanlou, comb. nov., Cladophialophora<br />

hostae Crous, U. Braun & H.D. Shin, sp. nov., Cladophialophora humicola Crous & U. Braun, sp. nov., Cladophialophora potulentorum Crous & A.D. Hocking, sp. nov.,<br />

Cladophialophora scillae (Deighton) Crous, U. Braun & K. Schub., comb. nov., Cladophialophora sylvestris Crous & de Hoog, sp. nov., Cylindrosympodium lauri Crous &<br />

R.F. Castañeda, sp. nov., Cyphellophora hylomeconis Crous, de Hoog & H.D. Shin, sp. nov., Exophiala eucalyptorum Crous, sp. nov., Fusicladium africanum Crous, sp. nov.,<br />

Fusicladium amoenum (R.F. Castañeda & Dugan) Crous, K. Schub. & U. Braun, comb. nov., Fusicladium brevicatenatum (U. Braun & Feiler) Crous, U. Braun & K. Schub.,<br />

comb. nov., Fusicladium fagi Crous & de Hoog, sp. nov., Fusicladium intermedium (Crous & W.B. Kendr.) Crous, comb. nov., Fusicladium matsushimae (U. Braun & C.F. Hill)<br />

Crous, U. Braun & K. Schub., comb. nov., Fusicladium pini Crous & de Hoog, sp. nov., Fusicladium ramoconidii Crous & de Hoog, sp. nov., Fusicladium rhodense Crous & M.J.<br />

Wingf., sp. nov., Venturia hystrioides (Dugan, R.G. Roberts & Hanlin) Crous & U. Braun, comb. nov.<br />

Key words: Anungitea, Anungitopsis, Cladophialophora, Exophiala, Fusicladium, phylogeny, Pseudocladosporium, systematics, Venturia.<br />

Introduction<br />

Species of Cladophialophora Borelli are relatively simple<br />

hyphomycetes with brown hyphae that give rise to branched chains<br />

of pale brown conidia. Phylogenetically they are defined to belong to<br />

the Chaetothyriales (Haase et al. 1999, Untereiner 2000), an order<br />

containing numerous opportunists (de Hoog et al. 2000); teleomorph<br />

relationships are with Capronia Sacc. in the Herpotrichiellaceae.<br />

In several cases cladophialophora-like synanamorphs are found<br />

accompanying black yeasts of the <strong>genus</strong> Exophiala J.W. Carmich.<br />

(de Hoog et al. 1995). Braun & Feiler (1995) placed several saprobic<br />

hyphomycetes in Cladophialophora, <strong>and</strong> described Capronia<br />

hanliniana U. Braun & Feiler as teleomorph of Cladophialophora<br />

brevicatenata U. Braun & Feiler. This work was continued by Dugan<br />

et al. (1995), who described an additional teleomorph, Capronia<br />

hystrioides Dugan, R.G. Roberts & Hanlin for Cladophialophora<br />

hachijoensis (Matsush.) U. Braun & Feiler. Untereiner (1997)<br />

reduced Capronia hystrioides to synonymy with C. hanliniana,<br />

<strong>and</strong> placed them in Venturia Sacc. (Venturiaceae, Pleosporales).<br />

<strong>The</strong> concept of Cladophialophora hachijoensis, which is based<br />

on Phaeoramularia hachijoensis Matsush. (Matsushima 1975) is<br />

confused, however, <strong>and</strong> phylogenetic studies have revealed that<br />

isolates attributed to this name in recent studies, were in fact<br />

representatives of three different species in phylogenetically distinct<br />

genera (Braun et al. 2003). <strong>The</strong> separation of Cladophialophora<br />

with Capronia teleomorphs (Herpotrichiellaceae, Chaetothyriales;<br />

commonly isolated as human pathogens), from predominantly<br />

saprobic or phytopathogenic isolates in the Dothideomycetes<br />

was recognised by Braun (1998). Recently the cactus endophyte<br />

Cladophialophora yegresii de Hoog was reported to be the nearest<br />

neighbour of C. carrionii (Trejos) de Hoog et al., a major agent<br />

of human chromoblastomycosis (de Hoog et al. 2007), so that<br />

the main distinction between the two anamorph genera remains<br />

in their phylogenetic positions. Capronia hanliniana <strong>and</strong> C.<br />

hystrioides were again recognised as distinct species, <strong>and</strong> placed<br />

in a new <strong>genus</strong>, Caproventuria U. Braun (Venturiaceae), while their<br />

anamorphs were accommodated in Pseudocladosporium U. Braun.<br />

Caproventuria was primarily distinguished from Venturia based on<br />

its distinct Pseudocladosporium anamorphs. Recently, Crous et al.<br />

(2007b) introduced a third <strong>genus</strong>, namely Sympoventuria Crous &<br />

Seifert, which produces a sympodiella-like anamorph in culture. To<br />

complicate matters further, Beck et al. (2005) concluded, based on<br />

an ITS DNA phylogeny, that the morphology attributed to the form<br />

genera Spilocaea Fr., Pollaccia E. Bald. & Cif., <strong>and</strong> Fusicladium<br />

Bonord. has evolved several times within Venturia, <strong>and</strong> that a single<br />

anamorph <strong>genus</strong> should be used for Venturia, namely Fusicladium<br />

(see Schubert et al. 2003 for additional generic synonyms).<br />

In their treatment of Venturia anamorphs, Schubert et al.<br />

(2003) excluded Pseudocladosporium, <strong>and</strong> stated that its status<br />

needs to be confirmed along with that of other genera such as<br />

Anungitea B. Sutton, Fusicladium <strong>and</strong> Polyscytalum Riess. In the<br />

study by Beck et al. (2005) an isolate of Caproventuria hystrioides<br />

(Pseudocladosporium sp.) was included to confirm the link to<br />

the Venturiaceae, though this was not well resolved, nor was the<br />

status of the older generic names mentioned above addressed.<br />

185


Crous et al.<br />

<strong>The</strong> aim of the present study, therefore, was to use DNA sequence<br />

comparisons in conjunction with morphology in an attempt to clarify<br />

these generic issues, as well as to determine which morphological<br />

characters could be used to distinguish Pseudocladosporium from<br />

Cladophialophora.<br />

Materials <strong>and</strong> methods<br />

Isolates<br />

Cultures were obtained from the Centraalbureau voor<br />

Schimmelcultures (<strong>CBS</strong>) in Utrecht, the Netherl<strong>and</strong>s, or isolated<br />

from plant material incubated in moist chambers to promote<br />

sporulation. Isolates were cultured on 2 % malt extract plates<br />

(MEA; Gams et al. 2007), by obtaining single conidial colonies as<br />

explained in Crous (2002). Colonies were subcultured onto fresh<br />

MEA, oatmeal agar (OA), potato-dextrose agar (PDA) <strong>and</strong> synthetic<br />

nutrient-poor agar (SNA) (Gams et al. 2007), <strong>and</strong> incubated at 25<br />

°C under continuous near-ultraviolet light to promote sporulation.<br />

DNA extraction, amplification <strong>and</strong> phylogeny<br />

Fungal colonies were established on agar plates, <strong>and</strong> genomic<br />

DNA was isolated following the CTAB-based protocol described<br />

in Gams et al. (2007). <strong>The</strong> primers V9G (de Hoog & Gerrits van<br />

den Ende 1998) <strong>and</strong> LR5 (Vilgalys & Hester 1990) were used to<br />

amplify part (ITS) of the nuclear rDNA operon spanning the 3’ end<br />

of the 18S rRNA gene (SSU), the first internal transcribed spacer<br />

(ITS1), the 5.8S rRNA gene, the second ITS region <strong>and</strong> the 5’<br />

end of the 28S rRNA gene (LSU). Four internal primers, namely<br />

ITS4 (White et al. 1990), LR0R (Rehner & Samuels 1994), LR3R<br />

(www.biology.duke.edu/fungi/mycolab/primers.htm), <strong>and</strong> LR16<br />

(Moncalvo et al. 1993), were used for sequencing to ensure good<br />

quality overlapping sequences were obtained. <strong>The</strong> PCR conditions,<br />

sequence alignment <strong>and</strong> subsequent phylogenetic analysis followed<br />

the methods of Crous et al. (2006a). <strong>The</strong> ITS1, ITS2 <strong>and</strong> 5.8S rRNA<br />

gene were only sequenced for isolates of which these data were<br />

not available. <strong>The</strong> ITS data were not included in the analyses but<br />

deposited in GenBank where applicable. Gaps longer than 10<br />

bases were coded as single events for the phylogenetic analyses;<br />

the remaining gaps were treated as missing data. Sequence data<br />

were deposited in GenBank (Table 1) <strong>and</strong> alignments in TreeBASE<br />

(www.treebase.org).<br />

Taxonomy<br />

Structures were mounted in lactic acid, <strong>and</strong> 30 measurements<br />

(× 1 000 magnification) determined wherever possible, with the<br />

extremes of spore measurements given in parentheses. Colony<br />

colours (surface <strong>and</strong> reverse) were assessed after 2–4 wk on OA<br />

<strong>and</strong> PDA at 25 °C in the dark, using the colour charts of Rayner<br />

(1970). All cultures obtained in this study are maintained in the <strong>CBS</strong><br />

collection (Table 1). Nomenclatural novelties <strong>and</strong> descriptions were<br />

deposited in MycoBank (www.MycoBank.org).<br />

Results<br />

DNA phylogeny<br />

Amplicons of approximately 1 700 bases were obtained for the<br />

isolates listed in Table 1. <strong>The</strong>se sequences were used to obtain<br />

additional sequences from GenBank which were added to the<br />

alignment. <strong>The</strong> manually adjusted LSU alignment contained 116<br />

sequences (including the two outgroup sequences) <strong>and</strong> 1 157<br />

characters including alignment gaps (available in TreeBASE).<br />

Of the 830 characters used in the phylogenetic analysis, 326<br />

were parsimony-informative, 79 were variable <strong>and</strong> parsimonyuninformative,<br />

<strong>and</strong> 425 were constant. Neighbour-joining analyses<br />

using three substitution models on the sequence data yielded trees<br />

with identical topologies to one another. <strong>The</strong> neighbour-joining trees<br />

support the same clades as obtained from the parsimony analysis,<br />

but with a different arrangement at the deep nodes, for example,<br />

the clade containing Protoventuria alpina (Sacc.) M.E. Barr (<strong>CBS</strong><br />

140.83) is placed as sister to the Venturiaceae using parsimony but<br />

basal to the Herpotrichiellaceae using neighbour-joining. Because<br />

of the large number of different strain associations in the Venturia<br />

clade (see the small number of strict consensus branches for this<br />

clade in Fig. 1), only the first 5 000 equally most parsimonious trees<br />

(TL = 1 752 steps; CI = 0.392; RI = 0.849; RC = 0.333) were saved,<br />

one of which is shown in Fig. 1.<br />

Bayesian analysis was conducted on the same aligned LSU<br />

data set using a general time-reversible (GTR) substitution model<br />

with inverse gamma rates <strong>and</strong> dirichlet base frequencies. <strong>The</strong><br />

Markov Chain Monte Carlo (MCMC) analysis of 4 chains started<br />

from a r<strong>and</strong>om tree topology <strong>and</strong> lasted 2 000 000 generations.<br />

Trees were saved each 1 000 generations, resulting in 2 000 saved<br />

trees. Burn-in was set at 500 000 generations after which the<br />

likelihood values were stationary, leaving 1 500 trees from which<br />

the consensus tree (Fig. 2) <strong>and</strong> posterior probabilities (PP’s) were<br />

calculated. <strong>The</strong> average st<strong>and</strong>ard deviation of split frequencies<br />

was 0.06683 at the end of the run. <strong>The</strong> same overall topology as<br />

that observed using parsimony was obtained, with the exception<br />

of the position of Anungitopsis speciosa R.F. Castañeda & W.B.<br />

Kendr., which is placed between the Leotiomycetes <strong>and</strong> the<br />

Sordariomycetes based on the Bayesian analysis. Also, <strong>similar</strong> to<br />

the results obtained using neighbour-joining, the clade containing<br />

Protoventuria alpina (<strong>CBS</strong> 140.83) is placed as sister to the<br />

Herpotrichiellaceae <strong>and</strong> not to the Venturiaceae. <strong>The</strong> phylogenetic<br />

affinity of specific genera or species are discussed below.<br />

Taxonomy<br />

Several collections represented novel members of the<br />

Herpotrichiellaceae <strong>and</strong> Venturiaceae, <strong>and</strong> these are described<br />

below. Taxa that were cladophialophora- or pseudocladosporiumlike,<br />

but that clustered elsewhere, are treated under excluded<br />

species.<br />

Members of Chaetothyriales, Herpotrichiellaceae<br />

Cladophialophora australiensis Crous & A.D. Hocking, sp. nov.<br />

MycoBank MB504525. Fig. 3.<br />

Etymology: Named after its country of origin, Australia.<br />

Cladophialophorae carrionii similis, sed conidiis secundis majoribus, (7–)8–12(–15)<br />

× 3–4 µm.<br />

In vitro: Mycelium consisting of branched, septate, smooth, pale<br />

brown, guttulate, 2–3 µm wide hyphae; hyphal coils not seen.<br />

Conidiophores dimorphic; macroconidiophores mononematous,<br />

subcylindrical, multi-septate, straight to curved, up to 150 µm long<br />

(including conidiogenous cells), <strong>and</strong> 4 µm wide, pale to medium<br />

brown, smooth, guttulate; microconidiophores integrated with<br />

hyphae, which terminate in subcylindrical conidiogenous cells that<br />

give rise to branched chains of conidia; conidiophores (including<br />

186


Herpotrichiellaceae <strong>and</strong> Venturiaceae<br />

conidiogenous cells) up to 5-septate, 50 µm long, with terminal <strong>and</strong><br />

lateral conidiogenous cells. Conidiogenous cells pale to medium<br />

brown, smooth, guttulate, terminal <strong>and</strong> lateral, subcylindrical,<br />

20–35 × 2–3.5 µm, or reduced to indistinct subtruncate to truncate<br />

loci, scars up to 2 µm wide, mono- to polyblastic, proliferating<br />

sympodially, scars neither darkened, thickened, nor refractive.<br />

Conidia pale to medium brown, guttulate, smooth; ramoconidia<br />

subcylindrical, 0–1-septate, 20–35 × 2–3 µm, hila subtruncate,<br />

inconspicuous, up to 2 µm wide, giving rise to branched chains<br />

of conidia; conidia ellipsoid, pale brown, but becoming dark brown<br />

<strong>and</strong> thick-walled in older cultures, guttulate, tapering towards<br />

subtruncate terminal loci, 0–1-septate, occurring in chains of up to<br />

20 conidia, (7–)8–12(–15) × 3–4 µm (older, dark brown conidia are<br />

ellipsoid, up to 5 µm wide).<br />

Cultural characteristics: Colonies erumpent, somewhat spreading,<br />

margins crenate, feathery, aerial mycelium sparse; colonies on<br />

PDA olivaceous-grey to iron-grey (surface); reverse iron-grey; on<br />

OA <strong>and</strong> SNA olivaceous-grey. Colonies reaching 5 mm diam after 2<br />

wk at 25 °C in the dark; colonies fertile. Not able to grow at 37 °C.<br />

Specimen examined: Australia, isolated from apple juice, Dec. 1986, A.D. Hocking,<br />

holotype <strong>CBS</strong> H-19899, culture ex-type <strong>CBS</strong> 112793 = CPC 1377.<br />

Notes: Cladophialophora australiensis is one of two novel species<br />

of Cladophialophora originally isolated from sports drinks in<br />

Australia. Cladophialophora spp. are commonly associated with<br />

human disorders (Honbo et al. 1984, de Hoog et al. 2000, Levin<br />

et al. 2004), <strong>and</strong> thus their occurrence in sports drinks is cause for<br />

concern. However, none of the new species described here had<br />

the ability to grow at 37 °C, <strong>and</strong> therefore it is not expected that<br />

they could pose a danger to humans. Comparing ITS diversity, the<br />

species shows more than 12 % difference to established pathogens<br />

such as C. carrionii <strong>and</strong> C. bantiana (Sacc.) de Hoog et al.<br />

Cladophialophora chaetospira (Grove) Crous & Arzanlou, comb.<br />

nov. MycoBank MB504526. Fig. 4.<br />

Basionym: Septocylindrium chaetospira Grove, J. Bot. Lond. 24:<br />

199. 1886.<br />

≡ Septonema chaetospira (Grove) S. Hughes, Naturalist, London 840: 9.<br />

1952.<br />

≡ Heteroconium chaetospira (Grove) M.B. Ellis, in Ellis, More Dematiaceous<br />

Hyphomycetes: 64. 1976.<br />

In vitro: Mycelium consisting of branched, septate, smooth,<br />

medium brown hyphae, 2–3.5 µm wide. Conidiophores reduced<br />

to conidiogenous cells, or a single supporting cell, 20–40 × 3–4<br />

µm. Conidiogenous cells subcylindrical, erect, straight to irregularly<br />

curved, medium brown, smooth, 15–30 × 3–4 µm. Conidia in<br />

branched, acropetal chains with up to 30 conidia; subcylindrical to<br />

fusiform, medium brown, smooth, tapering slightly at subtruncate<br />

ends, 1(–3)-septate, thin-walled, becoming slightly constricted at<br />

septa of older conidia, (20–)25–30(–45) × 3–4(–5) µm; conidia<br />

remaining attached in long chains; hila neither thickened, nor<br />

darkened-refractive.<br />

Cultural characteristics: Colonies erumpent, convex, spreading,<br />

with sparse to dense aerial mycelium; margins smooth, undulate;<br />

on PDA iron-grey (surface), margins olivaceous-black; reverse<br />

olivaceous-black; on OA olivaceous-grey in the middle due to fluffy<br />

aerial mycelium, iron-grey in wide outer margin; on SNA olivaceousgrey.<br />

Colonies reaching 12 mm diam after 2 wk on PDA at 25 °C in<br />

the dark. Not able to grow at 37 °C.<br />

Specimens examined: China, Yunnan, Yiliang, isolated from Phyllostachys<br />

bambusoides (Gramineae), decaying bamboo, freshwater, 6 Jul. 2003, L. Cai, <strong>CBS</strong><br />

114747; China, Yunnan, stream in Kunming, isolated from bamboo wood, 15 Jun.<br />

2003, C. Lei, <strong>CBS</strong> 115468. Denmark, isolated from roots of Picea abies (Pinaceae),<br />

isol. by D.S. Malla, <strong>CBS</strong> 491.70. Germany, Schleswig-Holstein, Kiel-Kitzeberg,<br />

isolated from wheat field soil, isol. by W. Gams, <strong>CBS</strong> 514.63 = ATCC 16274 = MUCL<br />

8310.<br />

Notes: Two cultures of Heteroconium chaetospira were originally<br />

deposited as Spadicoides minuta L. Cai, McKenzie & K.D. Hyde (Cai<br />

et al. 2004), but later found to represent Heteroconium chaetospira,<br />

a species commonly found on rotting wood in Europe (Ellis 1976).<br />

<strong>The</strong> <strong>genus</strong> Heteroconium Petr. has in recent years been used<br />

to name leaf spotting fungi with chains of brown, disarticulating<br />

conidia (Crous et al. 2006b), which have phylogenetic affinities<br />

to several orders, obviously being polyphyletic. <strong>The</strong> type species<br />

of Heteroconium, H. citharexyli Petr., is a plant pathogen on<br />

Cytharexylum (Petrak 1949) with hitherto unknown phylogenetic<br />

position. <strong>The</strong> fact that H. chaetospira is linked to the Chaetothyriales,<br />

was rather unexpected. <strong>The</strong> species appears to be <strong>similar</strong> to others<br />

placed in Cladophialophora by having short, lateral conidiogenous<br />

cells, <strong>and</strong> long chains of branched subcylindrical conidia that largely<br />

remain attached. It is, however, quite distinct from other members of<br />

Cladophialophora in having medium brown conidia, <strong>and</strong> in lacking<br />

the ellipsoid conidia observed in several species.<br />

Cladophialophora hostae Crous, U. Braun & H.D. Shin, sp. nov.<br />

MycoBank MB504527. Figs 5–6.<br />

Etymology: Epithet derived from the host <strong>genus</strong>, Hosta.<br />

Cladophialophorae scillae similis, sed conidiophoris in vitro brevioribus et leniter<br />

angustioribus, 10–15 × 1.5–2 µm, conidiis brevioribus, (7–)10–15(–20) µm.<br />

In vivo: Leaf spots amphigenous, subcircular to somewhat angularirregular,<br />

1–5 mm wide, scattered to aggregated, sometimes<br />

confluent, pale to medium brown or with a reddish brown tinge,<br />

later greyish brown, margin indefinite or on the upper leaf surface<br />

with a narrow slightly raised marginal line or very narrow lighter<br />

halo, yellowish, ochraceous to brownish. Caespituli epiphyllous,<br />

punctiform to confluent, dingy greyish brown. Mycelium immersed,<br />

forming fusicladium-like hyphal str<strong>and</strong>s or plates; hyphae septate,<br />

sometimes with constrictions at the septa, thin-walled, pale<br />

olivaceous, 1.5–7 µm wide. Stromata immersed, small, 10–40 µm<br />

diam, composed of swollen hyphal cells, subcircular to somewhat<br />

angular-irregular in outline, 2–8 µm diam, wall somewhat<br />

thickened, brown. Conidiophores in small to moderately large<br />

fascicles, loose, divergent to moderately dense, rarely solitary,<br />

arising from stromatic hyphal aggregations, erumpent, erect,<br />

usually unbranched, rarely branched, straight, subcylindrical to<br />

distinctly geniculate-sinuous, 5–40 × 2–5 µm, 0–6-septate, pale<br />

to medium olivaceous to olivaceous-brown, thin-walled, up to 0.5<br />

µm, smooth. Conidiogenous cells integrated, terminal, 5–15(–20)<br />

µm long, sympodial, conidiogenous loci rather inconspicuous<br />

to subdenticulate, flat-tipped, 1–1.5 µm diam, unthickened or<br />

almost so, not to slightly darkened-refractive. Conidia in simple or<br />

branched chains, narrowly ellipsoid-subcylindrical, 10–15 × 1.5–<br />

3.5 µm, 0–1-septate, subhyaline to pale olivaceous, thin-walled,<br />

smooth, ends truncate or with two denticle-like hila in ramoconidia,<br />

(0.75–)1–1.5(–2) µm diam, unthickened or almost so, at most<br />

slightly darkened-refractive.<br />

In vitro: Mycelium composed of branched, smooth, pale olivaceous<br />

to medium brown hyphae, frequently forming hyphal coils, guttulate,<br />

septa inconspicuous, not constricted, hyphae somewhat irregular<br />

in width, 1–2 µm wide. Conidiophores reduced to conidiogenous<br />

cells, integrated in hyphae, terminal, subcylindrical, pale olivaceous<br />

to pale brown, smooth, 0–1-septate, proliferating sympodially at<br />

www.studiesinmycology.org<br />

187


Crous et al.<br />

10 changes<br />

Athelia epiphylla AY586633<br />

Paullicorticium ansatum AY586693<br />

100<br />

Incertae sedis<br />

Fasciatispora petrakii AY083828<br />

Pidoplitchkoviella terricola AF096197<br />

Anungitopsis speciosa <strong>CBS</strong> 181.95<br />

100<br />

94 100<br />

98<br />

81 97<br />

90<br />

90<br />

87<br />

53<br />

100<br />

94<br />

100<br />

Polyscytalum fecundissimum <strong>CBS</strong> 100506<br />

Phlogicylindrium eucalypti DQ923534<br />

Cyphellophora laciniata <strong>CBS</strong> 190.61<br />

Cladophialophora proteae <strong>CBS</strong> 111667<br />

100<br />

84<br />

82<br />

67<br />

100<br />

Phaeococcomyces catenatus AF050277<br />

Exophiala sp. 3 CPC 12171<br />

Exophiala sp. 3 CPC 12173<br />

Exophiala sp. 3 CPC 12172<br />

Glyphium elatum AF346420<br />

67 100<br />

“<strong>Cladosporium</strong>” adianticola DQ008144<br />

“<strong>Cladosporium</strong>” adianticola DQ008143<br />

Metulocladosporiella musae DQ008162<br />

Metulocladosporiella musicola DQ008159<br />

Thysanorea papuana EU041871<br />

Veronaea botryosa EU041874<br />

Ceramothyrium carniolicum AY004339<br />

Cyphellophora hylomeconis <strong>CBS</strong> 113311<br />

Exophiala eucalyptorum CPC 11261<br />

98<br />

100<br />

100<br />

100<br />

Cladophialophora humicola AF050263<br />

Cladophialophora sylvestris <strong>CBS</strong> 350.83<br />

Cladophialophora hostae CPC 10737<br />

Cladophialophora scillae <strong>CBS</strong> 116461<br />

Exophiala jeanselmei AF050271<br />

Exophiala oligosperma AF050289<br />

Exophiala dermatitidis AF050270<br />

Capronia mansonii AY004338<br />

Capronia munkii AF050250<br />

Ramichloridium mackenziei AF050288<br />

Capronia pilosella AF050254<br />

Exophiala sp. 1 <strong>CBS</strong> 115142<br />

Exophiala sp. 2 <strong>CBS</strong> 115143<br />

53<br />

68<br />

90<br />

Exophiala pisciphila DQ823101<br />

Fonsecaea pedrosoi AF050276<br />

Ramichloridium anceps AF050285<br />

Capronia acutiseta AF050241<br />

Fonsecaea pedrosoi AF050275<br />

Cladophialophora australiensis <strong>CBS</strong> 112793<br />

Cladophialophora potulentorum <strong>CBS</strong> 115144<br />

Cladophialophora potulentorum <strong>CBS</strong> 114772<br />

85 89<br />

98<br />

100<br />

Cladophialophora potulentorum <strong>CBS</strong> 112222<br />

Cladophialophora carrionii AF050262<br />

Phialophora americana AF050283<br />

Phialophora americana AF050280<br />

Cladophialophora chaetospira <strong>CBS</strong> 114747<br />

Cladophialophora chaetospira <strong>CBS</strong> 514.63<br />

Cladophialophora chaetospira <strong>CBS</strong> 491.70<br />

Cladophialophora chaetospira <strong>CBS</strong> 115468<br />

Sordariomycetes,<br />

Xylariomycetidae,<br />

Xylariales<br />

Chaetothyriomycetes, Chaetothyriales, Herpotrichiellaceae<br />

Fig. 1. (Page 188–189). One of 5 000 equally most parsimonious trees obtained from a heuristic search with 100 r<strong>and</strong>om taxon additions of the LSU sequence alignment using<br />

PAUP v. 4.0b10. <strong>The</strong> scale bar shows 10 changes, <strong>and</strong> bootstrap support values from 1 000 replicates are shown at the nodes. Thickened lines indicate the strict consensus<br />

branches <strong>and</strong> ex-type sequences are printed in bold face. <strong>The</strong> tree was rooted to two sequences obtained from GenBank (Athelia epiphylla AY586633 <strong>and</strong> Paullicorticium<br />

ansatum AY586693).<br />

apex via 1–2(–3) flat-tipped, minute, denticle-like loci, 1–1.5 µm<br />

wide, 10–15 × 1.5–2 µm; scars minutely darkened <strong>and</strong> thickened,<br />

but not refractive. Conidia in extremely long chains (–60), simple<br />

or branched, subcylindrical, or narrowly ellipsoid, smooth, pale<br />

olivaceous, 0–1-septate, (7–)10–15(–20) × (1.5–)2(–2.5) µm,<br />

hila truncate, 1–1.5 µm wide, minutely thickened <strong>and</strong> darkenedrefractive.<br />

Cultural characteristics: Colonies on PDA erumpent, spreading,<br />

with smooth, undulate margins <strong>and</strong> dense aerial mycelium; surface<br />

hazel (middle), outer zone isabelline; reverse fuscous-black in<br />

middle, isabelline in outer zone. Colonies reaching 25 mm diam<br />

on SNA, <strong>and</strong> 40 mm diam on PDA after 1 mo at 25 °C in the dark;<br />

colonies fertile.<br />

Specimen examined: Korea, Pyongchang, Hosta plantaginea (Hostaceae), 20 Sep.<br />

2003, H.D. Shin, HAL 2030 F, holotype, culture ex-type SMK 19664, CPC 10737 =<br />

<strong>CBS</strong> 121637, CPC 10738–10739.<br />

Notes: Although this species is morphologically <strong>similar</strong> to<br />

Cladophialophora scillae (Deighton) Crous, U. Braun & K.<br />

Schub. described below in this paper, C. hostae is treated as a<br />

separate taxon due to the differences in the length <strong>and</strong> width of its<br />

conidiophores <strong>and</strong> conidia in vitro, as well as 17 bp differences in<br />

the ITS DNA sequence data <strong>and</strong> a distinct ecology causing leafspots<br />

on a different, unrelated host. Based on disease symptoms<br />

caused on the living host leaves, C. hostae is a very unusual,<br />

unexpected member of the <strong>genus</strong> Cladophialophora. In vivo, the<br />

mycelium forms obvious hyphal str<strong>and</strong>s <strong>and</strong> plates which are<br />

characteristic for Fusicladium species. <strong>The</strong> conidiophores <strong>and</strong><br />

conidia are also fusicladium-like. Nevertheless, this species clusters<br />

within the Herpotrichiellaceae, i.e., it has to be placed in the <strong>genus</strong><br />

Cladophialophora. Biotrophic species like C. hostae <strong>and</strong> C. scillae<br />

without phialidic synanamorphs render the differentiation between<br />

Cladophialophora <strong>and</strong> Fusicladium (incl. Pseudocladosporium)<br />

almost impossible without sequence data. Furthermore, the<br />

188


Herpotrichiellaceae <strong>and</strong> Venturiaceae<br />

10 changes<br />

Satchmopsis brasiliensis DQ195797<br />

Neofabraea malicorticis AY544662<br />

Protoventuria alpina <strong>CBS</strong> 140.83<br />

Clathrosporium intricatum AY616235<br />

Zeloasperisporium hyphopodioides <strong>CBS</strong> 218.95<br />

96 72<br />

94<br />

99<br />

86<br />

71<br />

65<br />

88<br />

59<br />

71<br />

73<br />

91<br />

66<br />

100<br />

99<br />

81<br />

95<br />

100<br />

100<br />

80<br />

Veronaeopsis simplex EU041877<br />

Fusicladium africanum CPC 12828<br />

Fusicladium africanum CPC 12829<br />

Sympoventuria capensis DQ885906<br />

Sympoventuria capensis DQ885904<br />

Sympoventuria capensis DQ885905<br />

100<br />

Fusicladium amoenum <strong>CBS</strong> 254.95<br />

Fusicladium intermedium <strong>CBS</strong> 110746<br />

Fusicladium rhodense CPC 13156<br />

Fusicladium pini <strong>CBS</strong> 463.82<br />

Fusicladium ramoconidii <strong>CBS</strong> 462.82<br />

90<br />

100<br />

Cylindrosympodium lauri <strong>CBS</strong> 240.95<br />

Venturia fraxini <strong>CBS</strong> 374.55<br />

Venturia macularis <strong>CBS</strong> 477.61<br />

Venturia maculiformis <strong>CBS</strong> 377.53<br />

Metacoleroa dickiei DQ384100<br />

Venturia alpina <strong>CBS</strong> 373.53<br />

Fusicladium fagi <strong>CBS</strong> 621.84<br />

Venturia sp. <strong>CBS</strong> 681.74<br />

Caproventuria hanliniana AF050290<br />

Venturia hystrioides <strong>CBS</strong> 117727<br />

Venturia lonicerae <strong>CBS</strong> 445.54<br />

Venturia chlorospora <strong>CBS</strong> 466.61<br />

Fusicladium catenosporum <strong>CBS</strong> 447.91<br />

Venturia helvetica <strong>CBS</strong> 474.61<br />

Venturia minuta <strong>CBS</strong> 478.61<br />

Venturia polygoni-vivipari <strong>CBS</strong> 114207<br />

Venturia atriseda <strong>CBS</strong> 378.49<br />

Venturia viennotii <strong>CBS</strong> 690.85<br />

Venturia anemones <strong>CBS</strong> 370.55<br />

Venturia aceris <strong>CBS</strong> 372.53<br />

Venturia cephalariae <strong>CBS</strong> 372.55<br />

Venturia tremulae var. tremulae <strong>CBS</strong> 257.38<br />

Venturia ditricha <strong>CBS</strong> 118894<br />

Venturia populina <strong>CBS</strong> 256.38<br />

Venturia atriseda <strong>CBS</strong> 371.55<br />

Venturia inaequalis <strong>CBS</strong> 535.76<br />

Fusicladium pomi <strong>CBS</strong> 309.31<br />

Venturia chlorospora <strong>CBS</strong> 470.61<br />

Fusicladium m<strong>and</strong>shuricum <strong>CBS</strong> 112235<br />

Venturia tremulae var. gr<strong>and</strong>identatae <strong>CBS</strong> 695.85<br />

Venturia tremulae var. populi-albae <strong>CBS</strong> 694.85<br />

Fusicladium radiosum <strong>CBS</strong> 112625<br />

Venturia saliciperda <strong>CBS</strong> 214.27<br />

Venturia saliciperda <strong>CBS</strong> 480.61<br />

Fusicladium convolvularum <strong>CBS</strong> 112706<br />

Fusicladium oleagineum <strong>CBS</strong> 113427<br />

Fusicladium phillyreae <strong>CBS</strong> 113539<br />

Venturia nashicola <strong>CBS</strong> 793.84<br />

Venturia pyrina <strong>CBS</strong> 120825<br />

Venturia pyrina <strong>CBS</strong> 331.65<br />

Venturia aucupariae <strong>CBS</strong> 365.35<br />

Venturia crataegi <strong>CBS</strong> 368.35<br />

Apiosporina collinsii CPC 12229<br />

Fusicladium effusum CPC 4524<br />

Fusicladium effusum CPC 4525<br />

60<br />

91<br />

Venturia carpophila AY849967<br />

Fusicladium carpophilum <strong>CBS</strong> 497.62<br />

Venturia cerasi <strong>CBS</strong> 444.54<br />

Leotiomycetes, Helotiales<br />

Dothideomycetes, Pleosporales, Venturiaceae<br />

Fig 1. (Continued).<br />

morphology of C. hostae in vivo <strong>and</strong> in vitro shows remarkable<br />

differences in conidiophore morphology, i.e., the growth in vivo is<br />

characteristically fusicladium-like (conidiophores macronematous,<br />

long, septate), whereas habit in vitro is rather pseudocladosporiumlike<br />

(conidiophores less developed, usually reduced to conidiogenous<br />

cells, short). However, several Fusicladium species have also been<br />

observed to exibit a Pseudocladosporium growth habit in culture,<br />

suggesting this growth plasticity to be rather common, <strong>and</strong> strongly<br />

influenced by growth conditions.<br />

Cladophialophora humicola Crous & U. Braun, sp. nov.<br />

MycoBank MB504528. Figs 7–8.<br />

www.studiesinmycology.org<br />

Etymology: Named after its ecology, namely occurring in soil.<br />

Cladophialophorae bantianae similis, sed conidiis majoribus, (8–)11–14(–17) ×<br />

(1.5–)2(–2.5) µm, locis conidiogenis et hilis angustioribus, 1–1.5 µm latis.<br />

In vitro: Mycelium composed of branched, smooth, pale<br />

olivaceous to pale brown hyphae, frequently forming hyphal coils,<br />

prominently guttulate, not to slightly constricted at the septa, 1–2<br />

µm wide, cells somewhat uneven in width. Conidiophores solitary,<br />

mostly inconspicuous <strong>and</strong> integrated in hyphae, varying from<br />

inconspicuously truncate lateral loci on hyphal cells, 1–1.5 µm wide,<br />

to occasionally terminal conidiophores, 0–3-septate, subcylindrical,<br />

proliferating sympodially, 10–30 × 1.5–3 µm, pale brown, smooth.<br />

189


Crous et al.<br />

Table 1. Isolates used for sequence analysis.<br />

Anamorph Teleomorph Accession number 1 Host Country Collector GenBank numbers 2<br />

Anungitopsis speciosa <strong>CBS</strong> 181.95*; INIFAT C94/135<br />

(ITS, LSU)<br />

Leaf litter of Buchenavia<br />

capitata Cuba R.F. Castañeda EU035401, EU035401<br />

Cladophialophora australiensis <strong>CBS</strong> 112793*; CPC 1377 Sports drink Australia – EU035402, EU035402<br />

Cladophialophora chaetospira <strong>CBS</strong> 114747 Phyllostachys bambusoides China L. Cai EU035403, EU035403<br />

<strong>CBS</strong> 115468; HKUCC 10147 Bamboo China – EU035404, EU035404<br />

<strong>CBS</strong> 491.70 Roots of Picea abies Denmark – EU035405, EU035405<br />

<strong>CBS</strong> 514.63; ATCC 16274; MUCL 8310 Soil, wheat field Germany – EU035406, EU035406<br />

Cladophialophora hostae CPC 10737* Hosta plantaginea Korea H.D. Shin EU035407, EU035407<br />

Cladophialophora humicola <strong>CBS</strong> 117536*; BBA 65570 Soil, arable Germany Z. Zaspel & H. Nirenberg EU035408, AF050263<br />

Cladophialophora potulentorum <strong>CBS</strong> 112222; CPC 1376; FRR 4946 Sports drink Australia N.J. Charley EU035409, EU035409<br />

<strong>CBS</strong> 114772; CPC 1375; FRR 4947 Sports drink Australia N.J. Charley EU035410, EU035410<br />

<strong>CBS</strong> 115144*; CPC 11048; FRR 3318 Apple juice – – DQ008141, DQ008141<br />

Cladophialophora proteae <strong>CBS</strong> 111667*; CPC 1514 Protea cynaroides South Africa L. Viljoen EU035411, EU035411<br />

Cladophialophora scillae <strong>CBS</strong> 116461* Scilla peruviana New Zeal<strong>and</strong> C.F. Hill EU035412, EU035412<br />

Cladophialophora sylvestris <strong>CBS</strong> 350.83 Pinus sylvestris Netherl<strong>and</strong>s – EU035413, EU035413<br />

“<strong>Cladosporium</strong>” adianticola <strong>CBS</strong> 735.87*; ATCC 200931; INIFAT C87/40 Adiantum sp. Cuba R.F. Castañeda & G. Arnold DQ008125, DQ008144<br />

Cylindrosympodium lauri <strong>CBS</strong> 240.95*; INIFAT C95/3-2 Laurus sp.<br />

Spain, Canary<br />

Isl<strong>and</strong>s R.F. Castañeda EU035414, EU035414<br />

Cyphellophora hylomeconis <strong>CBS</strong> 113311* Helomeco velane Korea H.D. Shin EU035415, EU035415<br />

Cyphellophora laciniata <strong>CBS</strong> 190.61*; ATCC 14166; MUCL 9569 Man, skin Switzerl<strong>and</strong> K.M. Wissel EU035416, EU035416<br />

Exophiala eucalyptorum CPC 11261* Eucalyptus sp. New Zeal<strong>and</strong> J. Stalpers EU035417, EU035417<br />

Exophiala sp. 1 <strong>CBS</strong> 115142; CPC 11044; FRR 5582 Fruit-based drink – – DQ008139, EU035418<br />

Exophiala sp. 2 <strong>CBS</strong> 115143*; CPC 11047; FRR 5599 Bottled spring water – – DQ008140, EU035419<br />

Exophiala sp. 3 CPC 12171 Prunus sp. Canada K.A. Seifert EU035420, EU035420<br />

CPC 12172 Prunus sp. Canada K.A. Seifert EU035421, EU035421<br />

CPC 12173 Prunus sp. Canada K.A. Seifert EU035422, EU035422<br />

Fusicladium africanum CPC 12828* Eucalyptus sp. South Africa P.W. Crous EU035423, EU035423<br />

CPC 12829 Eucalyptus sp. South Africa P.W. Crous EU035424, EU035424<br />

Fusicladium amoenum <strong>CBS</strong> 254.95*; ATCC 200947; CPC 3681; IMI 367525; Leaf litter of Eucalyptus Cuba R.F. Castañeda<br />

INIFAT C94/155; MUCL 39143<br />

gr<strong>and</strong>is<br />

EU035425, EU035425<br />

Fusicladium carpophilum Venturia carpophila <strong>CBS</strong> 497.62; ETH 4568 Prunus sp. Switzerl<strong>and</strong> – EU035426, EU035426<br />

190


Herpotrichiellaceae <strong>and</strong> Venturiaceae<br />

Fusicladium catenosporum <strong>CBS</strong> 447.91* Salix tri<strong>and</strong>ra Germany H. Butin EU035427, EU035427<br />

Fusicladium convolvularum <strong>CBS</strong> 112706*; CPC 3884; IMI 383037 Convolvulus arvensis New Zeal<strong>and</strong> C.F. Hill AY251082, EU035428<br />

Fusicladium effusum CPC 4524 Carya illinoinensis U.S.A. K. Stevenson AY251084, EU035429<br />

CPC 4525 Carya illinoinensis U.S.A. K. Stevenson AY251085, EU035430<br />

Fusicladium fagi <strong>CBS</strong> 621.84*; ATCC 200937 Fagus sylvatica Netherl<strong>and</strong>s G.S. de Hoog EU035431, EU035431<br />

Fusicladium intermedium <strong>CBS</strong> 110746*; CPC 778; IMI 362702 Eucalyptus sp. Madagascar P.W. Crous EU035432, EU035432<br />

Fusicladium m<strong>and</strong>shuricum Venturia m<strong>and</strong>shurica <strong>CBS</strong> 112235*; CPC 3639 Populus simonii China – EU035433, EU035433<br />

Fusicladium oleagineum <strong>CBS</strong> 113427 Olea europaea New Zeal<strong>and</strong> C.F. Hill EU035434, EU035434<br />

Fusicladium phillyreae <strong>CBS</strong> 113539; UPSC 1329 – Portugal B. d’Oliveira EU035435, EU035435<br />

Fusicladium pini <strong>CBS</strong> 463.82* Pinus sylvestris Netherl<strong>and</strong>s G.S. de Hoog EU035436, EU035436<br />

Fusicladium pomi Venturia inaequalis <strong>CBS</strong> 309.31 – – – EU035437, EU035437<br />

<strong>CBS</strong> 535.76 Sorbus aria Switzerl<strong>and</strong> – EU035460, EU035460<br />

Fusicladium radiosum Venturia tremulae <strong>CBS</strong> 112625; CPC 3638 Populus tremula France – EU035438, EU035438<br />

Fusicladium ramoconidii <strong>CBS</strong> 462.82*; CPC 3679 Pinus sp. Netherl<strong>and</strong>s G.S. de Hoog AY251086, EU035439<br />

Fusicladium rhodense CPC 13156* Ceratonia siliqua Greece P.W. Crous EU035440, EU035440<br />

Polyscytalum fecundissimum <strong>CBS</strong> 100506 Fagus sylvatica Netherl<strong>and</strong>s W. Gams EU035441, EU035441<br />

Zeloasperisporium hyphopodioides <strong>CBS</strong> 218.95*; IMI 367520; INIFAT C94/114; MUCL 39155 Air Cuba R. F. Castañeda EU035442, EU035442<br />

Apiosporina collinsii CPC 12229 Amelanchier alnifolia Canada L.J. Hutchinson EU035443, EU035443<br />

Protoventuria alpina <strong>CBS</strong> 140.83 Arctostaphylos uva-ursi Switzerl<strong>and</strong> – EU035444, EU035444<br />

Sympoventuria capensis <strong>CBS</strong> 120136; CPC 12838 Eucalyptus sp. South Africa P.W. Crous DQ885906, DQ885906<br />

CPC 12839 Eucalyptus sp. South Africa P.W. Crous DQ885905, DQ885905<br />

CPC 12840 Eucalyptus sp. South Africa P.W. Crous DQ885904, DQ885904<br />

Venturia aceris <strong>CBS</strong> 372.53 Acer pseudoplatanus Switzerl<strong>and</strong> – EU035445, EU035445<br />

Venturia alpina <strong>CBS</strong> 373.53 Arctostaphylos alpina Switzerl<strong>and</strong> – EU035446, EU035446<br />

Venturia anemones <strong>CBS</strong> 370.55; IMI 163998 Anemone alpina France – EU035447, EU035447<br />

Venturia atriseda <strong>CBS</strong> 371.55 Gentiana punctata Switzerl<strong>and</strong> – EU035448, EU035448<br />

<strong>CBS</strong> 378.49 Gentiana lutea Switzerl<strong>and</strong> J.A. von Arx EU035449, EU035449<br />

Venturia aucupariae <strong>CBS</strong> 365.35; IMI 163987 Sorbus aucuparia Germany – EU035450, EU035450<br />

Venturia cephalariae <strong>CBS</strong> 372.55 Cephalaria alpina Switzerl<strong>and</strong> – EU035451, EU035451<br />

Venturia cerasi <strong>CBS</strong> 444.54; ATCC 12119; IMI 163988 Prunus cerasus Germany – EU035452, EU035452<br />

Venturia chlorospora <strong>CBS</strong> 466.61; ETH 543 Salix caesia Switzerl<strong>and</strong> J. Nüesch EU035453, EU035453<br />

<strong>CBS</strong> 470.61 Salix daphnoides France J. Nüesch EU035454, EU035454<br />

Venturia crataegi <strong>CBS</strong> 368.35 Crataegus sp. Germany – EU035455, EU035455<br />

www.studiesinmycology.org<br />

191


Crous et al.<br />

Table 1. (Continued).<br />

Anamorph Teleomorph Accession number 1 Host Country Collector GenBank numbers 2<br />

Venturia ditricha <strong>CBS</strong> 118894 Betula pubescens var.<br />

tortuosa<br />

(ITS, LSU)<br />

Finl<strong>and</strong> – EU035456, EU035456<br />

Venturia fraxini <strong>CBS</strong> 374.55 Fraxinus excelsior Switzerl<strong>and</strong> – EU035457, EU035457<br />

Venturia helvetica <strong>CBS</strong> 474.61; ETH 2571; IMI 163990 Salix helvetica Switzerl<strong>and</strong> J. Nüesch EU035458, EU035458<br />

Venturia hystrioides <strong>CBS</strong> 117727*; ATCC 96019; CPC 5391 Prunus avium cv. Bing U.S.A. R.G. Roberts EU035459, EU035459<br />

Venturia lonicerae <strong>CBS</strong> 445.54; IMI 163997 Lonicera coerulea Switzerl<strong>and</strong> – EU035461, EU035461<br />

Venturia macularis <strong>CBS</strong> 477.61; ETH 2831 Populus tremula France – EU035462, EU035462<br />

Venturia maculiformis <strong>CBS</strong> 377.53 Epilobium montanum France – EU035463, EU035463<br />

Venturia minuta <strong>CBS</strong> 478.61; ETH 523; IMI 163991 Salix nigricans Switzerl<strong>and</strong> J. Nüesch EU035464, EU035464<br />

Venturia nashicola <strong>CBS</strong> 793.84 Pyrus serotina Japan – EU035465, EU035465<br />

Venturia polygoni-vivipari <strong>CBS</strong> 114207; UPSC 2754 Polygonum viviparum Norway K. & L. Holm EU035466, EU035466<br />

Venturia populina <strong>CBS</strong> 256.38; IMI 163996 Populus canadensis Italy – EU035467, EU035467<br />

Venturia pyrina <strong>CBS</strong> 120825 Pyrus communis Brazil – EU035468, EU035468<br />

<strong>CBS</strong> 331.65 Pyrus sp. – – EU035469, EU035469<br />

Venturia saliciperda <strong>CBS</strong> 214.27; IMI 163993 – – – EU035470, EU035470<br />

<strong>CBS</strong> 480.61; ETH 2836 Salix cordata Switzerl<strong>and</strong> – EU035471, EU035471<br />

Venturia sp. <strong>CBS</strong> 681.74 Cedrus atlantica France W. Gams EU035472, EU035472<br />

Venturia tremulae var. gr<strong>and</strong>identatae <strong>CBS</strong> 695.85 Populus tremuloides Canada – EU035473, EU035473<br />

Venturia tremulae var. populi-albae <strong>CBS</strong> 694.85 Populus alba France – EU035474, EU035474<br />

Venturia tremulae var. tremulae <strong>CBS</strong> 257.38 Populus tremula Italy – EU035475, EU035475<br />

Venturia viennotii <strong>CBS</strong> 690.85 Populus tremula France – EU035476, EU035476<br />

1 ATCC: American Type Culture Collection, Virginia, U.S.A.; BBA: Biologische Bundesanstalt für L<strong>and</strong>- und Forstwirtschaft, Berlin-Dahlem, Germany; <strong>CBS</strong>: Centraalbureau voor Schimmelcultures, Utrecht, <strong>The</strong> Netherl<strong>and</strong>s; CPC: Culture collection of Pedro<br />

Crous, housed at <strong>CBS</strong>; ETH: Eidgenössische Technische Hochschule, Institute for Special Botany, Zürich, Switzerl<strong>and</strong>; FRR: Division of Food Research, CSIRO, North Ryde, N.S.W., Australia; HKUCC: <strong>The</strong> University of Hong Kong Culture Collection, Dept.<br />

of Ecology <strong>and</strong> Biodiversity, University of Hong Kong, Pokfulam Road, China; IMI: International Mycological Institute, CABI-Bioscience, Egham, Bakeham Lane, U.K.; INIFAT: Alex<strong>and</strong>er Humboldt Institute for Basic Research in Tropical Agriculture, Ciudad<br />

de La Habana, Cuba; MUCL: Mycotheque de l’ Université Catholique de Louvain, Louvain-la-Neuve, Belgium; UPSC: Uppsala University Culture Collection of Fungi, Museum of Evolution, Botany Section, Evolutionary Biology Centre, Uppsala, Sweden.<br />

2 ITS: internal transcribed spacer regions, LSU: partial 28S rDNA sequence.<br />

*Ex-type cultures.<br />

192


Herpotrichiellaceae <strong>and</strong> Venturiaceae<br />

0.1 expected changes per site<br />

Athelia epiphylla AY586633<br />

Paullicorticium ansatum AY586693<br />

0.92 0.98 Neofabraea malicorticis AY544662<br />

Protoventuria alpina <strong>CBS</strong> 140.83<br />

0.94 Clathrosporium intricatum AY616235<br />

Leotiomycetes, Helotiales<br />

Satchmopsis brasiliensis DQ195797<br />

1.00<br />

Anungitopsis speciosa <strong>CBS</strong> 181.95 Incertae sedis<br />

0.98 1.00 Fasciatispora petrakii AY083828<br />

Sordariomycetes,<br />

Pidoplitchkoviella terricola AF096197<br />

0.98 Polyscytalum fecundissimum <strong>CBS</strong> 100506 Xylariomycetidae,<br />

1.00 Phlogicylindrium eucalypti DQ923534 Xylariales<br />

1.00<br />

0.94<br />

Cladophialophora humicola AF050263<br />

0.84 Cladophialophora sylvestris <strong>CBS</strong> 350.83<br />

1.00 Cladophialophora hostae CPC 10737<br />

Cladophialophora scillae <strong>CBS</strong> 116461<br />

0.50 Cladophialophora proteae <strong>CBS</strong> 111667<br />

Phaeococcomyces catenatus AF050277<br />

1.00 Glyphium elatum AF346420<br />

1.00 Exophiala sp. 3 CPC 12171<br />

1.00 Exophiala sp. 3 CPC 12173<br />

1.00 Exophiala sp. 3 CPC 12172<br />

“<strong>Cladosporium</strong>” adianticola DQ008144<br />

1.00<br />

1.00<br />

1.00<br />

0.85<br />

0.56<br />

1.00<br />

1.00<br />

1.00<br />

“<strong>Cladosporium</strong>” adianticola DQ008143<br />

Metulocladosporiella musae DQ008162<br />

Metulocladosporiella musicola DQ008159<br />

Thysanorea papuana EU041871<br />

Veronaea botryosa EU041874<br />

Exophiala jeanselmei AF050271<br />

Exophiala oligosperma AF050289<br />

Ramichloridium mackenziei AF050288<br />

Ramichloridium anceps AF050285<br />

Capronia pilosella AF050254<br />

Capronia acutiseta AF050241<br />

Exophiala dermatitidis AF050270<br />

Capronia mansonii AY004338<br />

Capronia munkii AF050250<br />

0.71<br />

1.00<br />

0.81 Exophiala pisciphila DQ823101<br />

0.56 Fonsecaea pedrosoi AF050276<br />

0.98 Exophiala sp. 1 <strong>CBS</strong> 115142<br />

0.60 Exophiala sp. 2 <strong>CBS</strong> 115143<br />

0.80 Cyphellophora laciniata <strong>CBS</strong> 190.61<br />

Ceramothyrium carniolicum AY004339<br />

1.00 Cyphellophora hylomeconis <strong>CBS</strong> 113311<br />

1.00 Exophiala eucalyptorum CPC 11261<br />

Fonsecaea pedrosoi AF050275<br />

0.77 0.68<br />

Cladophialophora australiensis <strong>CBS</strong> 112793<br />

Cladophialophora potulentorum <strong>CBS</strong> 115144<br />

1.00 Cladophialophora potulentorum <strong>CBS</strong> 114772<br />

1.00 Cladophialophora potulentorum <strong>CBS</strong> 112222<br />

1.00<br />

0.95<br />

1.00<br />

1.00<br />

1.00<br />

Cladophialophora carrionii AF050262<br />

Phialophora americana AF050283<br />

Phialophora americana AF050280<br />

Cladophialophora chaetospira <strong>CBS</strong> 114747<br />

Cladophialophora chaetospira <strong>CBS</strong> 514.63<br />

Cladophialophora chaetospira <strong>CBS</strong> 491.70<br />

Cladophialophora chaetospira <strong>CBS</strong> 115468<br />

Fig. 2. (Page 193–194). Consensus phylogram (50 % majority rule) of 1 500 trees resulting from a Bayesian analysis of the LSU sequence alignment using MrBayes v. 3.1.2.<br />

Bayesian posterior probabilities are indicated at the nodes. Ex-type sequences are printed in bold face. <strong>The</strong> tree was rooted to two sequences obtained from GenBank (Athelia<br />

epiphylla AY586633 <strong>and</strong> Paullicorticium ansatum AY586693).<br />

Chaetothyriomycetes, Chaetothyriales, Herpotrichiellaceae<br />

Conidiogenous cells integrated, inconspicuous, truncate, lateral<br />

loci 1–1.5 µm wide, or conidiogenous cells subcylindrical with 1–3<br />

sympodial loci (which appear as minute lateral denticles), 7–17 ×<br />

1.5–2 µm; scars inconspicuous, neither darkened, refractive nor<br />

thickened. Conidia in short chains of up to 10, simple or branched,<br />

subcylindrical to narrowly ellipsoid, 0–1-septate, (8–)11–14(–17)<br />

× (1.5–)2(–2.5) µm, pale olivaceous to olivaceous-brown or pale<br />

brown, smooth, hila truncate, 1–1.5 µm wide, unthickened, neither<br />

darkened, nor refractive.<br />

Cultural characteristics: Colonies erumpent, spreading, with<br />

uneven, feathery margins <strong>and</strong> dense aerial mycelium on PDA;<br />

pale olivaceous-grey in the middle, becoming olivaceous-grey<br />

in the outer zone (surface); reverse olivaceous-black, with greyolivaceous<br />

margins. Colonies reaching 7 mm diam after 2 wk at 25<br />

°C in the dark; colonies fertile.<br />

Specimen examined: Germany, Br<strong>and</strong>enburg, Müncheberg, from soil, Zaspel,<br />

Zalf & H. Nirenberg, holotype <strong>CBS</strong> H-19902, culture ex-type BBA 65570 = <strong>CBS</strong><br />

117536.<br />

Notes: Phylogenetically Cladophialophora humicola is closely<br />

related to C. sylvestris Crous & de Hoog (see below). Morphologically<br />

the two species can be distinguished in that C. humicola lacks<br />

ramoconidia, <strong>and</strong> has 1-septate conidia, while those of C. sylvestris<br />

are 0–3-septate.<br />

Cladophialophora potulentorum Crous & A.D. Hocking, sp. nov.<br />

MycoBank MB504529. Figs 9–10.<br />

Etymology: Refers to its presence in fruit juices <strong>and</strong> sports drinks.<br />

Cladophialophorae carrionii similis, sed conidiis secundis majoribus, (6–)8–10(–13)<br />

× 2–3 µm.<br />

In vitro: Mycelium consisting of branched, septate, smooth,<br />

pale brown, guttulate, 1.5–2.5 µm wide hyphae. Conidiophores<br />

solitary, macronematous, well distinguishable under the dissecting<br />

microscope from aerial mycelium, pale to medium brown,<br />

subcylindrical, straight to somewhat curved, erect, with apical<br />

apparatus appearing as a tuft due to extremely long conidial<br />

www.studiesinmycology.org<br />

193


Crous et al.<br />

0.1 expected changes per site<br />

Cylindrosympodium lauri <strong>CBS</strong> 240.95<br />

1.00 Fusicladium amoenum <strong>CBS</strong> 254.95<br />

1.00 Fusicladium intermedium <strong>CBS</strong> 110746<br />

1.00<br />

Fusicladium rhodense CPC 13156<br />

Fusicladium pini <strong>CBS</strong> 463.82<br />

1.00 1.00 1.00 Fusicladium ramoconidii <strong>CBS</strong> 462.82<br />

1.00<br />

Veronaeopsis simplex EU041877<br />

Fusicladium africanum CPC 12828<br />

Fusicladium africanum CPC 12829<br />

0.85<br />

0.95<br />

0.78<br />

0.56<br />

0.71<br />

1.00<br />

0.69<br />

0.79<br />

0.94<br />

0.56<br />

0.97<br />

0.91<br />

1.00<br />

0.97<br />

1.00<br />

1.00<br />

0.68<br />

0.55<br />

0.65<br />

0.61<br />

0.92<br />

0.94<br />

0.72<br />

0.95<br />

Sympoventuria capensis DQ885906<br />

Sympoventuria capensis DQ885904<br />

Sympoventuria capensis DQ885905<br />

Zeloasperisporium hyphopodioides <strong>CBS</strong> 218.95<br />

Metacoleroa dickiei DQ384100<br />

Venturia alpina <strong>CBS</strong> 373.53<br />

Venturia fraxini <strong>CBS</strong> 374.55<br />

Venturia macularis <strong>CBS</strong> 477.61<br />

Venturia maculiformis <strong>CBS</strong> 377.53<br />

Apiosporina collinsii CPC 12229<br />

Fusicladium fagi <strong>CBS</strong> 621.84<br />

Venturia sp. <strong>CBS</strong> 681.74<br />

Caproventuria hanliniana AF050290<br />

Venturia hystrioides <strong>CBS</strong> 117727<br />

Venturia viennotii <strong>CBS</strong> 690.85<br />

Venturia inaequalis <strong>CBS</strong> 535.76<br />

Venturia saliciperda <strong>CBS</strong> 214.27<br />

Fusicladium radiosum <strong>CBS</strong> 112625<br />

Venturia saliciperda <strong>CBS</strong> 480.61<br />

Venturia tremulae var. populi-albae <strong>CBS</strong> 694.85<br />

Venturiatremulae var. gr<strong>and</strong>identatae <strong>CBS</strong> 695.85<br />

Fusicladium m<strong>and</strong>shuricum <strong>CBS</strong> 112235<br />

Fusicladium pomi <strong>CBS</strong> 309.31<br />

Venturia atriseda <strong>CBS</strong> 371.55<br />

Venturia populina <strong>CBS</strong> 256.38<br />

Venturia chlorospora <strong>CBS</strong> 470.61<br />

Venturia ditricha <strong>CBS</strong> 118894<br />

Venturia tremulae var. tremulae <strong>CBS</strong> 257.38<br />

Fusicladium catenosporum <strong>CBS</strong> 447.91<br />

Venturia helvetica <strong>CBS</strong> 474.61<br />

Venturia minuta <strong>CBS</strong> 478.61<br />

Venturia chlorospora <strong>CBS</strong> 466.61<br />

Venturia polygoni-vivipari <strong>CBS</strong> 114207<br />

Venturia lonicerae <strong>CBS</strong> 445.54<br />

Venturia carpophila AY849967<br />

Fusicladium carpophilum <strong>CBS</strong> 497.62<br />

Venturia cerasi <strong>CBS</strong> 444.54<br />

Venturia atriseda <strong>CBS</strong> 378.49<br />

Venturia anemones <strong>CBS</strong> 370.55<br />

Venturia aceris <strong>CBS</strong> 372.53<br />

Venturia cephalariae <strong>CBS</strong> 372.55<br />

Fusicladium convolvularum <strong>CBS</strong> 112706<br />

Venturia aucupariae <strong>CBS</strong> 365.35<br />

Venturia crataegi <strong>CBS</strong> 368.35<br />

Venturia nashicola <strong>CBS</strong> 793.84<br />

Venturia pyrina <strong>CBS</strong> 120825<br />

Venturia pyrina <strong>CBS</strong> 331.65<br />

Fusicladium effusum CPC 4524<br />

Fusicladium effusum CPC 4525<br />

Fusicladium oleagineum <strong>CBS</strong>113427<br />

Fusicladium phillyreae <strong>CBS</strong> 113539<br />

Dothideomycetes, Pleosporales, Venturiaceae<br />

Fig. 2. (Continued).<br />

Fig. 3. Cladophialophora australiensis (<strong>CBS</strong> 112793). A. Conidiophore. B–C. Subcylindrical ramoconidia, <strong>and</strong> ellipsoid conidia. Scale bar = 10 µm.<br />

194


Herpotrichiellaceae <strong>and</strong> Venturiaceae<br />

Fig. 4. Cladophialophora chaetospira (<strong>CBS</strong> 114747). A–C. Hyphae giving rise to conidiophores with catenulate conidia. D–F. Conidia become up to 3-septate, frequently<br />

remaining attached in chains. Scale bars = 10 µm.<br />

Fig. 5. Cladophialophora hostae (CPC 10737). A–B. Conidiogenous loci (arrows). C. Hyphal coil. D–F. Branched conidial chains. G–H. Conidia. Scale bar = 10 µm.<br />

www.studiesinmycology.org<br />

195


Crous et al.<br />

Fig. 6. Cladophialophora hostae (CPC 10737). Branched conidial chains with<br />

ramoconidia <strong>and</strong> conidia. Scale bar = 10 µm.<br />

Fig. 7. Cladophialophora humicola (<strong>CBS</strong> 117536). Conidiophore with branched<br />

conidial chains. Scale bar = 10 µm.<br />

Fig. 8. Cladophialophora humicola (<strong>CBS</strong> 117536). A. Hyphal coil. B. Conidiophore. C–F. Conidial chains with ramoconidia <strong>and</strong> conidia. Scale bar = 10 µm.<br />

196


Herpotrichiellaceae <strong>and</strong> Venturiaceae<br />

Fig. 9. Cladophialophora potulentorum (<strong>CBS</strong> 115144). A. Colony on PDA. B. Conidiophore. C–D. Conidial chains. E–F. Ramoconidia <strong>and</strong> conidia. Scale bar = 10 µm.<br />

chains; conidiophores up to 5-septate, <strong>and</strong> 100 µm tall (excluding<br />

conidiogenous cells). Conidiogenous cells pale brown, smooth,<br />

terminal <strong>and</strong> lateral, subcylindrical, tapering towards subtruncate<br />

to truncate loci, 1 µm wide, somewhat darkened, thickened, but not<br />

refractive, loci appearing subdenticulate on lateral conidiogenous<br />

cells, mono- to polyblastic, proliferating sympodially, 10–35 × 1.5–2<br />

µm. Conidia pale brown, smooth, guttulate, occurring in branched<br />

chains of up to 60; hila somewhat darkened <strong>and</strong> thickened, but not<br />

refractive, 0.5 µm wide; ramoconidia subcylindrical, 0–1-septate,<br />

15–17(–20) × 2.5–3 µm; conidia ellipsoid, (6–)8–10(–13) × 2–3<br />

µm.<br />

Cultural characteristics: Colonies erumpent, spreading, with smooth<br />

margins <strong>and</strong> dense aerial mycelium on PDA, olivaceous-grey<br />

(surface), with a thin, olivaceous-black margin; reverse olivaceousblack;<br />

on OA olivaceous-grey (surface) with a wide olivaceousblack<br />

margin. Colonies reaching 25–30 mm diam after 1 mo at 25<br />

°C in the dark; colonies fertile, also sporulating in the agar. Not able<br />

to grow at 37 °C.<br />

Specimens examined: Australia, isolated from apple juice drink, Dec. 1986, A.D.<br />

Hocking, holotype <strong>CBS</strong> H-19901, culture ex-type <strong>CBS</strong> 115144 = CPC 11048;<br />

Australia, isolated from sports drink, Feb. 1996, A.D. Hocking, <strong>CBS</strong> 114772 = CPC<br />

1375 = FRR 4947; Australia, isolated from sports drink, Feb. 1996, A.D. Hocking,<br />

<strong>CBS</strong> 112222 = FRR 4946.<br />

Fig. 10. Cladophialophora potulentorum (<strong>CBS</strong> 115144). Conidiophores with chains<br />

of ramoconidia <strong>and</strong> conidia. Scale bar = 10 µm.<br />

www.studiesinmycology.org<br />

Notes: Originally this taxon, isolated from fruit <strong>and</strong> sports drinks,<br />

was thought to be an undescribed species of Pseudocladosporium<br />

(= Fusicladium, see below). However, upon closer examination, this<br />

197


Crous et al.<br />

Fig. 11. Cladophialophora proteae (<strong>CBS</strong> 111667). A. Colony on OA. B–C. Conidiophores. D–H. Catenulate conidia. Scale bars = 10 µm.<br />

proved not to be the case. Conidiophores appear as distinct tufts<br />

under the dissecting microscope, <strong>and</strong> are readily distinguishable<br />

from the superficial mycelium, as is normally observed in species<br />

of Fusicladium, but the conidial chains are extremely long, <strong>and</strong> the<br />

conidia tend to be more ellipsoid than the predominantly fusiform or<br />

subcylindrical conidia observed in species of Fusicladium. Hyphal<br />

coils were also not observed in cultures of C. potulentorum, but<br />

are rather common in species of Fusicladium. <strong>The</strong> phylogenetic<br />

position of this taxon within the Herpotrichiellaceae clade also<br />

supports inclusion in the <strong>genus</strong> Cladophialophora.<br />

Cladophialophora proteae Viljoen & Crous, S. African J. Bot. 64:<br />

137. 1998. Fig. 11.<br />

≡ Pseudocladosporium proteae (Viljoen & Crous) Crous, in Crous et al.,<br />

Cultivation <strong>and</strong> Diseases of Proteaceae: Leucadendron, Leucospermum<br />

<strong>and</strong> Protea: 101. 2004.<br />

In vitro: Mycelium consisting of branched, septate hyphae, often<br />

forming str<strong>and</strong>s, anastomosing, smooth to finely verruculose,<br />

frequently constricted at septa, olivaceous, 3–4 µm wide; hyphal<br />

cells in older cultures becoming swollen, up to 6 µm wide.<br />

Conidiophores reduced to conidiogenous cells. Conidiogenous<br />

cells holoblastic, integrated, forming short, truncate protuberances,<br />

2–3 × 1.5–2 µm, concolorous with mycelium, subcylindrical.<br />

Conidia in vitro arranged in long acropetal chains (up to 20), simple<br />

or branched, subcylindrical to oblong-doliiform, (9–)13–17(–22) ×<br />

2.5–3(–4) µm in vitro on MEA, (9–)16–22(–25) × (2.5–)3–4(–6)<br />

µm on SNA; 0–1(–4)-septate, pale brown to pale olivaceous,<br />

smooth, hila subtruncate to truncate, not thickened, but somewhat<br />

refractive.<br />

Cultural characteristics: Colonies erumpent, with sparse aerial<br />

mycelium on PDA; margins irregular, feathery; greyish rose, with<br />

patches of pale olivaceous-grey (surface); reverse olivaceous-grey.<br />

Colonies reaching 10 mm diam after 2 wk at 25 °C in the dark;<br />

colonies fertile.<br />

Specimen examined: South Africa, Western Cape Province, Stellenbosch, J.S.<br />

Marais Nature Reserve, leaves of Protea cynaroides (Proteaceae), 26 Aug. 1996, L.<br />

Viljoen, holotype PREM 55345, culture ex-type <strong>CBS</strong> 111667.<br />

Notes: Cladophialophora proteae differs from species of Fusicladium<br />

(= Pseudocladosporium) based on its colony colour, the slimy<br />

nature of colonies, as well as its conidia that have inconspicuous,<br />

unthickened hila (Fig. 11) (Crous et al. 2004), unlike those observed<br />

in species of Fusicladium. Sequence data show that this species is<br />

not allied to the Venturiaceae, but to the Herpotrichiellaceae.<br />

Cladophialophora scillae (Deighton) Crous, U. Braun & K. Schub.,<br />

comb. nov. MycoBank MB504530. Fig. 12.<br />

Basionym: <strong>Cladosporium</strong> scillae Deighton, N. Zeal<strong>and</strong> J. Bot. 8:<br />

55. 1970.<br />

≡ Fusicladium scillae (Deighton) U. Braun & K. Schub., IMI Descriptions of<br />

Fungi <strong>and</strong> Bacteria 152: 1518. 2002.<br />

198


Herpotrichiellaceae <strong>and</strong> Venturiaceae<br />

Fig. 12. Cladophialophora scillae (<strong>CBS</strong> 116461). A–C. Conidiophores. D–F. Catenulate conidia. Scale bar = 10 µm.<br />

In vivo: see Schubert & Braun (2002a) <strong>and</strong> Schubert et al. (2003).<br />

In vitro: Mycelium consisting of branched, septate, smooth, greenbrown<br />

to medium brown, guttulate hyphae, variable in width, 1.5–3<br />

µm diam. Conidiophores lateral or terminal on hyphae, erect,<br />

straight to slightly flexuous, solitary, in some cases aggregated,<br />

subcylindrical, curved to geniculate-sinuous, unbranched, up to 55<br />

µm long, 2–3 µm wide, 0–7-septate, septa in short succession,<br />

pale to medium brown, somewhat paler towards apices, smooth.<br />

Conidiogenous cells integrated, terminal or lateral as individual loci<br />

on hyphal cells, straight to curved, subcylindrical, up to 14(–18) µm<br />

long <strong>and</strong> 2 µm wide, pale to medium brown, smooth, with a single or<br />

few subdenticulate to denticulate loci at the apex due to sympodial<br />

proliferation, or reduced to individual loci, 0.8–1.5(–2) µm wide;<br />

scars minutely thickened <strong>and</strong> darkened, but not refractive. Conidia<br />

occurring in long, unbranched or loosely branched chains (–30),<br />

straight to slightly curved, ellipsoid to mostly narrowly subcylindrical,<br />

obclavate in some larger, septate conidia, (5–)10–20(–35) × 1.5–3<br />

µm, 0–1(–3)-septate, sometimes slightly constricted at the septa,<br />

subhyaline to pale brown, smooth, guttulate, tapering at ends<br />

to subtruncate hila, 0.8–1.5 µm wide, minutely thickened <strong>and</strong><br />

darkened, but not refractive; microcyclic conidiogenesis occurring.<br />

Cultural characteristics: Colonies erumpent, spreading, with<br />

smooth, even margins <strong>and</strong> dense, abundant aerial mycelium on<br />

PDA; grey-olivaceous (surface); reverse dark olivaceous. Colonies<br />

on OA olivaceous-grey, smoke-grey due to profuse sporulation,<br />

www.studiesinmycology.org<br />

reverse olivaceous-grey to iron-grey, velvety, aerial mycelium<br />

sparse, diffuse. Colonies reaching 20 mm diam on SNA, <strong>and</strong> 40<br />

mm on PDA after 1 mo at 25 °C in the dark; colonies fertile.<br />

Specimens examined: New Zeal<strong>and</strong>, Levin, on Scilla peruviana (Hyacinthaceae),<br />

21 Dec. 1965, G.F. Laudon, IMI 116997 holotype; Auckl<strong>and</strong>, Manurewa, Auckl<strong>and</strong><br />

Botanic Gardens, on leaf spots of Scilla peruviana, 25 Apr. 2004, C.F. Hill, 1044,<br />

<strong>CBS</strong> H-19903, epitype designated here, culture ex-type <strong>CBS</strong> 116461.<br />

Notes: In culture Cladophialophora scillae forms a<br />

pseudocladosporium-like state, though the scars are somewhat<br />

darkened <strong>and</strong> thickened, but not refractive. Conidiophores are<br />

reduced to conidiogenous cells that are integrated in the mycelium,<br />

terminal or lateral, frequently also as an inconspicuous lateral<br />

denticle, with a flat-tipped scar. Conidia occur in long, branched<br />

chains, which are subcylindrical to narrowly ellipsoid, <strong>and</strong> are<br />

up to 35 µm long, 1.5–3 µm wide, thus longer <strong>and</strong> thinner than<br />

reported on the host, which were 0–3-septate, subcylindrical to<br />

ellipsoid-ovoid, 7–22 × 2.5–4 µm. Due to the fusicladioid habit of<br />

this species in vivo, Schubert & Braun (2002a) reallocated it to<br />

Fusicladium. Based on ITS sequence data, morphology <strong>and</strong> cultural<br />

characteristics, Cladophialophora scillae was almost identical to<br />

an isolate obtained from leaf spots of Hosta plantaginea in Korea.<br />

<strong>The</strong>se isolates appeared to resemble species of Fusicladium, but<br />

phylogenetically they clustered in the Herpotrichiellaceae. <strong>The</strong>refore,<br />

“Fusicladium” scillae was placed in the <strong>genus</strong> Cladophialophora.<br />

As far as we are aware, this species <strong>and</strong> C. hostae are first reports<br />

of phytopathogenic species within the <strong>genus</strong> Cladophialophora.<br />

199


Crous et al.<br />

Fig. 13. Cladophialophora sylvestris (<strong>CBS</strong> 350.83). A–B. Conidiophores. C. Catenulate conidia. D. Conidial mass. Scale bar = 10 µm.<br />

Fig. 14. Cyphellophora hylomeconis (<strong>CBS</strong> 113311). A. Colony on PDA. B–C. Hyphae with truncate conidiogenous loci. D–F. Conidia. Scale bars = 10 µm.<br />

Cladophialophora sylvestris Crous & de Hoog, sp. nov.<br />

MycoBank MB504531. Fig. 13.<br />

Etymology: Refers to its host, Pinus sylvestris.<br />

Cladophialophorae humicolae similis, sed conidiis 0–3-septatis, (7–)10–16(–20) ×<br />

1.5–2 µm.<br />

Mycelium composed of branched, smooth, pale olivaceous to<br />

pale brown hyphae, frequently forming hyphal coils, not to slightly<br />

constricted at the septa, 1–2 µm wide. Conidiophores medium<br />

brown, subcylindrical, flexuous, mononematous, multiseptate, up<br />

to 50 µm long, <strong>and</strong> 2–3 µm wide. Conidiogenous cells apical,<br />

sympodial, pale brown, 5–12 × 2–3 µm; scars somewhat darkened<br />

<strong>and</strong> thickened, not refractive. Conidia occurring in branched chains;<br />

ramoconidia up to 2 µm wide, giving rise apically to disarticulating<br />

chains of conidia; smooth, 0–3-septate, pale olivaceous,<br />

subcylindrical, (7–)10–16(–20) × 1.5–2 µm, with truncate ends; hila<br />

somewhat darkened <strong>and</strong> thickened, not refractive.<br />

Cultural characteristics: Colonies erumpent on PDA, with smooth,<br />

catenulate margins; iron-grey (surface); reverse greenish black.<br />

Colonies reaching 15 mm diam after 1 mo at 25 °C in the dark;<br />

colonies fertile.<br />

Specimen examined: Netherl<strong>and</strong>s, Kootwijk, needle litter of Pinus sylvestris<br />

(Pinaceae), 8 Nov. 1982, G.S. de Hoog, holotype <strong>CBS</strong> H-19917, culture ex-type<br />

<strong>CBS</strong> 350.83.<br />

Notes: Morphologically <strong>CBS</strong> 350.83 was originally identified as<br />

Polyscytalum griseum Sacc., but the latter is reported to have<br />

conidia that are 5–5.5 × 1 µm (Saccardo 1877), which is much<br />

smaller than that observed for the present isolate. Furthermore,<br />

the type species of Polyscytalum, P. fecundissimum Riess (<strong>CBS</strong><br />

100506), does not cluster within the Herpotrichiellaceae, thus<br />

suggesting that <strong>CBS</strong> 350.83 is best treated as a new species of<br />

Cladophialophora.<br />

Cyphellophora hylomeconis Crous, de Hoog & H.D. Shin, sp.<br />

nov. MycoBank MB504532. Fig. 14.<br />

Etymology: Named after its host <strong>genus</strong>, Hylomecon.<br />

Cyphellophorae lacinatae similis, sed conidiis longioribus et leniter angustioribus,<br />

(15–)25–35(–55) × (2.5–)3(–4) µm.<br />

Mycelium consisting of branched, greenish brown, septate,<br />

branched, smooth, 3–5 µm wide hyphae, constricted at septa.<br />

Conidiogenous cells phialidic, intercalary, appearing denticulate,<br />

1 µm tall, 1.5–2 µm wide, with minute collarettes (at times<br />

200


Herpotrichiellaceae <strong>and</strong> Venturiaceae<br />

proliferating percurrently). Conidia sickle-shaped, smooth, medium<br />

brown, guttulate, (1–)3(–5)-septate, constricted at septa, widest in<br />

middle, or lower third of the conidium; apex subacutely rounded,<br />

base subtruncate, or having a slight constriction, giving rise to a<br />

foot cell, 1 µm long, 0.5–1 µm wide, subacutely rounded, (15–)25–<br />

35(–55) × (2.5–)3(–4) µm; a marginal frill is visible above the foot<br />

cell, suggesting this foot cell may be the onset of basal germination;<br />

conidia also anastomose <strong>and</strong> undergo microcyclic conidiation in<br />

culture.<br />

Cultural characteristics: Colonies slow-growing, slimy, aerial<br />

mycelium absent, margins smooth, catenate; surface crumpled,<br />

olivaceous-black to iron-grey. Colonies reaching 20 mm diam<br />

after 1 mo at 25 °C in the dark on PDA, 12 mm on SNA; colonies<br />

fertile.<br />

Specimen examined: Korea, Yangpyeong, on leaves of Hylomecon verlance<br />

(Papaveraceae), 4 Jun. 2003, H.D. Shin, holotype <strong>CBS</strong> H-19907, isotype SMK<br />

19550, culture ex-type <strong>CBS</strong> 113311.<br />

Notes: Cyphellophora hylomeconis is related to the type species<br />

of the <strong>genus</strong>, Cyphellophora laciniata G.A. de Vries, which also<br />

resides in the Herpotrichiellaceae. <strong>The</strong> <strong>genus</strong> Cyphellophora G.A.<br />

de Vries is phenetically distinguished from Pseudomicrodochium<br />

B.C. Sutton, typified by P. aciculare B.C. Sutton (1975) by melanized<br />

versus hyaline thalli. Phylogenetic confirmation is pending due to<br />

unavailability of sequence data. Decock et al. (2003) synonymised<br />

the hyaline <strong>genus</strong> Kumbhamaya M. Jacob & D.J. Bhat (Jacob &<br />

Bhat 2000) with Cyphellophora, but as no cultures of this fungus are<br />

available this decision seems premature. Nearly all Cyphellophora<br />

species accepted by Decock et al. (2003) have been found to be<br />

involved in cutaneous infections in humans. This also holds true<br />

for the species originally described as being environmental, C.<br />

vermispora Walz & de Hoog, which is closely related to C. suttonii<br />

(Ajello et al.) Decock <strong>and</strong> C. fusarioides (C.K. Campbell & B.C.<br />

Sutton) Decock known from proven human <strong>and</strong> animal infections.<br />

Decock et al. (2003) added the melanized species C. guyanensis<br />

Decock & Delgado, isolated as a saprobe from tropical leaf litter.<br />

Cyphellophora hylomeconis is the first species of the <strong>genus</strong><br />

infecting a living plant host. ITS sequences are remote from those of<br />

the remaining Cyphellophora species, the nearest neighbour being<br />

C. pluriseptata G.A. de Vries, Elders & Luykx at 19.1 % distance<br />

(data not shown). Cyphellophora hylomeconis can be distinguished<br />

based on its conidial dimensions <strong>and</strong> septation. Conidia are larger<br />

than those of C. fusarioides (11–20 × 2–2.5 µm, 1–2-septate), <strong>and</strong><br />

those of C. laciniata (11–25 × 2–5 µm, 1–3-septate) (for a key to<br />

the species see Decock et al. 2003).<br />

Exophiala sp. 1. Fig. 15.<br />

Mycelium consisting of smooth, branched, septate, medium brown,<br />

2–3 µm wide hyphae, regular in width, forming hyphal str<strong>and</strong>s<br />

<strong>and</strong> hyphal coils, with free yeast-like cells present in culture;<br />

chlamydospores terminal on hyphae, frequently forming clusters<br />

or chains, medium brown, ellipsoid, 0–1-septate, up to 10 µm<br />

long <strong>and</strong> 5 µm wide. Conidiophores reduced to conidiogenous<br />

cells, or consisting of one supporting cell, giving rise to a single<br />

conidiogenous cell, subcylindrical to ellipsoid, medium brown,<br />

smooth, 5–12 × 3.5–4 µm, with 1(–3) phialidic loci, somewhat<br />

protruding, appearing subdenticulate at first glance under the<br />

light microscope. Conidiogenous cells integrated as lateral loci on<br />

hyphal cells, inconspicuous, 1–1.5 µm wide, with a slightly flaring<br />

collarette, (1–)1.5(–2) µm long. Conidia ellipsoid, smooth, guttulate,<br />

becoming brown, swollen <strong>and</strong> elongated, <strong>and</strong> at times 1-septate,<br />

4–5(–7) × (2.5–)3(–4) µm (description based on <strong>CBS</strong> 115142).<br />

www.studiesinmycology.org<br />

Cultural characteristics: Colonies erumpent, spreading, with sparse<br />

to dense aerial mycelium on PDA, olivaceous-grey (surface), with a<br />

thin to wide, smooth, olivaceous-black margins; reverse olivaceousblack;<br />

on OA olivaceous-grey (surface) with wide, olivaceous-black<br />

margins. Colonies reaching 40–50 mm diam after 1 mo at 25 °C in<br />

the dark; colonies fertile, but sporulation sparse. Not able to grow<br />

at 37 °C.<br />

Specimen examined: Australia, from a fruit drink, May 2002, N.J. Charley, <strong>CBS</strong><br />

115142 = CPC 11044 = FRR 5582.<br />

Notes: Species of Exophiala are frequently observed as agents<br />

of human mycoses in immunocompromised patients (de Hoog<br />

et al. 2000). <strong>The</strong>y are found in the environment as slow-growing,<br />

oligotrophic colonisers of moist substrates. For example the<br />

thermotolerant species E. dermatitidis (Kano) de Hoog <strong>and</strong> E.<br />

phaeomuriformis (Matsumoto et al.) Matos et al. are common<br />

in public steam baths (Matos et al. 2003), while E. mesophila<br />

Listemann & Freiesleben can be found in showers <strong>and</strong> swimming<br />

pools (unpubl. data). Both species are able to cause infections<br />

in humans (Zeng et al. 2007). Several other species have been<br />

associated primarily with infections in fish <strong>and</strong> cold-blooded animals<br />

(Richards et al. 1978) <strong>and</strong> are occasionally found on humans<br />

(Madan et al. 2006). <strong>The</strong> occurrence of the present species in fruit<br />

drinks, therefore, is cause of concern, although it was unable to<br />

grow at 37 °C. This species forms part of a larger study, <strong>and</strong> will be<br />

treated elsewhere.<br />

Exophiala sp. 2. Fig. 16.<br />

Mycelium consisting of smooth, branched, septate, pale brown,<br />

1.5–3 µm wide hyphae, forming hyphal str<strong>and</strong>s <strong>and</strong> hyphal coils;<br />

hyphae at times terminating in chains of ellipsoid chlamydospores<br />

that are medium brown, smooth, up to 10 µm long <strong>and</strong> 5 µm wide.<br />

Conidiophores subcylindrical, medium brown, smooth, consisting<br />

of a supporting cell <strong>and</strong> a single conidiogenous cell, or reduced<br />

to a conidiogenous cell, straight to curved, up to 30 µm long<br />

<strong>and</strong> 2–3 µm wide. Conidiogenous cells pale to medium brown,<br />

subcylindrical to narrowly ellipsoid or subclavate, with 1–3 apical,<br />

phialidic loci, 1 µm wide, 1–2 µm tall, collarette somewhat flaring,<br />

but mostly cylindrical, 7–20 × 2–2.5 µm; at times proliferating<br />

percurrently. Conidia ellipsoid, smooth, guttulate, hyaline, becoming<br />

pale olivaceous, apex obtuse, base subtruncate, (4–)5–7(–10) ×<br />

2–2.5(–3) µm.<br />

Cultural characteristics: Colonies spreading with smooth,<br />

submerged margins, moderate aerial mycelium on PDA, sparse on<br />

OA, on PDA <strong>and</strong> OA olivaceous-grey (surface), with a wide, irongrey<br />

margin; reverse iron-grey. Colonies reaching 40–50 mm diam<br />

after 1 mo at 25 °C in the dark; colonies fertile. Not able to grow<br />

at 37 °C.<br />

Specimen examined: Australia, from bottled spring water, May 2003, N.J. Charley,<br />

<strong>CBS</strong> 115143 = CPC 11047 = FRR 5599.<br />

Notes: This strain represents another taxon occurring in bottled<br />

drinks destined for human consumption. As it is unable to grow at<br />

37 °C, it does not appear to pose any serious threat to human<br />

health. This species forms part of a larger study, <strong>and</strong> will be treated<br />

elsewhere.<br />

201


Crous et al.<br />

Fig. 15. Exophiala sp. 1 (<strong>CBS</strong> 115142). A. Colony on PDA. B. Hyphal coil. C. Hyphal str<strong>and</strong>. D–H. Conidiogenous cells <strong>and</strong> loci. I–O. Conidiogenous cells <strong>and</strong> conidia. Scale<br />

bars = 10 µm.<br />

Fig. 16. Exophiala sp. 2 (<strong>CBS</strong> 115143). A. Conidiogenous cells. B. Conidiophore with hyphal coil. C. Conidiogenous cell with hyphal str<strong>and</strong>. D. Conidia. Scale bar = 10 µm.<br />

202


Herpotrichiellaceae <strong>and</strong> Venturiaceae<br />

Fig. 17. Exophiala eucalyptorum (CPC 11261). A. Colony on PDA. B–H. Hyphae, conidiogenous cells <strong>and</strong> conidia. Scale bars = 10 µm.<br />

Exophiala eucalyptorum Crous, sp. nov. MycoBank MB504533.<br />

Fig. 17.<br />

Etymology: Named after its occurrence on Eucalyptus leaves.<br />

Exophialae spiniferae similis, sed conidiis fusoidibus-ellipsoideis, (5–)6–8(–10)<br />

× (3–)4–5(–7) µm, et cellulis conidiogenis saepe catenatis, in catenis brevibus,<br />

dividentibus.<br />

Mycelium consisting of smooth to finely verruculose, branched,<br />

septate, 2–4 µm wide hyphae, at times giving rise to chains of<br />

dark brown, fusoid-ellipsoid chlamydospores, which can still have<br />

phialides, suggesting they were conidiogenous cells; hyphae<br />

becoming constricted at septa when fertile. Conidiophores reduced<br />

to conidiogenous cells. Conidiogenous cells numerous, terminal<br />

<strong>and</strong> lateral, mono- to polyphialidic, 5–15 × 3–5 µm; loci 1–1.5 µm<br />

wide <strong>and</strong> tall, with inconspicuous collarettes, at time proliferating<br />

percurrently; conidiogenous cells fusoid-ellipsoid, <strong>and</strong> frequently<br />

breaking off, appearing as short chains of conidia, but distinct in<br />

having conidiogenous loci. Conidia fusoid-ellipsoid, apex acutely<br />

rounded, base subtruncate, (5–)6–8(–10) × (3–)4–5(–7) µm;<br />

frequently becoming fertile, septate <strong>and</strong> brown with age.<br />

Cultural characteristics: Colonies erumpent, convex, smooth, slimy,<br />

margins feathery to crenate <strong>and</strong> smooth; aerial mycelium absent,<br />

growth yeast-like. Colonies on PDA, OA <strong>and</strong> SNA chestnut on<br />

surface <strong>and</strong> reverse. Colonies reaching 4 mm diam after 2 wk on<br />

PDA at 25 °C in the dark.<br />

Specimen examined: New Zeal<strong>and</strong>, Wellington Botanical Garden, on leaf litter of<br />

Eucalyptus sp. (Myrtaceae), Mar. 2004, J.A. Stalpers, holotype <strong>CBS</strong> H-19905,<br />

culture ex-type <strong>CBS</strong> 121638 = CPC 11261.<br />

www.studiesinmycology.org<br />

Notes: Exophiala eucalyptorum is rather characteristic in that,<br />

in culture, chains of conidiogenous cells frequently detach from<br />

hyphae, appearing as short, intact chains of fertile conidia.<br />

Its phylogenetic position is somewhat outside the core of the<br />

Herpotrichiellaceae containing most Capronia teleomorphs <strong>and</strong><br />

the remaining opportunistic Exophiala species, but still within the<br />

Chaetothyriales (Figs 1–2).<br />

Members of Venturiaceae<br />

Anungitea B. Sutton <strong>and</strong> Anungitopsis R.F. Castañeda &<br />

W.B. Kendr.<br />

Sutton (1973) erected the <strong>genus</strong> Anungitea to accommodate<br />

species with brown, mononematous conidiophores bearing<br />

apically aggregated, flat-tipped, subdenticulate conidiogenous loci<br />

that give rise to chains of pale brown subcylindrical conidia with<br />

thickened, darkened hila. He compared the type species, A. fragilis<br />

B. Sutton with anamorph genera of the Mycosphaerellaceae,<br />

but did not compare it to Fusicladium, to which it is remarkably<br />

<strong>similar</strong>. Castañeda & Kendrick (1990b) introduced the <strong>genus</strong><br />

Anungitopsis based on A. speciosa R.F. Castañeda & W.B. Kendr.<br />

This <strong>genus</strong> was distinguished from Anungitea by its formation of<br />

subdenticulate conidiogenous loci distributed along the apical<br />

region of the conidiophore, <strong>and</strong> by the relatively poorly defined<br />

appearance of these loci. No cultures are available of the extype<br />

species of Anungitea, but we studied strains of Anungitopsis<br />

203


Crous et al.<br />

Fig. 18. Cylindrosympodium lauri (<strong>CBS</strong> 240.95). A–C. Conidiophores with conidiogenous loci. D. Conidia. Scale bar = 10 µm.<br />

amoena R.F. Castañeda & Dugan (<strong>CBS</strong> 254.95, ex-type), <strong>and</strong><br />

Anungitopsis intermedia Crous & W.B. Kendr. (<strong>CBS</strong> 110746,<br />

ex-epitype), <strong>and</strong> found them to cluster adjacent to Fusicladium<br />

(Venturiaceae). However, the ex-type strain of Anungitopsis<br />

speciosa (<strong>CBS</strong> 181.95), type species of Anungitopsis, clustered<br />

distantly from all other species, confirming that the <strong>genus</strong> name<br />

Anungitopsis is not available for any of the taxa treated here. In<br />

any case, A. speciosa has unusual subdenticulate conidiogenous<br />

loci with indistinct marginal frills, <strong>and</strong> these are obviously different<br />

from those of anungitea- <strong>and</strong> fusicladium-like anamorphs, including<br />

A. amoena <strong>and</strong> A. intermedia. <strong>The</strong> latter two species previously<br />

referred to as Anungitopsis belong to a sister clade of the Venturia<br />

(Fusicladium, incl. Pseudocladosporium) clade. Sympoventuria<br />

(Crous et al. 2007b), which produces a sympodiella-like anamorph<br />

in culture, is the only teleomorph of this clade hitherto known. <strong>The</strong><br />

venturia-like habit of Sympoventuria, connected with fusicladium-<br />

/ pseudocladosporium-like anamorphs distributed in both clades,<br />

indicates a close relation between these clades, suggesting a<br />

placement in the Venturiaceae. Schubert et al. (2003) referred to<br />

the difficulty to distinguish between Anungitea <strong>and</strong> Fusicladium.<br />

Anungitea is undoubtedly heterogeneous. Anungitea rhabdospora<br />

P.M. Kirk (Kirk 1983) is, for instance, intermediate between<br />

Anungitea (conidiophores with a terminal denticulate conidiogenous<br />

cell, but conidia disarticulating in an arthroconidium-like manner)<br />

<strong>and</strong> Sympodiella B. Kendr. (conidiophores distinctly sympodial,<br />

forming arthroconidia). Other species assigned to Anungitea<br />

possess a distinctly swollen, lobed conidiophore base, e.g. A.<br />

heterospora P.M. Kirk (Kirk 1983), which is comparable with other<br />

morphologically <strong>similar</strong> genera, e.g., Parapleurotheciopsis P.M.<br />

Kirk (Kirk 1982), Rhizocladosporium Crous & U. Braun (see Crous<br />

et al. 2007a – this volume), <strong>and</strong> Subramaniomyces Varghese &<br />

V.G. Rao (Varghese & Rao 1979, Kirk 1982). <strong>The</strong> application of<br />

Anungitea depends, however, on the affinity of A. fragilis, the type<br />

species, of which sequence data are not yet available. <strong>The</strong> best<br />

solution for this problem is the widened application of Fusicladium<br />

(incl. Pseudocladosporium) to both sister clades, i.e., to the whole<br />

Venturiaceae. Morphologically a distinction between fusicladioid<br />

anamorphs of both clades is impossible. <strong>The</strong> more “fusicladium-like”<br />

growth is mainly characteristic for the fruiting in vivo, above all in<br />

biotrophic taxa, whereas the more “pseudocladosporium-like” habit<br />

is typical for the growth in vitro <strong>and</strong> in saprobic taxa, a phenomenon<br />

which is also evident in species of the morphologically <strong>similar</strong><br />

<strong>genus</strong> Cladophialophora (see C. hostae <strong>and</strong> C. scillae). A potential<br />

placement of Anungitea fragilis within the Venturiaceae, which has<br />

still to be proven, would render the <strong>genus</strong> Anungitea a synonym of<br />

Fusicladium, but in the case of a quite distinct phylogenetic position<br />

a new circumscription of this <strong>genus</strong>, excluding the Venturiaceae<br />

anamorphs, would be necessary. Thus, a final conclusion about<br />

Anungitea has to be postponed, awaiting cultures <strong>and</strong> sequence<br />

analyses of its type species.<br />

<strong>The</strong> taxonomic placement of a fungus from the Canary<br />

Isl<strong>and</strong>s, isolated from leaf litter of Laurus sp. (<strong>CBS</strong> 240.95), is<br />

somewhat problematic. It clusters within the Venturiaceae, but<br />

not within Venturia s. str. itself, <strong>and</strong> it does not fit into the current<br />

morphological concept of Fusicladium (incl. Pseudocladosporium).<br />

Based on its solitary, cylindrical, hyaline conidia <strong>and</strong> pale brown<br />

conidiogenous structures, it resembles species accommodated in<br />

Cylindrosympodium W.B. Kendr. & R.F. Castañeda (Castañeda &<br />

Kendrick 1990a, Marvanová & Laichmanová 2007).<br />

Cylindrosympodium lauri Crous & R.F. Castañeda, sp. nov.<br />

MycoBank MB504534. Fig. 18.<br />

Etymology: Named after the host <strong>genus</strong> it was collected from,<br />

Laurus.<br />

Cylindrosympodii variabilis similis, sed conidiophoris longioribus, ad 70 µm, conidiis<br />

subhyalinis vel dilute olivaceis.<br />

Mycelium consisting of brown, smooth, septate, branched hyphae,<br />

1.5–2.5 µm wide. Conidiophores macronematous, mononematous,<br />

solitary, erect, subcylindrical, straight to geniculate-sinuous,<br />

medium brown, smooth, 35–70 × 2.5–4 µm, 1–5-septate.<br />

Conidiogenous cells terminal, integrated, pale to medium brown,<br />

smooth, 10–35 × 2–3 µm, proliferating sympodially, with one to<br />

several flat-tipped loci, 1.5–2 µm wide; scars somewhat darkened,<br />

minutely thickened, but not refractive. Conidia solitary, subacicular<br />

to narrowly subcylindrical, apex subobtuse, base truncate, or<br />

somewhat swollen, straight or curved, smooth, subhyaline to very<br />

pale olivaceous, guttulate, (45–)60–70(–80) × 2.5–3(–3.5) µm,<br />

(4–)6–8-septate; scars are somewhat darkened, minutely thickened,<br />

but not refractive, 2.5–3 µm wide.<br />

Cultural characteristics: Colonies erumpent, convex, with smooth,<br />

lobed margins, <strong>and</strong> moderate, dense aerial mycelium on PDA;<br />

mouse-grey in the central part, <strong>and</strong> dark mouse-grey in the outer<br />

zone (surface); reverse dark mouse-grey. Colonies reaching 5 mm<br />

diam after 2 wk at 25 °C in the dark; colonies fertile.<br />

204


Herpotrichiellaceae <strong>and</strong> Venturiaceae<br />

Specimen examined: Spain, Canary Isl<strong>and</strong>s, leaf litter of Laurus sp. (Lauraceae), 4<br />

Jan. 1995, R.F. Castañeda, holotype <strong>CBS</strong> H-19909, culture ex-type <strong>CBS</strong> 240.95.<br />

Note: <strong>The</strong> present fungus differs from Cylindrosympodium variabile<br />

(de Hoog) W.B. Kendr. & R.F. Castañeda (de Hoog 1985) in that the<br />

conidiophores are much longer, the conidia are subhyaline to very<br />

pale olivaceous, <strong>and</strong> the scars <strong>and</strong> hila are thin, slightly darkened,<br />

but not refractive.<br />

Venturia Sacc. <strong>and</strong> its anamorph Fusicladium<br />

Venturia Sacc., Syll. fung. (Abellini) 1: 586. 1882.<br />

= Apiosporina Höhn., Sitzungsber. Kaiserl. Akad. Wiss., Math.-Naturw. Cl., Abt.<br />

1, 119: 439. 1910, syn. nov.<br />

= Metacoleroa Petr., Ann. Mycol. 25: 332. 1927, syn. nov.<br />

= Caproventuria U. Braun, A Monograph of Cercosporella, Ramularia <strong>and</strong> Allied<br />

Genera (Phytopathogenic Hyphomycetes) 2: 396. 1998, syn. nov.<br />

For additional synonyms see Sivanesan, <strong>The</strong> bitunicate<br />

Ascomycetes <strong>and</strong> their anamorphs: 604. 1984.<br />

Anamorph: Fusicladium Bonord., H<strong>and</strong>b. Mykol.: 80. 1851.<br />

= Pseudocladosporium U. Braun, A Monograph of Cercosporella, Ramularia<br />

<strong>and</strong> Allied Genera (Phytopathogenic Hyphomycetes) 2: 392. 1998, syn. nov.<br />

For additional synonyms, see Schubert et al. (2003).<br />

Notes: <strong>The</strong> <strong>genus</strong> Caproventuria, based on C. hanliniana (U. Braun<br />

& Feiler) U. Braun, was erected to accommodate saprobic, soil-borne<br />

venturia-like ascomycetes with numerous ascomatal setae, <strong>and</strong> an<br />

anamorph quite distinct from Fusicladium (Braun 1998). <strong>The</strong> <strong>genus</strong><br />

Metacoleroa is based on M. dickiei (Berk. & Broome) Petr., which<br />

clusters in the Venturiaceae, adjacent to Caproventuria, which has<br />

Pseudocladosporium anamorphs. Metacoleroa was retained by Barr<br />

(1987) as separate from Venturia based on its superficial ascomata<br />

with a thin, stromatic layer beneath the ascomata. Whether these<br />

criteria still justify the separation of Caproventuria <strong>and</strong> Metacoleroa<br />

from Venturia is debatable, <strong>and</strong> the names Venturia dickiei (Berk. &<br />

Broome) Ces. & de Not. <strong>and</strong> Venturia hanliniana (U. Braun & Feiler)<br />

Unter. are available for these organisms. <strong>The</strong> <strong>genus</strong> Apiosporina,<br />

which is based on Apiosporina collinsii (Schwein.) Höhn., clusters in<br />

the Venturiaceae, as was to be expected based on its Fusicladium<br />

anamorph (Schubert et al. 2003). It was distinguished from Venturia<br />

species by having ascospores strictly septate near the lower end<br />

(Sivanesan 1984).<br />

<strong>The</strong> anamorph <strong>genus</strong> Fusicladium has been monographed by<br />

Schubert et al. (2003). Morphological as well as molecular studies<br />

(Beck et al. 2005) demonstrated that the <strong>genus</strong> Venturia with its<br />

Fusicladium anamorphs is monophyletic. A separation of Venturia<br />

into various uniform subclades based on the previous anamorph<br />

genera Fusicladium, Pollaccia <strong>and</strong> Spilocaea was not evident <strong>and</strong><br />

could be rejected. As in cercosporoid anamorphs of Mycosphaerella,<br />

features such as the arrangement of the conidiophores (solitary,<br />

fasciculate, sporodochial), the proliferation of conidiogenous cells<br />

(sympodial, percurrent) <strong>and</strong> shape, size as well as formation of<br />

conidia (solitary, catenate) proved to be of little taxonomic value at<br />

generic level. Hence, Schubert et al. (2003) proposed to maintain<br />

Fusicladium emend. as sole anamorph <strong>genus</strong> for Venturia.<br />

<strong>The</strong> <strong>genus</strong> Fusicladosporium Partridge & Morgan-Jones (type<br />

species: <strong>Cladosporium</strong> carpophilum Thüm.) (Partridge & Morgan-<br />

Jones 2003), recently erected to accommodate fusicladium-like<br />

species with catenate conidia, represents a further synonym of<br />

Fusicladium.<br />

Similar to their occurrence in vivo the conidiophores in<br />

vitro of species previously referred to the genera Spilocaea<br />

<strong>and</strong> Pollaccia are usually micronematous, conidia often appear<br />

to be directly formed on the mycelium, unilocal, determinate,<br />

mostly reduced to conidiogenous cells, sometimes forming a few<br />

percurrent proliferations, whereas the conidiophores of species<br />

of Fusicladium s. str. are mostly macronematous, but sometimes<br />

also micronematous. <strong>The</strong>y are often initiated as short lateral,<br />

peg-like outgrowths of hyphae which proliferate sympodially,<br />

becoming slightly geniculate, forming a single, several or numerous<br />

subdenticulate to denticulate, truncate, unthickened or only slightly<br />

thickened, somewhat darkened-refractive conidiogenous loci.<br />

<strong>The</strong> <strong>genus</strong> Pseudocladosporium was described to be quite<br />

distinct from Fusicladium by being saprobic <strong>and</strong> connected with a<br />

different teleomorph, viz. Caproventuria (Braun 1998). However,<br />

since the type species of Caproventuria, C. hanliniana, with its<br />

anamorph Pseudocladosporium brevicatenatum (U. Braun &<br />

Feiler) U. Braun clusters together with numerous Venturia species,<br />

the <strong>genus</strong> Pseudocladosporium should be reduced to synonymy<br />

with Fusicladium. Morphologically there is no clear delimitation<br />

between Fusicladium <strong>and</strong> Pseudocladosporium. <strong>The</strong> typically<br />

pseudocladosporium-like habit, characterised by forming solitary<br />

conidiophores, often reduced to conidiogenous cells or even<br />

micronematous, <strong>and</strong> conidia formed in long chains, is mainly found<br />

in culture, above all in saprobic taxa. <strong>The</strong> fusicladium-like growth<br />

with well-developed macronematous conidiophores is usually more<br />

evident in vivo, above all in biotrophic taxa. <strong>The</strong>re are, however, all<br />

kinds of transitions between these two genera.<br />

Fusicladium africanum Crous, sp. nov. MycoBank MB504535.<br />

Fig. 19.<br />

Etymology: Named after the continent from which it was collected,<br />

Africa.<br />

Fusicladio brevicatenato similis, sed conidiophoris brevioribus, 5–10 µm longis,<br />

conidiis minoribus, ad 20 × 3.5 µm, 0(–1)-septatis, locis conidiogenis et hilis<br />

angustioribus, 1–1.5 µm latis.<br />

Mycelium composed of smooth, medium brown, branched,<br />

septate, 1.5–2 µm wide hyphae, frequently forming hyphal coils.<br />

Conidiophores reduced to conidiogenous cells, solitary, pale to<br />

medium brown, smooth, inconspicuous, integrated in hyphae,<br />

varying from small, truncate lateral loci on hyphal cells, 1–1.5 µm<br />

wide, to micronematous conidiogenous cells, 5–10 × 2–3 µm; monoto<br />

polyblastic, sympodial, scars inconspicuous, 1 µm wide. Conidia<br />

in long, branched chains of up to 40, subcylindrical, 0(–1)-septate,<br />

pale brown, smooth; hila truncate, 1 µm wide, unthickened, neither<br />

darkened nor refractive; ramoconidia (11–)15–17(–20) × 2–3(–3.5)<br />

µm; conidia (8–)11–17 × 2–2.5 µm.<br />

Cultural characteristics: Colonies somewhat erumpent, with<br />

moderate aerial mycelium <strong>and</strong> smooth, lobate margins on PDA,<br />

ochreous to umber (surface); reverse dark umber; on OA umber;<br />

on SNA ochreous. Colonies reaching 9 mm diam on PDA after 2 wk<br />

at 25 °C in the dark; colonies fertile.<br />

Specimen examined: South Africa, Western Cape Province, Malmesbury,<br />

Eucalyptus leaf litter, Jan. 2006, P.W. Crous, holotype <strong>CBS</strong> H-19904, cultures extype<br />

CPC 12828 = <strong>CBS</strong> 121639, CPC 12829 = <strong>CBS</strong> 121640.<br />

Notes: Fusicladium africanum is a somewhat atypical member of the<br />

<strong>genus</strong>, as its conidial hila are quite unthickened <strong>and</strong> inconspicuous.<br />

Among biotrophic, leaf-spotting Fusicladium species a wider<br />

morphological variation was found pertaining to the structure of the<br />

conidiogenous loci <strong>and</strong> conidial hila, ranging from being indistinct,<br />

unthickened <strong>and</strong> not darkened-refractive to unthickened or almost<br />

so, but somewhat darkened-refractive (Schubert et al. 2003).<br />

Fusicladium africanum was found occurring with Sympoventuria<br />

capensis Crous & Seifert on Eucalyptus leaf litter in South Africa<br />

(Crous et al. 2007b).<br />

www.studiesinmycology.org<br />

205


Crous et al.<br />

Fig. 19. Fusicladium africanum (CPC 12828). A. Colony on MEA. B. Hyphal coil. C. Branched conidial chain. D–F. Conidiophores with catenulate conidia. Scale bar = 10 µm.<br />

Fig. 20. Fusicladium amoenum (<strong>CBS</strong> 254.95). A–E. Conidiophores with conidiogenous loci. F. Conidia. Scale bar = 10 µm.<br />

206


Herpotrichiellaceae <strong>and</strong> Venturiaceae<br />

Fig. 21. Fusicladium convolvularum (<strong>CBS</strong> 112706). A–B, D–I. Conidiophores with conidiogenous loci. C, J–K. Ramoconidia <strong>and</strong> conidia. Scale bars = 10 µm.<br />

Fusicladium amoenum (R.F. Castañeda & Dugan) Crous, K.<br />

Schub. & U. Braun, comb. nov. MycoBank MB504536. Fig. 20.<br />

Basionym: Anungitopsis amoena R.F. Castañeda & Dugan,<br />

Mycotaxon 72: 118. 1999.<br />

≡ <strong>Cladosporium</strong> amoenum R.F. Castañeda, in Untereiner et al., 1998,<br />

nom. nud.<br />

Specimen examined: Cuba, Santiago de Cuba, La Gran Piedra, fallen leaves of<br />

Eucalyptus sp. (Myrtaceae), 2 Nov. 1994, R.F. Castañeda, (Ho et al. 1999: 117,<br />

figs 2–3) iconotype, culture ex-type <strong>CBS</strong> 254.95 = ATCC 200947 = IMI 367525 =<br />

INIFAT C94/155 = MUCL 39143.<br />

Note: In culture F. amoenum has a typical pseudocladosporium-like<br />

morphology, though the scars are neither prominently thickened,<br />

nor refractive.<br />

www.studiesinmycology.org<br />

207


Crous et al.<br />

Fig. 22. Fusicladium fagi (<strong>CBS</strong> 621.84). A. Conidiophore with truncate conidiogenous loci. B. Hypha with conidiogenous loci. C–G. Conidial chains. Scale bars = 10 µm.<br />

Fusicladium caruanianum Sacc., Ann. Mycol. 11: 20. 1913.<br />

≡ Pseudocladosporium caruanianum (Sacc.) U. Braun, Schlechtendalia<br />

9: 114. 2003.<br />

Fusicladium convolvularum Ondřej, Česká Mycol. 25: 171. 1971.<br />

Fig. 21.<br />

In vivo: Schubert et al. (2003: 37).<br />

In vitro on SNA: Mycelium unbranched or only sparingly branched,<br />

2–3 µm wide, septate, not constricted at septa, subhyaline to pale<br />

brown, smooth, walls unthickened or almost so. Conidiophores<br />

laterally arising from hyphae, erect, straight to somewhat flexuous,<br />

sometimes geniculate, unbranched, (6–)12–75 × (2.5–)3–4.5<br />

µm, aseptate or septate, pale brown or pale medium brown,<br />

smooth, walls somewhat thickened, sometimes only as short<br />

lateral conical prolongations of hyphae, occasionally irregular in<br />

shape. Conidiogenous cells integrated, terminal or conidiophores<br />

reduced to conidiogenous cells, sometimes geniculate, 6–29 µm<br />

long, proliferation sympodial, with several denticle-like loci, broadly<br />

truncate, 1.5–2(–2.5) µm wide, unthickened, somewhat refractive<br />

or darkened. Ramoconidia occurring, 20–28 × 5 µm, 0–1-septate,<br />

somewhat darker, pale medium brown, with a broadly truncate<br />

base, 3–4 µm wide, usually with several denticle-like apical loci.<br />

Conidia catenate, formed in unbranched or loosely branched<br />

chains, straight to sometimes curved, cells sometimes irregularly<br />

swollen, fusiform, subcylindrical, sometimes obpyriform, 13–35 ×<br />

3.5–5.5(–6) µm, 0–3-septate, occasionally slightly constricted at<br />

the median septum, few very large conidia with up to five septa,<br />

up to 75 µm long, 4.5–6 µm wide, subhyaline to pale brown,<br />

smooth, walls slightly thickened, slightly attenuated towards apex<br />

<strong>and</strong> base, hila broadly truncate, 1–2 µm wide, unthickened or<br />

only slightly thickened, somewhat darkened-refractive; microcyclic<br />

conidiogenesis occurring, conidia often germinating.<br />

Cultural characteristics: Colonies on PDA spreading, somewhat<br />

erumpent, with moderate aerial mycelium <strong>and</strong> regular, but feathery<br />

margins; surface fuscous black, <strong>and</strong> reverse dark fuscous black.<br />

Colonies reaching 15 mm diam after 1 mo on PDA at 25 °C in the<br />

dark.<br />

Specimens examined: Czech Republic, Libina, okraj pole pod nadrazim (okr.<br />

Sumperk), on Convolvulus arvensis (Convolvulaceae), 7 Sep. 1970, Ondřej,<br />

holotype BRA. New Zeal<strong>and</strong>, on leaves of Convolvulus arvensis, 7 Nov. 2000,<br />

C.F. Hill, epitype designated here <strong>CBS</strong> H-19911, culture ex-epitype <strong>CBS</strong> 112706<br />

= CPC 3884 = IMI 383037.<br />

Note: Conidiophores are somewhat longer <strong>and</strong> narrower in vitro<br />

than in vivo, <strong>and</strong> ramoconidia occur (Schubert & Braun 2002b,<br />

Schubert et al. 2003).<br />

208


Herpotrichiellaceae <strong>and</strong> Venturiaceae<br />

Fig. 23. Fusicladium intermedium (<strong>CBS</strong> 110746). A–G. Conidiophores with sympodial conidiogenous loci. H. Conidia. Scale bar = 10 µm.<br />

Fusicladium fagi Crous & de Hoog, sp. nov. MycoBank MB504537.<br />

Fig. 22.<br />

Etymology: Named after its host, Fagus sylvatica.<br />

Fusicladio brevicatenato similis, sed conidiis secundis minoribus, (8–)11–17(–20) ×<br />

3–3.5 µm, locis conidiogenis et hilis angustioribus, 1–1.5 µm latis.<br />

Mycelium consisting of pale to medium brown, smooth to finely<br />

verruculose, branched, 2–3 µm wide hyphae. Conidiophores<br />

integrated, terminal on hyphae, 0–1-septate, mostly reduced to<br />

conidiogenous cells, also lateral, visible as small, protruding,<br />

denticle-like loci, 10–15 × 2–3.5 µm. Conidiogenous cells<br />

subcylindrical, 5–15 × 2–3.5 µm, pale to medium brown, smooth<br />

to finely verruculose, tapering to 1–3 apical loci, 1–1.5 µm wide;<br />

scars inconspicuous. Conidia pale brown, smooth, guttulate,<br />

subcylindrical to narrowly ellipsoid, occurring in simple or branched<br />

chains, 0–1(–2)-septate, tapering towards subtruncate ends, 1.5–<br />

2.5 µm wide, aseptate conidia (8–)11–17(–20) × 3–3.5 µm, septate<br />

conidia up to 40 µm long <strong>and</strong> 4 µm wide; hila inconspicuous, i.e.<br />

neither thickened nor darkened-refractive; microcyclic conidiation<br />

common in older cultures.<br />

Cultural characteristics: Colonies erumpent, spreading, with<br />

abundant aerial mycelium on PDA, <strong>and</strong> feathery to smooth margins;<br />

isabelline to patches of fuscous-black due to the absence of aerial<br />

mycelium, which collapses with age (surface); reverse fuscousblack.<br />

Colonies reaching 50 mm diam after 1 mo at 25 °C in the<br />

dark; colonies fertile.<br />

Specimen examined: Netherl<strong>and</strong>s, Baarn, Maarschalksbosch, decaying leaves of<br />

Fagus sylvatica (Fagaceae), 1 Oct. 1984, G.S. de Hoog, holotype <strong>CBS</strong> H-10366,<br />

culture ex-type <strong>CBS</strong> 621.84 = ATCC 200937.<br />

Notes: Isolate <strong>CBS</strong> 621.84 was until recently preserved at the<br />

<strong>CBS</strong> as representative of <strong>Cladosporium</strong> nigrellum Ellis & Everh., a<br />

species known from bark of Robinia sp. in the U.S.A. Morphologically<br />

it is, however, quite distinct in having somewhat larger, <strong>and</strong> more<br />

subcylindrical to ellipsoid conidia. Conidia of C. nigrellum are<br />

fusiform to limoniform, 0–3-septate, 5–15 × 4–7 µm (Ellis 1976),<br />

possessing the typical cladosporioid scars with a central convex<br />

dome <strong>and</strong> a periclinal rim which characterise it as a true member<br />

of the <strong>genus</strong> <strong>Cladosporium</strong> Link, which has been confirmed by a<br />

re-examination of type material of C. nigrellum (on inner bark of<br />

railroad ties, U.S.A., West Virginia, Fayette Co., Nuttallburg, 20<br />

Oct. 1893, L.A. Nuttall, Flora of Fayette County No. 172, NY; also<br />

Ellis & Everh., N. Amer. Fungi 3086 <strong>and</strong> Fungi Columb. 382, BPI,<br />

NY, PH).<br />

Fusicladium intermedium (Crous & W.B. Kendr.) Crous, comb.<br />

nov. Mycobank MB504538. Fig. 23.<br />

Basionym: Anungitopsis intermedia Crous & W.B. Kendr. S. Afr. J.<br />

Bot. 63: 286. 1997.<br />

Specimens examined: South Africa, Mpumalanga, from leaf litter of Eucalyptus<br />

sp. (Myrtaceae), Oct. 1992, M.J. Wingfield, PREM 51438 holotype. Madagascar,<br />

Tamatave, Eucalyptus leaf litter, Apr. 1994, P.W. Crous, <strong>CBS</strong> H-19918, epitype<br />

designated here, culture ex-epitype CPC 778 = IMI 362702 = <strong>CBS</strong> 110746.<br />

Note: Conidiophores are dimorphic in culture, being macronematous,<br />

anungitopsis-like, <strong>and</strong> micronematous, more pseudocladosporiumlike.<br />

Fusicladium matsushimae (U. Braun & C.F. Hill) Crous, U. Braun<br />

& K. Schub., comb. nov. Mycobank MB504539.<br />

Basionym: Pseudocladosporium matsushimae U. Braun & C.F. Hill,<br />

Australas. Pl. Pathol. 33: 492. 2004.<br />

www.studiesinmycology.org<br />

209


Crous et al.<br />

Fig. 24. Fusicladium pini (<strong>CBS</strong> 463.82). A–F. Conidiogenous cells with conidiogenous loci. G. Conidia. Scale bars = 10 µm.<br />

Fusicladium m<strong>and</strong>shuricum (M. Morelet) Ritschel & U. Braun,<br />

Schlechtendalia 9: 62. 2003.<br />

Basionym: Pollaccia m<strong>and</strong>shurica M. Morelet, Ann. Soc. Sci. Nat.<br />

Archéol. Toulon Var 45(3): 218. 1993.<br />

= Pollaccia sinensis W.P. Wu & B. Sutton, in herb. (IMI).<br />

Teleomorph: Venturia m<strong>and</strong>shurica M. Morelet, Ann. Soc. Sci.<br />

Nat. Archéol. Toulon Var 45(3): 219. 1993.<br />

In vivo: Schubert et al. (2003: 62).<br />

In vitro on OA: Mycelium loosely branched, filiform to narrowly<br />

cylindrical-oblong, 1–4 µm wide, later somewhat wider, up to<br />

7 µm, septate, sometimes slightly constricted at the septa,<br />

sometimes irregular in outline due to small swellings, subhyaline<br />

to pale brown, smooth, walls unthickened, sometimes aggregating,<br />

forming compact conglomerations of slightly swollen hyphal cells.<br />

Conidiophores usually reduced to conidiogenous cells, arising<br />

terminally or laterally from hyphae, subcylindrical to cylindrical,<br />

unbranched, 9–20 × (2.5–)4–5(–6) µm, aseptate, very rarely 1-<br />

septate, very pale brown, smooth, walls unthickened, monoblastic,<br />

unilocal, determinate, later occasionally becoming percurrent,<br />

enteroblastically proliferating, forming a few (up to five) annellations,<br />

loci broadly truncate, (2–)3–5 µm wide, unthickened, not darkened.<br />

Conidia solitary, straight to curved, fusiform to obclavate, distinctly<br />

apiculate, 24–45(–57) × (6–)7–9(–10.5) µm, (1–)2–4(–5)-septate,<br />

more or less constricted at septa, sometimes up to 85 µm long<br />

with up to 7 septa, septa often somewhat darkened, second cell<br />

often bulging, pale medium to medium olivaceous-brown or brown,<br />

smooth, walls somewhat thickened, somewhat attenuated towards<br />

the base, hilum broadly truncate, (2–)3–5 µm wide, unthickened,<br />

not darkened; microcyclic conidiogenesis not observed.<br />

Cultural characteristics: Colonies on OA iron-grey to olivaceousgrey<br />

due to aerial mycelium <strong>and</strong> sporulation (surface); reverse<br />

iron-grey to black, somewhat velvety; margin glabrous, olivaceous;<br />

aerial mycelium sparsely formed, loose, diffuse; sporulating.<br />

Specimens examined: China, Liaoning, on Populus simonii × P. nigra, 17 Jun. 1992,<br />

M. Morelet, holotype PC (PFN 1466); P. simonii, 20 Apr. 1993, epitype designated<br />

here <strong>CBS</strong> H-19912, culture ex-epitype <strong>CBS</strong> 112235 = CPC 3639 = MPFN 307.<br />

Note: Conidiophores are densely fasciculate in vivo, forming<br />

sporodochial conidiomata, cylindrical to ampulliform, 5–7 × 6–7.5<br />

µm (Schubert et al. 2003).<br />

Fusicladium pini Crous & de Hoog, sp. nov. MycoBank MB504540.<br />

Fig. 24.<br />

Etymology: Named after its host, Pinus.<br />

Fusicladio africano similis, sed conidiis minoribus, (6–)10–12(–17) × 1.5–2(–2.5)<br />

µm, locis conidiogenis et hilis angustioribus, 0.5–1 µm latis.<br />

Mycelium consisting of smooth, medium brown, branched,<br />

1.5–2 µm wide hyphae, giving rise to solitary, micronematous<br />

conidiophores. Conidiophores reduced to conidiogenous cells,<br />

medium to dark brown, erect, thick-walled, smooth, subcylindrical,<br />

widest at the base, tapering to a subtruncate apex, 5–15 × 2–3<br />

µm; scars flat-tipped, somewhat darkened <strong>and</strong> thickened, one to<br />

several in the apical region, somewhat protruding, 0.5–1 µm wide.<br />

Conidia in branched or unbranched chains of up to 15, medium<br />

brown, smooth, subcylindrical, 0–1-septate, widest in the middle,<br />

tapering to subtruncate ends, straight to slightly curved, (6–)10–<br />

12(–17) × 1.5–2(–2.5) µm; hila somewhat darkened <strong>and</strong> thickened,<br />

not refractive, 0.5–1 µm wide.<br />

Cultural characteristics: Colonies erumpent, with sparse aerial<br />

mycelium <strong>and</strong> smooth margins on PDA, greyish sepia (surface);<br />

reverse fuscous-black; on OA patches of greyish sepia <strong>and</strong> fuscousblack<br />

(surface); on SNA umber (surface). Colonies reaching 15 mm<br />

diam on PDA after 1 mo at 25 °C in the dark; colonies fertile.<br />

210


Herpotrichiellaceae <strong>and</strong> Venturiaceae<br />

Fig. 25. Fusicladium ramoconidii (<strong>CBS</strong> 462.82). A. Colony on OA. B. Hyphal coil. C–F. Conidiophores reduced to conidiogenous cells. G–H. Conidiophores. I. Conidia. Scale<br />

bars = 10 µm.<br />

Specimen examined: Netherl<strong>and</strong>s, Baarn, De Vuursche, needle of Pinus sylvestris<br />

(Pinaceae), 12 Apr. 1982, G.S. de Hoog, holotype <strong>CBS</strong> H-1610, culture ex-type<br />

<strong>CBS</strong> 463.82.<br />

Notes: This fungus was originally maintained in the <strong>CBS</strong> collection<br />

as Anungitea uniseptata Matsush. In culture, however, only a<br />

pseudocladosporium-like state was observed. Conidiophores are<br />

reduced to conidiogenous cells, <strong>and</strong> have several apical loci as<br />

in Fusicladium, but are not subdenticulate; scars are somewhat<br />

darkened <strong>and</strong> thickened, not refractive. Conidia of F. africanum are<br />

(8–)11–17(–20) × 2–3(–3.5) µm, thus <strong>similar</strong>, but somewhat larger<br />

than the mean conidial size range (10–12 × 1.5–2 µm) observed<br />

in F. pini. <strong>The</strong> conidiogenous loci <strong>and</strong> conidial hila of F. africanum<br />

are also somewhat larger. Although the LSU sequence of F. pini is<br />

identical to that of F. ramoconidii, the ITS sequence <strong>similar</strong>ity is 97<br />

% (572/585 nucleotides).<br />

Fusicladium ramoconidii Crous & de Hoog, sp. nov. MycoBank<br />

MB504541. Figs 25–26.<br />

Etymology: Named after the presence of its characteristic<br />

ramoconidia.<br />

Fusicladio brevicatenato similis, sed ramoconidiis minoribus, (12–)15–17(–20) ×<br />

2(–3) µm, locis conidiogenis et hilis minoribus, 0.5–1 µm diam.<br />

Mycelium consisting of branched, septate, 1.5–2 µm wide hyphae,<br />

pale brown, smooth, frequently with hyphal coils. Conidiophores<br />

integrated into hyphae, <strong>and</strong> reduced to small, lateral protruding<br />

conidiogenous cells, concolorous with hyphae, or macronematous,<br />

dark brown, erect, thick-walled, 10–40 × 3–4 µm, 0–3-septate.<br />

Conidiogenous cells terminal, integrated, subcylindrical, tapering to<br />

a rounded apex, concolorous with hyphae (as hyphal pegs), or dark<br />

www.studiesinmycology.org<br />

211


Crous et al.<br />

Fusicladium rhodense Crous & M.J. Wingf., sp. nov. MycoBank<br />

MB504542. Fig. 27.<br />

Etymology: Named after the Greek Isl<strong>and</strong>, Rhodos, where it was<br />

collected.<br />

Fusicladio africano similis, sed locis conidiogenis angustioribus, 1.5–2 µm latis, et<br />

differt a F. pini ramoconidiis formantibus.<br />

Mycelium consisting of smooth to finely roughened, medium brown,<br />

branched, septate, 1.5–3 µm wide hyphae, frequently forming<br />

hyphal coils, giving rise to solitary, micronematous conidiophores.<br />

Conidiophores reduced to conidiogenous cells that are terminal<br />

or lateral on hyphae, medium brown, smooth, subcylindrical,<br />

subdenticulate, erect, or more distinct, up to 15 µm tall, 1.5–2<br />

µm wide, mono- to polyblastic; scars flat-tipped, somewhat<br />

darkened <strong>and</strong> thickened, but not refractive. Conidia in branched<br />

or unbranched chains of up to 15, pale brown in younger conidia,<br />

becoming medium brown, smooth, subcylindrical, 0–3-septate,<br />

tapering slightly towards the subtruncate ends, straight, but at times<br />

slightly curved, (8–)12–16(–20) × (2–)2.5–3(–4) µm; ramoconidia<br />

(0–)1(–3)-septate, 12–20 × 3–4 µm; conidia (0–)1-septate, 8–17<br />

× 2–3 µm; hila somewhat darkened <strong>and</strong> thickened, not refractive,<br />

1–1.5 µm wide.<br />

Fig. 26. Fusicladium ramoconidii (<strong>CBS</strong> 462.82). Conidiogenous cells with<br />

ramoconidia <strong>and</strong> conidia. Scale bar = 10 µm.<br />

brown on mononematous conidiophores, smooth, 3–15 × 2–3(–4)<br />

µm; proliferating sympodially, loci slightly thickened, darkened <strong>and</strong><br />

refractive, 0.5–1 µm wide. Conidia occurring in branched chains,<br />

narrowly ellipsoid to subcylindrical, pale olivaceous, guttulate;<br />

ramoconidia (0–)1(–3)-septate, (12–)15–17(–20) × 2(–3) µm;<br />

conidia occurring in short chains (–15), 0–1-septate, (8–)10–12(–<br />

16) × 2(–3) µm; hila slightly thickened <strong>and</strong> darkened, not refractive,<br />

0.5–1 µm wide.<br />

Cultural characteristics: Colonies erumpent, with sparse aerial<br />

mycelium <strong>and</strong> smooth margins on PDA, hazel to fawn (surface),<br />

with a thin, submerged margin; reverse brown-vinaceous; on OA<br />

hazel to fawn (surface) with a wide, fawn, submerged margin.<br />

Colonies reaching 25 mm diam on PDA after 1 mo at 25 °C in the<br />

dark; colonies fertile.<br />

Specimen examined: Netherl<strong>and</strong>s, Baarn, De Vuursche, needle of Pinus sp.<br />

(Pinaceae), 12 Apr. 1982, G.S. de Hoog, holotype <strong>CBS</strong> H-19908, culture ex-type<br />

<strong>CBS</strong> 462.82.<br />

Notes: This strain has been deposited in the <strong>CBS</strong> collection as<br />

Pseudocladosporium hachijoense (Matsush.) U. Braun. However,<br />

its ramoconidia <strong>and</strong> conidia are smaller than those cited by<br />

Matsushima (1975) (ramoconidia up to 30 µm long, conidia 10–21<br />

× 2–4 µm). Although it clusters with F. pini in the LSU phylogeny,<br />

there are 13 bp differences in their ITS sequence data. Furthermore,<br />

F. ramoconidii has ramoconidia which are absent in F. pini, <strong>and</strong><br />

has a faster growth rate, <strong>and</strong> hazel to fawn colonies, compared<br />

to the greyish sepia colonies of F. pini. <strong>The</strong> well-developed,<br />

septate conidiophores <strong>and</strong> ramoconidia are reminiscent of F.<br />

brevicatenatum, which differs, however, by its longer <strong>and</strong> wider<br />

ramoconidia, up to 30 × 6(–7) µm, as well as larger conidiogenous<br />

loci <strong>and</strong> conidial hila, 1.5–3 µm diam.<br />

Cultural characteristics: Colonies spreading, somewhat erumpent,<br />

with moderate aerial mycelium <strong>and</strong> crenate margins on PDA,<br />

uneven, greyish sepia (surface), margins fuscous-black; reverse<br />

fuscous-black; on OA smooth, spreading, with sparse aerial<br />

mycelium <strong>and</strong> even, regular margins, greyish sepia; on SNA<br />

spreading, smooth, even margins, sparse aerial mycelium, greyish<br />

sepia (surface). Colonies reaching 9 mm diam on PDA after 2 wk at<br />

25 °C in the dark; colonies fertile.<br />

Specimen examined: Greece, Rhodos, on branches of Ceratonia siliqua (Fabaceae),<br />

1 Jun. 2006, P.W. Crous & M.J. Wingfield, holotype <strong>CBS</strong> H-19910, culture ex-type<br />

<strong>CBS</strong> 121641 = CPC 13156.<br />

Note: Fusicladium rhodense has a typical pseudocladosporiumlike<br />

morphology in culture, with conidial scars that are somewhat<br />

darkened <strong>and</strong> thickened.<br />

Venturia hanliniana (U. Braun & Feiler) Unter., Mycologia 89: 129.<br />

1997.<br />

Basionym: Capronia hanliniana U. Braun & Feiler, Microbiol. Res.<br />

150: 90. 1995.<br />

≡ Caproventuria hanliniana (U. Braun & Feiler) U. Braun, in Braun,<br />

A Monograph of Cercosporella, Ramularia <strong>and</strong> Allied Genera<br />

(Phytopathogenic Hyphomycetes) 2: 396. 1998.<br />

Anamorph: Fusicladium brevicatenatum (U. Braun & Feiler)<br />

Crous, U. Braun & K. Schub., comb. nov. MycoBank MB504543.<br />

Basionym: Cladophialophora brevicatenata U. Braun & Feiler,<br />

Microbiol. Res. 150: 84. 1995.<br />

≡ Pseudocladosporium brevicatenatum (U. Braun & Feiler) U. Braun,<br />

in Braun, A Monograph of Cercosporella, Ramularia <strong>and</strong> Allied Genera<br />

(Phytopathogenic Hyphomycetes) 2: 393. 1998.<br />

Venturia hystrioides (Dugan, R.G. Roberts & Hanlin) Crous & U.<br />

Braun, comb. nov. MycoBank MB504544. Fig. 28.<br />

Basionym: Capronia hystrioides Dugan, R.G. Roberts & Hanlin,<br />

Mycologia 87: 713. 1995.<br />

≡ Caproventuria hystrioides (Dugan, R.G. Roberts & Hanlin) U. Braun,<br />

in Braun, A monograph of Cercosporella, Ramularia <strong>and</strong> allied genera<br />

(Phytopathogenic Hyphomycetes). Vol. 2: 396. 1998.<br />

Anamorph: Fusicladium sp.<br />

Only the anamorph was observed on OA, PDA <strong>and</strong> SNA in culture.<br />

212


Herpotrichiellaceae <strong>and</strong> Venturiaceae<br />

Fig. 27. Fusicladium rhodense (CPC 13156). A. Colony on OA. B. Conidial chains <strong>and</strong> hyphal coil. C–F. Chains of ramoconidia <strong>and</strong> conidia. Scale bar = 10 µm.<br />

Fig. 28. Venturia hystrioides (<strong>CBS</strong> 117727). A. Conidiophores giving rise to catenulate conidia. B. Ramoconidium giving rise to conidia. C–D. Conidial chains. E. Conidia <strong>and</strong><br />

conidiogenous cell with conidiogenous loci. F. Ramoconidium. G. Conidia. Scale bars = 10 µm.<br />

www.studiesinmycology.org<br />

213


Crous et al.<br />

Excluded taxa<br />

Polyscytalum fecundissimum Riess, Bot. Zeitung (Berlin) 11:<br />

138. 1853. Fig. 29.<br />

Cultural characteristics: Colonies erumpent, spreading, aerial<br />

mycelium sparse, margins smooth; colonies sienna to umber on<br />

PDA, with patches of greyish sepia; reverse chestnut-brown; on<br />

OA whitish due to moderate aerial mycelium, with diffuse umber<br />

pigment in the agar; whitish on SNA. Colonies reaching 15 mm<br />

diam on PDA after 3 wk at 25 °C in the dark.<br />

Specimen examined: Netherl<strong>and</strong>s, Schovenhorst, leaf litter of Fagus<br />

sylvatica (Fagaceae), 8 Nov. 1997, W. Gams, <strong>CBS</strong> H-6049, culture <strong>CBS</strong><br />

100506.<br />

Fig. 29. Polyscytalum fecundissimum (<strong>CBS</strong> 100506). Conidiophores giving rise to<br />

catenulate conidia. Scale bar = 10 µm.<br />

Mycelium consisting of branched, septate, smooth, guttulate,<br />

1.5–2.5 µm wide hyphae, pale brown, forming hyphal str<strong>and</strong>s.<br />

Conidiophores mostly reduced to conidiogenous cells, or if<br />

present, micronematous, consisting of a supporting cell, <strong>and</strong> single<br />

conidiogenous cell. Conidiogenous cells integrated in hyphae as<br />

lateral loci, or terminal, frequently disarticulating, subcylindrical,<br />

pale to medium brown, smooth, mono- to polyblastic, loci 1–1.5<br />

µm wide, 2.5 µm tall; conidiogenous cells subcylindrical, up to<br />

40 µm tall, <strong>and</strong> 2–2.5 µm wide. Conidia in long chains of up to<br />

60, branched or not, subcylindrical to narrowly ellipsoid, pale<br />

olivaceous to pale brown, smooth; ramoconidia 0–1(–3)-septate,<br />

15–20(–30) × 2–3(–3.5) µm; conidia 0(–1)-septate, 6–8(–12) ×<br />

2–3(–3.5) µm; hila 1–1.5 µm wide, inconspicuous to somewhat<br />

darkened, subtruncate.<br />

Cultural characteristics: Colonies erumpent, with sparse aerial<br />

mycelium on PDA, <strong>and</strong> smooth, even margins; olivaceous-grey<br />

to iron-grey (surface); reverse greenish black; on OA dark mousegrey<br />

(surface), with even, smooth margins. Colonies reaching 40<br />

mm diam after 2 wk at 25 °C in the dark; colonies fertile.<br />

Specimen examined: U.S.A., Washington, Wenatchee, on bing cherry fruit, Prunus<br />

avium cv. Bing (Rosaceae), R.G. Roberts, culture ex-type, ATCC 96019 = <strong>CBS</strong><br />

117727.<br />

Note: Dugan et al. (1995) commented that although <strong>similar</strong> to<br />

“Phaeoramularia” hachijoensis, the conidia of this species were<br />

predominantly aseptate <strong>and</strong> somewhat shorter than those described<br />

by Matsushima (1975).<br />

Notes: Polyscytalum fecundissimum is the type species of the <strong>genus</strong><br />

Polyscytalum. Several isolates of this species were investigated<br />

here to determine if Polyscytalum would be available for taxa that<br />

have a pseudocladosporium-like morphology. <strong>The</strong> clustering of<br />

<strong>CBS</strong> 681.74 within the Venturiaceae was surprising. However, this<br />

culture proved to be sterile, <strong>and</strong> therefore its identity could not be<br />

confirmed.<br />

Isolate <strong>CBS</strong> 109882 sporulated profusely. Colonies were greyolivaceous<br />

with olivaceous margins on PDA; conidiophores pale,<br />

<strong>and</strong> not dark brown as depicted for Polyscytalum in Ellis (1971);<br />

conidial chains were greenish yellow in mass, <strong>and</strong> pale olivaceousgreen<br />

under the dissecting microscope, somewhat roughened,<br />

polyblastic; on ITS sequence this isolate is identical to U57492,<br />

Cistella acuum (Alb. & Schwein.) Svrček (Helotiales), but the latter<br />

species should have a phialidic anamorph, so it is possible that<br />

this GenBank sequence is incorrect. <strong>The</strong> identity of <strong>CBS</strong> 109882<br />

therefore remains unresolved.<br />

Although isolate <strong>CBS</strong> 100506 is poorly sporulating, illustrations<br />

made in vitro when it was collected show this isolate to be<br />

authentic for the species <strong>and</strong> the <strong>genus</strong> Polyscytalum. Based on<br />

its LSU sequence, it is allied to Phlogicylindrium eucalypti Crous,<br />

Summerb. & Summerell (<strong>CBS</strong> 120080; Summerell et al. 2006), <strong>and</strong><br />

is therefore unrelated to the Venturiaceae.<br />

Zeloasperisporium R.F. Castañeda, Mycotaxon 60: 285. 1996,<br />

emend.<br />

Hyphomycetes. Mycelium mostly superficial, hyphae septate, brown<br />

to olivaceous. Hyphopodia absent. Conidiophores differentiated,<br />

mononematous, erect, aseptate or septate, brown to olivaceous.<br />

Conidiogenous cells integrated, terminal, proliferation sympodial,<br />

polyblastic, with subdenticulate, somewhat thickened <strong>and</strong> darkened<br />

scars. Conidia solitary, fusiform to obclavate or cylindrical, septate,<br />

asperulate to verrucose, olivaceous to brown, tips always hyaline,<br />

thinner-walled <strong>and</strong> smooth, forming mucoid app<strong>and</strong>ages, often only<br />

visible as a thickened frill. Synanamorph present, micronematous.<br />

Conidiogenous cells short cylindrical, antenna or hyphopodiumlike,<br />

phialidic, colarette sometimes present, aseptate, subhyaline.<br />

Conidia solitary, obovoid, ellipsoid, aseptate, brown to olivaceous,<br />

verruculose.<br />

Zeloasperisporium hyphopodioides R.F. Castañeda, Mycotaxon<br />

60: 285. 1996. Fig. 30.<br />

In vitro on OA: Mycelium internal to superficial, unbranched to<br />

sparingly branched, 1.5–3 µm wide, loosely septate, septa almost<br />

invisible, pale brown, smooth to asperulate, minutely verruculose,<br />

walls unthickened, sometimes inflated at the base of conidiophores.<br />

214


Herpotrichiellaceae <strong>and</strong> Venturiaceae<br />

Fig. 30. Zeloasperisporium hyphopodioides (<strong>CBS</strong> 218.95). A–B. Conidiogenous cells. C. Conidia with apical mucoid caps. D. Conidiogenous cell with sympodial proliferation.<br />

E–G. Conidiogenous cells of micronematous synanamorph. H. Conidia, <strong>and</strong> microconidia of synanamorph. Scale bars = 10 µm.<br />

Conidiophores macronematous, arising usually laterally from<br />

plagiotropous hyphae, erect, straight, subcylindrical or conical,<br />

not geniculate, usually unbranched, rarely branched, 13–45 ×<br />

3–4(–5) µm, slightly to distinctly attenuated towards the apex,<br />

tapered, aseptate, rarely with a single septum, pale brown to pale<br />

medium brown, smooth or minutely verruculose, walls unthickened,<br />

often somewhat constricted near the base. Conidiogenous cells<br />

integrated or conidiophores usually reduced to conidiogenous<br />

cells, subcylindrical to conical, proliferation sympodial, with a single<br />

or several subdenticulate to denticulate conidiogenous loci mostly<br />

crowded at or towards the apex, protuberant, truncate, 0.8–1.2 µm<br />

wide, thickened <strong>and</strong> darkened-refractive. Conidia solitary, straight<br />

to curved, ellipsoid, fusiform to obclavate, distinctly tapered towards<br />

the apex, apiculate, (12–)15–32 × 3.5–5.5 µm, (0–)1–2(–3)-septate,<br />

mainly 1-septate, usually constricted at the septa, pale brown to<br />

pale medium brown, asperulate to verruculose, walls unthickened or<br />

almost so, tips always hyaline, thinner-walled <strong>and</strong> smooth, forming<br />

mucoid appendages, often only visible as a thickened frill, base<br />

somewhat rounded or slightly bulbous, hila often situated on short<br />

peg-like prolongations, truncate, 0.8–1(–1.2) µm wide, thickened,<br />

darkened-refractive; microcyclic conidiogenesis occurring, conidia<br />

forming secondary conidiophores.<br />

Synanamorph micronematous. Conidiophores reduced<br />

to conidiogenous cells, numerous, occurring as short lateral<br />

prolongations of hyphae, antenna or telescope-like, cylindrical,<br />

www.studiesinmycology.org<br />

unbranched, conidiogenesis unclear, at times appearing<br />

phialidic, or having one to two apical scars; up to 5 µm long,<br />

1–1.5 µm wide, aseptate, subhyaline, smooth. Conidia of the<br />

micronematous anamorph quite different from the conidia formed<br />

by the macronematous conidiophores, solitary, obovoid, ellipsoid<br />

to somewhat fusiform, 5–9 × 2.5–3 µm, aseptate, pale to pale<br />

medium brown, verruculose, somewhat attenuated towards the<br />

base, hila flat, unthickened to somewhat thickened, appearing to<br />

have the ability to form a slime appendage at the apex.<br />

Cultural characteristics: Colonies on OA iron-grey to olivaceous due<br />

to abundant sporulation (surface); reverse black, velvety; margin<br />

regular to undulate, feathery; aerial mycelium absent or sparse,<br />

sporulation profuse.<br />

Specimen examined: Cuba, isolated from air, 2 Oct. 1994, R.F. Castañeda, INIFAT<br />

C94/114, holotype, <strong>CBS</strong>-H 5624, H-5639, isotypes, culture ex-type <strong>CBS</strong> 218.95 =<br />

INIFAT C94/114 = MUCL 39155 = IMI 367520.<br />

Notes: Within the course of the recent phylogenetic studies<br />

in Herpotrichiellaceae <strong>and</strong> Venturiaceae the type culture of<br />

Zeloasperisporium hyphopodioides has been included since it was<br />

deposited at the <strong>CBS</strong> as “Fusicladium hyphopodioides”. When<br />

the culture was re-examined, the described short appressoriumlike,<br />

inflated hyphopodia with slightly warted to lobed apices<br />

(Castañeda et al. 1996) could be recognised as conidiogenous<br />

cells of a synanamorph forming a second conidial type. In addition,<br />

215


Crous et al.<br />

the conidial tips are hyaline, unthickened <strong>and</strong> smooth, <strong>and</strong> have the<br />

ability to form mucoid appendages that are often only visible as a<br />

thickened frill. <strong>The</strong>se two features, viz., the synanamorph <strong>and</strong> the<br />

conidia with mucoid appendages, easily distinguish this <strong>genus</strong> from<br />

morphologically <strong>similar</strong> genera such as Fusicladium, Asperisporium<br />

Maubl., <strong>and</strong> Passalora Fr. Phylogenetically Zeloasperisporium<br />

clusters basal to the Venturiaceae.<br />

Discussion<br />

<strong>The</strong> present paper was initiated to clarify the status of<br />

Cladophialophora <strong>and</strong> Pseudocladosporium spp., which appear<br />

morphologically <strong>similar</strong>. Confusion occurs when strains with this<br />

morphology are identified based solely on microscopic <strong>and</strong> cultural<br />

characteristics. <strong>The</strong> results clarify that Cladophialophora is allied to<br />

the Herpotrichiellaceae <strong>and</strong> Pseudocladosporium (= Fusicladium)<br />

to the Pleosporales (Dothideomycetes). <strong>The</strong> plant-pathogenic<br />

Cladophialophora species compose a separate clade within the<br />

order (Fig. 1). Another, somewhat remote chaetothyrialean clade<br />

contains extremotolerant, rock-inhabiting species around the<br />

<strong>genus</strong> Coniosporium Link (Cluster 5 of Haase et al. 1999). Both<br />

clades are significantly distinct from the prevalently hyperparasitic<br />

or oligotrophic, frequently opportunistic species of the remainder of<br />

the order (Fig. 1). This remainder includes all Capronia teleomorphs<br />

sequenced to date, <strong>and</strong> is thus likely to represent the family<br />

Herpotrichiellaceae. <strong>The</strong> ecological trends in each of the main<br />

clades of Chaetothyriales are thus quite different (Braun 1998).<br />

Several novelties are introduced within the preponderantly plantassociated<br />

clade of Chaetothyriales, including two new species<br />

associated with leaf spots. Cladophialophora is distinguished from<br />

Polyscytalum, which clusters outside the Herpotrichiellaceae, <strong>and</strong><br />

appears allied to Phlogicylindrium Crous, Summerb. & Summerell,<br />

a recently introduced <strong>genus</strong> for species occurring on Eucalyptus<br />

leaves (Summerell et al. 2006). Surprisingly Heteroconium<br />

chaetospira clusters in the Herpotrichiellaceae, <strong>and</strong> is placed<br />

in Cladophialophora as a distinctively pigmented member of the<br />

<strong>genus</strong>. Some species of Cladophialophora <strong>and</strong> Exophiala are<br />

newly described from a range of substrates such as fruit juices,<br />

drinking water <strong>and</strong> leaf litter, revealing the potential of these<br />

materials as ecological sources of inoculum for taxa associated<br />

with opportunistic human <strong>and</strong> animal infections.<br />

Furthermore, Pseudocladosporium belongs to the Venturiaceae,<br />

<strong>and</strong> is best treated as a synonym of Fusicladium, along with other<br />

genera as proposed by Schubert et al. (2003) <strong>and</strong> Beck et al. (2005).<br />

Although numerous isolates of the Venturiaceae were included for<br />

study, it was surprising to find relatively little variation within the<br />

family, suggesting that previously proposed teleomorph genera<br />

such as Apiosporina, Metacoleroa <strong>and</strong> Caproventuria should be<br />

best treated as synonyms of Venturia. <strong>The</strong> Venturiaceae is further<br />

extended with the inclusion of a novel sister clade of hyphomycetes<br />

with a pseudocladosporium-like morphology, which are also<br />

referred to as Fusicladium, thus widening the generic concept of<br />

the latter to encompass all pseudocladosporium-like anamorphs<br />

within the family. Some species assigned to Anungitopsis proved<br />

to cluster within the Venturiaceae, but the type species of the<br />

latter <strong>genus</strong>, A. speciosa, clustered elsewhere <strong>and</strong> possesses<br />

distinct conidiogenous loci, i.e., Anungitopsis cannot be reduced<br />

to synonymy with Fusicladium. <strong>The</strong> anamorphs of this sister clade<br />

of the main Venturia clade are morphologically rather close to<br />

taxa assigned to Anungitea. However, species of Anungitea <strong>and</strong><br />

Fusicladium are morphologically barely distinguishable (Schubert<br />

et al. 2003), but the true affinity of Anungitea depends on its type<br />

species of which cultures <strong>and</strong> sequence data are not yet available.<br />

Several anamorph genera with divergent morphologies were<br />

found to cluster together, suggesting that these are either different<br />

synanamorphs of the same teleomorph <strong>genus</strong>, or that they may<br />

represent cryptic clades that will diverge further once additional<br />

species are added in future studies. Although the Herpotrichiellaceae<br />

appeared to represent quite a diverse assembledge of morphotypes,<br />

the Venturiaceae were again surprisingly uniform.<br />

Acknowledgements<br />

Several colleagues from different countries provided material without which this work<br />

would not have been possible. We thank M. Vermaas for preparing the photographic<br />

plates, H.-J. Schroers for some gDNA <strong>and</strong> sequences used in this work, <strong>and</strong> A.<br />

van Iperen for maintaining the cultures. K. Schubert was financially supported by<br />

a Synthesys grant (No. 2559) which is gratefully acknowledged. R.C. Summerbell<br />

is thanked for his comments on an earlier version of the script. L. Hutchison is<br />

acknowledged for collecting Apiosporina collinsii for us.<br />

References<br />

Barr ME (1987). Prodomus to class Loculoascomycetes. University of Massachusetts,<br />

Amherst, Massachusetts.<br />

Beck A, Ritschel A, Schubert K, Braun U, Triebel D (2005). Phylogenetic relationships<br />

of the anamorphic <strong>genus</strong> Fusicladium s. lat. as inferred by ITS nrDNA data.<br />

Mycological Progress 4: 111–116.<br />

Braun U (1998). A monograph of Cercosporella, Ramularia <strong>and</strong> allied genera<br />

(Phytopathogenic Hyphomycetes). Vol. 2. IHW-Verlag, Eching.<br />

Braun U, Crous PW, Dugan F, Groenewald JZ, Hoog GS de (2003). Phylogeny <strong>and</strong><br />

taxonomy of cladosporium-like hyphomycetes, including Davidiella gen. nov.,<br />

the teleomorph of <strong>Cladosporium</strong> s.str. Mycological Progress 2: 3–18.<br />

Braun U, Feiler U (1995). Cladophialophora <strong>and</strong> its teleomorph. Microbiological<br />

Research 150: 81–91.<br />

Cai L, McKenzie EHC, Hyde KD (2004). New species of Cordana <strong>and</strong> Spadicoides<br />

from decaying bamboo culms in China. Sydowia 56: 222–228.<br />

Castañeda RF, Fabré DE, Parra MP, Perez M, Guarro J, Cano J (1996). Some<br />

airborne conidial fungi from Cuba. Mycotaxon 60: 283–290.<br />

Castañeda RF, Kendrick B (1990a). Conidial fungi from Cuba I. University of<br />

Waterloo Biological Series 32: 1–53.<br />

Castañeda RF, Kendrick B (1990b). Conidial fungi from Cuba II. University of<br />

Waterloo Biological Series 33: 1–61.<br />

Crous PW (2002). Adhering to good cultural practice (GCP). Mycological Research<br />

106: 1378–1379.<br />

Crous PW, Braun U, Schubert K, Groenewald JZ (2007a). Delimiting <strong>Cladosporium</strong><br />

from morphologically <strong>similar</strong> genera. Studies in Mycology 58: 33–56.<br />

Crous PW, Denman S, Taylor JE, Swart L, Palm ME (2004). Cultivation <strong>and</strong> diseases<br />

of Proteaceae: Leucadendron, Leucospermum <strong>and</strong> Protea. <strong>CBS</strong> Biodiversity<br />

Series 2: 1–228.<br />

Crous PW, Groenewald JZ, Wingfield MJ (2006b). Heteroconium eucalypti. Fungal<br />

Planet No. 10. (www.fungalplanet.org).<br />

Crous PW, Mohammed C, Glen M, Verkley GJM, Groenewald JZ (2007b).<br />

Eucalyptus microfungi known from culture. 3. Eucasphaeria <strong>and</strong> Sympoventuria<br />

genera nova, <strong>and</strong> new species of Furcaspora, Harknessia, Heteroconium <strong>and</strong><br />

Phacidiella. Fungal Diversity 25: 19–36.<br />

Crous PW, Slippers B, Wingfield MJ, Rheeder J, Marasas WFO, Phillips AJL, Alves<br />

A, Burgess T, Barber P, Groenewald JZ (2006a). Phylogenetic lineages in the<br />

Botryosphaeriaceae. Studies in Mycology 55: 235–253.<br />

Decock C, Delgado-Rodriguez G, Buchet S, Seng JM (2003). A new species <strong>and</strong><br />

three new combinations in Cyphellophora, with a note on the taxonomic affinities<br />

of the <strong>genus</strong>, <strong>and</strong> its relation to Kumbhamaya <strong>and</strong> Pseudomicrodochium.<br />

Antonie van Leeuwenhoek 84: 209–216.<br />

Dugan FM, Roberts RG, Hanlin RT (1995). New <strong>and</strong> rare fungi from cherry fruit.<br />

Mycologia 87: 713–718.<br />

Ellis MB (1971). Dematiaceous hyphomycetes. Commonwealth Mycological<br />

Institute, Kew.<br />

Ellis MB (1976). More dematiacous hyphomycetes. Commonwealth Mycological<br />

Institute, Kew.<br />

216


Herpotrichiellaceae <strong>and</strong> Venturiaceae<br />

Gams W, Verkley GJM, Crous PW (2007). <strong>CBS</strong> course of mycology, 5 th ed.<br />

Centraalbureau voor Schimmelcultures, Utrecht.<br />

Haase G, Sonntag L, Melzer-Krick B, Hoog GS de (1999). Phylogenetic inference<br />

by SSU gene analysis of members of the Herpotrichiellaceae, with special<br />

reference to human pathogenic species. Studies in Mycology 43: 80–97.<br />

Ho MH-M, Castañeda RF, Dugan FM, Jong SC (1999). <strong>Cladosporium</strong> <strong>and</strong><br />

Cladophialophora in culture: descriptions <strong>and</strong> an exp<strong>and</strong>ed key. Mycotaxon<br />

72: 115–157.<br />

Honbo S, Padhy AA, Ajello L (1984). <strong>The</strong> relationship of <strong>Cladosporium</strong> carrionii to<br />

Cladophialophora ajelloi. Sabouraudia 22: 209–218.<br />

Hoog GS de (1985). Taxonomy of the Dactylaria complex, IV. Dactylaria, Neta,<br />

Subulispora <strong>and</strong> Scolecobasidium. Studies in Mycology 26: 1–60.<br />

Hoog GS de, Gerrits van den Ende AHG (1998). Molecular diagnostics of clinical<br />

strains of filamentous Basidiomycetes. Mycoses 41: 183–189.<br />

Hoog GS de, Guarro, J, Gené J, Figueras MJ (2000). Atlas of clinical fungi, 2 nd<br />

ed. Centraalbureau voor Schimmelcultures, Utrecht <strong>and</strong> Universitat Rovira I<br />

Virgili, Reus.<br />

Hoog GS de, Nishikaku AS, Fern<strong>and</strong>ez Zeppenfeldt G, Padín-González C, Burger<br />

E, Badali H, Gerrits van den Ende AHG (2007). Molecular analysis <strong>and</strong><br />

pathogenicity of the Cladophialophora carrionii complex, with the description<br />

of a novel species. Studies in Mycology 58: 219–234.<br />

Hoog GS de, Takeo K, Göttlich E, Nishimura K, Miyaji M (1995). A human isolate of<br />

Exophiala (Wangiella) dermatitidis forming a catenate synanamorph that links<br />

the genera Exophiala <strong>and</strong> Cladophialophora. Journal of Medical <strong>and</strong> Veterinary<br />

Mycology 33: 355–358<br />

Jacob M, Bhat DJ (2000). Two new endophytic fungi from India. Cryptogamie<br />

Mycologie 21: 81–88.<br />

Kirk PM (1982). New or interesting microfungi. IV. Dematiaceous hyphomycetes<br />

from Devon. Transactions of the British Mycological Society 78: 55–74.<br />

Kirk PM (1983). New or interesting microfungi. IX. Dematiaceous hyphomycetes<br />

from Esher Common. Transactions of the British Mycological Society 80:<br />

449–467.<br />

Levin TP, Baty DE, Fekete T, Truant AL, Suh B (2004). Cladophialophora bantiana<br />

brain abscess in a solid-organ transplant recipient: case report <strong>and</strong> review of<br />

the literature. Journal of Clinical Microbiology 42: 4374–4378.<br />

Madan V, Bisset D, Harris P, Howard S, Beck MH (2006). Phaeohyphomycosis<br />

caused by Exophiala salmonis. British Journal of Dermatology 155: 1082–<br />

1084.<br />

Marvanová L, Laichmanová M (2007). Subilispora biappendiculata, anamorph sp.<br />

nov. from Borneo (Malaysia) <strong>and</strong> a review of the <strong>genus</strong>. Fungal Diversity 26:<br />

241–256.<br />

Matos T, Hoog GS de, Boer AG de, Crom I de, Haase G (2003). High prevalence of<br />

the neurotropic black yeast Exophiala (Wangiella) dermatitidis in steam baths.<br />

Mycoses 45: 373–377.<br />

Matsushima T (1975). Icones Microfungorum a Matsushima Lectorum. Kobe.<br />

Moncalvo J-M, Rehner SA, Vilgalys R (1993). Systematics of Lyophyllum section<br />

Difformia based on evidence from culture studies <strong>and</strong> ribosomal DNA<br />

sequences. Mycologia 85: 788–794.<br />

Partridge EC, Morgan-Jones G (2003). Notes on hyphomycetes. XC.<br />

Fusicladosporium, a new <strong>genus</strong> for cladosporium-like anamorphs of Venturia.<br />

Mycotaxon 85: 357–370.<br />

Petrak F (1949). Neue Hyphomyzeten-Gattungen aus Ekuador. Sydowia 3: 259–<br />

266.<br />

Rayner RW (1970). A mycological colour chart. CMI <strong>and</strong> British Mycological Society.<br />

Kew.<br />

Rehner SA, Samuels GJ (1994). Taxonomy <strong>and</strong> phylogeny of Gliocladium analysed<br />

from nuclear large subunit ribosomal DNA sequences. Mycological Research<br />

98: 625–634.<br />

Richards RH, Holliman A, Helgason S (1978). Exophiala salmonis infection in<br />

Atlantic salmon Salmo salar L. Journal of Fish Diseases 1: 357–368.<br />

Saccardo PA (1877). Michelia Commentarium Mycologicum Fungos in Primis<br />

Italicos Illustrans. Volume 1: 1–116. Padua, Italy.<br />

Schubert K, Braun U (2002a). Fusicladium scillae. IMI Descriptions of Fungi <strong>and</strong><br />

Bacteria 152: 1518.<br />

Schubert K, Braun U (2002b). Fusicladium convolvularum. IMI Descriptions of Fungi<br />

<strong>and</strong> Bacteria 152: 1513.<br />

Schubert K, Ritschel A, Braun U (2003). A monograph of Fusicladium s. lat.<br />

(hyphomycetes). Schlechtendalia 9: 1–132.<br />

Sivanesan A (1984). <strong>The</strong> bitunicate ascomycetes <strong>and</strong> their anamorphs. Cramer<br />

Verlag, Vaduz.<br />

Summerell BA, Groenewald JZ, Carnegie AJ, Summerbell RC, Crous PW (2006).<br />

Eucalyptus microfungi known from culture. 2. Alysidiella, Fusculina <strong>and</strong><br />

Phlogicylindrium genera nova, with notes on some other poorly known taxa.<br />

Fungal Diversity 23: 323–350.<br />

Sutton BC (1973). Hyphomycetes from Manitoba <strong>and</strong> Saskatchewan, Canada.<br />

Mycological Papers 132: 1–143.<br />

Sutton BC (1975). Hyphomycetes on cupules of Castanea sativa. Transactions of<br />

the British Mycological Society 64: 405–426.<br />

Untereiner WA (1997). Taxonomy of selected members of the ascomycete <strong>genus</strong><br />

Capronia with notes on anamorph-teleomorph connections. Mycologia 89:<br />

120–131.<br />

Untereiner WA (2000). Capronia <strong>and</strong> its anamorphs: exploring the value<br />

of morphological <strong>and</strong> molecular characters in the systematics of the<br />

Herpotrichiellaceae. Studies in Mycology 45: 141–149.<br />

Varghese KIM, Rao VG (1979). Forest microfungi – I. Subramaniomyces, a new<br />

<strong>genus</strong> of hyphomycetes. Kavaka 7: 83–85.<br />

Vilgalys R, Hester M (1990). Rapid genetic identification <strong>and</strong> mapping of<br />

enzymatically amplified ribosomal DNA from several Cryptococcus species.<br />

Journal of Bacteriology 172: 4238–4246.<br />

White TJ, Bruns T, Taylor J (1990). Amplification <strong>and</strong> direct sequencing of fungal<br />

ribosomal RNA genes for phylognetics. In: A Guide to Molecular Methods <strong>and</strong><br />

Applications (Innis MA, Gelf<strong>and</strong> DH, Sninsky JJ, White JW, eds). Academic<br />

Press, New York: 315–322.<br />

Zeng J-S, Sutton DA, Fothergill AW, Rinaldi MG, Harrak MJ, Hoog GS de (2007).<br />

Spectrum of clinically relevant Exophiala species in the U.S.A. Journal of<br />

Clinical Microbiology: in press.<br />

www.studiesinmycology.org<br />

217


available online at www.studiesinmycology.org<br />

doi:10.3114/sim.2007.58.08<br />

Studies in Mycology 58: 219–234. 2007.<br />

Molecular analysis <strong>and</strong> pathogenicity of the Cladophialophora carrionii complex,<br />

with the description of a novel species<br />

G.S. de Hoog 1,2* , A.S. Nishikaku 3 , G. Fern<strong>and</strong>ez-Zeppenfeldt 4 , C. Padín-González 4 , E. Burger 3 , H. Badali 1 , N. Richard-Yegres 4 <strong>and</strong> A.H.G.<br />

Gerrits van den Ende 1<br />

1<br />

<strong>CBS</strong> Fungal Biodiversity Centre, Utrecht, <strong>The</strong> Netherl<strong>and</strong>s; 2 Institute for Biodiversity <strong>and</strong> Ecosystem Dynamics, University of Amsterdam, Amsterdam, <strong>The</strong> Netherl<strong>and</strong>s;<br />

3<br />

Laboratory of Immunopathology of Mycosis, Department of Immunology, São Paulo University, São Paulo, Brazil; 4 National Experimental University “Francisco de Mir<strong>and</strong>a”<br />

(UNEFM), Coro, Venezuela<br />

*Correspondence: Sybren de Hoog, s.hoog@cbs.knaw.nl<br />

Abstract: Cladophialophora carrionii is one of the four major etiologic agents of human chromoblastomycosis in semi-arid climates. This species was studied using sequence<br />

data of the internal transcribed spacer region of rDNA, the partial β-tubulin gene <strong>and</strong> an intron in the translation elongation factor 1-alpha gene, in addition to morphology.<br />

With all genes a clear bipartition was observed, which corresponded with minute differences in conidiophore morphology. A new species, C. yegresii, was introduced, which<br />

appeared to be, in contrast to C. carrionii, associated with living cactus plants. All strains from humans, <strong>and</strong> a few isolates from dead cactus debris, belonged to C. carrionii, for<br />

which a lectotype was designated. Artificial inoculation of cactus plants grown from seeds in the greenhouse showed that both fungi are able to persist in cactus tissue. When<br />

reaching the spines they produce cells that morphologically resemble the muriform cells known as the “invasive form” in chromoblastomycosis. <strong>The</strong> tested clinical strain of C.<br />

carrionii proved to be more virulent in cactus than the environmental strain of C. yegresii that originated from the same species of cactus, Stenocereus griseus. <strong>The</strong> muriform<br />

cell expressed in cactus spines can be regarded as the extremotolerant survival phase, <strong>and</strong> is likely to play an essential role in the natural life cycle of these organisms.<br />

Taxonomic novelty: Cladophialophora yegresii de Hoog, sp. nov.<br />

Key words: Cactus, chromoblastomycosis, Cladophialophora, endophyte, extremotolerance, phylogeny, taxonomy.<br />

INTRODUCTION<br />

Cladophialophora carrionii (Trejos) de Hoog, Kwon-Chung &<br />

McGinnis is one of the most frequent etiologic agents of human<br />

chromoblastomycosis, a chronic cutaneous disease characterised<br />

by verrucose skin lesions eventually leading to emerging, cauliflowerlike<br />

eruptions. <strong>The</strong> species is particularly observed in arid <strong>and</strong> semiarid<br />

climates of e.g. South <strong>and</strong> Central America (Lavelle 1980) <strong>and</strong><br />

Australia (Trejos 1954, Riddley 1957). <strong>The</strong> current hypothesis is that<br />

patients suffering from chromoblastomycosis are rural workers who<br />

acquire the infection after being pricked by cactus thorns or splinters<br />

(Rubin et al. 1991, Fernández-Zeppenfeldt et al. 1994). A classical<br />

case reported by O’Daly (1943) concerns traumatic inoculation with<br />

thorns of “guazábara” (Opuntia caribaea), a common xerophilic<br />

plant in semi-arid Venezuela. This hypothesised traumatic route of<br />

infection was later supported by Richard-Yegres & Yegres (Richard-<br />

Yegres & Yegres 1987; strain SR3 = <strong>CBS</strong> 863.96) <strong>and</strong> Fernández-<br />

Zeppenfeldt et al. (1994), who isolated strains from Prosopis<br />

juliflora litter. Cladophialophora Borelli has also been detected in<br />

association with spines of the common xerophyte Aloe vera <strong>and</strong> of<br />

the Cactaceae: Opuntia caribaeae, O. caracasana, Stenocereus<br />

griseus <strong>and</strong> Cereus lanuginosus (Borelli 1972, Yegres et al. 1996).<br />

Thorny American cacti are important components of the xerophyte<br />

flora of the arid climate of our study area in Falcon State, Venezuela<br />

(Richard-Yegres et al. 1992). Muriform cells are produced in<br />

human skin <strong>and</strong> represent the supposed pathogenic invasive form<br />

of fungi causing chromoblastomycosis (Mendoza et al. 1993).<br />

Early experiments involving the inoculation of several species of<br />

cold-blooded animals have shown the abundant production of the<br />

characteristic muriform cells in vivo (Trejos 1953).<br />

A <strong>similar</strong> plant origin of chromoblastomycosis has been<br />

supposed for a related agent of chromoblastomycosis, Fonsecaea<br />

pedrosoi (Brumpt) Negroni. Marques et al. (2006) isolated this<br />

species from the shells of Babassu coconuts (Orbignya phalerata).<br />

<strong>The</strong> habit of local people to sit on these shells might explain the<br />

frequent occurrence of lesions on the buttocks (Silva et al. 1995).<br />

Salgado et al. (2004) found the species on the thorns of a Mimosa<br />

pudica plant which a patient could identify as the source of traumatic<br />

onset of his chromoblastomycosis.<br />

Recently, with the development of molecular tools for species<br />

identification, doubt has arisen about the correctness of this<br />

supposed route of infection. <strong>The</strong> question whether environmental<br />

<strong>and</strong> clinical strains represent exactly the same species needs to be<br />

re-determined. In order to establish this for C. carrionii-associated<br />

chromoblastomycosis, reference strains from the <strong>CBS</strong> culture<br />

collection, supplemented with a large set of strains from semiarid<br />

Venezuela, have been verified using molecular tools that are<br />

currently routinely employed to answer taxonomic questions in<br />

black yeasts <strong>and</strong> their filamentous relatives (de Hoog et al. 2003),<br />

particularly the internal transcribed spacer (ITS) region of rDNA,<br />

the partial β-tubulin gene (BT2), <strong>and</strong> an intron in the translation<br />

elongation factor 1-alpha (EF1). In addition, a series of three<br />

experiments has been conducted concerning inoculation into<br />

<strong>and</strong> superficial application onto germlings of Stenocereus griseus<br />

obtained by cultivation in vitro, mature plants of S. griseus from the<br />

wild, <strong>and</strong> in spines of S. griseus collected in the semi-arid area of<br />

study. Our aim is to reveal the role of the cactus S. griseus in the<br />

life cycle of its associated Cladophialophora spp., <strong>and</strong> to determine<br />

whether a link could be made to C. carrionii for obtaining a better<br />

underst<strong>and</strong>ing of human chromoblastomycosis.<br />

MATERIALS AND METHODS<br />

Fungal strains <strong>and</strong> morphology<br />

Strains studied are listed in Table 1. This list comprises strains which<br />

have morphologically been identified as C. carrionii. Reference<br />

strains from the <strong>CBS</strong> culture collection, as well as fresh isolates<br />

from patients <strong>and</strong> the environment have been included. Strains<br />

were lyophilised <strong>and</strong> stored in liquid nitrogen soon after deposit at<br />

<strong>CBS</strong>. Stock cultures for transient working collections were grown<br />

on slants of 2 % malt extract agar (MEA) <strong>and</strong> oatmeal agar (OA) at<br />

24 °C. For morphological observation, slide cultures were made of<br />

strains grown on potato-dextrose agar (PDA) (de Hoog et al. 2000)<br />

<strong>and</strong> mounted in lactophenol cotton blue.<br />

219


De Hoog et al.<br />

Table 1. Isolation data of Cladophialophora strains examined.<br />

Name <strong>CBS</strong> nr. Other reference(s) 1 GenBank mtDNA*<br />

(Kawasaki<br />

ITS, BT2, EF1 et al. 1993)<br />

Source [human: duration, localization, sex, age<br />

(Pérez-Blanco et al. 2003)].<br />

Geography<br />

A / I / 1: C. carrionii<br />

117904 UNEFM 0004-02 = dH 14480 EU137281, –, – Chromoblastomycosis; 14 y; hip, thigh, leg; male 38 Falcon State, Venezuela<br />

117891 UNEFM 0002-00 = dH 14475 EU137278, –, EU137222 Chromoblastomycosis; 1 y; male 62 Falcon State, Venezuela<br />

117906 UNEFM 0014-96 = dH 14504 EU137288, EU137171, EU137231 Chromoblastomycosis; 0.5 y; h<strong>and</strong>; male 45 Falcon State, Venezuela<br />

117897 UNEFM 0011-03 = dH 14497 EU137314, –, EU137254 Chromoblastomycosis; 0.5 y; h<strong>and</strong>; male 42 Falcon State, Venezuela<br />

859,96 UNEFM 9617 = dH 10703 EU137295, EU137178, EU137237 Dry plant debris, arid zone Falcon State, Venezuela<br />

117898 UNEFM 0010-98 = dH 14496 EU137308, –, EU137246 Chromoblastomycosis; 20 y; h<strong>and</strong>; female 59 Falcon State, Venezuela<br />

117889 UNEFM 0003-04 = dH 14478 –, EU137190, – Chromoblastomycosis; 20 y; thigh, leg; female 78 Falcon State, Venezuela<br />

114392 UNEFM 82267 = dH 13261 EU137267, EU137150, EU137211 Chromoblastomycosis; leg; female Falcon State, Venezuela<br />

114394 UNEFM 9803 = dH 13263 EU137307, –, EU137245 Chromoblastomycosis; h<strong>and</strong>; male 22 Falcon State, Venezuela<br />

114396 UNEFM 2001/1 = dH 13265 EU137269, EU137152, EU137213 Chromoblastomycosis; arm; male 35 Falcon State, Venezuela<br />

114399 UNEFM 2003/2 = dH 13268 EU137272, EU137155, EU137216 Chromoblastomycosis; arm; female 64 Falcon State, Venezuela<br />

114401 UNEFM 9901 = dH 13270 EU137274, EU137157, EU137218 Chromoblastomycosis; arm; female 40 Falcon State, Venezuela<br />

114402** UNEFM 9902 = dH 13271 EU137275, EU137158, EU137219 Chromoblastomycosis; arm; female 40 Falcon State, Venezuela<br />

114403 UNEFM 95195 = dH 13272 EU137276, EU137159, EU137220 Chromoblastomycosis; arm; male Falcon State, Venezuela<br />

117899 UNEFM 0010-04 = dH 14495 EU137301, EU137183, EU137241 Chromoblastomycosis; 2 y; h<strong>and</strong>; male 57 Falcon State, Venezuela<br />

117901 UNEFM 0009-03 = dH 14492 EU137312, EU137197, EU137252 Chromoblastomycosis; 8 y; arm; female 41 Falcon State, Venezuela<br />

114393 UNEFM 9801 = dH 13262 EU137268, EU137151, EU137212 Chromoblastomycosis; h<strong>and</strong>; male 72 Falcon State, Venezuela<br />

108.97** UNEFM 9501 = dH 10704 EU137306, EU137188, EU137265 Chromoblastomycosis; skin Falcon State, Venezuela<br />

114397 UNEFM 84020 = dH 13266 EU137270, EU137153, EU137214 Chromoblastomycosis; h<strong>and</strong>, arm; male 54 Falcon State, Venezuela<br />

114404 UNEFM 95656 = dH 13273 EU137311, EU137196, EU137251 Chromoblastomycosis; arm; male Falcon State, Venezuela<br />

117902 UNEFM 0008-03 = dH 14489 EU137283, EU137166, EU137226 Chromoblastomycosis; 3 y; arm; male 42 Falcon State, Venezuela<br />

117893 UNEFM 0001-00 = dH 14470 EU137316, EU137200, – Chromoblastomycosis; 2 y; knee; male 19 Falcon State, Venezuela<br />

117892 UNEFM 0001-02 = dH 14471 EU137277, EU137160, EU137221 Chromoblastomycosis; 8 y; knee; male 52 Falcon State, Venezuela<br />

117908 UNEFM 0013-04 = dH 14502 –, EU137191, – Chromoblastomycosis; 6 y; back; male 13 Falcon State, Venezuela<br />

109.97** UNEFM 9503 = dH 10706 –, –, – Chromoblastomycosis; skin Falcon State, Venezuela<br />

857.96 UNEFM 9408 = dH 10707 EU137294, EU137177, EU137236 Chromoblastomycosis; skin Falcon State, Venezuela<br />

114398 UNEFM 2003/1 = dH 13267 EU137271, EU137154, EU137215 Chromoblastomycosis; arm; female 67 Falcon State, Venezuela<br />

114400 UNEFM 2003/3 = dH 13269 EU137273, EU137156, EU137217 Chromoblastomycosis; arm; male 50 Falcon State, Venezuela<br />

117909 UNEFM 0013-00 = dH 14501 EU137287, EU137170, EU137230 Chromoblastomycosis; arm; male Falcon State, Venezuela<br />

114395 UNEFM 9802 = dH 13264 EU137299, EU137182, EU137240 Chromoblastomycosis; leg; female 22 Falcon State, Venezuela<br />

166.54 MUCL 10088 EU137290, EU137173, – Skin lesion in human Falcon State, Venezuela<br />

862.96 UNEFM 9603 = dH 10700 EU137315, EU137199, EU137255 Dry plant debris, semi-arid zone Falcon State, Venezuela<br />

863.96** IFM 41444 = UNEFM SR3 = dH 10699 AB109169 / EU137296, EU137179, EU137238 Dry spine (Opuntia caribaea) on soil, semi-arid zone Falcon State, Venezuela<br />

861.96 UNEFM 9607 = dH 10701 EU137309, EU137194, EU137249 Dry plant debris, semi-arid zone Falcon State, Venezuela<br />

117896 dH 14498 EU137285, –, EU137228 H<strong>and</strong> lesion Falcon State, Venezuela<br />

114397 UNEFM 84020 = dH 13266 EU137270, EU137153, EU137214 Chromoblastomycosis, h<strong>and</strong> <strong>and</strong> arm Falcon State, Venezuela<br />

220


Cladophialophora carrionii complex<br />

117905 dH 14505 EU137300, –, – Chromoblastomycosis, h<strong>and</strong>, male Falcon State, Venezuela<br />

117900 dH 14493 EU137284, –, EU137227 Chromoblastomycosis, h<strong>and</strong>, male Falcon State, Venezuela<br />

114392 UNEFM 82267 = dH 13261 EU137267, EU137150, EU137211 Chromoblastomycosis, leg, female Falcon State, Venezuela<br />

– FMC 248 AF397181, –, – Chromoblastomycosis Venezuela<br />

– IFM 41807 AB109175, –, – Group mt-I – Venezuela<br />

– IFM 4812 AB109168, –, – Group mt-I – Venezuela<br />

– IMTSP 690 AF397180, –, – Chromoblastomycosis Brazil<br />

410.96 UAMH 4392 = NCMH 1010 = DUKE 2403 EU137310, EU137195, EU137250 Chromoblastomycosis –<br />

163.54 EU137304, EU137186, EU137243 Chromoblastomycosis Australia<br />

117903 dH 14482 EU137282, –, EU137225 Chromoblastomycosis, forearm, male –<br />

362.70 M.J. Campos 4555 = dH 15806 EU137302, EU137184, EU137242 Human Mozambique<br />

260.83 CDC B-1352 = FMC 282 = ATCC 44535 (ex-T of C. ajelloi) EU137292, EU137175, EU137234 Group mt-I Skin lesion in human Ug<strong>and</strong>a<br />

986.96 UAMH 5717 EU137297, EU137180, – Clinical material –<br />

– IFM 4805 AB087204, –, – – –<br />

– IFM 4811 AB109178, –, – – –<br />

– IFM 41814 AB109176, –, – – –<br />

B / II / 2: C. carrionii<br />

160.54 ATCC 16264 = CDC A-835 = MUCL 40053 = IFM 4808 (ex-LT of C. carrionii) AB109177 / EU137266, EU137201, EU137210 Group mt-II Chromoblastomycosis, human Australia<br />

– Todd Pryce 200867 = dH 13218 Human Australia<br />

406.96 MRL 1114 = UAMH 4366 = dH 15847 EU137317, EU137202, EU137256 Human Queensl<strong>and</strong>, Australia<br />

100434 ATCC 32279 = dH 10745 = IP 518 = RV 16499 EU137289, EU137172, EU137232 Human Madagascar<br />

– IFM 4810 AB109170, –, – – –<br />

– IFM 41446 = DCU 606 AB109171, –, – – –<br />

C: C. carrionii<br />

– IFM 41651 AB109174, –, – Group mt-I – China<br />

– IFM 41650 AB109173, –, – Group mt-I – China<br />

– IFM 41641 AB109172, –, – Group mt-I – China<br />

– IFM 4985 AB109179, –, – – –<br />

– IFM 4986 AB109180, –, – – –<br />

D / III / 3: C. yegresii<br />

114406 UNEFM SgSR1 = dH 13275 EU137323, EU137208, EU137263 Stenocereus griseus asymptomatic plant Falcon State, Venezuela<br />

114407 UNEFM SgSR2 = dH 13276 EU137324, –, EU137264 Stenocereus griseus asymptomatic plant Falcon State, Venezuela<br />

114405** UNEFM SgSR3 = dH 13274 (ex-T of C. yegresii) EU137322, EU137209, EU137262 Stenocereus griseus asymptomatic plant Falcon State, Venezuela<br />

1 Abbreviations: ATCC = American Type Culture Collection, Manassas, U.S.A.; <strong>CBS</strong> = Centraalbureau voor Schimmelcultures, Utrecht, <strong>The</strong> Netherl<strong>and</strong>s; CDC = Centers for Disease Control <strong>and</strong> Prevention, Atlanta, U.S.A.; DCU = Department of<br />

Dermatology, School of Medicine, Chiba, Japan; dH = G.S. de Hoog working collection; FMC = Faculdade de Medicina, Caracas, Venezuela; ITMSP = Instituto de Medicina Tropical de São Paulo, São Paulo, Brazil; IFM = Research Center for<br />

Pathogenic Fungi <strong>and</strong> Microbial Toxicoses, Chiba University, Chiba, Japan; IP = Institut Pasteur, Paris, France; MUCL = Mycotheque de l’Université de Louvain, Louvain-la-Neuve, Belgium; RV = Prince Leopold Institute of Tropical Medicine, Antwerp,<br />

Belgium; UAMH = <strong>The</strong> University of Alberta Microfungus Collection <strong>and</strong> Herbarium, Edmonton, Canada; UNEFM = Universidade Nacional Experimental Francisco de Mir<strong>and</strong>a, Coro, Falcon, Venezuela.<br />

Ex-T = Type strain; ex-LT = Lectotype strain.<br />

*Type I <strong>and</strong> II groups based on mitochondrial DNA restriction fragment length polymorphism: H-1 <strong>and</strong> H-2 = restriction patterns 1 <strong>and</strong> 2, respectively, with HaeIII enzyme; M-1 <strong>and</strong> M-2 = restriction patterns 1 <strong>and</strong> 2, respectively, with MspI enzyme; S-1<br />

<strong>and</strong> S-2 = restriction patterns 1 <strong>and</strong> 2, respectively, with Sau3AI enzyme.<br />

** Used in plant <strong>and</strong> mouse inoculation experiments.<br />

www.studiesinmycology.org<br />

221


De Hoog et al.<br />

Table 2. Results from MrAic using corrected Akaike Information Criterion (AICc).<br />

Fragment/Gene Model df* lnL* AICc* wAICc*<br />

rRNA ITS TrNG 89 -21.840.556 4575.9992” 0.3080<br />

EF-1α HKYG 88 -19.392.355 41.147.171 0.5242<br />

ß-Tubulin SYMIG 90 -28.547.745 59.261.933 0.1913<br />

*df = degrees of freedom; lnL = log likelihood; AICc = corrected AIC; wAICc = weighted corrected AIC.<br />

DNA extraction<br />

Approximately 1 cm 2 mycelium of 30-d-old cultures was transferred<br />

to a 2 mL Eppendorf tube containing 300 µL TES-buffer (Tris 1.2 %<br />

w/v, Na-EDTA 0.38% w/v, SDS 2 % w/v, pH 8.0) <strong>and</strong> about 80 mg<br />

of a silica mixture (Silica gel H, Merck 7736, Darmstadt, Germany<br />

/ Kieselguhr Celite 545, Machery, Düren, Germany, 2 : 1, w/w).<br />

Cells were disrupted mechanically in a tight-fitting sterile pestle for<br />

approximately 1 min. Subsequently 200 µL TES-buffer was added,<br />

the mixture was vortexed, 10 µL proteinase K was added <strong>and</strong><br />

incubated for 10 min at 65 °C. After addition of 140 µL of 5 M NaCl<br />

<strong>and</strong> 1/10 vol CTAB 10 % (cetyltrimethylammoniumbromide) buffer,<br />

the material was incubated for 30 min at 65 °C. Subsequently<br />

700 µL SEVAG (24 : 1, chloroform : isoamylalcohol) was mixed to<br />

solution, incubated during 30 min on ice water <strong>and</strong> centrifuged for<br />

10 min at 14 000 rpm. <strong>The</strong> supernatant was transferred to a new<br />

tube with 225 µL 5 M NH 4<br />

-acetate, incubated on ice water <strong>and</strong><br />

centrifuged again for 10 min at 14 000 rpm. <strong>The</strong> supernatant was<br />

transferred to another Eppendorf tube with 0.55 vol isopropanol <strong>and</strong><br />

spun for 5 min at 14 000 rpm. Subsequently, the pellet was washed<br />

with ice cold 70 % ethanol. After drying at room temperature it was<br />

re-suspended in 48.5 µL TE buffer (Tris 0.12 % w/v, Na-EDTA 0.04<br />

% w/v) plus 1.5 µL RNAse 20 U/mL <strong>and</strong> incubated for 15–30 min<br />

at 37 °C.<br />

Sequencing <strong>and</strong> phylogenetic reconstruction<br />

Three loci, namely the internal transcribed spacers (ITS), ß-<br />

tubulin (BT2) <strong>and</strong> translation elongation factor 1-α (EF1), were<br />

sequenced. For ITS sequencing, amplification was performed<br />

with V9G (5’-TTACGTCCCTGCCCTTTGTA-3’) <strong>and</strong> LS266 (5’-<br />

GCATTCCCAAACAACTCGACTC-3’). Sequencing reactions<br />

were conducted with ITS1 <strong>and</strong> ITS4 primers (White et al.<br />

1990). For BT2 amplification <strong>and</strong> sequencing, primers Bt2a<br />

(5’-GGTAACCAAATCGGTGCTGCTTTC-3’) <strong>and</strong> Bt2b (5’-<br />

ACCCTCAGTGTAGTGACCCTTGGC-3’) were used (Glass &<br />

Donaldson 1995) <strong>and</strong> for EF1 amplification <strong>and</strong> sequencing, primers<br />

EF1-728F (5’CATCGAGAAGTTCGAGAAGG-3’) <strong>and</strong> EF1-986R<br />

(5’-TACTTGAAGGAACCCTTACC-3’) (Carbone & Kohn, 1999).<br />

Sequences were aligned in BioNumerics v. 4.5 (Applied Maths,<br />

Kortrijk, Belgium), exported <strong>and</strong> converted into Phylip interleaved<br />

format (Felsenstein 1993).<br />

Calculation of ILD (incongruence length difference) was<br />

performed in PAUP v. 4.0b10 (Swofford 2003). A combined data set<br />

of ITS, EF1 <strong>and</strong> BT2 sequences was created. Optimality criterion<br />

was set to parsimony. <strong>The</strong> total number of characters was 1 263<br />

with equal weight, while 677 characters were constant, <strong>and</strong> 396<br />

parsimony-informative. Gaps were treated as missing, <strong>and</strong> treebisection-reconnection<br />

(TBR) was used as branch-swapping<br />

algorithm. Maximum number of trees was set to 100 <strong>and</strong> left<br />

unchanged.<br />

Substitution model testing<br />

<strong>The</strong> program MrAic (www.abc.se/~nyl<strong>and</strong>er/; Nyl<strong>and</strong>er 2004)<br />

was used to select a substitution model. MrAic is a Perl script for<br />

calculating the Akaike Information Criterion (AIC), corrected Akaike<br />

Information Criterion (AICc), Bayesian Information Criterion (BIC),<br />

<strong>and</strong> Akaike weights for nucleotide substitution models <strong>and</strong> model<br />

uncertainty. Using an ML algorithm, likelihood scores under different<br />

models were estimated using Phyml (http://atgc.lirmm.fr/phyml/). All<br />

56 models implemented in Modeltest (Posada & Cr<strong>and</strong>all 1998)<br />

were evaluated. <strong>The</strong>se models were also combined with proportion<br />

of invariable sites (I) <strong>and</strong>/or gamma distribution shape parameter<br />

(G). A difference between Modeltest <strong>and</strong> MrAic is that the latter<br />

does not evaluate all models on the same, approximate topology<br />

as in PAUP (Swofford 1981). Instead, Phyml was used to try to find<br />

the maximum of the likelihood function under all models. This is<br />

necessary for finding AIC, AICc, or BIC for the models. <strong>The</strong> AICc<br />

calculation (Table 2) was used to select the right model for the ratio<br />

of parameters to characters (Nchar/Nparameters < 40; Burnham &<br />

Anderson 2002) for all loci. <strong>The</strong> substitution matrix of the models<br />

is printed next to the trees. Another advantage of using MrAic in<br />

combination with Phyml was the obtained accuracy of tree topology<br />

<strong>and</strong> the greater calculation speed (Guindon & Gascuel 2003).<br />

Population genetic analyses<br />

In order to confirm the intraspecific diversity shown in the MP trees,<br />

the number of populations in the C. carrionii complex was inferred<br />

with Structure v. 2.2 (Pritchard et al. 2000) using genotype data<br />

of the ITS regions of rRNA gene <strong>and</strong> of the partial EF1 <strong>and</strong> BT2<br />

genes. Genotypes of these three loci of 43 isolates were sorted<br />

on the basis of sequence <strong>similar</strong>ity. Structure is a model-based<br />

clustering method for using multilocus genotype data to infer<br />

population structure <strong>and</strong> assign individuals to populations. <strong>The</strong><br />

parameters were as follows: the length of burn-in period was<br />

set to 10 6 , number of MCMC repeats after burn-in 30 000; the<br />

ancestry model: admixture (individuals have mixed ancestry <strong>and</strong><br />

is recommended as starting point for most analyses). Uniform prior<br />

for ALPHA was set to 1.0 (default) <strong>and</strong> all allele frequencies were<br />

taken as independent among populations with λ set to 1.0 (default).<br />

Probability of the data (for estimating K) was also computed<br />

(Falush et al. 2003). <strong>The</strong> burn-in period length <strong>and</strong> number of<br />

MCMC repetitions after burn-in were set as 10 000 <strong>and</strong> 100 000,<br />

<strong>and</strong> admixture model <strong>and</strong> allele frequencies correlated model were<br />

chosen for analysis. <strong>The</strong> number of populations (K) was assumed<br />

from two to four.<br />

Association of multilocus genotypes was screened with the<br />

multilocus option in BioNumerics. To test for reproductive mode in<br />

each population, index of association (I A<br />

, a measure of multilocus<br />

linkage disequilibrium) was calculated with Multilocus v. 1.2.2 (www.<br />

bio.ic.ac.uk/evolve/software/multilocus). <strong>The</strong> null hypothesis for this<br />

analysis was complete panmixia. <strong>The</strong> values of I A<br />

were compared<br />

between observed <strong>and</strong> r<strong>and</strong>omised data sets. <strong>The</strong> hypothesis would<br />

be rejected when p < 0.05. Population differentiation (index: theta,<br />

θ) was also detected using the same software <strong>and</strong> a null hypothesis<br />

for this analysis is no population differentiation. When observed θ is<br />

statistically significantly different from those of r<strong>and</strong>om datasets (p<br />

< 0.05), population differentiation should be considered.<br />

222


Cladophialophora carrionii complex<br />

A reticulogram was reconstructed using T-rex (Makarenkov<br />

2001, Makarenkov & Legendre 2004) (www.labunix.uqam.ca/<br />

~makarenv/trex.html) on C. carrionii / Cladophialophora sp. <strong>The</strong><br />

program first computed a classical additive tree using one of the<br />

five available tree reconstruction algorithms. Subsequently, at each<br />

step of the procedure, a reticulation (a new edge) was chosen that<br />

minimised the least-squares or the weighted least-squares loss<br />

function; it was added to the growing reticulogram. Two statistical<br />

criteria (Q1 <strong>and</strong> Q2) were proposed to measure the gain in fit when<br />

reticulations were added. <strong>The</strong> minimum of each of these criteria<br />

may suggest a stopping rule for addition of reticulations. With<br />

HGT (horizontal gene transfer) reticulogram reconstruction option<br />

(Makarenkov 2001) the program mapped the gene tree into the<br />

species tree using the least-squares method. Horizontal transfers<br />

of the considered gene were then shown in the species tree. <strong>The</strong><br />

reticulate network was created in the ITS tree, which served as<br />

a species tree <strong>and</strong> compared with a gene tree, EF1. Degrees of<br />

recombination or horizontal gene transfer were also visualised<br />

using SplitsTree v. 4.8 software (Huson & Bryant 2006). Split<br />

decomposition (B<strong>and</strong>elt & Dress 1992) was applied on three loci of<br />

the entire C. carrionii complex. Calculation was done with default<br />

settings of characters transformation using uncorrected P-values,<br />

equal angles <strong>and</strong> optimise box iterations set to 1. Star- or brushlike<br />

trees indicate clonal development, while reticulation indicates<br />

genetic exchange.<br />

Isolation of fungi for inoculation experiments<br />

Nine plants of Stenocereus griseus, located within 50 m radius<br />

of the house of a patient with chromoblastomycosis due to strain<br />

UNEFM 9902 = <strong>CBS</strong> 114402 (C. carrionii) in Sabaneta (Mir<strong>and</strong>a,<br />

Falcón State, Venezuela), were analysed. Four fragments of<br />

approx. 2 × 3 × 1 cm were excised from each plant at brownish<br />

superficial lesions in upper branches. Sampled fragments were<br />

soaked in mineral oil for 15 min at 23 °C under agitation at 150<br />

rpm (Fernández-Zeppenfeldt et al. 1994). Subsequently four<br />

cultivations were made per sample on agar slants. Strains with<br />

cultural characteristics <strong>and</strong> morphology <strong>similar</strong> to C. carrionii (de<br />

Hoog et al. 2000) were selected. Final identification was made by<br />

sequencing of the ITS region, by determining the ability of strains<br />

to grow at 35, 37, 38 <strong>and</strong> 40 °C, <strong>and</strong> whether they could break<br />

down 20 % gelatin (Richard-Yegres & Yegres 1987, Fernández-<br />

Zeppenfeldt et al. 1994). Environmental strain UNEFM-SgSR3 =<br />

<strong>CBS</strong> 114405 (Cladophialophora sp.) <strong>and</strong> clinical strain UNEFM<br />

9902 = <strong>CBS</strong> 114402 (C. carrionii) were selected for the inoculation<br />

experiments.<br />

Inoculum preparation<br />

Approximately 1 cm 2 of a culture on Sabouraud’s glucose agar<br />

(SGA) was transferred to 50 mL YPG medium (yeast extract 0.5<br />

%, peptone 0.5 %, glucose 2 %) (de Hoog et al. 2000), shaken at<br />

150 rpm <strong>and</strong> incubated for 3 d at 23 °C (Yegres et al. 1991). Five<br />

mL aliquots of the starter culture were transferred serially every 4<br />

d to 500 mL flasks containing 100 mL synthetic medium (d-glucose<br />

2 %, KH 2<br />

PO 4<br />

0.2 %, NH 4<br />

SO 4<br />

0.1 %, urea 0.03 %, MgSO 4<br />

0.03<br />

%, CaCl 2<br />

0.003 %; pH 6.2) shaken at 150 rpm at 23 °C. After 4 d<br />

the suspensions, which were predominantly conidia, were filtered<br />

through sterile gauze, ground in 50 mL 0.85 % saline, centrifuged<br />

at 2 000 rpm, <strong>and</strong> repeatedly washed with saline until a clear<br />

supernatant was obtained. <strong>The</strong> suspensions were adjusted to 5 ×<br />

10 6 cells/mL (Yegres et al. 1991, Cermeño & Torres 1998). Inocula<br />

of 2 mL were checked for viability in lactritmel medium (de Hoog et<br />

al. 2000).<br />

www.studiesinmycology.org<br />

Experimental cactus germlings<br />

Young cactus plants (Stenocereus griseus) were obtained in the<br />

laboratory (Clausnitzer 1978) by cultivation from seeds of a single<br />

cardon fruit collected near the house of the patient infected with <strong>CBS</strong><br />

114402 in the endemic area for chromoblastomycosis in Falcon<br />

State, Venezuela. <strong>The</strong> seeds were rinsed with sterile distilled water,<br />

the contents washed by agitation for 10 min at 120 rpm in 250 mL<br />

sodium hypochlorite 4 % (v/v), <strong>and</strong> subsequently with sterile distilled<br />

water at 120 rpm for 5 min. <strong>The</strong> supernatant was decanted, 250 mL<br />

HCl 20 % was added, the seeds were incubated for 3 h, decanted<br />

<strong>and</strong> washed repeatedly with sterile distilled water. Seeds were<br />

then dried for 24 h on filter paper at 37 °C. Onset of germination<br />

was obtained by incubation of the seeds in a moist chamber on<br />

filter paper for 15 d under alternately 8 h of continuous white light<br />

(26 W) <strong>and</strong> 16 h of darkness; bud emergence was observed daily.<br />

Germlings of 1 cm in length, with green colour <strong>and</strong> having two<br />

leaves were transplanted to 128-container germinators until roots<br />

developed. <strong>The</strong> sterile substrate contained 5 parts Sogemix® <strong>and</strong><br />

1 part river soil from the region where the fruit was collected. <strong>The</strong><br />

daily light regime was as above; plants were watered every 10 d<br />

with 5 mL sterile tap water for 1 yr.<br />

Inoculation of S. griseus germlings<br />

Fungal suspensions (0.1 mL) were either injected using a syringe<br />

(13 × 0.4 mm) at a depth of approximately 5 mm into cortical<br />

tissue (Fig. 1A), or superficially applied onto (Fig. 1B) 96 r<strong>and</strong>omly<br />

selected 1-yr-old plants: 50 % using clinical strain <strong>CBS</strong> 114402<br />

(C. carrionii) <strong>and</strong> 50 % using environmental strain <strong>CBS</strong> 114405<br />

(Cladophialophora sp.). <strong>The</strong> controls were 64 plants which were<br />

treated <strong>similar</strong>ly, but using sterile saline (0.85 %). <strong>The</strong> growth<br />

chambers with inoculated plants stayed in the laboratory under the<br />

conditions specified above. From day 15 post inoculation onwards<br />

every 15 th day, six plants of each treatment were sectioned<br />

longitudinally from the apex <strong>and</strong> transversely by means of a h<strong>and</strong>held<br />

microtome, examined directly in glycerin water (25 %), <strong>and</strong><br />

cultured in lactritmel medium (Fernández-Zeppenfeldt et al. 1994).<br />

Experimental cactus plants<br />

A total of 150 whole S. griseus plants ≤ 15 cm tall <strong>and</strong> without<br />

macroscopically visible lesions, were dug from an area within a<br />

50 m radius of the house of the patient with chromoblastomycosis<br />

as specified above. Plants were transported to the laboratory <strong>and</strong><br />

transplanted individually into polyethylene bags with a capacity of<br />

1 kg, using as substrate river soil from the same area. Plants were<br />

maintained outside, directly adjacent to the laboratory to adjust<br />

at average temperatures of 32 °C <strong>and</strong> with natural daylight. <strong>The</strong>y<br />

were watered with tap water every 15 th d for a period of 6 mo.<br />

Scar formation in mature S. griseus plants<br />

For inoculation purposes, 150 sharp, wooden toothpicks 4 × 0.3 ×<br />

0.2 cm were washed <strong>and</strong> boiled for 3 min in tap water to eliminate<br />

resins (Yegres & Richard-Yegres 2002). This procedure was<br />

repeated three times. Three batches of 50 toothpicks each were<br />

kept separate in Petri dishes. Plates were incubated for 15 d at<br />

23 °C after inoculating each batch with 1 mL fungal suspension (5<br />

× 10 6 cells/mL) of either strain <strong>CBS</strong> 114405 or <strong>CBS</strong> 114402, with<br />

sterile water as control. A total of 50 r<strong>and</strong>omly selected plants were<br />

inoculated (Fig. 1C) halfway up the shaft with a toothpick colonised<br />

with <strong>CBS</strong> 114402 (C. carrionii), <strong>CBS</strong> 114405 (Cladophialophora<br />

sp.) or the control (Yegres & Richard-Yegres 2002).<br />

Starting from 2 wk post inoculation, 10 plants were r<strong>and</strong>omly<br />

chosen every 15 d, <strong>and</strong> tissue samples taken at the point of<br />

223


De Hoog et al.<br />

+ + + - -<br />

-<br />

+<br />

+<br />

A B C D<br />

Clinical C. carrionii<br />

> Environmental C. yegresii<br />

Fig. 1. Diagram of inoculation experiments with results. A. Inoculation of young cactus; B. Superficial application of young cactus; C. Traumatic application of mature cactus,<br />

with brown resulting scar; D. Superficial application of mature spines. Indications +/- refer to positive resp. negative results of re-isolated strains. Lower line: circles represent<br />

production of muriform cells, filaments represent hyphal growth.<br />

Fig. 2. Split decomposition of the C. carrionii complex using SplitsTree with uncorrected (P-value) distances. Nodes are shown only with different genotypes; hence EF1 shows<br />

the largest number of nodes. Extensive reticulation is noted in all loci.<br />

224


Cladophialophora carrionii complex<br />

0.1<br />

99<br />

<strong>CBS</strong>102227<br />

<strong>CBS</strong>83496<br />

92<br />

94<br />

85<br />

<strong>CBS</strong>25983<br />

<strong>CBS</strong>45482<br />

100<br />

<strong>CBS</strong>117901<br />

<strong>CBS</strong>117891<br />

<strong>CBS</strong>117906<br />

<strong>CBS</strong>117892<br />

<strong>CBS</strong>114403<br />

<strong>CBS</strong>117899<br />

<strong>CBS</strong>114392<br />

<strong>CBS</strong>114393<br />

<strong>CBS</strong>41096<br />

<strong>CBS</strong>117903<br />

<strong>CBS</strong>114395<br />

<strong>CBS</strong>114398<br />

<strong>CBS</strong>114404<br />

<strong>CBS</strong>117900<br />

<strong>CBS</strong>117909<br />

dH16363<br />

<strong>CBS</strong>114399<br />

<strong>CBS</strong>117905<br />

<strong>CBS</strong>16654<br />

<strong>CBS</strong>114396<br />

<strong>CBS</strong>117904<br />

<strong>CBS</strong>114402<br />

<strong>CBS</strong>114397<br />

<strong>CBS</strong>85796<br />

<strong>CBS</strong>114394<br />

<strong>CBS</strong>86396<br />

<strong>CBS</strong>86196<br />

<strong>CBS</strong>16354<br />

<strong>CBS</strong>117896<br />

<strong>CBS</strong>85896<br />

<strong>CBS</strong>36270<br />

<strong>CBS</strong>26083<br />

<strong>CBS</strong>40696<br />

<strong>CBS</strong>100434<br />

<strong>CBS</strong>16054<br />

<strong>CBS</strong>114407<br />

<strong>CBS</strong>114405<br />

<strong>CBS</strong>114406<br />

dH14614<br />

K=5 K=4<br />

Venezuela<br />

Venezuela<br />

Venezuela<br />

Venezuela<br />

Venezuela<br />

Venezuela<br />

Venezuela<br />

Venezuela<br />

unknown<br />

Venezuela<br />

Venezuela<br />

Venezuela<br />

Venezuela<br />

Venezuela<br />

Venezuela<br />

unknown<br />

Venezuela<br />

Venezuela<br />

Venezuela<br />

Venezuela<br />

Venezuela<br />

Venezuela<br />

Venezuela<br />

Venezuela<br />

Venezuela<br />

Venezuela<br />

Venezuela<br />

Australia<br />

Venezuela<br />

Venezuela<br />

Mozambique<br />

Ug<strong>and</strong>a<br />

Australia<br />

Madagascar<br />

Australia<br />

Venezuela<br />

Venezuela<br />

Venezuela<br />

I<br />

II<br />

III<br />

Fig. 3. Phylogenetic tree (Neighbour-joining) of the C. carrionii complex based on EF1 (with grouping I–III) using the same strains of Fig. 1, generated using the HKY+G model.<br />

<strong>The</strong> model was calculated using ML in MrAic software. Bootstrap cut-off = 80 %. <strong>CBS</strong> 834.96 was taken as outgroup. Columns were generated with Structure software<br />

hypothesising K = 4 <strong>and</strong> K = 5, <strong>and</strong> alleles independent. Geographical origins in black refer to isolates from humans (chromoblastomycosis); origins in green refer to isolates<br />

from plant material.<br />

inoculation, <strong>and</strong> from the thorns directly adjacent to this area.<br />

Samples were rinsed with 4 % sodium hypochlorite for 3 min, <strong>and</strong><br />

subsequently washed in sterile distilled water for re-isolations, <strong>and</strong><br />

for histological study by means of light microscopy (Fernández-<br />

Zeppenfeldt et al. 1994).<br />

Experiments with spines of S. griseus<br />

Ninety cactus spines of 2.5 cm av. length were collected from<br />

a single S. griseus plant located near the home of the patient<br />

infected with <strong>CBS</strong> 114402, at approx. 2.5 m height, superficially<br />

sterilised, <strong>and</strong> divided into three groups, of which 30 spines were<br />

inoculated with <strong>CBS</strong> 114402 (C. carrionii), 30 with <strong>CBS</strong> 114405<br />

(Cladophialophora sp.) <strong>and</strong> 30 to be used as control, inoculated<br />

with a saline solution (Fig. 1D). A <strong>similar</strong> series composed of 90<br />

spines of 1.5 cm average length was collected at approx. 1 m<br />

height. All spines were incubated in sterile Petri dishes with filter<br />

paper (Whatman #1) with 2 mL saline solution; subsequently 0.1<br />

mL fungal suspension was applied. Twenty spines were analysed<br />

weekly by means of longitudinal sectioning with a h<strong>and</strong>-held<br />

microtome, cultured as above <strong>and</strong> observed microscopically until<br />

day 75 post incubation.<br />

www.studiesinmycology.org<br />

225


De Hoog et al.<br />

ROOT<br />

<strong>CBS</strong>114398<br />

<strong>CBS</strong>117892<br />

<strong>CBS</strong>16654<br />

<strong>CBS</strong>86196<br />

<strong>CBS</strong>41096<br />

<strong>CBS</strong>114404<br />

<strong>CBS</strong>114395<br />

<strong>CBS</strong>114392<br />

<strong>CBS</strong>85796<br />

<strong>CBS</strong>117903<br />

<strong>CBS</strong>117899<br />

<strong>CBS</strong>117909<br />

<strong>CBS</strong>114403<br />

<strong>CBS</strong>114399<br />

5<br />

<strong>CBS</strong>114397<br />

<strong>CBS</strong>85896<br />

<strong>CBS</strong>114402<br />

<strong>CBS</strong>114396<br />

<strong>CBS</strong>117896<br />

<strong>CBS</strong>117904<br />

dH16363<br />

<strong>CBS</strong>16354<br />

<strong>CBS</strong>86396<br />

<strong>CBS</strong>117906<br />

<strong>CBS</strong>117900<br />

<strong>CBS</strong>117891<br />

<strong>CBS</strong>117905<br />

<strong>CBS</strong>114394<br />

<strong>CBS</strong>117901<br />

<strong>CBS</strong>114393<br />

<strong>CBS</strong>40696<br />

<strong>CBS</strong>16054<br />

<strong>CBS</strong>100434<br />

<strong>CBS</strong>36270<br />

1 7<br />

4 6<br />

3 2 9<br />

10<br />

8<br />

<strong>CBS</strong>26083<br />

A<br />

B<br />

<strong>CBS</strong>114406<br />

<strong>CBS</strong>114405<br />

<strong>CBS</strong>114407<br />

A<br />

Unknown<br />

Australia<br />

Australia<br />

Australia<br />

Madagascar<br />

Mozambique<br />

D<br />

Ug<strong>and</strong>a<br />

C. carrionii<br />

C. yegresii<br />

Fig. 4. Reticulogram of South American strains of Cladophialophora species <strong>and</strong> strains from other continents (mentioned) constructed with T-rex software. ITS rDNA (with<br />

grouping A, B, D) was used as species tree <strong>and</strong> compared with the ß-tubulin gene tree. First 10 reticulations are shown with numbers.<br />

Statistics<br />

Survival of the cactus seedlings <strong>and</strong> collected plants following<br />

inoculation were evaluated using the X 2 -test (P = 0.05 was<br />

considered significant). Stem lesions resulting from inoculations<br />

were analysed with Student’s T-test (P = 0.01 was considered<br />

significant).<br />

RESULTS<br />

<strong>The</strong> rDNA ITS region was sequenced for 43 strains identified as<br />

C. carrionii based on morphology. Sequences of 16 additional<br />

strains were downloaded from GenBank. Five distantly related,<br />

unidentified cladophialophora-like species were added, with <strong>CBS</strong><br />

834.96 as outgroup. In C. carrionii, 203 positions were compared<br />

in ITS1, 158 in the 5.8S rRNA gene <strong>and</strong> 182 in ITS2 (Table 3).<br />

<strong>The</strong> sequences could be aligned with confidence over their entire<br />

lengths. Over the data set, 35 positions were polymorphic, of which<br />

33 were phylogenetically informative (Table 3), the two remaining<br />

being variable T-repeats near the ends of ITS1 <strong>and</strong> 2.<br />

For ITS sequences the AICc selected the TrN+G model (TrNG;<br />

Tamura & Nei 1993). <strong>The</strong> base frequency of ITS: T = 0.2467, C<br />

= 0.2897, A = 0.2247, G = 0.2390, TC = 0.5364, AG = 0.4636.<br />

<strong>The</strong> EF1 tree was built with substitution model HKY+G; the base<br />

frequency of EF1: T = 0.2990, C = 0.2665, A = 0.2123, G = 0.2221,<br />

TC = 0.5655, AG = 0.4345. <strong>The</strong> best model for BT2 sequences<br />

was the SYM+I+G (symmetrical model). <strong>The</strong> base frequency for<br />

BT2: T = 0.2255, C = 0.2953, A = 0.2463, G = 0.2328, TC = 0.5208,<br />

AG = 0.4792. Bootstrap values of the EF1 tree were calculated<br />

with PAUP using parsimony <strong>and</strong> with maxtrees set to 500 <strong>and</strong> 500<br />

replicates (data not shown). Total number of characters was 191 of<br />

which 101 were parsimony-informative. Tree length was 365 <strong>and</strong><br />

had the following indices: Consistency Index = 0.685, Retention<br />

Index = 0.542 <strong>and</strong> Homoplasy Index = 0.315.<br />

<strong>The</strong> original tree length, L o<br />

was 1 055, the tree length of the<br />

combined data, L c<br />

was 1 062. <strong>The</strong> resulting incongruence length<br />

difference L = (L c<br />

–L o<br />

) was 7 (P = 0.24). <strong>The</strong> observed ILD was not<br />

significantly greater than expected by chance <strong>and</strong> it was concluded<br />

that the sequences were congruent <strong>and</strong> could be used together in<br />

a combined analyses.<br />

Split decomposition based on the same alignment generated<br />

extensive recombination. <strong>The</strong> structure found with three loci was<br />

robust, with the exception of separation of <strong>CBS</strong> 834.96 <strong>and</strong> <strong>CBS</strong><br />

102227 with EF1 (Fig. 2).<br />

<strong>The</strong> core of the network, comprising the strains listed in Table 1,<br />

was analysed in more detail. With ITS, four groups were recognised<br />

(A–D; Table 1). (A) was the main group with 36 strains / sequences;<br />

FMC 248 differed only by a small T-repeat <strong>and</strong> was regarded as a<br />

member of (A). <strong>The</strong> remaining groups were smaller, differing from<br />

group (A) maximally by two consistent positions (Table 3). Group<br />

(C) mainly comprised sequences from GenBank <strong>and</strong> all originated<br />

from Abliz et al. (2004). One of the strains of group (C), IFM 4808,<br />

concerned a subculture of <strong>CBS</strong> 160.54, which is an original isolate<br />

of Trejos (1954) representing C. carrionii. Re-sequencing indicated<br />

that it was a member of group (B). Analysis of our electropherograms<br />

of this isolate was not suggestive of heterothallism. None of the<br />

positions characterising groups (A)–(C) were also found to differ in<br />

group (D), which deviated in 16 mutations in ITS1 <strong>and</strong> 8 in ITS2;<br />

17 of the mutations were transitions, 7 were transversions <strong>and</strong> 7<br />

indels. Group (D) was clearly distinct from the complex of (A)–(C),<br />

226


Cladophialophora carrionii complex<br />

Table 3. Nucleotide variability of ITS1-2 ribosomal DNA regions of<br />

Cladophialophora carrionii (A – C) <strong>and</strong> C. yegresii (D).<br />

rDNA domains (length), with variable nucleotide positions.<br />

ITS1 (201-203) A B C D<br />

16 C C C T<br />

17 T C T T<br />

19 T T T C<br />

51 A A A G<br />

57 A A A T<br />

90-92 TG- TG- TG- CGT<br />

101 T T T C<br />

103 C C C T<br />

104 G A G G<br />

106 A A A G<br />

114 T T T C<br />

122 T T T C<br />

132 C C C T<br />

137 A A A C<br />

141 C C C T<br />

145 - - - A<br />

163-170 6-10T 6-10T 6-10T TTGTATCT<br />

180 - - - A<br />

183 G G G A<br />

190 T/A A A A<br />

5.8S (158) Monomorphic<br />

ITS2 (178-182) A B C D<br />

36 C T T T<br />

48 T T G T<br />

49 T T T C<br />

51 - - - C<br />

114 C C C G<br />

140 A A A G<br />

155 - - - T<br />

178-179 -- -- -- CT<br />

with a total of 27 mutations.<br />

For multilocus analysis with ITS, EF1 <strong>and</strong> BT2 a smaller set<br />

of strains was compared. Sequences of the 205 bp long element<br />

of EF1 contained 32 phylogenetically informative mutations. Three<br />

entities were distinguished (I–III; Fig. 3). With BT2, three groups<br />

with the same composition were recognised. Strains of ITS group<br />

(C) were not available for study.<br />

On the basis of multilocus screening in BioNumerics, concordant<br />

groups (A)–(D) were tested with the Structure programme. When<br />

K was set at 4 or 5, consistent groupings were noted, indicated as<br />

I, II <strong>and</strong> III (Fig. 3), corresponding with ITS groups (A), (B) <strong>and</strong> (D),<br />

respectively in Table 1.<br />

<strong>The</strong> possibility that group (D) / (III) included a member of another,<br />

morphologically <strong>similar</strong> but phylogenetically unrelated group of fungi<br />

was excluded by SSU sequencing. Genera morphologically <strong>similar</strong><br />

to Cladophialophora, such as <strong>Cladosporium</strong> Link, Devriesia Seifert<br />

www.studiesinmycology.org<br />

& N.L. Nick., Phaeoramularia Munt.-Cvetk., Pseudocladosporium<br />

U. Braun <strong>and</strong> Stenella Syd. proved to be remote (data not shown).<br />

With T-rex, interaction between groups (B) <strong>and</strong> (D) was noted,<br />

rather than between groups (B) <strong>and</strong> (A), despite the high sequence<br />

<strong>similar</strong>ity of (A) <strong>and</strong> (B) (Fig. 4).<br />

Morphological observation revealed that representatives of<br />

ITS groups (A)–(C) generally had conidiophores that arise at right<br />

angles from creeping hyphae (Fig. 5), while those of (D) tend to<br />

be ascending, hyphae gradually becoming conidiophore-like. Since<br />

slight correspondence was found in independent markers <strong>and</strong><br />

phenetic criteria, we considered group (D) to represent a separate<br />

species, which is described as follows.<br />

Cladophialophora yegresii de Hoog, sp. nov. MycoBank<br />

MB500208. Figs 6, 7D–F.<br />

Etymology: Named after Francisco Yegres, Venezuelean<br />

mycologist.<br />

Coloniae in agaro PDA dicto 22 °C planae, olivaceo-virides, pulverulentae vel<br />

velutinae, margine integra; reversum olivaceo-atrum. Hyphae fertiles dilute olivaceovirides,<br />

ascendentes, paulatim in catenas conidiorum concolorium vertentes.<br />

Conidiorum catenae ramosae, conidia dilute olivaceo-viridia, levia et tenuitunicata,<br />

4.5–6 × 2.5 µm, faciliter liberata, cicatricibus modice pigmentatis. Chlamydosporae<br />

et cellulae zymosae absentes. Synanamorphe phialidica non visa. Teleomorphe<br />

ignota.<br />

Holotypus cultura sicca <strong>CBS</strong> H-18464 in herbarium <strong>CBS</strong> praeservatur.<br />

Colonies on PDA at 22 °C evenly olivaceous green, powdery to<br />

velvety, with entire margin; reverse olivaceous black. Fertile hyphae<br />

pale olivaceous green, ascending, gradually changing over into<br />

concolorous chains of conidia. Conidial system profusely branched.<br />

Conidia pale olivaceous green, smooth- <strong>and</strong> thin-walled, 4.5–6<br />

× 2.5 µm, detached rather easily, with slightly pigmented scars.<br />

Chlamydospores <strong>and</strong> yeast cells absent. Phialidic synanamorph<br />

not observed. Teleomorph unknown.<br />

Specimen examined: Venezuela, Falcon state, from asymptomatic Stenocereus<br />

griseus cactus, G. Fernández-Zeppenfeldt, <strong>CBS</strong> H-18464 holotype, culture ex-type<br />

<strong>CBS</strong> 114405 = UNEFM SgSR3.<br />

Notes: Of the 48 <strong>dematiaceous</strong> isolates obtained from 36 fragments<br />

of the cactus Stenocereus griseus, four strains originating from<br />

four different plants of S. griseus presented morphological <strong>and</strong><br />

physiological key characteristics of Cladophialophora carrionii or<br />

C. yegresii (de Hoog et al. 2000, 2006). Gelatin liquefaction was<br />

negative in all strains <strong>and</strong> the maximum growth temperature was<br />

37 °C. After identification to species level using sequence data (de<br />

Hoog et al. 2006), both C. carrionii <strong>and</strong> C. yegresii appeared to be<br />

among the strains isolated.<br />

A total of 256 plants obtained at the end of 1 yr from germlings,<br />

had ribs, spines, <strong>and</strong> an average height of 15 cm. <strong>The</strong> 96<br />

germlings inoculated with fungal suspensions of the test strains<br />

<strong>CBS</strong> 114402 (C. carrionii, clinical) <strong>and</strong> <strong>CBS</strong> 114405 (C. yegresii,<br />

environmental) remained without visible external lesions during the<br />

year of experimentation. Histological sections of the 96 inoculated<br />

plants consistently revealed internal growth of the fungi in their<br />

filamentous form. Muriform cells were not observed, neither on<br />

the epidermis, nor in the internal tissue, spines or roots. <strong>The</strong> reisolated<br />

cultures demonstrated the viability of the fungi during the<br />

entire experimental process: <strong>CBS</strong> 114402 (C. carrionii) was grown<br />

from 26 (54.16 %) of the plants <strong>and</strong> <strong>CBS</strong> 114405 (C. yegresii) in<br />

23 (47.90 %) of the plants. <strong>The</strong> X 2 test did not reveal significant<br />

differences between the isolates (X 2 c = 0.0729 < X 2 t = 3.84). <strong>The</strong><br />

32 control plants remained without external lesions, <strong>and</strong> in the<br />

227


De Hoog et al.<br />

Fig. 5. Microscopic morphology of C. carrionii, strain <strong>CBS</strong> 160.54. Conidiophore erect, i.e. mostly arising at 90° from creeping hypha (sketch). Scale bar = 10 µm.<br />

histological sections no internal or external fungal elements were<br />

observed. None of the fungi isolated from the control plants proved<br />

to be a species of Cladophialophora.<br />

With 96 plants with superficial application of spore suspension<br />

(48 plants for each isolate, either clinical or environmental) neither<br />

internal nor external lesions were observed. Histological sectioning<br />

did not reveal fungal elements in or on plant tissue. Short hyphal<br />

elements <strong>and</strong> meristematic cells were occasionally seen around<br />

<strong>and</strong> inside the outer layers of the spines. <strong>The</strong> re-isolated strains<br />

proved that the fungi survived during the entire experimental<br />

procedure: <strong>CBS</strong> 114402 (C. carrionii) was isolated from 32 (66.67<br />

%) plants <strong>and</strong> <strong>CBS</strong> 114405 (C. yegresii) from 33 (68.75 %). <strong>The</strong> X 2<br />

test did not detect significant differences in survival rates among<br />

the isolates (X 2 c = 0.4375 < X 2 t = 3.84).<br />

Mature plants inoculated using colonised toothpicks showed<br />

average scarring of 1.88 cm diam with C. carrionii <strong>and</strong> 1.33 cm<br />

diam with C. yegresii, around the point of inoculation. In histological<br />

sections of 100 plants, dark, septate hyphae with inflated elements<br />

were observed at the points of inoculation. Muriform cells were not<br />

observed. Re-isolated strains were evidence of isolate viability:<br />

228


Cladophialophora carrionii complex<br />

Fig. 6. Microscopic morphology of C. yegresii, strain <strong>CBS</strong> 114405. Conidiophore ascending, i.e. mostly emerging from hyphal end that is gradually growing upwards to become<br />

a conidiophore (sketch). Scale bar = 10 µm.<br />

<strong>CBS</strong> 114402 (C. carrionii) was grown from 36 (72 %) plants <strong>and</strong> <strong>CBS</strong><br />

114405 (C. yegresii) from 30 (60 %). <strong>The</strong> fungi could not be isolated<br />

from spines. <strong>The</strong> 50 plants used as controls showed scarring of<br />

1.06 cm diam on average around the point of inoculation. No fungal<br />

elements were seen in direct examinations <strong>and</strong> histological sections<br />

of these plants. <strong>The</strong> retro-cultures were negative. <strong>The</strong> scarring<br />

responses of the plants to the clinical strain, environmental strain<br />

<strong>and</strong> control proved to be highly significant:<br />

Clinical <strong>CBS</strong> 114402 vs. environmental <strong>CBS</strong> 114405: þ = 0.000832,<br />

P = 0.01;<br />

Clinical <strong>CBS</strong> 114402 vs. control: þ = 0.00003128, P = 0.01;<br />

Environmental <strong>CBS</strong> 114405 vs. control: þ = 0.005343, P = 0.01.<br />

Spines 2.5 cm av. in length, seeded with suspensions of <strong>CBS</strong><br />

114402 (C. carrionii) <strong>and</strong> <strong>CBS</strong> 114405 (C. yegresii), developed<br />

toruloid hyphal elements with some dark, swollen cells <strong>similar</strong><br />

to muriform cells known in human tissue. <strong>The</strong> re-isolated strains<br />

proved the species to survive during the experimental procedure<br />

(< 75 d). Similar results were obtained with the spines 1.5 cm av.<br />

in length. No cladophialophora-like fungi were isolated from the<br />

controls.<br />

www.studiesinmycology.org<br />

229


De Hoog et al.<br />

Fig. 7. Conidial morphology in selected branches of (upper row: A–C) C. carrionii, strain <strong>CBS</strong> 260.83; (lower row: D–F) C. yegresii, strain <strong>CBS</strong> 114405. In this respect the two<br />

species are identical. Scale bar = 10 µm.<br />

DISCUSSION<br />

Taxonomy of Cladophialophora<br />

Judging from SSU rDNA phylogeny data, all Cladophialophora<br />

species that are consistently associated with pathology to humans<br />

belong to the Herpotrichiellaceae in the order Chaetothyriales<br />

(Haase et al. 1999). Within this order, the <strong>genus</strong> Cladophialophora<br />

is polyphyletic. Conidia of all species are produced in branched<br />

chains on poorly differentiated hyphae. This very simply structured<br />

conidial system may lead to confusion with morphologically<br />

<strong>similar</strong> but unrelated fungi that are encountered as contaminants<br />

in the hospital environment. <strong>The</strong> <strong>genus</strong> <strong>Cladosporium</strong> comprises<br />

ubiquitous airborne fungi which mostly have erect, more or less<br />

differentiated conidiophores, <strong>and</strong> dark conidial scars. <strong>The</strong>y are<br />

associated with Davidiella Crous & U. Braun teleomorphs <strong>and</strong><br />

belong to the Dothideomycetes, family Davidiellaceae (Braun et al.<br />

2003, Schoch et al. 2006). Pseudocladosporium was introduced by<br />

Braun (1998) with three species differing from Cladophialophora<br />

mainly by intercalary hyphal cells with lateral extensions that bear<br />

conidial chains, having Caproventuria U. Braun teleomorphs (see<br />

Crous et al. 2007 – this volume). <strong>The</strong> group is classified in the<br />

Venturiaceae <strong>and</strong> Mycosphaerellaceae in the Dothideales (Braun et<br />

al. 2003). <strong>The</strong> anamorph <strong>genus</strong> Devriesia comprises thermophilic<br />

saprobes with a cladophialophora-like appearance <strong>and</strong> producing<br />

230


Cladophialophora carrionii complex<br />

dark, multi-celled chlamydospores alongside the hyphae.<br />

Phylogenetically this <strong>genus</strong> is related to the Mycosphaerellaceae,<br />

in the Dothideomycetes (Seifert et al. 2004).<br />

Cladophialophora carrionii was originally introduced by Trejos<br />

(1954) on the basis of 46 strains from Venezuela, Australia <strong>and</strong><br />

South Africa. He did not indicate a holotype. For this reason isolate<br />

Trejos 27 = Emmons 8619 = <strong>CBS</strong> 160.54, the first strain mentioned<br />

by Trejos (1954), is selected here as representative for C. carrionii.<br />

A dried specimen of this strain has been deposited as lectotype<br />

in the Herbarium of the Centraalbureau voor Schimmelcultures as<br />

<strong>CBS</strong> H-18465.<br />

<strong>The</strong> ex-type strain of Cladophialophora ajelloi Borelli, <strong>CBS</strong><br />

260.83, proved to be indistinguishable from C. carrionii, which was<br />

also known to be able to produce phialides in addition to catenate<br />

conidia (Honbo et al. 1984). Remarkably, a strain identified as C.<br />

ajelloi from Samoa (<strong>CBS</strong> 259.83; Goh et al. 1982) proved to be<br />

related to but consistently different from all strains of the C. carrionii<br />

complex. <strong>The</strong> 43-year-old male patient in otherwise good health<br />

carrying this fungus had a 5 × 3 cm erythematous, scaling lesion<br />

on his arm. Muriform cells were present in superficial dermis <strong>and</strong><br />

stratum corneum. This clearly represents yet another agent of<br />

human chromoblastomycosis. <strong>The</strong> name C. ajelloi is not available<br />

for this taxon, as this is a synonym of C. carrionii. <strong>The</strong> taxon will be<br />

formally described in a forthcoming paper.<br />

Members of ITS groups (A)–(D) were shown to be close to<br />

each other in SSU phylogeny (data not shown) underlining that all<br />

analysed species were correctly assigned to Cladophialophora.<br />

This <strong>genus</strong> was defined by melanised acropetal chains of conidia,<br />

near absence of conidiophores, <strong>and</strong> phylogenetic affinity to the<br />

order Chaetothyriales. Strains (A)–(D) clustered in a clade which<br />

contained a mixture of species of Cladophialophora, Fonsecaea<br />

Negroni <strong>and</strong> Phialophora Medlar. From a point of view of human<br />

disease, the species of the clade were known as agents of brain<br />

infection [C. bantiana (Sacc.) de Hoog et al., F. monophora (M. Moore<br />

& F.P. Almeida) de Hoog et al.], disseminated disease [C. devriesii<br />

(A.A. Padhye & Ajello) de Hoog et al.], cutaneous disease [C. boppii<br />

(Borelli) de Hoog et al.] <strong>and</strong> particularly chromoblastomycosis (C.<br />

carrionii, Fonsecaea, Phialophora).<br />

Diversity of Cladophialophora carrionii / C. yegresii<br />

Infraspecific variability was observed within C. carrionii. <strong>The</strong> groups<br />

(A)–(C) were separated on the basis of five mutations in the ITS<br />

region, which were supported by mutations in EF1 <strong>and</strong> BT2, as<br />

confirmed by analysis in Structure, where the same separation<br />

(K = 5) of entities was observed. Furthermore, K = 4 unites groups<br />

(B/II) <strong>and</strong> (D/III), despite the fact that the sequence of (B) is more<br />

close to those of (A). With T-rex software a <strong>similar</strong> relationship<br />

between [(B), C. carrionii] <strong>and</strong> [(D), C. yegresii] was noted,<br />

suggesting horizontal gene flow between these entities. This is<br />

remarkable, since (C) strains predominantly inhabit remote deserts<br />

in Madagascar <strong>and</strong> Australia, while (D) is found in equally remote<br />

localities in Venezuela. Extensive reticulation was observed in all<br />

genes with SplitsTree. With ITS <strong>and</strong> BT2, <strong>CBS</strong> 834.96 <strong>and</strong> <strong>CBS</strong><br />

102227 cluster closely together, while in the more variable EF1<br />

data these are all widely apart, suggesting that in Cladophialophora<br />

other mechanisms than recombination may occur.<br />

Group (C) contained ITS sequences taken from the public<br />

domain, originating from a single study (Abliz et al. 2004).<br />

Remarkably, strain IFM 4808 found in group (C) on the basis of data<br />

from Abliz et al. (2004), was the same isolate as <strong>CBS</strong> 160.54, which<br />

was found repeatedly in group (B) in our data set (Table 1). A <strong>similar</strong><br />

www.studiesinmycology.org<br />

phenomenon was observed with strain IFM 41444 = <strong>CBS</strong> 863.96,<br />

of which GenBank deposition AB109169 consistently deviated from<br />

our data in a frequently observed mutation. A possible explanation<br />

of these consistent sequence conflicts is heterozygosity. Although<br />

most chaetothyrialean fungi are supposed to be haploid (Szaniszlo<br />

2002; Zeng et al. 2007), some strains have a double DNA content<br />

in yeast cells (Ohkusu et al. 1999). Teleomorphs are not known<br />

in Cladophialophora <strong>and</strong> related black yeasts, but many species<br />

are known to form profuse hyphal anastomoses (de Hoog et al.<br />

2006), allowing parasexual processes <strong>and</strong> mitotic recombination.<br />

However, all electropherograms including those from the study of<br />

Abliz et al. (2004), which were kindly sent by K. Fukushima (Chiba,<br />

Japan), were unambiguous, without double peaks. This matched<br />

with the observation of preponderant clonality despite frequent<br />

anastomoses in Exophiala J.W. Carmich. (Zeng et al. 2007). An<br />

alternative explanation might be the occurrence of paralogous ITS<br />

repeats, as reported earlier in Fusarium Link (O’Donnell & Cigelnik<br />

1997).<br />

<strong>The</strong> remaining diversity within C. carrionii as confirmed by<br />

Structure shows some geographical structuring of populations,<br />

in that group (A) does not occur in Asia, group (B) is limited to<br />

Australia <strong>and</strong> Africa, <strong>and</strong> group (C) has thus far only been reported<br />

from Asia. <strong>The</strong> wide distribution of most genotypes suggests,<br />

however, that worldwide occurrence is likely to become apparent<br />

when more strains have been analysed. All climate zones where<br />

C. carrionii was isolated were semi-arid to arid, desert-like.<br />

Genotypes were not limited to the endemic semi-arid areas, <strong>and</strong><br />

thus a relatively rapid vector of dispersal has to be hypothesised<br />

enabling the fungus to cross climate zones where the saprobic<br />

phase is unable to survive. Kawasaki et al. (1993) analysed three<br />

further loci in mtDNA using RFLP. Only some of their strains were<br />

available for sequencing. <strong>The</strong>se had all identical mtDNA profiles,<br />

with the exception of IFM 4808 = <strong>CBS</strong> 160.54, that differed in two<br />

markers (Table 1). If we assume that there is no real separation of<br />

ITS groups (A) <strong>and</strong> (C) (see above), the conclusion is warranted<br />

that mtDNA allows distinction of polymorphism at the same level of<br />

diversity as detected in this study with ITS, EF1 <strong>and</strong> BT2.<br />

South America harbours group (D) which represents a second<br />

species, C. yegresii. This species thus far has not been found<br />

on humans, <strong>and</strong> seems to be restricted to living Stenocereus<br />

cactus plants. Nishimura et al. (1989) published a strain from<br />

chromoblastomycosis in China which matched the morphology of<br />

strains now classified as C. yegresii, but as far as we are aware this<br />

strain has not been sequenced.<br />

Ecology <strong>and</strong> virulence of Cladophialophora carrionii / C.<br />

yegresii<br />

Cladophialophora carrionii was preponderantly found as an agent<br />

of human infection <strong>and</strong> only occasionally on dead plant debris,<br />

mainly seceded cactus needles. <strong>The</strong> only three strains available<br />

of C. yegresii were isolated from living, asymptomatic Stenocereus<br />

plants surrounding the cabin of a symptomatic patient from whom C.<br />

carrionii, <strong>CBS</strong> 114402 was isolated. Although in some publications<br />

convincing evidence was presented that infections originate from<br />

puncture by plant material (e.g., Salgado et al. 2004), it now<br />

becomes clear that the environmental look-alikes of clinical strains<br />

do not necessarily belong to the same species (Crous et al. 2006,<br />

Mostert et al. 2006), but may be members of other, related taxa with<br />

slightly different ecology; an unambiguous connection between a<br />

clinical <strong>and</strong> an environmental strain still has to be proven.<br />

<strong>The</strong> endemic area of the two species, C. carrionii <strong>and</strong> C.<br />

231


De Hoog et al.<br />

yegresii, has a semi-arid climate, with average yearly temperatures<br />

of 24 ºC, scarce rainfall (up to 600 annual mL) <strong>and</strong> is located at<br />

moderate altitude (up to 500 m) (Borelli 1979, Richard-Yegres &<br />

Yegres 1987). <strong>The</strong> l<strong>and</strong>scape is dominated by large cacti <strong>and</strong> other<br />

xerophytes. Stenocereus griseus is a columnar American cactus<br />

with a very strong, protective external epidermis that allows the<br />

accumulation of water in the shaft <strong>and</strong> enables tolerance of extreme<br />

drought. <strong>The</strong> species produces ovoidal, thorny fruits of about 5 cm<br />

diam, which are commonly eaten by the local population. It has<br />

therefore been suggested that patients with chromoblastomycosis<br />

acquire their infection by traumatic inoculation with cactus spines,<br />

<strong>similar</strong> to the supposed infection process of Madurella mycetomatis<br />

(Laveran) Brumpt in the arid climate of Africa (Ahmed et al. 2002).<br />

<strong>The</strong> frequent occurrence of 16 / 1 000 for chromoblastomycosis in<br />

areas endemic for Cladophialophora in Venezuela (Yegres et al.<br />

1985; Yegűez-Rodriguez et al. 1992) indicates a marked invasive<br />

potential for C. carrionii. Local goat-keepers are particularly at risk:<br />

in 1984, 14 of 18 patients investigated had these occupational<br />

characteristics (Yegres et al. 1985). Nevertheless, virulence of C.<br />

carrionii is low when inoculated into the footpads of mice (Yegres<br />

et al. 1998); also an environmental strain of C. carrionii failed to<br />

produce lesions in mice <strong>and</strong> in a volunteer (Richard-Yegres &<br />

Yegres 1987).<br />

We performed inoculation experiments with C. carrionii <strong>and</strong><br />

C. yegresii using freshly grown, healthy cacti in the greenhouse.<br />

<strong>The</strong> plants were followed over a 1-yr period; during all this time<br />

the control plants remained without lesions. Both Cladophialophora<br />

strains were able to produce infection when syringe-inoculated<br />

deep into young cactus tissue. Histopathology showed septate<br />

hyphae between host cells, <strong>and</strong> the shaft was maintained over<br />

prolonged periods without causing visible damage. This absence<br />

of appreciable destruction would categorise them as endophytes.<br />

Cactus tissue is rich in carbohydrates, vitamins <strong>and</strong> minerals (Vélez<br />

& Chávez 1980) which may promote endophyte growth.<br />

In contrast, suspensions applied superficially lead to growth<br />

on <strong>and</strong> in spines only. <strong>The</strong> absence of infection after superficial<br />

application indicates that the fungi are unable to invade healthy<br />

plant tissue from the surface <strong>and</strong> thus they cannot be characterised<br />

as obligatory phytopathogens.<br />

<strong>The</strong> two species differed in the degree of scarring after traumatic<br />

inoculation into mature plants: the clinical strain C. carrionii was<br />

consistently more virulent than C. yegresii that originated from<br />

the same host plant. Both species showed the same viability in<br />

re-isolated cultures. In nature, the fungi are likely to invade only<br />

when the integrity of the epidermis is broken, as happens e.g.<br />

by goat feeding or transmission by sap-sucking birds or piercing<br />

insects. <strong>The</strong>y also show the same transformation to meristematic<br />

morphology (González et al. 1990) when entering hard spine<br />

tissue. A possible trigger for this conversion is the dominance of<br />

lignin in the spines. Survival on <strong>and</strong> in spines is enhanced by their<br />

capturing of atmospheric water formed after nightly condensation.<br />

<strong>The</strong> fact that superficial application leads to colonisation around <strong>and</strong><br />

inside the spines suggests that the spines play a role in mechanic<br />

dispersion of the fungi.<br />

A possibly coincidental mechanism of dispersal might be<br />

traumatic inoculation into living tissue of humans or animals, where<br />

the same muriform cells are formed, defining the skin disease<br />

chromoblastomycosis. It may be questioned whether animal/<br />

human inoculation plays a role in the evolution of the fungus. ITS<br />

differences between the two species are observed in 23 positions,<br />

with a ratio of transitions : transversions of 2 : 1 (Table 3). Thus<br />

no saturation of mutations has taken place <strong>and</strong> the diversification<br />

can be regarded as an example of recent sympatric speciation.<br />

Cladophialophora carrionii is widely distributed, <strong>and</strong> shows a higher<br />

degree of diversity than C. yegresii. This would be suggestive for<br />

a longer evolutionary time span of existence <strong>and</strong> C. carrionii then<br />

should be regarded as ancestral to C. yegresii, with the latter<br />

showing a founder effect due to the absence of polymorphisms.<br />

However, such an order of event (a host jump from humans to<br />

cactus) is difficult to imagine. It is more likely that C. yegresii is<br />

the original cactus endophyte exhibiting extremotolerance via its<br />

muriform cells. T-rex data suggested a more direct connection of<br />

C. yegresii with African <strong>and</strong> Australian rather than Venezuelean<br />

strains of C. carrionii. We suppose that the low degree of observed<br />

variation in C. yegresii is not a founder effect, but rather a sampling<br />

effect, as living cacti have thus far not been studied outside the<br />

framework of our study on the patient with Cladophialophora<br />

chromoblastomycosis. <strong>The</strong> difference in virulence may be simply<br />

explained by C. carrionii, which lives as a saprobe on dead cactus<br />

debris for part of its life cycle, <strong>and</strong> is less adapted to an endophytic<br />

life style.<br />

Cladophialophora cf. carrionii is known to occur on lignified<br />

materials, such as wood chips of Eucalyptus crebra <strong>and</strong> wooden<br />

remains of Prosopis juliflora <strong>and</strong> Stenocereus griseus (Riddley<br />

1957, Yegres et al. 1985, Fernández-Zeppenfeldt et al. 1994). This<br />

does not exclude a certain degree of pathogenicity to humans, as<br />

also pathogens like Cryptococcus neoformans (Sanfelice) Vuill.<br />

are known to have an essential part of their life cycle in hollows<br />

of Eucalyptus trees. Cryptococcus neoformans produces diphenol<br />

oxidase to degrade lignin, an aromatic polymer in the cell wall of<br />

plants <strong>and</strong> a component of wood (Cabral 1999). Similar degradation<br />

pathways are present in Cladophialophora carrionii (Prenafeta-<br />

Boldú et al. 2006).<br />

<strong>The</strong> natural occurrence of C. carrionii <strong>and</strong> C. yegresii in<br />

association with xerophytes has been proven, but their environmental<br />

route of dispersal is still unknown. As transformation to meristematic<br />

cells takes place when the hyphae reach the spines <strong>and</strong> on dead<br />

spines, the muriform cell apparently is the extremotolerant phase<br />

of the species. <strong>The</strong> conidial anamorph can be found sporulating on<br />

rotten spines directly after rainfall (Richard-Yegres & Yegres 1987),<br />

but as the fungus has thus far never been isolated from outside air,<br />

it is still unclear how a new host plant is reached.<br />

<strong>The</strong> behaviour of C. carrionii on humans, provoking the very<br />

characteristic disease, chromoblastomycosis, of which the agents<br />

are limited to the ascomycete family Herpotrichiellaceae (de Hoog<br />

et al. 2000) is puzzling. In humans, the extremophilic muriform<br />

anamorph is expressed rather than hyphae, <strong>and</strong> thus humans do<br />

not seem a natural reservoir of the fungus. Nevertheless some<br />

acquired cellular immunity seems to be involved. Albornoz et al.<br />

(1982) demonstrated that a significant share of the local population<br />

of goat keepers (Yegres et al. 1985) is asymptomatically infected<br />

with C. carrionii; Iwatsu et al. (1982) detected cutaneous delayed<br />

hypersensitivity in rats experimentally-infected with agents of<br />

chromoblastomycosis. With murine experimental infection of<br />

the related fungus Fonsecaea pedrosoi, Ahrens et al. (1989)<br />

found enlargement <strong>and</strong> metastasis of lesions in athymic but not<br />

in normal mice, or in mice with defective macrophage function.<br />

Several authors (Kurita 1979, Nishimura & Miyaji 1981, Polak<br />

1984) observed a significant role of acquired cellular immunity in F.<br />

pedrosoi, while Cardona-Castro & Agudelo-Flórez (1999) obtained<br />

chronic infection in immunocompetent mice when inoculated<br />

intraperitoneally. Garcia Pires et al. (2002) noted an unbalance<br />

between protective Th1 <strong>and</strong> less efficient Th2 responses. <strong>The</strong><br />

possible host response leads to different clinical types, referred<br />

232


Cladophialophora carrionii complex<br />

to as tuberculoid <strong>and</strong> suppurative granuloma, respectively.<br />

<strong>The</strong> existence of genetic constitutional factors in susceptibility is<br />

underlined by a marked frequency of family relationships among<br />

symptomatic individuals (Yegűez-Rodriguez et al. 1992). <strong>The</strong><br />

disease is not observed in local animals such as goats, possibly<br />

due to their high body temperature (≈ 39 °C). Nevertheless, hyphal<br />

fragments artificially inoculated into goats led to transformation into<br />

muriform cells, but the lesions disappeared within 60 d (Martínez<br />

et al. 2005). Further animal experiments using strains identified<br />

according to new taxonomy will be necessary to answer questions<br />

on the role of the fungus on warm-blooded animals.<br />

ACKNOWLEDGEMENTS<br />

<strong>The</strong> authors are indebted to F. Yegres, N. Richard-Yegres <strong>and</strong> V. Maigualida Pérez-<br />

Blanco for providing a large set of strains for study <strong>and</strong> information on strain ecology,<br />

<strong>and</strong> to R.C. Summerbell for helpful suggestions on the manuscript. P. Abliz <strong>and</strong> K.<br />

Fukushima are acknowledged for making sequence data available for study. K.F.<br />

Luijsterburg is thanked for technical assistance. <strong>The</strong> study was supported in part<br />

by the Fondo Nacional de Investigaciones Cientificas y Tecnológicas (Fonacit),<br />

Venezuela.<br />

REFERENCES<br />

Abliz P, Fukushima K, Takizawa K, Nishimura K (2004). Specific oligonucleotide<br />

primers for identification of Cladophialophora carrionii, a causative agent of<br />

chromoblastomycosis. Journal of Clinical Microbiology 42: 404–407.<br />

Ahmed AOA, Adelmann D, Fahal A, Verbrugh H, Belkum A van, Hoog GS de (2002).<br />

Environmental occurrence of Madurella mycetomatis, the major agent of human<br />

eumycetoma in Sudan. Journal of Clinical Microbiology 40: 1031–1036.<br />

Ahrens J, Graybill JR, Abishawl A, Tio FO, Rinaldi MG (1989). Experimental murine<br />

chromomycosis mimicking chronic progressive human disease. American<br />

Journal of Tropical Medicine <strong>and</strong> Hygiene 40: 651–658.<br />

Albornoz MB, Marin C de, Iwatsu T (1982). Estudio epidemiologico de un area<br />

endemica para cromomicosis en el Estado Falcon. Investigaciόn Clínica 23:<br />

219–228.<br />

B<strong>and</strong>elt HJ, Dress AW (1992). Split decomposition: a new <strong>and</strong> useful approach to<br />

phylogenetic analysis of distance data. Molecular Phylogenetics <strong>and</strong> Evolution<br />

1: 242–252.<br />

Borelli D (1972). Significado del dimorfismo de ciertos hongos parásitos.<br />

Mycopathologia et Mycologia Applicata 46: 237–239.<br />

Borelli D (1979). Reservarea de algunos agentes de micosis. Medicina Cutánea<br />

4: 367–370.<br />

Braun U (1998). A monograph of Cercosporella, Ramularia <strong>and</strong> allied genera<br />

(phytopathogenic hyphomycetes), Vol. 2. IHW-Verlag, Eching.<br />

Braun U, Crous PW, Dugan F, Groenewald JZ, Hoog GS de (2003). Phylogeny <strong>and</strong><br />

taxonomy of <strong>Cladosporium</strong>-like hyphomycetes, including Davidiella gen. nov.,<br />

the teleomorph of <strong>Cladosporium</strong> s. str. Mycological Progress 2: 3–18.<br />

Burnham KP, Anderson DR (2002). Model selection <strong>and</strong> multimodel inference, a<br />

practical information-theoretic approach. 2nd ed, Springer, New York.<br />

Cabral L (1999). Wood, animals <strong>and</strong> human beings as reservoirs for human<br />

Cryptococcus neoformans infection. Revista Iberoamericana de Micologia 16:<br />

77–81.<br />

Carbone I, Kohn LM (1999). A method for designing primer sets for speciation<br />

studies in filamentous ascomycetes. Mycologia 91: 553–556.<br />

Cardona-Castro N, Agudelo-Flórez P (1999). Development of a chronic<br />

chromoblastomycosis model in immunocompetent mice. Medical Mycology 37:<br />

81–83.<br />

Cermeño J, Torres J (1998). Método espectrofotométrico en la preparación del<br />

inóculo de hongos dematiaceos. Revista Iberoamericana de Micologia 15:<br />

155–157.<br />

Clausnitzer I (1978). Germinación de las semillas del dato o frutos del cardón,<br />

Lemaireocereus griseus (Haw) Britt & Rose. Revista de la Facultad de<br />

Agronomia de la Universidad del Zulia 5: 351–365.<br />

Crous PW, Schubert K, Braun U, Hoog GS de, Hocking AD, Shin H-D, Groenewald<br />

JZ (2007). Opportunistic, human-pathogenic species in the Herpotrichiellaceae<br />

are phenotypically <strong>similar</strong> to saprobic or phytopathogenic species in the<br />

Venturiaceae. Studies in Mycology 58: 185–217.<br />

Crous PW, Slippers B, Wingfield MJ, Rheeder J, Marasas WFO, Philips AJL, Alves<br />

A, Burgess T, Barber P, Groenewald JZ (2006). Phylogenetic lineages in the<br />

Botryosphaeriaceae. Studies in Mycology 55: 235–253.<br />

Falush D, Stephens M, Pritchard JK (2003). Inference of population structure:<br />

Extensions to linked loci <strong>and</strong> correlated allele frequencies. Genetics 164:<br />

1567–1587.<br />

Felsenstein J (1993). PHYLIP (phylogeny inference package), version 3.6a2.<br />

Department of Genetics, Univ. Washington, Seattle.<br />

Fernández-Zeppenfeldt G, Richard-Yegres N, Yegres F, Hernández R (1994).<br />

<strong>Cladosporium</strong> carrionii: hongo dimórfico en cactáceas de la zona endémica<br />

para la cromomicosis en Venezuela. Revista Iberoamericana de Micologia 11:<br />

61–63.<br />

Garcia Pires d’Ávila SC, Pagliari C, Seixas Duarte MI (2002). <strong>The</strong> cell-mediated<br />

immune reaction in the cutaneous lesion of chromoblastomycosis <strong>and</strong> their<br />

correlation with different clinical forms of the disease. Mycopathologia 156:<br />

51–60.<br />

Glass NL, Donaldson G (1995). Development of primer sets designed for use with<br />

PCR to amplify conserved genes from filamentous ascomycetes. Applied <strong>and</strong><br />

Environmental Microbiology 61: 1323–1330.<br />

Goh KS, Padhye AA, Ajello L (1982). A Samoan case of chromoblastomycosis<br />

caused by Cladophialophora ajelloi. Sabouraudia 20: 1–5.<br />

González R, Caleiras E, Guanipa O, Garcia-Tamayo J, Siva L, Colina C, Fernández-<br />

Zeppenfeldt G, Pacheco I (1990). Chromomycosis: ultrastructural characteristics<br />

of the suppurative granuloma in <strong>Cladosporium</strong> carrionii skin lesions. Jornada<br />

Microscopica Electrónica 4: 133–134.<br />

Guindon S, Gascuel O (2003). A simple, fast, <strong>and</strong> accurate algorithm to estimate<br />

phyogenies by maximum likelihood. Systematic Biology 52: 696–704.<br />

Haase G, Sonntag L, Melzer-Krick B, Hoog GS de (1999). Phylogenetic interference<br />

by SSU-gene analysis of members of the Herpotrichiellaceae with special<br />

reference to human pathogenic species. Studies in Mycology 43: 80–97.<br />

Honbo S, Padhye AA, Ajello L (1984). <strong>The</strong> relationship of <strong>Cladosporium</strong> carrionii to<br />

Cladophialophora ajelloi. Sabouraudia 22: 209–218.<br />

Hoog GS de, Guarro J, Gené J, Figueras MJ (2000). Atlas of Clinical Fungi, 2 nd<br />

ed. Centraalbureau voor Schimmelcultures, Utrecht <strong>and</strong> Universitat Rovira i<br />

Virgili, Reus.<br />

Hoog GS de, Vicente VA, Caligiorne RB, Kantarcioglu AS, Tintelnot K, Gerrits<br />

van den Ende AHG, Haase G (2003). Species diversity <strong>and</strong> polymorphism in<br />

the Exophiala spinifera clade containing opportunistic black yeast-like fungi.<br />

Journal of Clinical Microbiology 41: 4767–4778.<br />

Hoog GS de, Zeng JS, Harrak MJ, Sutton DA (2006). Exophiala xenobiotica sp. nov.,<br />

an opportunistic black yeast inhabiting environments rich in hydrocarbons.<br />

Antonie van Leeuwenhoek 90: 257–268.<br />

Huson DH, Bryant D (2006). Application of phylogenetic networks in evolutionary<br />

studies. Molecular Biology <strong>and</strong> Evolution 23: 254–267.<br />

Iwatsu T, Miyaji M, Taguchi H, Okamoto S (1982). Evaluation of skin test for<br />

chromoblastomycosis using antigens prepared from culture filtrates of<br />

Fonsecaea pedrosoi, Phialophora verrucosa, Wangiella dermatitidis <strong>and</strong><br />

Exophiala jeanselmei. Mycopathologia 77: 59–64.<br />

Kawasaki M, Ishizaki H, Miyaji M, Nishimura K, Matsumoto T, Honbo S, Muir D<br />

(1993). Molecular epidemiology of <strong>Cladosporium</strong> carrionii. Mycopathologia<br />

124: 149–152.<br />

Kurita N (1979). Cell-mediated immune responses in mice infected with Fonsecaea<br />

pedrosoi. Mycopathologia 68: 9–15.<br />

Lavelle P (1980). Chromoblastomycosis in Mexico. Pan American Health<br />

Organization Scientific Publications 396: 235–247.<br />

Makarenkov V (2001). T-Rex: reconstructing <strong>and</strong> visualizing phylogenetic trees <strong>and</strong><br />

reticulation networks. Bioinformatics 17: 664–668.<br />

Makarenkov V, Legendre P (2004). From a phylogenetic tree to a reticulated<br />

network. Journal of Computational Biology 11: 195–212.<br />

Marques SG, Pedroso Silva CM, Saldanha PC, Rezende MA, Vicente VA, Queiros-<br />

Telles F, Lopes Costa JM (2006). Isolation of Fonsecaea pedrosoi from the shell<br />

of the babassu coconut (Orbignya phalerata Martius) in the Amazon region of<br />

Maranhão Brazil. Japanese Journal of Medical Mycology 47: 305–311.<br />

Martínez E, Rey Valieron C, Yergres F, Reyes R (2005). El caprino: aproximación<br />

a un modelo animal en la cromomicosis humana. Investigaciόn Clínica 46:<br />

131–138.<br />

Mendoza L, Karuppayil SM, Szaniszlo PJ (1993). Calcium regulates in vitro<br />

dimorphism in chromoblastomycotic fungi. Mycoses 36: 157–164.<br />

Mostert L, Groenewald JZ, Summerbell RC, Gams W, Crous PW (2006). Taxonomy<br />

<strong>and</strong> pathology of Togninia (Diaporthales) <strong>and</strong> its Phaeoacremonium anamorphs.<br />

Studies in Mycology 54: 1–115.<br />

Nishimura K, Miyaji M (1981). Defense mechanisms of mice against Fonsecaea<br />

pedrosoi infection. Mycopathologia 76: 155–166.<br />

Nishimura K, Miyaji M, Taguchi H, Wang DL, Li RY, Meng ZH (1989). An ecological<br />

study on pathogenic <strong>dematiaceous</strong> fungi from China. In: Current problems of<br />

opportunistic fungal infections. Proceedings of the 4 th International Symposium<br />

of the Research Center for Pathogenic Fungi <strong>and</strong> Microbial Toxicoses, Chiba<br />

University, Chiba: 17–20.<br />

Nyl<strong>and</strong>er JAA (2004). MrAic.pl. Programme distributed by the author. Evolutionary<br />

www.studiesinmycology.org<br />

233


De Hoog et al.<br />

Biology Centre, Uppsala University.<br />

O’Daly JA (1943). La cromoblastomicosis en Venezuela. Memorias Primera Jornada<br />

Venezolana de Venereología. Caracas.<br />

O’Donnell K, Cigelnik E (1997). Two divergent intragenomic rDNA ITS2 types within<br />

a monophyletic lineage of the fungus Fusarium are nonorthologous. Molecular<br />

<strong>and</strong> Phylogenetic Evolution 7: 103–116.<br />

Ohkusu M, Yamaguchi M, Hata K, Yoshida S, Tanaka S, Nishimura K, Hoog GS de,<br />

Takeo K (1999). Cellular <strong>and</strong> nuclear characteristics of Exophiala dermatitidis.<br />

Studies in Mycology 43: 143–150.<br />

Polak A (1984). Experimental infection of mice by Fonsecaea pedrosoi <strong>and</strong> Wangiella<br />

dermatitidis. Sabouraudia 22: 167–169.<br />

Posada D, Cr<strong>and</strong>all KA (1998). Modeltest: testing the model of DNA substitution.<br />

Bioinformatics 14: 817–818.<br />

Prenafeta-Boldú FX, Summerbell R, Hoog GS de (2006). Fungi growing on aromatic<br />

hydrocarbons: biotechnology’s unexpected encounter with biohazard? FEMS<br />

Microbiology Reviews 30: 109–130.<br />

Pritchard JK, Stephens M, Donnelly P (2000). Inference of population structure<br />

using multilocus genotype data. Genetics 155: 945–959.<br />

Richard-Yegres N, Yegres F (1987). <strong>Cladosporium</strong> carrionii en vegetacion xerofila:<br />

aislamiento en una zona endemica para la cromomicosis en Venezuela.<br />

Dermatologia Venezuelana 25: 15–18.<br />

Richard-Yegres N, Yegres, Zeppenfeldt G (1992). Cromomicosis: endemia rural,<br />

laboral y familiar en Venezuela. Revista Iberoamericana Micologia 9: 38–41.<br />

Riddley M (1957). <strong>The</strong> natural habitat of <strong>Cladosporium</strong> carrionii a cause of<br />

chromoblastomycosis. Australian Journal of Dermatology 4: 23–27.<br />

Rubin HA, Bruce S, Rosen T, McBride ME (1991). Evidence for percutaneous<br />

inoculation as the mode of transmission for chromoblastomycosis. Journal of<br />

the American Academy of Dermatology 25: 951–954.<br />

Salgado L, Pereira da Silva J, Picanço Diniz JÁ, Batista da Silva M, Fagundes da<br />

Costa P, Teixeira C, Salgado UI (2004). Isolation of Fonsecaea pedrosoi from<br />

thorns of Mimosa pudica, a probable natural source of chromoblastomycosis.<br />

Revista Instituto de Medicina Tropical, Sao Paulo 46: 33–36.<br />

Schoch CL, Shoemaker RA, Seifert KA, Hambleton A, Spatafora JW, Crous PW<br />

(2006). A multigene phylogeny of the Dothideomycetes using four nuclear loci.<br />

Mycologia 98: 1041–1052.<br />

Seifert KA, Nickerson NL, Corlett M, Jackson ED, Louis-Seize G, Davies RJ<br />

(2004). Devriesia, a new hyphomycete <strong>genus</strong> to accommodate heat-resistant,<br />

cladosporium-like fungi. Canadian Journal of Botany 82: 914–926.<br />

Silva JP, Rocha RM da, Moreno JS (1995). <strong>The</strong> coconut babaçu (Orbignya phalerata)<br />

as a probable risk of human infection by the agent of chromoblastomycosis<br />

in the State of Maranhão, Brazil. Revista do Sociedad Brasiliera de Medicina<br />

Tropical, Sao Paulo 28: 49–52.<br />

Swofford DL (1981). Utility of the distance-Wagner procedure. In: Advances in<br />

cladistics, vol. 1 (Funk VA <strong>and</strong> Brooks DR, eds.). Annals of the New York<br />

Botanical Gardens, New York: 25–44.<br />

Swofford DL (2003). PAUP*. Phylogenetic Analysis Using Parsimony (*<strong>and</strong> Other<br />

Methods). Version 4. Sinauer Associates, Sunderl<strong>and</strong>, Massachusetts.<br />

Szaniszlo PJ (2002). Molecular genetic studies of the model <strong>dematiaceous</strong><br />

pathogen Wangiella dermatitidis. International Journal of Medical Microbiology<br />

292: 381–390.<br />

Tamura K, Nei M (1993). Estimation of the number of nucleotide substitutuions in the<br />

control region of mitochondrial DNA in humans <strong>and</strong> chimpanzees. Molecular<br />

Biolology <strong>and</strong> Evolution 10: 512–526.<br />

Trejos A (1953). Cromoblastomycosis experimental en Bufo marinus. Revista de<br />

Biologia Tropical 1: 39–53.<br />

Trejos A (1954). <strong>Cladosporium</strong> carrionii n. sp. <strong>and</strong> the problem of cladosporia<br />

isolated from chromoblastomycosis. Revista de Biologia Tropical 2: 75–112.<br />

Vélez F, Chávez J (1980). Los Cactus de Venezuela. Colecciones Inagro,<br />

Venezuela.<br />

White TJ, Bruns T, Lee S, Taylor J (1990). Amplification <strong>and</strong> direct sequencing of<br />

fungal ribosomal RNA genes for phylogenetics. In: PCR Protocols: a guide to<br />

methods <strong>and</strong> applications (Innis MA, Gelf<strong>and</strong> DH, Sninsky JJ, White TJ, eds).<br />

Academic Press, San Diego, California: 315–322.<br />

Yegres F, Niel F, Gantier JC, Richard-Yegres N (1998). Murine humoral immune<br />

response against Cladophialophora carrionii <strong>and</strong> Fonsecaea pedrosoi infection.<br />

Journal de Mycologie Médical 8: 179–182.<br />

Yegres F, Richard-Yegres N (2002). Cladophialophora carrionii: Aportes al<br />

conocimiento de la endemia en Venezuela durante el siglo XX. Revista de la<br />

Sociedad Venezuelana de Microbiologίa 2: 153–157.<br />

Yegres F, Richard-Yegres N, Medina-Ruiz E, González-Vivas R (1985).<br />

Cromomicosis por <strong>Cladosporium</strong> carrionii en criadores de caprinos del estado<br />

Falcon. Investigaciόn Clínica 26: 235–246.<br />

Yegres F, Richard-Yegres N, Nishimura K, Miyaji M (1991). Virulence <strong>and</strong><br />

pathogenicity of human <strong>and</strong> environmental isolates of <strong>Cladosporium</strong> carrionii in<br />

new born ddY mice. Mycopathologia 114: 71–76.<br />

Yegres F, Richard-Yegres N, Perez-Blanco M (1996). Cromomicosis. In: Temas<br />

de Micologia Médica. (Bastardo de Albornoz M, ed.). Caracas, Venezuela:<br />

87–102.<br />

Yegüez-Rodriguez J, Richard-Yegres N, Yegres F, Rodríguez Larralde A (1992).<br />

Cromomicosis: susceptibilidad genética en grupos familiares de la zona<br />

endémica en Venezuela. Acta Cientίfica Venezuelana 43: 98–102.<br />

Zeng J-S, Sutton DA, Fothergill AW, Rinaldi MG, Harrak MJ, Hoog GS de (2007).<br />

Spectrum of clinically relevant Exophiala species in the U.S.A. Journal of<br />

Clinical Microbiology: in press.<br />

234


available online at www.studiesinmycology.org<br />

doi:10.3114/sim.2007.58.09<br />

Studies in Mycology 58: 235–245. 2007.<br />

Taxonomy, nomenclature <strong>and</strong> phylogeny of three cladosporium-like hyphomycetes,<br />

Sorocybe resinae, Seifertia azaleae <strong>and</strong> the Hormoconis anamorph of Amorphotheca<br />

resinae<br />

K.A. Seifert, S.J. Hughes, H. Boulay <strong>and</strong> G. Louis-Seize<br />

Biodiversity (Mycology & Botany), Eastern Cereal <strong>and</strong> Oilseed Research Centre, Agriculture & Agri-Food Canada, Ottawa, Ontario K1A 0C6 Canada<br />

*Correspondence: Keith A. Seifert, seifertk@agr.gc.ca<br />

Abstract: Using morphological characters, cultural characters, large subunit <strong>and</strong> internal transcribed spacer rDNA (ITS) sequences, <strong>and</strong> provisions of the International Code<br />

of Botanical Nomenclature, this paper attempts to resolve the taxonomic <strong>and</strong> nomenclatural confusion surrounding three species of cladosporium-like hyphomycetes. <strong>The</strong> type<br />

specimen of Hormodendrum resinae, the basis for the use of the epithet resinae for the creosote fungus {either as Hormoconis resinae or <strong>Cladosporium</strong> resinae) represents<br />

the mononematous synanamorph of the synnematous, resinicolous fungus Sorocybe resinae. <strong>The</strong> phylogenetic relationships of the creosote fungus, which is the anamorph of<br />

Amorphotheca resinae, are with the family Myxotrichaceae, whereas S. resinae is related to Capronia (Chaetothyriales, Herpotrichiellaceae). Our data support the segregation<br />

of Pycnostysanus azaleae, the cause of bud blast of rhododendrons, in the recently described anamorph <strong>genus</strong> Seifertia, distinct from Sorocybe; this species is related to the<br />

Dothideomycetes but its exact phylogenetic placement is uncertain. To formally stabilize the name of the anamorph of the creosote fungus, conservation of Hormodendrum<br />

resinae with a new holotype should be considered. <strong>The</strong> paraphyly of the family Myxotrichaceae with the Amorphothecaceae suggested by ITS sequences should be confirmed<br />

with additional genes.<br />

Key words: Amorphothecaceae, <strong>Cladosporium</strong> resinae, creosote fungus, Hormoconis resinae, jet fuel fungus, kerosene fungus, Myxotrichaceae, Pycnostysanus, resinicolous<br />

fungi.<br />

INTRODUCTION<br />

<strong>The</strong> ascomycete Amorphotheca resinae Parbery (1969) grows in<br />

hydrocarbon-rich substrates such as jet fuel, cosmetics <strong>and</strong> wood<br />

preserved with creosote or coal tar. This fungus is widely known<br />

by the anamorph name Hormoconis resinae (Lindau) Arx & G.A.<br />

de Vries or its obligate synonym <strong>Cladosporium</strong> resinae (Lindau)<br />

G.A. de Vries. It produces lightly pigmented, warty conidiophores,<br />

<strong>and</strong> branched, acropetally developing chains of lightly pigmented<br />

ameroconidia lacking conspicuous scars (Fig. 1B–E). This species<br />

is known colloquially as the “creosote fungus”, the “kerosene<br />

fungus” or the “jet fuel fungus”; to avoid confusion caused by the<br />

many heterotypic names with the epithet “resinae”, in this paper<br />

we generally will use the oldest of these informal names, “creosote<br />

fungus”, when referring to A. resinae or its anamorph. This fungus<br />

grows in jet fuel contaminated with small amounts of water, <strong>and</strong> the<br />

mycelium clogs fuel lines <strong>and</strong> corrodes metal parts. Consequently,<br />

fuel tanks in airports are monitored for this fungus by private<br />

companies using various physiological or biochemical tests.<br />

Sorocybe resinae (Fr.) Fr. produces dark black colonies on conifer<br />

resin, comprising dark synnemata <strong>and</strong> an effuse mononematous<br />

synanamorph, both with cladosporium-like conidiogenous cells<br />

<strong>and</strong> conidia. Unlike the anamorph of the creosote fungus, the<br />

conidia of Sorocybe resinae are dark brown <strong>and</strong> the lateral walls<br />

are conspicuously thicker than the poles (Fig. 2D–G). Colonies<br />

with only the mononematous anamorph sometimes occur, <strong>and</strong><br />

the mononematous anamorph can be sparse on colonies bearing<br />

synnemata. However, the conidia of the mononematous anamorph<br />

have identical pigmentation <strong>and</strong> lateral wall thickening to that of<br />

the synnematous anamorph. <strong>The</strong> mononematous anamorph rarely<br />

has been referred to by its own binomial name although, as we will<br />

show, there is a species epithet available. For the same reasons<br />

given above for Amorphotheca Parbery, generally we will refer to<br />

Sorocybe resinae herein as “the resin fungus”.<br />

Despite the micromorphological differences noted above, there<br />

is disagreement about whether the creosote fungus is conspecific<br />

with the mononematous synanamorph of the resin fungus (Parberry<br />

1969). <strong>The</strong> name for the anamorph of the creosote fungus is based<br />

on Hormodendrum resinae Lindau (1906). Christensen et al.<br />

(1942) presented a study of a cladosporium-like fungus commonly<br />

isolated from wood impregnated with creosote <strong>and</strong> coal tar <strong>and</strong><br />

applied Lindau’s name without examining its type. A later ecological<br />

study by Marsden (1954) employed the same name for the same<br />

fungus. An extra dimension was added to the confusion when de<br />

Vries (1952, using the name <strong>Cladosporium</strong> avellaneum G.A. de<br />

Vries) described four formae for the creosote fungus (differing in<br />

the colours of their conidia, the production of setae, or the total<br />

absence of conidia), each based on single conidium isolates made<br />

from one parent culture. De Vries (1955) <strong>and</strong> Parberry (1969)<br />

examined the holotype of Hormodendrum resinae <strong>and</strong> concluded<br />

that it represented the creosote fungus. Hughes (1958), prior to<br />

the description of Amorphotheca or Hormoconis Arx & G.A. de<br />

Vries, examined the same specimen <strong>and</strong> considered it to be the<br />

mononematous synanamorph of the resin fungus. If Hughes (1958)<br />

is correct, then neither the species Hormodendrum resinae, nor<br />

the <strong>genus</strong> that it typifies, Hormoconis, can represent the creosote<br />

fungus, as intended by Parberry (1969) or von Arx <strong>and</strong> de Vries (in<br />

von Arx 1973).<br />

In this paper, we present micromorphological, cultural <strong>and</strong><br />

molecular evidence that the resin fungus is a different species from<br />

the creosote fungus. Combined with re-examination of the holotype<br />

of Hormodendrum resinae, this information is used to provide a<br />

revised taxonomy <strong>and</strong> nomenclature for these two species. A third<br />

cladosporium-like fungus, Seifertia azaleae, is also considered in<br />

our discussion of generic concepts.<br />

Historical review<br />

<strong>The</strong> history of the fungus now known as Sorocybe resinae began<br />

with Fries (1815), who described Racodium resinae Fr. as follows:<br />

“310. Racodium resinae, expansum molliusculum dense contextum nigrum, filis<br />

inaequalibus.<br />

In resina Pini Abietis in silvis Suecia passim.<br />

Habitu et loco natali distinctum. Fila divaricato-ramosa; alia rigidula apice<br />

capituli sera, sub miscrosc. Coremio Link similia, Demat. villosum Schleich. huic<br />

simile; sed sub microsc. fila maxime differunt.”<br />

235


Seifert et al.<br />

Fig. 1. Amorphotheca resinae, colony characters <strong>and</strong> anamorph micromorphology. A. 10-d-old colony on PDA. B, D–E. Micromorphology of conidiophores, showing acropetal<br />

conidial chains, ramoconidia, <strong>and</strong> conidia. C. Conidia. DAOM 170427; for C, E see scale bar in D.<br />

<strong>The</strong> comparison with Coremium Link indicates the probability of a<br />

synnematous fungus, <strong>and</strong> an authentic specimen of Fries’ fungus,<br />

which as the only known authentic material we interpret as the<br />

holotype, is preserved in Link’s herbarium (see below). It represents<br />

the synnematous form of the resin fungus 1 .<br />

1 Persoon (1822) described a form of R. resinae “β piceum”. Hughes (1968) examined<br />

the holotype of this form, <strong>and</strong> it represents the mycelium of the ascomycete<br />

Strigopodia resinae (Sacc. & Bres.) S.J. Hughes. This taxon is thus not relevant to<br />

the three species that are the focus of this paper.<br />

Fries (1832) later transferred his species to Sporocybe<br />

Fr. (1825), a <strong>genus</strong> then used for relatively conspicuous dark<br />

hyphomycetes with dry spores (Mason & Ellis 1953). <strong>The</strong> 1832<br />

description explicitly stated... “capitulo rotundato inaequali, sporidiis<br />

seriatis, stipite aequali simplici.” <strong>The</strong> use of “capitulo” <strong>and</strong> “stipite”<br />

imply what would now be recognised as a synnematous fungus.<br />

Fries (1832) further characterised the habit of the fungus as “habitu<br />

stipitum Calicii,” a further comparison to a group of black, stipitate<br />

lichenized fungi classified in Calicium Pers., which under a h<strong>and</strong><br />

lens look <strong>similar</strong> to a dark synnematous fungus.<br />

Fries (1849) next described the <strong>genus</strong> Sorocybe Fr. for this<br />

fungus, as follows:<br />

236


Hormoconis resinae <strong>and</strong> morphologically <strong>similar</strong> taxa<br />

Fig. 2. Sorocybe resinae, synnematous form. A. Colony on bark of living, st<strong>and</strong>ing conifer. B. Synnemata. C. Four-month-old colony on DG18. D–G. Acropetally developing<br />

chains of conidia. Note that the lateral walls are conspicuously thickened; compare with Fig. 3. A, C. DAOM 239134. B, D–G. DAOM 11381.<br />

Sorocybe Fr.<br />

Habitus prioris. sed mycelium floccosum densum, stroma corneo-carbonaceum,<br />

sporis moniliformi-concatenatis basi excipulum incompletum praebens.<br />

1. S. resinae. Fr. 1–4. at raro fructif. Klotzsch. exs. C. 2.<br />

Because this description explicitly referred to the Systema, Fries<br />

presumably was segregating the fungus, originally described<br />

as Racodium resinae, into a new monotypic <strong>genus</strong> (McNeill et<br />

al. 2007; Art. 33.3) <strong>and</strong> this interpretation of R. resinae as the<br />

basionym generally has been followed in subsequent treatments<br />

of Sorocybe resinae.<br />

As noted in Table 1, Fries’ Racodium resinae was placed in<br />

several other hyphomycete genera by eighteenth century authors.<br />

<strong>The</strong>se diversions need not be reviewed in detail here because the<br />

modern status of these other genera, <strong>and</strong> their lack of <strong>similar</strong>ity with<br />

Sorocybe, is clear.<br />

Bonorden (1851) described Hormodendrum Bonord., with four<br />

species originally placed in Penicillium Link by Corda (1839); H.<br />

olivaceum (Corda) Bonord. (≡ Penicillium olivaceum Corda 1839)<br />

was designated as lectotype by Clements & Shear (1931). This<br />

<strong>genus</strong> was frequently, but incorrectly, spelled “Hormodendron”.<br />

Bonorden’s descriptions <strong>and</strong> illustrations are of variable quality by<br />

modern st<strong>and</strong>ards, <strong>and</strong> his herbarium is unknown (Stafleu et al.<br />

1995). Consequently the actual identities of the species Bonorden<br />

placed in Hormodendrum are unknown <strong>and</strong> Corda’s <strong>Cladosporium</strong><br />

olivaceum (Corda) Bonord. was dismissed in Penicillium monographs<br />

because the drawing shows branched conidial chains<br />

(Thom 1930), although the specimen has apparently not been<br />

re-examined. <strong>The</strong> generic name was used as a segregate for<br />

<strong>Cladosporium</strong> Link by some authors (e.g. Kendrick 1961), in<br />

particular for species with ameroconidia (de Vries 1952). Although it<br />

sometimes has been considered a synonym of <strong>Cladosporium</strong>, it will<br />

remain a nomen dubium until the type species is properly typified.<br />

Unaware of the resinicolous fungus described by Fries, Lindau<br />

described two species growing on conifer resin, Pycnostysanus<br />

resinae Lindau (1904), the type of this anamorph generic name,<br />

<strong>and</strong> Hormodendrum resinae Lindau (1906). <strong>The</strong> former was<br />

clearly illustrated <strong>and</strong> described as a synnematous species. <strong>The</strong><br />

protologue of the latter concludes with, “Mit Pycnostysanus resinae<br />

hat die Art nichts zu tun.” Clearly, Lindau observed no synnemata<br />

on the specimen of the mononematous fungus <strong>and</strong> he believed<br />

it was a different fungus, rather than what would now be called a<br />

synanamorph of the synnematous fungus that he had described<br />

previously. Lindau (1910) reproduced the 1904 illustration of<br />

Pycnostysanus resinae as Stysanus resinae (Fr.) Sacc. (1906),<br />

thus accepting its identity with the species originally described<br />

as Racodium resinae Fr. Lindau (1910) made no mention of<br />

Hormodendrum resinae, indicating he still made no association<br />

between the synnematous <strong>and</strong> mononematous fungi on resin.<br />

De Vries (1952) described a new species, <strong>Cladosporium</strong><br />

avellaneum G.A. de Vries, isolated from cosmetics. Later, he noted<br />

the <strong>similar</strong>ities between his C. avellaneum <strong>and</strong> the creosote fungus,<br />

<strong>and</strong> suggested that they were the same species (de Vries 1955),<br />

replacing the name of one of his previously described formae,<br />

i.e. viride, with the forma name resinae. He examined Lindau’s<br />

type of Hormodendrum resinae <strong>and</strong> decided that it provided an<br />

earlier epithet for C. avellaneum. He transferred the species into<br />

<strong>Cladosporium</strong> as C. resinae (Lindau) G.A. de Vries, <strong>and</strong> this name<br />

was widely used for the creosote fungus until 1973. This binomial<br />

is still commonly employed in non-taxonomic literature, especially<br />

commercial publications dealing with the creosote fungus.<br />

www.studiesinmycology.org<br />

237


Seifert et al.<br />

Table 1. Nomenclature <strong>and</strong> synonymies for the creosote fungus <strong>and</strong> the resin fungus, showing the use of the same basionym for the two fungi. <strong>The</strong> “false” names <strong>and</strong><br />

synonymies for the anamorph of the resin fungus are indicated by blue text. <strong>The</strong> second nomenclatural solution described in the text would have the effect of switching the<br />

blue text to black for the creosote fungus, <strong>and</strong> to simultaneously switch the equivalent black text to blue for the mononematous synanamorph of the resin fungus. Holotypes<br />

we have examined, <strong>and</strong> the herbarium where they are deposited, are marked with exclamation points, <strong>and</strong> details of these specimens are noted in Materials <strong>and</strong> Methods.<br />

Creosote fungus<br />

Teleomorph: Amorphotheca resinae Parberry, Australian J. Bot. 17: 340. 1969.<br />

Anamorph<br />

Hormodendrum resinae Lindau, in Rabenh. Krypt.-Fl., 2, 1 (Pilze) 8: 699. 1906 (B!).<br />

≡ <strong>Cladosporium</strong> resinae (Lindau) G.A. de Vries, Antonie van Leeuwenhoek 21: 167. 1955.<br />

≡ Hormoconis resinae (Lindau) von Arx & G.A. de Vries, in von Arx, Verh. K. Ned. Akad. Wet., Afd. Natuurk. 61: 62. 1973.<br />

= <strong>Cladosporium</strong> avellaneum G.A. de Vries, Contribution to the knowledge of the <strong>genus</strong> <strong>Cladosporium</strong>, Uitg. Druk. Holl<strong>and</strong>ia, p. 56, 1952.<br />

Resin fungus<br />

Mononematous synanamorph:<br />

Hormodendrum resinae Lindau, in Rabenh. Krypt.-Fl., 2, 1 (Pilze) 8: 699. 1906 (B!)<br />

≡ <strong>Cladosporium</strong> resinae (Lindau) G.A. de Vries, Antonie van Leeuwenhoek 21: 167. 1955.<br />

≡ Hormoconis resinae (Lindau) von Arx & G.A. de Vries, in von Arx, Verh. K. Ned. Akad. Wet., Afd. Natuurk. 61: 62. 1973.<br />

Synnematous anamorph:<br />

Sorocybe resinae (Fr.) Fr., Summa Veg. Scan. 2: 468. 1849.<br />

≡ Racodium resinae Fr., Obs. Mycol. 1: 216. 1815 (basionym) (B!).<br />

≡ Sporocybe resinae (Fr.) Fr., Syst. Mycol. 3: 341. 1832.<br />

≡ Dendryphion resinae (Fr.) Corda, Icon. Fung. 6: 11. 1854.<br />

≡ Stysanopsis resinae (Fr.) Ferr., Flora Ital. Crypt., 1 (Fungi, Hyphales), p. 187. 1910.<br />

? = Dematium nigrum Link, Mag. ges. naturf. Fr. 3: 21. 1809 (B!).<br />

≡ Sporotrichum nigrum (Link) Link, Mag. Ges. naturf. Fr. Berlin 7: 35. 1815.<br />

= Pycnostysanus resinae Lindau, Verh. Bot. Ver. Br<strong>and</strong>enb. 45 : 160. 1904 (B!).<br />

≡ Stysanus resinae (Lindau) Sacc., Syll. Fung. 18: 651. 1906.<br />

In his study of type collections of classical hyphomycetes,<br />

Hughes (1958) included Pycnostysanus resinae Lindau <strong>and</strong><br />

Hormodendrum resinae Lindau as facultative synonyms of<br />

Sorocybe resinae (Fr.) Fr., with Racodium resinae Fr. <strong>and</strong> several<br />

other nomenclatural variants as obligate synonyms (Table 1). <strong>The</strong><br />

synnematous Pycnostysanus resinae was cited as “Pycnostysanus<br />

state [i.e. synanamorph] of Sorocybe resinae”. Hormodendrum<br />

resinae thus remained to represent the mononematous<br />

synanamorph of what was interpreted as a single species.<br />

Parberry (1969) described a cleistothecial ascomycete,<br />

Amorphotheca resinae, for the teleomorph of the creosote fungus.<br />

He also examined the holotype of Hormodendrum resinae <strong>and</strong><br />

agreed with the conclusions of de Vries (1955). He used the<br />

epithet resinae for the teleomorph to correspond with that of the<br />

anamorph. He discounted the possibility that the synnematous<br />

Sorocybe resinae could be the same fungus as Hormodendrum<br />

resinae because synnemata never developed in his cultures of the<br />

creosote fungus.<br />

Von Arx <strong>and</strong> de Vries (in von Arx 1973) described the <strong>genus</strong><br />

Hormoconis, typified by Hormodendrum resinae, with the new<br />

combination Hormoconis resinae (Lindau) Arx & G.A. de Vries.<br />

<strong>The</strong>ir intention was to erect an anamorph <strong>genus</strong> for the anamorph<br />

of the creosote fungus, which they suggested was improperly<br />

classified in <strong>Cladosporium</strong> because it lacked darkened, thickened<br />

secession scars on the conidia.<br />

A third cladosporium-like fungus is relevant to this story.<br />

Seifertia azaleae (Peck) Partridge & Morgan-Jones [until recently<br />

known as Pycnostysanus azaleae (Peck) E.W. Mason] is a<br />

cosmopolitan fungus causing bud blast <strong>and</strong> twig blight of azaleas<br />

<strong>and</strong> rhododendrons. This species is morphologically <strong>similar</strong> to<br />

Sorocybe resinae, but the conidia are paler <strong>and</strong> lack laterally<br />

thickened walls. Sorocybe <strong>and</strong> Pycnostysanus have often been<br />

considered taxonomic synonyms (Ellis 1976, Carmichael et al.<br />

1980); as shown above, both are based on the synnematous form<br />

of the resin fungus. Partridge <strong>and</strong> Morgan-Jones (2002) argued that<br />

Sorocybe resinae <strong>and</strong> “Pycnostysanus azaleae” are not congeneric,<br />

<strong>and</strong> described the new <strong>genus</strong> Seifertia Part. & Morgan-Jones for<br />

the Rhododendron fungus. <strong>The</strong>y observed that the connection<br />

between conidia in Seifertia azaleae is much narrower than in<br />

Sorocybe resinae, <strong>and</strong> that minute denticles are visible on the<br />

conidiogenous cells of the former fungus. <strong>The</strong> broader connections<br />

between conidia of Sorocybe resinae result in broadly protuberant<br />

conidiogenous loci on the conidiogenous cells, <strong>and</strong> more truncate<br />

detached conidia.<br />

MATERIALS AND METHODS<br />

Herbarium material <strong>and</strong> fungal strains<br />

Full details of herbarium material examined are listed below.<br />

Cultures <strong>and</strong> dried herbarium specimens were studied in 90 %<br />

lactic acid without stains; preparations of some exsiccate <strong>and</strong> types<br />

were mounted in glycerin jelly. Cultures were grown on potatodextrose<br />

agar (PDA, Difco), oatmeal agar (OA, Samson et al.<br />

2004), Blakeslee’s malt extract agar (MEA, Samson et al. 2004) <strong>and</strong><br />

dichloran-18 % glycerol agar (DG-18, Samson et al. 2004). Colony<br />

characters were taken from cultures grown at 25 °C in darkness.<br />

Cultures are maintained in the Canadian Collection of Fungal<br />

Cultures (DAOM), Agriculture & Agri-Food Canada, Ottawa.<br />

238


Hormoconis resinae <strong>and</strong> morphologically <strong>similar</strong> taxa<br />

Exsiccati <strong>and</strong> types<br />

Dematium nigrum [scr. Link]. E. Hbr. Link (23) = Sporocybe<br />

resinae III. 341 [scr. ? ] (herb. Link, B).<br />

Hormodendrum resinae Lindau, n. sp. Fl. v. Hamburg 206, auf<br />

Harz an Picea excelsa, Sachsenwald, leg. O. Jaap, 29-4-1906.<br />

[scr. Lindau]. (DAOM 41888, slide prepared from the holotype<br />

preserved in B.)<br />

Pycnostysanus resinae Lindau nov. gen. et nov. spec., Kabát et<br />

Bubák: Fungi imperfecti exsiccati no. 99. Auf erhärteten Fichtenharz<br />

an Brockenweg, am Dreieckigen Pfahl in Harz, Deutschl<strong>and</strong>, leg.<br />

G. Lindau, 13.VIII. 1903 (holotype, B).<br />

Racodium resinae Fries. E. Hbr. Link, Fries legi, Smol. [scr.<br />

Fries]. (DAOM 41890, slide prepared from herb. Link, B). This<br />

is the presumed holotype of R. resinae, the basionym for the<br />

resin fungus, Sorocybe resinae. <strong>The</strong> specimen includes dark,<br />

decapitated synnemata, brown conidia with laterally thickened<br />

walls, <strong>and</strong> acropetal conidial chains, allowing it to be recognised<br />

as the fungus we now know as S. resinae. Fries perhaps sent this<br />

fungus to Link to see if it could be differentiated from Coremium<br />

Link. <strong>The</strong> minimal details, that the fungus was collected by Fries,<br />

presumably in Smål<strong>and</strong> (a province of Sweden), match the details<br />

in the protologue of this species.<br />

Sorocybe resinae. “Fungi Rhenani Fasc. II, 1863, L. Fuckel, no.<br />

129, ad Abietis resinam, raro Hieme, in sylva Hostrichiensi” (as<br />

Myxotrichum resinae Fr., DAOM 55543 ex FH). “Flora Suecica,<br />

2956, Ad resinam piceae, Smål<strong>and</strong>: Femsjö, Prostgaidsshogen,<br />

6 Aug. 1929, leg. J.A. Nannfeldt, s.n.” (as Stysanus resinae (Fr.)<br />

Sacc., DAOM 41891 ex UPS). “Flora Suecica, 4709, Ad resinam<br />

abietinum, Uppl<strong>and</strong>: Bondkysko sin Valsätra, 9 May 1932, leg. J.A.<br />

Nannfeldt” (as Hormodendrum resinae Lindau, DAOM 41889 ex<br />

UPS). “[ on wood scr. Berkeley] J.E. Vize, Hereford 1877” (as Torula<br />

pinophila Fr., DAOM 113425 ex K). “Sydow, Mycotheca germanica,<br />

350. Auf Fichtenharz… am Brockenweg 30.9.1904, leg. P. Sydow”<br />

(DAOM 41893).<br />

Other material examined<br />

Sorocybe resinae. Canada, British Columbia: Burnaby, Central Park, on resin of<br />

Tsuga heterophylla, leg. S. & L. Hughes, 17 Aug. 2000 (DAOM 228572a, 228573a);<br />

Cameron Lake, Cathedral Grove, on Pseudotsuga menziesii, leg. isol. S.J. Hughes,<br />

21 Aug. 1957 (DAOM 56088a). Ladysmith, Ivy Green Park, on resinous exudates,<br />

leg. R.J. B<strong>and</strong>oni no. BC-978, 18 Apr. 1960, det. S.J. Hughes (DAOM 70462).<br />

North Vancouver, Lynn Valley Conservation Area, leg. det. S.J. Hughes, 1 Jul. 1975<br />

(DAOM 139385); North Vancouver, Lynn Valley Conservation Area, on bark of living<br />

conifer (probably Pseudotsuga menziesii), leg. isol. K.A. Seifert no. 1574, 26 May<br />

2002 (single conidium isolate, culture <strong>and</strong> specimen DAOM 239134; ITS GenBank<br />

EU030275, LSU GenBank EU030277); Terrace, near Kalum, on Tsuga heterophylla,<br />

leg. W.G. Ziller no. V-6549, 10 July 1950, det. S.J. Hughes (DAOM 59657); Queen<br />

Charlotte Isl<strong>and</strong>s, east coast of Moresby Isl<strong>and</strong>, north side of Gray Bay, 53°08’ N,<br />

131°47’ W, on Picea sitchensis, leg. I. Brodo, M.J. Schepanek, W.B. Schofield,<br />

28 Sep. 1973, det. S.J. Hughes (DAOM 144757); Queen Charlotte Isl<strong>and</strong>s,<br />

Graham Isl<strong>and</strong>, Tow Hill area, on resin of Picea sitchensis, leg. S.A. Redhead no.<br />

4440, 20 Sep. 1982, det. G.P. White (DAOM 184025); Revelstoke, Wigwam, on<br />

Tsuga heterophylla, leg. W. Ziller V-6567 det. S.J. Hughes, 6 Jun. 1950 (DAOM<br />

59710); Vancouver Isl<strong>and</strong>, Cathedral Grove, Cameron Lake, on Pseudotsuga<br />

menziesii, leg. det. S.J. Hughes, 21 Aug. 1957 (DAOM 56088a); Vancouver Isl<strong>and</strong>,<br />

Caycuse, on resin of Pseudotsuga menziesii, leg. det. S.J. Hughes, 17 Jul. 1972<br />

(DAOM 139355); Vancouver Isl<strong>and</strong>, Lake Cowichan, Honeymoon Bay, on resin<br />

of Pseudotsuga menziesii, leg. J Ginns, det. S.J. Hughes, 29 Oct. 1971 (DAOM<br />

134968); Vancouver Isl<strong>and</strong>, Lake Cowichan, Mesachie Lake Forest Experimental<br />

Station, leg. det. S.J. Hughes, 5 Jul. 1972 (DAOM 139277a, DAOM 139278) <strong>and</strong><br />

6 Jul. 1072 (DAOM 139281). Czechoslovakia, Ještěd near Liberec, leg. det. S.J.<br />

Hughes, on resin of Larix europaea, 10 May 1955 (DAOM 51723). United States,<br />

Oregon: Andrews’ Experimental Forest, Forest Service Rd. no 1553, on resin of<br />

Tsuga heterophylla, leg. det. S.J. Hughes, 10 May 1969 (DAOM 134565); Andrews’<br />

Experimental Forest, Blue River, on resin of conifer, cut wood, leg. det. K.A. Seifert<br />

no. 69, 10 Jul. 1981 (DAOM 228203); Oregon, del Norte Co., J. Smith’s State Park,<br />

on Tsuga heterophylla, leg. det. S.J. Hughes, 11 May 1069 (DAOM 134614); Devil’s<br />

Elbow State Park, Cape Perpetus, on Picea sitchensis, leg. det. S.J. Hughes, 6 May<br />

www.studiesinmycology.org<br />

1969 (DAOM 134615); Linn Co., near Cascadia, on Pseudotsuga menziesii, leg. R.<br />

Fogel, det. S.J. Hughes, 14 May 1969 (DAOM 127885); U.S. Forest Service Rd. no.<br />

126, North fork Cape Creek, on resin of Abies gr<strong>and</strong>is, leg. det. S.J. Hughes, 7 May<br />

1969 (DAOM 134852,134563); Willamette National Forest, McKenzie Bridge Camp<br />

Grounds, leg. det. S.J. Hughes, 10 May 1969 (DAOM 134564). Washington: Kittitas<br />

Co., Wanatchee National Forest, Rocky Run, on Abies nobilis, leg. Field Mycology<br />

Class 1955, 22 Jul. 1955, det. S.J. Hughes, (mononematous synanamorph only,<br />

DAOM 118934 ex WSP 45210, as Helminthosporium sp.); Jefferson Co., Olympic<br />

National Forest, 10 mi Camp, Sec. 17, T26N, R3W, on Pseudotsuga mucronata,<br />

leg. Field Mycology Class, 22 Jul. 1955 (DAOM 113801 ex WSP 45212, as<br />

Helminthosporium); Grays Harbor Co., Twin Harbors Beach State Park, resin of<br />

Picea sitchensis, leg. W.B. & V.G. Cooke, 24 Jul. 1951, det. S.J. Hughes (DAOM<br />

118970 ex WSP 28432).<br />

Amorphotheca resinae. Isolated from jet fuel by P. Emonds (culture, DAOM<br />

170427 = ATCC 22711, ITS GenBank EU030278, LSU GenBank EU030280).<br />

Canada, British Columbia, source unknown, isol. “Mrs. Volkoff”, Jul. 1969 (culture,<br />

DAOM 194228, ITS GenBank EU030279).<br />

Seifertia azaleae. All on flower buds of Rhododendron spp. Canada, British<br />

Columbia: Burnaby, Central Park, leg. S.J. Hughes, 17 Aug. 2000 (DAOM 228571);<br />

Vancouver, Stanley Park, leg. K.A. Seifert no. 1571, 11 May 2002 (culture <strong>and</strong><br />

specimen, DAOM 239136, LSU GenBank EU030276). Irel<strong>and</strong>, Munter, Kerry,<br />

near Glenbeigh (ca. N 52° 03’ W 9° 54’), leg. K.A. Seifert no. 3197, 26 Sep. 2006<br />

(culture <strong>and</strong> specimen, DAOM 239135, ITS GenBank EU030273). Netherl<strong>and</strong>s,<br />

Gelderl<strong>and</strong>, Kröller-Müller Museum, leg. K.A. Seifert no. 1235, 12 May 2000 (DAOM<br />

227136). United Kingdom, Wales, Hafod Estate (ca. N 52° 22’ W 3° 51’), leg. K.A.<br />

Seifert no. 3198, 1 Oct. 2006 (culture <strong>and</strong> specimen, DAOM 239137, ITS GenBank<br />

EU030274).<br />

DNA extraction, amplification <strong>and</strong> sequencing<br />

DNA was isolated using a FastDNA Kit <strong>and</strong> the FastPrep<br />

FP120 (BIO 101 Inc.) or an UltraClean Microbial DNA Isolation<br />

Kit (Mo Bio Laboratories, Inc., Solana Beach, CA, U.S.A.) using<br />

mycelium removed from agar cultures. PCR <strong>and</strong> cycle sequencing<br />

reactions were performed on a Techne Genius thermocycler<br />

(Techne Cambridge Ltd.). PCR reactions were performed using<br />

Ready-To-Go Beads (Amersham Canada Ltd.) in 25 µL volumes,<br />

each containing 20–100 ng of genomic DNA, 2.5 units pure Taq<br />

DNA Polymerase, 10 mM Tris-HCl (pH 9.0), 50 mM KCl, 1.5 mM<br />

MgCl 2<br />

, 200 µM of each dNTP, 0.2 µL of each primer (50 µM), <strong>and</strong><br />

stabilizers including bovine serum albumin. <strong>The</strong> reaction profile<br />

included an initial denaturation for 4 min at 94 °C, followed by 30<br />

cycles of 1.5 min denaturation at 95 °C, 1 min annealing at 56 °C,<br />

2 min extension at 72 °C, with a final extension of 10 min at 72 °C.<br />

Amplicons were purified by ethanol/sodium acetate precipitation<br />

<strong>and</strong> resuspended as recommended for processing on an ABI<br />

PRISM 3100 DNA Analyzer or an ABI 373 Stretch DNA Sequencer<br />

(Applied Biosystems, Foster, CA). Amplification products were<br />

sequenced using the BigDye v. 2.0 Terminator Cycle Sequencing<br />

Ready Reaction Kit (ABI Prism/Applied Biosystems) following the<br />

manufacturer’s directions. An approximately 1 000 bp portion of the<br />

large subunit (LSU) ribosomal DNA was amplified <strong>and</strong> sequenced<br />

using primers LR0R <strong>and</strong> LR6, <strong>and</strong> cycle-sequenced using primers<br />

LR0R, LR3R, LR16 <strong>and</strong> LR6 (Vilgalys & Hester 1990, Rehner &<br />

Samuels 1995; www.biology.duke.edu/fungi/mycolab/primers.<br />

htm). <strong>The</strong> complete ITS <strong>and</strong> 5.8S rRNA genes were amplified<br />

<strong>and</strong> sequenced using the primers ITS5 <strong>and</strong> ITS4, with ITS2 <strong>and</strong><br />

ITS3 primers used for cycle sequencing when necessary (White<br />

et al. 1990). Some sequences were derived from single PCR<br />

amplifications of the ITS5–LR6 region.<br />

Data matrices were subjected to parsimony analysis using<br />

heuristic searches in PAUP* v. 4.0b10 (Swofford 2002) with<br />

simple stepwise addition of taxa, <strong>and</strong> tree bisection-reconnection<br />

(TBR) branch swapping. Uninformative characters were removed<br />

for all analyses. Strict consensus trees were calculated, <strong>and</strong> the<br />

robustness of the phylogenies was tested using full bootstrap<br />

analyses (1 000 replications). For all analyses, GenBank accession<br />

numbers are given on the tree figures, <strong>and</strong> the sequences generated<br />

in this study are indicated in bold.<br />

239


Seifert et al.<br />

Fig. 3. Hormodendrum resinae, A–B. Conidiophores <strong>and</strong> acropetally developing chains of conidia. C. Conidia. Note that the lateral walls are conspicuously thickened compared<br />

to the walls at the poles. From a slide (DAOM 41888) prepared from the holotype (B).<br />

Byssoascus striatisporus U17912<br />

99<br />

96<br />

10 changes<br />

88 88<br />

99 “Mycosphaerella mycopappi” U43480<br />

* Seifertia azaleae DAOM 239136 EU030276<br />

Pleomassaria siparia AY004341<br />

*<br />

Pleospora herbarum AF382386<br />

* Cochliobolus heliconiae AF163978<br />

Setosphaeria monoceras AY016368<br />

Trematosphaeria heterospora AY016369<br />

Iodosphaeria aquatica AF452044<br />

Westerdykella cylindrica AY004343<br />

Letendraea helminthicola AY016362<br />

Lojkania enalia AY016363<br />

Botryosphaeria ribis AY004336<br />

Capnodium citri AY004337<br />

Discosphaerina fagi AY016359<br />

Ceramothyrium carniolicum AY004339<br />

Fonsecaea pedrosoi AF356666<br />

80 Phialophora americana AF050279<br />

99 79 Capronia mansonii AY004338<br />

Glyphium elatum AF346420<br />

97 Terfezia gigantea AF499449<br />

Sorocybe resinae DAOM 239134 EU030277<br />

Ascosphaera apis AY004344<br />

Saccharomyces cerevisiae J01355<br />

Phaeotrichum benjaminii AY004340<br />

Calicium viride AF356670<br />

Pertusaria mammosa AY212831<br />

73 Pseudocyphellaria perpetua AF401954<br />

Xylographa vitiligo AY212849<br />

Neofabraea alba AY064705<br />

Melanelia exasperatula AJ421436<br />

* Lophodermium pinastri AY004334<br />

99 Cudonia lutea AF433138<br />

Spathularia flavida AF433141<br />

Ascocoryne cylichnium AF353580<br />

Bisporella citrina AF335454<br />

Hormoconis resinae DAOM 170427 EU030280<br />

Rhytisma acerinum AF356696<br />

Pleuroascus nicholsonii AF096196<br />

Golovinomyces cichoracearum AB022360<br />

Fig. 4. Parsimony analysis of large subunit sequences, demonstrating the phylogenetic positions of Amorphotheca resinae, Sorocybe resinae <strong>and</strong> Seifertia azaleae (all shown<br />

in bold) in the Ascomycota. One of 12 equally parsimonious trees (1 888 steps, CI = 0.390, RI = 0.554, RC = 0.216, HI = 0.610) with Golovinomyces cichoracearum as the outgroup.<br />

Bootstrap values above 70 % are shown at the relevant nodes, with an asterisk representing 100 % bootstrap support; branches with thick lines occurred in all equally<br />

parsimonious trees.<br />

Leotiomycetes Dothideomycetes<br />

240


Hormoconis resinae <strong>and</strong> morphologically <strong>similar</strong> taxa<br />

<strong>The</strong> large subunit matrix was assembled from the closest<br />

BLAST matches using our sequences for the three fungi of<br />

interest, S. resinae, A. resinae <strong>and</strong> S. azaleae; Golovinomyces<br />

cichoracearum was added as an out-group to root the tree.<br />

Although these sequences were put into a single matrix, there<br />

is no implication that this data set represents the diversity of the<br />

Ascomycota. <strong>The</strong> alignment was calculated using MAFFT (Katoh et<br />

al. 2002) <strong>and</strong> adjusted using Se-Al (Sequence Alignment Program<br />

v. 1.d1; http://evolve.zoo.ox.ac.uk/software/Se-Al/main.html) to<br />

maximise homology.<br />

<strong>The</strong> internal transcribed spacers alignment including Sorocybe<br />

resinae was derived from an alignment of Capronia <strong>and</strong> related<br />

anamorphs used by Davey & Currah (2007), originally produced<br />

using MAFFT. This data set was modified considerably using Se-<br />

Al to maximise homology, but still included several areas where<br />

the homology of aligned sequences was difficult to evaluate. ITS<br />

sequences of Amorphotheca resinae were used to retrieve closely<br />

related sequences using a BLAST search of GenBank, <strong>and</strong> these<br />

relevant sequences were added to an alignment of Oidiodendron<br />

Robak sequences from the study of Hambleton et al. (1998), <strong>and</strong><br />

then adjusted using Se-Al.<br />

We attempted direct PCR from two specimens containing only<br />

the putative mononematous synanamorph of Sorocybe resinae<br />

(DAOM 228772a, 228573a), to allow comparison of sequences<br />

obtained from cultures of the synnematous synanamorph.<br />

<strong>The</strong>se attempts, using the same methods outlined above, were<br />

unsuccessful.<br />

RESULTS<br />

Cultural characters <strong>and</strong> micromorphology<br />

Most micromorphological characters of the resin fungus Sorocybe<br />

resinae (Partridge & Morgan-Jones 2002), the creosote fungus<br />

Amorphotheca resinae (Parbery 1969, de Vries 1952, 1955, Ho<br />

et al. 1999) <strong>and</strong> the rhododendron fungus Seifertia azaleae (Ellis<br />

1976, Partridge & Morgan-Jones 2002, Glawe & Hummel 2006) are<br />

well-described in the literature <strong>and</strong> will not be repeated here.<br />

<strong>The</strong> three species are readily distinguished based on growth<br />

rates <strong>and</strong> overall cultural phenotypes. Agar colonies of Sorocybe<br />

resinae are coal-black, wrinkled, <strong>and</strong> restricted in growth, no matter<br />

what agar medium is employed; even after 3 mo, the colonies are<br />

rarely more than 2 cm diam (Fig. 2C). Synnemata did not form in<br />

our cultures; in vivo, the synnemata produce branched, acropetal<br />

chains of conidia with laterally thickened walls (Figs 2D–G). No<br />

thickened, refractive or darkened secession scars were evident<br />

on individual conidia or ramoconidia. Conidial masses were<br />

removed from the mononematous <strong>and</strong> synnematous parts of a<br />

freshly collected specimen (DAOM 56088a) <strong>and</strong> grown on PDA<br />

<strong>and</strong> sterilised conifer wood. <strong>The</strong>re were no discernable differences<br />

between colonies derived from the two types of conidiophores, in<br />

all cases yielding restricted black colonies, or in their microscopic<br />

characters. <strong>The</strong>refore, we conclude that these two types of<br />

conidiophores represent synanamorphs of one fungus. An identical<br />

conclusion was reached by Partridge & Morgan-Jones (2002). We<br />

documented the occurrence of this fungus in California, Oregon,<br />

<strong>and</strong> Washington State, U.S.A. <strong>and</strong> British Columbia, Canada, on<br />

resinous exudates on Abies nobilis, Picea sitchensis, Pseudotsuga<br />

menziesii <strong>and</strong> Tsuga heterophylla.<br />

Microscopic features from the holotype specimen of<br />

Hormodendrum resinae Lindau are shown in Fig. 3. Dark, thickwalled<br />

conidiophore stipes give rise to branched, acropetally<br />

www.studiesinmycology.org<br />

developing conidial chains. <strong>The</strong> conidia are relatively darkly<br />

pigmented, <strong>and</strong> the lateral walls are more conspicuously thickened<br />

<strong>and</strong> darkened than the polar walls. <strong>The</strong>re are no obvious thickened,<br />

refractive or darkened secession scars on any of the cells. Apart<br />

from the production of synnemata, the characters of the conidia<br />

<strong>and</strong> conidium ontogeny are identical in Lindau’s specimen <strong>and</strong> the<br />

synnematous specimens of Sorocybe resinae examined.<br />

In contrast, both the resin fungus <strong>and</strong> the rhododendron fungus<br />

have spreading rather than restricted agar colonies. Cultures of<br />

the resin fungus are s<strong>and</strong>y brown (Kornerup & Wanscher 1989),<br />

planar <strong>and</strong> powdery, growing 4–4.5 cm diam in 10 d on PDA (Fig.<br />

1A). Cultures of the rhododendron fungus are slower, growing<br />

2.5–3.5 cm diam after 21 d on MEA (not shown). <strong>The</strong>y are planar<br />

<strong>and</strong> greyish brown, with an orange-brown reverse. No synnemata<br />

were observed in our cultures of the rhododendron fungus on MEA,<br />

OA or PDA, but cladosporium-like conidiation occurred in the aerial<br />

mycelium.<br />

Phylogeny<br />

<strong>The</strong> large subunit analysis (LSU) was used to demonstrate the<br />

general phylogenetic relationships of the resin fungus Sorocybe<br />

resinae (DAOM 239134), the creosote fungus Amorphotheca resinae<br />

(DAOM 170427, 194228) <strong>and</strong> the rhododendron fungus Seifertia<br />

azaleae (DAOM 239136), <strong>and</strong> subsequent analyses of the internal<br />

transcribed spacers were used to estimate more precise affinities.<br />

Fig. 4 shows the LSU analysis <strong>and</strong> demonstrates that Sorocybe<br />

resinae appears to be a member of the Herpotrichiellaceae,<br />

Chaetothyriales, A. resinae is related to the inoperculate<br />

discomycetes (Leotiomycetes) <strong>and</strong> Seifertia azaleae is most closely<br />

related to a sequence labelled Mycosphaerella mycopappi A. Funk<br />

& Dorworth, which is unrelated to Mycosphaerella s. str.<br />

For the ITS alignment of Sorocybe resinae, two preliminary<br />

parsimony analyses were conducted, one with informative<br />

characters from the full alignment, the second with a subset with<br />

179 characters excluded from seven ambiguously aligned regions.<br />

<strong>The</strong> consistency indices (full 0.301, partial 0.324), tree topologies,<br />

<strong>and</strong> bootstrap supports for the two analyses were relatively <strong>similar</strong>.<br />

<strong>The</strong>refore, the complete alignment was used for the tree presented<br />

here (Fig. 5). <strong>The</strong> data matrix included 57 taxa, with 352 of 752<br />

characters phylogenetically informative. Sorocybe resinae clearly<br />

is related to Capronia <strong>and</strong> allied anamorph genera, as suggested<br />

by the LSU analysis. In the ITS analysis (Fig. 6) it forms a wellsupported<br />

clade with C. villosa Samuels, that is a well-supported<br />

sister group to species now in three different anamorph genera,<br />

Phaeococcomyces nigricans (M.A. Rich & A.M. Stern) de Hoog,<br />

Ramichloridium cerophilum, <strong>and</strong> an undescribed species of<br />

Heteroconium Petr.<br />

<strong>The</strong> ITS matrix for A. resinae included 42 taxa, with 171<br />

phylogenetically informative characters in the 530 base alignment.<br />

<strong>The</strong> phylogenetic analysis confirmed the relationship of this<br />

species with the Leotiomycetes, <strong>and</strong> provided a more precise<br />

hypothesis of its family-level relationships (Fig. 6). Amorphotheca<br />

resinae DAOM 170427 <strong>and</strong> 194228 had identical ITS sequences<br />

to another strain of the same species reported in GenBank<br />

(AY251067, from Braun et al. 2003), <strong>and</strong> one bp substitution from<br />

a second strain (AF393726 based on the isotype ATCC 200942<br />

= <strong>CBS</strong> 406.68). <strong>The</strong>se four sequences formed a sister group<br />

to two sequences of “<strong>Cladosporium</strong>” breviramosum Morgan-<br />

Jones (AF393683, AF393684). <strong>The</strong> well-supported clade of A.<br />

resinae <strong>and</strong> C. breviramosum, which represent the proposed<br />

family Amorphothecaceae, was previously noted by Braun et<br />

al. (2003). <strong>The</strong> nesting of this clade within two well-supported<br />

241


Seifert et al.<br />

100<br />

76<br />

99<br />

99<br />

100<br />

AY064704 Neofabraea alba<br />

AF281377 Neofabraea alba<br />

AF281397 Neofabraea perennans<br />

AF281388 Neofabraea malicorticis<br />

AF281365 Neofabraea krawtzewii<br />

AY129289 Pseudeurotium ovale var. ovale<br />

AY129290 Pseudeurotium ovale var. milkoi<br />

AY129287 Pseudeurotium bakeri<br />

AY129286 Pseudeurotium zonatum<br />

AY129288 Pseudeurotium desertorum<br />

AF307760 Geomyces pannorum<br />

AJ390390 Geomyces asperulatus<br />

AY789290 Heyderia abietis<br />

Z81441 Piceomphale bulgarioides<br />

AY781230 Leptodontidium elatius<br />

AY348594 Calycina herbarum<br />

AF062802 Oidiodendron periconioides<br />

99<br />

100<br />

79<br />

99<br />

88<br />

100<br />

100<br />

89<br />

88<br />

100<br />

98<br />

100<br />

AF062787 Oidiodendron pilicola<br />

AF062798 Oidiodendron maius<br />

AF062790 Oidiodendron citrinum<br />

AF062789 Oidiodendron chlamydosporicum<br />

AF062797 Oidiodendron griseum<br />

AF307774 Oidiodendron tenuissimum<br />

AF062792 Oidiodendron flavum<br />

AF062810 Myxotrichum arcticum<br />

AF062809 Oidiodendron truncatum<br />

AF062808 Oidiodendron tenuissimum<br />

AF062805 Oidiodendron setiferum<br />

AF062788 Oidiodendron cerealis<br />

AJ635314 Oidiodendron myxotrichoides<br />

AF062811 Myxotrichum cancellatum<br />

AF062817 Byssoascus striatisporus<br />

AF062803 Oidiodendron rhodogenum<br />

AF062814 Myxotrichum deflexum<br />

88<br />

A. resinae DAOM 170427, 194228, EU030278-9<br />

AF393726 Amorphotheca resinae isotype<br />

AY251067 Amorphotheca resinae<br />

AF393684 <strong>Cladosporium</strong> breviramosum<br />

AF393683 <strong>Cladosporium</strong> breviramosum<br />

AF062813 Myxotrichum chartarum<br />

AF062812 Myxotrichum carminoparum<br />

AF062816 Myxotrichum stipitatum<br />

5 changes<br />

Fig. 5. Parsimony analysis of internal transcribed spacers sequences, demonstrating the position of Amorphotheca resinae (shown in bold) in the ascomycete family<br />

Myxotrichaceae. One of 44 equally parsimonious trees (645 steps, CI = 0.460, RI = 0.758, RC = 0.349, HI = 0.540) with mid-point rooting. Bootstrap values above 70 % are<br />

shown at the relevant nodes; branches with thick lines occurred in all equally parsimonious trees.<br />

Myxotrichaceae Pseudeurotiaceae<br />

clades of Myxotrichum spp. <strong>and</strong> the associated anamorph <strong>genus</strong><br />

Oidiodendron, which comprise the family Myxotrichaceae, has not<br />

been documented previously.<br />

<strong>The</strong> ITS sequences of two strains of Seifertia azaleae were<br />

474 bp <strong>and</strong> differed by one bp. BLAST searches with these<br />

sequences revealed significant homologies only with unidentified<br />

fungi, <strong>and</strong> lower probability matches with various members of<br />

the Dothideomycetes. <strong>The</strong>refore, no taxonomically meaningful<br />

phylogenetic analysis can be presented with these ITS sequences.<br />

<strong>The</strong> species does seem to have affinities with the Dothideomycetes,<br />

but the putative relationship with Mycosphaerella, suggested by the<br />

LSU analysis, could not be confirmed with the ITS analysis.<br />

DISCUSSION<br />

Micromorphological comparisons, differences in culture characters,<br />

<strong>and</strong> phylogenetic analysis all support the conclusion that the<br />

mononematous synanamorph of Sorocybe resinae, the resin<br />

fungus, is different from the anamorph of Amorphotheca resinae,<br />

the creosote fungus. Based on ribosomal DNA sequences, the<br />

creosote fungus is related to the family Myxotrichaceae, the <strong>genus</strong><br />

Myxotrichum <strong>and</strong> its Oidiodendron anamorphs (Fig. 5). In this<br />

gene tree, Myxotrichum <strong>and</strong> the Myxotrichaceae are paraphyletic,<br />

with Amorphotheca <strong>and</strong> the Amorphothecaceae nested within<br />

them. Sorocybe appears to be an additional anamorph <strong>genus</strong><br />

phylogenetically associated with Capronia (Herpotrichiellaceae,<br />

Chaetothyriales, Fig. 6). <strong>The</strong> genetic connection between the<br />

synnematous <strong>and</strong> mononematous morphs of S. resinae was<br />

verified by morphological comparison of polyspore isolates derived<br />

from the two synanamorphs. However, the living cultures are no<br />

longer available <strong>and</strong> the connection was not confirmed with single<br />

conidium isolations. <strong>The</strong> type specimen of Hormodendrum resinae<br />

(Fig. 3) is the basis for the application of the most frequently<br />

used anamorph epithet for the creosote fungus. This specimen<br />

represents the mononematous synanamorph of Sorocybe resinae,<br />

not the anamorph of Amorphotheca resinae.<br />

It is difficult to underst<strong>and</strong> how these two fungi were confused<br />

when their micromorphologies are so different. <strong>The</strong> conidia are of<br />

the same general size <strong>and</strong> shape, but in both morphs of Sorocybe<br />

resinae (Figs 2D–G, 3C), the lateral walls are conspicuously<br />

thickened, a condition not present in the creosote fungus (Fig. 1C),<br />

<strong>and</strong> the conidia are much darker. In his monograph of <strong>Cladosporium</strong>,<br />

de Vries (1952) noted that single conidium isolates of C. avellaneum<br />

gave rise to four different colony types. In 1955, he extended these<br />

observations <strong>and</strong> decided that the much darker resin fungus was<br />

242


Fig. 6<br />

Hormoconis resinae <strong>and</strong> morphologically <strong>similar</strong> taxa<br />

87<br />

89<br />

74<br />

100<br />

100<br />

83<br />

93<br />

94<br />

100<br />

93<br />

Capronia epimyces AY156968<br />

Capronia epimyces AF050245<br />

Capronia mansonii AF050247<br />

Capronia munkii AF050250<br />

Exophiala dermatitidis AY857526<br />

Exophiala heteromorpha AY857524<br />

Exophiala heteromorpha AF083207<br />

88<br />

97<br />

94<br />

Rhinocladiella similis AY857529<br />

Melanchlenus oligospermus AY163555<br />

Exophiala oligosperma AY857534<br />

Exophiala nishimurae AY163560<br />

Rhinocladiella basitona AY163561<br />

94<br />

Exophiala spinifera AM176734<br />

Ramichloridium mackenziei AY857540<br />

Rhinocladiella atrovirens AY618683<br />

Melanchlenus eumetabolus AY163554<br />

Capronia dactylotricha AF050243<br />

Ramichloridium anceps DQ826740<br />

Exophiala lecaniicorni AY857528<br />

Exophiala mesophila AF542377<br />

Exophiala attenuata AF549446<br />

Exophiala pisciphila DQ826739<br />

Exophiala crusticola AM048755<br />

Capronia nigerrima AF050251<br />

Capronia parasitica AF050253<br />

Capronia pulcherrima AF050256<br />

Capronia pilosella DQ826737<br />

Capronia pilosella AF050255<br />

Capronia coronata AF050242<br />

Cladophialophora carrionii AY857520<br />

Cladophialophora minourae AY251087<br />

Phialophora verrucosa AF050283<br />

Capronia semiimmersa AF050260<br />

Cladophialophora emmonsii AY857518<br />

Cladophialophora emmonsii AB109184<br />

Cladophialophora bantiana AY857517<br />

Cladophialophora sp. <strong>CBS</strong> 110551 AY857510<br />

Cladophialophora devriesii AB091212<br />

Cladophialophora devriesii AM114417<br />

Cladophialophora sp. <strong>CBS</strong> 102230 AY857508<br />

Cladophialophora sp. <strong>CBS</strong> 114326 AY<br />

Cladophialophora arxii AY857509<br />

Cladophialophora arxii AB109181<br />

Cladophialophora minourae AB091213<br />

Cladophialophora sp. AY781217<br />

Cladophialophora boppii AB109182<br />

Capronia fungicola AF050246<br />

83<br />

90<br />

94<br />

99<br />

98<br />

99<br />

80<br />

100<br />

100<br />

100<br />

Sorocybe resinae DAOM 239134, EU030275<br />

Capronia villosa AF050261<br />

Phaeococcomyces nigricans AY843154<br />

Ramichloridium cerophilum AF050286<br />

Heteroconium sp. AJ748260<br />

Phaeococcomyces catenatus AY843041<br />

Phaeococcomyces chersonesos AJ507323<br />

Metulocladosporiella musae DQ008138<br />

Metulocladosporiella musicola DQ008136<br />

Capronia acutiseta AF050241<br />

10 changes<br />

Fig. 6. Parsimony analysis of internal transcribed spacers sequences, demonstrating the position of Sorocybe resinae (shown in bold) among species of Capronia<br />

(Herpotrichiellaceae, Chaetothyriales) <strong>and</strong> its associated anamorph genera. One of 34 equally parsimonious trees (2 607 steps, CI = 0.301, RI = 0.506, RC = 0.153, HI = 0.699),<br />

with mid-point rooting. Bootstrap values above 70 % are shown at the relevant nodes; branches with thick lines occurred in all equally parsimonious trees.<br />

the same as one of his mutant forms of the creosote fungus,<br />

despite never having isolated such a dark spored form from any of<br />

his cultures. Parbery (1969) implied that the demonstrated ability<br />

of the creosote fungus to grow on a diversity of hydrocarbon-rich<br />

substrates favoured the thought that it would be able to grow on<br />

conifer resin. If cultures of the true Sorocybe resinae had been<br />

available, it is unlikely that this confusion would have persisted for<br />

so long. In vitro, the creosote fungus <strong>and</strong> the resin fungus are so<br />

different (Figs 1A, 2C) that it would difficult to defend the idea that<br />

they were mutants of the same fungus. <strong>The</strong>se differences in the<br />

cultures are reflected by the disparate phylogenetic affinities of<br />

what now are clearly demonstrated to be two different species.<br />

Unfortunately, the name Hormodendrum resinae has been<br />

misapplied to the creosote fungus, a species of economic<br />

importance. Also unfortunately, this species is the type of<br />

www.studiesinmycology.org<br />

Hormoconis, a generic name that the community concerned with<br />

this fungus has been slow to adapt to in the 30 years since its<br />

introduction. <strong>The</strong>re are several possible solutions to this problem.<br />

<strong>The</strong> conventional solution would be to apply names based strictly<br />

on the type specimens <strong>and</strong> accept Hormoconis as a synonym of<br />

Sorocybe, or to use it as a generic name for the mononematous<br />

synanamorph of the resin fungus. A new anamorph <strong>genus</strong> would<br />

then be described for the creosote fungus, making <strong>Cladosporium</strong><br />

avellaneum G.A. de Vries the basionym for its type. However, the<br />

resulting binomial would be unfamiliar to those concerned with the<br />

creosote fungus, <strong>and</strong> the earlier literature citing H. resinae would<br />

be misleading.<br />

A more parsimonious solution is possible. Article 14.9 of the<br />

International Code of Botanical Nomenclature (McNeil et al. 2006)<br />

allows for conservation of a name with a different type from that<br />

243


Seifert et al.<br />

designated by the authors. <strong>The</strong> name Hormodendrum resinae is<br />

not otherwise needed because the mononematous synanamorph<br />

of the resin fungus is rarely referred to by a Latin binomial, <strong>and</strong><br />

because Sorocybe resinae is based on a different type. <strong>The</strong>refore,<br />

a new type specimen could be proposed <strong>and</strong> conserved for<br />

Hormodendrum resinae Lindau, preferably the holotype of A.<br />

resinae (MELU 7130). This would make the anamorph-teleomorph<br />

connection unequivocal, maintain current species epithets <strong>and</strong><br />

taxonomic authorities, <strong>and</strong> ensure that most of the historical<br />

literature can be interpreted easily without the need to consult<br />

complicated nomenclators (Table 1). However, by perpetuating the<br />

use of the epithet “resinae”, this change would also perpetuate the<br />

misunderst<strong>and</strong>ing that resin is a possible substrate for the creosote<br />

fungus. In any case, the use of this epithet for the teleomorph of<br />

the creosote fungus, Amorphotheca resinae, is legitimate <strong>and</strong> valid,<br />

<strong>and</strong> unlikely ever to be changed.<br />

A third option would be an intermediate one. <strong>The</strong> application<br />

of the name <strong>Cladosporium</strong> avellaneum G.A. de Vries has never<br />

been in doubt, <strong>and</strong> it would be possible to conserve this species as<br />

the type of Hormoconis. This has the advantage of maintaining the<br />

familiar generic name Hormoconis, in combination with a species<br />

epithet that has been consistently applied. Furthermore, this solution<br />

would allow the confusion about the application <strong>and</strong> correct author<br />

citation around the epithet “resinae” for the anamorph of creosote<br />

fungus to recede.<br />

<strong>The</strong> second <strong>and</strong> third solutions require formal taxonomic<br />

proposals to be published in Taxon. We will argue the merits of<br />

these possible solutions at more length in that venue.<br />

<strong>The</strong> phylogenetic position of A. resinae raises additional<br />

taxonomic problems. This fungus typifies the monotypic family<br />

Amorphothecaceae, which has been considered incertae<br />

sedis since its description by Parbery (1969). Our phylogenetic<br />

analysis suggests that this family sits within the Myxotrichaceae.<br />

Amorphothecaceae (1969) is the older name, but Myxotrichaceae<br />

(1985) is well-entrenched in the mycological literature. As a<br />

consequence, the Myxotrichaceae are paraphyletic with respect<br />

to the Amorphothecaceae. <strong>The</strong> peridium of A. resinae, the only<br />

species presently placed in this family, lacks the thick-walled<br />

appendages that characterise most species of the Myxotrichaceae.<br />

Furthermore, the acropetal-blastic features of the anamorph of<br />

A. resinae differ from the thallic-arthric conidiogenesis of the<br />

other anamorphs associated with the Myxotrichaceae, principally<br />

Oidiodendron. <strong>The</strong>se morphological differences explain why the<br />

affinity of A. resinae with the Myxotrichaceae was not noted before.<br />

A formal proposal to conserve Myxotrichaceae as the name for this<br />

family might be prudent eventually, but this should await analysis of<br />

additional genes to confirm the phylogenetic relationship.<br />

Whether <strong>Cladosporium</strong> breviramosum, originally isolated from<br />

discoloured wallpaper, is actually a distinct species from A. resinae<br />

requires further study. It is clear that this species, if it is distinct,<br />

would be a member of Hormoconis rather than <strong>Cladosporium</strong>. Apart<br />

from the study of additional specimens, it might be fruitful to attempt<br />

to induce an Amorphotheca-like teleomorph in the two available<br />

cultures of C. breviramosum, <strong>and</strong> to compare the morphology with<br />

that of A. resinae. According to Parbery (1969), A. resinae includes<br />

both homothallic <strong>and</strong> heterothallic strains.<br />

Unfortunately, the phylogenetic affinities of Seifertia azaleae<br />

were not established with certainty in this study. Its closest relative<br />

in the LSU analysis is a sequence identified as Mycosphaerella<br />

mycopappi Funk & Dorworth (U43480, based on the apparent<br />

type culture ATCC 64711), but this sequence does not cluster<br />

with others representing the family Mycosphaerellaceae (data not<br />

shown). Similarly, the ITS sequences of the rhododendron fungus<br />

did not cluster with the many ITS sequences of Mycosphaerella<br />

available. Presently, it seems that Seifertia azaleae fungus is allied<br />

with the Dothideomycetes, but its precise affinities are uncertain. It<br />

is clear that this fungus should not be classified in Pycnostysanus<br />

(a taxonomic synonym of Sorocybe), <strong>and</strong> continued recognition of<br />

the monotypic <strong>genus</strong> Seifertia seems justified.<br />

ACKNOWLEDGEMENTS<br />

We are grateful to Sarah Hambleton <strong>and</strong> Marie Davey for providing ITS alignments<br />

that served as the basis for analyses in this paper. Walter Gams <strong>and</strong> Scott Redhead<br />

provided expert nomenclatural advice <strong>and</strong> helpful reviews of this manuscript.<br />

We thank Uwe Braun for proposing the third option for resolving the name of the<br />

creosote fungus, outlined in the text. <strong>The</strong> Canadian Collection of Fungal Cultures<br />

(DAOM) provided several of the strains for this study. <strong>The</strong> curators of DAOM <strong>and</strong> B<br />

kindly provided access to critical type specimens.<br />

REFERENCES<br />

Arx JA von (1973). Centraalbureau voor Schimmelcultures Baarn <strong>and</strong> Delft. Progress<br />

Reports 1972. Verh<strong>and</strong>elingen der Koninklijke Nederl<strong>and</strong>sche Akademie van<br />

Wetenschappen, Afdeeling Natuurkunde 61: 59–81.<br />

Bonorden HF (1851). H<strong>and</strong>buch der allgemeinen Mykologie. Stuttgart.<br />

Braun U, Crous PW, Dugan FM, Groenewald JZ, Hoog GS de (2003). Phylogeny<br />

<strong>and</strong> taxonomy of cladosporium-like hyphomycetes, including Davidiella gen.<br />

nov., the teleomorph of <strong>Cladosporium</strong> s. str. Mycological Progress 2: 3–18.<br />

Carmichael JW, Kendrick WB, Connors IL, Sigler L (1980). Genera of hyphomycetes.<br />

University of Alberta Press, Edmonton.<br />

Christensen CM, Kaufert FH, Schmitz H, Allison JL (1942). Hormodendrum resinae<br />

(Lindau), an inhabitant of wood impregnated with creosote <strong>and</strong> coal tar.<br />

American Journal of Botany 29: 552–558.<br />

Clements FC, Shear CL (1931). <strong>The</strong> genera of Fungi. H. W. Wilson, New York.<br />

Corda, ACJ (1839). Icones fungorum hucusque cognitorum, vol. 3. Prague.<br />

Davey ML, Currah RS (2007). A new species of Cladophialophora (hyphomycetes)<br />

from boreal <strong>and</strong> montane bryophytes. Mycological Research 111: 106–116.<br />

Ellis MB (1976). More Dematiaceous Hyphomycetes. Commonwealth Mycological<br />

Institute, Kew.<br />

Fries EM (1815). Observationes mycologicae, vol. 1, p. 216.<br />

Fries EM (1832). Systema Mycologicum, vol. 3(2). E. Moritz, Greifswald.<br />

Fries EM (1849). Summa vegatabilium Sc<strong>and</strong>inaviae,vol. 2: 468.<br />

Glawe DA, Hummell RL (2006). New North American host records for Seifertia<br />

azaleae. Pacific Northwest Fungi 1(5): 1–6.<br />

Hambleton S, Egger KN, Currah RS (1998). <strong>The</strong> <strong>genus</strong> Oidiodendron: species<br />

delimitation <strong>and</strong> phylogenetic relationships based on nuclear ribosomal DNA<br />

analysis. Mycologia 90: 854–869.<br />

Ho MH-M, Castañeda RF, Dugan FM, Jong, SC (1999). <strong>Cladosporium</strong> <strong>and</strong><br />

Cladophialophora in culture: descriptions <strong>and</strong> an exp<strong>and</strong>ed key. Mycotaxon<br />

72: 115–157.<br />

Hughes SJ (1958). Revisiones hyphomycetum aliquot cum appendice de nominibus<br />

rejiciendis. Canadian Journal of Botany 36: 727–836.<br />

Hughes SJ (1968). Strigopodia. Canadian Journal of Botany 46: 1099–1107.<br />

Katoh K, Misawa K, Kuma K, Miyata T (2002). MAFFT: a novel method for rapid<br />

multiple sequence alignment based on fast Fourier transform. Nucleic Acids<br />

Research 30: 3059–3066.<br />

Kendrick WB (1961). Hyphomycetes of conifer leaf litter. Hormodendrum<br />

staurophorum sp. nov. Canadian Journal of Botany 39: 833–835.<br />

Kornerup A, Wanscher JH (1989). Methuen H<strong>and</strong>book of Colour, 3 rd edn. Methuen,<br />

London.<br />

Lindau G (1904). Beiträge zur Pilzflora des Harzes. Verh<strong>and</strong>lungen des Botanischen<br />

Vereins der Provinz Br<strong>and</strong>enburg 45: 148–161 (‘1903’).<br />

Lindau G (1906). Dr. L. Rabenhorst’s Kryptogamen-Flora von Deutschl<strong>and</strong>,<br />

Oesterreich und der Schweiz. Zweite Auflage. Erster B<strong>and</strong>: Die Pilze<br />

Deutschl<strong>and</strong>s, Österreichs und der Schweiz. VIII. Abteilung: Fungi imperfecti:<br />

Hyphomycetes (erste Hälfte), Lief. 102: 641–704.<br />

Lindau G (1910). Dr. L. Rabenhorst’s Kryptogamen-Flora von Deutschl<strong>and</strong>,<br />

Oesterreich und der Schweiz. Zweite Auflage. Erster B<strong>and</strong>: Die Pilze<br />

Deutschl<strong>and</strong>s, Österreichs und der Schweiz. IX. Abteilung: Fungi imperfecti:<br />

Hyphomycetes (zweite Hälfte), Dematiaceae (Phaeophragmiae bis<br />

Phaeostaurosporae), Stilbaceae, Tuberculariaceae, sowie Nachträge,<br />

Nährpflanzenverzeichnis und Register. Leipzig.<br />

244


Hormoconis resinae <strong>and</strong> morphologically <strong>similar</strong> taxa<br />

Marsden DH (1954). Studies of the creosote fungus, Hormodendrum resinae.<br />

Mycologia 46: 161–183.<br />

Mason EW, Ellis MB (1953). British species of Periconia. Mycological Papers 56:<br />

1–127.<br />

McNeill J, Barrie FR, Burdet HM, Demoulin V, Hawksworth DL, Marhold K,<br />

Nicolson DH, Prado J, Silva PC, Skog JE, Wiersema JH, Turl<strong>and</strong> NJ (eds)<br />

(2007). International Code of Botanical Nomenclature (Vienna Code). Regnum<br />

Vegetabile 146: 1–568.<br />

Parbery DG (1969). Amorphotheca resinae gen. nov., sp. nov.: <strong>The</strong> perfect state of<br />

<strong>Cladosporium</strong> resinae. Australian Journal of Botany 17: 331–357.<br />

Partridge EC, Morgan-Jones G (2002). Notes on hyphomycetes, LXXXVIII. New<br />

genera in which to classify Alysidium resinae <strong>and</strong> Pycnostysanus azaleae, with<br />

a consideration of Sorocybe. Mycotaxon 83: 335–352.<br />

Persoon CH (1822). Mycologia europaea. Sectio Prima. Erlangae.<br />

Rehner SA, Samuels GJ (1995). Molecular systematics of the Hypocreales: a<br />

teleomorph gene phylogeny <strong>and</strong> the status of their anamorphs. Canadian<br />

Journal of Botany 73 (Suppl 1): S816–S823.<br />

Samson RA, Hoekstra ES, Frisvad JC (2004). Introduction to food- <strong>and</strong> airborne<br />

fungi. 7 th ed. Centraalbureau voor Schimmelcultures, Utrecht.<br />

Stafleu FA, Frans A, Mennega EA (1995). Taxonomic Literature. A selective guide<br />

to botanical publications <strong>and</strong> collections with dates, commentaries <strong>and</strong> types.<br />

Suppl. III (Br - Ca). Regnum Vegetabile 132: 1–550.<br />

Swofford DL (2002). PAUP*: Phylogenetic analysis using parsimony (*<strong>and</strong> other<br />

methods), version 4. Sinauer Associates, Sunderl<strong>and</strong>, Massachusetts.<br />

Thom C (1930). <strong>The</strong> Penicillia. Williams & Wilkins, Baltimore.<br />

Vilgalys R, Hester M (1990). Rapid identification <strong>and</strong> mapping of enzymatically<br />

amplified ribosomal DNA from several Cryptococcus species. Journal of<br />

Bacteriology 172: 4238–4246.<br />

Vries GA de (1952). Contribution to the knowledge of the <strong>genus</strong> <strong>Cladosporium</strong> Link<br />

ex Fries. <strong>The</strong>sis, University of Utrecht.<br />

Vries GA de (1955). <strong>Cladosporium</strong> avellaneum de Vries, a synonym of Hormodendrum<br />

resinae Lindau. Antonie van Leeuwenhoek 21: 166–168.<br />

White TJ, Bruns T, Lee S, Taylor J (1990). Amplification <strong>and</strong> direct sequencing of<br />

fungal ribosomal RNA sequences for phylogenetics. In: PCR Protocols: a guide<br />

to methods <strong>and</strong> applications. (Innis MA, Gelf<strong>and</strong> DH, Sninsky JJ, White TJ,<br />

eds.) Academic Press, San Diego, CA: 315–322.<br />

www.studiesinmycology.org<br />

245


INDEX OF FUNGAL NAMES<br />

Arranged according to <strong>genus</strong> <strong>and</strong> then epithets.<br />

Synonymised names are italicised <strong>and</strong> page numbers of main entries are bolded. A superscript asterisk ( * ) points to pages with illustrations,<br />

a superscript c ( c ) to pages with a cladogram, a superscript t ( t ) to pages with a table <strong>and</strong> a superscript k ( k ) to pages with a key to genera or<br />

species.<br />

Acidomyces, 12<br />

Acidomyces richmondensis, 12<br />

Acladium biophilum, 85<br />

Acladium herbarum, 105<br />

Acrotheca acuta, 84<br />

Acrotheca cerophila, 72<br />

Acrotheca multispora, 84<br />

Acrothecium multisporum, 84<br />

Amorphotheca, 235, 242<br />

Amorphotheca resinae, 235–236 * , 238 t , 239–241, 242 c , 244<br />

Annulatascus triseptatus, 62 c , 64 c<br />

Antennaria cellaris, 75<br />

Anungitea, 54 k , 185, 203–204, 216<br />

Anungitea fragilis, 203–204<br />

Anungitea heterospora, 204<br />

Anungitea longicatenata, 54 k<br />

Anungitea rhabdospora, 204<br />

Anungitea uniseptata, 211<br />

Anungitopsis, 203–204, 216<br />

Anungitopsis amoena, 163, 204, 207<br />

Anungitopsis intermedia, 204, 209<br />

Anungitopsis speciosa, 186, 188 c , 190 t , 193 c , 203–204, 216<br />

Apiosporina, 205, 216<br />

Apiosporina collinsii, 189 c , 191 t , 194 c , 205<br />

Aporothielavia leptoderma, 36 c –37 c<br />

Ascochyta pisi, 36 c –37 c<br />

Ascocoryne cylichnium, 240 c<br />

Ascosphaera apis, 240 c<br />

Ascotaiwania hughesii, 62 c , 64 c<br />

Asperisporium, 31, 216<br />

Athelia epiphylla, 6 c –7 c , 36 c –37 c , 58, 62 c , 64 c , 188 c , 193 c<br />

Aureobasidium caulivorum, 158 t<br />

Batcheloromyces, 4, 12 k<br />

Batcheloromyces eucalypti, 2 t , 6 c –7 c , 12<br />

Batcheloromyces leucadendri, 2 t , 6 c –7 c , 12–13 *<br />

Batcheloromyces proteae, 2 t , 6 c –7 c , 12, 63 c , 65 c , 162 c<br />

Bispora, 52 k<br />

Bisporella citrina, 36 c –37 c , 240 c<br />

Blumeria graminis f. sp. bromi, 36 c –37 c<br />

Botryosphaeria ribis , 97 c , 240 c<br />

Botryosphaeria stevensii , 97 c<br />

Botrytis epichloës, 89<br />

Byssoascus striatisporus, 240 c , 242 c<br />

Cadophora elatum, 46<br />

Calicium, 236<br />

Calicium viride, 240 c<br />

Calycina herbarum, 242 c<br />

Capnobotryella, 11 k –12, 17<br />

Capnobotryella renispora, 2 t , 5, 6 c –7 c , 12<br />

Capnodium citri, 240 c<br />

Capnodium coffeae, 6 c –7 c<br />

Capnodium salicinum, 2 t , 6 c –7 c<br />

Capronia, 55, 92, 185, 203, 216, 241–243<br />

Capronia acutiseta, 188 c , 193 c , 243 c<br />

Capronia coronata, 62 c , 64 c , 243 c<br />

Capronia dactylotricha, 243 c<br />

Capronia epimyces, 243 c<br />

Capronia fungicola, 243 c<br />

Capronia hanliniana, 185, 212<br />

Capronia hystrioides, 185, 212<br />

Capronia mansonii, 6 c –7 c , 62 c , 64 c , 188 c , 193 c , 240 c , 243 c<br />

Capronia munkii, 188 c , 193 c , 243 c<br />

Capronia nigerrima, 243 c<br />

Capronia parasitica, 243 c<br />

Capronia pilosella, 188 c , 193 c , 243 c<br />

Capronia pulcherrima, 62 c , 64 c , 243 c<br />

Capronia semiimmersa, 243 c<br />

Capronia villosa, 241, 243 c<br />

Caproventuria, 185, 216, 205, 230<br />

Caproventuria hanliniana, 189 c , 194 c , 205, 212<br />

Caproventuria hystrioides, 185, 212<br />

Carpoligna, 92<br />

Carpoligna pleurothecii, 62 c , 64 c , 83<br />

Castanedaea, 52 k<br />

Catenulostroma, 12 k , 13–14, 164<br />

Catenulostroma abietis, 2 t , 6 c –7 c , 14 k –15, 17, 63 c , 65 c<br />

Catenulostroma castellanii, 2 t , 6 c –7 c , 36 c –37 c<br />

Catenulostroma chromoblastomycosum, 2 t , 6 c –7 c , 14 k –15 * , 16,<br />

36 c –37 c<br />

Catenulostroma elginense, 2 t , 6 c –7 c , 15 k –16<br />

Catenulostroma excentricum, 10, 14 k , 16<br />

Catenulostroma germanicum, 2 t , 6 c –7 c , 14 k , 16 * –17, 36 c –37 c<br />

Catenulostroma macowanii, 2 t , 6 c –7 c , 15 k , 17, 63 c , 65 c , 162 c<br />

Catenulostroma microsporum, 2 t , 6 c –7 c , 10, 15 k , 17<br />

Catenulostroma protearum, 14–15 k , 17<br />

Catenulostroma sp., 2 t<br />

Ceramothyrium carniolicum, 188 c , 193 c , 240 c<br />

Cercospora, 1, 31, 164<br />

Cercospora apii , 97 c<br />

Cercospora beticola , 97 c , 111 c<br />

Cercospora cruenta, 162 c<br />

Cercospora epicoccoides, 11<br />

Cercospora eucalypti, 26<br />

Cercospora penicillata, 1<br />

Cercospora zebrina, 162 c<br />

Cercosporella centaureicola, 2 t , 6 c –7 c , 63 c , 65 c<br />

Cercostigmina, 30–31<br />

Chaetomium globosum, 36 c –37 c<br />

Chaetomium homopilatum, 36 c –37 c<br />

Chloridium apiculatum, 68<br />

Chloridium indicum, 68, 72–73<br />

Chloridium minus, 76<br />

Chloridium musae, 57, 72<br />

Chloridium schulzerii, 84<br />

Cibiessia, 11 k , 17, 24–25, 30<br />

Cibiessia dimorphospora, 2 t , 6 c –7 c , 17, 63 c , 65 c<br />

Cibiessia minutispora, 2 t , 6 c –7 c<br />

Cibiessia nontingens, 2 t , 6 c –7 c<br />

Cistella acuum, 214<br />

246


Cladophialophora, 52 k , 54 k –55, 167, 185–188, 198–200, 204, 216,<br />

219–220, 226–228, 230–232<br />

Cladophialophora ajelloi, 231<br />

Cladophialophora arxii, 243 c<br />

Cladophialophora australiensis, 186, 187–188 c , 190 t , 193 c –194 *<br />

Cladophialophora bantiana, 187, 231, 243 c<br />

Cladophialophora boppii, 231, 243 c<br />

Cladophialophora brevicatenata, 185, 212<br />

Cladophialophora carrionii, 185, 187–188 c , 193 c , 219, 220 t –221 t ,<br />

222–223, 224 c –226 c , 227–228 * , 229–230 * , 231–232, 243 c<br />

Cladophialophora cf. carrionii, 232<br />

Cladophialophora chaetospira, 54 k , 187–188 c , 190 t , 193 c , 195 *<br />

Cladophialophora devriesii, 231, 243 c<br />

Cladophialophora emmonsii, 243 c<br />

Cladophialophora hachijoensis, 185<br />

Cladophialophora hostae, 187, 188 c –189, 190 t , 193 c , 195 * –196 * ,<br />

199, 204<br />

Cladophialophora humicola, 188 c –189, 190 t , 193 c , 196 *<br />

Cladophialophora minourae, 243 c<br />

Cladophialophora potulentorum, 188 c , 190 t , 193 c , 197 * –198<br />

Cladophialophora proteae, 188 c , 190 t , 193 c , 198 *<br />

Cladophialophora scillae, 188 c , 190 t , 193 c , 198–199 * , 204<br />

Cladophialophora sp., 223, 225, 243 c<br />

Cladophialophora sylvestris, 188 c , 190 t , 193 c , 200 *<br />

Cladophialophora yegresii, 185, 221 t , 224 c , 226 c , 227–228, 229 * –<br />

230 * , 231–232<br />

Cladoriella, 55<br />

Cladoriella eucalypti, 34 t , 36 c –37 c<br />

<strong>Cladosporium</strong>, 8, 21, 30, 33, 35, 38–39, 41, 44, 47, 49, 52 k , 55,<br />

57, 72, 95–96, 103, 105–106 * , 107, 113, 115–116, 137, 142,<br />

153–155, 157, 161–169, 173, 176, 181, 209, 227, 230, 237–<br />

238, 242, 244<br />

“<strong>Cladosporium</strong>” adianticola, 190 t , 193 c<br />

<strong>Cladosporium</strong> alneum, 116–117<br />

<strong>Cladosporium</strong> alopecuri, 142<br />

<strong>Cladosporium</strong> amoenum, 207<br />

<strong>Cladosporium</strong> antarcticum, 108 t , 111 c –112 c , 114 k –115, 116 * –117 * ,<br />

154–155<br />

<strong>Cladosporium</strong> araguatum, 43<br />

<strong>Cladosporium</strong> argillaceum, 50<br />

<strong>Cladosporium</strong> arthoniae, 41, 116<br />

<strong>Cladosporium</strong> arthrinioides, 140<br />

<strong>Cladosporium</strong> arthropodii, 142<br />

<strong>Cladosporium</strong> asterinae, 55, 103<br />

<strong>Cladosporium</strong> avellaneum, 235, 237–238 t , 242–244<br />

<strong>Cladosporium</strong> breviramosum, 241–242 c , 244<br />

<strong>Cladosporium</strong> bruhnei, 2 t , 6 c –7 c , 36 c –37 c , 63 c , 65 c , 97 c , 107–108 t ,<br />

110, 111 c –112 c , 114 k , 118 * –120 * , 145, 154–155, 158 t , 162 c –165 c ,<br />

168<br />

<strong>Cladosporium</strong> brunneum, 133<br />

<strong>Cladosporium</strong> carpophilum, 205<br />

<strong>Cladosporium</strong> castellanii, 43, 44<br />

<strong>Cladosporium</strong> cellare, 75<br />

<strong>Cladosporium</strong> cerophilum, 72<br />

<strong>Cladosporium</strong> chlorocephalum, 95–96, 103<br />

<strong>Cladosporium</strong> cladosporioides, 2 t , 6 c –7 c , 36 c –37 c , 63 c , 65 c , 108 t ,<br />

111 c –112 c , 113 k , 140, 147, 150, 153, 158 t , 162 c –165 c , 168, 174<br />

<strong>Cladosporium</strong> colocasiae, 162 c<br />

<strong>Cladosporium</strong> cubense, 19–20<br />

<strong>Cladosporium</strong> dominicanum, 158 t , 162 c –165 c , 166 * , 168 k –169,<br />

170 * , 175<br />

<strong>Cladosporium</strong> elatum, 46<br />

<strong>Cladosporium</strong> ferrugineum, 20–21<br />

<strong>Cladosporium</strong> fulvum, 55<br />

<strong>Cladosporium</strong> fusiforme, 158 t , 162 c –165 c , 166 * , 168 k –169, 171 *<br />

<strong>Cladosporium</strong> gracile, 133<br />

<strong>Cladosporium</strong> graminum, 133<br />

<strong>Cladosporium</strong> halotolerans, 158 t , 162 c –165 c , 166 * –167, 168 k –169,<br />

172 * –173, 175<br />

<strong>Cladosporium</strong> helicosporum, 18<br />

<strong>Cladosporium</strong> hemileiae, 55<br />

<strong>Cladosporium</strong> herbaroides, 108 t , 111 c –112 c , 114 k , 120, 121 * –123 * ,<br />

154<br />

<strong>Cladosporium</strong> herbarum, 8, 33, 96–97 c , 101, 105, 107–108 t , 110,<br />

111 c –112 c , 113–114 k , 118, 120, 122, 124, 125 * –127 * , 133, 142,<br />

153–155, 158 t , 162 c , 164–166, 168, 181<br />

<strong>Cladosporium</strong> herbarum var. macrocarpum, 105, 129<br />

<strong>Cladosporium</strong> hordei, 118<br />

<strong>Cladosporium</strong> hypophyllum, 140<br />

<strong>Cladosporium</strong> iridis, 36 c –37 c , 97 c , 109 t , 111 c –112 c , 114 k , 125, 127–<br />

128 * , 135, 137, 153<br />

<strong>Cladosporium</strong> langeronii, 159 t , 162 c –165 c , 166 * –167, 168 k , 173–<br />

174 *<br />

<strong>Cladosporium</strong> lichenicola, 116<br />

<strong>Cladosporium</strong> licheniphilum, 116<br />

<strong>Cladosporium</strong> lichenum, 116<br />

<strong>Cladosporium</strong> macrocarpum, 97 c , 105, 107, 109 t –110, 111 c –112 c ,<br />

114 k , 122, 129 * –130 * , 131 * –133, 153–155<br />

<strong>Cladosporium</strong> magnusianum, 133, 135<br />

<strong>Cladosporium</strong> musae, 55<br />

<strong>Cladosporium</strong> nigrellum, 209<br />

<strong>Cladosporium</strong> olivaceum, 237<br />

<strong>Cladosporium</strong> ossifragi, 97 c , 109 t –110, 111 c –112 c , 114 k , 133 * –134 * ,<br />

135, 154<br />

<strong>Cladosporium</strong> oxysporum, 159 t , 162 c –165 c , 168<br />

<strong>Cladosporium</strong> paeoniae, 95–96, 101, 103<br />

<strong>Cladosporium</strong> paeoniae var. paeoniaeanomalae, 95–96<br />

<strong>Cladosporium</strong> pseudiridis, 109 t , 111 c –112 c , 114 k , 135, 136 * –137 *<br />

<strong>Cladosporium</strong> psoraleae, 116–117<br />

<strong>Cladosporium</strong> psychrotolerans, 159 t , 162 c –165 c , 166 * –167, 168 k ,<br />

175–176 *<br />

<strong>Cladosporium</strong> ramotenellum, 107, 109 t , 111 c –112 c , 115 k , 137–138 * ,<br />

139 * –140, 150, 154, 159 t , 163 c<br />

<strong>Cladosporium</strong> resinae, 235, 237–238 t<br />

<strong>Cladosporium</strong> rigidophorum, 21, 22<br />

<strong>Cladosporium</strong> salinae, 159 t , 161, 162 c –165 c , 166 * , 168 k , 175,<br />

176–177 *<br />

<strong>Cladosporium</strong> scillae, 198<br />

<strong>Cladosporium</strong> sinuosum, 109 t , 111 c –112 c , 114 k , 140 * –141 * , 142<br />

<strong>Cladosporium</strong> sp., 109 t , 111 c , 149, 159 t , 163 c , 165 c<br />

<strong>Cladosporium</strong> sphaerospermum, 2 t , 6 c –7 c , 63 c , 65 c , 153, 157, 159 t ,<br />

162 c –165 c , 166 * , 167–168 k , 169, 173–175, 177–178 * , 181<br />

<strong>Cladosporium</strong> spinulosum, 109 t , 111 c –112 c , 114 k , 142 * , 145, 154–<br />

155, 160 t , 162 c –165 c , 166 * , 168 k , 179 * , 180–181<br />

<strong>Cladosporium</strong> staurophorum, 55<br />

<strong>Cladosporium</strong> strumelloideum, 23<br />

<strong>Cladosporium</strong> subinflatum, 109 t , 111 c –112 c , 114 k , 143 * –144 * , 145,<br />

154, 160 t , 163 c –165 c<br />

<strong>Cladosporium</strong> subnodosum, 150<br />

<strong>Cladosporium</strong> subtilissimum, 109 t , 111 c –112 c , 114 k , 145 * –146 * ,<br />

147 * , 149–150, 154–155<br />

<strong>Cladosporium</strong> tenellum, 97 c , 109 t , 111 c –112 c , 115 k , 137, 140, 148 * –<br />

149 * , 150, 153–154<br />

247


<strong>Cladosporium</strong> tenuissimum, 160 t , 162 c –163 c , 168<br />

<strong>Cladosporium</strong> uredinicola, 2 t , 6 c –7 c , 36 c –37 c , 63 c , 65 c , 116, 162 c<br />

<strong>Cladosporium</strong> variabile, 97 c , 110 t , 111 c –112 c , 114 k , 131, 150 * –152 * ,<br />

153–154<br />

<strong>Cladosporium</strong> velox, 160 t , 162 c –165 c , 166 * , 168 k , 180 * –181<br />

Clathrosporium intricatum, 189 c , 193 c<br />

Coccodinium, 28<br />

Coccodinium bartschii, 2 t , 4–5, 6 c –7 c , 28, 29 *<br />

Cochliobolus heliconiae, 240 c<br />

Colletogloeopsis, 24<br />

Colletogloeopsis blakelyi, 26<br />

Colletogloeopsis considenianae, 26<br />

Colletogloeopsis dimorpha, 26<br />

Colletogloeopsis gauchensis, 26<br />

Colletogloeopsis molleriana, 10<br />

Colletogloeopsis nubilosum, 10<br />

Colletogloeopsis stellenboschiana, 26<br />

Colletogloeopsis zuluensis, 26<br />

Colletogloeum nubilosum, 10<br />

Coniella, 25<br />

Conioscypha lignicola, 62 c , 64 c<br />

Conioscyphascus varius, 62 c , 64 c<br />

Coniosporium, 216<br />

Coniothecium macowanii, 17<br />

Coniothecium punctiforme, 17<br />

Coniothyrium palmarum, 34 t , 36 c –37 c<br />

Coniothyrium zuluense, 26<br />

Coremium, 236, 239<br />

Cryptadelphia groenendalensis, 62 c , 64 c<br />

Cryptadelphia polyseptata, 62 c , 64 c<br />

Cryptococcus neoformans, 232<br />

Cudonia lutea, 240 c<br />

Cylindrosympodium, 204<br />

Cylindrosympodium lauri, 189 c –190 t , 194 c , 204 *<br />

Cylindrosympodium variabile, 205<br />

Cyphellophora, 201<br />

Cyphellophora fusarioides, 201<br />

Cyphellophora guyanensis, 201<br />

Cyphellophora hylomeconis, 188 c , 190 t , 193 c , 200 * –201<br />

Cyphellophora laciniata, 188 c , 190 t , 193 c , 201<br />

Cyphellophora pluriseptata, 201<br />

Cyphellophora suttonii, 201<br />

Cyphellophora vermispora, 201<br />

Davidiella, 5 k , 8, 30, 33, 35, 44, 52 k , 92, 96, 106, 115, 153, 155,<br />

163, 166, 173, 230<br />

Davidiella allicina, 2 t , 108 t , 112 c , 115 k , 118, 119 * –120 *<br />

Davidiella macrocarpa, 109 t , 112 c , 115 k , 129–130 * , 132 * –133<br />

Davidiella macrospora, 109 t , 112 c , 125, 128<br />

Davidiella sp., 108 t , 110 t , 111 c –112 c , 155<br />

Davidiella tassiana, 8, 108 t , 112 c , 115 k , 120, 122, 124 * –125, 126 * ,<br />

158 t , 163 c –165 c , 166, 168<br />

Davidiella variabile, 110 t , 112 c , 115 k , 151 * , 152–153<br />

Dematium epiphyllum var. chionanthi, 122, 124<br />

Dematium graminum, 129, 132<br />

Dematium herbarum, 8, 105, 122<br />

Dematium herbarum var. brassicae, 129, 132<br />

Dematium nigrum, 238 t –239<br />

Dematium vulgare var. foliorum, 129, 132<br />

Dematium vulgare var. typharum, 129, 132<br />

Dendryphion resinae, 238 t<br />

Denticularia, 31<br />

Devriesia, 11 k , 17, 43, 54 k –55, 164, 227, 230<br />

Devriesia acadiensis, 34 t , 36 c –37 c<br />

Devriesia americana, 34 t , 36 c –37 c , 42–43 *<br />

Devriesia shelburniensis, 34 t , 36 c –37 c , 43<br />

Devriesia staurophora, 5, 6 c –7 c , 17, 36 c –37 c , 63 c , 65 c , 162 c<br />

Devriesia thermodurans, 34 t , 36 c –37 c<br />

Dichocladosporium, 53 k , 55, 96, 103<br />

Dichocladosporium chlorocephalum, 36 c –37 c , 96, 97 c , 98 t* –99 * ,<br />

100 * –101, 102 *<br />

Didymella bryoniae, 36 c –37 c<br />

Didymella cucurbitacearum, 36 c –37 c<br />

Didymellina macrospora, 126<br />

Digitopodium, 52 k , 55<br />

Diplococcium, 39<br />

Discosphaerina fagi, 162 c , 240 c<br />

Dissoconium, 5 k , 28, 61<br />

Dissoconium aciculare, 2 t , 6 c –7 c , 28, 63 c , 65 c<br />

Dissoconium commune, 2 t , 28<br />

Dissoconium dekkeri, 2 t<br />

Distocercospora, 31<br />

Dothidea insculpta, 162 c<br />

Dothidea ribesia, 162 c<br />

Dothistroma, 4<br />

Exophiala, 75, 92, 185, 201, 203, 216, 231<br />

Exophiala attenuata, 243 c<br />

Exophiala crusticola, 243 c<br />

Exophiala dermatitidis, 6 c –7 c , 62 c , 64 c , 188 c , 193 c , 201, 243 c<br />

Exophiala eucalyptorum, 188 c , 190 t , 193 c , 203 *<br />

Exophiala heteromorpha, 243 c<br />

Exophiala jeanselmei, 6 c –7 c , 62 c , 64 c , 188 c , 193 c<br />

Exophiala lecaniicorni, 243 c<br />

Exophiala mesophila, 201, 243 c<br />

Exophiala nishimurae, 243 c<br />

Exophiala oligosperma, 6 c –7 c , 188 c , 193 c , 243 c<br />

Exophiala phaeomuriformis, 201<br />

Exophiala pisciphila, 188 c , 193 c , 243 c<br />

Exophiala sp. 1, 188 c , 190 t , 193 c , 201–202 *<br />

Exophiala sp. 2, 188 c , 190 t , 193 c , 201–202 *<br />

Exophiala sp. 3, 188 c , 190 t , 193 c<br />

Exophiala spinifera, 243 c<br />

Fasciatispora petrakii, 37 c , 188 c , 193 c<br />

Fonsecaea, 231<br />

Fonsecaea monophora, 231<br />

Fonsecaea pedrosoi, 6 c –7 c , 62 c , 64 c , 188 c , 193 c , 219, 232, 240 c<br />

Friedmanniomyces, 11 k –12, 24<br />

Fumagospora capnodioides, 2 t<br />

Fusarium, 231<br />

Fusicladium, 17, 52 k , 54 k –55, 91, 96, 103, 163, 176, 185, 188–189,<br />

197–199, 203–204, 205, 211, 216<br />

Fusicladium africanum, 189 c –190 t , 194 c , 205–206 * , 211<br />

Fusicladium amoenum, 162 c , 189 c –190 t , 194 c , 206 * –207<br />

Fusicladium brevicatenatum, 212<br />

Fusicladium carpophilum, 189 c –190 t , 194 c<br />

Fusicladium caruanianum, 208<br />

Fusicladium catenosporum, 189 c , 191 t , 194 c<br />

Fusicladium convolvularum, 189 c , 191 t , 194 c , 207 * –208<br />

Fusicladium effusum, 161, 162 c –163, 189 c , 191 t , 194 c<br />

Fusicladium fagi, 189 c , 191 t , 194 c , 208 * –209<br />

“Fusicladium hyphopodioides”, 215<br />

Fusicladium intermedium, 189 c , 191 t , 194 c , 209 *<br />

Fusicladium m<strong>and</strong>shuricum, 189 c , 191 t , 194 c , 210<br />

Fusicladium matsushimae, 209<br />

Fusicladium oleagineum, 189 c , 191 t , 194 c<br />

248


Fusicladium phillyreae, 189 c , 191 t , 194 c<br />

Fusicladium pini, 189 c , 191 t , 194 c , 210 * , 211–212<br />

Fusicladium pomi, 189 c , 191 t , 194 c<br />

Fusicladium radiosum, 189 c , 191 t , 194 c<br />

Fusicladium ramoconidii, 189 c , 191 t , 194 c , 211 * –212 *<br />

Fusicladium rhodense, 189 c , 191 t , 194 c , 212–213 *<br />

Fusicladium scillae, 198–199<br />

Fusicladium sp., 212<br />

Fusicladosporium, 205<br />

Geomyces asperulatus, 242 c<br />

Geomyces pannorum, 242 c<br />

Glyphium elatum, 188 c , 193 c , 240 c<br />

Golovinomyces cichoracearum, 240 c –241<br />

Gomphinaria, 84<br />

Gomphinaria amoena, 84<br />

Graphiopsis chlorocephala, 96<br />

Hansfordia biophila, 85<br />

Hansfordia torvi, 85<br />

Haplographium chlorocephalum, 96<br />

Haplographium chlorocephalum var. ovalisporum, 96<br />

Haplotrichum, 54 k<br />

Helminthosporium, 239<br />

Helminthosporium variabile, 150<br />

Hendersonia gr<strong>and</strong>ispora, 11<br />

Heteroconium, 54 k , 187, 241<br />

Heteroconium chaetospira, 187, 216<br />

Heteroconium citharexyli, 187<br />

Heteroconium sp., 243 c<br />

Heterosporium, 33, 142, 153<br />

Heterosporium iridis, 125<br />

Heterosporium magnusianum, 133, 135<br />

Heterosporium ossifragi, 133, 135<br />

Heterosporium variabile, 150<br />

Heyderia abietis, 242 c<br />

Hormiactis, 51 k<br />

Hormoconis, 54 k , 235, 238, 243–244<br />

Hormoconis resinae, 34 t , 36 c –37 c , 235, 238 t , 240 c , 243<br />

“Hormodendron”, 237<br />

Hormodendrum, 237<br />

“Hormodendrum” elatum, 47<br />

Hormodendrum hordei, 118, 120<br />

Hormodendrum langeronii, 167, 173–174<br />

Hormodendrum olivaceum, 237<br />

Hormodendrum resinae, 54 k , 235, 237–238 t , 239–240 * , 241–244<br />

Hormodendrum viride, 237<br />

Hortaea, 12 k , 17<br />

Hortaea werneckii, 2 t , 6 c –7 c , 17<br />

Hyalodendriella, 46, 52 k<br />

Hyalodendriella betulae, 34 t , 36 c –37 c , 46–47 *<br />

Hyalodendron, 46, 51 k<br />

Iodosphaeria aquatica, 240 c<br />

Kirramyces, 24<br />

Kirramyces destructans, 26<br />

Kirramyces epicoccoides, 11<br />

Kirramyces eucalypti, 26<br />

Kumbhamaya, 201<br />

Lacazia loboi, 167<br />

Lecanosticta, 24<br />

Leptodontidium elatius, 242 c<br />

Leptospora rubella, 36 c –37 c<br />

Letendraea helminthicola, 240 c<br />

Loboa loboi, 159 t<br />

Lojkania enalia, 240 c<br />

Lophodermium pinastri, 240 c<br />

Lylea, 51 k<br />

Madurella mycetomatis, 232<br />

Magnaporthe grisea, 62 c , 64 c<br />

Melanchlenus eumetabolus, 243 c<br />

Melanchlenus oligospermus, 243 c<br />

Melanelia exasperatula, 240 c<br />

Metacoleroa, 205, 216<br />

Metacoleroa dickiei, 62 c , 64 c , 189 c , 194 c , 205<br />

Metulocladosporiella, 18, 51, 53 k , 55, 103<br />

Metulocladosporiella musae, 103, 188 c , 193 c , 243 c<br />

Metulocladosporiella musicola, 188 c , 193 c , 243 c<br />

Mollisia cinerea, 6 c –7 c<br />

Mycosphaerella, 1, 5 k , 8, 28, 30, 31–33, 45, 51 k , 55, 91, 96, 105,<br />

115, 155, 163, 164, 166, 205, 241–242, 244<br />

Mycosphaerella africana, 9, 36 c –37 c<br />

Mycosphaerella alchemillicola, 34 t<br />

Mycosphaerella alistairii, 8–9<br />

Mycosphaerella ambiphylla, 10<br />

Mycosphaerella associata, 8–9<br />

Mycosphaerella aurantia , 97 c<br />

Mycosphaerella bellula, 8, 10<br />

“Mycosphaerella” communis, 2 t , 6 c –7 c , 28, 63 c , 65 c<br />

Mycosphaerella cryptica, 8, 10<br />

Mycosphaerella dendritica, 8, 10<br />

Mycosphaerella endophytica, 63 c , 65 c<br />

Mycosphaerella eucalypti, 8<br />

Mycosphaerella excentrica, 8, 10<br />

Mycosphaerella fibrillosa, 10<br />

Mycosphaerella fimbriata, 8, 10<br />

Mycosphaerella flexuosa, 10<br />

Mycosphaerella gamsii, 10<br />

Mycosphaerella graminicola, 3 t , 6 c –7 c , 63 c , 65 c , 162 c<br />

Mycosphaerella gr<strong>and</strong>is, 10<br />

Mycosphaerella gregaria, 63 c , 65 c<br />

“Mycosphaerella” hyperici, 158 t , 163 c –165 c , 173<br />

Mycosphaerella intermedia, 63 c , 65 c<br />

Mycosphaerella irregulariramosa, 36 c –37 c<br />

Mycosphaerella jonkershoekensis, 8, 10<br />

Mycosphaerella juvenis, 10<br />

Mycosphaerella latebrosa, 162 c<br />

“Mycosphaerella” lateralis, 2 t , 6 c –7 c , 28, 36 c –37 c , 63 c , 65 c , 162 c<br />

Mycosphaerella macrospora, 126<br />

Mycosphaerella madeirae, 63 c , 65 c<br />

Mycosphaerella marksii, 36 c –37 c , 63 c , 65 c<br />

Mycosphaerella maxii, 8, 10<br />

Mycosphaerella mexicana, 8, 10<br />

Mycosphaerella microspora, 10<br />

Mycosphaerella molleriana, 10<br />

“Mycosphaerella mycopappi”, 240 c –241, 244<br />

Mycosphaerella nubilosa, 8, 10<br />

Mycosphaerella ohnowa, 10<br />

Mycosphaerella parkii, 63 c , 65 c<br />

Mycosphaerella parkiiaffinis, 10<br />

Mycosphaerella parva, 10<br />

Mycosphaerella perpendicularis, 10<br />

Mycosphaerella pluritubularis, 10<br />

Mycosphaerella pseudafricana, 11<br />

Mycosphaerella pseudocryptica, 8, 11<br />

Mycosphaerella pseudosuberosa, 8, 11<br />

Mycosphaerella punctiformis, 6 c –7 c , 28, 36 c –37 c , 63 c , 65 c , 97 c ,<br />

166<br />

249


Mycosphaerella quasicercospora, 11<br />

Mycosphaerella readeriellophora, 11<br />

Mycosphaerella secundaria, 11<br />

Mycosphaerella stigminaplatani, 30<br />

Mycosphaerella stramenticola, 11<br />

Mycosphaerella suberosa, 8, 11<br />

Mycosphaerella suttonii, 11<br />

Mycosphaerella tassiana, 122, 166<br />

Mycosphaerella toledana, 11<br />

Mycosphaerella tulasnei, 132<br />

Mycosphaerella vespa, 10<br />

Mycosphaerella walkeri, 63 c , 65 c<br />

Mycovellosiella, 31, 53 k<br />

Myrmecridium, 61 k , 84, 92<br />

Myrmecridium flexuosum, 59 t , 62 c , 64 c , 84–85, 86 *<br />

Myrmecridium schulzeri, 59 t , 62 c , 64 c , 68 * , 84–85 *<br />

Myrmecridium schulzeri var. schulzeri, 84<br />

Myrmecridium schulzeri var. tritici, 84<br />

Myxotrichum, 242<br />

Myxotrichum arcticum, 242 c<br />

Myxotrichum cancellatum, 242 c<br />

Myxotrichum carminoparum, 242 c<br />

Myxotrichum chartarum, 242 c<br />

Myxotrichum deflexum, 36 c –37 c , 242 c<br />

Myxotrichum resinae, 239<br />

Myxotrichum stipitatum, 242 c<br />

Napicladium ossifragi, 133, 135<br />

Neofabraea alba, 36 c –37 c , 240 c , 242 c<br />

Neofabraea krawtzewii, 242 c<br />

Neofabraea malicorticis, 36 c –37 c , 189 c , 193 c , 242 c<br />

Neofabraea perennans, 242 c<br />

Neoovularia, 87<br />

Nothostrasseria, 12 k<br />

Nothostrasseria dendritica, 2 t , 6 c –7 c , 10<br />

Ochrocladosporium, 46, 54 k –55<br />

Ochrocladosporium elatum, 34 t , 36 c –37 c , 46, 48 * –49<br />

Ochrocladosporium frigidarii, 34 t , 36 c –37 c , 47–49 *<br />

Oidiodendron, 241–242, 244<br />

Oidiodendron cerealis, 242 c<br />

Oidiodendron chlamydosporicum, 242 c<br />

Oidiodendron citrinum, 242 c<br />

Oidiodendron flavum, 242 c<br />

Oidiodendron griseum, 242 c<br />

Oidiodendron maius, 242 c<br />

Oidiodendron myxotrichoides, 242 c<br />

Oidiodendron periconioides, 242 c<br />

Oidiodendron pilicola, 242 c<br />

Oidiodendron rhodogenum, 242 c<br />

Oidiodendron setiferum, 242 c<br />

Oidiodendron tenuissimum, 242 c<br />

Oidiodendron truncatum, 242 c<br />

Ophiostoma stenoceras, 62 c , 64 c<br />

Paracercospora, 31<br />

Paracoccidioides loboi, 167<br />

Parahaplotrichum, 54 k<br />

Parapericoniella, 53 k , 55, 103<br />

Parapleurotheciopsis, 51, 53 k –54 k , 204<br />

Parapleurotheciopsis coccolobae, 51, 54 k<br />

Parapleurotheciopsis inaequiseptata, 34 t –35, 37 c , 51<br />

Passalora, 28, 31, 44–45, 53 k , 216<br />

Passalora arachidicola , 97 c<br />

Passalora daleae, 34 t , 36 c –37 c<br />

Passalora dodonaeae, 162 c<br />

Passalora eucalypti, 36 c –37 c<br />

Passalora fulva, 36 c –37 c , 55, 97 c , 162 c<br />

Passalora perplexa, 30<br />

“Passalora” zambiae, 2 t , 6 c –7 c , 28<br />

Paullicorticium ansatum, 6 c –7 c , 36 c –37 c , 58, 62 c , 64 c , 188 c , 193 c<br />

Penicillium, 237<br />

Penicillium olivaceum, 237<br />

Penidiella, 12 k , 17–18, 21–22, 24, 53 k<br />

Penidiella columbiana, 2 t , 6 c –7 c , 17–18 k , 19 * –20 * , 36 c –37 c<br />

Penidiella cubensis, 18 k , 19–21 *<br />

Penidiella nect<strong>and</strong>rae, 3 t , 18 k , 20–21 * , 36 c –37 c<br />

Penidiella rigidophora, 3 t , 18 k , 21, 22 * –23 * , 36 c –37 c<br />

Penidiella strumelloidea, 3 t , 18 k , 23, 23 * –24 * , 36 c –37 c , 53 k<br />

Penidiella venezuelensis, 3 t , 18 k , 22, 24–25 * , 36 c –37 c<br />

Periconia chlorocephala, 95–96, 101, 103<br />

Periconia ellipsospora, 96<br />

Periconia velutina, 64<br />

Periconiella, 17, 53 k , 57–58, 61 k –62, 63, 91<br />

Periconiella arcuata, 59 t , 63 c , 65 c –66 * , 68 *<br />

Periconiella levispora, 59 t , 63 c , 65 c , 67 * –68<br />

Periconiella musae, 57, 72<br />

Periconiella papuana, 60, 80<br />

Periconiella velutina, 17, 57, 59 t –63 c , 64–65 c , 66 *<br />

Pertusaria mammosa, 240 c<br />

Phaeoblastophora, 52 k<br />

Phaeococcomyces catenatus, 188 c , 193 c , 243 c<br />

Phaeococcomyces chersonesos, 243 c<br />

Phaeococcomyces nigricans, 241, 243 c<br />

Phaeoisariopsis, 4, 31<br />

Phaeophleospora, 4, 24<br />

Phaeophleospora destructans, 26<br />

Phaeophleospora epicoccoides, 11<br />

Phaeophleospora eucalypti, 26<br />

Phaeophleospora toledana, 11, 25<br />

Phaeoramularia, 31, 53 k , 227<br />

“Phaeoramularia” hachijoensis, 43, 185, 214<br />

Phaeoseptoria eucalypti, 11<br />

Phaeoseptoria luzonensis, 11<br />

Phaeosphaeria avenaria, 36 c –37 c<br />

Phaeotheca triangularis, 3 t , 6 c –7 c<br />

Phaeothecoidea, 11 k<br />

Phaeothecoidea eucalypti, 3 t , 6 c –7 c<br />

Phaeotrichum benjaminii, 240 c<br />

Phialophora, 231<br />

Phialophora americana, 188 c , 193 c , 240 c<br />

Phialophora verrucosa, 243 c<br />

Phlogicylindrium, 216<br />

Phlogicylindrium eucalypti, 37 c , 188 c , 193 c , 214<br />

Phoma herbarum, 36 c –37 c<br />

Phyllactinia guttata, 132<br />

Phyllactinia sp., 110<br />

Piceomphale bulgarioides, 242 c<br />

Pidoplitchkoviella terricola, 188 c , 193 c<br />

Pilidiella, 25<br />

Plectosphaera eucalypti, 37 c<br />

Pleomassaria siparia, 240 c<br />

Pleospora herbarum, 240 c<br />

Pleuroascus nicholsonii, 240 c<br />

Pleurophoma sp., 3 t<br />

Pleurophragmium acutum, 84<br />

Pleurophragmium tritici, 84<br />

Pleurotheciopsis, 18, 51<br />

250


Ramichloridium epichloës, 60, 89<br />

Pleurothecium, 61 k , 83, 92<br />

243 c Rhinocladiella sp., 60 t , 62 c , 64 c<br />

Pleurothecium obovoideum, 59 t , 62 c , 64 c , 80, 83 * , 92<br />

Pollaccia, 185, 205<br />

Pollaccia m<strong>and</strong>shurica, 210<br />

Pollaccia sinensis, 210<br />

Polyscytalum, 51 k , 55 k , 185, 200, 214, 216<br />

Polyscytalum fecundissimum, 188 c , 191 t , 193 c , 200, 214 *<br />

Polyscytalum griseum, 200<br />

Prathigada, 31<br />

Protoventuria alpina, 186, 189 c , 191 t , 193 c<br />

Pseudeurotium bakeri, 242 c<br />

Pseudeurotium desertorum, 242 c<br />

Pseudeurotium ovale var. milkoi, 242 c<br />

Pseudeurotium ovale var. ovale, 242 c<br />

Pseudeurotium zonatum, 242 c<br />

Pseudocercospora, 4, 12, 30–31, 164<br />

Pseudocercospora angolensis, 162 c<br />

Pseudocercospora epispermogonia, 63 c , 65 c<br />

Pseudocercospora paraguayensis, 36 c –37 c<br />

Pseudocercospora protearum, 162 c<br />

Pseudocercosporidium, 31<br />

Ramichloridium fasciculatum, 60, 75, 77<br />

Ramichloridium indicum, 59 t –61, 63 c , 65 c , 73 *<br />

Ramichloridium mackenziei, 58, 59 t –60 t , 75, 80, 83, 188 c , 193 c ,<br />

243 c<br />

Ramichloridium musae, 57–59 t , 60–61, 63 c , 65 c , 70 * , 72–73, 91<br />

Ramichloridium obovoideum, 60, 83<br />

Ramichloridium pini, 58–59 t , 60–61, 63 c , 65 c , 74<br />

Ramichloridium schulzeri, 58, 84<br />

Ramichloridium schulzeri var. flexuosum, 60, 84<br />

Ramichloridium schulzeri var. schulzeri, 60<br />

Ramichloridium schulzeri var. tritici, 84<br />

Ramichloridium strelitziae, 59 t , 63 c , 65 c , 73 * –74 *<br />

Ramichloridium subulatum, 60, 89<br />

Ramularia, 51 k , 164<br />

Ramularia aplospora, 34 t , 36 c –37 c<br />

Ramularia endophylla, 28<br />

Ramularia miae, 6 c –7 c , 63 c , 65 c<br />

Ramularia pratensis var. pratensis, 3 t , 6 c –7 c , 63 c , 65 c<br />

Ramularia sp., 3 t , 6 c –7 c , 63 c , 65 c<br />

Ramularia torvi, 85<br />

Pseudocladosporium, 17, 43, 52 k , 54 k –55, 185, 186, 188–189, Ramulispora, 4, 31<br />

197–198, 204–205, 216, 227, 230<br />

Pseudocladosporium brevicatenatum, 205, 212<br />

Pseudocladosporium caruanianum, 208<br />

Pseudocladosporium hachijoense, 43, 212<br />

Pseudocladosporium matsushimae, 209<br />

Pseudocladosporium proteae, 198<br />

Pseudocyphellaria perpetua, 240 c<br />

Pseudodidymaria, 87<br />

Pseudomassaria carolinensis, 37 c<br />

Pseudomicrodochium, 201<br />

Pseudomicrodochium aciculare, 201<br />

Pseudotaeniolina, 11 k –12, 24<br />

Pseudotaeniolina convolvuli, 24<br />

Pseudotaeniolina globosa, 3 t , 6 c –7 c , 24<br />

Pseudovirgaria, 61 k , 87, 92<br />

Pseudovirgaria hyperparasitica, 59 t , 63 c , 65 c , 67 * , 86 * –87<br />

Psilobotrys schulzeri, 84<br />

Pycnostysanus, 238, 244<br />

Pycnostysanus azaleae, 238<br />

Pycnostysanus resinae, 237–238 t , 239<br />

Rachicladosporium, 38–39, 52 k , 55<br />

Rachicladosporium luculiae, 34 t , 36 c –37 c , 38 * –39<br />

Racodium, 75<br />

Racodium cellare, 75<br />

Racodium resinae, 235, 237–238 t , 239<br />

Racodium resinae (β) piceum, 236<br />

Racodium rupestre, 75<br />

Radulidium, 61 k , 89, 92<br />

Radulidium epichloës, 59 t , 63 c , 65 c , 87–88 * , 89<br />

Radulidium sp., 59 t , 63 c , 65 c<br />

Radulidium subulatum, 59 t , 63 c , 65 c , 70 * , 87–88 * , 89<br />

Ramichloridium, 17, 57–58, 60–61 k , 68, 75, 84, 89, 91–92<br />

Ramichloridium anceps, 60, 75, 188 c , 193 c , 243 c<br />

Ramichloridium apiculatum, 17, 57, 59 t –61, 63 c , 65 c , 68–69 * , 73<br />

Ramichloridium australiense, 59 t , 63 c , 65 c , 69 * –70 *<br />

Ramichloridium basitonum, 58, 60, 75, 77<br />

Ramichloridium biverticillatum, 59 t , 61, 63 c , 65 c , 71 * –72, 91<br />

Ramichloridium brasilianum, 59 t , 63 c , 65 c , 70 * –71 * , 72<br />

Ramulispora sorghi, 162 c<br />

Rasutoria pseudotsugae, 63 c , 65 c<br />

Rasutoria tsugae, 63 c , 65 c<br />

Readeriella, 11 k –12 k , 17, 24–25, 30<br />

Readeriella blakelyi, 6 c –7 c , 26<br />

Readeriella brunneotingens, 3 t , 6 c –7 c , 26–27 *<br />

Readeriella considenianae, 6 c –7 c , 26, 63 c , 65 c<br />

Readeriella destructans, 3 t , 6 c –7 c , 26<br />

Readeriella dimorpha, 6 c –7 c , 26<br />

Readeriella epicoccoides, 6 c –7 c , 11, 30<br />

Readeriella eucalypti, 3 t , 6 c –7 c , 26<br />

Readeriella gauchensis, 3 t , 6 c –7 c , 26<br />

Readeriella mirabilis, 3 t , 6 c –7 c , 24–25, 27 * , 30, 97 c<br />

Readeriella molleriana, 3 t , 10<br />

Readeriella novaezel<strong>and</strong>iae, 6 c –7 c , 97 c<br />

Readeriella nubilosa, 10<br />

Readeriella ovata, 3 t , 6 c –7 c<br />

Readeriella pulcherrima, 6 c –7 c , 26<br />

Readeriella readeriellophora, 11, 25–27 *<br />

Readeriella stellenboschiana, 3 t , 6 c –7 c , 26<br />

Readeriella toledana, 11<br />

Readeriella zuluensis, 3 t , 6 c –7 c , 26<br />

Repetophragma goidanichii, 62 c , 64 c<br />

Retroconis, 46<br />

Retroconis fusiformis, 34 t , 36 c –37 c , 46<br />

Rhinocladiella, 57–58, 60–61 k , 75–76, 92<br />

Rhinocladiella anceps, 59 t , 62 c , 64 c , 75 * –76<br />

Rhinocladiella apiculata, 68<br />

Rhinocladiella atrovirens, 62 c , 64 c , 75–76, 243 c<br />

Rhinocladiella basitona, 59 t , 62 c , 64 c , 76 * –77, 243 c<br />

Rhinocladiella cellaris, 75<br />

Rhinocladiella elatior, 89<br />

Rhinocladiella fasciculata, 59 t , 62 c , 64 c , 77 *<br />

Rhinocladiella indica, 68, 73<br />

Rhinocladiella mackenziei, 62 c , 64 c , 78 * , 80, 83, 92<br />

Rhinocladiella obovoidea, 83<br />

Rhinocladiella phaeophora, 60 t , 62 c , 64 c , 76<br />

Rhinocladiella schulzeri, 84<br />

Ramichloridium cerophilum, 59 t –61, 63 c , 65 c , 71 * –72, 73, 241, Rhinocladiella similis, 243 c<br />

251


Rhinotrichum multisporum, 84<br />

Rhizocladosporium, 50–51, 54 k –55, 204<br />

Rhizocladosporium argillaceum, 34 t , 36 c –37 c , 50 * –51<br />

Rhodoveronaea, 61 k , 89–90, 92<br />

Rhodoveronaea varioseptata, 60 t , 62 c , 64 c , 70 * , 90–91<br />

Rhytisma acerinum, 240 c<br />

Saccharomyces cerevisiae, 240 c<br />

Sarcoleotia turficola, 36 c –37 c<br />

Satchmopsis brasiliensis, 189 c , 193 c<br />

Schizothyrium, 5 k , 28, 30<br />

Schizothyrium acerinum, 28<br />

Schizothyrium pomi, 6 c –7 c<br />

Scolicotrichum iridis, 125<br />

Scorias spongiosa, 6 c –7 c<br />

Seifertia, 52 k , 238, 244<br />

Seifertia azaleae, 235, 238–239, 240 c , 241–242, 244<br />

Septocylindrium chaetospira, 187<br />

Septonema, 54 k<br />

Septonema chaetospira, 187<br />

Septoria, 164, 173<br />

Septoria pulcherrima, 26<br />

Septoria tritici, 3 t , 6 c –7 c , 63 c , 65 c<br />

Setosphaeria monoceras, 240 c<br />

Sonderhenia, 24<br />

Sorocybe, 52 k , 54 k , 236–238, 242–244<br />

Sorocybe resinae, 235, 237 * –238 t , 239–240 c , 241–243 c , 244<br />

Spadicoides minuta, 187<br />

Spathularia flavida, 240 c<br />

Sphaerella allicina, 118<br />

Sphaerella cryptica, 10<br />

Sphaerella molleriana, 10<br />

Sphaerella nubilosa, 10<br />

Sphaerella tassiana, 8, 122<br />

Sphaeria allicina, 118<br />

Spilocaea, 185, 205<br />

Spilomyces dendriticus, 10<br />

Sporidesmium pachyanthicola, 63 c , 65 c<br />

Sporocybe, 236<br />

Sporocybe resinae, 237–238 t , 239<br />

Sporotrichum anceps, 76<br />

Sporotrichum nigrum, 238 t<br />

Stagonospora pulcherrima, 26<br />

Staninwardia, 12 k , 26<br />

Staninwardia breviuscula, 26<br />

Staninwardia suttonii, 5, 6 c –7 c , 26, 36 c –37 c , 63 c , 65 c<br />

Stenella, 31, 44–45, 53 k , 75, 227<br />

Stenella araguata, 16, 19, 24, 43, 44 * –45 * , 75<br />

“Stenella” cerophilum, 36 c –37 c<br />

Stenellopsis, 31<br />

Stigmidium, 30<br />

Stigmidium schaereri, 30 *<br />

Stigmina, 4, 12, 30–31<br />

Stigmina eucalypti, 12<br />

Stigmina platani, 12<br />

Strigopodia resinae, 236<br />

Stysanopsis resinae, 238 t<br />

Stysanus resinae, 237–238 t , 239<br />

Subramaniomyces, 51, 54 k , 204<br />

Subramaniomyces fusisaprophyticus, 34 t –35, 37 c , 51<br />

Subramaniomyces simplex, 51<br />

Sympodiella, 204<br />

Sympoventuria, 185, 204<br />

Sympoventuria capensis, 189 c , 191 t , 194 c , 205<br />

Taeniolella, 41, 52 k<br />

Taeniolina, 52 k<br />

Taeniolina scripta, 17<br />

Teratosphaeria, 5 k , 8, 28, 30–31, 43, 45, 92, 96<br />

Teratosphaeria africana, 8<br />

Teratosphaeria alistairii, 6 c –7 c , 9, 36 c –37 c , 63 c , 65 c<br />

Teratosphaeria associata, 9<br />

Teratosphaeria bellula, 3 t , 6 c –7 c , 10<br />

Teratosphaeria cryptica, 6 c –7 c , 10, 36 c –37 c<br />

Teratosphaeria dendritica, 2 t , 10<br />

Teratosphaeria excentrica, 10<br />

Teratosphaeria fibrillosa, 3 t –4, 6 c –7 c , 8–9 * , 10, 63 c , 65 c<br />

Teratosphaeria fimbriata, 10<br />

Teratosphaeria flexuosa, 6 c –7 c , 10<br />

Teratosphaeria gamsii, 10<br />

Teratosphaeria jonkershoekensis, 10<br />

Teratosphaeria juvenis, 36 c –37 c<br />

Teratosphaeria maxii, 6 c –7 c , 10<br />

Teratosphaeria mexicana, 3 t , 6 c –7 c , 10<br />

Teratosphaeria microspora, 2 t , 8, 10, 15 k , 97 c<br />

Teratosphaeria molleriana, 3 t , 6 c –7 c , 10, 36 c –37 c , 63 c , 65 c<br />

Teratosphaeria nubilosa, 3 t , 6 c –7 c , 10, 162 c<br />

Teratosphaeria ohnowa, 4 t , 6 c –7 c , 10<br />

Teratosphaeria parkiiaffinis, 10<br />

Teratosphaeria parva, 6 c –7 c , 10, 63 c , 65 c<br />

Teratosphaeria perpendicularis, 10<br />

Teratosphaeria pluritubularis, 10<br />

Teratosphaeria proteaarboreae, 8<br />

Teratosphaeria pseudafricana, 11<br />

Teratosphaeria pseudocryptica, 11<br />

Teratosphaeria pseudosuberosa, 2 t , 6 c –7 c , 11<br />

Teratosphaeria quasicercospora, 11<br />

Teratosphaeria readeriellophora, 6 c –7 c , 11, 63 c , 65 c , 97 c<br />

Teratosphaeria secundaria, 4 t , 6 c –7 c , 11<br />

Teratosphaeria sp., 2 t , 4 t , 6 c –7 c<br />

Teratosphaeria stramenticola, 11<br />

Teratosphaeria suberosa, 6 c –7 c , 11, 63 c , 65 c<br />

Teratosphaeria suttonii, 3 t , 6 c –7 c , 11, 36 c –37 c<br />

Teratosphaeria toledana, 6 c –7 c , 11, 63 c , 65 c<br />

Terfezia gigantea, 240 c<br />

<strong>The</strong>dgonia ligustrina, 34 t , 36 c –37 c<br />

Thielaviopsis basicola, 159 t<br />

Thyridium, 84<br />

Thyridium vestitum, 60, 62 c , 64 c<br />

Thysanorea, 61 k , 63, 80, 92<br />

Thysanorea papuana, 60 t , 62 c , 64 c , 68 * , 78 * –79 * , 80, 188 c , 193 c<br />

Torrendiella eucalypti, 36 c –37 c<br />

Torula pinophila, 239<br />

Toxicocladosporium, 39, 53 k , 55<br />

Toxicocladosporium irritans, 34 t , 36 c –37 c , 39–40 * , 41<br />

Trematosphaeria heterospora, 240 c<br />

Trichosphaeria pilosa, 6 c –7 c<br />

Trimmatostroma, 5, 14, 164<br />

Trimmatostroma abietina, 14–15, 97 c<br />

Trimmatostroma abietis, 14–15, 97 c<br />

Trimmatostroma betulinum, 3 t , 5, 6 c –7 c<br />

Trimmatostroma elginense, 16<br />

Trimmatostroma excentricum, 10<br />

Trimmatostroma macowanii, 17<br />

Trimmatostroma microsporum, 10<br />

Trimmatostroma protearum, 17<br />

252


Trimmatostroma salicis, 3 t , 5, 6 c –7 c , 13 * , 97 c<br />

Uwebraunia, 28<br />

Venturia, 43, 52 k , 55, 185–186, 204–205, 216<br />

Venturia aceris, 189 c , 191 t , 194 c<br />

Venturia alpina, 189 c , 191 t , 194 c<br />

Venturia anemones, 189 c , 191 t , 194 c<br />

Venturia asperata, 62 c , 64 c<br />

Venturia atriseda, 189 c , 191 t , 194 c<br />

Venturia aucupariae, 189 c , 191 t , 194 c<br />

Venturia carpophila, 62 c , 64 c , 189 c –190 t , 194 c<br />

Venturia cephalariae, 189 c , 191 t , 194 c<br />

Venturia cerasi, 189 c , 191 t , 194 c<br />

Venturia chlorospora, 62 c , 64 c , 189 c , 191 t , 194 c<br />

Venturia crataegi, 189 c , 191 t , 194 c<br />

Venturia dickiei, 205<br />

Venturia ditricha, 189 c , 191 t , 194 c<br />

Venturia fraxini, 189 c , 192 t , 194 c<br />

Venturia hanliniana, 62 c , 64 c , 205, 212<br />

Venturia helvetica, 189 c , 192 t , 194 c<br />

Venturia hystrioides, 189 c , 192 t , 194 c , 212–213 *<br />

Venturia inaequalis, 62 c , 64 c , 189 c , 191 t , 194 c<br />

Venturia lonicerae, 189 c , 192 t , 194 c<br />

Venturia macularis, 189 c , 192 t , 194 c<br />

Venturia maculiformis, 189 c , 192 t , 194 c<br />

Venturia m<strong>and</strong>shurica, 191 t , 210<br />

Venturia minuta, 189 c , 192 t , 194 c<br />

Venturia nashicola, 189 c , 192 t , 194 c<br />

Venturia polygonivivipari, 189 c , 192 t , 194 c<br />

Venturia populina, 189 c , 192 t , 194 c<br />

Venturia pyrina, 62 c , 64 c , 189 c , 192 t , 194 c<br />

Venturia saliciperda, 189 c , 192 t , 194 c<br />

Venturia sp., 189 c , 192 t , 194 c<br />

Venturia tremulae, 191 t<br />

Venturia tremulae var. gr<strong>and</strong>identatae, 189 c , 192 t , 194 c<br />

Venturia tremulae var. populialbae, 189 c , 192 t , 194 c<br />

Venturia tremulae var. tremulae, 189 c , 192 t , 194 c<br />

Venturia viennotii, 189 c , 192 t , 194 c<br />

Veronaea, 57–58, 60–61 k , 76, 80, 87, 89, 91, 92<br />

Veronaea apiculata, 68<br />

Veronaea botryosa, 60 t , 62 c , 64 c , 76, 80–81 * , 188 c , 193 c<br />

Veronaea compacta, 60 t , 62 c , 64 c , 81–82 * , 83<br />

Veronaea harunganae, 92<br />

Veronaea indica, 73<br />

Veronaea japonica, 60 t , 62 c , 64 c , 74 * , 82 *<br />

Veronaea musae, 57, 72<br />

Veronaea parvispora, 76<br />

Veronaea simplex, 60, 91<br />

Veronaea verrucosa, 73<br />

Veronaeopsis, 61 k , 91–92<br />

Veronaeopsis simplex, 60 t , 62 c , 64 c , 74 * , 90 * –91, 189 c , 194 c<br />

Verrucisporota, 31, 45<br />

Verrucocladosporium, 41, 53 k , 55<br />

Verrucocladosporium dirinae, 34 t , 36 c –37 c , 41–42 *<br />

Vibrissea flavovirens, 6 c –7 c<br />

Vibrissea truncorum, 6 c –7 c<br />

Virgaria, 87<br />

Websteromyces, 52 k<br />

Wentiomyces, 91<br />

Wentiomyces javanicus, 91<br />

Westerdykella cylindrica, 240 c<br />

Xenomeris juniperi, 63 c , 65 c<br />

Xylographa vitiligo, 240 c<br />

Xylohypha, 52 k<br />

Zasmidium, 45, 61, 74–75<br />

Zasmidium cellare, 60 t –61, 63 c , 65 c , 74 * –75<br />

Zeloasperisporium, 214, 216<br />

Zeloasperisporium hyphopodioides, 189 c , 191 t , 194 c , 214–215 *<br />

Zygosporium, 5 k<br />

253

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!