04.07.2015 Views

Phytopathogenic Dothideomycetes - CBS - KNAW

Phytopathogenic Dothideomycetes - CBS - KNAW

Phytopathogenic Dothideomycetes - CBS - KNAW

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Studies in Mycology 75 (June 2013)<br />

<strong>Phytopathogenic</strong> <strong>Dothideomycetes</strong><br />

Pedro W. Crous, Gerard J.M. Verkley and Johannes Z. Groenewald, editors<br />

<strong>CBS</strong>-<strong>KNAW</strong> Fungal Biodiversity Centre,<br />

Utrecht, The Netherlands<br />

An institute of the Royal Netherlands Academy of Arts and Sciences


<strong>Phytopathogenic</strong> <strong>Dothideomycetes</strong><br />

Studies in Mycology 75, 2013


Studies in Mycology<br />

The Studies in Mycology is an international journal which publishes systematic monographs of filamentous fungi and yeasts, and in rare occasions the proceedings of special<br />

meetings related to all fields of mycology, biotechnology, ecology, molecular biology, pathology and systematics. For instructions for authors see www.cbs.knaw.nl.<br />

Executive Editor<br />

Prof. dr dr hc Robert A. Samson, <strong>CBS</strong>-<strong>KNAW</strong> Fungal Biodiversity Centre, P.O. Box 85167, 3508 AD Utrecht, The Netherlands.<br />

E-mail: r.samson@cbs.knaw.nl<br />

Managing Editor<br />

Prof. dr P.W. Crous, <strong>CBS</strong>-<strong>KNAW</strong> Fungal Biodiversity Centre, P.O. Box 85167, 3508 AD Utrecht, The Netherlands.<br />

E-mail: p.crous@cbs.knaw.nl<br />

Layout Editors<br />

Manon van den Hoeven-Verweij, <strong>CBS</strong>-<strong>KNAW</strong> Fungal Biodiversity Centre, P.O. Box 85167, 3508 AD Utrecht, The Netherlands.<br />

E-mail: m.verweij@cbs.knaw.nl<br />

Marjan Vermaas, <strong>CBS</strong>-<strong>KNAW</strong> Fungal Biodiversity Centre, P.O. Box 85167, 3508 AD Utrecht, The Netherlands.<br />

E-mail: m.vermaas@cbs.knaw.nl<br />

Scientific Editors<br />

Prof. dr Dominik Begerow, Lehrstuhl für Evolution und Biodiversität der Pflanzen, Ruhr-Universität Bochum, Universitätsstr. 150, Gebäude ND 44780, Bochum, Germany.<br />

E-mail: dominik.begerow@rub.de<br />

Prof. dr Uwe Braun, Martin-Luther-Universität, Institut für Biologie, Geobotanik und Botanischer Garten, Herbarium, Neuwerk 21, D-06099 Halle, Germany.<br />

E-mail: uwe.braun@botanik.uni-halle.de<br />

Dr Paul Cannon, CABI and Royal Botanic Gardens, Kew, Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3AB, U.K.<br />

E-mail: p.cannon@kew.org<br />

Prof. dr Lori Carris, Associate Professor, Department of Plant Pathology, Washington State University, Pullman, WA 99164-6340, U.S.A.<br />

E-mail: carris@mail.wsu.edu<br />

Prof. dr David M. Geiser, Department of Plant Pathology, 121 Buckhout Laboratory, Pennsylvania State University, University Park, PA, U.S.A. 16802.<br />

E-mail: dgeiser@psu.edu<br />

Dr Johannes Z. Groenewald, <strong>CBS</strong>-<strong>KNAW</strong> Fungal Biodiversity Centre, P.O. Box 85167, 3508 AD Utrecht, The Netherlands.<br />

E-mail: e.groenewald@cbs.knaw.nl<br />

Prof. dr David S. Hibbett, Department of Biology, Clark University, 950 Main Street, Worcester, Massachusetts, 01610-1477, U.S.A.<br />

E-mail: dhibbett@clarku.edu<br />

Dr Lorelei L. Norvell, Pacific Northwest Mycology Service, 6720 NW Skyline Blvd, Portland, OR, U.S.A. 97229-1309.<br />

E-mail: llnorvell@pnw-ms.com<br />

Prof. dr Alan J.L. Phillips, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Quinta de Torre, 2829-516 Caparica, Portugal.<br />

E-mail: alp@mail.fct.unl.pt<br />

Dr Amy Y. Rossman, Rm 304, Bldg 011A, Systematic Botany & Mycology Laboratory, Beltsville, MD, U.S.A. 20705.<br />

E-mail: amy@nt.ars-grin.gov<br />

Dr Keith A. Seifert, Research Scientist / Biodiversity (Mycology and Botany), Agriculture & Agri-Food Canada, KW Neatby Bldg, 960 Carling Avenue, Ottawa, ON, Canada<br />

K1A OC6.<br />

E-mail: seifertk@agr.gc.ca<br />

Prof. dr Hyeon-Dong Shin, Division of Environmental Science & Ecological Engineering, Korea University, Seoul 136-701, Korea.<br />

E-mail: hdshin@korea.ac.kr<br />

Dr Roger Shivas, Manager, Plant Biosecurity Science, Biosecurity Queensland, Department of Employment, Economic Development and Innovation, DEEDI, GPO Box 267,<br />

Brisbane, Qld 4001, Dutton Park 4102, Queensland, Australia.<br />

E-mail: roger.shivas@deedi.qld.gov.au<br />

Dr Marc Stadler, InterMed Discovery GmbH, Otto-Hahn-Straße 15, D-44227 Dortmund, Germany.<br />

E-mail: Marc.Stadler@t-online.de<br />

Prof. dr Jeffrey K. Stone, Department of Botany & Plant Pathology, Cordley 2082, Oregon State University, Corvallis, OR, U.S.A. 97331-2902.<br />

E-mail: stonej@bcc.orst.edu<br />

Dr Richard C. Summerbell, 27 Hillcrest Park, Toronto, Ont. M4X 1E8, Canada.<br />

E-mail: summerbell@aol.com<br />

Prof. dr Brett Summerell, Royal Botanic Gardens and Domain Trust, Mrs. Macquaries Road, Sydney, NSW 2000, Australia.<br />

E-mail: brett.summerell@rbgsyd.nsw.gov.au<br />

Prof. dr Ulf Thrane, Department of Systems Biology, Center for Microbial Biotechnology, Technical University of Denmark, Søltofts Plads 221, DK-2800 Kgs. Lyngby, Denmark.<br />

E-mail: ut@bio.dtu.dk<br />

Copyright 2013 <strong>CBS</strong>-<strong>KNAW</strong> Fungal Biodiversity Centre, P.O. Box 85167, 3508 AD Utrecht, The Netherlands.<br />

You are free to share — to copy, distribute and transmit the work, under the following conditions:<br />

Attribution:<br />

Non-commercial:<br />

No derivative works:<br />

You must attribute the work in the manner specified by the author or licensor (but not in any way that suggests that they endorse you or your use of the work).<br />

You may not use this work for commercial purposes.<br />

You may not alter, transform, or build upon this work.<br />

For any reuse or distribution, you must make clear to others the license terms of this work, which can be found at http://creativecommons.org/licenses/by-nc-nd/3.0/legalcode. Any of the above conditions<br />

can be waived if you get permission from the copyright holder. Nothing in this license impairs or restricts the author"s moral rights.<br />

Publication date: 30 June 2013<br />

Published and distributed by <strong>CBS</strong>-<strong>KNAW</strong> Fungal Biodiversity Centre, P.O. Box 85167, 3508 AD Utrecht, The Netherlands. Internet: www.cbs.knaw.nl.<br />

E-mail: info@cbs.knaw.nl.<br />

ISBN/EAN : 978-90-70351-96-0<br />

Online ISSN : 1872-9797<br />

Print ISSN : 0166-0616<br />

Cover: Top from left to right: Conidia of Alternaria septospora, leaf symptoms induced by Pseudocercospora fijiensis, and conidia of Stagonospora paludosa. Bottom from left to right: Asci of Stagonospora perfecta, leaf symptoms<br />

induced by Cercospora coniogrammes, and conidiophores of a Cercospora sp.


<strong>Phytopathogenic</strong> <strong>Dothideomycetes</strong><br />

edited by<br />

Pedro W. Crous<br />

<strong>CBS</strong>-<strong>KNAW</strong> Fungal Biodiversity Centre, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands<br />

Microbiology, Department of Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands<br />

Wageningen University and Research Centre (WUR), Laboratory of Phytopathology, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands<br />

Gerard J.M. Verkley<br />

<strong>CBS</strong>-<strong>KNAW</strong> Fungal Biodiversity Centre, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands<br />

and<br />

Johannes Z. Groenewald<br />

<strong>CBS</strong>-<strong>KNAW</strong> Fungal Biodiversity Centre, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands<br />

<strong>CBS</strong>-<strong>KNAW</strong> Fungal Biodiversity Centre,<br />

Utrecht, The Netherlands<br />

An institute of the Royal Netherlands Academy of Arts and Sciences


INTRODUCTION<br />

The present issue of Studies in Mycology focuses on plant<br />

pathogenic <strong>Dothideomycetes</strong>. The <strong>Dothideomycetes</strong> represents<br />

the largest class of Ascomycota, with more than 100 families and<br />

19 000 species. Of interest, however, is the fact that this class<br />

also contains the most genera of plant pathogenic fungi, many of<br />

which are frequently encountered by plant health officers at various<br />

ports of entry around the world. These officers are subsequently<br />

confronted by the fact that the fungus may be expressing its sexual<br />

or asexual morph, or worse, maybe sterile mycelium. Traditionally<br />

these mycologists have had a range of books with which they could<br />

try to identify these organisms based on the phenotype. In recent<br />

years however, most of these taxa have been shown to represent<br />

species complexes, with some specific to certain regions or hosts.<br />

Integrating asexual and sexual names, dealing with species that are<br />

cryptic, and genera that are poly- and paraphyletic, and a general<br />

lack of DNA data authentic for these species, is a constant stress<br />

to which these mycologists are exposed. Identifications made by<br />

these mycologists could result in losses of millions of “dollars” to<br />

farmers and producers, while wrongful introductions could again<br />

destroy local industries and markets.<br />

The present issue focuses on five main groups of fungi that<br />

plant health officers deal with on a weekly, or daily basis, namely<br />

Alternaria, Cercospora, Phoma, Pseudocercospora, and Septoria.<br />

DEDICATION: To the plant health officers of the<br />

world<br />

This special issue is dedicated to three exceptional colleagues,<br />

who dedicated their lives and careers to be plant health officers,<br />

striving to enhance trade, but also to protect borders from wrongful<br />

incursions. To these colleagues we owe a great deal of thanks for<br />

their unselfish dedication and commitment. Without their published<br />

works, databases, specimens and cultures, we would not have<br />

been able to produce the papers reported in this special issue.<br />

Gerhard H. Boerema (1925–2008)<br />

Gerhard Boerema accepted a position as mycologist at the Dutch<br />

Plant Protection Service (Plantenziektenkundige Dienst, PD) in<br />

1956. Gerhard became head of the Mycology Department in 1959<br />

and fulfilled this position until his early retirement in 1988. The main<br />

tasks of the Mycology Department at that time was the diagnosis<br />

on symptomatic plant material submitted by inspectors, advisory<br />

services, companies, research stations, etc. It covered all fields<br />

such as agriculture, horticulture, greenhouse products as well as<br />

natural environment. Interesting findings were published annually<br />

in the Dutch Tijdschrift over Plantenziekten, continued later as<br />

Mededelingen van de Plantenziektenkundige Dienst in Wageningen<br />

(Yearbook PD). The diversity of topics is demonstrated in his first<br />

reports that included bark canker of apple and pear, caused by<br />

Pezicula corticola (1959), a new species of Sclerotinia as the cause<br />

of black leg in tulip (1960), and Chalaropsis thielavioides on carrots<br />

pre-packed in perforated polythene bags (1960). Another important<br />

task was to give internal advice concerning quarantine issues.<br />

Shortly after he became head of the Mycology department, a<br />

new disease was found on potatoes, caused by Phoma foveata,<br />

a quarantine organism at that time in Europe. The taxonomy of<br />

phoma-like species on potatoes was confusing, and he started his<br />

fundamental study on Phoma. A second important problem, Phoma<br />

lingam on seeds of Brassicaceae arose, and studies on many other<br />

Phoma species associated with plant material followed.<br />

Gerhard described many synonyms of the Phoma species after<br />

detailed studies of herbarium material. He recognised sections in<br />

Phoma and published his findings in numerous papers in the period<br />

1960–1988. He became the expert on Phoma worldwide. Isolates<br />

and herbarium material were weekly received for identification and<br />

the extensive correspondence in English, French and German<br />

language is still preserved at the Dutch Plant Protection Service.<br />

Gerhard established with his team a culture collection and<br />

herbarium at PD, and most of the strains were also deposited at<br />

the culture collection of <strong>CBS</strong>. During his career, Phoma was his<br />

main topic, but he worked on the nomenclature of many important<br />

plant pathogens, published as "Check-list for scientific names of<br />

common parasitic fungi" in 12 supplement series in the Netherlands<br />

Journal of Plant Pathology.<br />

Gerhard collaborated in a new Phoma project started at the PD<br />

to provide standardised in vitro descriptions of Phoma species. He<br />

established the morphological genus concept with a classification<br />

of Phoma in nine sections. In collaboration with his successor Chiel<br />

Noordeloos, Hans de Gruyter and Marielle Hamers, “Contributions<br />

towards a monograph of Phoma” were published in Persoonia<br />

during the period 1992–2003. These papers formed the base<br />

for the “Phoma Identification Manual” published in 2004 (CABI<br />

Publishing, Wallingford, UK). The cultures deposited at the PD and<br />

the <strong>CBS</strong>, however, laid the foundation for the next phase, which<br />

was a phylogenetic study of the sections and species in the Phoma<br />

complex by two PhD students, Aveskamp and de Gruyter, of which<br />

one final paper is published in this issue.<br />

C.F. (Frank) Hill (1941–2009)<br />

Caleb Francis (Frank) Hill was a mycologist at the Ministry of<br />

Agriculture and Forestry (MAF) in Auckland, New Zealand.<br />

Frank always had a strong focus on diagnostics, and in the<br />

process isolated numerous interesting plant pathogenic fungi.<br />

For instance, Calonectria pseudonaviculata (= Cylindrocladium<br />

buxicola), which is now a major quarantine problem on Buxus<br />

in Europe and the USA, was originally described from material<br />

Frank collected in New Zealand in 1998, and sent to <strong>CBS</strong> for<br />

a collaborative publication on Calonectria, a pathogen that he<br />

frequently intercepted at ports of entry into New Zealand. During<br />

his career Frank published descriptions of more than 70 novel<br />

taxa, contributed to more than 3 000 pest records in the Ministry<br />

of Agriculture and Forestry Plant Pest database, and deposited<br />

more than 1 500 specimens and cultures. To address the severe<br />

shortage of cultures and lack of DNA data in the cercosporoid<br />

complex, the <strong>CBS</strong> started to purposefully cultivate all cercosporoid<br />

fungi encountered. One of the best collectors was Frank Hill, who<br />

in his function as plant health diagnostician, encountered many<br />

pathogens both indigenous and exotic to New Zealand. Frank<br />

collected a great many of the specimens treated in the papers<br />

published in this issue (ranging from Alternaria to Phoma, and<br />

cercosporoid). It is interesting to note that the collection dates<br />

largely correspond with weekends, which gave us the impression<br />

that Frank was always roaming the countryside, botanical gardens<br />

and arboretums, looking for interesting diseases. Without Frank’s


collections, these studies would not have been possible. It is only<br />

fitting then, that we also dedicate this work to him for his keen<br />

eye, and never ending enthusiasm for the subject. Frank may<br />

have passed on, but his collection of plant pathogenic fungal<br />

cultures will forever remain a living legacy for future generations<br />

to study.<br />

Flora G. Pollack (1919–1997)<br />

Gerhard H. Boerema<br />

C.F. (Frank) Hill<br />

Flora G. Pollack<br />

As the United States’ only plant quarantine mycologist for 12<br />

years, Flora Pollack had the privilege of examining specimens<br />

of interesting and unusual fungi from around the world that had<br />

been intercepted at various ports of entry. Flora began working<br />

for the Bureau of Plant Quarantine in the early 1940’s when it<br />

was located in the U.S. Department of Agriculture building in<br />

downtown Washington. She resigned from her job to raise her<br />

children, and 15 years later went to work again as a mycologist at<br />

the American Type Culture Collection (ATCC), then in Rockville,<br />

MD. During her six and one-half years of employment there, she<br />

improved a technique for the preservation of cultures in their<br />

original condition as received by ATCC that is still widely used<br />

for this purpose. When the opportunity arose, she returned to the<br />

U.S. Department of Agriculture in 1967. During her professional<br />

years she published many scientific articles in Mycologia and<br />

other journals often authored in collaboration with others. She<br />

described numerous new species in a wide range of fungal<br />

groups but had a particular fondness for coelomycetous fungi,<br />

a group that still evades accurate classification. At least one<br />

unusual species, aptly named Monosporascus cannonballus was<br />

described by Pollack with F.A. Uecker. Originally encountered as<br />

a harmless oddity associated with the roots of cantaloupes, many<br />

years later this fungus gained prominence as a virulent pathogen<br />

limiting the production of melons in dry areas of the world.<br />

While working for APHIS, Flora was associated with the<br />

Mycology Laboratory, now Systematic Mycology & Microbiology<br />

Laboratory. As the plant quarantine mycologist she encountered<br />

on a daily basis fungi from around the world, many of which she<br />

deposited in the U.S. National Fungus Collections. A search of<br />

herbarium database yields over 5 000 specimens identified by<br />

Flora that remain an important resource for the identification of<br />

plant quarantine fungi as well as fodder for taxonomists tackling<br />

these difficult species. Following the tradition established by her<br />

predecessor, Alice Watson, she maintained a card file of important<br />

literature for the identification of plant-associated fungi. This<br />

file became the basis for a publication (Rossman AY, Palm ME,<br />

Spielman LJ. 1987. A Literature Guide for the Identification of Plant<br />

Pathogenic Fungi. St. Paul, Minnesota: American Phytopathological<br />

Society), and later the database of literature available on the<br />

Internet . After retiring in 1979, Flora was asked to publish a project<br />

she had started in her spare time while working in Beltsville. She<br />

spent many hours pulling together her “Annotated Compilation<br />

of Cercospora Names”. Published in 1987, it served as the most<br />

comprehensive reference on this genus, and provided the basis for<br />

a later update by Crous & Braun (2003) on “Mycosphaerella and<br />

its anamorphs: 1. Names published in Cercospora and Passalora”<br />

(<strong>CBS</strong> Biodiversity Series 1, <strong>CBS</strong>-<strong>KNAW</strong> Fungal Biodiversity<br />

Centre, Utrecht, Netherlands), which in turn set the stage for the<br />

molecular phylogenetic papers published on this complex in this<br />

issue of Studies in Mycology.


Johannes (Hans) de Gruyter<br />

National Reference Centre, National Plant Protection Organization,<br />

P.O. Box 9102, 6700 HC Wageningen, the Netherlands<br />

Brett J.R. Alexander<br />

Mycology and Bacteriology, Plant Health and Environment<br />

Laboratory, Ministry for Primary Industries, PO Box 2095, Auckland<br />

1140, New Zealand<br />

Amy Y. Rossman<br />

Mary E. Palm<br />

Systematic Mycology & Microbiology Laboratory, Agricultural<br />

Research Service, & Animal and Plant Health Inspection Service,<br />

USDA, Beltsville, Maryland 20705, USA<br />

Pedro W. Crous<br />

<strong>CBS</strong>-<strong>KNAW</strong> Fungal Biodiversity Centre, Upssalalaan 8, 3584 CT,<br />

Utrecht, the Netherlands


CONTENTS<br />

J. de Gruyter, J.H.C. Woudenberg, M.M. Aveskamp, G.J.M. Verkley, J.Z. Groenewald and P.W. Crous. Redisposition of phoma-like anamorphs<br />

in Pleosporales ................................................................................................................................................................................................. 1<br />

P.W. Crous, U. Braun, G.C. Hunter, M.J. Wingfield, G.J.M. Verkley, H.-D. Shin, C. Nakashima and J.Z. Groenewald. Phylogenetic lineages in<br />

Pseudocercospora .......................................................................................................................................................................................... 37<br />

J.Z. Groenewald, C. Nakashima, J. Nishikawa, H.-D. Shin, J.-H. Park, A.N. Jama, M. Groenewald, U. Braun and P.W. Crous. Species<br />

concepts in Cercospora: spotting the weeds among the roses .................................................................................................................... 115<br />

J.H.C. Woudenberg, J.Z. Groenewald, M. Binder and P.W. Crous. Alternaria redefined ............................................................................. 171<br />

G.J.M. Verkley, W. Quaedvlieg, H.-D. Shin and P.W. Crous. A new approach to species delimitation in Septoria ...................................... 213<br />

W. Quaedvlieg, G.J.M. Verkley, H.-D. Shin, R.W. Barreto, A.C. Alfenas, W.J. Swart, J.Z. Groenewald and P.W. Crous. Sizing up<br />

Septoria ........................................................................................................................................................................................................ 307<br />

Index of Fungal Names ................................................................................................................................................................................ 391


available online at www.studiesinmycology.org<br />

Studies in Mycology 75: 1–36.<br />

Redisposition of phoma-like anamorphs in Pleosporales<br />

J. de Gruyter 1–3* , J.H.C. Woudenberg 1 , M.M. Aveskamp 1 , G.J.M. Verkley 1 , J.Z. Groenewald 1 , and P.W. Crous 1,3,4<br />

1<br />

<strong>CBS</strong>-<strong>KNAW</strong> Fungal Biodiversity Centre, P.O. Box 85167, 3508 AD Utrecht, The Netherlands; 2 National Reference Centre, National Plant Protection Organization, P.O. Box 9102,<br />

6700 HC Wageningen, The Netherlands; 3 Wageningen University and Research Centre (WUR), Laboratory of Phytopathology, Droevendaalsesteeg 1, 6708 PB Wageningen,<br />

The Netherlands; 4 Microbiology, Department of Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands<br />

*Correspondence: Hans de Gruyter, j.de.gruyter@minlnv.nl<br />

Abstract: The anamorphic genus Phoma was subdivided into nine sections based on morphological characters, and included teleomorphs in Didymella, Leptosphaeria,<br />

Pleospora and Mycosphaerella, suggesting the polyphyly of the genus. Recent molecular, phylogenetic studies led to the conclusion that Phoma should be restricted to<br />

Didymellaceae. The present study focuses on the taxonomy of excluded Phoma species, currently classified in Phoma sections Plenodomus, Heterospora and Pilosa. Species<br />

of Leptosphaeria and Phoma section Plenodomus are reclassified in Plenodomus, Subplenodomus gen. nov., Leptosphaeria and Paraleptosphaeria gen. nov., based on the<br />

phylogeny determined by analysis of sequence data of the large subunit 28S nrDNA (LSU) and Internal Transcribed Spacer regions 1 & 2 and 5.8S nrDNA (ITS). Phoma<br />

heteromorphospora, type species of Phoma section Heterospora, and its allied species Phoma dimorphospora, are transferred to the genus Heterospora stat. nov. The Phoma<br />

acuta complex (teleomorph Leptosphaeria doliolum), is revised based on a multilocus sequence analysis of the LSU, ITS, small subunit 18S nrDNA (SSU), β-tubulin (TUB), and<br />

chitin synthase 1 (CHS-1) regions. Species of Phoma section Pilosa and allied Ascochyta species were determined to belong to Pleosporaceae based on analysis of actin (ACT)<br />

sequence data. Anamorphs that are similar morphologically to Phoma and described in Ascochyta, Asteromella, Coniothyrium, Plectophomella, Pleurophoma and Pyrenochaeta<br />

are included in this study. Phoma-like species, which grouped outside the Pleosporineae based on a LSU sequence analysis, are transferred to the genera Aposphaeria,<br />

Paraconiothyrium and Westerdykella. The genera Medicopsis gen. nov. and Nigrograna gen. nov. are introduced to accommodate the medically important species formerly<br />

known as Pyrenochaeta romeroi and Pyrenochaeta mackinnonii, respectively.<br />

Studies in Mycology<br />

Key words: coelomycetes, Coniothyriaceae, Cucurbitariaceae, Leptosphaeriaceae, Melanommataceae, molecular phylogeny, Montagnulaceae, Phaeosphaeriaceae,<br />

Pleosporaceae, Sporormiaceae, taxonomy, Trematosphaeriaceae.<br />

Taxonomic novelties: New genera: Medicopsis Gruyter, Verkley & Crous, Nigrograna Gruyter, Verkley & Crous, Paraleptosphaeria Gruyter, Verkley & Crous,<br />

Subplenodomus Gruyter, Verkley & Crous. New species: Aposphaeria corallinolutea Gruyter, Aveskamp & Verkley, Paraconiothyrium maculicutis Verkley & Gruyter.<br />

New combinations: Coniothyrium carteri (Gruyter & Boerema) Verkley & Gruyter, C. dolichi (Mohanty) Verkley & Gruyter, C. glycines (R.B. Stewart) Verkley & Gruyter, C.<br />

multiporum (V.H. Pawar, P.N. Mathur & Thirum.) Verkley & Gruyter, C. telephii (Allesch.) Verkley & Gruyter, Heterospora (Boerema, Gruyter & Noordel.) Gruyter, Verkley &<br />

Crous, H. chenopodii (Westend.) Gruyter, Aveskamp & Verkley, H. dimorphospora (Speg.) Gruyter, Aveskamp & Verkley, Leptosphaeria errabunda (Desm.) Gruyter, Aveskamp<br />

& Verkley, L. etheridgei (L.J. Hutchison & Y. Hirats.) Gruyter, Aveskamp & Verkley, L. macrocapsa (Trail) Gruyter, Aveskamp & Verkley, L. pedicularis (Fuckel) Gruyter, Aveskamp<br />

& Verkley, L. rubefaciens (Togliani) Gruyter, Aveskamp & Verkley, L. sclerotioides (Sacc.) Gruyter, Aveskamp & Verkley, L. sydowii (Boerema, Kesteren & Loer.) Gruyter,<br />

Aveskamp & Verkley, L. veronicae (Hollós) Gruyter, Aveskamp & Verkley, Medicopsis romeroi (Borelli) Gruyter, Verkley & Crous, Nigrograna mackinnonii (Borelli) Gruyter,<br />

Verkley & Crous, Paraconiothyrium flavescens (Gruyter, Noordel. & Boerema) Verkley & Gruyter, Paracon. fuckelii (Sacc.) Verkley & Gruyter, Paracon. fusco-maculans (Sacc.)<br />

Verkley & Gruyter, Paracon. lini (Pass.) Verkley & Gruyter, Paracon. tiliae (F. Rudolphi) Verkley & Gruyter, Paraleptosphaeria dryadis (Johanson) Gruyter, Aveskamp & Verkley,<br />

Paralept. macrospora (Thüm.) Gruyter, Aveskamp & Verkley, Paralept. nitschkei (Rehm ex G. Winter) Gruyter, Aveskamp & Verkley, Paralept. orobanches (Schweinitz : Fr.)<br />

Gruyter, Aveskamp & Verkley, Paralept. praetermissa (P. Karst.) Gruyter, Aveskamp & Verkley, Plenodomus agnitus (Desm.) Gruyter, Aveskamp & Verkley, Plen. biglobosus<br />

(Shoemaker & H. Brun) Gruyter, Aveskamp & Verkley, Plen. chrysanthemi (Zachos, Constantinou & Panag.) Gruyter, Aveskamp & Verkley, Plen. collinsoniae (Dearn. & House)<br />

Gruyter, Aveskamp & Verkley, Plen. confertus (Niessl ex Sacc.) Gruyter, Aveskamp & Verkley, Plen. congestus (M.T. Lucas) Gruyter, Aveskamp & Verkley, Plen. enteroleucus<br />

(Sacc.) Gruyter, Aveskamp & Verkley, Plen. fallaciosus (Berl.) Gruyter, Aveskamp & Verkley, Plen. hendersoniae (Fuckel) Gruyter, Aveskamp & Verkley, Plen. influorescens<br />

(Boerema & Loer.) Gruyter, Aveskamp & Verkley, Plen. libanotidis (Fuckel) Gruyter, Aveskamp & Verkley, Plen. lindquistii (Frezzi) Gruyter, Aveskamp & Verkley, Plen. lupini (Ellis<br />

& Everh.) Gruyter, Aveskamp & Verkley, Plen. pimpinellae (Lowen & Sivan.) Gruyter, Aveskamp & Verkley, Plen. tracheiphilus (Petri) Gruyter, Aveskamp & Verkley, Plen. visci<br />

(Moesz) Gruyter, Aveskamp & Verkley, Pleospora fallens (Sacc.) Gruyter & Verkley, Pleo. flavigena (Constantinou & Aa) Gruyter & Verkley, Pleo. incompta (Sacc. & Martelli)<br />

Gruyter & Verkley, Pyrenochaetopsis pratorum (P.R. Johnst. & Boerema) Gruyter, Aveskamp & Verkley, Subplenodomus apiicola (Kleb.) Gruyter, Aveskamp & Verkley,<br />

Subplen. drobnjacensis (Bubák) Gruyter, Aveskamp & Verkley, Subplen. valerianae (Henn.) Gruyter, Aveskamp & Verkley, Subplen. violicola (P. Syd.) Gruyter, Aveskamp &<br />

Verkley, Westerdykella capitulum (V.H. Pawar, P.N. Mathur & Thirum.) de Gruyter, Aveskamp & Verkley, W. minutispora (P.N. Mathur ex Gruyter & Noordel.) Gruyter, Aveskamp<br />

& Verkley. New names: Pleospora angustis Gruyter & Verkley, Pleospora halimiones Gruyter & Verkley.<br />

Published online: 15 May 2012; doi:10.3114/sim0004. Hard copy: June 2013.<br />

Introduction<br />

The anamorphic genus Phoma includes many important plant<br />

pathogens. The taxonomy of Phoma has been studied intensively<br />

in the Netherlands for more than 40 years resulting in the<br />

development of a generic concept as an outline for identification<br />

of Phoma species (Boerema 1997). In this concept species of<br />

the genus Phoma are classified based on their morphological<br />

Copyright <strong>CBS</strong>-<strong>KNAW</strong> Fungal Biodiversity Centre, P.O. Box 85167, 3508 AD Utrecht, The Netherlands.<br />

characters into nine sections: Phoma, Heterospora, Macrospora,<br />

Paraphoma, Peyronellaea, Phyllostictoides, Pilosa, Plenodomus<br />

and Sclerophomella (Boerema 1997). The species placed in each<br />

of the sections were systematically described culminating in the<br />

publication of the “Phoma Identification Manual” (Boerema et al.<br />

2004), which contained the descriptions of 223 specific and infraspecific<br />

taxa of Phoma, and more than 1000 synonyms in other<br />

coelomycetous genera. The classification of the Phoma species in<br />

You are free to share - to copy, distribute and transmit the work, under the following conditions:<br />

Attribution:<br />

You must attribute the work in the manner specified by the author or licensor (but not in any way that suggests that they endorse you or your use of the work).<br />

Non-commercial: You may not use this work for commercial purposes.<br />

No derivative works: You may not alter, transform, or build upon this work.<br />

For any reuse or distribution, you must make clear to others the license terms of this work, which can be found at http://creativecommons.org/licenses/by-nc-nd/3.0/legalcode. Any of the above conditions can be waived if you get<br />

permission from the copyright holder. Nothing in this license impairs or restricts the author’s moral rights.<br />

1


De Gruyter et al.<br />

sections based on morphology is artificial (Boerema et al. 2004),<br />

and several species can be classified in more than one section as<br />

they reveal multiple “section-specific” characters.<br />

A large, well-studied Phoma culture collection that includes<br />

more than 1100 strains of Phoma resulted from the extensive<br />

morphological studies conducted on Phoma in The Netherlands.<br />

That culture collection is the basis of an intensive molecular<br />

phylogenetic study of the genus Phoma, which commenced in<br />

2006. Molecular studies of species of Phoma prior to the onset of<br />

this project concentrated on the development of molecular detection<br />

methods for specific, important plant pathogenic Phoma species,<br />

such as Ph. macdonaldii, Ph. tracheiphila, Stagonosporopsis<br />

cucurbitacearum (as Ph. cucurbitacearum) and Boeremia foveata<br />

(as Ph. foveata) (Aveskamp et al. 2008). The phylogeny of the<br />

type species of the nine Phoma sections and morphologically<br />

similar coelomycetes was determined utilising the sequence data<br />

of the large subunit 28S nrDNA (LSU) and the small subunit 18S<br />

nrDNA (SSU) regions (de Gruyter et al. 2009). Results of that study<br />

demonstrated that the type species of the nine Phoma sections<br />

all grouped in Pleosporales. The type species of five Phoma<br />

sections, Phoma, Phyllostictoides, Sclerophomella, Macrospora<br />

and Peyronellaea and similar genera, grouped in a distinct clade<br />

in Didymellaceae. The type species of the remaining four Phoma<br />

sections, Heterospora, Paraphoma, Pilosa and Plenodomus,<br />

clustered in several clades outside Didymellaceae based on the<br />

LSU and SSU sequence analysis leading to the conclusion that<br />

these species should be excluded from Phoma (de Gruyter et al.<br />

2009, Aveskamp et al. 2010).<br />

The molecular phylogeny of the Phoma species in Didymellaceae<br />

was determined in a subsequent study (Aveskamp et al. 2010)<br />

and, as the phylogenetic placement of the sectional type species<br />

already suggested, included species mainly from sections Phoma,<br />

Phyllostictoides, Sclerophomella, Macrospora and Peyronellaea.<br />

The molecular phylogeny of 11 Phoma species classified in Phoma<br />

section Paraphoma based on their setose pycnidia was investigated<br />

using LSU and SSU sequences (de Gruyter et al. 2010) and this<br />

section was highly polyphyletic, with species clustering mainly in<br />

Phaeosphaeriaceae and Cucurbitariaceae.<br />

The purpose of the present study was to clarify the molecular<br />

phylogeny of the Phoma species currently classified in sections<br />

Plenodomus and Pilosa, along with Phoma species which were<br />

determined to be distantly related to the generic type species<br />

Ph. herbarum in previous molecular studies. Additionally, phomalike<br />

isolates of coelomycetes currently classified in Ascochyta<br />

and Coniothyrium and clustering outside the Didymellaceae (de<br />

Gruyter et al. 2009, Aveskamp et al. 2010) are included in this study<br />

along with a number of phoma-like species that do not belong to<br />

Pleosporineae.<br />

In the present study, the initial focus was to determine the<br />

molecular phylogeny of Phoma betae (teleom. Pleospora betae)<br />

and Ph. lingam (teleom. Leptosphaeria maculans), type species of<br />

the Phoma sections Pilosa and Plenodomus, respectively, at the<br />

generic rank based on the sequence data of the LSU and the SSU<br />

regions. In a subsequent study, the sequence data of both the LSU<br />

and the ITS regions were used for a revised classification of the<br />

Phoma species currently classified in Phoma section Plenodomus.<br />

Only a limited number of the species currently classified in this<br />

section have a confirmed Leptosphaeria teleomorph.<br />

The Phoma acuta species complex was subject of a more<br />

detailed study. The teleomorph of Ph. acuta is Leptosphaeria<br />

doliolum, type species of the genus Leptosphaeria. A multilocus<br />

analysis of sequence data of the SSU, LSU, ITS, β-tubulin (TUB),<br />

and chitin synthase 1 (CHS-1) regions was performed. The<br />

phylogeny of Phoma species of section Pilosa, with a Pleospora<br />

teleomorph (Pleosporaceae) was studied utilising actin (ACT)<br />

sequence data.<br />

Phoma-like species currently attributed to the genera<br />

Aposphaeria, Asteromella, Coniothyrium, Phoma, Plenodomus,<br />

Pleurophoma and Pyrenochaeta, which could not be classified in the<br />

Pleosporineae based on their molecular phylogeny, were included<br />

in a LSU sequence analysis. All Phoma taxa that are unrelated to<br />

Didymellaceae and treated in this paper are redisposed to other<br />

genera.<br />

A further aim of this study was to establish a single nomenclature<br />

for well-resolved anamorph–teleomorph relationships as discussed<br />

by Hawksworth et al. (2011). In cases where one anamorphteleomorph<br />

generic relation is involved in a monophyletic lineage,<br />

one generic name was chosen based on priority and the other<br />

named teleomorph or anamorph state is treated as a synonym.<br />

Similar approaches towards single nomenclature have been<br />

employed in Botryosphaeriales (Crous et al. 2006, 2009a, b, Phillips<br />

et al. 2008), Pleosporales (Aveskamp et al. 2010), and Hypocreales<br />

(Lombard et al. 2010a–c, Chaverri et al. 2011, Gräfenhan et al.<br />

2011, Schroers et al. 2011).<br />

MATERIALS AND METHODS<br />

Isolate selection, culture studies and DNA extraction<br />

The generic abbreviations used in this study are: Ascochyta<br />

(A.), Coniothyrium (C.), Heterospora (H.), Leptosphaeria (L.),<br />

Paraconiothyrium (Paracon.), Paraleptosphaeria (Paralep.), Phoma<br />

(Ph.), Plenodomus (Plen.), Pleospora (Pleo.), Pyrenochaeta (Py.),<br />

Subplenodomus (Subplen.) and Westerdykella (W.). The isolates<br />

included in this study were obtained from the culture collections<br />

of the Centraalbureau voor Schimmelcultures, Utrecht, The<br />

Netherlands (<strong>CBS</strong>-<strong>KNAW</strong>) and the Dutch National Plant Protection<br />

Organization, Wageningen, The Netherlands (PD) (Table 1).<br />

The freeze-dried isolates were revived overnight in 2 mL malt/<br />

peptone (50 % / 50 %) liquid medium and subsequently transferred<br />

and maintained on oatmeal agar (OA) (Crous et al. 2009c). The<br />

isolates, which were stored at -196 °C, were directly transferred<br />

to OA. Cultures growing on OA and malt extract agar (MEA)<br />

(Crous et al. 2009c) were studied morphologically as described in<br />

detail by Boerema et al. (2004). The genomic DNA isolation was<br />

performed using the Ultraclean Microbial DNA isolation kit (Mo Bio<br />

Laboratories, Carlsbad, California) according to the instructions of<br />

the manufacturer. All DNA extracts were diluted 10 × in milliQ water<br />

and stored at 4 °C before use.<br />

PCR and sequencing<br />

For nucleotide sequence comparisons, partial regions of SSU, LSU<br />

and ITS, as well as part of the ACT, TUB and CHS-1 genes were<br />

amplified. The SSU region was amplified with the primers NS1 and<br />

NS4 (White et al. 1990) and the LSU region was amplified with<br />

the primers LR0R (Rehner & Samuels 1994) and LR7 (Vilgalys<br />

& Hester 1990). The ITS and TUB regions were amplified as<br />

described by Aveskamp et al. (2009) using the primer pair V9G (de<br />

Hoog & Gerrits van den Ende 1998) and ITS4 (White et al. 1990)<br />

for the ITS and the BT2Fw and BT4Rd primer pair (Woudenberg<br />

et al. 2009) for the TUB locus. The ACT and CHS-1 regions<br />

2


Phoma sections Plenodomus, Pilosa<br />

were amplified using the primer pairs ACT-512F / ACT-783R and<br />

CHS-354R / CHS-79F (Carbone & Kohn 1999). The amplification<br />

reactions were performed and analysed as described by de Gruyter<br />

et al. (2009).<br />

Sequencing of the PCR amplicons was conducted using the<br />

same primer combinations, although the primer LR5 (Vilgalys &<br />

Hester 1990) was used as an additional internal sequencing primer<br />

for LSU. The sequence products were purified using Sephadex<br />

columns (Sephadex G-50 Superfine, Amersham Biosciences,<br />

Roosendaal, Netherlands) and analysed with an ABI Prism 3730XL<br />

Sequencer (Applied Biosystems) according to the manufacturer’s<br />

instructions. Consensus sequences were computed from both<br />

forward and reverse sequences using the Bionumerics v. 4.61<br />

software package (Applied Maths, Sint-Martens-Latem, Belgium)<br />

and were lodged with GenBank. All sequences of reference isolates<br />

included in this study were obtained from GenBank (Table 1).<br />

Phylogenetic analyses<br />

To determine the phylogeny of Phoma betae and Ph. lingam at<br />

rank, the SSU and LSU sequence data of two isolates were aligned<br />

with the sequences of 46 reference isolates in the Pleosporales that<br />

were obtained from GenBank (Table 1), 14 of which were classified<br />

in the Pleosporaceae or Leptosphaeriaceae. The phylogeny of<br />

Phoma section Plenodomus was determined with the combined<br />

data set of LSU and ITS sequences of 87 isolates, including<br />

53 isolates currently classified in Leptosphaeria and Phoma<br />

section Plenodomus. Phoma apiicola, Ph. dimorphospora, Ph.<br />

heteromorphospora, Ph. lupini, Ph. valerianae, Ph. vasinfecta and<br />

Ph. violicola classified in Phoma sections Phoma or Heterospora<br />

(Boerema et al. 2004) grouped in previous molecular phylogenetic<br />

studies outside Didymellaceae (de Gruyter et al. 2009, Aveskamp<br />

et al. 2010), and are therefore treated here.<br />

In the study of the Leptosphaeria doliolum complex, that includes<br />

the subspecies of Ph. acuta, viz. subsp. acuta, errabunda and also<br />

Ph. acuta subsp. acuta f. sp. phlogis, a phylogenetic analysis was<br />

performed utilising the ITS, ACT, TUB, CHS-1 sequences of 18<br />

isolates. Phoma macrocapsa, Ph. sydowii and Ph. veronicicola<br />

being closely related to this species complex were included.<br />

The species concept of phoma-like anamorphs in Pleosporaceae<br />

was determined by alignments of the ACT sequences of 15 isolates<br />

and five reference isolates. Phoma fallens, Ph. glaucispora and<br />

Ph. flavigena were also included. These species were originally<br />

classified in Phoma sect. Phoma (de Gruyter & Noordeloos 1992,<br />

de Gruyter et al. 1998). However, a molecular phylogenetic study<br />

demonstrated that these species grouped in a clade representing<br />

Leptosphaeriaceae and Pleosporaceae (Aveskamp et al. 2010).<br />

Sequence data were compared with those of isolates currently<br />

classified in the genera Phoma, Ascochyta and Coniothyrium, as<br />

well as isolates of Leptosphaeria clavata and the generic type<br />

species Pleospora herbarum. Phoma incompta is the only species<br />

classified in Phoma section Sclerophomella, which proved to be<br />

unrelated to Didymellaceae (Aveskamp et al. 2010).<br />

The phoma-like species that could not be attributed to<br />

Pleosporineae (Zhang et al. 2009) were studied with the LSU<br />

sequences of 40 isolates, including 20 reference isolates<br />

representing the anamorph genera Beverwykella, Neottiosporina,<br />

Paraconiothyrium, as well as the teleomorph genera Byssothecium,<br />

Falciformispora, Herpotrichia, Melanomma, Paraphaeosphaeria,<br />

Pleomassaria, Preussia, Roussoella, Splanchnonema,<br />

Sporormiella, Thyridaria, Trematosphaeria and Westerdykella.<br />

Four Phoma species were included which are currently described in<br />

Phoma section Phoma, viz. Ph. capitulum, Ph. flavescens, Ph. lini,<br />

and Ph. minutispora (de Gruyter & Noordeloos 1992, de Gruyter et<br />

al. 1993). In addition, the human pathogens Pyrenochaeta romeroi<br />

and Py. mackinnonii, which could not be classified in a recent study<br />

dealing with phoma-like species with setose pycnidia (de Gruyter<br />

et al. 2010), were included.<br />

The multiple alignments were automatically calculated by<br />

the BioNumerics software package, but manual adjustments for<br />

improvement were made by eye where necessary. For multilocus<br />

alignments, the phylogenetic analyses were done for each dataset<br />

individually, and where similar tree topologies were obtained, an<br />

analysis was performed on the combined alignment of all the<br />

gene regions in the multilocus alignment. Neighbour-Joining (NJ)<br />

distance analyses were conducted using PAUP (Phylogenetic<br />

Analysis Using Parsimony) v. 4.0b10 (Swofford 2003) with<br />

the uncorrected “p”, Jukes-Cantor and Kimura 2-parameter<br />

substitution models. The robustness of the trees obtained was<br />

evaluated by 1000 bootstrap replications. A Bayesian analysis was<br />

conducted with MrBayes v. 3.1.2 (Huelsenbeck & Ronqvist 2001)<br />

in two parallel runs, using the default settings but with the following<br />

adjustments: the GTR model (trees 1–3, 5) with gamma-distributed<br />

rate and the HKY+ γ-model (tree 4) were selected for the partitions<br />

using the Findmodel freeware (http://hcv.lanl.gov/content/hcv-db/<br />

findmodel/findmodel.html), and a MCMC heated chain was set<br />

with a “temperature” value of 0.05. The number of generations and<br />

sample frequencies were set at 5 million and 10 (trees 3–5) or 100<br />

(trees 1, 2) respectively and the run was automatically stopped<br />

as soon as the average standard deviation of split frequencies<br />

reached below 0.01. The resulting trees were printed with TreeView<br />

v. 1.6.6 (Page 1996) and alignments and trees were deposited into<br />

TreeBASE (www.treebase.org).<br />

RESULTS<br />

The data for the aligned sequence matrices for the trees obtained in<br />

the different studies are provided below. In the case that alignments<br />

of multiple loci are involved, the topologies of the obtained trees<br />

for each locus were compared by eye to confirm that the overall<br />

tree topology of the individual datasets were similar to each other<br />

and to that of the tree obtained from the combined alignment. The<br />

NJ analyses with the three substitution models showed similar tree<br />

topologies and were congruent to those obtained in the Bayesian<br />

analyses. The results of the molecular phylogenetic analyses are<br />

supplied below; the summarised additional ecology and distribution<br />

data of the taxa involved were adopted from Boerema et al. (2004),<br />

where the references to original literature are provided.<br />

Phylogeny of Phoma lingam and Ph. betae, the type<br />

species of Phoma sections Plenodomus and Pilosa<br />

(Pleosporineae)<br />

The aligned sequence matrix obtained for the SSU and LSU<br />

regions had a total length of 2 671 nucleotide characters, 1 367 and<br />

1 304 respectively. In the alignment, an insertion in the SSU at the<br />

positions 478–832 was observed for the cultures <strong>CBS</strong> 216.75, <strong>CBS</strong><br />

165.78, <strong>CBS</strong> 138.96, <strong>CBS</strong> 331.37 and <strong>CBS</strong> 674.75. This insertion<br />

was excluded from further phylogenetic analyses. The combined<br />

dataset used in the analyses included 48 taxa and contained 2 316<br />

characters with 101 and 213 unique site patterns for SSU and LSU,<br />

www.studiesinmycology.org<br />

3


De Gruyter et al.<br />

Table 1. Isolates used in this study and their GenBank accession numbers. Name changes and newly generated sequences are indicated in bold.<br />

Species name, final identification Former identification <strong>CBS</strong> no. Other no. ITS SSU LSU ACT TUB CHS-1 Host, substrate Country<br />

Aposphaeria corallinolutea sp. nov. Pleurophoma sp. <strong>CBS</strong> 131286 PD 83/367 JF740329 Kerria japonica (Rosaceae) Netherlands<br />

Pleurophoma sp. <strong>CBS</strong> 131287 PD 83/831 JF740330 Fraxinus excelsior<br />

(Oleaceae)<br />

Aposphaeria populina <strong>CBS</strong> 543.70 EU754130 Populus canadensis<br />

(Salicaceae)<br />

Pyrenochaeta sp. <strong>CBS</strong> 350.82 JF740265 Picea abies (Pinaceae) Germany<br />

Netherlands<br />

Netherlands<br />

Pleurophoma sp. <strong>CBS</strong> 130330 PD 84/221 JF740328 Cornus mas (Cornaceae) Netherlands<br />

Beverwykella pulmonaria <strong>CBS</strong> 283.53 ATCC 32983, IFO 6800 GU301804 Fagus sylvatica (Fagaceae) Netherlands<br />

Byssothecium circinans <strong>CBS</strong> 675.92 ATCC 52767, ATCC 52678,<br />

IMI 266220<br />

AY016357 Medicago sativa<br />

(Fabaceae)<br />

Chaetodiplodia sp. Chaetodiplodia sp. <strong>CBS</strong> 453.68 JF740115 Halimione portulacoides<br />

(Chenopodiaceae)<br />

Chaetosphaeronema hispidulum <strong>CBS</strong> 216.75 EU754045 EU754144 Anthyllis vulneraria<br />

(Fabaceae)<br />

Cochliobolus sativus DAOM 226212 DQ677995 DQ678045 (Poaceae) Unknown<br />

USA<br />

Netherlands<br />

Germany<br />

Coniothyrium carteri comb. nov. Phoma carteri <strong>CBS</strong> 101633 PD 84/74 JF740180 GQ387593 Quercus sp. Fagaceae) Netherlands<br />

Phoma carteri <strong>CBS</strong> 105.91 JF740181 GQ387533 GQ387594 Quercus robur (Fagaceae) Germany<br />

Coniothyrium dolichi comb. nov. Pyrenochaeta dolichi <strong>CBS</strong> 124143 IMI 217261 JF740182 GQ387610 Dolichos biforus<br />

(Fabaceae)<br />

Pyrenochaeta dolichi <strong>CBS</strong> 124140 IMI 217262 JF740183 GQ387550 GQ387611 Dolichos biforus<br />

(Fabaceae)<br />

Coniothyrium glycines comb. nov. Phoma glycinicola <strong>CBS</strong> 124455 IMI 294986 JF740184 GQ387536 GQ387597 Glycine max (Fabaceae) Zambia<br />

India<br />

India<br />

Phoma glycinicola <strong>CBS</strong> 124141 PG-1 JF740185 GQ387598 Glycine max (Fabaceae) Zimbabwe<br />

Coniothyrium multiporum comb. nov. Phoma multipora <strong>CBS</strong> 501.91 PD 83/888 JF740186 GU238109 Unknown Egypt<br />

Phoma multipora <strong>CBS</strong> 353.65 IMI 113689, ATCC 16207,<br />

HACC 164<br />

JF740187 JF740268 Saline soil India<br />

Coniothyrium palmarum <strong>CBS</strong> 400.71 AY720708 EU754054 EU754153 Chamaerops humilis<br />

(Arecaceae)<br />

Coniothyrium telephii comb. nov. Phoma septicidalis <strong>CBS</strong> 188.71 JF740188 GQ387538 GQ387599 Air Finland<br />

Italy<br />

Phoma septicidalis <strong>CBS</strong> 856.97 JF740189 GQ387539 GQ387600 Mineral wool Finland<br />

Phoma septicidalis <strong>CBS</strong> 101636 PD 86/1186 JF740190 GQ387540 GQ387601 Glycine max (Fabaceae) Zimbabwe<br />

Cucurbitaria berberidis, anam.<br />

Pyrenochaeta berberidis<br />

<strong>CBS</strong> 363.93 JF740191 GQ387545 GQ387606 Berberis vulgaris<br />

(Berberidaceae)<br />

Didymella exigua <strong>CBS</strong> 183.55 EU754056 EU754155 Rumex arifolius<br />

(Polygonaceae)<br />

Netherlands<br />

France<br />

4


Phoma sections Plenodomus, Pilosa<br />

Table 1. (Continued).<br />

Species name, final identification Former identification <strong>CBS</strong> no. Other no. ITS SSU LSU ACT TUB CHS-1 Host, substrate Country<br />

Netherlands<br />

Didymella lycopersici, anam. Boeremia<br />

lycopersici<br />

<strong>CBS</strong> 378.67 JF740097 GU237950 Lycopersicon esculentum<br />

(Solanaceae)<br />

Falcisormispora lignatilis BCC 21118 GU371827 Elaeis guineensis<br />

(Arecaceae)<br />

Herpotrichia juniperi <strong>CBS</strong> 200.31 DQ678080 Juniperus nana<br />

(Cupressaceae)<br />

Heterospora chenopodii comb. nov. Phoma heteromorphospora <strong>CBS</strong> 448.68 FJ427023 EU754088 EU754187 Chenopodium album<br />

(Chenopodiaceae)<br />

Phoma heteromorphospora <strong>CBS</strong> 115.96 PD 94/1576 JF740227 EU754188 Chenopodium album<br />

(Chenopodiaceae)<br />

Heterospora dimorphospora comb. nov. Phoma dimorphospora <strong>CBS</strong> 345.78 PD 76/1015 JF740203 GU238069 Chenopodium quinoa<br />

(Chenopodiaceae)<br />

Leptosphaeria conoidea Leptosphaeria conoidea,<br />

anam. Phoma doliolum<br />

Phoma dimorphospora <strong>CBS</strong> 165.78 PD 77/884 JF740204 JF740098 JF740281 Chenopodium quinoa<br />

(Chenopodiaceae)<br />

Leptosphaeria conoidea,<br />

anam. Phoma doliolum<br />

Leptosphaeria doliolum Leptosphaeria doliolum<br />

subsp. doliolum var.<br />

doliolum, anam. Phoma<br />

acuta subsp. acuta<br />

Leptosphaeria doliolum<br />

subsp. errabunda, anam.<br />

Phoma acuta subsp.<br />

errabunda<br />

Phoma acuta subsp. acuta<br />

f.sp. phloxis<br />

Phoma acuta subsp. acuta<br />

f.sp. phloxis<br />

Leptosphaeria doliolum<br />

subsp. doliolum var.<br />

doliolum, anam. Phoma<br />

acuta subsp. acuta<br />

Leptosphaeria doliolum<br />

subsp. doliolum var.<br />

doliolum, anam. Phoma<br />

acuta subsp. acuta<br />

Leptosphaeria errabunda comb. nov. Leptosphaeria doliolum<br />

subsp. errabunda, anam.<br />

Phoma acuta subsp.<br />

errabunda<br />

<strong>CBS</strong> 616.75 ATCC 32813, IMI 199777,<br />

PD 74/56<br />

JF740201 JF740099 JF740279 Lunaria annua<br />

(Brassicaceae)<br />

Thailand<br />

Switzerland<br />

Netherlands<br />

Netherlands<br />

Peru<br />

Peru<br />

Netherlands<br />

<strong>CBS</strong> 125977 PD 82/888 JF740202 JF740280 Senecio sp. (Asteraceae) Netherlands<br />

<strong>CBS</strong> 505.75 PD 75/141 JF740205 GQ387515 GQ387576 JF740126 JF740144 JF740162 Urtica dioica (Urticaceae) Netherlands<br />

<strong>CBS</strong> 541.66 PD 66/221 JF740206 JF740284 JF740127 JF740145 JF740163 Rudbeckia sp. (Asteraceae) Netherlands<br />

<strong>CBS</strong> 155.94 PD 77/80 JF740207 JF740282 JF740128 JF740146 JF740164 Phlox paniculata<br />

(Polemoniaceae)<br />

<strong>CBS</strong> 125979 PD 78/37 JF740208 JF740283 JF740129 JF740147 JF740165 Phlox paniculata<br />

(Polemoniaceae)<br />

Netherlands<br />

Netherlands<br />

<strong>CBS</strong> 504.75 PD 74/55 JF740209 JF740130 JF740148 JF740166 Urtica dioica (Urticaceae) Netherlands<br />

<strong>CBS</strong> 130000 PD 82/701 JF740210 JF740131 JF740149 JF740167 Urtica dioica (Urticaceae) Netherlands<br />

<strong>CBS</strong> 617.75 ATCC 32814, IMI 199775,<br />

PD 74/201<br />

JF740216 JF740289 JF740132 JF740150 JF740168 Solidago sp. (hybrid)<br />

(Asteraceae)<br />

Netherlands<br />

www.studiesinmycology.org<br />

5


De Gruyter et al.<br />

Table 1. (Continued).<br />

Species name, final identification Former identification <strong>CBS</strong> no. Other no. ITS SSU LSU ACT TUB CHS-1 Host, substrate Country<br />

Netherlands<br />

Leptosphaeria doliolum<br />

subsp. errabunda, anam.<br />

Phoma acuta subsp.<br />

errabunda<br />

Leptosphaeria doliolum<br />

subsp. errabunda, anam.<br />

Phoma acuta subsp.<br />

errabunda<br />

Leptosphaeria doliolum<br />

subsp. errabunda, anam.<br />

Phoma acuta subsp.<br />

errabunda<br />

Leptosphaeria doliolum<br />

subsp. errabunda, anam.<br />

Phoma acuta subsp.<br />

errabunda<br />

<strong>CBS</strong> 125978 PD 74/61 JF740217 JF740290 JF740133 JF740151 JF740169 Delphinium sp.<br />

(Ranunculaceae)<br />

<strong>CBS</strong> 129999 PD 78/569 JF740218 JF740134 JF740152 JF740170 Aconitum sp.<br />

(Ranunculaceae)<br />

Netherlands<br />

<strong>CBS</strong> 129998 PD 84/462 JF740219 JF740135 JF740153 JF740171 Gailardia (Asteraceae) Netherlands<br />

<strong>CBS</strong> 129997 PD 78/631 JF740220 JF740136 JF740154 JF740172 Achillea millefolium<br />

(Apiaceae)<br />

Leptosphaeria etheridgei comb. nov. Phoma etheridgei <strong>CBS</strong> 125980 DAOM 216539, PD 95/1483 JF740221 JF740291 Populus tremuloides<br />

(Salicaceae)<br />

Leptosphaeria macrocapsa comb. nov. Phoma macrocapsa <strong>CBS</strong> 640.93 PD 78/139 JF740237 JF740304 JF740138 JF740156 JF740174 Mercurialis perennis<br />

(Euphorbiaceae)<br />

Leptosphaeria pedicularis comb. nov. Phoma pedicularis <strong>CBS</strong> 126582 PD 77/710 JF740223 JF740293 Gentiana punctata<br />

(Gentianaceae)<br />

Phoma pedicularis <strong>CBS</strong> 390.80 PD 77/711 JF740224 JF740294 JF740137 JF740155 JF740173 Pedicularis sp.<br />

(Scrophulariaceae)<br />

Netherlands<br />

Canada<br />

Netherlands<br />

Switzerland<br />

Switzerland<br />

Leptosphaeria rubefaciens comb. nov. Phoma rubefaciens <strong>CBS</strong> 387.80 IMI 248432, ATCC 42533,<br />

PD 78/809<br />

JF740242 JF740311 Tilia (x) europea<br />

(Malvaceae)<br />

Netherlands<br />

Phoma rubefaciens <strong>CBS</strong> 223.77 JF740243 JF740312 Quercus sp. (Fagaceae) Switzerland<br />

Leptosphaeria sclerotioides comb. nov. Phoma sclerotioides <strong>CBS</strong> 144.84 CECT 20025, PD 82/1061 JF740192 JF740269 Medicago sativa<br />

(Fabaceae)<br />

Leptosphaeria slovacica Leptosphaeria slovacica,<br />

anam. Phoma leonuri<br />

Phoma sclerotioides <strong>CBS</strong> 148.84 PD 80/1242 JF740193 JF740270 Medicago sativa<br />

(Fabaceae)<br />

Leptosphaeria slovacica,<br />

anam. Phoma leonuri<br />

<strong>CBS</strong> 389.80 PD 79/171 JF740247 JF740101 JF740315 Balota nigra (Lamiaceae) Netherlands<br />

<strong>CBS</strong> 125975 PD 77/1161 JF740248 JF740316 Balota nigra (Lamiaceae) Netherlands<br />

Leptosphaeria sydowii comb. nov. Phoma sydowii <strong>CBS</strong> 385.80 PD 74/477 JF740244 JF740313 JF740139 JF740157 JF740175 Senecio jacobaea<br />

(Asteraceae)<br />

Canada<br />

Canada<br />

UK<br />

Phoma sydowii <strong>CBS</strong> 125976 PD 84/472 JF740245 JF740314 JF740140 JF740158 JF740176 Senecio jacobaea<br />

(Asteraceae)<br />

Netherlands<br />

6


Phoma sections Plenodomus, Pilosa<br />

Table 1. (Continued).<br />

Species name, final identification Former identification <strong>CBS</strong> no. Other no. ITS SSU LSU ACT TUB CHS-1 Host, substrate Country<br />

Phoma sydowii <strong>CBS</strong> 297.51 JF740246 JF740141 JF740159 JF740177 Papaver rhoeas<br />

Switzerland<br />

(Papaveraceae)<br />

Leptosphaeria veronicae comb. nov. Phoma veronicicola <strong>CBS</strong> 145.84 CECT 20059, PD 78/273 JF740254 JF740320 JF740142 JF740160 JF740178 Veronica chamaedryoides Netherlands<br />

(Scrophulariaceae)<br />

Phoma veronicicola <strong>CBS</strong> 126583 PD 74/227 JF740255 JF740321 JF740143 JF740161 JF740179 Veronica ‘Shirley Blue’ Netherlands<br />

(Scrophulariaceae)<br />

Massarina eburnea H 3953, HHUF 26621, JCM<br />

AB521718 AB521735 Fagus sylvatica (Fagaceae) UK<br />

14422<br />

Massarina eburnea <strong>CBS</strong> 473.64 ETH 2945 GU296170 GU301840 Fagus sylvatica (Fagaceae) Switzerland<br />

Medicopsis romeroi comb. nov. Pyrenochaeta romeroi <strong>CBS</strong> 252.60 ATCC 13735, FMC 151,<br />

UAMH 10841<br />

EU754108 EU754207 Human, maduromycosis Venezuela<br />

Pyrenochaeta romeroi <strong>CBS</strong> 122784 PD 84/1022 EU754208 Hordeum vulgare<br />

(Gramineae)<br />

Melanomma pulvis-pyrius <strong>CBS</strong> 371.75 GU301845 Wood France<br />

Unknown<br />

<strong>CBS</strong> 400.97 DQ678020 DQ678072 Fagus sp. (Fagaceae) Belgium<br />

Neophaeosphaeria filamentosa <strong>CBS</strong> 102202 BPI 802755 JF740259 GQ387516 GQ387577 Yucca rostrata (Agavaceae) Mexico<br />

Neosetophoma samarorum <strong>CBS</strong> 138.96 PD 82/653 GQ387517 GQ387578 Phlox paniculata<br />

(Polemoniaceae)<br />

Neottiosporina paspali <strong>CBS</strong> 331.37 EU754073 EU754172 Paspalum notatum<br />

(Poaceae)<br />

Nigrogana mackinnonii comb. nov. Pyrenochaeta mackinnonii <strong>CBS</strong> 674.75 FMC 270<br />

GQ387613 Human, black grain<br />

Venezuela<br />

GQ387552<br />

mycetoma<br />

Pyrenochaeta mackinnonii <strong>CBS</strong> 110022 GQ387614 Human, mycetoma Mexico<br />

Netherlands<br />

USA<br />

Paraconiothyrium flavescens comb. nov. Phoma flavescens <strong>CBS</strong> 178.93 PD 82/1062 GU238075 Soil Netherlands<br />

Paraconiothyrium fuckelii comb. nov. Coniothyrium fuckelii <strong>CBS</strong> 797.95 GU238204 GU237960 Rubus sp. (Rosaceae) Denmark<br />

Paraconiothyrium fusco-maculans comb.<br />

nov.<br />

Plenodomus fuscomaculans<br />

<strong>CBS</strong> 116.16 EU754197 Malus sp. (Rosaceae) USA<br />

Paraconiothyrium lini comb. nov. Phoma lini <strong>CBS</strong> 253.92 PD 70/998 EU238093 Wisconsin tank Netherlands<br />

Paraconiothyrium maculicutis sp. nov. Pleurophoma pleurospora <strong>CBS</strong> 101461 IMI 320754, UTHSC 87-144 EU754200 Human, cutaneous lesions USA<br />

Paraconiothyrium minitans <strong>CBS</strong> 122788 PD 07/03486739 EU754074 EU754173 Unknown UK<br />

<strong>CBS</strong> 122786 PD 99/1064-1 EU754174 Clematis sp.<br />

(Ranunculaceae)<br />

Netherlands<br />

Paraconiothyrium tiliae comb. nov. Asteromella tiliae <strong>CBS</strong> 265.94 EU754139 Tilia platyphyllos (Tiliaceae) Austria<br />

Paraleptosphaeria dryadis comb. nov. Leptosphaeria dryadis <strong>CBS</strong> 643.86 JF740213 GU301828 Dryas octopetala<br />

(Rosaceae)<br />

Switzerland<br />

www.studiesinmycology.org<br />

7


De Gruyter et al.<br />

Table 1. (Continued).<br />

Species name, final identification Former identification <strong>CBS</strong> no. Other no. ITS SSU LSU ACT TUB CHS-1 Host, substrate Country<br />

Norway<br />

Paraleptosphaeria macrospora comb.<br />

nov.<br />

Phoma macrospora <strong>CBS</strong> 114198 UPSC 2686 JF740238 JF740305 Rumex domesticus<br />

(Chenopodiaceae)<br />

Paraleptosphaeria nitschkei comb. nov. Leptosphaeria nitschkei <strong>CBS</strong> 306.51 JF740239 JF740308 Cirsium spinosissimum<br />

(Asteraceae)<br />

Paraleptosphaeria orobanches comb.<br />

nov.<br />

Paraleptosphaeria praetermissa comb.<br />

nov.<br />

Phoma korfii <strong>CBS</strong> 101638 PD 97/12070 JF400230 JF740299 Epifagus virginiana<br />

(Orobanchaceae)<br />

Leptosphaeria praetermissa <strong>CBS</strong> 114591 JF740241 JF740310 Rubus idaeus (Rosaceae) Sweden<br />

Paraphaeosphaeria michoti <strong>CBS</strong> 652.86 ETH 9483 GQ387520 GQ387581 Typha latifolia (Typhaceae) Switzerland<br />

Switzerland<br />

USA<br />

Paraphoma radicina <strong>CBS</strong> 111.79 IMI 386094, PD 76/437 EU754092 EU754191 Malus sylvestris<br />

(Rosaceae)<br />

Phaeosphaeria nodorum <strong>CBS</strong> 110109 EU754076 EU754175 Lolium perenne<br />

(Gramineae)<br />

Phoma herbarum <strong>CBS</strong> 615.75 FJ427022 EU754087 EU754186 Rosa multiflora (Rosaceae) Netherlands<br />

Netherlands<br />

Denmark<br />

Phoma paspali <strong>CBS</strong> 560.81 PD 92/1569 GU238227 G238124 Paspalum dilatum<br />

(Poaceae)<br />

Plenodomus agnitus comb. nov. Leptosphaeria agnita,<br />

anam. Phoma agnita<br />

Leptosphaeria agnita,<br />

anam. Phoma agnita<br />

<strong>CBS</strong> 121.89 PD 82/903 JF740194 JF740271 Eupatorium cannabinum<br />

(Asteraceae)<br />

<strong>CBS</strong> 126584 PD 82/561 JF740195 JF740272 Eupatorium cannabinum<br />

(Asteraceae)<br />

Plenodomus biglobosus comb. nov. Leptosphaeria biglobosa <strong>CBS</strong> 119951 JF740198 JF740102 JF740274 Brassica rapa<br />

(Brassicaceae)<br />

Plenodomus chrysanthemi comb. nov. Phoma vasinfecta,<br />

synanam. Phialophora<br />

chrysanthemi<br />

<strong>CBS</strong> 127249 DAOM 229269 JF740199 JF740275 Brassica juncea<br />

(Brassicaceae)<br />

<strong>CBS</strong> 539.63 JF740253 GU238230 GU238151 Chrysanthemum sp.<br />

(Asteraceae)<br />

Plenodomus collinsoniae comb. nov. Leptosphaeria collinsoniae <strong>CBS</strong> 120227 JCM 13073, MAFF 239583 JF740200 JF740276 Vitis coignetiae (Vitaceae) Japan<br />

New<br />

Zealand<br />

Netherlands<br />

Netherlands<br />

Netherlands<br />

France<br />

Greece<br />

Plenodomus confertus comb. nov. Leptosphaeria conferta,<br />

anam. Phoma conferta<br />

Plenodomus congestus comb. nov. Leptosphaeria congesta,<br />

anam. Phoma congesta<br />

Plenodomus enteroleucus comb. nov. Phoma enteroleuca var.<br />

enteroleuca<br />

Phoma enteroleuca var.<br />

enteroleuca<br />

<strong>CBS</strong> 375.64 AF439459 JF740277 Anacyclus radiatus<br />

(Asteraceae)<br />

<strong>CBS</strong> 244.64 AF439460 JF740278 Erigeron canadensis<br />

(Asteraceae)<br />

<strong>CBS</strong> 142.84 PD 81/654, CECT20063 JF740214 JF740287 Catalpa bignonioides<br />

(Bignoniaceae)<br />

<strong>CBS</strong> 831.84 JF740215 JF740288 Triticum aestivum<br />

(Poaceae)<br />

Plenodomus fallaciosus comb. nov. Leptosphaeria fallaciosa <strong>CBS</strong> 414.62 ETH 2961 JF740222 JF740292 Satureia montana<br />

(Lamiaceae)<br />

Spain<br />

Spain<br />

Netherlands<br />

Germany<br />

France<br />

8


Phoma sections Plenodomus, Pilosa<br />

Table 1. (Continued).<br />

Species name, final identification Former identification <strong>CBS</strong> no. Other no. ITS SSU LSU ACT TUB CHS-1 Host, substrate Country<br />

Plenodomus hendersoniae comb. nov. Phoma intricans <strong>CBS</strong> 113702 UPSC 1843 JF740225 JF740295 Salix cinerea (Salicaceae) Sweden<br />

Phoma intricans <strong>CBS</strong> 139.78 JF740226 JF740296 Pyrus malus (Rosaceae) Netherlands<br />

Plenodomus influorescens comb. nov. Phoma enteroleuca var.<br />

influorescens<br />

Phoma enteroleuca var.<br />

influorescens<br />

<strong>CBS</strong> 143.84 PD 78/883, CECT 20064 JF400228 JF740297 Fraxinus excelsior<br />

(Oleaceae)<br />

Netherlands<br />

PD 73/1382 JF400229 JF740298 Lilium sp. (Liliaceae) Netherlands<br />

Plenodomus libanotidis comb. nov. Leptosphaeria libanotis <strong>CBS</strong> 113795 UPSC 2219 JF400231 JF740300 Seseli libanotis (Apiaceae) Sweden<br />

Plenodomus lindquistii comb. nov. Leptosphaeria lindquistii,<br />

anam. Phoma macdonaldii<br />

Leptosphaeria lindquistii,<br />

anam. Phoma macdonaldii<br />

Plenodomus lingam Leptosphaeria maculans,<br />

anam. Phoma lingam<br />

<strong>CBS</strong> 386.80 PD 77/336 JF400232 JF740301 Helianthus annuus<br />

(Asteraceae)<br />

<strong>CBS</strong> 381.67 JF400233 JF740302 Helianthus annuus<br />

(Asteraceae)<br />

<strong>CBS</strong> 275.63 MUCL 9901, UPSC 1025 JF400234 JF740103 JF740306 Brassica sp. (Brassicaceae) UK<br />

former<br />

Yugoslavia<br />

Canada<br />

Leptosphaeria maculans,<br />

anam. Phoma lingam<br />

<strong>CBS</strong> 260.94 PD 78/989 JF400235 JF740307 JF740116 Brassica oleracea<br />

(Brassicaceae)<br />

Netherlands<br />

Leptosphaeria maculans,<br />

anam. Phoma lingam<br />

<strong>CBS</strong> 147.24 JF740117 Unknown Unknown<br />

Plenodomus lupini comb. nov. Phoma lupini <strong>CBS</strong> 248.92 PD 79/141 JF740236 JF740303 Lupinus mutabilis<br />

(Fabaceae)<br />

Plenodomus pimpinellae comb. nov. Leptosphaeria pimpinellae,<br />

anam. Phoma pimpinellae<br />

<strong>CBS</strong> 101637 PD 92/41 JF740240 JF740309 Pimpinella anisum<br />

(Apiaceae)<br />

Plenodomus tracheiphilus comb. nov. Phoma tracheiphila <strong>CBS</strong> 551.93 PD 81/782 JF740249 JF740104 JF740317 Citrus limonium (Rutaceae) Israel<br />

Peru<br />

Israel<br />

Phoma tracheiphila <strong>CBS</strong> 127250 PD 09/04597141 JF740250 JF740318 Citrus sp. (Rutaceae) Italy<br />

Plenodomus visci comb. nov. Plectophomella visci <strong>CBS</strong> 122783 PD 74/1021 JF740256 EU754096 EU754195 Viscum album (Viscaceae) France<br />

Plenodomus wasabiae Phoma wasabiae <strong>CBS</strong> 120119 FAU 559 JF740257 JF740323 Wasabia japonica<br />

(Brassicaceae)<br />

Phoma wasabiae <strong>CBS</strong> 120120 FAU 561 JF740258 JF740324 Wasabia japonica<br />

(Brassicaceae)<br />

Pleomassaria siparia <strong>CBS</strong> 279.74 AY004341 Betula verrucosa<br />

(Betulaceae)<br />

Pleospora angustis nom. nov. Leptosphaeria clavata <strong>CBS</strong> 296.51 JF740122 Unknown Switzerland<br />

Taiwan<br />

Taiwan<br />

Netherlands<br />

Pleospora betae Pleospora betae, anam.<br />

Phoma betae<br />

<strong>CBS</strong> 523.66 PD 66/270, IHEM 3915 EU754080 EU754179 JF740118 Beta vulgaris<br />

(Chenopodiaceae)<br />

Netherlands<br />

Pleospora betae, anam.<br />

Phoma betae<br />

Pleospora calvescens Pleospora calvescens,<br />

anam. Ascochyta caulina<br />

<strong>CBS</strong> 109410 PD 77/113 EU754178 JF740119 Beta vulgaris<br />

(Chenopodiaceae)<br />

<strong>CBS</strong> 246.79 PD 77/655 EU754032 EU754131 JF740120 Atriplex hastata<br />

(Chenopodiaceae)<br />

Netherlands<br />

Germany<br />

www.studiesinmycology.org<br />

9


De Gruyter et al.<br />

Table 1. (Continued).<br />

Species name, final identification Former identification <strong>CBS</strong> no. Other no. ITS SSU LSU ACT TUB CHS-1 Host, substrate Country<br />

Netherlands<br />

Pleospora calvescens,<br />

anam. Ascochyta caulina<br />

<strong>CBS</strong> 343.78 JF740121 Atriplex hastata<br />

(Chenopodiaceae)<br />

Pleospora chenopodii Ascochyta hyalospora <strong>CBS</strong> 206.80 PD 74/1022 JF740095 JF740266 JF740109 Chenopodium quinoa<br />

(Chenopodiaceae)<br />

Pleospora calvescens,<br />

anam. Ascochyta caulina<br />

<strong>CBS</strong> 344.78 PD 68/682 JF740110 Atriplex hastata<br />

(Chenopodiaceae)<br />

Bolivia<br />

Netherlands<br />

Pleospora fallens comb. nov. Phoma fallens <strong>CBS</strong> 161.78 LEV 1131 JF740106 Olea europaea<br />

(Oleaeceae)<br />

Phoma glaucispora <strong>CBS</strong> 284.70 PD 97/2400 JF740107 Nerium oleander<br />

(Apocynaceae)<br />

Pleospora flavigena comb. nov. Phoma flavigena <strong>CBS</strong> 314.80 PD 91/1613 JF740108 Water Romania<br />

New<br />

Zealand<br />

Italy<br />

Pleospora halimiones nom. nov. Ascochyta obiones <strong>CBS</strong> 432.77 IMI 282137 JF740096 JF740267 JF740113 Halimione portulacoides<br />

(Chenopodiaceae)<br />

Ascochyta obiones <strong>CBS</strong> 786.68 JF740114 Halimione portulacoides<br />

(Chenopodiaceae)<br />

Pleospora herbarum <strong>CBS</strong> 191.86 IMI 276975 GU238232 GU238160 JF740123 Medicago sativa<br />

(Fabaceae)<br />

Pleospora incompta comb. nov. Phoma incompta <strong>CBS</strong> 467.76 JF740111 Olea europaea<br />

(Oleaeceae)<br />

Pleospora typhicola Pleospora typhicola, anam.<br />

Phoma typharum<br />

Phoma incompta <strong>CBS</strong> 526.82 JF740112 Olea europaea<br />

(Oleaeceae)<br />

Pleospora typhicola, anam.<br />

Phoma typharum<br />

<strong>CBS</strong> 132.69 JF740105 JF740325 JF740124 Typha angustifolia<br />

(Typhaceae)<br />

Netherlands<br />

Netherlands<br />

India<br />

Greece<br />

Italy<br />

Netherlands<br />

<strong>CBS</strong> 602.72 JF740125 Typha sp. (Typhaceae) Netherlands<br />

Pleurophoma pleurospora Pleurophoma sp. <strong>CBS</strong> 116668 JF740326 Citysus scoparius<br />

(Fabaceae)<br />

Pleurophoma sp. <strong>CBS</strong> 130329 PD 82/371 JF740327 Lonicera sp.<br />

(Caprifoliaceae)<br />

Preussia funiculata <strong>CBS</strong> 659.74 GU296187 GU301864 Soil Senegal<br />

Netherlands<br />

Netherlands<br />

Pseudorobillarda phragmitis <strong>CBS</strong> 398.61 IMI 070678 EU754203 Phragmitis australis<br />

(Poaceae)<br />

Pyrenochaeta cava <strong>CBS</strong> 257.68 IMI 331911 JF740260 EU754100 EU754199 Wheat field soil Germany<br />

UK<br />

Pyrenochaeta lycopersici <strong>CBS</strong> 267.59 JF740261 GQ387551 GQ387612 Lycopersicon esculentum<br />

(Solanaceae)<br />

Pyrenochaeta nobilis <strong>CBS</strong> 407.76 EU930011 EU754107/<br />

DQ898287<br />

EU754206 Laurus nobilis (Lauraceae) Italy<br />

Pyrenochaetopsis leptospora <strong>CBS</strong> 101635 PD 71/1027 JF740262 GQ387566 GQ387627 Secale cereale (Poaceae) Europe<br />

Netherlands<br />

10


Phoma sections Plenodomus, Pilosa<br />

Table 1. (Continued).<br />

Species name, final identification Former identification <strong>CBS</strong> no. Other no. ITS SSU LSU ACT TUB CHS-1 Host, substrate Country<br />

Pyrenochaetopsis pratorum comb. nov. Phoma pratorum <strong>CBS</strong> 445.81 PDDCC 7049, PD 80/1254 JF740263 GU238136 Lolium perenne, leaf<br />

(Poaceae)<br />

<strong>CBS</strong> 286.93 PD 80/1252 JF740264 JF740331 Dactylis glomerata<br />

(Poaceae)<br />

Pyrenophora tritici-repentis OSC 100066 AY544716 AY544672 (Poaceae) Italy<br />

New<br />

Zealand<br />

New<br />

Zealand<br />

Roussoella hysterioides <strong>CBS</strong> 125434 HH 26988 AB524622 Sasa kurilensis (Poaceae) Japan<br />

Setomelanomma holmii <strong>CBS</strong> 110217 GQ387572 GQ387633 Picea pungens (Pinaceae) USA<br />

Setophoma terrestris <strong>CBS</strong> 335.29 GQ387526 GQ387587 Allium sativum (Alliaceae) USA<br />

Splanchnonema platani <strong>CBS</strong> 221.37 DQ678013 DQ678065 Platanus occidentalis<br />

(Platanaceae)<br />

Sporormiella minima <strong>CBS</strong> 524.50 DQ678003 DQ678056 Dung of goat Panama<br />

USA<br />

Stagonosporopsis cucurbitacearum <strong>CBS</strong> 133.96 GU238234 GU238181 Cucurbita sp.<br />

(Cucurbitaceae)<br />

New<br />

Zealand<br />

Subplenodomus apiicola comb. nov. Phoma apiicola <strong>CBS</strong> 285.72 JF740196 GU238040 Apium graveolens var.<br />

rapaceum (Umbelliferae)<br />

Subplenodomus drobnjacensis comb.<br />

nov.<br />

Phoma apiicola <strong>CBS</strong> 504.91 PD 78/1073 JF740197 JF740273 Apium graveolens<br />

(Umbelliferae)<br />

Phoma drobnjacensis <strong>CBS</strong> 269.92 PD 88/896 JF740211 JF740100 JF740285 Eustoma exaltatum<br />

(Gentianaceae)<br />

Phoma drobnjacensis <strong>CBS</strong> 270.92 PD 83/650 JF740212 JF740286 Gentiana makinoi ‘Royal<br />

Blue’ (Gentianaceae)<br />

Subplenodomus valerianae comb. nov. Phoma valerianae <strong>CBS</strong> 630.68 PD 68/141 JF740251 GU238150 Valeriana phu<br />

(Valerianaceae)<br />

Phoma valerianae <strong>CBS</strong> 499.91 PD 73/672 JF740252 JF740319 Valeriana officinalis<br />

(Valerianaceae)<br />

Subplenodomus violicola comb. nov. Phoma violicola <strong>CBS</strong> 306.68 FJ427054 GU238231 GU238156 Viola tricolor (Violaceae) Netherlands<br />

Germany<br />

Netherlands<br />

Netherlands<br />

Netherlands<br />

Netherlands<br />

Netherlands<br />

Phoma violicola <strong>CBS</strong> 100272 FJ427055 JF740322 Viola tricolor (Violaceae) New<br />

Zealand<br />

Thyridaria rubronotata <strong>CBS</strong> 419.85 GU301875 Acer pseudoplatanus<br />

(Aceraceae)<br />

Netherlands<br />

Trematosphaeria pertusa <strong>CBS</strong> 122368 FJ201990 Fraxinus excelsior<br />

(Oleaceae)<br />

France<br />

Westerdykella capitulum comb. nov. Phoma capitulum <strong>CBS</strong> 337.65 PD 91/1614, ATCC 16195,<br />

HACC 167, IMI 113693<br />

GU238054 Saline soil India<br />

Westerdykella minutispora comb. nov. Phoma minutispora <strong>CBS</strong> 509.91 PD 77/920 GU238108 Saline soil India<br />

Westerdykella ornata <strong>CBS</strong> 379.55 GU301880 Mangrove mud Mozambique<br />

www.studiesinmycology.org<br />

11


De Gruyter et al.<br />

<strong>CBS</strong> 246.79 Pleospora calvescens<br />

100<br />

<strong>CBS</strong> 432.77 Ascochyta obiones<br />

99<br />

<strong>CBS</strong> 206.80 Ascochyta hyalospora<br />

<strong>CBS</strong> 523.66 Pleospora betae, anam. Phoma betae<br />

Pleosporaceae (A)<br />

100<br />

100 DAOM 226212 Cocliobolus sativus<br />

100 <strong>CBS</strong> 191.86 Pleospora herbarum<br />

100<br />

OSC100066 Pyrenophora tritici-repentis<br />

<strong>CBS</strong> 132.69 Pleospora typhicola<br />

100<br />

64<br />

<strong>CBS</strong> 165.78 Phoma dimorphospora<br />

<strong>CBS</strong> 448.68 Phoma heteromorphospora<br />

56<br />

<strong>CBS</strong> 269.92 Phoma drobnjacensis<br />

100<br />

60<br />

<strong>CBS</strong> 275.63 Leptosphaeria maculans, anam. Phoma lingam<br />

<strong>CBS</strong> 119951 Leptosphaeria biglobosa<br />

Leptosphaeriaceae (B)<br />

57 <strong>CBS</strong> 551.93 Phoma tracheiphila<br />

<strong>CBS</strong> 539.63 Phoma vasinfecta<br />

<strong>CBS</strong> 122783 Plectophomella visci<br />

68<br />

99<br />

<strong>CBS</strong> 363.93 Cucurbitaria berberidis<br />

<strong>CBS</strong> 257.68 Pyrenochaeta cava<br />

<strong>CBS</strong> 407.76 Pyrenochaeta nobilis<br />

100<br />

Cucurbitariaceae (C)<br />

81 81 <strong>CBS</strong> 101635 Pyrenochaetopsis leptospora<br />

<strong>CBS</strong> 267.59 Pyrenochaeta lycopersici<br />

54<br />

89 <strong>CBS</strong> 389.80 Leptosphaeria slovacica<br />

100 <strong>CBS</strong> 505.75 Leptosphaeria doliolum subsp. doliolum Leptosphaeriaceae (D)<br />

<strong>CBS</strong> 616.75 Leptosphaeria conoidea<br />

88<br />

100<br />

<strong>CBS</strong> 216.75 Chaetosphaeronema hispidulum<br />

<strong>CBS</strong> 335.29 Setophoma terrestris<br />

<strong>CBS</strong> 110109 Phaeosphaeria nodorum<br />

<strong>CBS</strong> 138.96 Neosetophoma samarorum<br />

Phaeosphaeriaceae (E)<br />

99 80<br />

<strong>CBS</strong> 111.79 Paraphoma radicina<br />

<strong>CBS</strong> 110217 Setomelanomma holmii<br />

100 <strong>CBS</strong> 124455 Phoma glycinicola<br />

93 <strong>CBS</strong> 124140 Pyrenochaeta dolichi<br />

77 <strong>CBS</strong> 105.91 Phoma carteri<br />

Clade F<br />

<strong>CBS</strong> 101636 Phoma septicidalis<br />

<strong>CBS</strong> 400.71 Coniothyrium palmarum<br />

<strong>CBS</strong> 102202 Neophaeosphaeria filamentosa<br />

100 <strong>CBS</strong> 133.96 Stagonosporopsis bryoniae<br />

<strong>CBS</strong> 378.67 Didymella lycopersici<br />

100<br />

<strong>CBS</strong> 183.55 Didymella exigua<br />

100<br />

<strong>CBS</strong> 615.75 Phoma herbarum<br />

Didymellaceae (G)<br />

<strong>CBS</strong> 560.81 Phoma paspali<br />

100 <strong>CBS</strong> 122788 Paraconiothyrium minitans<br />

100 <strong>CBS</strong> 652.86 Paraphaeosphaeria michotii<br />

Montagnulaceae<br />

100<br />

<strong>CBS</strong> 797.95 Coniothyrium fuckelii<br />

97<br />

<strong>CBS</strong> 331.37 Neottiosporina paspali<br />

Massarinaceae<br />

<strong>CBS</strong> 252.60 Pyrenochaeta romeroi<br />

<strong>CBS</strong> 674.75 Pyrenochaeta mackinnonii<br />

<strong>CBS</strong> 524.50 Sporormiella minima<br />

Sporormiaceae<br />

100<br />

0.1<br />

Fig. 1. The phylogeny of Phoma lingam and Phoma betae, the type species of Phoma sections Plenodomus and Pilosa, based on the strict consensus tree from a Bayesian<br />

analysis of 48 LSU/SSU sequences. The Bayesian posterior probabilities are given at the nodes. The tree was rooted to Sporormiella minima (<strong>CBS</strong> 524.50).<br />

respectively. The tree (Fig. 1) was rooted to Sporormiella minima<br />

(<strong>CBS</strong> 524.50). The Bayesian analysis resulted in 6 5442 trees after<br />

3 272 000 generations, from which the burn-in was discarded and<br />

the consensus tree and posterior probabilities were calculated<br />

based on 56 028 trees (Fig. 1).<br />

The families that belong to Pleosporineae, represented by the<br />

species grouping in clades A–G, clustered in a strongly supported<br />

clade (99 % posterior probability). Clade A, representing those<br />

species classified in Pleosporaceae, was strongly supported<br />

(100 %) and included two subclades. Pleospora betae (anam. Ph.<br />

betae), clustered with Pleospora calvescens (anam. Ascochyta<br />

caulina), A. obiones and A. hyalospora; all recorded as pathogens<br />

on Chenopodiaceae. The generic type species Pleospora<br />

herbarum, a plurivorous species, grouped with Cochliobolus<br />

sativus, Pyrenophora tritici-repentis and Pleospora typhicola<br />

(anam. Ph. typhina), all recorded from Poaceae. Clade B includes<br />

Leptosphaeria maculans (anam. Ph. lingam) and clustered with<br />

Leptosphaeria biglobosa. In clade B also other important plant<br />

pathogens of Phoma section Plenodomus can be found, such as Ph.<br />

tracheiphila, Ph. vasinfecta, Ph. drobnjacensis, and Plectophomella<br />

12


Phoma sections Plenodomus, Pilosa<br />

visci. Phoma heteromorphospora, type species of Phoma section<br />

Heterospora (Boerema et al. 1997) and Ph. dimorphospora also<br />

grouped in this Leptosphaeria clade, in congruence with previous<br />

findings (de Gruyter et al. 2009, Aveskamp et al. 2010).<br />

Leptosphaeria doliolum (anam. Ph. acuta), type species of<br />

the genus Leptosphaeria, is found in Clade D, clustering with<br />

L. conoidea and L. slovacica. Leptosphaeria doliolum and its<br />

relatives comprise a sister clade C with species classified in<br />

Cucurbitariaceae, including Cucurbitaria berberidis, the three<br />

Pyrenochaeta species, Py. cava, Py. lycopersici and Py. nobilis,<br />

and Pyrenochaetopsis leptospora.<br />

Phaeosphaeria nodorum and its relatives Neosetophoma<br />

samarorum, Setophoma terrestris, Chaetosphaeronema<br />

hispidulum, Paraphoma radicina and Setomelanomma holmii,<br />

represent Phaeosphaeriaceae in clade E as has previously been<br />

found (de Gruyter et al. 2009, 2010).<br />

A distinct clade F includes Ph. glycinicola, Ph. carteri, Ph.<br />

septicidalis, and the taxonomic confusing species Pyrenochaeta<br />

dolichi (Grondona et al. 1997). The position of Coniothyrium<br />

palmarum and Neophaeosphaeria filamentosa could not be<br />

clarified, but both species are also treated below in a phylogeny<br />

including close relatives based on ITS and LSU regions (Fig.<br />

2). Didymella exigua, type species of the genus Didymella, and<br />

Ph. herbarum represent Didymellaceae, and clustered in a wellsupported<br />

clade (G) in congruence with previous studies (de Gruyter<br />

et al. 2009, 2010, Aveskamp et al. 2010). The molecular phylogeny<br />

of species which group in this analysis outside of Pleosporineae in<br />

Montagnulaceae, Massarinaceae and Sporormiaceae were further<br />

analysed utilising LSU sequence data of a broader range of taxa<br />

(Fig. 5).<br />

Phoma section Plenodomus and close allies<br />

The aligned sequence matrix obtained for the LSU and ITS regions<br />

had a total length of 1 921 nucleotide characters, 1 332 and 589<br />

respectively. The combined dataset used in the analyses included<br />

87 taxa and contained 1921 characters with 298 and 118 unique site<br />

patterns for LSU and ITS respectively. The tree (Fig. 2) was rooted<br />

to Ph. herbarum (<strong>CBS</strong> 615.75), the representative isolate of the type<br />

species of Phoma (Boerema et al. 2004). The Bayesian analysis<br />

resulted in 100 002 trees after 5 000 000 generations, from which<br />

the burn-in was discarded and the consensus tree and posterior<br />

probabilities were calculated based on 90 930 trees (Fig. 2).<br />

The species currently classified in Leptosphaeria and Phoma<br />

section Plenodomus grouped in clades A and B representing<br />

Leptosphaeriaceae, including the type species Ph. lingam and<br />

Leptosphaeria doliolum, respectively. Isolates of the taxa that<br />

represent Cucurbitariaceae, Cucurbitaria berberidis and its related<br />

species Pyrenochaeta cava, Py. nobilis, Py. lycopersici and<br />

Pyrenochaetopsis leptospora, clustered in a distinct clade D only<br />

distantly related to Leptosphaeriaceae. This finding agrees with a<br />

recent study (de Gruyter et al. 2010). Phoma pratorum clustered<br />

with Pyrenochaetopsis leptospora.<br />

Leptosphaeria biglobosa grouped in a subclade A1 with Ph.<br />

wasabiae, the cause of black rot disease on Wasabia japonica<br />

(Brassicaceae) and Ph. pimpinellae, a necrotroph on Pimpinella<br />

anisum (Apiaceae). Leptosphaeria maculans, considered as<br />

closely related to the L. biglobosa complex, proved to be more<br />

distantly related in clade A1. In this subclade, other important<br />

pathogens can be found, such as Ph. tracheiphila, a quarantine<br />

organism on Citrus spp. (Rutaceae), Ph. vasinfecta, a pathogen<br />

on Chrysanthemum spp. (Asteraceae), L. lindquistii (anam.<br />

Ph. macdonaldii), a worldwide pathogen on Helianthus annuus<br />

(Asteraceae) and Ph. lupini, a seed borne pathogen known from<br />

Lupinus spp. (Fabaceae). Subclade A1 also comprises both<br />

varieties of Ph. enteroleuca, opportunistic pathogens on deciduous<br />

trees and shrubs, and the necrotrophic species L. agnita (anam. Ph.<br />

agnita), Ph. congesta (both recorded on Asteraceae), Ph. conferta<br />

(mainly on Brassicaceae), L. hendersoniae (on Salicaceae), L.<br />

fallaciosa, L. collinsoniae (mainly on Lamiaceae) and L. libanotis (on<br />

Apiaceae). Plectophomella visci, recorded from leaves of Viscum<br />

album (Viscaceae), also clustered in the Leptosphaeriaceae. The<br />

genus Plenodomus is re-introduced here to accommodate the<br />

species in subclade A1, which are allied to Ph. lingam.<br />

Subclade A2 comprises pathogenic species often causing leaf<br />

spots such as Ph. apiicola on Apium graveolens (Apiaceae), Ph.<br />

drobnjacensis (on Gentianaceae), Ph. violicola (on Violaceae) as<br />

well as the necrotrophic species Ph. valerianae, on Valeriana spp.<br />

(Valerianaceae). Phoma apiicola and Ph. valerianae were classified<br />

in Phoma section Phoma, and Ph. violicola was classified in Phoma<br />

sect. Peyronellaea; however, the relationship of these species in<br />

Leptosphaeriaceae is clearly demonstrated (Fig. 2), and therefore<br />

the species are transferred to the new genus Subplenodomus.<br />

These results are in congruence with a recent study where Ph.<br />

violicola, Ph. apiicola and Ph. valerianae clustered in a clade<br />

representing both Leptosphaeriaceae and Pleosporaceae<br />

(Aveskamp et al. 2010).<br />

Four Leptosphaeria species, L. macrospora (soil) and<br />

the necrotrophic species L. nitschkei (on Asteraceae), L.<br />

praetermissa, on Rubus idaeus (Rosaceae) and L. dryadis,<br />

on Dryas spp. (Rosaceae) grouped in a subclade A3 and are<br />

transferred here to a new genus Paraleptosphaeria. Phoma<br />

korfii also clustered in this subclade. The European species Ph.<br />

heteromorphospora, type species of Phoma section Heterospora,<br />

and the American counterpart Ph. dimorphospora, both pathogens<br />

on Chenopodiaceae, grouped in a distinct subclade A4. Phoma<br />

sect. Heterospora is raised to generic rank to accommodate both<br />

species in Leptosphaeriaceae.<br />

Clade B comprises necrotrophic species related to the type<br />

species L. doliolum (anam. Ph. acuta). The phylogeny of this<br />

species complex, and the closely related species Ph. veronicicola,<br />

Ph. macrocapsa and Ph. sydowii, is treated below. The necrotrophic<br />

species Ph. sclerotioides, L. conoidea (anam. Ph. doliolum), L.<br />

slovacica (anam. Ph. leonuri) and Ph. pedicularis also proved to<br />

be related. The species Ph. rubefaciens and Ph. etheridgei also<br />

belong to clade B, but these species, both recorded on trees, are<br />

more distantly related.<br />

The Phoma species in clades A and B are in majority currently<br />

described as anamorphs of the genus Leptosphaeria, or belong to<br />

Phoma section Plenodomus. These Phoma anamorphs are only<br />

distantly related to the type species Ph. herbarum and its relatives<br />

in Didymellaceae, and therefore these species described in section<br />

Plenodomus are excluded from the genus Phoma. Clade C is more<br />

distantly related to Leptosphaeriaceae and comprises species that<br />

are related to Coniothyrium palmarum in Coniothyriaceae. Two<br />

subclades are recognised in clade C: Ph. glycinicola, Py. dolichi<br />

and Ph. carteri group with the generic type species C. palmarum,<br />

whereas two isolates of Ph. septicidalis group with Ph. multipora. The<br />

teleomorph Neophaeosphaeria filamentosa clustered basal to this<br />

clade. Clade D includes the genera Cucurbitaria, Pyrenochaetopsis<br />

and Pyrenochaeta, which represent Cucurbitariaceae. This finding<br />

is in congruence with previous studies (de Gruyter et al. 2010).<br />

www.studiesinmycology.org<br />

13


Fig 2<br />

De Gruyter et al.<br />

A1<br />

A2<br />

A3<br />

A4<br />

53<br />

70<br />

51<br />

0.1<br />

100 <strong>CBS</strong> 121.89 Plenodomus agnitus comb. nov. Leptosphaeria agnita<br />

100 <strong>CBS</strong> 126584 Plenodomus agnitus comb. nov. Leptosphaeria agnita<br />

100<br />

<strong>CBS</strong> 414.62 Plenodomus fallaciosus comb. nov. Leptosphaeria fallaciosa<br />

99<br />

<strong>CBS</strong> 248.92 Plenodomus lupini comb. nov. Phoma lupini<br />

<strong>CBS</strong> 122783 Plenodomus visci comb. nov. Plectophomella visci<br />

83<br />

100 <strong>CBS</strong> 143.84 Plenodomus influorescens comb. nov. Phoma enteroleuca var. influorescens<br />

100 PD73.1382 Plenodomus influorescens comb. nov. Phoma enteroleuca var. influorescens<br />

100 <strong>CBS</strong> 381.67 Plenodomus lindquistii comb. nov. Leptosphaeria lindquistii<br />

<strong>CBS</strong> 386.80 Plenodomus lindquistii comb. nov. Leptosphaeria lindquistii<br />

<strong>CBS</strong> 120227 Plenodomus collinsoniae comb. nov. Leptosphaeria collinsoniae<br />

100 <strong>CBS</strong> 119951 Plenodomus biglobosus comb. nov. Leptosphaeria biglobosa<br />

<strong>CBS</strong> 127249 Plenodomus biglobosus comb. nov. Leptopshaeria biglobosa<br />

100 <strong>CBS</strong> 120119 Plenodomus wasabiae<br />

94 <strong>CBS</strong> 120120 Plenodomus wasabiae<br />

67<br />

<strong>CBS</strong> 101637 Plenodomus pimpinellae comb. nov. Leptosphaeria pimpinellae<br />

100<br />

<strong>CBS</strong> 539.63 Plenodomus chrysanthemi comb. nov. Phoma vasinfecta<br />

<strong>CBS</strong> 127250 Plenodomus tracheiphilus comb. nov. Phoma tracheiphila<br />

98<br />

<strong>CBS</strong> 551.93 Plenodomus tracheiphilus comb. nov. Phoma tracheiphila<br />

<strong>CBS</strong> 244.64 Plenodomus congestus comb. nov.Leptopshaeria congesta<br />

<strong>CBS</strong> 113795 Plenodomus libanotidis comb. nov. Leptosphaeria libanotis<br />

100<br />

100 <strong>CBS</strong> 260.94 Plenodomus lingam Leptosphaeria maculans, Phoma lingam<br />

<strong>CBS</strong> 275.63 Plenodomus lingam Leptosphaeria maculans, Phoma lingam<br />

94<br />

<strong>CBS</strong> 113702 Plenodomus hendersoniae comb. nov. Leptosphaeria hendersoniae<br />

<strong>CBS</strong> 139.78 Plenodomus hendersoniae comb. nov. Leptosphaeria hendersoniae<br />

<strong>CBS</strong> 375.64 Plenodomus confertus comb. nov. Leptosphaeria conferta<br />

100 <strong>CBS</strong>142.84 Plenodomus enteroleucus comb. nov. Phoma enteroleuca var. enteroleuca<br />

<strong>CBS</strong> 831.84 Plenodomus enteroleucus comb. nov. Phoma enteroleuca var. enteroleuca<br />

100 <strong>CBS</strong> 285.72 Subplenodomus apiicola comb. nov. Phoma apiicola<br />

<strong>CBS</strong> 504.91 Subplenodomus apiicola comb. nov. Phoma apiicola<br />

100 <strong>CBS</strong> 499.91 Subplenodomus valerianae comb. nov. Phoma valerianae<br />

<strong>CBS</strong> 630.68 Subplenodomus valerianae comb. nov. Phoma valerianae<br />

<strong>CBS</strong> 269.92 Subplenodomus drobnjacensis comb. nov. Phoma drobnjacensis<br />

<strong>CBS</strong> 270.92 Subplenodomus drobnjacensis comb. nov. Phoma drobnjacensis<br />

<strong>CBS</strong> 100272 Subplenodomus violicola comb. nov. Phoma violicola<br />

<strong>CBS</strong> 306.68 Subplenodomus violicola comb. nov. Phoma violicola<br />

<strong>CBS</strong> 114198 Paraleptosphaeria macrospora comb. nov. Leptosphaeria macrospora<br />

<strong>CBS</strong> 306.51 Paraleptosphaeria nitschkei comb. nov. Leptosphaeria nitschkei<br />

<strong>CBS</strong> 114591 Paraleptosphaeria praetermissa comb. nov. Leptosphaeria praetermissa<br />

<strong>CBS</strong> 643.86 Paraleptosphaeria dryadis comb. nov. Leptosphaeria dryadis<br />

<strong>CBS</strong> 101638 Paraleptosphaeria orobanches comb. nov. Phoma korfii<br />

100 <strong>CBS</strong> 115.96 Heterospora chenopodii comb. nov. Phoma heteromorphospora<br />

100 <strong>CBS</strong> 448.68 Heterospora chenopodii comb. nov. Phoma heteromorphospora<br />

<strong>CBS</strong> 165.78 Heterospora dimorphospora comb. nov. Phoma dimorphospora<br />

100 <strong>CBS</strong> 345.78 Heterospora dimorphospora comb. nov. Phoma dimorphospora<br />

91 <strong>CBS</strong> 145.84 Leptosphaeria veronicae comb. nov. Phoma veronicicola<br />

<strong>CBS</strong> 126583 Leptosphaeria veronicae comb. nov. Phoma veronicicola<br />

98<br />

<strong>CBS</strong> 505.75 Leptosphaeria doliolum<br />

82 <strong>CBS</strong> 125979 Leptosphaeria doliolum<br />

<strong>CBS</strong> 541.66 Leptosphaeria doliolum<br />

100 <strong>CBS</strong> 155.94 Leptosphaeria doliolum<br />

<strong>CBS</strong> 617.75 Leptosphaeria errabunda comb. nov.<br />

100<br />

<strong>CBS</strong> 125978 Leptosphaeria errabunda comb. nov.<br />

<strong>CBS</strong> 640.93 Leptosphaeria macrocapsa comb. nov. Phoma macrocapsa<br />

62 100<br />

<strong>CBS</strong> 385.80 Leptosphaeria sydowii comb. nov. Phoma sydowii<br />

100 <strong>CBS</strong> 125976 Leptosphaeria sydowii comb. nov. Phoma sydowii<br />

100 <strong>CBS</strong> 144.84 Leptosphaeria sclerotioides comb. nov. Phoma sclerotioides<br />

92 <strong>CBS</strong> 148.84 Leptosphaeria sclerotioides comb. nov. Phoma sclerotioides<br />

98 <strong>CBS</strong> 616.75 Leptosphaeria conoidea<br />

100<br />

100 <strong>CBS</strong> 125977 Leptosphaeria conoidea<br />

100 <strong>CBS</strong> 389.80 Leptosphaeria slovacica<br />

<strong>CBS</strong> 125975 Leptosphaeria slovacica<br />

100 <strong>CBS</strong> 390.80 Leptosphaeria pedicularis comb. nov. Phoma pedicularis<br />

<strong>CBS</strong> 126582 Leptosphaeria pedicularis comb. nov. Phoma pedicularis<br />

100 <strong>CBS</strong> 223.77 Leptosphaeria rubefaciens comb. nov. Phoma rubefaciens<br />

<strong>CBS</strong> 387.80 Leptosphaeria rubefaciens comb. nov. Phoma rubefaciens<br />

<strong>CBS</strong> 125980 Leptosphaeria etheridgei comb. nov. Phoma etheridgei<br />

92 IMI 217261 Coniothyrium dolichi comb. nov. Pyrenochaeta dolichi<br />

100 IMI 217262 Coniothyrium dolichi comb. nov. Pyrenochaeta dolichi<br />

IMI294986 Coniothyrium glycines comb. nov. Phoma glycinicola<br />

100 IMI 124141 Coniothyrium glycines comb. nov. Phoma glycinicola<br />

100 IMI 101633 Coniothyrium carteri comb. nov. Phoma carteri<br />

<strong>CBS</strong> 105.91 Coniothyrium carteri comb. nov. Phoma carteri<br />

<strong>CBS</strong> 400.71 Coniothyrium palmarum<br />

Coniothyriaceae (C)<br />

97 <strong>CBS</strong> 188.71 Coniothyrium telephii comb. nov. Phoma septicidalis<br />

100 <strong>CBS</strong> 856.97 Coniothyrium telephii comb. nov. Phoma septicidalis<br />

<strong>CBS</strong> 101636 Coniothyrium telephii comb. nov. Phoma septicidalis<br />

100 <strong>CBS</strong> 353.65 Coniothyrium multiporum comb. nov. Phoma multipora<br />

<strong>CBS</strong> 501.91 Coniothyrium multiporum comb. nov. Phoma multipora<br />

<strong>CBS</strong> 102202 Neophaeosphaeria filamentosa<br />

<strong>CBS</strong> 267.59 Pyrenochaeta lycopersici<br />

100 <strong>CBS</strong> 286.93 Pyrenochaetopsis pratorum comb. nov.<br />

100<br />

<strong>CBS</strong> 445.81 Pyrenochaetopsis pratorum comb. nov.<br />

<strong>CBS</strong> 101635 Pyrenochaetopsis leptospora<br />

<strong>CBS</strong> 257.68 Pyrenochaeta cava<br />

Cucurbitariaceae (D)<br />

<strong>CBS</strong> 363.93 Cucurbitaria berberidis<br />

<strong>CBS</strong> 407.76 Pyrenochaeta nobilis<br />

<strong>CBS</strong> 615.75 Phoma herbarum<br />

Didymellaceae (E)<br />

56<br />

61<br />

66<br />

71<br />

100<br />

77<br />

90<br />

91<br />

100<br />

100<br />

100<br />

99<br />

100<br />

87<br />

100<br />

64<br />

64<br />

99<br />

96<br />

Fig. 2. The phylogeny of Phoma section Plenodomus and Leptosphaeria, based on the strict consensus tree from a Bayesian analysis of 87 LSU/ITS sequences. The Bayesian<br />

posterior probabilities are given at the nodes. The tree was rooted to Phoma herbarum (<strong>CBS</strong> 615.75).<br />

Leptosphaeriaceae (A)<br />

Leptosphaeriaceae (B)<br />

14


Phoma sections Plenodomus, Pilosa<br />

Phylogeny of the Leptosphaeria doliolum complex<br />

The aligned sequence matrix obtained for the ITS, ACT, TUB and<br />

CHS-1 regions had a total length of 1 345 nucleotide characters;<br />

ITS 522, ACT 240, TUB 332 and CHS-1 251, respectively. The<br />

combined dataset used in the analyses included 18 taxa and<br />

contained 1 345 characters with 98 unique site patterns. The<br />

tree (Fig. 3) was rooted to “Ph. pedicularis” (<strong>CBS</strong> 390.80). The<br />

Bayesian analysis resulted in 6 002 trees after 30 000 generations,<br />

from which the burn-in was discarded and the consensus tree and<br />

posterior probabilities were calculated based on 3 341 trees.<br />

The phylogenetic tree revealed two clades with high posterior<br />

probabilities, 98 and 99 % respectively, clade A with Ph. acuta<br />

subsp. errabunda and Ph. macrocapsa, and clade B with Ph.<br />

acuta subsp. acuta (anamorph of Leptosphaeria doliolum) and Ph.<br />

acuta subsp. acuta f. sp. phlogis. Phoma sydowii, a necrotroph on<br />

Asteraceae, Senecio spp. in particular, proved to be closely related<br />

to Ph. acuta subsp. errabunda. The isolate <strong>CBS</strong> 297.51 preserved<br />

as Ph. acuta is similar to Ph. sydowii, a synonym of L. sydowii, see<br />

below. Phoma veronicicola, as a necrotroph specifically occurring<br />

on Veronica spp. (Scrophulariaceae), also proved to be related to<br />

Leptosphaeria doliolum.<br />

Phylogeny of Phoma section Pilosa<br />

The aligned sequence matrix obtained for the ACT region had a<br />

total length of 252 nucleotide characters (20 taxa), and contained<br />

165 unique sites. The tree was rooted to Ph. lingam (<strong>CBS</strong> 147.24<br />

and <strong>CBS</strong> 260.94). The Bayesian analysis resulted in 34 802 trees<br />

after 174 000 generations, from which the burn-in was discarded,<br />

and the consensus tree and posterior probabilities were calculated<br />

based on 11 728 trees (Fig. 4).<br />

The phylogenetic tree representing the Pleosporaceae includes<br />

Ph. betae, type species of Phoma section Pilosa. This section is<br />

characterised by producing pycnidia that are covered by mycelial<br />

hairs. Phoma betae clearly groups with other pycnidial fungi<br />

pathogenic on Chenopodiaceae, including Ascochyta obiones,<br />

A. hyalospora and A. caulina and Chaetodiplodia sp. All species<br />

produce similar hairy pycnidia, but are classified in Ascochyta or<br />

Coniothyrium due to conidial septation, or brown pigmentation of<br />

conidia, respectively.<br />

A subclade comprises the cosmopolitan Pleospora herbarum<br />

and related species. The species involved are associated with<br />

various hosts or substrates. The most closely related Ph. incompta is<br />

a specific pathogen on Olea europea (Oleaceae). Phoma incompta<br />

was classified in Phoma section Sclerophomella because of its<br />

thick-walled pycnidia (de Gruyter & Noordeloos 1992, Boerema<br />

& de Gruyter 1998). The pycnidial characters of Ph. incompta,<br />

pycnidia covered with mycelial hairs and with an indistinct ostiole<br />

visible as a pallid spot (de Gruyter & Noordeloos 1992) however,<br />

agrees with those of Ph. betae and Ph. typhina.<br />

Phoma fallens proved to be closely related to Ph. glaucispora in<br />

keeping with the similar in vitro characters, especially the low growthrate<br />

and the size and shape of its conidia (Boerema et al. 2004). Both<br />

species originate from southern Europe, and have been associated<br />

with spots on fruits and leaves of Olea europea, or leaf spots on<br />

Nerium oleander, respectively. An isolate preserved as Leptosphaeria<br />

clavata, <strong>CBS</strong> 259.51, proved to be closely related. The origin of the<br />

isolate, deposited by E. Müller, is unknown; however, it is likely that<br />

the isolate was obtained from Poaceae, Triticum vulgare or Dactylis<br />

glomerata (Müller 1950). Phoma flavigena, once isolated from water<br />

and also recorded from southern Europe, proved to be more distantly<br />

related in Pleosporaceae.<br />

Phylogeny of phoma-like anamorphs excluded from<br />

the suborder Pleosporineae<br />

The aligned sequence matrix obtained for the LSU regions had<br />

a total length of 808 nucleotide characters, with 208 unique<br />

site patterns. The phylogenetic tree (Fig. 5) was rooted to<br />

Pseudorobillarda phragmitis (<strong>CBS</strong> 398.61). The Bayesian analysis<br />

resulted in 48 402 trees after 242 000 generations, from which<br />

the burn-in was discarded and the consensus tree and posterior<br />

probabilities were calculated based on 24 876 trees.<br />

Clade A includes the reference isolates of the teleomorph<br />

Paraphaeosphaeria and the anamorph Paraconiothyrium classified<br />

in Montagnulaceae. This teleomorph/anamorph relation agrees<br />

with previous molecular phylogenetic studies (Verkley et al. 2004,<br />

Damm et al. 2008, de Gruyter et al. 2009). Other phoma-like<br />

species in this clade are Ph. lini, Plenodomus fusco-maculans,<br />

Pleurophoma pleurospora (<strong>CBS</strong> 101461) and Asteromella tilliae.<br />

Phoma lini, a saprobe frequently recorded on dead stems of<br />

Linum spp., was described in Phoma section Phoma (de Gruyter<br />

et al. 1993). Re-examination of the conidia revealed that they are<br />

hyaline and thin-walled; however, also darker, greenish to yellowish<br />

coniothyrium-like conidia were observed. The conidiogenous cells<br />

are phoma-like, doliiform to ampulliform.<br />

The isolate Asteromella tiliae (<strong>CBS</strong> 265.94) clearly represents a<br />

species of Paraconiothyrium, and therefore, the teleomorph name<br />

Didymosphaeria petrakiana, Didymosphaeriaceae, is probably<br />

incorrect. It was already mentioned by Butin & Kehr (1995) that<br />

“considering the taxonomical placement of the teleomorph, the<br />

authors were informed about forthcoming taxonomic changes”.<br />

The morphological characters of the isolate <strong>CBS</strong> 101461,<br />

considered as representing the generic type species Pleurophoma<br />

pleurospora, resembles Paraconiothyrium as was previously<br />

discussed (de Gruyter et al. 2009). The sterile ex-type strain of<br />

Plenodomus fusco-maculans, <strong>CBS</strong> 116.16, recorded from Malus<br />

sp., also grouped with the Paraconiothyrium isolates.<br />

Coniothyrium fuckelii clustered in the Paraphaeosphaeria/<br />

Paraconiothyrium clade, in agreement with previous studies (Damm<br />

et al. 2008, Aveskamp et al. 2010), and therefore, the species is<br />

transferred to the genus Paraconiothyrium. Two phoma-like species<br />

obtained from Citysus scoparius and Lonicera sp. respectively<br />

(<strong>CBS</strong> 116668 and <strong>CBS</strong> 130329), cluster near Montagnulaceae<br />

and Massarinaceae. The morphological characters of the species<br />

are typical for Pleurophoma pleurospora. The taxonomic position<br />

of both isolates at familial rank could not be determined. The<br />

morphology of Phoma flavescens proved to be most similar to that<br />

of Paraconiothyrium, it definitely does not belong to Phoma, and<br />

therefore the species is transferred to Paraconiothyrium. Sequence<br />

data of additional species clustering nearby are required to resolve<br />

the current classification of Ph. flavescens. None of the phomalike<br />

anamorphs included in this study grouped in clade B, which<br />

represents Massarinaceae.<br />

Clade C includes the recently assigned ex-epitype strain<br />

of Trematosphaeria pertusa, isolate <strong>CBS</strong> 122368 (Zhang et<br />

al. 2008) and Falcisformispora lignatilis. Both T. perusa and F.<br />

lignatilis represent Trematosphaeriaceae (Suetrong et al. 2009).<br />

A second isolate preserved as Trematosphaeria pertusa, <strong>CBS</strong><br />

400.97, proved to be only distantly related, and clustered in clade<br />

D with Aposphaeria populina and Melanomma pulvis-pyrius in<br />

www.studiesinmycology.org<br />

15


De Gruyter et al.<br />

Fig 3<br />

<strong>CBS</strong> 617.75 Leptosphaeria errabunda comb. nov.<br />

<strong>CBS</strong> 129998 Leptosphaeria errabunda comb. nov.<br />

99<br />

<strong>CBS</strong> 129997 Leptosphaeria errabunda comb. nov.<br />

<strong>CBS</strong> 129999 Leptosphaeria errabunda comb. nov.<br />

<strong>CBS</strong> 125978 Leptosphaeria errabunda comb. nov.<br />

Clade A<br />

98<br />

<strong>CBS</strong> 640.93 Leptosphaeria macrocapsa comb. nov.<br />

99<br />

83<br />

<strong>CBS</strong> 297.51 Leptosphaeria sydowii comb. nov.<br />

<strong>CBS</strong> 125976 Leptosphaeria sydowii comb. nov.<br />

52<br />

92<br />

99<br />

<strong>CBS</strong> 385.80 Leptosphaeria sydowii comb. nov.<br />

<strong>CBS</strong> 504.75 Leptosphaeria doliolum<br />

<strong>CBS</strong> 130000 Leptosphaeria doliolum<br />

99<br />

97<br />

<strong>CBS</strong> 125979 Leptosphaeria doliolum ‘Phoma acuta subsp. acuta f. sp. phlogis’<br />

<strong>CBS</strong> 155.94 Leptosphaeria doliolum ‘Phoma acuta subsp. acuta f. sp. phlogis’<br />

<strong>CBS</strong> 505.75 Leptosphaeria doliolum<br />

Clade B<br />

<strong>CBS</strong> 541.66 Leptosphaeria doliolum<br />

99<br />

<strong>CBS</strong> 145.84 Leptosphaeria veronicae comb. nov.<br />

<strong>CBS</strong> 126583 Leptosphaeria veronicae comb. nov.<br />

Fig 4<br />

0.1<br />

<strong>CBS</strong> 390.80 Leptosphaeria pedicularis comb. nov. ‘Phoma pedicularis’<br />

Fig. 3. The phylogeny of the Leptosphaeria doliolum complex, based on the strict consensus tree from a Bayesian analysis of 18 ITS/ACT/TUB/CHS-1 sequences. The Bayesian<br />

posterior probabilities are given at the nodes. The tree was rooted to Leptosphaeria pedicularis comb. nov. (<strong>CBS</strong> 390.80).<br />

99 <strong>CBS</strong> 109410 Pleospora betae<br />

<strong>CBS</strong> 523.66 Pleospora betae<br />

70 <strong>CBS</strong> 786.68 Pleospora halimiones nom. nov. ‘Ascochyta obiones’<br />

<strong>CBS</strong> 432.77 Pleospora halimiones nom. nov. ‘Ascochyta obiones’<br />

99<br />

100<br />

<strong>CBS</strong> 206.80 Pleospora chenopodii ‘Ascochyta hyalospora’<br />

<strong>CBS</strong> 344.78 Pleospora chenopodii ‘Ascochyta hyalospora’<br />

52<br />

<strong>CBS</strong> 246.79 Pleospora calvescens ‘Ascochyta caulina’<br />

<strong>CBS</strong> 343.78 Pleospora calvescens ‘Ascochyta caulina’<br />

<strong>CBS</strong> 453.68 Chaetodiplodia sp.<br />

75 99 <strong>CBS</strong> 467.76 Pleospora incompta comb. nov. ‘Phoma incompta’<br />

69<br />

52<br />

<strong>CBS</strong> 526.82 Pleospora incompta comb. nov. ‘Phoma incompta’<br />

<strong>CBS</strong> 191.86 Pleospora herbarum<br />

100 88<br />

100 <strong>CBS</strong> 132.69 Pleospora typhicola ‘Phoma typhina’<br />

<strong>CBS</strong> 602.72 Pleospora typhicola ‘Phoma typhina’<br />

100 <strong>CBS</strong> 161.78 Pleospora fallens comb. nov. ‘Phoma fallens’<br />

<strong>CBS</strong> 284.70 Pleospora fallens comb. nov. ‘Phoma glaucispora’<br />

79<br />

<strong>CBS</strong> 296.51 Pleospora angustis nom. nov.<br />

<strong>CBS</strong> 314.80 Pleospora flavigena comb. nov. ‘Phoma flavigena’<br />

<strong>CBS</strong> 260.94 Plenodomus lingam ‘Leptosphaeria maculans’, Phoma lingam’<br />

<strong>CBS</strong> 147.24 Plenodomus lingam ‘Leptosphaeria maculans’, Phoma lingam’<br />

0.1<br />

Fig. 4. The phylogeny of phoma-like anamorphs in the Pleosporaceae based on the strict consensus tree from a Bayesian analysis of 20 ACT sequences. The Bayesian<br />

posterior probabilities are given at the nodes. The tree was rooted to Plenodomus lingam (<strong>CBS</strong> 147.24, <strong>CBS</strong> 260.94).<br />

16


Fig 5<br />

Phoma sections Plenodomus, Pilosa<br />

57<br />

97<br />

82<br />

<strong>CBS</strong> 101461 Paraconiothyrium maculicutis sp. nov. ‘Pleurophoma pleurospora’<br />

<strong>CBS</strong> 265.94 Paraconiothyrium tiliae comb. nov. ‘Asteromella tiliae’<br />

<strong>CBS</strong> 797.95 Paraconiothyrium fuckelii comb. nov. ‘Coniothyrium fuckelii’<br />

99<br />

97<br />

94<br />

<strong>CBS</strong> 116.16 Paraconiothyrium fusco-maculans comb. nov. ‘Plenodomus fusco-maculans’<br />

Montagnulaceae (A)<br />

<strong>CBS</strong> 253.92 Paraconiothyrium lini comb. nov. ‘Phoma.lini’<br />

<strong>CBS</strong> 122788 Paraconiothyrium minitans<br />

<strong>CBS</strong> 122786 Paraconiothyrium minitans<br />

<strong>CBS</strong> 652.86 Paraphaeosphaeria michotii<br />

55 94<br />

99<br />

<strong>CBS</strong> 473.64 Massarina eburnea<br />

H 3953 Massarina eburnea<br />

<strong>CBS</strong> 331.37 Neottiosporina paspali<br />

<strong>CBS</strong> 675.92 Byssothecium circinans<br />

Massarinaceae (B)<br />

83<br />

62<br />

91<br />

99<br />

99<br />

100<br />

<strong>CBS</strong> 116668 Pleurophoma pleurospora<br />

PD 82.371 Pleurophoma pleurospora<br />

<strong>CBS</strong> 178.93 Paraconiothyrium flavescens comb. nov. ‘Phoma flavescens’<br />

<strong>CBS</strong> 252.60 Medicopsis romeroi comb. nov. ‘Pyrenochaeta romeroi’<br />

<strong>CBS</strong> 122784 Medicopsis romeroi comb. nov. ‘Pyrenochaeta romeroi’<br />

Trematosphaeriaceae (C)<br />

BCC 21118 Falcisormispora lignatilis<br />

<strong>CBS</strong> 122368 Trematosphaeria pertusa<br />

<strong>CBS</strong> 221.37 Splanchnonema platani<br />

Lentitheciaceae?<br />

<strong>CBS</strong> 419.85 Thyridaria rubronotata<br />

<strong>CBS</strong> 350.82 Aposphaeria populina<br />

99<br />

PD 84.221 Aposphaeria populina<br />

98<br />

<strong>CBS</strong> 543.70 Aposphaeria populina<br />

<strong>CBS</strong> 400.97 Melanomma pulvis-pyrius<br />

64<br />

92<br />

86<br />

99<br />

<strong>CBS</strong> 371.75 Melanomma pulvis-pyrius<br />

<strong>CBS</strong> 200.31 Herpotrichia juniperi<br />

PD 83.367 Aposphaeria corallinolutea sp. nov.<br />

Melanommataceae (D)<br />

PD 83.831 Aposphaeria corallinolutea sp. nov.<br />

<strong>CBS</strong> 283.53 Beverwykella pulmonaria<br />

73<br />

99<br />

99<br />

99<br />

92<br />

<strong>CBS</strong> 279.74 Pleomassaria siparia<br />

<strong>CBS</strong> 337.65 Westerdykella capitulum comb. nov. ‘Phoma capitulum’<br />

<strong>CBS</strong> 379.55 Westerdykella ornata<br />

Sporormiaceae (E)<br />

<strong>CBS</strong> 509.91 Westerdykella minutispora comb. nov. ‘Phoma minutispora’<br />

<strong>CBS</strong> 524.50 Sporormiella minima<br />

<strong>CBS</strong> 659.74 Preussia funiculata<br />

<strong>CBS</strong> 125434 Roussoella hysterioides<br />

Didymosphaeriaceae<br />

95<br />

<strong>CBS</strong> 110022 Nigrograna mackinnonii comb. nov. ‘Pyrenochaeta mackinnonii’<br />

<strong>CBS</strong> 674.75 Nigrograna mackinnonii comb. nov. ‘Pyrenochaeta mackinnonii’<br />

<strong>CBS</strong> 398.61 Pseudorobillarda phragmitis<br />

0.1<br />

Fig. 5. LSU The phylogeny of phoma-like isolates excluded from the Pleosporineae, based on the strict consensus tree from a Bayesian analysis of 40 LSU sequences. The<br />

Bayesian posterior probabilities are given at the nodes. The tree was rooted to Pseudorobillarda phragmitis (<strong>CBS</strong> 398.61).<br />

www.studiesinmycology.org<br />

17


De Gruyter et al.<br />

Melanommataceae. This isolate is considered as an incorrect<br />

identification (Mugambi & Huhndorf 2009), and we consider this<br />

sterile isolate as representative of Melanomma pulvis-pyrius. Clade<br />

C also comprises the human pathogen Pyrenochaeta romeroi. This<br />

species certainly does not belong to Pyrenochaeta (de Gruyter et<br />

al. 2010) and therefore, we describe the new genus Medicopsis in<br />

Trematosphaeriaceae to accommodate this species.<br />

A well-supported clade D represents the Melanommataceae<br />

and includes Melanomma pulvis-pyrius, Herpotrichia juniperi and<br />

Beverwijkella pulmonaria, in congruence with Zhang et al. (2009).<br />

There were four phoma-like isolates present in the collections of <strong>CBS</strong><br />

and PD, i.e. <strong>CBS</strong> 350.82, PD 83/367, PD 83/831 and PD 84/221,<br />

which could not be identified according to their morphological<br />

characters. The isolates were preserved as Pleurophoma spp.<br />

This study demonstrates that two strains represent Aposphaeria<br />

populina, whereas the other two strains represent the new species<br />

described here as Aposphaeria corallinolutea. Further studies<br />

in Melanommataceae are needed to clarify the phylogeny of<br />

Aposphaeria in Melanommataceae.<br />

Sporormiaceae (clade E) is represented by Sporormiella<br />

minima and Preussia funiculata. Phoma capitulum and Ph.<br />

minutispora, well-defined soil-borne fungi from Asia, group in this<br />

clade. Both species are related with the anamorph Westerdykella<br />

ornata, and therefore the species are transferred to Westerdykella<br />

in Sporormiaceae.<br />

Pyrenochaeta mackinnonii could not be assigned to familial<br />

rank. A blast search in GenBank with its LSU sequence suggested<br />

a relation with Versicolorisporum triseptum. However, the typical<br />

3-septate conidia of this anamorph are different. Neither could V.<br />

triseptum be assigned at familial rank in Pleosporales (Tanaka et<br />

al. 2009). We therefore introduce the new genus Nigrograna to<br />

accommodate Py. mackinnonii.<br />

TAXONOMY<br />

Leptosphaeriaceae M.E. Barr, Mycotaxon 29: 503. 1987.<br />

Heterospora (Boerema, Gruyter & Noordel.) Gruyter, Verkley<br />

& Crous, stat. nov. MycoBank MB564701.<br />

Basionym: Phoma sect. Heterospora Boerema, Gruyter & Noordel.,<br />

Persoonia 16: 336. 1997.<br />

Type species: Heterospora chenopodii (Westend.) Gruyter,<br />

Aveskamp & Verkley, see below (= Phoma heteromorphospora Aa<br />

& Kesteren).<br />

Heterospora chenopodii (Westend.) Gruyter, Aveskamp &<br />

Verkley, comb. nov. MycoBank MB564702.<br />

Basionym: Phyllosticta chenopodii Westend., Bull. Acad. Roy. Sci.<br />

Belgique Ser. 2, 2: 567. 1857; not Phyllosticta chenopodii Sacc.,<br />

Syll. Fung. 3: 55. 1884 = Phoma exigua Desm. var. exigua; not<br />

Plenodomus chenopodii (P. Karst. & Har.) Arx, Verh. Kon. Ned.<br />

Akad. Wetensch., Afd. Natuurk., Sect. 2. 51: 72. 1957 ≡ Phoma<br />

chenopodiicola Gruyter, Noordel. & Boerema, Persoonia 15: 395.<br />

1993; not Phoma chenopodii Pavgi & U.P. Singh, Mycopathol.<br />

Mycol. Appl. 30: 265. 1966. nom. illeg. = Phoma chenopodii S.<br />

Ahmad, Sydowia 2: 79. 1948.<br />

≡ Septoria westendorpii G. Winter, Hedwigia 26: 26. 1887. nom. nov.; not<br />

Phoma westendorpii Tosquinet, Westend., Bull. Acad. Roy. Sci. Belgique<br />

Ser. 2, 2: 564. 1857.<br />

≡ Phoma variospora Aa & Kesteren, Persoonia 10: 268. 1979, nom. nov.,<br />

nom. illeg. [not Phoma variospora Shreem., Indian J. Mycol. Pl. Pathol. 8:<br />

221. 1979 (“1978”)].<br />

≡ Phoma heteromorphospora Aa & Kesteren, Persoonia 10: 542. 1980,<br />

nom. nov.<br />

Specimens examined: Belgium, Beverloo, from leaves of Chenopodium suecicum<br />

(album) and Chenopodium urbicum (Chenopodiaceae), no date, G.D. Westendorp,<br />

Herb. Crypt. (Ed. Beyaert-Feys), No. 959. BR, holotype of Phyllosticta chenopodii<br />

Westend. ex herb. G.D. Westendorp. Netherlands, Baarn, from leaf spots in<br />

Chenopodium album, 3 Jul. 1968, H.A. van der Aa, epitype designated here <strong>CBS</strong><br />

H-16386, culture ex-epitype <strong>CBS</strong> 448.68; Heelsum, from leaf spots in Chenopodium<br />

album, Sep. 1994, J. de Gruyter, <strong>CBS</strong> 115.96 = PD 94/1576.<br />

Notes: Van der Aa & van Kesteren (1979) provided a nom. nov.<br />

since the epithet “chenopodii” was occupied in Phoma. For more<br />

details of the taxonomy of the species see van der Aa & van<br />

Kesteren (1979). Although Leptosphaeria chenopodii-albi was<br />

described from leaves of Chenopodium album (Crane & Shearer<br />

1991) no cultures are available for comparison.<br />

Heterospora dimorphospora (Speg.) Gruyter, Aveskamp &<br />

Verkley, comb. nov. MycoBank MB564703.<br />

Basionym: Phyllosticta dimorphospora Speg., Anales Mus. Nac.<br />

Buenos Aires 13: 334. 1910.<br />

≡ Phoma dimorphospora (Speg.) Aa & Kesteren, Persoonia 10: 269.<br />

1979.<br />

= Stagonospora chenopodii Peck, Rep. (Annual) New York State Mus. Nat.<br />

Hist. 40: 60. 1887 (sometimes erroneously listed as Stag. chenopodii “House”).<br />

Specimens examined: Argentina, La Plata, from leaves of Chenopodium hircinum<br />

(Chenopodiaceae), 13 Oct. 1906, C. Spegazzini, Colect. micol. Museo Inst.<br />

Spegazzini, No. 11.353, LPS, holotype of Phyllosticta dimorphospora Speg.<br />

Lima, from stem of Chenopodium quinoa, 1977, L.J. Turkensteen, <strong>CBS</strong> 165.78 =<br />

PD 77/884. Peru, from lesions in stems of Chenopodium quinoa, 1976, V. Otazu,<br />

epitype designated here <strong>CBS</strong> H-16203, culture ex-epitype <strong>CBS</strong> 345.78 = PD<br />

76/1015.<br />

Note: For more details of the taxonomy of the species see van der<br />

Aa & van Kesteren (1979).<br />

Leptosphaeria Ces. & De Not., Comment. Soc. Crittog. Ital.<br />

1: 234. 1863.<br />

= Leptophoma Höhn., Sitzungsber. Kaiserl. Akad. Wiss., Math.-Naturwiss. Cl.,<br />

Abt. 1. 124: 73. 1915.<br />

Type species: Leptosphaeria doliolum (Pers. : Fr.) Ces. & De Not.,<br />

see below.<br />

Note: For full synonymy, including the species listed below, see<br />

Crane & Shearer (1991) and Boerema et al. (2004).<br />

Leptosphaeria conoidea (De Not.) Sacc., Fungi Venet. Nov.<br />

Vel. Crit. Ser. 2: 314. 1875.<br />

Basionym: Leptosphaeria doliolum var. conoidea De Not., Mycoth.<br />

Veneti, No. 76. 1873.<br />

= Leptosphaeria doliolum subsp. pinguicula Sacc., Michelia 2: 598. 1882.<br />

= Phoma acuta subsp. amplior Sacc. & Roum., Rev. Mycol. 6: 30. 1884.<br />

≡ Phoma hoehnelii subsp. amplior (Sacc. & Roum.) Boerema & Kesteren,<br />

Trans. Brit. Mycol. Soc. 67: 299. 1976.<br />

= Phoma doliolum P. Karst., Meddel. Soc. Fauna Fl. Fenn. 16: 9. 1888.<br />

= Plenodomus microsporus Berl., Bull. Soc. Mycol. France 5: 55. 1889.<br />

Specimens examined: Netherlands, Zaltbommel, from dead stem of Lunaria annua<br />

(Brassicaceae), Jan. 1974, G.H. Boerema, <strong>CBS</strong> 616.75 = ATCC 32813 = IMI 199777<br />

= PD 74/56; Montfoort, Senecio sp. (Asteraceae), 1982, <strong>CBS</strong> 125977 = PD 82/888.<br />

18


Phoma sections Plenodomus, Pilosa<br />

Leptosphaeria doliolum (Pers. : Fr.) Ces. & de Not.,<br />

Comment. Soc. Crittog. Ital. 1: 234. 1863.<br />

Basionym: Sphaeria doliolum Pers. : Fr., Icon. Desc. Fung. Min.<br />

Cognit. (Leipzig) 2: 39. 1800.<br />

= Sphaeria acuta Hoffm. : Fr, Veg. cryptog. 1: 22. 1787. Syst. Mycol. 2: 507.<br />

1823.<br />

≡ Phoma acuta (Hoffm. : Fr.) Fuckel, Jahrb. Nassauischen Vereins<br />

Naturk. 23–24: 125. 1870 (as “acutum”).<br />

≡ Leptophoma acuta (Hoffm. : Fr.) Höhn., Sitzungsber. Kaiserl. Akad.<br />

Wiss., Math.-Naturwiss. Cl., Abt. 1. 124: 73. 1915.<br />

≡ Plenodomus acutus (Hoffm. : Fr.) Bubák, Ann. Mycol. 13: 29. 1915 [as<br />

“(Fuckel)”].<br />

= Phoma phlogis Roum., Rev. Mycol. 6: 160. 1884.<br />

= Phoma hoehnelii var. urticae Boerema & Kesteren, Trans. Brit. Mycol. Soc.<br />

67: 299. 1976.<br />

Specimens examined: Netherlands, from stem of Rudbeckia sp. (Asteraceae),<br />

Sep. 1966, M.M.J. Dorenbosch, <strong>CBS</strong> 541.66 = PD 66/221; from stem of Urtica<br />

dioica (Urticaceae), 1974, G.H. Boerema, <strong>CBS</strong> 504.75 = PD 74/55; Rhenen, from<br />

Urtica dioica, Feb. 1975, G.H. Boerema, <strong>CBS</strong> 505.75 = PD 75/141; Wageningen,<br />

from stem of Phlox paniculata (Polemoniaceae), 1977, G.H. Boerema, <strong>CBS</strong> 155.94<br />

= PD 77/80; from stem of Phlox paniculata, 1978, G.H. Boerema, <strong>CBS</strong> 125979 = PD<br />

78/37; from stem of Urtica dioica, 1982, G.H. Boerema, <strong>CBS</strong> 130000 = PD 82/701.<br />

Notes: Isolate <strong>CBS</strong> 541.66 was preserved as Phoma acuta subsp.<br />

errabunda (teleom. Leptosphaeria errabunda, see below); however,<br />

the isolate clustered with L. doliolum. Both isolates <strong>CBS</strong> 155.94<br />

and <strong>CBS</strong> 125979 were considered as forma specialis “phlogis”<br />

(Boerema et al. 1994) of the anamorph Ph. acuta subsp. acuta.<br />

The subspecies acuta was created by the differentiation of Phoma<br />

acuta subsp amplior Sacc. & Roum., but the latter is a synonym of<br />

Ph. doliolum, reclassified here as L. conoidea, see above. Sphaeria<br />

acuta Hoffm. was applied as basionym for different anamorphs an<br />

a teleomorph of various species of Leptosphaeria leading to a<br />

confusing nomenclature. The epitet has been unambiguously tied<br />

to Ph. acuta by Boerema & Gams (1995).<br />

Leptosphaeria errabunda (Desm.) Gruyter, Aveskamp &<br />

Verkley, comb. nov. MycoBank MB564704.<br />

Basionym: Phoma errabunda Desm., Ann. Sci. Nat., Bot. Ser. 3,<br />

11: 282. 1849.<br />

≡ Phoma acuta subsp. errabunda (Desm.) Boerema, Gruyter & Kesteren,<br />

Persoonia 15: 465. 1994.<br />

= Leptophoma doliolum Höhn., Sitzungsber. Kaiserl. Akad. Wiss., Math.-<br />

Naturwiss. Cl., Abt. 1. 124: 75. 1915 [not Phoma doliolum P. Karst. =<br />

Leptosphaeria conoidea (De Not.) Sacc., see above].<br />

≡ Plenodomus doliolum (Höhn.) Höhn., Ber. Deutsch. Bot. Ges. 36: 139.<br />

1918.<br />

≡ Phoma hoehnelii Kesteren, Netherlands J. Pl. Pathol. 78: 116. 1972,<br />

nom. nov.<br />

= Leptosphaeria doliolum subsp. errabunda Boerema, Gruyter & Kesteren,<br />

Persoonia 15: 466. 1994.<br />

Specimens examined: Netherlands, Leeuwarden, from stem of Delphinium sp.<br />

(Ranunculaceae), 1974, <strong>CBS</strong> 125978 = PD 74/61; Ferwerderadeel, from Solidago<br />

sp., hybrid (Asteraceae), Mar. 1974, G.H. Boerema, <strong>CBS</strong> 617.75 = ATCC 32814 = IMI<br />

199775 = PD 74/201; from stem of Aconitum sp. (Ranunculaceae), <strong>CBS</strong> 129999 = PD<br />

78/569; from stem of Achillea millefolium (Asteraceae), <strong>CBS</strong> 129997 = PD 78/631;<br />

from Gailardia sp. (Asteraceae), 1984, G.H. Boerema, <strong>CBS</strong> 129998 = PD 84/462.<br />

Notes: The isolate <strong>CBS</strong> 617.75 = ATTC 32814 was deposited as<br />

the anamorph Ph. hoehnelii var. hoehnelii, but interpreted as L.<br />

doliolum subsp. conoidea (Dong et al. 1998). The isolate clustered<br />

with L. errabunda in this study.<br />

Leptosphaeria etheridgei (L.J. Hutchison & Y. Hirats.)<br />

Gruyter, Aveskamp & Verkley, comb. nov. MycoBank<br />

MB564712.<br />

Basionym: Phoma etheridgei L.J. Hutchison & Y. Hirats., Canad. J.<br />

Bot. 72: 1425. 1994.<br />

Specimen examined: Canada, Alberta, from bark of gall, on trunck of Populus<br />

tremuloides (Salicaceae), Jul. 1989, P. Crane, holotype DAOM 216539, culture exholotype<br />

DAOM 216539 = <strong>CBS</strong> 125980 = PD 95/1483.<br />

Leptosphaeria macrocapsa (Trail) Gruyter, Aveskamp &<br />

Verkley, comb. nov. MycoBank MB564713.<br />

Basionym: Phoma macrocapsa Trail, Scott. Naturalist (Perth) 8:<br />

327. 1886.<br />

≡ Plenodomus macrocapsa (Trail) H. Ruppr., Sydowia 13: 20. 1959.<br />

Specimen examined: Netherlands, from stem of Mercurialis perennis<br />

(Euphorbiaceae), 1978, G.H. Boerema, <strong>CBS</strong> 640.93 = PD 78/139.<br />

Leptosphaeria pedicularis (Fuckel) Gruyter, Aveskamp &<br />

Verkley, comb. nov. MycoBank MB564714.<br />

Basionym: Phoma pedicularis Fuckel, Reisen Nordpolarmeer<br />

3: 318. 1874 (as “pedicularidis”); not Phoma pedicularis Wehm.,<br />

Mycologia 38: 319. 1946 (= Phoma herbicola Wehm).<br />

= Sphaeronaema gentianae Moesz, Bot Közlem. 14: 152. 1915 (as<br />

“Sphaeronema”).<br />

≡ Plenodomus gentianae (Moesz) Petr., Ann. Mycol. 23: 54. 1925.<br />

Specimens examined: Switzerland, Kanton Graubünden, Albulapass, from dead<br />

stem of Pedicularis sp. (Scrophulariaceae), 1977, <strong>CBS</strong> 390.80 = PD 77/711 = ATCC<br />

42535 = IMI 248430; Zürich, from Gentiana punctata (Gentianaceae), 1977, <strong>CBS</strong><br />

126582 = PD 77/710.<br />

Leptosphaeria rubefaciens (Togliani) Gruyter, Aveskamp &<br />

Verkley, comb. nov. MycoBank MB564715.<br />

Basionym: Phoma rubefaciens Togliani, Ann. Sper. Agr. II, 7: 1626.<br />

1953.<br />

Specimens examined: Switzerland, Zürich, Albis, from twig of Quercus sp.<br />

(Fagaceae), Aug. 1976, W. Gams, <strong>CBS</strong> 223.77. Netherlands, Oploo, from wood of<br />

Tilia (×) europaea (Tiliaceae), 1978, G.H. Boerema, <strong>CBS</strong> 387.80 = ATCC 42533 =<br />

IMI 248432 = PD 78/809.<br />

Leptosphaeria sclerotioides (Sacc.) Gruyter, Aveskamp &<br />

Verkley, comb. nov. MycoBank MB564716.<br />

Basionym: Phoma sclerotioides Sacc., Fungi Herb. Bruxelles 21.<br />

1892; Syll. Fung. 11: 492. 1895.<br />

= Plenodomus sclerotioides Preuss, Klotzsch. Herb. Vivum Mycol. Sistems<br />

Fungorum German., No. 1281. 1849, nom. nud. (no description).<br />

= Plenodomus meliloti Mark.-Let., Bolezni Rast. 16: 195. 1927.<br />

Specimens examined: Canada, British Columbia, from Medicago sativa<br />

(Fabaceae), 1980, J. Drew Smith, <strong>CBS</strong> 148.84 = PD 80/1242; Alberta, from root<br />

of Medicago sativa, Mar. 1984, G.H. Boerema, <strong>CBS</strong> 144.84 = CECT 20025 =<br />

PD 82/1061.<br />

Note: Seven varieties of this species have been recognised<br />

(Wunsch et al. 2011) in a phylogenetic analysis using 10 loci.<br />

Leptosphaeria slovacica Picb., Sborn. Vysoké Skoly.<br />

Zemed. v Brno 7: 7. 1927.<br />

= Phoma leonuri Letendre, Revue Mycol. 6: 229. 1884.<br />

≡ Plenodomus leonuri (Letendre) Moesz & Smarods in Moesz, Magyar<br />

Bot. Lapok 31: 38. 1932.<br />

Specimens examined: Netherlands, from dead stem of Ballota nigra (Lamiaceae),<br />

1977, <strong>CBS</strong> 125975 = PD 77/1161; Arnhem, from dead stem of Ballota nigra, 1979,<br />

G.H. Boerema, <strong>CBS</strong> 389.80 = PD 79/171.<br />

www.studiesinmycology.org<br />

19


De Gruyter et al.<br />

Leptosphaeria sydowii (Boerema, Kesteren & Loer.)<br />

Gruyter, Aveskamp & Verkley, comb. nov. MycoBank<br />

MB564717.<br />

Basionym: Phoma sydowii Boerema, Kesteren & Loer., Trans. Brit.<br />

Mycol. Soc. 77: 71. 1981, nom. nov.<br />

= Sphaeronaema senecionis Syd. & P. Syd., Ann. Mycol. 3: 185. 1905; not<br />

Phoma senecionis P. Syd., Beibl. Hedwigia 38: 136. 1899.<br />

≡ Plenodomus senecionis (Syd. & P. Syd.) Bubák, Ann. Mycol. 13: 29.<br />

1915.<br />

≡ Plenodomus senecionis (Syd. & P. Syd.) Petr., Ann. Mycol. 19: 192.<br />

1921, isonym.<br />

= Plenodomus rostratus Petr., Ann. Mycol. 21: 199. 1923; not Phoma rostrata<br />

O’Gara, Mycologia 7: 41. 1915 (not Leptosphaeria rostrata M.L. Far & H.T.<br />

Horner, Nova Hedwidgia 15: 250. 1968).<br />

Specimens examined: Switzerland, Kt. Zürich, Zollikon, from Papaver rhoeas<br />

(Papaveraceae), Oct. 1949, E. Müller, <strong>CBS</strong> 297.51. Netherlands, from Senecio<br />

jacobaea (Asteraceae), G.H. Boerema, 1984, <strong>CBS</strong> 125976 = PD 84/472. UK,<br />

Scotland, Isle of Lewis, Hebrides, from dead stem of Senecio jacobaea, 1974,<br />

R.W.G. Dennis, <strong>CBS</strong> 385.80 = PD 74/477.<br />

Notes: Leptosphaeria senecionis (Fuckel) G. Winter was suggested<br />

as the possible teleomorph (Boerema et al. 2004). Because the<br />

teleomorph connection has not been proven, however, we did not<br />

include it as a synonym that would have priority as the correct<br />

name. The isolate <strong>CBS</strong> 297.51 was originally identified as L.<br />

doliolum var. doliolum.<br />

Leptosphaeria veronicae (Hollós) Gruyter, Aveskamp &<br />

Verkley, comb. nov. MycoBank MB564718.<br />

Basionym: Sphaeronaema veronicae Hollós, Ann. Hist.-Nat. Mus.<br />

Natl. Hung. 4: 341. 1906.<br />

≡ Phoma veronicicola Boerema & Loer., Trans. Brit. Mycol. Soc. 84: 297.<br />

1985, nom. nov. (not Phoma veronicae Roum., Revue Mycol. 6: 160.<br />

1884).<br />

Specimens examined: Netherlands, from stem of Veronica “Shirley Blue”<br />

(Scrophulariaceae), 1974, <strong>CBS</strong> 126583 = PD 74/227; Huis ter Heide, from dead<br />

stem of Veronica chamaedryoides, Mar. 1978, H.A. van Kesteren, neotype <strong>CBS</strong><br />

H-7632, culture ex-neotype <strong>CBS</strong> 145.84 = CECT 20059 = PD 78/273.<br />

Paraleptosphaeria Gruyter, Verkley & Crous, gen. nov.<br />

MycoBank MB564720.<br />

Pseudothecia immersed, subglobose, solitary or aggregated,<br />

thick-walled, pseudoparenchymatous to scleroplectenchymatous,<br />

ostiolate, unilocular. Asci bitunicate, broadly ellipsoidal, 8-spored,<br />

interascal filaments pseudoparaphyses, Ascospores biseriate,<br />

broadly fusiform, transversally 3–5-septate, hyaline to yellowbrownish.<br />

Conidiomata pycnidial, globose to subglobose,<br />

scleroplectenchymatous, with papillate pore, unilocular.<br />

Conidiogenous cells phialidic, ampulliform to doliiform. Conidia<br />

hyaline, aseptate, oblong to ellipsoidal. Sclerotia sometimes<br />

produced.<br />

Type species: Paraleptosphaeria nitschkei (Rehm ex G. Winter)<br />

Gruyter, Aveskamp & Verkley (see below).<br />

Notes: Munk (1957) recognised Leptosphaeria section Para-<br />

Leptosphaeria, an invalid taxon, as a heterogenous group. The<br />

section was differentiated from Eu-Leptosphaeria, which included<br />

the generic type species L. doliolum. Leptosphaeria nitschkei was<br />

considered a typical representative of section Eu-Leptosphaeria<br />

(Müller & von Arx 1950). However, this molecular phylogeny<br />

demonstrates that L. nitschkei is only distantly related to L. doliolum.<br />

We introduce Paraleptosphaeria to accomodate L. nitschkei and its<br />

relatives. These necrotrophic species are morphologically closely<br />

allied to Leptosphaeria. The former classification of Leptosphaeria<br />

in sections Eu-Leptosphaeria and Para-Leptosphaeria cannot be<br />

upheld from a evolutionary point of view, as two other species<br />

attributed to section Eu-Leptosphaeria, namely L. agnita and L.<br />

maculans (Munk 1957), were found to group in Plenodomus.<br />

Paraleptosphaeria dryadis (Johanson) Gruyter, Aveskamp<br />

& Verkley, comb. nov. MycoBank MB564721.<br />

Basionym: Melanomma dryadis Johanson, Hedwigia 29: 160.<br />

1890.<br />

≡ Leptosphaeria dryadophila Huhndorf, Bull. Illinois Nat. Hist. Surv. 34:<br />

484 (1992), nom. illeg. via nom. superfl.<br />

= Leptosphaeria dryadis Rostr., Bot. Tidsskr. 25: 305. 1903.<br />

Specimen examined: Switzerland, Kt. Ticino, Leventina, Alpe Campolungo, from<br />

Dryas octopetala (Rosaceae), 24 July 1980, A. Leuchtmann, <strong>CBS</strong> 643.86.<br />

Note: An explanation of the nomenclature of Leptosphaeria dryadis<br />

has been provided by Chen et al. (2002).<br />

Paraleptosphaeria macrospora (Thüm.) Gruyter, Aveskamp<br />

& Verkley, comb. nov. MycoBank MB564722.<br />

Basionym: Leptosphaeria macrospora Thüm. Mycotheca Univ.<br />

1359. 1879, nom. nov.<br />

≡ Metasphaeria macrospora (Fuckel) Sacc., Syll. Fung. 2: 158. 1883.<br />

Replaced synonym: Pleospora macrospora Fuckel, Jahrb.<br />

Nassauischen Vereins Naturk. 23–24: 138. 1870, nom. illeg.,<br />

Art. 53.1. [not Pleospora macrospora (De Not.) Ces. & De Not.,<br />

Comment. Soc. Crittog. Ital. 1: 218. 1863].<br />

Specimen examined: Norway, Troms, Tromsöya, from Rumex domesticus<br />

(Polygonaceae), 20 Aug. 1988, K. & L. Holm, <strong>CBS</strong> 114198 = UPSC 2686.<br />

Paraleptosphaeria nitschkei (Rehm ex G. Winter) Gruyter,<br />

Aveskamp & Verkley, comb. nov. MycoBank MB564723.<br />

Basionym: Leptosphaeria nitschkei Rehm ex G. Winter,<br />

Ascomyceten, Fascicle 1, No. 15. 1870, nom. nud. (Flora, Jena<br />

und Regensburg 55: 510. 1872).<br />

Specimens examined: Austria, Ötscher in Niederösterreich, c. 4500’, from Cacalia<br />

sp. (= Adenostyles sp, Asteraceae), June 1869, Lojka, holotype of Leptosphaeria<br />

nitschkei Rehm Ascomyceten 15b, S. Switzerland, Kt. Graubünden, Lü, from<br />

Cirsium spinosissimum (Asteraceae), 16 July 1948, E. Müller, epitype designated<br />

here <strong>CBS</strong> H-20822, culture ex-epitype <strong>CBS</strong> 306.51.<br />

Note: The name Leptosphaeria nitschkei was considered a nom.<br />

nud. by Crane and Shearer (1991) who cited Art. 32.1 but gave no<br />

further explanation. In Flora, Jena und Regensburg 55: 510. 1872<br />

Rehm refers to additional notes by G. Winter that include a Latin<br />

description. Therefore, we consider this name as valid, following<br />

Müller (1950) who provided a detailed description in vivo.<br />

Paraleptosphaeria orobanches (Schweinitz : Fr.) Gruyter,<br />

Aveskamp & Verkley, comb. nov. MycoBank MB564724.<br />

Basionym: Sclerotium orobanches Schweinitz, Schriften Naturf.<br />

Ges. Leipzig 1: 57. 1822 : Fr., Syst. Mycol. 2: 257. 1822.<br />

= Phoma korfii Boerema & Gruyter, Persoonia 17: 275. 1999.<br />

Specimen examined: USA, Ringwood Swamp, Lloyd-Cornell, from stem of Epifagus<br />

virginiana (Orobanchaceae), 13 Sep. 1995, T. Uturriaga, R.P. Korf, P. Mullin,<br />

holotype of Sclerotium orobanches Schweinitz, CUP 63537, culture ex-holotype<br />

<strong>CBS</strong> 101638 = PD 97/12070.<br />

20


Phoma sections Plenodomus, Pilosa<br />

Note: A Phoma synanamorph of Sclerotium orobanches was<br />

reported by Yáňez-Morales et al. (1998) and described as Phoma<br />

korfii (Boerema & Gruyter 1999).<br />

Paraleptosphaeria praetermissa (P. Karst.) Gruyter,<br />

Aveskamp & Verkley, comb. nov. MycoBank MB564725.<br />

Basionym: Sphaeria praetermissa P. Karst., Bidrag Kannedom<br />

Finlands Natur Folk 23: 89. 1873.<br />

≡ Leptosphaeria praetermissa (P. Karst.) Sacc., Syll. Fung. 2: 26. 1883.<br />

Specimen examined: Sweden, Dalarna, Folkärna, from Rubus idaeus (Rosaceae),<br />

21 Mar. 1993, K. & L. Holm, <strong>CBS</strong> 114591.<br />

Plenodomus Preuss, Linnaea 24: 145. 1851.<br />

≡ Phoma sect. Plenodomus (Preuss) Boerema, Kesteren & Loer., Trans.<br />

Brit. Mycol. Soc. 77: 61. 1981.<br />

= Diploplenodomus Diedicke, Ann. Mycol. 10: 140. 1912.<br />

= Plectophomella Moesz, Magyar Bot. Lapok 21: 13. 1922.<br />

= Apocytospora Höhn., Mitt. Bot. Lab. TH Wien 1: 43. 1924.<br />

= Deuterophoma Petri, Boll. R. Staz. Patalog. Veget. Roma 9: 396. 1929.<br />

Type species: Plenodomus rabenhorstii Preuss, Linnaea 24: 145.<br />

1851 (dubious synonym, see below) = Plenodomus lingam (Tode :<br />

Fr.) Höhn., see below.<br />

Note: For full synonymy of the anamorph names of the species<br />

listed below, see Boerema et al. (1994). For additional synonyms<br />

of the teleomorph names of the species below that have been<br />

recorded on Asteraceous hosts, see Khashnobish et al. (1995).<br />

Plenodomus agnitus (Desm.) Gruyter, Aveskamp & Verkley,<br />

comb. nov. MycoBank MB564726.<br />

Basionym: Sphaeria agnita Desm., Ann. Sci. Nat., Bot. Ser. 3, 16:<br />

313. 1851.<br />

≡ Leptosphaeria agnita (Desm.) Ces. & De Not., Comm. Soc. Crittog. Ital.<br />

1: 236. 1863.<br />

= Plenodomus chondrillae Died, Ann. Mycol.. 9: 140. 1911; Krypt.-fl.<br />

Brandenburg 9: 236. 1912.<br />

= Phoma agnita Gonz. Frag., Mem. Real Acad. Ci. Barcelona 15: 6. 1920.<br />

Specimens examined: Netherlands, from stem of Eupatorium cannabinum<br />

(Asteraceae), 1982, W.M. Loerakker, <strong>CBS</strong> 126584 = PD 82/561; from stem of<br />

Eupatorium cannabinum, 1982, W.M. Loerakker, <strong>CBS</strong> 121.89 = PD 82/903.<br />

Plenodomus biglobosus (Shoemaker & H. Brun) Gruyter,<br />

Aveskamp & Verkley, comb. nov. MycoBank MB564727.<br />

Basionym: Leptosphaeria biglobosa Shoemaker & H. Brun, Canad.<br />

J. Bot. 79: 413. 2001.<br />

Specimens examined: France, Le Rheu, from stem of Brassica juncea<br />

(Brassicaceae), <strong>CBS</strong> 127249 = DAOM 229269. Netherlands, from Brassica rapa<br />

(Brassicaceae), 2006, R. Veenstra, <strong>CBS</strong> 119951.<br />

Notes: Leptosphaeria biglobosa was originally described as a less<br />

virulent segregate of L. maculans (Shoemaker & Brun 2001). The<br />

species, also indicated as Tox 0 isolates, has been described from<br />

cultivated Brassica species as the cause of upper stem lesions<br />

and considered as less damaging than L. maculans (West et al.<br />

2002). However, in Poland L. biglobosa is the predominant cause<br />

of these symptoms (Jedryczka et al. 1999, Huang et al. 2005). The<br />

current species concept of L. biglobosa is broadly defined with six<br />

distinct subclades recognised by multilocus phylogenetic analyses<br />

of ITS, β-tubulin and actin sequences (Mendes-Pereira et al. 2003,<br />

Vincenot et al. 2008). These subclades are named after the host or<br />

geographic origin of the isolates involved. It has been suggested<br />

that the clades represent distinct subspecies formed over time by<br />

reproductive isolation (Mendes-Pereira et al. 2003). Alignments of<br />

the ITS sequences of Ph. wasbiae, Ph. pimpinellae and L. biglobosa<br />

isolates were compared with those of the representative strains<br />

of the L. biglobosa subclades obtained from GenBank, and both<br />

Ph. wasbiae and Ph. pimpinellae grouped in this species complex<br />

(unpubl. data). Both species are maintained here, awaiting a<br />

redescription of the taxa representing all clades in the L. biglobosa<br />

complex.<br />

Plenodomus chrysanthemi (Zachos, Constantinou &<br />

Panag.) Gruyter, Aveskamp & Verkley, comb. nov. MycoBank<br />

MB564728.<br />

Basionym: Cephalosporium chrysanthemi Zachos, Constantinou &<br />

Panag., Ann. Inst. Phytopath. Benaki, N.S. 55. 1960.<br />

≡ Phialophora chrysanthemi (Zachos, Constantinou & Panag.) W. Gams,<br />

Cephalosporium-artige Schimmelpilze (Stuttgart): 207. 1971.<br />

= Phoma vasinfecta Boerema, Gruyter & Kesteren, Persoonia 15: 484. 1994.<br />

Specimen examined: Greece, from Chrysanthemum sp. (Asteraceae), Apr. 1963,<br />

D.G. Zachos, holotype <strong>CBS</strong> H-7576, culture ex-holotype <strong>CBS</strong> 539.63.<br />

Note: The species was also described as Phoma tracheiphila f. sp.<br />

chrysanthemi (Baker et al. 1985).<br />

Plenodomus collinsoniae (Dearn. & House) Gruyter,<br />

Aveskamp & Verkley, comb. nov. MycoBank MB564729.<br />

Basionym: Leptosphaeria collinsoniae Dearn. & House, Bull. New<br />

York State Mus. Nat. Hist. 233–234: 36. 1921.<br />

Specimen examined: Japan, Osawa river, Komukai, Miyagi, from Vitis coignetiae<br />

(Vitaceae), 27 Sep. 2003, Y. Takahashi, <strong>CBS</strong> 120227 = JCM 13073 = MAFF 239583.<br />

Plenodomus confertus (Niessl ex Sacc.) Gruyter, Aveskamp<br />

& Verkley, comb. nov. MycoBank MB564730.<br />

Basionym: Leptosphaeria conferta Niessl ex Sacc., Syll. Fung. 2:<br />

20. 1883.<br />

= Phoma conferta P. Syd. ex Died., Krypt.-fl. Brandenburg 9: 142. 1912.<br />

Specimen examined: Spain, Cais do Tejo, from dead stem of Anacyclus radiatus<br />

(Asteraceae), Mar. 1961, M.T. Lucas, <strong>CBS</strong> 375.64.<br />

Plenodomus congestus (M.T. Lucas) Gruyter, Aveskamp &<br />

Verkley, comb. nov. MycoBank MB564731.<br />

Basionym: Leptosphaeria congesta M.T. Lucas, Trans. Brit. Mycol.<br />

Soc. 46: 362. 1963.<br />

= Phoma congesta Boerema, Gruyter & Kesteren, Persoonia 15: 461. 1994.<br />

Specimen examined: Spain, Póvoa de Santa Iria, Estremadura, from stem<br />

of Erigeron canadensis (Asteraceae), Mar. 1961, M.T. Lucas, holotype of<br />

Leptosphaeria congesta M.T. Lucas, dried culture LISE 1638, culture ex-holotype<br />

<strong>CBS</strong> 244.64.<br />

Plenodomus enteroleucus (Sacc.) Gruyter, Aveskamp &<br />

Verkley, comb. nov. MycoBank MB564753.<br />

Basionym: Phoma enteroleuca Sacc. var. enteroleuca, Michelia 1:<br />

358. 1878.<br />

Specimens examined: France, Alencon, from Pyrus communis (Rosaceae), 1878,<br />

C. C. Gillet, holotype of Phoma enteroleuca var. enteroleuca, Herb. Sacc. ’19’,<br />

PAD. Germany, Monheim, from leaf spots of Triticum aestivum (Poaceae), 15 Aug.<br />

1984, M. Hossfeld, <strong>CBS</strong> H-3684, culture <strong>CBS</strong> 831.84. Netherlands, Bennekom,<br />

from discoloured wood of Catalpa bignonioides (Bignoniaceae), 1981, G.H.<br />

Boerema, epitype designated here <strong>CBS</strong> H-16209, culture ex-epitype <strong>CBS</strong> 142.84<br />

= PD 81/654 = CECT 20063.<br />

www.studiesinmycology.org<br />

21


De Gruyter et al.<br />

Plenodomus fallaciosus (Berl.) Gruyter, Aveskamp &<br />

Verkley, comb. nov. MycoBank MB564732.<br />

Basionym: Leptosphaeria fallaciosa Berl., Bull. Soc. Mycol. France.<br />

5: 43. 1889.<br />

Specimen examined: France, Var, Ste. Baume, from Satureia montana (Lamiaceae),<br />

July 1951, E. Müller, <strong>CBS</strong> 414.62 = ETH 2961.<br />

Plenodomus hendersoniae (Fuckel) Gruyter, Aveskamp &<br />

Verkley, comb. nov. MycoBank MB564754.<br />

Basionym: Cucurbitaria hendersoniae Fuckel, Symb. Myc. p. 172.<br />

1870.<br />

≡ Melanomma hendersoniae (Fuckel) Sacc., Syll. Fung. 2: 109. 1883.<br />

≡ Chiajaea hendersoniae (Fuckel) Höhn., Sitzungsber. Kaiserl. Akad.<br />

Wiss., Math.-Naturwiss. Cl., Abt. 1. 129: 152. 1920.<br />

≡ Leptosphaeria hendersoniae (Fuckel) L. Holm, Symb. Bot. Upsal. 14:<br />

26. 1957.<br />

= Phoma intricans M.B. Schwarz, Meded. Phytopath. Lab. Willie Commelin<br />

Scholten 8: 44. 1922.<br />

Specimens examined: Sweden, Uppland, Jerusalem, from Salix cinerea<br />

(Salicaceae), 10 Apr. 1986, K. & L. Holm, <strong>CBS</strong> 113702 = UPSC 1843. Netherlands,<br />

Wilhelminadorp, from bark of Pyrus malus (Rosaceae), June 1977, H.A.Th. van der<br />

Scheer, <strong>CBS</strong> 139.78.<br />

Plenodomus influorescens (Boerema & Loer.) Gruyter,<br />

Aveskamp & Verkley, comb. nov. MycoBank MB564755.<br />

Basionym: Phoma enteroleuca var. influorescens Boerema & Loer.,<br />

Trans. Brit. Mycol. Soc. 84: 290. 1985.<br />

Specimens examined: Netherlands, from Lilium sp. (Liliaceae), 1973, G.H.<br />

Boerema, PD 73/1382; Emmeloord, from Fraxinus excelsior (Oleaceae), 1978, J.D.<br />

Janse, holotype of Phoma enteroleuca var. influorescens, <strong>CBS</strong> H-16208, culture ex<br />

holotype <strong>CBS</strong> 143.84 = PD 78/883 = CECT 20064.<br />

Note: The isolate PD 73/1382 is no longer available for study.<br />

Plenodomus libanotidis (Fuckel) Gruyter, Aveskamp &<br />

Verkley, comb. nov. MycoBank MB564756.<br />

Basionym: Pleospora libanotidis Fuckel, Jahrb. Nassauischen<br />

Vereins Naturk. 27–28: 24. 1873 (as “libanotis”).<br />

≡ Leptosphaeria libanotidis (Fuckel) Sacc., Syll. Fung. 2: 16. 1883 (as<br />

“libanotis”).<br />

= Phoma sanguinolenta Rostr., Tidsskr. Landokon. 5(7): 384. 1888 (not<br />

Phoma sanguinolenta Grove, J. Bot. 23: 164. 1885).<br />

≡ Phoma rostrupii Sacc., Syll. Fung. 11: 490. 1895, nom. nov.<br />

Specimen examined: Sweden, Uppland, Gröna strand, from Seseli libanotis<br />

(Apiaceae), 19 May 1987, K. & L. Holm, <strong>CBS</strong> 113795 = UPSC 2219.<br />

Plenodomus lindquistii (Frezzi) Gruyter, Aveskamp &<br />

Verkley, comb. nov. MycoBank MB564757.<br />

Basionym: Leptosphaeria lindquistii Frezzi, Revista Invest.<br />

Agropec., Sér. 5, 5: 79. 1968.<br />

= Phoma macdonaldii Boerema, Persoonia 6: 20. 1970.<br />

Specimens examined: Canada, from Helianthus annuus (Asteraceae), 1967, W.C.<br />

McDonald, <strong>CBS</strong> 381.67. Former Yugoslavia, from stem of Helianthus annuus,<br />

1977, A. Maric, <strong>CBS</strong> 386.80 = PD 77/336.<br />

Note: Strain <strong>CBS</strong> 381.67 is ex-holotype of Phoma macdonaldii<br />

Boerema, pycnidial state of Leptosphaeria lindquistii Frezzi<br />

(Boerema 1970).<br />

Plenodomus lingam (Tode : Fr.) Höhn., Sitzungsber. Kaiserl.<br />

Akad. Wiss., Math.-Naturwiss. Cl., Abt. 1. 120: 463. 1911.<br />

Basionym: Sphaeria lingam Tode : Fr., Fungi mecklenb. 2: 51.<br />

1791. : Fr., Syst. Mycol. 2: 507. 1823.<br />

≡ Phoma lingam (Tode : Fr.) Desm., Ann. Sci. Nat., Bot. Ser. 3, 11: 281.<br />

1849.<br />

= Sphaeria maculans Desm., Ann. Sci. Nat., Bot. Ser. 3, 6: 77. 1846, nom.<br />

illeg.<br />

≡ Leptosphaeria maculans (Desm.) Ces. & De Not., Comment. Soc.<br />

Crittog. Ital. 1: 235. 1863.<br />

= Plenodomus rabenhorstii Preuss, Linnaea 24: 145. 1851, nom. dub.<br />

Specimens examined: Netherlands, near Goes, from Brassica oleracea<br />

(Brassicaceae), 1978, M.M.J. Dorenbosch, <strong>CBS</strong> 260.94 = PD 78/989. Origin<br />

unknown, Mar. 1924, A. Weber, <strong>CBS</strong> 147.24. UK, from Brassica sp. (Brassicaceae),<br />

1963, B.C. Sutton, <strong>CBS</strong> 275.63 = MUCL 9901= UPSC 1025.<br />

Notes: The combination Plen. lingam as published by van Höhnel<br />

(1911) was preferred over Plen. rabenhorstii Preuss (1851) by<br />

Boerema & van Kesteren (1964) because the type material of<br />

Plen. rabenhorstii had been lost during the Second World War.<br />

Therefore, Plen. rabenhorstii is indicated here as a nomen<br />

dubium. Leptosphaeria maculans causes a serious stem base<br />

canker (blackleg) on cultivated Brassica spp. (Brassicaceae) in<br />

Europe, Australia and North America (West et al. 2001, Fitt et al.<br />

2006).<br />

Plenodomus lupini (Ellis & Everh.) Gruyter, Aveskamp &<br />

Verkley, comb. nov. MycoBank MB564758.<br />

Basionym: Phoma lupini Ellis & Everh., Bull. Washburn Lab. Nat.<br />

Hist. 1: 6. 1884.<br />

≡ Asteromella lupini (Ellis & Everh.) Petr., Sydowia 9: 495. 1955 (not<br />

Phoma lupini N.F. Buchw., Møller, Fungi Faeröes 2: 153. 1958, nom. illeg).<br />

Specimen examined: Peru, Andes region, from stem lesion of Lupinus mutabilis<br />

(Fabaceae), May 1992, J. de Gruyter, <strong>CBS</strong> 248.92 = PD 79/141.<br />

Plenodomus pimpinellae (Lowen & Sivan.) Gruyter,<br />

Aveskamp & Verkley, comb. nov. MycoBank MB564759.<br />

Basionym: Leptosphaeria pimpinellae Lowen & Sivan., Mycotaxon<br />

35: 205. 1989.<br />

= Phoma pimpinellae Boerema & Gruyter, Persoonia 17: 278. 1999.<br />

Specimen examined: Israel, Mt Carmel near Kibbutz Oren, from dead stems of<br />

Pimpinella anisum (Apiaceae), 9 Dec. 1987, R. Rowen, 523-88 NY, holotype of<br />

Leptosphaeria pimpinellae Lowen & Sivan, culture ex-holotype <strong>CBS</strong> 101637 = PD<br />

92/41.<br />

Plenodomus tracheiphilus (Petri) Gruyter, Aveskamp &<br />

Verkley, comb. nov. MycoBank MB564760.<br />

Basionym: Deuterophoma tracheiphila Petri, Boll. Staz. Patol. Veg.<br />

Roma 9: 396. 1929.<br />

≡ Bakerophoma tracheiphila (Petri) Cif., Ist. Bot. Reale Univ. Reale Lab.<br />

Crittog. Pavia Atti Ser. 5, 5: 307. 1946.<br />

≡ Phoma tracheiphila (Petri) L.A. Kantsch. & Gikaschvili, Trudy Inst.<br />

Zasch. Rast. Tibilisi 5: 20. 1948.<br />

Specimens examined: Israel, from Citrus limonium (Rutaceae), Oct. 1993, J. de<br />

Gruyter, <strong>CBS</strong> 551.93 = PD 81/782. Italy, from Citrus sp. (Rutaceae), <strong>CBS</strong> 127250<br />

= PD 09/04597141.<br />

Note: The species produces a phialophora-like synanamorph.<br />

Plenodomus visci (Moesz) Gruyter, Aveskamp & Verkley,<br />

comb. nov. MycoBank MB564761.<br />

Basionym: Plectophomella visci Moesz, Magyar Bot. Lapok 21: 13.<br />

1922.<br />

= Apocytospora visci Höhn., Mitt. Bot. Lab. TH Wien 1: 43. 1924.<br />

22


Phoma sections Plenodomus, Pilosa<br />

Specimen examined: Hungary, Tata-Tóváros, from leaves of Viscum album<br />

(Viscaceae), 22 Oct. 1911, G. von Moesz, BP, holotype of Plectophomella visci<br />

Moesz. France, from Viscum album, 1974, epitype designated here <strong>CBS</strong> H-20823,<br />

culture ex-epitype <strong>CBS</strong> 122783 = PD 74/1021.<br />

Notes: Plectophomella visci is the type species of the genus<br />

Plectophomella. This genus was accepted by Sutton (1980) based<br />

on the eustromatic conidiomata; branched, septate conidiophores,<br />

phialidic conidiogenesis and small, hyaline conidia. However, the<br />

phylogenetic analyses clearly demonstrated the placement of<br />

Plectophomella grouping in the Plenodomus clade and therefore it<br />

is treated as a synonym.<br />

Plenodomus wasabiae (Yokogi) J.F. White & P.V. Reddy,<br />

Canad. J. Bot. 76: 1920. 1999 (1998).<br />

Basionym: Phoma wasabiae Yokogi, Ann. Phytopathol. Soc. Japan<br />

2: 549. 1933.<br />

Specimens examined: Taiwan, from Wasabia japonica (syn. Eutrema wasabi)<br />

(Brassicaceae), A. Rossman, <strong>CBS</strong> 120119 = FAU 559; from Wasabia japonica, A.<br />

Rossman, <strong>CBS</strong> 120120 = FAU 561.<br />

Subplenodomus Gruyter, Verkley & Crous, gen. nov.<br />

MycoBank MB564769.<br />

Etymology: Although the genus resembles Plenodomus in the<br />

production of thick-walled pycnidia, the pycnidial cell wall of<br />

Subplenodomus often remains pseudoparenchymatous, similar to<br />

the pycnidial wall of species of Phoma.<br />

Conidiomata pycnidial, globose to papillate, or with an elongated neck,<br />

solitary or aggregated, thin-walled pseudoparenchymatous, or thickwalled<br />

scleroplectenchymatous, ostiolate, unilocular. Conidiogenous<br />

cells phialidic, ampulliform to doliiform. Conidia hyaline, aseptate,<br />

ellipsoid to cylindrical. Chlamydospores sometimes produced,<br />

olivaceous, unicellular in chains, or multicellular, dictyosporousbotryoid<br />

or forming pseudosclerotioid structures.<br />

Type species: Subplenodomus violicola (P. Syd.) Gruyter,<br />

Aveskamp & Verkley (see below)<br />

Subplenodomus apiicola (Kleb.) Gruyter, Aveskamp &<br />

Verkley, comb. nov. MycoBank MB564770.<br />

Basionym: Phoma apiicola Kleb., Z. Pflanzenkrankh. 20: 22. 1910.<br />

Specimens examined: Germany, from tuber of Apium graveolens var. rapaceum<br />

(Apiaceae), Feb. 1972, Diercks, culture <strong>CBS</strong> 285.72. Netherlands, from stem base<br />

of Apium graveolens, 1978, J. de Gruyter, <strong>CBS</strong> 504.91 = PD 78/1073.<br />

Subplenodomus drobnjacensis (Bubák) Gruyter,<br />

Aveskamp & Verkley, comb. nov. MycoBank MB564771.<br />

Basionym: Phoma drobnjacensis Bubák, Bot. Közlem. 14: 63. 1915<br />

= Pyrenochaeta gentianae Chevassut, Bull. Soc. Mycol. France. 81: 36.<br />

1965.<br />

Specimens examined: Netherlands, from stem base of Gentiana makinoi “Royal<br />

Blue” (Gentianaceae), 1983, M.M.J. Dorenbosch, <strong>CBS</strong> 270.92 = PD 83/650;<br />

Naaldwijk, from red-brown root of Eustoma exaltatum (Gentianaceae), 1988, M.M.J.<br />

Dorenbosch, <strong>CBS</strong> 269.92 = PD 88/896.<br />

Subplenodomus valerianae (Henn.) Gruyter, Aveskamp &<br />

Verkley, comb. nov. MycoBank MB564772.<br />

Basionym: Phoma valerianae Henn., Nyt Mag. Naturvidensk. 42:<br />

29. 1904.<br />

= Phyllosticta valerianae-tripteris f. minor Unamuno, Mem. Real Soc. Esp.<br />

Hist. Nat. 15: 348. 1929.<br />

Specimens examined: Netherlands, Arnhem, from dead stem of Valeriana phu<br />

(Valerianaceae), Sep. 1968, G.H. Boerema, <strong>CBS</strong> 630.68 = PD 68/141; Elburg, from<br />

stem base of Valeriana officinalis, 1973, M.M.J. Dorenbosch, culture <strong>CBS</strong> 499.91<br />

= PD 73/672.<br />

Subplenodomus violicola (P. Syd.) Gruyter, Aveskamp &<br />

Verkley, comb. nov. MycoBank MB564774.<br />

Basionym: Phoma violicola P. Syd., Beibl. Hedwigia 38: 137. 1899.<br />

= Phyllosticta violae f. violae-hirtae Allesch. Rabenh.-Fl., Ed. 2, Pilze 6: 156.<br />

1898.<br />

= Phoma violae-tricoloris Died., Ann. Mycol. 2: 179. 1904.<br />

= Phyllosticta violae f. violae-sylvaticae Gonz. Frag., Trab. Mus. Nac. Ci. Nat.,<br />

Ser. Bot. 7: 35. 1914.<br />

Specimens examined: Netherlands, Baarn, from leaf spot in Viola tricolor, 10 Mar.<br />

1968, H.A. van der Aa, <strong>CBS</strong> 306.68. New Zealand, Auckland, Henderson, from leaf<br />

spot in Viola tricolor (Violaceae), 1997, J. Jury, <strong>CBS</strong> 100272.<br />

Coniothyriaceae W.B. Cooke. Revista Biol. (Lisbon) 12:<br />

289. 1983.<br />

Coniothyrium carteri (Gruyter & Boerema) Verkley &<br />

Gruyter, comb. nov. MycoBank MB564775.<br />

Basionym: Phoma carteri Gruyter & Boerema, Persoonia 17(4):<br />

547. 2002 (“2001”), nom. nov.<br />

Replaced synonym: Pyrenochaeta minuta J.C. Carter, Bull.<br />

Illinois Nat. Hist. Surv. 21: 214. 1941 [not Phoma minuta Wehm.,<br />

Mycologia 38: 318. 1946, nor Phoma minuta Alcalde, Anales Inst.<br />

Bot. Cavanilles 10: 235. 1952; not Coniothyrium minutum (Berl.)<br />

O. Kuntze, Revis. Gen. Pl. 3: 459. 1898 = Phoma cava, syn. of<br />

Pyrenochaeta cava; not Coniothyrium minutum (Died) Petr. & Syd.,<br />

Feddes Repert. Spec. Nov. Regni Veg. Beih. 42: 349. 1927].<br />

Specimens examined: Germany, isolated from Quercus robur (Fagaceae), 1991,<br />

<strong>CBS</strong> 105.91. Netherlands, from shoot of Quercus sp. (Fagaceae), 1984, M.M.J.<br />

Dorenbosch, <strong>CBS</strong> 101633 = PD 84/74.<br />

Coniothyrium dolichi (Mohanty) Verkley & Gruyter, comb.<br />

nov. MycoBank MB564776.<br />

Basionym: Pyrenochaeta dolichi Mohanty, Indian Phytopathol. 11:<br />

85. 1958.<br />

Specimen examined: India, Nani Tal, Sarichuan, from leafspot of Dolichos biflorus<br />

(Fabaceae), 20 Oct. 1955, N.N. Mohandy, <strong>CBS</strong> 124140 = IMI 217262, <strong>CBS</strong> 124143<br />

= IMI 217261.<br />

Notes: A synanamorph was noted and described as a Coniosporium<br />

state based on the dark brown to black, dictyosporous conidia<br />

(Mohanty 1958). This synanamorph was considered later as<br />

monodictys-like (Grodona et al. 1997).<br />

Coniothyrium glycines (R.B. Stewart) Verkley & Gruyter,<br />

comb. nov. MycoBank MB564777.<br />

Basionym: Pyrenochaeta glycines R.B. Stewart, Mycologia 49:<br />

115. 1957.<br />

≡ Phoma glycinicola Gruyter & Boerema, Persoonia 17: 554. 2002<br />

(“2001”), nom. nov., nom. inval. (not Phoma glycines Sawada, Special.<br />

Publ. Coll. Agric., Natl. Taiwan Univ. 8: 129. 1959, nom. inval). ≡ Phoma<br />

glycines Sawada ex J.K. Bai & G.Z. Lu, Fl. Fungorum Sin. 15: 33. 2003.<br />

Specimens examined: Zambia, on Mt. Makulu, from leaf of Glycine max (Fabaceae),<br />

Mar. 1985, J.M. Waller, <strong>CBS</strong> 124455 = IMI 294986. Zimbabwe, from a leaf of<br />

Glycine max (Fabaceae), 2001, C. Lavy, <strong>CBS</strong> 124141 = PG1.<br />

www.studiesinmycology.org<br />

23


De Gruyter et al.<br />

Coniothyrium multiporum (V.H. Pawar, P.N. Mathur<br />

& Thirum.) Verkley & Gruyter, comb. nov. MycoBank<br />

MB564778.<br />

Basionym: Phoma multipora V.H. Pawar, P.N. Mathur & Thirum.,<br />

Trans. Brit. Mycol. Soc. 50: 260. 1967.<br />

≡ Phoma multipora V.H. Pawar & Thirum., Nova Hedwigia 12: 501. 1966,<br />

nom. nud.<br />

Specimens examined: Egypt, <strong>CBS</strong> 501.91 = PD 83/888. India, Bombay, Bandra,<br />

from saline soil, 15 Jan. 1958, M.J. Thirumalachar, Isotype <strong>CBS</strong> H-16492, culture<br />

ex-isotype <strong>CBS</strong> 353.65 = ATCC 16207 = HACC 164 = IMI 113689.<br />

Coniothyrium palmarum Corda, Icon. Fungorum. (Corda)<br />

4: 38. 1840.<br />

≡ Clisosporium palmarum (Corda) Kuntze, Revis. Gen. Pl. 3: 458. 1898.<br />

≡ Microdiplodia palmarum (Corda) Died., Ann. Mycol. 11: 47. 1913.<br />

Specimens examined: Italy, Sardegna, near Dorgali, from a dead petiole of<br />

Chamaerops humilis (Arecaceae), Aug. 1970, W. Gams, <strong>CBS</strong> H-10891–10893,<br />

culture <strong>CBS</strong> 400.71.<br />

Coniothyrium telephii (Allesch.) Verkley & Gruyter, comb.<br />

nov. MycoBank MB564779.<br />

Basionym: Pyrenochaeta telephii Allesch., Ber. bayer. bot. Ges. 4:<br />

33. 1896.<br />

≡ Phoma septicidalis Boerema, Versl. Meded. Plantenziektenk. Dienst<br />

Wageningen 153 (Jaarb. 1978): 20. 1979, nom. nov. [not Phoma telephii<br />

(Vestergr.) Kesteren, Netherlands J. Pl. Pathol. 78: 117. 1972].<br />

Specimens examined: Finland, Helsinki, Asko Kahanpää, obtained from air,<br />

Jan. 1971, <strong>CBS</strong> H-16567, culture <strong>CBS</strong> 188.71; Oulu, from mineral wool between<br />

walls, Dec. 1996, K. Poldmaa, <strong>CBS</strong> 856.97. Zimbabwe, from leaf of Glycine max<br />

(Fabaceae), <strong>CBS</strong> 101636 = PD 86/1186.<br />

Cucurbitariaceae G. Winter, Rabenh, Krypt.-Fl., Ed 2, 308.<br />

1885.<br />

Neophaeosphaeria filamentosa (Ellis & Everh.) Câmara,<br />

M.E. Palm & A.W. Ramaley, Mycol. Res. 107: 519. 2003.<br />

Basionym: Leptosphaeria filamentosa Ellis & Everh., J. Mycol. 4:<br />

76. 1888.<br />

≡ Paraphaeosphaeria filamentosa (Ellis & Everh.) M.E. Barr, Mycotaxon<br />

43: 392. 1992.<br />

Specimen examined: Mexico, from Yucca rostrata (Asparagaceae), Stevens, <strong>CBS</strong><br />

102202 = BPI 802755.<br />

Pyrenochaetopsis pratorum (P.R. Johnst. & Boerema)<br />

Gruyter, Aveskamp & Verkley, comb. nov. MycoBank<br />

MB564780.<br />

Basionym: Phoma pratorum P.R. Johnst. & Boerema, New Zealand<br />

J. Bot. 19: 395. 1981.<br />

Specimens examined: New Zealand, Rakura, near Hamilton, from a leaf of Lolium<br />

perenne (Poaceae), 1980, P.R. Johnston, isotype <strong>CBS</strong> H-7625, <strong>CBS</strong> H-7626,<br />

culture <strong>CBS</strong> 445.81 = PDDCC 7049 = PD 80/1254; Dactylis glomerata (Poaceae),<br />

1980, <strong>CBS</strong> 286.93 = PD 80/1252.<br />

Pleosporaceae Nitschke, Verh. Naturhist. Vereines Preuss.<br />

Rheinl. 26: 74. 1869.<br />

Pleospora angustis Gruyter & Verkley, nom. nov. MycoBank<br />

MB564781.<br />

≡ Leptosphaeria clavata A.L. Guyot, Revue Mycol. (Paris) 11: 62. 1946.<br />

≡ Massariosphaeria clavata (A.L. Guyot) Shoemaker & C.E. Babc.,<br />

Canad. J. Bot. 67: 1582.1989; not Pleospora clavata Gucevič (”as<br />

clavatis”), Novosti Sist. Nizsh. Rast. 7: 168. 1970.<br />

Specimen examined: Switzerland, 1951, E. Müller, <strong>CBS</strong> 296.51.<br />

Notes: The origin of the isolate deposited by E. Müller is unknown;<br />

however, it is likely that the isolate was obtained from Poaceae,<br />

Triticum vulgare or Dactylis glomerata (Müller 1950). Pleospora<br />

clavata Gucevič was obtained from Lonicera alseuosmoides and<br />

refers to a different species.<br />

Pleospora betae (Berl.) Nevod., Grib. ross. Exs., No. 247.<br />

1915.<br />

Basionym: Pyrenophora echinella var. betae Berl. Nuovo Giorn.<br />

Bot. Ital. 20: 208. 1888.<br />

= Pleospora betae Björl., Bot. Not. 1944: 218. 1944. (later homonym), nom.<br />

illeg.<br />

≡ Pleospora bjoerlingii Byford, Trans. Brit. Mycol. Soc. 46: 614. 1963,<br />

nom. nov.<br />

= Phoma betae A.B. Frank, Z. Rúbenzucker-Ind. 42: 904, tab. 20. 1892.<br />

= Phyllosticta betae Oudem., Ned. Kruidk. Arch. Ser. 2, 2: 181. 1877.<br />

= Gloeosporium betae Dearn. & E.T. Barthol., Mycologia 9: 356. 1917.<br />

Specimens examined: Netherlands, Wageningen, from Beta vulgaris<br />

(Chenopodiaceae), Sep. 1966, M.M.J. Dorenbosch, <strong>CBS</strong> H-16156, culture <strong>CBS</strong><br />

523.66 = IHEM 3915 = PD 66/270; from Beta vulgaris, 1977, G.H. Boerema, <strong>CBS</strong><br />

109410 = PD 77/113.<br />

Note: The name Phoma betae A.B. Frank has been conserved<br />

against Phyllosticta tabifica and any combination based on that<br />

name (Shoemaker & Redhead 1999).<br />

Pleospora calvescens (Fr.) Tul. & C. Tul., Selecta Fung.<br />

Carpol. (Paris) 2: 266. 1863.<br />

Basionym: Sphaeria calvescens Fr., Ann. Sci. Nat., Bot. Ser. 2, 19:<br />

353. 1843.<br />

≡ Leptosphaeria calvescens (Fr.) Sacc., Syll. fung. 2: 24. 1883.<br />

≡ Pyrenophora calvescens (Fr.) Sacc., Syll. fung. 2: 279. 1883.<br />

= Chaetodiplodia caulina P. Karst., Hedwigia 23: 62. 1884.<br />

≡ Ascochyta caulina (P. Karst.) v.d. Aa & Kesteren, Persoonia 10: 271.<br />

1979.<br />

= Microdiplodia henningsii Staritz, Hedwigia 53: 163. 1913.<br />

Specimens examined: Germany, Munkmarsch, from leaf spots in Atriplex hastata<br />

(Chenopodiaceae), 20 July 1977, G.H. Boerema, <strong>CBS</strong> H-8980, culture <strong>CBS</strong> 246.79<br />

= PD 77/655. Netherlands, Texel, from dead stem of Atriplex hastata, June 1978,<br />

H.A. van der Aa, <strong>CBS</strong> H-8976, culture <strong>CBS</strong> 343.78.<br />

Note: For additional synonyms see Boerema et al. (1993).<br />

Pleospora chenopodii Ellis & Kellerman, J. Mycol. 4: 26.<br />

1888.<br />

= Diplodia hyalospora Cooke & Ellis, Grevillea 7: 5. 1878 (not Pleospora<br />

hyalospora Ellis & Everh., Proc. Acad. Nat. Sci. Philadelphia. 42: 238. 1890).<br />

≡ Ascochyta hyalospora (Cooke & Ellis) Boerema, S.B. Mathur & Neerg.,<br />

Netherlands J. Pl. Pathol. 83: 156. 1977.<br />

= Diplodina ellisii Sacc., Syll Fung. 3: 417. 1884<br />

Specimens examined: Bolivia, isolated from Chenopodium quinoa<br />

(Chenopodiaceae), 1974, S.B. Mathur, <strong>CBS</strong> H-9051, <strong>CBS</strong> H-9052, culture<br />

<strong>CBS</strong> 206.80 = PD 74/1022. Netherlands, Zoutelande, from Atriplex hastata<br />

(Chenopodiaceae), Aug. 1968, H.A. van Kesteren, <strong>CBS</strong> 344.78 = PD 68/682.<br />

Note: Isolate <strong>CBS</strong> 344.78 was originally identified as Ascochyta<br />

caulina but was identical to Pleospora chenopodii in the present<br />

study.<br />

24


Phoma sections Plenodomus, Pilosa<br />

Pleospora fallens (Sacc.) Gruyter & Verkley, comb. nov.<br />

MycoBank MB564782.<br />

Basionym: Phoma fallens Sacc., Syll. Fung. 10: 146. 1892.<br />

= Phyllosticta glaucispora Delacr., Bull. Soc. Mycol. France 9: 266. 1893.<br />

≡ Phoma glaucispora (Delacr.) Noordel. & Boerema, Versl. Meded.<br />

Plantenziektenk. Dienst Wageningen 166 (Jaarb. 1987): 108. 1989<br />

(“1988”).<br />

= Phyllosticta oleandri Gutner, Trudy Bot. Inst. Akad. Nauk S.S.S.R., Ser. 2,<br />

Sporov. Rast. 1: 306. 1933.<br />

Specimens examined: Italy, Capri, Villa Jovis, from a leaf spot of Nerium oleander<br />

(Apogynaceae), <strong>CBS</strong> H-16639, culture <strong>CBS</strong> 284.70 = PD 97/2400. New Zealand,<br />

Levin, from leaf spot of Olea europaea (Oleaceae), 1978, G.F. Laundon, <strong>CBS</strong><br />

161.78 = LEV 1131.<br />

Pleospora flavigena (Constantinou & Aa) Gruyter & Verkley,<br />

comb. nov. MycoBank MB564783.<br />

Basionym: Phoma flavigena Constantinou & Aa, Trans. Brit. Mycol.<br />

Soc. 79: 343. 1982.<br />

Specimen examined: Romania, Bucuresti, isolated from water, 1980, K. Fodor, <strong>CBS</strong><br />

H-1418, holotype of Phoma flavigena Constantinou & Aa, culture ex-holotype <strong>CBS</strong><br />

314.80 = PD 91/1613.<br />

Pleospora halimiones Gruyter & Verkley, nom. nov.<br />

MycoBank MB564784.<br />

≡ Diplodina obiones Jaap (as “obionis”), Verh. Bot. Vereins Prov.<br />

Brandenburg 47: 96. 1905 (not Pleopora obiones P. Crouan & H. Crouan,<br />

Fl. Finistère: 22. 1867).<br />

≡ Ascochytula obiones (Jaap) Died., Ann. Mycol. 10: 141. 1912.<br />

≡ Ascochyta obiones (Jaap) P.K. Buchanan, Mycol. Pap. 156: 28 1987.<br />

= Coniothyrium obiones Jaap (as “obionis”), Schriften Naturwiss. Vereins<br />

Schleswig-Holstein 14: 29. 1907.<br />

Specimens examined: Netherlands, Texel, from leaf spots in Halimione<br />

portulacoides (Chenopodiaceae), 27 Oct. 1968, H.A. van der Aa, <strong>CBS</strong> H-9127, <strong>CBS</strong><br />

H-9129, culture <strong>CBS</strong> 786.68; Texel, De Cocksdorp, from dead stems of Halimione<br />

portulacoides, 6 July 1977, H.A. van der Aa, <strong>CBS</strong> H-9126, <strong>CBS</strong> H-9125, culture <strong>CBS</strong><br />

432.77 = IMI 282137.<br />

Notes: Isolate <strong>CBS</strong> 453.68 preserved as Chaetodiplodia sp. and<br />

also isolated from dying stems and leaf sheaths of Halimione<br />

portulacoides on Texel, is not the same as Pleo. halimiones and is<br />

probably a different species.<br />

Pleospora herbarum (Pers.) Rabenh., Bot. Zeitung (Berlin)<br />

15: 428. 1857; Klotzschii Herb. Viv. Mycol. 2: no. 547 (1854.)<br />

Basionym: Sphaeria herbarum Pers., Syn. Meth. Fung. 1: 78. 1801.<br />

= Stemphylium herbarum E.G. Simmons, Sydowia 38: 291. 1986 (1985).<br />

Specimen examined: India, Uttar Pradesh, from a leaf of Medicago sativa<br />

(Fabaceae), 1986 (isolated in 1983), E.G. Simmons, <strong>CBS</strong> 191.86 = IMI 276975.<br />

Note: This isolate is the ex-type culture of Stemphylium herbarum.<br />

Pleospora incompta (Sacc. & Martelli) Gruyter & Verkley,<br />

comb. nov. MycoBank MB564785.<br />

Basionym: Phoma incompta Sacc. & Martelli, Syll. Fung. 10: 146.<br />

1892.<br />

Specimens examined: Greece, Crete, from branch of Olea europaea (Oleaceae),<br />

1976, N. Malathrakis, <strong>CBS</strong> H-16394, culture <strong>CBS</strong> 467.76. Italy, from branch of Olea<br />

europaea, Mar. 1982, <strong>CBS</strong> H-16392, culture <strong>CBS</strong> 526.82.<br />

Pleospora typhicola (Cooke) Sacc., Syll. Fung. 2: 264.<br />

1883.<br />

Basionym: Sphaeria typhicola Cooke, Grevillea 5: 121. 1877.<br />

≡ Clathrospora typhicola (Cooke) Höhn., Ann. Mycol. 16: 88. 1918.<br />

≡ Pyrenophora typhicola (Cooke) E. Müll., Sydowia 5: 256. 1951.<br />

≡ Macrospora typhicola (Cooke) Shoemaker & C.E. Babc., Canad. J. Bot.<br />

70: 1644. 1992.<br />

= Phyllosticta typhina Sacc. & Malbr., Sacc., Michelia 2: 88. 1880.<br />

≡ Phoma typhina (Sacc. & Malbr.) van der Aa & Vanev, A revision of the<br />

species described in Phyllosticta: 468. 2002.<br />

= Phoma typharum Sacc., Syll. Fung. 3: 163. 1884.<br />

Specimens examined: Netherlands, Texel, from dead leaves of Typha angustifolia<br />

(Typhaceae), 1969, W. Gams, <strong>CBS</strong> H-16597, culture <strong>CBS</strong> 132.69; Staverden, from<br />

leaf spots of Typha sp., 24 June 1972, G.S. de Hoog, <strong>CBS</strong> H-16598, culture <strong>CBS</strong><br />

602.72.<br />

Phoma-like anamorphs excluded from the suborder<br />

Pleosporineae<br />

Montagnulaceae M.E. Barr, Mycotaxon 77: 194. 2001.<br />

Paraconiothyrium Verkley, Stud. Mycol. 50: 327. 2004.<br />

Type species: Paraconiothyrium estuarinum Verkley & M. da Silva,<br />

Stud. Mycol. 50: 327. 2004.<br />

Paraconiothyrium flavescens (Gruyter, Noordel. &<br />

Boerema) Verkley & Gruyter, comb. nov. MycoBank<br />

MB564786.<br />

Basionym: Phoma flavescens Gruyter, Noordel. & Boerema,<br />

Persoonia 15(3): 375. 1993.<br />

Specimen examined: Netherlands, Nagele, from soil, rhizosphere of Solanum<br />

tuberosum (Solanaceae), <strong>CBS</strong> 178.93 = PD 82/1062.<br />

Paraconiothyrium fuckelii (Sacc.) Verkley & Gruyter,<br />

comb. nov. MycoBank MB564787.<br />

Basionym: Coniothyrium fuckelii Sacc., Nuovo Giorn. Bot. Ital. 8:<br />

200. 1876; Michelia 1: 207. 1878<br />

≡ Clisosporium fuckelii (Sacc.) Kuntze, Revis. Gen. Pl. 3: 458. 1898.<br />

≡ Microsphaeropsis fuckelii (Sacc.) Boerema, 2003, Persoonia 18: 160.<br />

2003.<br />

Specimen examined: Denmark, Geelskov, from a dead stem of Rubus sp.<br />

(Rosaceae), 1995, A.M. Dahl-Jensen, <strong>CBS</strong> 797.95.<br />

Notes: Coniothyrium fuckelii var. sporulosum has been redisposed<br />

as Paraconiothyrium sporulosum (Verkley et al. 2004) and it is<br />

clearly different from Paraconiothyrium fuckelii (Damm et al. 2008).<br />

Paraconiothyrium fusco-maculans (Sacc.) Verkley &<br />

Gruyter, comb. nov. MycoBank MB564788.<br />

Basionym: Phoma fusco-maculans Sacc., Michelia 2: 275. 1881<br />

≡ Plenodomus fusco-maculans (Sacc.) Coons, J. Agric. Res. 5: 714. 1916.<br />

Specimens examined: Italy, Selva, from decorticated wood of Malus pumila<br />

(Rosaceae), Oct. 1880, PAD, holotype of Phoma fusco-maculans Sacc. USA, from<br />

wood of Malus sp. (Rosaceae), July 1916, G.H. Coons, epitype designated here<br />

<strong>CBS</strong> H-20825, culture ex-epitype <strong>CBS</strong> 116.16.<br />

Notes: Plenodomus fusco-maculans was discussed by Boerema &<br />

Loerakker (1985) and de Gruyter et al. (2010). The holotype of the<br />

basionym Aposphaeria fusco-maculans was studied and considered<br />

to be Aposphaeria pulviscula (Boerema et al. 1996). However, the<br />

description of A. fusco-maculans given by Boerema et al. (1996)<br />

fits the generic concept of Paraconiothyrium, in congruence with<br />

the molecular phylogeny of the culture <strong>CBS</strong> 116.16.<br />

www.studiesinmycology.org<br />

25


De Gruyter et al.<br />

Fig. 6. Paraconiothyrium maculicutis sp. nov. <strong>CBS</strong> 101461. A–B. Fourteen day old cultures on OA (A) and MA (B). C–D. Pycnidia. E. Phoma-like conidiogenous cells. F–G.<br />

Conidia, initially hyaline to pale olivaceous (F), then becoming olivaceous (G). Scale bars: C–D = 20 μm; E = 10 μm; F–G = 5 μm.<br />

Paraconiothyrium lini (Pass.) Verkley & Gruyter, comb.<br />

nov. MycoBank MB564789.<br />

Basionym: Phoma lini Pass., Diagn. Funghi Nuovi 4, No. 81. 1890.<br />

Specimen examined: Netherlands, from Wisconsin tank, 1970, <strong>CBS</strong> 253.92 = PD<br />

70/998.<br />

Paraconiothyrium maculicutis Verkley & Gruyter, sp. nov.<br />

MycoBank MB564796. Fig. 6.<br />

Etymology: Latin, cutis = skin; maculae = spots.<br />

Pycnidia in vitro 50–125 μm diam, globose to subglobose,<br />

glabrous or with mycelial outgrowth, scattered, non-ostiolate<br />

or ostiolate, pycnidial wall made up of 5–7 layers of cells.<br />

Conidiogenous cells 1.5–3 × 0.5–2.5 μm, indeterminate or<br />

ampulliform to filiform in a later state, up to 10 μm in length.<br />

Conidia 1.5–2.5 × 0.5–1.5 μm, ellipsoidal, initially hyaline, then<br />

discolouring to olivaceous.<br />

Description in vitro: Colonies on OA 50–52 mm diam after 7 d,<br />

margin entire; colony olivaceous buff to greenish olivaceous/grey<br />

olivaceous, with greenish olivaceous to pale olivaceous grey,<br />

finely floccose to woolly aerial mycelium; reverse smoke-grey to<br />

greenish olivaceous, with olivaceous patches. Colonies on MEA<br />

43–44 mm diam after 7 d, margin entire; colony pale olivaceous<br />

grey to greenish olivaceous, with isabelline to cinnamon at centre,<br />

with compact pale olivaceous grey, finely floccose to woolly aerial<br />

mycelium; reverse buff to honey, isabelline to olivaceous near<br />

margin. Pycnidia globose to subglobose, olivaceous to brick, finally<br />

olivaceous black, scattered, mainly on the agar, 50–125 μm diam,<br />

glabrous or with mycelial outgrowth, non-ostiolate or ostiolate,<br />

pycnidial wall made up of 5–7 layers of cells. Conidiogenous cells<br />

1.5–3 × 0.5–2.5 μm, ampulliform to filiform in a later state, up to 10<br />

μm in length. Conidia 1.5–2.5 × 0.5–1.5 μm, av. 1 × 2 μm, length/<br />

width ratio = 1.5–3.2, av. 2.2, ellipsoidal, initially hyaline, then<br />

discolouring to olivaceous. Chlamydospores absent. NaOH spot<br />

test: negative. Crystals absent.<br />

Specimen examined: USA, Texas; San Antonio, Fort Sam Houston, from human,<br />

cutaneous lesions, 1989, D.P. Dooley, holotype <strong>CBS</strong> H-20824, culture ex-holotype<br />

<strong>CBS</strong> 101461 = IMI 320754 = UTHSC 87-144.<br />

Notes: Isolate <strong>CBS</strong> 101461 was identified as Pleurophoma<br />

pleurospora (Dooly et al. 1989). However, in vitro data and the<br />

molecular phylogeny demonstrate that this isolate does not belong<br />

to Pleurophoma pleurospora, see below, and therefore is described<br />

as a new species in the genus Paraconiothyrium.<br />

Paraconiothyrium minitans (W.A. Campb.) Verkley, Stud.<br />

Mycol. 50: 332. 2004.<br />

Basionym: Coniothyrium minitans W.A. Campb., Mycologia 39:<br />

191. 1947.<br />

Specimens examined: Netherlands, Boskoop, from stem of Clematis sp.<br />

(Ranunculaceae), 1999, J. de Gruyter, <strong>CBS</strong> 122786 = PD 99/1064-1. UK, <strong>CBS</strong><br />

122788 = PD 07/03486739.<br />

Paraconiothyrium tiliae (F. Rudolphi) Verkley & Gruyter,<br />

comb. nov. MycoBank MB564790.<br />

Basionym: Asteroma tiliae F. Rudolphi, Linnaea 4: 514. 1829.<br />

26


Phoma sections Plenodomus, Pilosa<br />

Fig. 7. Pleurophoma pleurospora. <strong>CBS</strong> 130329. A–B. Fourteen day old cultures on OA (A) and MA (B). C. Pycnidia. D–H. Conidiogenous cells, septate conidiophores with<br />

acropleurogenous conidiogenesis (D–G) or phoma-like (H). I. Conidia. Scale bars: C = 50 μm; D–G, I = 10 μm; H = 5 μm.<br />

≡ Asteromella tiliae (F. Rudolphi) Butin & Kehr, Mycol. Res. 99: 1193.<br />

1995, nom. inval., Art. 33.4.<br />

Specimen examined: Austria, Amlach, from a leaf of Tilia platyphyllos (Tiliaceae),<br />

10 Sep. 1993, H. Butin, neotype IMI 362854, lectotype designated here <strong>CBS</strong><br />

H-20826, culture ex-lectotype <strong>CBS</strong> 265.94.<br />

Pleurophoma pleurospora (Sacc.) Höhn., Sitzungsber.<br />

Kaiserl. Akad. Wiss., Math.-Naturwiss. Cl., Abt. 1. 123: 117.<br />

1914. Fig. 7.<br />

Basionym: Dendrophoma pleurospora Sacc., Michelia 2: 97. 1880.<br />

Description in vitro: Colonies on OA 14–18 mm diam after 7 d<br />

(18–28 mm after 14 d), margin entire to undulate; colony greenish<br />

olivaceous/olivaceous to rosy-buff and sepia, with white, felty<br />

aerial mycelium; reverse olivaceous grey to greenish olivaceous/<br />

olivaceous. Colonies on MEA 11–16 mm diam after 7 d (19–29<br />

mm after 14 d), colony margin undulate; colony pale olivaceous<br />

grey/ olivaceous grey to dark mouse-grey with rosy-buff tinges,<br />

with white, floccose, compact aerial mycelium, reverse umber/<br />

brown olivaceous to olivaceous/olivaceous black. Pycnidia globose<br />

to subglobose,olivaceous to olivaceous black, abundant, scattered,<br />

mainly on the agar, 30–120 μm diam, solitary or aggregated,<br />

covered by mycelial outgrowths or setae-like hyphae, up to 50 μm,<br />

non-papillated, without or with ostiole, walls made up of 2–5 layers<br />

of cells, outer layer(s) pigmented; conidial exudate not observed.<br />

Conidiogenous cells of two types; ampulliform to doliiform, 4–6.5 ×<br />

2–5.5 μm, or filiform, septate, branched, acropleurogenous, up to<br />

60 μm long. Conidia 3.5–5.5 × 1.5–2.5 μm, av. 4.5 × 2 μm, length/<br />

width ratio = 1.5–3, av. 2.1, cylindrical to oblong, without or with<br />

some minute, polar orientated guttules. Chlamydospores absent.<br />

NaOH spot test: a weak reddish discolouring may occur on MA, not<br />

specific. Crystals absent.<br />

Specimens examined: France, Perpignan, from leaf of Laurus nobilis (Lauraceae),<br />

PAD, holotype of Dendrophoma pleurospora Sacc. Netherlands, from wood of<br />

Lonicera sp. (Caprifoliaceae), lectotype designated here <strong>CBS</strong> H-20626, culture<br />

ex-lectotype <strong>CBS</strong> 130329 = PD 82/371; Molenhoek, Heumense Schans, from twig<br />

lesions of Cytisus scoparius (Fabaceae), 23 Aug. 2004, G. Verkley & M. Starink,<br />

<strong>CBS</strong> 116668.<br />

Notes: A specimen derived from isolate <strong>CBS</strong> 130329 is assigned<br />

here as lectotype of Pleurophoma pleurospora, the type species of<br />

the genus (von Höhnel 1914). The species is known from branches<br />

and bare wood of trees and shrubs (Sutton 1980, Boerema et al.<br />

1996) and the isolate from Cytisus scoparius demonstrates that the<br />

species also may occur on green twigs. The isolates showed two<br />

types of conidiogenesis characteristic for the genus Pleurophoma;<br />

phoma-like, ampulliform to doliiform conidiogenous cells, as well as<br />

pyrenochaeta-like branched, filiform, septate, acropleurogenous.<br />

As a result, species of the genus Pleurophoma can easily be<br />

confused with taxa classified in the genera Phoma, Paraphoma,<br />

Pyrenochaeta and Pyrenochaetopsis.<br />

www.studiesinmycology.org<br />

27


De Gruyter et al.<br />

Paraphaeosphaeria michotii (Westend.) O.E. Erikss., Arkiv<br />

før Botanik 6: 406. 1967.<br />

Basionym: Sphaeria michotii Westend., Bull. Acad. Roy. Sci.<br />

Belgique Ser. 2, 7: 87. 1859.<br />

Specimen examined: Switzerland, Kt. Obwalden, from Typha latifolia (Typhaceae),<br />

18 May 1980, A. Leuchtmann, <strong>CBS</strong> 652.86 = ETH 9483.<br />

Massarinaceae Munk, Friesia 5: 305. 1956.<br />

Byssothecium circinans Fuckel, Bot. Zeitung (Berlin) 19:<br />

251. 1861.<br />

≡ Leptosphaeria circinans (Fuckel) Sacc., Syll. Fung. 2: 88. 1883.<br />

≡ Passeriniella circinans (Fuckel) Sacc., Syll. Fung. 11: 326. 1895.<br />

≡ Trematosphaeria circinans (Fuckel) G. Winter, Rabenh. Krypt.-Fl., ed<br />

1(2): 277. 1887.<br />

≡ Heptameria circinans (Fuckel) Cooke, Grevillea 18: 30. 1889.<br />

= Melanomma vindelicorum Rehm, Ber. Nat. Ver. Augsburg: 116. 1881.<br />

≡ Trematosphaeria vindelicorum (Rehm) Sacc., Syll. Fung. 2: 122. 1883.<br />

Specimen examined: USA, South Dakota, from rotten crown of Medicago sativa<br />

(Fabaceae), G. Semeniuk, <strong>CBS</strong> 675.92 = ATCC 52767 = ATCC 52678 = IMI 266220.<br />

Massarina eburnea (Tul. & C. Tul.) Sacc., Syll. Fung. 2: 153.<br />

1883.<br />

Basionym: Massaria eburnea Tul. & C. Tul., Select. Fung. Carpol.<br />

(Paris) 2: 239. 1863.<br />

Specimens examined: Switzerland, Zürich, from Fagus sylvatica (Fagaceae), S.K.<br />

Bose, <strong>CBS</strong> 473.64 = ETH 2945. UK, Wales, isolated from dead branch of Fagus<br />

sylvatica, HHUF 26621, JCM 14422 = H3953.<br />

Neottiosporina paspali (G.F. Atk.) B. Sutton & Alcorn,<br />

Austral. J. Bot. 22: 519. 1974.<br />

Basionym: Stagonospora paspali G.F. Atk., Bull. Cornell Univ.<br />

(Science) 3: 33. 1897.<br />

Specimen examined: USA, Florida, from Paspalum notatum (Poaceae), Oct. 1937,<br />

R.K. Voorhees, <strong>CBS</strong> 331.37.<br />

Trematosphaeriaceae Suetrong et al. Cryptogamie Mycol.<br />

32: 347. 2011.<br />

Falciformispora lignatilis K.D. Hyde, Mycol. Res. 96: 27.<br />

1992.<br />

Specimen examined: Thailand, Pinruan Ban Bang, from Elaeis guineensis<br />

(Arecaceae), BCC 21118.<br />

Medicopsis Gruyter, Verkley & Crous, gen. nov. MycoBank<br />

MB564791.<br />

Etymology: refers to Medi- medica, Latin, -opsis, refers to, Greek.<br />

The description of the type species as the cause of a mycetoma<br />

suggest this is a human pathogen. However, the mycetoma<br />

described was secondary to a wound produced by a thorn of Palito<br />

blanco tree, and the species was found later on Hordeum vulgare.<br />

Pycnidia solitary or confluent, on upper surface of the agar, globose<br />

to pyriform with elongated neck, setose, ostiolate, olivaceous<br />

to olivaceous-black, the wall with pseudoparenchymatal cells.<br />

Conidiogenous cells hyaline, phialidic, ampulliform to doliiform, to<br />

elongated. Conidia sub-hyaline to yellowish, ellipsoid, aseptate,<br />

catenulate.<br />

Type species: Medicopsis romeroi (Borelli) Gruyter, Verkley &<br />

Crous (see below).<br />

Medicopsis romeroi (Borelli) Gruyter, Verkley & Crous,<br />

comb. nov. MycoBank MB564792.<br />

Basionym: Pyrenochaeta romeroi Borelli, Dermatol. Venez. 1: 326.<br />

1959.<br />

Specimens examined: Venezuela, from human, maduromycosis, no date, D. Borelli,<br />

UAMH 2892, holotype of Pyrenochaeta romeroi Borelli, culture ex-holotype <strong>CBS</strong><br />

252.60 = ATCC 13735 = FMC 151 = UAMH 10841. Country unknown, from Hordeum<br />

vulgare (Poaceae), 1984, M.M.J. Dorenbosch, <strong>CBS</strong> 122784 = PD 84/1022.<br />

Notes: The species was described as a human pathogen of<br />

tropical origin, and it may cause suppurative subcutaneous<br />

or deep nonmycetomatous infections, or a subcutaneous<br />

phaeohyphomycotic cyst (Badali et al. 2010). However, the species<br />

also occurs in plant material.<br />

Trematosphaeria pertusa (Pers.) Fuckel, Jahrb.<br />

Nassauischen Vereins Naturk 23–24: 161. 1870.<br />

Basionym: Sphaeria pertusa Pers., Syn. Meth. Fung. 1: 83. 1801.<br />

Specimen examined: France, Deux Sèvres, from bark of a dead stump of Fraxinus<br />

excelsior (Oleaceae), 25 Apr. 2004, Jacques Fournier, epitype IFRD 2002, culture<br />

ex-epitype <strong>CBS</strong> 122368.<br />

Note: The epitype IFRD 2002 was designated by Zhang et al.<br />

(2008).<br />

Lentitheciaceae Yin. Zhang, C.L. Schoch, J. Fourn., Crous<br />

& K.D. Hyde, Stud. Mycol. 64: 93. 2009.<br />

Splanchnonema platani (Ces.) M.E. Barr, Mycotaxon 15:<br />

364. 1982.<br />

Basionym: Sphaeria (Massaria) platani Ces., in Rabenhorst,<br />

Klotzschii Herb. Viv. Mycol.: no. 1842. 1854.<br />

Specimen examined: USA, from Platanus occidentalis (Platanaceae), Jan. 1937,<br />

C.L. Shear, <strong>CBS</strong> 221.37.<br />

Note: This taxon was shown by Zhang et al. (2012) to cluster basal<br />

to the Lentitheciaceae.<br />

Melanommataceae G. Winter, Rabenh. Krypt.-Fl., ed 1(2):<br />

220 (1885) [as “Melanommeae”]<br />

Aposphaeria corallinolutea Gruyter, Aveskamp & Verkley,<br />

sp. nov. MycoBank MB564798. Fig. 8.<br />

Etymology: The name refers to the coral coloured colony on OA,<br />

and the luteous exudate diffusing into the agar medium.<br />

Pycnidia in vitro 65–215 μm diam, solitary or aggregated to<br />

confluent, globose to subglobose, ostiolate or non-ostiolate.<br />

Conidiogenous cells 7–9 × 2–4 μm, ampuliform to filiform. Conidia<br />

3–5 × 1–2 μm, ellipsoidal to allantoid, eguttulate or with some small,<br />

polar guttules.<br />

Description in vitro: Colonies on OA 13–15 mm diam after 14 d, margin<br />

entire to somewhat lobated; colony vinaceous to brick, with white at<br />

centre, ochraceous near margin due to a diffusible pigment, with<br />

28


Phoma sections Plenodomus, Pilosa<br />

Fig. 8. Aposphaeria corallinolutea sp. nov. <strong>CBS</strong> 131287. A–B. Fourteen day old cultures on OA (A) and MA (B). C–D. Pycnidia. E–H. Conidiogenous cells. I. Conidia. Scale<br />

bars: C = 50 μm; D = 20 μm; E–I = 10 μm.<br />

white, felty or poorly developed aerial mycelium; reverse cinnamon to<br />

brick. Colonies on MEA 15–20 mm diam after 14 d, margin entire to<br />

somewhat lobated; colony white with dull green and grey olivaceous<br />

sectors and primrose tinges, with white, felty aerial mycelium;<br />

reverse sepia to brown olivaceous, greenish grey at centre, white<br />

near margin. Pycnidia globose to subglobose, olivaceous to brick,<br />

then olivaceous black, solitary or aggregated, 65–215 μm diam, nonsetose<br />

or with short setae-like outgrowths up to 25 μm long, with or<br />

without distinct ostiole, pycnidial wall consisting of 3–5 layers of cells.<br />

Conidiogenous cells 7–9 × 2–4 μm, ampulliform to filiform. Conidia<br />

3–5 × 1–2 μm, av. 4 × 1.5 μm, length/width ratio is 1.7–3.3, av. = 2.5,<br />

ellipsoidal to allantoid, eguttulate or with some small, polar guttules.<br />

Chlamydospores absent, NaOH test negative. Crystals produced in<br />

the agar, small, orange coloured.<br />

Specimens examined: Netherlands, from wood of Fraxinus excelsior (Oleaceae),<br />

1983, M.M.J. Dorenbosch, holotype <strong>CBS</strong> H-20625, culture ex-holotype <strong>CBS</strong><br />

131287 = PD 83/831; from wood of Kerria japonica (Rosaceae), 1983, M.M.J.<br />

Dorenbosch, <strong>CBS</strong> 131286 = PD 83/367.<br />

Aposphaeria populina Died., Krypt.-Fl. Brandenburg 9:<br />

206. 1912 (vol. dated “1915”). Fig. 9.<br />

Description in vitro: Colonies on OA 21–24 mm diam after 7 d<br />

(32–37 mm diam after 14 d), margin entire to undulate; colony grey<br />

olivaceous/olivaceous to pale luteous/luteous, with white to pale<br />

olivaceous grey, finely felty to woolly aerial mycelium; reverse luteous<br />

to orange, greenish olivaceous to olivaceous or grey olivaceous/<br />

olivaceous grey to iron-grey, a rosy-buff discolouring near margin may<br />

occur. Colonies on MEA 16–20 mm diam after 7 d (30–37 mm diam<br />

after 14 d), margin entire to undulate; colony pale olivaceous grey<br />

with rosy-vinaceous tinges to peach or olivaceous grey, with white,<br />

woolly aerial mycelium; reverse saffron to pale olivaceous/olivaceous<br />

grey, sometimes with dark vinaceous tinges, rosy-buff near margin.<br />

Pycnidia globose to subglobose, olivaceous to olivaceous black,<br />

scattered, 55–305 μm diam, glabrous or with mycelial outgrowths,<br />

non-ostiolate or ostiolate, pycnidial wall composed of up to 10 layers<br />

of cells. Conidiogenous cells 5–11.5 × 1.5–3 μm, ampulliform to<br />

filiform. Conidia hyaline, subglobose to ellipsoidal, with 1–3 minute<br />

guttules, 1–2 × 1–1.5 μm, av. 1.5 × 1 μm, length/width ratio is 1.0–2.0,<br />

av. = 1.4. Chlamydospores and crystals absent, NaOH test negative.<br />

Specimens examined: Germany, Triglitz, from twigs of Populus canadensis<br />

(Salicaceae), Mar. 1904. O. Jaap, B, holotype; from branch scars of Picea abies,<br />

(Pinaceae), Feb. 1982, H. von Aufess, <strong>CBS</strong> 350.82. Netherlands, Valkenswaard,<br />

from fallen twig of Populus canadensis (Salicaceae), 23 Mar. 1970, H.A. van der<br />

Aa, epitype designated here <strong>CBS</strong> H-9336, culture ex lectotype <strong>CBS</strong> 543.70; from<br />

wood of Cornus mas (Cornaceae), 1984, M.M.J. Dorenbosch, <strong>CBS</strong> 130330 = PD<br />

84/221.<br />

Beverwykella pulmonaria (Beverw.) Tubaki, Trans. Mycol.<br />

Soc. Japan 16: 139. 1975.<br />

Basionym: Papulaspora pulmonaria Beverw., Antonie van<br />

Leeuwenhoek 20: 11. 1954.<br />

Specimen examined: Netherlands, Baarn, from submerged leaf in rain water barrel<br />

of Fagus sylvatica (Fagaceae), Apr. 1953, A.L. van Beverwijk, culture <strong>CBS</strong> 283.53<br />

= ATCC 32983 = IFO 6800.<br />

Herpotrichia juniperi (Duby) Petr., Ann. Mycol. 23: 43.<br />

1925.<br />

Basionym: Sphaeria juniperi Duby, Klotzsch. Herb. Vivum Mycol.<br />

Sistems Fungorum German., no. 1833. 1854.<br />

www.studiesinmycology.org<br />

29


De Gruyter et al.<br />

Fig. 9. Aposphaeria populina. <strong>CBS</strong> 543.70. A–B. Fourteen day old cultures on OA (A) and MA (B). C. Pycnidium with mycelial outgrowths (<strong>CBS</strong> 130330). D–E. Conidiogenous<br />

cells. F. Conidia. Scale bars: C = 20 μm; D–E = 10 μm; F = 5 μm.<br />

Specimen examined: Switzerland, Andermatt, from Juniperus nana (Cupressaceae),<br />

Nov. 1931, E. Gäumann, <strong>CBS</strong> 200.31.<br />

Melanomma pulvis-pyrius (Pers.) Fuckel, Jahrb.<br />

Nassauischen Vereins Naturk. 23–24: 160. 1870.<br />

Basionym: Sphaeria pulvis-pyrius Pers., Syn. Meth. Fung. 1: 86.<br />

1801.<br />

Specimens examined: Belgium, from wood of Fagus sp. (Fagaceae), <strong>CBS</strong> 400.97.<br />

France, Vosges, Bot. Garden Le Chitelet, from unidentified decaying wood, <strong>CBS</strong><br />

371.75.<br />

Notes: Phoma-like anamorphs have been reported by Chesters<br />

(1938) and Sivanesan (1984), but no anamorphic stage was<br />

observed in IFRDCC 2044, <strong>CBS</strong> 109.77 or <strong>CBS</strong> 371.75 after<br />

culturing 3 mo on PDA (Zhang et al. 2008). <strong>CBS</strong> 400.97 was<br />

preserved as Trematosphaeria pertusa.<br />

Pleomassaria siparia (Berk. & Broome) Sacc., Syll. Fung.<br />

2: 239. 1883.<br />

Basionym: Sphaeria siparia Berk. & Broome, Ann. Mag. Nat. Hist.<br />

Ser. 2(9): 321. 1852.<br />

Specimen examined: Netherlands, Uden, from dead branch of Betula verrucosa<br />

(Betulaceae), 8 Dec. 1973, W.M. Loerakker, <strong>CBS</strong> H-258, <strong>CBS</strong> H-260, culture <strong>CBS</strong><br />

279.74.<br />

Sporormiaceae Munk, Dansk Bot. Ark. 17(1): 450. 1957,<br />

nom. inval., Art. 36.1.<br />

Preussia funiculata (Preuss) Fuckel, Jahrb. Nassauischen<br />

Vereins Naturk. 23–24: 91. 1870 (1869–70).<br />

Basionym: Perisporium funiculatum Preuss, Linnaea 24(1): 143.<br />

1851.<br />

Specimen examined: Senegal, from soil, <strong>CBS</strong> 659.74.<br />

Sporormiella minima (Auersw.) S.I. Ahmed & Cain, Canad.<br />

J. Bot. 50: 449. 1972.<br />

Basionym: Sporormia minima Auersw., Hedwigia 7: 66. 1868.<br />

Specimen examined: Panama, from dung of goat, <strong>CBS</strong> 524.50.<br />

Westerdykella Stolk, Trans. Brit. Mycol. Soc. 38: 422. 1955.<br />

Type species: Westerdykella ornata Stolk, see below.<br />

Westerdykella capitulum (V.H. Pawar, P.N. Mathur &<br />

Thirum) Gruyter, Aveskamp & Verkley, comb. nov. MycoBank<br />

MB564801.<br />

Basionym: Phoma capitulum V.H. Pawar, P.N. Mathur & Thirum.,<br />

Trans. Brit. Mycol. Soc. 50: 261. 1967.<br />

≡ Phoma capitulum V.H. Pawar & Thirum., Nova Hedwigia 12: 502. 1966<br />

(as ”capitula”), nom. nud., nom. inval.<br />

= Phoma ostiolata V.H. Pawar, P.N. Mathur & Thirum., Trans. Brit. Mycol. Soc.<br />

50: 262. 1967, var. ostiolata.<br />

≡ Phoma ostiolata V.H. Pawar & Thirum., Nova Hedwigia 12: 502. 1966,<br />

nom. nud., nom. inval.<br />

= Phoma ostiolata var. brunnea V.H. Pawar, P.N. Mathur & Thirum., Trans. Brit.<br />

Mycol. Soc. 50: 263. 1967.<br />

≡ Phoma ostiolata var. brunnea V.H. Pawar & Thirum., Nova Hedwigia<br />

12: 502. 1966, nom. nud., nom. inval.<br />

30


Phoma sections Plenodomus, Pilosa<br />

Specimen examined: India, Bandra, Bombay, from saline soil, 15 Jan. 1958, M.J.<br />

Thirumalachar, Isotype <strong>CBS</strong> H-7602, culture ex-isotype <strong>CBS</strong> 337.65 = ATCC 16195<br />

= HACC 167 = IMI 113693 = PD 91/1614.<br />

Westerdykella minutispora (P.N. Mathur ex Gruyter<br />

& Noordel.) Gruyter, Aveskamp & Verkley, comb. nov.<br />

MycoBank MB564793.<br />

Basionym: Phoma minutispora P.N. Mathur ex Gruyter & Noordel.,<br />

Persoonia 15: 75. 1992 (as “collection name” originally also referred<br />

to Thirumalachar; = depositor).<br />

Replaced synonym: Phoma oryzae Cooke & Massee, Grevillea<br />

16: 15. 1887 (not Phoma oryzae Catt., Arch. Triennale Bot. Crittog.<br />

Pavia 2–3: 118. 1879, nom. illeg).<br />

≡ Phyllosticta oryzae (Cooke & Massee) I. Miyake. J. Coll. Agric. Imp.<br />

Univ. Tokyo 2: 252. 1910, nom. illeg.<br />

Specimen examined: India, from saline soil, 1977, M.J. Thirumalachar, <strong>CBS</strong><br />

H-5941, culture <strong>CBS</strong> 509.91 = PD 77/920.<br />

Westerdykella ornata Stolk, Trans. Brit. Mycol. Soc. 38:<br />

422. 1955.<br />

Specimen examined: Mozambique, from mangrove mud, <strong>CBS</strong> 379.55.<br />

Didymosphaeriaceae Munk, Dansk Bot. Ark. 15(2): 128.<br />

1953.<br />

Roussoella hysterioides (Ces.) Höhn., Sitzungsber. Kaiserl.<br />

Akad. Wiss., Math.-Naturwiss. Cl., Abt. 1. 128: 563. 1919.<br />

Basionym: Dothidea hysterioides Ces., Atti Accad. Sci. Fis. 8: 24.<br />

1879.<br />

Specimen examined: Japan, Aomori, Shimokita Yagen, from culms of Sasa<br />

kurilensis (Poaceae), Y. Ooki, culture <strong>CBS</strong> 125434 = HH 26988.<br />

Family incertae sedis<br />

Nigrograna Gruyter, Verkley & Crous, gen. nov. MycoBank<br />

MB564794.<br />

Etymology: refers to Nigro-, black, Latin, -grana, grains, Latin. The<br />

description refers to the black grains produced by the type species.<br />

Pycnidia solitary or rarely confluent, on upper surface or submerged<br />

in agar, globose to subglobose or pyriform, with dark brown,<br />

septate mycelial outgrowths, with papillate ostioles, olivaceous<br />

to olivaceous-black, the wall with pseudoparenchymatous cells.<br />

Conidiogenous cells hyaline, phialidic, discrete. Conidia subhyaline,<br />

brown in mass, aseptate, ellipsoidal.<br />

Type species: Nigrograna mackinnonii (Borelli) Gruyter, Verkley &<br />

Crous (see below).<br />

Nigrograna mackinnonii (Borelli) Gruyter, Verkley & Crous,<br />

comb. nov. MycoBank MB564795.<br />

Basionym: Pyrenochaeta mackinnonii Borelli, Castellania 4: 230.<br />

1976.<br />

Specimens examined: Mexico, from a mycetoma of a human, Feb. 2002, R. Arenas,<br />

<strong>CBS</strong> 110022; Venezuela, from a black grain mycetoma of human, Aug. 1975, D.<br />

Borelli, holotype FMC 270, culture ex-holotype <strong>CBS</strong> 674.75.<br />

Thyridaria rubronotata (Berk. & Broome) Sacc., Syll. Fung.<br />

2: 141. 1883.<br />

Basionym: Melogramma rubronotatum Berk. & Broome, Ann. Mag.<br />

Nat. Hist. Ser. 3(3): 20. 1859.<br />

Specimen examined: Netherlands, Zuidelijk Flevoland, from a dead branch of Acer<br />

pseudoplatanus (Aceraceae), 13 Apr. 1985, N. Ernste, <strong>CBS</strong> H-18824, culture <strong>CBS</strong><br />

419.85.<br />

DISCUSSION<br />

The genus Phoma has been shown to be highly polyphyletic<br />

and Phoma is now restricted to taxa in the Didymellaceae (de<br />

Gruyter et al. 2009, Aveskamp et al. 2010). Phoma anamorphs<br />

and phoma-like species in Coniothyriaceae, Leptosphaeriaceae,<br />

Melanommataceae, Montagnulaceae, Pleosporaceae,<br />

Sporormiaceae and Trematosphaeriaceae are redisposed here as<br />

a result of this and previous studies.<br />

The delimitation of Leptosphaeriaceae in Pleosporineae<br />

from Cucurbitariaceae, Didymellaceae, Phaeosphaeriaceae and<br />

Pleosporaceae agrees with recent studies of phoma-like species<br />

in Pleosporales (de Gruyter et al. 2009, Aveskamp et al. 2010, de<br />

Gruyter et al. 2010). Cucurbitariaceae is recognised as the fifth<br />

family in Pleosporineae in addition to the four families accepted by<br />

Zhang et al. (2009), which are Didymellaceae, Leptosphaeriaceae<br />

Phaeosphaeriaceae and Pleosporaceae.<br />

The genera Leptosphaeria, Paraleptosphaeria,<br />

Plenodomus, Subplenodomus and Heterospora<br />

Plenodomus lingam and L. doliolum, the type species of<br />

Plenodomus and Leptosphaeria respectively, were found to<br />

be distant genetically, which agrees with findings of previous<br />

molecular phylogenetic studies (Jasalavic et al. 1995, Morales<br />

et al. 1995, Dong et al. 1998, Câmara et al. 2002, Eriksson &<br />

Hawksworth 2003, Wunsch & Bergstrom 2011). In our study the<br />

generic type species grouped in sister clades, which represent<br />

Leptosphaeria and Plenodomus. Species of Leptosphaeria<br />

produce dark brown, 3-septate ascospores, which have been<br />

considered the primitive state with more recently evolved<br />

species producing ascospores that are paler in colour, longer<br />

and narrower, and more than 3-septate (Wehmeyer 1946). This<br />

hypothesis is supported by the results obtained in our study.<br />

Paraleptosphaeria is distinct but seems to be most closely<br />

related to Leptosphaeria producing 3(–5)-septate, yellow/brown<br />

or hyaline ascospores. Both genera include only necrotrophic<br />

species. Plenodomus and Subplenodomus include necrotrophs<br />

and plant pathogens. Ascospores in Plenodomus are<br />

3–7-septate, whereas in Subplenodomus no sexual state has<br />

thus far been recorded. The scleroplectenchymatous pycnidial<br />

cell wall is typical for Plenodomus, whereas in Subplenodomus<br />

the pycnidial cell wall is pseudoparenchymatous. Heterospora is<br />

closely allied to Subplenodomus and no sexual state has been<br />

recorded for this genus either. The distinctive characterisitics<br />

of the genera Heterospora, Leptosphaeria, Paraleptosphaeria,<br />

Plenodomus and Subplenodomus are summerised in Table<br />

2. A blast search in GenBank using ITS sequences of five<br />

selected species of the Leptosphaeriaceae, namely L.<br />

doliolum, L. etheridgei, Plen. lingam, H. dimorphospora and<br />

Subplen. drobnjacensis, did not reveal close matches to other<br />

www.studiesinmycology.org<br />

31


De Gruyter et al.<br />

Table 2. Characteristics of ascospores, mitosporic state and pathogenicity of Leptosphaeria, Paraleptosphaeria, Plenodomus and<br />

Subplenodomus in vivo.<br />

Genus Ascospores Mitosporic state Pathogenicity<br />

Leptosphaeria Ascospores 3-septate, (dark) brown Mitosporic state common, pycnidial cell wall usually directly<br />

scleroplectenchymatous, conidia mostly aseptate<br />

Paraleptosphaeria<br />

Plenodomus<br />

Ascospores 3–5-septate, hyaline to<br />

yellow/brown<br />

Ascospores 3–7-septate, pale yellow<br />

to brown<br />

Mitosporic state rare, pycnidial cell wall directly scleroplectenchymatous,<br />

conidia aseptate<br />

Mitosporic state common, pycnidial cell wall initially<br />

pseudoparenchymatous, later scleroplectenchymatous, conidia aseptate<br />

Subplenodomus No known sexual state Mitosporic state common, pycnidial cell wall mainly<br />

pseudoparenchymatous, conidia aseptate<br />

Heterospora No known sexual state Mitosporic state common, pycnidial cell wall pseudoparenchymatous,<br />

conidia of two types: small aseptate and large septate<br />

Necrotrophic<br />

Necrotrophic<br />

Necrotrophic or plant pathogenic<br />

Necrotrophic or plant pathogenic<br />

Plant pathogenic<br />

teleomorphic or anamorphic genera.<br />

Plectophomella visci grouped in Plenodomus in this study<br />

and in the Leptosphaeriaceae in a previous molecular phylogeny<br />

of Phoma and allied anamorph genera (de Gruyter et al. 2009).<br />

Plectophomella visci is the type species of Plectophomella (Moesz<br />

1922) and three additional species have been described in<br />

the genus. Two species were described from the bark of Ulmus<br />

spp., viz. Plectophomella ulmi (basionym Dothiorella ulmi) and<br />

Plectophomella concentrica (Redfern & Sutton 1981). Dothiorella<br />

ulmi is considered the appropriate name for Plectophomella ulmi<br />

(Crous et al. 2004). A third species, Plectophomella nypae, was<br />

described from Nypa fruticans (Arecaceae) (Hyde & Sutton 1992).<br />

As a result of the transfer of the type species Plectophomella visci<br />

to Plenodomus, the taxonomy of both Plectophomella concentrica<br />

and P. nypae needs to be reconsidered based on the outcome of a<br />

molecular study.<br />

Plenodomus chrysanthemi could not be differentiated from<br />

Plen. tracheiphilus based on comparison of their LSU and ITS<br />

sequences. Plenodomus vasinfecta was proposed by Boerema et<br />

al. (1994) for the species originally described as Phoma tracheiphila<br />

f. sp. chrysanthemi (Baker et al. 1985). Because these are part<br />

of the Plenodomus clade the name Plenodomus chrysanthemi is<br />

proposed with P. tracheiphila f. sp. chrysanthemi and P. vasinfecta<br />

as synonyms. Plenodomus chrysanthemi and Plen. tracheiphilus<br />

are host specific (Chrysanthemum and Citrus, respectively) and the<br />

scleroplectenchymatous conidiomatal wall of Plen. tracheiphilus<br />

differentiates this species from Plen. chrysanthemi, where only<br />

a parenchymatous wall has been observed (Boerema et al.<br />

1994). The results of this molecular study and the production of a<br />

Phialophora synanamorph by both species demonstrate the close<br />

relationship of both taxa.<br />

Plenodomus enteroleucus and Plen. influorescens have a<br />

similar ecological niche as opportunistic pathogens on woody<br />

plants in Europe. Both taxa were formerly described as varieties<br />

of Ph. enteroleuca, vars. enteroleuca and influorescens, and could<br />

be differentiated only by the fluorescence of var. enteroleuca under<br />

black light. However, the molecular phylogeny demonstrates the<br />

two varieties are only distantly related and they are raised from<br />

varietal status to species rank. The close relation of Plen. wasabiae<br />

with Plen. biglobosus agrees with the results of a previous study on<br />

the production of Phomalignin A and other yellow pigments, as well<br />

as ITS sequence analyses (Pedras et al. 1995).<br />

Subplenodomus apiicola, Subplen. drobnjacensis, Subplen.<br />

valerianae and Subplen. violicola all produce pycnidia with<br />

an elongated neck, resembling Plenodomus. The pycnidial<br />

wall remains usually pseudoparenchymatous. Pycnidia with<br />

a scleroplectenchymatous wall are only observed in Subplen.<br />

drobnjacensis. Subplenodomus apiicolus, Subplen. drobnjacensis<br />

and Subplen. valerianae produce relatively small conidia, up to<br />

4.5 × 2 μm (de Gruyter & Noordeloos 1992) in congruence with<br />

many of the Plenodomus species described; however, in contrast<br />

Subplen. violicola produces relatively large conidia, up to 11 × 3 μm<br />

(Boerema 1993).<br />

The grouping of species of Phoma section Plenodomus based<br />

on the host being either herbaceous plants or wood of trees and<br />

shrubs (Boerema 1982, Boerema et al. 1994) is not supported<br />

by the molecular phylogeny. The grouping of the species into two<br />

categories based on the production of pseudoparenchymatous<br />

pycnidia that become scleroplectenchymatous pycnidia (type I),<br />

versus always scleroplectenchymatous pycnidia (type 2) (Boerema<br />

et al. 1981), is partly supported by the molecular phylogeny.<br />

In the Leptosphaeria clade most species directly develop<br />

scleroplectenchymatous pycnidia, whereas in the Plenodomus<br />

clade the pycnidia generally are pseudoparenchymatous and<br />

become scleroplectenchymatous.<br />

Heterospora is established for two species of Phoma sect.<br />

Heterospora that cluster in the Leptosphaeriaceae, viz H.<br />

chenopodii and H. dimorphospora. All other species of Phoma sect.<br />

Heterospora are in the Didymellaceae (Aveskamp et al. 2010).<br />

The Leptosphaeria doliolum species complex<br />

The taxonomy of the generic type species Leptosphaeria doliolum<br />

and Phoma anamorphs is complex with a number of subspecies<br />

and varieties described in literature. Leptosphaeria doliolum subsp.<br />

doliolum and L. doliolum subsp. errabunda are morphologically<br />

very similar, as well as the anamorphs Ph. acuta subsp. errabunda<br />

and Ph. acuta subsp. acuta. It has been suggested that both<br />

taxa represent originally American and European counterparts<br />

(Boerema et al. 1994). Both subspecies of L. doliolum proved to be<br />

closely related in a phylogenetic analysis utilising LSU and ITS. A<br />

detailed multilocus phylogenetic study including the ITS, ACT, TUB<br />

and CHS genes, however, demonstrated that both subspecies<br />

could be clearly differentiated, and represent two subclades in<br />

the L. doliolum complex. All species allied with L. doliolum and L.<br />

errabunda are necrotrophic species. Surprisingly, L. macrocapsa<br />

grouped with the L. errabunda isolates. Leptosphaeria macrocapsa<br />

is described as a host-specialised necrotroph on Mercurialis<br />

perennis (Euphorbiaceae) in Europe (Boerema et al. 1994). The<br />

species is characterised by large pycnidia (Grove, 1935), with a<br />

conspicuously broad, long cylindrical neck (Boerema et al. 1994).<br />

This is different to the sharply delimited papilla or neck of variable<br />

32


Phoma sections Plenodomus, Pilosa<br />

length of the pycnidia of L. errabunda. Leptosphaeria sydowii, a<br />

necrotroph on Senecio spp. in particular (Asteraceae), proved to<br />

be closely related to L. errabunda. It can be concluded that the<br />

Leptosphaeria doliolum complex includes several necrotrophic<br />

species, with adapted host specificity.<br />

The genus Coniothyrium<br />

Coniothyrium palmarum is the type species of the genus<br />

Coniothyrium. Coniothyrium is characterised by ostiolate pycnidial<br />

conidiomata, annellidic conidiogenous cells, the absence of<br />

conidiophores, and brown, thick-walled, 0- or 1-septate, verrucose<br />

conidia. Coniothyrium is similar morphologically to some species<br />

in the genus Microsphaeropsis. However, Microsphaeropsis is<br />

characterised by the production of phialidic conidiogenous cells<br />

with periclinal thickening, and thin-walled, pale greenish brown<br />

conidia.<br />

Coniothyrium, Microsphaeropsis and Paraconiothyrium clearly<br />

grouped in different clades in a study of the partial SSU nrDNA<br />

(Verkley et al. 2004). In a subsequent study utilising SSU and LSU<br />

sequences, the generic type species Microsphaeropsis olivacea<br />

grouped in Didymellaceae, whereas Coniothyrium palmarum<br />

clustered with the genus Leptosphaeria in Leptosphaeriaceae<br />

(de Gruyter et al. 2009). In the present study C. palmarum<br />

and its relatives grouped in a distinct clade, which represents<br />

Coniothyriaceae. Phoma carteri, Ph. glycinicola, Ph. septicidalis<br />

and Pyrenochaeta dolichi grouped in this clade and are transferred<br />

to the genus Coniothyrium. The inclusion of these species with<br />

setose pycnidia and conidiogenesis with elongated conidiophores<br />

expands the morphological circumscription of Coniothyrium.<br />

Species with those characters are also found in other genera<br />

treated in this paper in the Cucurbitariaceae, Didymellaceae,<br />

Phaeosphaeriaceae, Leptosphaeriaceae, Montagnulaceae and<br />

Sporormiaceae, indicating convergent evolution.<br />

The Coniothyrium species included here are plurivorous or soilborne,<br />

such as C. palmarum, C. septicidalis and C. multiporum, or<br />

are associated with a specific host such as C. carteri on Quercus<br />

spp. (Fagaceae), C. glycinicola on Glycine max (Fabaceae) and<br />

C. dolichii on Dolichos biflorus (Fabaceae). The species also are<br />

diverse geographically.<br />

Coniothyrium palmarum was frequently found associated<br />

with leaf spots on Phoenix dactylifera (Arecaceae) in India and<br />

Cyprus (Sutton 1980). The C. palmarum isolates regularly used<br />

in phylogenetic studies are <strong>CBS</strong> 758.73, from leaf spots on<br />

Phoenix dactylifera in Israel, and <strong>CBS</strong> 400.71, from a dead petiole<br />

of Chaemeropsis humulis (Arecaceae) in Italy. The subtropical<br />

distribution of these species is similar to that of the most closely<br />

allied C. dolichi and C. glycinicola. Coniothyrium multiporum,<br />

recorded from marine soil, also is found in warm regions.<br />

Coniothyium carteri, in contrast, is reported from North America<br />

and Europe.<br />

Coniothyrium dolichi produces setose pycnidia with hyaline<br />

conidia (Mohanty 1958). The conidiogenesis was studied in<br />

detail later. phoma-like ampulliform conidiogenous cells as well<br />

as conidiogenous cells on filiform, septate conidiophores were<br />

found in the same pycnidia leading to confusion regarding the<br />

classification of this species in Phoma or Pyrenochaeta (Grodona<br />

et al. 1997). This study clearly supports the classification in<br />

Coniothyrium. Coniothyrium glycinicola was originally placed<br />

in the genus Pyrenochaeta as Py. glycines due to its setose<br />

pycnidia (Stewart 1957). The conidiogenesis and hyaline<br />

conidia are phoma-like and therefore, it was reclassified as Ph.<br />

glycinicola in Phoma sect. Paraphoma (de Gruyter & Boerema<br />

2002). However, in the original description it was noted that the<br />

conidia were greenish-yellow in mass (Stewart 1957), resembling<br />

Microsphaeropsis or coniothyrium-like conidia. This study clearly<br />

supports the classification in Coniothyrium. Coniothyrium carteri<br />

produces setose pycnidia with hyaline conidia and therefore, the<br />

species was classified in Phoma section Paraphoma (de Gruyter &<br />

Boerema 2002). In spite of this similarity, C. carteri was determined<br />

to be only distantly related to the generic type species Paraphoma<br />

radicina (de Gruyter et al. 2010). Coniothyrium multiporum was<br />

described in Phoma section Phoma; however, it proved to be<br />

unrelated to Phoma in Didymellaceae (Aveskamp et al. 2010). The<br />

conidiogenesis may comprise elongated conidiophores (Pawar et<br />

al. 1967). Two isolates originally described as Ph. septicidalis are<br />

placed here in Coniothyrium telephii. Other strains deposited as<br />

Ph. septicidalis proved to be Pyrenochaeta unguis-hominis (de<br />

Gruyter et al. 2010).<br />

The anamorph of the genus Neophaeosphaeria was described<br />

as coniothyrium-like, producing pigmented, aseptate conidia<br />

from holoblastic, percurrently proliferating conidiogenous cells<br />

with conspicuous annellations (Câmara et al. 2003). Although<br />

Neophaeosphaeria is related to Coniothyrium based on the<br />

molecular data, Neophaeosphaeria probably belongs to a separate<br />

phylogenetic clade. The grouping of N. filamentosa with the<br />

Coniothyrium species included in this study was poorly supported<br />

and N. filamentosa proved to be more distantly related in previous<br />

molecular phylogenetic studies (Verkley et al. 2004, Damm et al.<br />

2008, de Gruyter et al. 2010).<br />

Both anamorph genera Cyclothyrium and Cytoplea were<br />

considered to be related to Coniothyrium and Microsphaeropsis<br />

(Sutton 1980) based on morphological similarities. Cyclothyrium<br />

also resembles Paraconiothyrium but produces conidiogenous cells<br />

that are more elongated than in most species of Paraconiothyrium<br />

and the conidia are almost truncate at the base, or at least<br />

they are much less rounded at the base than the conidia of<br />

Paraconiothyrium (Verkley et al. 2004). The generic type species<br />

Cyclothyrium juglandis, the anamorph of Thyridaria rubronotata,<br />

proved to be related to Roussoella hysterioides, teleomorph<br />

of Cytoplea (Verkley et al. 2004). Based on present results R.<br />

hysterioides could not be assigned to familial rank. The clustering<br />

of this species in Massariaceae (Zhang et al. 2009) could not be<br />

confirmed. Moreover, Roussoella probably is not a monophyletic<br />

genus (Tanaka et al. 2009). Thyridaria rubronotata, the teleomorph<br />

of Cyclothyrium juglandis, proved to be related to Massariosphaeria<br />

phaeospora but was not assigned to familial rank (Schoch et al.<br />

2009).<br />

Coniothyrium-like anamorphs also have been linked to<br />

Mycosphaerella in the past. However, these species were<br />

subsequently accommodated in Colletogloeopsis (Cortinas et al.<br />

2006), Readeriella/Kirramyces (Crous et al. 2007) and are now<br />

known to be species of Teratosphaeria (Crous et al. 2009b).<br />

The genus Pleospora<br />

Pleospora is a large genus in Pleosporaceae, Pleosporales, and<br />

includes important pathogens that occur on both monocotyledons<br />

and dicotyledons. Anamorphs of Pleospora s. lat. have been<br />

described in various genera of coelomycetes and hyphomycetes as<br />

summarised by Zhang et al. (2009, 2012). A delimitation of Pleospora<br />

into two sections, Pyrenophora and Eu-Pleospora was made based<br />

www.studiesinmycology.org<br />

33


De Gruyter et al.<br />

on the size of fruiting bodies and ascospore septation and colour<br />

(Munk 1957). The genus Pyrenophora (Drechslera anamorphs)<br />

is recognised at the generic rank. However, Pleospora remains<br />

heterogenous (Wehmeyer 1961, Berbee 1996) and molecular<br />

phylogenetic studies demonstrated that Pleospora is polyphyletic in<br />

Pleosporaceae (Kodsueb et al. 2006, Wang et al. 2007, Inderbitzin<br />

et al. 2009). Taxa with a Stemphylium anamorph such as Pleospora<br />

sedicola and Pleo. tomatonis, as well as Pleo. halophola with no<br />

known anamorph, are closely related to Cochliobolus, whereas<br />

Pleo. herbarum and Pleo. ambigua were more distantly related<br />

in the Pleosporaceae (Kodsueb et al. 2006, Wang et al. 2007). A<br />

phylogenetic study of the genus Massariosphaeria demonstrated<br />

the polyphyly in the genera Pleospora, Kirschsteiniothelia,<br />

Massarina, Melanomma, Trematosphaeria and Massariosphaeria<br />

in the Loculoascomycetes (Wang et al. 2007) and the paraphyletic<br />

character of the genus Cochliobolus was demonstrated (Kodsueb<br />

et al. 2006, Mugambi & Huhndorf 2009). These findings support<br />

the previous speculation by several authors that ascomatal and<br />

ascospore morphologies have undergone convergent evolution<br />

among Pleosporales (Wang et al. 2007).<br />

Pleospora betae groups ambiguously in Pleosporaceae (Dong<br />

et al. 1998). SSU nrDNA sequence data supported the affinity of<br />

P. betae to Leptosphaeriaceae. Partial LSU nrDNA data supported<br />

the affinity of P. betae to Pleosporaceae (Dong et al. 1998), but<br />

bootstrap support values in that study were low. In a multigene<br />

phylogenetic study Pleo. betae was found as being basal to<br />

Pleosporaceae (Zhang et al. 2009). Our results demonstrate the<br />

sister group relationship of Pleo. betae and its relatives to the<br />

generic type species Pleo. herbarum.<br />

Pleospora betae has been often confused with Pleo.<br />

calvescens as was discussed by Boerema et al. (1987).<br />

Both species are pathogens of Chenopodiaceae and are<br />

morphologically rather similar and therefore, a phylogenetic<br />

relation of both species was inferred (Boerema 1984). In addition<br />

Ascochyta hyalospora, originally found on the American continent<br />

on Chenopodiaceae, also was supposed to be closely related.<br />

Our results demonstrate that Pleo. betae and Pleo. calvescens<br />

could be recognised at species rank and confirmed that A.<br />

hyalospora is related supporting our transfer to Pleospora as<br />

Pleo. chenopodii. The delimitation of both halophytic species<br />

Pleo. chenopodii and Pleo. calvescens needs further study; both<br />

species could not be clearly differentiated based on the ACT<br />

sequences alone. Additional studies are underway to elucidate<br />

these species boundaries, in which also the recently described<br />

halophyte, Ascochyta manawaorae (Verkley et al. 2010), will<br />

be included. Pleospora fallens and Pleo. incompta, formerly<br />

described in Phoma sect. Phoma and producing mainly glabrous<br />

pycnidia, grouped in the Pleo. herbarum clade. Pleospora<br />

typhicola, producing pilose pycnidia, also grouped in this clade.<br />

Phoma-like species excluded from the Pleosporineae<br />

The genus Paraconiothyrium was introduced by Verkley et al.<br />

(2004) as the anamorph of Paraphaeosphaeria. The morphological<br />

characters of Paraconiothyrium are variable. The conidiomata can<br />

be eustromatic to pycnidial, the phialidic conidiogenous cells are<br />

discrete or integrated, and the thin-walled conidia are aseptate<br />

or septate, smooth-walled or minutely warted, and hyaline to<br />

brown in a later stage (Verkley et al. 2004). The morphological<br />

characters of Ph. lini and Asteromella tilliae, redisposed here in<br />

Paraconiothyrium, fit this description.<br />

Paraconiothyrium fuckelii is a serious plant pathogen of<br />

Rosaceae (Horst & Cloyd 2007), but it also is recorded as an<br />

opportunistic human pathogen as summarised by de Hoog et<br />

al. (2000). The teleomorph is currently known as Leptosphaeria<br />

coniothyrium, but this is not likely considering the phylogeny of<br />

Leptosphaeriaceae in Pleosporales (Fig 1). The species was also<br />

described as Melanomma coniothyrium (Holm 1957); however,<br />

Melanomma is more distantly related in Melanommataceae.<br />

Neottiosporina paspali proved to be related to Paraconiothyrium.<br />

However, this species is characterised by conidia with an<br />

apical appendage (Sutton 1980) and resembles members of<br />

Massarinaceae. Pyrenochaeta romeroi is redescribed in the new<br />

genus Medicopsis, and its taxonomic position is most close to<br />

Trematosphaeriaceae.<br />

Aposphaeria corallinolutea could be recognised as a<br />

new species in Melanommataceae. Phoma capitulum and<br />

Ph. minutispora (Phoma section Phoma) clustered in the<br />

Sporormiaceae, most closely related to the holotype isolate of<br />

Westerdykella ornata. Other phoma-like anamorphs have been<br />

recorded in Sporormiaceae, such as anamorphs of Sporormia<br />

aemulans (≡ Preussia aemulans) and Westerdykella dispersa<br />

(≡ Pycnidiophora dispersa) (von Arx & Storm 1967). The in vitro<br />

characters of W. capitulum and W. oryzae agree with the in vitro<br />

characters of phoma-like anamorphs in the Sporormiaceae<br />

summarised by Boerema et al. (2004). The conidia produced are<br />

small, mostly 2–3 × 1–2 μm, arising from undifferentiated cells, but<br />

sometimes also elongated conidiogenous cells are observed. The<br />

colonies, often with a pink-yellow-red discolouration on OA, usually<br />

produce little aerial mycelium, whereas pycnidia are often produced<br />

in abundance. No matching sequences were found in a blast search<br />

in GenBank using the partial LSU sequences of W. capitulum and<br />

W. minutispora. Westerdykella minutispora from India was most<br />

similar to a sequence of Westerdykella nigra, isolate <strong>CBS</strong> 416.72,<br />

obtained from soil in Pakistan, and W. capitulum was most similar<br />

to a sequence of W. dispersa, isolate <strong>CBS</strong> 297.56, obtained from<br />

a seedling of Phlox drummondii, USA. These blast results support<br />

the redisposition of both species in the genus Westerdykella.<br />

ACKNOWLEDGEMENTS<br />

This project, ”Strengthening the Plant Health Infrastructure”, was supported by The<br />

Dutch Ministry of Economic Affairs, Agriculture and Innovation. We thank Mrs Trix<br />

Merkx and Mrs Karin Rosendahl-Peters for providing the strains from the culture<br />

collection of <strong>CBS</strong> and PD respectively and for their assistance in the deposit of<br />

strains. Mrs Arien van Iperen kindly helped us with the deposit of herbarium material.<br />

Thanks are due to Marjan Vermaas for her assistance in preparing the photoplates.<br />

We are indebted to Machiel E. Noordeloos and the reviewers for critical reading of<br />

the manuscript.<br />

REFERENCES<br />

Aa HA van der, Kesteren HA van (1979). Some pycnidial fungi occurring on Atriplex<br />

and Chenopodium. Persoonia 10: 267–276.<br />

Arx JA von, Storm PK (1967). Über einige aus dem erdboden isolierte, zu Sporormia,<br />

Preussia und Westerdykella gehörende Ascomyceten. Persoonia 4: 407–415.<br />

Aveskamp MM, Gruyter J de, Crous PW (2008). Biology and recent developments in<br />

the systematics of Phoma, a complex genus of major quarantine significance.<br />

Fungal Diversity 31: 1–18.<br />

Aveskamp MM, Gruyter J de, Woudenberg JHC, Verkley GJM, Crous PW (2010).<br />

Highlights of the Didymellaceae: A polyphasic approach to characterise Phoma<br />

and related pleosporalean genera. Studies in Mycology 65: 1–60.<br />

Aveskamp MM, Verkley GJM, Gruyter J de, Murace MA, Perelló A, Woudenberg<br />

JHC, Groenewald JZ, Crous PW (2009). DNA phylogeny reveals polyphyly of<br />

34


Phoma sections Plenodomus, Pilosa<br />

Phoma section Peyronellaea and multiple taxonomic novelties. Mycologia 101:<br />

359–378.<br />

Badali H, Chander J, Gulati N, Attri A, Chopra R, Najafzadeh MJ, Chhabra S, Meis<br />

JFGM, Hoog GS de (2010). Subcutaneous phaeohyphomycotic cyst caused by<br />

Pyrenochaeta romeroi. Medical Biology 48: 763–768.<br />

Baker KF, Davis-Clark LH, Wilhelm S, Snyder WC (1985). An aggressive vascularinhabiting<br />

Phoma (Phoma tracheiphila f.sp. chrysanthemi nov. f. sp.) weakly<br />

pathogenic to Chrysanthemum. Canadian Journal of Botany 63: 1730–1735.<br />

Berbee ML (1996). Loculoascomycete origins and evolution of filamentous<br />

Ascomycete morphology based on 18s rRNA gene sequence data. Molecular<br />

Biology and Evollution 13: 462–470.<br />

Boerema GH (1970). Additional notes on Phoma herbarum. Persoonia 6: 15–48.<br />

Boerema GH (1982). Phoma-soorten van de sectie Plenodomus. Verslagen en<br />

Mededelingen Plantenziektenkundige Dienst Wageningen 158 (Jaarboek<br />

1981): 28–30.<br />

Boerema GH (1984). Mycologisch-taxonomisch onderzoek. Ascochyta’s met<br />

lichtbruine conidien die pathogen zijn voor Chenopodiaceae. Verslagen en<br />

Mededelingen Plantenziektenkundige Dienst Wageningen 162 (Jaarboek<br />

1983): 31–34.<br />

Boerema GH (1993). Contributions towards a monograph of Phoma (Coelomycetes)<br />

– II. Section Peyronellaea. Persoonia 15: 197–221.<br />

Boerema GH (1997). Contributions towards a monograph of Phoma (Coelomycetes)<br />

– V. Subdivision of the genus in sections. Mycotaxon 64: 321–333.<br />

Boerema GH and Coworkers (1993). Check-list for scientific names of common<br />

parasitic fungi. Libri botanici; Vol. 10. IHW-Verlag, Eching.<br />

Boerema GH, Gams W (1995). What is Sphaeria acuta Hoffm. : Fr.? Mycotaxon<br />

53: 355–360.<br />

Boerema GH, Gruyter J de (1998). Contributions towards a monograph of Phoma<br />

(Coelomycetes) – VII. Section Sclerophomella: Taxa with thick-walled<br />

pseudoparenchymatous pycnidia. Persoonia 17: 81–95.<br />

Boerema GH, Gruyter J de (1999). Contributions towards a monograph of Phoma<br />

(Coelomycetes) – III-Supplement: Additional species of section Plenodomus.<br />

Persoonia 17: 273–280.<br />

Boerema GH, Gruyter J de, Kesteren HA van (1994). Contributions towards a<br />

monograph of Phoma (Coelomycetes) – III-1. Section Plenodomus: Taxa often<br />

with a Leptosphaeria teleomorph. Persoonia 15: 431–487.<br />

Boerema GH, Gruyter J de, Noordeloos ME (1997). Contributions towards a<br />

monograph of Phoma (Coelomycetes) – IV. Section Heterospora: Taxa<br />

with large sized conidial dimorphs, in vivo sometimes as Stagonosporopsis<br />

synanamorphs. Persoonia 16: 335–371.<br />

Boerema GH, Gruyter J de, Noordeloos ME, Hamers MEC (2004). Phoma<br />

identification manual. Differentiation of specific and infra-specific taxa in<br />

culture. CABI Publishing, Wallingford, UK.<br />

Boerema GH, Kesteren HA van (1964). The nomenclature of two fungi parasitizing<br />

Brassica. Persoonia 3: 17–28.<br />

Boerema GH, Kesteren HA van, Loerakker WM (1981). Notes on Phoma.<br />

Transactions of the British Mycological Society 77: 61–74.<br />

Boerema GH, Loerakker WM (1985). Notes on Phoma 2. Transactions of the British<br />

Mycological Society 84: 289–302.<br />

Boerema GH, Loerakker WM, Hamers MEC (1987). Check-list for scientific names<br />

of common parasitic fungi. Supplement Series 2a (additions and corrections):<br />

Fungi on field crops: beet and potato; caraway, flax and oilseed poppy.<br />

Netherlands Journal of Plant Pathology 93, Suppl. 1: 1–20.<br />

Boerema GH, Loerakker WM, Hamers MEC (1996). Contributions towards a<br />

monograph of Phoma (Coelomycetes) – III-2. Misapplications of the type<br />

species-name and the generic synonyms of section Plenodomus (Excluded<br />

species). Persoonia 16: 141–190.<br />

Butin H, Kehr R (1995). Leaf blotch of lime associated with Asteromella tiliae comb.<br />

nov. and the latter’s connection to Didymosphaeria petrakiana. Mycological<br />

Research 99: 1191–1194.<br />

Câmara MPS, Palm ME, Berkum P van, O’Neill NR (2002). Molecular phylogeny of<br />

Leptosphaeria and Phaeosphaeria. Mycologia 94: 630–640.<br />

Câmara MPS, Ramaley AW, Castlebury LA, Palm ME (2003). Neophaeosphaeria<br />

and Phaeosphaeriopsis, segregates of Paraphaeosphaeria. Mycological<br />

Research 107: 516–522.<br />

Carbone I, Kohn LM (1999). A method for designing primer sets for speciation<br />

studies in filamentous ascomycetes. Mycologia 91: 553–556.<br />

Chaverri P, Salgado C, Hirooka Y, Rossman AY, Samuels GJ (2011). Delimitation of<br />

Neonectria and Cylindrocarpon (Nectriaceae, Hypocreales, Ascomycota) and<br />

related genera with Cylindrocarpon-like anamorphs. Studies in Mycology 68:<br />

57–78.<br />

Chen C-Y, David JC, Hsieh WH (2002). Leptosphaeria dryadis. IMI Descriptions of<br />

Fungi and Bacteria 154, Sheet 1533. CABI Bioscience, Egham, Surrey, UK.<br />

Chesters CGC (1938). Studies on British pyrenomycetes II. A comparative study of<br />

Melanomma pulvis-pyrius (Pers.) Fuckel, Melanomma fuscidulum Sacc. and<br />

Thyridaria rubro-notata (B. & Br.) Sacc. Transactions of the British Mycological<br />

Society 22: 116–150.<br />

Cortinas MN, Burgess T, Dell B, Xu DP, Crous PW, Wingfield BD, Wingfield MJ<br />

(2006). First record of Colletogloeopsis zuluense comb. nov., causing a stem<br />

canker of Eucalyptus in China. Mycological Research 110: 229–236.<br />

Crane, JL, Shearer CA (1991). A nomenclator of Leptosphaeria V. Cesati & G. de<br />

Notaris (Mycota-Ascomycotina-Loculoascomycetes). Illinois Natural history<br />

Survey Bulletin 34: 195–355.<br />

Crous PW, Braun U, Groenewald JZ (2007). Mycosphaerella is polyphyletic. Studies<br />

in Mycology 58: 1–32.<br />

Crous PW, Gams W, Stalpers JA, Robert V, Stegehuis G (2004). MycoBank: an<br />

online initiative to launch mycology into the 21st century. Studies in Mycology<br />

50: 19–22.<br />

Crous PW, Schoch CL, Hyde KD, Wood AR, Gueidan C (2009a). Phylogenetic<br />

lineages in the Capnodiales. Studies in Mycology 64: 17–47.<br />

Crous PW, Slippers B, Wingfield MJ, Rheeder J, Marasas WOF, Phillips AJL, Alves<br />

A, Burgess T, Barber P, Groenewald JZ (2006). Phylogenetic lineages in the<br />

Botryosphaeriaceae. Studies in Mycology 55: 235–253.<br />

Crous PW, Summerell BA, Carnegie AJ, Wingfield MJ, Hunter GC, Burgess TI,<br />

Andijc V, Barber PA, Groenewald JZ (2009b). Unravelling Mycosphaerella: do<br />

you believe in genera? Persoonia 23: 99–118.<br />

Crous PW, Verkley GJM, Groenewald JZ, Samson RA (2009c). Fungal Biodiversity.<br />

<strong>CBS</strong> Laboratory Manual Series. Centraalbureau voor Schimmelcultures,<br />

Utrecht, Netherlands.<br />

Damm U, Verkley GJM, Crous PW, Fourie PH, Haegi A, Riccioni L (2008). Novel<br />

Paraconiothyrium species on stone fruit trees and other woody hosts.<br />

Persoonia 20: 9–17.<br />

Dong J, Chen W, Crane JL (1998). Phylogenetic studies of the Leptosphaeriaceae,<br />

Pleosporaceae and some other Loculoascomycetes based on nuclear<br />

ribosomal DNA sequences. Mycological Research 102: 151–156.<br />

Dooly DP, Beckius ML, Jeffery BS, McAllister CK, Radentz WH, Feldman AR,<br />

Rinaldi MG, Bailey SR, Keeling JH (1989). Phaeohyphomycotic cutaneous<br />

disease caused by Pleurophoma in a cardiac transplant patient. The Journal of<br />

Infectious Diseases 159: 503–507.<br />

Eriksson OE, Hawksworth DL (2003). Saccharicola, a new genus for two<br />

Leptosphaeria species on sugar cane. Mycologia 95: 426–433.<br />

Fitt BDL, Brun H, Barbetti MJ, Rimmer SR (2006). World-wide importance of phoma<br />

stem canker (Leptosphaeria maculans and L. biglobosa) on oilseed rape<br />

(Brassica napus). European Journal of Plant Pathology 114: 3–15.<br />

Gräfenhan T, Schroers H-J, Nirenberg HI, Seifert KA (2011). An overview of the<br />

taxonomy, phylogeny, and typification of nectriaceous fungi in Cosmospora,<br />

Acremonium, Fusarium, Stilbella, and Volutella. Studies in Mycology 68: 79–113.<br />

Grondona I, Monte E, Garcia-Acha I, Sutton B (1997). Pyrenochaeta dolichi: an<br />

example of a confusing species. Mycological Research 101: 1404–1408.<br />

Grove WB (1935). British stem- and leaf-fungi (Coelomycetes) Vol. 1<br />

Sphaeropsidales. Cambridge, UK. Cambridge University Press.<br />

Gruyter J de, Aveskamp MM, Woudenberg JHC, Verkley GJM, Groenewald JZ,<br />

Crous PW (2009). Molecular phylogeny of Phoma and allied anamorph genera:<br />

towards a reclassification of the Phoma complex. Mycological Research 113:<br />

508–519.<br />

Gruyter J de, Boerema GH (2002). Contributions towards a monograph of Phoma<br />

(Coelomycetes) – VIII. Section Paraphoma: Taxa with setose pycnidia.<br />

Persoonia 17 (“2001”): 541–561.<br />

Gruyter J de, Boerema GH, Aa HA van der (2002). Contributions towards a<br />

monograph of Phoma (Coelomycetes) – VI-2. Section Phyllostictoides: Outline<br />

of its taxa. Persoonia 18: 1–53.<br />

Gruyter J de, Noordeloos ME (1992). Contributions towards a monograph of Phoma<br />

(Coelomycetes) – I-1. Section Phoma: Taxa with very small conidia in vitro.<br />

Persoonia 15: 71–92.<br />

Gruyter J de, Noordeloos ME, Boerema GH (1993). Contributions towards a<br />

monograph of Phoma (Coelomycetes) – I-2. Section Phoma: Additional taxa<br />

with very small conidia and taxa with conidia up to 7 mm long. Persoonia 15:<br />

369–400.<br />

Gruyter J de, Noordeloos ME, Boerema GH (1998). Contributions towards a<br />

monograph of Phoma (Coelomycetes) – I-3. Section Phoma: Taxa with conidia<br />

longer than 7 mm. Persoonia 16: 471–490.<br />

Gruyter J de, Woudenberg JHC, Aveskamp MM, Verkley GJM, Groenewald JZ,<br />

Crous PW (2010). Systematic reappraisal of species in Phoma section<br />

Paraphoma, Pyrenochaeta and Pleurophoma. Mycologia 102: 1066–1081.<br />

Hawksworth DL, Crous PW, Redhead SA, Reynolds DR, Samson RA,, et al. (2011).<br />

The Amsterdam declaration on fungal nomenclature. IMA Fungus 2: 105–112.<br />

Höhnel F von (1911). Fragmente zur Mykologie XIII (713): Über Leptosphaeria<br />

maculans (Desm.) und Sphaeria lingam Tode. Sitzungsberichte der Kaiserlichen<br />

Akademie der Wissenschaften in Wien. (Mathematisch-naturwissenschaftliche<br />

Klasse (Abteilung I) 120: 458–463.<br />

Höhnel F von (1914). Fragmente zur Mykologie XVI. (XVI. Mitteilung, Nr. 813<br />

bis 875). Sitzungsberichte der Kaiserlichen Akademie der Wissenschaften<br />

in Wien. (Mathematisch-naturwissenschaftliche Klasse (Abteilung I) 123:<br />

49–155.<br />

www.studiesinmycology.org<br />

35


De Gruyter et al.<br />

Holm L (1957). Études taxonomiques sur les Pléosporacées. Symbolae Botanicae<br />

Upsalienses 14: 5–188.<br />

Hoog GS de, Gerrits van den Ende AHG (1998). Molecular diagnostics of clinical<br />

strains of filamentous Basidiomycetes. Mycoses 41: 183–189.<br />

Hoog GS de, Guarro J, Gené J, Figueras MJ (2000). Atlas of Clinical Fungi. 2nd<br />

edition. Centraalbureau voor Schimmelcultures, Utrecht, Netherlands.<br />

Horst RK, Cloyd R (2007). Compendium of rose diseases and pests. 2nd edition.<br />

APS press, MN, USA.<br />

Huang YJ, Fitt BDL, Jedryczka M, Dakowska S, West JS, Gladders P, Steed JM,<br />

Li ZQ (2005). Patterns of ascospore release in relation to phoma stem canker<br />

epidemiology in England (Leptosphaeria maculans) and Poland (L. biglobosa).<br />

European Journal of Plant Pathology 111: 263–277.<br />

Huelsenbeck JP, Ronquist F (2001). MRBAYES: Bayesian inference of phylogenetic<br />

trees. Bioinformatics 17: 754–755.<br />

Hyde KD, Sutton BC (1992). Nypaella frondicola gen. et sp. nov., Plectophomella<br />

nypae sp. nov. and Pleurophomopsis nypae sp. nov. (Coelomycetes) from<br />

intertidal fronds of Nypa fruticans. Mycological Research 96: 210–214.<br />

Inderbitzin P, Mehta YR, Berbee ML (2009). Pleospora species with Stemphylium<br />

anamorphs: a four locus phylogeny resolves new lineages yet does not<br />

distinguish among species in the Pleospora herbarum clade. Mycologia 101:<br />

329–339.<br />

Jasalavic CA, Morales VM, Pelscher LE, Seguin-Swartz G (1995). Comparison<br />

of nuclear ribosomal DNA sequences from Alternaria species pathogenic to<br />

crucifers. Mycological Research 99: 604–614.<br />

Jedryczka M, Fitt BDL, Kachlicki P, Lewartowska E, Balesdent MH, Rouxel T (1999).<br />

Comparison between Polish and United Kingdom populations of Leptosphaeria<br />

maculans, cause of stem canker of winter oilseed rape. Zeitschrift für<br />

Pflanzenkrankheiten und Pflanzenschutz 106: 608–617.<br />

Khashnobish A, Shearer CA, Crane JL (1995). Reexamination of species of<br />

Leptosphaeria on asteraceous hosts. Mycotaxon 54: 91–106.<br />

Kodsueb R, Dhanasekaran V, Aptroot A, Lumyong S, McKenzie EHC, et al. (2006). The<br />

family Pleosporaceae: intergeneric relationships and phylogenetic perspectives<br />

based on sequence analyses of partial 28SrDNA. Mycologia 98: 571–583.<br />

Lombard L, Crous PW, Wingfield BD, Wingfield MJ (2010a). Species concepts in<br />

Calonectria (Cylindrocladium). Studies in Mycology 66: 1–13.<br />

Lombard L, Crous PW, Wingfield BD, Wingfield MJ (2010b). Multigene phylogeny and<br />

mating tests reveal three cryptic species related to Calonectria pauciramosa.<br />

Studies in Mycology 66: 15–30.<br />

Lombard L, Crous PW, Wingfield BD, Wingfield MJ (2010c). Phylogeny and<br />

systematics of the genus Calonectria. Studies in Mycology 66: 31–69.<br />

Mendes-Pereira E, Balesdent MH, Brun H, Rouxel T (2003). Molecular phylogeny<br />

of the Leptosphaeria maculans - L. biglobosa species complex. Mycological<br />

Research 107: 1287–1304.<br />

Moesz G (1922). Mycologiai közlemények V. (Mykologische Mitteilungen V.).<br />

Magyar Botanikai Lapok 21: 5–16.<br />

Mohanty NN (1958). An undescribed species of Pyrenochaeta on Dolichos biflorus<br />

Linn. Indian Phytopathology 8: 85–87.<br />

Morales VM, Jasalavich CA, Pelcher LE, Petrie GA, Taylor JL (1995). Phylogenetic<br />

relationship among several Leptosphaeria species based on their ribosomal<br />

DNA sequences. Mycological Research 99: 593–603.<br />

Mugambi GK, Huhndorf SM (2009). Molecular phylogenetics of Pleosporales:<br />

Melanommataceae and Lophiostomataceae re-circumscribed<br />

(Pleosporomycetidae, <strong>Dothideomycetes</strong>, Ascomycota). Studies in Mycology<br />

64: 103–121.<br />

Müller E (1950). Die schweizerischen arten der gattung Leptosphaeria und<br />

ihrer verwandten. Sydowia, Annales Mycologici editi in Notitiam Scientiae<br />

Mycologicae Universalis. Horn, Austria 4: 185–319.<br />

Müller E, Arx JA von (1950). Einige aspecte zur systematik pseudosphärialer<br />

Ascomyceten. Berichte der Schweizerichen Botanischen Gesellschaft 21:<br />

329–397.<br />

Munk A (1957). Danish Pyrenomycetes: a preliminary flora. Dansk botanisk Arkiv 17,<br />

Dansk Botanisk Forening. Ejnar Munksgaard, Copenhagen, Denmark.<br />

Page RDM (1996). Treeview: An application to display phylogenetic trees on<br />

personal computers. Computer Applications in the Biosciences 12: 357–358.<br />

Pawar, VH, Mathur, PN, Thirumalachar MJ (1967). Species of Phoma isolated<br />

from marine soils in India. Transactions of the British Mycological Society 50:<br />

259–265.<br />

Pedras MSC, Taylor JL, Morales VM (1995). Phomaligin A and other yellow pigments<br />

in Phoma lingam and P. wasabiae. Phytochemistry 38: 1215–1222.<br />

Phillips AJL, Alves A, Pennycook SR, Johnston PR, Ramaley A, et al. (2008).<br />

Resolving the phylogenetic and taxonomic status of dark-spored teleomorph<br />

genera in the Botryosphaeriaceae. Persoonia 21: 29–55.<br />

Redfern DB, Sutton BC (1981). Canker and dieback of Ulmus glabra caused by<br />

Plectophomella concentrica, and its relationship to P. ulmi. Transactions of the<br />

British Mycological Society 77: 381–390.<br />

Rehner SA, Samuels GJ (1994). Taxonomy and phylogeny of Gliocladium analysed<br />

from nuclear large subunit ribosomal DNA sequences. Mycological Research<br />

98: 625–634.<br />

Schoch CL, Crous PW, Groenewald JZ, Boehm EWA, Burgess TI (2009). A classwide<br />

phylogenetic assessment of <strong>Dothideomycetes</strong>. Studies in Mycology 64:<br />

1–15.<br />

Schroers H-J, Gräfenhan T, Nirenberg HI, Seifert KA (2011). A revision of<br />

Cyanonectria and Geejayessia gen. nov., and related species with Fusariumlike<br />

anamorphs. Studies in Mycology 68: 115–138.<br />

Shoemaker RA, Brun H (2001). The teleomorph of the weakly aggressive segregate<br />

of Leptosphaeria maculans. Canadian Journal of Botany 79: 412–419.<br />

Shoemaker RA, Redhead SA (1999). Proposals to conserve the names of four<br />

species of fungi (Phoma betae, Helminthosporium avenae, Pyrenophora<br />

avenae and Pleospora tritici-repentis) against competing earlier synonyms.<br />

Taxon 48: 381–384.<br />

Sivanesan A (1984). The Bitunicate Ascomycetes and their Anamorphs. J. Cramer,<br />

Vaduz, Liechtenstein.<br />

Stewart RB (1957). An undescribed species of Pyrenochaeta on soybean. Mycologia<br />

49: 115–117.<br />

Suetrong S, Schoch CL, Spatafora JW, Kohlmeyer J, Volkmann-Kohlmeyer B<br />

(2009). Molecular systematics of the marine <strong>Dothideomycetes</strong>. Studies in<br />

Mycology 64: 155–173.<br />

Sutton BC (1980). The Coelomycetes. Fungi Imperfecti with Pycnidia, Acervuli and<br />

Stromata. CMI, Kew, UK.<br />

Swofford DL (2003). PAUP*: Phylogenetic analysis using parsimony (*and other<br />

methods), version 4.0b10. Sinauer Associates, Sunderland, Massachusetts.<br />

Tanaka K, Hirayama K, Yonezawa H, Hatakeyama S, Harada Y, Sano T,<br />

Shirouzu T, Hosoya T (2009). Molecular taxonomy of bambusicolous fungi:<br />

Tetraplosphaeriaceae, a new pleosporalean family with Tetraploa-like<br />

anamorphs. Studies in Mycology 64: 175–209.<br />

Verkley GJM, Silva M da, Wicklow DT, Crous PW (2004). Paraconiothyrium, a new<br />

genus to accommodate the mycoparasite Coniothyrium minitans, anamorphs of<br />

Paraphaeosphaeria, and four new species. Studies in Mycology 50: 323–335.<br />

Verkley GJM, Woudenberg JHC, Gruyter J de (2010). Ascochyta manawaorae<br />

Verkley, Woudenberg & de Gruyter, sp. nov. Persoonia 24: 128–129.<br />

Vilgalys R, Hester M (1990). Rapid genetic identification and mapping of<br />

enzymatically amplified ribosomal DNA from several Cryptococcus species.<br />

Journal of Bacteriology 172: 4238–4246.<br />

Vincenot L, Balesdent MH, Li H, Barbetti MJ, Sivasithamparam K, Gout L, Rouxel T<br />

(2008). Occurrence of a new subclade of Leptosphaeria biglobosa in Western<br />

Australia. Phytopathology 98: 321–329.<br />

Wang HK, Aptroot A, Crous PW, Hyde KD, Jeewon R (2007). The polyphyletic<br />

nature of Pleosporales: an example from Massariosphaeria based on rDNA<br />

and RBP2 gene phylogenies. Mycological Research 111: 1268–1276.<br />

Wehmeyer LE (1946). Studies on some fungi of northwestern Wyoming. III.<br />

Pleospora and Leptosphaeria. Lloydia. A quarterly Journal of Biological<br />

Science, Manasha 9: 203–240.<br />

Wehmeyer LE (1961). A world monograph of the genus Pleospora and its<br />

segregates. Univ. Michigan Press, USA.<br />

West JS, Balesdent MH, Rouxel T, Narcy JP, Huang YJ (2002). Colonization of<br />

winter oilseed rape tissues by A/Tox+ and B/Tox0 Leptosphaeria maculans<br />

(phoma stem canker) in France and England. Plant Pathology 51: 311–321.<br />

West JS, Kharbanda PD, Barbetti MJ, Fitt BDL (2001). Epidemiology and<br />

management of Leptosphaeria maculans (phoma stem canker) on oilseed rape<br />

in Australia, Canada and Europe. Plant Pathology 50: 10–27.<br />

White TJ, Bruns T, Lee S, Taylor J (1990). Amplification and direct sequencing of<br />

fungal ribosomal RNA genes for phylogenetics. In: PCR protocols: a guide to<br />

methods and applications. Innis MA, Gelfand DH, Sninsky JJ, White TJ, eds.<br />

Academic press, San Diego, CA, USA: 315–322.<br />

Woudenberg JHC, Aveskamp MM, Gruyter J de, Spiers AG, Crous PW (2009).<br />

Multiple Didymella teleomorphs are linked to the Phoma clematidina<br />

morphotype. Persoonia 22: 56–62.<br />

Wunsch MJ, Bergstrom GC (2011). Genetic and morphological evidence that<br />

Phoma sclerotioides, causal agent of brown root rot of alfalfa, is composed of a<br />

species complex. Phytopathology 101: 594–610.<br />

Yáňez-Morales M de J, Korf RP, Babcock JF (1998). Fungi on Epifagus<br />

(Orobanchaceae) – I. On Sclerotium orobanches and its Phoma synanamorph.<br />

Mycotaxon 67: 275–286.<br />

Zhang Y, Crous PW, Schoch CL, Hyde KD (2012). Pleosporales. Fungal Diversity<br />

53: 1–221.<br />

Zhang Y, Fournier J, Pointing SB, Hyde KD (2008). Are Melanomma pulvis-pyrius<br />

and Trematosphaeria pertusa congeneric? Fungal Diversity 33: 47–60.<br />

Zhang Y, Schoch CL, Fournier J, Crous PW, Gruyter J de (2009). Multi-locus<br />

phylogeny of the Pleosporales: a taxonomic, ecological and evolutionary<br />

reevaluation. Studies in Mycology 64: 85–102.<br />

36


available online at www.studiesinmycology.org<br />

Studies in Mycology 75: 37–114.<br />

Phylogenetic lineages in Pseudocercospora<br />

P.W. Crous 1,2,3* , U. Braun 4 , G.C. Hunter 1,5,6 , M.J. Wingfield 5 , G.J.M. Verkley 1 , H.-D. Shin 7 , C. Nakashima 8 , and J.Z. Groenewald 1<br />

1<br />

<strong>CBS</strong>-<strong>KNAW</strong> Fungal Biodiversity Centre, Uppsalalaan 8, 3584 CT, Utrecht, the Netherlands; 2 Microbiology, Department of Biology, Utrecht University, Padualaan 8, 3584 CH<br />

Utrecht, the Netherlands; 3 Wageningen University and Research Centre (WUR), Laboratory of Phytopathology, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands;<br />

4<br />

Martin-Luther-Universität, FB. Biologie, Institut für Geobotanik und Botanischer Garten, Neuwerk 21, D-06099 Halle (Saale), Germany;<br />

5<br />

Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria 0002, South Africa; 6 Present address: Forest Research, Alice Holt Lodge, Farnham,<br />

Surrey GU10 4LH, UK; 7 Division of Environmental Science and Ecological Engineering, Korea University, Seoul 136-701, Korea; 8 Laboratory of Plant Pathology, Graduate<br />

School of Bioresources, Mie University, Kurima-Machiya 1577, Tsu 514-8507, Japan<br />

*Correspondence: P.W. Crous, p.crous@cbs.knaw.nl<br />

Abstract: Pseudocercospora is a large cosmopolitan genus of plant pathogenic fungi that are commonly associated with leaf and fruit spots as well as blights on a wide range<br />

of plant hosts. They occur in arid as well as wet environments and in a wide range of climates including cool temperate, sub-tropical and tropical regions. Pseudocercospora<br />

is now treated as a genus in its own right, although formerly recognised as either an anamorphic state of Mycosphaerella or having mycosphaerella-like teleomorphs. The aim<br />

of this study was to sequence the partial 28S nuclear ribosomal RNA gene of a selected set of isolates to resolve phylogenetic generic limits within the Pseudocercospora<br />

complex. From these data, 14 clades are recognised, six of which cluster in Mycosphaerellaceae. Pseudocercospora s. str. represents a distinct clade, sister to Passalora<br />

eucalypti, and a clade representing the genera Scolecostigmina, Trochophora and Pallidocercospora gen. nov., taxa formerly accommodated in the Mycosphaerella heimii<br />

complex and characterised by smooth, pale brown conidia, as well as the formation of red crystals in agar media. Other clades in Mycosphaerellaceae include Sonderhenia,<br />

Microcyclosporella, and Paracercospora. Pseudocercosporella resides in a large clade along with Phloeospora, Miuraea, Cercospora and Septoria. Additional clades represent<br />

Dissoconiaceae, Teratosphaeriaceae, Cladosporiaceae, and the genera Xenostigmina, Strelitziana, Cyphellophora and Thedgonia. The genus Phaeomycocentrospora is<br />

introduced to accommodate Mycocentrospora cantuariensis, primarily distinguished from Pseudocercospora based on its hyaline hyphae, broad conidiogenous loci and hila.<br />

Host specificity was considered for 146 species of Pseudocercospora occurring on 115 host genera from 33 countries. Partial nucleotide sequence data for three gene loci, ITS,<br />

EF-1α, and ACT suggest that the majority of these species are host specific. Species identified on the basis of host, symptomatology and general morphology, within the same<br />

geographic region, frequently differed phylogenetically, indicating that the application of European and American names to Asian taxa, and vice versa, was often not warranted.<br />

Studies in Mycology<br />

Key words: Capnodiales, Cercospora, cercosporoid, Mycosphaerella, Mycosphaerellaceae, Paracercospora, Pseudocercosporella, Multi-Locus Sequence Typing (MLST),<br />

systematics.<br />

Taxonomic novelties: New genera - Pallidocercospora Crous, Phaeomycocentrospora Crous, H.D. Shin & U. Braun; New species - Cercospora eucommiae Crous, U. Braun<br />

& H.D. Shin, Microcyclospora quercina Crous & Verkley, Pseudocercospora ampelopsis Crous, U. Braun & H.D. Shin, Pseudocercospora cercidicola Crous, U. Braun & C.<br />

Nakash., Pseudocercospora crispans G.C. Hunter & Crous, Pseudocercospora crocea Crous, U. Braun, G.C. Hunter & H.D. Shin, Pseudocercospora haiweiensis Crous & X.<br />

Zhou, Pseudocercospora humulicola Crous, U. Braun & H.D. Shin, Pseudocercospora marginalis G.C. Hunter, Crous, U. Braun & H.D. Shin, Pseudocercospora ocimi-basilici<br />

Crous, M.E. Palm & U. Braun, Pseudocercospora plectranthi G.C. Hunter, Crous, U. Braun & H.D. Shin, Pseudocercospora proteae Crous, Pseudocercospora pseudostigminaplatani<br />

Crous, U. Braun & H.D. Shin, Pseudocercospora pyracanthigena Crous, U. Braun & H.D. Shin, Pseudocercospora ravenalicola G.C. Hunter & Crous, Pseudocercospora<br />

rhamnellae G.C. Hunter, H.D. Shin, U. Braun & Crous, Pseudocercospora rhododendri-indici Crous, U. Braun & H.D. Shin, Pseudocercospora tibouchinigena Crous & U.<br />

Braun, Pseudocercospora xanthocercidis Crous, U. Braun & A. Wood, Pseudocercosporella koreana Crous, U. Braun & H.D. Shin; New combinations - Pallidocercospora<br />

acaciigena (Crous & M.J. Wingf.) Crous & M.J. Wingf., Pallidocercospora crystallina (Crous & M.J. Wingf.) Crous & M.J. Wingf., Pallidocercospora heimii (Crous) Crous,<br />

Pallidocercospora heimioides (Crous & M.J. Wingf.) Crous & M.J. Wingf., Pallidocercospora holualoana (Crous, Joanne E. Taylor & M.E. Palm) Crous, Pallidocercospora<br />

konae (Crous, Joanne E. Taylor & M.E. Palm) Crous, Pallidoocercospora irregulariramosa (Crous & M.J. Wingf.) Crous & M.J. Wingf., Phaeomycocentrospora cantuariensis<br />

(E.S. Salmon & Wormald) Crous, H.D. Shin & U. Braun, Pseudocercospora hakeae (U. Braun & Crous) U. Braun & Crous, Pseudocercospora leucadendri (Cooke) U. Braun &<br />

Crous, Pseudocercospora snelliana (Reichert) U. Braun, H.D. Shin, C. Nakash. & Crous, Pseudocercosporella chaenomelis (Y. Suto) C. Nakash., Crous, U. Braun & H.D. Shin;<br />

Typifications: Epitypifications - Pseudocercospora angolensis (T. Carvalho & O. Mendes) Crous & U. Braun, Pseudocercospora araliae (Henn.) Deighton, Pseudocercospora<br />

cercidis-chinensis H.D. Shin & U. Braun, Pseudocercospora corylopsidis (Togashi & Katsuki) C. Nakash. & Tak. Kobay., Pseudocercospora dovyalidis (Chupp & Doidge)<br />

Deighton, Pseudocercospora fukuokaensis (Chupp) X.J. Liu & Y.L. Guo, Pseudocercospora humuli (Hori) Y.L. Guo & X.J. Liu, Pseudocercospora kiggelariae (Syd.) Crous &<br />

U. Braun, Pseudocercospora lyoniae (Katsuki & Tak. Kobay.) Deighton, Pseudocercospora lythri H.D. Shin & U. Braun, Pseudocercospora sambucigena U. Braun, Crous &<br />

K. Schub., Pseudocercospora stephanandrae (Tak. Kobay. & H. Horie) C. Nakash. & Tak. Kobay., Pseudocercospora viburnigena U. Braun & Crous, Pseudocercosporella<br />

chaenomelis (Y. Suto) C. Nakash., Crous, U. Braun & H.D. Shin, Xenostigmina zilleri (A. Funk) Crous; Lectotypification - Pseudocercospora ocimicola (Petr. & Cif.) Deighton;<br />

Neotypifications - Pseudocercospora kiggelariae (Syd.) Crous & U. Braun, Pseudocercospora lonicericola (W. Yamam.) Deighton, Pseudocercospora zelkovae (Hori) X.J. Liu<br />

& Y.L. Guo.<br />

Published online: 22 May 2012; doi:10.3114/sim0005. Hard copy: June 2013.<br />

INTRODUCTION<br />

Until recently, Pseudocercospora was treated as an anamorphic<br />

genus linked to Mycosphaerella (Mycosphaerellaceae,<br />

Capnodiales), along with approximately 30 other anamorphic<br />

Copyright <strong>CBS</strong>-<strong>KNAW</strong> Fungal Biodiversity Centre, P.O. Box 85167, 3508 AD Utrecht, The Netherlands.<br />

genera (Crous 2009). The separation of the Mycosphaerella<br />

complex into families (Crous et al. 2007a, 2009b) and genera (Crous<br />

et al. 2009c) based on DNA sequence data and morphology had<br />

substantial implications for Pseudocercospora. Pseudocercospora<br />

is now recognised as a holomorphic genus in its own right, several<br />

You are free to share - to copy, distribute and transmit the work, under the following conditions:<br />

Attribution:<br />

You must attribute the work in the manner specified by the author or licensor (but not in any way that suggests that they endorse you or your use of the work).<br />

Non-commercial: You may not use this work for commercial purposes.<br />

No derivative works: You may not alter, transform, or build upon this work.<br />

For any reuse or distribution, you must make clear to others the license terms of this work, which can be found at http://creativecommons.org/licenses/by-nc-nd/3.0/legalcode. Any of the above conditions can be waived if you get<br />

permission from the copyright holder. Nothing in this license impairs or restricts the author’s moral rights.<br />

37


Crous et al.<br />

species of which have mycosphaerella-like teleomorphs, for<br />

example, Pseudocercospora fijiensis and its mycosphaerella-like<br />

teleomorph that cause black leaf streak of banana (Arzanlou et<br />

al. 2008). The name Mycosphaerella is restricted to species with<br />

Ramularia anamorphs (Verkley et al. 2004, Crous et al. 2009c,<br />

Koike et al. 2011), with Ramularia being an older name than<br />

Mycosphaerella. A single generic name is now used for species<br />

of Pseudocercospora (Hawksworth et al. 2011, Wingfield et al.<br />

2011), in compliance with the recently accepted changes to the<br />

International Code of Nomenclature for algae, fungi and plants<br />

(ICN) adoped during the Botanical Congress in Sydney in 2011, in<br />

particular, the abolishment of Article 59 dealing with pleomorphic<br />

fungi.<br />

Species of Pseudocercospora are well recognised as plant<br />

pathogens, endophytes or saprobes, with some used as biological<br />

control agents of weeds (Den Breeÿen et al. 2006). They occur on<br />

a large number of plants, many of which are important ornamentals<br />

or food crops including fruits, cereals and commercially propagated<br />

forest trees (Fig. 1). An early hypothesis was that the majority of<br />

Pseudocercospora species were strictly host specific. Later studies<br />

have reported that a few species occur on different hosts belonging<br />

to a single plant family (Deighton 1976, 1979), although DNA data<br />

or inoculation studies to support wider host ranges has often been<br />

lacking.<br />

The classic monograph of the hyphomycete genus Cercospora<br />

(Chupp 1954) considered morphological features, including the<br />

structure of conidiomata as well as conidial pigmentation, septation,<br />

wall thickness, length, width, and shape as valuable features<br />

to define species within the genus. Chupp’s circumscription of<br />

Cercospora was rather broadly defined, and the genus was later<br />

shown to be extremely heterogenous (Deighton 1976). Deighton<br />

(1976) distinguished different groups within Cercospora based on<br />

characters such as superficial mycelium (and the texture thereof),<br />

conidial scar type, conidiophore and conidium pigmentation,<br />

septation, and conidial catenulation. These additional features<br />

resulted in many Cercospora species being transferred to several<br />

alternative genera such as Cercosporella, Mycocentrospora,<br />

Mycovellosiella, Phaeoramularia, Paracercospora, Passalora,<br />

Pseudocercospora, Ramularia, Stenella and Stigmina (Deighton<br />

1971, 1976, 1979, 1987, Braun 1995, 1998). A subsequent<br />

morphological treatment of names published in Cercospora (Crous<br />

& Braun 2003) provided some rationalisation, with the following<br />

concepts proposed for the taxonomic treatment of cercosporoid<br />

fungi: structure of conidiogenous loci (scars) and hila, as either<br />

unthickened (or almost so, but slightly darkened or refractive) or<br />

unthickened; presence or absence of pigmentation in conidiophores<br />

and conidia.<br />

Pseudocercospora was originally introduced by Spegazzini<br />

(1910) based on the type species Pseudocercospora vitis, a<br />

foliar pathogen of grapevines. The majority of Pseudocercospora<br />

species known to date are regarded as pathogens on a wide variety<br />

of plants, predominantly in tropical and sub-tropical environments<br />

where they cause leaf spots, blights, fruit spot and fruit rot (Chupp<br />

1954, Deighton 1976, von Arx 1983, Pons & Sutton 1988). Some<br />

important plant pathogens include the species associated with<br />

Sigatoka disease on banana (Arzanlou et al. 2007, 2008, 2010,<br />

Churchill 2010), angular leaf spot of bean (Crous et al. 2006),<br />

husk spot of macadamia (Beilharz et al. 2003), Cercospora leaf<br />

spot of olive (Ávila et al. 2005), cactus (Ayala-Escobar et al. 2005),<br />

avocado (Deighton 1976), and eucalypts (Braun & Dick 2002).<br />

The importance of these diseases is also reflected in quarantine<br />

regulations, e.g. for Pseudocercospora angolensis the cause of<br />

fruit and leaf spot disease on citrus (Pretorius et al. 2003) (Fig.<br />

2), and P. pini-densiflorae the cause of brown needle blight of pine<br />

(Evans 1984, Crous et al. 1990).<br />

Pseudocercospora was established to accommodate<br />

synnematal analogues of Cercospora, as well as species that<br />

produce pigmented conidiogenous structures and conidia with<br />

neither thickened nor darkened conidial hila (Deighton 1976, Braun<br />

1995) (Fig. 3). It was proposed that Pseudocercospora be divided<br />

into several genera (Deighton 1976) based on morphological<br />

differences, a view later supported by several authors (Pons<br />

& Sutton 1988, Braun 1995, Crous & Braun 1996). Since the<br />

first study applied DNA phylogenetic analyisis to species in the<br />

Mycosphaerella complex (Stewart et al. 1999), Pseudocercospora<br />

has been shown to be heterogenous, accommodating hundreds of<br />

species (Crous et al. 2000, 2001, Crous & Braun 2003).<br />

There are very few morphological features that are informative<br />

at the generic level within the Pseudocercospora complex.<br />

Deighton (1983) found it difficult to distinguish Cercoseptoria from<br />

Pseudocercospora on the basis of conidial shape, with conidia<br />

in the former genus acicular and those in the latter obclavate to<br />

cylindrical. In delimiting Pseudocercospora as an anamorph of<br />

Mycosphaerella, von Arx (1983) considered Pseudocercospora<br />

together in a group of related genera characterised by hyaline or<br />

subhyaline conidiogenous structures and unthickened, truncate,<br />

flat and broad conidiogenous loci. Later, Braun (1992) and Crous<br />

et al. (2000) argued that the arrangement of the conidiophores<br />

did not distinguish between sections within Pseudocercospora<br />

due to transitions from solitary to fasciculate to subsynnematal<br />

conidiophores. Crous et al. (2001) also regarded the slight<br />

thickening of conidial scars as a taxonomically uninformative<br />

generic character.<br />

DNA sequence data for various gene regions have in recent<br />

years provided substantial information to support the generic<br />

circumscription of Pseudocercospora. Several studies have<br />

employed DNA sequence data from the Internal Transcribed<br />

Spacer (ITS) region of the rDNA operon for Pseudocercospora<br />

species from various hosts. Crous et al. (2000) examined<br />

isolates of Pseudocercospora from Eucalyptus and found that<br />

they could be separated into two clades within Mycosphaerella.<br />

Another clade of Pseudocercospora species occurred on banana,<br />

indicating that Pseudocercospora could be polyphyletic within<br />

the Mycosphaerella complex. Further evidence supporting<br />

this view emerged in subsequent studies that included<br />

many Pseudocercospora isolates (Crous et al. 2001). These<br />

phylogenetic studies have shown that several other genera are<br />

congeneric with Pseudocercospora and thus Cercostigmina,<br />

Paracercospora, Phaeoisariopsis and Pseudophaeoramularia<br />

were reduced to synonymy with Pseudocercospora (Stewart<br />

et al. 1999, Crous et al. 2001, Braun & Hill 2002, Crous et al.<br />

2006). Based on these studies, the necessity arose to conserve<br />

Pseudocercospora over Stigmina, which represented an older<br />

generic name (Braun & Crous 2006).<br />

Extensive DNA-based phylogenetic research has in recent<br />

years been conducted on Mycosphaerella and many of its<br />

anamorphic genera. These studies have not provided substantial<br />

resolution of Pseudocercospora. The aims of this study were to<br />

define phylogenetic lineages (reflecting genera) within what is<br />

perceived to be Pseudocercospora. An additional aim was to use<br />

the molecular data to infer host range and thus to consider the<br />

importance of host specificity in this important genus.<br />

38


Phylogenetic lineages in Pseudocercospora<br />

Fig. 1. Leaf spot symptoms associated with various species from the Pseudocercospora complex. A. P. fatouae on Fatoua villosa. B. P. clematidis on Clematis apiicola. C. P.<br />

griseola on Phaseolus vulgaris. D. P. rhododendron-indici on Rhododendron indicum. E. P. pyracanthae on Pyracantha angustifolia. F. P. lonicericola on Lonicera japonica. G.<br />

Scolecostigmina mangiferae on Mangifera indica. H. P. fraxinites on Fraxinus rhynchophylla. I. Pseudocercosporella potentillae on Potentilla kleiniana. J. Pseudocercospora<br />

udagawana on Hovenia dulcis.<br />

Fig. 2. Pseudocercospora species of quarantine importance. A. P. fijiensis on Musa (Black Leaf Streak or Black Sigatoka) (Photo G.H.J. Kema). B, C. P. angolensis on Citrus<br />

(Phaeoramularia Fruit and Leaf Spot).<br />

www.studiesinmycology.org<br />

39


Crous et al.<br />

Fig. 3. Morphological structures of Pseudocercospora spp. A. Synnematous conidiophore. B. Densely aggregated fascicle of conidiophores with well-developed brown stroma.<br />

C, D. Loosely branched fascicles of conidiophores with moderate (C) and poorly (D) developed brown stroma. E. Fascicle reduced to conidiogenous cells. F. Conidiophore<br />

fascicles arising from stomata. G, H. Solitary conidiogenous cells on superficial hyphae. I. Geniculate conidiophore (arrow) with truncate apical locus. J, K. Conidiophores<br />

branched below (arrows). L. Conidiogenous cells with percurrent proliferations (arrows). M, N. Conidiophores with sympodial proliferation. O. Conidiophores with conidiogenous<br />

cells (note minutely thickened scars, arrows). P. Subcylindrical conidium with subacute apex and truncate base. Q. Conidia with constrictions at septa. R. Conidium with guttules.<br />

S. Cylindrical conidium with obtuse apex, and truncate base. T. Undulate conidia. U. Curved conidium. Aseptate to 1-septate conidia. V. 1-septate conidia. W, X. Obclavate<br />

conidia with obconical base. Y. Obclavate conidium with short obconical base. Z. Dark brown, muriformly euseptate conidia (thick-walled, not distoseptate).<br />

40


Phylogenetic lineages in Pseudocercospora<br />

MATERIALS AND METHODS<br />

Isolates<br />

Direct isolations were made from fascicles of conidiophores on<br />

leaves. Some leaves were incubated in moist chambers for up to<br />

1 wk to enhance sporulation before single conidial colonies were<br />

established on 2 % malt extract agar (MEA) (Crous 2002). Leaf<br />

spots bearing ascomata were soaked in water for approximately<br />

2 h, after which they were attached to the inner surface of Petri<br />

dish lids over plates containing MEA. Ascospore germination<br />

patterns were examined after 24 h, and single ascospore and<br />

conidial cultures established as described previously (Crous et<br />

al. 1991, Crous 1998). Colonies were sub-cultured onto synthetic<br />

nutrient-poor agar (SNA), potato-dextrose agar (PDA), oatmeal<br />

agar (OA), and MEA (Crous et al. 2009d), and incubated at 25 °C<br />

under continuous near-ultraviolet light to promote sporulation.<br />

Isolates were also sourced from the culture collections of the<br />

<strong>CBS</strong>-<strong>KNAW</strong> Fungal Biodiversity Centre (<strong>CBS</strong>), the working<br />

collection of Pedro Crous (CPC), Chiharu Nakashima (CNS) and<br />

the culture collection of the laboratory of plant pathology, Mie<br />

University, Japan (MUCC), and the mycological herbarium of Mie<br />

University (MUMH). Furthermore, isolates representing fungal<br />

species from genera allied to Pseudocercospora, e.g. Cercospora,<br />

Cercostigmina, Cyphellophora, Davidiella, Dissoconium, Miuraea,<br />

Mycocentrospora, Passalora, Phaeoisariopsis, Phleospora,<br />

Septoria, Strelitziana, Stigmina, Teratosphaeria, Thedgonia,<br />

Trochophora, and Xenostigmina, were included in this study (Table<br />

1).<br />

DNA isolation<br />

Mycelium from actively growing fungal cultures was scraped from<br />

the surface of MEA or PDA plates using a sterile scalpel blade.<br />

Harvested mycelium was ground to a fine powder using liquid<br />

nitrogen and DNA was isolated using the CTAB extraction protocol<br />

as outlined by Crous et al. (2009d) or the UltraClean TM Microbial<br />

DNA Isolation Kit (MoBio Laboratories, Inc., Solana Beach, CA,<br />

USA) following the manufacturers’ protocols. Isolated DNA was<br />

visualised by electrophoresis in 1 % agarose gels (w/v) stained<br />

with ethidium bromide and viewed under near ultra-violet light. DNA<br />

concentrations were determined by measuring electrophoresed<br />

DNA samples against a HyperLadder TM I molecular marker<br />

(BIOLINE) or alternatively by a NanoDrop quantification as outlined<br />

by the manufacturer.<br />

PCR amplification<br />

DNA isolated from fungal isolates was used as template for further<br />

Polymerase Chain Reaction (PCR) amplifications. Four nuclear<br />

gene regions were targeted for PCR amplification and subsequent<br />

sequencing. These regions included the Internal Transcribed<br />

Spacer regions ITS-1, ITS-2 and the 5.8S nrRNA gene regions<br />

(ITS), the first 900 bp of the Large Subunit (28S, LSU) (domains<br />

D1–D3) of the rDNA operon and partial gene regions of the<br />

translation elongation factor 1-alpha (EF-1α) and the actin (ACT)<br />

genes.<br />

The ITS region was amplified using primers ITS-1 or ITS-5 and<br />

ITS-4 (White et al. 1990) while primers used for amplification of<br />

the LSU region were LR0R (Rehner & Samuels 1994) or LSU1Fd<br />

(Crous et al. 2009b) and LR5 or LR7 (Vilgalys & Hester 1990).<br />

Primers employed for the amplification of EF-1α included EF1-<br />

728F and EF1-986R (Carbone & Kohn 1999) or EF-2 (O’Donnell et<br />

al. 1998) while ACT-512F and ACT-783R (Carbone & Kohn 1999)<br />

were used to amplify a portion of the ACT gene. All PCR reaction<br />

mixtures and conditions followed those outlined by Hunter et al.<br />

(2006b). Following PCR amplification, amplicons were visualized<br />

on 1.5 % agarose gels stained with ethidium bromide and viewed<br />

under ultra-violet light and sizes of amplicons were determined<br />

against a HyperLadder TM I molecular marker (BIOLINE). The PCR<br />

amplicons for the four loci were subsequently diluted 1 to 10 times<br />

in preparation for further DNA sequencing reactions.<br />

DNA sequencing and phylogenetic inference<br />

PCR amplicons of the four gene regions targeted in this study<br />

served as templates for DNA sequencing reactions with the<br />

BigDye® Terminator Cycle Sequencing Kit v. 3.1 (Applied<br />

Biosystems Life Technologies, Carlsbad, CA, USA) following the<br />

protocol of the manufacturer. DNA sequencing reactions used the<br />

same primers as those for the PCR reactions. However, additional<br />

internal primers LR3R (http://www.biology.duke.edu/fungi/mycolab/<br />

primers.htm), LR16 (Moncalvo et al. 1993) and LR5 were used to<br />

sequence the LSU in order to obtain reliable sequences spanning<br />

the entire D1-D3 region. DNA sequencing amplicons were purified<br />

through Sephadex® G-50 Superfine columns (Sigma Aldrich, St.<br />

Louis, MO) in MultiScreen HV plates (Millipore, Billerica, MA).<br />

Purified sequence reactions were run on an ABI Prism 3730xl DNA<br />

Sequencer (Life Technologies, Carlsbad, CA, USA).<br />

Generated DNA sequence electropherograms were analysed<br />

using MEGA (Molecular Evolutionary Genetics Analysis) v. 4.0<br />

(Tamura et al. 2007), 4Peaks v. 1.7.2 (http://www.mekentosj.com/)<br />

and SeqMan v. 8.0.2. from the DNASTAR Lasergene® software<br />

package. Consensus sequences were generated and imported<br />

into MEGA for initial alignment and the construction of sequence<br />

datasets. DNA sequences representing isolates of closely allied<br />

genera, for which material could not be obtained were downloaded<br />

from the NCBI GenBank nucleotide database (www.ncbi.nlm.nih.<br />

gov) and added to the DNA sequence datasets generated in this<br />

study. Sequence datasets for the four genomic loci were aligned in<br />

MAFFT (“Multiple alignment program for amino acids or nucleotide<br />

sequences”) v. 6.0 (Katoh & Toh 2006, Katoh et al. 2005; http://<br />

mafft.cbrc.jp/alignment/server/index.html) using the Auto alignment<br />

strategy with the 200PAM/ K=2 scoring matrix and a gap opening<br />

penalty of 1.53 with an offset value of 0.0. Resulting sequence<br />

alignments were manually evaluated and adjusted in MEGA,<br />

MacClade v.4.08 (Maddison & Maddison 2000) or Sequence<br />

Alignment Editor v. 2.0a11 (Rambaut 2002).<br />

A phylogenetic re-construction was conducted for the aligned<br />

LSU data set to determine generic relationships using MrBayes<br />

v. 3.1.2 (Ronquist & Huelsenbeck 2003). Subsequently, a species<br />

level phylogeny was derived from the combined ITS, ACT and EF-<br />

1α alignment of Pseudocercospora s. str. sequences using PAUP<br />

v. 4.0b10 (Swofford 2003). For the LSU alignment, MrModeltest<br />

v. 2.2 (Nylander 2004) was used to determine the best nucleotide<br />

substitution model settings for MrBayes. Based on the results of the<br />

MrModeltest, a phylogenetic analysis was performed with MrBayes<br />

v. 3.1.2 applying a general time-reversible (GTR) substitution<br />

model with inverse gamma rates and dirichlet base frequencies<br />

and a heating parameter set at 0.3. The Markov Chain Monte Carlo<br />

(MCMC) analysis of 4 chains started in parallel from a random tree<br />

topology and had 8 000 000 generations. Trees were saved each<br />

www.studiesinmycology.org<br />

41


Crous et al.<br />

Table 1. Pseudocercospora and pseudocercospora-like isolates included in the morphological and/or phylogenetic analyses.<br />

Species Culture accession numbers 1 Collector Host Family Country GenBank accession numbers 2<br />

LSU ITS EF-1α ACT<br />

Cercospora eucommiae CPC 10047 H.D. Shin Eucommia ulmoides Eucommiaceae South Korea GU253741 GU269702 GU384418 GU320406<br />

CPC 10802; <strong>CBS</strong> 131932 H.D. Shin Eucommia ulmoides Eucommiaceae South Korea GU214674 GU269851/<br />

GU214674<br />

GU384563 GU320555<br />

CPC 11508; <strong>CBS</strong> 132026 H.D. Shin Eucommia ulmoides Eucommiaceae South Korea GU253742 GU269703 GU384419 GU320407<br />

Cercospora sojina CPC 12322; <strong>CBS</strong> 132018 H.D. Shin Glycine soja Fabaceae South Korea GU253861 GU214655 JQ324984 JQ325008<br />

Cyphellophora eucalypti <strong>CBS</strong> 124764; CPC 13412 P.W. Crous Eucalyptus sp. Myrtaceae Australia GQ303305 GQ303274 GU384510 JQ325009<br />

Dissoconium dekkeri <strong>CBS</strong> 110748; CPC 825; CMW 14906 G. Kemp Eucalyptus grandis Myrtaceae South Africa GU214422 AF173315 JQ324985 DQ147651<br />

Microcyclospora quercina CPC 10712; <strong>CBS</strong> 130827 G. Verkley Quercus sp. Fagaceae Netherlands GU214681 GU269789 GU384499 GU320490<br />

Miuraea persicae CPC 10069; <strong>CBS</strong> 132307 H.D. Shin Prunus persica Rosaceae South Korea GU253859 GU269843 GU384556 GU320546<br />

CPC 10828; <strong>CBS</strong> 131935 H.D. Shin Prunus armeniaca Rosaceae South Korea JQ324939 GU269844 GU384557 GU320547<br />

“Mycosphaerella” laricina <strong>CBS</strong> 326.52 E. Müller Larix decidua Pinaceae Switzerland GU253693 GU269643 GU384361 GU320353<br />

“Mycosphaerella” madeirae <strong>CBS</strong> 112895; CPC 3745 S. Denman Eucalyptus globulus Myrtaceae Portugal DQ204756 AY725553 DQ211672 DQ147641<br />

“Mycosphaerella” marksii <strong>CBS</strong> 110920; CPC 935; CMW 5150 A.J. Carnegie Eucalyptus botryoides Myrtaceae Australia DQ246250/<br />

GU253694<br />

AF309588/<br />

GU269644<br />

DQ235134 DQ147625<br />

Pallidocercospora acaciigena <strong>CBS</strong> 112516; CPC 3838 M.J. Wingfield Acacia mangium Fabaceae Venezuela GU214661/<br />

GU253697<br />

GU269648 GU384366 GU320356<br />

<strong>CBS</strong> 120740; CPC 13290 B. Summerell Eucalyptus sp. Myrtaceae Australia GU253698 EF394822/<br />

GU269649<br />

GU384367 GU320357<br />

Pallidocercospora crystallina <strong>CBS</strong> 681.95; <strong>CBS</strong> 116158; CPC 802;<br />

CMW 3033<br />

M.J. Wingfield Eucalyptus bicostata Myrtaceae South Africa DQ204747 AY490757 DQ147636/<br />

DQ211662<br />

DQ147636<br />

Pallidocercospora heimii <strong>CBS</strong> 110682; CPC 760; CMW 4942 P.W. Crous Eucalyptus sp. Myrtaceae Madagascar DQ204751 AF309606 DQ211667 DQ147638<br />

Pallidocercospora heimioides <strong>CBS</strong> 111190; CPC 1312; CMW 3046 M.J. Wingfield Eucalyptus sp. Myrtaceae Indonesia DQ204753 AF309609 DQ211669 DQ147633<br />

Pallidocercospora irregulariramosa <strong>CBS</strong> 114774; <strong>CBS</strong> 114777; CPC 1360;<br />

CMW 4943<br />

M.J. Wingfield Eucalyptus saligna Myrtaceae South Africa DQ204754 AF309607 DQ211670 DQ147634<br />

Pallidocercospora konae <strong>CBS</strong> 120748; CPC 13469 W. Himaman Eucalyptus camaldulensis Myrtaceae Thailand GU253852 EF394842 GU384549 GU320538<br />

Paracercospora egenula <strong>CBS</strong> 485.81 N. Ponnapa Solanum melongena Solanaceae India JQ324940 GU269699 GU384415 GU320403<br />

CPC 12537; <strong>CBS</strong> 132030 H.D. Shin Solanum melongena Solanaceae South Korea GU253738 GU269698 GU384414 GU320402<br />

MUCC 883 T. Mikami Solanum melongena Solanaceae Japan GU253739 GU269700 GU384416 GU320404<br />

Passalora eucalypti <strong>CBS</strong> 111318; CPC 1457 P.W. Crous Eucalyptus saligna Myrtaceae Brazil GU253860 GU269845 GU384558 GU320548<br />

Phaeomycocentrospora cantuariensis CPC 10157 H.D. Shin Humulus scandens Cannabaceae South Korea GU253712 GU269664 GU384381 GU320370<br />

CPC 10762; <strong>CBS</strong> 131928 H.D. Shin Luffa cylindrica Cucurbitaceae South Korea GU253713 GU269665 GU384382 GU320371<br />

42


Phylogenetic lineages in Pseudocercospora<br />

Table 1. (Continued).<br />

Species Culture accession numbers 1 Collector Host Family Country GenBank accession numbers 2<br />

LSU ITS EF-1α ACT<br />

CPC 11646; <strong>CBS</strong> 132013 H.D. Shin Acalypha australis Euphorbiaceae South Korea GU253715 GU269667 GU384384 GU320373<br />

CPC 11694; <strong>CBS</strong> 132014 H.D. Shin Humulus scandens Cannabaceae South Korea GU253716 GU269668 GU384385 GU320374<br />

Phloeospora ulmi <strong>CBS</strong> 344.97 W. Gams Ulmus glabra Ulmaceae Austria GU253841 JQ324974 JQ324986 GU320528<br />

<strong>CBS</strong> 613.81 H.A. Van der Aa Ulmus sp. Ulmaceae Austria GU253842 GU269825 JQ324987 GU320529<br />

Pseudocercospora abelmoschi CPC 14478; <strong>CBS</strong> 132103 H.D. Shin Hibiscus syriacus Malvaceae South Korea GU253696 GU269647 GU384365 GU320355<br />

Pseudocercospora acericola <strong>CBS</strong> 122279 R. Kirschner Acer albopurpurascens Aceraceae Taiwan GU253699 GU269650 GU384368 GU320358<br />

Pseudocercospora ampelopsis CPC 11680; <strong>CBS</strong> 131583 H.D. Shin Ampelopsis brevipenduncula<br />

var. heterophylla<br />

Vitaceae South Korea GU253846 GU269830 GU384542 GU320534<br />

Pseudocercospora angolensis <strong>CBS</strong> 112933; CPC 4118 M.C. Pretorius Citrus sp. Rutaceae Zimbabwe GU214470 AY260063/<br />

GU269836<br />

GU384548 JQ325010<br />

<strong>CBS</strong> 149.53 T. de Carvalho & O. Mendes Citrus sinensis Rutaceae Angola JQ324941 JQ324975 JQ324988 JQ325011<br />

Pseudocercospora araliae CPC 10154 H.D. Shin Aralia elata Araliaceae South Korea GU253701 GU269652 GU384370 GU320360<br />

MUCC 873 T. Kobayashi & C. Nakashima Aralia elata Araliaceae Japan GU253702 GU269653 GU384371 GU320361<br />

Pseudocercospora arecacearum <strong>CBS</strong> 118406 C.F. Hill Rhopalostylis sapidis Arecaceae New Zealand GU253704 GU269655 GU384373 GU320363<br />

<strong>CBS</strong> 118792 C.F. Hill Howea forsteriana Arecaceae New Zealand GU253703 GU269654 GU384372 GU320362<br />

Pseudocercospora assamensis <strong>CBS</strong> 122467 I. Buddenhagen Musa cultivar Musaceae India GU253705 GU269656 GU384374 GU320364<br />

Pseudocercospora atromarginalis <strong>CBS</strong> 114640 C.F. Hill Solanum sp. Solanaceae New Zealand GU253706 GU269658 GU384376 GU320365<br />

CPC 11372; <strong>CBS</strong> 132010 H.D. Shin Solanum nigrum Solanaceae South Korea GU214671 GU269657 GU384375 —<br />

Pseudocercospora balsaminae CPC 10044; <strong>CBS</strong> 131882 H.D. Shin Impatiens textori Balsaminaceae South Korea GU253708 GU269660 GU384379 GU320367<br />

Pseudocercospora basiramifera <strong>CBS</strong> 111072; CPC 1266 M.J. Wingfield Eucalyptus pellita Myrtaceae Thailand GU253709 GU269661 DQ211677 GU320368<br />

<strong>CBS</strong> 114757; CPC 1267 M.J. Wingfield Eucalyptus pellita Myrtaceae Thailand GU253802 GU269781 GU384492 GU320484<br />

Pseudocercospora basitruncata <strong>CBS</strong> 114664; CPC 1202 M.J. Wingfield Eucalyptus grandis Myrtaceae Colombia GU253710/<br />

DQ204759<br />

DQ267600/<br />

GU269662<br />

DQ211675 DQ147622<br />

Pseudocercospora callicarpae MUCC 888 T. Kobayashi Callicarpa japonica Verbenaceae Japan GU253711 GU269663 GU384380 GU320369<br />

Pseudocercospora catalpigena MUCC 743 C. Nakashima & I. Araki Catalpa ovata Bignoniaceae Japan GU253731 GU269690 GU384406 GU320395<br />

Pseudocercospora catappae MUCC 809 C. Nakashima & T. Akashi Terminalia catappa Combretaceae Japan GU253717 GU269669 GU384386 GU320375<br />

Pseudocercospora cercidicola MUCC 896 T. Kobayashi & Y. Kobayashi Cercis chinensis Fabaceae Japan GU253719 GU269671 GU384388 GU320377<br />

Pseudocercospora cercidis-chinensis CPC 14481; <strong>CBS</strong> 132109 H.D. Shin Cercis chinensis Fabaceae South Korea GU253718 GU269670 GU384387 GU320376<br />

Pseudocercospora cf. cruenta <strong>CBS</strong> 117232 R. Kirschner Phaseolus vulgaris Fabaceae Taiwan GU253730 GU269689 GU384405 GU320394<br />

Pseudocercospora cf. kaki CPC 10636; <strong>CBS</strong> 131921 H.D. Shin Diospyros lotus Ebenaceae South Korea GU214677 GU269728 GU384441 GU320430<br />

www.studiesinmycology.org<br />

43


Crous et al.<br />

Table 1. (Continued).<br />

Species Culture accession numbers 1 Collector Host Family Country GenBank accession numbers 2<br />

LSU ITS EF-1α ACT<br />

Pseudocercospora chengtuensis CPC 10696; <strong>CBS</strong> 131924 H.D. Shin Lycium chinense Solanaceae South Korea JQ324942 GU269673 GU384390 GU320379<br />

MUCC 828 I. Araki & M. Harada Lycium chinense Solanaceae Japan JQ324943 — — —<br />

Pseudocercospora chionanthi-retusi CPC 14683; <strong>CBS</strong> 132110 H.D. Shin Chionanthus retusus Oleaceae South Korea GU253721 GU269674 GU384391 GU320380<br />

Pseudocercospora chrysanthemicola CPC 10633; <strong>CBS</strong> 131888 H.D. Shin Chrysanthemum sp. Asteraceae South Korea GU253722 GU269675 GU384392 GU320381<br />

Pseudocercospora cladosporioides <strong>CBS</strong> 117482; CPC 10913 P.W. Crous Olea europaea Oleaceae Tunisia JQ324944 GU269678 GU384395 GU320383<br />

“Pseudocercospora” colombiensis <strong>CBS</strong> 110969; CPC 1106; CMW 4944 M.J. Wingfield Eucalyptus urophylla Myrtaceae Colombia DQ204744 AY752149 DQ211660 DQ147639<br />

Pseudocercospora contraria CPC 14714; <strong>CBS</strong> 132108 H.D. Shin Dioscorea quinqueloba Dioscoreaceae South Korea JQ324945 GU269677 GU384394 GU320385<br />

Pseudocercospora coprosmae <strong>CBS</strong> 114639 C. F. Hill Coprosma robusta Rubiaceae New Zealand JQ324946 GU269680 GU384397 GU320386<br />

Pseudocercospora cordiana <strong>CBS</strong> 114685; CPC 2552 P.W. Crous & R.L. Benchimol Cordia goeldiana Boraginaceae Brazil GU214472 AF362054/<br />

GU269681<br />

GU384398 GU320387<br />

Pseudocercospora coriariae MUCC 840 I. Araki & M. Harada Coriaria japonica Coriariaceae Japan GU253725 GU269682 GU384399 GU320388<br />

Pseudocercospora cornicola MUCC 909 C. Nakashima & E. Imaizumi Cornus alba var. sibirica Cornaceae Japan GU253726 GU269683 GU384400 GU320389<br />

Pseudocercospora corylopsidis MUCC 874 T. Kobayashi & C. Nakashima Hamamelis japonica Hamamelidaceae Japan GU253757 GU269721 GU384437 GU320425<br />

MUCC 908 C. Nakashima & E. Imaizumi Corylopsis spicata Hamamelidaceae Japan GU253727 GU269684 GU384401 GU320390<br />

Pseudocercospora cotoneastri MUCC 876 T. Kobayashi & C. Nakashima Cotoneaster salicifolius Rosaceae Japan GU253728 GU269685 GU384402 GU320391<br />

Pseudocercospora crispans CPC 14883; <strong>CBS</strong> 125999 P.W.Crous Eucalyptus sp. Myrtaceae South Africa GU253825 GU269807 GU384518 GU320510<br />

Pseudocercospora crocea CPC 11668; <strong>CBS</strong> 126004 H.D. Shin Pilea hamaoi Urticaceae South Korea JQ324947 GU269792 GU384502 GU320493<br />

Pseudocercospora crousii <strong>CBS</strong> 119487 C.F. Hill Eucalyptus sp. Myrtaceae New Zealand GU253729 GU269686 GU384403 GU320392<br />

Pseudocercospora cruenta CPC 10846; <strong>CBS</strong> 132021 H. Booker Vigna sp. Fabaceae Trinidad GU214673 GU269688 GU384404 JQ325012<br />

Pseudocercospora cydoniae CPC 10678; <strong>CBS</strong> 131923 H.D. Shin Chaenomeles speciosa Rosaceae South Korea GU253732 GU269691 GU384407 GU320396<br />

Pseudocercospora cymbidiicola <strong>CBS</strong> 115132 C.F. Hill Cymbidium sp. Orchidaceae New Zealand GU253733 GU269692 GU384408 GU320397<br />

Pseudocercospora davidiicola MUCC 296 C. Nakashima & I. Araki Davidia involucrata Nyssaceae Japan GU253734 GU269693 GU384409 GU320398<br />

Pseudocercospora dendrobii MUCC 596 C. Nakashima & K. Motohashi Dendrobium sp. Orchidaceae Japan GU253737 GU269696 GU384412 GU320401<br />

Pseudocercospora destructiva MUCC 870 S. Uematsu & C. Nakashima Euonymus japonicus Celastraceae Japan GU253735 GU269694 GU384410 GU320399<br />

Pseudocercospora dianellae <strong>CBS</strong> 117746 C.F. Hill Dianella caerulae Liliaceae New Zealand GU253736 GU269695 GU384411 GU320400<br />

Pseudocercospora dodonaeae <strong>CBS</strong> 114647 C.F. Hill Dodonaea viscosa Sapindaceae New Zealand JQ324948 GU269697 GU384413 JQ325013<br />

Pseudocercospora dovyalidis CPC 13771; <strong>CBS</strong> 126002 P.W. Crous Dovyalis zeyheri Flacourtiaceae South Africa GU253818 GU269800 GU384513 GU320503<br />

Pseudocercospora elaeocarpi MUCC 925 C. Nakashima Elaeocarpus sp. Elaeocarpaceae Japan GU253740 GU269701 GU384417 GU320405<br />

“Pseudocercospora” epispermogonia <strong>CBS</strong> 110750; CPC 822 G. Kemp Eucalyptus grandis Myrtaceae South Africa DQ204757 DQ267596 DQ211673 DQ147629<br />

44


Phylogenetic lineages in Pseudocercospora<br />

Table 1. (Continued).<br />

Species Culture accession numbers 1 Collector Host Family Country GenBank accession numbers 2<br />

LSU ITS EF-1α ACT<br />

Pseudocercospora eucalyptorum <strong>CBS</strong> 110777; CPC 16; CMW 5228 P.W. Crous Eucalyptus nitens Myrtaceae South Africa DQ204762 AF309598 DQ211678 DQ147614<br />

<strong>CBS</strong> 114242; CPC 10390; CMW 14908 J.P. Mansilla Eucalyptus globulus Myrtaceae Spain GU214481 AY725526 DQ211681 DQ147613/<br />

GU320465<br />

<strong>CBS</strong> 116359; CPC 3751 P.W. Crous Eucalyptus sp. Myrtaceae Madeira GU253829 GU269812 GU384524 GU320514<br />

CPC 10500; <strong>CBS</strong> 114243 P.W. Crous Eucalyptus nitens Myrtaceae New Zealand JQ324949 AY725527 GU384474 JQ325014<br />

CPC 10507; <strong>CBS</strong> 116371 P.W.Crous Eucalyptus nitens Myrtaceae New Zealand JQ324950 GU269687 JQ324989 GU320393<br />

CPC 10916 P.W. Crous Eucalyptus sp. Myrtaceae South Africa GU253788 GU269763 GU384475 GU320464<br />

CPC 11713; <strong>CBS</strong> 132015 P. Mansilla Eucalyptus globulus Myrtaceae Spain JQ324951 GU269811 GU384523 JQ325015<br />

CPC 12406; <strong>CBS</strong> 132029 I. Smith Eucalyptus globulus Myrtaceae Australia GU253811 GU269793 GU384503 GU320494<br />

CPC 12568; <strong>CBS</strong> 132309 C. Mohammed Eucalyptus nitens Myrtaceae Australia GU253814 GU269796 GU384506 GU320497<br />

CPC 12802; <strong>CBS</strong> 132032 A. Phillips Eucalyptus globulus Myrtaceae Portugal GU253789 JQ324976 JQ324990 GU320466<br />

CPC 12957; <strong>CBS</strong> 132033 B. Summerell Eucalyptus deanei Myrtaceae Australia GU253815 GU269797 JQ324991 JQ325016<br />

CPC 13455; <strong>CBS</strong> 132034 P.W. Crous Eucalyptus sp. Myrtaceae Portugal GU253816 GU269798 GU384511 GU320501<br />

CPC 13769; <strong>CBS</strong> 132035 P.W. Crous Eucalyptus punctata Myrtaceae South Africa GU253707 GU269659 GU384378 GU320366<br />

CPC 13816; <strong>CBS</strong> 132114 S. Denman Eucalyptus glaucescens Myrtaceae UK GU253819 GU269801 JQ324992 GU320504<br />

CPC 13926; <strong>CBS</strong> 132105 S. Denman Eucalyptus sp. Myrtaceae USA GU253820 GU269802 JQ324993 GU320505<br />

Pseudocercospora eupatoriella <strong>CBS</strong> 113372 M.J. Morris Chromolaena odorata Asteraceae Jamaica GU253743 GU269704 GU384420 GU320408<br />

Pseudocercospora eustomatis <strong>CBS</strong> 110822 G. Dal Bello Eustroma grandiflorum Gentianaceae Argentina GU253744 GU269705 GU384421 GU320409<br />

Pseudocercospora exosporioides MUCC 893 T. Kobayashi Sequoia sempervirens Taxodiaceae Japan GU253746 GU269707 GU384423 GU320411<br />

Pseudocercospora fijiensis <strong>CBS</strong> 120258; CIRAD 86 J. Carlier Musa sp. Musaceae Cameroon JQ324952 EU514248 Genome 3 Genome 3<br />

MUCC 792 T. Kobayashi & C. Nakashima Musa sp. Musaceae Japan GU253776 GU269748 JQ324994 GU320450<br />

Pseudocercospora flavomarginata <strong>CBS</strong> 118841; CMW 13586 M.J. Wingfield Eucalyptus camaldulensis Myrtaceae Thailand DQ153306 DQ155657 DQ156548 DQ166513<br />

<strong>CBS</strong> 124990; CPC 13492 W. Himaman Eucalyptus camaldulensis Myrtaceae Thailand GU253817 GU269799 GU384512 GU320502<br />

CPC 14142; <strong>CBS</strong> 126001 X. Zhou Eucalyptus sp. Myrtaceae China GU253822 GU269804 GU384515 GU320507<br />

Pseudocercospora fori <strong>CBS</strong> 113285; CMW 9095 G.C. Hunter Eucalyptus grandis Myrtaceae South Africa DQ204748 AF468869 DQ211664 DQ147618<br />

CPC 14880; <strong>CBS</strong> 132113 P.W. Crous Eucalyptus sp. Myrtaceae South Africa GU253824 GU269806 GU384517 GU320509<br />

Pseudocercospora fraxinites CPC 10743; <strong>CBS</strong> 131927 H.D. Shin Fontanesia phillyraeoides Oleaceae South Korea GU253720 GU269672 GU384389 GU320378<br />

MUCC 891 T. Kobayashi Fraxinus excelsior Oleaceae Japan GU253748 GU269710 GU384426 GU320414<br />

Pseudocercospora fukuokaensis CPC 14689; <strong>CBS</strong> 132111 H.D. Shin Styrax japonicus Styracaceae South Korea GU253750 GU269713 GU384429 GU320417<br />

MUCC 887 T. Kobayashi Styrax japonicus Styracaceae Japan GU253751 GU269714 GU384430 GU320418<br />

www.studiesinmycology.org<br />

45


Crous et al.<br />

Table 1. (Continued).<br />

Species Culture accession numbers 1 Collector Host Family Country GenBank accession numbers 2<br />

LSU ITS EF-1α ACT<br />

Pseudocercospora fuligena CPC 12296; <strong>CBS</strong> 132017 Z. Mersha Lycopersicon sp. Solanaceae Thailand JQ324953 GU269711 GU384427 GU320415<br />

MUCC 533 C. Nakashima Lycopersicon esculentum Solanaceae Japan GU253749 GU269712 GU384428 GU320416<br />

Pseudocercospora glauca CPC 10062; <strong>CBS</strong> 131884 H.D. Shin Albizzia julibrissin Fabaceae South Korea GU253752 GU269715 GU384431 GU320419<br />

Pseudocercospora gracilis <strong>CBS</strong> 243.94; CPC 730 P.W. Crous Eucalyptus urophylla Myrtaceae Indonesia DQ204750 DQ267582 DQ211666 DQ147616<br />

Pseudocercospora griseola f. griseola <strong>CBS</strong> 119112; CPC 10460 F.S. Ngulu & C. Mushi Phaseolus vulgaris Fabaceae Tanzania GU253753 GU269717 GU384433 GU320421<br />

<strong>CBS</strong> 194.47 — Phaseolus vulgaris Fabaceae Portugal JQ324954 DQ289801 JQ324995 DQ289868<br />

<strong>CBS</strong> 880.72 H.A. van Kesteren Phaseolus vulgaris Fabaceae Netherlands GU214476 GU269716 GU384432 GU320420<br />

CPC 10462 M.M. Liebenberg Phaseolus vulgaris Fabaceae South Africa GU253865 GU269849 GU384562 GU320553<br />

CPC 10480; <strong>CBS</strong> 131887 M.M. Liebenberg Phaseolus vulgaris Fabaceae South Africa GU253864 GU269848 GU384561 DQ289882<br />

CPC 10779; <strong>CBS</strong> 131929 H.D. Shin Phaseolus vulgaris Fabaceae South Korea GU253862 GU269846 GU384559 DQ289885<br />

CPC 12239 G. Mahuku Phaseolus vulgaris Fabaceae Colombia GU253863 GU269847 GU384560 DQ289887<br />

Pseudocercospora guianensis MUCC 855 C. Nakashima & T. Akashi Lantana camara Verbenaceae Japan GU253755 GU269719 GU384435 GU320423<br />

MUCC 879 C. Nakashima Lantana camara Verbenaceae Japan GU253756 GU269720 GU384436 GU320424<br />

Pseudocercospora haiweiensis CPC 14084; <strong>CBS</strong> 131584 X. Zhou Eucalyptus sp. Myrtaceae China GU253821 GU269803 GU384514 GU320506<br />

Pseudocercospora hakeae <strong>CBS</strong> 112226; CPC 3145 P.W. Crous & B. Summerell Grevillea sp. Proteaceae Australia GU253805 GU269784 GU384495 JQ325017<br />

Pseudocercospora humuli MUCC 742 C. Nakashima & I. Araki Humulus lupulus var. lupulus Cannabaceae Japan GU253758 GU269725 GU384439 GU320428<br />

Pseudocercospora humulicola CPC 10049; <strong>CBS</strong> 131883 H.D. Shin Humulus scandens Cannabaceae South Korea JQ324955 GU269724 JQ324996 JQ325018<br />

CPC 11358; <strong>CBS</strong> 131585 H.D. Shin Humulus scandens Cannabaceae South Korea JQ324956 GU269723 GU384438 GU320427<br />

Pseudocercospora indonesiana <strong>CBS</strong> 122473 I.W. Buddenhagen Musa sp. Musaceae Sumatra GU253765 GU269735 GU384448 GU320437/<br />

EU514340<br />

<strong>CBS</strong> 122474 I.W. Buddenhagen Musa sp. Musaceae Indonesia JQ324957 EU514283 JQ324997 JQ325019<br />

Pseudocercospora ixorae <strong>CBS</strong> 118760 R. Kirschner Ixora sp. Rubiaceae Taiwan GU253759 GU269726 GU384440 GU320429<br />

Pseudocercospora jussiaeae CPC 14625; <strong>CBS</strong> 132117 H.D. Shin Ludwigia prostrata Onagraceae South Korea JQ324958 JQ324977 JQ324998 JQ325020<br />

Pseudocercospora kaki MUCC 900 S. Uematsu & C. Nakashima Diospyros kaki Ebenaceae Japan GU253761 GU269729 GU384442 GU320431<br />

Pseudocercospora kiggelariae CPC 11853; <strong>CBS</strong> 132016 W. Gams Kiggelaria africana Flacourtiaceae South Africa GU253762 GU269730 GU384443 GU320432<br />

Pseudocercospora latens MUCC 763 C. Nakashima & T. Akashi Lespedeza wilfordii Fabaceae Japan GU253763 GU269732 GU384445 GU320434<br />

Pseudocercospora leucadendri CPC 1869 S. Denman & P.W. Crous Leucadendron sp. Proteaceae South Africa GU214480 GU269842 GU384555 GU320545<br />

Pseudocercospora libertiae <strong>CBS</strong> 114643 C.F. Hill Libertia ixioides Iridaceae New Zealand JQ324959 GU269733 GU384446 GU320435<br />

Pseudocercospora lilacis CPC 12767; <strong>CBS</strong> 132031 C. Hodges Ligustrum japonicum Oleaceae USA GU253767 GU269737 GU384449 GU320439<br />

46


Phylogenetic lineages in Pseudocercospora<br />

Table 1. (Continued).<br />

Species Culture accession numbers 1 Collector Host Family Country GenBank accession numbers 2<br />

LSU ITS EF-1α ACT<br />

Pseudocercospora longispora <strong>CBS</strong> 122470 D.R. Jones Musa sp. Musaceae Malaysia GU253764 GU269734 GU384447 GU320436/<br />

EU514342<br />

Pseudocercospora lonicericola MUCC 889 T. Kobayashi Lonicera gracilipes var. glabra Caprifoliaceae Japan GU253766 GU269736 JQ324999 GU320438<br />

Pseudocercospora luzardii CPC 2556 A.C. Alfenas Hancornia speciosa Apocynaceae Brazil GU214477 AF362057/<br />

GU269738<br />

GU384450 GU320440<br />

Pseudocercospora lyoniae MUCC 910 C. Nakashima & E. Imaizumi Lyonia ovalifolia var. elliptica Ericaceae Japan GU253768 GU269739 GU384451 GU320441<br />

Pseudocercospora lythracearum CPC 10707; <strong>CBS</strong> 131925 H.D. Shin Lagerstroemia indica Lythraceae South Korea GU253769 GU269740 GU384452 GU320442<br />

MUCC 890 T. Kobayashi Lagerstroemia indica Lythraceae Japan GU253770 GU269741 GU384453 GU320443<br />

Pseudocercospora lythri CPC 14588; <strong>CBS</strong> 132115 H.D. Shin Lythrum salicaria Lythraceae South Korea GU253771 GU269742 GU384454 GU320444<br />

MUCC 865 I. Araki & M. Harada Lythrum salicaria Lythraceae Japan GU253772 GU269743 GU384455 GU320445<br />

Pseudocercospora macrospora <strong>CBS</strong> 114696; CPC 2553 P.W. Crous & R.L. Benchimol Bertholletia excelsa Lecythidaceae Brazil GU214478 AF362055/<br />

GU269745<br />

GU384457 GU320447<br />

Pseudocercospora mali MUCC 886 T. Kobayashi Malus sieboldii Rosaceae Japan GU253773 GU269744 GU384456 GU320446<br />

Pseudocercospora marginalis CPC 12497; <strong>CBS</strong> 131582 H.D. Shin Fraxinus rhynchophylla Oleaceae South Korea GU253812 GU269794 GU384504 GU320495<br />

Pseudocercospora melicyti <strong>CBS</strong> 115023 M. Fletcher Melicytus macrophyllus Violaceae New Zealand JQ324968 GU269769 GU384481 GU320472<br />

Pseudocercospora metrosideri <strong>CBS</strong> 118795 C.F. Hill Metrosideros collina Myrtaceae New Zealand GU253774 GU269746 GU384458 GU320448<br />

Pseudocercospora musae <strong>CBS</strong> 116634 J. Carlier Musa sp. Musaceae Cuba GU253775 GU269747 GU384459 GU320449<br />

Pseudocercospora myrticola MUCC 632 C. Nakashima & K. Motohashi Myrtus communis Myrtaceae Japan GU253777 GU269749 GU384460 GU320451<br />

Pseudocercospora nandinae <strong>CBS</strong> 117745 C.F. Hill Nandina domestica Berberidaceae New Zealand GU253778 GU269750 GU384461 GU320452<br />

Pseudocercospora natalensis <strong>CBS</strong> 111069; CPC 1263 T. Coutinho Eucalyptus nitens Myrtaceae South Africa DQ267576 DQ303077 JQ325000 DQ147620<br />

<strong>CBS</strong> 111071; CPC 1265 T. Coutinho Eucalyptus nitens Myrtaceae South Africa GU253801 GU269780 GU384491 GU320483<br />

Pseudocercospora nephrolepidis <strong>CBS</strong> 119121 R. Kirschner Nephrolepis auriculata Oleandraceae Taiwan GU253779 GU269751 GU384462 GU320453<br />

Pseudocercospora nogalesii <strong>CBS</strong> 115022 C.F. Hill Chamaecytisus proliferus Fabaceae New Zealand JQ324960 GU269752 GU384463 GU320454<br />

Pseudocercospora norchiensis <strong>CBS</strong> 114641 C.F. Hill Rubus sp. Rosaceae New Zealand GU253794 GU269772 GU384484 GU320475<br />

<strong>CBS</strong> 120738; CPC 13049 W. Gams Eucalyptus sp. Myrtaceae Italy GU253780 EF394859/<br />

GU269753<br />

GU384464 GU320455<br />

Pseudocercospora ocimi-basilici CPC 10283 M.E. Palm Ocimum basilicum Lamiaceae Mexico GU214678 GU269754 GU384465 GU320456<br />

Pseudocercospora oenotherae CPC 10290; <strong>CBS</strong> 131885 H.D. Shin Oenothera odorata Onagraceae South Korea JQ324961 GU269856 GU384567 GU320559<br />

CPC 10630; <strong>CBS</strong> 131920 H.D. Shin Oenothera odorata Onagraceae South Korea GU253781 GU269755 GU384466 GU320457<br />

Pseudocercospora paederiae CPC 10007 H.D. Shin Paederia foetida Rubiaceae South Korea GU253783 GU269757 GU384468 —<br />

Pseudocercospora palleobrunnea <strong>CBS</strong> 124771; CPC 13387 P.W. Crous Syzygium sp. Myrtaceae Australia GQ303319 GQ303288 GU384509 GU320500<br />

www.studiesinmycology.org<br />

47


Crous et al.<br />

Table 1. (Continued).<br />

Species Culture accession numbers 1 Collector Host Family Country GenBank accession numbers 2<br />

LSU ITS EF-1α ACT<br />

Pseudocercospora pallida CPC 10776; <strong>CBS</strong> 131889 H.D. Shin Campsis grandiflora Bignoniaceae South Korea GU214680 GU269758 GU384469 GU320459<br />

Pseudocercospora pancratii <strong>CBS</strong> 137.94 R.F. Castaneda — — Cuba GU253784 GU269759 GU384470 GU320460<br />

Pseudocercospora paraguayensis <strong>CBS</strong> 111286; CPC 1459 P.W. Crous Eucalyptus nitens Myrtaceae Brazil GU214479/<br />

DQ204764<br />

DQ267602 DQ211680 DQ147606<br />

<strong>CBS</strong> 111317; CPC 1458 P.W. Crous Eucalyptus nitens Myrtaceae Brazil GQ852634 JQ324978 GU384522 JQ325021<br />

Pseudocercospora pini-densiflorae MUCC 534 Y. Tokushige Pinus thunbergii Pinaceae Japan GU253785 GU269760 GU384471 GU320461<br />

Pseudocercospora plecthranthi CPC 11462; <strong>CBS</strong> 131586 H.D. Shin Plectranthus sp. Lamiaceae South Korea JQ324962 GU269791 GU384501 GU320492<br />

Pseudocercospora pouzolziae <strong>CBS</strong> 122280 R. Kirschner Gonostegia hirta Urticaceae Taiwan GU253786 GU269761 GU384472 GU320462<br />

Pseudocercospora profusa CPC 10042 H.D. Shin Acalypha australis Euphorbiaceae South Korea GU253808 GU269787 GU384497 GU320488<br />

CPC 10055; <strong>CBS</strong> 132306 H.D. Shin Acalypha australis Euphorbiaceae South Korea GU253787 GU269762 GU384473 GU320463<br />

Pseudocercospora proteae CPC 15217; <strong>CBS</strong> 131587 F. Roets Protea mundii Proteaceae South Africa GU253826 GU269808 GU384519 GU320511<br />

Pseudocercospora prunicula CPC 14511; <strong>CBS</strong> 132107 H.D. Shin Prunus x yedoensis Rosaceae South Korea GU253723 GU269676 GU384393 GU320382<br />

Pseudocercospora pseudostigminaplatani<br />

CPC 11726; <strong>CBS</strong> 131588 H.D. Shin Platanus occidentalis Platanaceae South Korea JQ324963 GU269857 GU384568 GU320560<br />

Pseudocercospora puderi MUCC 906 S. Maruyama Rosa sp. Rosaceae Japan GU253790 GU269764 GU384476 GU320467<br />

Pseudocercospora punctata CPC 14734; <strong>CBS</strong> 132116 P.W. Crous Syzygium sp. Myrtaceae Madagascar GU253791 GU269765 GU384477 GU320468<br />

Pseudocercospora purpurea <strong>CBS</strong> 114163; CPC 1664 P.W. Crous Persea americana Lauraceae Mexico GU253804 GU269783 GU384494 GU320486<br />

Pseudocercospora pyracanthae MUCC 892 T. Kobayashi & C. Nakashima Pyracantha angustifolia Rosaceae Japan GU253792 GU269767 GU384479 GU320470<br />

Pseudocercospora pyracanthigena CPC 10808; <strong>CBS</strong> 131589 H.D. Shin Pyracantha angustifolia Rosaceae South Korea — GU269766 GU384478 GU320469<br />

Pseudocercospora ranjita CPC 11141; <strong>CBS</strong> 126005 M.J. Wingfield Gmelina sp. Verbenaceae Indonesia GU253810 GU269790 GU384500 GU320491<br />

Pseudocercospora ravenalicola <strong>CBS</strong> 122468 M. Arzanlou & W. Gams Ravenala madagascariensis Strelitziaceae India GU253828 GU269810 GU384521 GU320513<br />

Pseudocercospora rhabdothamni <strong>CBS</strong> 114872 M. Fletcher Rhabdothamnus solandri Gesneriaceae New Zealand JQ324964 GU269768 GU384480 GU320471<br />

Pseudocercospora rhamnellae CPC 12500; <strong>CBS</strong> 131590 H.D. Shin Rhamnella frangulioides Rhamnaceae South Korea GU253813 GU269795 GU384505 GU320496<br />

Pseudocercospora rhapisicola <strong>CBS</strong> 282.66 K. Tubaki Rhapis flabellifornis Arecaceae Japan GU253793 GU269770 GU384482 GU320473<br />

Pseudocercospora rhododendri-indici CPC 10822; <strong>CBS</strong> 131591 H.D. Shin Rhododendron indicum Ericaceae South Korea JQ324965 GU269722 — GU320426<br />

Pseudocercospora rhoina CPC 11464; <strong>CBS</strong> 131891 H.D. Shin Rhus chinensis Anacardiaceae South Korea JQ324966 GU269771 GU384483 GU320474<br />

Pseudocercospora robusta <strong>CBS</strong> 111175; CPC 1269; CMW 5151 M.J. Wingfield Eucalyptus robur Myrtaceae Malaysia DQ204767 AY309597 DQ211683 DQ147617<br />

Pseudocercospora rubi MUCC 875 T. Kobayashi & C. Nakashima Rubus allegheniensis Rosaceae Japan GU253795 GU269773 GU384485 GU320476<br />

Pseudocercospora rumohrae <strong>CBS</strong> 117747 C.F. Hill Marattia salicina Marattiaceae New Zealand GU253796 GU269774 GU384486 GU320477<br />

Pseudocercospora sambucigena CPC 10292; <strong>CBS</strong> 131886 H.D. Shin Sambucus williamsii Caprifoliaceae South Korea GU253809 GU269788 GU384498 GU320489<br />

48


Phylogenetic lineages in Pseudocercospora<br />

Table 1. (Continued).<br />

Species Culture accession numbers 1 Collector Host Family Country GenBank accession numbers 2<br />

LSU ITS EF-1α ACT<br />

CPC 14397; <strong>CBS</strong> 126000 P.W. Crous Sambucus nigra Caprifoliaceae Netherlands GU253823 GU269805 GU384516 GU320508<br />

Pseudocercospora sawadae <strong>CBS</strong> 115024 C.F. Hill Psidium guajava Myrtaceae New Zealand JQ324967 GU269775 — GU320478<br />

Pseudocercospora securinegae CPC 10793; <strong>CBS</strong> 131930 H.D. Shin Flueggea suffruticosa Euphorbiaceae South Korea GU253797 GU269776 GU384487 GU320479<br />

Pseudocercospora snelliana CPC 11654; <strong>CBS</strong> 131592 H.D. Shin Morus bombycis Moraceae South Korea — GU269731 GU384444 GU320433<br />

Pseudocercospora sordida MUCC 913 C. Nakashima & E. Imaizumi Campsis radicans Bignoniaceae Japan GU253798 GU269777 GU384488 GU320480<br />

Pseudocercospora sp. <strong>CBS</strong> 110993; CPC 1057 M.J. Wingfield Populus sp. Salicaceae South Africa GU253800 GU269779 GU384490 GU320482<br />

<strong>CBS</strong> 110998; CPC 1054 M.J. Wingfield Eucalyptus grandis Myrtaceae South Africa GU253799 GU269778 GU384489 GU320481<br />

<strong>CBS</strong> 111373; CPC 1493 M.J. Wingfield Eucalyptus globulus Myrtaceae Uruguay GU253803 GU269782 GU384493 GU320485<br />

<strong>CBS</strong> 112725; CPC 3961 K.A. Seifert Melilotus alba Fabaceae Canada GU253806 GU269785 — —<br />

<strong>CBS</strong> 113387 A. den Breeyen Lantana camara Verbenaceae Jamaica GU253754 GU269718 GU384434 GU320422<br />

CPC 10058 H.D. Shin Potentilla kleiniana Rosaceae South Korea — JQ324979 JQ325001 JQ325022<br />

CPC 10645; <strong>CBS</strong> 131922 P.W. Crous — — Brazil GU253700 GU269651 GU384369 GU320359<br />

CPC 14711; <strong>CBS</strong> 132102 H.D. Shin Pyracantha angustifolia Rosaceae South Korea — JQ324980 JQ325002 JQ325023<br />

CPC 15116; NC1 37A1a J. Batzer Malus sp. cv. Golden Delicious Rosaceae USA: North<br />

Carolina<br />

JQ324969 JQ324981 JQ325003 JQ325024<br />

Pseudocercospora stahlii <strong>CBS</strong> 117549 R. Kirschner Passiflora foetida Passifloraceae Taiwan GU253830 GU269813 GU384525 GU320515<br />

Pseudocercospora stephanandrae MUCC 914 C. Nakashima & E. Imaizumi Stephanandra incisa Rosaceae Japan GU253831 GU269814 GU384526 GU320516<br />

Pseudocercospora subsessilis <strong>CBS</strong> 136.94 R.F. Castaneda — — Cuba GU253832 GU269815 GU384527 GU320517<br />

Pseudocercospora subtorulosa <strong>CBS</strong> 117230 R. Kirschner Melicope sp. Rutaceae Taiwan GU253833 GU269816 GU384528 GU320518<br />

Pseudocercospora subulata <strong>CBS</strong> 118489; CPC 10849 M. Dick Eucalyptus botryoides Myrtaceae New Zealand JQ324970 DQ303090 JQ325004 GU320519<br />

Pseudocercospora tereticornis <strong>CBS</strong> 124996; CPC 12960 A.J. Carnegie Eucalyptus nitens Myrtaceae Australia GQ852647 JQ324982 GU384377 JQ325025<br />

CPC 13299; <strong>CBS</strong> 125214 P.W. Crous Eucalyptus tereticornis Myrtaceae Australia GQ852649 GQ852770 GU384508 GU320499<br />

“Pseudocercospora” thailandica <strong>CBS</strong> 116367; CPC 10547 K. Pongpanich Acacia mangium Fabaceae Thailand GU253837 — DQ835102/<br />

GU384533<br />

GU320523/<br />

AY752217<br />

CPC 10548; <strong>CBS</strong> 116367 K. Pongpanich Acacia mangium Fabaceae Thailand GU253853 AY752157 AY840477 GU320539<br />

Pseudocercospora theae <strong>CBS</strong> 128.30 M. Curzi Camelia sinensis Theaceae Italy GU253838 GU269821 GU384534 GU320524<br />

“Pseudocercospora” tibouchinigena <strong>CBS</strong> 116462 C.F. Hill Tibouchina sp. Melastomataceae New Zealand GU253839 GU269822 GU384535 GU320525<br />

Pseudocercospora timorensis MUCC 819 C. Nakashima & T. Akashi Ipomoea indica Convolvulaceae Japan GU253840 GU269823 GU384536 GU320526<br />

Pseudocercospora udagawana CPC 10799; <strong>CBS</strong> 131931 H.D. Shin Hovenia dulcis Rhamnaceae South Korea — GU269824 GU384537 GU320527<br />

www.studiesinmycology.org<br />

49


Crous et al.<br />

Table 1. (Continued).<br />

Species Culture accession numbers 1 Collector Host Family Country GenBank accession numbers 2<br />

Pseudocercospora variicolor MUCC 746 C. Nakashima & I. Araki Paeonia lactiflora var.<br />

trichocarpa<br />

LSU ITS EF-1α ACT<br />

Paeoniaceae Japan GU253843 GU269826 GU384538 GU320530<br />

Pseudocercospora viburnigena CPC 15249; <strong>CBS</strong> 125998 M.L. Crous Viburnum davidii Caprifoliaceae Netherlands GU253827 GU269809 GU384520 GU320512<br />

Pseudocercospora viticicola MUCC 777 C. Nakashima Vitex trifolia Verbenaceae Japan GU253845 GU269828 GU384540 GU320532<br />

Pseudocercospora vitis CPC 11595; <strong>CBS</strong> 132012 H.D. Shin Vitis vinifera Vitaceae South Korea GU214483 DQ289829/<br />

GU269829<br />

GU384541 GU320533<br />

CPC 14661; <strong>CBS</strong> 132112 H.D. Shin Vitis vinifera Vitaceae South Korea GU253844 GU269827 GU384539 GU320531<br />

Pseudocercospora weigelae MUCC 899 T. Kobayashi & Y. Kobayashi Weigela coraeensis Caprifoliaceae Japan GU253847 GU269831 GU384543 GU320535<br />

Pseudocercospora xanthocercidis CPC 11665; <strong>CBS</strong> 131593 A.R. Wood Xanthocercis zambesiaca Fabaceae South Africa JQ324971 JQ324983 JQ325005 JQ325026<br />

Pseudocercospora xanthoxyli CPC 10065 H.D. Shin Xanthoxylum ailanthoides Rutaceae South Korea GU253848 GU269832 GU384544 GU320536<br />

Pseudocercospora zelkovae CPC 14484; <strong>CBS</strong> 132106 H.D. Shin Zelkova serrata Ulmaceae South Korea GU253849 GU269833 GU384545 JQ325027<br />

CPC 14717; <strong>CBS</strong> 132118 H.D. Shin Zelkova serrata Ulmaceae South Korea GU253850 GU269834 GU384546 JQ325028<br />

MUCC 872 T. Kobayashi & C. Nakashima Zelkova serrata Ulmaceae Japan GU253851 GU269835 GU384547 GU320537<br />

Pseudocercosporella arcuata CPC 10050 H.D. Shin Rubus oldhamii Rosaceae South Korea GU214685 GU269850 JQ325006 GU320554<br />

Pseudocercosporella capsellae CPC 14773; <strong>CBS</strong> 131896 H.D. Shin Raphanus sativus Brassicaceae South Korea GU253714 GU269666 GU384383 GU320372<br />

Pseudocercosporella chaenomelis CPC 14795; <strong>CBS</strong> 131897 H.D. Shin Chaenomeles speciosa Rosaceae South Korea GU253834 GU269817 GU384530 GU320520<br />

MUCC 1510; <strong>CBS</strong> 132131 C. Nakashima Chaenomeles sinensis Rosaceae Japan — JQ793663 — JQ793664<br />

Pseudocercosporella fraxini CPC 11509 H.D. Shin Fraxinus rhynchophylla Oleaceae South Korea GU214682 GU269709 GU384425 GU320413<br />

Pseudocercosporella koreana CPC 11414 H.D. Shin Vicia amurensis Fabaceae South Korea GU214683 GU269852 GU384564 GU320556<br />

Pseudocercosporella oxalidis <strong>CBS</strong> 118758 R. Kirschner Oxalis debilis Oxalidaceae Taiwan GU253782 GU269756 GU384467 GU320458<br />

Pseudocercosporella sp. CPC 10864; <strong>CBS</strong> 131890 H.D. Shin Trigonotis peduncularis Boraginaceae South Korea JQ324972 GU269858 GU384569 JQ325029<br />

Pseudocercosporella zelkovae CPC 11592; <strong>CBS</strong> 132011 H.D. Shin Zelkova serrata Ulmaceae South Korea GU214482 GU269853 — GU320557<br />

Scolecostigmina mangiferae <strong>CBS</strong> 125467; CPC 17351 P.W. Crous Mangifera indica Anacardiaceae Australia GU253877 GU269870 GU384578 GU320566<br />

CPC 17352; <strong>CBS</strong> 125467 P.W. Crous Mangifera indica Anacardiaceae Australia GU253878 GU269871 GU384579 GU320567<br />

Septoria cerastii CPC 12343; <strong>CBS</strong> 132028 H.D. Shin Cerastium holosteoides var.<br />

hallasanense<br />

Caryophyllaceae South Korea GU253869 GU269859 GU384570 JQ325030<br />

Septoria chelidonii CPC 12337; <strong>CBS</strong> 132027 H.D. Shin Chelidonium majus var.<br />

asiaticum<br />

Papaveraceae South Korea GU253870 GU269860 GU384571 GU320561<br />

Septoria crepidis CPC 12539; <strong>CBS</strong> 131895 H.D. Shin Crepis japonica Asteraceae South Korea GU253871 GU269861 GU384572 GU320562<br />

Septoria dysentericae CPC 12328; <strong>CBS</strong> 131892 H.D. Shin Inula britannica var. chinensis Asteraceae South Korea GU253866 GU269854 GU384565 GU320558<br />

Septoria erigerontis CPC 12340; <strong>CBS</strong> 131893 H.D. Shin Erigeron annuus Asteraceae South Korea GU253872 GU269862 GU384573 JQ325031<br />

50


Phylogenetic lineages in Pseudocercospora<br />

Table 1. (Continued).<br />

Species Culture accession numbers 1 Collector Host Family Country GenBank accession numbers 2<br />

LSU ITS EF-1α ACT<br />

Septoria eucalyptorum CPC 11282; <strong>CBS</strong> 118505 W. Gams Eucalyptus sp. Myrtaceae India GU253873 GU269863 GU384574 GU320563<br />

Septoria justiciae CPC 12509; <strong>CBS</strong> 131894 H.D. Shin Justicia procumbens Acanthaceae South Korea GU253874 GU269864 GU384575 GU320564<br />

Septoria quercicola <strong>CBS</strong> 663.94 H.A. van der Aa Quercus robur Fagaceae Netherlands GU253867 GU269855 GU384566 JQ325032<br />

Septoria rubi CPC 12331; <strong>CBS</strong> 132022 H.D. Shin Rubus crataegifolius Rosaceae South Korea GU253875 GU269865 GU384576 —<br />

Stigmina platani <strong>CBS</strong> 336.33 R.M. Nattrass Platanus orientalis Platanaceae India GU253868 — JQ325007 —<br />

Strelitziana australiensis <strong>CBS</strong> 124778; CPC 13421 P.W. Crous Eucalyptus sp. Myrtaceae Australia GQ303326 GQ303295 GU384362 —<br />

CPC 13556; <strong>CBS</strong> 132310 P.W. Crous Eucalyptus sp. Myrtaceae Australia GU253695 GU269645 GU384363 GU320354<br />

Teratosphaeria alcornii <strong>CBS</strong> 313.76; CPC 3632 J.L. Alcorn Eucalyptus tessellaris Myrtaceae Australia GU253876 GU269866 GU384577 GU320565<br />

Teratosphaeria dimorpha CPC 14132; <strong>CBS</strong> 124051 B.A. Summerell Eucalyptus caesia Myrtaceae Australia FJ493215 FJ023537 — —<br />

Teratosphaeria stellenboschiana <strong>CBS</strong> 124989; CPC 13767 P.W. Crous Eucalyptus punctata Myrtaceae South Africa GQ852715 GQ852823 — —<br />

Thedgonia ligustrina CPC 10019 H.D. Shin Ligustrum ovalifolium Oleaceae South Korea GU253854 GU269837 GU384550 GU320540<br />

CPC 10530; <strong>CBS</strong> 132130 P.W.Crous Ligustrum sp. Oleaceae Netherlands GU253855 GU269838 GU384551 GU320541<br />

CPC 10861; <strong>CBS</strong> 132025 H.D. Shin Ligustrum ovalifolium Oleaceae South Korea GU253856 GU269839 GU384552 GU320542<br />

Trochophora fasciculata CPC 10282 H.D. Shin Daphniphyllum macropodum Daphniphyllaceae South Korea FJ839668 FJ839632 — —<br />

Trochophora simplex <strong>CBS</strong> 124744 H.D. Shin Daphniphyllum macropodum Daphniphyllaceae South Korea GU253880 GU269872 GU384580 GU320568<br />

MUCC 952 C. Nakashima & I. Araki Daphniphyllum teijsmannii Daphniphyllaceae Japan GU253879 — — —<br />

Xenostigmina zilleri <strong>CBS</strong> 115685 K.A. Seifert Acer sp. Aceraceae Canada GU253857 GU269840 GU384553 GU320543<br />

<strong>CBS</strong> 115686 K.A. Seifert Acer sp. Aceraceae Canada FJ839676/<br />

GU253858<br />

GU269841 GU384554 GU320544<br />

Zasmidium nabiacense <strong>CBS</strong> 125010; CPC 12748 A.J. Carnegie Eucalyptus sp. Myrtaceae Australia GQ852734 GQ852841 GU384507 GU320498<br />

1 <strong>CBS</strong>: <strong>CBS</strong>-<strong>KNAW</strong> Fungal Biodiversity Centre, Utrecht, The Netherlands; CIRAD: Centre de Coopération Internationale en Recherche Agronomique pour le Développement, UMR-BGPI, Montpellier, France; CMW: Culture Collection of the Forestry and<br />

Agricultural Biotechnology Institute (FABI) of the University of Pretoria, Pretoria, South Africa; CPC: Culture collection of Pedro Crous, housed at <strong>CBS</strong>; MUCC: Culture Collection, Laboratory of Plant Pathology, Mie University, Tsu, Mie Prefecture, Japan.<br />

2 LSU: partial 28S nrRNA gene; ITS: internal transcribed spacer regions 1 & 2 including 5.8S nrRNA gene; EF-1α: partial translation elongation factor 1-alpha gene; ACT: partial actin gene.<br />

3 Sequence for this locus obtained from: http://genome.jgi-psf.org/Mycfi1/Mycfi1.home.html<br />

www.studiesinmycology.org<br />

51


Crous et al.<br />

1 000 generations, resulting in 8 001 saved trees in each of the<br />

two tree files. Burn-in was set at 2 000 000 generations after which<br />

the likelihood values were stationary. For parsimony analysis of the<br />

combined ITS, ACT and EF-1α alignment, alignment gaps were<br />

treated as a fifth character state and all characters were unordered<br />

and of equal weight. Maximum parsimony analysis was performed<br />

in PAUP using the heuristic search option with 100 random taxon<br />

additions and tree bisection and reconnection (TBR) as the branchswapping<br />

algorithm. Branches of zero length were collapsed<br />

and all multiple, equally most parsimonious trees were saved.<br />

The robustness of the trees was evaluated by 1 000 bootstrap<br />

replicates (Hillis & Bull 1993). Tree length (TL), consistency index<br />

(CI), retention index (RI) and rescaled consistency index (RC) were<br />

calculated and the resulting trees were printed with Geneious v.<br />

5.5.4 (Drummond et al. 2011). Sequences derived in this study<br />

were deposited in GenBank (Table 1), the alignments in TreeBASE<br />

(www.treebase.org/treebase/index.html), and taxonomic novelties<br />

in MycoBank (www.MycoBank.org; Crous et al. 2004b).<br />

Taxonomy<br />

All taxonomic descriptions were based on structures on<br />

herbarium material. Diseased leaf tissue was viewed under a<br />

Nikon® SMZ1500 stereoscopic zoom microscope and relevant<br />

morphological structures were lifted from lesions with a sterile<br />

dissecting needle and mounted on glass slides in clear lactic acid.<br />

For measurements, 30–50 replicates of all relevant morphological<br />

features were made at ×1 000 magnification using a Carl Zeiss®<br />

Axioskop 2 plus light microscope. High-resolution photographic<br />

images of diseased material, leaf lesions and microscopic fungal<br />

structures were captured with a Nikon® digital sight DS-fi1 high<br />

definition colour camera mounted on the light microscope or a<br />

Nikon® digital sight DS-5M camera mounted on a stereoscopic<br />

zoom microscope. Images of morphological structures were<br />

captured, and measurements taken, using the Nikon® software<br />

NIS-Elements v. 2.34 while Adobe Photoshop was used for the final<br />

editing of acquired images and photographic preparations. Novel<br />

Pseudocercospora taxa were plated onto MEA and incubated at<br />

24 °C for 2–4 wk in the dark in duplicate. The mycological colour<br />

charts of Rayner (1970) were used to define colours of the fungal<br />

colonies.<br />

RESULTS<br />

DNA sequencing and phylogenetic analyses<br />

Large Subunit (LSU) phylogeny: The final aligned LSU dataset<br />

contained 316 ingroup taxa with a total of 1305 characters and<br />

Saccharomyces cerevisiae (GenBank Accession: Z73326) served<br />

as the outgroup taxon. From this alignment 827 characters<br />

were used for the Bayesian analysis; the consensus trees and<br />

posterior probabilities were calculated (Fig. 4) from the 12 002<br />

trees left after discarding those used for burn-in. The resulting<br />

LSU phylogeny resolved several clades (Clades 1–14) grouping<br />

species of Pseudocercospora and allied genera (Fig. 4). Clade 1<br />

(Posterior Probability (PP) value of 1.0) including Cyphellophora<br />

and Strelitziana represented by one of the two basal lineages.<br />

Thedgonia ligustrina (100 %) represented the second basal clade<br />

(PP = 1.0). In the Pleosporales, Clade 3 included Xenostigmina<br />

zilleri (PP = 1.0) and Clade 4 Pseudocercospora cantuariensis (PP<br />

= 1.0), the latter being described below as Phaeomycocentrospora<br />

cantuariensis. Clade 5 contained Cladosporium species belonging<br />

to the teleomorph genus Davidiella (PP = 1.0). Clade 6 (PP = 1.0)<br />

represented species belonging to Teratosphaeria and including<br />

the recently established genus Microcyclospora. Clade 7 (PP =<br />

1.0) accommodated species of Dissoconium. Clade 8 (PP = 1.0)<br />

including species representing Mycosphaerella, Pseudocercospora<br />

and Zasmidium, as well as the recently established genus<br />

Microcyclosporella. Clade 9 (PP = 1.0) included Pseudocercospora<br />

tibouchinigena, Pseudocercospora egenula described below as<br />

Paracercospora egenula and the Mycosphaerella ellipsoidea<br />

complex. Clade 10 (PP = 1.0) accommodated species of other<br />

genera namely Pseudocercosporella, Mycosphaerella ulmi<br />

(Phleospora), Muiraea, Cercospora and Septoria. Clade 11<br />

(PP = 1.0) included Mycosphaerella species with Sonderhenia<br />

anamorphs. Clade 12 (PP = 1.0) is sister to Clade 11 and included<br />

species representing taxa of Mycosphaerella and their associated<br />

pseudocercospora-like anamorphs, appeared to represent a<br />

novel genus. Other genera in this clade included Scolecostigmina<br />

and Trochophora. The isolates representing Trochophora are<br />

accommodated at a basal position in this clade with no PP support.<br />

The three isolates of Scolecostigmina mangiferae resided in a<br />

well-supported sub-clade (PP = 1.0) close to isolates regarded<br />

as part of the Mycosphaerella heimii complex (P. acaciigena, M.<br />

irregulariramosa, M. colombiensis, P. thailandica, M. heimii, M.<br />

heimioides, M. konae), described below in Pallidocercospora.<br />

Clade 13 (PP = 1.0) accommodated Passalora eucalypti. The<br />

remainder of the phylogeny encompassed Clade 14 (PP = 1.0),<br />

representing Pseudocercospora s. str., and accommodated the<br />

majority of Pseudocercospora species from many different hosts.<br />

The type species of Pseudocercospora, P. vitis was included in<br />

this clade. Interestingly, P. vitis was basal in this clade with the<br />

majority of Pseudocercospora species radiating out from the basal<br />

Pseudocercospora isolates. The LSU phylogeny provided a wellsupported<br />

sub-clade (PP = 1.0) representing the second half of<br />

the sensu stricto clade (Clade 14). Several isolates representing<br />

species from genera morphologically allied to Pseudocercospora<br />

were also grouped in Clade 14. These included Stigmina platani,<br />

Cercostigmina protearum var. leucadendri (as Pseudocercospora<br />

leucadendri, see below), Cercostigmina protearum var. hakeae<br />

(as Pseudocercospora hakea, see below), Phaeoisariopsis<br />

griseola f. griseola (as Pseudocercospora griseola f. griseola,<br />

see Crous et al. 2006) and Pseudophaeoramularia angolensis<br />

(as Pseudocercospora angolensis, see below), which supports<br />

previous proposals to include these genera in Pseudocercospora<br />

s. str.<br />

Pseudocercospora s. str. phylogeny: A further analysis was<br />

conducted on Clade 14 (Fig. 4), representing Pseudocercospora<br />

s. str. For this analysis, DNA sequence data from the ITS, ACT<br />

and EF-1α gene regions were combined in the parsimony analysis.<br />

For this dataset, there was a total of 194 taxa, each representing<br />

1 029 characters. Passalora eucalypti (<strong>CBS</strong> 111318) served as the<br />

outgroup taxon for this analysis. From the combined alignment of<br />

1 029 characters, 414 were constant, 124 were variable and 491<br />

characters were parsimony uninformative. Only the first 1 000<br />

equally most parsimonious trees were saved, the first of which is<br />

shown (Fig. 5) (TL = 4315, CI = 0.312, RI = 0.819, RC = 0.256).<br />

The phylogeny resulting from the combined sequence data<br />

was more structured towards the terminal nodes than the LSU<br />

phylogeny. Similar to the LSU phylogeny, a split was observed<br />

within Pseudocercospora s. str., with at least two main clades<br />

being evident. Although present in the strict consensus tree, this<br />

52


Phylogenetic lineages in Pseudocercospora<br />

Saccharomyces cerevisiae Z73326<br />

Cyphellophora eucalypti <strong>CBS</strong> 124764<br />

Cyphellophora laciniata FJ358239<br />

Phialophora europaea FJ358248<br />

Fonsecaea pedrosoi AF356666<br />

Capronia peltigerae HQ613813<br />

Chaetothyriales<br />

Glyphium elatum AF346420<br />

Coniosporium perforans FJ358237<br />

Sarcinomyces petricola FJ358249<br />

Strelitziana australiensis CPC 13556<br />

Strelitziana australiensis GQ303326<br />

Thedgonia ligustrina EU040242<br />

Thedgonia ligustrina CPC 10019<br />

Thedgonia ligustrina CPC 10530<br />

Helotiales<br />

Thedgonia ligustrina CPC 10861<br />

Mycopappus aceris FJ839660<br />

Pleosporales,<br />

Xenostigmina zilleri GU253857<br />

Xenostigmina zilleri FJ839676<br />

Phaeosphaeriaceae<br />

Neottiosporina paspali EU754172<br />

Pleurophoma pleurospora EU754200<br />

Byssothecium circinans AY016357<br />

Corynespora olivacea GU301809<br />

Phoma carteri GQ387594<br />

Phoma violicola GU238156<br />

Ascochyta hordei var. hordei EU754134<br />

Phaeomycocentrospora cantuariensis CPC 10157<br />

Phaeomycocentrospora cantuariensis CPC 10762 Pleosporales<br />

Phaeomycocentrospora cantuariensis CPC 11646<br />

Phaeomycocentrospora cantuariensis CPC 11694<br />

Cladosporium cladosporioides EU019262<br />

Cladosporium herbarum DQ678074<br />

Cladosporium allicinum EU019263<br />

Cladosporium allicinum EU019261<br />

Teratosphaeria molleriana EU167583<br />

Teratosphaeria dimorpha FJ493215<br />

Teratosphaeria fibrillosa GU214506<br />

Teratosphaeria stellenboschiana CPC 13767<br />

Teratosphaeria alcornii <strong>CBS</strong> 313.76<br />

Teratosphaeria nubilosa DQ246228<br />

Penidiella columbiana EU019274<br />

Penidiella eucalypti EU882145<br />

Catenulostroma eucalyptorum JF951174<br />

Phaeothecoidea eucalypti EU019280 Capnodiales,<br />

Readeriella nontingens FJ493201<br />

Readeriella mirabilis EU019291 Teratosphaeriaceae<br />

Readeriella novaezelandiae DQ246239<br />

Teratosphaeria flexuosa FJ493216<br />

Teratosphaeria ohnowa EU019305<br />

Catenulostroma abietis EU019249<br />

Catenulostroma germanicum EU019253<br />

Pseudocercosporella fraxini GU214682<br />

Microcyclospora tardicrescens GU570552<br />

“Pseudocercospora” sp. GU214681<br />

Microcyclospora pomicola GU570551<br />

Microcyclospora malicola GU570549<br />

Microcyclospora malicola GU570550<br />

Dissoconium aciculare EU019266<br />

Dissoconium dekkeri GU214422<br />

Dissoconium dekkeri DQ204768<br />

Dissoconium commune DQ246262<br />

Dissoconium commune EU019267<br />

Posterior probability values<br />

= 1.0<br />

= 0.95 to 0.99<br />

= 0.90 to 0.94<br />

= 0.80 to 0.89<br />

= 0.70 to 0.79<br />

Capnodiales,<br />

Cladosporiaceae<br />

Capnodiales,<br />

Dissoconiaceae<br />

1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

0.5<br />

Fig. 4. Consensus phylogram (50 % majority rule) of 12 002 trees resulting from a Bayesian analysis of the LSU sequence alignment using MrBayes v. 3.1.2. Bayesian posterior<br />

probabilities are indicated with colour-coded branches (see legend) and the scale bar represents the expected changes per site. Important clades are indicated in coloured<br />

blocks and numbered. The tree was rooted to Saccharomyces cerevisiae (GenBank Z73326).<br />

www.studiesinmycology.org<br />

53


Crous et al.<br />

Capnodiales, Mycosphaerellaceae<br />

Zasmidium nabiacense GQ852734<br />

Mycosphaerella marksii DQ246250<br />

Pseudocercospora epispermogonia DQ204757<br />

Mycosphaerella madeirae DQ204756<br />

Microcyclosporella mali GU570545<br />

Microcyclosporella mali GU570548<br />

Mycosphaerella laricina <strong>CBS</strong> 326.52<br />

Paracercospora egenula CPC 12537<br />

Paracercospora egenula MUCC 883<br />

Paracercospora egenula <strong>CBS</strong> 485.81<br />

Passalora brachycarpa GU214664<br />

“Pseudocercospora” tibouchinigena <strong>CBS</strong> 116462<br />

Mycosphaerella ellipsoidea GU214434<br />

Mycosphaerella africana DQ246257<br />

Mycosphaerella aurantia DQ246256<br />

Cercospora sojina CPC 12322<br />

Pseudocercosporella oxalidis <strong>CBS</strong> 118758<br />

Cercospora zebrinae GU214657<br />

Cercospora capsici GU214654<br />

Cercospora apii GU214653<br />

Cercospora rodmanii GQ884186<br />

Pseudocercosporella arcuata GU214685<br />

Pseudocercosporella sp. CPC 10864<br />

Septoria eucalyptorum CPC 11282<br />

Septoria justiciae CPC 12509<br />

Cercospora eucommiae CPC 10047<br />

Cercospora eucommiae CPC 11508<br />

Cercospora eucommiae CPC 10802<br />

Septoria cerastii CPC 12343<br />

Septoria chelidonii CPC 12337<br />

Septoria crepidis CPC 12539<br />

Septoria dysentericae CPC 12328<br />

Septoria erigerontis CPC 12340<br />

Septoria rubi CPC 12331<br />

Pseudocercosporella zelkovae GU214482<br />

Pseudocercosporella capsellae CPC 14773<br />

Phloeospora ulmi <strong>CBS</strong> 344.97<br />

Phloeospora ulmi <strong>CBS</strong> 613.81<br />

Pseudocercosporella koreana GU214683<br />

Septoria quercicola <strong>CBS</strong> 663.94<br />

Pseudocercosporella cydoniae CPC 14795<br />

Miuraea persicae CPC 10069<br />

Miuraea persicae CPC 10828<br />

Mycosphaerella swartii DQ923536<br />

Mycosphaerella walkeri DQ267574<br />

Trochophora fasciculata FJ839668<br />

Trochophora simplex MUCC 952<br />

Trochophora simplex <strong>CBS</strong> 124744<br />

Pallidocercospora holualoana GU214440<br />

Pallidocercospora holualoana JF770467<br />

Pallidocercospora acaciigena GU214661<br />

Pallidocercospora acaciigena <strong>CBS</strong> 120740<br />

Pallidocercospora crystallina DQ204747<br />

Pallidocercospora irregulariramosa DQ204754<br />

“Pseudocercospora” colombiensis DQ204744<br />

“Pseudocercospora” thailandica CPC 10548<br />

“Pseudocercospora” thailandica <strong>CBS</strong> 116367<br />

Pallidocercospora konae <strong>CBS</strong> 120748<br />

Pallidocercospora heimii DQ204751<br />

Pallidocercospora heimioides DQ204753<br />

Scolecostigmina mangiferae strain 3<br />

Scolecostigmina mangiferae CPC 17352<br />

Scolecostigmina mangiferae <strong>CBS</strong> 125467<br />

8<br />

9<br />

10<br />

11<br />

12<br />

Posterior probability values<br />

= 1.0<br />

= 0.95 to 0.99<br />

= 0.90 to 0.94<br />

= 0.80 to 0.89<br />

= 0.70 to 0.79<br />

0.5<br />

Fig. 4. (Continued).<br />

54


Phylogenetic lineages in Pseudocercospora<br />

Fig. 4. (Continued).<br />

Passalora eucalypti <strong>CBS</strong> 111318<br />

Passalora eucalypti DQ246244<br />

Pseudocercospora vitis CPC 14661<br />

Pseudocercospora vitis CPC 11595<br />

Pseudocercospora dianellae <strong>CBS</strong> 117746<br />

Pseudocercospora lyoniae MUCC 910<br />

Pseudocercospora metrosideri <strong>CBS</strong> 118795<br />

Pseudocercospora myrticola MUCC 632<br />

Pseudocercospora pouzolziae <strong>CBS</strong> 122280<br />

Pseudocercospora rumohrae <strong>CBS</strong> 117747<br />

Pseudocercospora luzardii CPC 2556<br />

Pseudocercospora nephrolepidis <strong>CBS</strong> 119121<br />

Pseudocercospora profusa CPC 10055<br />

Pseudocercospora proteae CPC 15217<br />

Pseudocercospora balsaminae CPC 10044<br />

Pseudocercospora crousii <strong>CBS</strong> 119487<br />

Pseudocercospora cymbidiicola <strong>CBS</strong> 115132<br />

Pseudocercospora viburnigena CPC 15249<br />

Pseudocercospora fori <strong>CBS</strong> 113285<br />

Pseudocercospora natalensis <strong>CBS</strong> 111069<br />

Pseudocercospora gracilis <strong>CBS</strong> 243.94<br />

Pseudocercospora robusta <strong>CBS</strong> 111175<br />

Pseudocercospora eucalyptorum <strong>CBS</strong> 110777<br />

Pseudocercospora eucalyptorum CPC 12406<br />

Pseudocercospora eucalyptorum CPC 12568<br />

Pseudocercospora eucalyptorum CPC 12802<br />

Pseudocercospora eucalyptorum CPC 13455<br />

Pseudocercospora eucalyptorum CPC 13816<br />

Pseudocercospora eucalyptorum CPC 13926<br />

Pseudocercospora eucalyptorum <strong>CBS</strong> 116359<br />

Pseudocercospora eucalyptorum CPC 13769<br />

Pseudocercospora eucalyptorum <strong>CBS</strong> 114242<br />

Pseudocercospora eucalyptorum CPC 12957<br />

Pseudocercospora humulicola CPC 11358<br />

Pseudocercospora ixorae <strong>CBS</strong> 118760<br />

Pseudocercospora natalensis <strong>CBS</strong> 111071<br />

Pseudocercospora eucalyptorum CPC 10916<br />

Pseudocercospora plecthranthi CPC 11462<br />

Pseudocercospora crocinus CPC 11668<br />

Pseudocercospora eucalyptorum CPC 10507<br />

Pseudocercospora humulicola CPC 10049<br />

Pseudocercospora cladosporioides <strong>CBS</strong> 117482<br />

Pseudocercospora rhabdothamni <strong>CBS</strong> 114872<br />

Pseudocercospora sawadae <strong>CBS</strong> 115024<br />

Pseudocercospora eucalyptorum CPC 11713<br />

Pseudocercospora eucalyptorum CPC 10500<br />

Pseudocercospora angolensis <strong>CBS</strong> 112933<br />

Pseudocercospora angolensis <strong>CBS</strong> 149.53<br />

Pseudocercospora cf. kaki CPC 10636<br />

Pseudocercospora palleobrunnea <strong>CBS</strong> 124771<br />

Pseudocercospora sambucigena CPC 10292<br />

Pseudocercospora sambucigena CPC 14397<br />

Stigmina platani <strong>CBS</strong> 336.33<br />

Pseudocercospora pseudostigmina-platani CPC 11726<br />

Pseudocercospora arecacearum <strong>CBS</strong> 118406<br />

Pseudocercospora arecacearum <strong>CBS</strong> 118792<br />

Pseudocercospora sp. <strong>CBS</strong> 113387<br />

Pseudocercospora coprosmae <strong>CBS</strong> 114639<br />

Pseudocercospora griseola f. griseola <strong>CBS</strong> 194.47<br />

Pseudocercospora griseola f. griseola CPC 12239<br />

Pseudocercospora griseola f. griseola <strong>CBS</strong> 119112<br />

Pseudocercospora griseola f. griseola CPC 10462<br />

Pseudocercospora griseola f. griseola CPC 10480<br />

Pseudocercospora griseola f. griseola CPC 10779<br />

Pseudocercospora griseola f. griseola <strong>CBS</strong> 880.72<br />

13<br />

14<br />

Posterior probability values<br />

= 1.0<br />

= 0.95 to 0.99<br />

= 0.90 to 0.94<br />

= 0.80 to 0.89<br />

= 0.70 to 0.79<br />

0.5<br />

www.studiesinmycology.org<br />

55


Crous et al.<br />

Ps. macrospora <strong>CBS</strong> 114696<br />

Ps. norchiensis <strong>CBS</strong> 120738<br />

Ps. norchiensis <strong>CBS</strong> 114641<br />

Ps. sordida MUCC 913<br />

Pseudocercospora sp. <strong>CBS</strong> 111373<br />

Ps. purpurea <strong>CBS</strong> 114163<br />

Ps. nogalesii <strong>CBS</strong> 115022<br />

Ps. ocimi-basilici CPC 10283<br />

Ps. rhododendri-indici CPC 10822<br />

Ps. punctata CPC 14734<br />

Ps. leucadendri CPC 1869<br />

Ps. fori CPC 14880<br />

Ps. theae <strong>CBS</strong> 128.30<br />

Ps. basitruncata <strong>CBS</strong> 114664<br />

Ps. subulata <strong>CBS</strong> 118489<br />

Ps. libertiae <strong>CBS</strong> 114643<br />

Ps. melicyti <strong>CBS</strong> 115023<br />

Ps. dendrobii MUCC 596<br />

Ps. jussiaeae CPC 14625<br />

Ps. lythri CPC 14588<br />

Ps. lythri MUCC 865<br />

Ps. araliae CPC 10154<br />

Ps. araliae MUCC 873<br />

Pseudocercospora sp. CPC 15116<br />

Ps. abelmoschi CPC 14478<br />

Pseudocercospora sp. CPC 10645<br />

Ps. assamensis <strong>CBS</strong> 122467<br />

Ps. basiramifera <strong>CBS</strong> 111072<br />

Ps. callicarpae MUCC 888<br />

Ps. catappae MUCC 809<br />

Ps. cercidicola MUCC 896<br />

Ps. cercidis-chinensis CPC 14481<br />

Fig. 4. (Continued).<br />

Ps. chengtuensis MUCC 828<br />

Ps. chionanthi-retusi CPC 14683<br />

Ps. chrysanthemicola CPC 10633<br />

Ps. contraria CPC 14714<br />

Ps. coriariae MUCC 840<br />

Ps. cornicola MUCC 909<br />

Ps. corylopsidis MUCC 908<br />

Ps. cotoneastri MUCC 876<br />

Ps. cf. cruenta <strong>CBS</strong> 117232<br />

Ps. catalpigena MUCC 743<br />

Ps. davidiicola MUCC 296<br />

Ps. destructiva MUCC 870<br />

Ps. elaeocarpi MUCC 925<br />

Ps. eupatoriella <strong>CBS</strong> 113372<br />

Ps. exosporioides MUCC 893<br />

Ps. fraxinites CPC 10743<br />

Ps. fukuokaensis MUCC 887<br />

Ps. fuligena MUCC 533<br />

Ps. fukuokaensis CPC 14689<br />

Ps. glauca CPC 10062<br />

Ps. guianensis MUCC 855<br />

Ps. guianensis MUCC 879<br />

Ps. corylopsidis MUCC 874<br />

Ps. humuli MUCC 742<br />

Ps. kaki MUCC 900<br />

Ps. latens MUCC 763<br />

Ps. lilacis CPC 12767<br />

Ps. indonesiana <strong>CBS</strong> 122473<br />

Ps. lonicericola MUCC 889<br />

Ps. lythracearum CPC 10707<br />

Ps. lythracearum MUCC 890<br />

Posterior probability values<br />

= 1.0<br />

= 0.95 to 0.99<br />

= 0.90 to 0.94<br />

= 0.80 to 0.89<br />

= 0.70 to 0.79<br />

Ps. = Pseudocercospora<br />

14<br />

cont.<br />

Ps. mali MUCC 886<br />

Ps. nandinae <strong>CBS</strong> 117745<br />

Ps. oenotherae CPC 10630<br />

Ps. pancratii <strong>CBS</strong> 137.94<br />

Ps. paraguayensis <strong>CBS</strong> 111317<br />

Ps. pini-densiflorae MUCC 534<br />

Ps. puderi MUCC 906<br />

Ps. pyracanthae MUCC 892<br />

Ps. rhapisicola <strong>CBS</strong> 282.66<br />

Ps. securinegae CPC 10793<br />

Pseudocercospora sp. <strong>CBS</strong> 110993<br />

Pseudocercospora sp. <strong>CBS</strong> 110998<br />

Ps. basiramifera <strong>CBS</strong> 114757<br />

Ps. ranjita CPC 11141<br />

Ps. dovyalidis CPC 13771<br />

Ps. haiweiensis CPC 14084<br />

Ps. stahlii <strong>CBS</strong> 117549<br />

Ps. stephanandrae MUCC 914<br />

Ps. timorensis MUCC 819<br />

Ps. variicolor MUCC 746<br />

Ps. viticicola MUCC 777<br />

Ps. weigelae MUCC 899<br />

Ps. zelkovae CPC 14484<br />

Ps. zelkovae CPC 14717<br />

Ps. acericola <strong>CBS</strong> 122279<br />

Ps. cydoniae CPC 10678<br />

Ps. eustomatis <strong>CBS</strong> 110822<br />

Ps. marginalis CPC 12497<br />

Ps. flavomarginata <strong>CBS</strong> 118841<br />

Ps. flavomarginata <strong>CBS</strong> 124990<br />

Ps. flavomarginata CPC 14142<br />

Ps. fraxinites MUCC 891<br />

Ps. ravenalicola <strong>CBS</strong> 122468<br />

Ps. subsessilis <strong>CBS</strong> 136.94<br />

Ps. crispans CPC 14883<br />

Ps. rubi MUCC 875<br />

Ps. rhamnellae CPC 12500<br />

Ps. zelkovae MUCC 872<br />

Ps. atromarginalis CPC 11372<br />

Ps. paederiae CPC 10007<br />

Ps. subtorulosa <strong>CBS</strong> 117230<br />

Ps. longispora <strong>CBS</strong> 122470<br />

Ps. xanthoxyli CPC 10065<br />

Ps. ampelopsis CPC 11680<br />

Ps. paraguayensis <strong>CBS</strong> 111286<br />

Ps. circumscissa CPC 14511<br />

Ps. atromarginalis <strong>CBS</strong> 114640<br />

Ps. cordiana <strong>CBS</strong> 114685<br />

Ps. cruenta CPC 10846<br />

Ps. pallida CPC 10776<br />

Ps. kiggelariae CPC 11853<br />

Ps. xanthocercidis CPC 11665<br />

Ps. chengtuensis CPC 10696<br />

Ps. indonesiana <strong>CBS</strong> 122474<br />

Ps. fuligena CPC 12296<br />

Ps. oenotherae CPC 10290<br />

Ps. tereticornis CPC 13299<br />

Ps. tereticornis <strong>CBS</strong> 124996<br />

Pseudocercospora sp. CPC 3961<br />

Ps. rhoina CPC 11464<br />

Ps. fijiensis MUCC 792<br />

Ps. fijiensis <strong>CBS</strong> 120258<br />

Ps. hakeae <strong>CBS</strong> 112226<br />

Ps. musae <strong>CBS</strong> 116634<br />

Ps. dodonaeae <strong>CBS</strong> 114647<br />

0.5<br />

14<br />

cont.<br />

56


Phylogenetic lineages in Pseudocercospora<br />

Passalora eucalypti <strong>CBS</strong> 111318<br />

100 Ps. vitis CPC 11595 Vitis, Vitaceae<br />

Ps. vitis CPC 14661 Vitis, Vitaceae<br />

Ps. luzardii CPC 2556 Hancornia, Apocynaceae<br />

100 66 Ps. purpurea <strong>CBS</strong> 114163 Persea, Lauraceae<br />

Ps. sordida MUCC 913 Campsis, Bignoniaceae<br />

95<br />

Ps. macrospora <strong>CBS</strong> 114696 Bertholletia, Lecythidaceae<br />

Ps. nogalesii <strong>CBS</strong> 115022 Chamaecytisus, Fabaceae<br />

57<br />

Pseudocercospora sp. <strong>CBS</strong> 111373 Eucalyptus, Myrtaceae<br />

100<br />

85 Ps. norchiensis <strong>CBS</strong> 120738 Eucalyptus, Myrtaceae<br />

100 Ps. norchiensis <strong>CBS</strong> 114641 Rubus, Rosaceae<br />

100<br />

Pseudocercospora sp. <strong>CBS</strong> 113387 Lantana, Verbenaceae<br />

100 Ps. sambucigena CPC 10292 Sambucus, Caprifoliaceae<br />

96<br />

Ps. sambucigena CPC 14397 Sambucus, Caprifoliaceae<br />

Ps. pseudostigmina-platani CPC 11726 Platanus, Platanaceae<br />

67<br />

Ps. griseola f. griseola CPC 10480 Phaseolus, Fabaceae<br />

100 Ps. griseola f. griseola CPC 10779 Phaseolus, Fabaceae<br />

Ps. griseola f. griseola CPC 12239 Phaseolus, Fabaceae<br />

83<br />

Ps. griseola f. griseola <strong>CBS</strong> 194.47 Phaseolus, Fabaceae<br />

Ps. griseola f. griseola <strong>CBS</strong> 880.72 Phaseolus, Fabaceae<br />

Ps. griseola f. griseola <strong>CBS</strong> 119112 Phaseolus, Fabaceae<br />

Ps. griseola f. griseola CPC 10462 Phaseolus, Fabaceae<br />

Ps. basitruncata <strong>CBS</strong> 114664 Eucalyptus, Myrtaceae<br />

100 Ps. angolensis <strong>CBS</strong> 149.53 Citrus, Rutaceae<br />

85 Ps. angolensis CPC 4118 Citrus, Rutaceae<br />

10 changes<br />

99<br />

Ps. ocimi-basilici CPC 10283 Ocimum, Lamiaceae<br />

84<br />

Ps. punctata CPC 14734 Syzygium, Myrtaceae<br />

Ps. udagawana CPC 10799 Hovenia, Rhamnaceae<br />

Ps. cladosporioides <strong>CBS</strong> 117482 Olea, Oleaceae<br />

81<br />

Pseudocercospora sp. CPC 10058 Potentilla, Rosaceae<br />

Ps. jussiaeae CPC 14625 Ludwigia, Onagraceae<br />

Ps. dendrobii MUCC 596 Dendrobium, Orchidaceae<br />

88<br />

62 Ps. araliae CPC 10154 Aralia, Araliaceae<br />

76 98 Ps. araliae MUCC 873 Aralia, Araliaceae<br />

100 Ps. lythri CPC 14588 Lythrum, Lythraceae<br />

68<br />

94<br />

99<br />

Ps. lythri MUCC 865 Lythrum, Lythraceae<br />

Ps. nephrolepidis <strong>CBS</strong> 119121 Nephrolepis, Oleandraceae<br />

100<br />

Ps. pouzolziae <strong>CBS</strong> 122280 Gonostegia, Urticaceae<br />

Ps. rumohrae <strong>CBS</strong> 117747 Marattia, Marattiaceae<br />

Ps. plecthranthi CPC 11462 Plectranthus, Lamiaceae<br />

99 Ps. balsaminae CPC 10044 Impatiens, Balsaminaceae<br />

81 Ps. dianellae <strong>CBS</strong> 117746 Dianella, Liliaceae<br />

Ps. rhabdothamni <strong>CBS</strong> 114872 Rhabdothamnus, Gesneriaceae<br />

95<br />

Ps. humulicola CPC 10049 Humulus, Cannabaceae<br />

Ps. humulicola CPC 11358 Humulus, Cannabaceae<br />

Ps. crocea CPC 11668 Pilea, Urticaceae<br />

95 57<br />

96<br />

Ps. profusa CPC 10055 Acalypha, Euphorbiaceae<br />

Ps. profusa CPC 10042 Acalypha, Euphorbiaceae<br />

Ps. robusta <strong>CBS</strong> 111175 Eucalyptus, Myrtaceae<br />

100<br />

100<br />

Ps. gracilis <strong>CBS</strong> 243.94 Eucalyptus, Myrtaceae<br />

Ps. eucalyptorum CPC 12957 Eucalyptus, Myrtaceae<br />

Ps. eucalyptorum CPC 12406 Eucalyptus, Myrtaceae<br />

Ps. eucalyptorum CPC 12568 Eucalyptus, Myrtaceae<br />

100 Ps. eucalyptorum CPC 13926 Eucalyptus, Myrtaceae<br />

64<br />

Ps. eucalyptorum CPC 10507 Eucalyptus, Myrtaceae<br />

Ps. eucalyptorum CPC 10500 Eucalyptus, Myrtaceae<br />

63 Ps. eucalyptorum CPC 13816 Eucalyptus, Myrtaceae<br />

Ps. eucalyptorum <strong>CBS</strong> 116359 Eucalyptus, Myrtaceae<br />

Ps. eucalyptorum <strong>CBS</strong> 110777 Eucalyptus, Myrtaceae<br />

Ps. eucalyptorum CPC 10390 Eucalyptus, Myrtaceae<br />

87<br />

63 Ps. eucalyptorum CPC 10916 Eucalyptus, Myrtaceae<br />

Ps. eucalyptorum CPC 11713 Eucalyptus, Myrtaceae<br />

Ps. eucalyptorum CPC 12802 Eucalyptus, Myrtaceae<br />

Ps. eucalyptorum CPC 13769 Eucalyptus, Myrtaceae<br />

Ps. eucalyptorum CPC 13455 Eucalyptus, Myrtaceae<br />

Fig. 5. The first of 1 000 equally most parsimonious trees obtained from a heuristic search with 100 random taxon additions of the combined ITS, ACT and EF-1α sequence<br />

alignment using PAUP v. 4.0b10. The scale bar shows 10 changes, and bootstrap support values from 1 000 replicates are shown at the nodes. Thickened lines indicate those<br />

branches present in the strict consensus tree and the tree was rooted to Passalora eucalypti strain <strong>CBS</strong> 111318 (GenBank GU269845, GU320548 and GU384558, respectively).<br />

www.studiesinmycology.org<br />

57


Crous et al.<br />

Ps. rhododendri-indici CPC 10822 Rhododendron, Ericaceae<br />

Ps. coprosmae <strong>CBS</strong> 114639 Coprosma, Rubiaceae<br />

83 100<br />

Ps. arecacearum <strong>CBS</strong> 118406 Rhopalostylis, Arecaceae<br />

Ps. arecacearum <strong>CBS</strong> 118792 Howea, Arecaceae<br />

Ps. cf. kaki CPC 10636 Diospyros, Ebenaceae<br />

55<br />

Ps. leucadendri CPC 1869 Leucadendron, Proteaceae<br />

Ps. myrticola MUCC 632 Myrtus, Myrtaceae<br />

83<br />

Ps. proteae CPC 15217 Protea, Proteaceae<br />

Ps. ixorae <strong>CBS</strong> 118760 Ixora, Rubiaceae<br />

Ps. cymbidiicola <strong>CBS</strong> 115132 Cymbidium, Orchidaceae<br />

76 Ps. lyoniae MUCC 910 Lyonia, Ericaceae<br />

Ps. theae <strong>CBS</strong> 128.30 Camelia, Theaceae<br />

Ps. fori <strong>CBS</strong> 113285 Eucalyptus, Myrtaceae<br />

Ps. fori CPC 14880 Eucalyptus, Myrtaceae<br />

89<br />

Ps. natalensis <strong>CBS</strong> 111069 Eucalyptus, Myrtaceae<br />

59<br />

Ps. natalensis <strong>CBS</strong> 111071 Eucalyptus, Myrtaceae<br />

Ps. libertiae <strong>CBS</strong> 114643 Libertia, Iridaceae<br />

Ps. metrosideri <strong>CBS</strong> 118795 Metrosideros, Myrtaceae<br />

Ps. melicyti <strong>CBS</strong> 115023 Melicytus, Violaceae<br />

Ps. palleobrunnea CPC 13387 Syzygium, Myrtaceae<br />

Ps. subulata CPC 10849 Eucalyptus, Myrtaceae<br />

76<br />

62 Ps. crousii <strong>CBS</strong> 119487 Eucalyptus, Myrtaceae<br />

Ps. sawadae <strong>CBS</strong> 115024 Psidium, Myrtaceae<br />

Ps. viburnigena CPC 15249 Viburnum, Caprifoliaceae<br />

Ps. rhoina CPC 11464 Rhus, Anacardiaceae<br />

100 Ps. xanthoxyli CPC 10065 Xanthoxylum, Rutaceae<br />

Ps. snelliana CPC 11654 Morus, Moraceae<br />

Ps. securinegae CPC 10793 Flueggea, Euphorbiaceae<br />

100 Ps. fijiensis MUCC 792 Musa, Musaceae<br />

Ps. fijiensis <strong>CBS</strong> 120258 Musa, Musaceae<br />

Ps. acericola <strong>CBS</strong> 122279 Acer, Aceraceae<br />

81<br />

Ps. subtorulosa <strong>CBS</strong> 117230 Melicope, Rutaceae<br />

60 Pseudocercospora sp. CPC 10645<br />

100 Ps. eustomatis <strong>CBS</strong> 110822 Eustroma, Gentianaceae<br />

94 Ps. oenotherae CPC 10630 Oenothera, Onagraceae<br />

65 Ps. oenotherae CPC 10290 Oenothera, Onagraceae<br />

Ps. cruenta CPC 10846 Vigna, Fabaceae<br />

100 Ps. atromarginalis <strong>CBS</strong> 114640 Solanum, Solanaceae<br />

Ps. atromarginalis CPC 11372 Solanum, Solanaceae<br />

100 Ps. chengtuensis CPC 10696 Lycium, Solanaceae<br />

Ps. fuligena CPC 12296 Lycopersicon, Solanaceae<br />

86<br />

Ps. fuligena MUCC 533 Solanum, Solanaceae<br />

91 Ps. nandinae <strong>CBS</strong> 117745 Nandina, Berberidaceae<br />

Ps. cordiana CPC 2552 Cordia, Boraginaceae<br />

82<br />

Pseudocercospora sp. <strong>CBS</strong> 110998 Eucalyptus, Myrtaceae<br />

51 Ps. paraguayensis <strong>CBS</strong> 111286 Eucalyptus, Myrtaceae<br />

Ps. paraguayensis CPC 1458 Eucalyptus, Myrtaceae<br />

89<br />

Ps. pini-densiflorae MUCC 534 Pinus, Pinaceae<br />

68<br />

Ps. pyracanthigena CPC 10808 Pyracantha, Rosaceae<br />

Ps. fukuokaensis CPC 14689 Styrax, Styracaceae<br />

94<br />

Ps. fukuokaensis MUCC 887 Styrax, Styracaceae<br />

64<br />

Ps. mali MUCC 886 Malus, Rosaceae<br />

Ps. cercidis-chinensis CPC 14481 Cercis, Fabaceae<br />

Ps. glauca CPC 10062 Albizzia, Fabaceae<br />

Ps. chrysanthemicola CPC 10633 Chrysanthemum, Asteraceae<br />

100 Ps. marginalis CPC 12497 Fraxinus, Oleaceae<br />

100 Ps. chionanthi-retusi CPC 14683 Chionanthus, Oleaceae<br />

10 changes<br />

Fig. 5. (Continued).<br />

split was not well-supported in the phylogeny. Deeper nodes of<br />

the backbone were poorly supported. There were high levels of<br />

support for several of the smaller sub-clades in this tree, which are<br />

discussed in the Taxonomy section below.<br />

Taxonomy<br />

Isolates representing 146 species of Pseudocercospora were<br />

subjected to DNA analysis and morphological comparison.<br />

Phylogenetic analyses based on the LSU gene resolved a total of<br />

14 clades in the Pseudocercospora complex.<br />

58


Phylogenetic lineages in Pseudocercospora<br />

69<br />

69<br />

10 changes<br />

Ps. ampelopsis CPC 11680 Ampelopsis, Vitaceae<br />

Ps. hakeae <strong>CBS</strong> 112226 Grevillea, Proteaceae<br />

100 Ps. longispora <strong>CBS</strong> 122470 Musa, Musaceae<br />

Ps. musae <strong>CBS</strong> 116634 Musa, Musaceae<br />

99 Ps. assamensis <strong>CBS</strong> 122467 Musa, Musaceae<br />

Ps. indonesiana <strong>CBS</strong> 122474 Musa, Musaceae<br />

99 Ps. indonesiana <strong>CBS</strong> 122473 Musa, Musaceae<br />

Ps. cydoniae CPC 10678 Chaenomeles, Rosaceae<br />

Ps. cornicola MUCC 909 Cornus, Cornaceae<br />

99<br />

Ps. eupatoriella <strong>CBS</strong> 113372 Chromolaena, Asteraceae<br />

95<br />

66 Ps. lilacis CPC 12767 Ligustrum, Oleaceae<br />

97 Pseudocercospora sp. CPC 15116 Malus, Rosaceae<br />

100 Ps. crispans CPC 14883 Eucalyptus, Myrtaceae<br />

Pseudocercospora sp. <strong>CBS</strong> 110993 Populus, Salicaceae<br />

Ps. cf. cruenta <strong>CBS</strong> 117232 Phaseolus, Fabaceae<br />

55<br />

Ps. xanthocercidis CPC 11665 Xanthocercis, Fabaceae<br />

Ps. catappae MUCC 809 Terminalia, Combretaceae<br />

82<br />

Ps. destructiva MUCC 870 Euonymus, Celastraceae<br />

95 Ps. fraxinites CPC 10743 Fontanesia, Oleaceae<br />

100 Ps. fraxinites MUCC 891 Fraxinus, Oleaceae<br />

Ps. ravenalicola <strong>CBS</strong> 122468 Ravenala, Strelitziaceae<br />

Ps. dovyalidis CPC 13771 Dovyalis, Flacourtiaceae<br />

87<br />

Ps. stahlii <strong>CBS</strong> 117549 Passiflora, Passifloraceae<br />

Ps. kiggelariae CPC 11853 Kiggelaria, Flacourtiaceae<br />

Ps. basiramifera <strong>CBS</strong> 111072 Eucalyptus, Myrtaceae<br />

100<br />

Ps. basiramifera <strong>CBS</strong> 114757 Eucalyptus, Myrtaceae<br />

Ps. humuli MUCC 742 Humulus, Cannabaceae<br />

84<br />

Ps. puderi MUCC 906 Rosa, Rosaceae<br />

Ps. cercidicola MUCC 896 Cercis, Fabaceae<br />

Ps. abelmoschi CPC 14478 Hibiscus, Malvaceae<br />

60<br />

Ps. coriariae MUCC 840 Coriaria, Coriariaceae<br />

Ps. callicarpae MUCC 888 Callicarpa, Verbenaceae<br />

Ps. davidiicola MUCC 296 Davidia, Nyssaceae<br />

Ps. dodonaeae <strong>CBS</strong> 114647 Dodonaea, Sapindaceae<br />

Ps. ranjita CPC 11141 Gmelina, Verbenaceae<br />

Ps. timorensis MUCC 819 Ipomoea, Convolvulaceae<br />

100 Ps. tereticornis <strong>CBS</strong> 124996 Eucalyptus, Myrtaceae<br />

Ps. tereticornis CPC 13299 Eucalyptus, Myrtaceae<br />

100 Ps. flavomarginata CPC 13492 Eucalyptus, Myrtaceae<br />

Ps. flavomarginata CMW 13586 Eucalyptus, Myrtaceae<br />

Ps. flavomarginata CPC 14142 Eucalyptus, Myrtaceae<br />

Ps. pancratii <strong>CBS</strong> 137.94 Hippeastrum, Liliaceae<br />

100<br />

Ps. viticicola MUCC 777 Vitex, Verbenaceae<br />

Pseudocercospora sp. CPC 14711 Pyracantha, Rosaceae<br />

Ps. exosporioides MUCC 893 Sequoia, Taxodiaceae<br />

Ps. kaki MUCC 900 Diospyros, Ebenaceae<br />

Ps. lythracearum CPC 10707 Lagestroemia, Lythraceae<br />

78 Ps. lythracearum MUCC 890 Lagestroemia, Lythraceae<br />

Ps. lonicericola MUCC 889 Lonicera, Caprifoliaceae<br />

99<br />

Ps. variicolor MUCC 746 Paeonia, Paeoniaceae<br />

89 Ps. paederiae CPC 10007 Paederia, Rubiaceae<br />

Ps. subsessilis <strong>CBS</strong> 136.94 Melia, Meliaceae<br />

Ps. guianensis MUCC 855 Lantana, Verbenaceae<br />

100<br />

Ps. guianensis MUCC 879 Lantana, Verbenaceae<br />

100 Ps. pyracanthae MUCC 892 Pyracantha, Rosaceae<br />

61 Ps. weigelae MUCC 899 Weigela, Caprifoliaceae<br />

Ps. stephanandrae MUCC 914 Stephanandra, Rosaceae<br />

Ps. prunicola CPC 14511 Prunus, Rosaceae<br />

63 Ps. corylopsidis MUCC 908 Corylopsis, Hamamelidaceae<br />

Ps. corylopsidis MUCC 874 Hamamelis, Hamamelidaceae<br />

Ps. haiweiensis CPC 14084 Eucalyptus, Myrtaceae<br />

99 Ps. cotoneastri MUCC 876 Cotoneaster, Rosaceae<br />

Ps. elaeocarpi MUCC 925 Elaeocarpus, Elaeocarpaceae<br />

89<br />

Ps. latens MUCC 763 Lespedeza, Fabaceae<br />

72<br />

Ps. rhamnellae CPC 12500 Rhamnella, Rhamnaceae<br />

Ps. catalpigena MUCC 743 Catalpa, Bignoniaceae<br />

61<br />

Ps. pallida CPC 10776 Campsis, Bignoniaceae<br />

68<br />

Ps. rhapisicola <strong>CBS</strong> 282.66 Rhapis, Arecaceae<br />

58 Ps. contraria CPC 14714 Dioscorea, Dioscoreaceae<br />

Ps. rubi MUCC 875 Rubus, Rosaceae<br />

Ps. zelkovae MUCC 872 Zelkova, Ulmaceae<br />

88<br />

Ps. zelkovae CPC 14484 Zelkova, Ulmaceae<br />

95<br />

Ps. zelkovae CPC 14717 Zelkova, Ulmaceae<br />

Fig. 5. (Continued).<br />

www.studiesinmycology.org<br />

59


Crous et al.<br />

Clade 1 represented Strelitziana (pseudocercospora-like<br />

but with a separating cell between conidia and conidiogenous<br />

cells) and Cyphellophora (pseudocercospora-like but phialides<br />

with flaring collarettes, situated directly on hyphae). Thedgonia<br />

ligustrina (pseudocercosporella-like, but conidia in chains)<br />

represented Clade 2. Clade 3 included several isolates of<br />

Pseudocercospora cantuariensis, which represents a novel genus,<br />

distinguished from Pseudocercospora based on its broad conidial<br />

hila and scars, as well hyaline mycelium, and the presence of<br />

hyphopodia-like structures. Xenostigmina zilleri, characterised<br />

as being stigmina-like, but also having sympodial proliferation<br />

of the conidiogenous cells, clustered in Clade 4, which was<br />

basal to Cladosporium (Cladosporiaceae; Clade 5). Clade 6<br />

represented several members of Teratosphaeriaceae, known<br />

to have a wide range of anamorphs, including Microcyclospora.<br />

Clade 7 represented species of Dissoconium (Dissoconiaceae),<br />

distinct due to their dimorphic conidia that are actively discharged.<br />

Clade 8 remains unresolved, and was represented by disjunct<br />

elements appearing Zasmidium- and pseudocercospora-like<br />

in morphology, including Microcyclosporella. Clade 9 was<br />

represented by several Mycosphaerella species such as M. laricina<br />

(anamorph Pseudocercospora sp.), and Paracercospora egenula.<br />

Paracercospora was separated from Pseudocercospora based on<br />

a combination of characters, including pale olivaceous conidia, and<br />

a minute thickening along the rim of its conidial hila and scars. Clade<br />

10 included a diverse assemblage of genera. Two genera that differ<br />

mainly based on their conidiomatal structure, Pseudocercosporella<br />

and Septoria, clustered in this clade. Miuraea, a genus intermediate<br />

between Cercospora and Pseudocercospora, also resided within<br />

this clade. Clade 11 was represented by two coelomycetous species<br />

of Sonderhenia that clustered basal to Clade 12. The latter included<br />

a new genus with pseudocercospora-like anamorphs, mostly<br />

distinguished from Pseudocercospora s. str. by having species<br />

with smooth, pale brown conidia, and the frequent production<br />

of red crystals in agar (previously referred to in literature as the<br />

Mycosphaerella heimii complex). Scolecostigmina (based on S.<br />

mangiferae), which is characterised by verruculose conidia and<br />

percurrently proliferating conidiogenous cells, clustered alongside<br />

to Trochophora, characterised by brown sickle-shaped conidia with<br />

three thick, dark septa. Passalora eucalypti formed a separate<br />

lineage in Clade 13 that was adjacent to Pseudocercospora s. str.<br />

in Clade 14. This clade included the type species, P. vitis that is<br />

basal in this cluster. Although there was structure within the clade,<br />

we regard it as representing a single genus, including Stigmina<br />

platani, the type of Stigmina, Phaeoisariopsis (P. griseola), and<br />

Pseudophaeoramularia (P. angolensis). Several isolates identified<br />

from different countries as representing the same species based on<br />

host, disease symptoms and general morphology, clustered apart<br />

from one another. These collections were found to represent novel<br />

cryptic species.<br />

Treatment of species<br />

Several novel taxa were identified in this study on the basis<br />

of phylogenetic analyses of the various gene regions together<br />

with morphological examination of the specimens and isolates.<br />

Recognised clades, as well as novel species and genera, are<br />

described and discussed below. Where descriptions of known taxa<br />

are freely available online in MycoBank or journals, they are not<br />

repeated here, other than their generic circumscriptions.<br />

Clade 1: Strelitziana and Cyphellophora<br />

Strelitziana M. Arzanlou & Crous, Fungal Planet No. 8: 2006.<br />

Conidiophores erect, solitary, arising from aerial and submerged<br />

mycelium, subcylindrical, straight to geniculate-sinuous, pale<br />

brown. Conidiogenous cells terminal, integrated, rejuvenating<br />

percurrently, proliferating apically via several short, conspicuous<br />

denticles; conidiogenesis holoblastic with rhexolytic conidial<br />

secession. Conidia solitary, pale brown, smooth, long obclavate,<br />

multi-euseptate; microcyclic conidiation present in culture.<br />

Type species: Strelitziana africana M. Arzanlou & Crous, Fungal<br />

Planet No. 8. 2006.<br />

Notes: The genus Strelitziana presently accommodates four species<br />

that are primarily distinguished based on their conidial dimensions.<br />

These include S. africana, S. australiensis, S. eucalypti and S. mali<br />

(Arzanlou & Crous 2006, Cheewangkoon et al. 2009, Zhang et al.<br />

2009, Crous et al. 2010).<br />

Cyphellophora G.A. de Vries, Mycopathol. Mycol. Appl. 16:<br />

47. 1962.<br />

Colonies (on OA) with moderate to rapid growth, velvety to lanose,<br />

in various shades of grey; reverse black. Fertile hyphae pale brown,<br />

sometimes with constrictions at the septa. Conidiogenous cells<br />

phialidic, intercalary, sometimes on short side branches, each with<br />

a short, lateral or terminal collarette. Conidia sickle-shaped, brown,<br />

smooth-walled, transversely septate, adhering in small bundles<br />

(from de Vries 1962).<br />

Type species: Cyphellophora laciniata G.A. de Vries, Mycopathol.<br />

Mycol. Appl. 16: 47. 1962.<br />

Notes: The genus Cyphellophora, which is based on C. laciniata<br />

(isolated from human skin; De Vries et al. 1986), appears to be<br />

heterogeneous (Decock et al. 2003, Crous et al. 2007a, 2009a,<br />

Cheewangkoon et al. 2009) and requires further study.<br />

Clade 2: Thedgonia<br />

Thedgonia B. Sutton, Trans. Brit. Mycol. Soc. 61: 426. 1973.<br />

Foliicolous, phytopathogenic, causing discrete leaf spots.<br />

Conidiomata fasciculate, punctiform. Mycelium internal, hyphae<br />

subhyaline, septate, branched, forming substomatal stromata,<br />

hyaline to pale brown. Conidiophores fasciculate, arising from<br />

stromata, simple, rarely branched, subcylindrical, straight to<br />

geniculate-sinuous, continuous to septate, smooth, hyaline to<br />

pale yellowish green. Conidiogenous cells integrated, terminal,<br />

60


Phylogenetic lineages in Pseudocercospora<br />

occasionally conidiophores reduced to conidiogenous cells,<br />

holoblastic-thalloblastic, sympodial, conidiogenous loci more or<br />

less planate, unthickened, non-pigmented. Conidia in disarticulating<br />

chains, rarely in branched chains, subcylindrical to obclavate, with<br />

one to several transverse eusepta, hyaline or almost so, apex<br />

rounded to truncate, base truncate, hila flat, unthickened, hyaline<br />

(Crous et al. 2009a).<br />

Type species: Thedgonia ligustrina B. Sutton, Trans. Brit. Mycol.<br />

Soc. 61: 426. 1973.<br />

Thedgonia ligustrina (Boerema) B. Sutton, Trans. Brit.<br />

Mycol. Soc. 61: 428. 1973.<br />

Basionym: Cercospora ligustrina Boerema, Tijdschr. Plantenziekten<br />

68: 117. 1962.<br />

≡ Cercoseptoria ligustrina (Boerema) Arx, Genera of Fungi Sporulating in<br />

Pure Culture, ed. 3: 306, Lehre 1981.<br />

Specimens examined: Asia, on Ligustrum sp., H. Evans, CPC 4296 = W2072,<br />

CPC 4297 = W 2073, CPC 4298 = W 1877. Netherlands, Eefde, on Ligustrum<br />

ovalifolium, 23 Mar. 1959, G.H. Boerema, holotype L, ex-type culture <strong>CBS</strong> 148.59;<br />

Bilthoven, on L. ovalifolium, 2003, P.W. Crous, CPC 10530 = <strong>CBS</strong> 124332, CPC<br />

10532, 10533. South Korea, Namyangju, on L. ovalifolium, 9 Oct. 2002, leg. H.D.<br />

Shin, isol. P.W. Crous, <strong>CBS</strong> H-20204, CPC 10019, 10861–10863; Suwon, on L.<br />

obtusifolium, 2 Oct. 2007, leg. H.D. Shin, isol. P.W. Crous, <strong>CBS</strong> H-20207, CPC<br />

14754–14756.<br />

Notes: Contrary to the earlier hypothesis that Thedgonia belonged<br />

to the Mycosphaerellaceae (Kaiser & Crous 1998), Crous et<br />

al. (2009a) showed that it resides in Helotiales. Consequently,<br />

thedgonia-like anamorphs that occur in the Mycosphaerellaceae<br />

must be accommodated elsewhere.<br />

Clade 3: Xenostigmina<br />

Xenostigmina Crous, Mycol. Mem. 21: 154. 1998.<br />

Foliicolous, phytopathogenic, causing discrete leaf spots. Mycelium<br />

internal, consisting of hyaline to pale brown, septate, branched,<br />

smooth hyphae. Conidiomata sporodochial, brown to black.<br />

Conidiophores densely aggregated, arising from the upper cells<br />

of a pale brown stroma, finely verruculose, hyaline to pale brown,<br />

multiseptate, subcylindrical, straight to variously curved, branched.<br />

Conidiogenous cells terminal and intercalary, hyaline to pale brown,<br />

finely verruculose, doliiform to subcylindrical, tapering to flat tipped<br />

loci, mono- to polyblastic, proliferating sympodially and percurrent;<br />

loci not thickened or conspicuous. Conidia solitary, pale to medium<br />

brown, with pale brown apical and basal regions, finely verruculose,<br />

mostly straight, ellipsoidal, apex subobtuse, frequently extending<br />

into a beak; base truncate at dehiscence, inner part extending later<br />

to form a short, subobtuse basal appendage; septation muriform;<br />

basal marginal frill present (Crous et al. 2009a).<br />

Type species: Xenostigmina zilleri (A. Funk) Crous, Mycol. Mem.<br />

21: 155. 1998.<br />

Specimens examined: Canada, British Columbia, 15 km east of Sardis, on living<br />

leaves of Acer macrophyllum, 22 Oct. 1985, A. Funk & C.E. Dorworth, holotype<br />

DAVFP 23272; British Columbia, on living leaves of Acer sp., 2002, leg. K.A. Seifert,<br />

isol. P.W. Crous, <strong>CBS</strong> 115686 = CPC 4010, <strong>CBS</strong> 115685 = CPC 4011; Victoria BC,<br />

48°30’25.63”N, 123°30’46.99”W, 115 m, fallen leaves of A. macrophyllum, 6 Sep.<br />

2007, leg. B. Callan, isol. P.W. Crous, epitype designated here <strong>CBS</strong> H-20208,<br />

cultures ex-epitype CPC 14376 = <strong>CBS</strong> 124108, CPC 14377, 14378 (Xenostigmina<br />

zilleri), CPC 14379 = <strong>CBS</strong> 124109, CPC 14380, 14381 (Mycopappus aceris).<br />

Notes: Xenostigmina with its Mycopappus synanamorph is distinct<br />

from Stigmina s. str., which is a synonym of Pseudocercospora<br />

s. str. (Crous et al. 2006, Braun & Crous 2006, 2007). The genus<br />

Xenostigmina (Crous 1998) appears related to Seifertia (Seifert et<br />

al. 2007) in the <strong>Dothideomycetes</strong> (Crous et al. 2009b).<br />

Clade 4: Phaeomycocentrospora<br />

Phaeomycocentrospora Crous, H.D. Shin & U. Braun, gen.<br />

nov. MycoBank MB564813.<br />

Etymology: Name reflects the pale brown appearance of conidia<br />

and the superficial similarity to Mycocentrospora.<br />

Foliicolous, phytopathogenic, causing discrete leaf spots. Mycelium<br />

internal and external, consisting of hyaline, septate, branched,<br />

smooth, 3–5 μm diam hyphae; hyphopodium-like structures<br />

present. Caespituli amphigenous. Conidiophores in loose fascicles,<br />

arising from a poorly developed stroma, or from superficial hyphae<br />

emerging from stomata, or erumpent through the cuticle; erect<br />

on superficial hyphae, olivaceous-brown, straight to slightly<br />

curved, unbranched, not geniculate, obconically truncate at the<br />

apex; conidiogenous cells integrated, terminal or conidiophores<br />

reduced to conidiogenous cells, mono- to polyblastic, proliferating<br />

sympodially, transversely septate; conidiogenous loci broad, more<br />

or less planate, neither thickened nor darkened. Conidia solitary,<br />

filiform to cylindrical, straight to moderately curved, subhyaline to<br />

pale olivaceous, transversely euseptate, usually not constricted at<br />

septa, tapering somewhat towards an obtuse apex, truncate at the<br />

base; hilum unthickened, not darkened, broad.<br />

Type species: Phaeomycocentrospora cantuariensis (E.S. Salmon<br />

& Wormald) Crous, H.D. Shin & U. Braun, comb. nov.<br />

Notes: Phaeomycocentrospora is similar to Pseudocercospora in<br />

that its conidia and conidiophores appear to be pigmented and its<br />

conidiogenous loci are unthickened and not darkened. It is distinct<br />

from Pseudocercospora in that its mycelium is hyaline, hyphopodialike<br />

structures are present, and conidia are hyaline with a pale<br />

brown inner wall layer, giving the impression of pigmented conidia.<br />

This fungus also has extremely broad conidial loci and scars that<br />

are untypical of Pseudocercospora. Chupp (1954) commented that<br />

Cercospora cantuariensis represented an unusual species that should<br />

be transferred to a genus of its own. Based on its unique phylogenetic<br />

placement (Fig. 4) and morphology, Phaeomycocentrospora gen.<br />

nov. is established for this taxon. Deighton (1971, 1972) assigned<br />

this species to Mycocentrospora, but the type species M. acerina is<br />

phylogenetically distinct from other genera morphologically similar to<br />

it and differs in having conidia with filiform appendages and often with<br />

strongly swollen intercalary cells.<br />

Phaeomycocentrospora cantuariensis (E.S. Salmon<br />

& Wormald) Crous, H.D. Shin & U. Braun, comb. nov.<br />

MycoBank MB564814. Fig. 6.<br />

Basionym: Cercospora cantuariensis E.S. Salmon & Wormald, J.<br />

Bot. (London) 61: 134. 1923.<br />

≡ Centrospora cantuariensis (E.S. Salmon & Wormald) Deighton, Mycol.<br />

Pap. 124: 8. 1971.<br />

≡ Mycocentrospora cantuariensis (E.S. Salmon & Wormald) Deighton,<br />

Taxon 21: 716. 1972.<br />

≡ Pseudocercospora cantuariensis (E.S. Salmon & Wormald) U. Braun,<br />

Mycotaxon 48: 281. 1993.<br />

www.studiesinmycology.org<br />

61


Crous et al.<br />

Fig. 6. Phaeomycocentrospora cantuariensis (CPC 11691–11693). A. Leaf spots on upper and lower leaf surface. B, C. Sporulation of leaf surface. D–I. Conidiophores and<br />

conidiogenous cells. J–M. Conidia. Scale bars = 10 μm.<br />

Leaf spots amphigenous, scattered, often confluent, subcircular<br />

to irregular, 1–5 mm diam, becoming up to 10 mm diam when<br />

confluent, greyish to white, centre reddish brown with yellowish<br />

brown zone on upper surface; greyish brown to grey on lower<br />

surface. Caespituli amphigenous, but predominantly hypophyllous.<br />

Mycelium internal and external; internal hyphae hyaline, septate,<br />

branched, smooth, 3–4 μm diam; external hyphae plagiotropous,<br />

branched, septate, smooth, hyaline, 3–5 μm diam. Conidiophores<br />

in loose fascicles, arising from a poorly developed stroma, or from<br />

superficial hyphae emerging from stomata, or erumpent through<br />

the cuticle; erect on superficial hyphae, olivaceous-brown, straight<br />

to slightly curved, unbranched, not geniculate, obconically truncate<br />

at the apex, proliferating sympodially, 0–3-septate, 30–140 × 7–20<br />

μm. Conidiogenous cells terminal, unbranched, pale brown, smooth,<br />

tapering to flat-tipped apical loci, with scars neither thickened<br />

nor darkened, 4–7 μm diam; at times proliferating percurrently,<br />

with 1–3 percurrent proliferations at the apex, 12–45 × 5–8 μm.<br />

Conidia solitary, filiform to cylindrical, straight to moderately curved,<br />

subhyaline to pale olivaceous, smooth, 3–15(–21)-septate, usually<br />

not constricted at septa, tapering somewhat towards obtuse apex,<br />

truncate at the base, or long obconically subtruncate, (100–)140–<br />

200(–500) × (5–)7–12(–20) μm; hilum unthickened, not darkened,<br />

4–7 μm diam; conidia appear to have an inner wall layer that is pale<br />

brown when studied in culture (adapted from Shin & Kim 2001).<br />

Specimens examined: South Korea, Hoengseong, on Humulus scandens (= H.<br />

japonicus), 4 Sep. 2005, H.D. Shin, <strong>CBS</strong> H-20830; Suwon, Acalypha australis, 5<br />

Nov. 2004, H.D. Shin, cultures CPC 11691–11693; Suwon, H. scandens , 5 Nov.<br />

2004, H.D. Shin, <strong>CBS</strong> H-20831, cultures CPC 11694–11696; Hoengseong, on H.<br />

62


Phylogenetic lineages in Pseudocercospora<br />

scandens, 11 Oct. 2004, H.D. Shin, <strong>CBS</strong> H-20832, cultures CPC 11646, 11647;<br />

Wonju, on H. scandens, 18 Oct. 2002, H.D. Shin, <strong>CBS</strong> H-20833, cultures 10157,<br />

10158; Namyangju, on Luffa aegyptica (= L. cylindrica), 22 Oct. 2003, H.D. Shin,<br />

<strong>CBS</strong> H-20834, cultures CPC 10762–10766.<br />

Clade 5: Cladosporium (Cladosporiaceae)<br />

Cladosporium Link, Ges. Naturf. Freunde Berlin Mag.<br />

Neuesten Entdeck. Gesammten Naturk. 7: 37. 1816.<br />

Teleomorph: Davidiella Crous & U. Braun, Mycol. Progr. 2: 8. 2003.<br />

Saprobic or phytopathogenic. Ascomata pseudothecial, black<br />

to red-brown, globose, inconspicuous and immersed beneath<br />

stomata to superficial, situated on a reduced stroma, with 1(–3)<br />

short, periphysate ostiolar necks; periphysoids frequently growing<br />

down into cavity; wall consisting of 3–6 layers of textura angularis.<br />

Asci fasciculate, short-stalked or not, bitunicate, subsessile,<br />

obovoid to broadly ellipsoid or subcylindrical, straight to slightly<br />

curved, 8-spored. Pseudoparaphyses frequently present in mature<br />

ascomata, hyaline, septate, subcylindrical. Ascospores bi- to<br />

multiseriate, hyaline, obovoid to ellipsoid-fusiform, with irregular<br />

luminar inclusions, mostly thick-walled, straight to slightly curved;<br />

frequently becoming brown and verruculose in asci; at times covered<br />

in mucoid sheath (from Schubert et al. 2007). Mycelium superficial,<br />

loosely branched, septate, sometimes constricted at septa, hyaline,<br />

subhyaline to pale brown, smooth or almost so to verruculose or<br />

irregularly rough-walled, sometimes appearing irregular in outline due<br />

to small swellings and constrictions, walls unthickened to somewhat<br />

thickened. Conidiophores both macro- and micronematous, arising<br />

laterally from plagiotropous hyphae or terminally from ascending<br />

hyphae. Macronematous conidiophores erect, straight to flexuous,<br />

somewhat geniculate-sinuous, nodulose or not, unbranched or<br />

occasionally branched, pluriseptate, pale to medium brown, older<br />

ones almost dark brown, walls thickened, sometimes even twolayered.<br />

Conidiogenous cells integrated, terminal or intercalary,<br />

mono- to usually polyblastic, nodulose to nodose or not, proliferation<br />

sympodial, with several conidiogenous loci, mostly situated on<br />

small lateral shoulders, more or less protuberant, characteristically<br />

coronate (SEM), i.e. with a convex central dome surrounded<br />

by a low to distinctly raised rim, appearing to be thickened and<br />

somewhat darkened-refractive. Micronematous conidiophores<br />

hardly distinguishable from hyphae, sometimes only as short lateral<br />

outgrowth with a single apical scar, short, conical to almost filiform<br />

or narrowly cylindrical, pluriseptate, usually short, subhyaline to pale<br />

brown, almost smooth to minutely verruculose or irregularly roughwalled,<br />

0–3-septate. Conidiogenous cells integrated, terminal or<br />

conidiophores reduced to conidiogenous cells, narrowly cylindrical or<br />

filiform, with a single or two loci. Conidia solitary (in heterosporiumlike<br />

species) to usually catenate, in unbranched or loosely branched<br />

chains, straight to slightly curved; small terminal conidia without distal<br />

hilum, obovoid to ellipsoid to subcylindrical, aseptate, subhyaline to<br />

pale brown; intercalary conidia with a single or sometimes up to<br />

three distal hila, limoniform, ellipsoid to subcylindrical, 0–1-septate;<br />

secondary ramoconidia with up to four distal hila, ellipsoid to<br />

cylindrical-oblong, 0–1(–2)-septate, pale greyish brown or brown<br />

to medium brown, smooth to minutely verruculose to verrucose,<br />

walls slightly to distinctly thickened, apex obtuse or slightly truncate,<br />

towards the base sometimes distinctly attenuated with hila situated<br />

on short stalk-like prolongations, hila slightly to distinctly protuberant,<br />

coronate structure as in conidiogenous loci, somewhat thickened and<br />

darkened-refractive; microcyclic conidiogenesis occurring; primary<br />

ramoconidia similar to secondary ramoconidia, except base truncate,<br />

uniform with conidiogenous cell, and more subcylindrical in shape<br />

(adapted from Schubert et al. 2007).<br />

Type species: Cladosporium herbarum (Pers. : Fr.) Link, Ges.<br />

Naturf. Freunde Berlin Mag. Neuesten Entdeck. Gesammten<br />

Naturk. 7: 37. 1816.<br />

Notes: Cladosporium is well-defined by having Davidiella<br />

teleomorphs and conidiophores that give rise to conidial chains with<br />

unique coronate scars (David 1997, Braun et al. 2003a, Schubert et<br />

al. 2007, Bensch et al. 2010, 2012), which easily distinguish it from<br />

a range of other morphologically similar genera (Crous et al. 2007a,<br />

b; Braun & Crous, in Seifert et al. 2011).<br />

Clade 6: Teratosphaeriaceae<br />

Teratosphaeria Syd. & P. Syd., Ann. Mycol. 10: 39. 1912.<br />

<strong>Phytopathogenic</strong>, commonly associated with leaf spots, but also<br />

on fruit, or causing cankers on stems. Ascomata pseudothecial,<br />

superficial to immersed, frequently situated in a stroma of brown<br />

pseudoparenchymatal cells, globose, unilocular, papillate,<br />

ostiolate, canal periphysate, with periphysoids frequently present;<br />

wall consisting of several layers of brown textura angularis; inner<br />

layer of flattened, hyaline cells. Pseudoparaphyses frequently<br />

present, subcylindrical, branched, septate, anastomosing. Asci<br />

fasciculate, 8-spored, bitunicate, frequently with multi-layered<br />

endotunica. Ascospores ellipsoid-fusoid to obovoid, 1-septate,<br />

hyaline, but becoming pale brown and verruculose, frequently<br />

covered in mucoid sheath (from Crous et al. 2007a).<br />

Type species: Teratosphaeria fibrillosa Syd. & P. Syd., Ann. Mycol.<br />

10: 40. 1912.<br />

Notes: Teratosphaeria accommodates a group of plant pathogenic<br />

fungi that can cause serious leaf spot, blotch and canker diseases<br />

of a range of hosts (Crous 2009, Crous et al. 2007a, 2009b, Hunter<br />

et al. 2009, 2011). The Teratosphaeriaceae remains to be clearly<br />

resolved, and several different genera are presently recognised in<br />

the family. Some are plant-associated such as Batcheloromyces,<br />

Baudoinea, Capnobotryella, Catenulostroma, Davisoniella,<br />

Devriesia, Hortea, Penidiella, Phaeothecoidea, Pseudotaeniolina,<br />

Readeriella, Staninwardia, and Stenella s. str. (Crous et al. 2007a,<br />

2009a, 2011b), and others including Cystocoleus, Racodium,<br />

Friedmanniomyces, Elasticomyces, Recurvomyces (Selbmann et<br />

al. 2008) and Xanthoriicola (Ruibal et al. 2011) are lichenicolous or<br />

rock inhabiting.<br />

Microcyclospora Jana Frank, Schroers & Crous, Persoonia<br />

24: 99. 2010.<br />

Epiphytic and endophytic, occurring on leaves and fruit. Mycelium<br />

consisting of branched, septate, pale brown, smooth, 2–3 μm wide<br />

hyphae. Conidiophores reduced to conidiogenous cells, integrated<br />

in hyphae, giving rise to peg-like lateral protuberances, 1 µm<br />

wide, 1–2 µm tall, mono- to polyblastic. Conidia scolecosporous,<br />

cylindrical, straight to variously curved, flexuous, apex obtuse,<br />

base truncate, 1–multi-septate, somewhat constricted at septa,<br />

smooth, pale brown, guttulate, aggregated in mucoid masses; hila<br />

not thickened or darkened; microcyclic conidiation observed in<br />

culture.<br />

www.studiesinmycology.org<br />

63


Crous et al.<br />

Type species: Microcyclospora pomicola Jana Frank, B. Oertel,<br />

Schroers & Crous, Persoonia 24: 100. 2010.<br />

Notes: Microcyclospora was recently introduced in<br />

Teratosphaeriaceae for three taxa associated with sooty blotch of<br />

apple (Frank et al. 2010). The species described here resembles<br />

others presently known in Microcyclospora by having pigmented<br />

structures and undergoing microcyclic condiation. Other than<br />

having distinct conidial dimensions, it differs from other genera in<br />

that its conidiogenous cells are annellidic (not mono- to polyblastic),<br />

and its conidia are darker brown and verruculose to warty, not pale<br />

brown and smooth.<br />

Microcyclospora quercina Crous & Verkley, sp. nov.<br />

MycoBank MB564815. Figs 7, 8.<br />

Etymology: Name reflects its host, Quercus.<br />

Foliicolous, endophytic. Mycelium consisting of branched, septate,<br />

brown, 1.5–3 μm diam hyphae, guttulate, smooth to verruculose<br />

or warty, with or without mucoid sheath. Conidiophores reduced to<br />

conidiogenous cells. Conidiogenous cells lateral on hyphae, brown,<br />

solitary, not aggregated, 1.5–2 μm diam, with 1–4 percurrent<br />

proliferations and flaring collarettes. Conidia solitary, subcylindrical<br />

(rarely obclavate), gently curved, apex obtuse (rarely subobtuse),<br />

base truncate or long obconically truncate, with slight basal taper<br />

to hilum that is 2 μm diam, unthickened, nor darkened, frequently<br />

with small marginal frill, brown, guttulate to granular, smooth,<br />

appearing warty or roughened due to external mucoid layer which<br />

is sometimes present, transversely (1–)3–4(–11)-euseptate,<br />

becoming constricted at septa with age, (12–)30–45(–70) × (2–)<br />

2.5–3 μm; microcyclic conidiation commonly observed.<br />

Culture characteristics: Colonies after 2 wk in the dark up to 15 mm<br />

diam, with sparse aerial mycelium, folded surface and uneven to<br />

somewhat feathery, lobate margins, exuding copious amounts of<br />

slime on PDA, but less so on MEA and OA; colonies olivaceousblack<br />

on all media.<br />

Specimen examined: Netherlands, endophytic in leaves of Quercus robur, Sep.<br />

2003, G.J.M. Verkley, holotype <strong>CBS</strong> H-20835, culture ex-type CPC 10712 = <strong>CBS</strong><br />

130827.<br />

Clade 7: Dissoconium (Dissoconiaceae)<br />

Dissoconium de Hoog, Oorschot & Hijwegen, Proc. K. Ned.<br />

Akad. Wet., Ser. C, Biol. Med. Sci. 86(2): 198. 1983.<br />

Hyperparasitic, but also reported to be phytopathogenic. Ascomata<br />

pseudothecial, immersed, globose, unilocular, papillate, ostiolate,<br />

canal periphysate; wall consisting of 3–4 layers of brown textura<br />

angularis; inner layer of flattened, hyaline cells. Pseudoparaphyses<br />

absent. Asci fasciculate, 8-spored, bitunicate. Ascospores ellipsoidfusoid,<br />

1-septate, hyaline, with or without mucoid sheath. Mycelium<br />

internal and external, consisting of branched, septate, smooth,<br />

hyaline to pale brown hyphae. Conidiophores separate, arising<br />

from hyphae, subcylindrical, subulate or lageniform to cylindrical,<br />

tapering to a bluntly rounded or truncate apex, straight to once<br />

geniculate, smooth, medium brown, 0–multi-septate; conidiogenous<br />

cells polyblastic, with terminal and lateral conidiogenous loci, visible<br />

as slightly thickened, darkened scars on a rachis. Conidia solitary,<br />

pale olivaceous-brown, smooth, ellipsoid to obclavate or globose,<br />

Fig. 7. Microcyclospora quercina (CPC 10712). Line drawing showing conidiogenous<br />

cells and conidia formed in culture. Scale bar = 10 μm.<br />

0–1-septate; hila somewhat darkened. Secondary conidia present<br />

or absent; developing adjacent to primary conidia, pale olivaceous<br />

to subhyaline, aseptate, pyriform; conidium discharge active or<br />

passive (from Crous et al. 2009b).<br />

Type species: Dissoconium aciculare de Hoog, Oorschot &<br />

Hijwegen, Proc. K. Ned. Akad. Wet., Ser. C, Biol. Med. Sci. 86(2):<br />

198. 1983.<br />

Notes: Dissoconium has mycosphaerella-like teleomorphs (Crous<br />

1998, Crous et al. 2004c) and was recently shown to represent a<br />

distinct family, Dissoconiaceae (Crous et al. 2009b). Species are<br />

different from other taxa in Capnodiales in that they form primary<br />

and secondary conidia that are actively discharged and anastomose<br />

on the agar surface shortly after germination (De Hoog et al. 1991).<br />

64


Phylogenetic lineages in Pseudocercospora<br />

Fig. 8. Microcyclospora quercina (CPC 10712). A, B. Colony on oatmeal and potato-dextrose agar, respectively. C–E. Conidiogenous cells giving rise to conidia (arrows). F.<br />

Microcyclic conidiation. G, H. Conidia. Scale bars = 10 μm.<br />

Clade 8: Microcyclosporella and zasmidium-like<br />

Microcyclosporella Jana Frank, Schroers & Crous,<br />

Persoonia 24: 101. 2010.<br />

Epiphytic on leaves and fruit. Mycelium consisting of pale brown,<br />

smooth to finely verruculose, branched, septate, 2–3.5 μm wide<br />

hyphae, at times covered in a mucoid layer, with integrated, lateral,<br />

truncate conidiogenous loci. Conidiophores mostly reduced to<br />

conidiogenous cells. Conidiogenous cells integrated, intercalary<br />

on hyphae, rarely terminal, cylindrical to doliiform, pale brown,<br />

but hyaline if occurring in yeast-like sectors of colonies, smooth,<br />

mono- or polyblastic, proliferating sympodially; loci inconspicuous,<br />

truncate, unthickened, not darkened, pale brown to hyaline.<br />

Conidia hyaline, smooth, subcylindrical to narrowly obclavate or<br />

narrowly fusoid with acutely rounded apex and obconically truncate<br />

base, guttulate, transversely 0–6-septate; microcyclic conidiation<br />

common.<br />

Type species: Microcyclosporella mali Jana Frank, Schroers &<br />

Crous, Persoonia 24: 101. 2010.<br />

Notes: Microcyclosporella was treated as part of the<br />

Pseudocercosporella generic complex (Batzer et al. 2005), but has<br />

since been shown to be polyphyletic within Mycosphaerellaceae<br />

(Crous 2009, Crous et al. 2003, 2009b, c, Frank et al. 2010). The<br />

clade accommodating Microcyclosporella contains many disjunct<br />

elements that vary in morphology from Microcyclosporella s. str.<br />

(hyaline structures) to pigmented structures, namely zasmidiumlike<br />

(verrucuclose conidia) to pseudocercospora-like (smooth<br />

conidia) (see Crous et al. 2009b). We suspect that these groups<br />

may eventually be recognised as distinct genera, but more taxa<br />

need to be examined to resolve this issue.<br />

Clade 9: Paracercospora and pseudocercosporalike<br />

Paracercospora Deighton, Mycol. Pap. 144: 47. 1979.<br />

Foliicolous, phytopathogenic, causing leaf spots. Mycelium<br />

internal, hyaline to pale olivaceous. Stromata absent to poorly<br />

developed. Conidiophores fasciculate, smooth, subhyaline to pale<br />

olivaceous. Conidiogenous cells integrated, terminal, mono- to<br />

usually polyblastic, proliferating sympodially; conidiogenous loci<br />

moderately conspicuous, with narrow thickening along the rim.<br />

Conidia solitary, subcylindrical to obclavate-cylindrical, smooth,<br />

subhyaline to pale olivaceous, with a narrow thickening along the<br />

rim of the hilum.<br />

Type species: Paracercospora egenula (Syd.) Deighton, Mycol.<br />

Pap. 144: 48. 1979.<br />

Specimens examined: Japan, Shimane, on leaves of Solanum melongena, 5 Aug.<br />

1998, T. Mikami, CNS-415, cultures MUCC 883, MAFF 237766. South Korea,<br />

Hongcheon, on leaves of S. melongena, 26 Oct. 2005, H.D. Shin, <strong>CBS</strong> H-20836,<br />

culture CPC 12537.<br />

Notes: Stewart et al. (1999) conducted the first phylogenetic<br />

analysis of the Mycosphaerellaceae and concluded that the<br />

marginal thickening that occurs along the rims of conidial<br />

scars and hila, originally thought to be the main character to<br />

distinguish Paracercospora from Pseudocercospora, was not<br />

taxonomically significant and suggested that Paracercospora<br />

be reduced to synonymy with Pseudocercospora. The current<br />

study provides new evidence that Paracercospora is not a<br />

synonym of Pseudocercospora, but no consistent morphological<br />

characters that distinguish it from Pseudocercospora s. str.<br />

have been identified. Conidia of Paracercospora egenula are<br />

subhyaline to pale olivaceous with minimal marginal thickening<br />

of the conidiogenous loci (Fig. 9). Conidial scars and hila of Ps.<br />

fijiensis (Arzanlou et al. 2008) and Ps. basiramifera (Crous 1998)<br />

are marginally thickened. Both of the latter species, which belong<br />

to Pseudocercospora s. str., have pale to medium brown conidia.<br />

At present Paracercospora may be defined by a combination of<br />

the minimal marginal thickening of the conidiogenous loci and its<br />

subhyaline conidia.<br />

The taxonomic placement of Paracercospora is complicated<br />

by two other taxa that resolve in the clade together with it. These<br />

are Passalora brachycarpa (pale olivaceous, catenate conidia, and<br />

www.studiesinmycology.org<br />

65


Crous et al.<br />

Fig. 9. Paracercospora egenula (CPC 12537). A. Leaf spots on upper and lower leaf surface. B. Close-up of lesion. C–F. Fascicles with conidiogenous cells. G. Conidia. Scale<br />

bars = 10 μm.<br />

Fig. 10. Pseudocercospora tibouchinigena (<strong>CBS</strong> 116462). A. Leaf spots on upper and lower leaf surface. B, C. Close-up of lesions. D–G. Fascicles with conidiogenous cells.<br />

H. Conidia. Scale bar = 10 μm.<br />

66


Phylogenetic lineages in Pseudocercospora<br />

prominent, thickened, darkened scars; also visible when sporulating<br />

in culture), and Pseudocercospora tibouchinigena described below,<br />

which has subhyaline conidia, and unthickened hila and scars. This<br />

indicates that it is neither a species of Pseudocercospora s. str.<br />

(subhyaline conidia), nor Paracercospora (lacking any form of scar<br />

thickening). As a temporary solution, the species on Tibouchina<br />

is described in Pseudocercospora, although taxa in this subclade<br />

may eventually be shown to represent a distinct genus.<br />

Pseudocercospora tibouchinigena Crous & U. Braun, sp.<br />

nov. MycoBank MB564816. Fig. 10.<br />

Etymology: Name is derived from Tibouchina, the host on which it<br />

was collected.<br />

Leaf spots amphigenous, angular to irregular, 1–3 mm diam, up to 10<br />

mm long, medium brown, with raised, dark brown border. Mycelium<br />

internal, hyaline, smooth, consisting of septate, branched, smooth,<br />

1.5–2 μm diam hyphae. Caespituli fasciculate, predominantly<br />

hypophyllous, hyaline to pale olivaceous on leaves, up to 60 μm<br />

wide and 40 μm high. Conidiophores aggregated in dense fascicles,<br />

arising from the upper cells of a hyaline to subhyaline stroma,<br />

up to 50 μm wide and 20 μm high; conidiophores subcylindrical<br />

to ampulliform, 0–3-septate, straight to variously curved or<br />

geniculate-sinuous, unbranched, 15–25 × 3–5 μm. Conidiogenous<br />

cells terminal, unbranched, hyaline, smooth, tapering to flat-tipped<br />

apical loci, proliferating sympodially, 5–10 × 2.5–3.5 μm. Conidia<br />

solitary, subhyaline, smooth, guttulate or not, subcylindrical or<br />

narrowly obclavate, apex subobtuse, base obconically truncate,<br />

straight to variously curved, 3–10-septate, (15–)30–40(–60) ×<br />

(1.5–)2–2.5(–3) μm; hila unthickened, not darkened nor refractive,<br />

1–1.5 μm diam; prominent microcyclic conidiation observed in vivo.<br />

Culture characteristics: Colonies after 1 mo at 24 ºC in the dark<br />

on MEA; erumpent, spreading, with moderate aerial mycelium, and<br />

smooth, lobate margins. Surface pale olivaceous-grey; reverse<br />

olivaceous-grey. Colonies reaching 30 mm diam.<br />

Specimen examined: New Zealand, Auckland, Princes Street, Auckland University<br />

Campus, on leaves of Tibouchina sp. (Melastomataceae), 9 Aug. 2004, C.F. Hill<br />

1061, holotype HAL 2359F, culture ex-type <strong>CBS</strong> 116462.<br />

Notes: Pseudocercospora tibouchinigena was initially reported<br />

from New Zealand as P. tibouchina (Braun et al. 2006), which is<br />

hitherto known only from Brazil. It differs from P. tibouchinae in that<br />

the latter species has narrowly subcylindrical conidia that are larger,<br />

40–120 × 2–3 μm (Viégas 1945), than those of P. tibouchinigena.<br />

The subhyaline conidia of P. tibouchinigena are not typical of<br />

Pseudocercospora s. str., but for the present, we choose to name<br />

it in Pseudocercospora until the clade in which it resides has been<br />

more fully resolved (Fig. 5).<br />

Clade 10: Cercospora, Miuraea, Phloeospora,<br />

Pseudocercosporella, Septoria, Xenocercospora<br />

Cercospora Fresen., in Fuckel, Hedwigia 1(15): 133. 1863<br />

and in Fuckel, Fungi Rhen. Exs., Fasc. II, No. 117. 1863.<br />

Mostly phytopathogenic producing conspicuous lesions, but also<br />

including saprobes. Mycelium internal, rarely also external; hyphae<br />

colourless or almost so to pigmented, branched, septate, smooth to<br />

faintly rough-walled. Stromata lacking to well-developed, subhyaline<br />

to usually pigmented, substomatal to intraepidermal. Conidiophores<br />

mononematous, macronematous, solitary to fasciculate, arising from<br />

internal hyphae or stromata, emerging through stomata or erumpent,<br />

very rarely arising from superficial hyphae, erect, continuous to<br />

pluriseptate, subhyaline to pigmented, smooth to faintly rough-walled,<br />

thin- to moderately thick-walled. Conidiogenous cells integrated,<br />

terminal or intercalary or conidiophores reduced to conidiogenous<br />

cells, monoblastic, determinate to usually polyblastic, sympodial,<br />

rarely with a few enteroblastically percurrent rejuvenations which<br />

are not connected with conidiogenesis; conidiogenous loci (scars)<br />

conspicuous, thickened and darkened, planate. Conidia solitary,<br />

very rarely catenate, scolecosporous, obclavate, cylindrical-filiform,<br />

acicular, hyaline or subhyaline (with a pale greenish tinge), mostly<br />

pluriseptate, euseptate, rarely with 0–1 or few septa, smooth or<br />

almost so, hila thickened and darkened, planate (from Crous & Braun<br />

2003).<br />

Type species: Cercospora penicillata (Ces.) Fresen., Beiträge zur<br />

Mykologie 3: 93. 1863. [= C. depazeoides (Desm.) Sacc.].<br />

Cercospora sojina Hara, Nogyo Sekai, Tokyo 9: 28. 1915.<br />

Fig. 11.<br />

≡ Passalora sojina (Hara) H.D. Shin & U. Braun, Mycotaxon 58: 163.<br />

1996.<br />

Specimen examined: South Korea, Hongcheon, on Glycine soja (= G. max subsp.<br />

soja), 20 Jul. 2004, H.D. Shin, <strong>CBS</strong> H-20837, culture CPC 12322.<br />

Notes: Despite sparingly septate and broadly obclavatecylindrical<br />

conidia that tend to be subhyaline, this species is better<br />

accommodated in Cercospora than Passalora (Shin & Braun 1996)<br />

based on phylogenetic analysis.<br />

Cercospora eucommiae Crous, U. Braun & H.D. Shin, sp.<br />

nov. MycoBank MB564817. Fig. 12.<br />

Etymology: Name derived from Eucommia, the host on which it<br />

occurs.<br />

Leaf spots amphigenous, irregular to subcircular, 2–5 mm<br />

diam; surface grey-brown to brown with diffuse border; reverse<br />

olivaceous-brown with diffuse border. Mycelium internal, hyaline,<br />

consisting of septate, branched, smooth, 2–3 μm diam hyphae.<br />

Caespituli fasciculate, pale brown, amphigenous, up to 40 μm<br />

diam and 50 μm high (conidial mass white on leaf surface).<br />

Conidiophores aggregated in loose fascicles arising from the<br />

upper cells of a weakly developed brown stroma, up to 30 μm diam<br />

and 20 μm high, conidiophores pale brown, smooth, 1–3-septate,<br />

subcylindrical, straight to variously curved, unbranched, 20–50 ×<br />

4–5 μm. Conidiogenous cells terminal, unbranched, pale brown,<br />

smooth, tapering to flat-tipped apical loci that are thickened,<br />

somewhat darkened, slightly refractive, 2 μm diam, 15–25 ×<br />

4–5 μm, proliferating sympodially at the apex. Conidia solitary,<br />

or in unbranched short chains, hyaline to pale olivaceous (with<br />

age), smooth, guttulate, obclavate, apex obtuse to subobtuse or<br />

clavate, base obconically subtruncate, straight to mildly curved,<br />

3–8-septate, (35–)60–75(–80) × (4–)5–6(–8) μm; hila thickened<br />

along the rim, but not darkened or planate, 1.5–2 μm diam.<br />

Culture characteristics: Colonies after 2 wk at 24 ºC in the dark<br />

on MEA; erumpent, spreading, with sparse aerial mycelium, and<br />

www.studiesinmycology.org<br />

67


Crous et al.<br />

Fig. 11. Cercospora sojina (CPC 12322). A. Leaf spots on upper and lower leaf surface. B. Close-up of lesion. C–G. Fascicles with conidiophores and conidiogenous cells. H.<br />

Conidia. Scale bars = 10 μm.<br />

smooth, lobate margins. Surface folded, dark mouse-grey with<br />

patches of dirty white; reverse fuscous black becoming greyish<br />

sepia at margin. Colonies reaching 12 mm diam.<br />

Specimens examined: South Korea, Chuncheon, on Eucommia ulmoides, 7 Oct.<br />

2003, H.D. Shin, holotype <strong>CBS</strong> H-20839, cultures ex-type CPC 10802 = <strong>CBS</strong><br />

131932, CPC 10803, 10804; Chuncheon, on E. ulmoides, 11 Oct. 2002, H.D. Shin,<br />

<strong>CBS</strong> H-20838, culture CPC 10047.<br />

Notes: In the Korean material C. eucommiae occurred in mixed<br />

infections with a Pseudocercospora species (conidia 22–160 ×<br />

4–7 μm) that resembles P. eucommiae (conidia 15–75 × 2–4 um),<br />

which is known from this host in China (Guo & Hsieh 1995). The<br />

description of C. eucommiae reveals the genus Cercospora to be<br />

paraphyletic. Morphologically C. eucommiae is distinct from other<br />

species in Cercospora in that the conidial hila and conidiogenous<br />

scars are different (thickened along the rim, not darkened and<br />

planate), and conidia also tend to occur in unbranched chains,<br />

which is not typical of Cercospora. Interestingly, it does not cluster<br />

with C. eremochloae, which also forms conidia in chains (Crous et<br />

al. 2011a). Although this species is not part of Cercospora s. str.,<br />

we name it in this genus until further taxa are collected and studied<br />

to resolve the status of this subclade in relation to Cercospora s. str.<br />

Miuraea Hara, Byochugai-Hoten (Manual of Pests and<br />

Diseases): 779. 1948.<br />

Synonyms: See Braun (1995).<br />

Foliicolous, phytopathogenic, causing leaf spots. Mycelium internal<br />

and external, consisting of septate, branched, hyaline to subhyaline<br />

hyphae. Conidiophores semi-macronematous, mononematous,<br />

reduced to a single conidiogenous cell, integrated on hyphae, with<br />

small lateral peg-like protuberances; conidiogenesis holoblastic,<br />

monoblastic, determinate, occasionally polyblastic, proliferation<br />

sympodial or percurrent; conidiogenous loci more or less truncate,<br />

inconspicuous, unthickened, not darkened. Conidia solitary,<br />

ellipsoid-ovoid, subcylindrical-vermiform, obclavate, subclavate,<br />

somewhat asymmetrical, euseptate, transversely pluriseptate to<br />

muriformly septate, hyaline to faintly pigmented, thin-walled; hila<br />

truncate to somewhat convex, unthickened, not darkened (adapted<br />

from Braun 1995).<br />

Type species: Miuraea degenerans (Syd. & P. Syd.) Hara,<br />

Byochugai-Hoten (Manual of Pests and Diseases): 260. 1948.<br />

Notes: Morphologically Miuraea is intermediate between<br />

Pseudocercospora and Pseudocercosporella, which explains<br />

its phylogenetic position in this clade (Fig. 4). It differs from<br />

Pseudocercosporella in having superficial mycelium, and very<br />

broad, muriformly septate conidia.<br />

Miuraea persicae (Sacc.) Hara, Byochugai-Hoten (Manual<br />

of pests and diseases): 224. 1948. Fig. 13.<br />

Basionym: Cercospora persicae Sacc., Hedwigia 15: 119. 1876.<br />

Teleomorph: “Mycosphaerella” pruni-persicae Deighton, Trans.<br />

Brit. Mycol. Soc. 50: 328. 1967.<br />

Specimens examined: South Korea, Chuncheon, Prunus persica, 11 Oct. 2002,<br />

H.D. Shin, <strong>CBS</strong> H-20841, culture CPC 10069; Chuncheon, 7 Oct. 2003, P.<br />

armeniaca, H.D. Shin, <strong>CBS</strong> H-20840, CPC 10828–10830.<br />

68


Phylogenetic lineages in Pseudocercospora<br />

Fig. 12. Cercospora eucommiae (CPC 10047). A. Leaf spots on upper and lower leaf surface. B. Close-up of lesion. C–G. Fascicles with conidiophores and conidiogenous<br />

cells. H, I. Conidia. Scale bars = 10 μm.<br />

Fig. 13. Miuraea persicae (CPC 10069). A. Leaf spots on upper and lower leaf surface. B, C. Close-up of fruiting (rather inconspicuous). D, E. Fascicles with conidiophores and<br />

conidiogenous cells. F. Conidia (note septation). Scale bars = 10 μm.<br />

www.studiesinmycology.org<br />

69


Crous et al.<br />

Fig. 14. Pseudocercosporella arcuata (CPC 10050). A. Leaf spots on upper and lower leaf surface. B–D. Close-up of lesions. E, F. Fascicles with conidiophores and<br />

conidiogenous cells. G. Conidia. Scale bars = 10 μm.<br />

Phloeospora Wallr., Flora Cryptogamica Germaniae 2: 176.<br />

1833.<br />

<strong>Phytopathogenic</strong>, commonly associated with leaf spots, occurring<br />

on leaves and fruit. Mycelium immersed, consisting of hyaline,<br />

septate, branched hyphae. Conidiomata acervular, subepidermal,<br />

erumpent; wall of thin-walled textura angularis, opening by means<br />

of an irregular split. Conidiophores reduced to conidiogenous<br />

cells. Conidiogenous cells hyaline, smooth, cylindrical, discrete,<br />

indeterminate, proliferating via percurrent proliferations, or<br />

sympodially, formed from the upper cells of the acervulus. Conidia<br />

solitary, hyaline, smooth, septate, cylindrical, apex subobtuse to<br />

obtuse, base truncate, straight to curved.<br />

Type species: Phloeospora ulmi (Fr.) Wallr., Flora Cryptogamica<br />

Germaniae 2: 177. 1833.<br />

Specimens examined: Austria, Ulmus sp., H.A. van der Aa, <strong>CBS</strong> 613.81; Ulmus<br />

glabra, G. Verkley, <strong>CBS</strong> 344.97. Netherlands, Ulmus sp., H.A. van der Aa, <strong>CBS</strong><br />

101564.<br />

Notes: Phloeospora is distinguished from Septoria by the production<br />

of conidia in acervuli, whereas conidiomata in the latter genus are<br />

pycnidial. Both genera are known to be polyphyletic (Verkley &<br />

Priest 2000, Quaedvlieg et al. 2011) and require further revision.<br />

Pseudocercosporella Deighton, Mycol. Pap. 133: 38. 1973.<br />

Foliicolous, phytopathogenic, causing discrete leaf spots. Mycelium<br />

mostly consistently internal, in some species with internal as well<br />

as external hyphae, hyaline to pale brown, septate, branched,<br />

smooth or almost so; stromata lacking or weakly to well-developed,<br />

substomatal to intraepidermal, usually colourless. Conidiophores<br />

solitary to fasciculate, emerging through stomata or erumpent<br />

through the cuticle, arising from inner hyphae or from stromata,<br />

sometimes formed as lateral branches of superficial hyphae, or<br />

aggregated in crustose to subglobose sporodochia; conidiophores<br />

simple, rarely branched, straight and subcylindrical to geniculatesinuous,<br />

hyaline, occasionally faintly pigmented at the base, rarely<br />

throughout, one-celled or septate. Conidiogenous cells integrated,<br />

terminal, or reduced to conidiogenous cells, mono- to polyblastic,<br />

sympodial; conidiogenous loci inconspicuous, unthickened, neither<br />

darkened nor conspicuously refractive. Conidia formed singly, rarely<br />

in simple or branched chains, subcylindrical, filiform, somewhat<br />

obclavate, 1–multi-euseptate, hyaline, thin-walled, mostly smooth,<br />

apex obtuse to subacute, base subtruncate, hilum unthickened,<br />

neither darkened, nor refractive (adapted from Braun 1995).<br />

Type species: Pseudocercosporella ipomoeae Deighton, Mycol.<br />

Pap. 133: 39. 1973. [= P. bakeri (Syd. & P. Syd.) Deighton, Mycol.<br />

Pap. 133: 41. 1973].<br />

Note: Pseudocercosporella is polyphyletic (see Frank et al. 2010,<br />

Crous et al. 2011b) and new taxonomically useful morphological<br />

features will need to be determined to delineate all the genera<br />

presently accommodated in this clade.<br />

Pseudocercosporella arcuata S.K. Singh, P.N. Singh &<br />

Bhalla, Mycol. Res. 101: 542. 1997. Fig. 14.<br />

Specimen examined: South Korea, Chuncheon, on Rubus oldhamii (≡ R. pungens<br />

var. oldhamii), 11 Oct. 2002, H.D. Shin, <strong>CBS</strong> H-20842, culture CPC 10050.<br />

Pseudocercosporella capsellae (Ellis & Everh.) Deighton,<br />

Mycol. Pap. 133: 42. 1973.<br />

Basionym: Cylindrosporium capsellae Ellis & Everh., J. Mycol.<br />

3(11): 130. 1887.<br />

Additional synonyms in Braun (1995).<br />

Teleomorph: “Mycosphaerella” capsellae A.J. Ingman & Sivan.,<br />

Mycol. Res. 95: 1339. 1991.<br />

Specimen examined: South Korea, Namyangju, Raphanus sativus, 22 Oct. 2007,<br />

H.D. Shin, <strong>CBS</strong> H-20843, cultures CPC 14773 = <strong>CBS</strong> 131896.<br />

Pseudocercosporella chaenomelis (Y. Suto) C. Nakash.,<br />

Crous, U. Braun & H.D. Shin, comb. nov. MycoBank<br />

MB564818. Fig. 15.<br />

Basionym: Cercosporella chaenomelis Y. Suto, Mycoscience 40:<br />

513. 1999.<br />

= Mycosphaerella chaenomelis Y. Suto, Mycoscience 40: 513. 1999.<br />

Leaf spots amphigenous, irregular to angular, 5–20 mm diam,<br />

brown, delimited by leaf veins. Mycelium internal, hyaline, consisting<br />

of septate, branched, smooth, 1.5–2 μm diam hyphae. Caespituli<br />

70


Phylogenetic lineages in Pseudocercospora<br />

Fig. 15. Pseudocercosporella chaenomelis (CPC 14795). A. Leaf spots on upper and lower leaf surface. B. Close-up of leaf spot with white fruiting (rather inconspicuous). C–F.<br />

Fascicles with conidiophores and conidiogenous cells. G. Conidia. Scale bars = 10 μm.<br />

fasciculate to sporodochial, white, predominantly epiphyllous, up to<br />

200 μm diam and 120 μm high. Conidiophores aggregated in dense<br />

fascicles, arising from the upper cells of a hyaline stroma, up to 180 μm<br />

diam and 100 μm high; conidiophores hyaline, smooth, subcylindrical<br />

to ampulliform, straight to variously curved, unbranched, reduced to<br />

conidiogenous cells, 5–12 × 3–4 μm, proliferating sympodially at<br />

the apex. Conidia solitary, hyaline, smooth, guttulate to granular,<br />

subcylindrical to obclavate, apex subobtuse, base obconically<br />

truncate, straight to variously curved, 1–4-septate, (10–)30–38(–50)<br />

× (2–)2.5–3(–4) μm; hila unthickened, not darkened nor refractive,<br />

1.5–2 μm diam; undergoing microcyclic conidiation on the host.<br />

Description based on CPC 14795.<br />

Culture characteristics: Colonies after 1 mo at 24 ºC in the dark on<br />

MEA; Colonies erumpent, spreading, with aerial mycelium sparse<br />

to absent, margins smooth, lobate. Surface irregularly folded, with<br />

a prominent network of ridges; folds appearing cinnamon, with<br />

surrounding areas and border brown-vinaceous; reverse sepia to<br />

chestnut, reaching up to 35 mm diam.<br />

Specimens examined: Japan, Shimane Pref., Matsue, on leaves of Chaenomeles<br />

sinensis, Y. Suto, 6 Nov. 1983, holotype SFH-917, in Herbarium of SPFRC;<br />

Mie Pref., Tsu, on leaves of C. sinensis, C. Nakashima, 29 Oct. 2011, epitype<br />

designated here TFM: FPH-8101, culture ex-epitype MUCC 1510 = <strong>CBS</strong> 132131.<br />

South Korea, Kimhae, C. speciosa (= C. lagenaria), 14 Nov. 2007, H.D. Shin, <strong>CBS</strong><br />

H-20844, culture CPC 14795 = <strong>CBS</strong> 131897.<br />

Notes: Suto (1999) established the connection between<br />

Pseudocercosporella chaenomelis (as Cercosporella) and<br />

Mycosphaerella chaenomelis, which is the cause of a serious<br />

leaf spot disease referred to as frosty mildew on Chaenomeles<br />

sinensis in Japan. The fungus was found to overwinter by means<br />

of ascomata on fallen leaves, which provided the primary inoculum<br />

for new infections (April to June). Since the disease was previously<br />

known in Japan to be caused by a species of Cercosporella, Suto<br />

(1999) chose the latter genus to accommodate the anamorph.<br />

The hyaline conidia with unthickened conidial hila indicate that the<br />

fungus is better placed in Pseudocercosporella, and hence a new<br />

combination is proposed. Based on DNA sequence data from the<br />

ITS and ACT gene regions, strains from Japan and Korea appear<br />

identical (unpubl. data).<br />

Pseudocercosporella chaenomelis occurs in mixed infections<br />

with Pseudocercospora cydoniae. Pseudocercosporella<br />

chaenomelis is morphologically comparable only with Ps. gei,<br />

known on Geum spp. in North America and the Far East of Russia<br />

(Braun 1995). The latter species differs in having smaller stromata<br />

(20–45 μm diam) and much longer filiform-acicular conidia, 20–120<br />

× 1–3(–4) μm (Braun 1995). Pseudocercosporella crataegi on<br />

Crataegus spp. in North America is distinct, forming superficial<br />

hyphae with solitary conidiophores, and its much smaller stromata<br />

and much longer conidia, and Ps. potentillae on Potentilla sp. in<br />

Russia also differs by having very long conidia (Braun 1995).<br />

Pseudocercosporella koreana Crous, U. Braun & H.D.<br />

Shin, sp. nov. MycoBank MB564819. Fig. 16.<br />

Etymology: Name derived from the country where it was collected.<br />

Leaf spots amphigenous, indistinct, irregular, chlorotic, up to 6 mm<br />

diam. Mycelium internal, hyaline, consisting of septate, branched,<br />

smooth, 1.5–2.5 μm diam hyphae. Caespituli fasciculate, white,<br />

amphigenous, up to 60 μm diam and 90 μm high. Conidiophores<br />

aggregated in dense fascicles, on the upper cells of a pale brown<br />

to hyaline, usually substomatal stroma, up to 45 μm diam and<br />

www.studiesinmycology.org<br />

71


Crous et al.<br />

Fig. 16. Pseudocercosporella koreana (CPC 11414). A. Leaf spots on upper and lower leaf surface. B. Close-up of leaf spot with white fruiting. C. Substomatal stroma. D–H.<br />

Fascicles with conidiophores and conidiogenous cells. I. Conidia. Scale bars = 10 μm.<br />

20 μm high; conidiophores hyaline or pale brown at the base,<br />

smooth, 0–2-septate, but frequently reduced to conidiogenous<br />

cells, subcylindrical, straight to variously curved or geniculatesinuous,<br />

unbranched or branched below, 15–25 × 4–5 μm,<br />

proliferating sympodially at the apex. Conidia solitary, hyaline,<br />

smooth, prominently guttulate, narrowly obclavate, apex obtuse<br />

to subobtuse, base obconically subtruncate, straight to variously<br />

curved, 3–13-septate, (40–)60–80(–130) × (2.5–)3(–4) μm; hila<br />

unthickened, neither darkened nor refractive, 2 μm diam.<br />

Culture characteristics: Colonies after 2 wk at 24 ºC in the dark on<br />

MEA; surface folded with a prominent network of ridges, erumpent,<br />

spreading, with sparse aerial mycelium, and smooth, lobate<br />

margins. Surface olivaceous-grey to iron-grey; reverse iron-grey to<br />

greenish black. Colonies reaching 6 mm diam.<br />

Specimen examined: South Korea, Hoengseong, on Vicia amurensis, 4 Aug. 2004,<br />

H.D. Shin, holotype <strong>CBS</strong> H-20845, isotype HAL 1850 F, culture ex-holotype CPC<br />

11414.<br />

Notes: Braun (1995) listed several species of Pseudocercosporella<br />

on Fabaceae. None of these occur on Vicia, and only one,<br />

Ps. tephrosiae (on Tephrosia, Africa), has conidia of similar length<br />

(40–110 × 3–4.5 μm), although they are wider, subcylindricalacicular,<br />

and have 3–6 septa.<br />

Pseudocercosporella oxalidis (Goh & W.H. Hsieh) U.<br />

Braun, Nova Hedwigia 55: 218. 1992.<br />

Basionym: Pseudocercospora oxalidis Goh & W.H. Hsieh, Bot.<br />

Bull. Acad. Sinica 30: 127. 1989.<br />

Specimen examined: Taiwan, Taipei, Wulai, on living leaves of Oxalis debilis (= O.<br />

corymbosa), R. Kirschner, 2258, 22 Feb. 2005, culture <strong>CBS</strong> 118758.<br />

Septoria Sacc., Syll. Fung. 3: 474. 1884.<br />

Synonyms: See Sutton (1980).<br />

<strong>Phytopathogenic</strong> and endophytic, occurring on leaves, fruit<br />

and stems, causing discrete lesions. Conidiomata pycnidial,<br />

immersed, separate or aggregated, globose, papillate or not,<br />

brown, with a thin wall of brown textura angularis. Ostiole single,<br />

circular, central, sometimes papillate. Conidiophores reduced<br />

to conidiogenous cells. Conidiogenous cells hyaline, smooth,<br />

ampulliform, doliiform or lageniform to short cylindrical, holoblastic,<br />

determinate or indeterminate, proliferating sympodially and/or<br />

percurrently; conidiogenous loci unthickened. Conidia solitary,<br />

hyaline, multiseptate, guttulate or not, thin-walled, filiform, smooth,<br />

continuous or constricted at the septa; hila unthickened.<br />

Type species: Septoria cytisi Desm. Ann. Sci. Nat., Bot., Sér. 3, 8:<br />

24. 1847.<br />

Note: Septoria is polyphyletic (Quaedvlieg et al. 2011).<br />

Clade 11: Sonderhenia<br />

Sonderhenia H.J. Swart & J. Walker, Trans. Brit. Mycol. Soc.<br />

90: 640. 1988.<br />

Foliicolous, phytopathogenic, causing discrete leaf spots. Leaf<br />

spots amphigenous, round to confluent and irregular, surrounded<br />

by a purple border when young, which becomes dark red to brown<br />

and raised with age. Ascomata pseudothecial, amphigenous, on<br />

one side of each lesion, often 1–3, intermingled with conidiomata,<br />

immersed, black, punctiform, globose to subglobose; apical<br />

ostiole substomatal; wall olive-brown, of 3–4 layers of textura<br />

angularis, subhymenium of 1–2 layers of colorless cells. Asci<br />

72


Phylogenetic lineages in Pseudocercospora<br />

Fig. 17. Pallidocercospora heimii (CPC 1395). Asci, ascospores, germinating ascospores (after 24 h on malt extract agar), hyphae with conidiogenous loci, and conidia. Scale<br />

bar = 10 μm.<br />

fasciculate, bitunicate, subsessile, 8-spored, ovoid to obclavate,<br />

straight to incurved. Ascospores 2–3-seriate, hyaline, guttulate,<br />

straight or slightly curved, fusiform, 1-septate, widest just above<br />

median septum, slightly constricted at septum. Conidiomata<br />

pycnidial, amphigenous, subepidermal with central non-projecting<br />

ostiole, scattered, black, globose; wall of 2–3 layers of brown<br />

cells. Conidiogenous cells minute, olivaceous, proliferating<br />

enteroblastically and percurrently, lining the inner pycnidial wall<br />

layer. Conidia ellipsoid to cylindrical or ovoid, straight or bent,<br />

brown, 3-distoseptate, not constricted, verruculose, apex obtuse,<br />

base truncate with marginal frill (adapted from Crous 1998).<br />

Type species: Sonderhenia eucalyptorum H.J. Swart & J. Walker,<br />

Trans. Brit. Mycol. Soc. 90: 640. 1988.<br />

Notes: Sonderhenia includes taxa with mycosphaerella-like<br />

teleomorphs and pycnidial anamorphs that form brown, transversely<br />

distoseptate conidia on brown, percurrently proliferating<br />

conidiogenous cells. Only two species, S. eucalypticola and S.<br />

eucalyptorum are known.<br />

Clade 12: Pallidocercospora, Scolecostigmina,<br />

Trochophora and pseudocercospora-like<br />

Pallidocercospora Crous, gen. nov. MycoBank MB564820.<br />

Fig. 17.<br />

Etymology: The name reflects the pale brown cercospora-like<br />

conidia in this genus.<br />

Foliicolous, phytopathogenic, causing discrete leaf spots.<br />

Ascomata single, black, immersed, globose, glabrous; wall of<br />

3–4 layers of medium brown textura angularis. Asci fasciculate,<br />

bitunicate, aparaphysate, subsessile, 8-spored, ellipsoid to<br />

obclavate or cylindrical, straight or curved, numerous. Ascospores<br />

2–multi-seriate, oblique, overlapping, straight ellipsoidal to obovoid,<br />

colourless, smooth, 1-septate. Mycelium predominantly immersed,<br />

consisting of olivaceous-brown hyphae, smooth, branched, septate,<br />

2–4 μm diam. Conidiophores in vivo fasciculate, or occurring<br />

singly on superficial mycelium as lateral projections, unbranched<br />

or branched, septate, cylindrical, straight to geniculate–sinuous,<br />

olivaceous-brown. Conidiogenous cells integrated, terminal,<br />

www.studiesinmycology.org<br />

73


Crous et al.<br />

cylindrical, straight to geniculate-sinuous, olivaceous-brown,<br />

proliferating sympodially or percurrently; conidiogenous loci<br />

unthickened, not darker than the surrounding conidiogenous<br />

cell. Conidia solitary, straight to irregularly curved, guttulate,<br />

pale olivaceous to olivaceous-brown, subcylindrical to narrowly<br />

obclavate, multiseptate; hila neither thickened nor darkened.<br />

Type species: Pallidocercospora heimii (Crous) Crous, comb. nov.<br />

Notes: Species of Pallidocercospora have pale olivaceous,<br />

smooth conidia (generally referred to as the Mycosphaerella heimii<br />

complex; Crous et al. 2004c), and form red crystals when cultivated<br />

in agar (on WA, SNA, PDA, MEA), which distinguishes them from<br />

Pseudocercospora. Pseudocercospora has several synonyms<br />

(see Seifert et al. 2011). Cercoseptoria with its mostly acicular<br />

conidia, was correctly treated as synonym of Pseudocercospora<br />

by Deighton (1976). Other synonyms include Ancylospora Sawada<br />

(based on A. costi), now treated as P. costina; Cercocladospora G.P.<br />

Agarwal & S.M. Singh (based on C. adinae, nom. non rite publ.),<br />

now treated as P. adinicola; and Helicominia L.S. Olive (based on<br />

H. caperonia), now P. caperoniae, and Pantospora Cif. (based on P.<br />

guazumae) (see Ellis 1971, Deighton 1976), the muriformly septate<br />

conidia of the latter are similar to those of Pseudocercospora<br />

pseudostigmina-platani, though Pantospora has been shown to be<br />

a genus in its own right (Minnis et al. 2011).<br />

Pallidocercospora acaciigena (Crous & M.J. Wingf.) Crous<br />

& M.J. Wingf., comb. nov. MycoBank MB564821.<br />

Basionym: Pseudocercospora acaciigena Crous & M.J. Wingf.,<br />

Stud. Mycol. 50: 464. 2004.<br />

Teleomorph: “Mycosphaerella” acaciigena Crous & M.J. Wingf.,<br />

Stud. Mycol. 50: 463. 2004.<br />

Specimen examined: Venezuela, Acarigua, on leaves of Acacia mangium, May<br />

2000, M.J. Wingfield, <strong>CBS</strong> H-9873, holotype of M. acaciigena and P. acaciigena;<br />

cultures ex-type <strong>CBS</strong> 115432, 112515, 112516 = CPC 3836–3838.<br />

Pallidocercospora crystallina (Crous & M.J. Wingf.) Crous<br />

& M.J. Wingf., comb. nov. MycoBank MB564822.<br />

Basionym: Pseudocercospora crystallina Crous & M.J. Wingf.,<br />

Mycologia 88: 451. 1996.<br />

Teleomorph: “Mycosphaerella” crystallina Crous & M.J. Wingf.,<br />

Mycologia 88: 451. 1996.<br />

Specimens examined: South Africa, Kwazula-Natal Province,Umvoti, on leaves<br />

of Eucalyptus bicostata, Oct. 1994, M.J. Wingfield (holotypes PREM 51922,<br />

teleomorph; PREM 51923, anamorph, cultures ex-type CPC 800–802); Kwazula-<br />

Natal Province, leaf litter of E. grandis × camaldulensis, Jun. 1995, M.J. Wingfield<br />

(PREM 51937, cultures CPC 1178–1180).<br />

Pallidocercospora heimii (Crous) Crous, comb. nov.<br />

MycoBank MB564823. Fig. 17.<br />

Basionym: Pseudocercospora heimii Crous, S. African For. J. 172:<br />

4. 1995.<br />

Teleomorph: “Mycosphaerella” heimii Crous, S. African For. J. 172:<br />

2. 1995.<br />

≡ “Mycosphaerella” heimii Bouriquet, Encycl. Mycol. 12: 418. 1946, nom.<br />

nud.<br />

Specimens examined: Madagascar, Moramanga, on leaves of Eucalyptus sp., Apr.<br />

1994, P.W. Crous, PREM 51749, holotype of teleomorph; PREM 51748, holotype<br />

of anamorph, cultures ex-type CPC 760–761 = <strong>CBS</strong> 110682.<br />

Pallidocercospora heimioides (Crous & M.J. Wingf.) Crous<br />

& M.J. Wingf., comb. nov. MycoBank MB564824.<br />

Basionym: Pseudocercospora heimioides Crous & M.J. Wingf.,<br />

Can. J. Bot. 75: 787. 1997.<br />

Teleomorph: “Mycosphaerella” heimioides Crous & M.J. Wingf.,<br />

Can. J. Bot. 75: 787. 1997.<br />

Specimens examined: Indonesia, N. Sumatra, Lake Toba area, leaves of Eucalyptus<br />

sp., Mar. 1996, M.J. Wingfield, holotype of teleomorph PREM 54966; holotype of<br />

anamorph PREM 54967; cultures ex-type CPC 1311, 1312 = <strong>CBS</strong> 111190).<br />

Pallidocercospora holualoana (Crous, Joanne E. Taylor &<br />

M.E. Palm) Crous, comb. nov. MycoBank MB564825.<br />

Basionym: “Mycosphaerella” holualoana Crous, Joanne E. Taylor &<br />

M.E. Palm, Mycotaxon 78: 458. 2001.<br />

Specimen examined: USA, Hawaii, Kona district, Holualoa, on a living leaf of<br />

Leucospermum sp., P.W. Crous & M.E. Palm, 17 Nov. 1998, holotype PREM<br />

56926, cultures ex-type CPC 2126–2128).<br />

Pallidocercospora irregulariramosa (Crous & M.J. Wingf.)<br />

Crous & M.J. Wingf., comb. nov. MycoBank MB564826.<br />

Basionym: Pseudocercospora irregulariramosa Crous & M.J.<br />

Wingf., Can. J. Bot. 75: 785. 1997.<br />

Teleomorph: “Mycosphaerella” irregulariramosa Crous & M.J.<br />

Wingf., Can. J. Bot. 75: 785. 1997.<br />

Specimens examined: South Africa, Northern Province, Tzaneen, on leaves of<br />

Eucalyptus saligna, Mar. 1996, M.J. Wingfield, holotype of teleomorph PREM<br />

54964; holotype of anamorph PREM 54965; cultures ex-type CPC 1360 = <strong>CBS</strong><br />

114777).<br />

Pallidocercospora konae (Crous, Joanne E. Taylor & M.E.<br />

Palm) Crous, comb. nov. MycoBank MB564827.<br />

Basionym: “Mycosphaerella” konae Crous, Joanne E. Taylor &<br />

M.E. Palm, Mycotaxon 78: 459. 2001.<br />

Specimen examined: USA, Hawaii, Kona district, Holualoa, on a living leaf on<br />

Leucadendron cv. Safari Sunset, 17 Nov. 1998, P.W. Crous & M.E. Palm, holotype<br />

PREM 56921; ex-type cultures CPC 2123–2125.<br />

Scolecostigmina U. Braun, N. Z. J. Bot. 37: 323. 1999. Fig.<br />

18.<br />

Foliicolous, phytopathogenic, associated with leaf spots. Mycelium<br />

immersed, consisting of septate, branched, pigmented hyphae.<br />

Sporodochia immersed to erumpent; stromata subglobose to<br />

applanate, composed of brown, angular to subglobose cells.<br />

Conidiophores numerous, densely aggregated, arising from stroma,<br />

subcylindrical or somewhat tapered towards the apex, occasionally<br />

ampulliform, continuous or septate, pigmented, wall somewhat<br />

thickened, usually verruculose; conidiogenous cells integrated,<br />

terminal or at times conidiophores reduced to conidiogenous cells,<br />

holoblastic, proliferating percurrently via conspicuous annellations.<br />

Conidia solitary, scolecosporous, usually subcylindrical-obclavate,<br />

transversely pluriseptate, occasionally with few longitudinal or<br />

oblique septa, euseptate, rarely with few intermixed distosepta,<br />

thick-walled, pigmented, dark, smooth to verrucose, apex obtuse<br />

to subacute, base truncate or obconically truncate; secession<br />

schizolytic (adapted from Braun et al. 1999).<br />

Type species: Scolecostigmina mangiferae (Koord.) U. Braun &<br />

Mouch., N. Z. J. Bot. 37: 323. 1999.<br />

74


Phylogenetic lineages in Pseudocercospora<br />

Fig. 18. Scolecostigmina mangiferae (<strong>CBS</strong> 125467). A. Leaf spots on upper and lower leaf surface. B. Close-up of leaf spot with fruiting. C–E. Fascicles with conidiophores and<br />

conidiogenous cells (note rough percurrent proliferations). F. Conidia. Scale bars = 10 μm.<br />

Fig. 19. Trochophora simplex (<strong>CBS</strong> 124744). A. Leaf spots on upper and lower leaf surface. B, C. Close-up of leaf spot with fruiting. D–G. Fascicles with conidiophores and<br />

conidiogenous cells. H, I. Conidia. Scale bars = 10 μm.<br />

Specimen examined: Australia, Queensland, Mareeba, S16º58’75.5”<br />

E145º20’60.8”, leaves of Mangifera indica, 10 Aug. 2009, P.W. Crous & R.G. Shivas,<br />

<strong>CBS</strong> H-20846, culture CPC 17352, 17351 = <strong>CBS</strong> 125467.<br />

Trochophora R.T. Moore, Mycologia 47: 90. 1955. Fig. 19.<br />

Foliicolous, but pathogenicity unproven. Colonies hypophyllous,<br />

medium to dark brown, consisting of numerous synnemata. Stroma<br />

absent, but with a superficial network of hyphae linking the various<br />

www.studiesinmycology.org<br />

75


Crous et al.<br />

synnemata. Conidiophores synnematous, mostly unbranched and<br />

straight, or with 1–2 short branches, straight or curved, cylindrical,<br />

individual conidiophores tightly aggregated, but separating near<br />

the apex, pale to medium brown, smooth. Conidiogenous cells<br />

polyblastic, integrated, terminal, determinate to sympodial, with<br />

visible unthickened scar, clavate. Conidia solitary, terminal or<br />

lateral on conidiogenous cells, prominently curved to helicoid, pale<br />

to medium brown, smooth, transversely euseptate with a darkened,<br />

thickened band at the septa (adapted from Crous et al. 2009a).<br />

Type species: Trochophora simplex (Petch) R.T. Moore, Mycologia,<br />

47: 90. 1955.<br />

Specimens examined: Japan, Shimane, on Daphniphyllum teijsmannii, 26 April<br />

2008, C. Nakashima & I. Araki, MUMH 11134, culture MUCC 952. South Korea,<br />

Jeju, Halla arboretum, on D. macropodum, 29 Oct. 2005, H.D. Shin, <strong>CBS</strong> H-20847,<br />

culture <strong>CBS</strong> 124744.<br />

Notes: Other pseudocercospora-like species found in this clade are<br />

P. colombiensis (foliar pathogen of Eucalyptus; Crous 1998), and<br />

P. thailandica (foliar pathogen of Acacia; Crous et al. 2004d), both<br />

also having mycosphaerella-like teleomorphs. Morphologically,<br />

these taxa appear typical members of Pseudocercospora s.<br />

str. so it would be difficult to identify these as different from<br />

Pseudocercospora without the aid of DNA sequence comparisons.<br />

Clade 13: Passalora-like<br />

Notes: This clade is represented by Passalora eucalypti, which was<br />

originally described as a leaf spot pathogen of Eucalyptus saligna<br />

in Brazil (Crous 1998, Crous & Braun 2003). Recently, a second<br />

species was found to belong to this clade, namely Passalora<br />

leptophlebiae, which was described from Eucalyptus leptophlebia<br />

leaves collected in Brazil (Crous et al. 2011a). Both species are<br />

charaterised by fasciculate conidiophores and catenate, pale brown<br />

conidia, with thickened, darkened and refractive scars and hila.<br />

Clade 14: Pseudocercospora s. str.<br />

Pseudocercospora Speg., Anales Mus. Nac. Hist. Nat.<br />

Buenos Aires, Ser. 3, 20: 437. 1910.<br />

Foliicolous, chiefly phytopathogenic, but also endophytic;<br />

commonly associated with leaf spots, but also occurring on fruit.<br />

Mycelium internal and external, consisting of smooth, septate,<br />

subhyaline to brown, branched hyphae. Stroma absent to welldeveloped.<br />

Conidiophores in vivo arranged in loose to dense<br />

fascicles, sometimes forming distinct synnemata or sporodochia,<br />

emerging through stomata or erumpent through the cuticle, often<br />

arising from substomatal or subcuticular to intraepidermal stromata,<br />

or occurring singly on superficial hyphae, short to long, septate or<br />

continuous, i.e. conidiophores may be reduced to conidiogenous<br />

cells, simple to branched and straight to geniculate-sinuous, pale<br />

to dark brown, smooth to finely verruculose. Conidiogenous cells<br />

integrated, terminal, occasionally intercalary, polyblastic, sympodial,<br />

or monoblastic, proliferating percurrently via inconspicuous or<br />

darkened, irregular annellations, at times denticulate, pale to dark<br />

brown; scars inconspicous, or only thickened along the rim, or flat,<br />

and slightly thickened and darkened, but never pronounced. Conidia<br />

solitary, rarely in simple chains, subhyaline, olivaceous, pale to<br />

dark brown, usually scolecosporous, i.e. obclavate–cylindrical,<br />

filiform, acicular, and transversely plurieuseptate, occasionally<br />

also with oblique to longitudinal septa, conidia rarely amero- to<br />

phragmosporous, short subcylindrical or ellipsoidal-ovoid, aseptate<br />

or only with few septa, apex subacute to obtuse, base obconically<br />

truncate to truncate, or bluntly rounded, with or without a minute<br />

marginal frill, straight to curved, rarely sigmoid, smooth to finely<br />

verruculose; hila usually unthickened, not darkened, at most<br />

somewhat refractive, occasionally slightly thickened along the<br />

rim, or rarely flat, and slightly thickened and darkened, but never<br />

pronounced.<br />

Type species: P. vitis (Lév.) Speg., Anales Mus. Nac. Hist. Nat.<br />

Buenos Aires, Ser. 3, 20: 438. 1910.<br />

Specimens examined: South Korea, Namyangju, on Vitis vinifera, 30 Sep. 2004,<br />

H.D. Shin, <strong>CBS</strong> H-20848, CPC 11595 = <strong>CBS</strong> 132012; V. vinifera, 1 Oct. 2007, H.D.<br />

Shin, CPC 14661 = <strong>CBS</strong> 132112.<br />

Pseudocercospora abelmoschi (Ellis & Everh.) Deighton,<br />

Mycol. Pap. 140: 138. 1976. Fig. 20.<br />

Basionym: Cercospora abelmoschi Ellis & Everh., J. Inst. Jamaica<br />

1: 347. 1893.<br />

= Cercospora hibisci Tracy & Earle, Bull. Torrey Bot. Club 22: 179. 1895.<br />

= Cercospora hibisci-manihotis Henn., Hedwigia 43: 146. 1904.<br />

Specimen examined: South Korea, Suwon, on Hibiscus syriacus, 2 Oct. 2007, H.D.<br />

Shin, <strong>CBS</strong> H-20849, CPC 14478 = <strong>CBS</strong> 132103.<br />

Pseudocercospora ampelopsis Crous, U. Braun & H.D.<br />

Shin, sp. nov. MycoBank MB564828. Fig. 21.<br />

Etymology: Name derived from the host Ampelopsis, from which it<br />

was collected.<br />

Leaf spots amphigenous, irregular to subcircular, 2–8 mm diam,<br />

dark brown on upper surface, dull brownish green on lower surface.<br />

Mycelium internal and external, pale brown to brown, consisting of<br />

septate, branched, smooth, 1.5–4 μm diam hyphae, anastomosing<br />

on surface. Caespituli fasciculate, brown, amphigenous, emerging<br />

through stomata (but stromata lacking). Conidiophores aggregated<br />

in loose fascicles, or solitary, arising from superficial mycelium,<br />

medium to dark brown, smooth to finely verruculose, 3–6-septate,<br />

subcylindrical, straight to variously curved, unbranched, 20–80<br />

× (2.5–)3–5(–6) μm. Conidiogenous cells terminal, unbranched,<br />

brown, finely verruculose, tapering to flat-tipped apical loci,<br />

proliferating sympodially, 10–15 × 4–5 μm. Conidia solitary, dark<br />

brown, finely verruculose, guttulate, obclavate-cylindrical, apex<br />

obtuse, base obconically subtruncate, straight to gently curved,<br />

3–12-septate, (35–)40–90(–110) × 3–5(–6) μm; hila unthickened,<br />

neither darkened nor refractive, 2 μm diam.<br />

Culture characteristics: Colonies after 2 wk at 24 ºC in the dark<br />

on MEA; surface folded, erumpent, spreading, with sparse aerial<br />

mycelium, and smooth, lobate margins. Surface olivaceous-grey;<br />

reverse iron-grey. Colonies reaching 7 mm diam.<br />

Specimen examined: South Korea, Hongcheon, on Ampelopsis glandulosa var.<br />

heterophylla, 24 Oct. 2004, H.D. Shin, holotype <strong>CBS</strong> H-20850, isotype HAL 1866<br />

F, culture ex-type CPC 11680 = <strong>CBS</strong> 131583.<br />

Notes: Pseudocercospora brachypus, which also occurs on<br />

Ampelopsis, has much shorter and narrower conidia, 25–60 ×<br />

2–3.5 μm (Guo & Hsieh 1995). Pseudocercospora ampelopsis is<br />

morphologically close to P. riachuelii var. horiana on Ampelocissus,<br />

76


Phylogenetic lineages in Pseudocercospora<br />

Fig. 20. Pseudocercospora abelmoschi (CPC 14478). A. Leaf spots on upper and lower leaf surface. B. Close-up of leaf spot with fruiting. C–G. Hyphae giving rise to<br />

conidiogenous cells and conidia. H. Conidia. Scale bars = 10 μm.<br />

Fig. 21. Pseudocercospora ampelopsis (CPC 11680). A. Leaf spots on upper and lower leaf surface. B. Close-up of leaf spot with fruiting. C. Conidiophores and conidiogenous<br />

cells. D. Conidia. Scale bar = 10 μm.<br />

Cissus and Parthenocissus species (Crous & Braun 2003). The<br />

two are similar in that conidiophores are solitary and form in<br />

fascicles and arise from superficial hyphae, and conidia of the two<br />

taxa are similar in size. Pseudocercospora ampelopsis differs in<br />

having much longer pluriseptate conidiophores whereas those of P.<br />

riachuelii var. horiana are much shorter and 0–1-septate.<br />

Pseudocercospora angolensis (T. Carvalho & O. Mendes)<br />

Crous & U. Braun, Sydowia 55: 301. 2003.<br />

Basionym: Cercospora angolensis T. Carvalho & O. Mendes, Bol.<br />

Soc. Brot. 27: 201. 1953.<br />

≡ Phaeoramularia angolensis (T. Carvalho & O. Mendes) P.M. Kirk,<br />

Mycopathologia 94: 177. 1986.<br />

≡ Pseudophaeoramularia angolensis (T. Carvalho & O. Mendes) U.<br />

Braun, Cryptog. Mycol. 20: 171. 1999.<br />

Specimens examined: Angola, Mozambique Province, on leaves of Citrus ×<br />

aurantium (= × sinensis), Dec. 1951, Carvalho & O. Mendes, BPI 432660, BPI<br />

442839 (paratypes), BPI 442837 (holotype), IMI 56597 (isotype). Camaroon,<br />

Yaoundé, on leaves of C. × aurantium, 17 Mar. 1978, E. Milla, IMI 252792. Ethiopia,<br />

on leaves of Citrus sp., IMI 361170. Kenya, on leaves of C. × aurantium, 15 Nov.<br />

1991, A. Seif W3753, IMI 351626. Uganda, on leaves of C. × aurantium, 14 Jun.<br />

1991, W.T.H. Peregrine, IMI 384297. West Africa, intercepted at San Pedro,<br />

California, USA, on leaves of Citrus sp., 2 Oct. 1953, L.A. Hart, BPI 432661, BPI<br />

432659. Zambia, on leaves of Citrus sp., 18 Jun. 1973, R.H. Raemakers 7837,<br />

IMI 176562; Chilanga, on leaves of C. × aurantium, 28 Sep. 1983, D.M. Naik, IMI<br />

280618; Chilanga, on leaves of Citrus sp., 18 Jul. 1975, B.K. Patel, IMI 196889;<br />

Lusaka, on leaves of Citrus sp., 17 June 1977, I. Javaid, IMI 214501. Zimbabwe,<br />

www.studiesinmycology.org<br />

77


Crous et al.<br />

Fig. 22. Pseudocercospora araliae (CPC 10154). A. Leaf spots on upper and lower leaf surface. B. Close-up of leaf spot with fruiting. C–E. Fascicles with conidiophores and<br />

conidiogenous cells. F. Conidia. Scale bars = 10 μm.<br />

Fig. 23. Pseudocercospora atromarginalis (CPC 11372–11374). A. Leaf spots on upper and lower leaf surface. B. Close-up of leaf spot with fruiting. C, D. Fascicles with<br />

conidiophores and conidiogenous cells. E. Conidia. Scale bar = 10 μm.<br />

Bindura, on leaves of Citrus sp., 13 Aug. 1979, A. Rothwell, IMI 240682; on leaves<br />

of Citrus sp., Sep. 2000, M.C. Pretorius, epitype designated here <strong>CBS</strong> H-20851,<br />

culture ex-epitype CPC 4112–4118, 4111 = <strong>CBS</strong> 112933.<br />

Pseudocercospora araliae (Henn.) Deighton, Mycol. Pap.<br />

140: 19. 1976. Fig. 22.<br />

Basionym: Cercospora araliae Henn., Bot. Jahrb. Syst. 31: 742.<br />

1902; also 37: 165. 1906.<br />

≡ Cercosporiopsis araliae (Henn.) Miura, Fl. Manchuria & E. Mongolia,<br />

27, 3: 533. 1928.<br />

= Cercospora atromaculans auct., non Ellis & Everh.<br />

Specimens examined: Japan, Tosa, Ushioe-yama, on Aralia elata var. glabrescens,<br />

Aug. 1901, T. Yoshinaga, holotype B 700015014; A. elata, T. Kobayashi & C.<br />

Nakashima, epitype designated here TFM: FPH-8094, ex-epitype cultures MUCC<br />

873, MAFF 238192. South Korea, Jeju, Halla Arboretum, on A. elata, 14 Sep. 2002,<br />

H.D. Shin, <strong>CBS</strong> H-20852, culture CPC 10154; Wonju, on A. elata, 21 Sep. 2003,<br />

H.D. Shin, <strong>CBS</strong> H-20853, cultures CPC 10782–10784.<br />

Pseudocercospora atromarginalis (G.F. Atk.) Deighton,<br />

Mycol. Pap. 140: 139. 1976. Fig. 23.<br />

Basionym: Cercospora atromarginalis G.F. Atk. (atramarginalis), J.<br />

Elisha Mitchell Sci. Soc. 8: 59. 1892.<br />

= Cercospora rigospora G.F. Atk., J. Elisha Michell Sci. Soc. 8: 65. 1892.<br />

= Cercospora tosensis Henn., Bot. Jahrb. Syst. 34: 605. 1905.<br />

= Cercospora nigri Tharp, Mycologia 9: 112. 1917.<br />

= Cercospora solani-biflori Sawada, Formosan Agric. Rev. 39: 701. 1942,<br />

nom. inval.<br />

Specimens examined: Japan, Prov. Tosa, Aki-machi, on Solanum nigrum, Oct.<br />

1903, Yoshinaga No. 43, (holotype of C. tosensis, B 700015016). South Korea,<br />

Namyangju, on S. nigrum, 27 Jul. 2004, H.D. Shin, <strong>CBS</strong> H-20854, CPC 11372–<br />

11374. New Zealand, Auckland, Jan. 2004, C.F. Hill 970, <strong>CBS</strong> 114640.<br />

Notes: Pseudocercospora atromarginalis was described from<br />

Solanum collected in Auburn Alabama, USA. Material studied here<br />

from New Zealand and Korea represents the same species, which<br />

might be authentic for the name. Fresh material from Solanum in the<br />

USA, and a detailed study of the synonyms listed by Chupp (1954)<br />

would resolve this issue. An isolate identified as P. chengtuensis<br />

(on Lycium, Solanaceae) appears identical to Pseudocercospora<br />

atromarginalis.<br />

78


Phylogenetic lineages in Pseudocercospora<br />

Fig. 24. Pseudocercospora balsaminae (CPC 10044). A. Leaf spots on upper and lower leaf surface. B. Close-up of leaf spot with fruiting. C–F. Fascicles and solitary<br />

conidiophores with conidiogenous cells. G. Conidia. Scale bars = 10 μm.<br />

Pseudocercospora balsaminae (Syd.) Deighton, Mycol.<br />

Pap. 140: 139. 1976. Fig. 24.<br />

Basionym: Cercoseptoria balsaminae Syd., Ann. Mycol. 33: 69.<br />

1935.<br />

Specimens examined: South Korea, Chuncheon, on Impatiens textorii, 11 Oct.<br />

2002, H.D. Shin, <strong>CBS</strong> H-20856, CPC 10044 = <strong>CBS</strong> 131882; Dongducheon, on I.<br />

textorii, 11 Oct. 2004, H.D. Shin, <strong>CBS</strong> H-20855, CPC 10699–10701.<br />

Pseudocercospora callicarpae (Cooke) Y.L. Guo & W.X.<br />

Zhao, Acta Mycol. Sin. 8: 118. 1989.<br />

Basionym: Cercospora callicarpae Cooke, Grevillea 6: 140. 1878.<br />

= ? Cercospora callicarpicola Naito, Mem. Coll. Agric. Kyoto Imp. Univ. 47: 49.<br />

1940.<br />

Specimen examined: Japan, Ibaraki, on Callicarpa japonica, 11 Sep. 1998, T.<br />

Kobayashi, MUCC 888, MAFF 237784, CNS-442.<br />

Pseudocercospora catalpigena U. Braun & Crous, Mycol.<br />

Progr. 2: 198. 2003.<br />

Specimen examined: Japan, Wakayama, on Catalpa ovata, 30 Oct. 2007, C.<br />

Nakashima & I. Araki, MUMH 10868, culture MUCC 743.<br />

Pseudocercospora catappae (Henn.) X.J. Liu & Y.L. Guo,<br />

Mycosystema 2: 230. 1989.<br />

Basionym: Cercospora catappae Henn., Bot. Jahrb. Syst. 34: 56.<br />

1905.<br />

= Pseudocercospora catappae Goh & W.H. Hsieh, in Hsieh & Goh, Cercospora<br />

and similar fungi from Taiwan: 57. 1990, homonym of P. catappae (Henn.) X.J.<br />

Liu & Y.L. Guo, 1989.<br />

= Ramularia catappae Racib., Paras. Algen u. Pilze Javas II, Batavia: 41.<br />

1900.<br />

= Cercospora terminaliae Sawada (terminariae), Taiwan Agric. Rev. 38: 701.<br />

1942, nom. illeg., homonym of C. terminaliae Syd. 1929.<br />

Specimens examined: Tanzania, Zanzibar, Dar-es-Salam, on Terminalia catappa,<br />

26 Oct. 1901, Stuhlmann holotype B 700015015. Japan, Okinawa, on T. catappa,<br />

17 Nov. 2007, C. Nakashima & T. Akashi, MUMH 10913, culture MUCC 809.<br />

Pseudocercospora cercidicola Crous, U. Braun & C.<br />

Nakash., sp. nov. MycoBank MB564829. Fig. 25.<br />

Etymology: Name reflects the host Cercis, from which it was<br />

collected.<br />

Leaf spots amphigenous, irregular to angular, 1–5 mm diam,<br />

confined by leaf veins, brown on upper surface, with raised, dark<br />

brown border, on lower surface medium brown, with indistinct<br />

borders. Mycelium internal, consisting of pale brown, smooth,<br />

septate, branched, 2–3 μm diam hyphae. Caespituli fasciculate to<br />

sporodochial, amphigenous, but predominantly epiphyllous, greybrown<br />

on leaves, up to 130 μm wide and 150 μm high. Conidiophores<br />

aggregated in dense fascicles arising from the upper cells of a<br />

brown stroma up to 80 μm wide and 60 μm high; conidiophores<br />

brown, finely verruculose, 2–6-septate, subcylindrical, straight<br />

to variously curved, unbranched or branched above, 20–50 ×<br />

3–5 μm. Conidiogenous cells terminal or lateral, unbranched,<br />

medium brown, finely verruculose, tapering to flat-tipped apical<br />

loci, proliferating sympodially, 10–20 × 2–3 μm. Conidia solitary,<br />

medium brown, smooth, guttulate, subcylindrical to narrowly<br />

obclavate, apex subobtuse, base long obconically subtruncate,<br />

straight to variously curved, (0–)3–6-septate, (27–)30–50(–60) ×<br />

(2.5–)3(–3.5) μm; hila neither thickened, nor darkened-refractive,<br />

1.5–2 μm diam.<br />

Culture characteristics: Colonies on MEA 10–15 mm after 2 wk at<br />

20 °C in the dark, restricted, with margin mildly lobed, felty, pale<br />

olivaceous or greyish olivaceous, surrounded by greyish margin;<br />

reverse olivaceous.<br />

Specimens examined: Japan, Ibaraki, on Cercis chinensis, 10 Sep. 1998, T. & Y.<br />

Kobayashi, holotype <strong>CBS</strong> H-20895, culture ex-type MUCC 896, MAFF 237791<br />

= <strong>CBS</strong> 132041; Tokyo, Koishikawa Botanical Garden, on Cercis chinensis, 10 Nov.<br />

2007, I. Araki & M. Harada, MUMH 11108, culture MUCC 937; Japan, Kanagawa,<br />

on Cercis chinensis, May 1992, K.Kishi, culture MAFF 237128.<br />

Notes: Asian collections of cercosporoid fungi on Cercis chinensis<br />

were considered as representative of Cercospora chionea by<br />

Chupp (1954). The latter species was shown to be a member<br />

of Passalora by Braun (1993). Shin & Braun (2000) introduced<br />

a new species of Pseudocercospora for the taxon occurring on<br />

Cercis in Asia, namely P. cercidis-chinensis, based on material<br />

collected in Korea. Phylogenetic data obtained in the present study<br />

(Fig. 5) show that the Japanese collections are distinct. As the<br />

www.studiesinmycology.org<br />

79


Crous et al.<br />

Fig. 25. Pseudocercospora cercidicola (<strong>CBS</strong> H-20895). A. Leaf spots on upper and lower leaf surface. B. Close-up of leaf spot with fruiting. C, D. Fascicles with conidiophores<br />

and conidiogenous cells. E, F. Conidiophores on superficial hyphae. G. Conidia. Scale bars = 10 μm.<br />

Fig. 26. Pseudocercospora cercidis-chinensis (CPC 14481). A. Leaf spots on upper and lower leaf surface. B. Close-up of leaf spot with fruiting. C, D. Fascicles with<br />

conidiophores and conidiogenous cells. E. Conidia. Scale bars = 10 μm.<br />

name Cercospora cercidis Nishikado is illegitimate, a new name,<br />

P. cercidicola is introduced for the species occurring on Cercis<br />

in Japan. Pseudocercospora cercidicola is morphologically very<br />

close to P. cercidis-chinensis but superficial hyphae with solitary<br />

conidiophores are not formed and the conidia are shorter.<br />

Pseudocercospora cercidis-chinensis H.D. Shin & U.<br />

Braun, Mycotaxon 74: 109. 2000. Fig. 26.<br />

Specimens examined: South Korea, Kyeongju, on Cercis chinensis, 26 Aug. 1998,<br />

H.D. Shin, holotype KUS-F 14914, isotype HAL; Suwon, C. chinensis, 2 Oct. 2007,<br />

H.D. Shin, epitype designated here <strong>CBS</strong> H-20857, culture ex-epitype CPC 14481<br />

= <strong>CBS</strong> 132109.<br />

Note: See P. cercidicola.<br />

Pseudocercospora chengtuensis (F.L. Tai) Deighton,<br />

Mycol. Pap. 140: 141. 1976. Fig. 27.<br />

Basionym: Cercospora chengtuensis F.L. Tai, Lloydia 11: 40. 1948.<br />

Specimens examined: China, Szechuan, Chengtu, Lycium chinense, Lee Ling No.<br />

126, 1943, holotype (not seen). South Korea, Dongducheon, Lycium chinense, 28<br />

Sep. 2003, H.D. Shin, <strong>CBS</strong> H-20858, culture CPC 10696–10698.<br />

Notes: The isolate identified here as P. chengtuensis appears to<br />

be identical to P. atromarginalis (also on Solanaceae) based on<br />

phylogenetic analysis and the two are morphologically similar.<br />

Study of of additional collections of both are needed to determine<br />

whether they are synonymous or distinct species.<br />

Pseudocercospora chionanthi-retusi Goh & W.H. Hsieh,<br />

in Hsieh & Goh, Cercospora and similar fungi from Taiwan:<br />

249. 1990. Fig. 28.<br />

80


Phylogenetic lineages in Pseudocercospora<br />

Fig. 27. Pseudocercospora chengtuensis (CPC 10696–10698). A. Leaf spots on upper and lower leaf surface. B. Close-up of leaf spot with fruiting. C–G. Fascicles with<br />

conidiophores and conidiogenous cells. H. Conidia. Scale bars = 10 μm.<br />

Fig. 28. Pseudocercospora chionanthi-retusi (CPC 14683). A. Leaf spots on upper and lower leaf surface. B. Close-up of leaf spot with fruiting. C–H. Fascicles and solitary<br />

conidiophores with conidiogenous cells. I. Conidia. Scale bars = 10 μm.<br />

= Cercospora chionanthi-retusi Togashi & Katsuki, Sci. Rep. Yokohama Nat.<br />

Univ. Sect. II, 1: 1. 1952.<br />

≡ Pseudocercospora chionanthi-retusi (Togashi & Katsuki) Nishijima, C.<br />

Nakash. & Tak. Kobay., Mycoscience 40: 270. 1999, nom. illeg., homonym<br />

of P. chionanthi-retusi Goh & Hsieh, 1990.<br />

= Pseudocercospora chionanthicola C. Nakash. & Tak. Kobay., Mycoscience<br />

43: 98. 2002.<br />

Specimen examined: South Korea, Osan, on Chionanthus retusus, 30 Oct. 2007,<br />

H.D. Shin, <strong>CBS</strong> H-20859, culture CPC 14683 = <strong>CBS</strong> 132110.<br />

Pseudocercospora chrysanthemicola (J.M. Yen) Deighton,<br />

Mycol. Pap. 140: 141. 1976.<br />

Basionym: Cercospora chrysanthemicola J.M. Yen, Rev. Mycol. 29:<br />

216. 1964.<br />

Specimen examined: South Korea, Seoul, on Chrysanthemum sp., 6 Sep. 2003,<br />

H.D. Shin, CPC 10633.<br />

Pseudocercospora contraria (Syd. & P. Syd.) Deighton,<br />

Mycol. Pap. 140: 30. 1976. Fig. 29.<br />

Basionym: Cercospora contraria Syd. & P. Syd., Ann. Mus. Congo,<br />

Bot., Ser. V, 3: 21. 1909.<br />

= Cercospora wildemanii Syd. & P. Syd., Ann. Mus. Congo, Bot., Ser. V, 3:<br />

21. 1909.<br />

= Mycosphaerella contraria Hansf., Proc. Linn. Soc. London 153: 22. 1941.<br />

Specimen examined: South Korea, Bukjeju, Jeolmul recreation forest, on<br />

Dioscorea quinqueloba, 2. Nov. 2007, H.D. Shin, <strong>CBS</strong> H-20861, CPC 14714<br />

= <strong>CBS</strong> 132108.<br />

www.studiesinmycology.org<br />

81


Crous et al.<br />

Fig. 29. Pseudocercospora contraria (CPC 14714). A. Leaf spots on upper and lower leaf surface. B. Close-up of leaf spot with fruiting. C–E. Fascicles with conidiophores, and<br />

solitary loci on hyphae. F. Conidia. Scale bars = 10 μm.<br />

Notes: This fungus was first reported from Korea by Shin & Kim<br />

(2001). Conidial measurements (16–75 × 2.5–4.5 μm) are smaller<br />

than those of the type collected in the Democratic Republic of the<br />

Congo (20–120 × 5–8 μm, Chupp 1954), and the Korean material<br />

may eventually be shown to represent a distinct species.<br />

Pseudocercospora coriariae (Chupp) X.J. Liu & Y.L. Guo,<br />

Mycosystema 2: 232. 1989.<br />

Basionym: Cercospora coriariae Chupp, J. Dept. Agric. Puerto Rico<br />

14: 285. 1930.<br />

= Cercospora coriariae F.L. Tai, Lloydia 11: 43. 1948, nom. illeg.,<br />

homonym of C. coriariae Chupp, 1930.<br />

Specimen examined: Japan, Tokyo, on Coriaria japonica, 10 Nov. 2007, I. Araki &<br />

M. Harada, MUMH 10942, culture MUCC 840.<br />

Pseudocercospora cornicola (Tracy & Earle) Y.L. Guo &<br />

X.J. Liu, Mycosystema 2: 232. 1989.<br />

Basionym: Cercospora cornicola Tracy & Earle, Bull. Torrey Bot.<br />

Club 23: 205. 1896.<br />

Specimen examined: Japan, Tokyo, Cornus alba var. sibirica, 7 Nov. 1998, C.<br />

Nakashima & E. Imaizumi, CNS-494, culture MUCC 909, MAFF 237773.<br />

Pseudocercospora corylopsidis (Togashi & Katsuki) C.<br />

Nakash. & Tak. Kobay., Mycoscience 40: 270. 1999.<br />

≡ Cercospora corylopsidis Togashi & Katsuki, Bot. Mag. (Tokyo) 65: 20.<br />

1952.<br />

= Cercospora hamamelidis auct.; sensu Togashi & Katsuki, Bot Mag. (Tokyo)<br />

65: 21. 1952, non (Peck) Ellis & Everh.<br />

Specimens examined: Japan, Kagoshima, on Corylopsis pauciflora, 26 Oct. 1949,<br />

S. Katsuki, holotype YNU, Isotype TNS-F-243824; Ibaraki, Tsukuba Botanical<br />

Garden, on C. pauciflora, Oct. 1996, T. Kobayashi; Ibaraki, on C. pauciflora, 9 Nov.<br />

1998, T. Kobayashi; Tokyo, Todori, on C. pauciflora, 12 Oct. 1979, M. Kusunoki,<br />

TFM:FPH-6152; Tokyo, Jindai Bot. Park, on C. spicata, 7 Nov. 1998, C. Nakashima<br />

& E. Imaizumi, epitype designated here TFM: FPH-8095, ex-epitype cultures<br />

MUCC 908, MAFF 237795; Saitama, isolated from C. pauciflora, Nov. 1995,<br />

MUCC1249, MAFF 237302; Kagoshima, 26 Oct. 1949, on Hamamelis japonica,<br />

S. Katsuki, SK2077; Shizuoka, 2 Nov. 1996, on H. japonica, T. Koboyashi & C.<br />

Nakashima, CNS-114, cultures MAFF 237632, MUCC 874.<br />

Notes: Isolate MUCC 874, which was isolated from Hamamelis<br />

japonica (Hamamelidaceae), appears to be phylogenetically<br />

identical to P. corylopsidis. Based on morphology, there is little<br />

difference between these specimens other than the presence or<br />

absence of external mycelium.<br />

Togashi & Katsuki (1952) reported a fungus on Hamamelis<br />

japonica as Cercospora hamamelidis (Peck) Ellis & Everh. based<br />

on a specimen collected in Kagoshima (SK2077). Recently, C.<br />

hamamelidis was transferred to the genus Passalora (Crous &<br />

Braun 2003). The Japanese specimens of C. hamamelidis are<br />

morphologically and phylogenetically identical to Pseudocercospora<br />

corylopsidis. We conclude that the fungus on Corylopsis and<br />

Hamamelis in Japan represents P. corylopsidis. In addition, a species<br />

of Pseudocercospora collected in Tokyo (TFM:FPH-4348, isolate<br />

MAFF 410032) was recognised as a distinct taxon on Corylopsis<br />

plants, based on its longer and narrower conidia, and DNA phylogeny.<br />

Pseudocercospora cotoneastri (Katsuki & Tak. Kobay.)<br />

Deighton, Trans. Brit. Mycol. Soc. 88: 389. 1987.<br />

Basionym: Cercospora cotoneastri Katsuki & Tak. Kobay. (as<br />

"cotoneasteris"), Trans. Mycol. Soc. Japan 17: 276. 1976.<br />

Specimens examined: Japan, Tokyo, Asakawa Experimental Forest Station, on<br />

Cotoneaster dammeri, 13 Aug. 1974, T. Kobayashi, holotype TFM:FPH-4185, exholotype<br />

culture MAFF 410089; Tokyo, Tokyo Agric. Exp. Stn., on C. franchetii, 27<br />

Sep. 1978, T. Kobayashi, TFM:FPH-4924; Tokyo, Jindai Bot. Park, on C. horizontalis,<br />

4 Sep. 1975, H. Horie, TFM: FPH-4417; Tokyo, on C. horizontalis, 23 Oct. 1975,<br />

K. Sasaki, TFM:FPH-4798; Tokyo, culture isolated from Cotoneater sp., 1977, H.<br />

Horie, culture MAFF 305633; Fukuoka, Kitakyushu, on C. horizontalis,4 Oct. 1975,<br />

S. Ogawa (TFM:FPH-4401); Shizuoka, Hamamatsu, on C. salicifolius, 1 Nov. 1996,<br />

T. Kobayashi & C. Nakashima, CNS-126, culture MUCC 876, MAFF 237629.<br />

Note: Three isolates including the ex-holotype, MAFF 410089,<br />

305633 and 237629, were identical based on ACT gene sequence<br />

data (data not shown).<br />

Pseudocercospora crispans G.C. Hunter & Crous, sp.<br />

nov. MycoBank MB564830. Fig. 30.<br />

Etymology: Name reflects the characteristic curling or undulate<br />

nature of the conidia produced by this fungus.<br />

Leaf spots amphigenous, angular to irregular, predominantly<br />

occurring next to or close to the mid-rib, 2–15 mm diam, pale<br />

82


Phylogenetic lineages in Pseudocercospora<br />

Fig. 30. Pseudocercospora crispans (CPC 14883). A. Leaf spots on upper and lower leaf surface. B. Close-up of leaf spot with fruiting. C–F. Fascicles with conidiophores and<br />

conidiogenous cells. G, H. Conidia. Scale bars = 10 μm.<br />

brown on the upper side of the leaf, and pale to darker brown<br />

on the bottom side of the lesion, surrounded by a raised, dark<br />

brown border with a diffuse red pigment emanating away from<br />

the border; single, discrete lesions may coalesce to form larger<br />

lesions. Mycelium smooth, septate, guttulate, thick-walled,<br />

branched, internal and external, pale brown, 2–4 mm wide.<br />

Caespituli amphigenous, sparsely scattered over lesion, floccose,<br />

whitish. Stromata hypophyllous, brown, well-developed, immersed,<br />

globular to irregular, 40–120 mm diam. Conidiophores brown at<br />

the base, becoming paler toward apex, arising from cells of brown<br />

stroma; arranged in loose fascicles, smooth, thick-walled, guttulate,<br />

unbranched, straight to curved, 0–4-septate, straight to geniculate–<br />

sinuous, (14–)17–31(–42) × (2–)3–4(–5) μm. Conidiogenous cells<br />

terminal, unbranched, smooth, guttulate, pale brown, straight to<br />

geniculate to geniculate–sinuous, proliferating sympodially and<br />

percurrently, tapering toward apex; apex obtuse to truncate, (8–)9–<br />

15(–19) × (2–)3(–4) μm. Conidia solitary, smooth, guttulate, curved<br />

to undulate, pale brown, 3–9-septate, apex acute to subacute, base<br />

truncate, (40–)65–96(–102) × (2–)3(–4) μm; hila unthickened, not<br />

darkened.<br />

Culture characteristics: Colonies on MEA reaching 54 mm diam<br />

after 30 d at 24 °C. Colonies circular, flat to slightly convex, with<br />

a feathery margin and profuse aerial mycelium; lavender-grey to<br />

glaucous-grey (surface) and olivaceous-grey (reverse).<br />

Specimen examined: South Africa, Western Cape Province, Knysna, on leaves<br />

of Eucalyptus sp., Jan. 2008, P.W. Crous, holotype <strong>CBS</strong> H-20392, culture ex-type<br />

CPC 14883 = <strong>CBS</strong> 125999.<br />

Notes: Pseudocercospora crispans is phylogenetically distinct<br />

from other taxa described from Eucalyptus (Crous et al. 1989,<br />

Crous & Alfenas 1995, Crous & Wingfield 1997, Crous 1998,<br />

Braun & Dick 2002, Hunter et al. 2006a), and can be distinguished<br />

morphologically by its prominently curled conidia.<br />

Pseudocercospora crocea Crous, U. Braun, G.C. Hunter &<br />

H.D. Shin, sp. nov. MycoBank MB564831. Fig. 31.<br />

Etymology: Name reflects the typical diffuse yellow border<br />

surrounding leaf lesions caused by this fungus.<br />

Leaf spots distinct, scattered and at the leaf margin, pale brown<br />

to brown, circular to irregular, 2–5 mm diam, indefinite border,<br />

with a pale yellow diffuse halo. Mycelium, internal and external,<br />

subhyaline, septate, branched, smooth, 2–5 mm wide. Caespituli<br />

amphigenous, grey, scattered over the lesion surface, arachnoid.<br />

Stromata well-developed, 40–100 mm diam, subimmersed,<br />

globular, dark brown. Conidiophores fasciculate, brown, becoming<br />

paler toward the apex, 0–1-septate, smooth, unbranched, straight<br />

to curved, apex truncate to subtruncate, 0–1-septate, (14–)17–24(–<br />

32) × (3–)4(–5) μm. Conidiogenous cells terminal, unbranched, pale<br />

www.studiesinmycology.org<br />

83


Crous et al.<br />

Fig. 31. Pseudocercospora crocea (CPC 11668). A, B. Leaf spots on upper and lower leaf surface. C. Close-up of leaf spot with fruiting. D, E. Fascicles with conidiophores and<br />

conidiogenous cells. F–I. Conidia. Scale bars = 10 μm.<br />

brown, smooth to slightly verruculose, proliferating percurrently, (9–)<br />

13–18(–21) × (3–)4(–5) μm. Conidia solitary, 4–10-septate, straight<br />

to curved, sparsely guttulate, narrowly obclavate, apex subobtuse,<br />

base obconically truncate to long obconically truncate, smooth,<br />

subhyaline, (67–)79–94(–104) × (3–)4(–5)μm, hila unthickened not<br />

darkened.<br />

Culture characteristics: Colonies on MEA reaching 53 mm diam<br />

after 30 d at 24 °C. Colonies circular with feathery margin, flat<br />

to slightly convex, some folding occurs, with a darker radial ring<br />

toward the colony margin, aerial mycelium medium; iron-grey to<br />

olivaceous-grey (surface) and iron-grey (reverse).<br />

Specimen examined: South Korea, Suwon, on leaves of Pilea hamaoi (≡ P. pumila<br />

var. hamaoi), 5 Nov. 2004, H.D. Shin, holotype <strong>CBS</strong> H-20387, isotype HAL 1860 F,<br />

cultures ex-type CPC 11668 = <strong>CBS</strong> 126004.<br />

Notes: Singh et al. (1996) provide an account of the<br />

Pseudocercospora spp. present on members of Urticaceae.<br />

Of these, P. crocea is most similar to P. pileae as it also has a<br />

well-developed stroma. Pseudocercospora pileae is distinct from<br />

P. crocea, which lacks stromata and has conidiophores that are<br />

consistently solitary, arising from superficial hyphae.<br />

Pseudocercospora cydoniae (Ellis & Everh.) Y.L. Guo &<br />

X.J. Liu, Mycosystema 5: 103. 1992. Fig. 32.<br />

Basionym: Cercospora cydoniae Ellis & Everh., J. Mycol. 8: 72.<br />

1902.<br />

≡ Cercosporina cydoniae (Ellis & Everh.) Sacc., Syll. Fung. 25: 915. 1931.<br />

≡ Pseudocercospora cydoniae (Ellis & Everh.) U. Braun & H.D. Shin,<br />

Mycotaxon 49: 356. 1993.<br />

Specimens examined: South Korea, Seoul, on Chaenomeles speciosa (= C.<br />

lagenaria), 17 Sep. 2003, H.D. Shin, cultures CPC 10678 = <strong>CBS</strong> 131923; Jeonju,<br />

C. sinensis, 15 Oct. 2003, H.D. Shin, <strong>CBS</strong> H-20863.<br />

Pseudocercospora dovyalidis (Chupp & Doidge) Deighton,<br />

Mycol. Pap. 140: 143. 1976. Fig. 33.<br />

Basionym: Cercospora dovyalidis Chupp & Doidge, Bothalia 4:<br />

885. 1948.<br />

≡ Pseudocercosporella dovyalidis (Chupp & Doidge) B. Sutton, Mycol.<br />

Pap. 138: 99. 1975.<br />

Leaf spots amphigenous, distinct, 1–3 lesions per leaf, scattered<br />

over the leaf, 3–10 mm diam, pale brown surrounded by a<br />

dark brown to black border. Mycelium internal, consisting of<br />

pale brown, septate, smooth, 2–6 μm diam hyphae. Caespituli<br />

hypophyllous, evenly distributed over the leaf spot, floccose<br />

to punctiform, olivaceous to black. Stromata well-developed,<br />

subimmersed to erumpent, globular, dark brown, 40–100 mm<br />

diam. Conidiophores fasciculate, emerging from the upper cells<br />

of stromata, brown, becoming paler toward the apex, smooth,<br />

0–2-septate, straight to variously curved, guttulate, apex<br />

84


Phylogenetic lineages in Pseudocercospora<br />

Fig. 32. Pseudocercospora cydoniae (CPC 10678). A. Leaf spots on upper and lower leaf surface. B. Close-up of leaf spot with fruiting. C. Fascicle with conidiophores and<br />

conidiogenous cells. D, E. Conidiogenous cells. F. Conidia. Scale bars = 10 μm.<br />

Fig. 33. Pseudocercospora dovyalidis (CPC 13771–13773). A. Leaf spots on upper and lower leaf surface. B. Close-up of leaf spot with fruiting. C, D. Fascicles with conidiophores<br />

and conidiogenous cells. E, F. Conidiogenous cells. G–K. Conidia. Scale bars = 10 μm.<br />

www.studiesinmycology.org<br />

85


Crous et al.<br />

Fig. 34. Pseudocercospora flavomarginata (CPC 14142). A. Leaf spots on upper and lower leaf surface. B. Close-up of leaf spot with fruiting. C. Fascicle with conidiophores<br />

and conidiogenous cells. D–F. Conidiogenous cells. G–J. Conidia. Scale bars = 10 μm.<br />

rounded, conidiophores rarely branched below, (12–)13–22(–34)<br />

× (3–)3–5(–6) μm. Conidiogenous cells terminal, pale brown,<br />

smooth, guttulate, proliferating percurrently, (4–)6–12(–15) × (2–)<br />

3–4(–5) μm. Conidia solitary, pale brown or subhyaline, smooth,<br />

distinctively guttulate, 1–10-septate, thick-walled, straight to<br />

curved, broadly filliform to cylindrical, apex rounded to subacute,<br />

base long obconically truncate, (20–)30–70(–84) × (3–)3–5(–6)<br />

μm; hila neither thickened nor darkened.<br />

Culture characteristics: Colonies on MEA reaching 32 mm diam<br />

after 30 d at 24 °C. Colonies circular with a smooth margin,<br />

either flat with excessive folding into the media or convex, aerial<br />

mycelium moderate, margin of colony darker than colony interior;<br />

greenish glaucous to olivaceous-grey (surface) and olivaceousgrey<br />

(reverse).<br />

Specimens examined: South Africa, Gauteng, Pretoria, Groenkloof, on Dovyalis<br />

zeyheri, 18 Feb. 1914, E.M. Doidge, holotype PREM 7398; Gauteng, Walter<br />

Susulu Botanical Garden, on leaves of D. zeyheri, 2 Mar. 2007, P.W. Crous, epitype<br />

designated here <strong>CBS</strong> H-20389, culture ex-type CPC 13771 = <strong>CBS</strong> 126002.<br />

Pseudocercospora eucalyptorum Crous, M.J. Wingf.,<br />

Marasas & B. Sutton, Mycol. Res. 93: 394. 1989.<br />

= Pseudocercospora pseudoeucalyptorum Crous, Stud. Mycol. 50: 210. 2004.<br />

Specimens examined: South Africa, Western Cape Province, Stellenbosch,<br />

Stellenbosch Mountain, on leaves of E. nitens, 21 Dec. 1987, P.W. Crous, holotype<br />

of P. eucalyptorum PREM 49112, cultures ex type CPC16 = <strong>CBS</strong> 110777. Spain,<br />

Pontevedra, Lourizán, Areeiro, on leaves of E. globulus, 2003, J.P. Mansilla,<br />

holotype of P. pseudoeucalyptorum <strong>CBS</strong> H-9893, culture ex-type CPC 10390<br />

= <strong>CBS</strong> 114242.<br />

Note: Pseudocercospora pseudoeucalyptorum is reduced to<br />

synonymy with P. eucalyptorum on the basis of the phylogeny<br />

obtained here and similarity in pigmentation (Crous et al. 2004c).<br />

Pseudocercospora exosporioides (Bubák) B. Sutton &<br />

Hodges, Mycologia 82: 320. 1990.<br />

Basionym: Cercospora exosporioides Bubák, Ann. Mycol. 13: 33.<br />

1915.<br />

Specimen examined: Japan, Ibaraki, on Sequoia sempervirens, 11 Sep. 1998, T.<br />

Kobayashi, CNS-448, cultures MUCC 893, MAFF 237788.<br />

Pseudocercospora flavomarginata G.C. Hunter, Crous &<br />

M.J. Wingf., Fungal Diversity 22: 80. 2006. Fig. 34.<br />

Specimens examined: Thailand, Chang Gao Province near Pratchinburi, on<br />

leaves of Eucalyptus camaldulensis, 2004, M.J. Wingfield, holotype PREM 58952,<br />

cultures ex-type <strong>CBS</strong> 118841, 118823, 118824; Chachoengsao Province, on leaves<br />

of E. camaldulensis, 2001, W. Himaman, <strong>CBS</strong> H-20388, culture CPC 13492–13494.<br />

86


Phylogenetic lineages in Pseudocercospora<br />

Fig. 35. Pseudocercospora fukuokaensis (CPC 14689). A. Leaf spots on upper and lower leaf surface. B. Close-up of leaf spot with fruiting. C, D. Fascicles with conidiophores<br />

and conidiogenous cells. E. Conidia. Scale bars = 10 μm.<br />

China, on leaves of Eucalyptus sp., 2003, X. Zhou, <strong>CBS</strong> H-20390, culture ex-type<br />

CPC 14142 = <strong>CBS</strong> 126001.<br />

Notes: Pseudocercospora flavomarginata was described as the<br />

causal agent of a prominent leaf spot disease of E. camaldulensis<br />

in Thailand (Hunter et al. 2006a). Based on this study it appears<br />

that it is present also on this host in China.<br />

Pseudocercospora fukuokaensis (Chupp) X.J. Liu & Y.L.<br />

Guo, Mycosystema 5: 103. 1992. Fig. 35.<br />

Basionym: Cercospora fukuokaensis Chupp, Sci. Rep. Yokahama<br />

Natl. Univ., Sect. II, Biol. Sci. 1: 2. 1952.<br />

Specimens examined: Japan, Fukuoka, Futsukaichi-machi, on Styrax japonicus,<br />

5 Sep. 1951, S. Katsuki, holotype TNS-F243813; Ibaraki, on S. japonicus, 11<br />

Sep. 1998, T. Kobayashi & C. Nakashima, epitype designated here TFM: FPH-<br />

8096, ex-epitype cultures MUCC 887, MAFF 237768; Ibaraki, Ibaraki Nat. Mus.,<br />

on S. japonicus, 10 Sep. 1998, T. & Y. Kobayashi; Fukuoka, Fukuoka For. Exp.<br />

Stn., on S. japonicus, 30 Jul. 1975, S. Ogawa (TFM: FPH-4356); Kaogshima,<br />

Tanegashima Is., on S. japonicus, 18 Oct. 1997, T. Kobayashi & C. Nakashima<br />

(culture: MAFF238203); Kagoshima, Tokunoshima Is., on S. japonicus, 8 Nov.<br />

1993, T. Kobayashi & T. Hosoya (Culture: MAFF236995); Okinawa, Kunigami, on<br />

S. japonicus, 18 Nov. 1999, T. Kobayashi & C. Nakashima; Fukuoka, Fukuoka For.<br />

Exp. Stn., on S. obassia, 14 Sep. 1978, S. Ogawa (TFM: FPH -4941); Fukuoka,<br />

on S. grandiflora (= S. japonicus var. kotoensis), Oct. 2001, T. Kobayashi (MAFF<br />

238480); Yamaguchi, on S. japonicus, Dec. 1996, T. Kobayashi (MAFF 237634);<br />

Saitama, on S. japonicus, Sep. 2002, T. Kobayashi & Y.Ono (MAFF 239411). South<br />

Korea, Osan, S. japonicus, 30 Oct. 2007, H.D. Shin, culture CPC 14689 = <strong>CBS</strong><br />

132111.<br />

Notes: DNA sequence data for different isolates from Styrax<br />

japonica collected in Japan are identical, and distinct from the strain<br />

collected in Korea, suggesting that the Korean material represents<br />

a different taxon.<br />

Pseudocercospora fuligena (Roldan) Deighton, Mycol.<br />

Pap. 140: 144. 1976.<br />

Basionym: Cercospora fuligena Roldan, Philipp. J. Sci. 66: 8. 1938.<br />

Holotype: Philippines, Luzon, Laguna, College of Agriculture<br />

Campus, on Solanum lycopersicum (≡ Lycopersicon esculentum),<br />

E.F. Roldan No 32, holotype (not seen).<br />

Specimens examined: Thailand, on Solanum lycopersicum (variety FMMT260), 28<br />

Aug. 2005, Z. Mersha, <strong>CBS</strong> H-20864, culture CPC 12296 = <strong>CBS</strong> 132017. Japan,<br />

Mie, on Lycopersicon esculentum, 6 Feb. 2007, C. Nakashima, MUCC 533.<br />

Notes: DNA sequence data (ITS and EF-1α) for 40 Japanese<br />

isolates revealed variation in only one position (data not shown) and<br />

the culture from Thailand is very similar genetically. The collections<br />

of P. fuligena treated in this study are also morphologically similar<br />

to the description of the holotype specimen, which was collected<br />

in the Philippines. Chupp (1954) did not see the holotype, nor did<br />

Deighton (1976) refer to it. Fresh collections from the type location<br />

are needed to resolve this apparent species complex.<br />

Pseudocercospora glauca (Syd.) Y.L. Guo & X.J. Liu, Acta<br />

Mycol. Sin. 11: 132. 1992. Fig. 36.<br />

Basionym: Cercospora glauca Syd., Ann. Mycol. 27: 432. 1929.<br />

Specimen examined: South Korea, Wando, Wando arboretum, on Albizzia<br />

julibrissin, 9 Nov. 2002, H.D. Shin, <strong>CBS</strong> H-20865, culture CPC 10062 = <strong>CBS</strong><br />

131884.<br />

Pseudocercospora guianensis (F. Stevens & Solheim)<br />

Deighton, Mycol. Pap. 140: 145. 1976.<br />

Basionym: Cercospora guianensis F. Stevens & Solheim, Mycologia<br />

23: 375. 1931.<br />

Specimen examined: Japan, Tateyama, Chiba, on Lantana camara, 4 June 1997,<br />

C. Nakashima CNS-162, cultures MUCC 879, MAFF 238239.<br />

Pseudocercospora haiweiensis Crous & X. Zhou, sp. nov.<br />

MycoBank MB564832. Fig. 37.<br />

Etymology: Name is derived from Hai Wei, China, where this<br />

fungus was collected.<br />

Leaf spots amphigenous, irregular to subcircular or angular, 2–4<br />

mm diam, brown, with raised border, and at times with a red-purple<br />

margin. Mycelium internal, subhyaline, consisting of septate,<br />

branched, smooth, 2–3 μm diam hyphae. Caespituli fasciculate to<br />

sporodochial, amphigenous, breaking through epidermis, appearing<br />

www.studiesinmycology.org<br />

87


Crous et al.<br />

Fig. 36. Pseudocercospora glauca (CPC 10062). A. Leaf spots on upper and lower leaf surface. B. Close-up of leaf spot with fruiting. C. Fascicle with conidiophores and<br />

conidiogenous cells. D. Conidiophores. E, F. Conidia. Scale bars = 10 μm.<br />

Fig. 37. Pseudocercospora haiweiensis (CPC 14084). A. Leaf spots on upper and lower leaf surface. B. Close-up of leaf spot with fruiting. C. Fascicle with conidiophores and<br />

conidiogenous cells. D–F. Conidiophores. G. Conidia. Scale bars = 10 μm.<br />

almost acervular, grey-brown on leaves, up to 90 μm wide and 50<br />

μm high. Conidiophores aggregated in dense fascicles arising from<br />

the upper cells of a brown stroma up to 60 μm wide and 30 μm high;<br />

conidiophores brown, smooth to finely verruculose, 0–2-septate,<br />

subcylindrical, straight to variously curved or geniculate-sinuous,<br />

unbranched, 10–25 × 3–4 μm. Conidiogenous cells terminal,<br />

unbranched, brown, subcylindrical, smooth to finely verruculose,<br />

tapering to flat-tipped apical loci, proliferating sympodially, rarely<br />

percurrently near apex, 10–15 × 2.5–3.5 μm. Conidia solitary,<br />

brown, finely verruculose, guttulate, subcylindrical, apex obtuse,<br />

base obconically subtruncate to truncate, straight to gently curved,<br />

3(–5)-septate, (25–)30–40(–45) × 3(–4) μm; hila unthickened,<br />

neither darkened nor refractive, 1.5 μm wide.<br />

Culture characteristics: Colonies after 2 wk at 24 ºC in the dark on<br />

MEA; surface folded, erumpent, spreading, with moderate aerial<br />

mycelium, and smooth, lobate margins. Surface olivaceous-grey<br />

with patches of pale olivaceous-grey; reverse olivaceous-grey.<br />

Colonies reaching 12 mm diam.<br />

Specimen examined: China, Hai Wei, on leaves of Eucalyptus sp. (APP 21), 3 June<br />

2007, X. Zhou, holotype <strong>CBS</strong> H-20866, culture ex-type CPC 14084 = <strong>CBS</strong> 131584.<br />

Notes: A combination of relatively short conidia (1–3-septate,<br />

25–45 × 3–4 μm) that are subcylindrical in shape, the absence<br />

of superficial mycelium, and dense fascicles with well-developed<br />

stromata, distinguish this new species on Eucalyptus from other<br />

taxa known from this host (Crous 1998, Braun & Dick 2002).<br />

Pseudocercospora hakeae (U. Braun & Crous) U. Braun &<br />

Crous, comb. et stat. nov. MycoBank MB564833.<br />

Basionym: Cercostigmina protearum var. hakeae U. Braun &<br />

Crous, Sydowia 46: 206. 1994.<br />

≡ Pseudocercospora protearum var. hakeae (U. Braun & Crous) U. Braun<br />

& Crous, Mycol. Progr. 1: 22. 2002.<br />

88


Phylogenetic lineages in Pseudocercospora<br />

Fig. 38. Pseudocercospora humulicola (CPC 11358). A. Leaf spots on upper and lower leaf surface. B. Close-up of leaf spot with fruiting. C–E. Fascicles with conidiophores and<br />

conidiogenous cells. F. Conidia. Scale bars = 10 μm.<br />

Specimens examined: South Africa, Northern Province, Louis Trichardt, Hangklip<br />

Forest Station, on leaves of Hakea salicifolia (= H. saligna), Apr. 1988, C. Roux,<br />

holotype PREM 51117. Australia, New South Wales, Mount Annan Botanic<br />

Gardens, on leaves of Grevillea sp., Aug. 1999, P.W. Crous & B. Summerell, JT<br />

926, DAR 74861, CPC 2968; Mount Tomah Botanic Gardens, on leaves of Grevillea<br />

sp., Aug. 1999, P.W. Crous & B. Summerell, JT 873, DAR 74862, CPC 3145 = <strong>CBS</strong><br />

112226.<br />

Note: No culture from Hakea is presently available, and thus<br />

the position of this taxon on Hakea and Grevillea has yet to be<br />

confirmed based on DNA sequence comparisons.<br />

Pseudocercospora humuli (Hori) Y.L. Guo & X.J. Liu, Acta<br />

Mycol. Sin., Suppl. 1: 345. (1986) 1987.<br />

Basionym: Cercospora humuli Hori, in S. Takimoto, Trans. Agric.<br />

Assoc. Chosen 13(12): 34. 1918.<br />

≡ Cercospora humuli Hori, in Salmon & Wormald. J. Bot. (London) 61:<br />

135. 1923.<br />

= Cercospora humuli-japonici Sawada, Taiwan Agric. Rev. 38: 697. 1942,<br />

nom. inval.<br />

≡ Pseudocercospora humuli-japonici Sawada ex Goh & W.H. Hsieh, in<br />

Hsieh & Goh, Cercospora and similar fungi from Taiwan: 239. 1990.<br />

Specimens examined: Japan, Tokyo, Nishigahara, on Humulus scandens, 28 Sep.<br />

1915, S. Hori, holotype NIAES herbarium C-487; Wakayama, on H. lupulus var.<br />

lupulus, 30 Oct. 2007, C. Nakashima & I. Araki, epitype designated here TFM:<br />

FPH-8097, ex-epitype culture MUCC 742.<br />

Pseudocercospora humulicola Crous, U. Braun & H.D.<br />

Shin, sp. nov. MycoBank MB564834. Fig. 38.<br />

Etymology: Name derived from Humulus, the plant on which it was<br />

collected.<br />

Leaf spots amphigenous, irregular to angular, 0.5–1.5 mm diam,<br />

brown, with raised border and wide chlorotic halo. Mycelium<br />

internal, subhyaline, consisting of septate, branched, smooth,<br />

2–3 μm diam hyphae. Caespituli fasciculate to sporodochial,<br />

amphigenous, predominantly epiphyllous, pale brown on leaves,<br />

up to 90 μm wide and 200 μm high. Conidiophores aggregated<br />

in dense fascicles arising from the upper cells of a brown stroma<br />

up to 80 μm wide and 30 μm high; conidiophores pale brown,<br />

smooth, 2–5-septate, subcylindrical, straight to variously curved or<br />

geniculate-sinuous, unbranched, 40–90 × 3–4 μm. Conidiogenous<br />

cells terminal, unbranched, subhyaline to pale brown, subcylindrical,<br />

smooth, tapering to flat-tipped apical conidiogenous loci, 2 μm<br />

diam, proliferating sympodially, 10–30 × 3–4 μm. Conidia solitary,<br />

subhyaline, smooth, finely granular, subcylindrical, apex obtuse,<br />

base truncate, straight to gently curved, 3–12-septate, (70–)80–<br />

95(–120) × 2.5(–3) μm; hila unthickened, neither darkened nor<br />

refractive, 2–3 μm wide.<br />

Culture characteristics: Colonies after 2 wk at 24 ºC in the dark<br />

on MEA; surface folded, erumpent, spreading, with sparse aerial<br />

mycelium, and smooth, lobate margins. Surface pale olivaceousgrey;<br />

reverse olivaceous-grey. Colonies reaching 10 mm diam.<br />

Specimens examined: South Korea, Hongchon, on leaves of Humulus scandens,<br />

9 Jul. 2004, H.D. Shin, holotype <strong>CBS</strong> H-20867, culture ex-type CPC 11358 = <strong>CBS</strong><br />

131585; Chuncheon, on H. scandens, 11 Oct. 2002, H.D. Shin, <strong>CBS</strong> H-20868,<br />

culture CPC 10049 = <strong>CBS</strong> 131883; Cheongju, on H. scandens, 4 June 2004, H.D.<br />

Shin, <strong>CBS</strong> H-20869, culture CPC 10002.<br />

Notes: Pseudocercospora humulicola is very similar to P. humuli,<br />

originally described from Japan, but it is distinct based on DNA<br />

sequence comparisons. In P. humuli conidia are obclavatecylindrical,<br />

35–120 × 2.5–4 μm (Chupp 1954), while conidia of P.<br />

humulicola are subcylindrical, and on average longer than 80 μm.<br />

Furthermore, P. humuli has shorter conidiophores (10–55 μm long,<br />

0–2-septate) than those of P. humulicola, which are 2–5-septate,<br />

and 40–90 μm long.<br />

Pseudocercospora jussiaeae (G.F. Atk.) Deighton, Mycol.<br />

Pap. 140: 146. 1976. Fig. 39.<br />

Basionym: Cercospora jussiaeae G.F. Atk., J. Elisha Mitchell Sci.<br />

Soc. 8: 50. 1892.<br />

= Cercospora ludwigiae G.F Atk., J. Elisha Mitchell Sci. Soc. 8: 58. 1892.<br />

Specimen examined: South Korea, Hongcheon, on Ludwigia prostrata, 9 Oct.<br />

2007, H.D. Shin, KUS-F22981, <strong>CBS</strong> H-20870, culture CPC 14625 = <strong>CBS</strong> 132117.<br />

www.studiesinmycology.org<br />

89


Crous et al.<br />

Fig. 39. Pseudocercospora jussiaeae (CPC 14625). A. Leaf spots on upper and lower leaf surface. B. Close-up of leaf spot with fruiting. C, D. Fascicles with conidiophores and<br />

conidiogenous cells. E. Conidia. Scale bars = 10 μm.<br />

Fig. 40. Pseudocercospora kaki (CPC 10837–10839). A. Leaf spots on upper and lower leaf surface. B. Close-up of leaf spot with fruiting. C, D. Fascicles with conidiophores<br />

and conidiogenous cells. E, F. Conidiogenous cells. G. Conidia. Scale bars = 10 μm.<br />

Pseudocercospora kaki Goh & W.H. Hsieh, in Hsieh & Goh,<br />

Cercospora and similar fungi from Taiwan: 109. 1990. Fig.<br />

40.<br />

Specimens examined: Japan, Toyama, Kureha, on Diospyros kaki, 25 Sep. 1998,<br />

T. Kobayashi & E. Imaizumi, CNS-472, culture MAFF 238214; Chiba, on D. kaki,<br />

18 Sep. 1998, S. Uematsu & C. Nakashima, CNS-464, cultures MUCC 900, MAFF<br />

238238; Chiba, on D. kaki, Nov. 1993, T. Kobayashi, cultures MAFF 237013. South<br />

Korea, Gongju, on D. lotus, 28 Oct. 2003, H.D. Shin, <strong>CBS</strong> H-20871, cultures CPC<br />

10837–10839.<br />

Additional isolates examined (representing a different lineage): Japan, Kagoshima,<br />

Oshima Is., on D. kaki, 11 Nov. 1993, T. Kobayashi, CNS-993, culture MAFF 236999;<br />

Chiba, on D. kaki, Oct. 1991, T. Kobayashi, culture MAFF 235880.<br />

Notes: The type specimen of this species is from Taiwan but<br />

the type was not cultured or sequenced. It may be synonymous<br />

with Cercospora kaki, which is based on material from the USA.<br />

The Japanese material studied here is different from the Korean<br />

material based on DNA sequence data. Actin sequences generated<br />

for additional Japanese isolates resolved two different lineages,<br />

one of which may be attributed to Cercospora kakivora, but this<br />

can only be resolved once fresh collections from Taiwan and the<br />

USA have been obtained.<br />

Pseudocercospora kiggelariae (Syd.) Crous & U. Braun,<br />

Sydowia 46: 215. 1994.<br />

Basionym: Cercospora kiggelariae Syd., Ann. Mycol. 22: 434. 1924.<br />

Holotype: South Africa, Western Cape Province, Stellenbosch, on<br />

leaves of Kiggelaria africana, May 1924, C.K. Brain No 1449 (not<br />

preserved).<br />

Specimens examined: South Africa, Gauteng, Walter Susulu Botanical Garden,<br />

on leaves of K. africana, Jan. 2005, W. Gams, neotype designated here <strong>CBS</strong><br />

H-20872, cultures ex-neotype CPC 11853 = <strong>CBS</strong> 132016; Western Cape Province,<br />

Hermanus, Fernkloof Botanical Garden, S34º23’52.1” E19º15’58.5”, K. africana, 2<br />

May 2010, P.W. Crous, <strong>CBS</strong> H-20873, CPC 18286, 18287.<br />

90


Phylogenetic lineages in Pseudocercospora<br />

Fig. 41. Pseudocercospora lythracearum (CPC 10707). A. Leaf spots on upper and lower leaf surface. B. Close-up of leaf spot with fruiting. C, D. Fascicles with conidiophores<br />

and conidiogenous cells. E. Conidiophore with conidiogenous cells. F. Conidia. Scale bars = 10 μm.<br />

Pseudocercospora latens (Ellis & Everh.) Y.L. Guo & X.J.<br />

Liu, Mycosystema 2: 236. 1989.<br />

Basionym: Cercospora latens Ellis & Everh., J. Mycol. 4: 3. 1888.<br />

≡ Pseudocercospora latens (Ellis & Everh.) U. Braun, Trudy Bot. Inst. im.<br />

V.L. Komarova 20: 67. 1997, comb. superfl.<br />

Specimen examined: Japan, Okinawa, on Lespedeza wilfordii (= L. thunbergii<br />

subsp. formosa), 18 Nov. 2007, C. Nakashima & T. Akashi, MUMH 10815, culture<br />

MUCC 763.<br />

Pseudocercospora leucadendri (Cooke) U. Braun & Crous,<br />

comb. et stat. nov. MycoBank MB564835.<br />

Basionym: Cercospora protearum var. leucadendri Cooke,<br />

Grevillea 12: 39. 1883.<br />

≡ Stigmina protearum var. leucadendri (Cooke) M.B. Ellis, Mycol. Pap.<br />

131: 7. 1972.<br />

≡ Cercostigmina protearum var. leucadendri (Cooke) U. Braun & Crous,<br />

in Crous & Braun, Sydowia 46: 206. 1994.<br />

≡ Pseudocercospora protearum var. leucadendri (Cooke) U. Braun &<br />

Crous, Mycol. Progr. 1: 22. 2002.<br />

= Passalora protearum Kalchbr. & Cooke, Grevillea 19: 6. 1890.<br />

Specimen examined: South Africa, Western Cape Province, Stellenbosch, Devon<br />

Valley, Protea Heights, on Leucadendron sp., 3 Apr. 1998, S. Denman & P.W. Crous,<br />

specimen JT-178, culture CPC 1869 (no longer viable).<br />

Note: Pseudocercospora protearum has three varieties on<br />

Proteaceae, viz. protearum, leucadendri and hakeae (Braun & Hill<br />

2002), that should be recognised as distinct species (Crous et al.<br />

2004a) as shown here (Fig. 5).<br />

Pseudocercospora lonicericola (W. Yamam.) Deighton,<br />

Mycol. Pap. 140: 146. 1976.<br />

Basionym: Cercospora lonicericola W. Yamam. J. Soc. Trop. Agric.<br />

6: 604. 1934.<br />

Holotype: Taiwan, Taihoku, on Lonicera japonica var. sempervillosa,<br />

3 Nov. 1933, W. Yamamoto (holotype could not be located, and is<br />

probably lost).<br />

Specimens examined: Japan, Tokyo, Jindai Bot. Park, on L. japonica, 21 Oct. 1976,<br />

T. Kobayashi, TFM: FPH-4479; Chiba, Matsudo, on L. japonica, 14 Sep. 1951, E.<br />

Kurosawa, SK -2207; Fukuoka, Yame, on L. japonica, 29 Nov. 1949, S. Katsuki,<br />

SK -2206; Kagoshima, Yaku Is., on L. japonica, 29 Dec. 1952, S. Katsuki, SK -392;<br />

Ibaraki, L. gracilipes var. glabra, 11 Sep. 1998, T. Kobayashi, neotype designated<br />

here TFM: FPH-8098, ex-neotype cultures MUCC 889, MAFF 237785.<br />

Pseudocercospora lyoniae (Katsuki & Tak. Kobay.)<br />

Deighton, Trans. Brit. Mycol. Soc. 88: 389. 1987.<br />

Basionym: Cercospora lyoniae Katsuki & Tak. Kobay., Trans.<br />

Mycol. Soc. Japan 16: 3. 1975.<br />

Specimens examined: Japan, Tokyo, Asakawa Experimental Forest, Government<br />

Forest Experimental Station, on Lyonia ovalifolia var. elliptica, 21 Sep. 1973, H.<br />

Horie, holotype TFM: FPH-3999; Tokyo, Jindai Bot. Garden, on L. ovalifolia var.<br />

elliptical, 25 Sep. 1974, T. Kobayashi, TFM: FPH -4202; Tokyo, Jindai Bot. Garden,<br />

on L. ovalifolia var. elliptica, 7 Nov. 1998, C. Nakashima & E. Imaizumi, epitype<br />

designated here TFM: FPH-8100, ex-epitype cultures MUCC 910, MAFF 237775.<br />

Pseudocercospora lythracearum (Heald & F.A. Wolf) X.J.<br />

Liu & Y.L. Guo, Acta Mycol. Sin. 11: 294. 1992. Fig. 41.<br />

Basionym: Cercospora lythracearum Heald & F.A. Wolf, Mycologia<br />

3: 18. 1911.<br />

≡ Cercosporina lythracearum (Heald & F.A. Wolf) Sacc., Syll. Fung. 25:<br />

909. 1931.<br />

= Cercospora lagerstroemiae Syd. & P. Syd., Ann. Mycol. 12: 203. 1914.<br />

= Cercospora lagerstroemiae-subcostatae Sawada, Taiwan Agric. Res. Inst.<br />

Rept. 51: 129. 1931.<br />

≡ Pseudocercospora lagerstroemiae-subcostatae (Sawada) Goh & W.H.<br />

Hsieh, in Hsieh & Goh, Cercospora and similar fungi from Taiwan: 212.<br />

1990.<br />

= Cercospora lagerstroemiicola Sawada, Taiwan Agric. Res. Inst. Rept. 85:<br />

112. 1943, nom. inval.<br />

Specimens examined: Japan, Ibaraki, on Lagerstroemia indica, 11 Sep. 1998, T.<br />

Kobayashi, CNS-444, cultures MUCC 890, MAFF 237786; Kanagawa, isolated<br />

from L. subcostata, collection date unknown, T. Kobayashi, MAFF 410017; Ibaraki,<br />

isolated from L. subcostata, Oct. 1994, T. Nishijima, MAFF 237185; Chiba, isolated<br />

from L. subcostata, Oct. 1993, T. Kobayashi, MAFF 236964. South Korea, Jinju, L.<br />

indica, 15 Oct. 2003, H.D. Shin, <strong>CBS</strong> H-20874, KUS-F 19899, culture CPC 10707<br />

= <strong>CBS</strong> 131925.<br />

Notes: The material collected from Korea is genetically similar to<br />

that from Japan (Fig. 5). However, fresh collections from the USA<br />

are required to determine if the Asian material is the same as<br />

that from the USA. The synonyms cited by Chupp (1954) could<br />

represent different species.<br />

www.studiesinmycology.org<br />

91


Crous et al.<br />

Fig. 42. Pseudocercospora lythri (CPC 14588). A. Leaf spots on upper and lower leaf surface. B. Close-up of leaf spot with fruiting. C, D. Fascicles with conidiophores and<br />

conidiogenous cells. E. Conidia. Scale bars = 10 μm.<br />

Pseudocercospora lythri H.D. Shin & U. Braun, Mycotaxon<br />

74: 111. 2000. Fig. 42.<br />

Specimens examined: Japan, Tokyo, on Lythrum salicaria (incl. L. anceps) 10<br />

Nov. 2007, I. Araki & M. Harada, MUMH 11104, culture MUCC865. South Korea,<br />

Chuncheon, on L. salicaria, 21 Sep. 1991, H.D. Shin, holotype KUS-F 11109;<br />

Yangku, on L. salicaria, 28 Sep. 2007, H.D. Shin, epitype designated here <strong>CBS</strong><br />

H-20875, culture ex-epitype CPC 14588 = <strong>CBS</strong> 132115.<br />

Pseudocercospora marginalis G.C. Hunter, Crous, U.<br />

Braun & H.D. Shin, sp. nov. MycoBank MB564836. Fig. 43.<br />

Etymology: Margo, marginalis, referring to border or margin;<br />

indicating leaf spots that extend along the leaf margin.<br />

Leaf spots distinct, 2–5 mm diam, also predominantly forming larger<br />

blotches extending along the length of the leaf margin, brown,<br />

irregular; border indefinite. Mycelium internal and external, septate,<br />

smooth, subhyaline, branched, 2–4 μm wide. Caespituli epiphyllous,<br />

aggregated along leaf veins, floccose, olivaceous, emerging from<br />

stomata. Stromata well-developed, subimmersed to erumpent, globular<br />

to elongated, brown, 20–75 μm diam. Conidiophores fasciculate, pale<br />

brown to brown, straight to curved to undulate, cylindrical, unbranched,<br />

apex rounded to subtruncate, smooth, finely guttulate, 0–4-septate,<br />

(15–)18–31(–41) × (3–)4(–5) μm. Conidiogenous cells terminal,<br />

unbranched, smooth, finely guttulate, pale brown, straight to curved,<br />

cylindrical, apex rounded to subtruncate, proliferating sympodially<br />

or percurrently, (5–)8–11(–14) × 3(–4) μm. Conidia solitary, smooth,<br />

cylindrical to narrowly obclavate, guttulate, thick-walled, straight to<br />

curved, pale brown to pale olivaceous, apex rounded to obtuse, base<br />

obconic to long obconically truncate, 1–7-septate, (19–)30–48(–58) ×<br />

(3–)4(–5) μm; hila neither thickened nor darkened.<br />

Culture characteristics: Colonies after 2 wk at 24 ºC in the dark<br />

on MEA; erumpent, spreading, with moderate aerial mycelium,<br />

and smooth, even margins. Surface pale olivaceous-grey; reverse<br />

olivaceous-grey. Colonies reaching 10 mm diam.<br />

Specimen examined: South Korea, Jeju, Halla arboretum, on leaves of Fraxinus<br />

rhynchophylla (≡ F. chinensis subsp. rhynchophylla), 29 Oct. 2005, H.D. Shin, holotype<br />

<strong>CBS</strong> H-20397, culture ex-type CPC 12497 = <strong>CBS</strong> 131582, CPC 12498, 12499.<br />

Specimens examined of P. fraxinites: South Korea, Jinju, on Fontanesia<br />

phillyreoides, 15 Oct. 2003, H.D. Shin, <strong>CBS</strong> H-20876, cultures CPC 10743–10745.<br />

Japan, Ibaraki, on Fraxinus excelsior, 11 Sep. 1998, T. Kobayashi, CNS-445,<br />

cultures MUCC 891, MAFF 237787.<br />

Notes: Although similar to P. fraxinites (conidia 20–60 × 1.5–3<br />

μm; Chupp 1954) (Fig. 44), conidia of P. marginalis are wider<br />

and cluster apart from isolates of P. fraxinites on Fontanesia from<br />

Korea (CPC 10743–10745) and Fraxinus from Japan (MUCC<br />

891). Pseudocercospora fraxinites was originally described<br />

from Fraxinus in the USA. Morphological and molecular<br />

characterisation of new collections and cultures from this host<br />

in the USA are needed to clarify the limits of P. fraxinites and P.<br />

marginalis.<br />

Pseudocercospora melicyti U. Braun & C.F. Hill, Australas.<br />

Pl. Pathol. 33: 489. 2004.<br />

Specimen examined: New Zealand, Auckland, Waiatarua, on Melicytus<br />

macrophyllus, 13 Mar. 2003, C.F. Hill, holotype HAL 1787 F (isotype PDD 77567),<br />

culture ex-type ICMP 14984 = <strong>CBS</strong> 115023.<br />

Pseudocercospora myrticola (Speg.) Deighton, Mycol.<br />

Pap. 140: 148. 1976.<br />

Basionym: Cercospora myrticola Speg., Anales Soc. Ci. Argent. 16:<br />

167. 1883.<br />

= Cercospora myrti Erikss., Bidrag Känn. om vara odlade Vaxters s jukdomar,<br />

Stockholm 8: 79. 1885 and Rev. Mycol. 8: 60. 1886.<br />

= Cercospora saccardoana Scalia, Atti Accad. Gioenia Sci. Nat. Catania, Ser.<br />

4, 14: 35. 1901.<br />

= Cercospora amadelpha Syd., Ann. Mycol. 30: 89. 1932.<br />

= Fusariella cladosporioides P. Karst., Hedwigia 30: 248. 1891.<br />

Specimen examined: Japan, Kagoshima, on Myrtus communis, 29 May 2007, C.<br />

Nakashima & K. Motohashi, MUMH 10572, culture MUCC 632.<br />

Pseudocercospora ocimi-basilici Crous, M.E. Palm & U.<br />

Braun, sp. nov. MycoBank MB564837. Fig. 45.<br />

Etymology: Name derived from Ocimum basilicum, the host from<br />

which it was collected.<br />

92


Phylogenetic lineages in Pseudocercospora<br />

Fig. 43. Pseudocercospora marginalis (CPC 12497). A, B. Leaf spots on upper and lower leaf surface. C, D. Fascicles with conidiophores and conidiogenous cells. E. Close-up<br />

of leaf spot with fruiting. F–J. Conidia. Scale bars = 10 μm.<br />

Fig. 44. Pseudocercospora fraxinites (CPC 10743–10745). A. Leaf spots on upper and lower leaf surface. B. Close-up of leaf spot with fruiting. C–E. Fascicles with conidiophores<br />

and conidiogenous cells. F. Conidiogenous cells. G. Conidia. Scale bars = 10 μm.<br />

Leaf spots amphigenous, subcircular, circular or somewhat irregular,<br />

2–10 mm diam, greyish green, dull grey to dark brown, border<br />

indistinct, at times raised. Mycelium internal, pale brown, consisting<br />

of septate, branched, smooth, 2–3 μm diam hyphae. Caespituli<br />

fasciculate to sporodochial, brown, predominantly hypophyllous, up<br />

to 90 μm diam and 70 μm high. Conidiophores aggregated in mostly<br />

www.studiesinmycology.org<br />

93


Crous et al.<br />

Fig. 45. Pseudocercospora ocimi-basilici (CPC 10283–10285). A. Leaf spots on upper and lower leaf surface. B. Close-up of leaf spot with fruiting. C–E. Fascicles with<br />

conidiophores and conidiogenous cells. F. Conidia. Scale bars = 10 μm.<br />

dense, small to large, sometimes almost sporodochial fascicles,<br />

emerging through stomata or erumpent through the cuticle,<br />

arising from the upper cells of a brown, substomatal to mostly<br />

intraepidermal stroma, 10–80 μm; conidiophores pale to medium<br />

brown or olivaceous-brown, smooth, thin-walled, 0–2-septate,<br />

subcylindrical or attenuated towards the tip, straight to moderately<br />

geniculate-sinuous, unbranched or branched above, 5–35 × 2–5<br />

μm. Conidiogenous cells integrated, terminal or conidiophores<br />

reduced to conidiogenous cells, pale olivaceous-brown, smooth,<br />

tapering to flat-tipped apical loci, 1–2 μm wide, proliferating<br />

sympodially, 5–20 × 2–4 μm. Conidia solitary, subhyaline to pale<br />

olivaceous-brown, smooth, guttulate, shape and size variable,<br />

small conidia short obclavate-cylindrical to fusiform, longer conidia<br />

narrowly obclavate-filiform, sometimes acicular, apex subacute to<br />

subobtuse, base short to long obconically truncate to truncate in<br />

acicular conidia, straight to curved, 3–12-septate, (25–)30–120<br />

(–130) × (2–)2.5–5(–5.5) μm; hila unthickened, neither darkened<br />

nor refractive, 1.5–2.5 μm diam.<br />

Specimens examined: Fiji (intercepted at the Auckland International Airport, on basil<br />

foliage imported from Fiji), on Ocimum basilicum, 24 Feb. 2002, C.F. Hill 529, HAL.<br />

Mexico, on O. basilicum, Dec. 2001, without collector (cultured as MEP 1515), BPI<br />

841445; (intercepted at Los Angeles), 2 Nov. 2002, L.C. Lastra 1395 A, BPI 747831;<br />

6 Dec. 2002, M.E. Palm, holotype <strong>CBS</strong> H-20877, culture ex-type CPC 10283–<br />

10285 (unfortunately no longer viable). New Zealand, Auckland, Botanical Garden,<br />

on O. basilicum, 9 Mar. 2002, C.F. Hill 546, HAL. Vanuatu, Efate, Vanuatu Tropical<br />

Products, on O. basilicum, 25 Oct. 1996, E. McKenzie, PDD 66438; Rainbow<br />

Garden, on O. basilicum, 22 Oct. 1996, E. McKenzie, PDD 66537.<br />

Notes: Braun et al. (2003b) examined Pseudocercospora<br />

collections on Ocimum basilicum from Fiji, New Zealand, and<br />

Vanuatu and identified those collections as P. ocimicola, in spite<br />

of some morphological differences observed. Pseudocercospora<br />

ocimicola differs from collections on Ocimum basilicum, herein<br />

described as P. ocimi-basilici, in having shorter conidia (about<br />

25–80 μm long), conidiophores in small, loose fascicles as well as<br />

solitary conidiophores arising from superficial hyphae, and lacking<br />

or almost lacking stromata.<br />

The description of Cercospora ocimicola provided by Chupp<br />

(1954) covers type material of this species as well as material on<br />

O. basilicum. Based on type material and additional collections, C.<br />

ocimicola is redescribed as P. ocimicola in the current study (see<br />

below).<br />

Pseudocercospora ocimicola (Petr. & Cif.) Deighton,<br />

Mycol. Pap. 140: 149. 1976.<br />

Basionym: Cercospora ocimicola Petr. & Cif., Ann. Mycol. 30: 324.<br />

1932.<br />

= C. hyptidicola (as “hypticola”) Chupp & A.S. Mull., Bol. Soc. Venez. Ci. Nat.<br />

8: 47. 1942, nom. inval.<br />

Leaf spots lacking or almost so to indistinct or angular-irregular,<br />

yellowish ochraceous, olivaceous to brownish, centre finally<br />

sometimes paler, dingy greyish brown to grey, 1–10 mm diam.,<br />

margin indefinite. Mycelium internal and external, superficial,<br />

hyphae emerging through stomata, sparingly branched, septate,<br />

subhyaline to olivaceous-brown, 1–3 μm wide, thin-walled, smooth.<br />

Stromata lacking or small, mostly substomatal, occasionally<br />

intraepidermal, 10–30 μm diam. Caespituli amphigenous, usually<br />

not very conspicuous, olivaceous-brown, finely punctiform to<br />

subeffuse. Conidiophores in small, loose to moderately large and<br />

denser fascicles, arising from stromata or internal hyphae, through<br />

stomata or erumpent through the cuticle, or conidiophores solitary,<br />

arising from superficial hyphae, lateral or occasionally terminal,<br />

straight and subcylindrical to conical or usually geniculatesinuous,<br />

unbranched or occasionally branched, pale olivaceous to<br />

olivaceous-brown, 0–3-septate, thin-walled, smooth, 5–50 × (2–)3–<br />

5 μm. Conidiogenous cells integrated, terminal or conidiophores<br />

reduced to conidiogenous cells, 5–20 × 2–4 μm, proliferating<br />

sympodially, with a single or several inconspicus to flat-tipped<br />

conidiogenous loci, 1–2 μm wide. Conidia solitary, subhyaline<br />

to pale olivaceous or olivaceous-brown, thin-walled, smooth,<br />

obclavate-subcylindrical, apex obtuse to subacute, base truncate<br />

to obconically truncate, 1–8-septate, (15–)25–75(–85) × 2–4 μm,<br />

hila unthickened, neither darkened nor refractive, 1–2 μm diam.<br />

Specimens examined: Brazil, State of Ceará, Pentecoste County, on Ocimum<br />

sp., 2 Mar. 2001, F. Freire, HAL; State of Ceará, Cascavel County, Preaoca, on<br />

Marsypianthes chamaedrys; 12 June 1999, F. Freire, HAL. Cuba, Habana, Santiago<br />

de las Vegas, on Ocimum gratissimum, 6 Sep. 1988, R.F. Castañeda [C88/316],<br />

HAL; Habana, Santiago de las Vegas, on O. sanctum, 28 Dec. 1987, R.F. Castañeda<br />

[C87/382], HAL. Dominican Republic, Santiago, Valle del Cibao, Prov. Santiago, Hato<br />

94


Phylogenetic lineages in Pseudocercospora<br />

Fig. 46. Pseudocercospora oenotherae (CPC 10290, 10041). A. Leaf spots on upper and lower leaf surface. B. Close-up of leaf spot with fruiting. C, D. Fascicles with<br />

conidiophores and conidiogenous cells. E. Conidia. Scale bars = 10 μm.<br />

Fig. 47. Pseudocercospora paederiae (CPC 10007). A. Leaf spots on upper and lower leaf surface. B. Close-up of leaf spot with fruiting. C. Broken base of detached fascicle.<br />

D–G. Synnematal fascicles with conidiophores and conidiogenous cells. H. Conidia. Scale bars = 10 μm.<br />

del Yonque, on O. campechianum (= O. micranthum), 26 Nov. 1930, E.L. Ekman, Cif.,<br />

Mycofl. Doming. Exs. 359, lectotype designated here BPI 845245 and isolectotype<br />

BPI 438987. India, Midnapur, Daspur, on O. sanctum, 3 Dec. 1967, M. Mandal, BPI<br />

438988. Venezuela, Les Tincheras, Edo Carabobo, on Hyptis sp., 24 Feb. 1940, M.F.<br />

Barrus & A.S. Muller, type of Cercospora hyptidicola, CUP-VZ 3863; La Cuchilla, Río<br />

Claro, Lara, on Hyptis suaveolens, June 2007, R. Urtiaga, HAL.<br />

Notes: Chupp (1954) reduced C. hyptidicola, described from Venezuela<br />

on Hyptis sp., to synonymy with C. lycopodis, and Crous & Braun<br />

(2003) followed this treatment. Braun & Urtiaga (2008) examined<br />

type material of this species and an additional new collection from<br />

Venezuela and considered C. hyptidicola a synonym of C. ocimicola<br />

since the two species are morphologically indistinguishable. Both<br />

also occur on two closely related plants, Hyptis and Ocimum, in the<br />

Lamiaceae subfam. Ocimoideae. Pseudocercospora collections on<br />

Marsypianthes (subfam. Ocimoideae) in Brazil, is morphologically<br />

also indistinguishable from collections on Ocimum spp. and was<br />

assigned to P. ocimicola by Braun & Freire (2002).<br />

Pseudocercospora oenotherae (Ellis & Everh.) Y.L. Guo &<br />

X.J. Liu, Acta Mycol. Sin. 11: 297. 1992. Fig. 46.<br />

Basionym: Cercospora oenotherae Ellis & Everh., Proc. Acad. Nat.<br />

Sci. Philadelphia 46: 380. 1894.<br />

Specimens examined: South Korea, Seoul, Oenothera odorata, 6 Sep. 2003, H.D.<br />

Shin, KUS-F 19606, CPC 10630 = <strong>CBS</strong> 131920; O. odorata, 2 Oct. 2002, H.D.<br />

Shin, <strong>CBS</strong> H-20878, cultures CPC 10290 = <strong>CBS</strong> 131885, CPC 10041.<br />

Pseudocercospora paederiae Goh & W.H. Hsieh,<br />

Cercospora and similar fungi from Taiwan: 291. 1990. Fig.<br />

47.<br />

Leaf spots amphigenous, irregular to subcircular, 3–7 mm diam,<br />

pale brown in centre, with raised, dark brown border, at times<br />

with concentric zones delimited by dark borders. Mycelium<br />

internal, occasionally in addition with a few external hyphae<br />

www.studiesinmycology.org<br />

95


Crous et al.<br />

Fig. 48. Pseudocercospora pallida (CPC 10776–10778). A. Leaf spots on upper and lower leaf surface. B. Close-up of leaf spot with fruiting. C, D. Fascicles with conidiophores<br />

and conidiogenous cells. E. Conidia. Scale bars = 10 μm.<br />

emerging through stomata, pale to medium brown, consisting of<br />

septate, branched, smooth to finely verruculose, 3–4 μm diam<br />

hyphae. Caespituli predominantly hypophyllous, synnematous,<br />

dark brown on leaves, 25–50 μm wide and 100–200 μm high.<br />

Conidiophores aggregated in dense synnemata arising from<br />

the upper cells of a brown substomatal stroma 20–40 μm diam;<br />

individual conidiophores subhyaline to olivaceous-brown, smooth,<br />

multiseptate, subcylindrical-filiform, straight to gently curved,<br />

unbranched, 80–200 × 3–5 μm. Conidiogenous cells terminal,<br />

unbranched, brown, subcylindrical to clavate, smooth, tapering to<br />

flat-tipped apical loci, neither thickened nor darkened, proliferating<br />

sympodially, or rarely percurrently near apex, 20–35 × 2–5 μm.<br />

Conidia solitary, subhyaline, greenish yellow to pale brown, smooth<br />

to finely verruculose, guttulate, obclavate, short conidia sometimes<br />

cylindrical or fusiform, apex obtuse to subobtuse, base obconically<br />

truncate, straight to curved, 1–10-septate, (20–)40–60(–70) × 3–7<br />

μm; hila not thickened nor darkened or refractive, 1–2 μm diam.<br />

Specimen examined: South Korea, Pocheon, National Arboretum, Paederia foetida<br />

(= P. scandens), 23 Oct. 2002, H.D. Shin, <strong>CBS</strong> H-20879, culture CPC 10007<br />

(unfortunately no longer viable).<br />

Notes: A brown leaf spot on P. scandens was reported from the<br />

Keryong Mountain in Chungnam district, South Korea, including<br />

the southern districts, Chonnam, Kyeongnam, and Jeju Island<br />

by Lee et al. (2001). The associated fungus was identified as<br />

Pseudocercospora paederiae. Characteristics of the Korean<br />

material are consistent with the original description of P. paederiae<br />

(from Taiwan), except for longer conidiophores and shorter conidia<br />

that are up to 10-septate. All characterstics overlap, and the<br />

Korean collections are tentatively assigned to P. paederiae. New<br />

collections from Taiwan, together with cultures and sequence<br />

data are necessary to reassess Pseudocercospora on Paederia<br />

scandens in Asia.<br />

Pseudocercospora pallida (Ellis & Everh.) H.D. Shin & U.<br />

Braun, Mycotaxon 74: 114. 2000. Fig. 48.<br />

Basionym: Cercospora pallida Ellis & Everh., J. Mycol. 3: 21.<br />

1887.<br />

≡ Cercospora langloisii Sacc., Syll. Fung. 10: 647. 1892, nom. superfl.<br />

= Cercospora duplicata Ellis & Everh., J. Mycol. 5: 70. 1889.<br />

= Cercospora capreolata Ellis & Everh., J. Mycol. 8: 70. 1902.<br />

Specimen examined: South Korea, Suwon, on Campsis grandiflora, 14 Oct. 2003,<br />

H.D. Shin, KUS-F 19888, <strong>CBS</strong> H-20880, CPC 10776 = <strong>CBS</strong> 131889.<br />

Pseudocercospora paraguayensis (Kobayashi) Crous,<br />

Mycotaxon 57: 270. 1996.<br />

Basionym: Cercospora paraguayensis Kobayashi, Trans. Mycol.<br />

Soc. Japan 25: 263. 1984.<br />

Specimen examined: Brazil, São Paulo, Susano clonal orchard, leaves of<br />

Eucalyptus nitens, Jun. 1996, P.W. Crous, CPC 1458 = <strong>CBS</strong> 111317.<br />

Pseudocercospora pini-densiflorae (Hori & Nambu)<br />

Deighton, Trans. Brit. Mycol. Soc. 88: 390. 1987.<br />

Basionym: Cercospora pini-densiflorae Hori & Nambu, J. Pl.<br />

Protect. (Tokyo) 4: 353. 1917.<br />

≡ Cercoseptoria pini-densiflorae (Hori & Nambu) Deighton, Mycol. Pap.<br />

140: 167. 1976.<br />

Teleomorph: “Mycosphaerella” gibsonii H.C. Evans, Mycol. Pap.<br />

153: 61. 1984.<br />

Specimens examined: Japan, C-511, NIAES herbarium; Shizuoka, Kanaya, on P.<br />

densiflora, 6 Mar. 1976, K. Kasai, TFM: FPH-4544; Kumamoto, isolated from P.<br />

thunbergii, 24 April 1964, Y. Tokushige, MUCC 534.<br />

Pseudocercospora plectranthi G.C. Hunter, Crous, U.<br />

Braun & H.D. Shin, sp. nov. MycoBank MB564839. Fig. 49.<br />

Etymology: Name derived from the host genus Plectranthus, from<br />

which it was collected.<br />

Leaf spots distinct, scattered over leaf surface and along leaf<br />

border, amphigenous, subcircular to irregular, 2–12 mm diam,<br />

brown to pale brown. Mycelium internal and external, pale<br />

brown to hyaline, branched, smooth, 1.5–4 mm diam. Caespituli<br />

amphigenous, predominantly epiphyllous, black, distributed<br />

evenly over the leaf spot, punctiform. Stromata almost absent,<br />

weakly developed, subimmersed, globular, olivaceous-brown,<br />

20–70 μm diam. Conidiophores fasciculate, brown to pale brown,<br />

straight to curved, smooth, unbranched, apex rounded to truncate,<br />

0–2-septate, (18–)22–35(–45) × (3–)4(–5) μm. Conidiogenous cells<br />

integrated, terminal, unbranched, brown to pale brown, smooth,<br />

proliferating sympodially, (9–)14–21(–25) × (2–)3–4(–5) μm.<br />

Conidia solitary, pale brown to subhyaline, guttulate, 2–10-septate,<br />

slightly constricted at septa, filiform, apex obtuse to subobtuse,<br />

base obconic to long obconic, (41–)62–98(–112) × (3–)4(–5) μm,<br />

hila unthickened, not darkened.<br />

96


Phylogenetic lineages in Pseudocercospora<br />

Fig. 49. Pseudocercospora plectranthi (CPC 11462). A. Leaf spots on lower leaf surface. B. Close-up of leaf spot with fruiting. E. Fascicle with conidiophores and conidiogenous<br />

cells. C, D, F–H. Conidia. Scale bars = 10 μm.<br />

Fig. 50. Pseudocercospora profusa (CPC 10055). A. Leaf spots on upper and lower leaf surface. B. Close-up of leaf spot with fruiting. C, D. Conidiophores and conidiogenous<br />

cells. E. Conidia. Scale bars = 10 μm.<br />

Culture characteristics: Colonies after 2 wk at 24 ºC in the dark<br />

on MEA; erumpent, spreading, with moderate aerial mycelium, and<br />

smooth, lobate margins. Surface pale olivaceous-grey; reverse<br />

iron-grey. Colonies reaching 8 mm diam.<br />

Specimen examined: South Korea, Jeonju, on leaves of Plectranthus sp., 1 July<br />

2004, H.D. Shin, holotype <strong>CBS</strong> H-20396, cultures ex-type CPC 11462 = <strong>CBS</strong><br />

131586, CPC 11463.<br />

Notes: No species of Pseudocercospora are presently known from<br />

Plectranthus and allied genera, and as P. plectranthi does not<br />

correspond to any sequences available in GenBank at present,<br />

it is described as a new species. Numerous Pseudocercospora<br />

species have been described from hosts in the Lamiaceae, e.g. P.<br />

anisomelicola, P. colebrookiae, P. colebrookiicola, P. lamiacearum,<br />

P. leucadis, P. lycopodis, P. ocimicola, P. perillulae, P. pogostemonis,<br />

P. salvia, and P. scutellariae, but all of them are morphologically<br />

easily distinguishable from P. plectranthi by having different conidial<br />

shapes (mostly obclavate-cylindrical), smaller or no stromata<br />

or abundant superficial mycelium with solitary conidiophores.<br />

Pseudocercospora salvia has filiform conidia similar to those of P.<br />

plectranthi but in the former they are narrower (Hsieh & Goh 1990)<br />

and conidiophores are not fasciculate.<br />

Pseudocercospora profusa (Syd. & P. Syd.) Deighton,<br />

Trans. Brit. Mycol. Soc. 88: 388. 1987. Fig. 50.<br />

Basionym: Cercospora profusa Syd. & P. Syd., Ann. Mycol. 7(2):<br />

175. 1909.<br />

≡ Cercosporiopsis profusa (Syd. & P. Syd.) Miura, in: M. Miura, Flora<br />

of Manchuria and East Mongolia. Part III. Cryptogams, fungi 3: 530.<br />

1928.<br />

Specimens examined: South Korea, Seoul, Acalypha australis, 17 Sep. 2003, H.D.<br />

Shin, <strong>CBS</strong> H-20882, culture CPC 10713–10715; Wonju, A. australis, 18 Oct. 2002,<br />

H.D. Shin, <strong>CBS</strong> H-20881, culture CPC 10055.<br />

www.studiesinmycology.org<br />

97


Crous et al.<br />

Fig. 51. Pseudocercospora proteae (CPC 15217). A. Fascicle with conidiophores and conidiogenous cells. B. Conidiogenous cell giving rise to a conidium. C–F. Conidia. Scale<br />

bars = 10 μm.<br />

Fig. 52. Pseudocercospora prunicola (CPC 14511). A. Leaf spots on upper and lower leaf surface. B. Close-up of leaf spot with fruiting. C, D. Fascicles with conidiophores with<br />

conidiogenous cells. E. Hypha with conidiogenous loci. F. Conidia. Scale bars = 10 μm.<br />

Pseudocercospora proteae Crous, sp. nov. MycoBank<br />

MB564840. Fig. 51.<br />

Etymology: Name derived from Protea, the host genus from which<br />

it was collected.<br />

Leaf spots absent, with sporulation on adaxial leaf surface,<br />

prominent among leaf hairs. Mycelium internal and external,<br />

pale brown, consisting of septate, branched, smooth, 1.5–2 μm<br />

diam hyphae. Caespituli fasciculate, brown, hypophyllous, up<br />

to 120 μm diam and 40 μm high. Conidiophores aggregated in<br />

dense fascicles, arising from the upper cells of a brown stroma,<br />

up to 100 μm diam and 20 μm high; conidiophores pale brown<br />

to brown, smooth, 0–2-septate, subcylindrical to somewhat<br />

doliiform at the base, straight to geniculate-sinuous, unbranched<br />

or branched above, 15–40 × 3–6 μm. Conidiogenous cells<br />

terminal, unbranched, pale brown to brown, smooth, proliferating<br />

sympodially near apex, with flat-tipped loci, 10–15 × 2.5–5 μm.<br />

Conidia solitary, pale brown, smooth, guttulate, subcylindrical,<br />

straight to curved, apex obtuse, base truncate, (3–)8–12-septate,<br />

(35–)70–85(–100) × 3(–3.5) μm; hila unthickened, neither<br />

darkened nor refractive, 2.5–3 μm diam.<br />

Culture characteristics: Colonies after 2 wk at 24 ºC in the dark<br />

on MEA; erumpent, spreading, with sparse aerial mycelium, and<br />

smooth, even margins. Surface olivaceous-grey; reverse iron-grey.<br />

Colonies reaching 10 mm diam.<br />

Specimen examined: South Africa, Western Cape Province, Stellenbosch,<br />

Assegaaibos, on leaves of Protea mundii, 16 Apr. 2008, F. Roets, holotype <strong>CBS</strong><br />

H-20883, culture ex-type CPC 15216 = <strong>CBS</strong> 131587, CPC 15218, 15217.<br />

Notes: The long, multi-septate, subcylindrical conidia of P. proteae<br />

are distinct from those of P. stromatosa (25–40 × 2.5–3 μm), and<br />

from the shorter, verruculose conidia of P. protearum (Taylor &<br />

Crous 2000, Crous et al. 2004a).<br />

Pseudocercospora prunicola (Ellis & Everh.) U. Braun, in:<br />

Braun & Mel’nik, Trudy Bot. Inst. Im. V.L. Komarova 20: 82.<br />

1997. Fig. 52.<br />

Basionym: Cercospora prunicola Ellis & Everh., J. Mycol. 3: 17.<br />

1887.<br />

≡ Cercoseptoria prunicola (Ellis & Everh.) J.M. Yen, Bull. Trimest. Soc.<br />

Mycol. France 97: 92. 1981.<br />

= Cercospora pruni-yedoensis Sawada, Rep. Gov. Agric. Res. Inst. Taiwan 85:<br />

120. 1943, nom. inval.<br />

98


Phylogenetic lineages in Pseudocercospora<br />

Fig. 53. Pseudocercospora pseudostigmina-platani (CPC 11726). A. Leaf spots on upper and lower leaf surface. B. Close-up of leaf spot with fruiting. C, E, F. Fascicles with<br />

conidiophores and conidiogenous cells, giving rise to dimorphic conidia. D. Pseudocercospora conidia. G. Conidia of stigmina-like synanamorph. Scale bars = 10 μm.<br />

≡ Pseudocercospora pruni-yedoensis Goh & W.H. Hsieh, in Hsieh & Goh,<br />

Cercospora and similar genera from Taiwan: 282. 1990.<br />

= Cercospora pruni-persicae J.M. Yen, Bull. Trimest. Soc. Mycol. France 94:<br />

61. 1978 and Rev. Mycol. 42: 59. 1978.<br />

≡ Cercoseptoria pruni-persicae (J.M. Yen) J. M. Yen, Bull. Trimest. Soc.<br />

Mycol. France 97: 92. 1981.<br />

Misapplied name: Pseudocercospora circumscissa (Sacc.) Y.L.<br />

Guo & X.J. Liu, Mycosystema 2: 231. 1989.<br />

Descriptions: Hsieh & Goh (1990: 282–283, as Pseudocercospora<br />

pruni-yedoensis), Braun & Mel’nik (1997: 82–83).<br />

Illustrations: Hsieh & Goh (1990: 283, fig. 216, as Pseudocercospora<br />

pruni-yedoensis), Braun & Mel’nik (1997: 121, fig. 48).<br />

Specimens examined: South Korea, Suwon, on Prunus yedoensis (≡ Cerasus<br />

yedoensis), 2 Oct. 2007, H.D. Shin, <strong>CBS</strong> H-20860, CPC 14511 = <strong>CBS</strong> 132107.<br />

Taiwan, Taipei, on Prunus yedoensis, 30 Nov. 1930, K. Sawada, holotype of<br />

Pseudocercospora pruni-yedoensis, NTU-PPE. USA, Louisiana, Point a la Hache,<br />

Langlois 542, holotype of Cercospora prunicola, NY (also Ellis & Everh., North<br />

American Fungi 1771, NY, isotype).<br />

Notes: Braun & Mel’nik (1997) discussed the intricate taxonomy<br />

of Passalora and Pseudocercospora on species of Prunus s. lat.<br />

in detail and demonstrated, based on type material and other<br />

collections, that two distinct species are involved. Cercospora<br />

circumscissa is a true Passalora with somewhat thickened and<br />

darkened conidiogenous loci and hila. Its placement in Passalora<br />

s. str. has recently been confirmed based on molecular data<br />

(unpubl.). Superficial mycelium with solitary conidiophores is<br />

lacking, and the conidia are mostly somewhat rough-walled.<br />

Passalora circumscissa is also known from Asia, e.g. China, Iran<br />

and Japan. Some Chinese collections deposited at HMAS have<br />

been examined and proved to be true Passalora circumscissa<br />

(e.g. on Prunus mandshurica × Armeniaca mandshurica, Yanji,<br />

Jilin, HMAS 55845). Other collections belong to Pseudocercospora<br />

prunicola (e.g. on Prunus yedoensis, Nanjing, Jiangsu, HMAS<br />

06632, and Changshan, Hunan, HMAS 55847). The Chinese<br />

authors misapplied the name Pseudocercospora circumscissa.<br />

The published descriptions of “Pseudocercospora circumscissa”<br />

in Guo & Hsieh (1995) and Guo & Liu (1998) cover both species,<br />

namely Passalora circumscissa as well as Pseudocercospora<br />

prunicola, but the illustrations seem to be based on material of the<br />

true Pseudocercospora on Prunus. Pseudocercospora prunicola is<br />

morphologically easily distinguishable from Passalora circumscissa<br />

by its inconspicuous, unthickened, not darkened conidiogenous<br />

loci and hila, well-developed superficial hyphae with solitary<br />

conidiophores and smooth conidia. The position of P. prunicola<br />

within the Pseudocercospora clade has been confirmed on the<br />

basis of sequence data retrieved from the present Korean culture.<br />

Pseudocercospora pseudostigmina-platani Crous, U.<br />

Braun & H.D. Shin, sp. nov. MycoBank MB564841. Fig. 53.<br />

Etymology: Name reflects its morphological similarity to the<br />

Pseudocercospora anamorph of Mycosphaerella stigmina-platani.<br />

Leaf spots amphigenous, irregular to subcircular, 5–10 mm diam,<br />

medium brown with a wide chlorotic margin. Mycelium predominantly<br />

internal, pale brown, consisting of septate, branched, smooth, 2–3<br />

μm diam hyphae. Caespituli fasciculate to sporodochial, brown,<br />

predominantly hypophyllous, up to 60 μm diam and 30 μm high.<br />

Conidiophores aggregated in loose to dense fascicles, arising from<br />

the upper cells of a brown stroma, up to 50 μm diam and 20 μm<br />

high; conidiophores brown, verruculose, 0–1-septate, subcylindrical<br />

to somewhat doliiform, straight to slightly curved, unbranched, 10–<br />

20 × 7–10 μm. Conidiogenous cells terminal, unbranched, brown,<br />

verruculose, proliferating percurrently near apex, with 1–4 irregular<br />

www.studiesinmycology.org<br />

99


Crous et al.<br />

Fig. 54. Pseudocercospora pyracanthigena (CPC 10808). A. Leaf spots on upper and lower leaf surface. B. Close-up of leaf spot with fruiting. C, D. Fascicles with conidiophores<br />

and conidiogenous cells. E. Conidiogenous cell giving rise to a conidium. F. Conidia. Scale bars = 10 μm.<br />

proliferations, 8–20 × 5–8 μm. Conidia dimorphic: cercostigminalike<br />

conidia fusoid-ellipsoidal to obclavate, straight to curved,<br />

apex obtuse, base obconically subtruncate, brown, verruculose,<br />

3–5-septate, at times constricted at septa, (28–)30–35(–38) × (5–)7–<br />

8(–9) μm; stigmina-like conidia broadly ellipsoid, straight to curved,<br />

apex obtuse, base obconically subtruncate, brown, verruculose,<br />

3-septate, at times constricted at septa, which can also be darkened,<br />

and wall can appear thick though not distoseptate sensu stricto, (17–)<br />

21–25(–28) × (9–)10–12 μm; hila unthickened, neither darkened nor<br />

refractive, 3–3.5 μm diam.<br />

Culture characteristics: Colonies after 2 wk at 24 ºC in the dark<br />

on MEA; surface folded, erumpent, spreading, with sparse aerial<br />

mycelium, and smooth, lobate margins. Surface pale olivaceousgrey,<br />

with thin, olivaceous-grey margin; reverse iron-grey. Colonies<br />

reaching 7 mm diam.<br />

Specimen examined: South Korea, Suwon, on leaves of Platanus occidentalis, 7<br />

Nov. 2007, H.D. Shin, holotype <strong>CBS</strong> H-20884, culture ex-type CPC 11726 = <strong>CBS</strong><br />

131588.<br />

Notes: Pseudocercospora pseudostigmina-platani resembles the<br />

Pseudocercospora/Stigmina synanamorphs of Mycosphaerella<br />

stigmina-platani on Platanus in the USA, although its conidia<br />

are larger in size. The stigmina-like anamorph has conidia that<br />

are 3–6-septate, (15–)23–30(–45) × (6–)8–9(–10) μm, and the<br />

Pseudocercospora conidia are 3–7-septate, (35–)45–60(–100) ×<br />

(4–)4.5–6(–6.5) μm (Crous & Corlett 1998). Based on DNA sequence<br />

comparisons, the genus Stigmina was treated as synonym of<br />

Pseudocercospora (Crous et al. 2006). The two species occurring<br />

on Platanus both with Pseudocercospora/Stigmina synanamorphs<br />

treated here, further support this synonymy.<br />

Pseudocercospora pyracanthae (Katsuki) C. Nakash. &<br />

Tak. Kobay., Ann. Phytopathol. Soc. Japan 63: 313. 1997.<br />

Basionym: Cercospora pyracanthae Katsuki, Bull. Agric. Improv.<br />

Sect. Econ. Dept. Fukuoka Pref. 1: 19. 1949.<br />

Specimens examined: Japan, Fukuoka, Kurume, on Pyracantha angustifolia, 6<br />

Nov. 1947, S Katsuki, holotype TNS-F-243829; Chiba, Sanbu, October 1976, E.<br />

Ishizawa, TFM: FPH-4432; Okayama, Okayama, on P. angustifolia, 20 Nov. 1960, H.<br />

Tanaka, TFM: FPH-3247; P. angustifolia, T. Koboyashi & C. Nakashima, CNS-446,<br />

culture MUCC892; Ibaraki, on P. angusti, Nov. 1994, T. Nishijima, culture MAFF<br />

237140; Kumamoto, on P. crenulata, 1973, T. Kobayashi, culture MAFF 410022.<br />

Notes: DNA sequence data obtained for Japanese isolates of this<br />

species indicate at least two different taxa. Further research is<br />

required to select a specimen and isolate that is authentic for the<br />

name, while other collections probably represent a novel species.<br />

Pseudocercospora pyracanthigena Crous, U. Braun &<br />

H.D. Shin, sp. nov. MycoBank MB564842. Fig. 54.<br />

Etymology: Name derived from the host plant Pyracantha, from<br />

which it was collected.<br />

Leaf spots amphigenous, irregular to angular, up to 7 mm diam,<br />

brown, with inconspicuous border. Mycelium internal, hyaline<br />

to pale brown, consisting of septate, branched, smooth, 2–3 μm<br />

diam hyphae. Caespituli fasciculate to sporodochial, amphigenous,<br />

but predominantly epiphyllous, olivaceous on leaves, up to 150<br />

μm wide and 60 μm high. Conidiophores aggregated in dense<br />

fascicles arising from the upper cells of a brown stroma up to 120<br />

μm wide and 35 μm high; conidiophores medium brown, smooth,<br />

0–1-septate, subcylindrical to ampulliform, straight, unbranched,<br />

mostly reduced to conidiogenous cells, tapering to flat-tipped apical<br />

loci, proliferating sympodially or percurrently near apex, 7–15 × 2–3<br />

μm. Conidia solitary, brown, smooth, guttulate, subcylindrical to<br />

narrowly obclavate, apex subobtuse, base obconically subtruncate<br />

to truncate, straight to gently curved, 1–4-septate, (30–)35–40(–<br />

45) × (2.5–)3(–3.5) μm; hila unthickened, neither darkened nor<br />

refractive, 1.5 μm wide.<br />

Culture characteristics: Colonies after 2 wk at 24 ºC in the dark<br />

on MEA; surface folded, erumpent, spreading, with sparse aerial<br />

mycelium, and smooth, lobate margins. Surface smoke-grey;<br />

reverse olivaceous-grey. Colonies reaching 15 mm diam.<br />

Specimen examined: South Korea, Jeju, Halla arboretum, on leaves of Pyracantha<br />

angustifolia, 1 Nov. 2007, M.J. Park, holotype <strong>CBS</strong> H-20885, culture ex-type CPC<br />

10808 = <strong>CBS</strong> 131589.<br />

100


Phylogenetic lineages in Pseudocercospora<br />

Fig. 55. Pseudocercospora ranjita (CPC 11141). A. Leaf spots on upper leaf surface. B, C. Close-up of leaf spots with fruiting. D–F. Fascicles with conidiophores and<br />

conidiogenous cells. H. Branched conidiophore. G, I–K. Conidia. Scale bars = 10 μm.<br />

Notes: Pseudocercospora pyracanthigena is distinct from P.<br />

pyracanthae (conidia 25–65 × 2.4–4 μm, conidiophores 15–40 ×<br />

2.5–3 μm; Chupp 1954) in having shorter conidia and conidiophores.<br />

A second species has been recorded on Pyracantha angustifolia in<br />

Korea (CPC 14711–14713), for which a new name is required.<br />

Pseudocercospora ranjita (S. Chowdhury) Deighton,<br />

Mycol. Pap. 140: 151. 1976. Fig. 55.<br />

Basionym: Cercospora ranjita S. Chowdhury, Lloydia 21: 155.<br />

1958.<br />

Leaf spots epiphyllous, distinct, scattered, white to pale brown,<br />

irregular, 1–4 mm diam, definite raised brown border, surrounded<br />

www.studiesinmycology.org<br />

101


Crous et al.<br />

Fig. 56. Pseudocercospora ravenalicola (<strong>CBS</strong> 122468). A. Leaf spots on upper leaf surface. B, C. Close-up of leaf spots. D–G. Fascicles with conidiophores and conidiogenous<br />

cells. H–L. Conidia. Scale bars = 10 μm.<br />

entirely or partly by brown to dark brown irregular halo. Mycelium<br />

internal and external, 2–5 mm wide, branched, smooth, septate,<br />

subhyaline to pale brown. Caespituli epiphyllous, few in number,<br />

distributed over the leaf spot, dark brown to black. Stromata<br />

well-developed, intraepidermal to subimmersed, brown, globular<br />

to irregular, 40–90 μm diam. Conidiophores fasciculate, arising<br />

from the upper cells of stromata, pale brown, straight to curved,<br />

unbranched and branched, 1–4-septate, irregular in width, apex<br />

truncate, (20–)27–38(–42) × (3–)3.5–4.5(–5) μm. Conidiogenous<br />

cells terminal, unbranched, pale brown, smooth to finely verrucose,<br />

proliferating percurrently, (8–)9–15(–19) × 3(–4) μm. Conidia<br />

solitary, cylindrical to obclavate, 2–9-septate, subhyaline to pale<br />

brown, smooth, apex rounded to subobtuse, base obconically to<br />

long obconically truncate, (26–)44–67(–84) × (3–)4–5(–6) μm; hila<br />

unthickened nor darkened.<br />

Culture characteristics: Colonies on MEA reaching 27 mm diam after<br />

30 d at 24 °C on MEA. Colonies circular with a smooth margin, that is<br />

darker than the colony centre, slight folding; aerial mycelium moderate;<br />

greyish blue to olivaceous-grey (surface) and iron-grey (reverse).<br />

Specimen examined: Indonesia, Northern Sumatra, on leaves of Gmelina sp., Mar.<br />

2004, M.J. Wingfield, <strong>CBS</strong> H-20386, culture CPC 11141 = <strong>CBS</strong> 126005.<br />

Note: The present collection closely matches the morphological<br />

description of the type specimen, which was collected from India<br />

(Chowdhury 1958).<br />

Pseudocercospora ravenalicola G.C. Hunter & Crous, sp.<br />

nov. MycoBank MB564843. Fig. 56.<br />

Etymology: Name derived from the plant host Ravenala, from which<br />

this fungus was isolated.<br />

102


Phylogenetic lineages in Pseudocercospora<br />

Fig. 57. Pseudocercospora rhamnellae (CPC 12500–12502). A. Leaf spots on upper leaf surface. B, C. Close-up of leaf spots with fruiting. D, E. Fascicles with conidiophores<br />

and conidiogenous cells. F–J. Conidia. Scale bars = 10 μm.<br />

Leaf spots amphigenous, distinct, brown to pale, predominantly<br />

at leaf margin, but smaller spots are scattered over the whole<br />

leaf, elongated to irregular; border definite, raised, with dark<br />

brown to black border. Caespituli amphigenous, sparsely<br />

scattered over the leaf spot and aggregated toward the lesion<br />

margin, flocculose, pale to pale olivaceous. Stromata erumpent<br />

to superficial, globular, pale to dark brown, 30–80 μm diam.<br />

Conidiophores fasciculate, arising from the stromata, brown,<br />

becoming paler toward the apex, smooth, 0–3-septate, straight to<br />

curved, apex subtruncate to rounded, predominantly unbranched,<br />

sometimes branched below, (14–)17–25(–32) × (3–)4–5(–6)<br />

μm. Conidiogenous cells terminal, pale brown, smooth, straight<br />

to geniculate, tapering to a truncate to blunt apex, proliferating<br />

sympodially and percurrently, (7–)13(–15) × (3–)3.5(–4) μm.<br />

Conidia solitary, cylindrical, straight to curved, smooth, subhyaline<br />

to pale brown, 1–6-septate, infrequently constricted at the septa,<br />

apex obtuse to narrowly rounded, base obconically truncate to<br />

long obconically truncate, (16–)25–47(–60) × (3–)4(–5) μm; hila<br />

unthickened, nor darkened.<br />

Culture characteristics: Colonies after 1 mo at 24 ºC in the dark<br />

on MEA; erumpent, spreading, with moderate aerial mycelium,<br />

and smooth, lobate margins. Surface smoke-grey in centre, pale<br />

olivaceous-grey in outer region; reverse olivaceous-grey. Colonies<br />

reaching 35 mm diam.<br />

Specimen examined: India, Chandigarh, on leaves of Ravenala madagascariensis,<br />

2 Mar. 2004, W. Gams, holotype <strong>CBS</strong> H-20394, culture ex-type <strong>CBS</strong> 122468.<br />

Note: Pseudocercospora ravenalicola represents the first species<br />

of Pseudocercospora known from this host and the Strelitziaceae.<br />

Pseudocercospora rhabdothamni U. Braun & C.F. Hill,<br />

Australas. Plant Pathol. 33: 489. 2004.<br />

Specimen examined: New Zealand, Auckland, University Campus, Princes Street,<br />

on Rhabdothamnus solanderi, 9 Nov. 2003, C.F. Hill, holotype HAL 1790 F, isotype<br />

PDD 80279, culture ex-isotype <strong>CBS</strong> 114872, ICMP 15289.<br />

Note: Two strains have been deposited in <strong>CBS</strong> under the name<br />

Ps. rhabdothamni.<br />

Pseudocercospora rhamnellae G.C. Hunter, H.D. Shin, U.<br />

Braun & Crous, sp. nov. MycoBank MB564844. Fig. 57.<br />

Etymology: Name derived from the plant host Rhamnella, from<br />

which this fungus was isolated.<br />

Leaf spots distinct, amphigenous, subcircular to irregular, pale to<br />

dark brown, dark brown to black raised border with effuse spreading<br />

pale to dark brown halo, solitary or sometimes coalescing, 2–11<br />

www.studiesinmycology.org<br />

103


Crous et al.<br />

Fig. 58. Pseudocercospora rhododendri-indici (CPC 10822–10824). A. Leaf spots on upper and lower leaf surface. B. Close-up of leaf spot with fruiting. C, D. Fascicles with<br />

conidiophores and conidiogenous cells. E. Conidia. Scale bars = 10 μm.<br />

mm diam. Mycelium smooth, branched, internal and external, pale<br />

brown, septate 2–4 μm diam. Caespituli amphigenous, on adaxial<br />

surface single, scattered to slightly aggregated, pale to light brown,<br />

on abaxial surface significantly more dense, mostly aggregated<br />

over the lesions surface, light brown to light olive-green. Stromata<br />

medium to large, well-developed, superficial to intraepidermal, pale<br />

to dark brown, 30–85 μm diam. Conidiophores fasciculate, straight<br />

to curved, brown, becoming paler to the apex, unbranched, smooth<br />

to finely verruculose, subcylindrical, 0–1-septate, (10–)13–19(–23)<br />

× (2–)3–4(–5) μm. Conidiogenous cells terminal, unbranched, pale<br />

brown, smooth to slightly verruculose, proliferating sympodially or<br />

percurrently near apex, (3–)5–10(–15) × (2–)3–4(–5) μm. Conidia<br />

solitary, guttulate, straight to curved, apex obtusely rounded, base<br />

truncate, solitary, pale brown, thin-walled, smooth, subcylindrical<br />

to narrowly obclavate, 1–12-septate, (17–)33–57(–80) × (2–)3(–4)<br />

μm, hila neither thickened, nor darkened or refractive, 2–3 μm diam.<br />

Culture characteristics: Colonies after 2 wk at 24 ºC in the dark<br />

on MEA; surface folded, erumpent, spreading, with sparse aerial<br />

mycelium, and smooth, lobate margins. Surface olivaceous-grey<br />

with patches of pale olivaceous-grey; reverse iron-grey. Colonies<br />

reaching 10 mm diam.<br />

Specimen examined: South Korea, Jeju, Halla arboretum, on leaves of Rhamnella<br />

franguloides, 29 Oct. 2005, H.D. Shin, holotype <strong>CBS</strong> H-20395, culture ex-type CPC<br />

12500 = <strong>CBS</strong> 131590, CPC 12501, 12502.<br />

Notes: No species of Pseudocercospora are presently known<br />

to occur on Rhamnella (Rhamnaceae). Pseudocercospora<br />

rhamnellae is distinct from P. rhamnaceicola (on Paliurus, Rhamnus<br />

and Zizyphus; conidia 18–85 × 1.5–2.5 μm, apex pointed, base<br />

obconically truncate, Hsieh & Goh 1990) by having wider conidia,<br />

which are subcylindrical-obclavate with an obtusely rounded apex<br />

and truncate base. The conidiophores are also shorter and wider.<br />

Further collections are needed to determine whether isolates from<br />

other hosts in the Rhamnaceae all represent P. rhamnaceicola.<br />

Pseudocercospora rhododendri-indici Crous, U. Braun &<br />

H.D. Shin, sp. nov. MycoBank MB564845. Fig. 58.<br />

Etymology: Name derived from the plant host Rhododendron<br />

indicum, from which it was collected.<br />

Leaf spots amphigenous, subcircular to circular, 2–3 mm diam,<br />

medium brown with a raised, dark brown border. Mycelium internal,<br />

pale brown, consisting of septate, branched, smooth, 2–3 μm diam<br />

hyphae. Caespituli fasciculate to sporodochial, olivaceous-brown,<br />

predominantly epiphyllous, up to 100 μm diam and 80 μm high.<br />

Conidiophores aggregated in dense fascicles, arising from the<br />

upper cells of a brown stroma, up to 80 μm diam and 40 μm high;<br />

conidiophores pale brown, smooth, 0–2-septate, subcylindrical,<br />

straight to geniculate-sinuous, unbranched, 10–30 × 3–4 μm.<br />

Conidiogenous cells terminal, pale brown, smooth, tapering to<br />

flat-tipped apical loci, proliferating sympodially, 10–15 × 3–3.5 μm.<br />

Conidia solitary, pale brown, smooth, guttulate, subcylindrical, apex<br />

subobtuse, base truncate, straight to variously curved, 1–4-septate,<br />

(35–)40–55(–65) × (2–)3 μm; hila unthickened, neither darkened<br />

nor refractive, 2–3 μm diam.<br />

Culture characteristics: Colonies after 2 wk at 24 ºC in the dark<br />

on MEA; erumpent, spreading, with moderate aerial mycelium,<br />

and smooth, lobate margins. Surface olivaceous-grey in centre,<br />

pale olivaceous-grey in outer region; reverse iron-grey. Colonies<br />

reaching 14 mm diam.<br />

Specimen examined: South Korea, Seoul, on Rhododendron indicum, 27 Oct.<br />

2003, H.D. Shin, holotype <strong>CBS</strong> H-20886, cultures ex-type CPC 10822 = <strong>CBS</strong><br />

131591, CPC 10823, 10824.<br />

Notes: Of the species occurring on Rhododendron, P. rhododendriindici<br />

differs from P. handelii (conidia narrowly linear to obclavate,<br />

indistinctly multiseptate, 12–140 × 1.5–3 μm; Chupp 1954) by its<br />

subcylindrical, 1–4-septate conidia with truncate base and obtuse<br />

apex, and phylogentic position (Fig. 5). The description and<br />

illustration of P. handelii based on Chinese material (Guo & Hsieh<br />

1995) agrees well with Chupp’s (1954) description. The identity of<br />

Korean collections on Rhododendron indicum described in Shin &<br />

Kim (2001), characterised by much longer acicular-filiform conidia<br />

with truncate base, is unclear. Pseudocercospora rhododendriindici<br />

differs from P. rhododendricola (conidia 54–96 × 2–2.5 μm;<br />

Yen 1966) by its shorter conidia. Beside epiphyllous colonies,<br />

P. rhododendricola forms hypophyllous colonies composed of<br />

small, loose fascicles of conidiophores that emerge through<br />

stomata, together with superficial hyphae that give rise to solitary<br />

conidiophores. The hypophyllous fruiting was neither mentioned in<br />

the original description nor in Yen & Lim (1980). It was observed<br />

during the re-examination of type material (Singapore, Botanic<br />

Gardens, on Rhododendron sp., 13 Apr. 1965, S.H. Yen No. 112,<br />

holotype PC).<br />

Pseudocercospora rhoina (Cooke & Ellis) Deighton, Mycol.<br />

Pap. 140: 152. 1976. Fig. 59.<br />

Basionym: Cercospora rhoina Cooke & Ellis, Grevillea 6: 89. 1878.<br />

= Cercospora copallina Cooke, Grevillea 12: 31. 1883.<br />

= Cercospora rhoina var. nigromaculans Peck, Rep. (Annual) New York State<br />

Mus. Nat. Hist. 42: 129. 1889.<br />

Specimen examined: South Korea, Namhae, on Rhus chinensis, 30 Jun. 2004,<br />

H.D. Shin, <strong>CBS</strong> H-20887, KUS-F 20367, CPC 11464 = <strong>CBS</strong> 131891.<br />

104


Phylogenetic lineages in Pseudocercospora<br />

Fig. 59. Pseudocercospora rhoina (CPC 11464–11465). A. Leaf spots on upper and lower leaf surface. B. Close-up of leaf spot with fruiting. C–E. Fascicles with conidiophores<br />

and conidiogenous cells. F. Conidia. Scale bars = 10 μm.<br />

Fig. 60. Pseudocercospora sambucigena (CPC 14397–14399). A, B. Leaf spots on upper and lower leaf surface. C, D. Close-up of leaf spots with fruiting. E, F. Fascicles with<br />

conidiophores and conidiogenous cells. G. Conidiogenous cells. H–L. Conidia. Scale bars = 10 μm.<br />

Pseudocercospora sambucigena U. Braun, Crous & K.<br />

Schub., Mycotaxon 92: 400. 2005. Fig. 60.<br />

Leaf spots distinct, scattered over leaf surface, amphigenous,<br />

upper surface pale brown to grey, with definite border that is raised<br />

and dark brown in colour; lower surface pale grey to pale brown,<br />

www.studiesinmycology.org<br />

105


Crous et al.<br />

Fig. 61. Pseudocercospora securinegae (CPC 10793). A. Leaf spots on upper and lower leaf surface. B. Close-up of leaf spot with fruiting. C, D. Fascicles with conidiophores<br />

and conidiogenous cells. E. Conidia. Scale bars = 10 μm.<br />

with distinctly raised, brown border, 2–10 mm diam. Mycelium<br />

smooth, internal and external, consisting of branched, subhyaline,<br />

2–4 μm diam hyphae. Caespituli amphigenous, predominantly<br />

occurring on the abaxial lesion surface, evenly distributed over the<br />

lesion, punctiform, grey to dark brown. Stromata well-developed,<br />

subimmersed becoming erumpent, globular, dark brown, 45–100<br />

mm diam. Conidiophores fasciculate, emerging from stomata,<br />

brown, becoming paler toward the apex, unbranched, straight<br />

to curved, cylindrical, uniform or irregular in width, rounded<br />

apex, indistinctly 0–3-septate, (25–)35–51(–60) × (4–)5(–7) μm.<br />

Conidiogenous cells terminal, unbranched, smooth, pale brown,<br />

proliferating sympodially and percurrently, conidiogenous loci<br />

(scars) unthickened to slightly thickened, but not darkened, (10–)<br />

19–34(–46) × (3–)5 μm. Conidia solitary, pale olivaceous to pale<br />

brown, smooth, guttulate, apex obtuse, base long obconically<br />

truncate, shape variable from cylindrical to obclavate, 1–7-septate,<br />

(40–)68–117(–156) × (4–)5–6(–7) μm; hila unthickened to slightly<br />

thickened, but not darkened.<br />

Culture characteristics: Colonies on MEA reaching 16 mm diam<br />

after 30 d in the dark at 24 °C. Colonies circular to subcircular,<br />

smooth to slightly irregular margin, prominently convex, moderate<br />

aerial mycelium; pale greenish grey to pale olivaceous-grey<br />

(surface) and olivaceous-black (reverse).<br />

Specimens examined: Italy, Parma, on leaves of Sambucus nigra, G. Passerini,<br />

paratype B 70-6710. Netherlands, Milingerwaard on leaves of Sambucus nigra,<br />

2007, P.W. Crous, epitype designated here <strong>CBS</strong> H-20391, cultures ex-epitype<br />

CPC 14397 = <strong>CBS</strong> 126000. USA, Pennsylvania, Dauphin Co., on leaves of<br />

Sambucus pubens, 21 Aug. 1921, O.E. Jennings, Acc. 6736, holotype NY.<br />

Pseudocercospora securinegae (Togashi & Katsuki)<br />

Deighton, Mycol. Pap. 140: 152. 1976. Fig. 61.<br />

Basionym: Cercospora securinegae Togashi & Katsuki, Ann.<br />

Phytopathol. Soc. Japan 17: 7. 1952.<br />

Specimen examined: South Korea, Yangpyong, on Flueggea suffruticosa<br />

(≡ Securinega suffruticosa), 30 Sep. 2003, H.D. Shin, <strong>CBS</strong> H-20888, culture CPC<br />

10793 = <strong>CBS</strong> 131930.<br />

Pseudocercospora snelliana (Reichert) U. Braun, H.D.<br />

Shin, C. Nakash. & Crous, comb. nov. MycoBank MB564846.<br />

Figs 62, 63.<br />

Basionym: Cercospora snelliana Reichert, Bot. Jahrb. Syst. 56:<br />

724. 1921.<br />

= Clasterosporium mori Syd. & P. Syd., Mem. Herb. Boiss. 4: 6. 1900.<br />

≡ Sirosporium mori (Syd. & P. Syd.) M.B. Ellis, Mycol. Pap. 87: 7. 1963.<br />

≡ Cercospora kusanoi Sawada, Rep. Dept. Agric. Gov. Res. Inst.<br />

Formosa 35: 109. 1928, nom. nov., non Cercospora mori Hara, 1918.<br />

= Cercospora bremeri Petr., Sydowia 2: 312. 1948.<br />

= Cercospora flexuosa Tanaka, unknown, nom. nud., non Tracy & Earle, 1895.<br />

Leaf spots lacking or amphigenous, but inconspicuous on upper<br />

leaf surface, chlorotic, irregular, as small speckles, up to 8<br />

mm diam, or effuse and much larger, forming large blotches or<br />

covering large portions of the hypophyllous surface with blackish<br />

colonies. Mycelium internal and external; internal hyphae pale<br />

olivaceous to pale brown, smooth, 3–4 μm diam, arising through<br />

stomata, giving rise to external mycelium that is pale yellowish<br />

green, olivaceous to brown, smooth, thin-walled, 1.5–5 μm<br />

diam. Conidiophores arising singly from superficial mycelium<br />

and in small, divergent fascicles from a few substomatal swollen<br />

hyphal cells, 2–8 μm diam., emerging through stomata, brown,<br />

smooth, becoming roughened towards apex, wall up to 1 μm<br />

thick, 1–12-septate, subcylindrical to often subclavate, i.e. width<br />

somewhat increasing towards the apex, straight to variously<br />

curved or geniculate-sinuous, unbranched or branched above,<br />

15–100 × 3–6 μm. Conidiogenous cells terminal or lateral,<br />

unbranched, brown, becoming paler towards the tip, roughened,<br />

tapering towards flat-tipped loci, 2–3 μm diam, proliferating<br />

sympodially (lateral scars as illustrated by Ellis 1971 observed),<br />

or percurrently near apex, 10–30 × 4–7 μm. Conidia solitary,<br />

medium to dark olivaceous-brown or brown, small young conidia<br />

sometimes subhyaline to pale olivaceous, wall up to 1 μm thick,<br />

smooth or almost so to verruculose, guttulate, smaller conidia<br />

ellipsoid-ovoid, subcylindrical, larger conidia usually distinctly<br />

obclavate, apex obtuse, base obconically truncate, subtruncate<br />

or sometimes rounded, straight to gently curved, 1–10-septate<br />

(septa somewhat refractive, at times also 1(–2) oblique or<br />

vertical septa present), (15–)30–70(–80) × (3–)4–6(–7) μm;<br />

106


Phylogenetic lineages in Pseudocercospora<br />

Fig. 62. Pseudocercospora snelliana (B 700014740, holotype). Sparse fascicles, and solitary conidiophores on superficial mycelium giving rise to muriformly septate, thickwalled<br />

conidia. Scale bar = 10 μm.<br />

Fig. 63. Pseudocercospora snelliana (CPC 11654–11656). A. Leaf spots on the lower leaf surface. B. Close-up of leaf spot with fruiting. C–E. Solitary conidiophores and<br />

conidiogenous cells. F–H. Conidia. Scale bars = 10 μm.<br />

www.studiesinmycology.org<br />

107


Crous et al.<br />

hila neither thickened, nor darkened or refractive, 1–1.5(–2) μm<br />

diam.<br />

Culture characteristics: Colonies after 2 wk at 24 ºC in the dark<br />

on MEA; erumpent, spreading, with sparse aerial mycelium, and<br />

smooth, lobate margins. Surface pale olivaceous-grey; reverse<br />

olivaceous-grey. Colonies reaching 7 mm diam.<br />

Specimens examined: Egypt, Kahirahm, near Bahtim, on Morus alba, Nov. 1913,<br />

Snell, holotype B 700014740. South Korea, Hoengseong, on Morus bombycis,<br />

11 Oct. 2004, H.D. Shin, <strong>CBS</strong> H-20889, HAL 1867 F, culture CPC 11654 = <strong>CBS</strong><br />

131592, CPC 11655, 11656.<br />

Notes: Cercospora kusanoi is based on the same type specimen<br />

used by Sydow to describe Clasterosporium mori. Sawada (1928)<br />

considered this fungus a species of Cercospora. He introduced the<br />

name Cercospora kusanoi because the species epithet mori was<br />

occupied in Cercospora. The Korean material we studied closely<br />

resembles the description of the type, which was originally described<br />

on Morus alba from Japan (Sawada 1928). Pseudocercospora<br />

mori is also already occupied so type material of P. snelliana, the<br />

next available epithet, was re-examined. We determined it to be<br />

conspecific with C. kusanoi, so P. snelliana is introduced as a new<br />

combination.<br />

Pseudocercospora stephanandrae (Tak. Kobay. & H.<br />

Horie) C. Nakash. & Tak. Kobay., Mycoscience 41: 27. 2000.<br />

Basionym: Cercospora stephanandrae Tak. Kobay. & H. Horie,<br />

Trans. Mycol. Soc. Japan 20: 331. 1979.<br />

Specimens examined: Japan, Tokyo, Jindai Bot. Park, on Stephanandra incisa, 21<br />

Oct. 1976, T. Kobayashi & H. Horie TFM: FPH-4712; Tokyo, Jindai Botanical Park,<br />

Chofu-City, on S. incisa, 26 Oct. 1974, H. Horie, holotype TFM: FPH 4411; Tokyo,<br />

Jindai Bot. Park, on S. incisa, 7 Nov. 1998, C. Nakashima & E. Imaizumi, epitype<br />

designated here TFM: FPH-8099, ex-epitype cultures MUCC 914, MAFF 237799.<br />

Pseudocercospora timorensis (Cooke) Deighton, Mycol.<br />

Pap. 140: 154. 1976.<br />

Basionym: Cercospora timorensis Cooke, Grevillea 12: 38. 1883.<br />

= Ramularia batatae Racib., Paras. Algen Pilze Javas, Batavia 1: 35. 1900.<br />

= Cercospora batatae A. Zimmerm., Ber. Land.-Forstw. Deutsch Ostafrikas 2:<br />

28. 1904.<br />

= Cercospora batatae Henn., Bot. Jahrb. Syst. 38: 118. 1907, nom. illeg.,<br />

homonym of C. batatae A. Zimmerm., 1904.<br />

= Cercospora ipomoeae-purpureae J.M. Yen, Rev. Mycol. 30: 173. 1965.<br />

≡ Pseudocercospora ipomoea-purpureae (J.M. Yen) J.M. Yen, in Yen &<br />

Lim, Gard. Bull., Singapore 33: 177. 1980.<br />

Specimen examined: Japan, Okinawa, Ipomoea indica, 19 Nov. 2007, C. Nakashima<br />

& T. Akashi, MUMH 10923, culture MUCC 819.<br />

Pseudocercospora udagawana (Katsuki) X.J. Liu & Y.L.<br />

Guo, Mycosystema 2: 238. 1989. Fig. 64.<br />

Basionym: Cercospora udagawana Katsuki, Ann. Phytopathol.<br />

Soc. Japan 20(2–3): 72. 1955.<br />

Specimen examined: South Korea, Dongducheon, on Hovenia dulcis, 28 Sep.<br />

2003, H.D. Shin, <strong>CBS</strong> H-20890, CPC 10799 = <strong>CBS</strong> 131931.<br />

Pseudocercospora viburnigena U. Braun & Crous, Mycol.<br />

Progr. 1: 23. 2002. Fig. 65.<br />

Basionym: Cercospora tinea Sacc., Michelia 1(2): 268. 1878 (non<br />

P. tinea Y.L. Guo & W.H. Hsieh, 1994).<br />

≡ Cercoseptoria tinea (Sacc.) Deighton, Mycol. Pap. 140: 167. 1976.<br />

≡ Cercostigmina tinea (Sacc.) U. Braun, Cryptog. Bot. 4: 108. 1993.<br />

Leaf spots distinct, scattered, amphigenous, 4–15 mm diam,<br />

lesions on abaxial surface dark to pale brown, subcircular to<br />

irregular, surrounded by a slightly raised dark brown border,<br />

lesions on adaxial surface dark to pale brown, surrounded by<br />

a dark brown border with a light red diffuse pigment extending<br />

outward from the border in older lesions. Mycelium internal<br />

and external, smooth, subhyaline, branched, 1.5–4 μm wide.<br />

Caespituli amphigenous, but predominantly hypophyllous,<br />

evenly distributed over the leaf spot, velvety, olivaceous.<br />

Stromata well-developed, subimmersed, globular, dark<br />

brown, 30–80 μm diam. Conidiophores fasciculate, smooth,<br />

0–2-septate, emerging from the upper cells of the stroma, pale<br />

brown, straight to curved, irregular in width, apex subtruncate<br />

to rounded, (14–)17–24(–30) × (3–)4–5(–6) μm. Conidiogenous<br />

cells integrated, terminal, inconspicuously proliferating<br />

percurrently, cylindrical, straight, pale brown, at times slightly<br />

verruculose, (5–)9–15(–19) × (2–) 3(–4) μm. Conidia solitary,<br />

pale brown, smooth, guttulate, apex obtusely rounded, base<br />

narrowly truncate, narrowly ellipsoidal to acicular, curved or<br />

sigmoid, 5–11-septate, (68–)87–110(–120) × (2–)3–4(–5) μm,<br />

hila unthickened.<br />

Culture characteristics: Colonies on MEA reaching 23 mm diam<br />

after 30 d at 24 °C in the dark. Colonies circular, convex, smooth<br />

margin that is distinctly darker than the rest of the colony, slight<br />

folding occurs toward the edge of the colony, moderate to profuse<br />

aerial mycelium; olivaceous-grey (surface) and greenish black<br />

(reverse).<br />

Specimens examined: Italy, Padova, Viburnum tinus, Oct. 1877, Bizzozera, Sacc.,<br />

Mycoth. Venet. 1252, syntype HAL. Netherlands, Bilthoven, Sweelincklaan 87, on<br />

leaves of Viburnum davidii, 26 May 2008, M.K. Crous, epitype designated here<br />

<strong>CBS</strong> H-20393, culture ex-epitype CPC 15249 = <strong>CBS</strong> 125998.<br />

Note: The epitype closely matches the morphology of the holotype<br />

(Braun & Hill 2002), representing a species that is common on<br />

Viburnum in Europe.<br />

Pseudocercospora viticicola (J.M. Yen & Lim) J.M. Yen,<br />

Gardens Bulletin, Singapore 33: 190. 1980.<br />

Basionym: Cercospora viticicola J.M. Yen & Lim, Cah. Pacifique<br />

17: 104. 1973.<br />

= Cercospora viticis Ellis & Everh. (as "viteae"), J. Mycol. 3: 18. 1887, non<br />

Pseudocercospora viticis Goh & W.H. Hsieh, 1989.<br />

≡ Pseudocercosporella viticis (Ellis & Everh.) B.K. Gupta & Kamal, Indian<br />

Phytopathol. 42: 388. 1989, nom. inval.<br />

≡ Pseudocercospora viticicola U. Braun, Mycotaxon 48: 296. 1993, nom.<br />

illeg., homonym of P. viticicola (J.M. Yen & Lim) J.M. Yen, 1980.<br />

= Cercospora viticis Sawada, Rep. Gov. Agric. Res. Inst. Taiwan 87: 90. 1944,<br />

nom. illeg., homonym of C. viticis Ellis & Everh., 1887.<br />

≡ Pseudocercospora viticis Goh & W.H. Hsieh, Trans. Mycol. Soc.<br />

Republ. China 4: 11. 1989.<br />

= Cercospora viticis-quinatae J.M. Yen, Bull. Trimestriel Soc. Mycol. France<br />

93: 158. 1977.<br />

≡ Pseudocercospora viticis-quinatae (J.M. Yen) J.M. Yen, Bull. Trimestriel<br />

Soc. Mycol. France 94: 388. (1978) 1979.<br />

= Pseudocercospora viticigena J.M. Yen, A.K. Kar & B.K. Das, Mycotaxon 16:<br />

68. 1982.<br />

Specimens examined: Japan, Okinawa, Okinawa Is, on Vitex trifolia, 19 Nov. 2007,<br />

C. Nakashima, MUMH 10828, culture MUCC 777; Chiba, Matsudo, on V. agnuscastus,<br />

7 Nov. 1987, M. Nagashima & T. Kobayashi, TFM: FPH-6912; Shizuoka,<br />

Kanzanji, on V. agnus-castus, 1 Nov. 1996, T. Kobayashi & C. Nakashima, CNS-<br />

101, culture MUCC 1069, MAFF 237866; Kuroki, Fukuoka, on V. cannabifolia (≡ V.<br />

negundo var. cannabifolia), 25 Sep. 1974, S. Ogawa, TFM: FPH-4193.<br />

108


Phylogenetic lineages in Pseudocercospora<br />

Fig. 64. Pseudocercospora udagawana (CPC 10799–10801). A. Leaf spots on upper and lower leaf surface. B. Close-up of leaf spot with fruiting. C, D. Fascicles with<br />

conidiophores and conidiogenous cells. E. Solitary conidiogenous cell on superficial hypha. F. Conidia. Scale bar = 10 μm.<br />

Fig. 65. Pseudocercospora viburnigena (CPC 15249). A. Leaf spots on upper leaf surface. B, C. Close-up of leaf spots with fruiting. D, E. Fascicles with conidiophores and<br />

conidiogenous cells. F–H. Conidia. Scale bars = 10 μm.<br />

www.studiesinmycology.org<br />

109


Crous et al.<br />

Fig. 66. Pseudocercospora xanthocercidis (CPC 11665–11667). A. Leaf spots on upper and lower leaf surface. B. Close-up of leaf spot with fruiting. C–E. Fascicles with<br />

conidiophores and conidiogenous cells. F. Conidia. G. Colony on malt extract agar. H, I. Conidia formed in culture. Scale bars = 10 μm.<br />

Pseudocercospora weigelae (Ellis & Everh.) Deighton,<br />

Trans. Brit. Mycol. Soc. 88: 389. 1987.<br />

Basionym: Cercospora weigelae Ellis & Everh., Proc. Acad. Nat.<br />

Sci. Philadelphia 45: 170. 1893.<br />

Specimen examined: Japan, Ibaraki, on Weigela coraeensis, 10 Sep. 1998, T. & Y.<br />

Kobayashi, CNS-455, culture MUCC 899, MAFF 237794.<br />

Pseudocercospora xanthocercidis Crous, U. Braun & A.<br />

Wood, sp. nov. MycoBank MB564847. Fig. 66.<br />

Etymology: Name derived from the plant host Xanthocercis, from<br />

which it was collected.<br />

Leaf spots amphigenous, irregular to subcircular, 3–8 mm diam,<br />

pale to medium brown, with indistinct border. Mycelium internal,<br />

pale brown, consisting of septate, branched, smooth, 2–3 μm diam<br />

hyphae. Caespituli sporodochial, hypophyllous, also occurring<br />

on green leaf tissue, prominent, appearing like insect galls,<br />

olivaceous-brown on leaves, up to 400 μm wide and 300 μm high.<br />

Conidiophores aggregated in dense sporodochial fascicles arising<br />

from the upper cells of a brown stroma up to 300 μm wide and<br />

250 μm high; conidiophores brown, finely verruculose, 1–2-septate,<br />

subcylindrical, straight to slightly curved, 20–30 × 5–7 μm.<br />

Conidiogenous cells terminal, unbranched, brown, subcylindrical,<br />

finely verruculose, proliferating percurrently near apex, with<br />

several irregular, rough proliferations, 7–12 × 5–6 μm. Conidia<br />

solitary, brown, finely verruculose, guttulate, narrowly obclavate,<br />

apex obtuse, base obconically subtruncate to truncate, straight to<br />

gently curved, 5–8-septate, (25–)28–36(–40) × (5–)6–7 μm; hila<br />

unthickened, neither darkened nor refractive, 3–4 μm diam, with<br />

minute marginal frill visible.<br />

Culture characteristics: Colonies after 2 wk at 24 ºC in the dark on<br />

MEA; surface irregular, folded, erumpent, spreading, with sparse<br />

aerial mycelium, and smooth, irregularly lobate margins. Surface<br />

olivaceous-grey, with patches of iron-grey; reverse iron-grey.<br />

Colonies reaching 5 mm diam.<br />

Specimen examined: South Africa, Mpumalanga, Nelspruit, Lowveld National<br />

Botanical Garden, on Xanthocercis zambesiaca, 14 Sep. 2004, A. Wood, holotype<br />

HAL 1859 F, isotype <strong>CBS</strong> H-20891, culture ex-type CPC 11665 = <strong>CBS</strong> 131593,<br />

CPC 11666, 11667.<br />

Notes: No other species of Pseudocercospora are known<br />

from this host. Pseudocercospora xanthocercidis differs from<br />

other Pseudocercospora species on legumes by its very<br />

large sporodochial conidiomata with percurrently proliferating<br />

conidiogenous cells and verruculose conidia with visible marginal<br />

frill at the base. There is no comparable species on legumes.<br />

Pseudocercospora xanthoxyli (Cooke) Y.L. Guo & X.J. Liu,<br />

Mycosystema 4: 115. 1991. Fig. 67.<br />

Basionym: Cercospora xanthoxyli Cooke, Grevillea 12: 30. 1883.<br />

= Cercospora fagaricola Sawada (fagariae), Rep. Gov. Agric. Res. Inst. Taiwan<br />

85: 105. 1943, nom. inval.<br />

≡ Pseudocercospora fagaricola Goh & W.H. Hsieh, in Hsieh & Goh,<br />

Cercospora and similar species from Taiwan: 294. 1990.<br />

Specimen examined: South Korea, Wando, Wando Arboretum, on Xanthoxylum<br />

ailanthoides, 9 Nov. 2002, H.D. Shin, <strong>CBS</strong> H-20892, CPC 10009, 10064–10065.<br />

Pseudocercospora zelkovae (Hori) X.J. Liu & Y.L. Guo,<br />

Acta Mycol. Sin. 12: 33. 1993. Fig. 68.<br />

Basionym: Cercospora zelkowae Hori, Nambu N. Jour. Plant<br />

Protection 8: 492. 1921.<br />

110


Phylogenetic lineages in Pseudocercospora<br />

Fig. 67. Pseudocercospora xanthoxyli (CPC 10009, 10064–10065). A. Leaf spots on upper and lower leaf surface. B. Close-up of leaf spot with fruiting. C–E. Fascicles with<br />

conidiophores and conidiogenous cells. F. Close-up of conidiogenous cells. G. Conidia. Scale bars = 10 μm.<br />

Fig. 68. Pseudocercospora zelkovae (CPC 14484). A. Leaf spots on upper and lower leaf surface. B. Close-up of leaf spot with fruiting. C–E. Fascicles with conidiophores and<br />

conidiogenous cells. F. Conidia. Scale bar = 10 μm.<br />

Holotype: Japan, Tokyo, Forest Experimental Station, on Zelkova<br />

serrata, Jun. 1920 (not preserved).<br />

Specimens examined: Japan, Yamagata, Kamabuchi, on Z. serrata, 5 July 1956, K.<br />

Ito, neotype designated here TFM:FPH169, cultures ex-neotype MAFF 410008,<br />

MUCC 1398. South Korea, Suwon, on Z. serrata, 2 Oct. 2007, H.D. Shin, <strong>CBS</strong><br />

H-20893, culture CPC 14484 = <strong>CBS</strong> 132106; Osan, on Z. serrata, 30 Oct. 2007,<br />

H.D. Shin, <strong>CBS</strong> H-20894, CPC 14717 = <strong>CBS</strong> 132118.<br />

DISCUSSION<br />

This study provides a broad framework and phylogeny for the<br />

genus Pseudocercospora. These fungi are very common and<br />

the foundation that has been set will form the basis for additional<br />

species to be described and for specific groups to be more<br />

thoroughly investigated. Although the results clarify several issues<br />

relating to the taxonomy of Pseudocercospora s. str., the study<br />

also highlights many remaining taxonomic questions relating to<br />

this complex. To resolve these issues many species will need to<br />

be recollected, cultured, and sequenced so that they can be placed<br />

into this phylogenetic backbone. This is especially true for species<br />

described in some of the obscure genera treated by Braun (1995)<br />

and Crous & Braun (2003), many of which (or their type species)<br />

are not currently known from culture, and thus DNA sequence<br />

comparisons and phylogenetic inference has not been possible.<br />

Amongst the cercosporoid fungi, it appears possible and even<br />

probable that the approximately 1 500 names in Pseudocercospora<br />

represent the tip of the iceberg in terms of biodiversity. Indeed it<br />

seems likely that this could emerge as the largest genus of<br />

cercosporoid fungi known. A significant result of this study was<br />

the determination that names based on American or European<br />

type specimens could in most cases not be used when identifying<br />

www.studiesinmycology.org<br />

111


Crous et al.<br />

identical diseases on the same hosts in Asia, Africa or South<br />

America. In this regard, it was surprising to find diversity even<br />

within a region such as Asia, where isolates from the same host<br />

and disease symptoms from Korea frequently differed from similar<br />

collections made in Japan. These important issues, which have<br />

significant ramifications pertaining to plant health and quarantine,<br />

will only be resolved when fresh collections from the American<br />

and European type locations have been made, thus allowing<br />

DNA sequence based comparisons. Furthermore, it emphasises<br />

the need to ensure that a DNA sequence has been provided for<br />

all novel taxa in this complex and that an authentic DNA barcode<br />

(Schoch et al. 2012) is available. The ITS gene region was found to<br />

be capable of differentiating only 25 of the 146 Pseudocercospora<br />

taxa (17 %) to species level in the present study. Where the ITS<br />

locus fails to provide acceptable resolution, it can be supplemented<br />

with sequences from the ACT or EF-1α gene regions (Fig. 5),<br />

though these loci still proved relatively conserved, and 57 taxa had<br />

less than 1% variation from their closest neighbours, suggesting<br />

that additional loci still have to be found to provide a more robust<br />

identification of Pseudocercospora species.<br />

Focused studies on specific crops such as those on Eucalyptus<br />

(Crous 1998, Hunter et al. 2006b), Musa (Arzanlou et al. 2007,<br />

2008, 2010), Chromolaena (Den Breeÿen et al. 2006) and Citrus<br />

(Pretorius et al. 2003) will undoubtedly confirm the already<br />

emerging view that many plant species are infected by a complex<br />

of Pseudocercospora spp. Some of these will clearly be specific<br />

to the host from which they were isolated, while others reflect<br />

chance occurrences or infections or broader host ranges (Crous<br />

& Groenewald 2005). In some instances, these chance infections<br />

may be caused by fungi that are major pathogens of other,<br />

completely unrelated hosts (Crous & Groenewald 2005, Arzanlou et<br />

al. 2008). Although the present study has succeeded in delineating<br />

Pseudocercospora within the Mycosphaerellaceae, and in the<br />

process has also delineated several other pseudocercospora-like<br />

genera, the question relating to host specificity still remains largely<br />

unanswered.<br />

The taxa investigated during this study represent the largest<br />

collection of Pseudocercospora and pseudocercospora-like taxa<br />

ever subjected to DNA sequence analysis. Of these, the vast<br />

majority appear to be host-specific. Of the 146 taxa subjected to<br />

multi-gene analysis, only four were found to occur on more than<br />

one host. These include P. norchiensis (Myrtaceae and Rosaceae),<br />

P. fraxinites (Oleaceae), P. atromarginalis (Solanaceae) and P.<br />

corylopsidis (Hamamelidaceae). In the latter three examples,<br />

the same species was found on different host genera within the<br />

same plant family, but never on unrelated hosts. This result was<br />

somewhat surprising as we initially expected to find at least some<br />

examples where species are generalists and occur on many hosts<br />

which are unrelated such as those in the Cercospora apii complex<br />

(Groenewald et al. 2006, 2007). The occurrence of P. norchiensis<br />

(a foliar pathogen of Eucalyptus in Italy; Crous et al. 2007c) on<br />

Rubus in New Zealand (<strong>CBS</strong> 114641), was highly unexpected,<br />

and further collections on Rubus from New Zealand will have to<br />

be made to resolve if this was a mere chance occurrence (Crous &<br />

Groenewald 2005), or true indication of its host range.<br />

In future studies of Pseudocercospora, additional taxa should<br />

be included in the analyses, and further loci screened to obtain a<br />

better separation of species. There is an urgent need to conduct<br />

inoculation tests to confirm inferences from taxonomic studies<br />

about host specificity in this important group of predominantly plant<br />

pathogenic fungi. For example, it remains to be shown whether<br />

isolates from different hosts with identical DNA barcodes and<br />

similar morphology have the ability to cross-infect hosts under<br />

natural conditions in the field. It appears that for the most part, F.C.<br />

Deighton was correct in his statement “If a sparrow flies to a cherry<br />

tree, it’s a cherry tree sparrow. If the same sparrow sits in an apple<br />

tree, it is an apple tree sparrow”.<br />

ACKNOWLEDGEMENTS<br />

We thank the technical staff, Arien van Iperen (cultures), Marjan Vermaas<br />

(photographic plates), and Mieke Starink-Willemse (DNA isolation, amplification and<br />

sequencing) for their invaluable assistance.<br />

REFERENCES<br />

Arx JA von (1983). Mycosphaerella and its anamorphs. Proceedings of the<br />

Koninklijke Nederlandse Akademie van Wetenschappen, Series C 86:<br />

15–54.<br />

Arzanlou M, Abeln ECA, Kema GHJ, Waalwijk C, Carlier J, et al. (2007). Molecular<br />

diagnostics for the Sigatoka disease complex of banana. Phytopathology 97:<br />

1112–1118.<br />

Arzanlou M, Crous PW (2006). Strelitziana africana. Fungal Planet No. 8. <strong>CBS</strong>,<br />

Utrecht, Netherlands.<br />

Arzanlou M, Crous PW, Zwiers L-H (2010). Evolutionary dynamics of mating-type<br />

loci of Mycosphaerella spp. occurring on banana. Eukaryotic Cell 9: 164–172.<br />

Arzanlou M, Groenewald JZ, Fullerton RA, Abeln ECA, Carlier J, et al. (2008).<br />

Multiple gene genealogies and phenotypic characters differentiate several<br />

novel species of Mycosphaerella and related anamorphs on banana. Persoonia<br />

20: 19–37.<br />

Ávila A, Groenewald JZ, Trapero A, Crous PW (2005). Characterisation and<br />

epitypification of Pseudocercospora cladosporioides, the causal organism of<br />

Cercospora leaf spot of olives. Mycological Research 109: 881–888.<br />

Ayala-Escobar V, Yañez-Morales MJ, Braun U, Groenewald JZ, Crous PW (2005).<br />

Cercospora agavicola – a new foliar pathogen of Agave tequilana var. azul from<br />

Mexico. Mycotaxon 93: 115–121.<br />

Batzer JC, Gleason ML, Harrington TC, Tiffany LH (2005). Expansion of the sooty<br />

blotch and flyspeck complex on apples based on analysis of ribosomal DNA<br />

gene sequences and morphology. Mycologia 97: 1268–1286.<br />

Beilharz V, Mayers PE, Pascoe IG (2003). Pseudocercospora macadamiae sp.<br />

nov., the cause of husk spot of macadamia. Australasian Plant Pathology 32:<br />

279–282.<br />

Bensch K, Braun U, Groenewald JZ, Crous PW. (2012). The genus Cladosporium.<br />

Studies in Mycology 72: 1–401.<br />

Bensch K, Groenewald JZ, Dijksterhuis J, Starink-Willemse M, Andersen B,<br />

et al. (2010). Species and ecological diversity within the Cladosporium<br />

cladosporioides complex (Davidiellaceae, Capnodiales). Studies in Mycology<br />

67: 1–94.<br />

Braun U (1992). Taxonomic notes on some species of the Cercospora-complex.<br />

Nova Hedwigia 55: 211–221.<br />

Braun U (1993). Taxonomic notes on some species of the Cercospora complex (III).<br />

Mycotaxon 48: 275–298.<br />

Braun U (1995). A monograph of Cercosporella, Ramularia and allied genera<br />

(<strong>Phytopathogenic</strong> Hyphomycetes). Vol. 1. IHW Verlag, Eching, Germany.<br />

Braun U (1998). A monograph of Cercosporella, Ramularia and allied genera<br />

(phytopathogenic hyphomycetes). Vol. 2. Eching, Germany: IHW-Verlag.<br />

Braun U, Crous PW (2006). (1732) Proposal to conserve the name Pseudocercospora<br />

against Stigmina and Phaeoisariopsis (Hyphomycetes). Taxon 55: 803.<br />

Braun U, Crous PW (2007). The diversity of cercosporoid hyphomycetes – new<br />

species, combinations, names and morphological clarifications. Fungal<br />

Diversity 26: 55–72.<br />

Braun U, Crous PW, Dugan F, Groenewald JZ, Hoog GS de (2003a). Phylogeny and<br />

taxonomy of Cladosporium-like hyphomycetes, including Davidiella gen. nov.,<br />

the teleomorph of Cladosporium s. str. Mycological Progress 2: 3–18.<br />

Braun U, Dick MA (2002). Leaf spot diseases of eucalypts in New Zealand caused<br />

by Pseudocercospora species. New Zealand Journal of Forestry Science 32:<br />

221–234.<br />

Braun U, Freire FCO (2002). Some cercosporoid hyphomycetes from Brazil – II.<br />

Cryptogamie Mycologie 23(4): 295–328.<br />

Braun U, Hill CF (2002). Some new micromycetes from New Zealand. Mycological<br />

Progress 1: 19–30.<br />

Braun U, Hill F, Dick M (2003b). New cercosporoid leaf spot diseases from New<br />

Zealand. Australasian Plant Pathology 32: 87–97.<br />

112


Phylogenetic lineages in Pseudocercospora<br />

Braun U, Hill F, Schubert K (2006). New species and new records of biotrophic<br />

micromycetes from Australia, Fiji, New Zealand and Thailand. Fungal Diversity<br />

22: 13–35.<br />

Braun U, Mel’nik VA (1997). Cercosporoid fungi from Russia and adjacent countries.<br />

Trudy Botaniceskogo Instituta imeni V. L. Komarova 20: 1–130.<br />

Braun U, Mouchacca J, McKenzie EHC (1999). Cercosporoid hyphomycetes from<br />

New Caledonia and some other South Pacific islands. New Zealand Journal of<br />

Botany 37: 297–327.<br />

Braun U, Urtiaga R (2008). New species and new records of cercosporoid<br />

hyphomycetes from Venezuela. Feddes Repertorium 119(5–6): 484–506.<br />

Carbone I, Kohn LM (1999). A method for designing primer sets for speciation<br />

studies in filamentous ascomycetes. Mycologia 91: 553–556.<br />

Cheewangkoon R, Crous PW, Hyde KD, Groenewald JZ, To-anan C (2008). Species<br />

of Mycosphaerella and related anamorphs on Eucalyptus leaves from Thailand.<br />

Persoonia 21: 77–91.<br />

Cheewangkoon R, Groenewald JZ, Summerell BA, Hyde KD, To-anun C, Crous PW<br />

(2009). Myrtaceae, a cache of fungal biodiversity. Persoonia 23: 55–85.<br />

Chowdhury S (1958). Notes on fungi from Assam, III. Lloydia 21: 152–156.<br />

Chupp C (1954). A monograph of the fungus genus Cercospora. Published by the<br />

author, Ithaca, New York.<br />

Churchill ACL (2010). Mycosphaerella fijiensis, the black leaf streak pathogen of<br />

banana: progress towards understanding pathogen biology and detection,<br />

disease development, and the challenges of control. Molecular Plant Pathology<br />

12: 307–328.<br />

Crous PW (1998). Mycosphaerella spp. and their anamorphs associated with leaf<br />

spot diseases of Eucalyptus. Mycologia Memoir 21: 1–170.<br />

Crous PW (2002). Taxonomy and pathology of Cylindrocladium (Calonectria) and<br />

allied genera. APS Press, Minnesota, St. Paul, USA.<br />

Crous PW (2009). Taxonomy and phylogeny of the genus Mycosphaerella and its<br />

anamorphs. Fungal Diversity 38: 1-24.<br />

Crous PW, Alfenas AC (1995). Mycosphaerella gracilis and other species of<br />

Mycosphaerella associated with leaf spots of Eucalyptus in Indonesia.<br />

Mycologia 87: 121–126.<br />

Crous PW, Aptroot A, Kang JC, Braun U, Wingfield MJ (2000). The genus<br />

Mycosphaerella and its anamorphs. Studies in Mycology 45: 107–121.<br />

Crous PW, Braun U (1996). Cercosporoid fungi from South Africa. Mycotaxon 57:<br />

233–321.<br />

Crous PW, Braun U (2003). Mycosphaerella and its anamorphs. 1. Names<br />

published in Cercospora and Passalora. <strong>CBS</strong> Biodiversity Series 1: 1–571.<br />

Centraalbureau voor Schimmelcultures, Utrecht, Netherlands.<br />

Crous PW, Braun U, Groenewald JZ (2007a). Mycosphaerella is polyphyletic.<br />

Studies in Mycology 58: 1–32.<br />

Crous PW, Braun U, Schubert K, Groenewald JZ (2007b). Delimiting Cladosporium<br />

from morphologically similar genera. Studies in Mycology 58: 33–56.<br />

Crous PW, Braun U, Wingfield MJ, Wood AR, Shin HD, et al. (2009a). Phylogeny<br />

and taxonomy of obscure genera of microfungi. Persoonia 22: 139–161.<br />

Crous PW, Corlett M (1998). Reassessment of Mycosphaerella spp. and their<br />

anamorphs occurring on Platanus. Canadian Journal of Botany 76: 1523–1532.<br />

Crous PW, Denman S, Taylor JE, Swart L, Palm ME (2004a). Cultivation and<br />

diseases of Proteaceae: Leucadendron, Leucospermum and Protea. <strong>CBS</strong><br />

Biodiversity Series 2: 1–228. Centraalbureau voor Schimmelcultures, Utrecht,<br />

Netherlands.<br />

Crous PW, Gams W, Stalpers JA, Robert V, Stegehuis G (2004b). MycoBank: an<br />

online initiative to launch mycology into the 21st century. Studies in Mycology<br />

50: 19–22.<br />

Crous PW, Groenewald JZ (2005). Hosts, species and genotypes: opinions versus<br />

data. Australasian Plant Pathology 34: 463–470.<br />

Crous PW, Groenewald J Z, Mansilla JP, Hunter GC, Wingfield MJ (2004c).<br />

Phylogenetic reassessment of Mycosphaerella spp. and their anamorphs<br />

occurring on Eucalyptus. Studies in Mycology 50: 195–214.<br />

Crous PW, Groenewald JZ, Gams W (2003). Eyespot of cereals revisited: ITS<br />

phylogeny reveals new species relationships. European Journal of Plant<br />

Pathology 109: 841–850.<br />

Crous PW, Groenewald JZ, Pongpanich K, Himaman W, Arzanlou M, Wingfield MJ<br />

(2004d). Cryptic speciation and host specificity among Mycosphaerella spp.<br />

occurring on Australian Acacia species grown as exotics in the tropics. Studies<br />

in Mycology 50: 457–469.<br />

Crous PW, Groenewald JZ, Shin HD (2010). Strelitziana albiziae. Fungal Planet No.<br />

56. Persoonia 25: 132–133.<br />

Crous PW, Groenewald JZ, Shivas RG, Edwards J, Seifert KA, et al. (2011a). Fungal<br />

Planet Description Sheets: 69–91. Persoonia 26: 108–156.<br />

Crous PW, Kang JC, Braun U (2001). A phylogenetic redefinition of anamorph<br />

genera in Mycosphaerella based on ITS rDNA sequence and morphology.<br />

Mycologia 93: 1081–1101.<br />

Crous PW, Liebenberg MM, Braun U, Groenewald JZ (2006). Re-evaluating the<br />

taxonomic status of Phaeoisariopsis griseola, the causal agent of angular leaf<br />

spot of bean. Studies in Mycology 55: 163–173.<br />

Crous PW, Schoch CL, Hyde KD, Wood AR, Gueidan C, et al. (2009b). Phylogenetic<br />

lineages in the Capnodiales. Studies in Mycology 64: 17–47.<br />

Crous PW, Summerell BA, Carnegie AJ, Mohammed C, Himaman W, Groenewald<br />

JZ (2007c). Foliicolous Mycosphaerella spp. and their anamorphs on Corymbia<br />

and Eucalyptus. Fungal Diversity 26: 143–185.<br />

Crous PW, Summerell BA, Carnegie AJ, Wingfield MJ, Hunter GC, et al. (2009c).<br />

Unravelling Mycosphaerella: do you believe in genera? Persoonia 23: 99–<br />

118.<br />

Crous PW, Tanaka K, Summerell BA, Groenewald JZ. (2011b). Additions to the<br />

Mycosphaerella complex. IMA Fungus 2: 49–64.<br />

Crous PW, Verkley GJM, Groenewald JZ, Samson RA (eds) (2009d). Fungal<br />

Biodiversity. <strong>CBS</strong> Laboratory Manual Series 1: 1–269. Centraalbureau voor<br />

Schimmelcultures, Utrecht, Netherlands.<br />

Crous PW, Wingfield MJ (1997). New species of Mycosphaerella occurring on<br />

Eucalyptus leaves in Indonesia and Africa. Canadian Journal of Botany 75:<br />

781–790.<br />

Crous PW, Wingfield MJ, Marasas WFO, Sutton BC (1989). Pseudocercospora<br />

eucalyptorum sp. nov. on Eucalyptus leaves. Mycological Research 93: 394–<br />

398.<br />

Crous PW, Wingfield MJ, Park RF (1991). Mycosphaerella nubilosa, a synonym of<br />

M. molleriana. Mycological Research 95: 628–632.<br />

Crous PW, Wingfield MJ, Swart WJ (1990). Shoot and needle diseases of pines in<br />

South Africa. South African Forestry Journal 154: 60–66.<br />

David JC (1997). A contribution to the systematics of Cladosporium. Revision of the<br />

fungi previously referred to Heterosporium. Mycological Papers 172: 1–157.<br />

Decock C, Delgado-Rodríguez G, Buchet S, Seng JM (2003). A new species and<br />

three new combinations in Cyphellophora, with a note on the taxonomic affinities<br />

of the genus, and its relation to Kumbhamaya and Pseudomicrodochium.<br />

Antonie van Leeuwenhoek 84: 209–216.<br />

Deighton FC (1971). Studies on Cercospora and allied genera. III. Centrospora.<br />

Mycological Papers 124: 1–13.<br />

Deighton FC (1972). Mycocentrospora, a new name for Centrospora Neerg. Taxon<br />

21: 716–716.<br />

Deighton FC (1976). Studies on Cercospora and allied genera. VI. Pseudocercospora<br />

Speg., Pantospora Cif. and Cercoseptoria Petr. Mycological Papers 140:<br />

1–168.<br />

Deighton FC (1979). Studies on Cercospora and allied genera. VII. New species<br />

and redispositions. Mycological Papers 144: 1–56.<br />

Deighton FC (1983). Studies on Cercospora and allied genera. VIII. Further notes<br />

on Cercoseptoria and some new species and redispositions. Mycological<br />

Papers 151: 1–13.<br />

Deighton FC (1987). New species of Pseudocercospora and Mycovellosiella, and<br />

new combinations into Pseudocercospora and Phaeoramularia. Transactions<br />

of the British Mycological Society 88: 365–391.<br />

Den Breeÿen A, Groenewald JZ, Verkley GJM, Crous PW (2006). Morphological and<br />

molecular characterisation of Mycosphaerellaceae associated with the invasive<br />

weed, Chromolaena odorata. Fungal Diversity 23: 89–110.<br />

Drummond AJ, Ashton B, Buxton S, Cheung M, Cooper A, Heled J, Kearse M, Moir<br />

R, Stones-Havas S, Sturrock S, Thierer T, Wilson A (2011). Geneious v5.5.<br />

Available from http://www.geneious.com.<br />

Ellis MB (1971). Dematiaceous Hyphomycetes. Commonwealth Mycological<br />

Institute, Kew, Surrey, UK.<br />

Evans HC (1984). The genus Mycosphaerella and its anamorphs Cercoseptoria,<br />

Dothistroma and Lecanosticta on pines. Mycological Papers 153: 1–102.<br />

Frank J, Crous PW, Groenewald JZ, Oertel B, Hyde KD, et al. (2010). Microcyclospora<br />

and Microcyclosporella: novel genera accommodating epiphytic fungi causing<br />

sooty blotch on apple. Persoonia 24: 93–105.<br />

Groenewald M, Groenewald JZ, Braun U, Crous PW (2006). Host range of<br />

Cercospora apii and C. beticola, and description of C. apiicola, a novel species<br />

from celery. Mycologia 98: 275–285.<br />

Groenewald M, Groenewald JZ, Linde CC, Crous PW (2007). Development of<br />

polymorphic microsatellite and single nucleotide polymorphism markers for<br />

Cercospora beticola (Mycosphaerellaceae). Molecular Ecology Notes 7: 890–<br />

892.<br />

Guo Y-L, Hsieh W-H (1995). The genus Pseudocercospora in China. International<br />

Academic Publishers, Beijing, China.<br />

Guo YL, Liu XJ (1989). Studies on the genus Pseudocercospora in China I.<br />

Mycosystema 2: 225–240.<br />

Hawksworth DL, Crous PW, Redhead SA, Reynolds DR, Samson RA, et al.<br />

(2011). The Amsterdam Declaration on Fungal Nomenclature. IMA Fungus<br />

2: 105–112.<br />

Hillis DM, Bull JJ (1993). An empirical test of bootstrapping as a method for assessing<br />

confidence in phylogenetic analysis. Systematic Biology 42: 182–192.<br />

Hoog GS de, Hijwegen T, Batenburg van der Vegte WH (1991). A new species of<br />

Dissoconium. Mycological Research 95: 679–682.<br />

Hsieh WH, Goh TK (1990). Cercospora and similar fungi from Taiwan. Maw Chang<br />

Book. Co., Taipei.<br />

www.studiesinmycology.org<br />

113


Crous et al.<br />

Hunter GC, Crous PW, Carnegie AJ, Burgess TI, Wingfield MJ (2011).<br />

Mycosphaerella and Teratosphaeria diseases of Eucalyptus; easily confused<br />

and with serious consequences. Fungal Diversity 50: 145–166.<br />

Hunter GC, Crous PW, Carnegie AJ, Wingfield, MJ (2009). Teratosphaeria nubilosa,<br />

a serious leaf disease pathogen of Eucalyptus spp. in native and introduced<br />

areas. Molecular Plant Pathology 10: 1–14.<br />

Hunter GC, Crous PW, Wingfield BD, Pongpanich K, Wingfield MJ (2006a).<br />

Pseudocercospora flavomarginata sp. nov., from Eucalyptus leaves in<br />

Thailand. Fungal Diversity 22: 71–90.<br />

Hunter GC, Wingfield BD, Crous PW, Wingfield MJ (2006b). A multi-gene phylogeny<br />

for species of Mycosphaerella occurring on Eucalyptus leaves. Studies in<br />

Mycology 55: 147–161.<br />

Kaiser W, Crous PW (1998). Mycosphaerella lupini sp. nov., a serious leaf spot<br />

disease of perennial lupin in Southcentral Idaho, USA. Mycologia 90: 726–731.<br />

Katoh K, Kuma K, Toh H, Miyata T (2005). MAFFT version 5: improvement in<br />

accuracy of multiple sequence alignment. Nucleic Acids Research 33: 511–518.<br />

Katoh K, Toh H (2007). PartTree: an algorithm to build an approximate tree from a<br />

large number of aligned sequences. Bioinformatics 23: 372–372.<br />

Koike SK, Baameur A, Groenewald JZ, Crous PW (2011). Cercosporoid leaf<br />

pathogens from whorled milkweed and spineless safflower in California. IMA<br />

Fungus 2: 7–12.<br />

Lee HB, Yu SH, Kim C-J (2001). First report of leaf spot of Paederia scandens<br />

caused by Pseudocercospora paederiae in Korea. New Disease Reports 4: 7.<br />

Maddison DR, Maddison WP (2000). MacClade 4. Analysis of phylogeny and<br />

character evolution. Sinauer Associates, Inc.<br />

Minnis AM, Kennedy AH, Grenier DB, Rehner SA, Bischoff JF (2011). Asperisporium<br />

and Pantospora (Mycosphaerellaceae): epitypifications and phylogenetic<br />

placement. Persoonia 27: 1–8.<br />

Moncalvo J-M, Rehner SA, Vilgalys R (1993). Systematics of Lyophyllum section<br />

Difformia based on evidence from culture studies and ribosomal DNA<br />

sequences. Mycologia 85: 788–794.<br />

Nylander JAA (2004). MrModeltest v2.2. Program distributed by the author.<br />

Evolutionary Biology Centre, Uppsala University.<br />

O’Donnell K, Kistler HC, Cigelnik E, Ploetz RC (1998). Multiple evolutionary origins<br />

of the fungus causing Panama disease of banana: concordant evidence from<br />

nuclear and mitochondrial gene genealogies. Proceedings of the National<br />

Academy of Sciences of the United States of America 95: 2044–2049.<br />

Pons N, Sutton BC (1988). Cercospora and similar fungi on Yams (Dioscorea<br />

species). Mycological Papers 160: 1–78.<br />

Pretorius MC, Crous PW, Groenewald JZ, Braun U (2003). Phylogeny of some<br />

cercosporoid fungi from Citrus. Sydowia 55: 286–305.<br />

Quaedvlieg W, Kema GHJ, Groenewald JZ, Verkley GJM, Seifbarghi S, Razavi M,<br />

Mirzadi Gohari A, Mehrabi R, Crous PW (2011). Zymoseptoria gen. nov.: a<br />

new genus to accommodate Septoria-like species occurring on graminicolous<br />

hosts. Persoonia 26: 57–69.<br />

Rambaut A (2002). Sequence Alignment Editor. Version 2.0. Department of Zoology,<br />

University of Oxford, Oxford.<br />

Rayner RW (1970). A mycological colour chart. CMI and British Mycological Society,<br />

Kew, Surrey, England.<br />

Rehner SA, Samuels GJ (1994). Taxonomy and phylogeny of Gliocladium analysed<br />

from nuclear large subunit ribosomal DNA sequences. Mycological Research<br />

98: 625–634.<br />

Ronquist F, Huelsenbeck JP (2003). MrBayes 3: Bayesian phylogenetic inference<br />

under mixed models. Bioinformatics 19: 1572–1574.<br />

Ruibal C, Millanes AM, Hawksworth DL (2011). Molecular phylogenetic studies on<br />

the lichenicolous Xanthoriicola physciae reveal Antarctic rock-inhabiting fungi<br />

and Piedraia species among closest relatives in the Teratosphaeriaceae. IMA<br />

Fungus 2: 97–103.<br />

Sawada K (1928). Descriptive catalogue of the Formosan fungi IV. Report of the<br />

Department of Agriculture, Government Research Institute of Formosa 35:<br />

1–162.<br />

Schoch CL, Seifert KA, Huhndorf S, Robert V, Spouge JL, Levesque CA, Chen W,<br />

et al. (2012). Nuclear ribosomal internal transcribed spacer (ITS) region as a<br />

universal DNA barcode marker for Fungi. Proceedings of the National Academy<br />

of Sciences of the United States of America 109: 6241–6246.<br />

Schubert K, Groenewald JZ, Braun U, Dijksterhuis J, Starink M, Hill CF, Zalar P,<br />

de Hoog GS, Crous PW (2007). Biodiversity in the Cladosporium herbarum<br />

complex (Davidiellaceae, Capnodiales), with standardisation of methods<br />

for Cladosporium taxonomy and diagnostics. Studies in Mycology 58:<br />

105–156.<br />

Seifert KA, Hughes SJ, Boulay H, Louis-Seize G (2007). Taxonomy, nomenclature<br />

and phylogeny of three cladosporium-like hyphomycetes, Sorocybe resinae,<br />

Seifertia azaleae and the Hormoconis anamorph of Amorphotheca resinae.<br />

Studies in Mycology 58: 235–245.<br />

Seifert KA, Morgan-Jones G, Gams W, Kendrick B (2011). The Genera of<br />

Hyphomycetes. <strong>CBS</strong> Biodiversity Series 9: 1–997. Centraalbureau voor<br />

Schimmelcultures, Utrecht, Netherlands.<br />

Selbmann L, Hoog GS de, Zucconi L, Isola D, Ruisi S, et al. (2008). Drought meets<br />

acid: three new genera in a dothidealean clade of extremotolerant fungi.<br />

Studies in Mycology 61: 1–20.<br />

Shin HD, Braun U (1996). Notes on Korean Cercosporae and allied genera (II).<br />

Mycotaxon 58: 157–166.<br />

Shin HD, Braun U (2000). Notes on Korean Cercosporae and allied genera (III).<br />

Mycotaxon 74: 105–118.<br />

Shin HD, Kim JD (2001). Cercospora and allied genera from Korea. Plant Pathogens<br />

of Korea 7: 1–302. National Institute of Agricultural Science and Technology.<br />

Suwon, Korea.<br />

Singh PN, Singh SK, Tripathi SC (1996). New species of Pseudocercospora causing<br />

leaf spots of forest plants in Nepal. Mycological Research 100: 1129–1132.<br />

Spegazzini C (1910). Mycetes Argentinenses (Series V). Anales del Museo Nacional<br />

de Historia Natural, Buenos Aires 20: 329–467.<br />

Stewart EL, Liu Z, Crous PW, Szabo L (1999). Phylogenetic relationships among<br />

some cercosporoid anamorphs of Mycosphaerella based on rDNA sequence<br />

analysis. Mycological Research 103: 1491–1499.<br />

Suto Y (1999). Mycosphaerella chaenomelis sp. nov.: the teleomorph of<br />

Cercosporella sp., the causal fungus of frosty mildew in Chaenomeles sinensis,<br />

and its role as the primary infection source. Mycoscience 40: 509–516.<br />

Sutton BC (1980). The Coelomycetes. Fungi imperfecti with pycnidia, acervuli and<br />

stromata. Commonwealth Mycological Institute, Kew, Surrey, UK.<br />

Swofford DL (2003). PAUP*. Phylogenetic Analysis Using Parsimony (*and Other<br />

Methods). Version 4. Sinauer Associates, Sunderland, Massachusetts.<br />

Tamura K, Dudley J, Nei M, Kumar S (2007). MEGA 4: Molecular Evolutionary<br />

Genetics Analysis (MEGA) software version 4.0. Molecular Biology and<br />

Evolution 24: 1596–1599.<br />

Taylor JE, Crous PW (2000). Fungi occurring on Proteaceae. New anamorphs for<br />

Teratosphaeria, Mycosphaerella and Lembosia, and other fungi associated<br />

with leaf spots and cankers of Proteaceous hosts. Mycological Research 104:<br />

618–636.<br />

Togashi K, Katsuki S (1952). New or noteworthy Cercosporae from Japan. Botanical<br />

Magazine Tokyo 65: 18–26.<br />

Verkley GJM, Crous PW, Groenewald JZ, Braun U, Aptroot A (2004). Mycosphaerella<br />

punctiformis revisited: morphology, phylogeny, and epitypification of the type<br />

species of the genus Mycosphaerella (Dothideales, Ascomycota). Mycological<br />

Research 108: 1271–1282.<br />

Verkley GJM, Priest MJ (2000). Septoria and similar coelomycetous anamorphs of<br />

Mycosphaerella. Studies in Mycology 45: 123–128.<br />

Viégas AP (1945). Alguns fungos do Brasil – Cercosporae. Boletim de Sociedade<br />

Brasileira de Agronomia 8: 1–160.<br />

Vilgalys R, Hester M (1990). Rapid genetic identification and mapping of<br />

enzymatically amplified ribosomal DNA from several Cryptococcus species.<br />

Journal of Bacteriology 172: 4238–4246.<br />

Vries GA de (1962). Cyphellophora laciniata nov. gen., nov. sp. and Dactylium<br />

fusarioides Fragoso et Ciferri. Mycopathologia et Mycologia Applicata 16:<br />

47–54.<br />

Vries GA de, Elders MC, Luykx MH (1986). Description of Cyphellophora pluriseptata<br />

sp. nov. Antonie van Leeuwenhoek 52: 141–143.<br />

White TJ, Bruns T, Lee S, Taylor J (1990). Amplification and direct sequencing of<br />

fungal ribosomal RNA genes for phylogenetics. In: PCR Protocols: a guide to<br />

methods and applications (Innis MA, Gelfand DH, Sninsky JJ, White TJ, eds).<br />

Academic Press, San Diego, California: 315–322.<br />

Wingfield MJ, De Beer ZW, Slippers B, Wingfield BD, Groenewald JZ, Lombard<br />

L, Crous PW (2012). One fungus, one name promotes progressive plant<br />

pathology. Molecular Plant Pathology DOI: 10.1111/J.1364-3703.2011.00768.X<br />

Yen JM (1966). Etude sur les champignons parasites du Sud-Est asiatique IV.<br />

Troisieme note sur quelques nouvelles especes de Cercospora de Singapour.<br />

Revue Mycologique 31: 109–149.<br />

Yen JM, Lim G (1980). Cercospora and allied genera of Singapore and the Malay<br />

Peninsula. Garden’s Bulletin Singapore 33: 151–263.<br />

Zhang Y, Schoch CL, Fournier J, Crous PW, Gruyter J de, et al. (2009). Multi-locus<br />

phylogeny of Pleosporales: a taxonomic, ecological and evolutionary reevaluation.<br />

Studies in Mycology 64: 85–102.<br />

114


available online at www.studiesinmycology.org<br />

Studies in Mycology 75: 115–170.<br />

Species concepts in Cercospora: spotting the weeds among the roses<br />

J.Z. Groenewald 1* , C. Nakashima 2 , J. Nishikawa 3 , H.-D. Shin 4 , J.-H. Park 4 , A.N. Jama 5 , M. Groenewald 1 , U. Braun 6 1, 7, 8<br />

, and P.W. Crous<br />

1<br />

<strong>CBS</strong>-<strong>KNAW</strong> Fungal Biodiversity Centre, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands; 2 Graduate School of Bioresources, Mie University, 1577 Kurima-machiya, Tsu,<br />

Mie 514–8507, Japan; 3 Kakegawa Research Center, Sakata Seed Co., 1743-2 Yoshioka, Kakegawa, Shizuoka 436-0115, Japan; 4 Division of Environmental Science and<br />

Ecological Engineering, College of Life Sciences and Biotechnology, Korea University, Seoul 136-701, Korea; 5 Department of Agriculture, P.O. Box 326, University of Reading,<br />

Reading RG6 6AT, UK; 6 Martin-Luther-Universität, Institut für Biologie, Bereich Geobotanik und Botanischer Garten, Herbarium, Neuwerk 21, 06099 Halle (Saale), Germany;<br />

7<br />

Microbiology, Department of Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands; 8 Wageningen University and Research Centre (WUR), Laboratory of<br />

Phytopathology, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands<br />

*Correspondence: Johannes Z. Groenewald, e.groenewald@cbs.knaw.nl<br />

Abstract: The genus Cercospora contains numerous important plant pathogenic fungi from a diverse range of hosts. Most species of Cercospora are known only from their<br />

morphological characters in vivo. Although the genus contains more than 5 000 names, very few cultures and associated DNA sequence data are available. In this study, 360<br />

Cercospora isolates, obtained from 161 host species, 49 host families and 39 countries, were used to compile a molecular phylogeny. Partial sequences were derived from<br />

the internal transcribed spacer regions and intervening 5.8S nrRNA, actin, calmodulin, histone H3 and translation elongation factor 1-alpha genes. The resulting phylogenetic<br />

clades were evaluated for application of existing species names and five novel species are introduced. Eleven species are epi-, lecto- or neotypified in this study. Although<br />

existing species names were available for several clades, it was not always possible to apply North American or European names to African or Asian strains and vice versa.<br />

Some species were found to be limited to a specific host genus, whereas others were isolated from a wide host range. No single locus was found to be the ideal DNA barcode<br />

gene for the genus, and species identification needs to be based on a combination of gene loci and morphological characters. Additional primers were developed to supplement<br />

those previously published for amplification of the loci used in this study.<br />

Key words: Cercospora apii complex, co-evolution, host jumping, host specificity, speciation.<br />

Taxonomic novelties: New species - Cercospora coniogrammes Crous & R.G. Shivas, Cercospora delaireae C. Nakash., Crous, U. Braun & H.D. Shin, Cercospora<br />

euphorbiae-sieboldianae C. Nakash., Crous, U. Braun & H.D. Shin, Cercospora pileicola C. Nakash., Crous, U. Braun & H.D. Shin, Cercospora vignigena C. Nakash., Crous,<br />

U. Braun & H.D. Shin. Typifications: epitypifications - Cercospora alchemillicola U. Braun & C.F. Hill, Cercospora althaeina Sacc., Cercospora armoraciae Sacc., Cercospora<br />

corchori Sawada, Cercospora mercurialis Pass., Cercospora olivascens Sacc., Cercospora violae Sacc.; neotypifications - Cercospora fagopyri N. Nakata & S. Takim.,<br />

Cercospora sojina Hara.<br />

Published online: 26 September 2012; doi:10.3114/sim0012. Hard copy: June 2013.<br />

Studies in Mycology<br />

INTRODUCTION<br />

Species of the genus Cercospora belong to one of the largest genera<br />

of hyphomycetes and were often linked to the teleomorph genus<br />

Mycosphaerella (Capnodiales, Mycosphaerellaceae; Stewart et al.<br />

1999, Crous et al. 2000). The genus Mycosphaerella was shown<br />

to be polyphyletic (Crous et al. 2007), and subsequently split into<br />

numerous genera, correlating with its different anamorph states<br />

(Crous et al. 2009a, b). The genus Cercospora is now considered<br />

a holomorphic genus in its own right, with some species exhibiting<br />

the ability to form mycosphaerella-like teleomorphs (Corlett 1991,<br />

Crous et al. 2004b). Mycosphaerella s. str. on the other hand, is<br />

restricted to taxa that form Ramularia anamorphs (Verkley et al.<br />

2004). As Mycosphaerella has been widely applied to more than 40<br />

different genera, Crous et al. (2009b) expressed their preference<br />

to use the older, recently monographed (Braun 1998) anamorphtypified<br />

name Ramularia (1833) for this holomorphic clade, instead<br />

of the younger, confused teleomorph-typified generic name<br />

Mycosphaerella (1884). This is allowed under the new, changed<br />

Article 59 of the International Code for Nomenclature of algae,<br />

fungi, and plants (ICN) (Hawksworth 2011, Norvell 2011).<br />

Species of Cercospora are commonly associated with leaf spots<br />

(Fig. 1), and have also been isolated from necrotic lesions of flowers,<br />

Copyright <strong>CBS</strong>-<strong>KNAW</strong> Fungal Biodiversity Centre, P.O. Box 85167, 3508 AD Utrecht, The Netherlands.<br />

fruits and seeds or were associated with postharvest fruit rot disease<br />

(Silva & Pereira 2008) of hosts from across the world (Agrios 2005,<br />

To-Anun et al. 2011). The cercosporoid fungi have also been used as<br />

biocontrol agents (Morris & Crous 1994, Inglis et al. 2001, Tessman<br />

et al. 2001). Species of Cercospora were traditionally named after the<br />

host from which they were isolated, even to the extent that a species<br />

of Cercospora was described as new when found on a different<br />

host plant (Chupp 1954, Ellis 1971). The genus Cercospora was<br />

first erected by Fresenius for passalora-like fungi with pluriseptate<br />

conidia (in Fuckel 1863). Chupp’s (1954) monograph accepted 1 419<br />

Cercospora species and proposed a broad concept for this genus<br />

based on whether hila were thickened or not, and whether conidia<br />

were pigmented, single or in chains. The number of Cercospora<br />

species doubled to more than 3 000 when Pollack (1987) published<br />

her annotated list of Cercospora names. Since then a combination of<br />

characters such as conidiomatal structure, mycelium, conidiophores,<br />

conidiogenous cells and conidia has been used to divide the genus<br />

into morphologically similar units. Crous & Braun (2003) used the<br />

structure of conidiogenous loci and hila as well as the absence or<br />

presence of pigmentation in conidiophores and conidia in their<br />

revision of names published in Cercospora and Passalora. They<br />

recognised 659 names in the genus Cercospora, with a further 281<br />

names referred to as C. apii s. lat. The C. apii complex represented<br />

You are free to share - to copy, distribute and transmit the work, under the following conditions:<br />

Attribution:<br />

You must attribute the work in the manner specified by the author or licensor (but not in any way that suggests that they endorse you or your use of the work).<br />

Non-commercial: You may not use this work for commercial purposes.<br />

No derivative works: You may not alter, transform, or build upon this work.<br />

For any reuse or distribution, you must make clear to others the license terms of this work, which can be found at http://creativecommons.org/licenses/by-nc-nd/3.0/legalcode. Any of the above conditions can be waived if you get<br />

permission from the copyright holder. Nothing in this license impairs or restricts the author’s moral rights.<br />

115


Groenewald et al.<br />

Fig. 1. Foliar disease symptoms associated with Cercospora spp. A. C. achyranthis on Achyranthes japonica. B. C. dispori on Disporum viridescens. C. C. chinensis on<br />

Polygonatum humile. D. C. cf. flagellaris on Amaranthus patulus. E. C. capsici on Capsicum annuum. F. Cercospora sp. on Ajuga multiflora. G. Cercospora sp. on Cardamine<br />

leucanthe. H. C. cf. flagellaris on Celosia argentea var. cristata. I. C. zeina on Zea mays. J. C. beticola on Beta vulgaris. K. C. chrysanthemi on Chrysanthemum. L. C. apii on<br />

Apium. M. C. amoraciae on Rorippa indica. N. C. beticola on Chrysanthemum segetum. O. C. apiicola on Apium. P. C. ipomoeae on Persicaria thunbergii. Q. C. althaeina on<br />

Althaea rosea. R. C. zebrina on Trifolium repens. S. C. sojina on Glycine max. T. C. brunkii on Geranium nepalense.<br />

116


Species concepts in Cercospora<br />

Cercospora species that were morphologically indistinguishable<br />

from C. apii (Ellis 1971, Crous & Braun 2003). In addition, Crous &<br />

Braun (2003) introduced the concept of “compound species” which<br />

consisted of morphologically indistinguishable species with different<br />

races (host range), genetically uniform or heterogeneous, with<br />

different degrees of biological specialisation. They also proposed that<br />

genetically and morphologically clearly distinguishable taxa should<br />

be treated as separate species, although the study was confounded<br />

by the general unavailability of Cercospora cultures for DNA<br />

analyses. Ex-type strains mostly do not exist as such isolates were<br />

neither designated nor preserved, for the majority of Cercospora<br />

species (Groenewald et al. 2010a). For most Cercospora species, a<br />

sexual stage (a mycosphaerella-like state) is not known; or has been<br />

reported, but not confirmed (Goodwin et al. 2001). The mating type<br />

genes of some apparently asexual Cercospora species were recently<br />

characterised, with the discovery that C. beticola, C. zeae-maydis<br />

and C. zeina were heterothallic, although only one mating type was<br />

present in populations of C. apii and C. apiicola (Groenewald et al.<br />

2006b, 2010b). The two mating types of C. beticola were distributed<br />

approximately equally in the tested populations, indicating that these<br />

genes might indeed be active, indicative of cryptic sex. More recently<br />

a skewed distribution of mating types across sugar beet fields from<br />

different localities was report from Iran, with some fields having both<br />

mating types and others only the one or the other (Bakhshi et al.<br />

2011). A further study conducted over a 3-yr period in the USA,<br />

also led to the conclusion that C. beticola has potential for sexual<br />

reproduction (Bolton et al. 2012).<br />

Host specificity and speciation in Cercospora has not been<br />

studied extensively, but it is known that some species induce leaf<br />

spot symptoms when inoculated on other hosts, for example, C.<br />

beticola on all members of Beta (Chenopodiaceae) and other plant<br />

species (Weiland & Koch 2004) or C. apii and C. beticola isolated<br />

from disease symptoms on other hosts (Groenewald et al. 2006a).<br />

Cercospora caricis is used as a biological control agent of Cyperus<br />

rotundus (Cyperaceae), and Inglis et al. (2001) compared Brazilian<br />

isolates with an isolate from Florida, USA. The authors used RAPDs<br />

(Randomly Amplified Polymorphic DNA), RFLPs (Restriction<br />

Fragment Length Polymorphisms) with a telomeric probe and ITS<br />

sequencing and found that a cluster of isolates from the Brazilian<br />

cerrado region showed high genetic similarity, whereas similarity<br />

between this region and others in Brazil was less that 50 %. They<br />

also found that the ITS sequence analysis did not support a division<br />

in the Brazilian isolates (99 % similar sequences) but that it did<br />

separate the Florida isolate from the Brazilian isolates (96 % similar<br />

when included with the Brazilian isolates). They concluded that the<br />

isolate from Florida probably represented cryptic speciation but that<br />

larger sampling of isolates was required from different geographical<br />

areas to address this question. Host specificity for some species<br />

appears to operate at the strain level, as for C. rodmanii, in which<br />

the original strains of Conway (1976) were shown to be specific to<br />

water hyacinth, whereas strains identified by morphology and multilocus<br />

sequence data as the same species, were able to infect beet<br />

and sugar beet (Montenegro-Calderón et al. 2011).<br />

A number of molecular studies using ITS phylogenies confirmed<br />

that Cercospora taxa cluster in a well-supported monophyletic<br />

clade in Mycosphaerella (Stewart et al. 1999, Crous et al. 2000,<br />

2009a, b, Goodwin et al. 2001, Pretorius et al. 2003), in contrast<br />

to other polyphyletic genera such as Septoria (Verkley et al. 2004;<br />

compared to the monophyletic Zymoseptoria, Quaedvlieg et al.<br />

2011), Pseudocercospora, Passalora and Zasmidium (Crous et al.<br />

2009b), to name but a few. The ITS region (ITS1, 5.8S rDNA and<br />

ITS2) lacks the resolution to distinguish between most Cercospora<br />

species (Groenewald et al. 2010a). For example, Goodwin et al.<br />

(2001) found a mean of 1.27 sequence changes over 18 taxa<br />

from 11 Cercospora species, and Pretorius et al. (2003) found a<br />

mean of 1.64 changes when they tested 25 taxa representing 11<br />

Cercospora species. Both Goodwin et al. (2001) and Pretorius<br />

et al. (2003) observed more transitions than transversions. Only<br />

a limited number of studies utilising gene sequences other than<br />

ITS have been published thus far (for example Tessmann et al.<br />

2001, Crous et al. 2004b, Groenewald et al. 2005, 2006a, 2010a,<br />

Montenegro-Calderón et al. 2011). Tessmann et al. (2001) found<br />

that 14 of the 431 aligned translation elongation factor 1-alpha<br />

characters were parsimony-informative, with only six of the 380<br />

characters for beta-tubulin and 17 of the 309 histone H3 characters<br />

being parsimony-informative. The ITS region did not contain any<br />

differences when compared with the outgroup C. beticola. Crous<br />

et al. (2004b) used fixed nucleotide changes in aligned nucleotide<br />

characters (including alignment gaps) to discriminate C. acaciaemangii<br />

from C. apii and C. beticola, and listed changes at none of<br />

521 ITS characters (0 %), nine of 300 translation elongation factor<br />

1-alpha characters (3 %), three of 209 actin characters (1.4 %), 10<br />

of 312 calmodulin characters (3.2 %), and seven of 388 histone<br />

H3 characters (1.8 %). A total of 1 730 aligned characters were<br />

examined, of which 29 (1.68 %) were observed as fixed nucleotide<br />

changes. Using the same five loci, Groenewald et al. (2005) found<br />

96 % similarity between C. apii and C. beticola for the calmodulin<br />

gene, with all other loci having identical sequences. Based on<br />

the differences in the calmodulin gene, distinctive AFLP banding<br />

patterns and different growth rates, the authors recognised C. apii<br />

s. str. and C. beticola s. str. as distinct species. Continuing with<br />

the same approach, Groenewald et al. (2006a) then proceeded to<br />

describe C. apiicola, a further distinct species thus far only isolated<br />

from Apium (Apiaceae). Both Groenewald et al. (2010a) and<br />

Montenegro-Calderón et al. (2011) used phylogenetic analyses<br />

of combined ITS, translation elongation factor 1-alpha, actin,<br />

calmodulin and histone H3 sequence alignments to study species<br />

boundaries and diversity in Cercospora. Groenewald et al. (2010a)<br />

concluded that although most loci tested could resolve a large<br />

number of species, the sum of the whole provided a better resolution<br />

compared to a subset of loci. In that study, the loci differed in their<br />

ability to resolve clades, with ITS and translation elongation factor<br />

1-alpha performing worst (distinguishing three and 10 clades,<br />

respectively), while actin could distinguish 14 clades, calmodulin<br />

13 clades and histone H3 12 clades compared to the 16 species<br />

clades recognised in the combined tree. Montenegro-Calderón et<br />

al. (2011) concluded that C. rodmanii could be distinguished from<br />

C. piaropi based on actin, calmodulin and histone H3, but that<br />

only calmodulin could clearly separate C. rodmanii from the other<br />

Cercospora species included in their study. These results illustrated<br />

that the phylogenetic approach using multi-locus sequences was<br />

one of the most effective ways to recognise different species of<br />

Cercospora. Although this approach is not suitable to recognise the<br />

true host range of a species without pathogenicity tests, it does<br />

provide a handle on the true identity of the strain being used.<br />

Goodwin et al. (2001) attributed the short branch lengths<br />

observed for their ITS phylogeny to a relatively recent common<br />

ancestor that was able to, or acquired the ability to, produce<br />

cercosporin, a phytotoxic metabolite of polyketide origin (Daub<br />

& Ehrenshaft 2000). The ability to produce cercosporin probably<br />

allowed the Cercospora ancestor to rapidly expand its host range<br />

in a recent adaptive radiation (Goodwin et al. 2001). It has been<br />

suggested that this compound may enhance virulence (Upchurch<br />

et al. 1991), but it is not a universal pathogenicity factor as<br />

www.studiesinmycology.org<br />

117


Groenewald et al.<br />

Table 1. Collection details and GenBank accession numbers of isolates included in this study.<br />

Species Culture accession number(s) 1 Host name or isolation source Host Family Country Collector GenBank accession numbers 2<br />

ITS TEF ACT CAL HIS<br />

Cercospora achyranthis <strong>CBS</strong> 132613; CPC 10879 Achyranthes japonica Amaranthaceae South Korea: Jeju H.D. Shin JX143523 JX143277 JX143031 JX142785 JX142539<br />

CPC 10091 Achyranthes japonica Amaranthaceae South Korea: Jeju H.D. Shin JX143524 JX143278 JX143032 JX142786 JX142540<br />

Cercospora agavicola <strong>CBS</strong> 117292; CPC 11774 (TYPE) Agave tequilana var. azul Agavaceae Mexico: Penjamo V. Ayala-Escobar & Ma. de AY647237 AY966897 AY966898 AY966899 AY966900<br />

Jesús Yáñez-Morales<br />

Cercospora alchemillicola CPC 5259 (TYPE) Alchemilla mollis Rosaceae New Zealand: Auckland C.F. Hill JX143525 JX143279 JX143033 JX142787 JX142541<br />

Cercospora cf. alchemillicola CPC 5126 Oenothera fruticosa Onagraceae New Zealand: Auckland C.F. Hill JX143526 JX143280 JX143034 JX142788 JX142542<br />

CPC 5127 Gaura lindheimeri Onagraceae New Zealand: Auckland C.F. Hill JX143527 JX143281 JX143035 JX142789 JX142543<br />

Cercospora althaeina <strong>CBS</strong> 126.26; CPC 5066 Malva sp. Malvaceae — C. Killian JX143528 JX143282 JX143036 JX142790 JX142544<br />

<strong>CBS</strong> 132609; CPC 10790 Althaea rosea Malvaceae South Korea: Suwon H.D. Shin JX143529 JX143283 JX143037 JX142791 JX142545<br />

<strong>CBS</strong> 248.67; CPC 5117 (TYPE) Althaea rosea Malvaceae Romania: Fundulea O. Constantinescu JX143530 JX143284 JX143038 JX142792 JX142546<br />

Cercospora apii <strong>CBS</strong> 110813; CPC 5110; 01-3 Moluccella laevis Lamiaceae USA: California S.T. Koike AY156918 DQ233345 DQ233371 DQ233397 DQ233423<br />

<strong>CBS</strong> 110816; CPC 5111; 01-4 Moluccella laevis Lamiaceae USA: California S.T. Koike AY156919 DQ233346 DQ233372 DQ233398 DQ233424<br />

<strong>CBS</strong> 114416; CPC 10925 Apium sp. Apiaceae Austria Institut fur Pflanzengesundheit AY840516 AY840483 AY840447 AY840414 AY840381<br />

<strong>CBS</strong> 114418; CPC 10924 Apium graveolens Apiaceae Italy M. Meutri AY840517 AY840484 AY840448 AY840415 AY840382<br />

<strong>CBS</strong> 114485; CPC 10923 Apium graveolens Apiaceae Italy M. Meutri AY840518 AY840485 AY840449 AY840416 AY840383<br />

<strong>CBS</strong> 116455; CPC 11556 (TYPE) Apium graveolens Apiaceae Germany: Heilbron K. Schrameyer AY840519 AY840486 AY840450 AY840417 AY840384<br />

<strong>CBS</strong> 116504; CPC 11579 Apium graveolens Apiaceae Germany: Heilbron K. Schrameyer AY840520 AY840487 AY840451 AY840418 AY840385<br />

<strong>CBS</strong> 116507; CPC 11582 Apium graveolens Apiaceae Germany: Heilbron K. Schrameyer AY840521 AY840488 AY840452 AY840419 AY840386<br />

<strong>CBS</strong> 119.25; B 42463; IHEM 3822; Apium graveolens Apiaceae — L. J. Klotz AY179949 AY179915 AY840443 AY840410 AY840377<br />

CPC 5086<br />

<strong>CBS</strong> 121.31; CPC 5073 Beta vulgaris Chenopodiaceae Austria: Wien E.W. Schmidt AY343371 AY343334 AY840444 AY840411 AY840378<br />

<strong>CBS</strong> 127.31; CPC 5119 Beta vulgaris Chenopodiaceae Hungary E.W. Schmidt AY840514 AY840481 AY840445 AY840412 AY840379<br />

<strong>CBS</strong> 132683; CPC 16663 Moluccella laevis Lamiaceae Zimbabwe S. Dimbi JX143531 JX143285 JX143039 JX142793 JX142547<br />

G. van den Ende AY840515 AY840482 AY840446 AY840413 AY840380<br />

<strong>CBS</strong> 152.52; IMI 077043; MUCL<br />

16495; CPC 5063<br />

Beta vulgaris Chenopodiaceae Netherlands: Bergen op<br />

Zoom<br />

<strong>CBS</strong> 252.67; CPC 5084 Plantago lanceolata Plantaginaceae Romania: Domnesti O. Constantinescu DQ233318 DQ233342 DQ233368 DQ233394 DQ233420<br />

<strong>CBS</strong> 536.71; CPC 5087 Apium graveolens Apiaceae Romania: Bucuresti O. Constantinescu AY752133 AY752166 AY752194 AY752225 AY752256<br />

<strong>CBS</strong> 553.71; IMI 161116; CPC 5083 Plumbago europaea Plumbaginaceae Romania: Hagieni O. Constantinescu DQ233320 DQ233344 DQ233370 DQ233396 DQ233422<br />

CPC 18601 Apium graveolens Apiaceae USA: California S.T. Koike JX143532 JX143286 JX143040 JX142794 JX142548<br />

CPC 5112 Moluccella laevis Lamiaceae New Zealand: Auckland C.F. Hill DQ233321 DQ233347 DQ233373 DQ233399 DQ233425<br />

CPC 5260 Glebionis coronaria<br />

Asteraceae New Zealand: Auckland C.F. Hill JX143533 JX143287 JX143041 JX142795 JX142549<br />

(≡ Chrysanthemum coronarium)<br />

MUCC 567; MUCNS 30; MAFF 238072<br />

Apium graveolens Apiaceae Japan: Aichi T. Kobayashi JX143534 JX143288 JX143042 JX142796 JX142550<br />

118


Species concepts in Cercospora<br />

Table 1. (Continued).<br />

Species Culture accession number(s) 1 Host name or isolation source Host Family Country Collector GenBank accession numbers 2<br />

MUCC 573; MAFF 235978 Glebionis coronaria<br />

(≡ Chrysanthemum coronarium)<br />

ITS TEF ACT CAL HIS<br />

Asteraceae Japan: Hokkaido — JX143535 JX143289 JX143043 JX142797 JX142551<br />

MUCC 593 Apium graveolens Apiaceae Japan: Shizuoka M. Togawa JX143536 JX143290 JX143044 JX142798 JX142552<br />

MUCC 923; MAFF 238299 Asparagus officinalis Asparagaceae Japan: Saga J. Yamaguchi JX143537 JX143291 JX143045 JX142799 JX142553<br />

Cercospora apiicola <strong>CBS</strong> 116457; CPC 10267 (TYPE) Apium sp. Apiaceae Venezuela: Caripe N. Pons AY840536 AY840503 AY840467 AY840434 AY840401<br />

<strong>CBS</strong> 116458; CPC 10657 Apium graveolens Apiaceae South Korea: Kangnung H.D. Shin AY840537 AY840504 AY840468 AY840435 AY840402<br />

<strong>CBS</strong> 132644; CPC 10248 Apium sp. Apiaceae Venezuela: Caripe N. Pons AY840539 AY840506 AY840470 AY840437 AY840404<br />

<strong>CBS</strong> 132651; CPC 10759 Apium graveolens Apiaceae South Korea: Namyangju H.D. Shin AY840544 AY840511 AY840475 AY840442 AY840409<br />

<strong>CBS</strong> 132666; CPC 11642; GRE-4-2 Apium sp. Apiaceae Greece I. Vloutoglou DQ233341 DQ233367 DQ233393 DQ233419 DQ233441<br />

CPC 10220 Apium sp. Apiaceae Venezuela: Caripe N. Pons AY840538 AY840505 AY840469 AY840436 AY840403<br />

CPC 10265 Apium sp. Apiaceae Venezuela: Caripe N. Pons AY840540 AY840507 AY840471 AY840438 AY840405<br />

CPC 10266 Apium sp. Apiaceae Venezuela: Caripe N. Pons AY840541 AY840508 AY840472 AY840439 AY840406<br />

CPC 10279 Apium sp. Apiaceae Venezuela: Caripe N. Pons AY840542 AY840509 AY840473 AY840440 AY840407<br />

CPC 10666 Apium sp. Apiaceae South Korea: Kangnung H.D. Shin AY840543 AY840510 AY840474 AY840441 AY840408<br />

CPC 11641; GRE-3-2 Apium sp. Apiaceae Greece I. Vloutoglou DQ233340 DQ233366 DQ233392 DQ233418 DQ233440<br />

Cercospora armoraciae <strong>CBS</strong> 115060; CPC 5366 Gaura sp. Onagraceae New Zealand C.F. Hill JX143538 JX143292 JX143046 JX142800 JX142554<br />

<strong>CBS</strong> 115394; CPC 5261 Nasturtium officinale<br />

Brassicaceae New Zealand: Auckland C.F. Hill JX143539 JX143293 JX143047 JX142801 JX142555<br />

(= Rorippa nasturtium-aquaticum)<br />

<strong>CBS</strong> 115409; CPC 5359 Armoracia rusticana (= A. lapathifolia) Brassicaceae New Zealand: Manurewa C.F. Hill JX143540 JX143294 JX143048 JX142802 JX142556<br />

<strong>CBS</strong> 132610; CPC 10811 Armoracia rusticana (= A. lapathifolia) Brassicaceae South Korea: Suwon H.D. Shin JX143541 JX143295 JX143049 JX142803 JX142557<br />

<strong>CBS</strong> 132638; CPC 10100 Barbarea orthoceras Brassicaceae South Korea: Pocheon H.D. Shin JX143542 JX143296 JX143050 JX142804 JX142558<br />

<strong>CBS</strong> 132654; CPC 11338 Turritis glabra (≡ Arabis glabra) Brassicaceae South Korea: Hoengseong H.D. Shin JX143543 JX143297 JX143051 JX142805 JX142559<br />

<strong>CBS</strong> 132672; CPC 14612 Rorippa indica Brassicaceae South Korea: Jecheon H.D. Shin JX143544 JX143298 JX143052 JX142806 JX142560<br />

<strong>CBS</strong> 250.67; CPC 5088 (TYPE) Armoracia rusticana (= A. lapathifolia) Brassicaceae Romania: Fundulea O. Constantinescu JX143545 JX143299 JX143053 JX142807 JX142561<br />

<strong>CBS</strong> 258.67; CPC 5061 Cardaria draba Brassicaceae Romania: Fundulea O. Constantinescu JX143546 JX143300 JX143054 JX142808 JX142562<br />

<strong>CBS</strong> 538.71; IMI 161109; CPC 5090 Berteroa incana Brassicaceae Romania: Hagieni O. Constantinescu JX143547 JX143301 JX143055 JX142809 JX142563<br />

<strong>CBS</strong> 540.71; IMI 161110; CPC 5060 Cardaria draba Brassicaceae Romania: Hagieni O. Constantinescu JX143548 JX143302 JX143056 JX142810 JX142564<br />

<strong>CBS</strong> 545.71; CPC 5056 Erysimum cuspidatum Brassicaceae Romania: Valea Mraconiei O. Constantinescu JX143549 JX143303 JX143057 JX142811 JX142565<br />

<strong>CBS</strong> 555.71; IMI 161117; CPC 5082 Coronilla varia Fabaceae Romania: Hagieni O. Constantinescu JX143550 JX143304 JX143058 JX142812 JX142566<br />

CPC 10133 Rorippa indica Brassicaceae South Korea: Wonju H.D. Shin JX143551 JX143305 JX143059 JX142813 JX142567<br />

CPC 11364 Turritis glabra (≡ Arabis glabra) Brassicaceae South Korea: Hoengseong H.D. Shin JX143552 JX143306 JX143060 JX142814 JX142568<br />

CPC 11530 Acacia mangium Fabaceae Thailand W. Himaman JX143553 JX143307 JX143061 JX142815 JX142569<br />

MUCC 768 Armoracia rusticana (= A. lapathifolia) Brassicaceae Japan: Okinawa C. Nakashima JX143554 JX143308 JX143062 JX142816 JX142570<br />

www.studiesinmycology.org<br />

119


Groenewald et al.<br />

Table 1. (Continued).<br />

Species Culture accession number(s) 1 Host name or isolation source Host Family Country Collector GenBank accession numbers 2<br />

ITS TEF ACT CAL HIS<br />

Cercospora beticola <strong>CBS</strong> 113069; CPC 5369 Spinacia sp. Chenopodiaceae Botswana: Gaborone L. Lebogang DQ233325 DQ233351 DQ233377 DQ233403 DQ233429<br />

<strong>CBS</strong> 115478; CPC 5113 Limonium sinuatum Plumbaginaceae New Zealand: Auckland C.F. Hill DQ233326 DQ233352 DQ233378 DQ233404 DQ233430<br />

<strong>CBS</strong> 116.47; CPC 5074 Beta vulgaris Chenopodiaceae Netherlands: Northwest G.E. Bunschoten AY752135 AY752168 AY752196 AY752227 AY752258<br />

Brabant<br />

<strong>CBS</strong> 116454; CPC 11558 Beta vulgaris Chenopodiaceae Germany S. Mittler AY840526 AY840493 AY840457 AY840424 AY840391<br />

<strong>CBS</strong> 116456; CPC 11557 (TYPE) Beta vulgaris Chenopodiaceae Italy: Ravenna V. Rossi AY840527 AY840494 AY840458 AY840425 AY840392<br />

<strong>CBS</strong> 116501; CPC 11576 Beta vulgaris Chenopodiaceae Iran: Pakajik A.A. Ravanlou AY840528 AY840495 AY840459 AY840426 AY840393<br />

<strong>CBS</strong> 116502; CPC 11577 Beta vulgaris Chenopodiaceae Germany S. Mittler AY840529 AY840496 AY840460 AY840427 AY840394<br />

<strong>CBS</strong> 116503; CPC 11578 Beta vulgaris Chenopodiaceae Italy: Ravenna V. Rossi AY840530 AY840497 AY840461 AY840428 AY840395<br />

<strong>CBS</strong> 116505; CPC 11580 Beta vulgaris Chenopodiaceae France: Longvic S. Garressus AY840531 AY840498 AY840462 AY840429 AY840396<br />

<strong>CBS</strong> 116506; CPC 11581 Beta vulgaris Chenopodiaceae Netherlands M. Groenewald AY840532 AY840499 AY840463 AY840430 AY840397<br />

<strong>CBS</strong> 117.47 Beta vulgaris Chenopodiaceae Czech Republic G.E. Bunschoten DQ233322 DQ233348 DQ233374 DQ233400 DQ233426<br />

<strong>CBS</strong> 117556; CPC 10171 Beta vulgaris Chenopodiaceae New Zealand: Auckland C.F. Hill AY840534 AY840501 AY840465 AY840432 AY840399<br />

<strong>CBS</strong> 122.31; CPC 5072 Beta vulgaris Chenopodiaceae Germany: Gmain E.W. Schmidt AY752136 AY752169 AY752197 AY752228 AY752259<br />

<strong>CBS</strong> 123.31; CPC 5071 Beta vulgaris Chenopodiaceae Spain E.W. Schmidt AY840522 AY840489 AY840453 AY840420 AY840387<br />

<strong>CBS</strong> 123907; CPC 14616 Goniolimon tataricum Plumbaginaceae Bulgaria S.G. Bobev FJ473422 FJ473427 FJ473432 FJ473437 FJ473442<br />

<strong>CBS</strong> 123908; CPC 14620 Goniolimon tataricum Plumbaginaceae Bulgaria S.G. Bobev FJ473426 FJ473431 FJ473436 FJ473441 FJ473446<br />

<strong>CBS</strong> 124.31; CPC 5070 Beta vulgaris Chenopodiaceae Romania: Hagieni E.W. Schmidt AY840523 AY840490 AY840454 AY840421 AY840388<br />

<strong>CBS</strong> 125.31; CPC 5069 Beta vulgaris Chenopodiaceae — E.W. Schmidt AY840524 AY840491 AY840455 AY840422 AY840389<br />

<strong>CBS</strong> 126.31; CPC 5064 Beta vulgaris Chenopodiaceae Germany: Klein<br />

E.W. Schmidt AY840525 AY840492 AY840456 AY840423 AY840390<br />

Wanzleben<br />

<strong>CBS</strong> 132655; CPC 11341 Chrysanthemum segetum<br />

Asteraceae South Korea: Namyangju H.D. Shin DQ233332 DQ233358 DQ233384 DQ233410 DQ233434<br />

(= Ch. coronarium var. spatiosum)<br />

<strong>CBS</strong> 132673; CPC 14617 Goniolimon tataricum Plumbaginaceae Bulgaria S.G. Bobev FJ473423 FJ473428 FJ473433 FJ473438 FJ473443<br />

<strong>CBS</strong> 539.71; CPC 5062 Beta vulgaris Chenopodiaceae Romania: Bucuresti O. Constantinescu DQ233323 DQ233349 DQ233375 DQ233401 DQ233427<br />

<strong>CBS</strong> 548.71; IMI 161115; CPC 5065 Malva pusilla Malvaceae Romania: Hagieni O. Constantinescu & G. DQ233324 DQ233350 DQ233376 DQ233402 DQ233428<br />

Negrean<br />

CPC 10166 Beta vulgaris Chenopodiaceae New Zealand C.F. Hill DQ233329 DQ233355 DQ233381 DQ233407 DQ026471<br />

CPC 10168 Beta vulgaris Chenopodiaceae New Zealand: Auckland C.F. Hill AY840533 AY840500 AY840464 AY840431 AY840398<br />

CPC 10195 Beta vulgaris Chenopodiaceae New Zealand C.F. Hill DQ233330 DQ233356 DQ233382 DQ233408 DQ026472<br />

CPC 10197 Beta vulgaris Chenopodiaceae New Zealand: Auckland C.F. Hill AY840535 AY840502 AY840466 AY840433 AY840400<br />

CPC 10204 Beta vulgaris Chenopodiaceae New Zealand: Auckland C.F. Hill DQ233331 DQ233357 DQ233383 DQ233409 DQ233433<br />

CPC 11344 Chrysanthemum segetum<br />

(= Ch. coronarium var. spatiosum)<br />

Asteraceae South Korea: Namyangju H.D. Shin DQ233333 DQ233359 DQ233385 DQ233411 DQ233435<br />

120


Species concepts in Cercospora<br />

Table 1. (Continued).<br />

Species Culture accession number(s) 1 Host name or isolation source Host Family Country Collector GenBank accession numbers 2<br />

ITS TEF ACT CAL HIS<br />

CPC 12022 Beta vulgaris Chenopodiaceae Germany S. Mittler DQ233334 DQ233360 DQ233386 DQ233412 DQ233436<br />

CPC 12027 Beta vulgaris Chenopodiaceae Germany S. Mittler DQ233335 DQ233361 DQ233387 DQ233413 DQ026468<br />

CPC 12028 Beta vulgaris Chenopodiaceae Egypt M. Hasem DQ233336 DQ233362 DQ233388 DQ233414 DQ233437<br />

CPC 12029 Beta vulgaris Chenopodiaceae Egypt M. Hasem DQ233337 DQ233363 DQ233389 DQ233415 DQ233438<br />

CPC 12030 Beta vulgaris Chenopodiaceae Egypt M. Hasem DQ233338 DQ233364 DQ233390 DQ233416 DQ233439<br />

CPC 12031 Beta vulgaris Chenopodiaceae Germany S. Mittler DQ233339 DQ233365 DQ233391 DQ233417 DQ026470<br />

CPC 14618 Goniolimon tataricum Plumbaginaceae Bulgaria S.G. Bobev FJ473424 FJ473429 FJ473434 FJ473439 FJ473444<br />

CPC 14619 Goniolimon tataricum Plumbaginaceae Bulgaria S.G. Bobev FJ473425 FJ473430 FJ473435 FJ473440 FJ473445<br />

CPC 15623 Beta vulgaris Chenopodiaceae Mexico: Texcoco Ma. de Jesús Yáñez-Morales JX143555 JX143309 JX143063 JX142817 JX142571<br />

CPC 18813 Beta vulgaris Chenopodiaceae USA: California S.T. Koike JX143556 JX143310 JX143064 JX142818 JX142572<br />

CPC 5123 Apium graveolens Apiaceae New Zealand: Auckland C.F. Hill AY752134 AY752167 AY752195 AY752226 AY752257<br />

CPC 5125 Beta vulgaris Chenopodiaceae New Zealand: Auckland C.F. Hill AY752137 AY752170 AY752198 AY752229 AY752260<br />

CPC 5128 Beta vulgaris Chenopodiaceae New Zealand: Auckland C.F. Hill AY752138 AY752171 AY752199 AY752230 AY752261<br />

CPC 5370 Spinacia sp. Chenopodiaceae Botswana: Gaborone L. Lebogang DQ233328 DQ233354 DQ233380 DQ233406 DQ233432<br />

MUCC 568; MUCNS 320; MAFF Beta vulgaris Chenopodiaceae Japan: Chiba S. Uematsu JX143557 JX143311 JX143065 JX142819 JX142573<br />

238206<br />

MUCC 569; MAFF 305036 Beta vulgaris Chenopodiaceae Japan: Hokkaido K. Goto JX143558 JX143312 JX143066 JX142820 JX142574<br />

Cercospora cf. brunkii <strong>CBS</strong> 132657; CPC 11598 Geranium thunbergii<br />

Geraniaceae South Korea: Namyangju H.D. Shin JX143559 JX143313 JX143067 JX142821 JX142575<br />

(≡ G. nepalense var. thunbergii)<br />

MUCC 732 Datura stramonium Solanaceae Japan: Wakayama C. Nakashima & I. Araki JX143560 JX143314 JX143068 JX142822 JX142576<br />

Cercospora campi-silii <strong>CBS</strong> 132625; CPC 14585 Impatiens noli-tangere Balsaminaceae South Korea: Inje H.D. Shin JX143561 JX143315 JX143069 JX142823 JX142577<br />

S. van Wyk AY260065 DQ835084 DQ835103 DQ835130 DQ835157<br />

Cercospora canescens<br />

complex<br />

<strong>CBS</strong> 111133; CPC 1137 Vigna sp. Fabaceae South Africa:<br />

Potchefstroom<br />

<strong>CBS</strong> 111134; CPC 1138 Vigna sp. Fabaceae South Africa:<br />

Potchefstroom<br />

S. van Wyk AY260066 DQ835085 DQ835104 DQ835131 DQ835158<br />

<strong>CBS</strong> 132658; CPC 11626; GHA-1-0 Dioscorea rotundata Dioscoreaceae Ghana S. Nyako & A.O. Danquah JX143562 JX143316 JX143070 JX142824 JX142578<br />

<strong>CBS</strong> 132659; CPC 11627; GHA-1-1 Dioscorea alata Dioscoreaceae Ghana S. Nyako & A.O. Danquah JX143563 JX143317 JX143071 JX142825 JX142579<br />

<strong>CBS</strong> 153.55; CPC 5059 Phaseolus lunatus (= Ph. limensis) Fabaceae USA: Georgia E.S. Luttrell JX143564 JX143318 JX143072 JX142826 JX142580<br />

CPC 11628; GHA-2-1 Dioscorea rotundata Dioscoreaceae Ghana S. Nyako & A.O. Danquah JX143565 JX143319 JX143073 JX142827 JX142581<br />

CPC 11640; IMI 186563 Apium sp. Apiaceae USA — JX143566 JX143320 JX143074 JX142828 JX142582<br />

CPC 15871 — Malvaceae Mexico: Tamaulipas Ma. de Jesús Yáñez-Morales JX143567 JX143321 JX143075 JX142829 JX142583<br />

CPC 4408; Q 160 IS2 Citrus maxima Rutaceae South Africa: Tsipise K. Serfontein AY260067 DQ835086 DQ835105 DQ835132 DQ835159<br />

CPC 4409 Citrus maxima Rutaceae South Africa: Tsipise K. Serfontein AY260068 DQ835087 DQ835106 DQ835133 DQ835160<br />

Cercospora capsici <strong>CBS</strong> 118712 Lesions on calyx attached to fruit — Fiji P. Tyler GU214653 JX143322 JX143076 JX142830 JX142584<br />

www.studiesinmycology.org<br />

121


Groenewald et al.<br />

Table 1. (Continued).<br />

Species Culture accession number(s) 1 Host name or isolation source Host Family Country Collector GenBank accession numbers 2<br />

ITS TEF ACT CAL HIS<br />

<strong>CBS</strong> 132622; CPC 14520 Capsicum annuum Solanaceae South Korea: Yanggu H.D. Shin JX143568 JX143323 JX143077 JX142831 JX142585<br />

CPC 12307 Capsicum annuum Solanaceae South Korea: Hongcheon H.D. Shin GU214654 JX143324 JX143078 JX142832 JX142586<br />

MUCC 574; MUCNS 810; MAFF Capsicum annuum Solanaceae Japan: Chiba S. Uematsu JX143569 JX143325 JX143079 JX142833 JX142587<br />

238227<br />

Cercospora celosiae <strong>CBS</strong> 132600; CPC 10660 Celosia argentea var. cristata Amaranthaceae South Korea: Chuncheon H.D. Shin JX143570 JX143326 JX143080 JX142834 JX142588<br />

(≡ C. cristata)<br />

Cercospora chenopodii <strong>CBS</strong> 132620; CPC 14237 Chenopodium cf. album Chenopodiaceae France: Ardeche P.W. Crous JX143571 JX143327 JX143081 JX142835 JX142589<br />

Cercospora cf. chenopodii <strong>CBS</strong> 132594; CPC 10304 (TYPE) Chenopodium ficifolium Chenopodiaceae South Korea: Hongcheon H.D. Shin JX143572 JX143328 JX143082 JX142836 JX142590<br />

<strong>CBS</strong> 132677; CPC 15599 Chenopodium sp. Chenopodiaceae Mexico: Montecillo Ma. de Jesús Yáñez-Morales JX143573 JX143329 JX143083 JX142837 JX142591<br />

CPC 12450 Chenopodium ficifolium Chenopodiaceae South Korea: Hongcheon H.D. Shin JX143574 JX143330 JX143084 JX142838 JX142592<br />

CPC 15763 Chenopodium sp. Chenopodiaceae Mexico: Montecillo Ma. de Jesús Yáñez-Morales JX143575 JX143331 JX143085 JX142839 JX142593<br />

CPC 15859 Chenopodium sp. Chenopodiaceae Mexico: Purificacion Ma. de Jesús Yáñez-Morales JX143576 JX143332 JX143086 JX142840 JX142594<br />

CPC 15862 Chenopodium sp. Chenopodiaceae Mexico: Purificacion Ma. de Jesús Yáñez-Morales JX143577 JX143333 JX143087 JX142841 JX142595<br />

Cercospora chinensis <strong>CBS</strong> 132612; CPC 10831 Polygonatum humile Convallariaceae South Korea:<br />

H.D. Shin JX143578 JX143334 JX143088 JX142842 JX142596<br />

Pyeongchang<br />

Cercospora cf. citrulina <strong>CBS</strong> 119395; CPC 12682 Musa sp. Musaceae Bangladesh: Western I. Buddenhagen EU514222 JX143335 JX143089 JX142843 JX142597<br />

<strong>CBS</strong> 132669; CPC 12683 Musa sp. Musaceae Bangladesh: Western I. Buddenhagen EU514223 JX143336 JX143090 JX142844 JX142598<br />

MUCC 576; MUCNS 300; MAFF Citrullus lanatus Cucurbitaceae Japan: Okinawa T. Kobayashion et al. JX143579 JX143337 JX143091 JX142845 JX142599<br />

237913<br />

MUCC 577; MUCNS 254; MAFF Momordica charanthia Cucurbitaceae Japan: Kagoshima E. Imaizumi & C. Nomi JX143580 JX143338 JX143092 JX142846 JX142600<br />

238205<br />

MUCC 584; MAFF 305757 Psophocarpus tetragonolobus Fabaceae Japan: Okinawa — JX143581 JX143339 JX143093 JX142847 JX142601<br />

MUCC 588; MAFF 239409 Ipomoea pes-caprae Convolvulaceae Japan: Okinawa — JX143582 JX143340 JX143094 JX142848 JX142602<br />

Cercospora coniogrammes <strong>CBS</strong> 132634; CPC 17017 (TYPE) Coniogramme japonica var. gracilis Adiantaceae Australia: Queensland P.W. Crous JX143583 JX143341 JX143095 JX142849 JX142603<br />

(≡ C. gracilis)<br />

Cercospora corchori MUCC 585; MUCNS 72; MAFF Corchorus olitorius Tiliaceae Japan: Shimane T. Mikami JX143584 JX143342 JX143096 JX142850 JX142604<br />

238191 (TYPE)<br />

Cercospora cf. coreopsidis <strong>CBS</strong> 132598; CPC 10648 Coreopsis lanceolata Asteraceae South Korea: Seoul H.D. Shin JX143585 JX143343 JX143097 JX142851 JX142605<br />

CPC 10122 Coreopsis lanceolata Asteraceae South Korea: Wonju H.D. Shin JX143586 JX143344 JX143098 JX142852 JX142606<br />

S. Neser JX143587 JX143345 JX143099 JX142853 JX142607<br />

Cercospora delaireae <strong>CBS</strong> 132595; CPC 10455; GV2<br />

PPRI number: C558 (TYPE)<br />

Delairea odorata<br />

(= Senecio mikanioides)<br />

CPC 10627 Delairea odorata<br />

(= Senecio mikanioides)<br />

CPC 10628 Delairea odorata<br />

(= Senecio mikanioides)<br />

Asteraceae South Africa: Long Tom<br />

Pass<br />

Asteraceae South Africa: Plettenberg<br />

Bay<br />

Asteraceae South Africa: Plettenberg<br />

Bay<br />

C.L. Lennox JX143588 JX143346 JX143100 JX142854 JX142608<br />

C.L. Lennox JX143589 JX143347 JX143101 JX142855 JX142609<br />

122


Species concepts in Cercospora<br />

Table 1. (Continued).<br />

Species Culture accession number(s) 1 Host name or isolation source Host Family Country Collector GenBank accession numbers 2<br />

CPC 10629 Delairea odorata<br />

(= Senecio mikanioides)<br />

Asteraceae South Africa: Plettenberg<br />

Bay<br />

Cercospora dispori <strong>CBS</strong> 132608; CPC 10773 Disporum viridescens Convallariaceae South Korea:<br />

Pyeongchang<br />

ITS TEF ACT CAL HIS<br />

C.L. Lennox JX143590 JX143348 JX143102 JX142856 JX142610<br />

H.D. Shin JX143591 JX143349 JX143103 JX142857 JX142611<br />

Cercospora cf. erysimi <strong>CBS</strong> 115059; CPC 5361 Erysimum mutabile Brassicaceae New Zealand: Manurewa C.F. Hill JX143592 JX143350 JX143104 JX142858 JX142612<br />

Cercospora euphorbiaesieboldianae<br />

<strong>CBS</strong> 113306 (TYPE) Euphorbia sieboldiana Euphorbiaceae South Korea: Samcheok H.D. Shin JX143593 JX143351 JX143105 JX142859 JX142613<br />

Cercospora fagopyri <strong>CBS</strong> 132623; CPC 14541 (TYPE) Fagopyrum esculentum Polygonaceae South Korea: Yangpyeong H.D. Shin JX143594 JX143352 JX143106 JX142860 JX142614<br />

<strong>CBS</strong> 132640; CPC 10109 Fallopia dumentorum Polygonaceae South Korea: Yangpyeong H.D. Shin JX143595 JX143353 JX143107 JX142861 JX142615<br />

<strong>CBS</strong> 132649; CPC 10725 Viola mandschurica Violaceae South Korea: Suwon H.D. Shin JX143596 JX143354 JX143108 JX142862 JX142616<br />

<strong>CBS</strong> 132671; CPC 14546 Cercis chinensis Fabaceae South Korea: Yangpyeong H.D. Shin JX143597 JX143355 JX143109 JX142863 JX142617<br />

MUCC 130 Cosmos bipinnata Asteraceae Japan: Ehime J. Nishikawa JX143598 JX143356 JX143110 JX142864 JX142618<br />

MUCC 866 Hibiscus syriacus Malvaceae Japan: Ehime J. Nishikawa JX143599 JX143357 JX143111 JX142865 JX142619<br />

Cercospora cf. flagellaris <strong>CBS</strong> 113127; RC3766; TX-18 Eichhornia crassipes Pontederiaceae USA: Texas D. Tessmann & R. Charudattan DQ835075 AF146147 DQ835121 DQ835148 DQ835175<br />

<strong>CBS</strong> 115482; A207 Bs+; CPC 4410 Citrus sp. Rutaceae South Africa: Messina M.C. Pretorius AY260070 DQ835095 DQ835114 DQ835141 DQ835168<br />

<strong>CBS</strong> 132637; CPC 10079 Trachelium sp. Campanulaceae Israel E. Tzul-Abad JX143600 JX143358 JX143112 JX142866 JX142620<br />

<strong>CBS</strong> 132646; CPC 10681 Cichorium intybus Asteraceae South Korea: Suwon H.D. Shin JX143601 JX143359 JX143113 JX142867 JX142621<br />

<strong>CBS</strong> 132648; CPC 10722 Amaranthus patulus Amaranthaceae South Korea: Namyangju H.D. Shin JX143602 JX143360 JX143114 JX142868 JX142622<br />

<strong>CBS</strong> 132653; CPC 10884 Dysphania ambrosioides<br />

Chenopodiaceae South Korea: Jeju H.D. Shin JX143603 JX143361 JX143115 JX142869 JX142623<br />

(≡ Chenopodium ambrosioides)<br />

<strong>CBS</strong> 132667; CPC 11643 Celosia argentea var. cristata Amaranthaceae South Korea: Hoengseong H.D. Shin JX143604 JX143362 JX143116 JX142870 JX142624<br />

(≡ C. cristata)<br />

<strong>CBS</strong> 132670; CPC 14487 Sigesbeckia pubescens Asteraceae South Korea: Yanggu H.D. Shin JX143605 JX143363 JX143117 JX142871 JX142625<br />

<strong>CBS</strong> 132674; CPC 14723 Phytolacca americana Phytolaccaceae South Korea: Jeju H.D. Shin JX143606 JX143364 JX143118 JX142872 JX142626<br />

<strong>CBS</strong> 143.51; CPC 5055 Bromus sp. Poaceae — M.D. Whitehead JX143607 JX143365 JX143119 JX142873 JX142627<br />

CPC 10124 Phytolacca americana Phytolaccaceae South Korea: Pocheon H.D. Shin JX143608 JX143366 JX143120 JX142874 JX142628<br />

CPC 1051 Populus deltoides Salicaceae South Africa P.W. Crous AY260069 JX143367 JX143121 JX142875 JX142629<br />

CPC 1052 Populus deltoides Salicaceae South Africa P.W. Crous JX143609 JX143368 JX143122 JX142876 JX142630<br />

CPC 10684 Phytolacca americana Phytolaccaceae South Korea: Jinju H.D. Shin JX143610 JX143369 JX143123 JX142877 JX142631<br />

CPC 4411; Q207 F5 Citrus sp. Rutaceae South Africa: Messina M.C. Pretorius AY260071 DQ835098 DQ835118 DQ835145 DQ835172<br />

CPC 5441 Amaranthus sp. Amaranthaceae Fiji C.F. Hill JX143611 JX143370 JX143124 JX142878 JX142632<br />

MUCC 127 Cosmos sulphureus Asteraceae Japan: Ehime J. Nishikawa JX143612 JX143371 JX143125 JX142879 JX142633<br />

MUCC 735 Hydrangea serrata Hydrangeaceae Japan: Wakayama C. Nakashima & I. Araki JX143613 JX143372 JX143126 JX142880 JX142634<br />

MUCC 831 Hydrangea serrata Hydrangeaceae Japan: Tokyo I. Araki & M. Harada JX143614 JX143373 JX143127 JX142881 JX142635<br />

www.studiesinmycology.org<br />

123


Groenewald et al.<br />

Table 1. (Continued).<br />

Species Culture accession number(s) 1 Host name or isolation source Host Family Country Collector GenBank accession numbers 2<br />

ITS TEF ACT CAL HIS<br />

Cercospora cf. helianthicola MUCC 716 Helianthus tuberosus Asteraceae Japan: Wakayama C. Nakashima & I. Araki JX143615 JX143374 JX143128 JX142882 JX142636<br />

Cercospora cf. ipomoeae <strong>CBS</strong> 132639; CPC 10102 Persicaria thunbergii Polygonaceae South Korea: Pocheon H.D. Shin JX143616 JX143375 JX143129 JX142883 JX142637<br />

<strong>CBS</strong> 132652; CPC 10833 Ipomoea nil (= I. hederacea) Convolvulaceae South Korea: Chuncheon H.D. Shin JX143617 JX143376 JX143130 JX142884 JX142638<br />

MUCC 442 Ipomoea aquatica Convolvulaceae Japan: Kagawa G. Kizaki JX143618 JX143377 JX143131 JX142885 JX142639<br />

Cercospora kikuchii <strong>CBS</strong> 128.27; CPC 5068 (TYPE) Glycine soja Fabaceae Japan T. Matsumoto DQ835070 DQ835088 DQ835107 DQ835134 DQ835161<br />

<strong>CBS</strong> 132633; CPC 16578 Glycine max Fabaceae Argentina — JX143619 JX143378 JX143132 JX142886 JX142640<br />

<strong>CBS</strong> 135.28; CPC 5067 Glycine soja Fabaceae Japan H.W. Wollenweber DQ835071 DQ835089 DQ835108 DQ835135 DQ835162<br />

MUCC 590; MAFF 305040 Glycine soja Fabaceae Japan: Kagoshima H. Kurata JX143620 JX143379 JX143133 JX142887 JX142641<br />

Cercospora lactucae-sativae <strong>CBS</strong> 132604; CPC 10728 Ixeris chinensis subsp. strigosa Asteraceae South Korea: Chuncheon H.D. Shin JX143621 JX143380 JX143134 JX142888 JX142642<br />

(≡ Ixeris strigosa)<br />

CPC 10082 Ixeris chinensis subsp. strigosa Asteraceae South Korea: Chuncheon H.D. Shin JX143622 JX143381 JX143135 JX142889 JX142643<br />

(≡ Ixeris strigosa)<br />

MUCC 570; MUCN S463; MAFF Lactuca sativa Asteraceae Japan: Chiba C. Nakashima JX143623 JX143382 JX143136 JX142890 JX142644<br />

238209<br />

MUCC 571; MUCNS 214; MAFF Lactuca sativa Asteraceae Japan: Chiba S. Uematsu JX143624 JX143383 JX143137 JX142891 JX142645<br />

237719<br />

Cercospora cf. malloti MUCC 575; MUCNS 582; MAFF Cucumis melo Cucurbitaceae Japan: Okinawa K. Uehara JX143625 JX143384 JX143138 JX142892 JX142646<br />

237872<br />

MUCC 787 Mallotus japonicus Euphorbiaceae Japan: Okinawa C. Nakashima & T. Akashi JX143626 JX143385 JX143139 JX142893 JX142647<br />

Cercospora mercurialis <strong>CBS</strong> 549.71 Mercurialis annua Euphorbiaceae Romania: Cheia O. Constantinescu JX143627 JX143386 JX143140 JX142894 JX142648<br />

<strong>CBS</strong> 550.71 (TYPE) Mercurialis perennis Euphorbiaceae Romania: Cheia O. Constantinescu JX143628 JX143387 JX143141 JX142895 JX142649<br />

<strong>CBS</strong> 551.71 Mercurialis ovata Euphorbiaceae Romania: Hagieni O. Constantinescu &<br />

JX143629 JX143388 JX143142 JX142896 JX142650<br />

G. Negrean<br />

Cercospora cf. modiolae CPC 5115 Modiola caroliniana Malvaceae New Zealand C.F. Hill JX143630 JX143389 JX143143 JX142897 JX142651<br />

Cercospora cf. nicotianae <strong>CBS</strong> 131.32; CPC 5076 Nicotiana tabacum Solanaceae Indonesia: Medan H. Diddens & A. Jaarsveld DQ835073 DQ835099 DQ835119 DQ835146 DQ835173<br />

<strong>CBS</strong> 132632; CPC 15918 Glycine max Fabaceae Mexico: Tamaulipas Ma. de Jesús Yáñez-Morales JX143631 JX143390 JX143144 JX142898 JX142652<br />

<strong>CBS</strong> 570.69; CPC 5075 Nicotiana tabacum Solanaceae Nigeria S.O. Alasoadura DQ835074 DQ835100 DQ835120 DQ835147 DQ835174<br />

O. Constantinescu JX143632 JX143391 JX143145 JX142899 JX142653<br />

Cercospora olivascens <strong>CBS</strong> 253.67; IMI 124975; CPC 5085<br />

(TYPE)<br />

Aristolochia clematidis Aristolochiaceae Romania: Cazanele<br />

Dunarii<br />

Cercospora cf. physalidis <strong>CBS</strong> 765.79 Solanum tuberosum Solanaceae Peru L.J. Turkensteen JX143633 JX143392 JX143146 JX142900 JX142654<br />

Cercospora pileicola <strong>CBS</strong> 132607; CPC 10749 (TYPE) Pilea pumila (= P. mongolica) Urticaceae South Korea:<br />

H.D. Shin JX143634 JX143393 JX143147 JX142901 JX142655<br />

Dongducheon<br />

<strong>CBS</strong> 132647; CPC 10693 Pilea hamaoi (≡ P. pumila var. Urticaceae South Korea: Hoengseong H.D. Shin JX143635 JX143394 JX143148 JX142902 JX142656<br />

hamaoi)<br />

CPC 11369 Pilea pumila (= P. mongolica) Urticaceae South Korea: Hongcheon H.D. Shin JX143636 JX143395 JX143149 JX142903 JX142657<br />

Cercospora polygonacea <strong>CBS</strong> 132614; CPC 11318 Persicaria longiseta (≡ P. blumei) Polygonaceae South Korea: Cheongju H.D. Shin JX143637 JX143396 JX143150 JX142904 JX142658<br />

124


Species concepts in Cercospora<br />

Table 1. (Continued).<br />

Species Culture accession number(s) 1 Host name or isolation source Host Family Country Collector GenBank accession numbers 2<br />

ITS TEF ACT CAL HIS<br />

Cercospora punctiformis <strong>CBS</strong> 132626; CPC 14606 Cynanachum wilfordii Asclepiadaceae South Korea: Bonghwa H.D. Shin JX143638 JX143397 JX143151 JX142905 JX142659<br />

Cercospora cf. resedae <strong>CBS</strong> 118793 Reseda odorata Resedaceae New Zealand: Auckland C.F. Hill JX143639 JX143398 JX143152 JX142906 JX142660<br />

<strong>CBS</strong> 257.67; CPC 5057 Helianthemum sp. Cistaceae Romania: Bucuresti O. Constantinescu DQ233319 DQ233343 DQ233369 DQ233395 DQ233421<br />

Cercospora cf. richardiicola <strong>CBS</strong> 132627; CPC 14680 Ajuga multiflora Lamiaceae South Korea: Incheon H.D. Shin JX143640 JX143399 JX143153 JX142907 JX142661<br />

MUCC 128 Tagetes erecta Asteraceae Japan: Ehime J. Nishikawa JX143641 JX143400 JX143154 JX142908 JX142662<br />

MUCC 132 Osteospermum sp. Asteraceae Japan: Shizuoka J. Nishikawa JX143642 JX143401 JX143155 JX142909 JX142663<br />

MUCC 138 Fuchsia ×hybrida Onagraceae Japan: Shizuoka J. Nishikawa JX143643 JX143402 JX143156 JX142910 JX142664<br />

MUCC 578; MAFF 238210 Zantedeschia sp. Araceae Japan: Ehime J. Nishikawa JX143644 JX143403 JX143157 JX142911 JX142665<br />

MUCC 582; MAFF 238880 Gerbera hybrida Asteraceae Japan: Shizuoka J. Takeuchi JX143645 JX143404 JX143158 JX142912 JX142666<br />

Cercospora ricinella <strong>CBS</strong> 132605; CPC 10734 Ricinus communis Euphorbiaceae South Korea: Chuncheon H.D. Shin JX143646 JX143405 JX143159 JX142913 JX142667<br />

CPC 10104 Ricinus communis Euphorbiaceae South Korea: Chuncheon H.D. Shin JX143647 JX143406 JX143160 JX142914 JX142668<br />

Cercospora rodmanii <strong>CBS</strong> 113123; RC3660; 28-1 Eichhornia crassipes Pontederiaceae Brazil: Rio Verde R. Charudattan DQ835076 AF146136 DQ835122 DQ835149 DQ835176<br />

<strong>CBS</strong> 113124; RC2867 Eichhornia crassipes Pontederiaceae Mexico: Carretero R. Charudattan DQ835077 AF146137 DQ835123 DQ835150 DQ835177<br />

<strong>CBS</strong> 113125; RC4101; 400 Eichhornia crassipes Pontederiaceae Zambia M. Morris DQ835078 AF146146 DQ835124 DQ835151 DQ835178<br />

<strong>CBS</strong> 113126; RC3409; 62-2 Eichhornia crassipes Pontederiaceae Brazil: Oroco R. Charudattan DQ835079 AF146138 DQ835125 DQ835152 DQ835179<br />

<strong>CBS</strong> 113128; RC394; WH83 Eichhornia crassipes Pontederiaceae USA: Florida R. Charudattan DQ835080 AF146142 DQ835126 DQ835153 DQ835180<br />

<strong>CBS</strong> 113129; RC397; WH9-BR Eichhornia crassipes Pontederiaceae USA: Florida K. Conway DQ835081 AF146143 DQ835127 DQ835154 DQ835181<br />

<strong>CBS</strong> 113130; RC393; WHK Eichhornia crassipes Pontederiaceae USA: Florida R. Charudattan DQ835082 AF146144 DQ835128 DQ835155 DQ835182<br />

<strong>CBS</strong> 113131; RC395; WHV Eichhornia crassipes Pontederiaceae Venezuela: Maracay R. Charudattan DQ835083 AF146148 DQ835129 DQ835156 DQ835183<br />

Cercospora rumicis CPC 5439 Rumex sanguineus Polygonaceae New Zealand: Manurewa C.F. Hill JX143648 JX143407 JX143161 JX142915 JX142669<br />

Cercospora senecioniswalkeri<br />

<strong>CBS</strong> 132636; CPC 19196 Senecio walkeri Asteraceae Laos P. Phengsintham JX143649 JX143408 JX143162 JX142916 JX142670<br />

Cercospora cf. sigesbeckiae <strong>CBS</strong> 132601; CPC 10664 Sigesbeckia glabrescens Asteraceae South Korea: Chuncheon H.D. Shin JX143650 JX143409 JX143163 JX142917 JX142671<br />

<strong>CBS</strong> 132606; CPC 10740 Paulownia coreana Scrophulariaceae South Korea: Namyangju H.D. Shin JX143651 JX143410 JX143164 JX142918 JX142672<br />

<strong>CBS</strong> 132621; CPC 14489 Sigesbeckia pubescens Asteraceae South Korea: Yanggu H.D. Shin JX143652 JX143411 JX143165 JX142919 JX142673<br />

<strong>CBS</strong> 132641; CPC 10117 Persicaria orientalis<br />

Polygonaceae South Korea: Chuncheon H.D. Shin JX143653 JX143412 JX143166 JX142920 JX142674<br />

(= P. cochinchinensis)<br />

<strong>CBS</strong> 132642; CPC 10128 Pilea pumila (= P. mongolica) Urticaceae South Korea: Hongcheon H.D. Shin JX143654 JX143413 JX143167 JX142921 JX142675<br />

<strong>CBS</strong> 132675; CPC 14726 Malva verticillata Malvaceae South Korea: Yanggu H.D. Shin JX143655 JX143414 JX143168 JX142922 JX142676<br />

MUCC 587; MUCNS 197; MAFF Begonia sp. Begoniaceae Japan: Chiba S. Uematsu JX143656 JX143415 JX143169 JX142923 JX142677<br />

237690<br />

MUCC 589; MAFF 305039 Glycine max Fabaceae Japan: Saitama H. Kurata JX143657 JX143416 JX143170 JX142924 JX142678<br />

MUCC 849 Dioscorea tokoro Dioscoreaceae Japan: Tokyo I. Araki JX143658 JX143417 JX143171 JX142925 JX142679<br />

Cercospora sojina <strong>CBS</strong> 132018; CPC 12322 Glycine soja Fabaceae South Korea: Hoengseong H.D. Shin GU214655 JX143418 JX143172 JX142926 JX142680<br />

www.studiesinmycology.org<br />

125


Groenewald et al.<br />

Table 1. (Continued).<br />

Species Culture accession number(s) 1 Host name or isolation source Host Family Country Collector GenBank accession numbers 2<br />

ITS TEF ACT CAL HIS<br />

<strong>CBS</strong> 132615; CPC 11353 (TYPE) Glycine soja Fabaceae South Korea: Hongcheon H.D. Shin JX143659 JX143419 JX143173 JX142927 JX142681<br />

<strong>CBS</strong> 132684; CPC 17971; CCC Glycine max Fabaceae Argentina F. Scandiani JX143660 JX143420 JX143174 JX142928 JX142682<br />

173-09, 09-495<br />

CPC 11420 Glycine soja Fabaceae South Korea: Hongcheon H.D. Shin JX143661 JX143421 JX143175 JX142929 JX142683<br />

CPC 17964; CCC 155-09, 09-285-5 Glycine max Fabaceae Argentina F. Scandiani JX143662 JX143422 JX143176 JX142930 JX142684<br />

CPC 17965; CCC 156-09, 09-285-4 Glycine max Fabaceae Argentina F. Scandiani JX143663 JX143423 JX143177 JX142931 JX142685<br />

CPC 17966; CCC 157-09, 09-285-3 Glycine max Fabaceae Argentina F. Scandiani JX143664 JX143424 JX143178 JX142932 JX142686<br />

CPC 17967; CCC 158-09, 09-285-1 Glycine max Fabaceae Argentina F. Scandiani JX143665 JX143425 JX143179 JX142933 JX142687<br />

CPC 17968; CCC 159-09, 09-285-7 Glycine max Fabaceae Argentina F. Scandiani JX143666 JX143426 JX143180 JX142934 JX142688<br />

CPC 17969; CCC 167-09, 09-881 Glycine max Fabaceae Argentina N. Formento JX143667 JX143427 JX143181 JX142935 JX142689<br />

CPC 17970; CCC 172-09, 09-320 Glycine max Fabaceae Argentina F. Scandiani JX143668 JX143428 JX143182 JX142936 JX142690<br />

CPC 17972; CCC 174-09, Glycine max Fabaceae Argentina S. Piubello JX143669 JX143429 JX143183 JX142937 JX142691<br />

CPC 17973; CCC 176-09, 09-882 Glycine max Fabaceae Argentina N. Formento JX143670 JX143430 JX143184 JX142938 JX142692<br />

CPC 17974; CCC 177-09, 09-2488-1 Glycine max Fabaceae Argentina F. Scandiani JX143671 JX143431 JX143185 JX142939 JX142693<br />

CPC 17975; CCC 178-09, 09-1438-2 Glycine max Fabaceae Argentina F. Scandiani JX143672 JX143432 JX143186 JX142940 JX142694<br />

CPC 17976; CCC 179-09, 09-2591 Glycine max Fabaceae Argentina F. Scandiani JX143673 JX143433 JX143187 JX142941 JX142695<br />

CPC 17977; CCC 180-09, 09-2520 Glycine max Fabaceae Argentina F. Scandiani JX143674 JX143434 JX143188 JX142942 JX142696<br />

Cercospora sp. A <strong>CBS</strong> 132631; CPC 15872 Chenopodium sp. Chenopodiaceae Mexico Ma. de Jesús Yáñez-Morales JX143675 JX143435 JX143189 JX142943 JX142697<br />

Cercospora sp. B <strong>CBS</strong> 132602; CPC 10687 Ipomoea purpurea Convolvulaceae South Korea: Kangnung H.D. Shin JX143676 JX143436 JX143190 JX142944 JX142698<br />

Cercospora sp. C <strong>CBS</strong> 132629; CPC 15841 — Compositae Mexico: Montecillo Ma. de Jesús Yáñez-Morales JX143677 JX143437 JX143191 JX142945 JX142699<br />

Cercospora sp. D <strong>CBS</strong> 132630; CPC 15856 — — Mexico Ma. de Jesús Yáñez-Morales JX143678 JX143438 JX143192 JX142946 JX142700<br />

Cercospora sp. E <strong>CBS</strong> 132628; CPC 15632 Unidentified wild plant — Mexico: Montecillo Ma. de Jesús Yáñez-Morales JX143679 JX143439 JX143193 JX142947 JX142701<br />

CPC 15801 Unidentified wild plant — Mexico: Montecillo Ma. de Jesús Yáñez-Morales JX143680 JX143440 JX143194 JX142948 JX142702<br />

Cercospora sp. F <strong>CBS</strong> 132618; CPC 12062 Zea mays Poaceae South Africa P. Caldwell DQ185071 DQ185083 DQ185095 DQ185107 DQ185119<br />

Cercospora sp. G <strong>CBS</strong> 115518; CPC 5360 Bidens frondosa Asteraceae New Zealand: Kopuku C.F. Hill JX143681 JX143441 JX143195 JX142949 JX142703<br />

CPC 5438 Salvia viscosa Lamiaceae New Zealand: Manurewa C.F. Hill JX143682 JX143442 JX143196 JX142950 JX142704<br />

Cercospora sp. H <strong>CBS</strong> 115205; CPC 5116 Dichondra repens Convolvulaceae New Zealand C.F. Hill JX143683 JX143443 JX143197 JX142951 JX142705<br />

CPC 11620 Chamelaucium uncinatum Myrtaceae Argentina S. Wolcan JX143684 JX143444 JX143198 JX142952 JX142706<br />

Cercospora sp. I <strong>CBS</strong> 114815; CPC 5364 Deutzia purpurascens Hydrangeaceae New Zealand: Manurewa C.F. Hill JX143685 JX143445 JX143199 JX142953 JX142707<br />

<strong>CBS</strong> 114816; CPC 5363 Deutzia ×rosea<br />

Hydrangeaceae New Zealand: Manurewa C.F. Hill JX143686 JX143446 JX143200 JX142954 JX142708<br />

(= D. gracilis × purpurascens)<br />

<strong>CBS</strong> 114817; CPC 5365 Fuchsia procumbens Onagraceae New Zealand: Manurewa C.F. Hill JX143687 JX143447 JX143201 JX142955 JX142709<br />

<strong>CBS</strong> 114818; CPC 5362 Deutzia crenata Hydrangeaceae New Zealand: Manurewa C.F. Hill JX143688 JX143448 JX143202 JX142956 JX142710<br />

126


Species concepts in Cercospora<br />

Table 1. (Continued).<br />

Species Culture accession number(s) 1 Host name or isolation source Host Family Country Collector GenBank accession numbers 2<br />

ITS TEF ACT CAL HIS<br />

<strong>CBS</strong> 115117 Archontophoenix cunninghamiana Arecaceae (Palmae) New Zealand: Whangarei C.F. Hill JX143689 JX143449 JX143203 JX142957 JX142711<br />

<strong>CBS</strong> 115121 Gunnera tinctoria Gunneraceae New Zealand: Mt Albert C.F. Hill JX143690 JX143450 JX143204 JX142958 JX142712<br />

<strong>CBS</strong> 132597; CPC 10615 Coreopsis verticillata Asteraceae New Zealand: Manurewa C.F. Hill JX143691 JX143451 JX143205 JX142959 JX142713<br />

<strong>CBS</strong> 132643; CPC 10138 Ajuga multiflora Lamiaceae South Korea: Suwon H.D. Shin JX143692 JX143452 JX143206 JX142960 JX142714<br />

CPC 10616 Coreopsis verticillata Asteraceae New Zealand: Manurewa C.F. Hill JX143693 JX143453 JX143207 JX142961 JX142715<br />

CPC 5440 Nicotiana sp. Solanaceae New Zealand: Manurewa C.F. Hill JX143694 JX143454 JX143208 JX142962 JX142716<br />

Cercospora sp. J MUCC 541 Antirrhinum majus Plantaginaceae Japan: Aichi M.Matsusaki JX143695 JX143455 JX143209 JX142963 JX142717<br />

Cercospora sp. K <strong>CBS</strong> 132603; CPC 10719 Ipomoea coccinea<br />

Convolvulaceae South Korea: Namyangju H.D. Shin JX143696 JX143456 JX143210 JX142964 JX142718<br />

(≡ Quamoclit coccinea)<br />

CPC 10094 Ipomoea coccinea<br />

Convolvulaceae South Korea: Namyangju H.D. Shin JX143697 JX143457 JX143211 JX142965 JX142719<br />

(≡ Quamoclit coccinea)<br />

CPC 12391 Ipomoea coccinea<br />

Convolvulaceae South Korea: Namyangju H.D. Shin JX143698 JX143458 JX143212 JX142966 JX142720<br />

(≡ Quamoclit coccinea)<br />

Cercospora sp. L <strong>CBS</strong> 115477; CPC 5114 Crepis capillaris Asteraceae New Zealand C.F. Hill JX143699 JX143459 JX143213 JX142967 JX142721<br />

Cercospora sp. M <strong>CBS</strong> 132596; CPC 10553 Acacia mangium Fabaceae Thailand: Sanamchaikhet K. Pongpanich JX143700 AY752175 AY752203 AY752234 AY752265<br />

Cercospora sp. N <strong>CBS</strong> 132619; CPC 12684 Musa sp. Musaceae Bangladesh: Western I. Buddenhagen EU514224 JX143460 JX143214 JX142968 JX142722<br />

Cercospora sp. O <strong>CBS</strong> 132635; CPC 18636 Musa sp. Musaceae Thailand: Mae Klang P.W. Crous JX143701 JX143461 JX143215 JX142969 JX142723<br />

Loung<br />

Cercospora sp. P <strong>CBS</strong> 112649; CPC 3946 Citrus sp., leaf spot Rutaceae Swaziland M.C. Pretorius AY260072 DQ835090 DQ835109 DQ835136 DQ835163<br />

<strong>CBS</strong> 112722; CPC 3947 Citrus sp., leaf spot Rutaceae Swaziland M.C. Pretorius AY260073 DQ835091 DQ835110 DQ835137 DQ835164<br />

<strong>CBS</strong> 112728; CPC 3949 Citrus × sinensis<br />

Rutaceae South Africa: Komatipoort M.C. Pretorius AY260076 DQ835092 DQ835111 DQ835138 DQ835165<br />

(≡ C. aurantium var. sinensis)<br />

<strong>CBS</strong> 112730; CPC 3948 Citrus × sinensis<br />

Rutaceae South Africa: Komatipoort M.C. Pretorius AY260075 DQ835093 DQ835112 DQ835139 DQ835166<br />

(≡ C. aurantium var. sinensis)<br />

<strong>CBS</strong> 112894; CPC 3950 Citrus × sinensis<br />

Rutaceae South Africa: Komatipoort M.C. Pretorius AY260077 DQ835094 DQ835113 DQ835140 DQ835167<br />

(≡ C. aurantium var. sinensis)<br />

<strong>CBS</strong> 113996; CPC 5326 Cajanus cajan Fabaceae South Africa: Nelspruit L. van Jaarsveld JX143702 JX143462 JX143216 JX142970 JX142724<br />

<strong>CBS</strong> 115413; CPC 5328 Cajanus cajan Fabaceae South Africa: Nelspruit L. van Jaarsveld JX143703 JX143463 JX143217 JX142971 JX142725<br />

<strong>CBS</strong> 115609; CPC 3945 Citrus sp., leaf spot Rutaceae Swaziland M.C. Pretorius AY260074 DQ835096 DQ835115 DQ835142 DQ835169<br />

<strong>CBS</strong> 116365; CPC 10526 (TYPE) Acacia mangium Fabaceae Thailand M.J. Wingfield AY752141 AY752176 AY752204 AY752235 AY752266<br />

<strong>CBS</strong> 132645; CPC 10527 Acacia mangium Fabaceae Thailand M.J. Wingfield AY752142 AY752177 AY752205 AY752236 AY752267<br />

<strong>CBS</strong> 132660; CPC 11629; GHA-4-0 Dioscorea rotundata Dioscoreaceae Ghana S. Nyako & A.O. Danquah JX143704 JX143464 JX143218 JX142972 JX142726<br />

<strong>CBS</strong> 132662; CPC 11635; PNG-009 Dioscorea nummularia Dioscoreaceae Papua New Guinea J. Peters & A.N. Jama JX143705 JX143465 JX143219 JX142973 JX142727<br />

<strong>CBS</strong> 132664; CPC 11637; PNG-022 Dioscorea rotundata Dioscoreaceae Papua New Guinea J. Peters & A.N. Jama JX143706 JX143466 JX143220 JX142974 JX142728<br />

<strong>CBS</strong> 132665; CPC 11638; PNG-023 Dioscorea bulbifera Dioscoreaceae Papua New Guinea J. Peters & A.N. Jama JX143707 JX143467 JX143221 JX142975 JX142729<br />

www.studiesinmycology.org<br />

127


Groenewald et al.<br />

Table 1. (Continued).<br />

Species Culture accession number(s) 1 Host name or isolation source Host Family Country Collector GenBank accession numbers 2<br />

ITS TEF ACT CAL HIS<br />

<strong>CBS</strong> 132680; CPC 15827 Ricinus communis Euphorbiaceae Mexico: Tamaulipas Ma. de Jesús Yáñez-Morales JX143708 JX143468 JX143222 JX142976 JX142730<br />

CPC 10552 Acacia mangium Fabaceae Thailand K. Pongpanich JX143709 AY752174 AY752202 AY752233 AY752264<br />

CPC 11630; GHA-4-3 Dioscorea rotundata Dioscoreaceae Ghana S. Nyako & A.O. Danquah JX143710 JX143469 JX143223 JX142977 JX142731<br />

CPC 11631; GHA-5-0 Dioscorea rotundata Dioscoreaceae Ghana S. Nyako & A.O. Danquah JX143711 JX143470 JX143224 JX142978 JX142732<br />

CPC 11632; GHA-7-4 Dioscorea rotundata Dioscoreaceae Ghana S. Nyako & A.O. Danquah JX143712 JX143471 JX143225 JX142979 JX142733<br />

CPC 11633; GHA-8-4 Dioscorea rotundata Dioscoreaceae Ghana S. Nyako & A.O. Danquah JX143713 JX143472 JX143226 JX142980 JX142734<br />

CPC 4001 Citrus ×sinensis<br />

Rutaceae Swaziland M.C. Pretorius AY343372 AY343335 DQ835116 DQ835143 DQ835170<br />

(≡ C. aurantium var. sinensis)<br />

CPC 4002 Citrus ×sinensis<br />

Rutaceae Swaziland M.C. Pretorius DQ835072 DQ835097 DQ835117 DQ835144 DQ835171<br />

(≡ C. aurantium var. sinensis)<br />

CPC 5262 Hibiscus sabdariffa Malvaceae New Zealand: Auckland C.F. Hill JX143714 JX143473 JX143227 JX142981 JX142735<br />

(imported from Fiji)<br />

CPC 5327 Cajanus cajan Fabaceae South Africa: Nelspruit L. van Jaarsveld JX143715 JX143474 JX143228 JX142982 JX142736<br />

MUCC 771 Coffea arabica Rubiaceae Japan: Okinawa C. Nakashima JX143716 JX143475 JX143229 JX142983 JX142737<br />

Cercospora sp. Q <strong>CBS</strong> 113997; CPC 5325 Cajanus cajan Fabaceae South Africa: Nelspruit L. van Jaarsveld JX143717 JX143476 JX143230 JX142984 JX142738<br />

<strong>CBS</strong> 115410; CPC 5331 Cajanus cajan Fabaceae South Africa: Nelspruit L. van Jaarsveld JX143718 JX143477 JX143231 JX142985 JX142739<br />

<strong>CBS</strong> 115411; CPC 5332 Cajanus cajan Fabaceae South Africa: Nelspruit L. van Jaarsveld JX143719 JX143478 JX143232 JX142986 JX142740<br />

<strong>CBS</strong> 115412; CPC 5333 Cajanus cajan Fabaceae South Africa: Nelspruit L. van Jaarsveld JX143720 JX143479 JX143233 JX142987 JX142741<br />

<strong>CBS</strong> 115536; CPC 5329 Cajanus cajan Fabaceae South Africa: Nelspruit L. van Jaarsveld JX143721 JX143480 JX143234 JX142988 JX142742<br />

<strong>CBS</strong> 115537; CPC 5330 Cajanus cajan Fabaceae South Africa: Nelspruit L. van Jaarsveld JX143722 JX143481 JX143235 JX142989 JX142743<br />

<strong>CBS</strong> 132656; CPC 11536 Acacia mangium Fabaceae Thailand K. Pongpanich JX143723 JX143482 JX143236 JX142990 JX142744<br />

<strong>CBS</strong> 132661; CPC 11634; PNG-002 Dioscorea rotundata Dioscoreaceae Papua New Guinea J. Peters & A.N. Jama JX143724 JX143483 JX143237 JX142991 JX142745<br />

<strong>CBS</strong> 132663; CPC 11636; PNG-016 Dioscorea esculenta Dioscoreaceae Papua New Guinea J. Peters & A.N. Jama JX143725 JX143484 JX143238 JX142992 JX142746<br />

<strong>CBS</strong> 132679; CPC 15807 Phaseolus vulgaris Fabaceae Mexico Ma. de Jesús Yáñez-Morales JX143726 JX143485 JX143239 JX142993 JX142747<br />

<strong>CBS</strong> 132681; CPC 15844 Euphorbia sp. Euphorbiaceae Mexico: Tamaulipas Ma. de Jesús Yáñez-Morales JX143727 JX143486 JX143240 JX142994 JX142748<br />

<strong>CBS</strong> 132682; CPC 15850 Taraxacum sp. Asteraceae Mexico: Tamaulipas Ma. de Jesús Yáñez-Morales JX143728 JX143487 JX143241 JX142995 JX142749<br />

CPC 10550 Acacia mangium Fabaceae Thailand K. Pongpanich AY752139 AY752172 AY752200 AY752231 AY752262<br />

CPC 10551 Acacia mangium Fabaceae Thailand K. Pongpanich AY752140 AY752173 AY752201 AY752232 AY752263<br />

CPC 11539 Acacia mangium Fabaceae Thailand K. Pongpanich JX143729 JX143488 JX143242 JX142996 JX142750<br />

CPC 11639; PNG-037 Dioscorea rotundata Dioscoreaceae Papua New Guinea J. Peters & A.N. Jama JX143730 JX143489 JX143243 JX142997 JX142751<br />

CPC 15875 Euphorbia sp. Euphorbiaceae Mexico: Tamaulipas Ma. de Jesús Yáñez-Morales JX143731 JX143490 JX143244 JX142998 JX142752<br />

Cercospora sp. R <strong>CBS</strong> 114644 Myoporum laetum Myoporaceae New Zealand: Grey Lynn C.F. Hill JX143732 JX143491 JX143245 JX142999 JX142753<br />

Cercospora sp. S <strong>CBS</strong> 132599; CPC 10656 Crepidiastrum denticulatum<br />

(≡ Youngia denticulata)<br />

Asteraceae South Korea: Yangpyeong H.D. Shin JX143733 JX143492 JX143246 JX143000 JX142754<br />

128


Species concepts in Cercospora<br />

Table 1. (Continued).<br />

Species Culture accession number(s) 1 Host name or isolation source Host Family Country Collector GenBank accession numbers 2<br />

ITS TEF ACT CAL HIS<br />

Cercospora vignigena <strong>CBS</strong> 132611; CPC 10812 (TYPE) Vigna unguiculata (= V. sinensis) Fabaceae South Korea: Jeongeup H.D. Shin JX143734 JX143493 JX143247 JX143001 JX142755<br />

CPC 1134 Vigna unguiculata (= V. sinensis) Fabaceae South Africa:<br />

S. van Wyk JX143735 JX143494 JX143248 JX143002 JX142756<br />

Potchefstroom<br />

MUCC 579; MAFF 237635 Vigna unguiculata (= V. sinensis) Fabaceae Japan: Gumma K. Kishi JX143736 JX143495 JX143249 JX143003 JX142757<br />

Cercospora violae <strong>CBS</strong> 251.67; CPC 5079 (TYPE) Viola tricolor Violaceae Romania: Cazanele O. Constantinescu JX143737 JX143496 JX143250 JX143004 JX142758<br />

Dunarii<br />

CPC 5368 Viola odorata Violaceae New Zealand C.F. Hill JX143738 JX143497 JX143251 JX143005 JX142759<br />

MUCC 129 Viola sp. Violaceae Japan: Kochi J. Nishikawa JX143739 JX143498 JX143252 JX143006 JX142760<br />

MUCC 133 Viola tricolor Violaceae Japan: Nagano J. Nishikawa JX143740 JX143499 JX143253 JX143007 JX142761<br />

MUCC 136 Viola tricolor Violaceae Japan: Shizuoka J. Nishikawa JX143741 JX143500 JX143254 JX143008 JX142762<br />

Cercospora zeae-maydis <strong>CBS</strong> 117755; YA-03; A358 Zea mays Poaceae USA: Indiana B. Fleener DQ185072 DQ185084 DQ185096 DQ185108 DQ185120<br />

<strong>CBS</strong> 117756; DE-97; A359 Zea mays Poaceae USA: Indiana B. Fleener DQ185073 DQ185085 DQ185097 DQ185109 DQ185121<br />

<strong>CBS</strong> 117757; JV-WI-02; A360 Zea mays Poaceae USA: Wisconsin B. Fleener DQ185074 DQ185086 DQ185098 DQ185110 DQ185122<br />

(TYPE)<br />

<strong>CBS</strong> 117758; JH-IA-04; A361 Zea mays Poaceae USA: Iowa B. Fleener DQ185075 DQ185087 DQ185099 DQ185111 DQ185123<br />

<strong>CBS</strong> 117759; UC-TN-99; A362 Zea mays Poaceae USA: Tennessee B. Fleener DQ185076 DQ185088 DQ185100 DQ185112 DQ185124<br />

<strong>CBS</strong> 117760; NH-PA-99; A363 Zea mays Poaceae USA: Pennsylvania B. Fleener DQ185077 DQ185089 DQ185101 DQ185113 DQ185125<br />

<strong>CBS</strong> 117761; PR-IN-99; A364 Zea mays Poaceae USA: Indiana B. Fleener DQ185078 DQ185090 DQ185102 DQ185114 DQ185126<br />

<strong>CBS</strong> 117762; DEXTER-MO-00; Zea mays Poaceae USA: Missouri B. Fleener DQ185079 DQ185091 DQ185103 DQ185115 DQ185127<br />

A365<br />

<strong>CBS</strong> 117763; RENBECK-IA-99; Zea mays Poaceae USA: Iowa B. Fleener DQ185080 DQ185092 DQ185104 DQ185116 DQ185128<br />

A367<br />

<strong>CBS</strong> 132668; CPC 12225; CHME 52 Zea mays Poaceae China: Liaoning Province — JX143742 JX143501 JX143255 JX143009 JX142763<br />

<strong>CBS</strong> 132678; CPC 15602 Zea mays Poaceae Mexico: Tlacotepec Ma. de Jesús Yáñez-Morales JX143743 JX143502 JX143256 JX143010 JX142764<br />

Cercospora zebrina <strong>CBS</strong> 108.22; CPC 5091 Medicago arabica (= M. maculata) Fabaceae — E.F. Hopkins JX143744 JX143503 JX143257 JX143011 JX142765<br />

<strong>CBS</strong> 112723; CPC 3957 Trifolium repens Fabaceae Canada: Ottawa K.A. Seifert AY260079 JX143504 JX143258 JX143012 JX142766<br />

<strong>CBS</strong> 112736; CPC 3958 Trifolium repens Fabaceae Canada: Ottawa K.A. Seifert AY260080 JX143505 JX143259 JX143013 JX142767<br />

<strong>CBS</strong> 112893; CPC 3955 Trifolium pratense Fabaceae Canada: Ottawa K.A. Seifert AY260078 JX143506 JX143260 JX143014 JX142768<br />

<strong>CBS</strong> 113070; CPC 5367 Trifolium repens Fabaceae New Zealand: Blockhouse C.F. Hill JX143745 JX143507 JX143261 JX143015 JX142769<br />

Bay<br />

<strong>CBS</strong> 114359; CPC 10901 Hebe sp. Scrophulariaceae New Zealand C.F. Hill JX143746 JX143508 JX143262 JX143016 JX142770<br />

<strong>CBS</strong> 118789; WAC 5106 Trifolium subterraneum Fabaceae Australia M.J. Barbetti JX143747 JX143509 JX143263 JX143017 JX142771<br />

<strong>CBS</strong> 118790; IMI 262766; WA 2030; Trifolium subterraneum Fabaceae Australia M.J. Barbetti JX143748 JX143510 JX143264 JX143018 JX142772<br />

WAC 7973<br />

www.studiesinmycology.org<br />

129


Groenewald et al.<br />

Table 1. (Continued).<br />

Species Culture accession number(s) 1 Host name or isolation source Host Family Country Collector GenBank accession numbers 2<br />

<strong>CBS</strong> 118791; IMI 264190; WA2054;<br />

WAC7993<br />

ITS TEF ACT CAL HIS<br />

Trifolium cernuum Fabaceae Australia M.J. Barbetti JX143749 JX143511 JX143265 JX143019 JX142773<br />

<strong>CBS</strong> 129.39; CPC 5078 Trifolium subterraneum Fabaceae USA: Wisconsin — JX143750 JX143512 JX143266 JX143020 JX142774<br />

<strong>CBS</strong> 132650; CPC 10756 Trifolium repens Fabaceae South Korea: Namyangju H.D. Shin JX143751 JX143513 JX143267 JX143021 JX142775<br />

<strong>CBS</strong> 137.56; CPC 5118 Hedysarum coronarium Fabaceae Italy — JX143752 JX143514 JX143268 JX143022 JX142776<br />

<strong>CBS</strong> 537.71; IMI 161108; CPC 5089 Astragalus spruneri Fabaceae Romania: Hagieni O. Constantinescu JX143753 JX143515 JX143269 JX143023 JX142777<br />

CPC 5437 Lotus pedunculatus Fabaceae New Zealand: Auckland C.F. Hill JX143754 JX143516 JX143270 JX143024 JX142778<br />

CPC 5473 Jacaranda mimosifolia Bignoniaceae New Zealand C.F. Hill JX143755 JX143517 JX143271 JX143025 JX142779<br />

Cercospora zeina <strong>CBS</strong> 118820; CPC 11995 (TYPE) Zea mays Poaceae South Africa:<br />

P. Caldwell DQ185081 DQ185093 DQ185105 DQ185117 DQ185129<br />

Pietermaritzburg<br />

<strong>CBS</strong> 132617; CPC 11998 Zea mays Poaceae South Africa:<br />

P. Caldwell DQ185082 DQ185094 DQ185106 DQ185118 DQ185130<br />

Pietermaritzburg<br />

Cercospora cf. zinniae <strong>CBS</strong> 132624; CPC 14549 Zinnia elegans Asteraceae South Korea: Yangpyeong H.D. Shin JX143756 JX143518 JX143272 JX143026 JX142780<br />

<strong>CBS</strong> 132676; CPC 15075 — — Brazil: Valverde A.C. Alfenas JX143757 JX143519 JX143273 JX143027 JX142781<br />

MUCC 131 Zinnia elegans Asteraceae Japan: Shizuoka J. Nishikawa JX143758 JX143520 JX143274 JX143028 JX142782<br />

MUCC 572; MUCNS 215;<br />

Zinnia elegans Asteraceae Japan: Chiba S. Uematsu JX143759 JX143521 JX143275 JX143029 JX142783<br />

MAFF 237718<br />

Septoria provencialis <strong>CBS</strong> 118910; CPC 12226 Eucalyptus sp. Myrtaceae France P.W. Crous DQ303096 JX143522 JX143276 JX143030 JX142784<br />

1<br />

<strong>CBS</strong>: <strong>CBS</strong>-<strong>KNAW</strong> Fungal Biodiversity Centre, Utrecht, The Netherlands; CPC: Culture collection of Pedro Crous, housed at <strong>CBS</strong>; IHEM: Collection of the Laboratorium voor Microbiologie en Microbiele Genetica, Rijksuniversiteit, Ledeganckstraat 35,<br />

B-9000, Gent, Belgium; IMI: International Mycological Institute, CABI-Bioscience, Egham, Bakeham Lane, U.K.; Lynfield: Private culture collection and herbarium of Frank Hill, New Zealand; MAFF: Ministry of Agticulture, Forestry and Fisheries, Tsukuba,<br />

Ibaraki, Japan; MUCC: Culture Collection, Laboratory of Plant Pathology, Mie University, Tsu, Mie Prefecture, Japan; MUCL: Université Catholique de Louvain, Louvain-la-Neuve, Belgium; MUCNS: Active cultures & specimens of Chiharu Nakashima,<br />

housed at Mie University; MUMH: Mycologicl Herbarium of Mie University, Tsu, Mie, Japan; PPRI: Plant Protection Research Institute, Pretoria, South Africa; WAC: Department of Agriculture Western Australia Plant Pathogen Collection, Perth, Australia.<br />

2<br />

ITS: internal transcribed spacers and intervening 5.8S nrDNA; TEF: translation elongation factor 1-alpha; ACT: actin; CAL: calmodulin; HIS: histone H3.<br />

130


Species concepts in Cercospora<br />

cercosporin is not produced by all species (Assante et al. 1977,<br />

examples cited by Goodwin et al. 2001, see also review by Weiland<br />

et al. 2010). Nutritional and environmental conditions influence<br />

the production of cercosporin, making it useless for application<br />

in Cercospora taxonomy (Jenns et al. 1989). Genomic studies in<br />

recent years attempt to understand the metabolic pathway used<br />

to produce cercosporin and C. nicotianae has become the model<br />

organism for these studies (e.g. Chung et al. 2003, Choquer et al.<br />

2005, Chen et al. 2007, Amnuaykanjanasin & Daub 2009).<br />

In an attempt to address some of the shortcomings highlighted<br />

in the previous paragraph, we have obtained diseased plant<br />

material and/or cultures from as many hosts and countries<br />

as possible over several years. We sequenced the ITS locus<br />

(including ITS1, 5.8S nrRNA gene and ITS2), as well as parts of<br />

four genomic protein coding genes, namely translation elongationfactor<br />

1-alpha, actin, calmodulin and histone H3 for each culture.<br />

Our primary objective was to re-evaluate the species concept of<br />

known Cercospora species by consolidating the results of multilocus<br />

phylogenetic analyses with morphological characteristics<br />

produced on host plants and different media. A secondary<br />

objective was to test whether Cercospora species, in general,<br />

were host-specific.<br />

MATERIALS AND METHODS<br />

Specimens and isolates<br />

Dried specimens and cultures used in this study are maintained<br />

in herbaria and culture collections of Genebank, National Institute<br />

of Agrobiological Sciences, Japan, (MAFF), the Mycological<br />

Herbarium and Culture Collection, laboratory of Plant Pathology,<br />

Mie University, Japan (MUMH or MUCC) and the Centraalbureau<br />

voor Schimmelcultures (<strong>CBS</strong>-<strong>KNAW</strong> Fungal Biodiversity Centre,<br />

Utrecht, The Netherlands), or the working collection of P.W. Crous<br />

(CPC), housed at <strong>CBS</strong> (Table 1). A global set of isolates (Table 1)<br />

was either obtained from personal culture collections, the culture<br />

collection of the <strong>CBS</strong> or recollected on diseased plant material, and<br />

grown in axenic culture. Symptomatic leaves with leaf spots were<br />

chosen for isolations of Cercospora spp. as explained in Crous<br />

(1998). To obtain ascospore isolates, excised lesions were placed<br />

in distilled water for approximately 2 h, after which they were placed<br />

on the bottom of Petri dish lids, over which the plate containing 2<br />

% malt extract agar (MEA) (Crous et al. 1991, 2009c) was inverted.<br />

Germinating ascospores were examined after 24 h, and singleascospore<br />

cultures established on MEA as explained by Crous<br />

(1998). Colonies were sub-cultured onto oatmeal agar (OA), V8-<br />

juice agar (V8), 2 % potato-dextrose agar (PDA) or MEA (Crous et<br />

al. 2009c) and incubated at 25 °C under continuous near-ultraviolet<br />

light, to promote sporulation.<br />

DNA extraction, amplification and phylogeny<br />

Genomic DNA was isolated from fungal mycelium grown on the<br />

agar plates following the protocol of Lee & Taylor (1990) or the<br />

UltraClean Microbial DNA Isolation Kit (Mo Bio Laboratories,<br />

Inc., Solana Beach, CA, USA). All isolates were sequenced with<br />

five genomic loci. The primers ITS5 or ITS1 and ITS4 (White et<br />

al. 1990) were used to amplify the internal transcribed spacers<br />

areas as well as the 5.8S rRNA gene (ITS) of the nrDNA operon.<br />

Part of the actin gene (ACT) was amplified using the primer set<br />

ACT-512F and ACT-783R (Carbone & Kohn 1999) and part of the<br />

translation elongation factor 1-a gene (EF) using the primer set<br />

EF1-728F and EF1-986R (Carbone & Kohn 1999). The primer set<br />

CAL-228F and CAL-737R (Carbone & Kohn 1999) was used to<br />

amplify part of the calmodulin gene (CAL) whereas the primer set<br />

CylH3F and CylH3R (Crous et al. 2004c) was used to amplify part<br />

of the histone H3 gene (HIS). Additional degenerate primers were<br />

developed from sequences obtained from GenBank as alternative<br />

forward and reverse primers for some of the loci during the course<br />

of the study (Table 2); however, these were rarely used but based<br />

on their degenerate design could be of use to the broader scientific<br />

community. The protocols and conditions outlined by Groenewald et<br />

al. (2005) were followed for standard amplification and subsequent<br />

sequencing of the loci.<br />

Sequences of Septoria provencialis (isolate CPC 12226)<br />

were used as outgroup based on availability and phylogenetic<br />

relationship with Cercospora (Crous et al. 2004b, 2006b). The<br />

Cercospora sequences were assembled and added to the outgroup<br />

sequences using Sequence Alignment Editor v. 2.0a11 (Rambaut<br />

2002), and manual adjustments for improvement were made by<br />

eye where necessary. Gaps present in the ingroup taxa and longer<br />

than 10 characters were coded as a single event for all analyses<br />

(see TreeBASE).<br />

Neighbour-joining analyses using the HKY85 substitution<br />

model were applied to each data partition individually to check the<br />

stability and robustness of each species clade under each data set<br />

using PAUP v. 4.0b10 (Swofford 2003) (data not shown, discussed<br />

under the species notes where applicable). Alignment gaps were<br />

treated as missing data and all characters were unordered and of<br />

equal weight. Any ties were broken randomly when encountered.<br />

The robustness of the trees obtained was evaluated by 1 000<br />

bootstrap replications (Hillis & Bull 1993).<br />

MrModeltest v. 2.2 (Nylander 2004) was used to determine the<br />

best nucleotide substitution model settings for each data partition.<br />

Based on the results of the MrModeltest, a model-optimised<br />

phylogenetic re-construction was performed for the aligned<br />

combined data set to determine species relationships using MrBayes<br />

v. 3.2.0 (Ronquist & Huelsenbeck 2003). The heating parameter<br />

was set at 0.3 and the Markov Chain Monte Carlo (MCMC) analysis<br />

of four chains was started in parallel from a random tree topology<br />

and lasted until the average standard deviation of split frequencies<br />

came below 0.05. Trees were saved each 1 000 generations and<br />

the resulting phylogenetic tree was printed with Geneious v. 5.5.4<br />

(Drummond et al. 2011). New sequences generated in this study<br />

were deposited in NCBI’s GenBank nucleotide database (www.<br />

ncbi.nlm.nih.gov; Table 1) and the alignment and phylogenetic tree<br />

in TreeBASE (www.treebase.org).<br />

Isolates of Cercospora sp. Q were screened with five more loci<br />

to test whether additional loci could distinguish cryptic taxa within<br />

this species. This species was selected based on the intraspecific<br />

variation present in Fig. 2 (part 5) and also the range of host species<br />

and countries represented. The primer set GDF1 and GDR1<br />

(Guerber et al. 2003) was used to amplify part of the glyceraldehyde-<br />

3-phosphate dehydrogenase (GAPDH) gene, primer set NMS1 and<br />

NMS2 (Li et al. 1994) for part of the mitochondrial small subunit rRNA<br />

gene and part of the chitin synthase (CHS) gene was amplified using<br />

the primers CHS-79F and CHS-354R (Carbone & Kohn 1999). Part<br />

of the gene encoding for a mini-chromosome maintenance protein<br />

(MCM7) was amplified using primers Mcm7-709for, Mcm7-1348rev,<br />

Mcm7-1447rev (Schmitt et al. 2009) and part of the beta-tubulin<br />

gene using mainly the primers T1, Bt2b and TUB3Rd (see Table 2<br />

for references).<br />

www.studiesinmycology.org<br />

131


Groenewald et al.<br />

Table 2. Details of primers used and/or developed for this study and their relation to selected published primers. The start and end positions<br />

of the primers are derived using the GenBank accession shown next to the locus name as reference in the 5’–3’ direction. See Crous et al.<br />

(2009a) for information on additional ITS primers.<br />

Name Sequence (5’ – 3’) Orientation %GC Tm ( o C) Start End Reference<br />

Actin (Hypocrea orientalis GenBank accession JQ238613)<br />

ACT-512F ATG TGC AAG GCC GGT TTC GC Forward 60.0 51.4 244 263 Carbone & Kohn (1999)<br />

ACT-783R TAC GAG TCC TTC TGG CCC AT Reverse 55.0 47.6 544 563 Carbone & Kohn (1999)<br />

ACT1Fd GCY GCB CTC GTY ATY GAC AAT GG Forward 57.2 45.7 - 50.6 - 54.7 16 38 This study, see also Aveskamp et<br />

al. (2009)<br />

ACT1Rd CRT CGT ACT CCT GCT TBG AGA TCC AC Reverse 54.5 48.3 - 50.3 - 51.8 1537 1562 This study<br />

ACT2Fd GTA TCG TBC TBG ACT CYG GTG AYG GTG Forward 56.8 48.1 - 52.2 - 55.4 854 880 This study<br />

ACT2Rd ARR TCR CGD CCR GCC ATG TC Reverse 61.7 45.1 - 50.9 - 58.1 940 956 This study, see also Quaedvlieg<br />

et al. (2011)<br />

Beta-tubulin (Gibberella zeae GenBank accession FJ214662)<br />

Bt1a TTC CCC CGT CTC CAC TTC TTC ATG Forward 54.2 50.1 1091 1114 Glass & Donaldson (1995)<br />

Bt1b GAC GAG ATC GTT CAT GTT GAA CTC Reverse 45.8 45.1 1603 1626 Glass & Donaldson (1995)<br />

Bt2a GGT AAC CAA ATC GGT GCT GCT TTC Forward 50.0 48.2 163 186 Glass & Donaldson (1995)<br />

Bt2b ACC CTC AGT GTA GTG ACC CTT GGC Reverse 58.0 52.1 617 640 Glass & Donaldson (1995)<br />

CYLTUB1F AAA TTG GTG CTG CTT TCT GG Forward 45.0 43.5 170 189 This study<br />

CYLTUB1R AGT TGT CGG GAC GGA AGA G Reverse 57.9 46.6 563 581 Crous et al. (2004c)<br />

T1 AAC ATG CGT GAG ATT GTA AGT Forward 38.1 41.5 1 17 O’Donnell & Cigelnik (1997)<br />

TUB1Fd CAN MAT GMG KGA RAT CGT RGT Forward 47.6 36.8 - 44.5 - 51.9 1 14 This study<br />

TUB1Rd RGC VTC YTG GTA YTG CTG GTA Reverse 53.2 43.2 - 47.4 - 51.0 1633 1652 This study<br />

TUB2Fd GTB CAC CTY CAR ACC GGY CAR TG Forward 59.4 46.1 - 51.4 - 56.4 74 96 This study<br />

TUB2Rd TCA CCA GTG TAC CAA TGM ARG AAA GCC Reverse 48.1 48.3 - 50.1 - 52.0 1545 1565 This study<br />

TUB3Fd AAA THG GTG CYG CHT TCT GG Forward 50.8 42.5 - 45.9 - 50.5 170 189 This study<br />

TUB3Rd TCV GWG TTS AGY TGA CCN GGG Reverse 60.3 46.1 - 50.5 -54.0 1039 1059 This study<br />

TUB4Fd GGH GCY GGH AAC AAC TGG GC Forward 65.8 48.3 - 52.2 - 57.7 600 618 This study<br />

TUB4Rd CCR GAY TGR CCR AAR ACR AAG TTG TC Reverse 50.0 44.4 - 49.4 - 54.4 581 606 This study<br />

Calmodulin (Colletotrichum gloeosporioides GenBank accession HM575363)<br />

CAL-228F GAG TTC AAG GAG GCC TTC TCC C Forward 59.1 49.2 2 23 Carbone & Kohn (1999)<br />

CAL-737R CAT CTT TCT GGC CAT CAT GG Reverse 50.0 43.4 439 458 Carbone & Kohn (1999)<br />

CAL1Rd GCA TCA TRA GYT RGA CRA ACT CG Reverse 47.8 41.0 - 45.4 - 49.7 747 769 This study<br />

CAL2Rd TGR TCN GCC TCD CGG ATC ATC TC Reverse 58.0 47.5 - 50.8 - 54.9 647 669 This study<br />

Histone H3 (Talaromyces stipitatus GenBank accession XM_002478391)<br />

CYLH3F AGG TCC ACT GGT GGC AAG Forward 61.1 47.6 28 45 Crous et al. (2004c)<br />

CYLH3R AGC TGG ATG TCC TTG GAC TG Reverse 55.0 46.6 361 380 Crous et al. (2004c)<br />

H3-1a ACT AAG CAG ACC GCC CGC AGG Forward 66.7 54.2 10 30 Glass & Donaldson (1995)<br />

H3-1b GCG GGC GAG CTG GAT GTC CTT Reverse 66.7 54.5 367 387 Glass & Donaldson (1995)<br />

HIS1Rd RCG RAG RCG ACG GGC Reverse 76.7 45.4 - 50.0 - 54.6 382 396 This study<br />

HIS2Rd GGA TGG TRA CAC GCT TRG CGT G Reverse 59.1 47.9 - 50.5 - 53.1 240 361 This study<br />

ITS (Magnaporthe grisea GenBank accession AB026819)<br />

ITS1 TCC GTA GGT GAA CCT GCG G Forward 63.2 49.5 2162 2180 White et al. (1990)<br />

ITS4 TCC TCC GCT TAT TGA TAT GC Reverse 45.0 41.6 2685 2704 White et al. (1990)<br />

ITS5 GGA AGT AAA AGT CGT AAC AAG G Forward 40.9 40.8 2138 2159 White et al. (1990)<br />

V9G TTA CGT CCC TGC CCT TTG TA Forward 45.0 42.8 2002 2021 de Hoog & Gerrits van den Ende<br />

(1998)<br />

Translation elongation factor 1-alpha (Sordaria macrospora GenBank accession X96615)<br />

CylEF-R2 CAT GTT CTT GAT GAA RTC ACG Reverse 40.5 39.2 - 40.2 - 41.1 783 803 Crous et al. (2004c)<br />

EF-1 ATG GGT AAG GAR GAC AAG AC Forward 47.5 41.2 - 42.3 - 43.4 190 209 O’Donnell et al. (1998)<br />

EF-2 GGA RGT ACC AGT SAT CAT GTT Reverse 45.2 41.6 - 42.6 -43.7 798 818 O’Donnell et al. (1998)<br />

EF-22 AGG AAC CCT TAC CGA GCT C Reverse 57.9 46.2 578 596 O’Donnell et al. (1998)<br />

EF1-1567R ACH GTR CCR ATA CCA CCR ATC TT Reverse 47.1 43.1 - 47.2 - 52.0 1254 1276 Designed by S. Rehner (www.<br />

aftol.org/pdfs/EF1primer.pdf)<br />

132


Species concepts in Cercospora<br />

Table 2. (Continued).<br />

Name Sequence (5’ – 3’) Orientation %GC Tm ( o C) Start End Reference<br />

Translation elongation factor 1-alpha (Sordaria macrospora GenBank accession X96615)<br />

EF1-2218R ATG ACA CCR ACR GCR ACR GTY TG Reverse 54.3 45.6 - 50.4 - 55.1 1782 1804 Designed by S. Rehner (www.<br />

aftol.org/pdfs/EF1primer.pdf)<br />

EF1-526F GTC GTY GTY ATY GGH CAY GT Forward 51.7 40.0 - 45.6 - 52.2 220 239 Designed by S. Rehner (www.<br />

aftol.org/pdfs/EF1primer.pdf)<br />

EF1-728F CAT CGA GAA GTT CGA GAA GG Forward 50.0 42.2 306 325 Carbone & Kohn (1999)<br />

EF1-986R TAC TTG AAG GAA CCC TTA CC Reverse 45.0 40.9 584 603 Carbone & Kohn (1999)<br />

EF1Fd GTC GTT ATC GGC CAC GTC G Forward 63.2 48.5 223 241 This study<br />

EF1Rd CGG MCT TGG TGA CCT TGC C Reverse 65.8 48.8 - 50.4 - 52.0 1836 1852 This study<br />

EF2Fd GAT CTA CCA GTG CGG TGG Forward 61.1 45.4 273 290 This study<br />

EF2Rd GGT GCA TYT CSA CGG ACT TGA C Reverse 56.8 48.2 - 49.1 - 49.9 1356 1377 This study<br />

EF3Fd GAG CGT GAG CGT GGT ATC AC Forward 60.0 48.1 632 651 This study<br />

EF3Rd GGT ACG CTK GTC RAT ACC ACC Reverse 57.1 45.5 - 47.5 - 49.6 286 306 This study<br />

EF4Fd GGT GCA TYT CSA CGG ACT TGA C Forward 56.8 48.2 - 49.1 - 49.9 1356 1377 This study<br />

Taxonomy<br />

Morphological descriptions are based on structures in vivo, with<br />

morphological structures in vitro noted where relevant. Structures<br />

were mounted in clear lactic acid, and 30 measurements (× 1 000<br />

magnification) determined wherever possible, with the extremes<br />

of spore measurements given in parentheses. Observations were<br />

made with a Zeiss V20 Discovery stereo-microscope, and with a<br />

Zeiss Axio Imager 2 light microscope using differential interference<br />

contrast (DIC) illumination and an AxioCam MRc5 camera and<br />

software. Colony colours (surface and reverse) were assessed<br />

on different culture media at 25 °C in the dark, using the colour<br />

charts of Rayner (1970). All isolates obtained in this study are<br />

maintained in culture collections (Table 1). Nomenclatural novelties<br />

and descriptions were deposited in MycoBank (www.MycoBank.<br />

org; Crous et al. 2004a).<br />

RESULTS<br />

DNA phylogeny<br />

Amplification products and gene sequences of similar size to<br />

that reported previously (Groenewald et al. 2005, 2010a) were<br />

obtained. The resulting concatenated alignment contains 361 taxa<br />

(including the outgroup taxon), and 471, 263, 199, 240 and 347<br />

characters (including alignment gaps) were used in the ITS, TEF,<br />

ACT, CAL and HIS partitions, respectively. Based on the results<br />

of MrModeltest, the following priors were set in MrBayes for the<br />

different partitions: all partitions had dirichlet base frequencies and<br />

GTR+G models with gamma-distributed rates were implemented<br />

for ITS, ACT and CAL, and HKY+G with gamma-distributed<br />

rates for TEF while HIS required HKY+I+G with inverse gammadistributed<br />

rates. The final aligned combined data set contained<br />

361 ingroup taxa with a total of 1 305 characters and Septoria<br />

provencialis (isolate CPC 12226) served as the outgroup taxon.<br />

From this alignment 1 520 characters were used for the Bayesian<br />

analysis; these contained 588 unique site patterns (48, 172, 111,<br />

125 and 132 for ITS, TEF, ACT, CAL and HIS, respectively). The<br />

Bayesian analysis lasted 3 995 000 generations and the consensus<br />

trees and posterior probabilities were calculated from the 5 994<br />

trees left after discarding 1 998 trees (the first 1 000 generations)<br />

for burn-in (Fig. 2).<br />

The ITS region has limited resolution for almost all species in<br />

Cercospora and therefore the results of the other gene regions were<br />

particularly useful for comparison of clade stability. Neighbour-joining<br />

analyses using the HKY85 substitution model were applied to each<br />

data partition to check the stability and robustness of each species<br />

clade under the different partitions (data not shown). The ITS region<br />

was only able to distinguish C. zeina and C. zeae-maydis from the<br />

rest of the included species. The TEF region was able to distinguish<br />

33 of the 73 species clades and especially failed for Cercospora sp.<br />

M–Q (including C. cf. sigesbeckiae and C. cf. richardiicola; spanning<br />

most of Fig. 2 part 4 and the upper half of part 5), whereas ACT<br />

distinguished 43 of the 73 species clades and especially failed for<br />

Cercospora sp. G–I (Fig. 2 part 1) and including C. cf. flagellaris and<br />

C. alchemillicola/C. cf. alchemillicola. The ACT region also accounted<br />

for most of the variation observed for Cercospora sp. Q. The CAL<br />

region was able to distinguish 34 of the 73 species clades but<br />

especially failed for Cercospora sp. M, P and Q (including C. kikuchii,<br />

C. cf. sigesbeckiae, C. cf. richardiicola and C. rodmanii; spanning<br />

middle of Fig. 2 part 4), as well as a group consisting predominantly<br />

of C. armoraciae, C. capsici, C. zebrina and C. violae (Fig. 2 part 3).<br />

Although the locus was able to separate C. beticola and C. apii, it<br />

could not distinguish C. cf. brunkii and C. cf. resedae from C. apii. The<br />

HIS region distinguished 46 of the 73 species clades and especially<br />

failed for Cercospora sp. G–I (Fig. 2 part 1) and Cercospora sp. M,<br />

P and Q (including C. kikuchii, C. cf. richardiicola and C. rodmanii;<br />

spanning middle of Fig. 2 part 4). The HIS region also accounted for<br />

most of the variation observed for C. armoraciae and was responsible<br />

for the split of C. beticola into two clades. No single gene region was<br />

found which could reliably distinguish all species and, irrespective<br />

of which locus was used, occurrences of the same sequence(s)<br />

shared between multiple species were observed. If data for ITS is not<br />

taken into consideration, the remaining four loci always distinguish<br />

the following 18 species: C. agavicola, C. apiicola, C. coniogramme,<br />

C. cf. erysimi, C. euphorbiae-sieboldianae, C. helianthicola, C.<br />

mercurialis, C. olivascens, C. pileicola, C. senecionis-walkeri, C.<br />

violae, C. zeae-maydis, C. zeina, Cercospora sp. A, Cercospora sp.<br />

C, Cercospora sp. D, Cercospora sp. J, Cercospora sp. R. Some<br />

species are only distinguished based on a single locus and these<br />

results are discussed under the species notes, where applicable.<br />

www.studiesinmycology.org<br />

133


Groenewald et al.<br />

4<br />

4<br />

4<br />

4<br />

4<br />

S. provencialis CPC 12226<br />

CPC 19196 Senecio walkeri Laos<br />

C. senecionis-walkeri<br />

CPC 15872 Chenopodium sp. Mexico<br />

Cercospora sp. A<br />

CPC 17017 Coniogramme japonica var. gracilis Australia C. coniogrammes sp. nov.<br />

4<br />

CPC 11995 Zea mays South Africa<br />

C. zeina<br />

CPC 11998 Zea mays South Africa<br />

<strong>CBS</strong> 117757 Zea mays USA<br />

<strong>CBS</strong> 117759 Zea mays USA<br />

CPC 12225 Zea mays China<br />

<strong>CBS</strong> 117763 Zea mays USA<br />

<strong>CBS</strong> 117755 Zea mays USA<br />

<strong>CBS</strong> 117758 Zea mays USA<br />

C. zeae-maydis<br />

<strong>CBS</strong> 117761 Zea mays USA<br />

<strong>CBS</strong> 117760 Zea mays USA<br />

<strong>CBS</strong> 117756 Zea mays USA<br />

0.8<br />

<strong>CBS</strong> 117762 Zea mays USA<br />

CPC 15602 Zea mays Mexico<br />

CPC 10687 Ipomoea purpurea South Korea<br />

Cercospora sp. B<br />

CPC 11774 Agave tequilana var. azul Mexico<br />

C. agavicola<br />

CPC 10122 Coreopsis lanceolata South Korea<br />

C. cf. coreopsidis<br />

CPC 10648 Coreopsis lanceolata South Korea<br />

CPC 15841 Mexico<br />

Cercospora sp. C<br />

CPC 15856 Mexico<br />

Cercospora sp. D<br />

CPC 5361 Erysimum mutabile New Zealand<br />

C. cf. erysimi<br />

CPC 5115 Modiola caroliniana New Zealand<br />

C. cf. modiolae<br />

CPC 15632 Mexico<br />

Cercospora sp. E<br />

CPC 15801 Mexico<br />

CPC 14237 Chenopodium cf. album France<br />

C. chenopodii<br />

CPC 10304 Chenopodium ficifolium South Korea<br />

CPC 15599 Chenopodium sp. Mexico<br />

CPC 15859 Chenopodium sp. Mexico<br />

C. cf. chenopodii<br />

CPC 15763 Chenopodium sp. Mexico<br />

CPC 15862 Chenopodium sp. Mexico<br />

CPC 12450 Chenopodium ficifolium South Korea<br />

CPC 15871 Mexico<br />

CPC 5059 Phaseolus lunatus USA<br />

Posterior probability values:<br />

= 1.000<br />

= 0.950 to 0.999<br />

1 = 0.900 to 0.949<br />

2 = 0.800 to 0.899<br />

3 = 0.700 to 0.799<br />

4 = 0.500 to 0.699<br />

3<br />

CPC 1137 Vigna sp. South Africa<br />

CPC 1138 Vigna sp. South Africa<br />

CPC 11626 Dioscorea rotundata Ghana<br />

CPC 4408 Citrus maxima South Africa<br />

CPC 4409 Citrus maxima South Africa<br />

CPC 11627 Dioscorea alata Ghana<br />

CPC 11628 Dioscorea rotundata Ghana<br />

CPC 11640 Apium sp. USA<br />

CPC 5085 Aristolochia clematidis Romania<br />

CPC 12062 Zea mays South Africa<br />

<strong>CBS</strong> 765.79 Solanum tuberosum Peru<br />

4<br />

CPC 5360 Bidens frondosa New Zealand<br />

CPC 5438 Salvia viscosa New Zealand<br />

CPC 11620 Chamelaucium uncinatum Argentina<br />

CPC 5116 Dichondra repens New Zealand<br />

CPC 10660 Celosia argentea var. cristata South Korea<br />

CPC 5363 Deutzia ×rosea New Zealand<br />

CPC 10138 Ajuga multiflora South Korea<br />

<strong>CBS</strong> 115117 Archontophoenix cunninghamiana New Zealand<br />

CPC 5440 Nicotiana sp. New Zealand<br />

<strong>CBS</strong> 115121 Gunnera tinctoria New Zealand<br />

CPC 5365 Fuchsia procumbens New Zealand<br />

CPC 5362 Deutzia crenata New Zealand<br />

CPC 5364 Deutzia purpurascens New Zealand<br />

CPC 10615 Coreopsis verticilata New Zealand<br />

CPC 10616 Coreopsis verticilata New Zealand<br />

C. canescens complex<br />

C. olivascens<br />

Cercospora sp. F<br />

C. cf. physalidis<br />

Cercospora sp. G<br />

Cercospora sp. H<br />

C. celosiae<br />

Cercospora sp. I<br />

Fig. 2. (Part 1). Consensus phylogram (50 % majority rule) of 5 994 trees resulting from a Bayesian analysis of the combined 5-gene sequence alignment using MrBayes v.<br />

3.2.0. Bayesian posterior probabilities are indicated with colour-coded branches and numbers (see legend) and the scale bar represents the expected changes per site. Species<br />

clades are indicated in coloured blocks and species names in black text. Hosts and countries of origin are indicated in green and blue text, respectively. The tree was rooted to<br />

Septoria provencialis (strain CPC 12226).<br />

134


Species concepts in Cercospora<br />

1<br />

2<br />

2<br />

4<br />

4<br />

Fig. 2. (Part 2).<br />

<strong>CBS</strong> 550.71 Mercurialis perennis Romania<br />

<strong>CBS</strong> 549.71 Mercurialis annua Romania<br />

<strong>CBS</strong> 551.71 Mercurialis ovata Romania<br />

CPC 10749 Pilea pumila South Korea<br />

CPC 11369 Pilea pumila South Korea<br />

CPC 10693 Pilea hamaoi South Korea<br />

CPC 10812 Vigna unguiculata South Korea<br />

CPC 1134 Vigna unguiculata South Africa<br />

MUCC 579 Vigna unguiculata Japan<br />

CPC 11641 Apium sp. Greece<br />

CPC 11642 Apium sp. Greece<br />

CPC 10220 Apium sp. Venezuela<br />

CPC 10266 Apium sp. Venezuela<br />

CPC 10265 Apium sp. Venezuela<br />

CPC 10759 Apium graveolens South Korea<br />

2 CPC 10279 Apium sp. Venezuela<br />

CPC 10657 Apium graveolens South Korea<br />

CPC 10666 Apium sp. South Korea<br />

CPC 10248 Apium sp. Venezuela<br />

CPC 10267 Apium sp. Venezuela<br />

<strong>CBS</strong> 113306 Euphorbia sieboldiana South Korea<br />

CPC 14606 Cynanachum wilfordii South Korea<br />

CPC 11318 Persicaria longiseta South Korea<br />

3<br />

CPC 10091 Achyranthes japonica South Korea<br />

CPC 10879 Achyranthes japonica South Korea<br />

CPC 14585 Impatiens noli-tangere South Korea<br />

CPC 12322 Glycine soja South Korea<br />

3<br />

CPC 11353 Glycine soja South Korea<br />

CPC 11420 Glycine soja South Korea<br />

CPC 17964 Glycine max Argentinia<br />

CPC 17966 Glycine max Argentinia<br />

CPC 17974 Glycine max Argentinia<br />

CPC 17975 Glycine max Argentinia<br />

CPC 17972 Glycine max Argentinia<br />

CPC 17969 Glycine max Argentinia<br />

CPC 17971 Glycine max Argentinia<br />

CPC 17977 Glycine max Argentinia<br />

CPC 17973 Glycine max Argentinia<br />

CPC 17965 Glycine max Argentinia<br />

CPC 17967 Glycine max Argentinia<br />

CPC 17970 Glycine max Argentinia<br />

CPC 17976 Glycine max Argentinia<br />

CPC 17968 Glycine max Argentinia<br />

MUCC 541 Antirrhinum majus Japan<br />

CPC 10104 Ricinus communis South Korea<br />

CPC 10734 Ricinus communis South Korea<br />

CPC 10627 Delairea odorata South Africa<br />

CPC 10628 Delairea odorata South Africa<br />

CPC 10455 Delairea odorata South Africa<br />

CPC 10629 Delairea odorata South Africa<br />

CPC 12391 Ipomoea coccinea South Korea<br />

CPC 10094 Ipomoea coccinea South Korea<br />

2<br />

CPC 10719 Ipomoea coccinea South Korea<br />

CPC 5441 Amaranthus sp. Fiji Islands<br />

CPC 10681 Cichorium intybus South Korea<br />

CPC 11643 Celosia argentea var. cristata South Korea<br />

CPC 10884 Dysphania ambrosioides South Korea<br />

MUCC 735 Hydrangea serrata Japan<br />

CPC 4410 Citrus sp. South Africa<br />

CPC 4411 Citrus sp. South Africa<br />

Posterior probability values:<br />

= 1.000<br />

= 0.950 to 0.999<br />

1 = 0.900 to 0.949<br />

2 = 0.800 to 0.899<br />

3 = 0.700 to 0.799<br />

4 = 0.500 to 0.699<br />

0.8<br />

C. mercurialis<br />

C. pileicola<br />

C. vignigena sp. nov.<br />

C. apiicola<br />

C. euphorbiae-sieboldianae sp. nov.<br />

C. punctiformis<br />

C. polygonacea<br />

C. achyranthis<br />

C. campi-silii<br />

C. sojina<br />

Cercospora sp. J<br />

C. ricinella<br />

C. delaireae sp. nov.<br />

Cercospora sp. K<br />

C. cf. flagellaris Clade 1<br />

www.studiesinmycology.org<br />

135


Groenewald et al.<br />

<strong>CBS</strong> 113127 Eichhornia crassipes USA<br />

4 CPC 10079 Trachelium sp. Israel<br />

CPC 10684 Phytolacca americana South Korea<br />

CPC 14723 Phytolacca americana South Korea<br />

2 CPC 10124 Phytolacca americana South Korea<br />

CPC 5055 Bromus sp.<br />

MUCC 127 Cosmos sulphureus Japan<br />

CPC 10722 Amaranthus patulus South Korea<br />

2 CPC 14487 Sigesbeckia pubescens South Korea<br />

MUCC 831 Hydrangea serrata Japan<br />

CPC 1051 Populus deltoides South Africa<br />

1<br />

CPC 1052 Populus deltoides South Africa<br />

MUCC 574 Capsicum annuum Japan<br />

CPC 12307 Capsicum annuum South Korea<br />

CPC 14520 Capsicum annuum South Korea<br />

<strong>CBS</strong> 118712 Fiji Islands<br />

3<br />

CPC 5082 Coronilla varia Romania<br />

CPC 5056 Erysimum cuspidatum Romania<br />

CPC 5090 Berteroa incana Romania<br />

2 CPC 5060 Cardaria draba Romania<br />

CPC 5061 Cardaria draba Romania<br />

CPC 5261 Nasturtium officinale New Zealand<br />

2<br />

CPC 11530 Acacia mangium Thailand<br />

1 CPC 11338 Turritis glabra South Korea<br />

2<br />

CPC 11364 Turritis glabra South Korea<br />

CPC 10100 Barbarea orthoceras South Korea<br />

CPC 5088 Armoracia rusticana Romania<br />

3 CPC 10811 Armoracia rusticana South Korea<br />

MUCC 768 Armoracia rusticana Japan<br />

1<br />

CPC 14612 Rorippa indica South Korea<br />

CPC 10133 Rorippa indica South Korea<br />

CPC 5359 Armoracia rusticana New Zealand<br />

CPC 5366 Gaura sp. New Zealand<br />

CPC 5439 Rumex sanguineus New Zealand<br />

CPC 5114 Crepis capillaris New Zealand<br />

CPC 10790 Althaea rosea South Korea<br />

CPC 5066 Malva sp.<br />

CPC 5117 Althaea rosea Romania<br />

2 CPC 3955 Trifolium pratense Canada<br />

<strong>CBS</strong> 118789 Trifolium subterraneum Australia<br />

<strong>CBS</strong> 118790 Trifolium subterraneum Australia<br />

CPC 10901 Hebe sp. New Zealand<br />

<strong>CBS</strong> 118791 Trifolium cernuum Australia<br />

CPC 5118 Hedysarum coronarium Italy<br />

4 CPC 5437 Lotus pedunculatus New Zealand<br />

CPC 5473 Jacaranda mimosifolia New Zealand<br />

CPC 5089 Astragalus spruneri Romania<br />

CPC 5091 Medicago arabica<br />

CPC 10756 Trifolium repens South Korea<br />

CPC 5367 Trifolium repens New Zealand<br />

4 CPC 5078 Trifolium subterraneum USA<br />

CPC 3957 Trifolium repens Canada<br />

CPC 3958 Trifolium repens Canada<br />

MUCC 133 Viola sp. Japan<br />

MUCC 136 Viola sp. Japan<br />

CPC 5368 Viola odorata New Zealand<br />

MUCC 129 Viola sp. Japan<br />

CPC 5079 Viola tricolor Romania<br />

Posterior probability values:<br />

= 1.000<br />

= 0.950 to 0.999<br />

1 = 0.900 to 0.949<br />

2 = 0.800 to 0.899<br />

3 = 0.700 to 0.799<br />

4 = 0.500 to 0.699<br />

0.8<br />

C. cf. flagellaris Clade 2<br />

C. capsici<br />

C. armoraciae<br />

C. rumicis<br />

Cercospora sp. L<br />

C. althaeina<br />

C. zebrina<br />

C. violae<br />

Fig. 2. (Part 3).<br />

136


Species concepts in Cercospora<br />

1<br />

1<br />

CPC 14549 Zinnia elegans South Korea<br />

CPC 15075 Brazil<br />

MUCC 572 Zinnia elegans Japan<br />

MUCC 131 Zinnia elegans Japan<br />

MUCC 442 Ipomoea aquatica Japan<br />

CPC 10833 Ipomoea nil South Korea<br />

CPC 10102 Persicaria thunbergii South Korea<br />

3<br />

1<br />

2 2<br />

1<br />

1<br />

3<br />

2<br />

CPC 10725 Viola mandshurica South Korea<br />

CPC 10109 Fallopia dumentorum South Korea<br />

MUCC 866 Hibiscus syriacus Japan<br />

MUCC 130 Cosmos bipinnata Japan<br />

CPC 14541 Fagopyrum esculentum South Korea<br />

CPC 14546 Cercis chinensis South Korea<br />

CPC 5259 Alchemilla mollis New Zealand<br />

CPC 5126 Oenothera fruticosa New Zealand<br />

CPC 5127 Gaura lindheimeri New Zealand<br />

CPC 10553 Acacia mangium Thailand<br />

4<br />

1<br />

<strong>CBS</strong> 113123 Eichhornia crassipes Brazil<br />

<strong>CBS</strong> 113124 Eichhornia crassipes Mexico<br />

<strong>CBS</strong> 113131 Eichhornia crassipes Venezuela<br />

<strong>CBS</strong> 113125 Eichhornia crassipes Zambia<br />

<strong>CBS</strong> 113126 Eichhornia crassipes Brazil<br />

<strong>CBS</strong> 113128 Eichhornia crassipes USA<br />

<strong>CBS</strong> 113129 Eichhornia crassipes USA<br />

<strong>CBS</strong> 113130 Eichhornia crassipes USA<br />

CPC 12684 Musa sp. Bangladesh<br />

MUCC 138 Fuchsia xhybrida Japan<br />

MUCC 582 Gerbera hybrida Japan<br />

3<br />

MUCC 132 Osteospermum sp. Japan<br />

MUCC 578 Zantedeschia sp. Japan<br />

MUCC 128 Tagetes erecta Japan<br />

CPC 14680 Ajuga multiflora South Korea<br />

MUCC 590 Glycine soja Japan<br />

CPC 16578 Glycine max Argentinia<br />

CPC 5067 Glycine soja Japan<br />

CPC 5068 Glycine soja Japan<br />

MUCC 587 Begonia sp. Japan<br />

MUCC 849 Dioscorea tokoro Japan<br />

MUCC 589 Glycine max Japan<br />

CPC 10128 Pilea pumila South Korea<br />

CPC 10664 Sigesbeckia glabrescens South Korea<br />

CPC 10117 Persicaria orientalis South Korea<br />

CPC 10740 Paulownia coreana South Korea<br />

CPC 14489 Sigesbeckia pubescens South Korea<br />

1<br />

CPC 14726 Malva verticillata South Korea<br />

CPC 18636 Musa sp. Thailand<br />

MUCC 575 Cucumis melo Japan<br />

MUCC 787 Mallotus japonicus Japan<br />

CPC 15827 Ricinus communis Mexico<br />

CPC 4001 Citrus ×sinensis Swaziland<br />

CPC 4002 Citrus ×sinensis Swaziland<br />

CPC 5328 Cajanus cajan South Africa<br />

1<br />

CPC 5326 Cajanus cajan South Africa<br />

CPC 5327 Cajanus cajan South Africa<br />

CPC 3949 Citrus ×sinensis South Africa<br />

CPC 3948 Citrus ×sinensis South Africa<br />

CPC 3950 Citrus ×sinensis South Africa<br />

CPC 11638 Dioscorea bulbifera Papua New Guinea<br />

CPC 11633 Dioscorea rotundata Ghana<br />

4<br />

CPC 11631 Dioscorea rotundata Ghana<br />

Posterior probability values:<br />

= 1.000<br />

= 0.950 to 0.999<br />

1 = 0.900 to 0.949<br />

2 = 0.800 to 0.899<br />

3 = 0.700 to 0.799<br />

4 = 0.500 to 0.699<br />

0.8<br />

C. cf. zinniae<br />

C. cf. ipomoeae<br />

C. fagopyri<br />

C. alchemillicola<br />

C. cf. alchemillicola<br />

Cercospora sp. M<br />

C. rodmanii<br />

Cercospora sp. N<br />

C. cf. richardiicola<br />

C. kikuchii<br />

C. cf. sigesbeckiae<br />

Cercospora sp. O<br />

C. cf. malloti<br />

Cercospora sp. P<br />

Fig. 2. (Part 4).<br />

www.studiesinmycology.org<br />

137


Groenewald et al.<br />

CPC 11637 Dioscorea rotundata Papua New Guinea<br />

CPC 5262 Hibiscus sabdariffa New Zealand<br />

3 CPC 3947 Citrus sp. Swaziland<br />

CPC 3945 Citrus sp. Swaziland<br />

CPC 3946 Citrus sp. Swaziland<br />

CPC 11635 Dioscorea nummularia Papua New Guinea<br />

MUCC 771 Coffea arabica Japan<br />

2 CPC 10526 Acacia mangium Thailand<br />

2 CPC 10527 Acacia mangium Thailand<br />

CPC 10552 Acacia mangium Thailand<br />

CPC 11629 Dioscorea rotundata Ghana<br />

4<br />

CPC 11632 Dioscorea rotundata Ghana<br />

CPC 11630 Dioscorea rotundata Ghana<br />

CPC 10550 Acacia mangium Thailand<br />

CPC 11636 Dioscorea esculenta Papua New Guinea<br />

1<br />

CPC 11634 Dioscorea rotundata Papua New Guinea<br />

CPC 15807 Phaseolus vulgaris Mexico<br />

3<br />

CPC 15850 Taraxacum sp. Mexico<br />

CPC 15875 Euphorbia sp. Mexico<br />

4 CPC 11539 Acacia mangium Thailand<br />

CPC 11536 Acacia mangium Thailand<br />

CPC 5329 Cajanus cajan South Africa<br />

CPC 5330 Cajanus cajan South Africa<br />

2<br />

CPC 5333 Cajanus cajan South Africa<br />

CPC 5332 Cajanus cajan South Africa<br />

CPC 5325 Cajanus cajan South Africa<br />

0.8<br />

CPC 5331 Cajanus cajan South Africa<br />

CPC 15844 Euphorbia sp. Mexico<br />

4<br />

CPC 11639 Dioscorea rotundata Papua New Guinea<br />

CPC 10551 Acacia mangium Thailand<br />

CPC 10831 Polygonatum humile South Korea<br />

CPC 10773 Disporum viridescens South Korea<br />

2<br />

MUCC 585 Corchorus olitorius Japan<br />

<strong>CBS</strong> 114644 Myoporum laetum New Zealand<br />

4 CPC 10656 Crepidiastrum denticulatum South Korea<br />

2 CPC 10082 Ixeris chinensis subsp. strigosa South Korea<br />

CPC 10728 Ixeris chinensis subsp. strigosa South Korea<br />

MUCC 570 Lactuca sativa Japan<br />

MUCC 571 Lactuca sativa Japan<br />

MUCC 716 Helianthus tuberosus Japan<br />

MUCC 588 Ipomoea pes-caprae Japan<br />

CPC 12682 Musa sp. Bangladesh<br />

CPC 12683 Musa sp. Bangladesh<br />

MUCC 584 Psophocarpus tetragonolobus Japan<br />

4 1 MUCC 576 Citrullus lanatus Japan<br />

MUCC 577 Momordica charanthia Japan<br />

CPC 15918 Glycine max Mexico<br />

CPC 5075 Nicotiana tabacum Nigeria<br />

CPC 5076 Nicotiana tabacum Indonesia<br />

3 CPC 11598 Geranium thunbergii South Korea<br />

MUCC 732 Datura stramonium Japan<br />

2 <strong>CBS</strong> 118793 Reseda odorata New Zealand<br />

3<br />

CPC 5057 Helianthemum sp. Romania<br />

3 CPC 5083 Plumbago europaea Romania<br />

CPC 5087 Apium graveolens Romania<br />

4 CPC 5063 Beta vulgaris Netherlands<br />

4 CPC 5119 Beta vulgaris Hungary<br />

CPC 5073 Beta vulgaris Austria<br />

MUCC 923 Asparagus officinalis Japan<br />

Posterior probability values:<br />

= 1.000<br />

= 0.950 to 0.999<br />

1 = 0.900 to 0.949<br />

2 = 0.800 to 0.899<br />

3 = 0.700 to 0.799<br />

4 = 0.500 to 0.699<br />

Cercospora sp. P<br />

(continued)<br />

Cercospora sp. Q<br />

C. chinensis<br />

C. dispori<br />

C. corchori<br />

Cercospora sp. R<br />

Cercospora sp. S<br />

C. lactucae-sativae<br />

C. cf. helianthicola<br />

C. cf. citrulina<br />

C. cf. nicotianae<br />

C. cf. brunkii<br />

C. cf. resedae<br />

C. apii<br />

Fig. 2. (Part 5).<br />

138


Species concepts in Cercospora<br />

CPC 5260 Glebionis coronaria New Zealand<br />

MUCC 573 Glebionis coronaria Japan<br />

CPC 5084 Plantago lanceolata Romania<br />

CPC 16663 Moluccella laevis Zimbabwe<br />

CPC 5111 Moluccella laevis USA<br />

CPC 5110 Moluccella laevis USA<br />

CPC 5112 Moluccella laevis New Zealand<br />

CPC 10924 Apium graveolens Italy<br />

CPC 10923 Apium graveolens Italy<br />

MUCC 593 Apium graveolens Japan<br />

4<br />

MUCC 567 Apium graveolens Japan<br />

CPC 18601 Apium graveolens USA<br />

CPC 10925 Apium sp. Austria<br />

4<br />

CPC 5086 Apium graveolens<br />

4 CPC 11579 Apium graveolens Germany<br />

CPC 11556 Apium graveolens Germany<br />

CPC 11582 Apium graveolens Germany<br />

<strong>CBS</strong> 117.47 Beta vulgaris Czech Republic<br />

CPC 5062 Beta vulgaris Romania<br />

CPC 12031 Beta vulgaris Germany<br />

3 CPC 10166 Beta vulgaris New Zealand<br />

CPC 12027 Beta vulgaris Germany<br />

CPC 10195 Beta vulgaris New Zealand<br />

CPC 12022 Beta vulgaris Germany<br />

CPC 18813 Beta vulgaris USA<br />

MUCC 569 Beta vulgaris Japan<br />

CPC 12030 Beta vulgaris Egypt<br />

CPC 11581 Beta vulgaris Netherlands<br />

CPC 5064 Beta vulgaris Germany<br />

CPC 14618 Goniolimon tataricum Bulgaria<br />

CPC 5069 Beta vulgaris<br />

CPC 12029 Beta vulgaris Egypt<br />

CPC 14617 Goniolimon tataricum Bulgaria<br />

CPC 11557 Beta vulgaris Italy<br />

CPC 5065 Malva pusilla Romania<br />

CPC 12028 Beta vulgaris Egypt<br />

CPC 5113 Limonium sinuatum New Zealand<br />

CPC 11577 Beta vulgaris Germany<br />

CPC 14619 Goniolimon tataricum Bulgaria<br />

CPC 5072 Beta vulgaris Germany<br />

CPC 11578 Beta vulgaris Italy<br />

4 CPC 5070 Beta vulgaris Romania<br />

CPC 5128 Beta vulgaris New Zealand<br />

CPC 10197 Beta vulgaris New Zealand<br />

CPC 5125 Beta vulgaris New Zealand<br />

CPC 10204 Beta vulgaris New Zealand<br />

CPC 5123 Apium graveolens New Zealand<br />

CPC 11580 Beta vulgaris France<br />

CPC 14616 Goniolimon tataricum Bulgaria<br />

CPC 11576 Beta vulgaris Iran<br />

CPC 5074 Beta vulgaris Netherlands<br />

MUCC 568 Beta vulgaris Japan<br />

CPC 14620 Goniolimon tataricum Bulgaria<br />

CPC 5071 Beta vulgaris Spain<br />

CPC 10171 Beta vulgaris New Zealand<br />

CPC 11344 Chrysanthemum segetum South Korea<br />

CPC 11341 Chrysanthemum segetum South Korea<br />

CPC 5370 Spinacia sp. Botswana<br />

CPC 5369 Spinacia sp. Botswana<br />

CPC 10168 Beta vulgaris New Zealand<br />

1 CPC 15623 Beta vulgaris Mexico<br />

CPC 11558 Beta vulgaris Germany<br />

C. apii (continued)<br />

C. beticola Clade 1<br />

C. beticola Clade 2<br />

Posterior probability values:<br />

= 1.000<br />

= 0.950 to 0.999<br />

1 = 0.900 to 0.949<br />

2 = 0.800 to 0.899<br />

3 = 0.700 to 0.799<br />

4 = 0.500 to 0.699<br />

0.8<br />

Fig. 2. (Part 6).<br />

www.studiesinmycology.org<br />

139


Groenewald et al.<br />

Table 3. Results from screening Cercospora sp. Q strains with additional loci. The percentage similarity was calculated relative to strain CPC 5325, for which sequences were generated for all loci. The number<br />

of nucleotides used for the calculation of the similarity is shown in front of the percentage. For abbreviations of loci see Table 1 and in addition: GAPDH: partial glyceraldehyde-3-phosphate dehydrogenase gene;<br />

mtSSU: partial mitochondrial small rRNA gene; CHS: partial chitin synthase gene; TUB: partial beta-tubulin gene; Mcm7: partial gene encoding a mini-chromosome maintenance protein.<br />

Original name Culture accession<br />

number(s)<br />

Host name Percentage similarity and allele group (I-VI) designation per locus GenBank accession numbers<br />

GAPDH mtSSU CHS TUB Mcm7 (GAPDH, mtSSU, CHS, TUB, Mcm7)<br />

Cercospora apii <strong>CBS</strong> 113997; CPC 5325 Cajanus cajan 979 nt I 573 nt I 299 nt I 597 nt I 501 nt I JX142521, JX142504, JX142487, JX142478,<br />

JX142473<br />

Cercospora apii <strong>CBS</strong> 115410; CPC 5331 Cajanus cajan 966 nt (100 %) I 573 nt (100 %) I 299 nt (100 %) I 597 nt (99 %) I — JX142522, JX142505, JX142488, JX142479, —<br />

Cercospora apii <strong>CBS</strong> 115411; CPC 5332 Cajanus cajan 966 nt (100 %) I 573 nt (100 %) I 299 nt (100 %) I 597 nt (99 %) III — JX142523, JX142506, JX142489, JX142480, —<br />

Cercospora apii <strong>CBS</strong> 115412; CPC 5333 Cajanus cajan 966 nt (100 %) I 573 nt (100 %) I 299 nt (100 %) I 322 nt (9,9 %) III — JX142524, JX142507, JX142490, JX142481, —<br />

Cercospora apii <strong>CBS</strong> 115536; CPC 5329 Cajanus cajan 970 nt (95 %) V 573 nt (100 %) I 299 nt (99 %) II 597 nt (99 %) II — JX142525, JX142508, JX142491, JX142482, —<br />

Cercospora apii <strong>CBS</strong> 115537; CPC 5330 Cajanus cajan 970 nt (95 %) V 573 nt (100 %) I 299 nt (99 %) II 597 nt (99 %) II — JX142526, JX142509, JX142492, JX142483, —<br />

Cercospora acaciae-mangii CPC 10550 Acacia mangium 979 nt (100 %) I 573 nt (100 %) I 299 nt (99 %) II 450 nt (99 %) I 501 nt (99 %) II JX142533, JX142516, JX142499, JX142484,<br />

JX142475<br />

Cercospora acaciae-mangii CPC 10551 Acacia mangium 979 nt (99 %) I 573 nt (100 %) I 299 nt (99 %) II — 501 nt (99 %) III JX142534, JX142517, JX142500, —, JX142476<br />

Cercospora sp. 2 <strong>CBS</strong> 132656; CPC 11536 Acacia mangium 961 nt (96 %) III 573 nt (100 %) I 299 nt (99 %) II — — JX142527, JX142510, JX142493, —, —<br />

Cercospora sp. 2 CPC 11539 Acacia mangium 958 nt (96 %) III 573 nt (100 %) I 299 nt (99 %) II — — JX142535, JX142518, JX142501, —, —<br />

Cercospora dioscoreaepyrifoliae<br />

Cercospora dioscoreaepyrifoliae<br />

Cercospora dioscoreaepyrifoliae<br />

<strong>CBS</strong> 132661; CPC 11634;<br />

PNG-002<br />

<strong>CBS</strong> 132663; CPC 11636;<br />

PNG-016<br />

Dioscorea rotundata 970 nt (95 %) VI 573 nt (100 %) I 298 nt (99 %) II — 458 nt (99 %) III JX142528, JX142511, JX142494, —, JX142474<br />

Dioscorea esculenta 969 nt (96 %) IV 573 nt (100 %) I 299 nt (99 %) II — — JX142529, JX142512, JX142495, —, —<br />

CPC 11639; PNG-037 Dioscorea rotundata 969 nt (95 %) VI 573 nt (100 %) I 299 nt (99 %) II — — JX142536, JX142519, JX142502, —, —<br />

Cercosporoid <strong>CBS</strong> 132679; CPC 15807 Phaseolus vulgaris 954 nt (100 %) I 573 nt (100 %) I 299 nt (99 %) III — — JX142530, JX142513, JX142496, —, —<br />

Cercospora sp. <strong>CBS</strong> 132681; CPC 15844 Euphorbia sp. 956 nt (96 %) III 573 nt (100 %) I 299 nt (99 %) III — — JX142531, JX142514, JX142497, —, —<br />

Cercospora sp. <strong>CBS</strong> 132682; CPC 15850 Taraxacum sp. 960 nt (100 %) I 573 nt (100 %) I 299 nt (99 %) II — — JX142532, JX142515, JX142498, —, —<br />

Cercospora sp. CPC 15875 Euphorbia sp. 955 nt (99 %) II 573 nt (100 %) I 299 nt (99 %) III 597 nt (99 %) III — JX142537, JX142520, JX142503, JX142485, —<br />

Septoria provencialis<br />

(outgroup)<br />

<strong>CBS</strong> 118910; CPC 12226 Eucalyptus sp. 885 nt (87 %) — — 502 nt (82 %) 499 nt (81 %) JX142538, —, —, JX142486, JX142477<br />

Number of identical sequences (excl. outgroup): 6 of 17 17 of 17 4 of 17 0 of 8 0 of 4<br />

140


Species concepts in Cercospora<br />

Table 3. (Continued).<br />

Original name Culture accession<br />

number(s)<br />

Host name Percentage similarity and allele group (I-VI) designation per locus GenBank accession numbers<br />

ITS TEF ACT CAL HIS (ITS, TEF, ACT, CAL, HIS)<br />

Cercospora apii <strong>CBS</strong> 113997; CPC 5325 Cajanus cajan 481 nt I 306 nt I 221 nt I 312 nt I 378 nt I JX143717, JX143476, JX143230, JX142984,<br />

JX142738<br />

Cercospora apii <strong>CBS</strong> 115410; CPC 5331 Cajanus cajan 481 nt (100 %) I 280 nt (100 %) I 194 nt (100 %) I 280 nt (100 %) I 378 nt (100 %) I JX143718, JX143477, JX143231, JX142985,<br />

JX142739<br />

Cercospora apii <strong>CBS</strong> 115411; CPC 5332 Cajanus cajan 481 nt (100 %) I 280 nt (100 %) I 194 nt (100 %) I 280 nt (100 %) I 378 nt (100 %) I JX143719, JX143478, JX143232, JX142986,<br />

JX142740<br />

Cercospora apii <strong>CBS</strong> 115412; CPC 5333 Cajanus cajan 481 nt (100 %) I 280 nt (100 %) I 194 nt (100 %) I 280 nt (100 %) I 378 nt (100 %) I JX143720, JX143479, JX143233, JX142987,<br />

JX142741<br />

Cercospora apii <strong>CBS</strong> 115536; CPC 5329 Cajanus cajan 481 nt (100 %) I 280 nt (100 %) I 194 nt (100 %) I 278 nt (100 %) I 378 nt (98 %) III JX143721, JX143480, JX143234, JX142988,<br />

JX142742<br />

Cercospora apii <strong>CBS</strong> 115537; CPC 5330 Cajanus cajan 481 nt (100 %) I 280 nt (100 %) I 194 nt (100 %) I 280 nt (100 %) I 378 nt (98 %) III JX143722, JX143481, JX143235, JX142989,<br />

JX142743<br />

Cercospora acaciae-mangii CPC 10550 Acacia mangium 481 nt (99 %) II 306 nt (100 %) I 221 nt (99 %) II 312 nt (100 %) I 377 nt (99 %) IV AY752139, AY752172, AY752200, AY752231,<br />

AY752262<br />

Cercospora acaciae-mangii CPC 10551 Acacia mangium 481 nt (99 %) II 306 nt (100 %) I 221 nt (99 %) IV 305 nt (100 %) I 377 nt (100 %) I AY752140, AY752173, AY752201, AY752232,<br />

AY752263<br />

Cercospora sp. 2 <strong>CBS</strong> 132656; CPC 11536 Acacia mangium 473 nt (99 %) III 306 nt (100 %) I 221 nt (99 %) IV 312 nt (100 %) I 378 nt (99 %) IV JX143723, JX143482, JX143236, JX142990,<br />

JX142744<br />

Cercospora sp. 2 CPC 11539 Acacia mangium 481 nt (99 %) III 306 nt (100 %) I 221 nt (99 %) IV 312 nt (100 %) I 378 nt (98 %) V JX143729, JX143488, JX143242, JX142996,<br />

JX142750<br />

Cercospora dioscoreaepyrifoliae<br />

Cercospora dioscoreaepyrifoliae<br />

Cercospora dioscoreaepyrifoliae<br />

<strong>CBS</strong> 132661; CPC 11634;<br />

PNG-002<br />

<strong>CBS</strong> 132663; CPC 11636;<br />

PNG-016<br />

Dioscorea rotundata 481 nt (99 %) III 284 nt (100 %) I 221 nt (99 %) II 297 nt (100 %) I 378 nt (99 %) VI JX143724, JX143483, JX143237, JX142991,<br />

JX142745<br />

Dioscorea esculenta 481 nt (99 %) III 306 nt (100 %) I 221 nt (99 %) II 303 nt (100 %) I 378 nt (99 %) VI JX143725, JX143484, JX143238, JX142992,<br />

JX142746<br />

CPC 11639; PNG-037 Dioscorea rotundata 481 nt (99 %) II 306 nt (100 %) I 221 nt (99 %) II 303 nt (100 %) I 378 nt (99 %) II JX143730, JX143489, JX143243, JX142997,<br />

JX142751<br />

Cercosporoid <strong>CBS</strong> 132679; CPC 15807 Phaseolus vulgaris 481 nt (99 %) II 294 nt (99 %) II 220 nt (99 %) III 312 nt (100 %) I 376 nt (99 %) VI JX143726, JX143485, JX143239, JX142993,<br />

JX142747<br />

Cercospora sp. <strong>CBS</strong> 132681; CPC 15844 Euphorbia sp. 481 nt (99 %) III 294 nt (99 %) II 220 nt (99 %) III 312 nt (99 %) II 376 nt (100 %) I JX143727, JX143486, JX143240, JX142994,<br />

JX142748<br />

Cercospora sp. <strong>CBS</strong> 132682; CPC 15850 Taraxacum sp. 481 nt (99 %) II 294 nt (99 %) II 220 nt (99 %) III 312 nt (100 %) I 377 nt (100 %) VI JX143728, JX143487, JX143241, JX142995,<br />

JX142749<br />

Cercospora sp. CPC 15875 Euphorbia sp. 481 nt (99 %) III 294 nt (99 %) II 220 nt (99 %) III 312 nt (100 %) I 378 nt (99 %) VI JX143731, JX143490, JX143244, JX142998,<br />

JX142752<br />

Septoria provencialis<br />

(outgroup)<br />

<strong>CBS</strong> 118910; CPC 12226 Eucalyptus sp. 483 nt (98 %) 317 nt (75 %) 227 nt (87 %) 329 nt (81 %) 386 nt (93 %) DQ303096, JX143522, JX143276, JX143030,<br />

JX142784<br />

Number of identical sequences (excl. outgroup): 6 of 17 13 of 17 6 of 17 16 of 17 7 of 17<br />

www.studiesinmycology.org<br />

141


Groenewald et al.<br />

Evaluation of additional loci<br />

Isolates of Cercospora sp. Q were compared using the five loci used<br />

for the combined phylogeny and five additional loci as explained in<br />

the Materials and Methods. The results are summarised in Table 3<br />

and detailed per locus below:<br />

ITS — Three allele groups are identified based on sequence<br />

identity. The variation in this locus is based on nucleotide changes<br />

at only two positions in the second internal transcribed spacer<br />

(transitions at positions 451 and 453 compared to the sequence of<br />

isolate CPC 5325). Although allele group I was confined to isolates<br />

from Cajanus (Fabaceae), the other two groups were intermixed<br />

amongst the remaining host genera.<br />

TEF — Two allele groups are identified based on sequence identity.<br />

The variation in this locus is based on a single nucleotide change<br />

(transitions at position 289 compared to the sequence of isolate<br />

CPC 5325). Although allele group I was confined to isolates from<br />

Acacia (Fabaceae), Cajanus, and Dioscorea (Dioscoreaceae), the<br />

other group represents the remaining host genera.<br />

ACT — Four allele groups are identified based on sequence identity.<br />

The variation in this locus is based on nucleotide changes at three<br />

positions (transitions at positions 143, 166 and 173 compared to<br />

the sequence of isolate CPC 5325). Allele group I was confined<br />

to isolates from Cajanus, and allele group II is mainly limited to<br />

Dioscorea (except for one isolate from Acacia), allele group IV is<br />

limited to the remaining isolates from Acacia, and the remaining<br />

host genera belong to allele group III.<br />

CAL — Two allele groups are identified based on sequence identity.<br />

The variation in this locus is based on a single nucleotide change (a<br />

transition at position 76 compared to the sequence of isolate CPC<br />

5325). This single nucleotide change only occurred in isolate CPC<br />

15844; the rest of the isolates had identical CAL sequences.<br />

HIS — Six allele groups are identified based on sequence identity.<br />

The variation in this locus is based on nucleotide changes at 10<br />

positions (transitions at positions 106, 112, 148, 149, 178, 205, 238,<br />

301 and 364, as well as a transversion at position 245 compared<br />

to the sequence of isolate CPC 5325). Allele group II differs from<br />

allele group I by a unique change of C to T at position 364 and<br />

allele group V differs from allele group IV by a unique change of A<br />

to T at position 245. Even if allele group I and II and group IV and<br />

V are taken as combined groups, isolates from different hosts are<br />

intermixed and no clear association of host with allele group, as<br />

with the loci mentioned above, is possible.<br />

GAPDH — Six allele groups are identified based on sequence<br />

identity. The variation in this locus is based on numerous nucleotide<br />

changes (transitions at positions 44, 48–49, 52–53, 56, 63–69, 110,<br />

122, 149, 158, 206, 257, 287, 329, 335, 395, 440, 479, 530, 533,<br />

566, 593, 596, 608, 647, 650, 674, 720, 731, 740, 747, 780, 789,<br />

791–792, 794, 804–806, 808–809, 811–812, 817, 821–822, 824,<br />

830, 834, 837, 839–840, 842–844, 846, 848, 852, 856, 874, 922<br />

and 958, transversions at positions 49, 66, 233, 767, 785, 787–789,<br />

792, 795, 797, 798, 806, 810–811, 814, 818–819, 821, 831, 833,<br />

843, 848–849, 865 and 883, indels at positions 67, 101 and 803, as<br />

well as another indel spanning 801–811, compared to the sequence<br />

of isolate CPC 5325). Allele group II differs from allele group I by a<br />

unique change of C to T at position 530. This locus represents the<br />

largest number of nucleotide substitutions of all the loci included for<br />

Cercospora sp. Q in this study, and therefore has high potential for<br />

species discrimination. However, if each allele group is accepted<br />

as a distinct species, it would result in a huge proliferation of taxa<br />

within this group.<br />

mtSSU — Only one allele group is identified based on sequence<br />

identity. No variation was observed over the 573 nucleotides<br />

sequences for the selected isolates.<br />

CHS — Three allele groups are identified based on sequence<br />

identity. The variation in this locus is based on nucleotide changes<br />

at only three positions (transitions at positions 91, 100 and 217<br />

compared to the sequence of isolate CPC 5325). Allele group I<br />

includes four of the six isolates from Cajanus and allele group III<br />

includes the isolates from Phaseolus (Fabaceae) and Euphorbia<br />

(Euphorbiaceae); the remaining isolates belong to allele group II.<br />

TUB — This locus failed to amplify easily, even when several<br />

different primer combinations were tested. Three allele groups are<br />

identified based on sequence identity. The variation in this locus<br />

is based on nucleotide changes at six positions (transitions at<br />

positions 147 and 396, transversions at positions 172, 189, 213<br />

and 591 compared to the sequence of isolate CPC 5325). The<br />

majority of sequences were obtained for the isolates from Cajanus,<br />

and these isolates end up belonging into all three allele groups.<br />

Mcm7 — This locus failed to amplify easily, even when both<br />

available primer combinations were tested. Three allele groups are<br />

identified based on sequence identity. The variation in this locus<br />

is based on nucleotide changes at six positions (transitions at<br />

positions 60, 86, 263, 365 and 470, and a transversion at position<br />

89, compared to the sequence of isolate CPC 5325). Due to the<br />

small number of successful sequences, a clear conclusion cannot<br />

be drawn from this dataset and it was not possible to distinguish<br />

between the isolates from Acacia and Dioscorea.<br />

TAXONOMY<br />

In this paper, a polyphasic approach was taken and species are<br />

discussed and/or described with consideration to the following<br />

factors:<br />

Phylogenetic analyses: Based on the clustering and support in the<br />

Bayesian tree obtained from the combined ITS, TEF, ACT, CAL and<br />

HIS alignment (Fig. 2). All genes were also assessed individually<br />

(data not shown; discussed where applicable in the species notes).<br />

Morphological characteristics: A few morphological characteristics<br />

effectively distinguished species (Fig. 3). These are: conidiophores<br />

(uniform, irregular, attenuated, truncate, long or short obconically<br />

truncate), conidiogenous cells (terminal, intercalary), loci (apical,<br />

lateral, circumspersed (all around the conidiogenous cell;<br />

Hennebert & Sutton 1994); uni-local (single, terminal locus), multilocal<br />

(multiple loci); thickness, absence of protuberant loci), and<br />

conidia (dimensions, shape, hilum morphology).<br />

A diagnostic characteristic of species with wide host ranges<br />

was circumspersed loci on tenuous conidiophores, whereas the<br />

species with narrow host ranges had a few distinct apical or lateral<br />

142


Species concepts in Cercospora<br />

Fig. 3. Overview of morphological structures. A. Fasciculate conidiophores situated on a stroma. B. Conidiophores reduced to uni-local conidiogenous cells. C. Conidiophores<br />

arising from a weakly developed stroma. D. Fasciculate conidiophore with flexuous conidiophores. E. Conidiophores arising from external mycelium. F. Thickened, darkened and<br />

somewhat refractive conidial loci (arrows). G. Conidiogenous cells with multi-local loci. H. Fascicle erumpent through stoma. I. Cylindrical conidium with obtuse apex. J. Filiform<br />

conidium. K, L. Acicular, undulate conidia with subobtusely rounded apices, and truncate bases. M–O. Obclavate conidia with subobtusely rounded apices and obconically<br />

truncate bases. P. Subcylindical conidium with long obconically truncate base.<br />

loci on moderately thick-walled to thick-walled conidiophores.<br />

These characteristics were preserved, even when the fungus was<br />

cultivated on agar medium.<br />

The Bayesian analysis resulted in 73 species clades mapped<br />

onto the phylogenetic tree (Fig. 2); 34 of these were assigned to<br />

an existing species name, 15 more were morphologically similar<br />

to existing species but names could not be applied without doubt<br />

(indicated with “cf.” in the species name, see species notes below),<br />

a further 19 could not be named unequivocally (“Cercospora spp.<br />

A–S”) and novel species are introduced below for the remaining<br />

five clades.<br />

Cercospora achyranthis Syd. & P. Syd., Ann. Mycol. 7: 171.<br />

1909.<br />

Caespituli amphigenous, mainly hypophyllous. Mycelium internal.<br />

Stromata lacking or composed of a few brown cells, intraepiderimal<br />

or substomatal. Conidiophores thick-walled, dark brown, arising from<br />

www.studiesinmycology.org<br />

143


Groenewald et al.<br />

internal hyphae or a few brown cells, solitary, or in loose fascicles<br />

(2–5), straight, sinuous to distinctly geniculate, flexuous, almost<br />

uniform in width, somewhat wider at the apex, often constricted at<br />

septa and proliferating point, conical at the apex, simple, sometimes<br />

branched, 31–340 × 4.5–6 µm, 2–20-septate. Conidiogenous cells<br />

integrated, terminal and intercalary, proliferating sympodially,<br />

multi-local; loci distinctly thickened, darkened, slightly to distinctly<br />

protuberant, apical or formed on shoulders caused by geniculation,<br />

2–3 µm diam. Conidia solitary, subhyaline, acicular, cylindrical<br />

to cylindro-obclavate, straight to slightly curved, long obconically<br />

truncated and thickened at the base, obtuse at the apex, rarely<br />

constricted at the septa, 33–172 × 3.5–8 µm, 3–20-septate.<br />

Specimens examined: South Korea, Jeju, on Achyranthes japonica<br />

(Amaranthaceae), 14 Sep. 2002, H.D. Shin, <strong>CBS</strong> H-20983, CPC 10088–10091; on<br />

A. japonica, 13 Nov. 2003, H.D. Shin, <strong>CBS</strong> H-20984, <strong>CBS</strong> 132613 = CPC 10879,<br />

CPC 10880–10881.<br />

Notes: This species is characterised by conidiophores with a<br />

thickened, dark brown wall, vary in shape, often constricted at septa,<br />

and conical at the apex, sometimes branched, and longer than in<br />

most other species (31–340 × 4.5–6 µm, 2–20-septate). The conidia<br />

of C. achyranthis are not hyaline, but subhyaline to pale olivaceous<br />

and have rather small hila (ca. 2 µm wide), which are reminiscent<br />

of the genus Passalora. Nevertheless, it is a true Cercospora.<br />

Cercospora achyranthis is supported by ACT. The TEF and CAL<br />

phylogenies fail to discriminate C. sojina (also with subhyaline<br />

conidia and small hila) from C. achyranthis. On the HIS phylogeny, it<br />

is indistinguishable from C. polygonaceae, to which it is also a sister<br />

taxon in the combined tree (Fig. 2 part 2). The name C. achyranthis is<br />

based on Japanese material, and fresh collections from Japan would<br />

be required to designate an epitype for this taxon.<br />

Cercospora agavicola Ayala-Escobar, Mycotaxon 93: 117.<br />

2005.<br />

Specimen examined: Mexico, State of Guanajuato, Penjamo, on Agave tequilana<br />

var. azul (Agavaceae), Jan. 2003, V. Ayala-Escobar and Ma. de Jesús Yáñez-<br />

Morales, holotype CHAPA # 166, isotype HAL 1839 F, culture ex-type <strong>CBS</strong> 117292<br />

= CPC 11774.<br />

Notes: Cercospora agavicola is characterised by large stromata<br />

and consistently cylindrical conidia, often with swollen tips (Ayala-<br />

Escobar et al. 2005). In this study using a larger dataset, it is also<br />

clear that C. agavicola, which is supported by TEF, ACT, CAL<br />

and HIS regions, is genetically distinct from the other Cercospora<br />

species studied. In the combined tree (Fig. 2 part 1), it is a sister<br />

taxon to C. cf. coreopsidis.<br />

Cercospora alchemillicola U. Braun & C.F. Hill, Mycol.<br />

Progr. 1: 19. 2002.<br />

Specimens examined: New Zealand, Auckland, Western Springs Gardens, on<br />

Alchemilla mollis (Rosaceae), 23 Jul. 2000, C.F. Hill, Lynfield 236 (holotype HAL,<br />

isotype PDD 73031); on A. mollis, C.F. Hill, Lynfield 564, epitype designated here<br />

<strong>CBS</strong> H-20985, culture ex-epitype CPC 5259.<br />

Notes: Sequences from New Zealand on hosts of Onagraceae<br />

(Gaura, isolate CPC 5127, and Oenothera, isolate CPC 5126)<br />

are slightly distinct from that derived from Alchemilla (Rosaceae).<br />

The collections on Onagraceae (C. cf. alchemillicola) are also<br />

morphologically different from C. alchemillicola, and represent<br />

an undescribed species. The three isolates are identical to one<br />

another on the TEF, ACT, CAL and HIS phylogenies but also to<br />

some other species, e.g. to Cercospora sp. I, C. cf. physalidis and<br />

C. celosiae based on the TEF phylogeny, and Cercospora sp. I<br />

and C. cf. physalidis based on the ACT phylogeny. A similar mix<br />

is observed in the HIS phylogeny with Cercospora sp. I and C.<br />

celosiae and in the CAL phylogeny with Cercospora spp. M, O, P,<br />

Q and C. cf. sigesbeckiae. In the combined tree (Fig. 2 part 4), the<br />

three isolates represent sister taxa.<br />

Cercospora cf. alchemillicola<br />

Specimens examined: New Zealand, Auckland City, Albert Park, on Gaura<br />

lindheimeri (Onagraceae), C.F. Hill, Lynfield 545, CPC 5127; on Oenothera fruticosa<br />

(Onagraceae), C.F. Hill, Lynfield 541, CPC 5126.<br />

Notes: Cercospora on Gaura and Oenothera in New Zealand cannot<br />

be distinguished on the individual gene trees from C. alchemillicola<br />

(see species notes under that species above) described from New<br />

Zealand on Alchemilla mollis (Braun & Hill 2002). We consider the<br />

latter two isolates to represent a distinct species, which cannot<br />

be formally named due to the absence of good specimens. In the<br />

combined tree (Fig. 2 part 4), it is a sister taxon to C. alchemillicola.<br />

Cercospora althaeina Sacc., Michelia 1: 269. 1878.<br />

= Cercospora kellermanii Bubák, J. Mycol. 9: 3. 1903.<br />

= Cercospora althaeina var. praecincta Davis, Trans. Wisconsin Acad. Sci. 18:<br />

260. 1915.<br />

≡ Cercospora praecincta (Davis) Chupp, A monograph of the fungus<br />

genus Cercospora: 376. 1954.<br />

= Cercospora ramularia Siemaszko, Izv. Kavkazsk. Muz.12: 28. 1919, and<br />

Arch. Nauk Biol. Towarz. Nauk. Warszawsk. 1: 49. 1923.<br />

≡ Cercosporina ramularia (Siemaszko) Sacc., Syll. Fung. 25: 910. 1931.<br />

= Cercospora althaeina var. althaeae-officinalis Săvul. & Sandu, Hedwigia 73:<br />

127. 1933.<br />

= Cercospora althaeicola J.M. Yen & S.K. Sun, Cryptog. Mycol. 4: 189. 1983.<br />

Leaf spots distinct, angular to irregular, mostly vein-limited,<br />

olivaceous-brown, sometimes greyish brown with dark brown<br />

margin, centre becoming pale grey with black dots (= stroma<br />

with conidiophores). Caespituli amphigenous, mostly epiphyllous.<br />

Mycelium internal. Stromata well-developed, emerging through<br />

stomatal openings or erumpent through the cuticle. Conidiophores<br />

in divergent fascicles (6–12), pale olivaceous-brown at the base,<br />

paler upwards, 0–3-septate, straight to mildly curved, 32–90 ×<br />

4–6.5 µm, conically narrowed at the apex; loci 1.5–2 µm wide,<br />

conspicuous, apical or on shoulders formed by geniculation.<br />

Conidia solitary, obclavate-cylindrical to filiform, not acicular,<br />

straight to mildly curved, hyaline, 1–10-septate, obtuse at the apex,<br />

subtruncate or obconically truncate at the base, 40–140 × 3.5–5<br />

µm (adapted from Shin & Kim 2001).<br />

Specimens examined: Italy, Selva, on Althaea rosea, 1876, holotype in PAD.<br />

Romania, Fundulea, on A. rosea, O. Constantinescu, epitype designated here<br />

<strong>CBS</strong> H-9811, culture ex-epitype <strong>CBS</strong> 248.67 = CPC 5117. Unknown, on Malva<br />

sp. (Malvaceae), C. Killian, <strong>CBS</strong> 126.26 = CPC 5066, (as C. malvacearum). South<br />

Korea, Suwon, on Althaea rosea (Malvaceae), 14 Oct. 2003, H.D. Shin, <strong>CBS</strong><br />

H-20986, <strong>CBS</strong> 132609 = CPC 10790.<br />

Notes: A true Cercospora s. str. close to C. apii s. lat., but<br />

distinguished by obclavate-cylindrical conidia with obconically<br />

truncate bases (Crous & Braun 2003). Although only weakly<br />

supported as distinct from C. armoraciae, we suspect that the<br />

isolate from Malva sp. represents a different taxon. Further isolates<br />

and pathogenicity studies are needed to test this hypothesis. The<br />

species is distinguished in the TEF and ACT phylogenies but<br />

cannot be distinguished from C. zebrina, Cercospora sp. L and<br />

144


Species concepts in Cercospora<br />

C. rumicis based on the CAL phylogeny. In the HIS phylogeny the<br />

three isolates are not identical to any other species but the isolate<br />

from Malva sp. clusters distinct from the two A. rosea isolates which<br />

form a sister clade to C. chenopodii. In the combined tree (Fig. 2<br />

part 3), it is a sister taxon to C. zebrina.<br />

Cercospora apii Fresen., emend. Groenewald et al.<br />

Phytopathology 95: 954. 2005.<br />

Caespituli amphigenous. Mycelium internal. Stromata lacking or<br />

small, up to 32 µm diam, brown, substomatal or intraepidermal.<br />

Conidiophores arising from upper part of stromata or internal<br />

hyphae, solitary to 2–8, in loose to dense fascicles, brown, paler<br />

towards the apex, simple, mildly sinuous, moderately thick-walled<br />

to thick-walled, straight or once abruptly geniculate caused by<br />

sympodial proliferation, slightly curved, uniform in width, wider at<br />

the base, short conically truncate or truncate at the apex, 12.5–160<br />

× 5–8 µm. Conidiogenous cells integrated, terminal or intercalary,<br />

proliferating sympodially, chiefly uni-local; loci distinctly thickened,<br />

not or slightly protuberant, 2–4 µm diam, apical or formed on<br />

the shoulder caused by sympodial proliferation. Conidia solitary,<br />

hyaline, cylindro-obclavate when shorter, longer conidia usually<br />

acicular, straight to slightly curved, subacute to obtuse at the apex,<br />

truncate to obconically truncate and thickened at the base, 35–120<br />

× 3.5–5 µm, 3–10-septate.<br />

Specimens examined: Austria, Wien, on Beta vulgaris (Chenopodiaceae), Jun.<br />

1931, E.W. Schmidt, <strong>CBS</strong> 121.31 = CPC 5073; on Apium sp. (Apiaceae), 28 Aug.<br />

2003, Institut fur Pflanzengesundheit, <strong>CBS</strong> 114416 = CPC 10925. Germany,<br />

Landwirtschaftsamt, Heilbron, on Apium graveolens (Apiaceae), K. Schrameyer,<br />

culture ex-type <strong>CBS</strong> 116455 = CPC 11556; <strong>CBS</strong> 116504 = CPC 11579; <strong>CBS</strong> 116507<br />

= CPC 11582. Hungary, on B. vulgaris, Jun. 1931, E.W. Schmidt, <strong>CBS</strong> 127.31 =<br />

CPC 5119. Italy, on A. graveolens, M. Meutri, <strong>CBS</strong> 114418 = CPC 10924; <strong>CBS</strong><br />

114485 = CPC 10923. Japan, Aichi, on A. graveolens, 1 Nov. 1995, T. Kobayashi,<br />

MUCC 567 = MAFF 238072 = MUCNS 30 (named as C. apii s. str.); Shizuoka,<br />

on A. graveolens, 8 Jun. 2007, M. Togawa, MUMH 10802, MUCC 593; Saga, on<br />

Asparagus officinalis (Asparagaceae), 20 Sep. 1999, J. Yamaguchi, MUMH 11400,<br />

MUCC 923 = MAFF 238299; Hokkaido, on Glebionis coronaria (≡ Chrysanthemum<br />

coronarium) (Asteraceae), Aug. 1989, MUCC 573 = MAFF 235978. Netherlands,<br />

Bergen op Zoom, on B. vulgaris, Sep. 1951, G. van den Ende, <strong>CBS</strong> 152.52 =<br />

IMI 077043 = MUCL 16495 = CPC 5063. New Zealand, Auckland, on Glebionis<br />

coronaria (≡ Chrysanthemum coronarium), C.F. Hill, Lynfield 566, CPC 5260;<br />

on Moluccella laevis (Lamiaceae), C.F. Hill, Lynfield 516, CPC 5112. Romania,<br />

Hagieni, distr. Constanta, on Plumbago europaea (Plumbaginaceae), 13 Jun. 1970,<br />

O. Constantinescu, <strong>CBS</strong> 553.71 = IMI 161116 = CPC 5083 (as C. plumbaginea);<br />

Bucuresti, on A. graveolens, 2 Oct. 1969, O. Constantinescu, <strong>CBS</strong> H-9812, <strong>CBS</strong><br />

536.71 = CPC 5087; Domnesti, on Plantago lanceolata (Plantaginaceae), 3 Aug.<br />

1965, O. Constantinescu, <strong>CBS</strong> 252.67 = CPC 5084. Unknown, on A. graveolens,<br />

Mar. 1925, L.J. Klotz, <strong>CBS</strong> 119.25 = B 42463 = IHEM 3822 = CPC 5086. USA,<br />

California, on M. laevis, S.T. Koike, <strong>CBS</strong> 110816 = CPC 5111; <strong>CBS</strong> 110813 =<br />

CPC 5110; California, on A. graveolens, 27 Sep. 2010, S.T. Koike, CPC 18601.<br />

Zimbabwe, on M. laevis, 13 May 2009, S. Dimbi, <strong>CBS</strong> 132683 = CPC 16663.<br />

Notes: Various investigators have demonstrated that great variation<br />

in the size and shape of conidiophores and conidia (conidiophores:<br />

25–300 × 3.5–9 µm, rarely branched, conidia: 25–315 × 3–6 µm,<br />

cylindrical, filiform to acicular) is induced by changes in environmental<br />

conditions, especially humidity. Crous & Braun (2003) pointed out<br />

these morphological ambiguities, and introduced a concept of<br />

Cercospora apii s. lat., for taxa morphologically indistinguishable<br />

from Cercospora apii on A. graveolens. Cercospora apii s. str.,<br />

which is phylogenetically distinct, is characterised in that its<br />

conidiophores are almost uniform in width, moderately thick-walled<br />

or thick-walled, short obconically truncate at the apex, and with<br />

a few loci on integrated conidiogenous cells, and long-cylindrical<br />

to cylindrical-obclavate to often acicular conidia with truncate or<br />

obconically truncate basal ends and subacute to obtuse apices.<br />

According to Crous & Braun (2003), the host plants of C. apii<br />

s. str. are found in more than 86 genera of several plant families.<br />

Groenewald et al. (2006a) concluded that C. apii s. str., which<br />

is mainly isolated from celery, has a wide host range, because<br />

numerous isolates of C. apii s. lat. originating from various host<br />

plants have similar nucleotide sequences to the type strain of<br />

C. apii s. str.<br />

In principle, the phylogenetic split observed between<br />

C. beticola and C. apii is only supported by the CAL sequences,<br />

and for the other genes these two taxa cluster as a large unresolved<br />

clade. Groenewald et al. (2005) showed that these two species are<br />

also distinguished by their AFLP fingerprints and growth conditions,<br />

suggesting that they were operational species units with a different<br />

ecology. These results indicate that in many cases morphologically<br />

identical species occurring on different hosts in fact represent<br />

different species. The situation is complicated in that there are<br />

several species with wide host ranges. Other species can colonise<br />

dead material of non-hosts, facilitating what has been described<br />

as a pogostick hypothesis (Crous & Groenewald 2005), until they<br />

locate their ideal hosts on which they are primary pathogens. In<br />

the present study it was further found that the CAL phylogeny fails<br />

to distinguish C. apii s. str. from C. cf. brunkii and C. cf. resedae,<br />

which are sister taxa in the combined tree (Fig. 2 part 5).<br />

Cercospora apiicola M. Groenew., Crous & U. Braun,<br />

Mycologia 98: 281. 2006.<br />

Leaf spots amphigenous, subcircular to irregular, 3–10 mm diam,<br />

medium brown, with a raised or inconspicuous, indefinite margin, not<br />

surrounded by a border of different colour. Caespituli amphigenous,<br />

but primarily hypophyllous. Stromata lacking to well-developed,<br />

30–60 µm diam, medium brown. Conidiophores in fascicles<br />

(4–10), moderately dense, arising from stromata, emerging<br />

through stomata or erumpent through the cuticle, subcylindrical,<br />

upper part geniculate-sinuous, unbranched, 1–3-septate, 25–70 ×<br />

4–6 µm, medium brown, becoming pale brown towards the apex,<br />

smooth, wall somewhat thickened. Conidiogenous cells integrated,<br />

terminal, 15–30 × 4–5 µm, occasionally unilocal, usually multilocal,<br />

sympodial; loci subcircular, planate, thickened, darkened, refractive,<br />

2.5–3 µm wide. Conidia solitary, cylindrical when small, obclavatecylindrical<br />

when mature, not acicular, (50–)80–120(–150) × (3–)<br />

4–5 µm, 1–6(–18)-septate; apex subobtuse, base obconically<br />

subtruncate; hila 2–2.5 µm wide, thickened, darkened, refractive.<br />

Specimens examined: Greece, on Apium graveolens, 2000, I. Vloutoglou, <strong>CBS</strong><br />

132666 = CPC 11642; CPC 11641. South Korea, Kangnung, on A. graveolens, 20<br />

Sep. 2003, H.D. Shin, CPC 10666; Namyangju, on A. graveolens, 30 Sep. 2003,<br />

<strong>CBS</strong> 116458 = CPC 10657; on A. graveolens, 22 Oct. 2003, H.D. Shin, <strong>CBS</strong> 132651<br />

= CPC 10759. Venezuela, La Guanota, Caripe, Edo. Monagas, 1050 m.s.n.m., on<br />

Apium sp., 23 Jul. 2002, N. Pons, holotype <strong>CBS</strong> H-18473, culture ex-type <strong>CBS</strong><br />

116457 = CPC 10267; <strong>CBS</strong> 132644 = CPC 10248; CPC 10220; CPC 10265–10266;<br />

CPC 10279; CPC 10666.<br />

Notes: Morphologically C. apiicola differs from C. apii s. str. in<br />

having multiple conidiogenous loci and long conically truncate<br />

conidiogenous cells (Groenewald et al. 2006a). It has a high degree<br />

of phylogenetic independence from other species of C. apii s. lat.<br />

supported by TEF, ACT, CAL and HIS regions. It is also clearly<br />

distinct from C. apii in the combined tree (Fig. 2 part 2 vs. part 5).<br />

Cercospora armoraciae Sacc., Nuovo Giorn. Bot. Ital. 8:<br />

188. 1876.<br />

= ?Cercospora cheiranthi Sacc., Nuovo Giorn. Bot. Ital. 8: 187. 1876.<br />

www.studiesinmycology.org<br />

145


Groenewald et al.<br />

= Cercospora nasturtii Pass., Hedwigia 16: 124. 1877.<br />

= Cercospora nasturtii subsp. barbareae Sacc., Michelia 2: 557. 1882.<br />

≡ Cercospora barbareae (Sacc.) Chupp, Farlowia 1: 579. 1944.<br />

= Cercospora bizzozeriana Sacc. & Berl., Malpighia 2: 248, 1888.<br />

= Cercospora atrogrisea Ellis & Everh., Proc. Acad. Nat. Sci. Phiadelphia 45:<br />

464. 1894.<br />

= Cercospora bizzozeriana var. drabae Sausa da Câmara, Revista Agron.<br />

(Lisbon) 1: 25. 1903.<br />

= Cercospora berteroae Hollós, Ann. Mus. Nat. Hung. 5: 468. 1907.<br />

= Cercospora drabae Bubák & Kabát, Hedwigia 52: 362. 1912.<br />

≡ Cercosporina drabae (Bubák & Kabát) Sacc., Syll. Fung. 25: 900. 1931.<br />

= Cercospora camarae Curzi, Atti Ist. Bot. Univ., Pavia, III, 2: 101. 1925.<br />

= Cercospora cardamines Losa (as “cardaminae”), Anales Jard. Bot. Madrid<br />

6: 453. 1946.<br />

= Cercospora lepidii Niessl, unknown, in herb., HBG fide Chupp (1954, p. 180).<br />

Caespituli amphigenous. Mycelium internal. Stromata lacking<br />

to well-developed, up to 60 μm diam, brown, substomatal or<br />

intraepidermal. Conidiophores arising from internal hyphae or a few<br />

brown cells, cylindrical, solitary, or in loose to divergent fascicles<br />

(2–30), pale to pale brown, paler towards apex, moderately thickwalled,<br />

simple, straight to strongly geniculate, irregular in width,<br />

often narrowed with successive geniculation, truncate or conically<br />

truncate at the tip, sometimes constricted at septa, 13–135 ×<br />

2.5–7.5 µm, 0–7-septate. Conidiogenous cells integrated, terminal,<br />

intercalary, proliferating sympodially, uni-local to multi-local<br />

(1–3); loci conspicuous, apical or on shoulder of conidiogenous<br />

cells caused by geniculation, rarely lateral, distinctly thickened,<br />

somewhat protuberant, refractive or darkened, 1.8–3.5 µm diam.<br />

Conidia solitary, hyaline, straight to mildly curved, cylindrical,<br />

cylindro-obclavate to acicular, obconically truncate or truncate,<br />

distinctly thickened at the base, obtuse at the apex, 15–125 × 2.5–6<br />

µm, 1–11-septate.<br />

Specimens examined: Italy, Venice, on Armoracia rusticana (= A. lapathifolia)<br />

(Brassicaceae), Treviso, Sep. 1874, (syntype Mycoth. Ven. 282, in B, HBG, S).<br />

Japan, Okinawa, on A. rusticana (= A. lapathifolia), 19 Nov. 2007, C. Nakashima,<br />

MUMH 10820, MUCC 768. New Zealand, Auckland, Grey Lynn, on Nasturtium<br />

officinale (= Rorippa nasturtium-aquaticum) (Brassicaceae), 14 Apr. 2002, C.F.<br />

Hill, Lynfield 576, <strong>CBS</strong> H-20988, <strong>CBS</strong> 115394 = CPC 5261 (named as C. nasturtii);<br />

Manurewa, on A. rusticana (= A. lapathifolia), C.F. Hill, Lynfield 622, <strong>CBS</strong> 115409<br />

= CPC 5359 (as C. armoraciae); on Gaura sp. (Onagraceae), C.F. Hill, Lynfield<br />

634, <strong>CBS</strong> 115060 = CPC 5366. Romania, Fundulea, on A. rusticana (= A.<br />

lapathifolia), O. Constantinescu, epitype designated here <strong>CBS</strong> H-20987, culture<br />

ex-epitype <strong>CBS</strong> 250.67 = CPC 5088; Fundulea, on Cardaria draba (Brassicaceae),<br />

O. Constantinescu, <strong>CBS</strong> 258.67 = CPC 5061 (as C. bizzozeriana); Hagieni, on<br />

Berteroa incana (Brassicaceae), O. Constantinescu, <strong>CBS</strong> 538.71 = IMI 161109<br />

= CPC 5090 (as C. berteroae); Hagieni, on C. draba, O. Constantinescu, <strong>CBS</strong><br />

540.71 = IMI 161110 = CPC 5060 (as C. bizzozeriana); Hagieni, on Coronilla<br />

varia (Fabaceae), O. Constantinescu, <strong>CBS</strong> 555.71 = IMI 161117 = CPC 5082<br />

(as C. rautensis); Valea Mraconiei, on Erysimum cuspidatum (Brassicaceae),<br />

O. Constantinescu, <strong>CBS</strong> 545.71 = CPC 5056 (as C. erysimi). South Korea,<br />

Hoengseong, on Turritis glabra (≡ Arabis glabra) (Brassicaceae), 23 Jun. 2004,<br />

H.D. Shin, <strong>CBS</strong> H-20989, <strong>CBS</strong> 132654 = CPC 11338 (as C. nasturtii); CPC 11364<br />

(as C. nasturtii); Jecheon, on Rorippa indica (Brassicaceae), 19 Oct. 2007, H.D.<br />

Shin, <strong>CBS</strong> 132672 = CPC 14612 (as C. nasturtii); Pocheon, on Barbarea orthoceras<br />

(Brassicaceae), 23 Oct. 2002, H.D. Shin, <strong>CBS</strong> H-20990, <strong>CBS</strong> 132638 = CPC 10100<br />

(named as C. nasturtii); Wonju, on R. indica, 18 Oct. 2002, H.D. Shin, <strong>CBS</strong> H-20991,<br />

CPC 10133 (as C. nasturtii); Suwon, on A. rusticana (= A. lapathifolia), 14 Oct. 2003,<br />

H.D. Shin, <strong>CBS</strong> H-20992, <strong>CBS</strong> 132610 = CPC 10811 (as C. armoraciae). Thailand,<br />

on Acacia mangium (Fabaceae), W. Himaman, CPC 11530.<br />

Notes: See also C. capsici. Cercospora armoraciae is supported<br />

by the HIS phylogeny. In the TEF phylogeny it is part of a larger<br />

clade intermixed with C. zebrina, Cercospora sp. L, C. rumicis,<br />

C. violae and C. althaeina; in ACT the C. armoraciae clade contains<br />

some intraspecific variation and also includes C. rumicis. In the<br />

CAL phylogeny, it is a sister clade to C. zebrina, but it contains<br />

isolates from C. capsici. In the combined tree (Fig. 2 part 3), it is<br />

a sister taxon to C. capsici. Morphological characteristics of the<br />

C. armoraciae clade include conidiophores that are often narrowed,<br />

with successive geniculation, conically truncate at the apex, and<br />

with distinctly thickened and somewhat protuberant loci, and<br />

conidia that are cylindro-obclavate to acicular.<br />

In this study, most Cercospora species on Brassicaceae<br />

having indistinguishable morphological characteristics are listed<br />

as synonyms under C. armoraciae. This treatment was proposed<br />

previously (Crous & Braun 2003). Davis (1929) pointed out that<br />

similar forms on Brassicaceae, namely C. nasturtii, C. armoraciae,<br />

C. cheiranthi, etc., were likely conspecific. The results of this study<br />

support his prediction. Cercospora stanleyae Chupp ex U. Braun &<br />

Crous (Crous & Braun 2003) is tentatively maintained as a separate<br />

species due to morphological differences. Cercospora brassicicola<br />

differs from C. armoraciae in that the former has long conidiophores<br />

(up to 500 µm in length), and is pathogenic to Brassica. In addition,<br />

Cercospora thlaspi “thlaspiae” differs from C. armoraciae in that the<br />

former has long conidiophores (to 400 µm in length) and acicular<br />

conidia (40–300 × 2–4 µm).<br />

Cercospora beticola Sacc., emend. Groenewald et al.,<br />

Phytopathology 95: 954. 2005.<br />

Caespituli hypophyllous. Mycelium internal. Stromata lacking to<br />

well-developed, up to 60 µm diam, intraepidermal or substomatal,<br />

brown to dark brown. Conidiophores solitary to 2–18 in loose<br />

fascicles, slightly divergent, brown, paler towards apex, moderately<br />

thick-walled, cylindrical, almost uniform in width, simple, geniculate,<br />

16–200(–450) × 4–6 µm, 1–6-septate, truncate at the apex,<br />

sometimes constricted at septa. Conidiogenous cells terminal or<br />

intercalary, proliferating sympodially, with 1–2 loci; loci distinctly<br />

thickened, not protuberant, apical or formed on shoulder of<br />

conidiogenous cells caused by geniculation and lateral, 2.5–3(–4)<br />

µm. Conidia solitary, filiform to acicular, straight to mildly curved,<br />

rarely cylindro-obclavate, truncate at the base, acute to subacute<br />

at the tip, 27–250 × 2–5 µm, 3–28-septate.<br />

Description of caespituli on V8 medium; MUCC 568 (MAFF<br />

238206): Conidiophores solitary to loosely fasciculate, brown,<br />

paler towards the apex, uniform in width, smooth, moderately thickwalled,<br />

straight to slightly sinuous, short conically truncate at the tip,<br />

50–148 × 3–5 µm, multi-septate. Conidiogenous cells integrated,<br />

terminal; loci moderately thickened, apical, uni-local, 2–3 µm in<br />

width. Conidia hyaline, cylindrical to cylindro-obclavate; short<br />

obconical, slightly thickened and truncate or obconically truncate at<br />

the base, acute at the apex, 40–88 × 3–6 µm, 3–14-septate.<br />

Specimens examined: Botswana, Gaborone, on Spinacia sp. (Chenopodiaceae), L.<br />

Lebogang, CPC 5369–5370. Bulgaria, on Goniolimon tataricum (Plumbaginaceae),<br />

S.G. Bobev, <strong>CBS</strong> 123907 = CPC 14616; <strong>CBS</strong> 123908 = CPC 14620; <strong>CBS</strong> 132673<br />

= CPC 14617; CPC 14618–14619. Czech Republic, on Beta vulgaris, Sep. 1947,<br />

G.E. Bunschoten, <strong>CBS</strong> 117.47. Egypt, on B. vulgaris, 15 Apr. 2004, M. Hasem, CPC<br />

12028–12030. France, Longvic, on B. vulgaris, S. Garressus, <strong>CBS</strong> 116505 = CPC<br />

11580. Germany, on B. vulgaris, S. Mittler, CPC 12031; CPC 12027; CPC 12022;<br />

<strong>CBS</strong> 116502 = CPC 11577; <strong>CBS</strong> 116454 = CPC 11558; on B. vulgaris, Jun. 1931,<br />

E.W. Schmidt, <strong>CBS</strong> 122.31 = CPC 5072; <strong>CBS</strong> 126.31 = CPC 5064. Iran, Pakajik,<br />

on B. vulgaris, A.A. Ravanlou, <strong>CBS</strong> 116501 = CPC 11576. Italy, Ravenna, on B.<br />

vulgaris, 10 Jul. 2003, V. Rossi, culture ex-epitype <strong>CBS</strong> 116456 = CPC 11557; <strong>CBS</strong><br />

116503 = CPC 11578. Japan, Chiba, on B. vulgaris, 30 May 1998, S. Uematsu,<br />

MUCNS 320 = MUCC 568 = MAFF 238206; Hokkaido, on B. vulgaris, 1955, K.<br />

Goto, MUCC 569 = MAFF 305036. South Korea, Namyangju, on Chrysanthemum<br />

segetum (= Ch. coronarium var. spatiosum) (Asteraceae), 24 Jun. 2004, H.D. Shin,<br />

<strong>CBS</strong> 132655 = CPC 11341 (named as C. chrysanthemi); 27 Jul. 2004, H.D. Shin,<br />

CPC 11344 (named as C. chrysanthemi). Mexico, Texcoco, on B. vulgaris, 20 Oct.<br />

2008, Ma. de Jesús Yáñez-Morales, CPC 15623. Netherlands, on B. vulgaris,<br />

M. Groenewald, <strong>CBS</strong> 116506 = CPC 11581; Northwest Brabant, on B. vulgaris,<br />

Nov. 1947, G.E. Bunschoten, <strong>CBS</strong> 116.47 = CPC 5074. New Zealand, Auckland,<br />

on Limonium sinuatum (Plumbaginaceae), 25 Feb. 2002, C.F. Hill, Lynfield 533,<br />

146


Species concepts in Cercospora<br />

<strong>CBS</strong> 115478 = CPC 5113 (named as C. statices); on B. vulgaris, C.F. Hill, CPC<br />

5128; Lynfield 539, CPC 5125; CPC 10197; CPC 10204; CPC 10168; <strong>CBS</strong> 117556<br />

= CPC 10171; CPC 10168; on Apium graveolens, C.F. Hill, Lynfield 537a, CPC<br />

5123. Romania, Bucuresti, on B. vulgaris, 17 Oct. 1966, O. Constantinescu,<br />

<strong>CBS</strong> 539.71 = CPC 5062; Hagieni, on Malva pusilla (Malvaceae), 15 Jul. 1970,<br />

O. Constantinescu & G. Negrean, <strong>CBS</strong> H-9847, <strong>CBS</strong> H-9849, <strong>CBS</strong> 548.71 = IMI<br />

161115 = CPC 5065; on B. vulgaris, Jun. 1931, E.W. Schmidt, <strong>CBS</strong> 124.31 = CPC<br />

5070. Spain, on B. vulgaris, Jun. 1931, E.W. Schmidt, <strong>CBS</strong> 123.31 = CPC 5071.<br />

Unknown, on B. vulgaris, Jun. 1931, E.W. Schmidt, <strong>CBS</strong> 125.31 = CPC 5069. USA,<br />

California, on B. vulgaris, S.T. Koike, CPC 18813.<br />

Notes: Cercospora beticola is the causal agent of Cercospora<br />

leaf spot on B. vulgaris, which is one of the most common and<br />

destructive sugar beet diseases (Weiland & Koch 2004). Despite<br />

its importance as a plant pathogen, its actual host range remains<br />

unclear.<br />

Initial phylogenetic analyses on the genus Cercospora<br />

employed ITS sequences to reveal phylogenetic relationships<br />

within the genus (Stewart et al. 1999, Goodwin et al. 2001,<br />

Pretorius et al. 2003). These analyses failed to discriminate all<br />

species due to the limited resolution provided by the ITS locus.<br />

Groenewald et al. (2005, 2006a) subsequently succeeded in using<br />

multi-locus sequence data from five gene regions to distinguish<br />

Cercospora species. They also expanded the host range of C.<br />

beticola. Although isolates of C. beticola have been isolated from<br />

diverse hosts, these isolates appear to have been colonising nonhosts<br />

as saprobes or secondary invaders (Crous & Groenewald<br />

2005), and proof of their pathogenicity has not been confirmed.<br />

Results from the phylogenetic analyses using CAL and<br />

combined multi-locus data set divide C. beticola and C. apii s. str.<br />

into two different clades, with C. beticola splitting further into two<br />

subclades (also see Fig. 2 part 6) based on sequence changes<br />

in HIS, probably due to intraspecific variation. The combined data<br />

clearly show that C. apii s. str. and C. beticola are related sibling<br />

species, although C. beticola must be retained as a separate<br />

species.<br />

Cercospora cf. brunkii<br />

Caespituli amphigenous. Mycelium internal. Stromata lacking or<br />

composed of few dark brown cells, intraepidermal or substomatal.<br />

Conidiophores brown to dark brown, paler at the apex, 2–6 in loose<br />

fascicles, moderately thick-walled, straight or 1–2 times geniculate<br />

caused by sympodial proliferation, uniform in width, mildly<br />

attenuated at the apex, short obconically truncate or truncate at<br />

the apex, 30–160 × 4.5–5.5 µm, 0–9-septate. Conidiogenous cells<br />

integrated, terminal and intercalary, proliferating sympodially, rarely<br />

percurrently, uni- or multi-local (2–5); loci distinctly thickened, often<br />

dispersed on whole conidiophores, darkened, apical and lateral,<br />

2–3 µm diam. Conidia solitary, hyaline, acicular, straight or slightly<br />

curved, thickened and truncate at the base, acute at the apex, 27–<br />

110 × 1.5–4 µm, indistinctly multi-septate, 0–9-septate.<br />

Specimens examined: Japan, Wakayama, on Datura stramonium (Solanaceae),<br />

30 Oct. 2007, C. Nakashima & I. Araki, MUMH 10858, MUCC 732. South Korea,<br />

Namyangju, on Geranium thunbergii (≡ G. nepalense var. thunbergii) (Geraniaceae),<br />

30 Sep. 2004, H.D. Shin, <strong>CBS</strong> H-20993, <strong>CBS</strong> 132657 = CPC 11598.<br />

Notes: This species is basal to C. apii s. str. Fresh collections from<br />

Geranium (Geraniaceae) are needed from the USA (type locality<br />

of C. brunkii) to determine if the latter name can be applied to<br />

this species. The two isolates representing this species are never<br />

supported in their own clade; in the TEF and ACT phylogenies they<br />

are intermixed with C. cf. flagellaris, in the CAL phylogeny with C.<br />

apii and in the HIS phylogeny with C. kikuchii, C. cf. richardiicola<br />

and Cercospora spp. P and Q. These different shared alleles<br />

are the likely cause for their separate position in the combined<br />

phylogeny (Fig. 2 part 5).<br />

Cercospora campi-silii Speg., Michelia 2: 171. 1880.<br />

≡ Cercosporidium campi-silii (Speg.) X.J. Liu & Y.L. Guo, Acta Mycol. Sin.<br />

1: 94. 1982.<br />

≡ Passalora campi-silii (Speg.) Poonam Srivast., J. Living World 1: 114.<br />

1994, nom. inval.<br />

≡ Passalora campi-silii (Speg.) U. Braun, Mycotaxon 55: 228. 1995.<br />

= Cercospora impatientis Bäumler, Verh. K. K. Zool.-Bot. Ges. Wien 38: 717.<br />

1888.<br />

Leaf spots angular to irregular, 1–3 mm diam, center greyish to<br />

pallid, surrounded by purplish brown to dark brown border lines,<br />

but brown to greyish brown without definite borders on the abaxial<br />

surface. Caespituli hypophyllous, but also epiphyllous in later stage<br />

of disease development. Stromata lacking or composed of a few<br />

brown cells. Conidiophores arising in fascicles of 5–12(–18), loose<br />

to moderately dense, emerging through stomata or occasionally<br />

erumpent through the cuticle, subcylindrical, 2–5 times geniculate,<br />

sometimes abruptly geniculate, unbranched, 2–4-septate, 40–110<br />

× 4–5.5 µm, pale brown to olivaceous-brown. Conidiogenous<br />

cells integrated, terminal, sympodial, multi-local; loci subcircular,<br />

thickened, darkened, 2.5–3 µm wide. Conidia solitary, obclavatecylindrical<br />

to elliptical, 25–60 × 4.5–6 µm, (1–)3(–6)-septate,<br />

subhyaline, apex obtuse, base obconically subtruncate; hila ca. 2<br />

µm wide, thickened, darkened.<br />

Specimen examined: South Korea, Inje, on Impatiens noli-tangere (Balsaminaceae),<br />

29 Sep. 2007, H.D. Shin, <strong>CBS</strong> 132625 = CPC 14585.<br />

Notes: Although C. campi-silii was transferred from Cercospora<br />

to Passalora based on its pale olivaceous conidia (Braun 1995b),<br />

as in the case of C. sojina, these taxa are best retained in<br />

Cercospora, which is fully supported by their phylogenetic position<br />

within Cercospora. Cercospora campi-silii is separated based<br />

on the TEF, ACT and HIS phylogenies in the present study. Only<br />

the CAL phylogeny failed to distinguish it from C. sojina and C.<br />

achyranthis. On the combined tree (Fig. 2 part 2), it is a sister taxon<br />

to C. sojina. Cercospora campi-silii was described from Europe<br />

and examination of European material is necessary to determine<br />

similarity with Korean collections.<br />

Cercospora canescens complex<br />

Cultures examined: Ghana, on leaves of Dioscorea rotundata (Dioscoreaceae),<br />

2000, S. Nyako & A.O. Danquah, <strong>CBS</strong> 132658 = CPC 11626 = GHA-1-0 (as C.<br />

dioscoreae-pyrifoliae); CPC 11628 = GHA-2-1; on leaves of Dioscorea alata,<br />

2000, S. Nyako & A.O. Danquah, <strong>CBS</strong> 132659 = CPC 11627 = GHA-1-1. Mexico,<br />

Tamaulipas, unidentified Malvaceae host, 30 Oct. 2008, Ma. de Jesús Yáñez-<br />

Morales, CPC 15871. South Africa, Northwest Province, Potchefstroom, on Vigna<br />

sp. (Fabaceae), S. van Wyk, <strong>CBS</strong> 111133 = CPC 1137; <strong>CBS</strong> 111134 = CPC 1138;<br />

Tsipise, Limpopo Province, on Citrus maxima (Rutaceae) fruit spot, K. Serfontein,<br />

CPC 4408–4409. USA, Georgia, on Phaseolus lunatus (= Ph. limensis) (Fabaceae),<br />

E.S. Luttrell, <strong>CBS</strong> 153.55 = CPC 5059 (as C. canescens); on Apium sp., CPC 11640<br />

= IMI 186563.<br />

Notes: Morphologically the present clade represents isolates<br />

that correspond with the description of C. canescens, which was<br />

originally described from Phaseolus in the USA. It is possible that<br />

as more isolates are added, the lower subclade, which represents<br />

hosts in other families, may eventually split off as a distinct taxon.<br />

Epitype material from the USA is necessary to fix the application<br />

www.studiesinmycology.org<br />

147


Groenewald et al.<br />

of the name C. canescens. The material on Ph. lunatus (= Ph.<br />

limensis) could be used in this sense, but C. canescens is a<br />

complicated species complex. More isolates from the USA are<br />

necessary to resolve this issue. A sequence of an isolate on<br />

Phaseolus from Mexico (CPC 15807) clusters in “Cercospora sp.<br />

Q”, which might be C. canescens. The C. canescens complex is<br />

supported as a distinct clade in the ACT and CAL phylogenies. The<br />

TEF sequence of isolate CPC 15871 splits off from the rest of the<br />

isolates to cluster with C. cf. coreopsidis. In the HIS phylogeny,<br />

the isolates occur in four distinct but related clades (C. mercurialis<br />

occurs in an intermediate position between these clades). These<br />

four clades correspond to the intraspecific variation observed for<br />

this species in Fig. 2 (part 1).<br />

Cercospora capsici Heald & F.A. Wolf, Mycologia 3: 15.<br />

1911.<br />

Leaf spots circular to subcircular, more or less concentric, 2–10 mm<br />

diam. Caespituli amphigenous, appearing greyish brown in case<br />

of abundant sporulation. Mycelium internal. Stromata rudimentary,<br />

composed of a few swollen cells. Conidiophores straight to<br />

mildly curved, not branched, in divergent fascicles (3–15), mildly<br />

geniculate, 30–120 × 3–6 µm, 0–6-septate. Conidiogenous cells<br />

integrated, terminal, lateral, proliferating sympodially; loci distinct,<br />

slightly protuberant, apical and formed on shoulder caused by<br />

geniculation, 2–3 µm wide. Conidia solitary, hyaline, acicular,<br />

straight to mildly curved, 64–180 × 4–5.5 µm, 2–12-septate,<br />

subacute at the apex, obconically truncate at the base (adapted<br />

from Shin & Kim 2001).<br />

Description of caespituli on V8 medium; MUCC 574 (MAFF<br />

238227): Conidiophores solitary, pale brown to brown, irregular in<br />

width, wider at the base, smooth, moderately thick-walled, sinuousgeniculate,<br />

simple, conically truncated at the tip, 20–130.5 × 3.5–5<br />

µm, multi-septate. Conidiogenous cells integrated, terminal; loci<br />

distinctly thickened, apical, 2–2.5 µm in width. Conidia solitary,<br />

hyaline, cylindro-obclavate to acicular, distinctly thickened and<br />

long obconically truncated at the base, obtuse to acute at the apex,<br />

105–200 × 2.5–4.5 µm, 9–18-septate.<br />

Specimens examined: Fiji, unknown host, fungus fruiting on lesions on calyx<br />

attached to fruit, 17 Aug. 2005, P. Tyler, <strong>CBS</strong> 118712. Japan, Chiba, on Capsicum<br />

annuum (Solanaceae), 1 Oct. 1999, S. Uematsu, MUCC 574 = MAFF 238227 =<br />

MUCNS 810. South Korea, Hongcheon, on C. annuum, 29 Aug. 2005, H.D. Shin,<br />

<strong>CBS</strong> H-20994, CPC 12307; Yanggu, on C. annuum, 28 Sep. 2007, H.D. Shin, <strong>CBS</strong><br />

H-20995, <strong>CBS</strong> 132622 = CPC 14520.<br />

Notes: See also C. armoraciae. This species is supported in the<br />

TEF (related to Cercospora sp. J and C. chenopodii), ACT (related<br />

to Cercospora sp. J and C. zebrina and C. armoraciae) and HIS<br />

(related to Cercospora spp. C and D) phylogenies and is part of<br />

the larger C. armoraciae clade based on CAL. In the combined tree<br />

(Fig. 2 part 3), it is a sister taxon to C. armoraciae. Morphological<br />

characteristics of this species on the host plant and in culture are<br />

almost similar to C. armoraciae. In addition, acicular conidia are<br />

formed in culture. The application of the name C. capsici to this<br />

clade is only tentative, since the latter species was described from<br />

the USA. North American cultures and sequences are needed to<br />

confirm their identity.<br />

Several species of Cercospora occur on solanaceous host<br />

plants. Of these, C. physalidis has been shown to form a species<br />

complex. Braun & Mel’nik (1997) concluded many species of<br />

Cercospora apii s. lat. on solanaceous hosts, including C. capsici,<br />

were synonymous with C. physalidis based on their morphological<br />

characteristics. Based on the results of pathogenicity tests (C.<br />

Nakashima, unpubl. data), phylogeny, and morphology (cylindrical<br />

to obclavate, rarely acicular conidia, and conidiophores that narrow<br />

at the upper portion), C. capsici must be separated from the C.<br />

physalidis complex. Likewise, other taxa in this complex such as<br />

C. lycii, C. nicandrae, C. sciadophila, C. solanacea, and C. solani,<br />

which consistently have obclavate-cylindrical conidia, must be reexamined.<br />

Cercospora celosiae Syd., Ann. Mycol. 27: 430. 1929.<br />

Leaf spots amphigenous, scattered to confluent, distinct,<br />

subcircular to irregular, small to fairly large, 1–7 mm diam, pale<br />

brown to brown, surrounded by a dark brown border. Caespituli<br />

amphigenous. Stromata small, rudimentary to slightly developed,<br />

composed of several brown, swollen hyphal cells. Conidiophores<br />

3–20 in loose fascicles, emerging through stomata or erumpent<br />

through the cuticle, olivaceous-brown throughout, or paler upwards,<br />

0–5-septate, straight to slightly curved, 1–5 times mildly geniculate,<br />

sometimes once abruptly geniculate, not branched, 25–200 × 4.5–<br />

6 µm; loci conspicuous, apical or on shoulders of conidiogenous<br />

cells caused by geniculation. Conidia solitary, acicular to filiform,<br />

sometimes shorter ones obclavate-cylindrical, straight to mildly<br />

curved, hyaline, 2–14-septate, slightly constricted at the septa,<br />

subacute to subobtuse at the apex, obconically truncate to<br />

subtruncate at the base, 40–150 × 3–5 µm; hilum conspicuously<br />

thickened, darkened, and non-protuberant<br />

Specimen examined: South Korea, Chuncheon, on Celosia argentea var. cristata<br />

(≡ C. cristata) (Amaranthaceae), 7 Oct. 2003, H.D. Shin, <strong>CBS</strong> H-20996, <strong>CBS</strong><br />

132600 = CPC 10660.<br />

Notes: The isolate representing C. celosiae is not supported as<br />

a separate clade; in the TEF, ACT, CAL and HIS phylogenies<br />

it is intermixed with predominantly Cercospora sp. I and C.<br />

alchemillicola / C. cf. alchemillicola, which is also evident from its<br />

position basal to Cercospora sp. I in the combined phylogeny (Fig.<br />

2 part 1). Authentic material from China is required to determine<br />

if C. celosiae should be merged with what is presently treated as<br />

Cercospora sp. I.<br />

Cercospora chenopodii Fresen., Beitr. Mykol.: 92. 1863.<br />

Fig. 4<br />

= Ramularia dubia Riess, Hedwigia 1: pl. 4, fig. 9. 1854.<br />

≡ Cercospora dubia (Riess) G. Winter, Fungi Eur. Exs., Ed. nov., Cent. 28,<br />

No. 2780. 1882 and Hedwigia 22: 10. 1883, nom. illeg., homonym of C.<br />

dubia Speg., 1880.<br />

≡ Cercospora dubia (Riess) Bubák, Ann. Mycol. 6: 29. 1908, nom. illeg.,<br />

homonym of C. dubia Speg., 1880.<br />

≡ Cercosporidium dubium (Riess) X.J. Liu & Y.L. Guo, Acta Mycol. Sin.<br />

1: 95. 1982.<br />

≡ Passalora dubia (Riess) Poonam Srivast., J. Living World 1: 115. 1994,<br />

comb. inval.<br />

≡ Passalora dubia (Riess) U. Braun, Mycotaxon 55: 231. 1995.<br />

= Cercospora chenopodii Cooke, Grevillea 12: 22. 1883, nom. illeg., homonym<br />

of C. chenopodii Fresen., 1863.<br />

= Cercospora dubia var. urbica Roum., Rev. Mycol. 15: 15. 1893.<br />

= Cercospora dubia var. atriplicis Bondartsev, Trudy Glavn. Bot. Sada 26: 51.<br />

1910.<br />

= Cercospora atriplicis Lobik, Mat. po Fl. Faun. Obsled. Terskogo Okruga: 52.<br />

1928.<br />

= Cercospora chenopodii var. micromaculata Dearn., Mycologia 21: 329. 1929.<br />

= Cercospora penicillata f. chenopodii Fuckel, Fungi Rhen. Exs., Fasc. II, No.<br />

119. 1863, nom. nud.<br />

= Cercospora chenopodii var. atriplicis patulae Thüm., in herb.<br />

= Cercospora bondarzevii Henn., in herb. B.<br />

148


Species concepts in Cercospora<br />

Fig. 4. Cercospora chenopodii (<strong>CBS</strong> 132620 = CPC 14237). A. Leaf spots. B. Close-up of lesion. C–F. Conidiophores. G–I. Conidia. Scale bars = 10 µm.<br />

Specimen examined: France, Ardeche, N44º22’39.8” E4º26’9.1”, on Chenopodium<br />

cf. album (Chenopodiaceae) next to river, 31 Aug. 2007, P.W. Crous, <strong>CBS</strong> H-20997,<br />

<strong>CBS</strong> 132620 = CPC 14237.<br />

Notes: Cercospora chenopodii was transferred to the genus<br />

Passalora as P. dubia by Braun (1995a) based on broadly<br />

obclavate conidia with visible large loci. The conidia of this species<br />

are hyaline, and best retained in Cercospora, which has been<br />

confirmed by results of molecular sequence analyses. The species<br />

is supported as distinct in the TEF, ACT and HIS phylogenies; in the<br />

CAL phylogeny it cannot be distinguished from C. cf. chenopodii.<br />

In the combined tree (Fig. 2 part 1), it is a sister taxon to C. cf.<br />

chenopodii. Also see C. cf. chenopodii.<br />

Cercospora cf. chenopodii Fig. 5.<br />

Leaf spots amphigenous, subcircular, circular, 3–8 mm diam, greyish<br />

brown to pale brown. Mycelium internal, consisting of septate,<br />

branched, smooth, pale brown hyphae. Caespituli in fascicles<br />

(10–40), amphigenous, brown, dense, becoming divergent, up<br />

to 150 µm wide and 50 µm high. Conidiophores aggregated<br />

in dense fascicles arising from the upper cells of a moderately<br />

developed brown stroma; conidiophores olivaceous-brown to<br />

brown, 2–5-septate, 1–2 times geniculate in upper part, at times<br />

apically swollen, not branched, 60–135 × 4–7 µm. Conidiogenous<br />

cells terminal, unbranched, pale brown, smooth, tapering to flattipped<br />

apical loci, proliferating sympodially, 20–40 × 4–6 µm; loci<br />

thickened, darkened, refractive, 2–4 µm diam. Conidia solitary,<br />

smooth, cylindrical to obclavate, straight to slightly curved, hyaline,<br />

(0–)2–4(–5)-septate, apex obtuse, base obconically truncate,<br />

(25–)40–65(–80) × (5–)6–7.5(–9) µm; hila thickened, darkened,<br />

refractive, 2–3 µm diam.<br />

Culture characteristics: Colonies erumpent, spreading, with sparse<br />

aerial mycelium, and lobate, smooth margins, and folded surface;<br />

reaching 10 mm after 2 wk. On MEA iron-grey with patches of dirty<br />

white, reverse fuscous-black to greyish sepia. On OA and PDA surface<br />

mouse-grey, with patches of pale mouse-grey, reverse olivaceous-grey.<br />

Specimens examined: Mexico, Montecillo, Chenopodium sp. (Chenopodiaceae),<br />

9 Oct. 2008, Ma. de Jesús Yáñez-Morales, <strong>CBS</strong> 132677 = CPC 15599; CPC<br />

15763; Purificacion, Chenopodium sp., 12 Oct. 2008, Ma. de Jesús Yáñez-Morales,<br />

CPC 15859; CPC 15862. South Korea, Hongcheon, on Chenopodium ficifolium<br />

(Chenopodiaceae), 4 Oct. 2002, H.D. Shin, <strong>CBS</strong> H-20998, culture <strong>CBS</strong> 132594 =<br />

CPC 10304; Hongcheon, on C. ficifolium, 27 Oct. 2005, H.D. Shin, <strong>CBS</strong> H-20999,<br />

CPC 12450.<br />

Notes: The chief difference between C. chenopodii and C. cf.<br />

chenopodii lies in the denser fascicles observed in the former<br />

species. Otherwise, the two species are barely distinguishable,<br />

and the latter species has to be considered a cryptic taxon. In the<br />

TEF phylogeny these two species are clearly distinct, although<br />

the isolates of C. cf. chenopodii are intermixed with those of C.<br />

delaireae, C. ricinella and Cercospora sp. K. The ACT and HIS<br />

phylogenies separate C. cf. chenopodii from the other species<br />

included in this study, although the CAL phylogeny could not<br />

distinguish C. chenopodii and C. cf. chenopodii. In the combined<br />

tree (Fig. 2 part 1), it is a sister taxon to C. chenopodii. See the<br />

species notes for C. chenopodii. We refrain from describing this<br />

species as new until more isolates for C. chenopodii can be<br />

sequenced to determine the intraspecific variation.<br />

www.studiesinmycology.org<br />

149


Groenewald et al.<br />

Fig. 5. Cercospora cf. chenopodii (CPC 10304). A. Leaf spots. B. Close-up of lesion. C–E. Fasciculate conidiophores. F–I. Conidia. Scale bars = 10 µm.<br />

Cercospora chinensis F.L. Tai, Bull. Chin. Bot. Soc. 2: 49.<br />

1936.<br />

Caespituli amphigenous. Mycelium internal. Stromata lacking to<br />

small, up to 30 µm diam, dark brown, intraepidermal or substomatal.<br />

Conidiophores solitary to 2–5 in loose fascicles, simple, sometimes<br />

branched, thick-walled, dark brown, paler towards the apex,<br />

mainly straight, loosely geniculate, almost uniform in width,<br />

conically truncated and somewhat wider at the apex, 61–100 ×<br />

5–6 µm, 3–6-septate. Conidiogenous cells integrated, proliferating<br />

sympodially or rarely percurrently, terminal and intercalary, multilocal;<br />

loci thickened, not protuberant, apical, lateral, 2.5–3 µm<br />

diam. Conidia solitary, hyaline, acicular to cylindro-obclavate,<br />

slightly curved, obconically truncate or subtruncate, and thickened<br />

at the base, acute at the apex, 60–210 × 3.5–5 µm, 2–16-septate.<br />

Specimen examined: South Korea, Pyeongchang, on Polygonatum humile<br />

(Convallariaceae), 20 Sep. 2003, H.D. Shin, <strong>CBS</strong> H-21000, <strong>CBS</strong> 132612 = CPC<br />

10831.<br />

Notes: See the notes for C. dispori below. In the combined tree<br />

(Fig. 2 part 5), it is a sister taxon to C. dispori and C. corchori.<br />

Cercospora cf. citrulina<br />

Caespituli amphigenous. Mycelium internal. Stromata lacking<br />

or small, up to 20 µm, pale brown. Conidiophores pale to pale<br />

brown, paler towards the apex, irregular in width, wider at the base,<br />

narrowed successive geniculation at the apex, sinuous-geniculate<br />

to well geniculate above the middle, thin-walled when young,<br />

darker and moderately thickened in mature conidiophores, solitary<br />

or in loose fascicles (2–14), simple, truncate at the apex, 50–86 ×<br />

2.5–5 µm, 0–3-septate. Conidiogenous cells integrated, terminal,<br />

rarely intercalary, proliferating sympodially, multi-local; loci distinct,<br />

thickened, apical or on shoulder caused by geniculation, slightly<br />

protuberant, 2.5–3 µm diam. Conidia solitary, hyaline, cylindrical,<br />

filiform to acicular, straight to slightly curved, truncate to long<br />

obconically truncate and distinctly thickened at the base, apex<br />

subacute, 40–134 × 3–4 µm, multi-septate.<br />

Specimens examined: Bangladesh (western part), on Musa sp. (Musaceae), I.<br />

Buddenhagen, <strong>CBS</strong> 119395 = CPC 12682; <strong>CBS</strong> 132669 = CPC 12683. Japan,<br />

Kagoshima, on Momordica charanthia (Cucurbitaceae), 20 Oct. 1997, E. Imaizumi &<br />

C. Nomi, MUCC 577 = MAFF 238205 = MUCNS 254 (as C. citrullina); Okinawa, on<br />

Citrullus lanatus (Cucurbitaceae), 6 Mar. 1998, T. Kobayashion et al., MUMH 11402,<br />

MUCC 576 = MUCNS 300 = MAFF 237913 (as C. citrullina); on Psophocarpus<br />

tetragonolobus (Fabaceae), MUCC 584 = MAFF 305757 (as C. psophocarpicola);<br />

on Ipomoea pes-caprae (Convolvulaceae), MUCC 588 = MAFF 239409 (as C.<br />

ipomoeae).<br />

Notes: This clade is supported by the TEF, ACT and CAL<br />

phylogenies. In the HIS phylogeny, the clade is split into the two<br />

sister clades visible in the combined tree, and may eventually be<br />

shown to be a species complex. In the HIS phylogeny, MUCC 584,<br />

MUCC 576 and MUCC 577 are clustering sister to C. chinensis and<br />

C. dispori whereas the remaining isolates are sister to C. vignigena.<br />

In the combined tree (Fig. 2 part 5), it is a sister taxon to C. cf.<br />

helianthicola.<br />

This taxon is distinguished from other species based on several<br />

morphological characteristics. Sporulation is mainly observed at<br />

the apex of conidiophores; slightly protuberant loci are formed on<br />

shoulders caused by geniculation; the width of conidiogenous cells<br />

immediately behind the fertile region is generally narrower, and<br />

150


Species concepts in Cercospora<br />

Fig. 6. Cercospora coniogrammes (<strong>CBS</strong> 132634 = CPC 17017). A. Leaf spots. B. Close-up of lesion. C–F. Weakly developed fascicles, showing conidiophores with sympodial<br />

proliferation and multi-local loci. G–I. Cylindrical to acicular conidia. Scale bars = 10 µm.<br />

conidiogenous cells are truncate at the apex. An isolate obtained from<br />

Ipomoea pes-caprae (MUCC 588) is located in this clade (Fig. 2 part<br />

5). It was not possible to examine its morphology in this study and<br />

thus it is not clear whether or not this fungus was saprobic. An isolate<br />

identified as C. psophocarpicola (MUCC 584), is also located in this<br />

clade. There is no morphological basis to divide C. psophocarpicola<br />

and other isolates in this clade into different species. Besides, the<br />

pathogenicity of MUCC 584 to Psophocarpus (Fabaceae) was<br />

confirmed (Ohnuki et al. 1989), thus showing that this species was<br />

not saprobic. Moreover, the four Japanese isolates examined in this<br />

study were obtained from the same subtropical islands in Japan. On<br />

the other hand, two isolates named as “C. hayi” from Musa sp. were<br />

also located in this clade. According to Crous et al. (2004b), several<br />

species of Cercospora are known to be able to colonise Musa.<br />

From the distribution of this taxon, it is natural that this species also<br />

colonised Musa (Musaceae), which grows in the same region.<br />

Cercospora coniogrammes Crous & R.G. Shivas, sp. nov.<br />

MycoBank MB800653. Fig. 6.<br />

Etymology: Named after the host genus from which it was collected,<br />

Coniogramme.<br />

Leaf spots amphigenous, subcircular to angular, 1–3 mm diam,<br />

grey to pale brown, surrounded by a broad brown margin, up to 4<br />

mm diam. Mycelium internal. Caespituli predominantly epiphyllous.<br />

Conidiophores aggregated in loose fascicles (2–6), arising from<br />

the upper cells of a brown, weakly developed stroma, up to 20<br />

µm diam, brown, finely verruculose in lower part, 3–7-septate,<br />

subcylindrical, straight to geniculate-sinuous, unbranched, 60–120<br />

× 5–7 µm. Conidiogenous cells integrated, terminal, unbranched,<br />

brown, smooth, tapering to flat-tipped loci, proliferating sympodially,<br />

15–35 × 3–5 µm, with numerous tightly aggregated apical loci,<br />

proliferating sympodially; loci distinct, thickened and darkened,<br />

protruding, 2–2.5 µm diam. Conidia solitary, hyaline, cylindrical to<br />

acicular, straight or slightly curved, apex subobtuse, base truncate,<br />

(30–)50–85(–120) × (2–)3(–3.5) µm, 1–6-septate, thin-walled,<br />

smooth; hila thickened, darkened, refractive, 1.5–2 µm diam.<br />

Culture characteristics: Colonies spreading, flat, with sparse aerial<br />

mycelium, folded surface and even margins, reaching 25 mm after<br />

2 wk. On OA blood-red in centre, red at margin. On MEA greyolivaceous<br />

in centre, smoke-grey at margins, olivaceous-grey in<br />

reverse. On PDA umber to chestnut in centre, bay at margin, umber<br />

in reverse.<br />

Specimen examined: Australia, Queensland, Brisbane, on Coniogramme japonica<br />

var. gracilis (≡ C. gracilis) (Adiantaceae), holotype <strong>CBS</strong> H-21001, Aug. 2009, P.W.<br />

Crous, culture ex-type <strong>CBS</strong> 132634 = CPC 17017.<br />

Notes: The numerous, tightly aggregated loci on the conidiogenous<br />

cells, and cylindrical to acicular conidia are characteristic of this<br />

species. This species is supported on the TEF, ACT, CAL and HIS<br />

phylogenies and is basal in the combined tree (Fig. 2 part 1).<br />

Cercospora corchori Sawada, Trans. Nat. Hist. Soc.<br />

Formosa 26: 179. 1916.<br />

Caespituli amphigenous. Mycelium internal. Stromata lacking to<br />

small, substomatal or intraepidermal, pale brown to brown, 16–25<br />

www.studiesinmycology.org<br />

151


Groenewald et al.<br />

µm diam. Conidiophores arising from upper part of stromata or<br />

internal hyphae, in loose fascicles (5–10), moderately thick-walled,<br />

pale brown to brown, uniform in width, sometimes attenuated at the<br />

apex, sinuous-geniculate, sparsely septate, conically truncate at the<br />

apex, 20–83 × 4–5 µm. Conidiogenous cells integrated, terminal<br />

and intercalary, proliferating sympodially, multi-local; loci distinct,<br />

thickened and darkened, apical or formed on the shoulder caused<br />

by the geniculation, 1–3 µm diam. Conidia hyaline to subhyaline,<br />

cylindro-obclavate to acicular, straight or slightly curved, truncate<br />

and thickened at the base, acute at the apex, 30–128 × 2.5–5 µm,<br />

4–13-septate.<br />

Description of caespituli on MEA; MUCC 585 (= MAFF 238191):<br />

Conidiophores solitary, brown, uniform in width, smooth, moderately<br />

thick-walled, slightly curved, simple, conically truncated at the<br />

apex, 130–230 × 3.5–4.5 μm, multi-septate. Conidiogenous cells<br />

integrated, terminal; loci moderately thickened, apical, 2.5–2.5 µm<br />

in width.<br />

Specimens examined: Japan, Shimane, on Corchorus olitorius (Tiliaceae), 27 Aug.<br />

1997, T. Mikami (epitype designated here – TFM:FPH-8114), culture ex-epitype<br />

MUCC 585 = MAFF 238191 = MUCNS 72. Taiwan, Taipei, on C. olitorius, 30 Jul.<br />

1909, K. Sawada, (isotype – TNS-F-220392).<br />

Notes: Cercospora corchori, which is known as the causal agent of<br />

a seed-borne disease, is distinguished from other species in that<br />

conidiophores are uniform in width, and conically truncate at the<br />

apex. Moreover, the species is supported by the ACT, CAL and HIS<br />

phylogenies. In the TEF phylogeny, it clusters on a longer branch in<br />

a clade with isolates of Cercospora sp. K and C. lactucae-sativae.<br />

In the combined tree (Fig. 2 part 5), it is a sister taxon to Cercospora<br />

spp. R and S.<br />

Cercospora cf. coreopsidis<br />

Leaf spots distinct (characteristic for this species), circular to<br />

subcircular, initially pale brown, later centre grey to dirty grey<br />

with raised greyish brown margins. Caespituli amphigenous.<br />

Mycelium internal. Stromata lacking or small, up to 30 µm in diam,<br />

intraepidermal or substomatal, brown. Conidiophores solitary, or up<br />

to 2–9 in loose fascicles, irregular in width, slightly attenuated at<br />

the apex, somewhat wider at mid cells, pale brown, thick-walled,<br />

paler towards the apex, conically truncate at the apex, geniculate<br />

at the upper portion, tortuous, 30–156 × 4–5.5 µm, 1–7-septate.<br />

Conidiogenous cells integrated, intercalary, terminal, proliferating<br />

sympodially, multi-local; loci thickened, darkened, not protuberant,<br />

flat, apical, lateral, rarely circumspersed, 1.5–2 µm. Conidia<br />

solitary, hyaline, filiform to acicular, straight to curved, truncated<br />

and thickened at the base, tip acute, 40–90(–180) × (1.5–)3–5 µm,<br />

indistinctly 7–10-septate.<br />

Specimen examined: South Korea, Seoul, Coreopsis lanceolata (Asteraceae), 17<br />

Sep. 2003, H.D. Shin, <strong>CBS</strong> H-21002, <strong>CBS</strong> 132598 = CPC 10648; Wonju, on C.<br />

lanceolata, 18 Oct. 2002, H.D. Shin, CPC 10122.<br />

Notes: The description of the present species is based on Korean<br />

specimens. Many species of Cercospora have latent pathogenicity<br />

to asteraceous plants. Although these results show that the<br />

identification of Cercospora species on these plants is difficult<br />

based on the host plant, the isolates originating from Coreopsis<br />

must be treated as a host-specific species in having an independent<br />

phylogenetic position, which is supported by the TEF, ACT, CAL<br />

and HIS phylogenies. In the combined tree (Fig. 2 part 1), it is a<br />

sister taxon to C. agavicola.<br />

On the other hand, C. beticola, which has also been known<br />

from Bidens (Asteraceae), was also reported from Coreopsis<br />

(Asteraceae) (Thaung 1984). Morphological differences between<br />

these species were not observed. The identification of the Korean<br />

collections as C. cf. coreopsidis is only tentative and must be<br />

proven on the base of sequences derived from North American<br />

isolates, which are not yet available.<br />

Cercospora delaireae C. Nakash., Crous, U. Braun & H.D.<br />

Shin, sp. nov. MycoBank MB800654. Fig. 7.<br />

Etymology: Named after the host genus from which it was collected,<br />

Delairea.<br />

Leaf spots amphigenous, subcircular to angular, grey-brown<br />

to brown, 3–7 µm diam, surrounded by a large, brown border,<br />

7–15 mm diam. Caespituli amphigenous, mainly hypophyllous.<br />

Mycelium internal. Stromata lacking or composed of few brown<br />

cells, substomatal or intraepidermal. Conidiophores solitary or<br />

in loose fascicles (2–4), pale brown to brown, irregular in width,<br />

narrowed at upper portion, moderately thick-walled, smooth,<br />

straight or abruptly once geniculate, truncate at the tip, 20–120 ×<br />

5–6.5 µm, 1–9-septate. Conidiogenous cells integrated, terminal,<br />

rarely intercalary, proliferating sympodially, 20–60 × 4–6 µm,<br />

usually unilocal, rarely multi-local; loci apical or formed on the<br />

shoulder due to sympodial proliferation, 2–4 µm diam, thickened<br />

and darkened. Conidia solitary, hyaline, filiform to acicular,<br />

truncate at the base, tip acute, (55–)80–150(–200) × (3.5–)4(–5)<br />

µm, 3–15-septate, thin-walled, smooth; hila thickened, darkened,<br />

2–4 µm diam.<br />

Culture characteristics: Colonies erumpent, spreading, with sparse<br />

to moderate aerial mycelium, and smooth, lobed margin and folded<br />

surface; reaching 20 mm diam after 2 wk. On MEA surface dirty<br />

white to salmon with patches of olivaceous-grey; reverse iron-grey<br />

in centre, salmon in outer region. On PDA surface dirty white with<br />

patches of pale mouse-grey, and red, diffuse pigment surrounding<br />

culture; reverse olivaceous-grey, but with prominent red pigment.<br />

On OA spreading, flat, lacking aerial mycelium, with lobate, smooth<br />

margins; surface red with diffuse red pigment surrounding colony;<br />

reverse red.<br />

Specimens examined: South Africa, Eastern Cape Province, Plettenberg Bay, on<br />

Delairea odorata (= Senecio mikaniodes) (Asteraceae), C.L. Lennox, CPC 10627–<br />

10629; Mpumalanga, Long Tom Pass, on D. odorata (= Senecio mikanioides), 16<br />

Jun. 2003, S. Neser, holotype <strong>CBS</strong> H-21004, culture ex-type <strong>CBS</strong> 132595 = CPC<br />

10455.<br />

Notes: Cercospora delaireae must be regarded as a new species<br />

based on its distinct phylogenic position (Fig. 2 part 2). In the<br />

individual gene trees it is distinguished in the ACT, CAL and HIS<br />

phylogenies; in the TEF phylogeny it cannot be distinguished from<br />

C. cf. chenopodii. In the combined tree (Fig. 2 part 2), it is a sister<br />

taxon to C. ricinella. It appears to be specific to Delairea odorata (=<br />

Senecio mikanioides) (Cape-ivy), and should be further evaluated<br />

as possible biocontrol agent of this host. Delairea odorata is an<br />

invasive perennial vine problematic in coastal riparian areas and<br />

is reported as being toxic to animals and fish. Stem, rhizome and<br />

stolon fragments resprout if left in the ground after treatment (for<br />

further information see ).<br />

152


Species concepts in Cercospora<br />

Fig. 7. Cercospora delaireae (<strong>CBS</strong> 132595 = CPC 10455). A. Leaf spots. B. Close-up of lesion. C–F. Conidiophores giving rise to conidia. G, H. Conidia. Scale bars = 10 µm.<br />

Cercospora dispori Togashi & Maki, Trans. Sapporo Nat.<br />

Hist. Soc. 17: 98. 1942.<br />

Caespituli amphigenous. Mycelium internal. Stromata lacking<br />

to small, up to 40 µm diam, dark brown, intraepidermal or<br />

substomatal. Conidiophores solitary, or up to 2–10 in loose<br />

fascicles, thick-walled, dark brown, paler towards the apex, straight<br />

or sinuous-geniculate, almost uniform in width, conically truncate<br />

at the apex, 45–100 × 3.5–5.5 µm, 1–7-septate. Conidiogenous<br />

cells integrated, proliferating sympodially or rarely percurrently,<br />

terminal and intercalary, multi-local; loci thickened, not protuberant,<br />

apical, lateral. Conidia solitary, hyaline, acicular to cylindrical,<br />

slightly curved, obconically truncate or subtruncate, and thickened<br />

at the base, acute or obtuse at the apex, 30–85(–200) × 3.5–5 µm,<br />

2–12-septate, thin-walled, smooth.<br />

Specimens examined: Japan, Fukuoka, on Disporum smilacinum var. ramosum<br />

(Convallariaceae), 22 Sep. 1940, Y. Maki & T. Katsuki, holotype in SAPA?<br />

(specimen could not be located). South Korea, Pyeongchang, on Disporum<br />

viridescens (Convallariaceae), 20 Sep. 2003, H.D. Shin, <strong>CBS</strong> 132608 = CPC 10773;<br />

CPC 10774–10775.<br />

Notes: Cercospora chinensis and C. dispori are distinguished<br />

from other C. apii s. lat. species in that their conidiophores are<br />

uniform in width, thick-walled, dark coloured and conically truncate<br />

at the apex. In this study, C. chinensis and C. dispori occur on<br />

Convallariaceae, and cluster together in a well-supported clade.<br />

On the individual gene trees, these two species (represented by<br />

isolates CPC 10831 and CPC 10773) rarely cluster and are both on<br />

long branches in the phylogenetic analyses. In the TEF phylogeny,<br />

C. dispori cannot be distinguished from C. apii / C. beticola whereas<br />

C. chinensis is a sister taxon to C. pileicola. In the ACT phylogeny,<br />

C. chinensis cannot be distinguished from C. apii / C. beticola and<br />

C. dispori is a sister taxon to the C. apii / C. beticola clade. In the<br />

CAL phylogeny the two species are indistinguishable and they are<br />

related to C. lactucae-sativae. In the HIS phylogeny the two species<br />

are sister taxa related to C. citrullina. In the combined tree (Fig. 2<br />

part 5), it is a sister taxon to C. chinensis. Based on morphological<br />

characteristics, there is a difference between the two species in<br />

that the conidiophores of C. chinensis are sometimes branched.<br />

Thus, these two species are retained as separate taxa.<br />

Cercospora cf. erysimi<br />

Specimen examined: New Zealand, Manurewa, on Erysimum mutabile<br />

(Brassicaceae), 5 Dec. 2002, C.F. Hill, Lynfield 625, <strong>CBS</strong> 115059 = CPC 5361.<br />

Notes: This species is phylogenetically supported by TEF, ACT,<br />

CAL and HIS. A collection on Erysimum (Brassicaceae) from<br />

Europe (isolate CPC 5056) clusters within C. armoraciae. The<br />

latter could also be the “true C. erysimi”, which is still unclear. The<br />

type of C. erysimi is from North America. Thus, fresh material is<br />

needed from North America to resolve the application of the name<br />

“C. erysimi”. In the combined tree (Fig. 2 part 1), it is a sister taxon<br />

to C. cf. modiolae and Cercospora sp. E.<br />

Cercospora euphorbiae-sieboldianae C. Nakash., Crous,<br />

U. Braun & H.D. Shin, sp. nov. MycoBank MB800655. Fig. 8.<br />

Etymology: Named after the host from which it was collected,<br />

Euphorbia sieboldiana.<br />

Leaf spots amphigenous, subcircular to irregular, 3–15 mm diam,<br />

coalenscing, up to 25 mm diam, brown to greyish brown, becoming<br />

whitish grey in centre, with blackish margins on upper surface, and<br />

greyish white to grey on lower surface. Mycelium internal. Caespituli<br />

amphigenous. Stromata small to well-developed, intraepidermal to<br />

www.studiesinmycology.org<br />

153


Groenewald et al.<br />

Fig. 8. Cercospora euphorbiae-sieboldianae (<strong>CBS</strong> 113306). A. Leaf spots. B. Close-up of lesion. C, D. Fasciculate conidiophores. E. Conidiophore giving rise to conidium. F–I.<br />

Conidia. Scale bars = 10 µm.<br />

substomatal, brown to dark brown, 20–125 μm. Conidiophores loose<br />

to densely fasciculate in fascicles of 3–40, pale brown to brown,<br />

paler towards the apex, irregular in width, somewhat constricted at<br />

the proliferating point, conically truncate at the apex, 0–2-septate,<br />

straight or sinuous to geniculate due to sympodial proliferation,<br />

simple, rarely branched, 15–170 × 4.5–8 μm. Conidiogenous cells<br />

integrated, terminal, rarely intercalary, proliferating sympodially,<br />

50–70 × 4–5 µm, multi-local; loci distinctly thickened, darkened,<br />

apical or formed on the shoulder, rarely lateral, 3–4.5 μm diam.<br />

Conidia solitary, hyaline to subhyaline, solitary, straight to slightly<br />

curved, obclavate to obclavate-cylindric, obconically truncated<br />

at the base, acute to obtuse at the apex, often beak-like at the<br />

apex, 38–130 × 5.5–8(–12) μm, (4–)3–6(–12)-septate, thin-walled,<br />

smooth; hila thickened, darkened, 3–4.5 µm diam.<br />

Culture characteristics: Colonies erumpent, spreading, with sparse<br />

aerial mycelium and smooth, even margins, reaching 30 mm diam<br />

after 2 wk at 25 ºC in the dark. On MEA surface grey-olivaceous,<br />

reverse iron-grey. On PDA surface and reverse olivaceous-grey.<br />

Colonies forming spermatogonia in culture on both media.<br />

Specimen examined: South Korea, Samcheok, on Euphorbia sieboldiana<br />

(Euphorbiaceae), 8 May 2003, H.D. Shin, holotype <strong>CBS</strong> H-21005, culture ex-type<br />

<strong>CBS</strong> 113306.<br />

Notes: This species is phylogenetically distinguishable from its<br />

closest relatives in the TEF, ACT, CAL and HIS phylogenies. It is<br />

related to C. polygonaceae (TEF), C. senecionis-walkeri (ACT), C.<br />

vignigena (CAL) and C. punctiformis (HIS); therefore it is distinct<br />

from the other species occurring on Euphorbiaceae included in<br />

this study. In the combined tree (Fig. 2 part 2), it is a sister taxon<br />

to C. punctiformis. It is morphologically well distinguished from<br />

species of the C. apii complex and other species of Cercospora by<br />

its unusually broadly obclavate-cylindrical conidia (5.5–8(–12) μm)<br />

with few septa and rather broad loci and hila (3–4.5 µm).<br />

Cercospora fagopyri K. Nakata & S. Takim., J. Agric. Exp.<br />

Stat. Gov. Gen. Chosen 15: 29. 1928.<br />

= Cercospora fagopyri Abramov, in Lavrov, Opred. rastit. paras. kul´t. i dikor.<br />

polezn. rast. Sibiri, Vyp. I: 22. 1932, nom. nud.<br />

≡ Cercospora fagopyri Abramov, in Vasilevsky & Karakulin, Fungi<br />

imperfecti parasitici. 1. Hyphomycetes: 321. 1937, nom. illeg. (homonym).<br />

= Cercospora fagopyri Chupp & A.S. Mull., Bol. Soc. Venez. Ci.. Nat. 8: 44.<br />

1942, nom. illeg. (homonym).<br />

Caespituli caulogenous, or amphigenous on leaves. Mycelium<br />

internal. Stromata intraepidermal or substomatal, pale brown,<br />

small to well-developed, 25–60 µm diam. Conidiophores pale<br />

brown, solitary, or in loose to dense fascicles (2–20), sinuously<br />

geniculate, rarely geniculate due to sympodial proliferation, usually<br />

irregular in width, frequently constricted due to proliferation,<br />

154


Species concepts in Cercospora<br />

attenuated at the tip, truncate at the apex, multi-septate, 20–120<br />

× 3.5–5.5 µm, 0–5-septate. Conidiogenous cells integrated, mainly<br />

terminal, rarely intercalary, proliferating sympodially, multi-local;<br />

loci thickened and darkened, apical and formed on the shoulder<br />

caused by sympodial proliferation, sometimes lateral, sometimes<br />

protuberant, 1.5–2.5 µm. Conidia solitary, hyaline, cylindrical to<br />

acicular, straight or slightly curved, long obconically truncate or<br />

truncate at the thickened and darkened base, obtuse or acute at<br />

the apex, 20–100 × 3–4 µm, 3–20-septate, thin-walled, smooth.<br />

Description of caespituli on V8; (MUCC 130): Caespituli<br />

dimorphic, either small (common), or large (rarely observed;<br />

described in parenthesis). Conidiophores solitary to loosely<br />

fasciculate, arising from hyphae, subhyaline to pale brown, irregular<br />

in width, smooth, meager and thin-walled, sinuous-geniculate<br />

to geniculate (straight to geniculate), unbranched, truncated at<br />

the tip, 15–500 × 3–5 µm, multi-septate. Conidiogenous cells<br />

integrated, terminal or intercalary, proliferating sympodially, multilocal<br />

(uni-local); loci moderately thickened, apical, protuberant<br />

(not protuberant), 1.25–3 µm in width. Conidia solitary, hyaline,<br />

filiform to acicular, slightly thickened and obconically truncate<br />

(truncate) at the base, acute at the apex, 45.5–187 × 2–4.5 µm,<br />

3–16-septate.<br />

Specimens examined: Japan, Ehime, on Cosmos bipinnata (Asteraceae), 16 Oct.<br />

2004, J. Nishikawa, MUMH 11394, MUCC 130; on Hibiscus syriacus (Malvaceae),<br />

MUCC 866. South Korea, Suwon, on Viola mandshurica (Violaceae), 14 Oct. 2003,<br />

H.D. Shin, <strong>CBS</strong> H-21006, <strong>CBS</strong> 132649 = CPC 10725; Yangpyeong, on Cercis<br />

chinensis, (Fabaceae), 19 Oct. 2007, H.D. Shin, <strong>CBS</strong> H-21007, <strong>CBS</strong> 132671 =<br />

CPC 14546; on Fagopyrum esculentum (Polygonaceae), 9 Oct. 2007, H.D. Shin,<br />

neotype designated here <strong>CBS</strong> H-21008, culture ex-neotype <strong>CBS</strong> 132623 = CPC<br />

14541 (holotype specimen, South Korea, Suwon, on Fag. esculentum, Sep. 1934,<br />

K. Nakata & S. Takimoto, could not be located and is undoubtedly not preserved);<br />

on Fallopia dumentorum (Polygonaceae), 16 Oct. 2002, H.D. Shin, <strong>CBS</strong> H-21009,<br />

<strong>CBS</strong> 132640 = CPC 10109.<br />

Notes: Phylogenetically the separation of C. fagopyri is supported<br />

by the TEF and HIS phylogenies, though it is intermixed with<br />

strains of C. cf. sigesbeckiae in the ACT phylogeny and of C.<br />

kikuchii in the CAL phylogeny. In the combined tree (Fig. 2 part 4),<br />

it is a sister taxon to C. cf. ipomoeae. Presently several isolates<br />

originating from diverse host families reside in this clade. However,<br />

lesions on Viola appear to be insect associated, and caused by<br />

a Colletotrichum species, with Cercospora colonisation being<br />

secondary. Furthermore, lesions on Fallopia dumentorum appear<br />

to be associated with chemical damage, not Cercospora, again<br />

suggestion that Cercospora colonisation was secondary. The<br />

fungus occurring on Cercis chinensis is distinct, having very long<br />

conidiophores (200–600 µm), and very long conidia. To resolve<br />

the host range of C. fagopyri, isolates from Fagopyrum need to be<br />

recollected in Korea, and pathogenicity established on the hosts<br />

listed above. Thus the name C. fagopyri can only be applied to<br />

other isolates than those from Fagopyrum tentatively, awaiting<br />

additional fresh collections.<br />

Cercospora cf. flagellaris<br />

Caespituli amphigenous. Mycelium internal. Stromata lacking<br />

to well-developed, up to 50 µm diam, brown, intraepidermal and<br />

substomatal. Conidiophores straight or successively geniculate at<br />

the apex, rarely abruptly geniculate, solitary, or in loose to dense<br />

fascicles (2–23), pale brown to brown, paler towards the apex,<br />

simple, rarely branched, uniform in width up to the middle, strongly<br />

attenuated at the upper portion, sometimes constricted at septa,<br />

often constricted following sympodial proliferation, 14–140(–270) ×<br />

2.5–6.5 µm, 0–8-septate, truncate or short obconically truncated at<br />

the apex. Conidiogenous cells integrated, terminal and intercalary,<br />

proliferating sympodially, multi-local (2–5); loci distinctly thickened,<br />

apical or formed on the shoulders caused by geniculation, lateral,<br />

rarely protuberant, small, 1–4 µm. Conidia solitary, hyaline,<br />

cylindrical to acicular, sometimes obclavate, straight or slightly<br />

curved, truncate or short obconical truncate at the thickened and<br />

darkened base, acute at the apex, 18–240 (–300) × 2–4.5 µm,<br />

1–12-septate, thin-walled, smooth.<br />

Description of caespituli on V8; MUCC 127: Conidiophores<br />

solitary, arising from hyphae, pale brown, uniform in width,<br />

sometimes wider at the base, smooth, straight to slightly sinuous,<br />

conically truncate at the tip, 10–95 × 3–5 µm, multi-septate.<br />

Conidiogenous cells integrated, terminal; loci distinctly thickened,<br />

apical, 1.25–2 µm in width. Conidia hyaline, acicular to filiform,<br />

slightly thickened and truncate at the base, acute at the apex, 35–<br />

220 × 2–3 µm, 2–15-septate.<br />

Specimens examined: Fiji, on Amaranthus sp. (Amaranthaceae), C.F. Hill, Lynfield<br />

677, CPC 5441. Israel, on Trachelium sp. (Campanulaceae), 16 Nov. 2002, E. Tzul-<br />

Abad, <strong>CBS</strong> 132637 = CPC 10079 (as C. campanulae). Japan, Ehime, on Cosmos<br />

sulphureus (Asteraceae), 16 Oct. 2004, J. Nishikawa, MUMH 11393, MUCC 127;<br />

Tokyo, on Hydrangea serrata (Hydrangeaceae), 10 Nov. 2007, I. Araki & M. Harada,<br />

MUMH 10933, MUCC 831; Wakayama, on H. serrata, 30 Oct. 2007, C. Nakashima &<br />

I. Araki, MUMH 10860, MUCC 735. South Korea, Hoengseong, on Celosia argentea<br />

var. cristata (≡ C. cristata), 11 Oct. 2004, H.D. Shin, <strong>CBS</strong> 132667 = CPC 11643 (as<br />

Cercospora sp.); Jeju, on Dysphania ambrosioides (≡ Chenopodium ambrosioides)<br />

(Chenopodiaceae), 12 Nov. 2003, H.D. Shin, <strong>CBS</strong> 132653 = CPC 10884 (as C.<br />

chenopodii-ambrosioidis); on Phytolacca americana (Phytolaccaceae), 1 Nov. 2007,<br />

H.D. Shin, <strong>CBS</strong> 132674 = CPC 14723; CPC 14724; Jinju, on P. americana, 15 Oct.<br />

2003, H.D. Shin, CPC 10684–10686; Namyangju, on Amaranthus patulus, 30 Sep.<br />

2003, H.D. Shin, <strong>CBS</strong> 132648 = CPC 10722; Pocheon, on P. americana, 23 Oct.<br />

2002, H.D. Shin, CPC 10124; Suwon, on Cichorium intybus (Asteraceae), 14 Oct.<br />

2003, H.D. Shin, <strong>CBS</strong> 132646 = CPC 10681 (as C. cichorii); Yanggu, on Sigesbeckia<br />

pubescens (Asteraceae), 28 Sep. 2007, H.D. Shin, <strong>CBS</strong> 132670 = CPC 14487.<br />

South Africa, Limpopo Province, Messina, Citrus sp. (Rutaceae), M.C. Pretorius,<br />

<strong>CBS</strong> 115482 = CPC 4410; CPC 4411; on Populus deltoides (Salicaceae), P.W.<br />

Crous, CPC 1051–1052. Unknown, on Bromus sp. (Poaceae), M.D. Whitehead,<br />

<strong>CBS</strong> 143.51 = CPC 5055. USA, Texas, on Eichhornia crassipes (Pontederiaceae),<br />

R. Charudattan & D. Tessmann, 14 Sep. 1996, <strong>CBS</strong> 113127 (as C. piaropi).<br />

Notes: The isolates from this species form a monophyletic clade<br />

identical to one another and the two isolates of C. cf. brunkii on the<br />

TEF phylogeny. In the CAL phylogeny the C. cf. flagellaris isolates<br />

form a monophyletic clade, albeit with some intraspecific variation.<br />

Based on ACT data, the clade splits into four lineages: 1. CPC 4410<br />

and 4411, 2. CPC 1052, 1051 and 10681, 3, CPC 5441 and, 4. the<br />

remainder of the isolates. In the HIS phylogeny the species also<br />

splits into four lineages: 1. CPC 4410, 4411, 10884 and MUCC<br />

735, 2. CPC 10681 and 11643, 3. CPC 5441 and, 4. the rest of<br />

the isolates. These splits in phylogeny (see Fig. 2 parts 2–3) are<br />

not supported by morphology: conidiophores are successively<br />

geniculate at the upper portion, strongly attenuated at the apex;<br />

conidiogenous cells are terminal and intercalary with multi-local<br />

loci, and conidia are truncate or short obconically truncate at the<br />

thickened base. We strongly suspect that this is a species complex.<br />

The latter can only be resolved once more authentic isolates for the<br />

names listed above are included (from original hosts and countries),<br />

additional DNA loci screened, and pathogenicity tests conducted.<br />

Included in this species complex is the isolate used by Tessmann<br />

et al. (2001) as C. piaropi. This isolate is indistinguishable from<br />

other isolates of C. cf. flagellaris based on the TEF, ACT, CAL and<br />

HIS phylogenies. Cercospora flagellaris is the older name (1882)<br />

compared to C. piaropi (1917) and should therefore get taxonomic<br />

preference.<br />

www.studiesinmycology.org<br />

155


Groenewald et al.<br />

Cercospora cf. helianthicola<br />

Caespituli amphigenous. Mycelium internal. Stromata brown,<br />

lacking or small, intraepidermal or substomatal, up to 25 µm<br />

diam. Conidiophores simple, occasionally branched, straight to<br />

geniculate, pale brown, arising from small stromata or internal<br />

hyphae, solitary or in dense fascicles (up to 15), irregular in<br />

width, narrowed at successive geniculation, truncate at the apex,<br />

moderately thick-walled, 20–180 × 3–4 µm, septate. Conidiogenous<br />

cells integrated, terminal, proliferating sympodially, multi-local; loci<br />

distinctly thickened, apical and formed on the shoulders caused by<br />

geniculation, rarely lateral, refractive, 1.5–2 µm. Conidia solitary,<br />

acicular to cylindrical, hyaline, straight or curved, truncate and<br />

distinctly thickened at the base, obtuse at the apex, 10–85 × 3–4<br />

µm, indistinctly multi-septate, thin-walled, smooth.<br />

Specimen examined: Japan, Wakayama, on Helianthus tuberosus (Asteraceae),<br />

30 Oct. 2007, C. Nakashima & I. Araki, MUMH 10844, MUCC 716.<br />

Notes: This species is distinguished from other taxa in that it<br />

has slightly protuberant apical loci that are at times formed on<br />

shoulders caused by geniculation. The width of its conidiogenous<br />

cells is somewhat narrower behind the fertile region, and has a<br />

truncate apex. Furthermore, its conidiophores are rarely branched.<br />

A possible name that could be applied is C. helianthicola, though<br />

the latter species was originally described from South America,<br />

and fresh collections would be required to confirm its phylogenetic<br />

position. The isolate used in the current study is distinct in the TEF,<br />

ACT, CAL and HIS phylogenies. In the combined tree (Fig. 2 part<br />

5), it is a sister taxon to C. cf. citrulina.<br />

Cercospora cf. ipomoeae<br />

Caespituli amphigenous. Mycelium internal. Stromata composed of<br />

few brown cells, or well-developed, up to 60 µm diam, intraepidermal<br />

or substomatal. Conidiophores in loose fascicles (2–8), pale brown,<br />

paler towards apex, straight or geniculate at the apex, irregular in<br />

width, tip conically truncate, narrowed at the apex, 22.5–92.5 ×<br />

3.5–5.5 µm, 0–4-septate. Conidiogenous cells integrated, terminal,<br />

proliferating sympodially, multi-local; loci thickened, darkened,<br />

apical, rarely lateral, rarely slightly protuberant, 2–2.5 µm diam.<br />

Conidia solitary, hyaline, filiform to acicular, slightly curved,<br />

obconically truncate or truncate, and thickened and darkened at<br />

the base, acute or obtuse at the apex, 50–135(–245) × 2.5–3(–7.5)<br />

µm, 3–19-septate, thin-walled, smooth.<br />

Specimens examined: Japan, Kagawa, on Ipomoea aquatica (Convolvulaceae),<br />

Aug. 2005, G. Kizaki, MUMH 11203, MUCC 442; South Korea, Chuncheon,<br />

on Ipomoea nil (= I. hederacea) (Convolvulaceae), 7 Oct. 2003, H.D. Shin,<br />

<strong>CBS</strong> H-21010, <strong>CBS</strong> 132652 = CPC 10833; Pocheon, on Persicaria thunbergii<br />

(Polygonaceae), 2 Oct. 2002, H.D. Shin, <strong>CBS</strong> H-21011, <strong>CBS</strong> 132639 = CPC 10102.<br />

Notes: This species is supported in the TEF phylogeny but cannot<br />

be distinguished from Cercospora sp. M and C. rodmanii in the<br />

ACT phylogeny. Isolate MUCC 442 clusters separately from the<br />

other two isolates based on the CAL and HIS phylogenies. In the<br />

combined tree (Fig. 2 part 4), it is a sister taxon to C. fagopyri.<br />

Sequences obtained from Cercospora isolates on Ipomoea spp.<br />

cluster in three different clades. Although the name C. ipomoeae is<br />

available for this clade, without sequence data from North America<br />

(and an appropriate epitype) this name cannot be applied with<br />

certainty, above all since isolates from Ipomoea cluster in different<br />

clades.<br />

Cercospora kikuchii (T. Matsumoto & Tomoy.) M.W.<br />

Gardner, Proc. Indian Acad. Sci. 36: 12. (1926) 1927.<br />

Basionym: Cercosporina kikuchii T. Matsumoto & Tomoy., Ann.<br />

Phytopathol. Soc. Japan 1: 10. 1925.<br />

Specimens examined: Argentinia, on Glycine max (Fabaceae), <strong>CBS</strong> 132633 = CPC<br />

16578. Japan, Kagoshima, on Glycine soja (Fabaceae), 1952, H. Kurata, MUCC<br />

590 = MAFF 305040; on G. soja, Jan. 1927, T. Matsumoto, <strong>CBS</strong> 128.27 = CPC<br />

5068 (ex-type of C. kikuchii); on seed of G. soja, Jan. 1928, H.W. Wollenweber,<br />

<strong>CBS</strong> 135.28 = CPC 5067.<br />

Notes: The symptoms on seeds and pods of plants inoculated<br />

with an isolate of C. richardiicola (MUCC 132; Nakashima, unpubl.<br />

data) originating from Osteospermum (Asteraceae) in Japan<br />

were quite similar to those caused by C. kikuchii. Cultures of C.<br />

kikuchii associated with purple seed stain symptoms cluster apart.<br />

This indicates that purple seed stain and leaf blight of G. max is<br />

caused by at least two different species of Cercospora, and that<br />

the identification of these species should not be based on disease<br />

symptoms alone. In the TEF and HIS phylogeny, the four isolates<br />

could not be distinguished from isolates of Cercospora sp. O, P and<br />

Q, as well as C. cf. richardiicola and C. cf. sigesbeckiae. Although<br />

these isolates clustered separate in the ACT phylogeny, intermixed<br />

in the clade was isolate CPC 14680 (C. cf. richardiicola) and isolate<br />

CPC 18636 (Cercospora sp. O). Similarly, the isolates clustered<br />

separate in the CAL phylogeny but intermixed with the isolates of<br />

C. fagopyri. In the combined tree (Fig. 2 part 4), it is a sister taxon<br />

to C. cf. sigesbeckiae.<br />

Cercospora lactucae-sativae Sawada, Rep. Gov. Agric.<br />

Res. Inst. Taiwan 35: 111. 1928.<br />

≡ Cercospora lactucae Welles, Phytopathology 13: 289. 1923, nom. illeg.<br />

(homonym), non Henn.<br />

= Cercospora longispora Cugini ex Trav., Malpighia 17: 217, 1902, nom. illeg.<br />

(homonym).<br />

≡ Cercospora longissima Trav., Malpighia 17: correzione (correction slip)<br />

to p. 217, 1903, nom. illeg. (homonym).<br />

≡ Cercospora longissima Cugini ex Sacc., Syll. Fung. 18: 607. 1906, nom.<br />

illeg. (homonym).<br />

= Cercospora lactucae J.A. Stev., J. Dept. Agric. Puerto Rico 1: 105. 1917,<br />

nom. illeg. (homonym).<br />

= Cercospora ixeridis-chinensis Sawada, Rep. Gov. Agric. Res. Inst. Taiwan<br />

86: 171. 1943, nom. inval.<br />

= Cercospora lactucae-indicae Sawada, Rep. Gov. Agric. Res. Inst. Taiwan 86:<br />

172. 1943, nom. inval.<br />

Caespituli amphigenous. Mycelium internal. Stromata lacking or<br />

composed from few brown cells, up to 35 µm diam. Conidiophores<br />

arising from internal hyphae or a few intraepidermal brown cells,<br />

brown to pale brown, solitary to loosely fasciculate (2–7), straight or<br />

mildly geniculate, moderately thick-walled, irregular in width, wider<br />

and conically truncate at the apex, constricted at proliferating point,<br />

25–150 × 3.5–6 µm, 0–5-septate. Conidiogenous cells integrated,<br />

terminal and intercalary, proliferating sympodially, uni-local or<br />

multi-local (1–2); loci distinctly thickened, 2.5–3.5 µm diam, slightly<br />

protuberant, apical. Conidia solitary, hyaline, filiform to acicular, or<br />

obclavate, obconically truncate and distinctly thickened at the base,<br />

subacute or obtuse, often swelling at the apex, 20–125 × 2–6 µm,<br />

4–12-septate, thin-walled, smooth, rarely catenate.<br />

Description of caespituli on V8 & MEA; MUCC 570 and 571<br />

(= MAFF 238209 and 237719): Conidiophores solitary to loosely<br />

fasciculate, pale brown to brown, irregular in width, wider at the<br />

apex, constricted at proliferating point, smooth, moderately thickwalled,<br />

sinuous-geniculate to geniculate, simple, conically truncate<br />

at the apex, 22.5–195 × 3–5.5 μm, multi-septate. Conidiogenous<br />

156


Species concepts in Cercospora<br />

cells integrated, terminal or intercalary, proliferating sympodially;<br />

loci moderately thickened, apical, 2.5–3.7 µm in width. Conidia<br />

hyaline, cylindrical to cylindrical obclavate, filiform, acicular, hilum<br />

distinctly thickened and long obconically truncate at the base,<br />

obtuse to acute at the apex, 44.5–215.5 × 3–7 µm, 5–20-septate.<br />

Specimens examined: Japan, Chiba, on Lactuca sativa (Asteraceae), 12 Sep.<br />

1997, S. Uematsu, MUCC 571 = MAFF 237719 = MUCNS 214; 18 Sep. 1998,<br />

C. Nakashima, MUMH 11401, MUCC 570 = MAFF 238209 = MUCN S463.<br />

South Korea, Chuncheon, on Ixeris chinensis subsp. strigosa (≡ Ixeris strigosa)<br />

(Asteraceae), 11 Oct. 2002, H.D. Shin, <strong>CBS</strong> H-21012, CPC 10082; 7 Oct. 2003,<br />

H.D. Shin, <strong>CBS</strong> H-21013, <strong>CBS</strong> 132604 = CPC 10728. Taiwan, Taipei, on L. sativa,<br />

9 Mar. 1924 & 5 Apr. 1924, K. Sawada (TNS-F-220470).<br />

Notes: This species is characterised in that conidiophores are<br />

wide and conically truncate at the apex, and constricted at the<br />

proliferating point. Furthermore, the conidia are not strictly acicular,<br />

but range from cylindrical-obclavate to acicular and they are rather<br />

broad, 3–7 µm. This species is phylogenetically well-supported<br />

based on ACT, CAL and HIS. The species cannot be distinguished<br />

from the single isolate of Cercospora sp. S in the TEF phylogeny,<br />

and these two species are also sister groups, but distinct, in the<br />

ACT phylogeny. The species is distinguished based on the CAL<br />

phylogeny, and split into two groups (MUCC 571 and 571 versus<br />

CPC 10082 and 10728) in the HIS phylogeny. In the combined tree<br />

(Fig. 2 part 5), it is a sister taxon to C. cf. helianthicola.<br />

Cercospora cf. malloti<br />

Caespituli amphigenous. Mycelium internal. Stromata lacking<br />

to well-developed, intraepidermal and substomatal, up to 65 µm<br />

diam. Conidiophores arising from internal hyphae or few brown<br />

cells, solitary or in loose fascicles (2–11), pale brown to brown,<br />

paler towards the apex, thick-walled, simple, rarely branched,<br />

straight or mildly geniculate, abruptly geniculate at the middle,<br />

or successively geniculate at the upper portion, irregular in<br />

width, narrowed at the apex, somewhat constricted at the part of<br />

proliferation, obconically truncate at the apex, 30–115(–250) × 2.5–<br />

5.5 µm, multi-septate. Conidiogenous cells integrated, terminal and<br />

intercalary, proliferating sympodially or percurrently, multi-local; loci<br />

apical or formed on the shoulders caused by geniculation, distinctly<br />

thickened, refractive, darkened, flattened, rarely protuberant at the<br />

shoulder of successive geniculation, 1–2 µm diam. Conidia solitary,<br />

hyaline, filiform to acicular, thickened and truncate at slightly<br />

protuberant base, obtuse or swelling at the apex, 40–90(–250) ×<br />

1.5–5 µm, 6–11(–20)-septate.<br />

Description of caespituli on V8; MUCC 575 (= MAFF 237872):<br />

Conidiophores solitary, brown, paler at the apex, uniform in<br />

width, smooth, moderately thick-walled, simple, straight to mildly<br />

geniculate, short conically truncate at the tip, 100–465 × 1.25–3<br />

µm, multi-septate. Conidiogenous cells integrated, terminal and<br />

intercalary, proliferating sympodially; loci thickened, flattened,<br />

apical or formed on the shoulders caused by geniculation, 2–3<br />

µm in width. Conidia hyaline, long cylindrical to filiform, slightly<br />

thickened and truncate at the base, obtuse at the apex, 30–430 ×<br />

2–4 µm, 3–19-septate, thin-walled, smooth.<br />

Specimens examined: Japan, Okinawa, on Mallotus japonicus (Euphorbiaceae), 19<br />

Nov. 2007, C. Nakashima & T. Akashi, MUMH 10837, MUCC 787; on Cucumis melo<br />

(Cucurbitaceae), 20 Jan. 1999, K. Uehara, MUCC 575 = MAFF 237872 = MUCNS<br />

582 (as C. citrullina).<br />

Notes: This species is supported by DNA sequence data of TEF,<br />

CAL and HIS. In the ACT phylogeny, the isolates from this species<br />

are intermixed with some isolates of C. cf. richardiicola (MUCC<br />

128, 132 and 578) and Cercospora sp. P (isolate MUCC 771). In<br />

the combined tree (Fig. 2 part 4), it is a sister taxon to Cercospora<br />

sp. P. The isolates originated from different host plants, but have<br />

identical conidiophores, which are thick-walled and with distinct loci<br />

at the apex. However, other characters, which include the pattern of<br />

geniculation and size of caespituli, are very different. More detailed<br />

studies are required to describe the morphological characters of<br />

this species. Cercospora malloti was originally described from<br />

Mallotus (Euphorbiaceae) collected in the USA, and fresh material<br />

needs to be recollected. The present application of this name for<br />

Japanese collections is thus only tentative.<br />

Cercospora mercurialis Pass., in Thüm., Mycoth. Univ., No.<br />

783. 1877.<br />

= Cercospora fruticola Sacc., Fungi Ital., Tab. 674. 1892.<br />

= Cercospora mercurialis var. annuae Fautrey, in Roumeguere et al., Rev.<br />

Mycol. 15: 16. 1893.<br />

= Cercospora mercurialis var. latvici Lepik, Tartu Ülik. Juures Oleva Loodusuur.<br />

Seltsi Arunded 39: 152. 1933.<br />

= Cercospora mercurialis var. multisepta Săvul. & Sandu, Hedwigia 75: 225.<br />

1936.<br />

Specimens examined: Italy, Parma, on Mercurialis annua (Euphorbiaceae), 1874,<br />

Passerini, Thüm., Mycoth. Univ. 783, isotypes HBG, HAL. Romania, Distr. Prahova,<br />

Cheia, on Mercurialis perennis (Euphorbiaceae), 31 Jul. 1969, O. Constantinescu,<br />

epitype designated here <strong>CBS</strong> H-9850, culture ex-epitype <strong>CBS</strong> 550.71; on M.<br />

annua, 28 Jun. 1967, O. Constantinescu, <strong>CBS</strong> 549.71; Constanta, Hagieni, on<br />

Mercurialis ovata (Euphorbiaceae), 14 Jul. 1970, O. Constantinescu & G. Negrean,<br />

<strong>CBS</strong> H-9848, BUCM 2012, <strong>CBS</strong> 551.71.<br />

Notes: Cercospora mercurialis is supported by TEF, ACT, CAL and<br />

HIS and can therefore be treated as an individual species. In the<br />

combined tree (Fig. 2 part 2), it is a sister taxon to C. pileicola.<br />

Cercospora cf. modiolae<br />

Specimen examined: New Zealand, leaf spot on Modiola caroliniana (Malvaceae),<br />

2002, C.F. Hill, Lynfield 535, CPC 5115.<br />

Notes: This species is phylogenetically supported by TEF and ACT,<br />

but in the CAL and HIS phylogeny it cannot be distinguished from<br />

Cercospora sp. E. In the combined tree (Fig. 2 part 1), it is a sister<br />

taxon to Cercospora sp. E. Cercospora modiolae was described<br />

from North America and without sequences based on North<br />

American collections, this name can only tentatively be applied to<br />

the material from New Zealand.<br />

Cercospora cf. nicotianae<br />

Cultures examined: Indonesia, Medan, leaf spot on Nicotiana tabacum<br />

(Solanaceae), Jan. 1932, H. Diddens & A. Jaarsveld, <strong>CBS</strong> 131.32 = CPC 5076.<br />

Mexico, southern region of Tamaulipas, on Glycine max, 17 Oct. 2008, Ma. de<br />

Jesús Yáñez-Morales, <strong>CBS</strong> 132632 = CPC 15918. Nigeria, from a leaf spot on N.<br />

tabacum, Jul. 1969, S.O. Alasoadura, <strong>CBS</strong> 570.69 = CPC 5075.<br />

Notes: See C. capsici. The name C. cf. nicotianae, described from the<br />

USA, can only tentatively be applied here. North American cultures<br />

and sequence data are needed for comparison and confirmation.<br />

Phylogenetically, C. cf. nicotianae is supported by CAL and partly HIS<br />

(CPC 5075 and 5076 were separated from CPC 15918). In the TEF<br />

phylogeny, the three isolates clustered in a distinct clade with a single<br />

isolate from C. cf. flagellaris (CPC 5441) but formed three distinct<br />

lineages in the ACT phylogeny. In the combined tree (Fig. 2 part 5), it<br />

is a sister taxon to C. cf. brunkii. Notes in the <strong>CBS</strong> database report that<br />

www.studiesinmycology.org<br />

157


Groenewald et al.<br />

Fig. 9. Cercospora pileicola (<strong>CBS</strong> 132607 = CPC 10749). A. Leaf spots. B–E. Weakly developed, fasciculate conidiophores. F–I. Conidia. Scale bars = 10 µm.<br />

isolate <strong>CBS</strong> 131.32 was pathogenic when inoculated onto Nicotiana<br />

leaves. The isolation of C. cf. nicotianae from G. max requires some<br />

additional explanation. Leaf spots typical of Corynespora cassicola were<br />

observed, and once incubated in damp chambers, a Cercospora sp.<br />

was found sporulating on the healthy tissue, which was identified here as<br />

C. cf. nicotianae.<br />

Cercospora olivascens Sacc., Michelia 1: 268. 1879.<br />

Specimens examined: Italy, Selva, on Aristolochia clematidis (Aristolochiaceae),<br />

Aug. 1877, isotype distributed as Mycoth Veneta 1251, HAL. Romania, Cazanele<br />

Dunarii, on A. clematidis, 19 Oct. 1966, O. Constantinescu, epitype designated<br />

here <strong>CBS</strong> H-21014, culture ex-type <strong>CBS</strong> 253.67= IMI 124975 = CPC 5085.<br />

Notes: This species is supported by TEF, ACT, CAL and HIS. In the<br />

combined tree (Fig. 2 part 1), it is a sister taxon to Cercospora sp. F.<br />

Cercospora cf. physalidis<br />

Specimen examined: Peru, on Solanum tuberosum (Solanaceae), L.J. Turkensteen,<br />

<strong>CBS</strong> 765.79.<br />

Notes: This species is supported by CAL and HIS. It cannot be<br />

distinguished from Cercospora sp. I and C. alchemillicola / C. cf.<br />

alchemillicola based on the TEF and ACT phylogenies. In the<br />

combined tree (Fig. 2 part 1), it is a sister taxon to Cercospora<br />

sp. G. According to Braun & Melnik (1997), C. physalidis and<br />

numerous Cercospora spp. of C. apii s. lat. on various hosts of the<br />

Solanaceae are morphologically indistinguishable from the latter<br />

species. Fresh material on Solanum from North America is required<br />

to resolve this issue.<br />

Cercospora pileicola C. Nakash., Crous, U. Braun & H.D.<br />

Shin, sp. nov. MycoBank MB800656. Fig. 9.<br />

Etymology: Named after the host genus from which it was collected,<br />

Pilea.<br />

Leaf spots circular, 1–2 mm diam, center greyish to pallid,<br />

surrounded by purplish brown border lines. Caespituli hypogenous.<br />

Mycelium internal. Stromata lacking to small, to 30 µm diam,<br />

brown, substomatal. Conidiophores straight to curved, pale brown<br />

to dark brown, paler towards the apex, solitary or in loose fascicles<br />

(2–5), sometimes mildly geniculate, simple, thick-walled, uniform in<br />

width, rarely narrowed after the geniculation, conically truncate at<br />

the apex, 30–110 × 3–8.5 µm, often swelling at the base, to 9 µm,<br />

1–3-septate. Conidiogenous cells integrated, terminal, proliferating<br />

sympodially; loci distinct, slightly protuberant, apical and formed<br />

on shoulder caused by geniculation, lateral, multi-local (1–2),<br />

2.5–4 µm diam. Conidia hyaline, cylindrical, acicular to obclavate,<br />

straight or curved, truncate or long obconically truncate, and slightly<br />

thickened at the base, acute to obtuse at the apex, 28–175 × 4–7<br />

µm, 0–12-septate.<br />

158


Species concepts in Cercospora<br />

Culture characteristics: Colonies erumpent, spreading, with<br />

moderate, fluffy aerial mycelium and lobate, even margins, reaching<br />

25 mm diam after 1 wk at 25 ºC in the dark. On MEA surface dirty<br />

white, reverse cream; red pigment absent. On PDA surface dirty<br />

white, reverse scarlet, with diffuse red pigment in agar. On OA<br />

surface scarlet in middle (due to collapsed aerial mycelium), white<br />

in outer region (due to aerial mycelium), with diffuse red pigment<br />

surrounding colony.<br />

Specimens examined: South Korea, Dongducheon, on Pilea pumila (= P.<br />

mongolica) (Urticaceae), 28 Sep. 2003, H.D. Shin, holotype <strong>CBS</strong> H-21015, culture<br />

ex-type <strong>CBS</strong> 132607 = CPC 10749; Hoengseong, on Pilea hamaoi (≡ P. pumila<br />

var. hamaoi) (Urticaceae), 10 Oct. 2003, H.D. Shin, <strong>CBS</strong> H-21016, <strong>CBS</strong> 132647 =<br />

CPC 10693; Hongcheon, on Pilea pumila (= P. mongolica), 29 Jul. 2004, H.D. Shin,<br />

CPC 11369.<br />

Notes: Cercospora pileicola is characterised by having conidiophores<br />

that are thick-walled, almost uniform in width, conically truncate at<br />

the apex, and often swelling at the base; sporulation is restricted<br />

at the terminal part of conidiophores, and conidia are cylindrical,<br />

acicular to obclavate with long obconically truncate basal ends and<br />

rather broad, 4–7 µm. Moreover, this species is phylogenetically<br />

supported by the TEF, ACT, CAL and HIS phylogenies. In the<br />

combined tree (Fig. 2 part 2), it is a sister taxon to C. mercurialis.<br />

Cercospora ganjetica (Purkayastha & Mallik 1978), described from<br />

India on Urtica urens (Urticaceae), seems to be morphologically<br />

similar to C. pileicola, above all due to relatively broad conidia,<br />

but the conidia are strictly cylindrical to obclavate with obconically<br />

truncate base, i.e. acicular conidia with truncate base are not<br />

formed. Length and width of conidiophores agree with those of C.<br />

pileicola, but they are pluriseptate (3–6). The affinity of C. ganjetica<br />

is quite unclear. Cercospora pileae (Chupp 1954) was described<br />

from China on “Pilea sp.” with conidia being olivaceous. This species<br />

is not included in the Chinese monograph of Cercospora species<br />

(Guo & Liu 2005), but Liu & Guo (1998) reduced this name to<br />

synonym with Pseudocercospora profusa, suggesting that the type<br />

host was misidentified, which was confirmed by Y.L. Guo (Beijing,<br />

in litt.). The type of C. pileae is not Pilea sp. but Acalypha australis<br />

(Euphorbiaceae). Chinese collections of Cercospora on various<br />

hosts of the Urticaceae, including Pilea spp., have been assigned<br />

to Cercospora krugeriana (= nom. inval.), which is a quite distinct<br />

C. apii-like species with narrower (2.5–5 µm), pluriseptate, acicular<br />

conidia, up to 214 µm long (Hsieh & Goh 1990, Guo & Liu 2005).<br />

In addition, the conidiophores are distinctly plurigeniculate. It is<br />

possible that the latter collections belong to the C. cf. sigesbeckiae<br />

clade as circumscribed in this study.<br />

Cercospora polygonacea Ellis & Everh., J. Mycol. 1: 24.<br />

1885.<br />

= Cercospora avicularis var. sagittati G.F. Atk., J. Elisha Mitchell Sci. Soc. 8:<br />

48. 1892.<br />

= Cercospora polygoni-caespitosi Sawada, Formosan Agric. Rev. 38: 700.<br />

1942, nom. inval.<br />

= Cercospora polygoni-blumei Sawada, nom. nud.<br />

Caespituli amphigenous. Mycelium internal. Stromata lacking to<br />

small, up to 30 µm diam, pale olivaceous-brown, intraepiderimal,<br />

substomatal. Conidiophores successively geniculate at the upper<br />

portion, pale brown, paler towards the apex, solitary or in loose<br />

fascicles (2–5), simple, thick-walled, irregular in width, narrowed<br />

after the geniculation, conically truncated at the apex, 21–100 ×<br />

5–7 µm, 0–3-septate. Conidiogenous cells integrated, terminal,<br />

intercalary, proliferating sympodially, multi-local (1–6); loci distinct,<br />

protuberant, apical and formed on shoulder caused by geniculation,<br />

lateral, 2.5–3 µm diam. Conidia solitary, hyaline, acicular to<br />

obclavate, straight or slightly curved, truncate or obconically<br />

truncate, and thickened at the base, obtuse or acute at the apex,<br />

60–110 × 3.5–5.5 µm, 4–9-septate, thin-walled, smooth.<br />

Specimen examined: South Korea, Cheongju, on Persicaria longiseta (≡ P. blumei)<br />

(Polygonaceae), 4 Jun. 2004, H.D. Shin, <strong>CBS</strong> H-21017, <strong>CBS</strong> 132614 = CPC 11318.<br />

Notes: Morphologically the Korean specimen is similar to C.<br />

polygonaeae, which Chupp (1954) also reported from Asia (Japan).<br />

Material from the USA on Polygonum (Polygonaceae) is required to<br />

resolve whether this taxon is the same or phylogenetically distinct.<br />

The species is phylogenetically distinct from the other species<br />

included in this study based on the TEF and ACT phylogenies, but<br />

indistinguishable from C. achyranthis on the HIS phylogeny and<br />

from C. achyranthis, C. sojina and C. campi-silii based on the CAL<br />

phylogeny. In the combined tree (Fig. 2 part 2), it is a sister taxon<br />

to C. achyranthis.<br />

Cercospora punctiformis Sacc. & Roum., Rev. Mycol. 3:<br />

29. 1881.<br />

= Fusicladium cynanchi Reichert, Bot. Jahrb. Syst. 56: 720. 1921.<br />

= Cercospora punctiformis f. catalaunica Gonz. Frag., Mem. Real Acad. Ci.<br />

Exact. Madrid, Ser. 2, 6: 250–252. 1927.<br />

= Cercospora cynanchi Lobik, Mat. Fl. Faun. Obsl. Tersk. Okr., Pjatigorsk: 53.<br />

1928.<br />

Leaf spots scattered to confluent, at first appearing as purplish<br />

spots, later greyish brown with purplish border lines, mostly veinlimited,<br />

but rather circular to irregular in case of humid and hot<br />

weather (esp. in rainy summer), mostly less than 7 mm diam.<br />

Caespituli amphigenous, but abundantly hypophyllous. Mycelium<br />

internal. Stromata well-developed, up to 35 µm diam, substomatal<br />

and intraepidermal, brown to dark brown. Conidiophores in<br />

fascicles (5–30), loose to moderately divergent, olivaceous-brown,<br />

fairly uniform in colour, but paler towards the apex in longer ones,<br />

simple, conically truncate at the apex, geniculate (0–4), 20–60(–<br />

150) × 4–7.5 µm, 0–3-septate. Conidiogenous cells integrated,<br />

proliferating sympodially, terminal and intercalary; loci distinctly<br />

thickened, protuberant, apical or formed on the shoulders caused<br />

by geniculation, 3–4 µm diam. Conidia solitary, hyaline, variable<br />

in shape and length, obclavato-cylindrical or elliptical, obconically<br />

truncate and thickened at the base, obtuse to subacute at the<br />

apex, 25–100(–175) × 4–6.5 µm, 0–8(–12)-septate, thin-walled,<br />

smooth.<br />

Specimen examined: South Korea, Bonghwa, on Cynanchum wilfordii<br />

(Asclepiadaceae), 18 Oct. 2007, H.D. Shin, <strong>CBS</strong> H-21018, <strong>CBS</strong> 132626 = CPC<br />

14606.<br />

Notes: The Korean sample on Cy. wilfordi is morphologically close<br />

to Cercospora punctiformis, but the latter species was described<br />

from North Africa. Hence, sequence data based on North African<br />

material are needed to confirm the conspecificity of Korean<br />

collections. The ACT and HIS phylogenies separate C. punctiformis<br />

from the other species included in this study; in the TEF and CAL<br />

phylogenies the isolate occurs on a longer branch in a clade<br />

consisting of C. sojina and C. achyranthis. In the combined tree<br />

(Fig. 2 part 2), it is a sister taxon to C. euphorbiae-sieboldianae.<br />

Cercospora cf. resedae<br />

Specimens examined: New Zealand, Auckland, C.F. Hill, on Reseda odorata<br />

(Resedaceae), specimen in HAL, <strong>CBS</strong> 118793 (as C. resedae). Romania, Bucuresti,<br />

www.studiesinmycology.org<br />

159


Groenewald et al.<br />

on Helianthemum sp. (Cistaceae), 15 Sep. 1966, O. Constantinescu, <strong>CBS</strong> 257.67 =<br />

CPC 5057 (as C. cistinearum).<br />

Notes: Both the names C. resedae and C. cistinearum are<br />

available for this clade. We give preference to C. resedae, which<br />

is the older name. However, the application of this name is very<br />

uncertain and only tentative. Fresh European collections from<br />

Reseda (Resedaceae) are needed to designate an epitype and fix<br />

the application of the name. The TEF and ACT phylogenies could<br />

not distinguish these two isolates from C. apii and C. beticola, and<br />

the CAL phylogeny could not distinguish it from C. apii. The HIS<br />

phylogeny places the two isolates in the deviating C. beticola Clade<br />

1. A combination of these phylogenetic positions explains the basal<br />

position of the species to the C. apii and C. beticola clades in the<br />

combined phylogeny (Fig. 2 part 5).<br />

Cercospora cf. richardiicola<br />

Caespituli amphigenous. Mycelium internal. Stromata<br />

intraepidermal or substomatal, lacking to well-developed, up to 55<br />

µm diam, pale brown to brown. Conidiophores solitary or in loose<br />

fascicles (2–15), simple, rarely branched, pale brown to reddish<br />

brown, paler towards the apex, moderately thick-walled, irregular in<br />

width, sometimes swelling at the shoulders caused by geniculation,<br />

truncate or short obconically truncate at the apex, straight to<br />

mildly geniculate, often narrowed with successive geniculation<br />

at the apex, sometimes swelling at the base to twice the width,<br />

30–260(–360) × 2–7 µm, multi-septate (2–11). Conidiogenous<br />

cells integrated, terminal and intercalary, proliferating sympodially,<br />

or rarely percurrently; loci apical or formed on shoulders caused<br />

by geniculation, lateral, circumspersed, distinctly thickened and<br />

darkened, often slightly protuberant, 1.5–3.5 µm diam. Conidia<br />

solitary, rarely catenate, filiform, cylindrical to acicular, hyaline,<br />

thickened and truncate or rarely short obconically truncate at the<br />

base, rounded or acute at the apex, straight or slightly curved,<br />

25–300 × 2.5–5 µm, 2–20-septate, thin-walled, smooth.<br />

Description of caespituli on V8; (MUCC 128, 132, 138, 582):<br />

Caespituli dimorphic in culture; one type is small and commonly<br />

observed, while the other is large and rarely observed (C. apii<br />

s. lat. type; described in parenthesis). Conidiophores solitary to<br />

loosely fasciculate, arising from hyphae, subhyaline to pale brown,<br />

irregular in width, smooth, meager and thin-walled, sinuousgeniculate<br />

to geniculate (straight to geniculate), sometimes<br />

branched (unbranched), truncate or conically truncate at the tip<br />

(truncate at the tip), 6.5–60(–520) × 2.5–5 µm, multi-septate.<br />

Conidiogenous cells integrated, terminal or intercalary, proliferating<br />

sympodially, 1–5 multi-local (uni-local); loci moderately thickened,<br />

apical and lateral, circumspersed at the apex of conidiogenous<br />

cells, protuberant (not protuberant), 1.25–2(–4.5) µm in width.<br />

Conidia hyaline, filiform to acicular, slightly thickened and obconical<br />

truncate (truncate) at the base, acute at the apex, 27.5–277.5 ×<br />

2–3.5(–6.5) µm, 3–21-septate.<br />

Specimens examined: Japan, Chiba, on Zantedeschia sp. (Araceae), S. Uematsu<br />

& C. Nakashima, MUMH 11403, MUCC 578 = MAFF 238210; Ehime, on Tagetes<br />

erecta (Asteraceae), 27 Oct. 2004, J. Nishikawa, MUMH 11392, MUCC 128;<br />

Shizuoka, on Fuchsia ×hybrida (Onagraceae), 22 Jun. 2006, J. Nishikawa,<br />

MUMH 11396, MUCC 138; on Osteospermum sp. (Asteraceae), 11 Sep. 2004, J.<br />

Nishikawa, MUMH 11395, MUCC 132; Tokyo, on Gerbera hybrida (Asteraceae), J.<br />

Takeuchi, MUCC 582 = MAFF 238880.<br />

Notes: The name Cercospora cf. richardiicola can be applied to this<br />

clade only tentatively. The latter species was described from the<br />

USA. Hence, sequences obtained from North American collections<br />

are necessary to confirm the identity with true C. richardiicola. All<br />

clades within this complex (C. cf. richardiicola, C. kikuchii, C. cf.<br />

sigesbeckiae) are poorly resolved on TEF, ACT, CAL, and HIS<br />

regions. The TEF and HIS phylogenies could not distinguish it from<br />

Cercospora spp. M–Q, C. kikuchii and C. cf. sigesbeckiae. The<br />

ACT phylogeny split it into three clades, namely isolates MUCC<br />

128, 132 and 578 intermixed with C. malloti and Cercospora sp. P,<br />

isolates MUCC 138 and 582 sister to Cercospora sp. N and isolate<br />

CPC 14680 intermixed with C. kikuchii and Cercospora sp. O. The<br />

CAL phylogeny could not distinguish the isolates from C. rodmanii,<br />

C. cf. sigesbeckiae and Cercospora sp. N. Currently this complex is<br />

split into three sister clades (Fig. 2 part 4), which could be due to a<br />

common ancestor, and an ongoing process of speciation.<br />

Cercospora richardiicola is characterised in that conidiophores<br />

are sometimes swelling at the shoulders caused by geniculation,<br />

truncate or short obconically truncate at the apex, often narrowed<br />

(not attenuated) successive geniculation at the apex, and<br />

sometimes swelling at the base up to twice its median width;<br />

and loci on conidiogenous cells are circumspersed and distinctly<br />

thickened. These characteristics were sometimes difficult to find<br />

on the host plant due to the difference of maturity of the fungus.<br />

However, the morphological characteristics of this species on V8<br />

medium were well preserved regardless of differences of host and<br />

maturity.<br />

Isolates of C. richardiicola have a tendency to infect a wide host<br />

range. Isolates are frequently found together with other Cercospora<br />

spp. on the same leaf spots, which make identification problematic.<br />

Cercospora ricinella Sacc. & Berl., Atti Reale Ist. Ven. Sci.<br />

Lett. Art, Ser. 3: 721. 1885.<br />

≡ Cercosporina ricinella (Sacc. & Berl.) Speg., Anales Mus. Nac. Hist. Nat.<br />

Buenos Aires 20: 429. 1910.<br />

= Cercospora albido-maculans G. Winter, Hedwigia 24: 202, 1885 (also in J.<br />

Mycol. 1: 124. 1885).<br />

= Cercospora ricini Speg. Anales Mus. Nac. Hist. Nat. Buenos Aires Ser. 2. 3:<br />

343. 1899.<br />

Leaf spots circular to angular, 1–10 mm diam, first appearing as<br />

brown spots, later centre becoming greyish white with reddish<br />

brown border lines. Caespituli amphigenous, mainly hypophyllous.<br />

Mycelium internal. Stromata lacking to well-developed, pale brown<br />

to brown, substomatal or intraepidermal, 14–50 µm. Conidiophores<br />

pale brown, paler towards apex, sinuous-geniculate to geniculate<br />

above the middle, in loose fascicles (2–14), slightly divergent,<br />

irregular in width, slightly attenuated at the apex, conical at the<br />

tip, sometimes constricted at proliferating point, 35–140 × 4.5–5.5<br />

µm, 2–4-septate. Conidiogenous cells integrated, terminal and<br />

intercalary, proliferating sympodially; multi-local at the apex, loci<br />

distinct, slightly protuberant, mainly apical, lateral, 2–3 µm diam.<br />

Conidia solitary, rarely catenate, hyaline, cylindrical to cylindroobclavate,<br />

acicular, obconically truncate or truncate and distinctly<br />

thickened at the base, acute to subacute at the apex, 20–130 ×<br />

2.5–5.5 µm, 1–8-septate, thin-walled, smooth.<br />

Specimens examined: South Korea, Chuncheon, on Ricinus communis<br />

(Euphorbiaceae), 11 Oct. 2002, H.D. Shin, CPC 10104; 7 Oct. 2003, H.D. Shin,<br />

<strong>CBS</strong> 132605 = CPC 10734; CPC 10735–10736.<br />

Notes: This species is characterised in that the conidiophores are<br />

slightly attenuated at the apex, sinuous-geniculate to geniculate<br />

above the middle, and the conidia are rarely catenate. It is supported<br />

by ACT, CAL and HIS. In the TEF phylogeny it could not be<br />

160


Species concepts in Cercospora<br />

distinguished from C. delaireae, C. cf. chenopodii and Cercospora<br />

sp. K. In the combined tree (Fig. 2 part 2), it is a sister taxon to C.<br />

delaireae. Epitype material should be collected in Australia, where<br />

this species was described from.<br />

Cercospora rodmanii Conway, Canad. J. Bot. 54: 1082.<br />

1976.<br />

Specimens examined: Brazil, Oroco, on Eichhornia crassipes (Pontederiaceae), R.<br />

Charudattan, <strong>CBS</strong> 113126 = RC3409; Rio Verde, on E. crassipes, R. Charudattan,<br />

<strong>CBS</strong> 113123 = RC3660. Mexico, Carretero, on E. crassipes, R. Charudattan, <strong>CBS</strong><br />

113124 = RC2867. USA, Florida, on E. crassipes, R. Charudattan, <strong>CBS</strong> 113128<br />

= RC394; <strong>CBS</strong> 113130 = RC393; K. Conway, <strong>CBS</strong> 113129 = RC397. Venezuela,<br />

Maracay, on E. crassipes, R. Charudattan, <strong>CBS</strong> 113131 = RC395. Zambia, on E.<br />

crassipes, M. Morris, <strong>CBS</strong> 113125 = RC4101.<br />

Notes: Cercospora rodmanii is supported in the TEF phylogeny.<br />

In the ACT phylogeny, the clade includes on longer branches<br />

also C. cf. ipomoeae and Cercospora sp. M. and in the CAL<br />

phylogeny it was intermixed with isolates of C. cf. richardiicola,<br />

C. cf. sigesbeckiae and Cercospora sp. N. In the HIS phylogeny,<br />

it could not be distinguished from Cercospora spp. N–Q. In the<br />

combined tree (Fig. 2 part 4), it is a sister taxon to Cercospora sp.<br />

N. Tessmann et al. (2001) considered C. rodmanii to be a synonym<br />

of C. piaropi whereas Crous & Braun (2003) retained C. rodmanii as<br />

a separate species. From the results of the present study, we prefer<br />

to retain these as two separate species as reported previously<br />

(Groenewald et al. 2010a, Montenegro-Calderón et al. 2011). The<br />

isolate originally included as C. piaropi in this study (<strong>CBS</strong> 113127)<br />

is treated in the present study under C. cf. flagellaris; this isolate is<br />

also the same isolate used by Tessmann et al. (2001). Montenegro-<br />

Calderón et al. (2011) confirmed the identity of their isolates<br />

with the same genes included here, as well as beta-tubulin, and<br />

demonstrated that their isolates of C. rodmanii were able to also<br />

infect other important crops such as beet and sugar beet whereas<br />

C. piaropi (treated under C. cf. flagellaris in this study) isolate <strong>CBS</strong><br />

113127 and C. rodmanii isolate <strong>CBS</strong> 113129 were specific to water<br />

hyacinth.<br />

Cercospora rumicis Pavgi & U.P. Singh, Mycopathol. Mycol.<br />

Appl. 23: 191. 1964.<br />

= Cercospora rumicis Ellis & Langl. ex Chupp, A monograph of the fungus<br />

genus Cercospora: 453. 1954, nom. inval.<br />

Specimen examined: New Zealand, Manurewa, on Rumex sanguineus<br />

(Polygonaceae), C.F. Hill, Lynfield 671, CPC 5439.<br />

Notes: Cercospora rumicis was treated as part of the larger C. apii<br />

s. lat. complex by Crous & Braun (2003). Although it clusters basal<br />

to the C. zebrina clade, we suspect that it may represent a distinct<br />

taxon. Fresh collections are required from India to fix the application<br />

of this name. In the TEF phylogeny, it is not distinguished from C.<br />

zebrina and C. armoraciae, and likewise not from C. armoraciae on<br />

the ACT phylogeny. In the CAL phylogeny, it is not distinguished<br />

from C. zebrina and C. althaeina. It is distinct from all species<br />

included in this study based on the HIS phylogeny. In the combined<br />

tree (Fig. 2 part 3), it is basal to the lineage containing Cercospora<br />

sp. L, C. althaeina, C. zebrina and C. violae.<br />

Cercospora senecionis-walkeri Phengsintham,<br />

Chukeatirote, McKenzie, K.D. Hyde & U. Braun, Pl. Pathol. &<br />

Quarantine 2(1): 70. 2012.<br />

Specimen examined: Laos, on Senecio walkeri (Asteraceae), 20 Feb. 2010,<br />

P. Phengsintham, LC 0396, NUOL P567, <strong>CBS</strong> 132636 = CPC 19196.<br />

Notes: Several Cercospora species have been described from<br />

Senecio (Asteraceae), but all of them are quite distinct from the<br />

species on S. walkeri. Cercospora senecionis was reduced to<br />

synonym with C. jacquiniana by Chupp (1954). Based on a reexamination<br />

of type material, Braun (in Braun & Mel’nik 1997)<br />

showed that C. senecionis represents a quite distinct true species<br />

of Cercospora with acicular conidia, similar to those of C. apii s. lat.,<br />

but 80–200 × 3–6 µm in size. Cercospora jaquiniana is similar to<br />

C. senecionis-walkeri (Pheng et al. 2012) with regard to its conidial<br />

shape, but has much shorter conidiophores and shorter conidia,<br />

usually only 1–3-sepate, which are hyaline, subhyaline to faintly<br />

pigmented. Thus, this species was reallocated to Passalora by<br />

Braun (in Braun & Mel’nik 1997). The Indian taxon C. senecionisgrahamii<br />

is close to C. senecionis, but differs in having acicular<br />

to obclavate conidia, only 3–4 µm wide. The North American C.<br />

senecionicola is also quite distinct from C. senecionis-walkeri by<br />

its very narrow acicular-subcylindrical conidia, only 2–3.5 µm<br />

wide (Chupp 1954). The South American Passalora senecionicola<br />

(Braun et al. 2006) on Senecio bonariensis (Asteraceae) in<br />

Argentina is morphologically very close to C. senecionis-walkeri<br />

but characterised by having quite distinct lesions, larger stromata,<br />

up to 60 µm diam and short conidia that are cylindrical. Passalora<br />

senecionicola was assigned to Passalora due to subhyaline to pale<br />

olivaceous conidia, but it is possible that this species rather belongs<br />

in Cercospora which may be suggested by the phylogenetic position<br />

of C. senecionis-walkeri, which clusters within the Cercospora<br />

clade, although the conidia range from being almost hyaline to<br />

somewhat pigmented. Cercospora senecionis-walkeri is distinct<br />

from all other species included in this study based on the TEF, ACT,<br />

CAL and HIS phylogenies. In the combined tree (Fig. 2 part 1), it is<br />

basal to the other Cercospora spp.<br />

Cercospora cf. sigesbeckiae<br />

Morphologically similar to taxa in the C. apii s. lat. complex.<br />

Specimens examined: Japan, Chiba, on Begonia sp. (Begoniaceae), 24 Jun. 1997,<br />

S. Uematsu, MUMH 11405, MUCC 587 = MAFF 237690 = MUCNS 197; Fukuoka,<br />

on Sigesbeckia glabescens (Asteraceae), 31 Oct. 1948, S. Katsuki, holotype in<br />

TNS; Saitama, on Glycine max, 1949, H. Kurata, MUCC 589 = MAFF 305039 (as<br />

C. kikuchii); Tokyo, on Dioscorea tokoro (Dioscoreaceae), 10 Nov. 2007, I. Araki,<br />

MUMH 10951, MUCC 849. South Korea, Chuncheon, on S. glabrescens, 7 Oct.<br />

2003, H.D. Shin, <strong>CBS</strong> H-21019, <strong>CBS</strong> 132601 = CPC 10664 (as C. sigesbeckiae);<br />

on Persicaria orientalis (= P. cochinchinensis) (Polygonaceae), 11 Oct. 2002,<br />

H.D. Shin, <strong>CBS</strong> 132641 = CPC 10117 (as C. polygonacea); Hongcheon, on Pilea<br />

pumila (= P. mongolica), 3 Oct. 2002, H.D. Shin, <strong>CBS</strong> 132642 = CPC 10128 (as C.<br />

ganjetica); Namyangju, on Paulownia coreana (Scrophulariaceae), 22 Oct. 2003,<br />

H.D. Shin, <strong>CBS</strong> H-21020 = HAL 1863, <strong>CBS</strong> 132606 = CPC 10740; Yanggu, on<br />

Sigesbeckia pubescens, 28 Sep. 2007, H.D. Shin, <strong>CBS</strong> 132621 = CPC 14489 (as<br />

C. sigesbeckiae); on Malva verticillata (Malvaceae), H.D. Shin, <strong>CBS</strong> H-21021, <strong>CBS</strong><br />

132675 = CPC 14726 (as C. malvacearum).<br />

Notes: See Cercospora cf. richardiicola. The application of the<br />

name C. cf. sigesbeckiae (based on type material from Japan), to<br />

this clade can only be tentative. Japanese cultures and sequences<br />

are needed to confirm its identity. In the TEF and CAL phylogenies,<br />

isolates are intermixed with those of Cercospora spp. M–Q, C.<br />

kikuchii and C. cf. richardiicola; in the ACT phylogeny it cannot be<br />

distinguished from C. fagopyri. In the HIS phylogeny the isolates<br />

form a clade on a longer branch in a clade containing C. kikuchii<br />

and some isolates of C. cf. richardiicola. In the combined tree (Fig.<br />

2 part 4), it is a sister taxon to C. kikuchii and C. cf. richardiicola.<br />

www.studiesinmycology.org<br />

161


Groenewald et al.<br />

Cercospora sojina Hara, Nogyokoku (Tokyo) 9: 28. 1915.<br />

≡ Cercosporina sojina (Hara) Hara, Jitsuyo-sakumotsu-byorigaku: 112.<br />

1925.<br />

≡ Cercosporidium sojinum (Hara) X.J. Liu & Y.L. Guo, Acta Mycol. Sinica<br />

1: 100. 1982.<br />

≡ Passalora sojina (Hara) Poonam Srivast., J. Living World 1: 118. 1994,<br />

comb. inval.<br />

≡ Passalora sojina (Hara) H.D. Shin & U. Braun, Mycotaxon 58: 63. 1996.<br />

≡ Passalora sojina (Hara) U. Braun, Trudy Bot. Inst. im. V.L. Komarova 20:<br />

93. 1997, comb. superfl.<br />

= Cercospora daizu Miura, Manchurian R.R. Agric. Exp. Stat. Bull. 11: 25.<br />

1920.<br />

Caespituli amphigenous. Mycelium internal. Stromata small, up to<br />

35 µm diam, intraepidermal and substomatal, brown. Conidiophores<br />

solitary or in loose fascicles (2–5), brown, paler towards the apex,<br />

simple, rarely branched, irregular in width, constricted at the parts<br />

of proliferation, conically truncate at the apex, straight to geniculate,<br />

55–200 × 4.5–5 µm, 2–4-septate. Conidiogenous cells integrated,<br />

proliferating sympodially, terminal and intercalary, uni- or multi-local<br />

(1–2); loci distinctly thickened, protuberant, apical or formed on the<br />

shoulders caused by geniculation, 2–4 µm diam. Conidia solitary,<br />

hyaline, cylindrical to obclavate, fusiform, obovoid, obconically<br />

truncate and thickened at the base, obtuse at the apex, 25–70 ×<br />

5.5–9 µm, 1–5-septate, thin-walled, smooth.<br />

Specimens examined: Argentina, on Glycine max (Fabaceae), 2009, F. Scandiani,<br />

CPC 17964 = <strong>CBS</strong> 132684 = CPC 17971 = “CCC 173-09, 09-495”; “CCC 155-09,<br />

09-285-5”; CPC 17965 = “CCC 156-09, 09-285-4”; CPC 17966 = “CCC 157-09,<br />

09-285-3”; CPC 17967 = “CCC 158-09, 09-285-1”; CPC 17968 = “CCC 159-09,<br />

09-285-7”; CPC 17969 = “CCC 167-09, 09-881”; CPC 17970 = “CCC 172-09, 09-<br />

320”; CPC 17972 = CCC 174-09; CPC 17973 = “CCC 176-09, 09-882”; CPC 17974<br />

= “CCC 177-09, 09-2488-1”; CPC 17975 = “CCC 178-09, 09-1438-2”; CPC 17976<br />

= “CCC 179-09, 09-2591”; CPC 17977 = “CCC 180-09, 09-2520”. South Korea,<br />

Hoengseong, on G. soja, 4 Sep. 2005, H.D. Shin, <strong>CBS</strong> 132018 = CPC 12322;<br />

Hongcheon, on G. soja, 20 Jul. 2004, H.D. Shin, neotype designated here <strong>CBS</strong><br />

H-21022, culture ex-type <strong>CBS</strong> 132615 = CPC 11353; CPC 11354; CPC 11420–<br />

11423.<br />

Notes: Type material of this species (Japan, Tokyo, on G. max,<br />

1909, K. Hara) was not located and is probably lost. Cercospora<br />

sojina was transferred to the genus Passalora based on its distinctly<br />

thickened loci, and cylindrical and relatively wide conidia (Shin<br />

& Braun 1996). However, the hyaline conidia of this species are<br />

indicative of the fact that it is best retained in Cercospora (Crous &<br />

Braun 2003), which is fully supported by its position in phylogenetic<br />

trees among other Cercospora species. The species is supported<br />

as distinct based on the ACT and HIS phylogenies; in the TEF and<br />

CAL phylogenies the isolates of C. achyranthis and C. campi-silii<br />

are intermixed with the C. sojina isolates. In the combined tree (Fig.<br />

2 part 2), it is a sister taxon to C. campi-silii.<br />

Cercospora sp. A<br />

Culture sequenced: Mexico, on Chenopodium sp. (Amaranthaceae),<br />

M. de Jesus Yanez, <strong>CBS</strong> 132631 = CPC 15872.<br />

Notes: This isolate is phylogenetically distinct (Fig. 2 part 1) from<br />

the other species included in this study. Unfortunately, the specimen<br />

and specimen details were not available for study.<br />

Cercospora sp. B<br />

Caespituli amphigenous. Mycelium internal. Stromata lacking<br />

to developed, up to 60 µm, intraepidemal, substomatal, brown.<br />

Conidiophores straight or geniculate, solitary to 2–21 in dense<br />

fascicle, 0–5-septate, 20–75 × 4.5–6 µm, almost uniform in width,<br />

constricted at shoulder, conically truncate or truncate at the tip.<br />

Conidiogenous cells integrated, terminal, intercalary, proliferating<br />

sympodially, multilocal; loci thickened, apical, rarely lateral, 2–2.5<br />

µm diam, slightly protuberant. Conidia solitary, hyaline, cylindroobclavate<br />

to acicular, obconically truncate at thickened base, tip<br />

obtuse, 45–135 × 4–5 µm, 4–9-septate, thin-walled, smooth.<br />

Specimen examined: South Korea, Kangnung, on Ipomoea purpurea<br />

(Convolvulaceae), 10 Sep. 2003, H.D. Shin, <strong>CBS</strong> 132602 = CPC 10687 (as C.<br />

ipomoeae); CPC 10688–10689 (as C. ipomoeae).<br />

Notes: This isolate was obtained from Ipomoea in Korea, but differs<br />

in its phylogeny to other isolates of C. cf. ipomoeae. It has a unique<br />

position in the ACT, CAL and HIS phylogenies and is intermixed with<br />

C. delaireae and Cercospora sp. K based on the TEF phylogeny. In<br />

the combined tree (Fig. 2 part 1), it is a basal taxon to C. agavicola.<br />

Several species of Cercospora have thus far been described from<br />

Ipomoea, and more collections would be required to resolve the<br />

status of this collection.<br />

Cercospora sp. C<br />

Culture sequenced: Mexico, M. de Jesus Yanez, <strong>CBS</strong> 132629 =<br />

CPC 15841.<br />

Notes: This isolate is phylogenetically distinct (Fig. 2 part 1) from<br />

the other species included in this study. Unfortunately, the specimen<br />

and specimen details were not available for study.<br />

Cercospora sp. D<br />

Culture sequenced: Mexico, M. de Jesus Yanez, <strong>CBS</strong> 132630 =<br />

CPC 15856.<br />

Notes: This isolate is phylogenetically distinct (Fig. 2 part 1) from<br />

the other species included in this study. Unfortunately, the specimen<br />

and specimen details were not available for study.<br />

Cercospora sp. E<br />

Cultures sequenced: Mexico, M. de Jesus Yanez, <strong>CBS</strong> 132628 =<br />

CPC 15632, CPC 15801.<br />

Notes: These isolates are phylogenetically distinct (Fig. 2 part 1)<br />

from the other species included in this study. Unfortunately, the<br />

specimen(s) and specimen details were not available for study.<br />

Cercospora sp. F<br />

Specimen examined: South Africa, on Zea mays (Poaceae), P. Caldwell, <strong>CBS</strong><br />

132618 = CPC 12062.<br />

Notes: This isolate, which is supported by the CAL phylogeny,<br />

must be treated as an independent species. In the TEF and<br />

HIS phylogenies it is present on a longer branch in a clade<br />

consisting of isolates of Cercospora spp. G–I, C. alchemillicola<br />

/ C. cf. alchemillicola, C. cf. physalidis and C. celosiae. In the<br />

ACT phylogeny it cannot be distinguished from Cercospora sp.<br />

Q. In the combined tree (Fig. 2 part 1), it is a sister taxon to<br />

C. cf. physalidis.<br />

162


Species concepts in Cercospora<br />

Cercospora sp. G<br />

Caespituli amphigenous. Mycelium internal. Stromata small to<br />

well-developed, up to 60 µm diam, brown, intraepidermal and<br />

substomatal. Conidiophores straight or sinuously geniculate,<br />

loosely fasciculate (3–10), pale brown to brown, paler towards the<br />

apex, moderately thick-walled, simple, irregular in width, attenuated<br />

at the apex, irregularly constricted following the proliferation, 30–<br />

50 × 3.5–4.5 µm, 0–2-septate. Conidiogenous cells integrated,<br />

terminal, rarely intercalary, proliferating sympodially, multi-local;<br />

loci thickened, darkened, apical or formed on the shoulders caused<br />

by geniculation, lateral, sometimes circumspersed, 1.25–2 µm<br />

in diam. Conidia solitary, hyaline, cylindrical to obclavate, often<br />

acicular, straight or slightly curved, truncate or subtruncate at the<br />

thickened base, obtuse or subacute at the apex, 15–165 × 2–4 µm,<br />

1–12-septate, thin-walled, smooth.<br />

Specimen examined: New Zealand, Manurewa, on Salvia viscosa (Lamiaceae),<br />

C.F. Hill, Lynfield 626, CPC 5438 (as C. salviicola); Kopuku, on Bidens frondosa<br />

(Asteraceae), C.F. Hill, Lynfield 559, <strong>CBS</strong> 115518 = CPC 5360.<br />

Notes: This species is thus far only known from New Zealand. It<br />

is distinct from the other included species based on its position<br />

in the HIS phylogeny; in the TEF and ACT phylogenies it cannot<br />

be distinguished from Cercospora spp. F, H and I as well as C.<br />

alchemillicola / C. cf. alchemillicola, C. cf. physalidis and C.<br />

celosiae. In the CAL phylogeny it forms a distinct clade that cannot<br />

be distinguished from Cercospora sp. H. In the combined tree (Fig.<br />

2 part 1), it is a sister taxon to Cercospora sp. H.<br />

Cercospora sp. H<br />

Specimens examined: Argentina, on Chamelaucium uncinatum (Myrtaceae), S.<br />

Wolcan, CPC 11620 = 1CRI. New Zealand, on Dichondra repens (Convolvulaceae),<br />

C.F. Hill, Lynfield 536, <strong>CBS</strong> 115205 = CPC 5116.<br />

Notes: This species is distinct from the other included species<br />

based on its position in the HIS phylogeny; in the TEF and ACT<br />

phylogenies it cannot be distinguished from Cercospora spp. F,<br />

G and I as well as C. alchemillicola / C. cf. alchemillicola, C. cf.<br />

physalidis and C. celosiae. In the CAL phylogeny it forms a distinct<br />

clade that cannot be distinguished from Cercospora sp. G. Whether<br />

Cercospora spp. G and H could be conspecific awaits collection<br />

of more isolates. In the combined tree (Fig. 2 part 1), it is a sister<br />

taxon to C. celosiae and Cercospora sp. I.<br />

Cercospora sp. I<br />

? Cercospora deutziae Ellis & Everh., J. Mycol. 4: 5. 1888.<br />

? Cercospora guatemalensis A.S. Mull. & Chupp, Ceiba 1: 173. 1950.<br />

Specimens examined: South Korea, Suwon, on Ajuga multiflora (Lamiaceae),<br />

22 Oct. 2002, H.D. Shin, <strong>CBS</strong> 132643 = CPC 10138 (as C. guatemalensis).<br />

New Zealand, Manurewa, on Coreopsis verticillata (Asteraceae), 2 Jun. 2003,<br />

C.F. Hill, Lynfield 866A, <strong>CBS</strong> 132597 = CPC 10615; Lynfield 866B, CPC 10616;<br />

on Deutzia crenata (Hydrangeaceae), 5 May 2002, C.F. Hill, Lynfield 610,<br />

<strong>CBS</strong> 114818 = CPC 5362 (named as C. deutziae); on Deutzia purpurascens<br />

(Hydrangeaceae), 5 May 2002, C.F. Hill, Lynfield 607, <strong>CBS</strong> 114815 = CPC<br />

5364 (named as C. deutziae); on Deutzia ×rosea (= D. gracilis × purpurascens)<br />

(Hydrangeaceae), Apr. 2002, C.F. Hill, Lynfield 599, <strong>CBS</strong> 114816 = CPC 5363<br />

(named as C. deutziae); on Fuchsia procumbens (Onagraceae), 5 May 2002,<br />

C.F. Hill, Lynfield 613, <strong>CBS</strong> 114817 = CPC 5365 (named as C. fuchsia); on<br />

Nicotiana sp. (Solanaceae), 8 Jun. 2002, C.F. Hill, Lynfield 667, CPC 5440;<br />

Mt Albert, on Gunnera tinctoria (Gunneraceae), 29 Feb. 2004, C.F. Hill,<br />

Lynfield 997, <strong>CBS</strong> 115121; Whangarei, on Archontophoenix cunninghamiana<br />

(Arecaceae), 10 Feb. 2004, C.F. Hill, <strong>CBS</strong> 115117.<br />

Notes: This clade is quite distinct based on the combined tree<br />

(Fig. 2 part 1), and mainly consists of isolates from various<br />

host plants in New Zealand. In the TEF and ACT phylogenies it<br />

cannot be distinguished from Cercospora spp. F, G and H as well<br />

as C. alchemillicola / C. cf. alchemillicola, C. cf. physalidis and<br />

C. celosiae. In the CAL phylogeny it forms a distinct clade that<br />

cannot be distinguished from the single isolate of C. celosiae. In<br />

the HIS phylogeny it cannot be distinguished from Cercospora sp.<br />

F, C. alchemillicola / C. cf. alchemillicola and C. celosiae. In the<br />

combined tree (Fig. 2 part 1), it is a sister taxon to C. celosiae and<br />

Cercospora sp. H. Most of the Cercospora sp. I isolates from New<br />

Zealand would be given a species epithet based on each host plant,<br />

if these were classified with a conventional species concept. From<br />

the results of the phylogenetic tree, these isolates are recognised<br />

as belonging to a single species with a wide host range. Braun &<br />

Hill (2004) examined the collections on Co. verticillata, D. crenata,<br />

D. purpurascens, D. × rosea, F. procumbens, Nicotiana sp., and<br />

Braun et al. (2006) studied the samples on A. cunninghamiana<br />

and G. tinctoria. They referred all of them to C. api s. lat. as<br />

circumscribed in Crous & Braun (2003) as they are characterised<br />

by having hyaline acicular conidia formed singly, i.e. the present<br />

unnamed species is a C. apii-like plurivorous species.<br />

Cercospora sp. J<br />

Culture sequenced: Japan, Aichi, on Antirrhinum majus<br />

(Plantaginaceae), 8 May 2007, M. Matsusaki, MUMH10490,<br />

MUCC 541.<br />

Notes: This isolate is phylogenetically distinct (Fig. 2 part 2) from<br />

the other species included in this study. Unfortunately, the specimen<br />

was not available for study.<br />

Cercospora sp. K<br />

Caespituli amphigenous. Mycelium internal. Stromata lacking or<br />

composed of a few brown cells. Conidiophores emerging through<br />

the cuticle or arising from stomatal openings, pale brown, paler<br />

towards the apex, almost uniform in width, sometimes narrowed<br />

at the apex following the sympodial proliferation, often constricted<br />

at septa and proliferating points, solitary or 2–3 in a loose fascicle,<br />

straight or slightly curved to sinuously geniculate, moderately thickwalled,<br />

0–5-septate, 30–110 × 3.5–5 μm, truncate or conically<br />

truncate at the apex. Conidiogenous cells terminal, rarely intercalary,<br />

proliferating sympodially; loci slightly thickened, slightly protuberant<br />

(subtruncate) or flat, refractive, apical and lateral, 1.5–2.5 μm in<br />

diam. Conidia solitary, hyaline, filiform to acicular or obclavate,<br />

straight to slightly curved, truncate or obconically truncate at the<br />

slightly thickened at the basal end, acute at the apex, indistinctly or<br />

distinctly 1–14-septate, 35–230 × 1.5–5 μm, thin-walled, smooth.<br />

Specimens examined: South Korea, Namyangju, on Ipomoea coccinea (≡<br />

Quamoclit coccinea) (Convolvulaceae), 9 Oct. 2002, H.D. Shin, CPC 12391; 30<br />

Sep. 2003, H.D. Shin, <strong>CBS</strong> 132603 = CPC 10719; 15 Oct. 2005, H.D. Shin, CPC<br />

10094.<br />

Notes: This species is phylogenetically supported based on DNA<br />

sequence data of ACT, CAL and HIS. In the TEF phylogeny,<br />

these isolates cannot be distinguished from C. ricinella, C. cf.<br />

chenopodii and C. delaireae. In the combined tree (Fig. 2 part<br />

2), it is a sister taxon to C. cf. flagellaris. Different species of<br />

Cercospora have been described from Ipomoea spp. Cercospora<br />

www.studiesinmycology.org<br />

163


Groenewald et al.<br />

ipomoeae-pedis-caprae was previously treated as a synonym of<br />

C. ipomoeae (Bagyanarayana et al. 1995, Shin & Kim 2001), since<br />

the length of the conidiophores and conidia in the latter species<br />

is variable. Braun et al. (2001) pointed out the differences among<br />

the Cercospora species on Ipomoea spp. based on the description<br />

of these species by García et al. (1996), and proposed that C.<br />

ipomoeae-pedis-caprae must be retained as a separate species.<br />

However, Cercospora isolates on Ipomoea cluster in three different<br />

places in the tree, and thus this complex remains unresolved and<br />

without epitypification the application of the names C. ipomoeae<br />

and C. ipomoeae-pedis-caprae remains unclear.<br />

Cercospora sp. L<br />

Specimen examined: New Zealand, on Crepis capillaris (Asteraceae), C.F. Hill,<br />

Lynfield 534, <strong>CBS</strong> 115477 = CPC 5114.<br />

Notes: In vivo material on Crepis capillaris from New Zealand<br />

collected by C.F. Hill, Auckland, 9 Jul. 2000, deposited at HAL has<br />

been examined and is characterised as follows: Conidiophores<br />

solitary or in small, loose fascicles, straight to usually geniculatesinuous,<br />

unbranched, 20–100 × 3–6 µm, usually 1–4-septate,<br />

pale olivaceous throughout or olivaceous-brown below and paler<br />

towards the tip; conidiogenous cells integrated, usually terminal,<br />

sympodial, multi-local; conidiogenous loci 2–3 µm diam, thickened<br />

and darkened; conidia solitary, acicular, short conidia occasionally<br />

subcylindrical, straight curved to somewhat sigmoid, 60–170 ×<br />

3–4 µm, pluriseptate, apex subacute or subobtuse, base truncate,<br />

occasionally slighty attenuated at the very base (at hilum), hila 2–3<br />

µm wide. The application of the name Cercospora crepidis Onděj &<br />

Zavrěl, described from Europe (Czech Republic) on Crepis capillaris,<br />

for the fungus from New Zealand is not possible. The latter species is<br />

characterised by having obclavate conidia with distinctly obconically<br />

truncate base and short, aseptate conidiophores, only 14–22 µm<br />

long (Ondřej & Zavrěl 1971). In the TEF and CAL phylogeny this<br />

isolate clusters with C. zebrina and C. armoraciae and on a longer<br />

branch in the C. zebrina clade in the ACT phylogeny. It is only in the<br />

HIS phylogeny that this isolate is clearly distinct, clustering as sister<br />

taxon to C. delaireae. In the combined tree (Fig. 2 part 3), it is a sister<br />

taxon to C. althaeina and C. zebrina.<br />

Cercospora sp. M<br />

Specimen examined: Thailand, Chachoengsao Province, Sanamchaikhet, on<br />

leaves of Acacia mangium (Fabaceae), 28 May 2003, K. Pongpanich, <strong>CBS</strong> H-9876,<br />

<strong>CBS</strong> 132596 = CPC 10553.<br />

Notes: Crous et al. (2004b) isolated several species of Cercospora<br />

from A. mangium in Thailand, some of which were linked to single<br />

ascospore isolates of a mycosphaerella-like telemorph (see Crous<br />

et al. 2004b, fig. 5). Isolate CPC 10553 (=<strong>CBS</strong> 132596) occurred<br />

on the same leaf spots with C. acaciae-mangii (<strong>CBS</strong> 116365 =<br />

CPC 10526), which is here treated under Cercospora sp. P. The<br />

TEF phylogeny could not distinguish it from Cercospora spp. N–Q,<br />

C. kikuchii and C. cf. sigesbeckiae, whereas the HIS phylogeny<br />

could not distinguish it from some isolates of Cercospora spp.<br />

P and Q. The ACT phylogeny places it on a longer branch with<br />

C. rodmanii and C. cf. ipomoeae. The CAL phylogeny could not<br />

distinguish it from Cercospora spp. P and Q, C. alchemillicola / C.<br />

cf. alchemillicola and C. cf. sigesbeckiae. In the combined tree (Fig.<br />

2 part 4), it is basal to the lineage containing C. rodmanii and other<br />

species.<br />

Cercospora sp. N<br />

Specimen examined: Bangladesh (western part), on Musa sp. (Musaceae), I.<br />

Buddenhagen, <strong>CBS</strong> 132619 = CPC 12684 (named as C. hayi).<br />

Notes: Cercospora sp. N has shorter conidiophores than ascribed<br />

to C. hayi, which was described from Musa in Cuba. It is evident<br />

that a complex of Cercospora spp. occur on banana. The TEF<br />

phylogeny could not distinguish it from Cercospora spp. O–Q, C.<br />

kikuchii and C. cf. sigesbeckiae, whereas the HIS phylogeny could<br />

not distinguish it from some isolates of Cercospora spp. P and Q<br />

and C. rodmanii. The CAL phylogeny could not distinguish it from<br />

C. rodmanii, C. cf. richardiicola and C. cf. sigesbeckiae. The ACT<br />

phylogeny distinguishes it from the other species included in this<br />

study. In the combined tree (Fig. 2 part 4), it is a sister taxon to C.<br />

cf. richardiicola and C. kikuchii.<br />

Cercospora sp. O<br />

Specimen examined: Thailand, Chiang Mai, Mae Klang Loung, N18º32.465’<br />

E98º32.874’, on Musa sp. (Musaceae), 6 Oct. 2010, P.W. Crous, <strong>CBS</strong> 132635 =<br />

CPC 18636 (named as C. hayi).<br />

Notes: Based on its shorter conidophores, Cercospora sp. O<br />

is distinct from C. hayi, and morphologically is more similar to<br />

Cercospora sp. N. The TEF phylogeny could not distinguish it from<br />

Cercospora spp. M, N and Q, C. kikuchii and C. cf. sigesbeckiae,<br />

whereas the HIS phylogeny could not distinguish it from some<br />

isolates of Cercospora spp. N, P and Q and C. rodmanii. The CAL<br />

phylogeny could not distinguish it from Cercospora spp. P and Q,<br />

C. alchemillicola / C. cf. alchemillicola and C. cf. sigesbeckiae and<br />

the ACT phylogeny from C. kikuchii. In the combined tree (Fig. 2<br />

part 4), it is a sister taxon to C. cf. malloti.<br />

Cercospora sp. P<br />

Specimens examined: Ghana, on leaves of Dioscorea rotundata (Dioscoreaceae),<br />

2000, S. Nyako & A.O. Danquah, <strong>CBS</strong> 132660 = CPC 11629 = GHA-4-0; CPC<br />

11630 = GHA-4-3; CPC 11631 = GHA-5-0; CPC 11632 = GHA-7-4; CPC 11633<br />

= GHA-8-4 (as C. dioscoreae-pyrifoliae). Japan, Okinawa, on Coffea arabica<br />

(Rubiaceae), C. Nakashima, MUMH 10823, MUCC 771 (as C. coffeicola). Mexico,<br />

Tamaulipas, on Ricinus communis, 31 Nov. 2008, Ma. de Jesús Yáñez-Morales,<br />

<strong>CBS</strong> 132680 = CPC 15827. New Zealand, Auckland (imported from Fiji islands), on<br />

leaves of Hibiscus sabdariffa (Malvaceae), C.F. Hill, Lynfield 578, CPC 5262. Papua<br />

New Guinea, on leaves of Dioscorea nummularia (Dioscoreaceae), 2000, J. Peters<br />

& A.N. Jama, <strong>CBS</strong> 132662 = CPC 11635 = PNG-009; on leaves of D. rotundata,<br />

2000, J. Peters & A.N. Jama, <strong>CBS</strong> 132664 = CPC 11637 = PNG-022; on leaves of<br />

Dioscorea bulbifera (Dioscoreaceae), 2000, J. Peters & A.N. Jama, <strong>CBS</strong> 132665 =<br />

CPC 11638 = PNG-023. South Africa, Nelspruit, on Cajanus cajan (Fabaceae), L.<br />

van Jaarsveld, <strong>CBS</strong> 113996 = CPC 5326; <strong>CBS</strong> 115413 = CPC 5328; CPC 5327;<br />

Komatipoort, on Citrus ×sinensis (≡ C. aurantium var. sinensis) (Rutaceae), M.C.<br />

Pretorius, <strong>CBS</strong> 112728 = CPC 3949; <strong>CBS</strong> 112730 = CPC 3948; <strong>CBS</strong> 112894 = CPC<br />

3950. Swaziland, on Citrus ×sinensis (≡ C. aurantium var. sinensis), M.C. Pretorius,<br />

CPC 4001; CPC 4002; on Citrus sp. leaf spot, M.C. Pretorius, <strong>CBS</strong> 112649 = CPC<br />

3946; <strong>CBS</strong> 112722 = CPC 3947; <strong>CBS</strong> 115609 = CPC 3945. Thailand, on Acacia<br />

mangium, M.J. Wingfield, <strong>CBS</strong> 116365 = CPC 10526; <strong>CBS</strong> 132645 = CPC 10527<br />

(Mycosphaerella teleomorph ascospore isolate, ex-type of Cercospora acaciaemangii,<br />

small colonies); on A. mangium, K. Pongpanich, CPC 10552.<br />

Notes: Isolates of this clade were mainly obtained from Acacia,<br />

Cajanus, Citrus (Rutaceae), Coffea (Rubiaceae), Dioscorea,<br />

Hibiscus (Malvaceae) and Ricinus (Euphorbiaceae). Many previously<br />

described species names have in the past been applied to different<br />

isolates clustering in this clade. Based on the gene loci screened in<br />

the present study, we were unable to resolve the taxonomy of these<br />

isolates, and for now prefer to treat them as an unresolved species<br />

complex. In none of the single-gene phylogenies generated in this study<br />

164


Species concepts in Cercospora<br />

did the isolates from this species form a pure monophyletic lineage,<br />

as isolates were frequently intermixed with that of Cercospora sp. Q,<br />

C. cf. sigesbeckiae and C. cf. richardiicola. Given this overlap in<br />

sequence identity and host species, it is possible that Cercospora<br />

spp. P (Fig. 2 parts 4–5) and Q (Fig. 2 part 5) could be considered<br />

as a single species complex (see species notes for Cercospora sp.<br />

Q below). More extensive screening of additional loci is needed to<br />

define the species boundaries in this complex. Also present in this<br />

complex are numerous isolates from Dioscorea, for which the name<br />

C. dioscoreae-pyrifoliae could have been a candidate. From the<br />

present study it is clear that several species of Cercospora can be<br />

isolated from this host and a more detailed study is needed to fix that<br />

name to a specific lineage.<br />

The ex-type culture of Cercospora acaciae-mangii (Crous et<br />

al. 2004) is located in the last subclade (Fig. 2 part 5). Cercospora<br />

acaciae-mangii was isolated from Acacia leaves that also contained<br />

a mycosphaerella-like teleomorph that formed a Cercospora state<br />

in culture. However, the same leaf spots were also colonised by a<br />

second, morphologically similar species (distinguished by its ability<br />

to form larger, faster-growing colonies in agar).<br />

Cercospora sp. Q<br />

Specimens examined: Mexico, on Phaseolus vulgaris (Fabaceae), 20 Oct. 2008,<br />

M. de Jesus Yanez, <strong>CBS</strong> 132679 = CPC 15807; Tamaulipas, on Taraxacum sp.<br />

(Asteraceae), 30 Oct. 2008, Ma. de Jesús Yáñez-Morales, <strong>CBS</strong> 132682 = CPC<br />

15850; on Euphorbia sp. (Euphorbiaceae), 31 Oct. 2008, Ma. de Jesús Yáñez-<br />

Morales, CPC 15875; 30 Oct. 2008, Ma. de Jesús Yáñez-Morales, <strong>CBS</strong> 132681<br />

= CPC 15844. Papua New Guinea, on leaves of Dioscorea rotundata, 2000, J.<br />

Peters & A.N. Jama, <strong>CBS</strong> 132661 = CPC 11634 = PNG-002, on leaves of Dioscorea<br />

esculenta (Dioscoreaceae), 2000, J. Peters & A.N. Jama, <strong>CBS</strong> 132663 = CPC<br />

11636 = PNG-016; CPC 11639 = PNG-037. South Africa, Nelspruit, on Cajanus<br />

cajan, L. van Jaarsveld, <strong>CBS</strong> 113997 = CPC 5325; <strong>CBS</strong> 115410 = CPC 5331; <strong>CBS</strong><br />

115411 = CPC 5332; <strong>CBS</strong> 115412 = CPC 5333; <strong>CBS</strong> 115536 = CPC 5329; <strong>CBS</strong><br />

115537 = CPC 5330. Thailand, on Acacia mangium, K. Pongpanich, CPC 10550<br />

(big colony on same plate as small colonies of Cercospora acaciae-mangii); CPC<br />

10551 (big colony); <strong>CBS</strong> 132656 = CPC 11536; CPC 11539.<br />

Notes: Several isolates from diverse hosts and families cluster<br />

in this clade, to which different names can be applied. To resolve<br />

their taxonomy, fresh collections authentic for the names (based<br />

on host and country) need to be recollected and included in future<br />

studies. Based on the genes studied here, we were unable to<br />

resolve the phylogeny of these taxa. See also the species notes<br />

for Cercospora sp. P. Screening the isolates from this species with<br />

five more genomic loci in this study did not clarify their potential<br />

species boundaries. By testing other candidate loci as they become<br />

available from comparative genomics and other sources we will<br />

continue to try and identify optimal genes for species recognision<br />

in this complex.<br />

Cercospora sp. R<br />

Specimen examined: New Zealand, Auckland, Grey Lynn, on Myoporum laetum<br />

(Myoporaceae), Dec. 2003, C.F. Hill, Lynfield 186-B, <strong>CBS</strong> 114644.<br />

Notes: Pseudocercosporella myopori is a true species of<br />

Pseudocercosporella (Braun & Hill 2002), which was originally<br />

described without deposting an ex-type culture. A later collection<br />

deposited at <strong>CBS</strong> (isolate <strong>CBS</strong> 114644), however, proved to<br />

be representative of an undescribed species of Cercospora,<br />

phylogenetically closely related to Cercospora sp. S and C. corchori<br />

(Fig. 2 part 5). This isolate has a unique phylogenetic position in the<br />

TEF, ACT, CAL and HIS phylogenies. In the combined tree (Fig. 2<br />

part 5), it is a sister taxon to Cercospora sp. S.<br />

Cercospora sp. S<br />

Specimen examined: South Korea, Yangpyeong, on Crepidiastrum denticulatum (≡<br />

Youngia denticulata) (Asteraceae), 30 Sep. 2003, H.D. Shin, <strong>CBS</strong> 132599 = CPC<br />

10656; CPC 10654–10655 (as Cercospora lactucae-sativae).<br />

Notes: Isolate CPC 10656 is located on a slightly longer branch in<br />

the majority of genomic loci evaluated (ACT, CAL and HIS); only<br />

in the TEF phylogeny is it intermixed with isolates of C. lactucaesativae.<br />

It is a close sister taxon to Cercospora sp. R and C.<br />

corchori (Fig. 2 part 5), but more isolates need to be collected to<br />

resolve its identity.<br />

Cercospora vignigena C. Nakash., Crous, U. Braun & H.D.<br />

Shin, sp. nov. MycoBank MB800657. Fig. 10.<br />

Etymology: Named after the host genus from which it was collected,<br />

Vigna.<br />

Leaf spots subcircular, amphigenous, pale to medium brown, 8–20<br />

mm diam, with inconspicuous margin. Caespituli amphigenous.<br />

Mycelium internal. Stromata small to well-developed, pale brown<br />

to brown, intraepidermal and substomatal, 35–60 µm in diam.<br />

Conidiophores in loose to dense fascicles (2–12), straight to<br />

slightly sinuous-geniculate, pale brown, paler towards the apex,<br />

moderately thick-walled or thick-walled, cylindrical, almost uniform<br />

in width, often wider towards the apex, distinctly conical at the<br />

apex, 40–130 × 5–7(–10) µm, 0–3-septate. Conidiogenous cells<br />

integrated, terminal, intercalary, proliferating sympodially, 20–40 ×<br />

4–5 µm, multi-local (1–2); loci distinctly thickened, darkened, slightly<br />

protuberant, apical and lateral, 2.5–4 µm diam. Conidia solitary,<br />

rarely catenate, hyaline, straight to slightly curved, cylindrical to<br />

obclavate, obconically truncate and distinctly thickened at the base,<br />

subobtuse to obtuse at the apex, (35–)45–70(–150) × (2.5–)4–6(–<br />

10) µm, (3–)4–7(–14)-septate, thin-walled, smooth.<br />

Culture characteristics: Colonies spreading, erumpent, with even,<br />

lobate margins and sparse to moderate aerial mycelium, reaching<br />

25 mm diam after 2 wk. On OA olivaceous-grey in centre, pale<br />

olivaceous-grey in outer region. On MEA pale olivaceous-grey with<br />

patches of dirty white, reverse iron-grey. On PDA pale olivaceousgrey,<br />

margin submerged, grey-olivaceous; reverse olivaceous-grey.<br />

Specimens examined: Japan, Gumma, on Vigna unguiculata (= V. sinensis)<br />

(Fabaceae), Sep. 1993, K. Kishi, MUCC 579 = MAFF 237635. South Africa,<br />

Potchefstroom, on V. unguiculata (= V. sinensis), 3 Jan. 1995, S. van Wyk, CPC<br />

1133–1134. South Korea, Jeongeup, on V. unguiculata (= V. sinensis), 29 Oct.<br />

2003, H.D. Shin, holotype <strong>CBS</strong> H-21023, culture ex-type <strong>CBS</strong> 132611 = CPC<br />

10812.<br />

Notes: This independent clade is supported by ACT, CAL and HIS<br />

and is composed of the isolates of Cercospora species that were<br />

identified as C. canescens on Vigna (Fabaceae) plants. In the TEF<br />

phylogeny, the clade is split into two lineages, isolates CPC 1134<br />

and MUCC 579 as sister clade to C. apiicola and CPC 10812 basal<br />

to C. apii and C. beticola. In the combined tree (Fig. 2 part 2), it<br />

is basal to the lineage containing C. apiicola and other species.<br />

The examined isolates of C. canescens (the true C. canescens<br />

has acicular conidia), for which the original host is the genus<br />

Phaseolus, were located in other clades. These results show that<br />

the fungus on Vigna must be treated as a species distinct from C.<br />

canescens. Cercospora vignicaulis (described on V. unguiculata (=<br />

V. sinensis) collected from the USA) has in the past been listed as<br />

www.studiesinmycology.org<br />

165


Groenewald et al.<br />

Fig. 10. Cercospora vignigena (<strong>CBS</strong> 132611 = CPC 10812). A. Leaf spots. B. Close-up of lesion. C–E. Fasciculate conidiophores. F–I. Conidia. Scale bars = 10 µm.<br />

a synonym of C. canescens. However, C. vignicaulis has acicular<br />

conidia, which differs from the isolates studied here, and thus the<br />

present collection is described as a distinct species that appears to<br />

be specific to Vigna.<br />

Cercospora violae Sacc., Nuovo Giron. Bot. Ital. 8: 187.<br />

1876.<br />

= Cercospora violae-tricoloris Briosi & Cavara, Atti Ist. Bot. Univ. Pavia 2: 285.<br />

1892.<br />

= Cercospora violae var. minor Rota-Rossi, Atti Ist. Bot, Univ. Pavia, Ser. 2,<br />

13: 199. 1914.<br />

= Cercospora violae-kiusianae Sawada, Rep. Gov. Agric. Res. Inst. Taiwan 85:<br />

126. 1943.<br />

= Cercospora difformis Tehon, Mycologia 40: 322. 1948.<br />

= Cercospora trinctatis Pass. (unpublished name cited by Chupp 1954)<br />

Caespituli amphigenous. Mycelium internal. Stromata lacking<br />

to well-developed, up to 80 µm diam, brown, intraepidermal,<br />

substomatal. Conidiophores in dense fascicles (2–16), irregular<br />

in width, slightly attenuated at the upper portion, straight or mildly<br />

sinuous-geniculate, straight, wall moderately thickened, simple,<br />

pale brown to brown, short conically truncate at the apex, wider<br />

at the base, 20–175 × 2.5–7.5 µm, 1–10-septate, usually unilocal.<br />

Conidiogenous cells integrated, terminal, rarely intercalary,<br />

proliferating sympodially; loci distinct, thickened, apical, rarely<br />

lateral, 2–3 µm diam, not protuberant. Conidia solitary, hyaline,<br />

cylindrical to obclavate or acicular, distinctly thickened and<br />

obconically truncated at the base, obtuse at the apex, 35–195 ×<br />

2.5–5 µm, 0–18-septate, thin-walled, smooth.<br />

Specimens examined: Italy, Selva, on Viola odorata (Violaceae), Aug. 1874,<br />

Treviso, isotypes distributed as Sacc. Mycotheca Veneta 279, isotype at HAL<br />

examined. Japan, Kochi, on Viola sp., 16 Nov. 2004, J. Nishikawa, MUMH 10333,<br />

MUCC 129; Nagano, on V. tricolor, 16 Feb. 2005, J. Nishikawa, MUMH 10332,<br />

MUCC 133; Shizuoka, on V. tricolor, 15 Jan. 2003, J. Nishikawa, MUMH 10334,<br />

MUCC 136. Romania, Cazanele Dunarii, on V. tricolor, O. Constantinescu, epitype<br />

designated here <strong>CBS</strong> H-21024, culture ex-epitype <strong>CBS</strong> 251.67 = CPC 5079. New<br />

Zealand, on V. odorata, C.F. Hill, CPC 5368.<br />

Notes: See also C. zebrina. One culture that was isolated from Viola<br />

(strain CPC 10725) is representative of C. fagopyri. The original<br />

specimen of this isolate was distinguishable from C. violae in having<br />

circumspersed and slightly protuberant loci on its conidiophores.<br />

The isolates included here for C. violae are phylogenetically distinct<br />

from the other species included in this study on the basis of the<br />

TEF, ACT, CAL and HIS phylogenies. In the combined tree (Fig. 2<br />

part 3), it is a sister taxon to C. zebrina.<br />

Cercospora zeae-maydis Tehon & E.Y. Daniels, Mycologia<br />

17: 248. 1925.<br />

Specimens examined: China, Liaoning Province, on Zea mays (Poaceae), <strong>CBS</strong><br />

132668 = CPC 12225 = CHME 52. Mexico, Tlacotepec, on Z. mays, 16 Sep. 2008,<br />

Ma. de Jesús Yáñez-Morales, <strong>CBS</strong> 132678 = CPC 15602. USA, Illinois, Alexander<br />

Co., McClure, on Z. mays, 29 Aug. 1924, P.A. Young, holotype ILLS 4276, isotype<br />

BPI 442569; Delaware, 1997, B. Fleener, DE-97 = A359 = <strong>CBS</strong> 117756; Indiana,<br />

Princeton, 1999, B. Fleener, PR-IN-99 = A364 = <strong>CBS</strong> 117761; Indiana, Princeton,<br />

2003, B. Fleener, YA-03 = A358 = <strong>CBS</strong> 117755; Iowa, Johnston, 2004, B. Fleener,<br />

JH-IA-04 = A361 = <strong>CBS</strong> 117758; Iowa, Reinbeck, 1999, B. Fleener, RENBECK-<br />

IA-99 = A367 = <strong>CBS</strong> 117763; Missouri, Dexter, 2000, B. Fleener, DEXTER-MO-00<br />

= A365 = <strong>CBS</strong> 117762; Pennsylvania, New Holland, 1999, B. Fleener, NH-PA-99 =<br />

A363 = <strong>CBS</strong> 117760; Tennessee, Union City, 1999, B. Fleener, UC-TN-99 = A362<br />

= <strong>CBS</strong> 117759; Wisconsin, Janesville, 2002, B. Fleener, epitype, <strong>CBS</strong> H-17774,<br />

culture ex-epitype JV-WI-02 = A360 = <strong>CBS</strong> 117757.<br />

Notes: This species is phylogenetically supported by ITS, TEF,<br />

ACT, CAL and HIS. In the combined tree (Fig. 2 part 1), it is a basal<br />

166


Species concepts in Cercospora<br />

lineage. Gray leaf spot of maize was originally attributed to “group<br />

I” and “group II” siblings of C. zeae-maydis (Wang et al. 1998).<br />

More detailed information on this species was provided in Crous<br />

et al. (2006a).<br />

Cercospora zebrina Pass., Hedwigia 16: 124. 1877.<br />

≡ Cercosporina zebrina (Pass.) Matsuura, J. Pl. Protect. (Tokyo) 17: 1.<br />

1930.<br />

= Cercospora helvola Sacc., Michelia 2: 556. 1882.<br />

= Cercospora stolziana Magnus, Die Pilze von Tirol (etc.) 3: 558. 1905.<br />

= Cercospora helvola var. zebrina Ferraris, Fl. Ital. Cryptog. 1: 423, 1910, fide<br />

Chupp (1954: 341).<br />

Specimens examined: Australia, on Trifolium cernuum (Fabaceae), M.J. Barbetti,<br />

<strong>CBS</strong> 118791 = IMI 264190 = WA 2054 = WAC 7993; on T. subterraneum, M.J.<br />

Barbetti, <strong>CBS</strong> 118789 = WAC 5106; <strong>CBS</strong> 118790 = IMI 262766 = WA 2030 = WAC<br />

7973. Canada, Ottawa, 13 Lucas lane, on T. repens, 1 Sep. 2000, K.A. Seifert, <strong>CBS</strong><br />

H-21025, <strong>CBS</strong> 112723 = CPC 3957; <strong>CBS</strong> 112736 = CPC 3958; on T. pratense, K.A.<br />

Seifert, <strong>CBS</strong> H-21026, <strong>CBS</strong> 112893 = CPC 3955. Italy, on Hedysarum coronarium<br />

(Fabaceae), <strong>CBS</strong> 137.56 = CPC 5118 (as C. ariminensis). New Zealand, on Hebe<br />

sp. (Scrophulariaceae), C.F. Hill, <strong>CBS</strong> 114359 = CPC 10901; Auckland, on Lotus<br />

pedunculatus (Fabaceae), C.F. Hill, Lynfield 644, CPC 5437 (as C. loti); Blockhouse<br />

Bay, on T. repens, C.F. Hill, Lynfield 603, <strong>CBS</strong> 113070 = CPC 5367; on Jacaranda<br />

mimosifolia (Bignoniaceae), C.F. Hill, Lynfield 693, CPC 5473 (as C. canescens).<br />

Romania, Hagieni, on Astragalus spruneri (Fabaceae), O. Constantinescu, <strong>CBS</strong><br />

537.71 = IMI 161108 = CPC 5089 (as C. astragali). South Korea, Namyangju, on<br />

T. repens, 22 Oct. 2003, H.D. Shin, <strong>CBS</strong> H-21027, <strong>CBS</strong> 132650 = CPC 10756.<br />

Unknown, on Medicago arabica (= M. maculata) (Fabaceae), E.F. Hopkins, <strong>CBS</strong><br />

108.22 = CPC 5091 (as C. medicaginis). USA, Wisconsin, on T. subterraneum, <strong>CBS</strong><br />

129.39 = CPC 5078.<br />

Notes: Morphological characteristics of the larger C. zebrina<br />

clade include conidiophores that are short, almost straight,<br />

slightly attenuated and distinctly conically truncate at the apex<br />

with distinctly thickened loci, and conidia, which are cylindrical<br />

to cylindro-obclavate. The type of C. zebrina was collected on<br />

Trifolium in Italy. More European collections are required to resolve<br />

this species and to delinate it from other, closely allied species.<br />

Cercospora althaeina, which has wide host range on<br />

malvaceous plants, has a similar morphology to C. zebrina.<br />

Cercospora violae, which clusters basal to the C. zebrina clade,<br />

has longer and wider conidiophores, and cylindrical to acicular<br />

conidia, which separates this species from C. zebrina.<br />

In the TEF phylogeny, isolates are intermixed with those of<br />

C. armoraciae, C. rumicis and Cercospora sp. L and in the ACT<br />

and CAL phylogenies with those of Cercospora sp. L and C.<br />

althaeina. Only in the HIS phylogeny do these isolates form a pure<br />

monophyletic clade. In the combined tree (Fig. 2 part 3), it is a sister<br />

taxon to C. violae.<br />

Cercospora zeina Crous & U. Braun, Stud. Mycol. 55: 194.<br />

2006.<br />

Specimens examined: South Africa, KwaZulu-Natal, Pietermaritzburg, on Zea<br />

mays (Poaceae), 2005, P. Caldwell, holotype <strong>CBS</strong> H-17775, culture ex-type <strong>CBS</strong><br />

118820 = CPC 11995; <strong>CBS</strong> 132617 = CPC 11998.<br />

Notes: This species is phylogenetically supported by ITS, TEF,<br />

ACT, CAL and HIS. In the combined tree (Fig. 2 part 1), it is a basal<br />

lineage. More detailed information on this species was provided in<br />

Crous et al. (2006a).<br />

Cercospora cf. zinniae<br />

Caespituli amphigenous. Mycelium internal. Stromata lacking to<br />

small, up to 35 µm diam, intraepidermal or substomatal, pale brown<br />

to brown. Conidiophores in loose fascicles (3–8), pale brown to<br />

brown, straight, mildly geniculate above the middle, multi-septate,<br />

attenuated, successively geniculate, tip truncate or conically<br />

truncate, 65–300 × 3.5–5 µm, 1–12-septate. Conidiogenous cells<br />

integrated, proliferating sympodially, terminal and intercalary,<br />

multi-local; loci distinctly thickened, darkened, apical and lateral,<br />

sometimes circumspersed, often slightly protuberant, 2–2.5<br />

µm diam. Conidia solitary, hyaline, filiform to acicular, cylindroobclavate,<br />

straight to curved, long obconically truncate or truncate,<br />

and thickened at the base, acute at the apex, multi-septate, 30–120<br />

× 1–4 µm, 3–13-septate.<br />

Description of caespituli on V8; (MUCC 131): Conidiophores<br />

solitary, arising from hyphae, subhyaline to pale brown, irregular<br />

in width, smooth, meager and thin-walled, sinuous-geniculate to<br />

geniculate, unbranched, truncate or conically truncate at the tip,<br />

13–63 × 3–5 µm, multi-septate. Conidiogenous cells integrated,<br />

terminal, proliferating sympodially, single to multi-local (1–2); loci<br />

moderately thickened, apical, sometimes slightly protuberant,<br />

1.25–2 µm in width. Conidia hyaline, filiform to acicular, slightly<br />

thickened and long obconically truncate at the base, acute to<br />

obtuse at the apex, 25–160 × 2.5–4 µm, 3–11-septate.<br />

Specimens examined: Brazil, Valverde, Alto Rio Doce, on unknown substrate, A.C.<br />

Alfenas, <strong>CBS</strong> 132676 = CPC 15075. Japan, Chiba, on Zinnia elegans (Asteraceae),<br />

12 Sep. 1997, S. Uematsu, MUCC 572 = MAFF 237718 = MUCNS 215; Shizuoka,<br />

on Z. elegans, 17 Sep. 2004, J. Nishikawa, MUMH 11397, MUCC 131. South<br />

Korea, Yangpyeong, on Z. elegans, 18 Oct. 2007, H.D. Shin, <strong>CBS</strong> 132624 = CPC<br />

14549.<br />

Notes: This species is characterised in that the conidiophores<br />

are mildly geniculate above the middle, multi-septate, attenuated<br />

with successive geniculation; loci circumspersed and distinctly<br />

thickened; conidia are narrower than those of other taxa in C.<br />

apii s. lat. Moreover, this species is phylogenetically supported by<br />

DNA sequence data of TEF, CAL and HIS. In the ACT phylogeny,<br />

two distinct lineages are formed, namely CPC 14549 versus CPC<br />

15075, MUCC 132 and MUCC 572. In the combined tree (Fig. 2<br />

part 4), it is basal to the lineage containing, for example, C. cf.<br />

ipomoeae, C. fagopyri and C. rodmanii. North American cultures<br />

and sequence data are necessary to confirm the identity of Asian<br />

collections as C. zinniae and to designate an epitype.<br />

DISCUSSION<br />

This study was initiated to resolve Cercospora taxonomy on the<br />

basis of morphological and DNA sequence data. Based on our<br />

earlier studies incorporating multi-gene phylogenies on smaller<br />

datasets (Crous et al. 2004b, 2006a, Groenewald et al. 2005, 2006a,<br />

2010a), we realised this was an ambitious task. Even though a whole<br />

range of hosts and countries were included in our study, attempts to<br />

apply existing names to the different clades in the phylogenetic trees<br />

obtained proved difficult. In addition, the lack of ex-type cultures or<br />

at least reference sequences from type material, made it especially<br />

problematic to assign existing names to the derived phylogenetic<br />

clades. To our knowledge, this study presently represents the largest<br />

combination of diverse sampling of cercosporoid fungi coupled with<br />

multi-locus sequence data in a single manuscript.<br />

One important finding is that Crous & Braun (2003) were overoptimistic<br />

when they referred 281 Cercospora names to C. apii s.<br />

lat. based on morphology alone. Of the species treated as distinct<br />

in the present paper, the following five were originally referred to<br />

C. apii s. lat. by Crous & Braun (2003), namely C. beticola, C.<br />

www.studiesinmycology.org<br />

167


Groenewald et al.<br />

canescens, C. fagopyri, C. kikuchii and C. rumicis. The following<br />

eight species, C. armoraciae, C. corchori, C. lactucae-sativae, C.<br />

mercurialis, C. polygonacea, C. ricinella, C. violae and C. zebrina,<br />

treated as distinct in the present study, were treated by Crous &<br />

Braun (2003) as close to or possibly identical with C. apii s. lat.<br />

It is evident that morphology alone provides an insufficient basis<br />

on which to establish synonymies, to describe novel species or in<br />

many cases to identify species of Cercospora.<br />

In the last 10 years, 45 novel Cercospora names were lodged<br />

with MycoBank (Crous et al. 2004a). Of these, only five species<br />

are based on morphology and multi-locus sequence data, two<br />

species have morphology supplemented with ITS sequences and<br />

38 species are based on morphology alone. Of these 45 species,<br />

only 10 species were described in culture, 26 were reported without<br />

culture characteristics and of the remaining nine it is unlikely that<br />

cultures were established. This is an alarming statistic and is<br />

something that should be addressed by the whole community<br />

working on cercosporoid fungi. If the situation is compared to that<br />

of Colletotrichum, it is clear that there is room for improvement.<br />

Phylogenetic studies on Colletotrichum species based on cultures<br />

and ITS data date back to at least 20 years, with the last 10 years<br />

showing a significant increase in species descriptions based on<br />

multi-locus sequence data (Cannon et al. 2012).<br />

Groenewald et al. (2010a) reported on the performance of the<br />

five loci used for the phylogenetic inference in this study. They found<br />

the ITS region had limited resolution (2.7 % clade recovery) and was<br />

best be used to confirm the generic affiliation of a species, with less<br />

value when used for species comparison, specifically within the C.<br />

apii complex. Although CAL is necessary to distinguish C. apii and<br />

C. beticola, it only distinguished about half of the observed species<br />

clades (46.6 % clade recovery), whereas ACT was slightly more<br />

successful (58.9 % clade recovery). The HIS region compared well<br />

with ACT (63 % clade recovery), but it did split C. beticola into two<br />

clades. Both of these C. beticola clades contain isolates from the<br />

same sugar beet fields in Germany and New Zealand (Groenewald<br />

et al. 2006b) and whether this implies population variation or the<br />

presence of an additional cryptic species on sugar beet requires<br />

further molecular analyses of more C. beticola populations. The TEF<br />

region was comparable to CAL in terms of clade recovery (45 % clade<br />

recovery). Although we believe that there is still a need to identify the<br />

best barcode locus for Cercospora, the current multi-locus approach<br />

does enable species identification. Comparison of a few Cercospora<br />

genomes selected from across the phylogenetic tree might reveal a<br />

single locus with better resolution than the currently used loci.<br />

Similar to the situation in Pseudocercospora (Crous et al. 2013),<br />

we also encountered a situation where we could not use names<br />

based on North American or European types for African or Asian<br />

cultures and vice versa. Based on morphological features and their<br />

distinct sequences we have chosen to treat those clades in the<br />

present study as “cf.” pending comparison of those species with<br />

(epi-)type material from the original country and host as discussed<br />

under the species notes above. For numerous clades (“Cercospora<br />

sp. A–S”), it was not possible to unequivocally assign a species<br />

name; frequently these clades contained isolates from multiple<br />

hosts and/or countries and the same hosts occurred in multiple<br />

clades, or the host information was not available. For example,<br />

isolates from Cajanus cajan in South Africa can be attributed to<br />

Cercospora sp. P and Cercospora sp. Q. Crous & Braun (2003)<br />

list four Cercospora species associated with this host, namely C.<br />

apii s. str., C. canescens, C. instabilis and C. thirumalacharii. The<br />

first two species were included in this study, the third is listed on<br />

Cajanus from numerous countries (but not including South Africa)<br />

and the last is known from India (Crous & Braun 2003). It was not<br />

possible to include authentic cultures of the latter two species,<br />

so any of these two names are potentially available for a clade.<br />

An additional complicating factor is that there are numerous subclades<br />

inside Cercospora sp. P and Cercospora sp. Q, which could<br />

represent either intra-specific variation or the presence of cryptic<br />

species, which are not distinguished by the loci used in this study.<br />

We sequenced five additional loci for Cercospora sp. Q isolates<br />

and did not find a single locus that provided better insight into this<br />

clade. Isolates from Cajanus also occur in the same clade with<br />

other hosts, raising the question of wide host range versus simply<br />

a chance infection (Crous & Groenewald 2005). A similar situation<br />

was observed for isolates isolated from yams (Dioscorea). Crous<br />

& Braun (2003) list numerous Pseudocercospora and Passalora<br />

species, and three Cercospora species (C. aragonensis, C.<br />

dioscoreae-pyrifoliae and C. golaghatti) from this host genus; of<br />

the three Cercospora names, C. dioscoreae-pyrifoliae is commonly<br />

used in literature. In this study, it was not possible to apply this<br />

name to any of the clades. Isolates from Dioscorea are found in the<br />

C. canescens complex, Cercospora cf. sigesbeckiae, Cercospora<br />

sp. P and Cercospora sp. Q, but none of these isolates were<br />

from the original host or locality of the type description for C.<br />

dioscoreae-pyrifoliae (based on Dioscorea pyrifolia in Singapore).<br />

One of the isolates included in the present study (MUCC 849,<br />

as Cercospora cf. sigesbeckiae) was treated by Nakashima et<br />

al. (2011) as C. dioscoreae-pyrifoliae. The authors noted that,<br />

although the morphological characteristics were similar to the<br />

original description, the width of the conidiophores and conidia was<br />

different. Similarly, most of the isolates from Dioscorea were sent<br />

to us under the name C. dioscoreae-pyrifoliae although we could<br />

not confirm the identification with confidence. These examples<br />

highlight the need to locate original specimens, or at least recollect<br />

material that can be used for epitypification, to fix the names used<br />

in the various phylogenetic clades. It also illustrates the importance<br />

of establishing cultures, which can be used for future molecular<br />

studies, when describing taxonomic novelties.<br />

We believe that this study serves as a backbone for future<br />

studies on Cercospora taxonomy. Unfortunately, many (epi-)type<br />

cultures and adequate sequence data are lacking for a significant<br />

number of Cercospora species. Future studies will require the<br />

recollection of material from the original hosts and continents so<br />

that epitypes can be found and names stabilised. Furthermore,<br />

all species, especially those currently in common use, need<br />

proper molecular identification. Based on searches in Google and<br />

Google Scholar, the most commonly used Cercospora species<br />

names are C. zeae-maydis, C. beticola, C. apii, C. canescens,<br />

C. kikuchii, C. sojina, C. arachidicola, C. coffeicola, C. personata<br />

and C. nicotianae. Although the taxonomy of C. apii, C. beticola<br />

(Groenewald et al. 2005, 2006a) and C. zeae-maydis (Crous et<br />

al. 2006a) was resolved in the past, the present study resolved C.<br />

kikuchii and C. sojina but it was unable to resolve C. canescens.<br />

Similar studies are needed for C. arachidicola, C. coffeicola, C.<br />

nicotianae and C. personata.<br />

ACKNOWLEDGEMENTS<br />

We would like to thank all colleagues for supplying us with material and cultures,<br />

without which this study would not have been possible. We thank the technical<br />

staff, Arien van Iperen (cultures), Marjan Vermaas (photographic plates), and Mieke<br />

Starink-Willemse (DNA isolation, amplification and sequencing) for their invaluable<br />

assistance.<br />

168


Species concepts in Cercospora<br />

REFERENCES<br />

Agrios GN (2005). Plant pathology, fifth edition. Academic Press, New York.<br />

Amnuaykanjanasin A, Daub ME (2009). The ABC transporter ATR1 is necessary<br />

for efflux of the toxin cercosporin in the fungus Cercospora nicotianae. Fungal<br />

Genetics and Biology 46: 146–158.<br />

Assante G, Locci R, Camarda L, Merlini L, Nasini G (1977). Screening of the genus<br />

Cercospora for secondary metabolites. Phytochemistry 16: 243–247.<br />

Aveskamp MM, Woudenberg JHC, Gruyter J de, Turco E, Groenewald JZ, Crous<br />

PW (2009). Development of taxon-specific sequence characterized amplified<br />

region (SCAR) markers based on actin sequences and DNA amplification<br />

fingerprinting (DAF): a case study in the Phoma exigua species complex.<br />

Molecular Plant Pathology 10: 403–414.<br />

Ayala-Escobar V, Yanez-Morales M de, Braun U, Groenewald JZ, Crous PW (2005).<br />

Cercospora agavicola – a new foliar pathogen of Agave tequilana var. azul from<br />

Mexico. Mycotaxon 93: 115–121.<br />

Bagyanarayana G, Braun U, Jagadeeswar P (1995). Notes on Indian Cercosporae<br />

and allied genera (IV). Cryptogamic Botany 5: 363–366.<br />

Bakhshi M, Arzanlou M, Babai-Ahari A (2011). Uneven distribution of mating type alleles<br />

in Iranian populations of Cercospora beticola, the causal agent of Cercospora leaf<br />

spot disease of sugar beet. Phytopathologia Mediterranea 50: 101–109.<br />

Bolton M, Secor GA, Rivera V, Weiland JJ, Rudolph K, et al. (2012). Evaluation of<br />

the potential for sexual reproduction in field populations of Cercospora beticola<br />

from USA. Fungal Biology 116: 511–521.<br />

Braun U (1995a). A monograph of Cercosporella, Ramularia and allied genera<br />

(phytopathogenic hyphomycetes), Vol. 1. IHW-Verlag, Eching.<br />

Braun U (1995b). Miscellaneous notes on phytopathogenic hyphomycetes (II).<br />

Mycotaxon 55: 223–241.<br />

Braun U (1998). A monograph of Cercosporella, Ramularia and allied genera<br />

(phytopathogenic hyphomycetes), Vol. 2. IHW-Verlag, Eching.<br />

Braun U, Delhey R, Kiehr M (2001). Notes on some cercosporoid hyphomycetes<br />

from Argentina. Fungal Diversity 6: 18–33.<br />

Braun U, Hill CF (2002). Some new micromycetes from New Zealand. Mycological<br />

Progress 1: 19–30.<br />

Braun U, Hill CF (2004). Some new cercosporoid and related leaf spot diseases<br />

from New Zealand and Fiji. Australasian Plant Pathology 33: 485–494.<br />

Braun U, Hill CF, Schubert K (2006). New species and new records of biotrophic<br />

micromycetes from Australia, Fiji, New Zealand and Thailand. Fungal Diversity<br />

22: 13–35.<br />

Braun U, Melnik VA (1997). Cercosporoid fungi from Russia and adjacent countries.<br />

Trudy Botanischeskogo Instituta Imeni V. L. Komarova (St. Petersburg) 20:<br />

1–130.<br />

Cannon PF, Damm U, Johnston PR, Weir BS (2012). Colletotrichum – current status<br />

and future directions. Studies in Mycology 73: 181–213.<br />

Carbone I, Kohn LM (1999). A method for designing primer sets for speciation<br />

studies in filamentous ascomycetes. Mycologia 91: 553–556.<br />

Chen H, Lee M-H, Daub ME, Chung K-R (2007). Molecular analysis of the<br />

cercosporin biosynthetic gene cluster in Cercospora nicotianae. Molecular<br />

Microbiology 64: 755–770.<br />

Choquer M, Dekkers KL, Chen H-Q, Cao L, Ueng PP, et al. (2005). The CTB1 gene<br />

encoding a fungal polyketide synthase is required for cercosporin biosynthesis<br />

and fungal virulence of Cercospora nicotianae. Molecular Plant-Microbe<br />

Interactions 18: 468–476.<br />

Chung K-R, Ehrenshaft M, Wetzel DK, Daub ME (2003). Cercosporin-deficient<br />

mutants by plasmid tagging in the asexual fungus Cercospora nicotianae.<br />

Molecular Genetics and Genomics 270: 103–113.<br />

Chupp C (1954). A monograph of the fungus genus Cercospora. Ithaca, New York.<br />

Conway KE (1976). Cercospora rodmanii, a new pathogen of water hyacinth with<br />

biological control potential. Canadian Journal of Botany 54: 1079–1083.<br />

Corlett M (1991). An annotated list of the published names in Mycosphaerella and<br />

Sphaerella. Mycologia Memoir 18: 1–328.<br />

Crous PW (1998). Mycosphaerella spp. and their anamorphs associated with leaf<br />

spot diseases of Eucalyptus. Mycologia Memoir 21: 1–170.<br />

Crous PW, Aptroot A, Kang J-C, Braun U, Wingfield MJ (2000). The genus<br />

Mycosphaerella and its anamorphs. Studies in Mycology 45: 107–121.<br />

Crous PW, Braun U (2003). Mycosphaerella and its anamorphs. 1. Names published<br />

in Cercospora and Passalora. <strong>CBS</strong> Biodiversity Series 1: 1–571.<br />

Crous PW, Braun U, Groenewald JZ (2007). Mycosphaerella is polyphyletic. Studies<br />

in Mycology 58: 1–32.<br />

Crous PW, Braun U, Hunter GC, Wingfield MJ, Verkley GJM, et al. (2013).<br />

Phylogenetic lineages in Pseudocercospora. Studies in Mycology 75: 37–114.<br />

Crous PW, Gams W, Stalpers JA, Robert V, Stegehuis G (2004a). MycoBank: an<br />

online initiative to launch mycology into the 21st century. Studies in Mycology<br />

50: 19–22.<br />

Crous PW, Groenewald JZ (2005). Hosts, species and genotypes: opinions versus<br />

data. Australasian Plant Pathology 34: 463–470.<br />

Crous PW, Groenewald JZ, Groenewald M, Caldwell P, Braun U, Harrington TC<br />

(2006a). Species of Cercospora associated with grey leaf spot of maize.<br />

Studies in Mycology 55: 189–197.<br />

Crous PW, Groenewald JZ, Pongpanich K, Himaman W, Arzanlou M, Wingfield MJ<br />

(2004b). Cryptic speciation and host specificity among Mycosphaerella spp.<br />

occurring on Australian Acacia species grown as exotics in the tropics. Studies<br />

in Mycology 50: 457–469.<br />

Crous PW, Groenewald JZ, Risede J-M, Hywel-Jones NL (2004c). Calonectria<br />

species and their Cylindrocladium anamorphs: species with sphaeropedunculate<br />

vesicles. Studies in Mycology 50: 415–429.<br />

Crous PW, Schoch CL, Hyde KD, Wood AR, Gueidan C, et al. (2009a). Phylogenetic<br />

lineages in the Capnodiales. Studies in Mycology 64: 17–47.<br />

Crous PW, Summerell BA, Carnegie AJ, Wingfield MJ, Hunter GC, Burgess TI,<br />

Andjic V, Barber PA, Groenewald JZ (2009b). Unraveling Mycosphaerella: do<br />

you believe in genera? Persoonia 23: 99–118.<br />

Crous PW, Verkley GJM, Groenewald JZ, Samson RA (eds) (2009c). Fungal<br />

Biodiversity. <strong>CBS</strong> Laboratory Manual Series No. 1. Centraalbureau voor<br />

Schimmelcultures, Utrecht, Netherlands.<br />

Crous PW, Wingfield MJ, Mansilla JP, Alfenas AC, Groenewald JZ (2006b).<br />

Phylogenetic reassessment of Mycosphaerella spp. and their anamorphs<br />

occurring on Eucalyptus. II. Studies in Mycology 55: 99–131.<br />

Crous PW, Wingfield MJ, Park RF (1991). Mycosphaerella nubilosa, a synonym of<br />

M. molleriana. Mycological Research 95: 628–632.<br />

Daub ME, Ehrenshaft M (2000). The photoactivated Cercospora toxin cercosporin:<br />

Contributions to plant disease and fundamental biology. Annual Review of<br />

Phytopathology 38: 461–490.<br />

Davis JJ (1929). Notes on parasitic fungi in Wisconsin. XV. Transactions of the<br />

Wisconsin Academy of Science, Arts, and Letters 24: 269–277.<br />

Drummond AJ, Ashton B, Buxton S, Cheung M, Cooper A, et al. (2011). Geneious<br />

v5.4, Available from http://www.geneious.com/.<br />

Ellis MR (1971). Dematiaceous hyphomycetes. Kew, England: Commonwealth<br />

Mycological Institute.<br />

Fuckel KWGL (1863). Fungi Rhenani exsiccati, Fasc. I-IV. Hedwigia 2: 132–136.<br />

García CE, Pons N, Benítez de Rojas C (1996). Cercospora and similar fungi on<br />

Ipomoea species. Fitopatologia Venezolana 9: 22–36.<br />

Glass NL, Donaldson G (1995). Development of primer sets designed for use with<br />

PCR to amplify conserved genes from filamentous ascomycetes. Applied and<br />

Environmental Microbiology 61: 1323–1330.<br />

Goodwin SB, Dunkle LD, Zismann VL (2001). Phylogenetic analysis of Cercospora<br />

and Mycosphaerella based on the internal transcribed spacer region of<br />

ribosomal DNA. Phytopathology 91: 648–658.<br />

Groenewald JZ, Groenewald M, Braun U, Crous PW (2010a). Cercospora speciation<br />

and host range. In: Cercospora Leaf Spot of Sugar Beet and Related Species<br />

(Lartey RT, Weiland JJ, Panella L, Crous PW, Windels CE, eds). APS Press,<br />

Minnesota USA: 21–37.<br />

Groenewald M, Groenewald JZ, Braun U, Crous PW (2006a). Host range of<br />

Cercospora apii and C. beticola, and description of C. apiicola, a novel species<br />

from celery. Mycologia 98: 275–285.<br />

Groenewald M, Groenewald JZ, Crous PW (2005). Distinct species exist within the<br />

Cercospora apii morphotype. Phytopathology 95: 951–959.<br />

Groenewald M, Groenewald JZ, Crous PW (2010b). Mating type genes in<br />

Cercospora beticola and allied species. In: Cercospora Leaf Spot of Sugar<br />

Beet and Related Species (Lartey RT, Weiland JJ, Panella L, Crous PW,<br />

Windels CE, eds). APS Press, Minnesota USA: 39–53.<br />

Groenewald M, Groenewald JZ, Harrington TC, Abeln ECA, Crous PW (2006b).<br />

Mating type gene analysis in apparently asexual Cercospora species is<br />

suggestive of cryptic sex. Fungal Genetics and Biology 43: 813–825.<br />

Guerber JC, Liu B, Correll JC, Johnston PR (2003). Characterization of diversity in<br />

Colletotrichum acutatum sensu lato by sequence analysis of two gene introns,<br />

mtDNA and intron RFLPs, and mating compatibility. Mycologia 95: 872–895.<br />

Guo YL , Liu XJ (2005). Flora Fungorum Sinicorum. Vol. 24, Cercospora. Science<br />

Press, Beijing.<br />

Hawksworth DL (2011). A new dawn for the naming of fungi: impacts of decisions<br />

made in Melbourne in July 1011 on the future publication and regulation of<br />

fungal names. IMI Fungus 2: 155–162.<br />

Hennebert GL, Sutton BC (1994). Unitary parameters in conidiogenesis. In:<br />

Ascomycete Systematics, Problems and Perspective in the Nineties<br />

(Hawksworth DL, ed), NATO ASI Series 296, New York, USA: 65–76.<br />

Hillis DM, Bull JJ (1993). An empirical test of bootstrapping as a method for assessing<br />

confidence in phylogenetic analysis. Systematic Biology 42: 182–192.<br />

Hoog GS de, Gerrits van den Ende AHG (1998). Molecular diagnostics of clinical<br />

strains of filamentous Basidiomycetes. Mycoses 41: 183–189.<br />

Hsieh W-H, Goh T-K (1990). Cercospora and similar fungi from Taiwan. Maw Chang<br />

Book Company, Taiwan.<br />

Inglis PW, Teixeira EA, Ribeiro DM, Valadares-Inglis MC, Tigano MS, Mello SCM<br />

(2001). Molecular markers for the characterization of Brazilian Cercospora<br />

caricis isolates. Current Microbiology 42: 194–198.<br />

www.studiesinmycology.org<br />

169


Groenewald et al.<br />

Jenns AE, Daub ME, Upchurch RG (1989). Regulation of cercosporin accumulation<br />

in culture by medium and temperature manipulation. Phytopathology 79: 213–<br />

219.<br />

Lee SB, Taylor JW (1990). Isolation of DNA from fungal mycelia and single spores.<br />

In: A Guide to Molecular Methods and Applications (Innis MA, Gelfand DH,<br />

Sninsky JJ, White JW, eds). Academic Press, New York: 282–287.<br />

Li KN, Rouse DI, German TL (1994). PCR primers that allow intergeneric<br />

differentiation of ascomycetes and their application to Verticillium spp. Applied<br />

and Environmental Microbiology 60: 4324–4331.<br />

Liu XJ, Guo YL (1998). Flora Fungorum Sinicorum. Vol. 9, Pseudocercospora.<br />

Science Press, Beijing.<br />

Montenegro-Calderón JG, Martínez-Álvarez JA, Vieyra-Hernández MT, Rangel-<br />

Macías LI, Razzo-Soria T, et al. (2011). Molecular identification of two strains<br />

of Cercospora rodmanii isolated from water hyacinth present in Yuriria lagoon,<br />

Guanajuato, Mexico and identification of new hosts for several other strains.<br />

Fungal Biology 115: 1151–1162.<br />

Morris MJ, Crous PW (1994). New and interesting records of South African fungi XIV.<br />

Cercosporoid fungi from weeds. South African Journal of Botany 60: 325–332.<br />

Nakashima C, Araki I, Kobayashi T (2011). Addition and re-examination of Japanese<br />

species belonging to the genus Cercospora and allied genera. X: newly<br />

recorded species from Japan (5). Mycoscience 52: 253–259.<br />

Norvell LL (2011). Fungal nomenclature. 1. Melbourne approves a new Code.<br />

Mycotaxon 116: 481–490.<br />

Nylander JAA (2004) MrModeltest 2.0. Program distributed by the author. Uppsala<br />

University; Uppsala, Sweden.<br />

O’Donnell K, Cigelnik E (1997). Two divergent intragenomic rDNA ITS2 types within<br />

a monophyletic lineage of the fungus Fusarium are nonorthologous. Molecular<br />

Phylogenetics and Evolution 7: 103–116.<br />

O’Donnell K, Kistler HC, Cigelnik E, Ploetz RC (1998). Multiple evolutionary origins<br />

of the fungus causing Panama disease of banana: concordant evidence from<br />

nuclear and mitochondrial gene genealogies. Proceedings of the National<br />

Academy of Sciences (USA) 95: 2044–2049.<br />

Ohnuki M, Sato T, Maoka T (1989). Occurrence of leaf spot on winged bean<br />

(Psophocarpus tetragonolobus (L.) DC.). Proceedings of the Association for<br />

Plant Protection of Kyushu 35: 34–36.<br />

Ondřej M, Zavrěl H (1971). Sbery parazitickych imperfektnich hub rodu Cercospora<br />

Fresen. z uzemi CSSR II. Časopis Slezského Musea v Opavě, Ser A, Historia<br />

Naturalis 20: 17–29.<br />

Phengsintham P, Chukeatirote E, McKenzie EHC, Hyde KD, Braun U (2012).<br />

Cercospora senecionis-walkeri – a new leaf-spotting hyphomycete from Laos<br />

and Thailand. Plant Pathology & Quarantine 2(1): 70–73.<br />

Pollack FG (1987). An annotated compilation of Cercospora names. Mycological<br />

Memoirs 12: 1–212.<br />

Pretorius MC, Crous PW, Groenewald JZ, Braun U (2003). Phylogeny of some<br />

cercosporoid fungi from Citrus. Sydowia 55: 286–305.<br />

Purkayastha RP, Mallik F (1978). Addition of two new fungi to Indian Hyphomycetes.<br />

Nova Hedwigia 30: 869–872.<br />

Quaedvlieg W, Kema GHJ, Groenewald JZ, Verkley GJM, Seifbarghi S, et al. (2011).<br />

Zymoseptoria gen. nov.: a new genus to accommodate Septoria-like species<br />

occurring on graminicolous hosts. Persoonia 26: 57–69.<br />

Rambaut A (2002). Sequence Alignment Editor. Version 2.0. Department of Zoology,<br />

University of Oxford, Oxford.<br />

Rayner RW (1970). A mycological colour chart. CMI and British Mycological Society.<br />

Kew.<br />

Ronquist F, Huelsenbeck JP (2003). MrBayes 3: Bayesian phylogenetic inference<br />

under mixed models. Bioinformatics 19: 1572–1574.<br />

Schmitt I, Crespo A, Divakar PK, Fankhauser JD, Herman-Sackett E, et al. (2009).<br />

New primers for promising single-copy genes in fungal phylogenetics and<br />

systematics. Persoonia 23: 35–40.<br />

Shin HD, Braun U (1996). Notes on Korean Cercosporae and allied genera (II).<br />

Mycotaxon 58: 157–166.<br />

Shin HD, Kim JD (2001). Cercospora and allied genera from Korea. National<br />

Institute of Agricultural Science and Technology, Suwon, Korea.<br />

Silva M, Pereira OL (2008). Postharvest Cercospora apii fruit rot disease on<br />

Cucurbita maxima (Cucurbitaceae). Australasian Plant Disease Notes 3:<br />

21–23.<br />

Stewart EL, Liu Z, Crous PW, Szabo LJ (1999). Phylogenetic relationships among<br />

some cercosporoid anamorphs of Mycosphaerella based on rDNA sequence<br />

analysis. Mycological Research 103: 1491–1499.<br />

Swofford DL (2003). PAUP*: phylogenetic analysis using parsimony (*and other<br />

methods), version 4. Sinauer Associates, Sunderland, Massachusetts.<br />

Tessmann DJ, Charudattan R, Kistler HC, Rosskopf EN (2001). A molecular<br />

characterization of Cercospora species pathogenic to water hyacinth and<br />

emendation of C. piaropi. Mycologia 93: 323–334.<br />

Thaung MM (1984). Some fungi of Cercospora complex from Burma. Mycotaxon<br />

19: 425–452.<br />

To-Anun C, Hidayat I, Meeboon J (2011). Genus Cercospora in Thailand: Taxonomy<br />

and phylogeny (with a dichotomous key to species). Plant Pathology &<br />

Quarantine 1: 11–87.<br />

Upchurch RG, Walker DC, Rollins JA, Ehrenshaft ME, Daub ME (1991). Mutants<br />

of Cercospora kikuchii altered in cercosporin synthesis. Applied and<br />

Environmental Microbiology 57: 2940–2945.<br />

Verkley GJM, Starink-Willemse M, Iperen A van, Abeln ECA (2004). Phylogenetic<br />

analyses of Septoria species based on the ITS and LSU-D2 regions of nuclear<br />

ribosomal DNA. Mycologia 96: 558–571.<br />

Wang J, Levy M, Dunkle LD (1998). Sibling species of Cercospora associated with<br />

gray leaf spot of maize. Phytopathology 88: 1269–1275.<br />

Weiland JJ, Chung K-R, Suttle JC (2010). The role of cercosporin in the virulence<br />

of Cercospora spp. to plant hosts. In: Cercospora Leaf Spot of Sugar Beet and<br />

Related Species (Lartey RT, Weiland JJ, Panella L, Crous PW, Windels CE,<br />

eds). APS Press, Minnesota USA: 39–53.<br />

Weiland JJ, Koch G (2004). Sugar-beet leaf spot disease (Cercospora beticola<br />

Sacc.). Molecular Plant Pathology 5: 157–166.<br />

White TJ, Bruns T, Taylor J (1990). Amplification and direct sequencing of fungal<br />

ribosomal RNA genes for phylognetics. In: A Guide to Molecular Methods and<br />

Applications (Innis MA, Gelfand DH, Sninsky JJ, White JW, eds). Academic<br />

Press, New York: 315–322.<br />

170


Studies in Mycology 75: 171–212.<br />

Alternaria redefined<br />

J.H.C. Woudenberg 1,2* , J.Z. Groenewald 1 , M. Binder 1 , and P.W. Crous 1,2,3<br />

1<br />

<strong>CBS</strong>-<strong>KNAW</strong> Fungal Biodiversity Centre, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands; 2 Wageningen University and Research Centre (WUR), Laboratory of Phytopathology,<br />

Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands; 3 Utrecht University, Department of Biology, Microbiology, Padualaan 8, 3584 CH Utrecht, The Netherlands<br />

*Correspondence: Joyce H.C. Woudenberg, j.woudenberg@cbs.knaw.nl<br />

Abstract: Alternaria is a ubiquitous fungal genus that includes saprobic, endophytic and pathogenic species associated with a wide variety of substrates. In recent years, DNAbased<br />

studies revealed multiple non-monophyletic genera within the Alternaria complex, and Alternaria species clades that do not always correlate to species-groups based<br />

on morphological characteristics. The Alternaria complex currently comprises nine genera and eight Alternaria sections. The aim of this study was to delineate phylogenetic<br />

lineages within Alternaria and allied genera based on nucleotide sequence data of parts of the 18S nrDNA, 28S nrDNA, ITS, GAPDH, RPB2 and TEF1-alpha gene regions.<br />

Our data reveal a Pleospora/Stemphylium clade sister to Embellisia annulata, and a well-supported Alternaria clade. The Alternaria clade contains 24 internal clades and<br />

six monotypic lineages, the assemblage of which we recognise as Alternaria. This puts the genera Allewia, Brachycladium, Chalastospora, Chmelia, Crivellia, Embellisia,<br />

Lewia, Nimbya, Sinomyces, Teretispora, Ulocladium, Undifilum and Ybotromyces in synonymy with Alternaria. In this study, we treat the 24 internal clades in the Alternaria<br />

complex as sections, which is a continuation of a recent proposal for the taxonomic treatment of lineages in Alternaria. Embellisia annulata is synonymised with Dendryphiella<br />

salina, and together with Dendryphiella arenariae, are placed in the new genus Paradendryphiella. The sexual genera Clathrospora and Comoclathris, which were previously<br />

associated with Alternaria, cluster within the Pleosporaceae, outside Alternaria s. str., whereas Alternariaster, a genus formerly seen as part of Alternaria, clusters within the<br />

Leptosphaeriaceae. Paradendryphiella is newly described, the generic circumscription of Alternaria is emended, and 32 new combinations and 10 new names are proposed. A<br />

further 10 names are resurrected, while descriptions are provided for 16 new Alternaria sections.<br />

Studies in Mycology<br />

Key words: Allewia, Chalastospora, Crivellia, Embellisia, Lewia, Nimbya, Paradendryphiella, Sinomyces, systematics, Teretispora, Ulocladium, Undifilum.<br />

Taxonomic novelties: New combinations – Alternaria abundans (E.G. Simmons) Woudenb. & Crous, Alternaria alternariae (Cooke) Woudenb. & Crous, Alternaria atra<br />

(Preuss) Woudenb. & Crous, Alternaria bornmuelleri (Magnus) Woudenb. & Crous, Alternaria botrytis (Preuss) Woudenb. & Crous, Alternaria caespitosa (de Hoog & C. Rubio)<br />

Woudenb. & Crous, Alternaria cantlous (Yong Wang bis & X.G. Zhang) Woudenb. & Crous, Alternaria caricis (E.G. Simmons) Woudenb. & Crous, Alternaria cinerea (Baucom<br />

& Creamer) Woudenb. & Crous, Alternaria didymospora (Munt.-Cvetk.) Woudenb. & Crous, Alternaria fulva (Baucom & Creamer) Woudenb. & Crous, Alternaria hyacinthi (de<br />

Hoog & P.J. Mull. bis) Woudenb. & Crous, Alternaria indefessa (E.G. Simmons) Woudenberg & Crous, Alternaria leptinellae (E.G. Simmons & C.F. Hill) Woudenb. & Crous,<br />

Alternaria lolii (E.G. Simmons & C.F. Hill) Woudenb. & Crous, Alternaria multiformis (E.G. Simmons) Woudenb. & Crous, Alternaria obclavata (Crous & U. Braun) Woudenb. &<br />

Crous, Alternaria obovoidea (E.G. Simmons) Woudenb. & Crous, Alternaria oudemansii (E.G. Simmons) Woudenb. & Crous, Alternaria oxytropis (Q. Wang, Nagao & Kakish.)<br />

Woudenb. & Crous, Alternaria penicillata (Corda) Woudenb. & Crous, Alternaria planifunda (E.G. Simmons) Woudenb. & Crous, Alternaria proteae (E.G. Simmons) Woudenb.<br />

& Crous, Alternaria scirpinfestans (E.G. Simmons & D.A. Johnson) Woudenb. & Crous, Alternaria scirpivora (E.G. Simmons & D.A. Johnson) Woudenb. & Crous, Alternaria<br />

septospora (Preuss) Woudenb. & Crous, Alternaria slovaca (Svob.-Pol., L. Chmel & Bojan.) Woudenb. & Crous, Alternaria subcucurbitae (Yong Wang bis & X.G. Zhang)<br />

Woudenb. & Crous, Alternaria tellustris (E.G. Simmons) Woudenb. & Crous, Alternaria tumida (E.G. Simmons) Woudenb. & Crous, Paradendryphiella salina (G.K. Sutherl.)<br />

Woudenb. & Crous, Paradendryphiella arenariae (Nicot) Woudenb. & Crous. New names – Alternaria aspera Woudenb. & Crous, Alternaria botryospora Woudenb. & Crous,<br />

Alternaria brassicae-pekinensis Woudenb. & Crous, Alternaria breviramosa Woudenb. & Crous, Alternaria chlamydosporigena Woudenb. & Crous, Alternaria concatenata<br />

Woudenb. & Crous, Alternaria embellisia Woudenb. & Crous, Alternaria heterospora Woudenb. & Crous, Alternaria papavericola Woudenb. & Crous, Alternaria terricola<br />

Woudenb. & Crous. Resurrected names – Alternaria cetera E.G. Simmons, Alternaria chartarum Preuss, Alternaria consortialis (Thüm.) J.W. Groves & S. Hughes, Alternaria<br />

cucurbitae Letendre & Roum., Alternaria dennisii M.B. Ellis, Alternaria eureka E.G. Simmons, Alternaria gomphrenae Togashi, Alternaria malorum (Ruehle) U. Braun, Crous<br />

& Dugan, Alternaria phragmospora Emden, Alternaria scirpicola (Fuckel) Sivan. New sections, all in Alternaria – sect. Chalastospora Woudenb. & Crous, sect. Cheiranthus<br />

Woudenb. & Crous, sect. Crivellia Woudenb. & Crous, sect. Dianthicola Woudenb. & Crous, sect. Embellisia Woudenb. & Crous, sect. Embellisioides Woudenb. & Crous, sect.<br />

Eureka Woudenb. & Crous, sect. Infectoriae Woudenb. & Crous, sect. Japonicae Woudenb. & Crous, sect. Nimbya Woudenb. & Crous, sect. Phragmosporae Woudenb. &<br />

Crous, sect. Pseudoulocladium Woudenb. & Crous, sect. Teretispora Woudenb. & Crous, sect. Ulocladioides Woudenb. & Crous, sect. Ulocladium Woudenb. & Crous, sect.<br />

Undifilum Woudenb. & Crous. New genus – Paradendryphiella Woudenb. & Crous.<br />

Published online: 31 May 2013; doi:10.3114/sim0015. Hard copy: June 2013.<br />

INTRODUCTION<br />

Alternaria is a ubiquitous fungal genus that includes saprobic,<br />

endophytic and pathogenic species. It is associated with a wide<br />

variety of substrates including seeds, plants, agricultural products,<br />

animals, soil and the atmosphere. Species of Alternaria are known<br />

as serious plant pathogens, causing major losses on a wide range<br />

of crops. Several taxa are also important postharvest pathogens,<br />

causative agents of phaeohyphomycosis in immuno-compromised<br />

patients or airborne allergens. Because of the significant negative<br />

health effects of Alternaria on humans and their surroundings, a<br />

Copyright <strong>CBS</strong>-<strong>KNAW</strong> Fungal Biodiversity Centre, P.O. Box 85167, 3508 AD Utrecht, The Netherlands.<br />

correct and rapid identification of Alternaria species would be of<br />

great value to researchers, medical mycologists and the public<br />

alike.<br />

Alternaria was originally described by Nees (1816), based on<br />

A. tenuis as the only species. Characteristics of the genus included<br />

the production of dark-coloured phaeodictyospores in chains, and<br />

a beak of tapering apical cells. Von Keissler (1912) synonymised<br />

both A. tenuis and Torula alternata (Fries 1832) with Alternaria<br />

alternata, due to ambiguities in Nees’s description of A. tenuis. Two<br />

additional genera, Stemphylium (Wallroth 1833) and Ulocladium<br />

(Preuss 1851) were subsequently described for phaeodictyosporic<br />

You are free to share - to copy, distribute and transmit the work, under the following conditions:<br />

Attribution:<br />

You must attribute the work in the manner specified by the author or licensor (but not in any way that suggests that they endorse you or your use of the work).<br />

Non-commercial: You may not use this work for commercial purposes.<br />

No derivative works: You may not alter, transform, or build upon this work.<br />

For any reuse or distribution, you must make clear to others the license terms of this work, which can be found at http://creativecommons.org/licenses/by-nc-nd/3.0/legalcode. Any of the above conditions can be waived if you get<br />

permission from the copyright holder. Nothing in this license impairs or restricts the author’s moral rights.<br />

171


Woudenberg et al.<br />

hyphomycetes, further complicating the taxonomic resolution in<br />

this group of fungi. Several re-descriptions and revised criteria of<br />

these genera (Saccardo 1886, Elliot 1917, Wiltshire 1933, 1938,<br />

Joly 1964) resulted in a growing number of new species. Results of<br />

a lifetime study on Alternaria taxonomy based upon morphological<br />

characteristics were summarised in Simmons (2007), in which 275<br />

Alternaria species were recognised. One species was transferred<br />

to the genus Prathoda and three new genera, Alternariaster,<br />

Chalastospora and Teretispora, were segregated from Alternaria.<br />

Molecular studies revealed multiple non-monophyletic genera<br />

within the Alternaria complex and Alternaria species clades,<br />

which do not always correlate to species-groups based upon<br />

morphological characteristics (Pryor & Gilbertson 2000, Chou &<br />

Wu 2002, de Hoog & Horré 2002, Pryor & Bigelow 2003, Hong<br />

et al. 2005, Inderbitzin et al. 2006, Pryor et al. 2009, Runa et al.<br />

2009, Wang et al. 2011, Lawrence et al. 2012). The A. alternata,<br />

A. brassicicola, A. infectoria, A. porri and A. radicina speciesgroups<br />

were strongly supported by these studies and two new<br />

species-groups, A. sonchi (Hong et al. 2005) and A. alternantherae<br />

(Lawrence et al. 2012) and three new genera, Crivellia (Inderbitzin<br />

et al. 2006), Undifilum (Pryor et al. 2009) and Sinomyces (Wang et<br />

al. 2011), were described. The latest molecular revision of Alternaria<br />

(Lawrence et al. 2013) introduced two new species groups, A.<br />

panax and A. gypsophilae, and elevated eight species-groups<br />

to sections within Alternaria. The sexual phylogenetic Alternaria<br />

lineage, the A. infectoria species-group, did not get the status of<br />

section, in contrast to the eight asexual phylogenetic lineages in<br />

Alternaria. The Alternaria complex currently comprises the genera<br />

Alternaria, Chalastospora (Simmons 2007), Crivellia, Embellisia,<br />

Nimbya, Stemphylium, Ulocladium, Undifilum and the recently<br />

described Sinomyces together with eight sections of Alternaria and<br />

the A. infectoria species-group.<br />

The aim of the present study was to delineate the phylogenetic<br />

lineages within Alternaria and allied genera, and to create a robust<br />

taxonomy. Phylogenetic inferences were conducted on sequence<br />

data of parts of the 18S nrDNA (SSU), 28S nrDNA (LSU), the<br />

internal transcribed spacer regions 1 and 2 and intervening<br />

5.8S nrDNA (ITS), glyceraldehyde-3-phosphate dehydrogenase<br />

(GAPDH), RNA polymerase second largest subunit (RPB2) and<br />

translation elongation factor 1-alpha (TEF1) gene regions of extype<br />

and reference strains of Alternaria species and all available<br />

allied genera.<br />

MATERIAL AND METHODS<br />

Isolates<br />

Based on the ITS sequences of all ex-type or representative<br />

strains from the Alternaria identification manual present at the<br />

<strong>CBS</strong>-<strong>KNAW</strong> Fungal Biodiversity Centre (<strong>CBS</strong>), Utrecht, The<br />

Netherlands (data not shown), 66 Alternaria strains were included<br />

in this study together with 61 ex-type or representative strains of 16<br />

related genera (Table 1). Alternaria is represented by the ex-type<br />

or representative strains of the seven species-groups and species<br />

that clustered outside known Alternaria clades. Because of the<br />

size and complexity of the A. alternata, A. infectoria and A. porri<br />

species-groups, we only included known species; the complete<br />

species-groups will be treated in future studies.<br />

Freeze-dried strains were revived in 2 mL malt/peptone (50 %<br />

/ 50 %) and subsequently transferred to oatmeal agar (OA) (Crous<br />

et al. 2009a). Strains of the <strong>CBS</strong> collection stored in liquid nitrogen<br />

were transferred to OA directly from -80 ºC. DNA extraction was<br />

performed using the UltraClean Microbial DNA Isolation Kit (MoBio<br />

laboratories, Carlsbad, CA, USA), according to the manufacturer’s<br />

instructions.<br />

Taxonomy<br />

Morphological descriptions were made for isolates grown on<br />

synthetic nutrient-poor agar plates (SNA, Nirenberg 1976) with a<br />

small piece of autoclaved filter paper placed onto the agar surface.<br />

Cultures were incubated at moderate temperatures (~ 22 ºC)<br />

under CoolWhite fluorescent light with an 8 h photoperiod for 7 d.<br />

The sellotape technique was used for making slide preparations<br />

(Crous et al. 2009a) with Shear’s medium as mounting fluid.<br />

Photographs of characteristic structures were made with a Nikon<br />

Eclipse 80i microscope using differential interference contrast<br />

(DIC) illumination. Growth rates were measured after 5 and 7 d.<br />

Colony characters were noted after 7 d, colony colours were rated<br />

according to Rayner (1970). Nomenclatural data were deposited in<br />

MycoBank (Crous et al. 2004).<br />

PCR and sequencing<br />

The SSU region was amplified with the primers NS1 and NS4 (White<br />

et al. 1990), the LSU region with LSU1Fd (Crous et al. 2009b) and<br />

LR5 (Vilgalys & Hester 1990), the ITS region with V9G (De Hoog<br />

& Gerrits van den Ende 1998) and ITS4 (White et al. 1990), the<br />

GAPDH region with gpd1 and gpd2 (Berbee et al. 1999), the RPB2<br />

region with RPB2–5F2 (Sung et al. 2007) and fRPB2–7cR (Liu et<br />

al. 1999) and the TEF1 gene with the primers EF1-728F and EF1-<br />

986R (Carbone & Kohn 1999) or EF2 (O’Donnell et al. 1998). The<br />

PCRs were performed in a MyCycler TM Thermal Cycler (Bio-Rad<br />

Laboratories B.V., Veenendaal, The Netherlands) in a total volume<br />

of 12.5 µL. The SSU and LSU PCR mixtures consisted of 1 µL<br />

genomic DNA, 1´ GoTaq® Flexi buffer (Promega, Madison, WI,<br />

USA), 2 µM MgCl 2<br />

, 40 µM of each dNTP, 0.2 µM of each primer<br />

and 0.25 Unit GoTaq® Flexi DNA polymerase (Promega). The<br />

ITS and GAPDH PCR mixtures differed from the original mix by<br />

containing 1 µM MgCl 2<br />

, the RPB2 and TEF1 PCR mixtures differed<br />

from the original mix by containing 2 µL genomic DNA and the<br />

RPB2 mixture differed from the original mix by containing 0.5 U<br />

instead of 0.25 U GoTaq® Flexi DNA polymerase. Conditions for<br />

PCR amplification consisted of an initial denaturation step of 5 min<br />

at 94 ºC followed by 35 cycles of 30 s at 94 ºC, 30 s at 48 ºC and<br />

90 s at 72 ºC for SSU, LSU, ITS and 40 cycles of 30 s at 94 ºC, 30<br />

s at 52 ºC / 59 ºC and 45 s at 72 ºC for TEF1 using respectively<br />

EF2 or EF1-986R as reverse primer and a final elongation step of<br />

7 min at 72 ºC. The partial RPB2 gene was obtained by using a<br />

touchdown PCR protocol of 5 cycles of 45 s at 94 ºC, 45 s at 60<br />

ºC and 2 min at 72 ºC, followed by 5 cycles with a 58 ºC annealing<br />

temperature and 30 cycles with a 54 ºC annealing temperature.<br />

The PCR products were sequenced in both directions using the<br />

PCR primers and the BigDye Terminator v. 3.1 Cycle Sequencing<br />

Kit (Applied Biosystems, Foster City, CA, USA), according to<br />

the manufacturer’s recommendations, and analysed with an ABI<br />

Prism 3730XL Sequencer (Applied Biosystems) according to the<br />

manufacturer’s instructions. Consensus sequences were computed<br />

from forward and reverse sequences using the BioNumerics v. 4.61<br />

software package (Applied Maths, St-Martens-Latem, Belgium). All<br />

generated sequences were deposited in GenBank (Table 1).<br />

172


Alternaria redefined<br />

Embellisia annulata <strong>CBS</strong> 302.84<br />

Pleospora tarda <strong>CBS</strong> 714.68<br />

Stemphylium herbarum <strong>CBS</strong> 191.86<br />

0.1<br />

0.98/80 Clathrospora heterospora <strong>CBS</strong> 175.52<br />

Comoclathris magna <strong>CBS</strong> 174.52<br />

1.0/99 Alternaria alternata <strong>CBS</strong> 916.96<br />

Alternaria limoniasperae <strong>CBS</strong> 102595<br />

0.79/62 Alternaria daucifolii <strong>CBS</strong> 118812<br />

1.0/89 Alternaria arborescens <strong>CBS</strong> 102605<br />

1.0/88 Alternaria gaisen <strong>CBS</strong> 632.93<br />

1.0/97 Alternaria tenuissima <strong>CBS</strong> 918.96<br />

Alternaria longipes <strong>CBS</strong> 540.94<br />

Nimbya gomphrenae <strong>CBS</strong> 108.27<br />

Alternaria alternantherae <strong>CBS</strong> 124392<br />

Alternaria perpunctulata <strong>CBS</strong> 115267<br />

1.0/99 0.88/39 Alternaria dauci <strong>CBS</strong> 117097<br />

0.91/41 Alternaria pseudorostrata <strong>CBS</strong> 119411<br />

0.76/35 Alternaria tagetica <strong>CBS</strong> 479.81<br />

Alternaria porri <strong>CBS</strong> 116698<br />

Alternaria solani <strong>CBS</strong> 116651<br />

0.98/85<br />

Alternaria macrospora <strong>CBS</strong> 117228<br />

0.76/98 Alternaria axiaeriisporifera <strong>CBS</strong> 118715<br />

Alternaria vaccariae <strong>CBS</strong> 116533<br />

1.0/96 Alternaria gypsophilae <strong>CBS</strong> 107.41<br />

Alternaria ellipsoidea <strong>CBS</strong> 119674<br />

1.0/95<br />

Alternaria nobilis <strong>CBS</strong> 116490<br />

Alternaria saponariae <strong>CBS</strong> 116492<br />

Alternaria juxtiseptata <strong>CBS</strong> 119673<br />

Alternaria vaccariicola <strong>CBS</strong> 118714<br />

Alternaria petroselini <strong>CBS</strong> 112.41<br />

Alternaria selini <strong>CBS</strong> 109382<br />

1.0/88<br />

Alternaria smyrnii <strong>CBS</strong> 109380<br />

Alternaria carotiincultae <strong>CBS</strong> 109381<br />

0.97/79<br />

Alternaria radicina <strong>CBS</strong> 245.67<br />

1.0/90<br />

Alternaria cinerariae <strong>CBS</strong> 116495<br />

Alternaria sonchi <strong>CBS</strong> 119675<br />

0.75/48<br />

Alternaria brassicae <strong>CBS</strong> 116528<br />

Alternaria helianthiinficiens <strong>CBS</strong> 117370<br />

Alternaria helianthiinficiens <strong>CBS</strong> 208.86<br />

Alternaria brassicicola <strong>CBS</strong> 118699<br />

0.90/99 Alternaria solidaccana <strong>CBS</strong> 118698<br />

Alternaria septorioides <strong>CBS</strong> 106.41<br />

Alternaria mimicula <strong>CBS</strong> 118696<br />

Embellisia conoidea <strong>CBS</strong> 132.89<br />

Ulocladium botrytis <strong>CBS</strong> 198.67<br />

Ulocladium tuberculatum <strong>CBS</strong> 202.67<br />

1.0/99 Ulocladium obovoideum <strong>CBS</strong> 101229<br />

Ulocladium cucurbitae <strong>CBS</strong> 483.81<br />

1.0/96 Ulocladium consortiale <strong>CBS</strong> 104.31<br />

Ulocladium brassicae <strong>CBS</strong> 121493<br />

1.0/99 Ulocladium atrum <strong>CBS</strong> 195.67<br />

0.98/97<br />

Ulocladium multiforme <strong>CBS</strong> 102060<br />

0.63/56<br />

Ulocladium solani <strong>CBS</strong> 123376<br />

Ulocladium subcucurbitae <strong>CBS</strong> 121491<br />

0.98/65<br />

Ulocladium cantlous <strong>CBS</strong> 123007<br />

Ulocladium arborescens <strong>CBS</strong> 115269<br />

1.0/89<br />

Ulocladium septosporum <strong>CBS</strong> 109.38<br />

1.0/96<br />

Ulocladium chartarum <strong>CBS</strong> 200.67<br />

1.0/91<br />

Ulocladium capsici <strong>CBS</strong> 120006<br />

Alternaria elegans <strong>CBS</strong> 109159<br />

Alternaria simsimi <strong>CBS</strong> 115265<br />

1.0/79<br />

Alternaria dianthicola <strong>CBS</strong> 116491<br />

1.0/98<br />

Alternaria cheiranthi <strong>CBS</strong> 109384<br />

1.0/47<br />

Alternaria resedae <strong>CBS</strong> 115.44<br />

Embellisia indefessa <strong>CBS</strong> 536.83<br />

0.96/90 Alternaria avenicola <strong>CBS</strong> 121459<br />

1.0/93<br />

Alternaria calycipyricola <strong>CBS</strong> 121545<br />

0.96/75 Alternaria photistica <strong>CBS</strong> 212.86<br />

0.97/56<br />

Alternaria panax <strong>CBS</strong> 482.81<br />

0.99/80<br />

Alternaria eryngii <strong>CBS</strong> 121339<br />

Alternaria thalictrigena <strong>CBS</strong> 121712<br />

Teretispora leucanthemi <strong>CBS</strong> 421.65<br />

Teretispora leucanthemi <strong>CBS</strong> 422.65<br />

Alternaria japonica <strong>CBS</strong> 118390<br />

Alternaria nepalensis <strong>CBS</strong> 118700<br />

1.0/88 Alternaria anigozanthi <strong>CBS</strong> 121920<br />

Embellisia leptinellae <strong>CBS</strong> 477.90<br />

1.0/96 Alternaria triglochinicola <strong>CBS</strong> 119676<br />

0.85/44 1.0/99<br />

Embellisia eureka <strong>CBS</strong> 193.86<br />

Alternaria geniostomatis <strong>CBS</strong> 118701<br />

Alternaria cumini <strong>CBS</strong> 121329<br />

1.0/99<br />

1.0/99 Embellisia hyacinthi <strong>CBS</strong> 416.71<br />

Embellisia novae-zelandiae <strong>CBS</strong> 478.90<br />

Embellisia proteae <strong>CBS</strong> 475.90<br />

Embellisia planifunda <strong>CBS</strong> 537.83<br />

0.88/67<br />

Embellisia tumida <strong>CBS</strong> 539.83<br />

Embellisia lolii <strong>CBS</strong> 115266<br />

Embellisia dennisii <strong>CBS</strong> 110533<br />

Embellisia dennisii <strong>CBS</strong> 476.90<br />

Undifilum bornmuelleri DAOM 231361<br />

Alternaria capsici-annui <strong>CBS</strong> 504.74<br />

1.0/98<br />

Ulocladium oudemansii <strong>CBS</strong> 114.07<br />

Ulocladium botrytis <strong>CBS</strong> 197.67<br />

Sinomyces alternariae <strong>CBS</strong> 126989<br />

Alternaria argyranthemi <strong>CBS</strong> 116530<br />

1.0/76 Alternaria ethzedia <strong>CBS</strong> 197.86<br />

1.0/71 Alternaria oregonensis <strong>CBS</strong> 542.94<br />

1.0/74 Alternaria conjuncta <strong>CBS</strong> 196.86<br />

0.87/36<br />

0.96/55 Alternaria infectoria <strong>CBS</strong> 210.86<br />

Ybotromyces caespitosus <strong>CBS</strong> 177.80<br />

Chmelia slovaca <strong>CBS</strong> 567.66<br />

1.0/81<br />

Alternaria armoraciae <strong>CBS</strong> 118702<br />

Embellisia abundans <strong>CBS</strong> 534.83<br />

Chalastospora ellipsoidea <strong>CBS</strong> 121331<br />

Chalastospora cetera <strong>CBS</strong> 121340<br />

0.86/40<br />

Chalastospora obclavata <strong>CBS</strong> 124120<br />

0.55/*<br />

1.0/98 Alternaria molesta <strong>CBS</strong> 548.81<br />

Alternaria mouchaccae <strong>CBS</strong> 119671<br />

Alternaria limaciformis <strong>CBS</strong> 481.81<br />

Alternaria chlamydospora <strong>CBS</strong> 491.72<br />

1.0/64<br />

Embellisia phragmospora <strong>CBS</strong> 274.70<br />

Embellisia didymospora <strong>CBS</strong> 766.79<br />

0.93/56<br />

1.0/98 Embellisia chlamydospora <strong>CBS</strong> 341.71<br />

Embellisia tellustris <strong>CBS</strong> 538.83<br />

Embellisia allii <strong>CBS</strong> 339.71<br />

Alternaria soliaridae <strong>CBS</strong> 118387<br />

1.0/99<br />

Nimbya caricis <strong>CBS</strong> 480.90<br />

Nimbya scirpicola <strong>CBS</strong> 481.90<br />

Brachycladium penicillatum <strong>CBS</strong> 116608<br />

Crivellia papaveracea <strong>CBS</strong> 116607<br />

Brachycladium papaveris <strong>CBS</strong> 116606<br />

sect. Alternata<br />

sect. Alternantherae<br />

sect. Porri<br />

sect. Gypsophilae<br />

sect. Radicina<br />

sect. Sonchi<br />

•<br />

•<br />

sect. Brassicicola<br />

sect. Ulocladioides<br />

sect. Pseudoulocladium<br />

sect. Dianthicola<br />

sect. Cheiranthus<br />

sect. Panax<br />

•<br />

sect. Teretispora<br />

sect. Japonicae<br />

sect. Eureka<br />

sect. Embellisioides<br />

•<br />

sect. Undifilum<br />

sect. Ulocladium<br />

•<br />

sect. Infectoriae<br />

sect. Chalastospora<br />

sect. Phragmosporae<br />

sect. Embellisia<br />

•<br />

sect. Nimbya<br />

sect. Crivellia<br />

A<br />

l<br />

t<br />

e<br />

r<br />

n<br />

a<br />

r<br />

i<br />

a<br />

Fig. 1. Bayesian 50 % majority rule consensus tree based on the GAPDH, RPB2 and TEF1 sequences of 121 strains representing the Alternaria complex. The Bayesian<br />

posterior probabilities (PP) and RAxML bootstrap support values (ML) are given at the nodes (PP/ML). Thickened lines indicate a PP of 1.0 and ML of 100. The tree was rooted<br />

to Stemphylium herbarum (<strong>CBS</strong> 191.86). The monotypic lineages are indicated by black dots.<br />

Phylogenetic analyses<br />

Multiple sequence alignments were generated with MAFFT v. 6.864b<br />

(http://mafft.cbrc.jp/alignment/server/index.html), and adjusted by<br />

eye. Two different datasets were used to estimate two phylogenies;<br />

an Alternaria complex phylogeny and a Pleosporineae family tree.<br />

The first tree focusses on the Alternaria complex, the second one<br />

was produced to place the genera Comoclathris, Clathrospora and<br />

Alternariaster in the context of the Alternaria complex. The relatives<br />

of the three genera were determined with standard nucleotide blast<br />

searches, with both the SSU and LSU sequences, against the<br />

nucleotide database in GenBank. This resulted in a selection of 35<br />

www.studiesinmycology.org<br />

173


Woudenberg et al.<br />

Table 1. Isolates used in this study and their GenBank accession numbers. Bold accession numbers were generated in other studies.<br />

Old species<br />

name<br />

Alternaria<br />

alternantherae<br />

New species<br />

name<br />

Alternaria<br />

alternantherae<br />

Alternaria<br />

Section<br />

Strain Status 2 Host / Substrate Country Other collection<br />

GenBank accession numbers<br />

number 1 number 1<br />

SSU LSU RPB2 ITS GAPDH TEF1<br />

Althernantherae <strong>CBS</strong> 124392 Solanum melongena China HSAUP2798 KC584506 KC584251 KC584374 KC584179 KC584096 KC584633<br />

Alternaria alternata Alternaria alternata Alternata <strong>CBS</strong> 916.96 T Arachis hypogaea India EGS 34.016 KC584507 DQ678082 KC584375 AF347031 AY278808 KC584634<br />

Alternaria anigozanthi Alternaria anigozanthi Eureka <strong>CBS</strong> 121920 T Anigozanthus sp. Australia EGS 44.066 KC584508 KC584252 KC584376 KC584180 KC584097 KC584635<br />

Alternaria arborescens Alternaria arborescens Alternata <strong>CBS</strong> 102605 T Lycopersicon<br />

USA EGS 39.128 KC584509 KC584253 KC584377 AF347033 AY278810 KC584636<br />

esculentum<br />

Alternaria argyranthemi Alternaria argyranthemi <strong>CBS</strong> 116530 T Argyranthemum sp. New Zealand EGS 44.033 KC584510 KC584254 KC584378 KC584181 KC584098 KC584637<br />

Alternaria armoraciae Alternaria armoraciae Chalastospora <strong>CBS</strong> 118702 T Armoracia rusticana New Zealand EGS 51.064 KC584511 KC584255 KC584379 KC584182 KC584099 KC584638<br />

Alternaria avenicola Alternaria avenicola Panax <strong>CBS</strong> 121459 T Avena sp. Norway EGS 50.185 KC584512 KC584256 KC584380 KC584183 KC584100 KC584639<br />

New Zealand EGS 51.066 KC584513 KC584257 KC584381 KC584184 KC584101 KC584640<br />

Alternaria<br />

axiaeriisporifera<br />

Alternaria<br />

axiaeriisporifera<br />

Gypsophilae <strong>CBS</strong> 118715 T Gypsophila<br />

paniculata<br />

Alternaria brassicae Alternaria brassicae <strong>CBS</strong> 116528 R Brassica oleracea USA EGS 38.032 KC584514 KC584258 KC584382 KC584185 KC584102 KC584641<br />

Alternaria brassicicola Alternaria brassicicola Brassicicola <strong>CBS</strong> 118699 R Brassica oleracea USA EGS 42.002; ATCC<br />

96836<br />

Alternaria<br />

calycipyricola<br />

Alternaria<br />

calycipyricola<br />

Panax <strong>CBS</strong> 121545 T Pyrus communis China EGS 52.071; RGR<br />

96.0209<br />

KC584515 KC584259 KC584383 JX499031 KC584103 KC584642<br />

KC584516 KC584260 KC584384 KC584186 KC584104 KC584643<br />

Alternaria capsici-annui Alternaria capsici-annui Ulocladium <strong>CBS</strong> 504.74 Capsicum annuum – KC584517 KC584261 KC584385 KC584187 KC584105 KC584644<br />

Alternaria carotiincultae Alternaria carotiincultae Radicina <strong>CBS</strong> 109381 T Daucus carota USA EGS 26.010 KC584518 KC584262 KC584386 KC584188 KC584106 KC584645<br />

Alternaria cheiranthi Alternaria cheiranthi Cheiranthus <strong>CBS</strong> 109384 R Cheiranthus cheiri Italy EGS 41.188 KC584519 KC584263 KC584387 AF229457 KC584107 KC584646<br />

KC584520 KC584264 KC584388 KC584189 KC584108 KC584647<br />

Alternaria<br />

chlamydospora<br />

Alternaria<br />

chlamydospora<br />

Phragmosporae <strong>CBS</strong> 491.72 T Soil Egypt EGS 31.060; ATCC<br />

28045; IMI 156427<br />

Alternaria cinerariae Alternaria cinerariae Sonchi <strong>CBS</strong> 116495 R Ligularia sp. USA EGS 49.102 KC584521 KC584265 KC584389 KC584190 KC584109 KC584648<br />

Alternaria conjuncta Alternaria conjuncta Infectoriae <strong>CBS</strong> 196.86 T Pastinaca sativa Switzerland EGS 37.139 KC584522 KC584266 KC584390 FJ266475 AY562401 KC584649<br />

Alternaria cumini Alternaria cumini Eureka <strong>CBS</strong> 121329 T Cuminum cyminum India EGS 04.158a KC584523 KC584267 KC584391 KC584191 KC584110 KC584650<br />

Alternaria dauci Alternaria dauci Porri <strong>CBS</strong> 117097 R Daucus carota USA EGS 46.006 KC584524 KC584268 KC584392 KC584192 KC584111 KC584651<br />

Alternaria daucifolii Alternaria daucifolii Alternata <strong>CBS</strong> 118812 T Daucus carota USA EGS 37.050 KC584525 KC584269 KC584393 KC584193 KC584112 KC584652<br />

Alternaria dianthicola Alternaria dianthicola Dianthicola <strong>CBS</strong> 116491 R Dianthus × allwoodii New Zealand EGS 51.022 KC584526 KC584270 KC584394 KC584194 KC584113 KC584653<br />

KC584527 KC584271 KC584395 KC584195 KC584114 KC584654<br />

Alternaria elegans Alternaria elegans Dianthicola <strong>CBS</strong> 109159 T Lycopersicon<br />

esculentum<br />

Burkina Faso EGS 45.072; IMI<br />

374542<br />

Alternaria ellipsoidea Alternaria ellipsoidea Gypsophilae <strong>CBS</strong> 119674 T Dianthus barbatus USA EGS 49.104 KC584528 KC584272 KC584396 KC584196 KC584115 KC584655<br />

Alternaria eryngii Alternaria eryngii Panax <strong>CBS</strong> 121339 R Eryngium sp. – EGS 41.005 KC584529 KC584273 KC584397 JQ693661 AY562416 KC584656<br />

Alternaria ethzedia Alternaria ethzedia Infectoriae <strong>CBS</strong> 197.86 T Brassica napus Switzerland EGS 37.143 KC584530 KC584274 KC584398 AF392987 AY278795 KC584657<br />

Alternaria gaisen Alternaria gaisen Alternata <strong>CBS</strong> 632.93 R Pyrus pyrifolia cv. Nijiseiki<br />

Japan EGS 90.512 KC584531 KC584275 KC584399 KC584197 KC584116 KC584658<br />

174


Alternaria redefined<br />

Table 1. (Continued).<br />

Old species<br />

name<br />

Alternaria<br />

geniostomatis<br />

New species<br />

name<br />

Alternaria<br />

geniostomatis<br />

Alternaria<br />

Section<br />

Strain Status 2 Host / Substrate Country Other collection<br />

GenBank accession numbers<br />

number 1 number 1<br />

SSU LSU RPB2 ITS GAPDH TEF1<br />

Eureka <strong>CBS</strong> 118701 T Geniostoma sp. New Zealand EGS 51.061 KC584532 KC584276 KC584400 KC584198 KC584117 KC584659<br />

Alternaria gypsophilae Alternaria gypsophilae Gypsophilae <strong>CBS</strong> 107.41 T Gypsophila elegans – EGS 07.025; IMI<br />

264349<br />

Alternaria<br />

helianthiinficiens<br />

Alternaria<br />

helianthiinficiens<br />

Alternaria<br />

helianthiinficiens<br />

Alternaria<br />

helianthiinficiens<br />

<strong>CBS</strong> 117370 R Helianthus annuus UK EGS 50.174; IMI<br />

388636<br />

KC584533 KC584277 KC584401 KC584199 KC584118 KC584660<br />

KC584534 KC584278 KC584402 KC584200 KC584119 KC584661<br />

<strong>CBS</strong> 208.86 T Helianthus annuus USA EGS 36.184 KC584535 KC584279 KC584403 JX101649 KC584120 EU130548<br />

Alternaria infectoria Alternaria infectoria Infectoriae <strong>CBS</strong> 210.86 T Triticum aestivum UK EGS 27.193 KC584536 KC584280 KC584404 DQ323697 AY278793 KC584662<br />

Alternaria japonica Alternaria japonica Japonicae <strong>CBS</strong> 118390 R Brassica chinensis USA EGS 50.099 KC584537 KC584281 KC584405 KC584201 KC584121 KC584663<br />

KC584538 KC584282 KC584406 KC584202 KC584122 KC584664<br />

Alternaria juxtiseptata Alternaria juxtiseptata Gypsophilae <strong>CBS</strong> 119673 T Gypsophila<br />

paniculata<br />

Australia EGS 44.015; DAR<br />

43414<br />

Alternaria limaciformis Alternaria limaciformis Phragmosporae <strong>CBS</strong> 481.81 T Soil UK EGS 07.086; IMI<br />

052976; QM 1790<br />

Alternaria<br />

limoniasperae<br />

Alternaria<br />

limoniasperae<br />

KC584539 KC584283 KC584407 KC584203 KC584123 KC584665<br />

Alternata <strong>CBS</strong> 102595 T Citrus jambhiri USA EGS 45.100 KC584540 KC584284 KC584408 FJ266476 AY562411 KC584666<br />

Alternaria longipes Alternaria longipes Alternata <strong>CBS</strong> 540.94 R Nicotiana tabacum USA EGS 30.033; QM<br />

9589<br />

Alternaria macrospora Alternaria macrospora Porri <strong>CBS</strong> 117228 T Gossypium<br />

barbadense<br />

Alternaria mimicula Alternaria mimicula Brassicicola <strong>CBS</strong> 118696 T Lycopersicon<br />

esculentum<br />

KC584541 KC584285 KC584409 AY278835 AY278811 KC584667<br />

USA EGS 50.190 KC584542 KC584286 KC584410 KC584204 KC584124 KC584668<br />

USA EGS 01.056; QM 26a KC584543 KC584287 KC584411 FJ266477 AY562415 KC584669<br />

Alternaria molesta Alternaria molesta Phragmosporae <strong>CBS</strong> 548.81 T Phocaena phocaena Denmark EGS 32.075 KC584544 KC584288 KC584412 KC584205 KC584125 KC584670<br />

Alternaria mouchaccae Alternaria mouchaccae Phragmosporae <strong>CBS</strong> 119671 T Soil Egypt EGS 31.061 KC584545 KC584289 KC584413 KC584206 AY562399 KC584671<br />

Alternaria nepalensis Alternaria nepalensis Japonicae <strong>CBS</strong> 118700 T Brassica sp. Nepal EGS 45.073; IMI KC584546 KC584290 KC584414 KC584207 KC584126 KC584672<br />

374543<br />

Alternaria nobilis Alternaria nobilis Gypsophilae <strong>CBS</strong> 116490 R Dianthus caryophyllus New Zealand EGS 51.027; NZMAF KC584547 KC584291 KC584415 KC584208 KC584127 KC584673<br />

Lynfield 743<br />

Alternaria oregonensis Alternaria oregonensis Infectoriae <strong>CBS</strong> 542.94 T Triticum aestivum USA EGS 29.194 KC584548 KC584292 KC584416 FJ266478 FJ266491 KC584674<br />

Alternaria panax Alternaria panax Panax <strong>CBS</strong> 482.81 R Aralia racemosa USA EGS 29.180 KC584549 KC584293 KC584417 KC584209 KC584128 KC584675<br />

USA KC584550 KC584294 KC584418 KC584210 KC584129 KC584676<br />

Alternaria<br />

perpunctulata<br />

Alternaria<br />

perpunctulata<br />

Althernantherae <strong>CBS</strong> 115267 T Alternanthera<br />

philoxeroides<br />

Alternaria petroselini Alternaria petroselini Radicina <strong>CBS</strong> 112.41 T Petroselinum sativum – EGS 06.196 KC584551 KC584295 KC584419 KC584211 KC584130 KC584677<br />

Alternaria photistica Alternaria photistica Panax <strong>CBS</strong> 212.86 T Digitalis purpurea UK EGS 35.172 KC584552 KC584296 KC584420 KC584212 KC584131 KC584678<br />

Alternaria porri Alternaria porri Porri <strong>CBS</strong> 116698 R Allium cepa USA EGS 48.147 KC584553 KC584297 KC584421 DQ323700 KC584132 KC584679<br />

www.studiesinmycology.org<br />

175


Woudenberg et al.<br />

Table 1. (Continued).<br />

Old species<br />

name<br />

Alternaria<br />

pseudorostrata<br />

New species<br />

name<br />

Alternaria<br />

pseudorostrata<br />

Alternaria<br />

Section<br />

Strain Status 2 Host / Substrate Country Other collection<br />

GenBank accession numbers<br />

number 1 number 1<br />

Porri <strong>CBS</strong> 119411 T Euphorbia<br />

pulcherrima<br />

Alternaria radicina Alternaria radicina Radicina <strong>CBS</strong> 245.67 T Daucus carota USA EGS 03.145; ATCC<br />

6503; IMI 124939;<br />

QM 1301; QM 6503<br />

SSU LSU RPB2 ITS GAPDH TEF1<br />

USA EGS 42.060 KC584554 KC584298 KC584422 JN383483 AY562406 KC584680<br />

KC584555 KC584299 KC584423 KC584213 KC584133 KC584681<br />

“Alternaria resedae” Alternaria sp. Cheiranthus <strong>CBS</strong> 115.44 Reseda odorata – EGS 07.030 KC584556 KC584300 KC584424 KC584214 KC584134 KC584682<br />

Alternaria saponariae Alternaria saponariae Gypsophilae <strong>CBS</strong> 116492 R Saponaria officinalis USA EGS 49.199 KC584557 KC584301 KC584425 KC584215 KC584135 KC584683<br />

Alternaria selini Alternaria selini Radicina <strong>CBS</strong> 109382 T Petroselinum crispum Saudi Arabia EGS 25.198; IMI KC584558 KC584302 KC584426 AF229455 AY278800 KC584684<br />

137332<br />

Alternaria septorioides Alternaria septorioides Brassicicola <strong>CBS</strong> 106.41 T Reseda odorata Netherlands EGS 52.089; MUCL KC584559 KC584303 KC584427 KC584216 KC584136 KC584685<br />

20298<br />

Alternaria simsimi Alternaria simsimi Dianthicola <strong>CBS</strong> 115265 T Sesamum indicum Argentina EGS 13.110 KC584560 KC584304 KC584428 JF780937 KC584137 KC584686<br />

Alternaria smyrnii Alternaria smyrnii Radicina <strong>CBS</strong> 109380 R Smyrnium olusatrum UK EGS 37.093 KC584561 KC584305 KC584429 AF229456 KC584138 KC584687<br />

Alternaria solani Alternaria solani Porri <strong>CBS</strong> 116651 R Solanum tuberosum USA EGS 45.020 KC584562 KC584306 KC584430 KC584217 KC584139 KC584688<br />

Alternaria soliaridae Alternaria soliaridae <strong>CBS</strong> 118387 T Soil USA EGS 33.024 KC584563 KC584307 KC584431 KC584218 KC584140 KC584689<br />

Alternaria solidaccana Alternaria solidaccana Brassicicola <strong>CBS</strong> 118698 T Soil Bangladesh EGS 36.158; IMI<br />

049788<br />

Alternaria sonchi Alternaria sonchi Sonchi <strong>CBS</strong> 119675 R Sonchus asper Canada EGS 43.131; IMI<br />

366167<br />

KC584564 KC584308 KC584432 KC584219 KC584141 KC584690<br />

KC584565 KC584309 KC584433 KC584220 KC584142 KC584691<br />

Alternaria tagetica Alternaria tagetica Porri <strong>CBS</strong> 479.81 R Tagetes erecta UK EGS 33.081 KC584566 KC584310 KC584434 KC584221 KC584143 KC584692<br />

Alternaria tenuissima Alternaria tenuissima Alternata <strong>CBS</strong> 918.96 R Dianthus sp. UK EGS 34.015 KC584567 KC584311 KC584435 AF347032 AY278809 KC584693<br />

Alternaria thalictrigena Alternaria thalictrigena <strong>CBS</strong> 121712 T Thalictrum sp. Germany KC584568 KC584312 KC584436 EU040211 KC584144 KC584694<br />

Alternaria<br />

triglochinicola<br />

Alternaria<br />

triglochinicola<br />

Eureka <strong>CBS</strong> 119676 T Triglochin procera Australia EGS 41.070 KC584569 KC584313 KC584437 KC584222 KC584145 KC584695<br />

Alternaria vaccariae Alternaria vaccariae Gypsophilae <strong>CBS</strong> 116533 R Vaccaria hispanica USA EGS 47.108 KC584570 KC584314 KC584438 KC584223 KC584146 KC584696<br />

Alternaria vaccariicola Alternaria vaccariicola Gypsophilae <strong>CBS</strong> 118714 T Vaccaria hispanica USA EGS 46.003; ATCC KC584571 KC584315 KC584439 KC584224 KC584147 KC584697<br />

26038<br />

Alternariaster helianthi Alternariaster helianthi <strong>CBS</strong> 119672 R Helianthus sp. USA EGS 36.007 KC584626 KC584368 KC584493<br />

Alternariaster helianthi Alternariaster helianthi <strong>CBS</strong> 327.69 Helianthus annuus – KC584627 KC584369 KC584494<br />

Ascochyta pisi Ascochyta pisi <strong>CBS</strong> 126.54 Pisum sativum Netherlands EU754038 DQ678070 DQ677967<br />

Boeremia exigua Boeremia exigua <strong>CBS</strong> 431.74 Solanum tuberosum Netherlands PD 74/2447 EU754084 EU754183 GU371780<br />

Brachycladium<br />

papaveris<br />

Brachycladium<br />

penicillatum<br />

Alternaria papavericola Crivellia <strong>CBS</strong> 116606 T Papaver somniferum USA KC584579 KC584321 KC584446 FJ357310 FJ357298 KC584705<br />

Alternaria penicillata Crivellia <strong>CBS</strong> 116608 T Papaver rhoeas Austria DAOM 230457 KC584572 KC584316 KC584440 FJ357311 FJ357299 KC584698<br />

176


Alternaria redefined<br />

Table 1. (Continued).<br />

Old species<br />

name<br />

New species<br />

name<br />

Alternaria<br />

Section<br />

Chaetodiplodia sp. Chaetodiplodia sp. <strong>CBS</strong> 453.68 Halimione<br />

portulacoides<br />

Chaetosphaeronema<br />

hispidulum<br />

Chaetosphaeronema<br />

hispidulum<br />

Strain Status 2 Host / Substrate Country Other collection<br />

GenBank accession numbers<br />

number 1 number 1<br />

SSU LSU RPB2 ITS GAPDH TEF1<br />

Netherlands DQ678001 DQ678054 KC584499<br />

<strong>CBS</strong> 216.75 Anthyllis vulneraria Germany EU754045 EU754144 GU371777<br />

Chalastospora cetera Alternaria cetera Chalastospora <strong>CBS</strong> 121340 T Elymus scabrus Australia EGS 41.072 KC584573 KC584317 KC584441 JN383482 AY562398 KC584699<br />

Chalastospora<br />

Alternaria breviramosa Chalastospora <strong>CBS</strong> 121331 T Triticum sp. Australia KC584574 KC584318 KC584442 FJ839608 KC584148 KC584700<br />

ellipsoidea<br />

Chalastospora<br />

Alternaria obclavata Chalastospora <strong>CBS</strong> 124120 T Air USA EGS 12.128 KC584575 FJ839651 KC584443 KC584225 KC584149 KC584701<br />

obclavata<br />

Chmelia slovaca Alternaria slovaca Infectoriae <strong>CBS</strong> 567.66 T Human Slovakia ATCC 24279 KC584576 KC584319 KC584444 KC584226 KC584150 KC584702<br />

Clathrospora elynae Clathrospora elynae <strong>CBS</strong> 161.51 Carex curvula Switzerland KC584628 KC584370 KC584495<br />

Clathrospora elynae Clathrospora elynae <strong>CBS</strong> 196.54 Carex curvula Switzerland KC584629 KC584371 KC584496<br />

Clathrospora<br />

heterospora<br />

Cochliobolus<br />

heterostrophus<br />

Alternaria sp. Alternata <strong>CBS</strong> 175.52 Juncus mertensianus USA EGS 35.1619; IMI<br />

068085; QM 1277<br />

Cochliobolus<br />

heterostrophus<br />

<strong>CBS</strong> 134.39 Zea mays – DSM 1149 AY544727 AY544645 DQ247790<br />

Cochliobolus sativus Cochliobolus sativus DAOM 226212 Hordeum vulgare Canada DQ677995 DQ678045 DQ677939<br />

KC584577 KC584320 KC584445 KC584227 KC584151 KC584703<br />

Comoclathris magna Alternaria sp. Alternata <strong>CBS</strong> 174.52 Anemone occidentalis USA EGS 39.1613; IMI<br />

068086; QM 1278<br />

Comoclathris<br />

compressa<br />

Comoclathris<br />

compressa<br />

Coniothyrium<br />

palmarum<br />

Comoclathris<br />

compressa<br />

Comoclathris<br />

compressa<br />

Coniothyrium<br />

palmarum<br />

<strong>CBS</strong> 156.53 Castilleja miniata USA EGS No. C-20285-I KC584630 KC584372 KC584497<br />

<strong>CBS</strong> 157.53 Ligusticum<br />

purpureum<br />

USA EGS No. 1952a-1633 KC584631 KC584373 KC584498<br />

<strong>CBS</strong> 400.71 Chamaerops humilis Italy EU754054 EU754153 DQ677956<br />

KC584578 DQ678068 DQ677964 KC584228 KC584152 KC584704<br />

Crivellia papaveracea Alternaria penicillata Crivellia <strong>CBS</strong> 116607 T Papaver rhoeas Austria DAOM 230456 KC584580 KC584322 KC584447 KC584229 KC584153 KC584706<br />

KC793336 KC793338 DQ470924<br />

Dendryphiella<br />

arenariae<br />

Paradendryphiella<br />

arenariae<br />

Dendryphiella salina Paradendryphiella<br />

salina<br />

<strong>CBS</strong> 181.58 T Coastal sand France DAOM 63738; IMI<br />

067735; MUCL 4129<br />

<strong>CBS</strong> 142.60 Spartina sp. UK MUCL 9639 KC793337 KC793339 KC793340<br />

Embellisia abundans Alternaria abundans Chalastospora <strong>CBS</strong> 534.83 T Fragaria sp. New Zealand EGS 29.159 KC584581 KC584323 KC584448 JN383485 KC584154 KC584707<br />

Embellisia allii Alternaria embellisia Embellisia <strong>CBS</strong> 339.71 R Allium sativum USA ATCC 22412; IMI KC584582 KC584324 KC584449 KC584230 KC584155 KC584708<br />

155707; MUCL<br />

18571; QM 8609<br />

Embellisia annulata Cicatricea salina <strong>CBS</strong> 302.84 T Cancer pagurus North Sea,<br />

Skagerrak<br />

KC584583 KC584325 KC584450 JN383486 JN383467 KC584709<br />

www.studiesinmycology.org<br />

177


Woudenberg et al.<br />

Table 1. (Continued).<br />

Old species<br />

name<br />

Embellisia<br />

chlamydospora<br />

New species<br />

name<br />

Alternaria<br />

chlamydosporigena<br />

Alternaria<br />

Section<br />

Strain Status 2 Host / Substrate Country Other collection<br />

GenBank accession numbers<br />

number 1 number 1<br />

Embellisia <strong>CBS</strong> 341.71 R Air USA EGS 10.073; ATCC<br />

22409; IMI 155709;<br />

MUCL 18573; QM<br />

7287<br />

SSU LSU RPB2 ITS GAPDH TEF1<br />

KC584584 KC584326 KC584451 KC584231 KC584156 KC584710<br />

Embellisia conoidea Alternaria conoidea Brassicicola <strong>CBS</strong> 132.89 Ricinus communis Saudi Arabia KC584585 KC584327 KC584452 AF348226 FJ348227 KC584711<br />

Embellisia dennisii Alternaria dennisii <strong>CBS</strong> 110533 Senecio jacobaea New Zealand KC584586 KC584328 KC584453 KC584232 KC584157 KC584712<br />

Embellisia dennisii Alternaria dennisii <strong>CBS</strong> 476.90 T Senecio jacobaea Isle of Man IMI 151744 KC584587 KC584329 KC584454 JN383488 JN383469 KC584713<br />

Embellisia<br />

didymospora<br />

Alternaria didymospora Phragmosporae <strong>CBS</strong> 766.79 Seawater Adriatic Sea KC584588 KC584330 KC584455 FJ357312 FJ357300 KC584714<br />

Embellisia eureka Alternaria eureka Eureka <strong>CBS</strong> 193.86 T Medicago rugosa Australia IMI 273162 KC584589 KC584331 KC584456 JN383490 JN383471 KC584715<br />

Embellisia hyacinthi Alternaria hyacinthi Embellisioides <strong>CBS</strong> 416.71 T Hyacinthus orientalis Netherlands EGS 19.102; IMI KC584590 KC584332 KC584457 KC584233 KC584158 KC584716<br />

279179<br />

Embellisia indefessa Alternaria indefessa Cheiranthus <strong>CBS</strong> 536.83 T Soil USA EGS 30.195 KC584591 KC584333 KC584458 KC584234 KC584159 KC584717<br />

Embellisia leptinellae Alternaria leptinellae Eureka <strong>CBS</strong> 477.90 T Leptinella dioica New Zealand EGS 39.101 KC584592 KC584334 KC584459 KC584235 KC584160 KC584718<br />

Embellisia lolii Alternaria lolii Embellisioides <strong>CBS</strong> 115266 T Lolium perenne New Zealand KC584593 KC584335 KC584460 JN383492 JN383473 KC584719<br />

Embellisia novaezelandiae<br />

Embellisia<br />

phragmospora<br />

Alternaria botryospora Embellisioides <strong>CBS</strong> 478.90 T Leptinella dioica New Zealand EGS 39.099 KC584594 KC584336 KC584461 AY278844 AY278831 KC584720<br />

Alternaria<br />

phragmospora<br />

Phragmosporae <strong>CBS</strong> 274.70 T Soil The<br />

netherlands<br />

EGS 27.098; ATCC<br />

18914<br />

KC584595 KC584337 KC584462 JN383493 JN383474 KC584721<br />

Embellisia planifunda Alternaria planifunda Embellisioides <strong>CBS</strong> 537.83 T Triticum aestivum Australia IMI 115034 KC584596 KC584338 KC584463 FJ357315 FJ357303 KC584722<br />

Embellisia proteae Alternaria proteae Embellisioides <strong>CBS</strong> 475.90 T Protea sp. Australia IMI 320290; IMI KC584597 KC584339 KC584464 AY278842 KC584161 KC584723<br />

341684<br />

Embellisia tellustris Alternaria tellustris Embellisia <strong>CBS</strong> 538.83 T Soil USA EGS 33.026 KC584598 KC584340 KC584465 FJ357316 AY562419 KC584724<br />

Embellisia tumida Alternaria tumida Embellisioides <strong>CBS</strong> 539.83 T Triticum aestivum Australia KC584599 KC584341 KC584466 FJ266481 FJ266493 KC584725<br />

<strong>CBS</strong> 115.96 Chenopodium album Netherlands PD 94/1576 EU754089 EU754188 GU371775<br />

Heterospora<br />

chenopodii<br />

Heterospora<br />

chenopodii<br />

Julella avicenniae Julella avicenniae BCC 18422 Mangrove wood Thailand GU371831 GU371823 GU371787<br />

Leptosphaerulina<br />

australis<br />

Leptosphaerulina<br />

australis<br />

<strong>CBS</strong> 317.83 Eugenia aromatica Indonesia GU296160 GU301830 GU371790<br />

Loratospora aestuarii Loratospora aestuarii JK 5535B Juncus roemerianus USA GU296168 GU301838 GU371760<br />

Neophaeosphaeria<br />

filamentosa<br />

Neophaeosphaeria<br />

filamentosa<br />

<strong>CBS</strong> 102202 Yucca rostrata Mexico GQ387516 GQ387577 GU371773<br />

Nimbya caricis Alternaria caricis Nimbya <strong>CBS</strong> 480.90 T Carex hoodii USA EGS 13.094 KC584600 KC584342 KC584467 AY278839 AY278826 KC584726<br />

“Nimbya gomphrenae” Alternaria sp. Alternata <strong>CBS</strong> 108.27 Gomphrena globosa – KC584601 KC584343 KC584468 KC584236 KC584162 KC584727<br />

Nimbya scirpicola Alternaria scirpicola Nimbya <strong>CBS</strong> 481.90 R Scirpus sp. UK EGS 19.042 KC584602 KC584344 KC584469 KC584237 KC584163 KC584728<br />

178


Alternaria redefined<br />

Table 1. (Continued).<br />

Old species<br />

name<br />

Ophiosphaerella<br />

herpotricha<br />

Paraleptosphaeria<br />

dryadis<br />

Peyronellaea<br />

glomerata<br />

Peyronellaea zeaemaydis<br />

Phaeosphaeria<br />

ammophilae<br />

Phaeosphaeria<br />

avenaria<br />

Phaeosphaeria<br />

eustoma<br />

New species<br />

name<br />

Ophiosphaerella<br />

herpotricha<br />

Paraleptosphaeria<br />

dryadis<br />

Peyronellaea<br />

glomerata<br />

Peyronellaea zeaemaydis<br />

Phaeosphaeria<br />

ammophilae<br />

Phaeosphaeria<br />

avenaria<br />

Phaeosphaeria<br />

eustoma<br />

Alternaria<br />

Section<br />

Strain Status 2 Host / Substrate Country Other collection<br />

GenBank accession numbers<br />

number 1 number 1<br />

SSU LSU RPB2 ITS GAPDH TEF1<br />

<strong>CBS</strong> 620.86 Bromus erectus Switzerland ETH 9373 DQ678010 DQ678062 DQ677958<br />

<strong>CBS</strong> 643.86 Dryas octopetala Switzerland ETH 9446 KC584632 GU301828 GU371733<br />

<strong>CBS</strong> 528.66 Chrysanthemum sp. Netherlands PD 63/590 EU754085 EU754184 GU371781<br />

<strong>CBS</strong> 588.69 T Zea mays USA EU754093 EU754192 GU371782<br />

<strong>CBS</strong> 114595 Ammophila arenaria Sweden UPSC 3568 GU296185 GU304859 GU371724<br />

DAOM 226215 Avena sativa Canada OSC 100096 AY544725 AY544684 DQ677941<br />

<strong>CBS</strong> 573.86 Dactylis glomerata Switzerland ETH 9239 DQ678011 DQ678063 DQ677959<br />

Phoma complanata Phoma complanata <strong>CBS</strong> 268.92 Anglica sylvestris Netherlands PD 75/3 EU754081 EU754180 GU371778<br />

Phoma herbarum Phoma herbarum <strong>CBS</strong> 276.37 Wood pulp Sweden DQ678014 DQ678066 DQ677962<br />

Plenodomus lingam Plenodomus lingam DAOM 229267 Brassica sp. France DQ470993 DQ470946 DQ470894<br />

Pleospora betae Pleospora betae <strong>CBS</strong> 109410 Beta vulgaris Netherlands PD 77/113 EU754079 EU754178 GU371774<br />

Pleospora calvescens Pleospora calvescens <strong>CBS</strong> 246.79 Atriplex hastata Germany PD 77/655 EU754032 EU754131 KC584500<br />

Pleospora chenopodii Pleospora chenopodii <strong>CBS</strong> 206.80 Chenopodium quinoa Bolivia PD 74/1022 JF740095 JF740266 KC584501<br />

Pleospora fallens Pleospora fallens <strong>CBS</strong> 161.78 Olea europaea New Zealand GU238215 GU238074 KC584502<br />

Pleospora halimiones Pleospora halimiones <strong>CBS</strong> 432.77 Halimione<br />

portulacoides<br />

Netherlands IMI 282137 JF740096 JF740267 KC584503<br />

Pleospora incompta Pleospora incompta <strong>CBS</strong> 467.76 Olea europaea Greece GU23822 GU238087 KC584504<br />

Pleospora tarda Pleospora tarda <strong>CBS</strong> 714.68 T Medicago sativa Canada EGS 04.118C; IMI<br />

135456; MUCL<br />

11717; QM 1379<br />

Pleospora typhicola Pleospora typhicola <strong>CBS</strong> 132.69 Typha angustifolia Netherlands JF740105 JF740325 KC584505<br />

KC584603 KC584345 AF107804 KC584238 AF443881 KC584729<br />

Pyrenochaeta nobilis Pyrenochaeta nobilis <strong>CBS</strong> 407.76 T Laurus nobilis Italy EU754107 DQ678096 DQ677991<br />

Pyrenophora<br />

phaeocomes<br />

Saccothecium<br />

sepincola<br />

Setomelanomma<br />

holmii<br />

Pyrenophora<br />

phaeocomes<br />

Saccothecium<br />

sepincola<br />

Setomelanomma<br />

holmii<br />

DAOM 222769 Calamagrostis villosa Switzerland DQ499595 DQ499596 DQ497614<br />

<strong>CBS</strong> 278.32 Ribes nigrum USA GU296195 GU301870 GU371745<br />

<strong>CBS</strong> 110217 Picea pungens USA GU296196 GQ37633 GU371800<br />

www.studiesinmycology.org<br />

179


Woudenberg et al.<br />

Table 1. (Continued).<br />

Old species<br />

name<br />

New species<br />

name<br />

Alternaria<br />

Section<br />

Strain Status 2 Host / Substrate Country Other collection<br />

GenBank accession numbers<br />

number 1 number 1<br />

SSU LSU RPB2 ITS GAPDH TEF1<br />

Sinomyces alternariae Alternaria alternariae Ulocladium <strong>CBS</strong> 126989 T Daucus carota USA EGS 46.004 KC584604 KC584346 KC584470 AF229485 AY278815 KC584730<br />

Stemphylium herbarum Stemphylium herbarum <strong>CBS</strong> 191.86 T Medicago sativa India EGS 36.138; IMI 276975<br />

GU238232 GU238160 KC584471 KC584239 AF443884 KC584731<br />

KC584605 KC584347 KC584472 KC584240 KC584164 KC584732<br />

Teretispora<br />

leucanthemi<br />

Teretispora<br />

leucanthemi<br />

Ulocladium<br />

arborescens<br />

Alternaria leucanthemi Teretispora <strong>CBS</strong> 421.65 T Chrysanthemum<br />

maximum<br />

Alternaria leucanthemi <strong>CBS</strong> 422.65 R Chrysanthemum<br />

maximum<br />

Netherlands ATCC 16028; IFO<br />

9085; IMI 111986;<br />

QM 7227<br />

USA EGS 17.063; ATCC<br />

16029; IMI 111987;<br />

QM 8579<br />

KC584606 KC584348 KC584473 KC584241 KC584165 KC584733<br />

Alternaria aspera Pseudoulocladium <strong>CBS</strong> 115269 T Pistacia vera Japan IMI 369777 KC584607 KC584349 KC584474 KC584242 KC584166 KC584734<br />

Ulocladium atrum Alternaria atra Ulocladioides <strong>CBS</strong> 195.67 T Soil USA ATCC 18040; IMI<br />

124944; QM 8408<br />

Ulocladium botrytis Alternaria botrytis Ulocladium <strong>CBS</strong> 197.67 T Contaminant USA ATCC 18042; IMI<br />

124942; MUCL<br />

18556; QM 7878<br />

Ulocladium botrytis Alternaria sp. Ulocladioides <strong>CBS</strong> 198.67 R Soil USA ATCC 18043; IMI<br />

124949; MUCL<br />

18557; QM 8619<br />

Ulocladium brassicae Alternaria brassicaepekinensis<br />

KC584608 KC584350 KC584475 AF229486 KC584167 KC584735<br />

KC584609 KC584351 KC584476 KC584243 KC584168 KC584736<br />

KC584610 KC584352 KC584477 AF229487 KC584169 KC584737<br />

Ulocladioides <strong>CBS</strong> 121493 T Brassica pekinensis China HSAUPwy0037 KC584611 KC584353 KC584478 KC584244 KC584170 KC584738<br />

Ulocladium cantlous Alternaria cantlous Ulocladioides <strong>CBS</strong> 123007 T Cucumis melo China HSAUP0209 KC584612 KC584354 KC584479 KC584245 KC584171 KC584739<br />

Ulocladium capsici Alternaria concatenata Pseudoulocladium <strong>CBS</strong> 120006 T – – HSAUPIII 0<br />

0035 KC584613 KC584355 KC584480 KC584246 AY762950 KC584740<br />

Ulocladium chartarum Alternaria chartarum Pseudoulocladium <strong>CBS</strong> 200.67 T Populus sp. Canada ATCC 18044; DAOM KC584614 KC584356 KC584481 AF229488 KC584172 KC584741<br />

59616b; IMI 124943;<br />

MUCL 18564; QM<br />

8328<br />

Ulocladium consortiale Alternaria consortialis Ulocladioides <strong>CBS</strong> 104.31 T – – KC584615 KC584357 KC584482 KC584247 KC584173 KC584742<br />

Ulocladium cucurbitae Alternaria cucurbitae Ulocladioides <strong>CBS</strong> 483.81 R Cucumis sativus New Zealand EGS 31.021; LEV KC584616 KC584358 KC584483 FJ266483 AY562418 KC584743<br />

7067<br />

Ulocladium multiforme Alternaria multiformis Ulocladioides <strong>CBS</strong> 102060 T Soil Canada KC584617 KC584359 KC584484 FJ266486 KC584174 KC584744<br />

Ulocladium<br />

Alternaria obovoidea Ulocladioides <strong>CBS</strong> 101229 Cucumis sativus New Zealand KC584618 KC584360 KC584485 FJ266487 FJ266498 KC584745<br />

obovoideum<br />

Ulocladium oudemansii Alternaria oudemansii Ulocladium <strong>CBS</strong> 114.07 T – – ATCC 18047; IMI KC584619 KC584361 KC584486 FJ266488 KC584175 KC584746<br />

124940; MUCL<br />

18563; QM 1744<br />

Ulocladium<br />

septosporum<br />

Alternaria septospora Pseudoulocladium <strong>CBS</strong> 109.38 Wood Italy KC584620 KC584362 KC584487 FJ266489 FJ266500 KC584747<br />

180


Alternaria redefined<br />

Table 1. (Continued).<br />

Strain Status 2 Host / Substrate Country Other collection<br />

GenBank accession numbers<br />

number 1 number 1<br />

Alternaria<br />

Section<br />

New species<br />

name<br />

Old species<br />

name<br />

SSU LSU RPB2 ITS GAPDH TEF1<br />

China HSAUP 0521 KC584621 KC584363 KC584488 KC584248 KC584176 KC584748<br />

Ulocladium solani Alternaria heterospora Ulocladioides <strong>CBS</strong> 123376 T Lycopersicon<br />

esculentum<br />

China KC584622 KC584364 KC584489 KC584249 EU855803 KC584749<br />

Ulocladioides <strong>CBS</strong> 121491 T Chenopodium<br />

glaucum<br />

Alternaria<br />

subcucurbitae<br />

Ulocladium<br />

subcucurbitae<br />

KC584623 KC584365 KC584490 FJ266490 KC584177 KC584750<br />

Alternaria terricola Ulocladioides <strong>CBS</strong> 202.67 T Soil USA ATCC 18048; IMI<br />

124947; MUCL<br />

18560; QM 8614<br />

Ulocladium<br />

tuberculatum<br />

Undifilum bornmuelleri Alternaria bornmuelleri Undifilum DAOM 231361 T Securigera varia Austria DAOM 231361 KC584624 KC584366 KC584491 FJ357317 FJ357305 KC584751<br />

Ybotromyces<br />

Alternaria caespitosa Infectoriae <strong>CBS</strong> 177.80 T Human Spain KC584625 KC584367 KC584492 KC584250 KC584178 KC584752<br />

caespitosus<br />

1<br />

ATCC: American Type Culture Collection, Manassas, VA, USA; BCC: BIOTEC Culture Collection, Thailand; <strong>CBS</strong>: Culture collection of the Centraalbureau voor Schimmelcultures, Fungal Biodiversity Centre, Utrecht, The Netherlands; DAOM: Canadian<br />

Collection of Fungal Cultures, Ottawa, Canada; DAR: Plant Pathology Herbarium, Orange Agricultural Institute, Australia; DSM: German Collection of Microorganisms and Cell Cultures, Leibniz Institute, Braunschweig, Germany; EGS: Personal collection<br />

of Dr. E.G. Simmons; ETH: Swiss Federal Institute of Technology, Switzerland; HSAUP: Department of Plant Pathology, Shandong Agricultural University, China; IFO: Institute for Fermentation Culture Collection, Osaka, Japan; IMI: Culture collection of<br />

CABI Europe UK Centre, Egham UK; JK: Personal collection of Dr. J. Kohlmeyer; LEV: Plant Health and Diagnostic Station, Levin, New Zealand; MUCL: (Agro)Industrial Fungi and Yeast Collection of the Belgian Co-ordinated Collections of Micro-organisms<br />

(BCCM), Louvain-la Neuve, Belgium; NZMAF: New Zealand Ministry of Agriculture and Forestry; OSC: Oregon State University Herbarium, USA; PD: Plant Protection Service, Wageningen, The Netherlands; RGR: Personal collection of Dr. R.G. Roberts;<br />

UPSC: Uppsala University Culture Collection, Sweden; QM: Quarter Master Culture Collection, Amherst, MA, USA.<br />

2<br />

T: ex-type strain; R: representative strain.<br />

species (Table 1) for which the SSU, LSU and RPB2 sequence<br />

data set was present or could be completed. Blast searches with<br />

Embellisia annulata gave hits with two marine Dendryphiella species,<br />

Dendryphiella arenariae and Dendryphiella salina, which we also<br />

included. Phylogenetic analyses of the sequence data consisted of<br />

Bayesian and Maximum likelihood analyses of both the individual<br />

data partitions as well as the combined aligned dataset. Bayesian<br />

analyses were performed with MrBayes v. 3.2.1 (Huelsenbeck &<br />

Ronquist 2001, Ronquist & Huelsenbeck 2003). The Markov Chain<br />

Monte Carlo (MCMC) analysis used four chains and started from a<br />

random tree topology. The sample frequency was set at 100 and the<br />

temperature value of the heated chain was 0.1. The temperature<br />

value was lowered to 0.05 when the average standard deviation of<br />

split frequencies did not fall below 0.01 after 5M generations (RPB2<br />

and Pleosporineae phylogeny). Burn-in was set to 25 % after which<br />

the likelihood values were stationary. Maximum likelihood analyses<br />

including 500 bootstrap replicates were run using RAxML v. 7.2.6<br />

(Stamatakis & Alachiotis 2010). The online tool Findmodel (http://<br />

www.hiv.lanl.gov/content/sequence/findmodel/findmodel.html) was<br />

used to determine the best nucleotide substitution model for each<br />

partition. For the SSU (Pleosporineae family tree), LSU, ITS, RPB2<br />

and TEF1 partitions a GTR model with a gamma-distributed rate<br />

variation was suggested, and for the SSU (Alternaria complex)<br />

and GAPDH partitions a TrN model with gamma-distributed rate<br />

variation. Sequences of Stemphylium herbarum (<strong>CBS</strong> 191.86)<br />

were used as outgroup in the Alternaria phylogeny and those of<br />

Jullella avenicae (BCC 18422) in the Pleosporineae phylogeny. The<br />

resulting trees were printed with TreeView v. 1.6.6 (Page 1996) and<br />

together with the alignments deposited into TreeBASE (http://www.<br />

treebase.org).<br />

RESULTS<br />

Phylogeny<br />

For defining the taxonomy of Alternaria and allied genera, 121<br />

strains were included in the Alternaria complex alignment. The<br />

alignment length and unique site patterns of the different genes and<br />

gene combinations are stated in Table 2. The original ITS alignment<br />

consisted of 577 characters of which the first 78 are excluded<br />

as this contained a non-alignable region. In the original TEF1<br />

alignment (375 characters) we coded the major inserts (Table 3),<br />

which otherwise would negatively influence the phylogeny, resulting<br />

in a TEF1 alignment of 269 characters. All phylogenies, different<br />

phylogenetic methods and gene regions or gene combinations<br />

used on this dataset (data not shown, trees and alignments lodged<br />

in TreeBASE), show a weak support at the deeper nodes of the<br />

tree. The only well-supported node (Bayesian posterior probability<br />

of 1.0, RAxML Maximum Likelihood support value of 100) in all<br />

phylogenies separates Embellisia annulata <strong>CBS</strong> 302.84 and<br />

the Pleospora/Stemphylium clade from the Alternaria complex<br />

(Fig. 1). In the Alternaria clade, six monotypic lineages and 24<br />

internal clades occur consistently in the individual and combined<br />

phylogenies, although positions vary between the different gene<br />

regions or combinations used. The support values for the clades<br />

within Alternaria (called sections) are plotted in a heat map (Table<br />

2) per gene and phylogenetic method used. The support values for<br />

the different phylogenetic methods vary, with the Bayesian posterior<br />

probabilities being higher than the RAxML bootstrap support<br />

values (Table 2). The SSU, LSU and ITS phylogenies display a<br />

www.studiesinmycology.org<br />

181


Woudenberg et al.<br />

Table 2. Summary of locus and phylogenetic results as well as a heat map of the Bayesian posterior probabilities and RAxML boostrap support values per Alternaria section.<br />

1-region 2-region 3-region 6-region 1-region 2-region 3-region 6-region<br />

SSU LSU ITS GAPDH RPB2 TEF GAPDH GAPDH RPB2 GAPDH SSU SSU LSU ITS GAPDH RPB2 TEF GAPDH GAPDH RPB2 GAPDH ALL<br />

RPB2 TEF1 TEF1 RPB2 LSU RPB2 TEF1 TEF1 RPB2 LSU<br />

TEF1 ITS TEF1 ITS<br />

GAPDH GAPDH<br />

RPB2 RPB2<br />

TEF1 TEF1<br />

Aligned length 1021 851 499 573 786 269 1359 842 1055 1628 3999 1021 851 499 573 786 269 1359 842 1055 1628 3999<br />

Unique site patterns 45 57 148 272 296 224 568 496 520 792 1042 45 57 148 272 296 224 568 496 520 792 1042<br />

No. of sampled trees 39002 31578 75002 23702 56028 12452 10128 13728 44852 5778 16278<br />

(post burnin)<br />

Bayesian Posterior Probabilities RAxML bootstrap support<br />

Sect. Alternantherae * *<br />

Sect. Alternata<br />

Sect. Brassicicola<br />

Sect. Chalastospora * *<br />

Sect. Cheiranthus * * * * * * * *<br />

Sect. Crivellia * *<br />

Sect. Dianthicola * * * *<br />

Sect. Embellisia * *<br />

Sect. Embellisioides * * * * * *<br />

Sect. Eureka * * * * * *<br />

Sect. Gypsophilae * *<br />

Sect. Infectoriae * * * *<br />

Sect. Japonicae<br />

Sect. Nimbya<br />

Sect. panax * *<br />

Sect. Phragmosporae * * * *<br />

Sect. Porri * *<br />

Sect. Pseudoulocladium * * * * * * * *<br />

Sect. Radicina<br />

Sect. Sonchi * * * *<br />

Sect. Teretispora<br />

Sect. Ulocladioides * * * *<br />

Sect. Ulocladium * *<br />

1.00 0.95–0.99 0.90–0.94 0.80–0.89 0.70–0.79 100 95–99 90–94 80–89 70–79<br />

0.50–0.69 0.25–0.49 0.01–0.24 no support 50–69 25–49 1–24 no support<br />

*= section not complete *= section not complete<br />

182


Alternaria redefined<br />

Table 3. Coded inserts in the TEF1 sequence alignment.<br />

Species Nt position Coded Nt position Coded<br />

Alternaria elegans 23 to 39 TC<br />

Alternaria simsimi 23 to 39 TCC<br />

Alternaria dauci 186 to 205 C 221 to 269 TACTT<br />

Alternaria macrospora 186 to 205 C 221 to 269 TCCCC<br />

Alternaria porri 186 to 205 C 221 to 269 ACTTA<br />

Alternaria pseudorostrata 186 to 205 C 221 to 269 TGGTA<br />

Alternaria solani 186 to 205 C 221 to 269 -AAGG<br />

Alternaria tegetica 186 to 205 C 221 to 269 CACAC<br />

low resolution, which reflects in poor to no support of the sections.<br />

Therefore, we chose not to include them in the multi-gene alignments,<br />

except in the all-gene alignment. In the GAPDH phylogenies, sect.<br />

Cheiranthus, sect. Nimbya and sect. Pseudoulocladium are poorly<br />

supported and “A. resedae” clusters separate from sect. Cheiranthus.<br />

In the RPB2 phylogenies the support values for sect. Alternata, sect.<br />

Embellisioides and sect. Eureka are relatively low; A. cumini clusters<br />

in sect. Embellisioides instead of sect. Eureka and U. capsici clusters<br />

separate from sect. Pseudoulocladium. The TEF1 phylogenies did<br />

not support sect. Nimbya and show relative low support for sect.<br />

Cheiranthus, sect. Dianthicola, sect. Embellisioides, sect. Panax,<br />

sect. Phragmosporae and sect. Radicina, and A. cumini clusters<br />

outside sect. Eureka. In the 2-region phylogenies U. capsici clusters<br />

outside sect. Pseudoulocladium based on GAPDH and RPB2, E.<br />

indefessa clusters outside sect. Cheiranthus based on GAPDH and<br />

TEF1, and sect. Eureka is poorly supported based on RPB2 and<br />

TEF1. The combined phylogeny based on the GAPDH, RPB2 and<br />

TEF1 sequences (Fig. 1) is displayed, as these are the genes with<br />

the best resolution.<br />

The final Pleosporineae alignment included 74 strains,<br />

representing six families, and consisted of 2 506 characters<br />

(SSU 935, LSU 796, RPB2 775) of which 700 were unique site<br />

patterns (SSU 111, LSU 145, RPB2 444). In the SSU alignment a<br />

large insertion at position 446 in the isolates Chaetosphaeronema<br />

hispidulum <strong>CBS</strong> 216.75, Pleospora fallens <strong>CBS</strong> 161.78, Pleospora<br />

flavigena <strong>CBS</strong> 314.80 and Ophiosphaerella herpotrichia <strong>CBS</strong><br />

620.86 was excluded from the phylogenetic analyses. A total of<br />

43 202 trees were sampled after the burn-in. The type species<br />

of Clathrospora, C. elynae, forms a well-supported clade, located<br />

basal to the Pleosporaceae (Fig. 2), outside the Alternaria complex.<br />

The type species of Comoclathris, C. lanata, was not available for<br />

study but the two Comoclathris compressa strains cluster in a wellsupported<br />

clade within the Pleosporaceae outside Alternaria s.<br />

str. The genus Alternariaster, with Alternariaster helianthi as type<br />

and only species, also clusters outside the Alternaria complex and<br />

even outside Pleosporaceae; it belongs to the Leptosphaeriaceae<br />

instead (Fig. 2). Embellisia annulata is identical to Dendryphiella<br />

salina, and forms a well-supported clade in the Pleosporaceae<br />

together with Dendryphiella arenariae. As the type species of<br />

Dendryphiella, D. vinosa, clusters outside the Pleosporineae<br />

(dela Cruz 2006, Jones et al. 2008), Dendryphiella salina and D.<br />

arenariae are placed in a new genus, Paradendryphiella, below.<br />

Taxonomy<br />

Based on DNA sequence data in combination with a review<br />

of literature and morphology, the species within the Alternaria<br />

clade are all recognised here as Alternaria (Fig 1). This puts the<br />

genera Allewia, Brachycladium, Chalastospora, Chmelia, Crivellia,<br />

Embellisia, Lewia, Nimbya, Sinomyces, Teretispora, Ulocladium,<br />

Undifilum and Ybotromyces in synonymy with Alternaria, resulting<br />

in the proposal of 32 new combinations, 10 new names and the<br />

resurrection of 10 names. Species of Alternaria were assigned<br />

to 24 Alternaria sections, of which 16 are newly described, and<br />

six monotypic lineages. The (emended) description of the genus<br />

Alternaria, the Alternaria sections and monotypic lineages with<br />

new Alternaria names and name combinations are treated below<br />

in alphabetical order. Finally the description of the new genus<br />

Paradendryphiella is also provided.<br />

Alternaria Nees, Syst. Pilze (Würzburg): 72. 1816 [1816–<br />

1817].<br />

= Elosia Pers., Mycol. Eur. (Erlanga) 1: 12. 1822.<br />

= Macrosporium Fr., Syst. Mycol. (Lundae) 3: 373. 1832.<br />

= Rhopalidium Mont., Ann. Sci. Nat., Bot., Sér. 2, 6: 30. 1836.<br />

= Brachycladium Corda, Icon. Fungorum hucusque Cogn. (Prague) 2: 14.<br />

1838.<br />

= Ulocladium Preuss, Linnaea 24: 111. 1851.<br />

= Chmelia Svob.-Pol., Biologia (Bratislava) 21: 82. 1966.<br />

= Embellisia E.G. Simmons, Mycologia 63: 380. 1971.<br />

= Trichoconiella B.L. Jain, Kavaka 3: 39. 1976 [1975].<br />

= Botryomyces de Hoog & C. Rubio, Sabouraudia 20: 19. 1982. (nom. illegit.)<br />

= Lewia M.E. Barr & E.G. Simmons, Mycotaxon 25: 289. 1986.<br />

= Ybotromyces Rulamort, Bull. Soc. Bot. Centre-Ouest, Nouv. Sér. 17: 192.<br />

1986.<br />

= Nimbya E.G. Simmons, Sydowia 41: 316. 1989.<br />

= Allewia E.G. Simmons, Mycotaxon 38: 260. 1990.<br />

= Crivellia Shoemaker & Inderb., Canad. J. Bot. 84: 1308. 2006.<br />

= Chalastospora E.G. Simmons, <strong>CBS</strong> Biodiversity Ser. (Utrecht) 6: 668. 2007.<br />

= Teretispora E.G. Simmons, <strong>CBS</strong> Biodiversity Ser. (Utrecht) 6: 674. 2007.<br />

= Undifilum B.M. Pryor, Creamer, Shoemaker, McLain-Romero & Hambl.,<br />

Botany 87: 190. 2009.<br />

= Sinomyces Yong Wang bis & X.G. Zhang, Fungal Biol. 115: 192. 2011.<br />

Colonies effuse, usually grey, dark blackish brown or black. Mycelium<br />

immersed or partly superficial; hyphae colourless, olivaceousbrown<br />

or brown. Stroma rarely formed. Setae and hyphopodia<br />

absent. Conidiophores macronematous, mononematous, simple<br />

or irregularly and loosely branched, pale brown or brown, solitary<br />

or in fascicles. Conidiogenous cells integrated, terminal becoming<br />

intercalary, polytretic, sympodial, or sometimes monotretic,<br />

cicatrized. Conidia catenate or solitary, dry, ovoid, obovoid,<br />

cylindrical, narrowly ellipsoid or obclavate, beaked or non-beaked,<br />

pale or medium olivaceous-brown to brown, smooth or verrucose,<br />

with transverse and with or without oblique or longitudinal septa.<br />

Septa can be thick, dark and rigid and an internal cell-like structure<br />

can be formed. Species with meristematic growth are known.<br />

Ascomata small, solitary to clustered, erumpent to (nearly)<br />

superficial at maturity, globose to ovoid, dark brown, smooth,<br />

apically papillate, ostiolate. Papilla short, blunt. Peridium thin.<br />

Hamathecium of cellular pseudoparaphyses. Asci few to many per<br />

ascoma, (4–6–)8-spored, basal, bitunicate, fissitunicate, cylindrical<br />

to cylindro-clavate, straight or somewhat curved, with a short,<br />

furcate pedicel. Ascospores muriform, ellipsoid to fusoid, slightly<br />

constricted at septa, yellow-brown, without guttules, smooth, 3–7<br />

transverse septa, 1–2 series of longitudinal septa through the<br />

two original central segments, end cells without septa, or with 1<br />

longitudinal or oblique septum, or with a Y-shaped pair of septa.<br />

Type species: Alternaria alternata (Fr.) Keissl.<br />

www.studiesinmycology.org<br />

183


Woudenberg et al.<br />

0.96/55<br />

1.0/54<br />

0.52/28<br />

1.0/97<br />

Alternaria brassicae <strong>CBS</strong> 116528<br />

Alternaria sonchi <strong>CBS</strong> 119675<br />

Alternaria helianthiinficiens <strong>CBS</strong> 208.86<br />

Embellisia eureka <strong>CBS</strong> 193.86<br />

Embellisia hyacinthi <strong>CBS</strong> 416.71<br />

1.0/65<br />

1.0/95 Alternaria dianthicola <strong>CBS</strong> 116491<br />

1.0/83<br />

0.97/66<br />

Ulocladium chartarum <strong>CBS</strong> 200.67<br />

Ulocladium botrytis <strong>CBS</strong> 198.67<br />

Alternaria cheiranthi <strong>CBS</strong> 109384<br />

1.0/91<br />

0.97/50<br />

Alternaria alternantherae <strong>CBS</strong> 124392<br />

Alternaria alternata <strong>CBS</strong> 916.96<br />

A<br />

l<br />

0.99/34 Alternaria porri <strong>CBS</strong> 116698<br />

t<br />

0.56/23<br />

Alternaria radicina <strong>CBS</strong> 245.67<br />

e<br />

0.68/27<br />

1.0/89 Alternaria saponariae <strong>CBS</strong> 116492 r<br />

1.0/57<br />

0.92/25<br />

Alternaria thalictrigena <strong>CBS</strong> 121712<br />

Alternaria panax <strong>CBS</strong> 482.81<br />

n<br />

a<br />

Teretispora leucanthemi <strong>CBS</strong> 421.65 r<br />

Alternaria brassicicola <strong>CBS</strong> 118699 i<br />

0.66/-<br />

0.97/53<br />

Alternaria japonica <strong>CBS</strong> 118390<br />

Embellisia dennisii <strong>CBS</strong> 110533<br />

Sinomyces alternariae <strong>CBS</strong> 126989<br />

a<br />

1.0/9<br />

0.99/73<br />

Alternaria argyranthemi <strong>CBS</strong> 116530<br />

Undifilum bornmuelleri DAOM 231361<br />

Chalastospora cetera <strong>CBS</strong> 121340<br />

0.82/23<br />

0.99/38<br />

0.98/95<br />

Alternaria infectoria <strong>CBS</strong> 210.86<br />

Alternaria soliaridae <strong>CBS</strong> 118387<br />

Nimbya scirpicola <strong>CBS</strong> 481.90<br />

Embellisia allii <strong>CBS</strong> 339.71<br />

Embellisia phragmospora <strong>CBS</strong> 274.70<br />

Crivellia papaveracea <strong>CBS</strong> 116607<br />

Pyrenophora phaeocomes DAOM 222769<br />

Pleosporaceae<br />

Embellisia annulata <strong>CBS</strong> 302.84<br />

Dendryphiella salina <strong>CBS</strong> 142.60 Paradendryphiella gen. nov.<br />

Dendryphiella arenariae <strong>CBS</strong> 181.58<br />

Pleospora herbarum <strong>CBS</strong> 191.86<br />

Cochliobolus heterostrophus <strong>CBS</strong> 134.39<br />

Cochliobolus sativus DAOM 226212<br />

Comoclathris compressa <strong>CBS</strong> 156.53<br />

0.98/79<br />

Comoclathris compressa <strong>CBS</strong> 157.53<br />

1.0/79<br />

Pleospora typhicola <strong>CBS</strong> 132.69<br />

Pleospora incompta <strong>CBS</strong> 467.76<br />

0.96/83 Pleospora calvescens <strong>CBS</strong> 246.79<br />

Pleospora halimiones <strong>CBS</strong> 432.77<br />

1.0/79 1.0/97 Pleospora chenopodii <strong>CBS</strong> 206.80<br />

Pleospora betae <strong>CBS</strong> 109410<br />

1.0/65<br />

Chaetodiplodia sp. <strong>CBS</strong> 453.68<br />

Clathrospora elynae <strong>CBS</strong> 161.51<br />

Clathrospora elynae <strong>CBS</strong> 196.54<br />

Pleospora fallens <strong>CBS</strong> 161.78<br />

Alternariaster helianthi <strong>CBS</strong> 119672<br />

0.94/51<br />

Alternariaster helianthi <strong>CBS</strong> 327.69<br />

0.68/31<br />

Plenodomus lingam DAOM 229267<br />

0.55/-<br />

Neophaeosphaeria filamentosa <strong>CBS</strong> 102202<br />

0.87/54<br />

0.70/-<br />

Paraleptosphaeria dryadis <strong>CBS</strong> 643.86<br />

0.65/49<br />

Heterospora chenopodii <strong>CBS</strong> 115.96<br />

0.52/-<br />

Pleospora flavigena <strong>CBS</strong> 314.80<br />

0.94/67<br />

Coniothyrium palmarum <strong>CBS</strong> 400.71<br />

Pyrenochaeta nobilis <strong>CBS</strong> 407.76<br />

Ophiosphaerella herpotricha <strong>CBS</strong> 620.86<br />

Coniothyriaceae<br />

Cucurbitariaceae<br />

1.0/89<br />

Phaeosphaeria ammophilae <strong>CBS</strong> 114595<br />

Phaeosphaeria avenaria DAOM 226215<br />

0.86/85<br />

Phaeosphaeria eustoma <strong>CBS</strong> 573.86<br />

Chaetosphaeronema hispidulum <strong>CBS</strong> 216.75<br />

Loratospora aestuarii JK 5535B<br />

Setomelanomma holmii <strong>CBS</strong> 110217<br />

Saccothecium sepincola <strong>CBS</strong> 278.32<br />

Leptosphaerulina australis <strong>CBS</strong> 317.83<br />

0.56/49 0.85/41 Phoma complanata <strong>CBS</strong> 268.92<br />

1.0/81<br />

Phoma herbarum <strong>CBS</strong> 276.37<br />

0.99/90 Ascochyta pisi <strong>CBS</strong>126 54<br />

Didymellaceae<br />

1.0/91<br />

Peyronellaea glomerata <strong>CBS</strong> 528.66<br />

Peyronellaea zeae-maydis <strong>CBS</strong> 588.69<br />

Boeremia exigua <strong>CBS</strong> 431.74<br />

Julella avicenniae BCC 18422<br />

0.1<br />

Leptosphaeriaceae<br />

Phaeosphaeriaceae<br />

Fig. 2. Bayesian 50 % majority rule consensus tree based on the SSU, LSU and RPB2 sequences of 74 strains representing the Pleosporineae. The Bayesian posterior<br />

probabilities (PP) and RAxML bootstrap support values (ML) are given at the nodes (PP/ML). Thickened lines indicate a PP of 1.0 and ML of 100. The tree was rooted to Julella<br />

avicenniae (BCC 18422).<br />

184


Alternaria redefined<br />

Fig. 3. Alternaria sect. Alternantherae: conidia and conidiophores. A–D. A. alternantherae. E–H. A. perpunctulata. Scale bars = 10 µm.<br />

ALTERNARIA SECTIONS<br />

Section Alternantherae D.P. Lawr., Gannibal, Peever<br />

& B.M. Pryor, Mycologia 105: 540. 2013. Fig. 3.<br />

Type species: Alternaria alternantherae Holcomb & Antonop.<br />

Diagnosis: Section Alternantherae contains short to moderately<br />

long conidiophores with a conidiogenous tip which can be enlarged.<br />

Conidia are narrowly ellipsoid or ovoid, sometimes subcylindrical,<br />

solitary or rarely paired, sometimes slightly constricted near some<br />

septa, longitudinal or oblique septa occasionally occur, disto- and<br />

euseptate, with a long apical narrow beak. The conidial beak is<br />

unbranched, septate or aseptate, long filiform, and sometimes<br />

swollen at the end. Internal compartmentation occurs, cell lumina<br />

tend to be broadly octagonal to rounded.<br />

Notes: Section Alternantherae was recently established by<br />

Lawrence et al. (2013) after first being described as speciesgroup<br />

A. alternantherae (Lawrence et al. 2012). The described<br />

section consists of three former Nimbya species which formed<br />

a separate clade amidst the Alternaria species-groups based<br />

on sequences of the GAPDH, ITS and Alt a 1 genes (Lawrence<br />

et al. 2012). Nimbya celosiae is placed in this section based<br />

on the data of Lawrence et al. (2012), while N. gomphrenae is<br />

placed in the section based on ITS sequence data from Chou<br />

& Wu (2002).<br />

Alternaria alternantherae Holcomb & Antonop., Mycologia 68:<br />

1126. 1976.<br />

≡ Nimbya alternantherae (Holcomb & Antonop.) E.G. Simmons & Alcorn,<br />

Mycotaxon 55: 142. 1995.<br />

Alternaria celosiicola Jun. Nishikawa & C. Nakash., J.<br />

Phytopathol.: doi: 10.1111/jph.12108 (p. 3). 2013.<br />

Basionym: Nimbya celosiae E.G. Simmons & Holcomb, Mycotaxon<br />

55: 144. 1995.<br />

≡ Alternaria celosiae (E.G. Simmons & Holcomb) D.P. Lawr., M.S. Park<br />

& B.M. Pryor, Mycol. Progr. 11: 811. 2012. (nom. illegit., homonym of<br />

Alternaria celosiae (Tassi) O. Savul. 1950).<br />

Alternaria gomphrenae Togashi, Bull. Imp. Coll. Agric. 9: 6. 1926.<br />

≡ Nimbya gomphrenae (Togashi) E.G. Simmons, Sydowia 41: 324. 1989.<br />

Alternaria perpunctulata (E.G. Simmons) D.P. Lawr., M.S. Park &<br />

B.M. Pryor, Mycol. Progr. 11: 811. 2012.<br />

Basionym: Nimbya perpunctulata E.G. Simmons, Stud. Mycol. 50:<br />

115. 2004.<br />

Section Alternata D.P. Lawr., Gannibal, Peever & B.M.<br />

Pryor, Mycologia 105: 538. 2013. Fig. 4.<br />

Type species: Alternaria alternata (Fr.) Keissl.<br />

Diagnosis: Section Alternata contains straight or curved primary<br />

conidiophores, short to long, simple or branched, with one or several<br />

apical conidiogenous loci. Conidia are obclavate, long ellipsoid, small<br />

or moderate in size, septate, slightly constricted near some septa,<br />

with few longitudinal septa, in moderately long to long, simple or<br />

branched chains. The conidium body can narrow gradually into a<br />

tapered beak or secondary conidiophore. Secondary conidiophores<br />

can be formed apically or laterally with one or a few conidiogenous<br />

loci.<br />

www.studiesinmycology.org<br />

185


Woudenberg et al.<br />

Fig. 4. Alternaria sect. Alternata: conidia and conidiophores. A, N. A. daucifolii. B, L–M. A. arborescens. C, H–J. A. alternata. D, O. A. gaisen. E. A. limoniasperae. F, K. A.<br />

tenuissima. G, P. A. longipes. Scale bars = 10 µm.<br />

Notes: Next to the species that are displayed in our phylogeny,<br />

14 more are included in sect. Alternata based on the study of<br />

Lawrence et al. (2013) and confirmed by our molecular data (not<br />

shown). We chose not to include 11 species from the study of<br />

Lawrence et al. (2013). The species A. gossypina, A. grisae, A.<br />

grossulariae, A. iridis, A. lini, A. maritima and A. nelumbii were<br />

not recognised by Simmons (2007) and the strains of A. malvae,<br />

A. rhadina, A. resedae and A. tomato used by Lawrence et al.<br />

(2013) were not authentic. Section Alternata comprises almost 60<br />

Alternaria species based on ITS sequence data (data not shown).<br />

The molecular variation within this section is low.<br />

Alternaria alternata (Fr.) Keissl., Beih. Bot. Centralbl., Abt. 2, 29:<br />

434. 1912.<br />

Basionym: Torula alternata Fr., Syst. Mycol. (Lundae) 3: 500. 1832<br />

(nom. sanct.).<br />

186


Alternaria redefined<br />

Fig. 5. Alternaria sect. Brassicicola: conidia and conidiophores. A, H. A. brassicicola. B, I, L–M. A. mimicola. C, G. A. solidaccana. D, J–K. A. conoidea. E–F. A. septorioides.<br />

Scale bars = 10 µm.<br />

= Alternaria tenuis Nees, Syst. Pilze (Würzburg): 72. 1816 [1816–1817].<br />

Additional synonyms listed in Simmons (2007)<br />

Alternaria angustiovoidea E.G. Simmons, Mycotaxon 25: 198.<br />

1986.<br />

Alternaria arborescens E.G. Simmons, Mycotaxon 70: 356. 1999.<br />

Alternaria burnsii Uppal, Patel & Kamat, Indian J. Agric. Sci. 8:<br />

49. 1938.<br />

Alternaria cerealis E.G. Simmons & C.F. Hill, <strong>CBS</strong> Biodiversity<br />

Ser. (Utrecht) 6: 600. 2007.<br />

Alternaria citriarbusti E.G. Simmons, Mycotaxon 70: 287. 1999.<br />

Alternaria citrimacularis E.G. Simmons, Mycotaxon 70: 277. 1999.<br />

Alternaria colombiana E.G. Simmons, Mycotaxon 70: 298. 1999.<br />

Alternaria daucifollii E.G. Simmons, <strong>CBS</strong> Biodiversity Ser.<br />

(Utrecht) 6: 518. 2007.<br />

Alternaria destruens E.G. Simmons, Mycotaxon 68: 419. 1998.<br />

Alternaria dumosa E.G. Simmons, Mycotaxon 70: 310. 1999.<br />

Alternaria gaisen Nagano ex Hara, Sakumotsu Byorigaku, Edn<br />

4: 263. 1928.<br />

= Alternaria gaisen Nagano, J. Jap. Soc. Hort. Sci. 32: 16–19. 1920. (nom.<br />

illegit.)<br />

= Alternaria kikuchiana S. Tanaka, Mem. Coll. Agric. Kyoto Univ., Phytopathol.<br />

Ser. 28: 27. 1933.<br />

= Macrosporium nashi Miura, Flora of Manchuria and East Mongolia, Part III<br />

Cryptogams, Fungi: 513. 1928.<br />

Alternaria herbiphorbicola E.G. Simmons, <strong>CBS</strong> Biodiversity Ser.<br />

(Utrecht) 6: 608. 2007.<br />

Alternaria limoniasperae E.G. Simmons, Mycotaxon 70: 272.<br />

1999.<br />

Alternaria longipes (Ellis & Everh.) E.W. Mason, Mycol. Pap. 2:<br />

19. 1928.<br />

Basionym: Macrosporium longipes Ellis & Everh., J. Mycol. 7: 134.<br />

1892.<br />

= Alternaria brassicae var. tabaci Preissecker, Fachliche Mitt. Österr.<br />

Tabakregie 16: 4. 1916.<br />

Alternaria perangusta E.G. Simmons, Mycotaxon 70: 303. 1999.<br />

Alternaria postmessia E.G. Simmons, <strong>CBS</strong> Biodiversity Ser.<br />

(Utrecht) 6: 598. 2007.<br />

www.studiesinmycology.org<br />

187


Woudenberg et al.<br />

Fig. 6. Alternaria sect. Chalastospora: conidia and conidiophores. A. A. cetera. B. A. obclavata. C. A. breviramosa. D, H. A. armoraciae. E–G. A. abundans. Scale bars = 10 µm.<br />

Alternaria tangelonis E.G. Simmons, Mycotaxon 70: 282. 1999.<br />

Alternaria tenuissima (Nees & T. Nees : Fr.) Wiltshire, Trans. Brit.<br />

Mycol. Soc. 18: 157. 1933.<br />

Basionym: Macrosporium tenuissimum (Nees & T. Nees) Fr., Syst.<br />

Mycol. (Lundae) 3: 374. 1832 (nom. sanct.).<br />

≡ Helminthosporium tenuissimum Kunze ex Nees & T. Nees, Nova Acta<br />

Acad. Caes. Leop.-Carol. German. Nat. Cur. 9: 242. 1818.<br />

Additional synonyms listed in Simmons (2007).<br />

Alternaria toxicogenica E.G. Simmons, Mycotaxon 70: 294. 1999.<br />

Alternaria turkisafria E.G. Simmons, Mycotaxon 70: 290. 1999.<br />

Section Brassicicola D.P. Lawr., Gannibal, Peever &<br />

B.M. Pryor, Mycologia 105: 541. 2013. Fig. 5.<br />

Type species: Alternaria brassicicola (Schwein.) Wiltshire<br />

Diagnosis: Section Brassicicola contains short to moderately long,<br />

simple or branched primary conidiophores with one or several<br />

apical conidiogenous loci. Conidia are ellipsoid, ovoid or somewhat<br />

obclavate, small or moderate in size, septate, slightly or strongly<br />

constricted at most of their transverse septa, with no to many<br />

longitudinal septa, in moderately long to long, simple or branched<br />

chains, with dark septa and cell walls. Secondary conidiophores<br />

can be formed apically or laterally with one or a few conidiogenous<br />

loci. Chlamydospores may occur.<br />

Notes: Our molecular data support the morphological placement<br />

of A. septorioides and A. solidaccana in section Brassicicola<br />

(Simmons 2007). The other three species were already assigned<br />

to this section based on previous molecular studies (Pryor et al.<br />

2009, Runa et al. 2009, Lawrence et al. 2012). Alternaria japonica<br />

was previously linked to the A. brassicicola species-group (Pryor<br />

& Gilbertson 2000, Pryor & Bigelow 2003, Lawrence et al. 2013),<br />

but this association was questioned by Hong et al. (2005). In our<br />

analyses, A. japonica clustered in sect. Japonicae.<br />

Alternaria brassicicola (Schwein.) Wiltshire, Mycol. Pap. 20: 8.<br />

1947.<br />

Basionym: Helminthosporium brassicicola Schwein., Trans. Amer.<br />

Philos. Soc., Ser. 2, 4: 279. 1832.<br />

Additional synonyms listed in Simmons (2007)<br />

Alternaria conoidea (E.G. Simmons) D.P. Lawr., Gannibal, Peever<br />

& B.M. Pryor, Mycologia 105: 542. 2013.<br />

Basionym: Embellisia conoidea E.G. Simmons, Mycotaxon 17:<br />

226. 1983.<br />

Alternaria mimicula E.G. Simmons, Mycotaxon 55: 129. 1995.<br />

Alternaria septorioides (Westend.) E.G. Simmons, <strong>CBS</strong><br />

Biodiversity Ser. (Utrecht) 6: 570. 2007.<br />

Basionym: Sporidesmium septorioides Westend., Bull. Acad. Roy.<br />

Sci. Belgique., Cl. Sci., Sér. 2, 21: 236. 1854.<br />

= Alternaria resedae Neerg., Annual Rep. Phytopathol. Lab. J.E. Ohlsens<br />

Enkes, Seed Growers, Copenhagen 7: 9. 1942 (nom. nud.).<br />

= Alternaria resedae Neerg., Danish species of Alternaria & Stemphylium:<br />

150. 1945.<br />

Alternaria solidaccana E.G. Simmons, <strong>CBS</strong> Biodiversity Ser.<br />

(Utrecht) 6: 572. 2007.<br />

Section Chalastospora (E.G. Simmons) Woudenb. &<br />

Crous, comb. et stat. nov. MycoBank MB803733. Fig.<br />

6.<br />

Basionym: Chalastospora E.G. Simmons, <strong>CBS</strong> Biodiversity Ser.<br />

(Utrecht) 6: 668. 2007.<br />

Type species: Alternaria cetera E.G. Simmons<br />

Diagnosis: Section Chalastospora contains short to long, simple or<br />

branched primary conidiophores with one or several conidiogenous<br />

loci. Conidia are pale to medium brown, narrowly ellipsoid to<br />

ellipsoid or ovoid, beakless, with no to multiple transverse eusepta<br />

and rarely longitudinal septa, solitary or in chains. Secondary<br />

conidiophores can be formed apically or laterally with one or a few<br />

conidiogenous loci.<br />

188


Alternaria redefined<br />

Fig. 7. Alternaria sect. Cheiranthus: conidia and conidiophores. A–B. A. indefessa. B–C. A. cheiranthi. Scale bars = 10 µm.<br />

Notes: Previous studies already placed E. abundans in the<br />

Chalastospora-clade (Andersen et al. 2009, Lawrence et al. 2012).<br />

Our study also placed Alternaria armoraciae in this section, while<br />

Crous et al. (2009c) showed that Chalastospora gossypii, formerly<br />

Alternaria malorum, belonged to this section based on sequences<br />

of the ITS and LSU genes.<br />

Alternaria abundans (E.G. Simmons) Woudenb. & Crous, comb.<br />

nov. MycoBank MB803688.<br />

Basionym: Embellisia abundans E.G. Simmons, Mycotaxon 17:<br />

222. 1983.<br />

Alternaria armoraciae E.G. Simmons & C.F. Hill, <strong>CBS</strong> Biodiversity<br />

Ser. (Utrecht) 6: 660. 2007.<br />

Alternaria breviramosa Woudenb. & Crous, nom. nov. MycoBank<br />

MB803690.<br />

Basionym: Chalastospora ellipsoidea Crous & U. Braun, Persoonia<br />

22: 145. 2009, non Alternaria ellipsoidea E.G. Simmons, 2002.<br />

Etymology: Name refers to the short lateral branches.<br />

Alternaria cetera E.G. Simmons, Mycotaxon 57: 393. 1996.<br />

≡ Chalastospora cetera (E.G. Simmons) E.G. Simmons, <strong>CBS</strong> Biodiversity<br />

Ser. (Utrecht) 6: 668. 2007.<br />

Alternaria malorum (Ruehle) U. Braun, Crous & Dugan, Mycol.<br />

Progr. 2: 5. 2003.<br />

Basionym: Cladosporium malorum Ruehle, Phytopathology 21:<br />

1146. 1931.<br />

= Cladosporium gossypii Jacz., Khlopkovoe Delo, 1929 (5–6): 564. 1929, non<br />

Alternaria gossypii (Jacz.) Y. Nisik., K. Kimura & Miyaw., 1940.<br />

≡ Chalastospora gossypii (Jacz.) U. Braun & Crous, Persoonia 22: 144.<br />

2009.<br />

= Cladosporium malorum Heald, Wash. State Agric. Exp. Sta. Bull., Special<br />

Ser. 245: 48. 1930. (nom. nud.)<br />

Additional synonyms in Crous et al. (2009c).<br />

Alternaria obclavata (Crous & U. Braun) Woudenb. & Crous,<br />

comb. nov. MycoBank MB803689.<br />

Basionym: Chalastospora obclavata Crous & U. Braun, Persoonia<br />

22: 146. 2009.<br />

Section Cheiranthus Woudenb. & Crous, sect. nov.<br />

MycoBank MB803734. Fig. 7.<br />

Type species: Alternaria cheiranthi (Lib.) P.C. Bolle<br />

Diagnosis: Section Cheiranthus contains short to moderately long,<br />

simple or branched primary conidiophores with one or several<br />

conidiogenous loci. Conidia are ovoid, broadly ellipsoid with<br />

transverse and longitudinal septa, slightly or strongly constricted at<br />

the septa, in short to long, simple or branched chains. Secondary<br />

conidiophores can be formed apically or laterally with a single<br />

conidiogenous locus.<br />

Notes: Next to Alternaria cheiranthi and Embellisia indefessa,<br />

sect. Cheiranthus contains a non-sporulating strain formerly<br />

known as Alternaria resedae, <strong>CBS</strong> 115.44. Because Alternaria<br />

resedae is synonymised with Alternaria septorioides (Simmons<br />

2007), which clusters in section Brassisicola, <strong>CBS</strong> 115.44 will be<br />

treated as “Alternaria sp.”. Alternaria cheiranthi and E. indefessa<br />

have been linked to Ulocladium (Pryor & Gilbertson 2000, Pryor<br />

& Bigelow 2003, Hong et al. 2005, Pryor et al. 2009, Runa et al.<br />

2009, Lawrence et al. 2012), but based on morphology could not be<br />

placed here. Our extensive dataset showed that they form a sister<br />

section to section Ulocladioides.<br />

Alternaria cheiranthi (Lib.) P.C. Bolle, Meded. Phytopathol. Lab.<br />

“Willie Commelin Scholten” 7: 43. 1924.<br />

Basionym: Helminthosporium cheiranthi Lib. [as “Helmisporium”],<br />

in Desmazières, Plantes Cryptogames du Nord de la France, edn<br />

1: 213. 1827.<br />

≡ Macrosporium cheiranthi (Lib.) Fr., Syst. Mycol. (Lundae) 3: 374. 1832.<br />

Alternaria indefessa (E.G. Simmons) Woudenberg & Crous,<br />

comb. nov. MycoBank MB803691.<br />

Basionym: Embellisia indefessa E.G. Simmons, Mycotaxon 17:<br />

228. 1983.<br />

Section Crivellia (Shoemaker & Inderb.) Woudenb. &<br />

Crous, comb. et stat. nov. MycoBank MB803735. Fig.<br />

8.<br />

Basionym: Crivellia Shoemaker & Inderb., Canad. J. Bot. 84: 1308.<br />

2006.<br />

Type species: Alternaria penicillata (Corda) Woudenb. & Crous<br />

(= Cucurbitaria papaveracea De Not.).<br />

Diagnosis: Section Crivellia is characterised by straight or curved,<br />

simple or branched primary conidiophores, with geniculate,<br />

sympodial proliferations. Conidia are cylindrical, straight to curved<br />

to inequilateral, with transverse eusepta, rarely constricted at<br />

www.studiesinmycology.org<br />

189


Woudenberg et al.<br />

Fig. 8. Alternaria sect. Crivellia: conidia and conidiophores. A–B. A. papavericola. C–D. A. penicillata. Scale bars = 10 µm.<br />

septa, single or in short, simple or branched chains. Secondary<br />

conidiophores are formed apically or laterally. Microsclerotia or<br />

chlamydospores may occur. Sexual morphs observed.<br />

Notes: Section Crivellia contains the type species of the sexual<br />

morph Crivellia, C. papaveracea, with Brachycladium penicillatum<br />

asexual morph, and Brachycladium papaveris. The genus was<br />

established by Inderbitzin et al. (2006) based on the finding that<br />

C. papaveraceae, formerly Pleospora papaveraceae, belonged to<br />

the Alternaria-complex instead of Pleospora s. str. based on ITS,<br />

GAPDH and TEF1 sequences.<br />

Alternaria papavericola Woudenb. & Crous, nom. nov. MycoBank<br />

MB803749.<br />

Basionym: Helminthosporium papaveris Sawada, J. Nat. Hist. Soc.<br />

Formosa 31: 1. 1917.<br />

≡ Dendryphion papaveris (Sawada) Sawada, Special Publ. Coll. Agric. Natl.<br />

Taiwan Univ. 8: 200. 1959, non Alternaria papaveris (Bres.) M.B. Ellis, 1976.<br />

≡ Brachycladium papaveris (Sawada) Shoemaker & Inderb., Canad. J.<br />

Bot. 84: 1310. 2006.<br />

Etymology: Name refers to the host.<br />

Alternaria penicillata (Corda) Woudenb. & Crous, comb. nov.<br />

MycoBank MB803692.<br />

Basionym: Brachycladium penicillatum Corda, Icon. Fungorum<br />

hucusque Cogn. (Prague) 2: 14. 1838.<br />

≡ Dendryphion penicillatum (Corda) Fr., Summa Veg. Scand., Sect. Post.<br />

(Stockholm): 504. 1849.<br />

= Cucurbitaria papaveracea De Not., Sferiacei Italici: 62. 1863.<br />

≡ Pleospora papaveracea (De Not.) Sacc., Syll. Fungorum (Abellini) 2:<br />

243. 1883.<br />

≡ Crivellia papaveracea (De Not.) Shoemaker & Inderb., Canad. J. Bot.<br />

84: 1308. 2006.<br />

Note: The asexual name, Brachycladium penicillatum is older than<br />

the sexual name, Cucurbitaria papaveracea, and therefore the<br />

species epithet penicillatum is chosen above papaveracea.<br />

Section Dianthicola Woudenb. & Crous, sect. nov.<br />

MycoBank MB803736. Fig. 9.<br />

Type species: Alternaria dianthicola Neerg.<br />

Diagnosis: Section Dianthicola contains simple or branched primary<br />

conidiophores, with or without apical geniculate proliferations.<br />

Conidia are narrowly ovoid or narrowly ellipsoid with transverse<br />

and few longitudinal septa, slightly constricted at the septa, with a<br />

long (filamentous) beak or apical secondary conidiophore, solitary<br />

or in short chains.<br />

Note: Based on the ITS sequence, Alternaria dianthicola clustered<br />

near Ulocladium (Chou & Wu 2002). Our extensive dataset places<br />

it in a sister section to section Ulocladioides.<br />

Alternaria dianthicola Neerg., Danish species of Alternaria &<br />

Stemphylium: 190. 1945.<br />

Alternaria elegans E.G. Simmons & J.C. David, Mycotaxon 75:<br />

89. 2000.<br />

Alternaria simsimi E.G. Simmons, Stud. Mycol. 50: 111. 2004.<br />

Section Embellisia (E.G. Simmons) Woudenb. & Crous,<br />

comb. et stat. nov. MycoBank MB803737. Fig. 10.<br />

Basionym: Embellisia E.G. Simmons, Mycologia 63: 380. 1971.<br />

Type species: Alternaria embellisia Woudenb. & Crous (≡<br />

Helminthosporium allii Campan., Embellisia allii (Campan.) E.G.<br />

Simmons).<br />

Diagnosis: Section Embellisia contains simple, septate<br />

conidiophores, straight or with geniculate sympodial proliferation.<br />

Condia are solitary, ovoid to subcylindrical, straight to inequilateral,<br />

transseptate; septa can be thick, dark and rigid in contrast to the<br />

external wall. Chlamydospores may occur.<br />

Notes: Section Embellisia contains the first two species described in<br />

the genus Embellisia, Embellisia allii (type species) and Embellisia<br />

chlamydospora (Simmons 1971) together with Embellisia tellustris.<br />

This clade is also resolved in the latest molecular revision of<br />

Embellisia based on sequences of the GAPDH, ITS and Alt a 1<br />

genes as Embellisia group I (Lawrence et al. 2012).<br />

Alternaria chlamydosporigena Woudenb. & Crous, nom. nov.<br />

MycoBank MB803694.<br />

Basionym: Pseudostemphylium chlamydosporum Hoes, G.W.<br />

Bruehl & C.G. Shaw, Mycologia 57: 904. 1965, non Alternaria<br />

chlamydospora Mouch., 1973.<br />

≡ Embellisia chlamydospora (Hoes, G.W. Bruehl & C.G. Shaw) E.G.<br />

Simmons, Mycologia 63: 384. 1971.<br />

Etymology: Name refers to the formation of chlamydospores during<br />

growth.<br />

190


Alternaria redefined<br />

Fig. 9. Alternaria sect. Dianthicola: conidia and conidiophores. A–B. A. dianthicola. C–E. A. simsimi. F–H. A. elegans. Scale bars = 10 µm.<br />

Fig. 10. Alternaria sect. Embellisia: conidia and conidiophores. A–D. A. embellisia. E–H. A. tellustris. Scale bars = 10 µm.<br />

Alternaria embellisia Woudenb. & Crous, nom. nov. MycoBank<br />

MB803693.<br />

Basionym: Helminthosporium allii Campan., Nuovi Ann. Agric.<br />

Roma 4: 87. 1924, non Alternaria allii Nolla, 1927.<br />

≡ Embellisia allii (Campan.) E.G. Simmons, Mycologia 63: 382. 1971.<br />

Etymology: Name refers to the genus Embellisia for which it served<br />

as type species.<br />

Alternaria tellustris (E.G. Simmons) Woudenb. & Crous, comb.<br />

nov. MycoBank MB803695.<br />

Basionym: Embellisia tellustris E.G. Simmons [as “telluster”],<br />

Mycotaxon 17: 234. 1983.<br />

www.studiesinmycology.org<br />

191


Woudenberg et al.<br />

Fig. 11. Alternaria sect. Embellisioides: conidia and conidiophores. A–B. A. hyacinthi. C–E. A. lolii. F–H. A. botryospora. I–K. A. planifunda. L–N. A. proteae. O–P. A. tumida.<br />

Scale bars = 10 µm.<br />

192


Alternaria redefined<br />

Section Embellisioides Woudenb. & Crous, sect. nov.<br />

MycoBank MB803738. Fig. 11.<br />

Type species: Alternaria hyacinthi (de Hoog & P.J. Mull. bis)<br />

Woudenb. & Crous<br />

Diagnosis: Section Embellisioides contains simple, septate<br />

conidiophores, straight or with multiple, geniculate, sympodial<br />

proliferations. Apical or lateral, short secondary conidiophores may<br />

occur. Condia are solitary or in short chains, obovoid to ellipsoid,<br />

with transverse and longitudinal septa; transverse septa can be<br />

thick, dark and rigid in contrast to the external wall. Chlamydospores<br />

and a sexual morph may occur.<br />

Note: In Lawrence et al. (2012) the section is named Embellisia<br />

group III.<br />

Alternaria botryospora Woudenb. & Crous, nom. nov. MycoBank<br />

MB803705.<br />

Basionym: Embellisia novae-zelandiae E.G. Simmons & C.F. Hill,<br />

Mycotaxon 38: 252. 1990, non Alternaria novae-zelandiae E.G.<br />

Simmons, 2002.<br />

Etymology: Name refers to the clusters of conidia.<br />

Alternaria hyacinthi (de Hoog & P.J. Mull. bis) Woudenb. & Crous,<br />

comb. nov. MycoBank MB803703.<br />

Basionym: Embellisia hyacinthi de Hoog & P.J. Mull. bis,<br />

Netherlands J. Pl. Pathol. 79: 85. 1973.<br />

Alternaria lolii (E.G. Simmons & C.F. Hill) Woudenb. & Crous,<br />

comb. nov. MycoBank MB803704.<br />

Basionym: Embellisia lolii E.G. Simmons & C.F. Hill, Stud. Mycol.<br />

50: 113. 2004.<br />

Alternaria planifunda (E.G. Simmons) Woudenb. & Crous, comb.<br />

nov. MycoBank MB803706.<br />

Basionym: Embellisia planifunda E.G. Simmons, Mycotaxon 17:<br />

233. 1983.<br />

Alternaria proteae (E.G. Simmons) Woudenb. & Crous, comb.<br />

nov. MycoBank MB803707.<br />

Basionym: Embellisia proteae E.G. Simmons, Mycotaxon 38: 258.<br />

1990.<br />

= Allewia proteae E.G. Simmons, Mycotaxon 38: 262. 1990.<br />

Alternaria tumida (E.G. Simmons) Woudenb. & Crous, comb.<br />

nov. MycoBank MB803708.<br />

Basionym: Embellisia tumida E.G. Simmons, Mycotaxon 17: 236.<br />

1983.<br />

Section Eureka Woudenb. & Crous, sect. nov.<br />

MycoBank MB803739. Fig. 12.<br />

Type species: Alternaria eureka E.G. Simmons<br />

Diagnosis: Section Eureka contains simple, septate conidiophores,<br />

straight or with geniculate, sympodial proliferations. Apical or lateral,<br />

short secondary conidiophores may occur. Condia are solitary or in<br />

short chains, narrowly ellipsoid to cylindrical, with transverse and<br />

longitudinal septa, slighty constricted at the septa, with a blunt<br />

rounded apex. Chlamydospores and a sexual morph may occur.<br />

Notes: Section Eureka contains four Alternaria species and two<br />

former Embellisia species. From the Alternaria species only the ITS<br />

sequence of A. geniostomatis was previously used in a molecular<br />

study (Toth et al. 2011), showing it to cluster separate from the<br />

other Alternaria spp. The two Embellisia species were included in<br />

the latest molecular-based revision of Embellisia (Lawrence et al.<br />

2012) where they formed Embellisia group IV. A sexual morph is<br />

known for the type species of this section.<br />

Alternaria anigozanthi Priest, Australas. Pl. Pathol. 24: 239. 1995.<br />

Alternaria cumini E.G. Simmons, <strong>CBS</strong> Biodiversity Ser. (Utrecht)<br />

6: 664. 2007.<br />

Alternaria eureka E.G. Simmons, Mycotaxon 25: 306. 1986.<br />

≡ Embellisia eureka (E.G. Simmons) E.G. Simmons, Mycotaxon 38: 260.<br />

1990.<br />

= Lewia eureka E.G. Simmons, Mycotaxon 25: 304. 1986.<br />

≡ Allewia eureka (E.G. Simmons) E.G. Simmons, Mycotaxon 38: 264.<br />

1990.<br />

Alternaria geniostomatis E.G. Simmons & C.F. Hill, <strong>CBS</strong><br />

Biodiversity Ser. (Utrecht) 6: 412. 2007.<br />

Alternaria leptinellae (E.G. Simmons & C.F. Hill) Woudenb. &<br />

Crous, comb. nov. MycoBank MB803696.<br />

Basionym: Embellisia leptinellae E.G. Simmons & C.F. Hill,<br />

Mycotaxon 38: 254. 1990.<br />

Alternaria triglochinicola Alcorn & S.M. Francis, Mycotaxon 46:<br />

359. 1993.<br />

Section Gypsophilae D.P. Lawr., Gannibal, Peever &<br />

B.M. Pryor, Mycologia 105: 541. 2013. Fig. 13<br />

Type species: Alternaria gypsophilae Neerg.<br />

Diagnosis: Section Gypsophilae contains simple, or occasionally<br />

branched, primary conidiophores, with one or a few conidiogenous<br />

loci. Conidia are ellipsoid to long ovoid, with multiple transverse and<br />

longitudinal septa, conspicuously constricted near some transverse<br />

septa, solitary or in short chains. Secondary conidiophores are<br />

formed apically with one or two conidiogenous loci or laterally with<br />

a single conidiogenous locus. Species from this section occur on<br />

Caryophyllaceae.<br />

Notes: Section Gypsophilae was recently established by Lawrence<br />

et al. (2013) containing the four Alternaria species, A. gypsophilae,<br />

A. nobilis, A. vaccariae and A. vaccariicola. Our dataset adds four<br />

Alternaria species, A. axiaeriisporifera, A. ellipsoidea, A. saponariae,<br />

and A. juxtiseptata to this section. Simmons (2007) noted the<br />

similarity of the primary conidia of A. ellipsoidea to A. gypsophilae,<br />

A. nobilis, A. saponariae and A. vaccariae. This section contains all<br />

Alternaria species that occur on Caryophyllaceae (Simmons 2002),<br />

except A. dianthicola which resides in sect. Dianthicola.<br />

Alternaria axiaeriisporifera E.G. Simmons & C.F. Hill, <strong>CBS</strong><br />

Biodiversity Ser. (Utrecht) 6: 662. 2007.<br />

Alternaria ellipsoidea E.G. Simmons, Mycotaxon 82: 31. 2002.<br />

Alternaria gypsophilae Neerg., Danish species of Alternaria &<br />

Stemphylium: 207. 1945.<br />

Alternaria juxtiseptata E.G. Simmons, Mycotaxon 82: 32. 2002.<br />

Alternaria nobilis (Vize) E.G. Simmons, Mycotaxon 82: 7. 2002.<br />

Basionym: Macrosporium nobile Vize, Grevillea 5(35): 119. 1877.<br />

Alternaria saponariae (Peck) Neerg., Annual Rep. Phytopathol.<br />

Lab. J.E. Ohlsens Enkes, Seed Growers, Copenhagen 3: 6. 1938<br />

[1937–1938].<br />

Basionym: Macrosporium saponariae Peck, Rep. (Annual)<br />

NewYork State Mus. Nat. Hist. 28: 62. 1876 [1875].<br />

www.studiesinmycology.org<br />

193


Woudenberg et al.<br />

Fig. 12. Alternaria sect. Eureka: conidia and conidiophores. A–B. A. anigozanthi. C–D. A. cumini. E–F. A. leptinellae. G–H. A. triglochinicola. I–J. A. geniostomatis. K–L. A.<br />

eureka. Scale bars = 10 µm.<br />

Alternaria vaccariae (Săvul. & Sandu) E.G. Simmons & S.T.<br />

Koike, Mycotaxon 82: 21. 2002.<br />

Basionym: Macrosporium vaccariae Săvul. & Sandu, Hedwigia 73:<br />

130. 1933.<br />

Alternaria vaccariicola E.G. Simmons, <strong>CBS</strong> Biodiversity Ser.<br />

(Utrecht) 6: 594. 2007.<br />

Section Infectoriae Woudenb. & Crous, sect. nov.<br />

MycoBank MB803740. Fig. 14.<br />

Type species: Alternaria infectoria E.G. Simmons<br />

Diagnosis: Section Infectoriae contains short to long, simple or branched<br />

primary conidiophores with one or several conidiogenous loci. Conidia<br />

are obclavate, long-ellipsoid, small or moderate in size, septate, slightly<br />

constricted near some septa, with few longitudinal septa, in moderately<br />

long to long, branched chains. Long, geniculate, multi-locus secondary<br />

conidiophores can be formed apically or laterally. Sexual morphs are<br />

known, and meristematic growth has been reported.<br />

Notes: In addition to the six species that are displayed in our<br />

phylogeny, 19 more are included based on the study of Lawrence<br />

et al. (2013), confirmed with our molecular data (not shown). From<br />

these 25 species, nine species have a known sexual morph in<br />

Lewia. Three species from the study of Lawrence et al. (2013) are<br />

not included; A. photistica (sect. Panax) and A. dianthicola (sect.<br />

Dianthicola) cluster elsewhere in our phylogenies and A. peglionii is<br />

marked as a taxon incertae sedis by Simmons (2007). The human<br />

pathogenic genera Ybotromyces and Chmelia are also embedded<br />

in sect. Infectoriae.<br />

194


Alternaria redefined<br />

Fig. 13. Alternaria sect. Gypsophilae: conidia and conidiophores. A–B. A. axiariisporifera. C–D. A. ellipsoidea. E–G. A. saponariae. H–I. A. vaccariae. J–K. A. nobilis. L–M. A.<br />

juxtiseptata. N–P. A. vaccariicola. Scale bars = 10 µm.<br />

Alternaria alternarina E.G. Simmons, <strong>CBS</strong> Biodiversity Ser.<br />

(Utrecht) 6: 644. 2007.<br />

= Pyrenophora alternarina M.D. Whitehead & J. Dicks., Mycologia 44: 748. 1952.<br />

≡ Lewia alternarina (M.D. Whitehead & J.G. Dicks.) E.G. Simmons, <strong>CBS</strong><br />

Biodiversity Ser. (Utrecht) 6: 644. 2007.<br />

Alternaria arbusti E.G. Simmons, Mycotaxon 48: 103. 1993.<br />

Alternaria caespitosa (de Hoog & C. Rubio) Woudenb. & Crous,<br />

comb. nov. MycoBank MB803698.<br />

Basionym: Botryomyces caespitosus de Hoog & C. Rubio,<br />

Mycotaxon 14: 19. 1982.<br />

≡ Ybotromyces caespitosus (de Hoog & C. Rubio) Rulamort, Bull. Soc.<br />

Bot. Centre-Ouest, Nouv. Sér. 21: 512. 1990.<br />

www.studiesinmycology.org<br />

195


Woudenberg et al.<br />

Fig. 14. Alternaria sect. Infectoriae: conidia and conidiophores. A–B. A. ethzedia. C–D. A. infectoria. E–F. A. conjuncta. G–H. A. oregonensis. Scale bars = 10 µm.<br />

Alternaria californica E.G. Simmons & S.T. Koike, <strong>CBS</strong><br />

Biodiversity Ser. (Utrecht) 6: 602. 2007.<br />

Alternaria conjuncta E.G. Simmons, Mycotaxon 25: 294. 1986.<br />

= Sphaeria scrophulariae Desm., Ann. Sci. Nat., Bot., Sér. 2, 6: 245. 1836.<br />

≡ Leptosphaeria scrophulariae (Desm.) Sacc., Syll. Fungorum (Abellini)<br />

2: 57. 1883.<br />

≡ Heptameria scrophulariae (Desm.) Cooke, Grevillea 18(no. 86): 31.<br />

1889.<br />

≡ Pleospora scrophulariae (Desm.) Höhn., Sitzungsber. Kaiserl. Akad.<br />

Wiss., Math.-Naturwiss. Cl., Abt. 1. 126(4–5): 374. 1917.<br />

≡ Lewia scrophulariae (Desm.) M.E. Barr & E.G. Simmons, Mycotaxon<br />

25: 294. 1986.<br />

Alternaria daucicaulis E.G. Simmons, <strong>CBS</strong> Biodiversity Ser.<br />

(Utrecht) 6: 640. 2007.<br />

= Lewia daucicaulis E.G. Simmons, <strong>CBS</strong> Biodiversity Ser. (Utrecht) 6: 640.<br />

2007.<br />

Alternaria ethzedia E.G. Simmons, Mycotaxon 25: 300. 1986.<br />

= Lewia ethzedia E.G. Simmons, Mycotaxon 25: 299. 1986.<br />

Alternaria frumenti E.G. Simmons & C.F. Hill, <strong>CBS</strong> Biodiversity<br />

Ser. (Utrecht) 6: 620. 2007.<br />

Alternaria graminicola E.G. Simmons, <strong>CBS</strong> Biodiversity Ser.<br />

(Utrecht) 6: 626. 2007.<br />

Alternaria hordeiaustralica E.G. Simmons & Alcorn, <strong>CBS</strong><br />

Biodiversity Ser. (Utrecht) 6: 614. 2007.<br />

= Lewia hordeiaustralica E.G. Simmons & Alcorn, <strong>CBS</strong> Biodiversity Ser.<br />

(Utrecht) 6: 614. 2007.<br />

Alternaria hordeicola E.G. Simmons & Kosiak, <strong>CBS</strong> Biodiversity<br />

Ser. (Utrecht) 6: 630. 2007.<br />

= Lewia hordeicola Kwaśna & Kosiak, Mycologia 98: 663. 2006.<br />

Alternaria humuli E.G. Simmons, Mycotaxon 83: 139. 2002.<br />

Alternaria incomplexa E.G. Simmons, Mycotaxon 57: 394. 1996.<br />

Alternaria infectoria E.G. Simmons, Mycotaxon 25: 298. 1986.<br />

= Pleospora infectoria Fuckel, Jahrb. Nassauischen Vereins Naturk. 23–24:<br />

132. 1870 [1869–70].<br />

≡ Sphaeria infectoria (Fuckel) Cooke, Handb. Brit. Fungi 2: 897. 1871.<br />

≡ Pleospora phaeocomoides var. infectoria (Fuckel) Wehm., A World<br />

Monograph of the Genus Pleospora and its Segregates: 121. 1961.<br />

≡ Lewia infectoria (Fuckel) M.E. Barr & E.G. Simmons, Mycotaxon 25:<br />

296. 1986.<br />

Alternaria intercepta E.G. Simmons, Mycotaxon 83: 134. 2002.<br />

= Lewia intercepta E.G. Simmons & McKemy, Mycotaxon 83: 133. 2002.<br />

Alternaria merytae E.G. Simmons, Mycotaxon 83: 136. 2002.<br />

Alternaria metachromatica E.G. Simmons, Mycotaxon 50: 418.<br />

1994.<br />

Alternaria novae-zelandiae E.G. Simmons, Mycotaxon 83: 142.<br />

2002.<br />

Alternaria oregonensis E.G. Simmons, Mycotaxon 50: 417.<br />

1994.<br />

Alternaria slovaca (Svob.-Pol., L. Chmel & Bojan.) Woudenb. &<br />

Crous, comb. nov. MycoBank MB803699.<br />

Basionym: Aureobasidium slovacum Svob.-Pol., L. Chmel & Bojan.,<br />

Conspect. Verruc. 5: 116. 1966.<br />

≡ Chmelia slovaca (Svob.-Pol., L. Chmel & Bojan.) Svob.-Pol., Biologia<br />

(Bratislava) 21: 83. 1966.<br />

Alternaria triticimaculans E.G. Simmons & Perelló, Mycotaxon<br />

50: 413. 1994.<br />

Alternaria triticina Prasada & Prabhu, Indian Phytopathol. 15<br />

(3–4): 292. 1963. [1962]<br />

Alternaria ventricosa R.G. Roberts, Mycotaxon 100: 164. 2007.<br />

Alternaria viburni E.G. Simmons, Mycotaxon 83: 132. 2002.<br />

= Lewia viburni E.G. Simmons & McKemy, Mycotaxon 83: 130. 2002.<br />

196


Alternaria redefined<br />

Fig. 15. Alternaria sect. Japonicae: conidia and conidiophores. A–B. A. japonica. C–E. A. nepalensis. Scale bars = 10 µm.<br />

Fig. 16. Alternaria sect. Nimbya: conidia and conidiophores. A–B. A. caricis. C–D. A. scirpicola. Scale bars = 10 µm.<br />

Section Japonicae Woudenb. & Crous, sect. nov.<br />

MycoBank MB803741. Fig. 15.<br />

Type species: Alternaria japonica Yoshii<br />

Diagnosis: Section Japonicae contains short to long, simple<br />

or occasionally branched primary conidiophores with a single<br />

conidiogenous locus. Conidia are short, to long-ovoid with<br />

transverse and longitudinal septa, conspicuously constricted at<br />

most of the transverse septa, in short chains. Apical secondary<br />

conidiophores are produced with a single conidiogenous locus. The<br />

species within this section occur on Brassicaceae.<br />

Note: Alternaria japonica was previously connected to the A.<br />

brassicicola species-group (Pryor & Gilbertson 2000, Pryor &<br />

Bigelow 2003, Lawrence et al. 2013), but this association was<br />

questioned by Hong et al. (2005).<br />

Alternaria japonica Yoshii, J. Pl. Protect. 28: 17. 1941.<br />

= Alternaria matthiolae Neerg., Danish species of Alternaria and Stemphylium:<br />

184. 1945.<br />

Alternaria nepalensis E.G. Simmons, <strong>CBS</strong> Biodiversity Ser.<br />

(Utrecht) 6: 480. 2007.<br />

Section Nimbya (E.G. Simmons) Woudenb. & Crous,<br />

comb. et stat. nov. MycoBank MB803742. Fig. 16.<br />

Basionym: Nimbya E.G. Simmons, Sydowia 41: 316. 1989.<br />

Type species: Alternaria scirpicola (Fuckel) Sivan.<br />

Diagnosis: Section Nimbya contains simple, short to moderately<br />

long conidiophores, which may form one or a few short to long,<br />

geniculate, sympodial proliferations. Conidia are narrowly elongateobclavate,<br />

gradually tapering apically, solitary or in short chains,<br />

with transverse disto- and eusepta, sometimes slightly constricted<br />

near eusepta. Apical condiophores with a single conidiogenous<br />

locus can be formed. Internal compartmentation occurs, cell lumina<br />

tend to be broadly octagonal to rounded. A sexual morph may<br />

occur.<br />

Notes: Section Nimbya contains the type species of Nimbya, N.<br />

scirpicola, and N. caricis (Simmons 1989). A more extensive study<br />

on Nimbya (Lawrence et al. 2012) found that N. scirpinfestans and<br />

N. scirpivora also belonged to this section based on sequences of<br />

the GAPDH, ITS and Alt a 1 genes.<br />

Alternaria caricis (E.G. Simmons) Woudenb. & Crous, comb.<br />

nov. MycoBank MB803700.<br />

Basionym: Nimbya caricis E.G. Simmons, Sydowia 41: 328. 1989.<br />

www.studiesinmycology.org<br />

197


Woudenberg et al.<br />

Fig. 17. Alternaria sect. Panax: conidia and conidiophores. A–B. A. avenicola. C–D. A. calycipyricola. E–F. A. panax. G–H. A. photistica. Scale bars = 10 µm.<br />

Alternaria scirpicola (Fuckel) Sivan., Bitunicate Ascomycetes and<br />

their Anamorphs (Vaduz): 526. 1984.<br />

Basionym: Sporidesmium scirpicola Fuckel, Jahrb. Nassauischen<br />

Vereins Naturk. 23–24: 140. 1870 [1869–70].<br />

≡ Clasterosporium scirpicola (Fuckel) Sacc., Syll. Fungorum (Abellini) 4:<br />

393. 1886.<br />

≡ Cercospora scirpicola (Fuckel) Zind.-Bakker, Rev. Mycol. (Paris) 5: 66.<br />

1940.<br />

≡ Alternaria scirpicola (Fuckel) M.T. Lucas & J. Webster, Čas. Slez. Mus.,<br />

Ser. A, Hist. Nat. 23: 151. 1974 (nom. inval.).<br />

≡ Nimbya scirpicola (Fuckel) E.G. Simmons, Sydowia 41: 316. 1989.<br />

= Sphaeria scirpicola DC., in Lamarck & de Candolle, Fl. Franç., Edn 3 (Paris)<br />

2: 300. 1805.<br />

≡ Clathrospora scirpicola (DC.) Höhn., Ann. Mycol. 18(1/3): 77. 1920.<br />

≡ Macrospora scirpicola (DC.) Fuckel, Jahrb. Nassauischen Vereins<br />

Naturk. 23–24: 139. 1870 [1869–70].<br />

≡ Pyrenophora scirpicola (DC.) E. Müll., Sydowia 5(3–6): 256. 1951.<br />

Note: Although Sphaeria scirpicola DC. (de Candolle 1805)<br />

predates Sporidesmium scirpicola Fuckel (Fuckel 1870), a valid<br />

combination in Alternaria already exists, thus we choose to<br />

retain Alternaria scirpicola (Fuckel) Sivan., which is also a well<br />

established name.<br />

Alternaria scirpinfestans (E.G. Simmons & D.A. Johnson)<br />

Woudenb. & Crous, comb. nov. MycoBank MB803701.<br />

Basionym: Nimbya scirpinfestans E.G. Simmons & D.A. Johnson,<br />

Mycotaxon 84: 420. 2002.<br />

= Macrospora scirpinfestans E.G. Simmons & D.A. Johnson, Mycotaxon 84:<br />

417. 2002.<br />

Alternaria scirpivora (E.G. Simmons & D.A. Johnson), Woudenb.<br />

& Crous, comb. nov. MycoBank MB803702.<br />

Basionym: Nimbya scirpivora E.G. Simmons & D.A. Johnson,<br />

Mycotaxon 84: 424. 2002.<br />

= Macrospora scirpivora E.G. Simmons & D.A. Johnson, Mycotaxon 84: 422.<br />

2002.<br />

Section Panax D.P. Lawr., Gannibal, Peever & B.M.<br />

Pryor, Mycologia 105: 541. 2013. Fig. 17.<br />

Type species: Alternaria panax Whetzel<br />

Diagnosis: Section Panax contains simple or branched, short<br />

to moderately long primary conidiophores, with one or a few<br />

conidiogenous loci. Conidia are obclavate to ovoid, with multiple<br />

transverse and longitudinal septa, conspicuously constricted<br />

near several transverse septa, solitary or in simple or branched,<br />

short chains. Apical secondary conidiophores are formed with<br />

one or several conidiogenous loci, multiple lateral secondary<br />

conidiophores with a single conidiogenous locus may occur.<br />

Notes: Section Panax was recently described by Lawrence et al.<br />

(2013) and consists of A. calycipyricola, A. eryngii and A. panax. Our<br />

extended dataset added the species A. avenicola and A. photistica<br />

to this section. Three species, A. avenicola, A. calycipyricola, and<br />

A. photistica have earlier been placed in the A. infectoria speciesgroup<br />

based on their morphological characters (Simmons 2007),<br />

and two of them have a known sexual morph; Lewia avenicola<br />

(Simmons 2007) and Lewia photistica (Simmons 1986). A<br />

phylogenetic study based on Alt a 1 and GAPDH sequences placed<br />

A. photistica in the A. infectoria species-group (Hong et al. 2005)<br />

but an extensive study on the A. infectoria species-group (Andersen<br />

et al. 2009) confirmed our finding, and placed this species outside<br />

the A. infectoria species-group. Additional research performed on<br />

multiple A. photistica strains support our sequence data (data not<br />

shown).<br />

198


Alternaria redefined<br />

Fig. 18. Alternaria sect. Phragmosporae: conidia and conidiophores. A–B. A. didymospora. C. A. phragmospora. D–E. A. limaciformis. F–G. A. molesta. H–I. A. mouchaccae.<br />

Scale bars = 10 µm.<br />

Alternaria avenicola E.G. Simmons, Kosiak & Kwaśna, in<br />

Simmons, <strong>CBS</strong> Biodiversity Ser. (Utrecht) 6: 114. 2007.<br />

= Lewia avenicola Kosiak & Kwaśna, Mycol. Res. 107: 371. 2003.<br />

Alternaria calycipyricola R.G. Roberts, Mycotaxon 100: 162.<br />

2007.<br />

Alternaria eryngii (Pers.) S. Hughes & E.G. Simmons, Canad. J.<br />

Bot. 36: 735. 1958.<br />

Basionym: Conoplea eryngii Pers., Mycol. Eur. (Erlanga) 1: 11.<br />

1822.<br />

≡ Exosporium eryngianum (Pers.) Chevall., Flore Générale des Environs<br />

de Paris 1: 39. 1826.<br />

≡ Exosporium eryngii (Pers.) Duby, Bot. Gallicum., Edn 2 (Paris) 2: 882.<br />

1830.<br />

≡ Helminthosporium eryngii (Pers.) Fr., Syst. Mycol. (Lundae) 3: 361.<br />

1832.<br />

Alternaria panax Whetzel, Bull. U.S.D.A. 250: 11. 1912.<br />

= Macrosporium araliae Dearn. & House, Circ. New York State Mus. 24: 58.<br />

1940.<br />

= Alternaria araliae H.C. Greene, Trans. Wisconsin Acad. Sci. 42: 80. 1953.<br />

Alternaria photistica E.G. Simmons, Mycotaxon 25: 304. 1986.<br />

= Lewia photistica E.G. Simmons, Mycotaxon 25: 302. 1986.<br />

Section Phragmosporae Woudenb. & Crous, sect.<br />

nov. MycoBank MB803743. Fig. 18.<br />

Type species: Alternaria phragmospora Emden<br />

Diagnosis: Section Phragmosporae contains simple, short to<br />

moderately long, primary conidiophores, with one or multiple<br />

geniculate, sympodial proliferations. Conidia are (broad) ovoid to<br />

long ovoid, ellipsoid, curved, or limaciform, with multiple transverse<br />

and few to multiple longitudinal septa, some septa darkened,<br />

slightly to conspicuously constricted near several transverse septa,<br />

solitary or in simple short chains. Apical secondary conidiophores<br />

are formed with one or several conidiogenous loci. All species<br />

within the section are known from soil and seawater environments.<br />

Note: Section Phragmosporae contains six species of which two<br />

were linked to Embellisia.<br />

Alternaria chlamydospora Mouch. [as “chlamydosporum”],<br />

Mycopathol. Mycol. Appl. 50: 217. 1973.<br />

Alternaria didymospora (Munt.-Cvetk.) Woudenb. & Crous,<br />

comb. nov. MycoBank MB803709.<br />

Basionym: Embellisia didymospora Munt.-Cvetk., Mycologia 68:<br />

49. 1976.<br />

Alternaria limaciformis E.G. Simmons, Mycotaxon 13: 24. 1981.<br />

Alternaria molesta E.G. Simmons, Mycotaxon 13: 17. 1981.<br />

Alternaria mouchaccae E.G. Simmons, Mycotaxon 13: 18. 1981.<br />

≡ Ulocladium chlamydosporum Mouch., Rev. Mycol. (Paris) 36: 114.<br />

1971, non Alternaria chlamydospora Mouch., 1973.<br />

Alternaria phragmospora Emden, Acta Bot. Neerl. 19: 393. 1970.<br />

≡ Embellisia phragmospora (Emden) E.G. Simmons, Mycotaxon 17: 232.<br />

1983.<br />

Section Porri D.P. Lawr., Gannibal, Peever & B.M.<br />

Pryor, Mycologia 105: 541. 2013. Fig. 19<br />

Type species: Alternaria porri (Ellis) Cif.<br />

www.studiesinmycology.org<br />

199


Woudenberg et al.<br />

Fig. 19. Alternaria sect. Porri: conidia and conidiophores. A–C. A. daucii. D–F. A. pseudorostrata. G–H. A. solani. Scale bars = 10 µm.<br />

Diagnosis: Section Porri is characterised by broadly ovoid,<br />

obclavate, ellipsoid, subcylindrical or obovoid (medium) large<br />

conidia, disto- and euseptate, solitary or in short to moderately<br />

long chains, with a simple or branched, long to filamentous beak.<br />

Conidia contain multiple transverse and longitudinal septa and<br />

are slightly constricted near some transverse septa. Secondary<br />

conidiophores can be formed apically or laterally.<br />

Notes: In addition to the six species that are displayed in our<br />

phylogeny, 40 more are included based on the study of Lawrence<br />

et al. (2013), confirmed with own molecular data (not shown).<br />

With almost 80 species section Porri is the largest Alternaria<br />

section (data not shown). The section displays a higher level<br />

of genetic variation than the second largest section; section<br />

Alternata.<br />

Alternaria acalyphicola E.G. Simmons, Mycotaxon 50: 260. 1994.<br />

Alternaria agerati Sawada ex E.G. Simmons, Mycotaxon 65: 63.<br />

1997.<br />

= Alternaria agerati Sawada, Rep. Dept. Agric. Gov. Res. Inst. Formosa 86:<br />

165. 1943. (nom. inval., Art. 36.1)<br />

Alternaria agripestis E.G. Simmons & K. Mort., Mycotaxon 50:<br />

255. 1994.<br />

Alternaria anagallidis A. Raabe, Hedwigia 78: 87. 1939.<br />

Alternaria aragakii E.G. Simmons, Mycotaxon 46: 181. 1993.<br />

Alternaria argyroxiphii E.G. Simmons & Aragaki, Mycotaxon 65:<br />

40. 1997.<br />

Alternaria bataticola Ikata ex W. Yamam., Trans. Mycol. Soc.<br />

Japan 2(5): 89. 1960.<br />

= Macrosporium bataticola Ikata, Agric. Hort. (Tokyo) 22: 241. 1947 (nom.<br />

inval., Art. 36.1).<br />

Alternaria blumeae E.G. Simmons & Sontirat, Mycotaxon 65: 81.<br />

1997.<br />

Alternaria calendulae Ondřej, Čas. Slez. Mus. v Opavĕ, Ser. A,<br />

Hist. Nat. 23(2): 150. 1974.<br />

= Alternaria calendulae W. Yamam. 1939 (nom. nud.).<br />

= Macrosporium calendulae Nelen, Bull. Centr. Bot. Gard. (Moscow) 35: 90.<br />

1959 (nom. inval., Art. 36.1).<br />

= Macrosporium calendulae Nelen, Bot. Mater. Otd. Sporov. Rast. Bot. Inst.<br />

Akad. Nauk S.S.S.R. 15: 144. 1962.<br />

= Alternaria calendulae Nirenberg, Phytopathol. Z. 88(2): 108. 1977 (nom.<br />

illegit., Art. 53.1).<br />

Alternaria capsici E.G. Simmons, Mycotaxon 75: 84. 2000.<br />

Alternaria carthami S. Chowdhury, J. Indian Bot. Soc. 23: 65. 1944.<br />

= Macrosporium anatolicum A. Săvul., Bull. Sect. Sci. Acad. Roumaine 26:<br />

709. 1944.<br />

Alternaria cassiae Jurair & A. Khan, Pakistan J. Sci. Industr. Res.<br />

3(1): 72. 1960.<br />

Alternaria cichorii Nattrass, First List of Cyprus Fungi: 29. 1937.<br />

≡ Alternaria porri f.sp. cichorii (Natrass) T. Schmidt, Pflanzenschutzberichte<br />

32: 181. 1965.<br />

≡ Macrosporium cichorii (Nattrass) Gordenko, Mikol. Fitopatol. 9(3): 241.<br />

1975.<br />

Alternaria cirsinoxia E.G. Simmons & K. Mort., Mycotaxon 65:<br />

72. 1997.<br />

Alternaria crassa (Sacc.) Rands, Phytopathology 7: 337. 1917.<br />

Basionym: Cercospora crassa Sacc., Michelia 1(no. 1): 88. 1877.<br />

Alternaria cretica E.G. Simmons & Vakal., Mycotaxon 75: 64.<br />

2000.<br />

Alternaria cucumerina (Ellis & Everh.) J.A. Elliott, Amer. J. Bot.<br />

4: 472. 1917.<br />

Basionym: Macrosporium cucumerinum Ellis & Everh., Proc. Acad.<br />

Nat. Sci. Philadelphia 47: 440. 1895.<br />

200


Alternaria redefined<br />

Alternaria cyphomandrae E.G. Simmons, Mycotaxon 75: 86.<br />

2000.<br />

Alternaria danida E.G. Simmons, Mycotaxon 65: 78. 1997.<br />

Alternaria dauci (J.G. Kühn) J.W. Groves & Skolko, Canad. J.<br />

Res., Sect. C, Bot. Sci. 22: 222. 1944.<br />

Basionym: Sporidesmium exitiosum var. dauci J.G. Kühn, Hedwigia<br />

1: 91. 1855.<br />

Additional synonyms in Simmons 2007.<br />

Alternaria dichondrae Gambogi, Vannacci & Triolo, Trans. Brit.<br />

Mycol. Soc. 65(2): 323. 1975.<br />

Alternaria euphorbiicola E.G. Simmons & Engelhard, Mycotaxon<br />

25: 196. 1986.<br />

≡ Macrosporium euphorbiae Reichert, Bot. Jahrb. Syst. 56: 723. 1921.<br />

(nom. illegit., Art 53.1).<br />

Alternaria grandis E.G. Simmons, Mycotaxon 75: 96. 2000.<br />

Alternaria hawaiiensis E.G. Simmons, Mycotaxon 46: 184. 1993.<br />

Alternaria limicola E.G. Simmons & M.E. Palm, Mycotaxon 37:<br />

82. 1990.<br />

Alternaria linicola J.W. Groves & Skolko, Canad. J. Res., Sect. C,<br />

Bot. Sci. 22: 223. 1944.<br />

Alternaria macrospora Zimm., Ber. Land-Forstw. Deutsch-<br />

Ostafrika 2: 24. 1904.<br />

≡ Macrosporium macrosporum (Zimm.) Nishikado & Oshima, Agric. Res.<br />

(Kurashiki) 36: 391. 1944.<br />

= Sporidesmium longipedicellatum Reichert, Bot. Jahrb. Syst. 56: 723. 1921.<br />

≡ Alternaria longipedicellata (Reichert) Snowden, Rep. Dept. Agric.<br />

Uganda: 31. 1927 [1926].<br />

Alternaria multirostrata E.G. Simmons & C.R. Jacks.,<br />

Phytopathology 58: 1139. 1968.<br />

Alternaria nitrimali E.G. Simmons & M.E. Palm, Mycotaxon 75:<br />

93. 2000.<br />

Alternaria passiflorae J.H. Simmonds, Proc. Roy. Soc.<br />

Queensland. 49: 151. 1938.<br />

Alternaria poonensis Ragunath, Mycopathol. Mycol. Appl. 21:<br />

315. 1963.<br />

Alternaria porri (Ellis) Cif., J. Dept. Agric. Porto Rico 14: 30. 1930<br />

[1929].<br />

Basionym: Macrosporium porri Ellis, Grevillea 8 (no. 45): 12. 1879.<br />

Alternaria protenta E.G. Simmons, Mycotaxon 25: 207. 1986.<br />

Alternaria pseudorostrata E.G. Simmons, Mycotaxon 57: 398. 1996.<br />

Alternaria ricini (Yoshii) Hansf., Proc. Linn. Soc. Lond. : 53. 1943.<br />

Basionym: Macrosporium ricini Yoshii, Bult. Sci. Fak. Terk. Kjusu<br />

Imp. Univ. 3(4): 327. 1929.<br />

Alternaria rostellata E.G. Simmons, Mycotaxon 57: 401. 1996.<br />

Alternaria scorzonerae (Aderh.) Loer., Netherlands J. Pl. Pathol.<br />

90(1): 37. 1984.<br />

Basionym: Sporidesmium scorzonerae Aderh.,Arbeiten Kaiserl.<br />

Biol. Anst. Land-Forstw . 3: 439. 1903.<br />

Alternaria sesami (E. Kawam.) Mohanty & Behera, Curr. Sci. 27:<br />

493. 1958.<br />

Basionym: Macrosporium sesami E. Kawam., Fungi 1(2): 27. 1931.<br />

Alternaria solani Sorauer, Z. Pflanzenkrankh. Pflanzenschutz 6:<br />

6. 1896.<br />

= Macrosporium solani Ellis & G. Martin, Amer. Naturalist 16(12): 1003.<br />

1882<br />

≡ Alternaria solani (Ellis & G. Martin) L.R. Jones & Grout, Vermont Agric.<br />

Exp. Sta. Annual Rep. 9: 86. 1896.<br />

Additional synonyms in Simmons (2007).<br />

Alternaria solani-nigri R. Dubey, S.K. Singh & Kamal [as “solaninigrii”],<br />

Microbiol. Res. 154(2): 120. 1999.<br />

Alternaria steviae Ishiba, T. Yokoy. & Tani, Ann. Phytopathol. Soc.<br />

Japan 48(1): 46. 1982.<br />

Alternaria subcylindrica E.G. Simmons & R.G. Roberts,<br />

Mycotaxon 75: 62. 2000.<br />

Alternaria tagetica S.K. Shome & Mustafee, Curr. Sci. 35: 370.<br />

1966.<br />

Alternaria tomatophila E.G. Simmons, Mycotaxon 75: 53. 2000.<br />

Alternaria tropica E.G. Simmons, Mycotaxon 46: 187. 1993.<br />

Alternaria zinniae H.Pape ex M.B. Ellis, Mycol. Pap. 131: 22. 1972.<br />

= Alternaria zinniae H. Pape, Angew. Bot. 24: 61. 1942. (nom. inval., Art. 36.1)<br />

Section Pseudoulocladium Woudenb. & Crous, sect.<br />

nov. MycoBank MB803744. Fig. 20.<br />

Type species: Alternaria chartarum Preuss<br />

Diagnosis: Section Pseudoulocladium is characterised by simple<br />

or branched conidiophores with short, geniculate, sympodial<br />

proliferations. Conidia are obovoid, non-beaked with a narrow<br />

base, in simple or (mostly) branched chains. Apical secondary<br />

conidiophores with multiple conidiogenous loci and lateral<br />

secondary conidiophores with a single conidiogenous locus can be<br />

formed.<br />

Note: It forms a sister clade to section Ulocladioides.<br />

Alternaria aspera Woudenb. & Crous, nom. nov. MycoBank<br />

MB803712.<br />

Basionym: Ulocladium arborescens E.G. Simmons, Stud.<br />

Mycol. 50: 117. 2004, non Alternaria arborescens E.G.<br />

Simmons, 1999.<br />

Etymology: Name refers to the conspicuously ornamented<br />

conidia.<br />

Alternaria chartarum Preuss, Bot. Zeitung 6: 412, 1848.<br />

≡ Sporidesmium polymorphum var. chartarum (Preuss) Cooke, Fungi<br />

Brit. Exs., ser. 2: 329. 1875.<br />

≡ Ulocladium chartarum (Preuss) E.G. Simmons, Mycologia 59: 88. 1967.<br />

= Alternaria stemphylioides Bliss, Mycologia 36: 538. 1944.<br />

≡ Alternaria chartarum f. stemphylioides (Bliss) P. Joly, Encycl. Mycol.<br />

(Paris) 33: 161. 1964.<br />

Alternaria concatenata Woudenb. & Crous, nom. nov. MycoBank<br />

MB803713.<br />

Basionym: Ulocladium capsici F. Xue & X.G. Zhang [as<br />

“capsicuma”], Sydowia 59: 174. 2007, non Alternaria capsici E.G.<br />

Simmons, 2000.<br />

Eymology: Name refers to the concatenated conidia.<br />

Alternaria septospora (Preuss) Woudenb. & Crous, comb. nov.<br />

MycoBank MB803714.<br />

Basionym: Helminthosporium septosporum Preuss, Linnaea 24:<br />

117. 1851.<br />

≡ Macrosporium septosporum (Preuss) Rabenh., Bot. Zeitung 9: 454.<br />

1851.<br />

≡ Ulocladium septosporum (Preuss) E.G. Simmons, Mycologia 59: 87.<br />

1967.<br />

Section Radicina D.P. Lawr., Gannibal, Peever & B.M.<br />

Pryor, Mycologia 105: 541. 2013. Fig. 21.<br />

Type species: Alternaria radicina Meier, Drechsler & E.D. Eddy<br />

Diagnosis: Section Radicina contains straight, simple or<br />

branched, short or long, primary conidiophores with multiple,<br />

short geniculate, sympodial proliferations with single or a few<br />

conidiogenous loci at the apex. Sporulation resembles a cluster<br />

or clumps of conidia. Conidia are widely ovoid to narrowly<br />

www.studiesinmycology.org<br />

201


Woudenberg et al.<br />

Fig. 20. Alternaria sect. Pseudoulocladium: conidia and conidiophores. A–B. A. aspera. C–D. A. concatenata. E–F. A. chartarum. G–H. A. septospora. Scale bars = 10 µm.<br />

ellipsoid, moderate in size, beakless, with several transverse<br />

and longitudinal septa, solitary or in short chains. Solitary, short,<br />

apical secondary conidiophores may occur. The species from this<br />

section occur on Umbelliferae.<br />

Note: This section was first recognised by Pryor & Gilbertson<br />

(2000) based on sequence data of the ITS and mitochondrial SSU.<br />

Alternaria carotiincultae E.G. Simmons, Mycotaxon 55: 103.<br />

1995.<br />

Alternaria petroselini (Neerg.) E.G. Simmons, More dematiaceous<br />

hyphomycetes (Kew): 417. 1976.<br />

Basionym: Stemphylium petroselini Neerg., Zentralbl. Bakteriol., 2.<br />

Abt., 104: 411. 1942.<br />

≡ Stemphylium radicinum var. petroselini (Neerg.) Neerg., Danish species of<br />

Alternaria & Stemphylium: 357. 1945.<br />

≡ Alternaria radicina var. petroselini (Neerg.) Neerg., Encycl. Mycol. 33: 123.<br />

1964.<br />

Alternaria radicina Meier, Drechsler & E.D. Eddy, Phytopathology<br />

12: 157. 1922.<br />

≡ Stemphylium radicinum (Meier, Drechsler & E.D. Eddy) Neerg., Annual<br />

Rep. Phytopathol. Lab. J.E. Ohlsens Enkes, Seed Growers, Copenhagen<br />

4: 14. 1939.<br />

≡ Thyrospora radicina (Meier, Drechsler & E.D. Eddy) Neerg., Bot.<br />

Tidsskr. 44: 361. 1939.<br />

≡ Pseudostemphylium radicinum (Meier, Drechsler & E.D. Eddy)<br />

Subram., Curr. Sci. 30: 423. 1961.<br />

Alternaria selini E.G. Simmons, Mycotaxon 55: 109. 1995.<br />

Alternaria smyrnii (P. Crouan & H. Crouan) E.G. Simmons,<br />

Mycotaxon 55: 41. 1995.<br />

Basionym: Helminthosporium smyrnii P. Crouan & H. Crouan,<br />

Florule Finistère (Paris): 11. 1867.<br />

≡ Macrosporium smyrnii (P. Crouan & H. Crouan) Sacc., Syll. Fungorum<br />

(Abellini) 4: 527. 1886.<br />

Section Sonchi D.P. Lawr., Gannibal, Peever & B.M.<br />

Pryor, Mycologia 105: 542. 2013. Fig. 22.<br />

Type species: Alternaria sonchi Davis<br />

Diagnosis: Section Sonchi is characterised by subcylindrical,<br />

broadly ovoid, broadly ellipsoid or obclavate, (medium) large<br />

conidia, single or in short chains, with multiple transverse and few<br />

longitudinal septa, slightly constricted at the septa, with a blunt<br />

taper which can form secondary conidiophores.<br />

Notes: The species-group was described by Hong et al. (2005)<br />

based on molecular data of the GAPDH and Alt a 1 regions.<br />

Lawrence et al. (2013) included A. brassicae as a basal lineage<br />

in sect. Sonchi, which is supported as a monotypic lineage in our<br />

analyses. The species from section Sonchi occur on multiple hosts<br />

within the Compositae.<br />

Alternaria cinerariae Hori & Enjoji, J. Pl. Protect. 18: 432. 1931.<br />

Alternaria sonchi Davis, in Elliott, Bot. Gaz. 62: 416. 1916.<br />

Section Teretispora (E.G. Simmons) Woudenb. &<br />

Crous, comb. et stat. nov. MycoBank MB803745. Fig.<br />

23.<br />

202


Alternaria redefined<br />

Fig. 21. Alternaria sect. Radicina: conidia and conidiophores. A–C. A. carotiincultae. D–E. A. petroselini. F–G. A. radicina. H–I. A. selini. J–L. A. smyrnii. Scale bars = 10 µm.<br />

Fig. 22. Alternaria sect. Sonchi: conidia and conidiophores. A–B. A. cinerariae. C–D. A. sonchi. Scale bars = 10 µm.<br />

www.studiesinmycology.org<br />

203


Woudenberg et al.<br />

Fig. 23. Alternaria sect. Teretispora: conidia and conidiophores. A–D. A. leucanthemi. Scale bars = 10 µm.<br />

Basionym: Teretispora E.G. Simmons, <strong>CBS</strong> Biodiversity Ser.<br />

(Utrecht) 6: 674. 2007.<br />

Type species: Alternaria leucanthemi Nelen<br />

Diagnosis: Section Teretispora is characterised by simple<br />

conidiophores, sometimes extending at the apex with one or two,<br />

geniculate, sympodial proliferations, bearing single, long cylindrical<br />

mature conidia lacking a beak portion, with many transverse and a<br />

few longitudinal septa, constricted at most of the transverse septa.<br />

Secondary conidiophores with a single conidium are rarely formed<br />

at the apex; instead, they may form from the base of the primary<br />

conidium.<br />

Notes: The genus Teretispora had Teretispora leucanthemi,<br />

formerly Alternaria leucanthemi (= Alternaria chrysanthemi), as<br />

type and only species (Simmons 2007). We choose to treat this<br />

as a section, which retains the name Teretispora, rather than a<br />

monotypic lineage.<br />

Alternaria leucanthemi Nelen, in Nelen & Vasiljeva, Bot. Mater.<br />

Otd. Sporov. Rast. Bot. Inst. Akad. Nauk S.S.S.R. 15: 148. 1962.<br />

≡ Teretispora leucanthemi (Nelen) E.G. Simmons, <strong>CBS</strong> Biodiversity Ser.<br />

(Utrecht) 6: 674. 2007.<br />

= Alternaria leucanthemi Nelen, Bull. Centr. Bot. Gard. (Moscow) 35: 83. 1959.<br />

(nom. inval., Art. 36.1)<br />

= Alternaria chrysanthemi E.G. Simmons & Crosier, Mycologia 57: 142.<br />

1965.<br />

Section Ulocladioides Woudenb. & Crous, sect. nov.<br />

MycoBank MB803746. Fig. 24.<br />

Type species: Alternaria cucurbitae Letendre & Roum.<br />

Diagnosis: Section Ulocladioides is characterised by conidiophores<br />

with short, geniculate, sympodial proliferations. Conidia are<br />

obovoid, non-beaked with a narrow base, single or in chains, which<br />

may form secondary conidiophores at the apex.<br />

Note: Section Ulocladioides resembles section Ulocladium and<br />

contains the majority of the species included in this study from the<br />

genus Ulocladium (11/17).<br />

Alternaria atra (Preuss) Woudenb. & Crous, comb. nov.<br />

MycoBank MB803717.<br />

Basionym: Ulocladium atrum Preuss, Linnaea 25: 75. 1852.<br />

≡ Stemphylium atrum (Preuss) Sacc., Syll. Fungorum (Abellini) 4: 520.<br />

1886.<br />

Alternaria brassicae-pekinensis Woudenb. & Crous, nom. nov.<br />

MycoBank MB803723.<br />

Basionym: Ulocladium brassicae Yong Wang bis & X.G. Zhang,<br />

Mycologia 100: 457. 2008, non Alternaria brassicae (Berk.) Sacc.,<br />

1880.<br />

Etymology: Name refers to the host from which it was originally<br />

isolated.<br />

Alternaria cantlous (Yong Wang bis & X.G. Zhang) Woudenb. &<br />

Crous, comb. nov. MycoBank MB803719.<br />

Basionym: Ulocladium cantlous Yong Wang bis & X.G. Zhang,<br />

Mycologia 102: 376. 2010.<br />

Alternaria consortialis (Thüm.) J.W. Groves & S. Hughes [as<br />

“consortiale”], Canad. J. Bot. 31: 636. 1953.<br />

Basionym: Macrosporium consortiale Thüm., Herb. Mycol. Oecon.<br />

9: no. 450. 1876.<br />

≡ Stemphylium consortiale (Thüm.) J.W. Groves & Skolko, Canad. J.<br />

Res., Sect. C, Bot. Sci.: 196. 1944.<br />

≡ Pseudostemphylium consortiale (Thüm.) Subram., Curr. Sci. 30: 423.<br />

1961.<br />

≡ Ulocladium consortiale (Thüm.) E.G. Simmons, Mycologia 59: 84. 1967.<br />

= Stemphylium ilicis Tengwall, Meded. Phytopathol. Lab. “Willie Commelin<br />

Scholten” 6: 44. 1924.<br />

Alternaria cucurbitae Letendre & Roum., in Roumeguère, Rev.<br />

Mycol. (Toulouse) 8 (no. 30): 93. 1886.<br />

≡ Ulocladium cucurbitae (Letendre & Roum.) E.G. Simmons, Mycotaxon<br />

14: 48. 1982.<br />

Alternaria heterospora Woudenb. & Crous, nom. nov. MycoBank<br />

MB803724.<br />

Basionym: Ulocladium solani Yong Wang bis & X.G. Zhang, Mycol.<br />

Progr. 8: 209. 2009, non Alternaria solani Sorauer, 1896.<br />

Etymology: Name refers to the various conidial morphologies<br />

observed during growth.<br />

Alternaria multiformis (E.G. Simmons) Woudenb. & Crous,<br />

comb. nov. MycoBank MB803720.<br />

Basionym: Ulocladium multiforme E.G. Simmons, Canad. J. Bot.<br />

76: 1537. 1999 [1998].<br />

Alternaria obovoidea (E.G. Simmons) Woudenb. & Crous, comb.<br />

nov. MycoBank MB803721.<br />

Basionym: Ulocladium obovoideum E.G. Simmons, Mycotaxon 37:<br />

104. 1990.<br />

Alternaria subcucurbitae (Yong Wang bis & X.G. Zhang)<br />

Woudenb. & Crous, comb. nov. MycoBank MB803722.<br />

Basionym: Ulocladium subcucurbitae Yong Wang bis & X.G. Zhang,<br />

Mycologia 100: 456. 2008.<br />

204


Alternaria redefined<br />

Fig. 24. Alternaria sect. Ulocladioides: conidia and conidiophores. A–B. A. atra. C–D. A. brassicae-pekinensis. E–F. A. cantlous. G–H. A. multiformis. I–J. A. obovoidea. K–L. A.<br />

heterospora. M–N. A. subcucurbitae. O–P. A. terricola. Scale bars = 10 µm.<br />

www.studiesinmycology.org<br />

205


Woudenberg et al.<br />

Fig. 25. Alternaria sect. Ulocladium: conidia and conidiophores. A–B. A. capsici-annui. C–D. A. oudemansii. E–F. A. alternariae. G–H. A. botrytis. Scale bars = 10 µm.<br />

Alternaria terricola Woudenb. & Crous, nom. nov. MycoBank<br />

MB803725.<br />

Basionym: Ulocladium tuberculatum E.G. Simmons, Mycologia 59:<br />

83. 1967, non Alternaria tuberculata M. Zhang & T.Y. Zhang, 2006.<br />

Etymology: Name refers to soil from which it was originally isolated.<br />

Section Ulocladium (Preuss) Woudenb. & Crous,<br />

comb. et stat. nov. MycoBank MB803747. Fig. 25.<br />

Basionym: Ulocladium Preuss, Linnaea 24: 111. 1851.<br />

Type species: Alternaria botrytis (Preuss) Woudenb. & Crous<br />

Diagnosis: Section Ulocladium is characterised by simple<br />

conidiophores, or with one or two short, geniculate, sympodial<br />

proliferations, with (mostly) single, obovoid, non-beaked conidia<br />

with a narrow base.<br />

Notes: Section Ulocladium resembles sect. Ulocladioides. The<br />

epitype of Ulocladium, U. botrytis <strong>CBS</strong> 197.67, and the isotype<br />

of U. oudemansii (<strong>CBS</strong> 114.07) cluster with the Sinomyces<br />

representative, as do many other strains stored as U. botrytis in<br />

the <strong>CBS</strong> collection (data not shown). Furthermore, a strain stored<br />

as A. capsici-annui (<strong>CBS</strong> 504.74) in the <strong>CBS</strong> collection clusters<br />

within the Sinomyces clade and displays identical morphological<br />

features.<br />

Alternaria alternariae (Cooke) Woudenb. & Crous, comb. nov.<br />

MycoBank MB803716.<br />

Basionym: Sporidesmium alternariae Cooke, Handb. Brit. Fungi 1:<br />

1440. 1871.<br />

≡ Stemphylium alternariae (Cooke) Sacc., Syll. Fungorum (Abellini) 4:<br />

523. 1886.<br />

≡ Ulocladium alternariae (Cooke) E.G. Simmons, Mycologia 59: 82. 1967.<br />

≡ Sinomyces alternariae (Cooke) Yong Wang bis & X.G. Zhang, Fungal<br />

Biol. 115: 194. 2011.<br />

Alternaria botrytis (Preuss) Woudenb. & Crous, comb. nov.<br />

MycoBank MB803718.<br />

Basionym: Ulocladium botrytis Preuss, Linnaea 24: 111. 1851.<br />

≡ Stemphylium botryosum var. ulocladium Sacc. (nom. nov.), Syll.<br />

Fungorum (Abellini) 4: 522. 1886.<br />

≡ Stemphylium botryosum var. botrytis (Preuss) Lindau, Rabenhorst’s.<br />

Kryptog.-Fl., Edn 2 (Leipzig) 1(9): 219. 1908.<br />

Alternaria capsici-annui Săvul. & Sandu, Hedwigia 75: 228. 1936.<br />

Alternaria oudemansii (E.G. Simmons) Woudenb. & Crous,<br />

comb. nov. MycoBank MB803715.<br />

Basionym: Ulocladium oudemansii E.G. Simmons, Mycologia 59:<br />

86. 1967.<br />

Section Undifilum (B.M. Pryor, Creamer, Shoemaker,<br />

McLain-Romero & Hambl.) Woudenb. & Crous, comb.<br />

et stat. nov. MycoBank MB803748. Fig. 26.<br />

Basionym: Undifilum B.M. Pryor, Creamer, Shoemaker, McLain-<br />

Romero & Hambl., Botany 87: 190. 2009.<br />

Type species: Alternaria bornmuelleri (Magnus) Woudenb. & Crous<br />

Diagnosis: Section Undifilum is characterised by ovate to obclavate<br />

to long ellipsoid, straight to inequilateral, single, transseptate conidia;<br />

206


Alternaria redefined<br />

Fig. 26. Alternaria sect. Undifilum: conidia and conidiophores. A–D. A. bornmuelleri. Scale bars = 10 µm.<br />

septa can be thick, dark and rigid, and form unique germ tubes, which<br />

are wavy or undulate until branching. Species of this section occur on<br />

Fabaceae and almost all produce the toxic compound swaisonine.<br />

Notes: Section Undifilum shares morphological features with<br />

section Embellisia, but is characterised by the formation of a wavy<br />

germ tube upon germination (Pryor et al. 2009). Based on previous<br />

studies, the swaisonine producing species U. oxytropis (Pryor et al.<br />

2009, Lawrence et al. 2012), U. fulvum and U. cinereum (Baucom<br />

et al. 2012) also belong to this section, although the type species,<br />

A. bornmuelleri, does not produce swaisonine.<br />

Alternaria bornmuelleri (Magnus) Woudenb. & Crous, comb.<br />

nov. MycoBank MB803726.<br />

Basionym: Helminthosporium bornmuelleri Magnus, Hedwigia 38<br />

(Beibl.): 73. 1899.<br />

≡ Undifilum bornmuelleri (Magnus) B.M. Pryor, Creamer, Shoemaker,<br />

McLain-Romero & Hambl., Botany 87: 190. 2009.<br />

Alternaria cinerea (Baucom & Creamer) Woudenb. & Crous,<br />

comb. nov. MycoBank MB803731.<br />

Basionym: Undifilum cinereum Baucom & Creamer, Botany 90:<br />

872. 2012<br />

Alternaria fulva (Baucom& Creamer) Woudenb. & Crous, comb.<br />

nov. MycoBank MB803732.<br />

Basionym: Undifilum fulvum Baucom & Creamer, Botany 90: 871.<br />

2012<br />

Alternaria oxytropis (Q. Wang, Nagao & Kakish.) Woudenb. &<br />

Crous, comb. nov. MycoBank MB803727.<br />

Basionym: Embellisia oxytropis Q. Wang, Nagao & Kakish.,<br />

Mycotaxon 95: 257. 2006.<br />

≡ Undifilum oxytropis (Q. Wang, Nagao & Kakish.) B.M. Pryor, Creamer,<br />

Shoemaker, McLain-Romero & Hambl., Botany 87: 191. 2009.<br />

Monotypic lineages<br />

The following six species are not assigned to one of the 24 above<br />

described Alternaria sections and are treated as separate, single<br />

species, lineages in this study. Future studies, including more<br />

and/or new Alternaria species, might eventually give rise to the<br />

formation of new sections, when these new species show to be<br />

closely related to one of these monotypic lineages.<br />

Alternaria argyranthemi E.G. Simmons & C.F. Hill, Mycotaxon 65:<br />

32. 1997.<br />

Alternaria brassicae (Berk.) Sacc., Michelia 2(no. 6): 129. 1880.<br />

Basionym: Macrosporium brassicae Berk., Engl. Fl., Fungi (Edn 2)<br />

(London) 5: 339. 1836.<br />

Additional synonyms listed in Simmons (2007).<br />

Alternaria dennisii M.B. Ellis, Mycol. Pap. 125: 27. 1971.<br />

≡ Embellisia dennisii (M.B. Ellis) E.G. Simmons, Mycotaxon 38: 257.<br />

1990.<br />

Alternaria helianthiinficiens E.G. Simmons, Walcz & R.G.<br />

Roberts [as “helianthinficiens”], Mycotaxon 25: 204. 1986.<br />

Alternaria soliaridae E.G. Simmons, <strong>CBS</strong> Biodiversity Ser.<br />

(Utrecht) 6: 374. 2007.<br />

Alternaria thalictrigena K. Schub. & Crous, Fungal Planet No. 12:<br />

2. 2007.<br />

Paradendryphiella Woudenb. & Crous, gen. nov.<br />

MycoBank MB803750. Fig. 27.<br />

Colonies on SNA effuse, entire, velvety, olivaceous. Reverse<br />

olivaceous-grey to iron-grey. Mycelium consisting of branched,<br />

septate hypha, (sub)hyaline, smooth. Conidiophores subhyaline,<br />

simple or branched, septate or not, straight or flexuous, often<br />

nodose with conspicuous, brown pigmentation at the apical<br />

region; at times reduced to conidiogenous cells. Conidiogenous<br />

cells terminal or lateral, with denticles aggregated at apex, with<br />

prominent conidial scars, thickened but not darkened; sometimes<br />

proliferating with a new head or a short, inconspicuous sympodial<br />

rachis. Conidia produced holoblastically, on narrow denticle,<br />

smooth, cylindrical to obclavate, straight or slightly flexuous, 1–7<br />

transverse septa, pale to medium brown, often with dark septa<br />

(often constricted), and a darkened zone of pigmentation at<br />

the apex, and at the hilum, which is thickened, and somewhat<br />

protruding, with a minute marginal frill. Chlamydospores and<br />

sexual state not observed.<br />

Type species: Paradendryphiella salina (G.K. Sutherl.) Woudenb.<br />

& Crous<br />

Paradendryphiella salina (G.K. Sutherl.) Woudenb. & Crous,<br />

comb. nov. MycoBank MB803751.<br />

Basionym: Cercospora salina G.K. Sutherl., New Phytol. 15: 43. 1916.<br />

≡ Dendryphiella salina (G.K. Sutherl.) Pugh & Nicot, Trans. Brit. Mycol.<br />

Soc. 47(2): 266. 1964.<br />

≡ Scolecobasidium salinum (G.K. Sutherl.) M.B. Ellis, More dematiaceous<br />

hyphomycetes (Kew): 192. 1976.<br />

www.studiesinmycology.org<br />

207


Woudenberg et al.<br />

Fig. 27. Paradendryphiella gen. nov.: conidia and conidiophores. A–B, D–E, G–I. P. salina. C, F. P. arenariae. Scale bars = 10 µm.<br />

= Embellisia annulata de Hoog, Seigle-Mur., Steiman & K.-E. Erikss., Antonie<br />

van Leeuwenhoek J. Microbiol. Serol. 51: 409. 1985.<br />

Paradendryphiella arenariae (Nicot) Woudenb. & Crous, comb.<br />

nov. MycoBank MB803752.<br />

Basionym: Dendryphiella arenariae Nicot, [as “arenaria”] Rev.<br />

Mycol. (Paris) 23: 93. 1958.<br />

≡ Scolecobasidium arenarium (Nicot) M.B. Ellis, More dematiaceous<br />

hyphomycetes (Kew): 194. 1976.<br />

DISCUSSION<br />

The well-supported node for the Alternaria clade obtained in the<br />

present study, and the low bootstrap support at the deeper nodes<br />

within the Alternaria complex is also consistently seen in previous<br />

phylogenetic studies published on these genera (Pryor & Bigelow<br />

2003, Inderbitzin et al. 2006, Pryor et al. 2009, Runa et al. 2009,<br />

Wang et al. 2011, Lawrence et al. 2012). The only phylogenetic study<br />

which displays a second fully supported node is based on a fivegene<br />

combined dataset of GAPDH, Alt a 1, actin, plasma membrane<br />

ATPase and calmodulin (Lawrence et al. 2013). This node, called<br />

clade A by the authors, supports eight “asexual” Alternaria speciesgroups<br />

and an Ulocladium (sect. Ulocladioides in our phylogenies)<br />

clade. By resolving these eight asexual phylogenetic lineages of<br />

Alternaria together with Ulocladium, which is sister to the sexual<br />

A. infectoria species-group and other sexual genera, Lawrence et<br />

al. (2013) elevated the asexual species-groups to sections within<br />

Alternaria. If we take this node as cut-off for the genus Alternaria<br />

in our phylogenies, this would leave an Alternaria clade with 14<br />

internal clades (sections) and three monotypic lineages. In order<br />

to create a stable phylogenetic taxonomy, seven new genera need<br />

to be described of which three would be monotypic; E. dennissii,<br />

A. argyranthemi and A. soliaridae. Embellisia species would be<br />

assigned to five different genera of which four would be new,<br />

leaving only E. allii, E. chlamydospora and E. tellustris in the genus<br />

Embellisia. The well-known (medical) A. infectoria species-group<br />

would also have to be transferred to a new genus. This node is not<br />

supported in our study (0.98 PP /65 ML Fig 1) and also the strict<br />

asexual/sexual division is not supported as two sexual morphs are<br />

found in section Panax. This approach would therefore give rise<br />

to multiple small genera, and would not end up in a logical and<br />

workable situation.<br />

Based on our phylogenetic study on parts of the SSU, LSU, ITS,<br />

GAPDH, RPB2 and TEF1 gene regions of ex-type and reference<br />

strains of Alternaria species and all available allied genera, we<br />

resolved a Pleospora/Stemphylium-clade sister to Embellisia<br />

annulata, and a well-supported Alternaria clade. The Alternaria<br />

clade contains 24 internal clades and six monotypic lineages. In<br />

combination with a review of literature and morphology, the species<br />

within the Alternaria clade are all recognised here as Alternaria s.<br />

str. This puts the genera Allewia, Brachycladium, Chalastospora,<br />

Chmelia, Crivellia, Embellisia, Lewia, Nimbya, Sinomyces,<br />

Teretispora, Ulocladium, Undifilum and Ybotromyces in synonymy<br />

with Alternaria.<br />

The support values for the different sections described in this<br />

study are plotted in a heatmap per gene/gene combination and<br />

phylogenetic method used (Table 2). This shows that the Bayesian<br />

method provides greater support than the Maximum Likelihood<br />

bootstrap support values, which is in congruence with previous<br />

reports (e.g. Douady et al. 2003). The sections Cheiranthus,<br />

Eureka and Nimbya have the lowest support values. For sect.<br />

Eureka this is mainly caused by the position of A. cumini, which<br />

clusters within sect. Embellisioides based on its RPB2 sequence<br />

and as a monotypic lineage based on its TEF1 sequence. Section<br />

Cheiranthus and Nimbya are small sections, with relative long<br />

branches. Future studies, including more strains and/or species in<br />

these sections, are necessary to check the stability of these long<br />

branches.<br />

The sexual genus Crivellia with its Brachycladium asexual<br />

morph was described by Inderbitzin et al. (2006) with Crivellia<br />

papaveraceae (asexual morph Brachycladium penicillatum) as<br />

type species and B. papaveris, with an unnamed sexual morph, as<br />

second species. The genus Brachycladium, which was synonymised<br />

208


Alternaria redefined<br />

with Dendryphion (Ellis 1971), was resurrected for the non-sexual<br />

stage based on polyphyly within Dendryphion and morphological<br />

distinction from its type species, D. comosum. The type species of<br />

Brachycladium, B. penicillatum, resides in Alternaria sect. Crivellia,<br />

which places Brachycladium in synonymy with Alternaria instead<br />

of Dendryphion.<br />

The genus Chalastospora was established by Simmons (2007)<br />

based on Chalastospora cetera, formerly Alternaria cetera. Two<br />

new Chalastospora species, C. ellipsoidea and C. obclavata, and<br />

A. malorum as C. gossypii were later added to the genus, based on<br />

sequence data of the ITS and LSU regions (Crous et al. 2009c). The<br />

genus is characterised by conidia which are almost always narrowly<br />

ellipsoid to narrowly ovoid with 1–6 transverse eusepta, generally<br />

lacking oblique or longitudinal septa (Crous et al. 2009c). Our<br />

study shows that Alternaria armoraciae and Embellisia abundans<br />

also belong to this clade. Juvenile conidia of A. armoraciae are<br />

ovoid, but vary from being narrow to broadly ovoid and ellipsoid,<br />

with 3–5 transverse septa and a single longitudinal septum in up<br />

to four of the transverse segments (Simmons 2007). Embellisia<br />

abundans was already mentioned as part of the Chalastospora<br />

clade (Andersen et al. 2009, Lawrence et al. 2012), and has long<br />

ovoid or obclavate conidia with 3–6 transverse septa and rarely<br />

any longitudinal septa (Simmons 1983). The description of sect.<br />

Chalastospora does therefore not completely follow the original<br />

description of the genus Chalastospora.<br />

The genus Embellisia is characterised by the thick, dark, rigid<br />

conidial septa and the scarcity of longitudinal septa (Simmons<br />

2007). It was first described by Simmons (1971), with Embellisia<br />

allii as type and E. chlamydospora as second species. Multiple<br />

Embellisia species followed after the description of the genus,<br />

which was later linked to the sexual genus Allewia (Simmons<br />

1990). The latest molecular-based revision was performed based<br />

on sequences of the GAPDH, ITS and Alt a 1 genes (Lawrence<br />

et al. 2012). They found that Embellisia split into four clades and<br />

multiple species, which clustered individually amidst Alternaria,<br />

Ulocladium or Stemphylium spp. Our results mostly support<br />

these data, but with the inclusion of more ex-type/representative<br />

strains of Alternaria some additions were made to the different<br />

Embellisia groups mentioned by Lawrence et al. (2012). Group<br />

I (sect. Embellisia) and III (sect. Embellisioides) are identical<br />

to the treatment of Lawrence et al. (2012) but group II (section<br />

Phragmosporae) and IV (section Eureka) are both expanded<br />

with four Alternaria species. As not all species from group II and<br />

IV display the typical morphological characters of Embellisia, we<br />

chose to name these Alternaria sections based on the oldest<br />

species residing in the respective sections. Embellisia abundans<br />

was already mentioned as being part of the Chalastospora-clade<br />

and E. indefessa formed a clade close to Ulocladium, which we<br />

now assign to sect. Cheiranthus. Embellisia dennisii also forms<br />

a separate lineage in our phylogenies; therefore the old name<br />

Alternaria dennissii is resurrected. Furthermore, the clustering of E.<br />

conoidea within the A. brassicicola species-group and E. annulata<br />

close to Stemphylium, now assigned as Paradendryphiella gen.<br />

nov., is confirmed by our phylogenetic data. The morphological<br />

character of thick, dark, rigid septa seems to have evolved multiple<br />

times and does not appear to be a valid character for taxonomic<br />

distinction at generic level.<br />

The sexual morphs Lewia (Simmons 1986) and Allewia<br />

(Simmons 1990) were linked to Alternaria and Embellisia<br />

respectively, with the only difference between these genera<br />

being the morphology of their asexual morphs. Lewia<br />

chlamidosporiformans and L. sauropodis are transferred to the<br />

genus Leptosphaerulina (Simmons 2007), which leaves 11 Lewia<br />

species with a known Alternaria anamorph. Most of them (9/11)<br />

reside in sect. Infectoriae, the others are found in sect. Panax.<br />

Allewia only contains two species of which one resides in sect.<br />

Eureka and one in sect. Embellisioides. With the establishment of<br />

the new International Code of Nomenclature for algae, fungi and<br />

plants (ICN), the dual nomenclature system for sexual and asexual<br />

fungal morphs was abandoned and replaced by a single-name<br />

nomenclature (Hawksworth et al. 2011, Norvell 2011). In order to<br />

implement the new rules of the ICN, we synonymised Lewia and<br />

Allewia with Alternaria.<br />

Although multiple molecular studies included Nimbya isolates in<br />

their phylogenies (Chou & Wu 2002, Pryor & Bigelow 2003, Hong et<br />

al. 2005, Inderbitzin et al. 2006, Pryor et al. 2009), a more extensive<br />

molecular-based study was recently published by Lawrence et al.<br />

(2012). Based on sequences of the GAPDH, ITS and Alt a 1 genes,<br />

the authors found a Nimbya clade which contained the type species<br />

N. scirpicola together with N. scirpinfestans, N. scirpivora and N.<br />

caricis. The N. scirpicola isolate which we included in our study, was<br />

assigned to this genus by Simmons (1989) based on morphological<br />

characters, as is the one used in other molecular studies (Pryor<br />

& Bigelow 2003, Hong et al. 2005, Lawrence et al. 2012). The<br />

sequences of the ITS, GAPDH and Alt a 1 genes of these isolates<br />

are however not identical, but do cluster in the same clade in the<br />

two phylogenies (data not shown), together with the isolate of N.<br />

caricis. The N. gomphrenae isolate we included in our phylogeny was<br />

not representative of the name. Simmons mentioned in 1989 that<br />

Togashi (1926) described two different fungi and deposited the smallspored<br />

species in the <strong>CBS</strong> collection, instead of the large-spored N.<br />

gomphrenae isolate. Nimbya gomphrenae <strong>CBS</strong> 108.27, which does<br />

not sporulate anymore, will therefore be treated as “Alternaria sp.”,<br />

and resides in sect. Alternata. The ITS sequence of N. gomphrenae<br />

from Chou & Wu (2002) actually clusters within sect. Alternantherae.<br />

This section was described by Lawrence et al. (2012) and consists<br />

of three Nimbya species, which they renamed to Alternaria based<br />

on the position of the clade amidst the Alternaria species-groups.<br />

Based on the data from Chou & Wu (2002), the name Alternaria<br />

gomphrenae is resurrected and placed in sect. Alternantherae.<br />

The genus Sinomyces was described in by Wang et al. (2011)<br />

to accommodate Ulocladium alternariae and two new species<br />

from China, S. obovoideus and S. fusoides (type). The genus was<br />

differentiated from Ulocladium based on its simple conidiophores<br />

with a single apical pore or 1–2 short, uniperforate, geniculate<br />

sympodial proliferations. Unfortunately, our DNA sequence<br />

analyses of the ex-type cultures of the two new species from<br />

China (<strong>CBS</strong> 124114 and <strong>CBS</strong> 123375) were not congruent with<br />

the GAPDH (both species) and Alt a 1 (S. obovoideus) sequences<br />

deposited in GenBank (data not shown), leading us to doubt the<br />

authenticity of these strains. This matter could not be resolved in<br />

spite of contacting the original depositors. The ex-type strain of S.<br />

alternariae (<strong>CBS</strong> 126989) was therefore included as representative<br />

of the genus Sinomyces. The presence of the epitype of Ulocladium,<br />

U. botrytis <strong>CBS</strong> 197.67, in this section resulted in us rejecting the<br />

name Sinomyces, and calling this sect. Ulocladium. In addition, the<br />

presence of U. oudemansii in this section, with conidiophores with<br />

1–5 uniperforate geniculations (Simmons 1967), also disagrees<br />

with the mentioned differentiation of Sinomyces from Ulocladium.<br />

The type species of Ulocladium, U. botrytis, was typified by<br />

two representative strains QM 7878 (<strong>CBS</strong> 197.67) and QM 8619<br />

(<strong>CBS</strong> 198.67) (Simmons 1967). Molecular studies performed<br />

afterwards showed that these strains are not identical (de Hoog &<br />

Horré 2002). Most molecular studies performed used <strong>CBS</strong> 198.67<br />

www.studiesinmycology.org<br />

209


Woudenberg et al.<br />

as representative of U. botrytis (Pryor & Gilbertson 2000, Pryor<br />

& Bigelow 2003, Hong et al. 2005, Xue & Zhang 2007, Pryor et<br />

al. 2009, Runa et al. 2009, Wang et al. 2010, Wang et al. 2011,<br />

Lawrence et al. 2012), which clusters in section Ulocladioides.<br />

However, de Hoog & Horré (2002) epitypified U. botrytis with <strong>CBS</strong><br />

197.67, which clusters with Sinomyces strains, as does Ulocladium<br />

oudemansii, now named sect. Ulocladium. Extended phylogenetic<br />

analyses on all U. botrytis strains present in the <strong>CBS</strong> culture<br />

collection (16 isolates) also highlight this issue as they cluster either<br />

within sect. Ulocladium or sect. Ulocladioides (data not shown),<br />

both with one of the representative strains described by Simmons<br />

(1967). The suggestion to synonymise Ulocladium with Alternaria<br />

has been made several times in the past (Pryor & Gilbertson 2000,<br />

Chou & Wu 2002). The latest systematic revision of the genus<br />

Ulocladium (Runa et al. 2009) based on sequences from the ITS,<br />

GAPDH and Alt a 1 genes supported previous findings of polyand<br />

paraphyletic relationships of Ulocladium among Alternaria,<br />

Embellisia and Stemphylium spp. (de Hoog & Horré 2002, Pryor<br />

& Bigelow 2003, Hong et al. 2005). Ulocladium alternariae and U.<br />

oudemansii, now known as sect. Ulocladium, cluster separately.<br />

The core Ulocladium clade, containing the two sister clades now<br />

called sect. Ulocladioides and sect. Pseudoulocladium, was<br />

confirmed by later studies (Wang et al. 2010, Lawrence et al. 2012).<br />

Alternaria cheiranthi and Embellisia indefessa have been linked to<br />

Ulocladium (Pryor & Gilbertson 2000, Pryor & Bigelow 2003, Hong<br />

et al. 2005, Pryor et al. 2009, Runa et al. 2009, Lawrence et al.<br />

2012), but missed the diagnostic feature of Ulocladium. Our study<br />

showed that they form a sister section, sect. Cheiranthus, to sect.<br />

Ulocladioides. The confusing taxonomy in this genus strengthens<br />

our decision to reduce Ulocladium to synonymy with Alternaria. The<br />

characteristics of the former genus Ulocladium are added to the<br />

new broader Alternaria generic circumscription.<br />

The genus Undifilum was described by Pryor et al. (2009)<br />

to accommodate the species U. oxytropis and U. bornmuelleri. It<br />

shares the morphological feature of thick, dark and rigid septa with<br />

the genus Embellisia, but was characterised by the formation of<br />

a wavy germ-tube upon germination (Pryor et al. 2009). A recent<br />

study on fungal endophytes in locoweeds in the US described two<br />

new Undifilum species (Baucom et al. 2012). Both new species<br />

produce the toxic compound swaisonine, which is also produced<br />

by U. oxytropis. Swaisonine is the cause of a neurological disease,<br />

locism, of grazing animals, resulting in economic losses in livestock<br />

(James & Panter 1989). The production of swaisonine seems to be<br />

related to this section, although the type-species, U. bornmuelleri,<br />

does not produce this toxin.<br />

The genus Ybotromyces contains one species, Y. caespitosus<br />

(originally Botryomyces caespitosus), which was isolated from a<br />

skin lesion of a human patient (de Hoog & Rubio 1982). De Hoog et<br />

al. (1997) discovered a high similarity to Alternaria spp. based on<br />

restriction patterns of the ITS and SSU rDNA. A phylogeny study of<br />

melanised meristematic fungi based on their SSU and ITS rDNA<br />

sequences (Sterflinger et al. 1999) placed Y. caespitosus within the<br />

Pleosporales together with Alternaria and Pleospora. De Hoog &<br />

Horré (2002) hypothesized that the ex-type strain of Y. caespitosus,<br />

<strong>CBS</strong> 177.80, is likely a synanamorph of a yet undescribed Alternaria<br />

species. Our phylogeny supports this hypothesis, and places the<br />

genus in sect. Infectoriae.<br />

Chmelia slovaca, described from dermatic lesions of a human<br />

(Svobodová 1966), also clusters with sect. Infectoriae as was<br />

shown previously (de Hoog & Horré 2002). The genus produces<br />

different types of chlamydospores and sporadically blastospores,<br />

but no conidia or conidiophores, which makes it difficult to identify<br />

based on morphology. De Hoog & Horré (2002) were confident that<br />

Chmelia is a sterile member of A. infectoria, which is in agreement<br />

with our results.<br />

Genera unrelated to Alternaria<br />

The placement of the sexual genus Pleospora (1863) with<br />

Stemphylium (1833) asexual morphs as basal sister clade to the<br />

Alternaria complex is well-documented in multiple molecular studies<br />

(Chou & Wu 2002, Pryor & Bigelow 2003, Hong et al. 2005, Pryor<br />

et al. 2009, Lawrence et al. 2012). Therefore, we only included the<br />

type species of both genera in our phylogenies and used them as<br />

outgroup in the Alternaria phylogeny. Pleospora herbarum with its<br />

Stemphylium herbarum (<strong>CBS</strong> 191.86) asexual morph is the type<br />

species of the genus Pleospora. Stemphylium botryosum with its<br />

Pleospora tarda (<strong>CBS</strong> 714.68) sexual morph is the type species of<br />

the genus Stemphylium.<br />

Embellisia annulata proved to be identical to the marine<br />

species Dendryphiella salina, and forms a well-supported clade<br />

in the Pleosporaceae together with D. arenariae. Several DNAbased<br />

studies (dela Cruz 2006, Jones et al. 2008, Zhang et al.<br />

2009) concluded that the marine Dendryphiella species, D.<br />

arenariae and D. salina, belonged to the Pleosporaceae as sister<br />

clade to the Pleospora/Stemphylium complex. Furthermore,<br />

they showed the type species of Dendryphiella, D. vinosa, to<br />

be only distantly related, based on sequences of the ITS, SSU,<br />

LSU (Jones et al. 2008) and ITS, TEF1, RPB2 (dela Cruz 2006)<br />

gene regions. The transfer of the marine Dendryphiella species to<br />

Scolecobasidium (Ellis 1976), was also disputed. Scolecobasidium<br />

does not belong to the Pleosporales based on ITS, TEF1, and<br />

RPB2 sequences (dela Cruz 2006) and the morphology of the two<br />

Dendryphiella species does not fit the generic circumscription of<br />

Scolecobasidium (dela Cruz 2006, Jones et al. 2008). Ellis (1976)<br />

described denticles on the conidiogenous cells when the conidia<br />

become detached. However other observers describe a marginal<br />

basal frill on the conidia after detachment, leaving a scar on the<br />

conidiophore. We propose to place the two species in the new<br />

genus Paradendryphiella as C. arenariae and C. salina. The need<br />

for a new genus to accommodate the two species was already<br />

suggested by Jones et al. (2008).<br />

A recent study on Diademaceae, a family which is characterised<br />

by a flat circular operculum and bitunicate asci (Shoemaker<br />

& Babcock 1992), excluded the sexual genera Comoclathris<br />

and Clathrospora, and (provisionally) placed them in the<br />

Pleosporaceae with alternaria-like asexual morphs (Zhang et al.<br />

2011). Molecular data of two strains (Dong et al. 1998, Schoch et<br />

al. 2009) placed them within the Pleosporaceae. A confusing factor<br />

is that Dong et al. (1998) use the name Comoclathris baccata in<br />

their paper for strain <strong>CBS</strong> 175.52, but submitted their sequences<br />

under the name Clathrospora diplospora to GenBank. Shoemaker<br />

& Babcock (1992) synonymised Clathrospora diplospora with<br />

Comoclathris baccata, which renders Comoclathris as the correct<br />

generic name. The confusion around these genera is illustrated<br />

by the fact that the <strong>CBS</strong> collection currently harbours six strains<br />

named as Clathrospora species of which four were renamed by<br />

Shoemaker & Babcock in 1992 based on morphological studies,<br />

and three of these four strains were even transferred to the genus<br />

Comoclathris. The type species of Clathrospora, C. elynae is<br />

represented by two strains of which one, <strong>CBS</strong> 196.54, was also<br />

studied morphologically by Shoemaker and Babcock (1992). They<br />

form a well-supported clade, located basal to the Pleosporaceae<br />

210


Alternaria redefined<br />

(Fig. 2), outside the Alternaria complex. The type species of<br />

Comoclathris, Comoclathris lanata, was not available to us, but<br />

the two Comoclathris compressa strains cluster together in a<br />

well-supported clade within the Pleosporaceae, also outside the<br />

Alternaria complex, which we believe to be the correct phylogenetic<br />

placement of the genus. Two other strains, named Comoclathris<br />

magna (<strong>CBS</strong> 174.52) and Clathrospora heterospora (<strong>CBS</strong><br />

175.52) by Shoemaker and Babcock (1992), cluster amidst sect.<br />

Alternata. Culture studies performed by Simmons (1952) showed<br />

the presence of alternaria-like conidia in these cultures and no<br />

(mature) ascospore formation. Presumably the species observed<br />

by Shoemaker and Babcock (1992) on plant material were lost<br />

during cultivation and became replaced by A. alternata speciesgroup<br />

isolates. Both strains will be treated as “Alternaria sp.”<br />

The genus Alternariaster was first described by Simmons<br />

(2007) with Alternariaster helianthi, formerly Alternaria helianthi or<br />

Helminthosporium helianthi, as type and only species. It is distinct<br />

from Alternaria by the lack of a pigmented conspicuous internal,<br />

circumhilar ring in its conidia and conidiophores. Our study showed<br />

that this genus is clearly not part of the Alternaria complex and<br />

belongs to the Leptosphaeriaceae (Fig. 2) (Alves et al. 2013).<br />

In the recently published book “The genera of Hyphomycetes”<br />

(Seifert et al. 2011) three more genera are linked to Alternaria,<br />

namely Pantospora, Briansuttonia and Rhexoprolifer. A recent<br />

study on Pantospora included ITS and LSU sequence data of<br />

the type species Pantospora guazumae, which placed the genus<br />

in Mycosphaerellaceae (Minnis et al. 2011). This refutes the<br />

link with Alternaria. The genus Rhexoprolifer was described in<br />

1996 by Matsushima with R. variabilis as type and only species,<br />

isolated from South Africa. Rhexoprolifer variabilis has rhexolytic<br />

conidial liberation and proliferating conidiophores with both<br />

phragmosporous and dictyosporous conidia. Briansuttonia was<br />

described in 2004 to accommodate Corynespora alternarioides<br />

(Castañeda Ruiz et al. 2004). The distoseptate muriform conidia<br />

of Briansuttonia do resemble Alternaria and Stemphylium, but<br />

the conidiogenous loci and euseptate conidia of Alternaria and<br />

holoblastic conidial ontogeny and euseptate muriform conidia of<br />

Stemphylium were enough for the authors to regard their taxon as<br />

a different genus. Both asexual genera presently lack molecular<br />

data, and we were unable to obtain any living specimens of these<br />

taxa. It would be valuable to include both genera in a future study<br />

to resolve the connection among genera with muriform conidia<br />

and Alternaria.<br />

The description of Alternaria s. str. in the present study is<br />

supported by i) a well-supported phylogenetic node in multiple<br />

analyses, ii) high similarity of clades within Alternaria based on<br />

SSU, LSU and ITS data, and iii) variation in the order of the clades<br />

between the different gene phylogenies, which is in congruence<br />

with low support values at these deeper nodes. We follow the<br />

precedence introduced by Lawrence et al. (2013) to assign the<br />

taxonomic status of sections of Alternaria for the different clades<br />

found, thus allowing us to retain the former generic names but<br />

associated with a different taxonomic status. For end-users, this<br />

also results in a more stable and understandable taxonomy and<br />

nomenclature.<br />

DEDICATION<br />

We would like to dedicate this manuscript to the late Dr E.G. Simmons, who spent<br />

over 50 years of his life researching the systematics of the genus Alternaria. Without<br />

the time EGS spent on characterising the species included in this study, and his<br />

impeccable strain collection, which he placed in <strong>CBS</strong> for preservation and further<br />

study, the present study would not have been possible.<br />

Acknowledgements<br />

Mrs M. Vermaas is thanked for preparing the photoplates, Mrs J. Bloem for assisting<br />

with the molecular work, and Prof. dr B.M. Pryor for sending us the Undifilum<br />

isolate. This research was supported by the Dutch Ministry of Education, Culture<br />

and Science through an endowment of the FES programme “Making the tree of<br />

life work”.<br />

References<br />

Alves JL, Woudenberg JHC, Duarte LL, Crous PW, Barreto RW (2013). Reappraisal<br />

of the genus Alternariaster (<strong>Dothideomycetes</strong>). Persoonia 31: 77–85.<br />

Andersen B, Sørensen JL, Nielsen KF, Gerrits van den Ende AHG, Hoog GS de<br />

(2009). A polyphasic approach to the taxonomy of the Alternaria infectoria<br />

species-group. Fungal Genetics and Biology 46: 642–656.<br />

Baucom DL, Romero M, Belfon R, Creamer R (2012). Two new species of Undifilum,<br />

fungal endophytes of Astragalus (locoweeds) in the United States. Botany 90:<br />

866–875.<br />

Berbee ML, Pirseyedi M, Hubbard S (1999). Cochliobolus phylogenetics and<br />

the origin of known, highly virulent pathogens, inferred from ITS and<br />

glyceraldehyde-3-phosphate dehydrogenase gene sequences. Mycologia 91:<br />

964–977.<br />

Carbone I, Kohn LM (1999). A method for designing primer sets for speciation<br />

studies in filamentous ascomycetes. Mycologia 91: 553–556.<br />

Castañeda Ruiz RF, Heredia GP, Arias RM, Saikawa M, Minter DW, et al. (2004).<br />

Two new hyphomycetes from rainforests of México, and Briansuttonia, a new<br />

genus to accommodate Corynespora alternarioides. Mycotaxon 89: 297–305.<br />

Chou HH, Wu WS (2002). Phylogenetic analysis of internal transcribed spacer<br />

regions of the genus Alternaria, and the significance of filament-beaked<br />

conidia. Mycological Research 106: 164–169.<br />

Crous PW, Gams W, Stalpers JA, Robert V, Stegehuis G (2004). MycoBank: an<br />

online initiative to launch mycology into the 21 st century. Studies in Mycology<br />

50: 19–22.<br />

Crous PW, Verkley GJM, Groenewald JZ, Samson RA (eds) (2009a). Fungal<br />

Biodiversity. <strong>CBS</strong> laboratory Manual Series 1. <strong>CBS</strong>-<strong>KNAW</strong> Fungal Biodiversity<br />

Centre, Utrecht, The Netherlands.<br />

Crous PW, Schoch CL, Hyde KD, Wood AR, Gueidan C, et al. (2009b). Phylogenetic<br />

lineages in the Capnodiales. Studies in Mycology 64: 17–47.<br />

Crous PW, Braun U, Wingfield MJ, Wood AR, Shin HD, et al. (2009c). Phylogeny<br />

and taxonomy of obscure genera of microfungi. Persoonia 22: 139–161.<br />

Cruz TEE dela (2006). Marine Dendryphiella species from different geographical<br />

locations: an integrated, polyphasic approach to its taxonomy and<br />

physioecology. Ph.D. dissertation. Fakültat für Lebenswissenschaften der<br />

Technischen Universität Carolo-Wilhelmina, Braunschweig, Germany.<br />

Dong J, Chen W, Crane JL (1998). Phylogenetic studies of the Leptosphaeriaceae,<br />

Pleosporaceae and some other Loculoascomycetes based on nuclear<br />

ribosomal DNA sequences. Mycological Research 102: 151–156.<br />

Douady CJ, Delsuc F, Boucher Y, Doolittle WF, Douzery EJP (2003). Comparison<br />

of Bayesian and Maximum Likelihood Bootstrap Measures of Phylogenetic<br />

Reliability. Molecular Biology and Evolution 20: 248–254.<br />

Elliott JA (1917). Taxonomic characters of the genera Alternaria and Macrosporium.<br />

American Journal of Botany 4: 439–476.<br />

Ellis MB (1971). Dematiaceous hyphomycetes. Commonwealth Mycological<br />

Institute, Kew, UK.<br />

Ellis MB (1976). More dematiaceous hyphomycetes. Commonwealth Mycological<br />

Institute, Kew, UK.<br />

Fries EM (1832). Systema mycologicum. vol. 3. E. Moritz, Greifswald, Germany.<br />

Hawksworth DL, Crous PW, Redhead SA, Reynolds DR, Samson RA, et al. (2011).<br />

The Amsterdam Declaration on Fungal Nomenclature. IMA Fungus 2: 105–112<br />

Hong SG, Cramer RA, Lawrence CB, Pryor BM (2005). Alt a 1 allergen homologs<br />

from Alternaria and related taxa: analysis of phylogenetic content and<br />

secondary structure. Fungal Genetics and Biology 42: 119–129.<br />

Hoog GS de, Rubio C (1982). A new dematiaceous fungus from human skin.<br />

Sabouradia 20: 15–20.<br />

Hoog GS de, Uijthof JMJ, Gerrits van den Ende AHG, Figge MJ, Weenink XO<br />

(1997). Comparative rDNA diversity in medically significant fungi. Microbiology<br />

and Culture Collections 13: 39–48.<br />

Hoog GS de, Gerrits van den Ende AHG (1998). Molecular diagnostics of clinical<br />

strains of filamentous Basidiomycetes. Mycoses 41: 183–189.<br />

www.studiesinmycology.org<br />

211


Woudenberg et al.<br />

Hoog GS de, Horré R (2002). Molecular taxonomy of the Alternaria and Ulocladium<br />

species from humans and their identification in the routine laboratory. Mycoses<br />

45: 259–276.<br />

Huelsenbeck JP, Ronquist F (2001). MRBAYES: Bayesian inference of phylogenetic<br />

trees. Bioinformatics 17: 754–755.<br />

Inderbitzin P, Shoemaker RA, O’Neill NR, Turgeon BG, Berbee ML (2006).<br />

Systematics and mating systems of two fungal pathogens of opium poppy: the<br />

heterothallic Crivellia papaveracea with a Brachycladium penicillatum asexual<br />

state and a homothallic species with a Brachycladium papaveris asexual state.<br />

Canadian Journal of Botany 84: 1304–1326.<br />

James LF, Panter KE (1989). Locoweed poisoning in livestock. In: Swaisonine and<br />

related Glycosidase inhibitors (James LF, Elbein AD, Molyneux RJ, Warren CD,<br />

eds). Iowa State University Press, Ames, Iowa, USA: 23–38.<br />

Joly P (1964). Le genre Alternaria. Encyclopédie mycologique XXXIII, P. Lechevalier,<br />

Paris, France.<br />

Jones EBG, Klaysuban A, Pang K-L (2008). Ribosomal DNA phylogeny of marine<br />

anamorphic fungi: Cumulospora varia, Dendryphiella species and Orbimyces<br />

spectabilis. The Raffles Bulletin of Zoology Supplement 19: 11–18.<br />

Keissler K von (1912). Zur kenntnis der pilzflora krains. Beihefte zum Botanischen<br />

Zentralblatt 29: 395–440.<br />

Lawrence DP, Park MS, Pryor BM (2012). Nimbya and Embellisia revisited, with<br />

nov. comb for Alternaria celosiae and A. perpunctulata. Mycological Progress<br />

11: 799–815.<br />

Lawrence DP, Gannibal PB, Peever TL, Pryor BM (2013). The sections of Alternaria:<br />

Formalizing species-groups concepts. Mycologia 105: 530–546.<br />

Liu YJ, Whelen S, Hall BD (1999). Phylogenetic relationships among ascomycetes:<br />

evidence from an RNA polymerse II subunit. Molecular Biology and Evolution<br />

16: 1799–1808.<br />

Matsushima T (1996). Matsushima Mycological Memoirs No. 9. Matsushima Fungus<br />

Collection, Kobe (published by the author).<br />

Minnis AM, Kennedy AH, Grenier DB, Rehner SA, Bischoff JF (2011). Asperisporium<br />

and Pantospora (Mycosphaerellaceae): epitypifications and phylogenetic<br />

placement. Persoonia 27: 1–8.<br />

Nees von Esenbeck CG (1816). Das system der pilze und schwämme. Wurzburg,<br />

Germany.<br />

Nirenberg HI (1976). Untersuchungen über die morphologische und biologische<br />

Differenzierung in der Fusarium-Section Liseola. Mitteilungen aus der<br />

Biologischen Bundesanstalt für Land- und Forstwirtschaft Berlin-Dahlem 169:<br />

1–117.<br />

Norvell LL (2011). Fungal nomenclature. 1. Melbourne approves a new code.<br />

Mycotaxon 116: 481–490.<br />

O’Donnell K, Kistler HC, Cigelnik E, Ploetz RC (1998). Multiple evolutionary origins<br />

of the fungus causing Panama disease of banana: Concordant evidence from<br />

nuclear and mitochondrial gene genealogies. Proceedings of the National<br />

Academy of Sciences of the United States of America 95: 2044–2049.<br />

Page RDM (1996). TreeView: an application to display phylogenetic trees on<br />

personal computers. Computer Applications in the Biosciences 12: 357–358.<br />

Preuss CGT (1851). Übersicht untersuchter pilze, besonders aus der Umgegend<br />

von Hoyerswerda. Linnaea 24: 99–153.<br />

Pryor BM, Gilbertson RL (2000). Molecular phylogenetic relationships amongst<br />

Alternaria species and related fungi based upon analysis of nuclear ITS and mt<br />

SSU rDNA sequences. Mycological Research 104: 1312–1321.<br />

Pryor BM, Bigelow DM (2003). Molecular characterization of Embellisia and Nimbya<br />

species and their relationship to Alternaria, Ulocladium and Stemphylium.<br />

Mycologia 95: 1141–1154.<br />

Pryor BM, Creamer R, Shoemaker RA, McLain-Romero J, Hambleton S (2009).<br />

Undifilum, a new genus for endophytic Embellisia oxytropis and parasitic<br />

Helminthosporium bornmuelleri on legumes. Botany 87: 178–194.<br />

Rayner RW (1970). A Mycological Colour Chart. Commonwealth Mycological<br />

Institute, Kew, UK.<br />

Ronquist F, Huelsenbeck JP (2003). MrBayes 3: Bayesian phylogenetic inference<br />

under mixed models. Bioinformatics 19: 1572–1574.<br />

Runa F, Park M, Pryor B (2009). Ulocladium systematics revisited: phylogeny and<br />

taxonomic status. Mycological Progress 8: 35–47.<br />

Saccardo PA (1886). Sylloge Fungorum Omnium hucusque cognitorum, Volume 4.<br />

Padua, Italy.<br />

Schoch CL, Crous PW, Groenewald JZ, Boehm EWA, Burgess TI, et al. (2009). A<br />

class-wide phylogenetic assessment of <strong>Dothideomycetes</strong>. Studies in Mycology<br />

64: 1–15.<br />

Seifert K, Morgan-Jones G, Gams W, Kendrick B (2011). The genera of<br />

Hyphomycetes. <strong>CBS</strong> Biodiversity Series 9. <strong>CBS</strong> Fungal Biodiversity Centre,<br />

Utrecht, The Netherlands.<br />

Shoemaker RA, Babcock CE (1992). Applanodictyosporous Pleosporales:<br />

Clathrospora, Comoclathris, Graphyllium, Macrospora, and Platysporoides.<br />

Canadian Journal of Botany 70: 1617–1658.<br />

Simmons EG (1952). Culture studies in the genera Pleospora, Clathrospora, and<br />

Leptosphaeria. Mycologia 44: 330–365.<br />

Simmons EG (1967). Typification of Alternaria, Stemphylium, and Ulocladium.<br />

Mycologia 59: 67–92.<br />

Simmons EG (1971). Helminthosporium allii as type of a new genus. Mycologia<br />

63: 380–386.<br />

Simmons EG (1983). An aggregation of Embellisia species. Mycotaxon 17: 216–<br />

241.<br />

Simmons EG (1986). Alternaria themes and variations (22–26). Pleospora/<br />

Stemphylium and Lewia / Alternaria. Mycotaxon 25: 287–308.<br />

Simmons EG (1989). Macrospora Fuckel (Pleosporales) and related anamorphs.<br />

Sydowia 41: 314–329.<br />

Simmons EG (1990). Embellisia and related teleomorphs. Mycotaxon 38: 251–265.<br />

Simmons EG (2002). Alternaria themes and variations (287–304). Species on<br />

Caryophyllaceae. Mycotaxon 82: 1–40.<br />

Simmons EG (2007). Alternaria. An identification manual. <strong>CBS</strong> Biodiversity Series 6.<br />

<strong>CBS</strong> Fungal Biodiversity Centre, Utrecht, The Netherlands.<br />

Stamatakis A, Alachiotis N (2010). Time and memory efficient likelihood-based tree<br />

searches on phylogenomic alignments with missing data. Bioinformatics 26:<br />

i132–i139.<br />

Sterflinger K, Hoog GS de, Haase G (1999). Phylogeny and ecology of meristematic<br />

ascomycetes. Studies in Mycology 43: 5–22.<br />

Sung G-H, Sung J-M, Hywel-Jones NL, Spatafora JW (2007). A multi-gene<br />

phylogeny of Clavicipitaceae (Ascomycota, Fungi): Identification of localized<br />

incongruence using a combinational bootstrap approach. Molecular<br />

Phylogenetics and Evolution 44: 1204–1223.<br />

Svobodová Y (1966). Chmelia slovaca gen. nov., a dematiaceous fungus,<br />

pathogenic for man and animals. Biológia, Bratislava 21: 81–88.<br />

Togashi K (1926). On a new species of Alternaria causing a leafspot disease of<br />

Gomphrena globosa L. Bulletin of Imperial College of Agriculture and Forestry<br />

(Morioka) 9: 1–16.<br />

Toth B, Csosz M, Szabo-Hever A, Simmons EG, Samson RA, Varga J (2011).<br />

Alternaria hungarica sp. nov., a minor foliar pathogen of wheat in Hungary.<br />

Mycologia 103: 94–100.<br />

Vilgalys R, Hester M (1990). Rapid genetic identification and mapping of<br />

enzymatically amplified ribosomal DNA from several Cryptococcus species.<br />

Journal of Bacteriology 172: 4238–4246.<br />

Xue F, Zhang XG (2007). Ulocladium capsicuma, a new species identified by<br />

morphological and molecular phylogenetic data. Sydowia 59: 161–178.<br />

Wallroth CFW (1833). Flora Cryptogamica Germaniae Sectio 2. J.L. Schrag,<br />

Nürnberg, Germany.<br />

Wang Y, Pei Y-F, O’Neill NR, Zhang X-G (2010). Ulocladium cantlous sp. nov.<br />

isolated from northwestern China: its morphology and molecular phylogenetic<br />

position. Mycologia 102: 374–383.<br />

Wang Y, Geng Y, Ma J, Wang Q, Zhang X-G (2011). Sinomyces: a new genus of<br />

anamorphic Pleosporaceae. Fungal Biology 115: 188–195.<br />

White TJ, Bruns T, Lee S, Taylor J (1990). Amplification and direct sequencing of<br />

fungal ribosomal RNA genes for phylogenetics. In: PCR protocols: a guide to<br />

methods and applications (Innis MA, Gelfand DH, Sninsky JJ, White TJ, eds).<br />

Academic Press, San Diego, California, USA: 315–322.<br />

Wiltshire SP (1933). The foundation species of Alternaria and Macrosporium.<br />

Transactions of the British Mycological Society 18: 135–160.<br />

Wiltshire SP (1938). The original and modern conceptions of Stemphylium.<br />

Transactions of the British Mycological Society 21: 211–239.<br />

Zhang Y, Schoch CL, Fournier J, Crous PW, Gruyter J de, et al. (2009). Multi-locus<br />

phylogeny of Pleosporales: a taxonomic, ecological and evolutionary reevaluation.<br />

Studies in Mycology 64: 85–102.<br />

Zhang YM, Koko TW, Hyde KD (2011). Towards a monograph of <strong>Dothideomycetes</strong>:<br />

Studies on Diademaceae. Cryptogamie, Mycologie 32: 115–126.<br />

212


Studies in Mycology 75: 213–305.<br />

A new approach to species delimitation in Septoria<br />

G.J.M. Verkley 1* , W. Quaedvlieg 1,2 , H.-D. Shin 3 , and P.W. Crous 1,2,4<br />

1<br />

<strong>CBS</strong>-<strong>KNAW</strong> Fungal Biodiversity Centre, Upssalalaan 8, 3584 CT, Utrecht, the Netherlands; 2 Microbiology, Department of Biology, Utrecht University, Padualaan 8, 3584 CH<br />

Utrecht, the Netherlands; 3 Division of Environmental Science and Ecological Engineering, Korea University, Seoul 136-701, Korea; 4 Wageningen University and Research<br />

Centre (WUR), Laboratory of Phytopathology, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands<br />

*Correspondence: G.J.M. Verkley, g.verkleij@cbs.knaw.nl<br />

Abstract: Septoria is a large genus of asexual morphs of Ascomycota causing leaf spot diseases of many cultivated and wild plants. Host specificity has long been a decisive<br />

criterium in species delimitation in Septoria, mainly because of the paucity of useful morphological characters and the high level of variation therein. This study aimed at<br />

improving the species delimitation of Septoria by adopting a polyphasic approach, including multilocus DNA sequencing and morphological analyses on the natural substrate<br />

and in culture. To this end 365 cultures preserved in <strong>CBS</strong>, Utrecht, The Netherlands, among which many new isolates obtained from fresh field specimens were sequenced.<br />

Herbarium material including many types was also studied. Full descriptions of the morphology in planta and in vitro are provided for 57 species. DNA sequences were<br />

generated for seven loci, viz. nuclear ITS and (partial) LSU ribosomal RNA genes, RPB2, actin, calmodulin, Btub, and EF. The robust phylogeny inferred showed that the<br />

septoria-like fungi are distributed over three main clades, establishing the genera Septoria s. str., Sphaerulina, and Caryophylloseptoria gen. nov. Nine new combinations<br />

and one species, Sphaerulina tirolensis sp. nov. were proposed. It is demonstrated that some species have wider host ranges than expected, including hosts from more than<br />

one family. Septoria protearum, previously only associated with Proteaceae was found to be also associated with host plants from six additional families of phanerogams and<br />

cryptogams. To our knowledge this is the first study to provide DNA-based evidence that multiple family-associations occur for a single species in Septoria. The distribution of<br />

host families over the phylogenetic tree showed a highly dispersed pattern for 10 host plant families, providing new insight into the evolution of these fungi. It is concluded that<br />

trans-family host jumping is a major force driving the evolution of Septoria and Sphaerulina.<br />

Key words: Evolution, host jumping, host specificity, Multilocus Sequence Typing (MLST), Mycosphaerella, Mycosphaerellaceae, new genus, new species, Pleosporales,<br />

Phloeospora, Septoria, Sphaerulina, taxonomy, systematics..<br />

Taxonomic novelties: New genus – Caryophylloseptoria Verkley, Quaedvlieg & Crous; New species – Sphaerulina tirolensis Verkley, Quaedvlieg & Crous; New combinations<br />

– Caryophylloseptoria lychnidis (Desm.) Verkley, Quaedvlieg & Crous, Caryophylloseptoria silenes (Westend.) Verkley, Quaedvlieg & Crous, Caryophylloseptoria spergulae<br />

(Westend.) Verkley, Quaedvlieg & Crous, Sphaerulina aceris (Lib.) Verkley, Quaedvlieg & Crous, Sphaerulina cornicola (DC. : Fr.) Verkley, Quaedvlieg & Crous, Sphaerulina<br />

gei (Roberge ex Desm.) Verkley, Quaedvlieg & Crous, Sphaerulina hyperici (Roberge ex Desm.) Verkley, Quaedvlieg & Crous, Sphaerulina frondicola (Fr.) Verkley, Quaedvlieg<br />

& Crous, Sphaerulina socia (Pass.) Quaedvlieg, Verkley & Crous; Epitypifications (basionyms) – Ascochyta lysimachiae Lib., Septoria astragali Roberge ex Desm., Septoria<br />

cerastii Roberge ex Desm., Septoria clematidis Roberge ex Desm., Septoria cruciatae Roberge ex Desm., Septoria spergulae Westend., Septoria epilobii Westend., Septoria<br />

galeopsidis Westend., Septoria gei Roberge ex Desm., Septoria hyperici Roberge ex Desm., Septoria rubi Westend., Septoria senecionis Westend., Septoria urticae Roberge<br />

ex Desm.<br />

doi:10.3114/sim0018. Hard copy: June 2013.<br />

Studies in Mycology<br />

INTRODUCTION<br />

Fungi classified in the genus Septoria Sacc. are asexual morphs<br />

of Ascomycota causing leaf spot diseases on many cultivated and<br />

wild plants. Some 3000 Septoria names have been described in<br />

literature (Verkley et al. 2004a, b). Sexual morphs are unknown<br />

for most taxa, but those reported were mostly classified in<br />

Mycosphaerella and Sphaerulina (Von Arx 1983, Sutton &<br />

Hennebert 1994, Crous et al. 2000, Verkley & Priest 2000, Crous et<br />

al. 2001, Aptroot 2006). Several overviews of the taxonomic work<br />

done on these fungi have been provided in the literature (Shin &<br />

Sameva 2004, Priest 2006, Quaedvlieg et al. 2013). Priest (2006)<br />

discussed the complex nomenclatural history of Septoria. The type<br />

species of Septoria, S. cytisi, is a fungus occurring on the woody<br />

legume Cytisus laburnum (= Laburnum anagyroides) and several<br />

other, mostly herbaceous Fabaceae (Farr 1992, Muthumary 1999).<br />

The phylogenetic position of this species for which no cultures<br />

are available has for long been uncertain. However, using wellidentified<br />

herbarium material, Quaedvlieg et al. (2011) were able<br />

Copyright <strong>CBS</strong>-<strong>KNAW</strong> Fungal Biodiversity Centre, P.O. Box 85167, 3508 AD Utrecht, The Netherlands.<br />

to extract DNA and successfully amplify and sequence nuclear<br />

ribosomal RNA genes to determine its position in a comprehensive<br />

phylogeny inferred for Mycosphaerellaceae.<br />

Most taxonomists adopted a generic concept of Septoria that<br />

included fungi forming pycnidial conidiomata with holoblastic,<br />

hyaline, smooth-walled conidiogenous cells with sympodial and/or<br />

percurrent proliferation and hyaline, smooth, filiform to cylindrical<br />

multi-septate conidia (Sutton 1980, Constantinescu 1984, Sutton &<br />

Pascoe 1987, 1989, Farr 1991, 1992). Similar fungi forming acervular<br />

conidiomata were classified in Phloeospora, with Phloeospora ulmi<br />

as the type species, yet some researchers adopted a broader<br />

concept to include Phloeospora in Septoria (Jørstad 1965, Von Arx<br />

1983, Andrianova 1987, Braun 1995). Recent DNA-sequencing<br />

studies have shown that the morphological characters that were<br />

used to delimit coelomycete genera in the past, in particular those<br />

pertaining to conidiomatal structure and conidiogenesis, did not<br />

correlate well with the sequence-inferred phylogenies (Crous et al.<br />

2001, Verkley et al. 2004a, b). Quaedvlieg et al. (2013) present in<br />

their broad-scope study the results of an in-depth morphological<br />

You are free to share - to copy, distribute and transmit the work, under the following conditions:<br />

Attribution:<br />

You must attribute the work in the manner specified by the author or licensor (but not in any way that suggests that they endorse you or your use of the work).<br />

Non-commercial: You may not use this work for commercial purposes.<br />

No derivative works: You may not alter, transform, or build upon this work.<br />

For any reuse or distribution, you must make clear to others the license terms of this work, which can be found at http://creativecommons.org/licenses/by-nc-nd/3.0/legalcode. Any of the above conditions can be waived if you get<br />

permission from the copyright holder. Nothing in this license impairs or restricts the author’s moral rights.<br />

213


Verkley et al.<br />

and multi-gene sequence analyses of the septoria-like genera<br />

based on numerous isolates (including S. cytisi). In their study, they<br />

resolve the affinities and settle the nomenclature of all important<br />

septoria-like genera in the Dothideales and Pleosporales.<br />

Host specificity has long been a decisive criterium in species<br />

delimitation in Septoria, mainly because of the paucity of useful<br />

morphological characters and the high level of variation therein.<br />

Traditionally, species of Septoria that were morphologically very<br />

similar but found on plants of different host families, were regarded<br />

as distinct taxa. Material from the same genus or from closely related<br />

host genera from the same plant family that could be distinguished<br />

by features such as conidial length and/or width and septation<br />

were usually also considered to belong to separate species.<br />

Most taxonomists revising Septoria lacked facilities to thoroughly<br />

investigate host ranges. A number of economically important<br />

Septoria species and species complexes have been subjected to<br />

infection experiments on various hosts, viz. the pathogens of Apium<br />

(Cochran 1932, Sheridan 1968) and cultivated Chrysanthemum<br />

(Waddell & Weber 1963, Punithalingam & Wheeler 1965). The<br />

results of these studies largely seemed to confirm the general belief<br />

that Septoria species have host ranges that are limited to a single<br />

genus of plants and in relatively few cases, also include a few closely<br />

related genera from the same plant family (Priest 2006). Molecular<br />

phylogenetic studies on Septoria species infecting Asteraceae<br />

(Verkley & Starink-Willemse 2004) and woody perennials (Feau et<br />

al. 2006) showed that species that are capable of infecting hosts<br />

of the same plant family do not (always) cluster in monophyletic<br />

groups, which is indicative of disjunct evolutionary patterns of these<br />

pathogens and their hosts. To explain these patterns, it has been<br />

postulated that “host jumping” occurs from typical (susceptible)<br />

hosts to “non-host” plants through asymptomatic tissue infection<br />

and subsequent exploration of new susceptible hosts. Examples<br />

of this were found in certain Mycosphaerella species and their<br />

Acacia hosts (Crous et al. 2004b, Crous & Groenewald 2005), but<br />

the mechanisms driving host jumping are not yet understood. With<br />

our study in which we investigate the phylogenetic relationships of<br />

species from a wider spectrum of host families we hope to provide<br />

more insight into the evolution of these fungal pathogens and their<br />

host plants and to contribute to understanding such mechanisms.<br />

Early molecular phylogenetic studies have confirmed the<br />

relationships of septoria-like fungi with sexual morphs within<br />

Mycosphaerellaceae, and that the septoria-like fungi are of poly- and<br />

paraphyletic origins (Stewart et al. 1999, Crous et al. 2001, Goodwin<br />

et al. 2001, Verkley et al. 2004a, b, Verkley & Starink-Willemse, 2004).<br />

The ITS and/or LSU nrDNA sequence data used in those studies<br />

did not provide sufficient phylogenetic information to discriminate<br />

closely related species nor resolve most of the internal nodes in the<br />

trees. Verkley et al. (2004a, b) already concluded that groups within<br />

the then known “Mycosphaerella clade” showed no correlation to<br />

conidiomatal structure or conidiogenesis, confirming the conclusions<br />

drawn by Crous et al. (2001). Feau et al. (2006) sequenced the ITS,<br />

partial β-tubulin gene, and a proportion of the mitochondrial small<br />

subunit ribosomal gene (mtSSU) to infer a phylogeny for Septoria<br />

associated with diseases of woody perennials (many of which<br />

are here transferred to Sphaerulina). Although their inferred trees<br />

provided improved resolution, it was clear that even more DNA loci<br />

would be needed to fully resolve closely related species and species<br />

complexes within Septoria s. str.<br />

The primary goal of our work was to improve the taxonomy of<br />

Septoria by adopting a polyphasic approach to taxon delimitation.<br />

To this end we studied cultures preserved in <strong>CBS</strong>, Utrecht, the<br />

Netherlands and material freshly collected in the field, did a full<br />

characterisation of the morphology in planta and in vitro, and<br />

sequenced seven DNA loci, viz. nuclear ITS and (partial) LSU<br />

ribosomal RNA genes, and RPB2, actin (Act), calmodulin (Cal),<br />

β-tubulin (Btub), and translation elongation factor 1-alpha (EF)<br />

genes. The obtained datasets of the seven loci were also evaluated<br />

for PCR amplification success rates and barcode gaps in order to<br />

determine which individual, or combination of loci, would be best<br />

suited for fast and reliable species resolution and identification.<br />

Most students of Septoria have focused on material on the natural<br />

substrate and did not isolate and deposit cultures in public culture<br />

collections. Of all material we were able to successfully isolate,<br />

cultures were deposited in <strong>CBS</strong>-<strong>KNAW</strong> Fungal Biodiversity Centre<br />

(<strong>CBS</strong>) in Utrecht, The Netherlands. To assess the nomenclature<br />

this material was compared to type material as far as it could be<br />

obtained for study. Where useful new material and associated pure<br />

cultures were designated as epitypes, to facilitate future work. This<br />

study supplements the work of Quaedvlieg et al. (2013), who attain<br />

a broader perspective and address the complicated taxonomy and<br />

polyphyly of septoria-like fungi, proposing several new genera for<br />

taxa that are distantly related to Septoria cytisi and allied species.<br />

MATERIAL AND METHODS<br />

Collecting, isolating and morphological comparison<br />

Infected plant material was collected in the field and taken<br />

to the laboratory. Leaves were examined directly under a<br />

stereomicroscope to observe sporulating structures, or when<br />

insufficiently developed, incubated in a Petri-dish with wetted filter<br />

paper for 1–2 d to enhance the development of fruiting bodies.<br />

Cirrhi of spores were removed and mounted in tapwater for the<br />

microscopic examination of conidia. Isolates were obtained by<br />

either transferring cirrhi directly onto 3 % malt extract agar (MEA,<br />

Oxoid) plates with 50 ppm penicillin and streptomycin, and streaked<br />

over the agar surface with an inoculation loop and some sterile<br />

water. Sometimes conidia in water from slide preparations were<br />

taken with a loop and streaked directly onto a plate. After 1–3 d<br />

at room temperature, germinated conidia were transferred on to<br />

fresh media without antibiotics. New isolates were deposited in the<br />

<strong>CBS</strong>. Cultures taken from the <strong>CBS</strong> Collection were activated from<br />

lyophilised or cryopreserved material and inoculated on oatmeal<br />

(OA) and MEA plates. A complete overview of the material used in<br />

this study is presented in Table 1.<br />

For the morphological study in planta hand sections were<br />

made from infected leaves, mounted in water and examined<br />

under an Olympus BX 50 microscope equipped with bright<br />

field and differential interference contrast (DIC) objectives, and<br />

photographed using a mounted Nikon Digital Sight DS-5M camera.<br />

Conidial masses were mounted in water and 30 spores measured.<br />

For culture studies, 7–14-d-old cultures were transferred to fresh<br />

OA, MEA and cherry decoction agar (CHA) plates and placed in an<br />

incubator under n-UV light (12 h light, 12 h dark) at 15 ºC to promote<br />

sporulation (if otherwise, this is indicated in the descriptions). Media<br />

were prepared according to Crous et al. (2009). Colony colours<br />

were described according to Rayner (1970). Sporulating structures<br />

obtained from cultures were used for the morphological description<br />

in vitro. Photographs of culture plates were taken after 2–3 wk<br />

on a photo stand with daylight tubes with a Pentax K110 D digital<br />

camera. Cultures were incubated up to 40 d to observe sporulation<br />

and other features.<br />

214


A new approach to species delimitation in Septoria<br />

DNA isolation, PCR and sequencing<br />

Genomic DNA was extracted from fungal mycelium growing on<br />

MEA, using the UltraClean® Microbial DNA Isolation Kit (Mo<br />

Bio Laboratories, Inc., Solana Beach, CA, USA). Strains (Table<br />

1) were sequenced for seven loci: Actin (Act), calmodulin (Cal),<br />

β-tubulin (Btub), internal transcribed spacer (ITS), Translation<br />

elongation factor 1-alpha (EF) 28S nrDNA (LSU) and RNA<br />

polymerase II second largest subunit (RPB2); the primer sets<br />

listed in Table 2 were used. The PCR amplifications were<br />

performed in a total volume of 12.5 µL solution containing<br />

10–20 ng of template DNA, 1 × PCR buffer, 0.7 µL DMSO<br />

(99.9 %), 2 mM MgCl 2<br />

, 0.4 µM of each primer, 25 µM of each<br />

dNTP and 1.0 U Taq DNA polymerase (GoTaq, Promega).<br />

PCR amplification conditions were set as follows: an initial<br />

denaturation temperature of 96 °C for 2 min, followed by 40<br />

cycles at the denaturation temperature of 96 °C for 45 s, primer<br />

annealing at the temperature stipulated in Table 2, primer<br />

extension at 72 °C for 90 s and a final extension step at 72 °C for<br />

2 min. The resulting fragments were sequenced using the PCR<br />

primers together with a BigDye Terminator Cycle Sequencing<br />

Kit v. 3.1 (Applied Biosystems, Foster City, CA). Sequencing<br />

reactions were performed as described by Cheewangkoon et al.<br />

(2008). All novel sequences were deposited in NCBI’s GenBank<br />

database and alignments and phylogenetic trees in TreeBASE.<br />

Sequence alignement and phylogenetic analyses<br />

A basic alignment of the obtained sequence data was first done<br />

using MAFFT v. 7 (http://mafft.cbrc.jp/alignment /server/index. html;<br />

Katoh et al. 2002) and if necessary, manually improved in BioEdit<br />

v. 7.0.5.2 (Hall 1999). To check the congruency of the multigene<br />

dataset, a 70 % neighbour-joining (NJ) reciprocal bootstrap<br />

method with maximum likelihood distance was performed (Mason-<br />

Gamer & Kellogg 1996, Lombard et al. 2010). Bayesian analyses<br />

(critical value for the topological convergence diagnostic set to<br />

0.01) were performed on the concatenated loci using MrBayes v.<br />

3.2.1 (Huelsenbeck & Ronquist 2001) as described by Crous et<br />

al. (2006a) using nucleotide substitution models that were selected<br />

using MrModeltest (Table 3) (Nylander 2004).<br />

Kimura-2-parameter values<br />

The inter-and intraspecific distances for each individual dataset<br />

were calculated using MEGA v. 4.0 (Tamura et al. 2007) with the<br />

Kimura-2-parameter (pairwise deletion) model.<br />

RESULTS<br />

Identification of the best DNA barcode loci for<br />

Septoria species<br />

Amplification success<br />

The PCR amplification success rates were very high for all seven<br />

loci, varying from 97 % for RPB2 to 100 % for ITS and LSU (Table<br />

3). Good amplification reactions of RPB2 required a 2–3 times<br />

higher DNA input then the other loci and this locus is therefore less<br />

favorable for easy identification. The other six loci amplified without<br />

problems.<br />

Kimura-2-parameter values<br />

The Kimura-2-parameter (K2P) distribution graphs are depicted in<br />

Fig. 1. They visualise the inter- and intraspecific distances per locus<br />

(barcoding gap). A good barcoding locus should have no overlap<br />

between the inter- and intraspecific K2P distances and should have<br />

an average interspecific distance that is at least 10 times as high as<br />

the average intraspecific distance of that locus (Hebert et al. 2003).<br />

The seven loci show a rather constant degree of intraspecific variation<br />

of 0.01 in their K2P distribution graphs, however their interspecific<br />

variations shows considerable differences. The average interspecific<br />

variation in both ITS and LSU datasets is very low (0.015) compared<br />

to their intraspecific variation (0.01), leading to a very low inter- to<br />

intraspecific variation ratios of 1.5 : 1 for these two loci (Fig. 1).<br />

These low ratios are far below the required 10 : 1 ratio, indicating a<br />

general lack of natural variation within these two loci, making them illsuited<br />

for effective identification of the individual species used in this<br />

dataset. These low K2P results for ITS and LSU are consistent with<br />

Frequency<br />

Frequency<br />

Frequency<br />

1200<br />

1000<br />

800<br />

600<br />

400<br />

200<br />

0<br />

1400<br />

1200<br />

1000<br />

800<br />

600<br />

400<br />

200<br />

0<br />

7000<br />

6000<br />

5000<br />

4000<br />

3000<br />

2000<br />

1000<br />

0<br />

Distance<br />

Distance<br />

Distance<br />

Inter RPB2<br />

Inter Tub<br />

Inter EF<br />

Intra RPB2<br />

Intra Tub<br />

Intra EF<br />

Inter Act<br />

Inter Cal<br />

Intra Act<br />

Intra Cal<br />

Inter ITS<br />

Inter LSU<br />

Intra ITS<br />

Intra LSU<br />

Fig. 1. Frequency distributions of the Kimura-2-parameter distances (barcoding<br />

gaps) for the seven PCR loci.<br />

www.studiesinmycology.org<br />

215


Verkley et al.<br />

Table 1. Isolates used during this study.<br />

Species Old name Isolate no 1 Host Location Collector GenBank Accession no 2<br />

Caryophylloseptoria<br />

lychnidis<br />

EF Tub RPB2 LSU ITS Act Cal<br />

Septoria lychnidis <strong>CBS</strong> 109098 Silene pratensis Austria G.J.M. Verkley KF253234 KF252768 KF252292 KF251790 KF251286 KF253595 KF253949<br />

Septoria lychnidis <strong>CBS</strong> 109099 Silene pratensis Austria G.J.M. Verkley KF253235 KF252769 KF252293 KF251791 KF251287 KF253596 KF253950<br />

Septoria lychnidis <strong>CBS</strong> 109101 Silene pratensis Austria G.J.M. Verkley KF253236 KF252770 KF252294 KF251792 KF251288 KF253597 KF253951<br />

Septoria lychnidis <strong>CBS</strong> 109102 Silene pratensis Austria G.J.M. Verkley KF253237 KF252771 KF252295 KF251793 KF251289 KF253598 KF253952<br />

Car. pseudolychnidis Septoria lychnidis <strong>CBS</strong> 128614 Lychnis cognata South Korea H.D. Shin KF253238 KF252772 KF252296 KF251794 KF251290 KF253599 KF253953<br />

Septoria lychnidis <strong>CBS</strong> 128630 Lychnis cognata South Korea H.D. Shin KF253239 KF252773 KF252297 KF251795 KF251291 KF253600 KF253954<br />

Car. silenes Septoria silenes <strong>CBS</strong> 109100 Silene nutans Austria G.J.M. Verkley KF253240 KF252774 KF252298 KF251796 KF251292 KF253601 KF253955<br />

Septoria silenes <strong>CBS</strong> 109103 Silene pratensis Austria G.J.M. Verkley KF253241 KF252775 KF252299 KF251797 KF251293 KF253602 KF253956<br />

Car. spergulae Septoria sp. <strong>CBS</strong> 109010 Spergula morisonii Netherlands A. Aptroot KF253242 KF252776 KF252300 KF251798 KF251294 KF253603 KF253957<br />

Septoria dianthi <strong>CBS</strong> 397.52 Dianthus caryophyllus Netherlands Schouten KF253243 KF252777 KF252301 KF251799 KF251295 KF253604 KF253958<br />

Cercospora apii – <strong>CBS</strong> 118712 – Fiji P. Tyler KF253244 KF252778 KF252302 KF251800 KF251296 KF253605 KF253959<br />

Cer. ariminensis – <strong>CBS</strong> 137.56 Hedysarum coronarium Italy M. Ribaldi KF253245 KF252779 KF252303 KF251801 KF251297 KF253606 KF253960<br />

Cer. beticola – <strong>CBS</strong> 124.31 – Romania E.W. Schmidt KF253246 KF252780 KF252304 KF251802 KF251298 KF253607 KF253961<br />

Cercospora sp. – <strong>CBS</strong> 112737 Rhus typhina Canada K.A. Seifert KF253247 KF252781 – KF251803 KF251299 KF253608 KF253962<br />

Cer. zebrina – <strong>CBS</strong> 118790 Trifolium subterraneum Australia M.J. Barbetti KF253248 KF252782 KF252305 KF251804 KF251300 KF253609 KF253963<br />

Cercosporella<br />

– <strong>CBS</strong> 113304 Erigeron annuus South Korea H.D. Shin KF253249 – KF252306 KF251805 KF251301 KF253610 KF253964<br />

virgaureae<br />

Dothistroma pini – <strong>CBS</strong> 121011 Pinus palassiana Ukraine A.C. Usichenko KF253250 – KF252307 KF251806 KF251302 KF253611 KF253965<br />

Dot. septosporum – <strong>CBS</strong> 383.74 Pinus coulteri France M. Morelet KF253251 – KF252308 KF251807 KF251303 KF253612 KF253966<br />

Mycosphaerella<br />

– <strong>CBS</strong> 228.32 Brassica oleracea Denmark C.A. Jörgensen KF253252 KF252783 KF252309 KF251808 KF251304 KF253613 KF253967<br />

brassicicola<br />

– <strong>CBS</strong> 267.53 Brassica oleracea Netherlands F. Quak KF253253 KF252784 KF252310 KF251809 KF251305 KF253614 KF253968<br />

Myc. capsellae – <strong>CBS</strong> 112033 Brassica sp. UK R. Evans KF253254 KF252785 KF252311 KF251810 KF251306 KF253615 KF253969<br />

Mycosphaerella sp. <strong>CBS</strong> 135464; Brassica sp. UK R. Evans – KF252786 KF252312 KF251811 KF251307 KF253616 KF253970<br />

CPC 11677<br />

Passalora depressa – CPC 14915 Angelica gigas South Korea H.D. Shin KF253256 KF252788 KF252314 KF251813 KF251309 – KF253972<br />

Pas. dioscoreae – <strong>CBS</strong> 135460; Dioscorea tokora South Korea H.D. Shin KF253257 KF252789 KF252315 KF251814 KF251310 KF253618 –<br />

CPC 10855<br />

– <strong>CBS</strong> 135463; Dioscorea tenuipes South Korea H.D. Shin KF253258 KF252790 KF252316 KF251815 KF251311 KF253619 –<br />

CPC 11513<br />

Pas. dissiliens – <strong>CBS</strong> 219.77 Vitis vinifera Iraq M.S.A. Al-Momen KF253259 KF252791 KF252317 KF251816 KF251312 KF253620 –<br />

Pas. fusimaculans – CPC 17277 Agrostis sp. Thailand Pheng Pheng KF253260 KF252792 KF252318 KF251817 KF251313 KF253621 KF253973<br />

Pas. janseana – <strong>CBS</strong> 145.37 – – E.C. Tullis KF253261 KF252793 – KF251818 KF251314 KF253622 KF253974<br />

216


A new approach to species delimitation in Septoria<br />

Table 1. (Continued).<br />

Species Old name Isolate no 1 Host Location Collector GenBank Accession no 2<br />

EF Tub RPB2 LSU ITS Act Cal<br />

Passalora sp. – <strong>CBS</strong> 113998 Cajanus cajan South Africa L. van Jaarsveld KF253262 KF252794 KF252319 KF251819 KF251315 KF253623 –<br />

Passalora sp. – <strong>CBS</strong> 113999 Cajanus cajan South Africa L. van Jaarsveld KF253263 KF252795 KF252320 KF251820 KF251316 KF253624 –<br />

Passalora sp. – <strong>CBS</strong> 114275 Cajanus cajan South Africa L. van Jaarsveld KF253264 KF252796 KF252321 KF251821 KF251317 – –<br />

Pseudocercospora – <strong>CBS</strong> 124155 Eucalyptus camaldulensis Madagascar M.J. Wingfield KF253265 – KF252322 KF251822 KF251318 KF253625 –<br />

madagascariensis<br />

Pse. pyracanthae – CPC 10808 Pyracantha angustifolia South Korea H.D. Shin KF253266 – KF252323 KF251823 KF251319 KF253626 –<br />

Pse. pyracanthigena – <strong>CBS</strong> 112032 Pyracantha angustifolia South Korea M.J. Park KF253267 KF252797 KF252324 KF251824 KF251320 KF253627 KF253975<br />

Pse. rhoina – CPC 11464 Rhus chinensis South Korea H.D. Shin KF253268 – KF252325 KF251825 KF251321 – –<br />

Pse. schizolobii – <strong>CBS</strong> 120029 Schizolobium parahybum Ecuador M.J. Wingfield KF253269 KF252798 KF252326 KF251826 KF251322 KF253628 –<br />

– <strong>CBS</strong> 124990 Eucalyptus camaldulensis Thailand W. Himaman KF253270 – KF252327 KF251827 KF251323 KF253629 –<br />

Pse. tereticornis – <strong>CBS</strong> 124996 Eucalyptus nitens Australia A.J. Cargenie KF253271 KF252799 KF252328 KF251828 KF251324 KF253630 KF253976<br />

C.F. Hill KF253272 KF252800 KF252329 KF251829 KF251325 KF253631 KF253977<br />

Pseudocercosporella<br />

capsellae<br />

– <strong>CBS</strong> 118412 Brassica sp. New<br />

Zealand<br />

– <strong>CBS</strong> 127.29 – – K. Togashi KF253273 KF252801 KF252330 KF251830 KF251326 KF253632 KF253978<br />

Pella. magnusiana – <strong>CBS</strong> 114735 Geranium silvaticum Sweden E. Gunnerbeck KF253274 KF252802 – KF251831 KF251327 – KF253979<br />

Pella. pastinacae – <strong>CBS</strong> 114116 Laserpitium latifolium Sweden K. & L. Holm KF253275 KF252803 KF252331 KF251832 KF251328 KF253633 KF253980<br />

Ramularia endophylla – <strong>CBS</strong> 113265 Quercus robur Netherlands G.J.M. Verkley KF253276 – KF252332 KF251833 KF251329 KF253634 KF253981<br />

Ram. eucalypti – <strong>CBS</strong> 120726 Eucalyptus grandiflora Italy W. Gams KF253277 – KF252333 KF251834 KF251330 KF253635 KF253982<br />

Ram. lamii – CPC 11312 Leonurus sibiricus South Korea H.D. Shin KF253278 – KF252334 KF251835 KF251331 KF253636 KF253983<br />

Readeriella mirabilis – <strong>CBS</strong> 125000 Eucalyptus globulus Australia I.W. Smith KF253279 KF252804 KF252335 KF251836 KF251332 KF253637 KF253984<br />

Septoria abei – <strong>CBS</strong> 128598 Hibiscus syriacus South Korea H.D. Shin KF253280 KF252805 KF252336 KF251837 KF251333 KF253638 KF253985<br />

Sep. aegopodina – <strong>CBS</strong> 123740 Aegopodium podagraria Czech G.J.M. Verkley KF253281 KF252806 – KF251838 KF251334 KF253639 KF253986<br />

Republic<br />

– <strong>CBS</strong> 123741 Aegopodium podagraria Czech G.J.M. Verkley KF253282 KF252807 – KF251839 KF251335 KF253640 KF253987<br />

Republic<br />

Sep. agrimoniicola – <strong>CBS</strong> 128585 Agrimonia pilosa South Korea H.D. Shin KF253283 KF252808 KF252337 KF251840 KF251336 KF253641 KF253988<br />

– <strong>CBS</strong> 128602 Agrimonia pilosa South Korea H.D. Shin KF253284 KF252809 KF252338 KF251841 KF251337 – KF253989<br />

Sep. anthrisci – <strong>CBS</strong> 109019 Anthriscus sp. Austria G.J.M. Verkley KF253285 KF252810 KF252339 KF251842 KF251338 KF253642 KF253990<br />

– <strong>CBS</strong> 109020 Anthriscus sp. Austria G.J.M. Verkley KF253286 KF252811 KF252340 KF251843 KF251339 KF253643 KF253991<br />

Sep. anthurii – <strong>CBS</strong> 148.41 Anthurium sp. – P. Kotthoff KF253287 KF252812 KF252341 KF251844 KF251340 KF253644 KF253992<br />

– <strong>CBS</strong> 346.58 Anthurium sp. Germany R. Schneider KF253288 KF252813 KF252342 KF251845 KF251341 KF253645 KF253993<br />

Sep. apiicola – <strong>CBS</strong> 116465 Apium graveolens Netherlands R. Munning KF253289 KF252814 KF252343 KF251846 KF251342 KF253646 KF253994<br />

– <strong>CBS</strong> 389.59 Apium graveolens Italy M. Ribaldi KF253290 KF252815 KF252344 KF251847 KF251343 KF253647 KF253995<br />

– <strong>CBS</strong> 395.52 Apium sp. Netherlands G. van den Ende KF253291 KF252816 KF252345 KF251848 KF251344 KF253648 KF253996<br />

www.studiesinmycology.org<br />

217


Verkley et al.<br />

Table 1. (Continued).<br />

Species Old name Isolate no 1 Host Location Collector GenBank Accession no 2<br />

EF Tub RPB2 LSU ITS Act Cal<br />

– <strong>CBS</strong> 400.54 Apium graveolens Netherlands J.A. von Arx KF253292 KF252817 KF252346 KF251849 KF251345 KF253649 KF253997<br />

Sep. astericola – <strong>CBS</strong> 128587 Aster tataricus South Korea H.D. Shin KF253293 KF252818 KF252347 KF251850 KF251346 KF253650 KF253998<br />

– <strong>CBS</strong> 128593 Aster yomena South Korea H.D. Shin KF253294 KF252819 KF252348 KF251851 KF251347 KF253651 KF253999<br />

Sep. astragali – <strong>CBS</strong> 109117 Astragalus glycyphyllos Austria G.J.M. Verkley KF253296 KF252821 KF252350 KF251853 KF251349 KF253653 KF254001<br />

– <strong>CBS</strong> 123878 Astragalus glycyphyllos Czech G.J.M. Verkley KF253297 KF252822 KF252351 KF251854 KF251350 KF253654 KF254002<br />

Republic<br />

– <strong>CBS</strong> 109116 Astragalus glycyphyllos Austria G.J.M. Verkley KF253298 KF252823 KF252352 KF251855 KF251351 KF253655 KF254003<br />

Sep. atropurpurea – <strong>CBS</strong> 348.58 Aster canus Germany R. Schneider KF253299 KF252824 KF252353 KF251856 KF251352 KF253656 KF254004<br />

Sep. bothriospermi – <strong>CBS</strong> 128592 Bothriospermum tenellum South Korea H.D. Shin KF253300 KF252825 KF252354 KF251857 KF251353 KF253657 KF254005<br />

– <strong>CBS</strong> 128599 Bothriospermum tenellum South Korea H.D. Shin KF253301 KF252826 KF252355 KF251858 KF251354 KF253658 KF254006<br />

Sep. bupleuricola – <strong>CBS</strong> 128601 Bupleurum longiradiatum South Korea H.D. Shin KF253302 KF252827 KF252356 KF251859 KF251355 KF253659 KF254007<br />

– <strong>CBS</strong> 128603 Bupleurum falcatum South Korea H.D. Shin KF253303 KF252828 KF252357 KF251860 KF251356 KF253660 KF254008<br />

Sep. calendulae – <strong>CBS</strong> 349.58 Calendula arvensis Italy R. Schneider KF253304 KF252829 KF252358 KF251861 KF251357 KF253661 KF254009<br />

Sep. callistephi – <strong>CBS</strong> 128590 Callistephus chinensis South Korea H.D. Shin KF253305 KF252830 KF252359 KF251862 KF251358 KF253662 KF254010<br />

– <strong>CBS</strong> 128594 Callistephus chinensis South Korea H.D. Shin KF253306 KF252831 KF252360 KF251863 KF251359 KF253663 KF254011<br />

Sep. campanulae – <strong>CBS</strong> 128589 Campanula takesimana South Korea H.D. Shin KF253307 KF252832 KF252361 KF251864 KF251360 KF253664 KF254012<br />

– <strong>CBS</strong> 128604 Campanula takesimana South Korea H.D. Shin KF253308 KF252833 KF252362 KF251865 KF251361 KF253665 KF254013<br />

Sep. cerastii – <strong>CBS</strong> 102323 Cerastium fontanum Netherlands G.J.M. Verkley KF253309 KF252834 KF252363 KF251866 KF251362 KF253666 KF254014<br />

– <strong>CBS</strong> 128586 Cerastium holosteoides South Korea H.D. Shin KF253310 KF252835 KF252364 KF251867 KF251363 KF253667 KF254015<br />

– <strong>CBS</strong> 128612 Cerastium holosteoides South Korea H.D. Shin KF253311 KF252836 KF252365 KF251868 KF251364 KF253668 KF254016<br />

– <strong>CBS</strong> 128626 Cerastium holosteoides South Korea H.D. Shin KF253312 KF252837 KF252366 KF251869 KF251365 KF253669 KF254017<br />

– CPC 12343 Cerastium holosteoides South Korea H.D. Shin KF253313 KF252838 KF252367 KF251870 KF251366 KF253670 KF254018<br />

Sep. cf. rubi Septoria sp. CPC 12331 Rubus crataegifolius South Korea H.D. Shin KF253317 KF252842 KF252371 KF251874 KF251370 KF253674 KF254022<br />

Septoria rubi <strong>CBS</strong> 128646 Rubus crataegifolius South Korea H.D. Shin KF253314 KF252839 KF252368 KF251871 KF251367 KF253671 KF254019<br />

Septoria rubi <strong>CBS</strong> 128648 Rubus crataegifolius South Korea H.D. Shin KF253315 KF252840 KF252369 KF251872 KF251368 KF253672 KF254020<br />

Septoria rubi <strong>CBS</strong> 128760 Rubus crataegifolius South Korea H.D. Shin KF253316 KF252841 KF252370 KF251873 KF251369 KF253673 KF254021<br />

Sep. cf. sonchi – <strong>CBS</strong> 128757 Sonchus asper South Korea H.D. Shin KF253500 KF253020 KF252546 KF252057 KF251552 KF253855 KF254204<br />

Sep. cf. stachydicola Septoria lycopicola <strong>CBS</strong> 128662 Stachys riederi South Korea H.D. Shin KF253513 KF253034 KF252559 KF252071 KF251566 KF253867 KF254218<br />

Sep. chamaecisti – <strong>CBS</strong> 350.58 Helianthemum hybridum Germany R. Schneider KF253318 KF252843 KF252372 KF251875 KF251371 KF253675 KF254023<br />

Sep. chelidonii – <strong>CBS</strong> 128607 Chelidonium majus South Korea H.D. Shin KF253319 KF252844 KF252373 KF251876 KF251372 KF253676 KF254024<br />

– CPC 12337 Chelidonium majus South Korea H.D. Shin KF253320 KF252845 KF252374 KF251877 KF251373 KF253677 KF254025<br />

Sep. chromolaenae – <strong>CBS</strong> 113373 Chromolaena odorata Cuba S. Neser KF253321 KF252846 KF252375 KF251878 KF251374 KF253678 KF254026<br />

218


A new approach to species delimitation in Septoria<br />

Table 1. (Continued).<br />

Species Old name Isolate no 1 Host Location Collector GenBank Accession no 2<br />

Sep. chrysanthemella – <strong>CBS</strong> 128617 Chrysanthemum<br />

morifolium<br />

EF Tub RPB2 LSU ITS Act Cal<br />

South Korea H.D. Shin KF253322 KF252847 KF252376 KF251879 KF251375 KF253679 KF254027<br />

– <strong>CBS</strong> 128622 Chrysanthemum boreale South Korea H.D. Shin KF253323 KF252848 KF252377 KF251880 KF251376 KF253680 KF254028<br />

– <strong>CBS</strong> 483.63 Chrysanthemum sp. Netherlands H.A. van der Aa KF253324 KF252849 KF252378 KF251881 KF251377 KF253681 KF254029<br />

– <strong>CBS</strong> 128716 – South Africa E. Oh KF253325 KF252850 KF252379 KF251882 KF251378 KF253682 KF254030<br />

– <strong>CBS</strong> 351.58 Chrysanthemum indicum Germany R. Schneider KF253326 KF252851 KF252380 KF251883 KF251379 KF253683 KF254031<br />

– <strong>CBS</strong> 354.73 Chrysanthemum<br />

morifolium<br />

New<br />

Zealand<br />

G.F. Laundon KF253327 KF252852 KF252381 KF251884 KF251380 KF253684 KF254032<br />

Sep. cirsii – <strong>CBS</strong> 128621 Cirsium setidens South Korea H.D. Shin KF253328 KF252853 KF252382 KF251885 KF251381 KF253685 KF254033<br />

Sep. citri (= protearum<br />

complex)<br />

Septoria orchidearum <strong>CBS</strong> 101013 Masdevallia sp. Netherlands W. Veenbaas-Rijks KF253457 KF252978 KF252504 KF252013 KF251508 KF253812 KF254161<br />

Septoria sp. <strong>CBS</strong> 101354 Gevuina avellana New<br />

Zealand<br />

S. Ganev KF253458 KF252979 KF252505 KF252014 KF251509 KF253813 KF254162<br />

Septoria lobeliae <strong>CBS</strong> 113392 Lobelia erinus – S. Wolcon KF253460 KF252981 KF252507 KF252016 KF251511 KF253815 KF254164<br />

Septoria aciculosa <strong>CBS</strong> 177.77 Fragaria sp. New<br />

Zealand<br />

H.J. Boesewinkel KF253463 KF252984 KF252509 KF252019 KF251514 KF253818 KF254167<br />

Septoria citri <strong>CBS</strong> 315.37 – – L.L. Huillier KF253465 – KF252511 KF252021 KF251516 KF253820 KF254169<br />

Septoria gerberae <strong>CBS</strong> 410.61 Gerbera jamesonii Italy W. Gerlach KF253468 KF252988 KF252514 KF252024 KF251519 KF253823 KF254172<br />

Septoria hederae <strong>CBS</strong> 566.88 Hedera helix France H.A. van der Aa KF253470 KF252990 KF252515 KF252026 KF251521 KF253825 KF254174<br />

Sep. citricola – <strong>CBS</strong> 356.36 Citrus sinensis Italy G. Ruggieri KF253329 KF252854 KF252383 KF251886 KF251382 KF253686 KF254034<br />

Sep. clematidis – <strong>CBS</strong> 108983 Clematis vitalba Germany G.J.M. Verkley KF253330 KF252855 KF252384 KF251887 KF251383 KF253687 KF254035<br />

– <strong>CBS</strong> 108984 Clematis vitalba Germany G.J.M. Verkley KF253331 KF252856 KF252385 KF251888 KF251384 KF253688 KF254036<br />

Sep. codonopsidis – <strong>CBS</strong> 128609 Codonopsis lanceolata South Korea H.D. Shin KF253332 KF252857 KF252386 KF251889 KF251385 KF253689 KF254037<br />

– <strong>CBS</strong> 128620 Codonopsis lanceolata South Korea H.D. Shin KF253333 KF252858 KF252387 KF251890 KF251386 KF253690 KF254038<br />

Sep. convolvuli – <strong>CBS</strong> 102325 Calystegia sepium Netherlands G.J.M. Verkley KF253334 KF252859 KF252388 KF251891 KF251387 KF253691 KF254039<br />

– <strong>CBS</strong> 113111 Calystegia sepium New<br />

G.J.M. Verkley KF253335 KF252860 KF252389 KF251892 KF251388 KF253692 KF254040<br />

Zealand<br />

– <strong>CBS</strong> 128627 Calystegia soldanella South Korea H.D. Shin KF253336 KF252861 KF252390 KF251893 KF251389 KF253693 KF254041<br />

Sep. coprosmae – <strong>CBS</strong> 113391 Coprosma robusta New<br />

Zealand<br />

G.J.M. Verkley KF253255 KF252787 KF252313 KF251812 KF251308 KF253617 KF253971<br />

Sep. crepidis – CPC 12539 Crepis japonica South Korea H.D. Shin KF253339 KF252864 KF252393 KF251896 KF251392 KF253696 KF254044<br />

– <strong>CBS</strong> 128608 Youngia japonica South Korea H.D. Shin KF253337 KF252862 KF252391 KF251894 KF251390 KF253694 KF254042<br />

– <strong>CBS</strong> 128619 Youngia japonica South Korea H.D. Shin KF253338 KF252863 KF252392 KF251895 KF251391 KF253695 KF254043<br />

www.studiesinmycology.org<br />

219


Verkley et al.<br />

Table 1. (Continued).<br />

Species Old name Isolate no 1 Host Location Collector GenBank Accession no 2<br />

Sep. cruciatae Septoria sp. <strong>CBS</strong> 123747 Galium odoratum Czech<br />

Republic<br />

Septoria sp. <strong>CBS</strong> 123748 Galium odoratum Czech<br />

Republic<br />

EF Tub RPB2 LSU ITS Act Cal<br />

G.J.M. Verkley KF253340 KF252865 KF252394 KF251897 KF251393 KF253697 KF254045<br />

G.J.M. Verkley KF253341 KF252866 KF252395 KF251898 KF251394 KF253698 KF254046<br />

Sep. cucubali – <strong>CBS</strong> 102367 Cucubalus baccifer Netherlands G.J.M. Verkley KF253342 KF252867 KF252396 KF251899 KF251395 KF253699 KF254047<br />

– <strong>CBS</strong> 102368 Cucubalus baccifer Netherlands G.J.M. Verkley KF253343 KF252868 KF252397 KF251900 KF251396 KF253700 KF254048<br />

– <strong>CBS</strong> 102386 Saponaria officinalis Netherlands G.J.M. Verkley KF253344 KF252869 KF252398 KF251901 KF251397 KF253701 KF254049<br />

Septoria sp. <strong>CBS</strong> 124874 Fagus sylvatica Germany M. Unterseher KF253345 KF252870 KF252399 KF251902 KF251398 KF253702 KF254050<br />

Sep. cucurbitacearum – <strong>CBS</strong> 178.77 Cucurbita maxima New<br />

Zealand<br />

H.J. Boesewinkel KF253346 – KF252400 KF251903 KF251399 KF253703 KF254051<br />

Sep. dearnessii – <strong>CBS</strong> 128624 Angelica dahurica South Korea H.D. Shin KF253347 KF252871 KF252401 KF251904 KF251400 KF253704 KF254052<br />

Sep. digitalis – <strong>CBS</strong> 328.67 Digitalis lanata Netherlands H.A. van der Aa KF253348 KF252872 KF252402 KF251905 KF251401 KF253705 KF254053<br />

– <strong>CBS</strong> 391.63 Digitalis lanata Czech V. Holubová KF253349 KF252873 KF252403 KF251906 KF251402 KF253706 KF254054<br />

Republic<br />

Sep. dolichospora – <strong>CBS</strong> 129152 Solidago virgaurea South Korea H.D. Shin KF253350 KF252874 – KF251907 KF251403 KF253707 KF254055<br />

Sep. dysentericae – <strong>CBS</strong> 128637 Inula britannica South Korea H.D. Shin KF253351 KF252875 KF252404 KF251908 KF251404 KF253708 KF254056<br />

– <strong>CBS</strong> 128638 Inula britannica South Korea H.D. Shin KF253352 KF252876 KF252405 KF251909 KF251405 KF253709 KF254057<br />

– <strong>CBS</strong> 131892;<br />

CPC 12328<br />

Inula britannica South Korea H.D. Shin KF253353 KF252877 KF252406 KF251910 KF251406 KF253710 KF254058<br />

Sep. ekmaniana – <strong>CBS</strong> 113385 Chromolaena odorata Mexico M.J. Morris KF253354 KF252878 – KF251911 KF251407 KF253711 KF254059<br />

– <strong>CBS</strong> 113612 Chromolaena odorata Mexico M.J. Morris KF253355 KF252879 – KF251912 KF251408 KF253712 KF254060<br />

Sep. epambrosiae – <strong>CBS</strong> 128629 Ambrosia trifida South Korea H.D. Shin KF253356 KF252880 KF252407 KF251913 KF251409 KF253713 KF254061<br />

– <strong>CBS</strong> 128636 Ambrosia trifida South Korea H.D. Shin KF253357 KF252881 KF252408 KF251914 KF251410 KF253714 KF254062<br />

Sep. epilobii – <strong>CBS</strong> 109084 Epilobium fleischeri Austria G.J.M. Verkley KF253358 KF252882 KF252409 KF251915 KF251411 KF253715 KF254063<br />

– <strong>CBS</strong> 109085 Epilobium fleischeri Austria G.J.M. Verkley KF253359 KF252883 KF252410 KF251916 KF251412 KF253716 KF254064<br />

Sep. erigerontis – <strong>CBS</strong> 109094 Erigeron annuus Austria G.J.M. Verkley KF253360 KF252884 KF252411 KF251917 KF251413 KF253717 KF254065<br />

– <strong>CBS</strong> 109095 Erigeron annuus Austria G.J.M. Verkley KF253361 KF252885 KF252412 KF251918 KF251414 KF253718 KF254066<br />

– <strong>CBS</strong> 128606 Erigeron annuus South Korea H.D. Shin KF253362 KF252886 KF252413 KF251919 KF251415 KF253719 KF254067<br />

– <strong>CBS</strong> 131893;<br />

CPC 12340<br />

Erigeron annuus South Korea H.D. Shin KF253363 KF252888 KF252414 KF251920 KF251416 KF253720 KF254068<br />

Septoria schnabliana <strong>CBS</strong> 186.93 Erigeron annuus Italy M. Vurro KF253364 KF252887 KF252537 KF252048 KF251543 KF253893 KF254244<br />

Sep. eucalyptorum – <strong>CBS</strong> 118505 Eucalyptus sp. India W. Gams KF253365 KF252889 KF252415 KF251921 KF251417 KF253721 KF254069<br />

Sep. exotica – <strong>CBS</strong> 163.78 Hebe speciosa New<br />

H.J. Boesewinkel KF253366 KF252890 KF252416 KF251922 KF251418 KF253722 KF254070<br />

Zealand<br />

220


A new approach to species delimitation in Septoria<br />

Table 1. (Continued).<br />

Species Old name Isolate no 1 Host Location Collector GenBank Accession no 2<br />

Sep. galeopsidis – <strong>CBS</strong> 123744 Galeopsis sp. Czech<br />

Republic<br />

– <strong>CBS</strong> 123746 Galeopsis sp. Czech<br />

Republic<br />

– <strong>CBS</strong> 123749 Galeopsis sp. Czech<br />

Republic<br />

EF Tub RPB2 LSU ITS Act Cal<br />

G.J.M. Verkley KF253367 KF252891 KF252417 KF251923 KF251419 KF253723 KF254071<br />

G.J.M. Verkley KF253368 KF252892 KF252418 KF251924 KF251420 KF253724 KF254072<br />

G.J.M. Verkley KF253369 KF252893 KF252419 KF251925 KF251421 KF253725 KF254073<br />

– <strong>CBS</strong> 191.26 Galeopsis sp. – C. Killian KF253370 KF252894 KF252420 KF251926 KF251422 KF253726 KF254074<br />

– <strong>CBS</strong> 102314 Galeopsis tetrahit Netherlands G.J.M. Verkley KF253371 KF252895 KF252421 KF251927 KF251423 KF253727 KF254075<br />

– <strong>CBS</strong> 102411 Galeopsis tetrahit Netherlands G.J.M. Verkley KF253372 KF252896 KF252422 KF251928 KF251424 KF253728 KF254076<br />

– <strong>CBS</strong> 123745 Galeopsis sp. Czech<br />

Republic<br />

G.J.M. Verkley KF253373 KF252897 KF252423 KF251929 KF251425 KF253729 KF254077<br />

Sep. gentianae – <strong>CBS</strong> 128633 Gentiana scabra South Korea H.D. Shin KF253374 KF252898 KF252424 KF251930 KF251426 KF253730 KF254078<br />

Sep. gladioli – <strong>CBS</strong> 121.20 – – – KF253375 KF252899 KF252425 KF251931 KF251427 KF253731 KF254079<br />

– <strong>CBS</strong> 353.29 – Netherlands J.C. Went KF253376 KF252900 KF252426 KF251932 KF251428 KF253732 KF254080<br />

Sep. glycines – <strong>CBS</strong> 336.53 – Japan H. Kurata KF253377 KF252901 – KF251933 KF251429 KF253733 KF254081<br />

Sep. glycinicola – <strong>CBS</strong> 128618 Glycine max South Korea H.D. Shin KF253378 KF252902 KF252427 KF251934 KF251430 KF253734 KF254082<br />

Sep. helianthi – <strong>CBS</strong> 123.81 Helianthus annuus – M. Muntañola KF253379 KF252903 KF252428 KF251935 KF251431 KF253735 KF254083<br />

Sep. helianthicola – <strong>CBS</strong> 122.81 Helianthus annuus – M. Muntañola KF253380 KF252904 KF252429 KF251936 KF251432 KF253736 KF254084<br />

Sep. hibiscicola – <strong>CBS</strong> 128611 Hibiscus syriacus South Korea H.D. Shin KF253381 KF252905 KF252430 KF251937 KF251433 KF253737 KF254085<br />

– <strong>CBS</strong> 128615 Hibiscus syriacus South Korea H.D. Shin KF253382 KF252906 KF252431 KF251938 KF251434 KF253738 KF254086<br />

Sep. hippocastani – <strong>CBS</strong> 411.61 Aesculus hippocastanum Germany W. Gerlach KF253383 KF252907 KF252432 KF251939 KF251435 KF253739 KF254087<br />

Sep. justiciae – CPC 12509 Justicia procumbens South Korea H.D. Shin KF253386 KF252910 KF252435 KF251942 KF251438 KF253742 KF254090<br />

– <strong>CBS</strong> 128610 Justicia procumbens South Korea H.D. Shin KF253384 KF252908 KF252433 KF251940 KF251436 KF253740 KF254088<br />

– <strong>CBS</strong> 128625 Justicia procumbens South Korea H.D. Shin KF253385 KF252909 KF252434 KF251941 KF251437 KF253741 KF254089<br />

Sep. lactucae – <strong>CBS</strong> 108943 Lactuca sativa Netherlands P. Grooteman KF253387 KF252911 KF252436 KF251943 KF251439 KF253743 KF254091<br />

– <strong>CBS</strong> 352.58 Lactuca sativa Germany G. Sörgel KF253388 KF252912 KF252437 KF251944 KF251440 KF253744 KF254092<br />

Sep. lamiicola – <strong>CBS</strong> 102328 Lamium album Netherlands G.J.M. Verkley KF253389 KF252913 KF252438 KF251945 KF251441 KF253745 KF254093<br />

– <strong>CBS</strong> 102329 Lamium album Netherlands G.J.M. Verkley KF253390 KF252914 KF252439 KF251946 KF251442 KF253746 KF254094<br />

– <strong>CBS</strong> 102379 Lamium sp. Netherlands G.J.M. Verkley KF253391 KF252915 KF252440 KF251947 KF251443 KF253747 KF254095<br />

– <strong>CBS</strong> 102380 Lamium sp. Netherlands G.J.M. Verkley KF253392 KF252916 KF252441 KF251948 KF251444 KF253748 KF254096<br />

– <strong>CBS</strong> 109112 Lamium album Austria G.J.M. Verkley KF253393 KF252917 KF252442 KF251949 KF251445 KF253749 KF254097<br />

– <strong>CBS</strong> 109113 Lamium album Austria G.J.M. Verkley KF253394 KF252918 KF252443 KF251950 KF251446 KF253750 KF254098<br />

– <strong>CBS</strong> 123882 Lamium sp. Czech<br />

Republic<br />

G.J.M. Verkley KF253395 KF252919 KF252444 KF251951 KF251447 KF253751 KF254099<br />

www.studiesinmycology.org<br />

221


Verkley et al.<br />

Table 1. (Continued).<br />

Species Old name Isolate no 1 Host Location Collector GenBank Accession no 2<br />

– <strong>CBS</strong> 123883 Lamium sp. Czech<br />

Republic<br />

– <strong>CBS</strong> 123884 Lamium sp. Czech<br />

Republic<br />

EF Tub RPB2 LSU ITS Act Cal<br />

G.J.M. Verkley KF253396 KF252920 KF252445 KF251952 KF251448 KF253752 KF254100<br />

G.J.M. Verkley KF253397 KF252921 KF252446 KF251953 KF251449 KF253753 KF254101<br />

Sep. lepidiicola – <strong>CBS</strong> 128635 Lepidium virginicum South Korea H.D. Shin KF253398 KF252922 KF252447 KF251954 KF251450 KF253754 KF254102<br />

Sep. leptostachyae – <strong>CBS</strong> 128613 Phryma leptostachya South Korea H.D. Shin KF253399 KF252923 KF252448 KF251955 KF251451 KF253755 KF254103<br />

– <strong>CBS</strong> 128628 Phryma leptostachya South Korea H.D. Shin KF253400 KF252924 KF252449 KF251956 KF251452 KF253756 KF254104<br />

Sep. leucanthemi – <strong>CBS</strong> 109083 Chrysanthemum<br />

leucanthemum<br />

– <strong>CBS</strong> 109086 Chrysanthemum<br />

leucanthemum<br />

– <strong>CBS</strong> 109090 Chrysanthemum<br />

leucanthemum<br />

– <strong>CBS</strong> 109091 Chrysanthemum<br />

leucanthemum<br />

– <strong>CBS</strong> 113112 Chrysanthemum<br />

leucanthemum<br />

Austria G.J.M. Verkley KF253401 KF252925 KF252450 KF251957 KF251453 KF253757 KF254105<br />

Austria G.J.M. Verkley KF253402 KF252926 KF252451 KF251958 KF251454 KF253758 KF254106<br />

Austria G.J.M. Verkley KF253403 KF252927 KF252452 KF251959 KF251455 KF253759 KF254107<br />

Austria G.J.M. Verkley KF253404 KF252928 KF252453 KF251960 KF251456 KF253760 KF254108<br />

New<br />

Zealand<br />

G.J.M. Verkley KF253405 KF252929 KF252454 KF251961 KF251457 KF253761 KF254109<br />

– <strong>CBS</strong> 353.58 Chrysanthemum maximum Germany R. Schneider KF253406 KF252930 KF252455 KF251962 KF251458 KF253762 KF254110<br />

Sep. limonum – <strong>CBS</strong> 419.51 Citrus limonium Italy G. Goidánich KF253407 KF252931 KF252456 KF251963 KF251459 KF253763 KF254111<br />

Sep. linicola – <strong>CBS</strong> 316.37 Linum usitatissimum – H.W. Hollenweber KF253408 KF252932 KF252457 KF251964 KF251460 KF253764 KF254112<br />

Sep. lycoctoni – <strong>CBS</strong> 109089 Aconitum vulparia Austria G.J.M. Verkley KF253409 KF252933 KF252458 KF251965 KF251461 KF253765 KF254113<br />

Sep. lycopersici – <strong>CBS</strong> 128654 Lycopersicon esculentum South Korea H.D. Shin KF253410 KF252934 KF252459 KF251966 KF251462 KF253766 KF254114<br />

– <strong>CBS</strong> 354.49 Lycopersicon esculentum Canada B.H. MacNeil KF253411 KF252935 KF252460 KF251967 KF251463 KF253767 KF254115<br />

Sep. lycopicola – <strong>CBS</strong> 128651 Lycopus ramosissimus South Korea H.D. Shin KF253412 KF252936 KF252461 KF251968 KF251464 KF253768 KF254116<br />

Sep. lysimachiae – <strong>CBS</strong> 102315 Lysimachia vulgaris Netherlands G.J.M. Verkley KF253413 KF252937 KF252462 KF251969 KF251465 KF253769 KF254117<br />

– <strong>CBS</strong> 108998 Lysimachia vulgaris Netherlands G.J.M. Verkley KF253414 KF252938 KF252463 KF251970 KF251466 KF253770 KF254118<br />

– <strong>CBS</strong> 108999 Lysimachia vulgaris Netherlands G.J.M. Verkley KF253415 KF252939 KF252464 KF251971 KF251467 KF253771 KF254119<br />

– <strong>CBS</strong> 123794 Lysimachia sp. Czech<br />

Republic<br />

– <strong>CBS</strong> 123795 Lysimachia sp. Czech<br />

Republic<br />

G.J.M. Verkley KF253416 KF252940 KF252465 KF251972 KF251468 KF253772 KF254120<br />

G.J.M. Verkley KF253417 KF252941 KF252466 KF251973 KF251469 KF253773 KF254121<br />

Sep. malagutii – <strong>CBS</strong> 106.80 Solanum sp. Peru G.H. Boerema KF253418 – KF252467 KF251974 KF251470 KF253774 KF254122<br />

Sep. matricariae – <strong>CBS</strong> 109000 Matricaria discoidea Netherlands G.J.M. Verkley KF253419 KF252942 KF252468 KF251975 KF251471 KF253775 KF254123<br />

– <strong>CBS</strong> 109001 Matricaria discoidea Netherlands G.J.M. Verkley KF253420 KF252943 KF252469 KF251976 KF251472 KF253776 KF254124<br />

Sep. mazi – <strong>CBS</strong> 128656 Mazus japonicus South Korea H.D. Shin KF253421 KF252944 KF252470 KF251977 KF251473 KF253777 KF254125<br />

222


A new approach to species delimitation in Septoria<br />

Table 1. (Continued).<br />

Species Old name Isolate no 1 Host Location Collector GenBank Accession no 2<br />

EF Tub RPB2 LSU ITS Act Cal<br />

– <strong>CBS</strong> 128755 Mazus japonicus South Korea H.D. Shin KF253422 KF252945 KF252471 KF251978 KF251474 KF253778 KF254126<br />

Sep. melissae – <strong>CBS</strong> 109097 Melissa officinalis Netherlands H.A. van der Aa KF253423 KF252946 KF252472 KF251979 KF251475 KF253779 KF254127<br />

Sep. menthae – <strong>CBS</strong> 404.34 – Japan T. Hemmi KF253424 KF252947 – KF251980 KF251476 KF253780 KF254128<br />

Sep. napelli – <strong>CBS</strong> 109104 Aconitum napellus Austria G.J.M. Verkley KF253425 KF252948 KF252473 KF251981 KF251477 KF253781 KF254129<br />

– <strong>CBS</strong> 109105 Aconitum napellus Austria G.J.M. Verkley KF253426 KF252949 KF252474 KF251982 KF251478 KF253782 KF254130<br />

– <strong>CBS</strong> 109106 Aconitum napellus Austria G.J.M. Verkley KF253427 KF252950 KF252475 KF251983 KF251479 KF253783 KF254131<br />

Sep. obesa Septoria artimisiae <strong>CBS</strong> 128588 Artemisia lavandulaefolia South Korea H.D. Shin KF253428 KF252951 KF252476 KF251984 KF251480 KF253784 KF254132<br />

Septoria<br />

<strong>CBS</strong> 128623 Chrysanthemum indicum South Korea H.D. Shin KF253429 KF252952 KF252477 KF251985 KF251481 KF253785 KF254133<br />

chrysanthemella<br />

– <strong>CBS</strong> 128759 Chrysanthemum<br />

South Korea H.D. Shin KF253430 – KF252478 KF251986 KF251482 KF253786 KF254134<br />

morifolium<br />

– <strong>CBS</strong> 354.58 Chrysantemum indicum Germany R. Schneider KF253431 – KF252479 KF251987 KF251483 KF253787 KF254135<br />

Sep. oenanthis – <strong>CBS</strong> 128667 Cicuta virosa South Korea H.D. Shin KF253432 KF252953 KF252481 KF251989 KF251485 KF253788 KF254136<br />

Sep. oenanthicola Septoria oenanthis <strong>CBS</strong> 128649 Oenanthe javanica South Korea H.D. Shin KF253433 KF252954 KF252480 KF251988 KF251484 KF253789 KF254137<br />

Sep. orchidearum Septoria cyclaminis <strong>CBS</strong> 128631 Cyclamen fatrense South Korea H.D. Shin KF253434 KF252955 KF252482 KF251990 KF251486 KF253790 KF254138<br />

– <strong>CBS</strong> 457.78 Listera ovata France H.A. van der Aa KF253435 KF252956 KF252483 KF251991 KF251487 KF253791 KF254139<br />

Sep. oudemansii – <strong>CBS</strong> 619.72 Poa pratensis Germany R. Schneider KF253436 KF252957 KF252484 KF251992 KF254299 – KF254140<br />

Sep. pachyspora – <strong>CBS</strong> 128652 Zyathoxylum schinifolium South Korea H.D. Shin KF253437 KF252958 KF252485 KF251993 KF251488 KF253792 KF254141<br />

Sep. paridis – <strong>CBS</strong> 109111 Paris quadrifolia Austria G.J.M. Verkley KF253438 KF252959 KF252486 KF251994 KF251489 KF253793 KF254142<br />

– <strong>CBS</strong> 109110 Paris quadrifolia Austria G.J.M. Verkley KF253439 KF252960 KF252487 KF251995 KF251490 KF253794 KF254143<br />

Septoria violaepalustris<br />

Septoria violaepalustris<br />

<strong>CBS</strong> 109108 Viola sp. Austria G.J.M. Verkley KF253440 KF252961 KF252488 KF251996 KF251491 KF253795 KF254144<br />

<strong>CBS</strong> 109109 Viola sp. Austria G.J.M. Verkley KF253441 KF252962 KF252489 KF251997 KF251492 KF253796 KF254145<br />

Sep. passifloricola Sep. passiflorae <strong>CBS</strong> 102701 Passiflora edulis New<br />

Zealand<br />

C.F. Hill KF253442 KF252963 KF252490 KF251998 KF251493 KF253797 KF254146<br />

– <strong>CBS</strong> 129431 Passiflora edulis South Korea H.D. Shin KF253443 KF252964 – KF251999 KF251494 KF253798 KF254147<br />

Sep. perillae – <strong>CBS</strong> 128655 Perilla frutescens South Korea H.D. Shin KF253444 KF252965 KF252491 KF252000 KF251495 KF253799 KF254148<br />

Sep. petroselini – <strong>CBS</strong> 109521 – Netherlands H.A. van der Aa KF253445 KF252966 KF252492 KF252001 KF251496 KF253800 KF254149<br />

– <strong>CBS</strong> 182.44 Petroselinum sativum Netherlands S.D. de Wit KF253446 KF252967 KF252493 KF252002 KF251497 KF253801 KF254150<br />

Sep. phlogis – <strong>CBS</strong> 102317 Phlox sp. Netherlands G.J.M. Verkley KF253447 KF252968 KF252494 KF252003 KF251498 KF253802 KF254151<br />

– <strong>CBS</strong> 128663 Phlox paniculata South Korea H.D. Shin KF253448 KF252969 KF252495 KF252004 KF251499 KF253803 KF254152<br />

– <strong>CBS</strong> 577.90 Phlox sp. Netherlands H.A. van der Aa KF253449 KF252970 KF252496 KF252005 KF251500 KF253804 KF254153<br />

Sep. polygonorum – <strong>CBS</strong> 102330 Polygonum persicaria Netherlands G.J.M. Verkley KF253450 KF252971 KF252497 KF252006 KF251501 KF253805 KF254154<br />

www.studiesinmycology.org<br />

223


Verkley et al.<br />

Table 1. (Continued).<br />

Species Old name Isolate no 1 Host Location Collector GenBank Accession no 2<br />

EF Tub RPB2 LSU ITS Act Cal<br />

– <strong>CBS</strong> 102331 Polygonum persicaria Netherlands G.J.M. Verkley KF253451 KF252972 KF252498 KF252007 KF251502 KF253806 KF254155<br />

– <strong>CBS</strong> 108982 Polygonum persicaria Germany G.J.M. Verkley KF253452 KF252973 KF252499 KF252008 KF251503 KF253807 KF254156<br />

– <strong>CBS</strong> 109834 Polygonum persicaria Netherlands G.J.M. Verkley KF253453 KF252974 KF252500 KF252009 KF251504 KF253808 KF254157<br />

– <strong>CBS</strong> 113110 Polygonum persicaria New<br />

Zealand<br />

C.F. Hill KF253454 KF252975 KF252501 KF252010 KF251505 KF253809 KF254158<br />

– <strong>CBS</strong> 347.67 Polygonum persicaria Netherlands H.A. van der Aa KF253455 KF252976 KF252502 KF252011 KF251506 KF253810 KF254159<br />

Sep. posoniensis – <strong>CBS</strong> 128645 Chrysosplenium japonicum South Korea H.D. Shin KF253456 KF252977 KF252503 KF252012 KF251507 KF253811 KF254160<br />

Sep. protearum Septoria sp. CPC 19691 Zanthedeschia aethiopica South Africa P.W. Crous KF253474 KF252994 KF252519 KF252030 KF251525 KF253829 KF254178<br />

Septoria sp. <strong>CBS</strong> 113114 Geum sp. New<br />

G.J.M. Verkley KF253459 KF252980 KF252506 KF252015 KF251510 KF253814 KF254163<br />

Zealand<br />

Septoria sp. <strong>CBS</strong> 119942 Asplenium ruta-muraria Germany G.J.M. Verkley KF253461 KF252982 – KF252017 KF251512 KF253816 KF254165<br />

Septoria sp. <strong>CBS</strong> 135477;<br />

CPC 19675<br />

Septoria sp. <strong>CBS</strong> 164.78 Nephrolepis sp. New<br />

Zealand<br />

Septoria sp. <strong>CBS</strong> 179.77 Myosotis sp. New<br />

Zealand<br />

Zanthedeschia aethiopica South Africa P.W. Crous KF253473 KF252993 KF252518 KF252029 KF251524 KF253828 KF254177<br />

H.J. Boesewinkel KF253462 KF252983 KF252508 KF252018 KF251513 KF253817 KF254166<br />

H.J. Boesewinkel KF253464 KF252985 KF252510 KF252020 KF251515 KF253819 KF254168<br />

Septoria sp. <strong>CBS</strong> 364.97 Skimmia sp. Netherlands J. de Gruyter KF253466 KF252986 KF252512 KF252022 KF251517 KF253821 KF254170<br />

Septoria ligustri <strong>CBS</strong> 390.59 Ligustrum vulgare Italy M. Ribaldi KF253467 KF252987 KF252513 KF252023 KF251518 KF253822 KF254171<br />

Septoria pistaciae <strong>CBS</strong> 420.51 Pistacia vera Italy G. Goidánich KF253469 KF252989 – KF252025 KF251520 KF253824 KF254173<br />

Septoria sp. <strong>CBS</strong> 658.77 Boronia denticulata New<br />

Zealand<br />

H.J. Boesewinkel KF253471 KF252991 KF252516 KF252027 KF251522 KF253826 KF254175<br />

– <strong>CBS</strong> 778.97 Protea cynaroides South Africa L. Viljoen KF253472 KF252992 KF252517 KF252028 KF251523 KF253827 KF254176<br />

Sep. pseudonapelli Septoria napelli <strong>CBS</strong> 128664 Aconitum pseudolaeve South Korea H.D. Shin KF253475 KF252995 KF252520 KF252031 KF251526 KF253830 KF254179<br />

Sep. putrida – <strong>CBS</strong> 109087 Senecio nemorensis Austria G.J.M. Verkley KF253476 KF252996 KF252521 KF252032 KF251527 KF253831 KF254180<br />

– <strong>CBS</strong> 109088 Senecio nemorensis Austria G.J.M. Verkley KF253477 KF252997 KF252522 KF252033 KF251528 KF253832 KF254181<br />

Sep. rumicum Septoria acetosae <strong>CBS</strong> 503.76 Rumex acetosa France H.A. van der Aa KF253478 KF252998 KF252523 KF252034 KF251529 KF253833 KF254182<br />

Sep. saccardoi – <strong>CBS</strong> 128756 Lysimachia vulgaris South Korea H.D. Shin KF253479 KF252999 KF252524 KF252035 KF251530 KF253834 KF254183<br />

Sep. scabiosicola – <strong>CBS</strong> 102333 Knautia arvensis Netherlands G.J.M. Verkley KF253480 KF253000 KF252525 KF252036 KF251531 KF253835 KF254184<br />

– <strong>CBS</strong> 102334 Knautia arvensis Netherlands G.J.M. Verkley KF253481 KF253001 KF252526 KF252037 KF251532 KF253836 KF254185<br />

– <strong>CBS</strong> 102335 Knautia arvensis Netherlands G.J.M. Verkley KF253482 KF253002 KF252527 KF252038 KF251533 KF253837 KF254186<br />

– <strong>CBS</strong> 102336 Knautia arvensis Netherlands G.J.M. Verkley KF253483 KF253003 KF252528 KF252039 KF251534 KF253838 KF254187<br />

– <strong>CBS</strong> 108981 Knautia arvensis Germany G.J.M. Verkley KF253484 KF253004 KF252529 KF252040 KF251535 KF253839 KF254188<br />

– <strong>CBS</strong> 109021 Knautia arvensis Austria G.J.M. Verkley KF253485 KF253005 KF252530 KF252041 KF251536 KF253840 KF254189<br />

224


A new approach to species delimitation in Septoria<br />

Table 1. (Continued).<br />

Species Old name Isolate no 1 Host Location Collector GenBank Accession no 2<br />

EF Tub RPB2 LSU ITS Act Cal<br />

– <strong>CBS</strong> 109092 Knautia dipsacifolia Austria G.J.M. Verkley KF253486 KF253006 KF252531 KF252042 KF251537 KF253841 KF254190<br />

– <strong>CBS</strong> 109093 Knautia dipsacifolia Austria G.J.M. Verkley KF253487 KF253007 KF252532 KF252043 KF251538 KF253842 KF254191<br />

– <strong>CBS</strong> 109128 Knautia dipsacifolia Austria G.J.M. Verkley KF253488 KF253008 KF252533 KF252044 KF251539 KF253843 KF254192<br />

– <strong>CBS</strong> 109129 Knautia dipsacifolia Austria G.J.M. Verkley KF253489 KF253009 KF252534 KF252045 KF251540 KF253844 KF254193<br />

– <strong>CBS</strong> 182.93 Succissa pratensis France H.A. van der Aa KF253490 KF253010 KF252535 KF252046 KF251541 KF253845 KF254194<br />

– <strong>CBS</strong> 317.37 – – – KF253491 KF253011 KF252536 KF252047 KF251542 KF253846 KF254195<br />

Sep. senecionis – <strong>CBS</strong> 102366 Senecio fluviatilis Netherlands G.J.M. Verkley KF253492 KF253012 KF252538 KF252049 KF251544 KF253847 KF254196<br />

– <strong>CBS</strong> 102381 Senecio fluviatilis Netherlands G.J.M. Verkley KF253493 KF253013 KF252539 KF252050 KF251545 KF253848 KF254197<br />

Sep. siegesbeckiae – <strong>CBS</strong> 128659 Siegesbeckia glabrescens South Korea H.D. Shin KF253494 KF253014 KF252540 KF252051 KF251546 KF253849 KF254198<br />

– <strong>CBS</strong> 128661 Siegesbeckia pubescens South Korea H.D. Shin KF253495 KF253015 KF252541 KF252052 KF251547 KF253850 KF254199<br />

Sep. sii – <strong>CBS</strong> 102369 Berula erecta Netherlands G.J.M. Verkley KF253496 KF253016 KF252542 KF252053 KF251548 KF253851 KF254200<br />

– <strong>CBS</strong> 102370 Berula erecta Netherlands G.J.M. Verkley KF253497 KF253017 KF252543 KF252054 KF251549 KF253852 KF254201<br />

– <strong>CBS</strong> 118.96 Berula erecta Netherlands H.A. van der Aa KF253498 KF253018 KF252544 KF252055 KF251550 KF253853 KF254202<br />

Sep. sisyrinchii – <strong>CBS</strong> 112096 Sysirinchium sp. New<br />

Zealand<br />

C.F. Hill KF253499 KF253019 KF252545 KF252056 KF251551 KF253854 KF254203<br />

Septoria sp. Pseudocercospora sp. CPC 19976 Feijoa sellowiana Italy G. Polizzy KF253509 KF253030 – KF252067 KF251562 KF253863 KF254214<br />

Septoria sp. – CPC 23104 – Italy E. van Agtmaal KF253511 KF253032 KF252557 KF252069 KF251564 KF253865 KF254216<br />

Septoria sp. – <strong>CBS</strong> 109114 Campanula glomerata Austria G.J.M. Verkley KF253501 KF253021 KF252547 KF252058 KF251553 KF253856 KF254205<br />

Septoria sp. – <strong>CBS</strong> 120739 Eucalyptus sp. Italy W. Gams KF253503 KF253023 KF252549 KF252060 KF251555 KF253858 KF254207<br />

Septoria sp. Septoria taraxaci <strong>CBS</strong> 128650 Taraxacum officinale South Korea H.D. Shin KF253504 KF253024 KF252550 KF252061 KF251556 KF253859 KF254208<br />

Septoria sp. Septoria posoniensis <strong>CBS</strong> 128658 Chrysoplenium japonicum South Korea H.D. Shin KF253505 KF253025 KF252551 KF252062 KF251557 KF253860 KF254209<br />

Austria P.W. Crous KF253506 KF253026 KF252552 KF252063 KF251558 KF253861 KF254210<br />

Septoria sp. – <strong>CBS</strong> 135472;<br />

CPC 19304<br />

Septoria sp. – <strong>CBS</strong> 135474;<br />

CPC 19485<br />

Septoria sp. – <strong>CBS</strong> 135478;<br />

CPC 19716<br />

Septoria sp. – <strong>CBS</strong> 135479;<br />

CPC 19793<br />

Septoria sp. – CPC 23103;<br />

MP11<br />

Vigna unguiculata ssp.<br />

sesquipedalis<br />

Conyza canadensis Brazil R.W. Barreto KF253507 KF253027 KF252553 KF252064 KF251559 KF253862 KF254211<br />

Searsia laevigatum South Africa A. Wood KF253508 KF253028 KF252554 KF252065 KF251560 – KF254212<br />

Syzygium cordatum South Africa P.W. Crous – KF253029 KF252555 KF252066 KF251561 – KF254213<br />

Aesculus sp. Netherlands S.I.R. Videira KF253510 KF253031 KF252556 KF252068 KF251563 KF253864 KF254215<br />

Sep. stachydicola – <strong>CBS</strong> 128668 Stachys riederi South Korea H.D. Shin KF253512 KF253033 KF252558 KF252070 KF251565 KF253866 KF254217<br />

Sep. stachydis – <strong>CBS</strong> 109115 Campanula glomerata Austria G.J.M. Verkley KF253502 KF253022 KF252548 KF252059 KF251554 KF253857 KF254206<br />

– <strong>CBS</strong> 102326 Stachys sylvatica Netherlands G.J.M. Verkley KF253514 KF253035 KF252560 KF252072 KF251567 KF253868 KF254219<br />

– <strong>CBS</strong> 102337 Stachys sylvatica Netherlands G.J.M. Verkley KF253515 KF253036 KF252561 KF252073 KF251568 KF253869 KF254220<br />

www.studiesinmycology.org<br />

225


Verkley et al.<br />

Table 1. (Continued).<br />

Species Old name Isolate no 1 Host Location Collector GenBank Accession no 2<br />

EF Tub RPB2 LSU ITS Act Cal<br />

– <strong>CBS</strong> 109126 Stachys sylvatica Austria G.J.M. Verkley KF253516 KF253037 KF252562 KF252074 KF251569 KF253870 KF254221<br />

– <strong>CBS</strong> 109127 Stachys sylvatica Austria G.J.M. Verkley KF253517 KF253038 KF252563 KF252075 KF251570 KF253871 KF254222<br />

– <strong>CBS</strong> 123750 Stachys sp. Czech<br />

Republic<br />

– <strong>CBS</strong> 123879 Stachys sp. Czech<br />

Republic<br />

G.J.M. Verkley KF253518 KF253039 KF252564 KF252076 KF251571 KF253872 KF254223<br />

G.J.M. Verkley KF253519 KF253040 KF252565 KF252077 KF251572 KF253873 KF254224<br />

– <strong>CBS</strong> 449.68 Stachys sylvatica Netherlands H.A. van der Aa KF253520 KF253041 KF252566 KF252078 KF251573 KF253874 KF254225<br />

Sep. astericola <strong>CBS</strong> 347.58 Aster canus Germany R. Schneider KF253295 KF252820 KF252349 KF251852 KF251348 KF253652 KF254000<br />

Sep. stellariae – <strong>CBS</strong> 102376 Stellaria media Netherlands G.J.M. Verkley KF253521 KF253042 KF252567 KF252079 KF251574 KF253875 KF254226<br />

– <strong>CBS</strong> 102378 Stellaria media Netherlands G.J.M. Verkley KF253522 KF253043 KF252568 KF252080 KF251575 KF253876 KF254227<br />

– <strong>CBS</strong> 102410 Stellaria media Netherlands G.J.M. Verkley KF253523 KF253044 KF252569 KF252081 KF251576 KF253877 KF254228<br />

Sep. taraxaci – <strong>CBS</strong> 567.75 Taraxacum sp. Armenia H.A. van der Aa KF253524 KF253045 KF252570 KF252082 KF251577 KF253878 KF254229<br />

Sep. tinctoriae – <strong>CBS</strong> 129154 Serratula coronata South Korea H.D. Shin KF253525 KF253046 KF252571 KF252083 KF251578 KF253879 KF254230<br />

Sep. tormentillae – <strong>CBS</strong> 128643 Potentilla fragarioides South Korea H.D. Shin KF253526 KF253047 KF252572 KF252084 KF251579 KF253880 KF254231<br />

– <strong>CBS</strong> 128647 Potentilla fragarioides South Korea H.D. Shin KF253527 KF253048 KF252573 KF252085 KF251580 KF253881 KF254232<br />

Sep. urticae Septoria glechomatis <strong>CBS</strong> 102316 Glechoma hederacea Netherlands G.J.M. Verkley KF253528 KF253049 KF252574 KF252086 KF251581 KF253882 KF254233<br />

– <strong>CBS</strong> 102371 Urtica dioica Netherlands G.J.M. Verkley KF253529 KF253050 KF252575 KF252087 KF251582 KF253883 KF254234<br />

– <strong>CBS</strong> 102375 Urtica dioica Netherlands G.J.M. Verkley KF253530 KF253051 KF252576 KF252088 KF251583 KF253884 KF254235<br />

Sep. verbascicola – <strong>CBS</strong> 102401 Verbascum nigrum Netherlands G.J.M. Verkley KF253531 KF253052 KF252577 KF252089 KF251584 KF253885 KF254236<br />

Sep. verbenae – <strong>CBS</strong> 113438 Verbena officinalis New<br />

G.J.M. Verkley KF253532 KF253053 KF252578 KF252090 KF251585 KF253886 KF254237<br />

Zealand<br />

– <strong>CBS</strong> 113481 Verbena officinalis New<br />

G.J.M. Verkley KF253533 KF253054 KF252579 KF252091 KF251586 KF253887 KF254238<br />

Zealand<br />

Sep. villarsiae – <strong>CBS</strong> 514.78 Nymphoides peltata Netherlands H.A. van der Aa KF253534 KF253055 KF252580 KF252092 KF251587 KF253888 KF254239<br />

– <strong>CBS</strong> 565.88 Nymphoides peltata Netherlands H.A. van der Aa KF253535 KF253056 KF252581 KF252093 KF251588 KF253889 KF254240<br />

– <strong>CBS</strong> 604.66 Nymphoides peltata Netherlands L. Marvanová KF253536 KF253057 KF252582 KF252094 KF251589 KF253890 KF254241<br />

Sep. violae-palustris – <strong>CBS</strong> 128644 Viola selkirkii South Korea H.D. Shin KF253537 KF253058 KF252583 KF252095 KF251590 KF253891 KF254242<br />

– <strong>CBS</strong> 128660 Viola yedoensis South Korea H.D. Shin KF253538 KF253059 KF252584 KF252096 KF251591 KF253892 KF254243<br />

Sphaerulina abeliceae Septoria abeliceae <strong>CBS</strong> 128591 Zelkova serrata South Korea H.D. Shin KF253539 – KF252585 KF252097 KF251592 KF253894 KF254245<br />

Sphaerulina aceris Mycosphaerella <strong>CBS</strong> 183.97 Acer pseudoplatanus Netherlands H.A. van der Aa KF253540 – KF252586 KF252098 KF251593 KF253895 KF254246<br />

latebrosa<br />

Mycosphaerella <strong>CBS</strong> 652.85 Acer pseudoplatanus Netherlands H.A. van der Aa KF253541 KF253060 KF252587 KF252099 KF251594 KF253896 KF254300<br />

latebrosa<br />

Mycosphaerella latebrosa<br />

<strong>CBS</strong> 687.94 Acer pseudoplatanus Netherlands G.J.M. Verkley KF253542 KF253061 KF252588 KF252100 KF251595 KF253897 KF254247<br />

226


A new approach to species delimitation in Septoria<br />

Table 1. (Continued).<br />

Species Old name Isolate no 1 Host Location Collector GenBank Accession no 2<br />

Sphaerulina<br />

amelanchier<br />

EF Tub RPB2 LSU ITS Act Cal<br />

– <strong>CBS</strong> 135110 Amelanchier sp. Netherlands S.I.R. Videira KF253543 KF253062 KF252589 KF252101 KF251596 KF253898 KF254248<br />

Septoria sp. CPC 23107;<br />

MP9<br />

Septoria sp. CPC 23105;<br />

MP22<br />

– CPC 23106;<br />

MP7<br />

Betula sp. Netherlands S.I.R. Videira KF253583 KF253098 KF252626 KF252139 KF251634 KF253937 KF254288<br />

Quercus sp. Netherlands S.I.R. Videira KF253544 KF253063 KF252590 KF252102 KF251597 KF253899 KF254249<br />

Castanea sp. Netherlands S.I.R. Videira KF253545 KF253064 KF252591 KF252103 KF251598 KF253900 KF254250<br />

Sphaerulina azaleae Septoria azaleae <strong>CBS</strong> 128605 Rhododendron sp. South Korea H.D. Shin KF253546 KF253065 KF252592 KF252104 KF251599 KF253901 KF254251<br />

Septoria azaleae <strong>CBS</strong> 352.49 Rhododendron sp. Belgium J. van Holder KF253547 KF253066 KF252593 KF252105 KF251600 KF253902 KF254252<br />

Sphaerulina berberidis Mycosphaerella<br />

berberidis<br />

<strong>CBS</strong> 324.52 Berberis vulgaris Switzerland E. Müller KF253548 KF253067 KF252594 KF252106 KF251601 KF253903 KF254253<br />

Sphaerulina betulae Septoria betulae <strong>CBS</strong> 116724 Betula pubescens Scotland S. Green KF253549 KF253068 KF252595 KF252107 KF251602 KF253904 KF254254<br />

Septoria betulae <strong>CBS</strong> 128596 Betula platyphylla South Korea H.D. Shin KF253550 KF253069 KF252596 KF252108 KF251603 KF253905 KF254255<br />

Septoria betulae <strong>CBS</strong> 128597 Betula schmidtii South Korea H.D. Shin KF253551 KF253070 KF252597 KF252109 KF251604 KF253906 KF254256<br />

Septoria betulae <strong>CBS</strong> 128600 Betula platyphylla South Korea H.D. Shin KF253552 KF253071 KF252598 KF252110 KF251605 KF253907 KF254257<br />

Sphaerulina cercidis Septoria provencialis <strong>CBS</strong> 118910 Eucalyptus sp. France P.W. Crous KF253553 KF253072 KF252602 KF252114 KF251609 KF253908 KF254258<br />

Septoria cercidis <strong>CBS</strong> 128634 Cercis siliquastrum South Korea H.D. Shin KF253554 KF253073 KF252599 KF252111 KF251606 KF253909 KF254259<br />

Septoria cercidis <strong>CBS</strong> 129151 Cercis siliquastrum South Korea H.D. Shin KF253555 KF253074 KF252600 KF252112 KF251607 KF253910 KF254260<br />

Septoria cercidis <strong>CBS</strong> 501.50 Cercis siliquastrum Netherlands G. van den Ende KF253556 KF253075 KF252601 KF252113 KF251608 KF253911 KF254261<br />

Sphaerulina cornicola Septoria cornicola <strong>CBS</strong> 102324 Cornus sp. Netherlands A. van Iperen KF253557 KF253076 KF252603 KF252115 KF251610 KF253912 KF254262<br />

Septoria comicola <strong>CBS</strong> 102332 Cornus sp. Netherlands A. van Iperen KF253558 KF253077 KF252604 KF252116 KF251611 KF253913 KF254263<br />

Septoria cornicola <strong>CBS</strong> 116778 Cornus sanguinea USA A.Y. Rossman KF253559 KF253078 – KF252117 KF251612 KF253914 KF254264<br />

Sphaerulina frondicola Septoria populi <strong>CBS</strong> 391.59 Populus pyramidalis Germany R. Schneider KF253572 – KF252617 KF252130 KF251625 KF253927 KF254277<br />

Sphaerulina gei Septoria gei <strong>CBS</strong> 102318 Geum urbanum Netherlands G.J.M. Verkley KF253560 KF253079 KF252605 KF252118 KF251613 KF253915 KF254265<br />

Septoria gei <strong>CBS</strong> 128616 Geum japonicum South Korea H.D. Shin KF253561 KF253080 KF252606 KF252119 KF251614 KF253916 KF254266<br />

Septoria gei <strong>CBS</strong> 128632 Geum japonicum South Korea H.D. Shin KF253562 KF253081 KF252607 KF252120 KF251615 KF253917 KF254267<br />

Sphaerulina hyperici Septoria hyperici <strong>CBS</strong> 102313 Hypericum sp. Netherlands G.J.M. Verkley KF253563 KF253082 KF252608 KF252121 KF251616 KF253918 KF254268<br />

Sphaerulina menispermi Septoria menispermi <strong>CBS</strong> 128666 Menispermum dauricum South Korea H.D. Shin KF253564 KF253083 KF252609 KF252122 KF251617 KF253919 KF254269<br />

Septoria menispermi <strong>CBS</strong> 128761 Menispermum dauricum South Korea H.D. Shin KF253565 KF253084 KF252610 KF252123 KF251618 KF253920 KF254270<br />

Sphaerulina musiva Septoria musiva <strong>CBS</strong> 130559 Populus sp. Canada J. LeBoldus KF253566 – KF252611 KF252124 KF251619 KF253921 KF254271<br />

Septoria musiva <strong>CBS</strong> 130562 Populus sp. Canada J. LeBoldus KF253567 KF253085 KF252612 KF252125 KF251620 KF253922 KF254272<br />

Septoria musiva <strong>CBS</strong> 130563 Populus deltoides × P.<br />

balsamifera<br />

Canada J. LeBoldus KF253568 – KF252613 KF252126 KF251621 KF253923 KF254273<br />

www.studiesinmycology.org<br />

227


Verkley et al.<br />

Table 1. (Continued).<br />

Species Old name Isolate no 1 Host Location Collector GenBank Accession no 2<br />

EF Tub RPB2 LSU ITS Act Cal<br />

Septoria musiva <strong>CBS</strong> 130569 Populus deltoides Canada J. LeBoldus KF253569 KF253086 KF252614 KF252127 KF251622 KF253924 KF254274<br />

Sphaerulina patriniae Septoria patriniae <strong>CBS</strong> 128653 Patrinia scabiosaefolia South Korea H.D. Shin KF253570 KF253087 KF252615 KF252128 KF251623 KF253925 KF254275<br />

Septoria patriniae <strong>CBS</strong> 129153 Patrinia villosa South Korea H.D. Shin KF253571 KF253088 KF252616 KF252129 KF251624 KF253926 KF254276<br />

Sphaerulina populicola Mycosphaerella<br />

populicola<br />

<strong>CBS</strong> 100042 Populus trichocarpa USA G. Newcombe KF253573 – KF252618 KF252131 KF251626 KF253928 KF254278<br />

Sphaerulina quercicola Septoria quercicola <strong>CBS</strong> 109009 Quercus rubra Netherlands G.J.M. Verkley KF253574 KF253089 KF252619 KF252132 KF251627 KF253929 KF254279<br />

Septoria quercicola <strong>CBS</strong> 115016 Quercus robur Netherlands G.J.M. Verkley KF253575 KF253090 KF252620 KF252133 KF251628 KF253930 KF254280<br />

Septoria quercicola <strong>CBS</strong> 115136 Quercus robur Netherlands G.J.M. Verkley KF253576 KF253091 KF252621 KF252134 KF251629 KF253931 KF254281<br />

Septoria quercicola <strong>CBS</strong> 663.94 Quercus robur Netherlands H.A. van der Aa KF253577 KF253092 KF252622 KF252135 KF251630 KF253932 KF254282<br />

Sphaerulina<br />

rhabdoclinis<br />

Dothistroma<br />

rhabdoclinis<br />

<strong>CBS</strong> 102195 Pseudotsuga menziesii Germany H. Butin KF253578 KF253093 KF252623 KF252136 KF251631 – KF254283<br />

Sphaerulina socia Septoria rosae <strong>CBS</strong> 355.58 Rosa sp. – – KF253579 KF253094 KF252624 KF252137 KF251632 KF253933 KF254284<br />

Septoria socia <strong>CBS</strong> 357.58 Chrysanthemum<br />

Germany R. Schneider KF253580 KF253095 KF252625 KF252138 KF251633 KF253934 KF254285<br />

leucanthemum<br />

Sphaerulina sp. Septoria sp. <strong>CBS</strong> 102063 Actinidia deliciosa New<br />

C.F. Hill KF253581 KF253096 KF252627 KF252140 KF251635 KF253935 KF254286<br />

Zealand<br />

Sphaerulina sp. Septoria lysimachiae <strong>CBS</strong> 128758 Lysimachia clethroides South Korea H.D. Shin KF253582 KF253097 KF252628 KF252141 KF251636 KF253936 KF254287<br />

Sphaerulina tirolensis Septoria rubi <strong>CBS</strong> 109017 Rubus idaeus Austria G.J.M. Verkley KF253584 KF253099 KF252629 KF252142 KF251637 KF253938 KF254289<br />

Mycosphaerella rubi <strong>CBS</strong> 109018 Rubus idaeus Austria G.J.M. Verkley KF253585 KF253100 KF252630 KF252143 KF251638 KF253939 KF254290<br />

Sphaerulina viciae – <strong>CBS</strong> 131898 Vicia amurense South Korea H.D. Shin KF253586 KF253101 KF252631 KF252144 KF251639 KF253940 KF254291<br />

Sphaerulina<br />

Septoria rubi <strong>CBS</strong> 102327 Rubus sp. Netherlands G.J.M. Verkley KF253587 KF253102 KF252632 KF252145 KF251640 KF253941 KF254292<br />

westendorpii<br />

Mycosphaerella rubi <strong>CBS</strong> 109002 Rubus sp. Netherlands G.J.M. Verkley KF253588 KF253103 KF252633 KF252146 KF251641 KF253942 KF254293<br />

Septoria rubi <strong>CBS</strong> 117478 Rubus fruticosus Netherlands G.J.M. Verkley KF253589 KF253104 KF252634 KF252147 KF251642 KF253943 KF254294<br />

Zymoseptoria brevis – CPC 18102 Phalaris paradoxa Iran M. Razavi KF253590 – KF252635 KF252148 KF251643 KF253944 KF254295<br />

– CPC 18107 Phalaris minor Iran M. Razavi KF253591 – KF252636 KF252149 KF251644 KF253945 KF254296<br />

Zymoseptoria halophila – <strong>CBS</strong> 128854 Hordeum glaucum Iran M. Razavi KF253592 – – KF252150 KF251645 KF253946 KF254297<br />

Zymoseptoria tritici – CPC 18099 Aegilops tauschii Iran M. Razavi KF253594 – KF252638 KF252152 KF251647 KF253948 KF254299<br />

– <strong>CBS</strong> 392.59 Triticum aestivum Switzerland E. Becker KF253593 – KF252637 KF252151 KF251646 KF253947 KF254298<br />

1 <strong>CBS</strong>: <strong>CBS</strong> Fungal Biodiversity Centre, Centraalbureau voor Schimmelcultures, Utrecht, The Netherlands; CPC: Collection Pedro Crous, housed at <strong>CBS</strong>; S: William Quaedvlieg working collection (will be merged into the CPC collection); MP: Sandra Isabel<br />

Rodrigues Videira working collection (will be merged into the CPC collection).<br />

2<br />

Act:: Actin, Cal: Calmodulin, EF: Translation elongation factor 1-alpha, RPB2: RNA polymerase II second largest subunit, Btub: β-tubulin LSU: 28S large subunit of the nrRNA gene and ITS: internal transcribed spacer regions of the nrDNA operon.<br />

228


A new approach to species delimitation in Septoria<br />

previous results by Verkley et al. (2004a, b) which showed that both<br />

loci could not resolve the lower phylogenetic relationships between<br />

closely related Septoria species. Due to the presence of intron<br />

regions in the five remaining protein coding loci, these genes provide<br />

much higher interspecific variation than the more conserved ITS and<br />

LSU loci. These protein coding genes thus have (much) higher K2P<br />

inter- to intraspecific variation ratios: for Cal 14 : 1, RPB2 17 : 1, Act<br />

23 : 1, EF 26 : 1 and for Btub 29 : 1 (Fig. 1), making them all suitable<br />

for reliable species resolution throughout the range of septoria-like<br />

fungi. As the EF and Btub have the largest barcoding gap, these loci<br />

should give the highest species resolution and preferably be used for<br />

identifying species.<br />

Phylogeny<br />

Basal to the seven-locus tree are the outgroup taxon Readeriella<br />

mirabilis (<strong>CBS</strong> 125000), and a monophyletic group comprising 11<br />

strains, viz. Dothistroma pini (<strong>CBS</strong> 121011), D. septospora, (<strong>CBS</strong><br />

383.74), Passalora dissiliens (<strong>CBS</strong> 219.77), three Ramularia<br />

species (Mycosphaerella s. str., see Quaedvlieg et al. 2013) and<br />

three Zymoseptoria species, including its type species Z. tritici (syn.<br />

Mycosphaerella graminicola, Septoria tritici). The basal ingroup<br />

taxa include <strong>CBS</strong> 619.72 identified as Septoria oudemansii, a<br />

Pseudocercospora clade with six strains, and Cercosporella<br />

virgaureae (<strong>CBS</strong> 113304). A well-supported cluster of two basal<br />

lineages (bootstrap support 100 %) comprises a cluster (100 %)<br />

of two isolates identified as S. gladioli, and a second cluster<br />

(100 %) containing 10 strains representing four septoria-like<br />

species that are all associated with leaf spots on plants of the<br />

family Caryophyllaceae, and for which the new generic name<br />

Caryophylloseptoria is proposed below. These include C. silenes<br />

(<strong>CBS</strong> 109100, 109103), C. lychnidis (<strong>CBS</strong> 109098–109102), two<br />

isolates originating from Lychnis cognata in Korea for which the<br />

new species C. pseudolychnidis is proposed by Quaedvlieg et al.<br />

(2013) (<strong>CBS</strong> 128614, 128630), and two isolates of C. spergulae<br />

(<strong>CBS</strong> 397.52, 109010).<br />

The remaining ingroup can be devided into a Sphaerulina clade<br />

(100 %, 51 strains including the basal strain of Sph. abeliceae,<br />

<strong>CBS</strong> 128591) and main Septoria clade (80 %, 259 strains) with,<br />

positioned in between smaller groups comprised of “Septoria”<br />

cruciatae (<strong>CBS</strong> 123747, 123748), a small pseudocercosporellalike<br />

clade comprising Passalora fusimaculans (CPC 17277), a<br />

clade with Passalora depressa (CPC 14915), “Mycosphaerella”<br />

brassicicola and affiliated taxa with Pseudocercosporella asexual<br />

morphs (100 %, 9 strains), and a miscellaneous clade containing<br />

“Passalora” sp. (100 %, <strong>CBS</strong> 113989, 113999, 114275),<br />

Passalora dioscoreae (CPC 10855, 11513), Pseudocercosporella<br />

magnusiana (<strong>CBS</strong> 114735), Passalora janseana (<strong>CBS</strong> 145.37),<br />

“Septoria erigerontis” (CPC 19485), and a Cercospora clade<br />

(100 %, 4 strains).<br />

The Sphaerulina clade comprises the aforementioned <strong>CBS</strong><br />

128591 identified as S. abelicaea (from Zelkova serrata) and<br />

clades 1 and 2. Clade 1 (100 %, 37 strains) includes at its base<br />

three strains of Sph. cornicola, the sister taxa Sph. betulae and<br />

S. westendorpii (syn. S. rubi) on Rubus fruticosus (<strong>CBS</strong> 102327,<br />

109002, 117478), and Sph. socia (<strong>CBS</strong> 355.58, <strong>CBS</strong> 357.58).<br />

The remainder of clade 1 contains a well-supported cluster of 25<br />

strains with various species infecting herbaceous and woody hosts.<br />

<strong>CBS</strong> 109017 and 19018, originating from Rubus idaeus in Austria,<br />

represent a species for which Sphaerulina tirolensis sp. nov. is<br />

introduced below. Furthermore this cluster contains Sphaerulina<br />

berberidis (syn. Mycosphaerella berberidis, S. berberidis Niessl),<br />

Sph. azaleae, Sph. hyperici, Sph. menispermi, Sph. patriniae,<br />

Sph. cercidis, and Sph. gei. Clade 2 (74 %, 13 strains) of the<br />

Sphaerulina clade includes only species infecting tree, the poplar<br />

pathogens Sph. populicola (syn. Mycosphaerella populicola,<br />

<strong>CBS</strong> 100042), Sph. musiva (syn. Septoria musiva, four strains),<br />

and Sph. frondicola (syn. Mycosphaerella populi, S. populi, <strong>CBS</strong><br />

391.59), and furthermore Sphaerulina aceris (syn. Mycosphaerella<br />

latebrosa, Phloeospora aceris, asexual morph S. aceris, three<br />

strains), which causes leaf spot on Acer spp., and Sph. quercicola<br />

(syn. S. querciola).<br />

At the base of the main Septoria clade, a well-supported<br />

clade 3 (88 %, 16 strains) includes several species associated<br />

with hosts in the Apiaceae, viz., S. oenanthis (<strong>CBS</strong> 128667)<br />

and S. oenanthicola (<strong>CBS</strong> 128649; a new species proposed by<br />

Quaedvlieg et al. (2013), S. sii (<strong>CBS</strong> 118.96, 102369, 102370),<br />

and S. aegopodii (<strong>CBS</strong> 123740, 123741), and associated with<br />

other plant families, S. dearnessii (<strong>CBS</strong> 128624), a cluster of two<br />

strains of S. lactucae (<strong>CBS</strong> 352.58, 108943) and S. sonchi (<strong>CBS</strong><br />

128757), S. campanulae (<strong>CBS</strong> 128589, 128604), S. mazi (<strong>CBS</strong><br />

128656, 128755), and S. gentianae (<strong>CBS</strong> 128633). In clade 4<br />

(100 %, 183 strains) S. bupleuricola (<strong>CBS</strong> 128601, 128603) and<br />

S. scabiosicola (100 %, 12 strains) occupy a basal position and<br />

subclades 4a–d can be distinguished. Subclade 4a (100 %, 46<br />

strains) comprises of a group of 13 strains of miscellaneous host<br />

plants, mostly with smaller conidia, viz., two Solanum pathogens S.<br />

lycopersici (<strong>CBS</strong> 354.49, 128654) and S. malagutii (<strong>CBS</strong> 106.80),<br />

S. apiicola (4 strains), S. cucurbitacearum (<strong>CBS</strong> 178.77), and S.<br />

aridis (4 strains), and a second strain identified as S.posonniensis<br />

(<strong>CBS</strong> 128658). Subclade 4b (100 %, 33 strains) harbours several<br />

taxa infecting Asteraceae, among others S. obesa (four strains),<br />

S. senecionis (three strains), S. putrida (<strong>CBS</strong> 109087, 109088),<br />

S. leucanthemi (6 strains), S.cirsii (<strong>CBS</strong> 128621), six strains of<br />

the S. chrysanthemella complex, S. exotica (<strong>CBS</strong> 163.78), and<br />

S. posoniensis (<strong>CBS</strong> 128645). Furthermore this group of 33<br />

comprises taxa with relatively large conidia capable of infecting<br />

Ranunculaceae, viz. S.lycoctoni, S. napelli (<strong>CBS</strong> 109104–109106)<br />

from Austria and S. pseudonapelli (<strong>CBS</strong> 128664; a new species<br />

proposed by Quaedvlieg et al. 2013) from Korea. It also includes<br />

S. lycopicola (128651), <strong>CBS</strong> 128662 identified as S. stachydicola<br />

(probably misidentified), and two strains of S. astericola (<strong>CBS</strong><br />

128587, 128593). Subclade 4c (99 %, 15 strains) contains S.<br />

matricariae (<strong>CBS</strong> 109000, 109001), S. lamiicola (8 strains), S.<br />

anthrisci (<strong>CBS</strong> 109019, 109020), and S. petroselini (<strong>CBS</strong> 182.44,<br />

109521), and subclade 4d (100 %, 103 strains) shows four<br />

subgroups, 4d-1–4. Basic to these are found S. dolichospora (<strong>CBS</strong><br />

129152) and S. helianthi (<strong>CBS</strong> 123.81). Subclade 4d-1 (100 %, 45<br />

strains) contains S. cf. stachydicola (<strong>CBS</strong> 128668 ; see Quaedvlieg<br />

et al. 2013), and many other species infecting herbaceous plants,<br />

among others S. stachydis (nine strains), S. phlogis (three strains),<br />

S. epambrosiae (<strong>CBS</strong> 128629, 128636), S. cerastii (five strains),<br />

S. galeopsidis (seven strains), S. stachydis (9 strains), S. epilobii<br />

(<strong>CBS</strong> 109084, 109085) and S. digitalis (<strong>CBS</strong> 391.63, 328.67).<br />

Subclade 4d-2 (100 %, 35 strains) comprises among others S.<br />

polygonorum (six strains), S. urticae and S convolvuli (three strains<br />

each), S.villarsiae, S. crepidis, and S. codonopsidis. Subclade<br />

4d-3 (99 %, 11 strains) containing S. erigerontis (five strains), S.<br />

lysimachii (five strains), and S. saccardoi (<strong>CBS</strong> 128756). Subclade<br />

4d-4 (100 %, 9 strains) contains S. bothriospermi (<strong>CBS</strong> 128592,<br />

128599), S. tinctoriae (<strong>CBS</strong> 129154), four strains identified as S.<br />

rubi that need to be re-named, and S.agrimoniicola (<strong>CBS</strong> 128585,<br />

128602).<br />

www.studiesinmycology.org<br />

229


Verkley et al.<br />

Caryophyllaceae<br />

Rutaceae<br />

Araceae<br />

Brassicaceae<br />

Rosaceae<br />

Polygonaceae<br />

Scrophulariaceae<br />

Fabaceae<br />

Lamiaceae<br />

Ranunculaceae<br />

Apiaceae<br />

Asteraceae<br />

0.2<br />

1<br />

0.82<br />

0.8<br />

0.77<br />

1<br />

0.89<br />

0.98<br />

1<br />

1 Septoria hippocastani CPC 23103<br />

0.97 Septoria hippocastani <strong>CBS</strong> 411.61<br />

1<br />

Septoria sp. <strong>CBS</strong> 112737<br />

Septoria astragali <strong>CBS</strong> 109116<br />

1<br />

1 Septoria astragali <strong>CBS</strong> 109117<br />

Septoria astragali <strong>CBS</strong> 123878<br />

Septoria rumicum <strong>CBS</strong> 503.76<br />

Septoria stellariae <strong>CBS</strong> 102376<br />

1 Septoria stellariae <strong>CBS</strong> 102378<br />

Septoria stellariae <strong>CBS</strong> 102410<br />

Septoria helianthicola <strong>CBS</strong> 122.81<br />

0.95 Septoria coprosmae <strong>CBS</strong> 113391<br />

Septoria sp. <strong>CBS</strong> 135472<br />

1 0.72<br />

Septoria sp. CPC 19793<br />

1 Septoria verbenae <strong>CBS</strong> 113438<br />

Septoria verbenae <strong>CBS</strong> 113481<br />

Septoria sp. CPC 19976<br />

0.58 Septoria limonum <strong>CBS</strong> 419.51<br />

Septoria sp. <strong>CBS</strong> 120739<br />

Septoria chamaecisti <strong>CBS</strong> 350.58<br />

Septoria citricola <strong>CBS</strong> 356.36<br />

Septoria protearum <strong>CBS</strong> 390.59<br />

0.91<br />

1 Septoria protearum <strong>CBS</strong> 364.97<br />

Septoria protearum <strong>CBS</strong> 119942<br />

Septoria protearum <strong>CBS</strong> 778.97<br />

Septoria protearum <strong>CBS</strong> 164.78<br />

Septoria protearum <strong>CBS</strong> 179.77<br />

Septoria protearum <strong>CBS</strong> 658.77<br />

Septoria protearum <strong>CBS</strong> 113114<br />

0.94<br />

Septoria protearum <strong>CBS</strong> 101013<br />

Septoria protearum <strong>CBS</strong> 410.61<br />

1 Septoria protearum <strong>CBS</strong> 101354<br />

Septoria protearum <strong>CBS</strong> 113392<br />

1 Septoria protearum <strong>CBS</strong> 420.51<br />

Septoria protearum <strong>CBS</strong> 566.88<br />

Septoria protearum <strong>CBS</strong> 135477<br />

Septoria protearum CPC 19691<br />

Septoria protearum <strong>CBS</strong> 177.77<br />

Septoria protearum <strong>CBS</strong> 315.37<br />

Septoria lepidiicola <strong>CBS</strong> 128635<br />

Septoria cucubali <strong>CBS</strong> 102367<br />

0.91 Septoria cucubali <strong>CBS</strong> 102386<br />

1<br />

Septoria cucubali <strong>CBS</strong> 102368<br />

Septoria cucubali <strong>CBS</strong> 124874<br />

Septoria linicola <strong>CBS</strong> 316.37<br />

Septoria justiciae <strong>CBS</strong> 12509<br />

1 Septoria justiciae <strong>CBS</strong> 128625<br />

Septoria justiciae <strong>CBS</strong> 128610<br />

Septoria eucalyptorum <strong>CBS</strong> 118505<br />

1 Septoria anthurii <strong>CBS</strong> 148.41<br />

1 Septoria anthurii <strong>CBS</strong> 346.58<br />

1 Septoria sisyrinchii <strong>CBS</strong> 112096<br />

1 Septoria passiflorae <strong>CBS</strong> 102701<br />

1 Septoria passifloricola <strong>CBS</strong> 129431<br />

1 Septoria chromolaenae <strong>CBS</strong> 113373<br />

1 Septoria ekmaniana <strong>CBS</strong> 113385<br />

Septoria ekmaniana <strong>CBS</strong> 113612<br />

1 Septoria abei <strong>CBS</strong> 128598<br />

1 Septoria hibiscicola <strong>CBS</strong> 128615<br />

Septoria hibiscicola <strong>CBS</strong> 128611<br />

Septoria sp. CPC 19716<br />

1 Septoria clematidis <strong>CBS</strong> 108983<br />

Septoria clematidis <strong>CBS</strong> 108984<br />

1 Septoria bupleuricola <strong>CBS</strong> 128601<br />

Septoria bupleuricola <strong>CBS</strong> 128603<br />

1 Septoria agrimoniicola <strong>CBS</strong> 128585<br />

Septoria agrimoniicola <strong>CBS</strong> 128602<br />

0.97 Septoria cf. rubi <strong>CBS</strong> 128646<br />

Septoria cf. rubi <strong>CBS</strong> 128648<br />

1 1 Septoria cf. rubi <strong>CBS</strong> 128760<br />

1 Septoria cf. rubi CPC 12331<br />

Septoria tinctoriae <strong>CBS</strong> 129154<br />

1 Septoria bothriospermi <strong>CBS</strong> 128592<br />

Septoria bothriospermi <strong>CBS</strong> 128599<br />

Septoria saccardoi <strong>CBS</strong> 128756<br />

1 Septoria lysimachiae <strong>CBS</strong> 102315<br />

Septoria lysimachiae <strong>CBS</strong> 108999<br />

1 Septoria lysimachiae <strong>CBS</strong> 108998<br />

Septoria lysimachiae <strong>CBS</strong> 123795<br />

Septoria lysimachiae <strong>CBS</strong> 123794<br />

Septoria erigerontis <strong>CBS</strong> 131893<br />

Septoria erigerontis <strong>CBS</strong> 128606<br />

1 Septoria erigerontis <strong>CBS</strong> 186.93<br />

Septoria erigerontis <strong>CBS</strong> 109094<br />

Septoria erigerontis <strong>CBS</strong> 109095<br />

1 Septoria codonopsidis <strong>CBS</strong> 128620<br />

0.62 Septoria codonopsidis <strong>CBS</strong> 128609<br />

0.91<br />

Septoria leptostachyae <strong>CBS</strong> 128613<br />

1 Septoria leptostachyae <strong>CBS</strong> 128628<br />

Septoria pachyspora <strong>CBS</strong> 128652<br />

0.87<br />

Septoria crepidis <strong>CBS</strong> 128619<br />

1 Septoria crepidis <strong>CBS</strong> 12539<br />

0.84 Septoria crepidis <strong>CBS</strong> 128608<br />

Septoria sp. <strong>CBS</strong> 128650<br />

0.58 1 Septoria tormentillae <strong>CBS</strong> 128643<br />

Septoria tormentillae <strong>CBS</strong> 128647<br />

Septoria dysentericae <strong>CBS</strong> 128637<br />

1 Septoria dysentericae <strong>CBS</strong> 131892<br />

0.83 Septoria dysentericae <strong>CBS</strong> 128638<br />

1 Septoria callistephi <strong>CBS</strong> 128590<br />

Septoria callistephi <strong>CBS</strong> 128594<br />

Septoria villarsiae <strong>CBS</strong> 604.66<br />

1<br />

1 Septoria villarsiae <strong>CBS</strong> 565.88<br />

0.73<br />

Septoria villarsiae <strong>CBS</strong> 514.78<br />

Septoria glycines <strong>CBS</strong> 336.53<br />

Septoria glycinicola <strong>CBS</strong> 128618<br />

1 Septoria perillae <strong>CBS</strong> 128655<br />

Septoria menthae <strong>CBS</strong> 404.34<br />

Septoria convolvuli <strong>CBS</strong> 113111<br />

1 Septoria convolvuli <strong>CBS</strong> 128627<br />

1 Septoria convolvuli <strong>CBS</strong> 102325<br />

1 Septoria urticae <strong>CBS</strong> 102316<br />

Septoria urticae <strong>CBS</strong> 102375<br />

Septoria urticae <strong>CBS</strong> 102371<br />

Septoria polygonorum <strong>CBS</strong> 102330<br />

1 Septoria polygonorum <strong>CBS</strong> 347.67<br />

Septoria polygonorum <strong>CBS</strong> 102331<br />

Septoria polygonorum <strong>CBS</strong> 109834<br />

Septoria polygonorum <strong>CBS</strong> 113110<br />

Septoria polygonorum <strong>CBS</strong> 108982<br />

0.65<br />

0.99<br />

5B<br />

5A<br />

4D4<br />

4D3<br />

4D2<br />

Septoria<br />

Fig. 2. Consensus phylogram (50 % majority rule) of 17 222 trees resulting from a Bayesian analysis of the combined seven loci sequence alignment using MrBayes v. 3.2.1.<br />

Bayesian posterior probabilities values are indicated on their respective branches and the scale bar indicates 0.2 expected changes per site. The tree was rooted to Readeriella<br />

mirabilis (Teratosphaeriaceae) (<strong>CBS</strong> 125000). The family of the host plant from which the strain was isolated is indicated for 12 most prevalently occurring host families in our<br />

dataset (colour bar according to the legend).<br />

230


A new approach to species delimitation in Septoria<br />

Caryophyllaceae<br />

Rutaceae<br />

Araceae<br />

Brassicaceae<br />

Rosaceae<br />

Polygonaceae<br />

Scrophulariaceae<br />

Fabaceae<br />

Lamiaceae<br />

Ranunculaceae<br />

Apiaceae<br />

Asteraceae<br />

0.2<br />

0.8<br />

1<br />

1<br />

1<br />

0.77<br />

0.85<br />

1 Septoria sp. CPC 23104<br />

1 Septoria digitalis <strong>CBS</strong> 328.67<br />

Septoria digitalis <strong>CBS</strong> 391.63<br />

1 Septoria epilobii <strong>CBS</strong> 109084<br />

Septoria epilobii <strong>CBS</strong> 109085<br />

11<br />

Septoria taraxaci <strong>CBS</strong> 567.75<br />

Septoria verbascicola <strong>CBS</strong> 102401<br />

Septoria stachydis <strong>CBS</strong> 347.58<br />

0.86<br />

Septoria stachydis <strong>CBS</strong> 449.68<br />

Septoria stachydis <strong>CBS</strong> 109127<br />

1 Septoria stachydis <strong>CBS</strong> 109126<br />

Septoria stachydis <strong>CBS</strong> 123750<br />

Septoria stachydis <strong>CBS</strong> 123879<br />

Septoria stachydis <strong>CBS</strong> 109115<br />

0.98<br />

Septoria stachydis <strong>CBS</strong> 102337<br />

Septoria stachydis <strong>CBS</strong> 102326<br />

1<br />

1<br />

Septoria melissae <strong>CBS</strong> 109097<br />

Septoria galeopsidis <strong>CBS</strong> 191.26<br />

Septoria galeopsidis <strong>CBS</strong> 102314<br />

1 Septoria galeopsidis <strong>CBS</strong> 102411<br />

Septoria galeopsidis <strong>CBS</strong> 123744<br />

Septoria galeopsidis <strong>CBS</strong> 123745<br />

Septoria galeopsidis <strong>CBS</strong> 123746<br />

1 Septoria galeopsidis <strong>CBS</strong> 123749<br />

Septoria orchidearum <strong>CBS</strong> 128631<br />

0.9<br />

1 Septoria orchidearum <strong>CBS</strong> 109114<br />

Septoria orchidearum <strong>CBS</strong> 457.78<br />

0.75Septoria cerastii <strong>CBS</strong> 102323<br />

Septoria cerastii <strong>CBS</strong> 128612<br />

Septoria cerastii <strong>CBS</strong> 128586<br />

1<br />

Septoria cerastii <strong>CBS</strong> 128626<br />

Septoria cerastii CPC 12343<br />

1 1 Septoria epambrosiae <strong>CBS</strong> 128629<br />

1 Septoria epambrosiae <strong>CBS</strong> 128636<br />

1 Septoria phlogis <strong>CBS</strong> 128663<br />

Septoria phlogis <strong>CBS</strong> 577.90<br />

Septoria phlogis <strong>CBS</strong> 102317<br />

Septoria calendulae <strong>CBS</strong> 349.58<br />

1 1 1 Septoria siegesbeckiae <strong>CBS</strong> 128661<br />

Septoria siegesbeckiae <strong>CBS</strong> 128659<br />

1 1 Septoria violae-palustris <strong>CBS</strong> 128660<br />

Septoria violae-palustris <strong>CBS</strong> 128644<br />

1 Septoria chelidonii <strong>CBS</strong> 128607<br />

Septoria chelidonii CPC 12337<br />

Septoria stachydicola <strong>CBS</strong> 128668<br />

Septoria helianthi <strong>CBS</strong> 123.81<br />

Septoria dolichospora <strong>CBS</strong> 129152<br />

1 Septoria petroselini <strong>CBS</strong> 182.44<br />

Septoria petroselini <strong>CBS</strong> 109521<br />

1 Septoria anthrisci <strong>CBS</strong> 109019<br />

1 Septoria anthrisci <strong>CBS</strong> 109020<br />

Septoria lamiicola <strong>CBS</strong> 102328<br />

Septoria lamiicola <strong>CBS</strong> 102379<br />

Septoria lamiicola <strong>CBS</strong> 102329<br />

0.62<br />

Septoria lamiicola <strong>CBS</strong> 109112<br />

1 Septoria lamiicola <strong>CBS</strong> 102380<br />

Septoria lamiicola <strong>CBS</strong> 109113<br />

Septoria lamiicola <strong>CBS</strong> 123882<br />

0.93 Septoria lamiicola <strong>CBS</strong> 123883<br />

1 Septoria lamiicola <strong>CBS</strong> 123884<br />

1 Septoria matricariae <strong>CBS</strong> 109000<br />

Septoria matricariae <strong>CBS</strong> 109001<br />

Septoria pseudonapelli <strong>CBS</strong> 128664<br />

Septoria napelli <strong>CBS</strong> 109105<br />

1<br />

Septoria napelli <strong>CBS</strong> 109104<br />

1 Septoria napelli <strong>CBS</strong> 109106<br />

Septoria lycoctoni <strong>CBS</strong> 109089<br />

1 Septoria exotica <strong>CBS</strong> 163.78<br />

Septoria posoniensis <strong>CBS</strong> 128645<br />

1 Septoria chrysanthemella <strong>CBS</strong> 128716<br />

1<br />

0.96 Septoria chrysanthemella <strong>CBS</strong> 128617<br />

Septoria chrysanthemella <strong>CBS</strong> 354.73<br />

1 1<br />

1 Septoria chrysanthemella <strong>CBS</strong> 351.58<br />

1 Septoria chrysanthemella <strong>CBS</strong> 483.63<br />

Septoria chrysanthemella <strong>CBS</strong> 128622<br />

Septoria cirsii <strong>CBS</strong> 128621<br />

0.97<br />

Septoria leucanthemi <strong>CBS</strong> 353.58<br />

1 Septoria leucanthemi <strong>CBS</strong> 113112<br />

Septoria leucanthemi <strong>CBS</strong> 109090<br />

1 Septoria leucanthemi <strong>CBS</strong> 109091<br />

Septoria leucanthemi <strong>CBS</strong> 109083<br />

1 Septoria leucanthemi <strong>CBS</strong> 109086<br />

1 Septoria putrida <strong>CBS</strong> 109087<br />

1 Septoria putrida <strong>CBS</strong> 109088<br />

Septoria senecionis <strong>CBS</strong> 102381<br />

1 Septoria senecionis <strong>CBS</strong> 102366<br />

Septoria senecionis <strong>CBS</strong> 102366<br />

1 Septoria lycopicola <strong>CBS</strong> 128651<br />

Septoria cf. stachydicola <strong>CBS</strong> 128662<br />

1 Septoria astericola <strong>CBS</strong> 128587<br />

Septoria astericola <strong>CBS</strong> 128593<br />

Septoria obesa <strong>CBS</strong> 128588<br />

1 1 Septoria obesa <strong>CBS</strong> 128623<br />

Septoria obesa <strong>CBS</strong> 354.58<br />

0.83<br />

Septoria obesa <strong>CBS</strong> 128759<br />

Septoria sp. <strong>CBS</strong> 128658<br />

1 Septoria paridis <strong>CBS</strong> 109110<br />

1 Septoria paridis <strong>CBS</strong> 109111<br />

Septoria paridis <strong>CBS</strong> 109109<br />

Septoria paridis <strong>CBS</strong> 109108<br />

1<br />

Septoria apiicola <strong>CBS</strong> 389.59<br />

1 Septoria apiicola <strong>CBS</strong> 116465<br />

Septoria apiicola <strong>CBS</strong> 400.54<br />

0.95<br />

Septoria apiicola <strong>CBS</strong> 395.52<br />

1 Septoria cucurbitacearum <strong>CBS</strong> 178.77<br />

1 Septoria lycopersici <strong>CBS</strong> 354.49<br />

1 Septoria lycopersici <strong>CBS</strong> 128654<br />

Septoria malagutii <strong>CBS</strong> 106.80<br />

Septoria atropurpurea <strong>CBS</strong> 348.58<br />

Septoria scabiosicola <strong>CBS</strong> 182.93<br />

Septoria scabiosicola <strong>CBS</strong> 317.37<br />

Septoria scabiosicola <strong>CBS</strong> 102335<br />

Septoria scabiosicola <strong>CBS</strong> 102336<br />

0.78 Septoria scabiosicola <strong>CBS</strong> 102334<br />

Septoria scabiosicola <strong>CBS</strong> 102333<br />

Septoria scabiosicola <strong>CBS</strong> 109092<br />

0.75<br />

Septoria scabiosicola <strong>CBS</strong> 109093<br />

Septoria scabiosicola <strong>CBS</strong> 109128<br />

1 Septoria scabiosicola <strong>CBS</strong> 109129<br />

Septoria scabiosicola <strong>CBS</strong> 109021<br />

Septoria scabiosicola <strong>CBS</strong> 108981<br />

4D1<br />

4C<br />

4B<br />

4A<br />

Septoria<br />

(cont.)<br />

Fig. 2. (Continued).<br />

www.studiesinmycology.org<br />

231


Verkley et al.<br />

Caryophyllaceae<br />

Rutaceae<br />

Araceae<br />

Brassicaceae<br />

Rosaceae<br />

Polygonaceae<br />

Scrophulariaceae<br />

Fabaceae<br />

Lamiaceae<br />

Ranunculaceae<br />

Apiaceae<br />

Asteraceae<br />

0.88<br />

0.57<br />

2x<br />

1<br />

1<br />

0.99<br />

0.81<br />

2x<br />

1<br />

2x<br />

1<br />

1<br />

0.79<br />

2x<br />

0.58<br />

1 Septoria aegopodina <strong>CBS</strong> 123740<br />

0.8<br />

Septoria aegopodina <strong>CBS</strong> 123741<br />

0.88 Septoria gentianae <strong>CBS</strong> 128633<br />

1<br />

Septoria oenanthicola <strong>CBS</strong> 128649<br />

0.61 Septoria mazi <strong>CBS</strong> 128656<br />

1 Septoria mazi <strong>CBS</strong> 128755<br />

1 1 Septoria sii <strong>CBS</strong> 118.96<br />

1 Septoria sii <strong>CBS</strong> 102369<br />

1 Septoria sii <strong>CBS</strong> 102370<br />

Septoria oenanthis <strong>CBS</strong> 128667<br />

0.99<br />

1 Septoria campanulae <strong>CBS</strong> 128589<br />

Septoria campanulae <strong>CBS</strong> 128604<br />

0.88<br />

1 Septoria lactucae <strong>CBS</strong> 352.58<br />

1 Septoria lactucae <strong>CBS</strong> 108943<br />

Septoria cf. sonchi <strong>CBS</strong> 128757<br />

Septoria dearnessii <strong>CBS</strong> 128624<br />

Cercospora apii <strong>CBS</strong> 118712<br />

0.99<br />

Cercospora zebrina <strong>CBS</strong> 118790<br />

1 1<br />

Cercospora ariminensis <strong>CBS</strong> 137.56<br />

0.8<br />

Cercospora beticola <strong>CBS</strong> 124.31<br />

0.8<br />

Septoria sp. <strong>CBS</strong> 135474<br />

Passalora janseana <strong>CBS</strong> 145.37<br />

2x 1<br />

1 Passalora dioscoreae <strong>CBS</strong> 135460<br />

0.62<br />

Passalora dioscoreae <strong>CBS</strong> 135463<br />

Pseudocercosporella magnusiana <strong>CBS</strong> 114735<br />

Passalora sp. <strong>CBS</strong> 113998<br />

1 Passalora sp. <strong>CBS</strong> 113999<br />

Passalora sp. <strong>CBS</strong> 114275<br />

1 Mycosphaerella brassicicola <strong>CBS</strong> 228.32<br />

Mycosphaerella brassicicola <strong>CBS</strong> 267.53<br />

0.94 Mycosphaerella capsellae <strong>CBS</strong> 112032<br />

Pseudocercosporella capsellae <strong>CBS</strong> 127.29<br />

1<br />

1 Pseudocercosporella capsellae <strong>CBS</strong> 118412<br />

0.79<br />

Pseudocercosporella capsellae <strong>CBS</strong> 112033<br />

2x<br />

1 2x<br />

Mycosphaerella sp. <strong>CBS</strong> 135464<br />

Passalora depressa CPC 14915<br />

0.8<br />

Pseudocercosporella pastinacae <strong>CBS</strong> 114116<br />

“Septoria” cruciatae <strong>CBS</strong> 123747<br />

“Septoria” cruciatae <strong>CBS</strong> 123748<br />

Passalora fusimaculans CPC 17277<br />

Sphaerulina populicola <strong>CBS</strong> 100042<br />

1 Sphaerulina musiva <strong>CBS</strong> 130559<br />

Sphaerulina musiva <strong>CBS</strong> 130563<br />

1<br />

1<br />

Sphaerulina musiva <strong>CBS</strong> 130562<br />

Sphaerulina musiva <strong>CBS</strong> 130569<br />

0.72<br />

Sphaerulina frondicola <strong>CBS</strong> 391.59<br />

Sphaerulina quercicola <strong>CBS</strong> 663.94<br />

1 Sphaerulina quercicola <strong>CBS</strong> 109009<br />

0.74<br />

Sphaerulina quercicola <strong>CBS</strong> 115016<br />

2x<br />

Sphaerulina quercicola <strong>CBS</strong> 115136<br />

Sphaerulina aceris <strong>CBS</strong> 183.97<br />

1 Sphaerulina aceris <strong>CBS</strong> 652.85<br />

Sphaerulina aceris <strong>CBS</strong> 687.94<br />

Sphaerulina amelanchier CPC 23106<br />

0.82 Sphaerulina amelanchier <strong>CBS</strong> 135110<br />

0.9 Sphaerulina amelanchier CPC 23105<br />

1 Sphaerulina rhabdoclinis <strong>CBS</strong> 102195<br />

Sphaerulina sp. <strong>CBS</strong> 102063<br />

0.69 Sphaerulina sp. CPC 23107<br />

Sphaerulina gei <strong>CBS</strong> 102318<br />

1 1<br />

Sphaerulina gei <strong>CBS</strong> 128616<br />

Sphaerulina gei <strong>CBS</strong> 128632<br />

Sphaerulina viciae <strong>CBS</strong> 131898<br />

1 Sphaerulina cercidis <strong>CBS</strong> 128634<br />

Sphaerulina cercidis <strong>CBS</strong> 118910<br />

1 Sphaerulina cercidis <strong>CBS</strong> 129151<br />

1<br />

0.54 Sphaerulina cercidis <strong>CBS</strong> 501.50<br />

0.65 Sphaerulina sp. <strong>CBS</strong> 128758<br />

0.79<br />

1 Sphaerulina patriniae <strong>CBS</strong> 128653<br />

Sphaerulina patriniae <strong>CBS</strong> 129153<br />

1<br />

1 Sphaerulina menispermi <strong>CBS</strong> 128666<br />

1<br />

Sphaerulina menispermi <strong>CBS</strong> 128761<br />

Sphaerulina hyperici <strong>CBS</strong> 102313<br />

1 1 Sphaerulina azaleae <strong>CBS</strong> 352.49<br />

0.89 Sphaerulina azaleae <strong>CBS</strong> 128605<br />

Sphaerulina berberidis <strong>CBS</strong> 324.52<br />

0.83<br />

1 Sphaerulina tirolensis <strong>CBS</strong> 109018<br />

Sphaerulina tirolensis <strong>CBS</strong> 109017<br />

1<br />

1 Sphaerulina socia <strong>CBS</strong> 355.58<br />

Sphaerulina socia <strong>CBS</strong> 357.58<br />

0.82<br />

Sphaerulina betulae <strong>CBS</strong> 116724<br />

1 Sphaerulina betulae <strong>CBS</strong> 128597<br />

Sphaerulina betulae <strong>CBS</strong> 128600<br />

1<br />

Sphaerulina betulae <strong>CBS</strong> 128596<br />

1<br />

Sphaerulina westendorpii <strong>CBS</strong> 109002<br />

1 Sphaerulina westendorpii <strong>CBS</strong> 117478<br />

Sphaerulina westendorpii <strong>CBS</strong> 102327<br />

Sphaerulina cornicola <strong>CBS</strong> 102324<br />

Sphaerulina cornicola <strong>CBS</strong> 102332<br />

Sphaerulina cornicola <strong>CBS</strong> 116778<br />

Sphaerulina abeliceae <strong>CBS</strong> 128591<br />

1 Caryophylloseptoria spergulae <strong>CBS</strong> 397.52<br />

0.96 Caryophylloseptoria spergulae <strong>CBS</strong> 109010<br />

1 Caryophylloseptoria pseudolychnidis <strong>CBS</strong> 128630<br />

0.97 Caryophylloseptoria pseudolychnidis <strong>CBS</strong> 128614<br />

Caryophylloseptoria lychnidis <strong>CBS</strong> 109098<br />

1 Caryophylloseptoria lychnidis <strong>CBS</strong> 109099<br />

1<br />

Caryophylloseptoria lychnidis <strong>CBS</strong> 109101<br />

Caryophylloseptoria lychnidis <strong>CBS</strong> 109102<br />

1 Caryophylloseptoria silenes <strong>CBS</strong> 109100<br />

Caryophylloseptoria silenes <strong>CBS</strong> 109103<br />

1 “Septoria” gladioli <strong>CBS</strong> 121.20<br />

“Septoria” gladioli <strong>CBS</strong> 353.29<br />

Cercosporella virgaureae <strong>CBS</strong> 113304<br />

Pseudocercospora flavomarginata <strong>CBS</strong> 124990<br />

1 Pseudocercospora tereticornis <strong>CBS</strong> 124996<br />

1 Pseudocercospora pyracanthigena CPC 10808<br />

0.97 Pseudocercospora schizolobii <strong>CBS</strong> 120029<br />

Pseudocercospora rhoina CPC 11464<br />

0.82<br />

Pseudocercospora madagascariensis <strong>CBS</strong> 124155<br />

“Septoria” oudemansii <strong>CBS</strong> 619.72<br />

1 Dothistroma pini <strong>CBS</strong> 121011<br />

Dothistroma septospora <strong>CBS</strong> 383.74<br />

Passalora dissiliens <strong>CBS</strong> 219.77<br />

1<br />

Ramularia endophylla <strong>CBS</strong> 113265<br />

1<br />

Ramularia eucalypti <strong>CBS</strong> 120726<br />

Ramularia lamii CPC 11312<br />

1 Zymoseptoria brevis CPC 18102<br />

1 Zymoseptoria brevis CPC 18107<br />

1 1 Zymoseptoria tritici <strong>CBS</strong> 392.59<br />

Zymoseptoria tritici CPC 18099<br />

Zymoseptoria halophila <strong>CBS</strong> 128854<br />

Readeriella mirabilis <strong>CBS</strong> 125000<br />

0.2<br />

3<br />

2<br />

1<br />

Septoria<br />

(cont.)<br />

Cercospora<br />

Incertae sedis<br />

Pseudocercospora<br />

pseudocercosporella<br />

like<br />

Sphaerulina<br />

Caryophylloseptoria<br />

septoria-like<br />

Cercosporella<br />

Incertae sedis<br />

Dothistroma<br />

Incertae sedis<br />

Ramularia<br />

Zymoseptoria<br />

Readeriella<br />

Fig. 2. (Continued).<br />

232


A new approach to species delimitation in Septoria<br />

Table 2. Primer combinations used during this study for generic amplification and sequencing.<br />

Locus Primer Primer sequence 5’ to 3’: Annealing Orientation Reference<br />

temperature<br />

(°C)<br />

Translation elongation factor-1α EF1-728F CATCGAGAAGTTCGAGAAGG 52 Forward Carbone & Kohn (1999)<br />

EF-2 GGARGTACCAGTSATCATGTT 52 Reverse O’Donnell et al. (1998)<br />

β-tubulin T1 AACATGCGTGAGATTGTAAGT 52 Forward O’Donnell & Cigelnik (1997)<br />

β-Sandy-R GCRCGNGGVACRTACTTGTT 52 Reverse Stukenbrock et al. (2012)<br />

RNA polymerase II second largest subunit fRPB2-5F GAYGAYMGWGATCAYTTYGG 49 Forward Liu et al. (1999)<br />

fRPB2-414R ACMANNCCCCARTGNGWRTTRTG 49 Reverse Quaedvlieg et al. (2011)<br />

LSU LSU1Fd GRATCAGGTAGGRATACCCG 52 Forward Crous et al. (2009a)<br />

LR5 TCCTGAGGGAAACTTCG 52 Reverse Vilgalys & Hester (1990)<br />

ITS ITS5 GGAAGTAAAAGTCGTAACAAGG 52 Forward White et al. (1990)<br />

ITS4 TCCTCCGCTTATTGATATGC 52 Reverse White et al. (1990)<br />

Actin ACT-512F ATGTGCAAGGCCGGTTTCGC 52 Forward Carbone & Kohn (1999)<br />

ACT2Rd ARRTCRCGDCCRGCCATGTC 52 Reverse Groenewald et al. (2012)<br />

Calmodulin CAL-235F TTCAAGGAGGCCTTCTCCCTCTT 50 Forward Quaedvlieg et al. (2012)<br />

CAL2Rd TGRTCNGCCTCDCGGATCATCTC 50 Reverse Groenewald et al. (2012)<br />

Table 3. Amplification success, phylogenetic data and the substitution models used in the phylogenetic analysis, per locus.<br />

Locus Act Cal EF1 RPB2 Btub ITS LSU<br />

Amplification succes (%) 99 100 100 97 100 100 100<br />

Number of characters 304 601 619 354 565 574 853<br />

Unique site patterns 234 407 507 198 380 261 147<br />

Substitution model used GTR-I-gamma HKY-I-gamma GTR-I-gamma GTR-I-gamma HKY-I-gamma GTR-I-gamma GTR-I-gamma<br />

Number of generations (1000×) 10 197<br />

Total number of trees (n) 22 962<br />

Sampled trees (n) 17 222<br />

In clade 5 (92 %, 63 strains) of the main Septoria clade two<br />

main clusters are found. At the base of the subclade 5a (77 %, 52<br />

strains), two strains of S. clematidis (<strong>CBS</strong> 108983–4) and Septoria<br />

sp. (CPC 19716) originating from Searsia laevigatum in South<br />

Africa. This cluster furthermore comprises three strains isolated<br />

from Hibiscus spp., viz., S. hibiscicola (<strong>CBS</strong> 128611, 128615) and S.<br />

abei (<strong>CBS</strong> 128598), and two main groups, one with S. anthurii (<strong>CBS</strong><br />

148.41, 346.58), S. sisyrinchii (<strong>CBS</strong> 112096), the Chromolaena<br />

fungi S. chromolaenae (<strong>CBS</strong> 113373) and S. ekmanniana (<strong>CBS</strong><br />

113385, 113612), and S. passiflorae (<strong>CBS</strong> 102701) and S.<br />

passifloricola (<strong>CBS</strong> 129431), and a second group comprising at<br />

the base S. eucalyptorum (<strong>CBS</strong> 118505; Crous et al. 2006b), and<br />

furthermore S. justiciae (<strong>CBS</strong> 128610, 128625, and CPC 12509),<br />

S. linicola (<strong>CBS</strong> 316.37), S. cucubali (3 strains, including <strong>CBS</strong><br />

124874, an endophytic isolate from Fagus leaf litter), S. lepidiicola<br />

(<strong>CBS</strong> 128635) and and a partially unresolved cluster of 23 strains<br />

comprising the plurivorous S. protearum and S. citri complex. A<br />

small well-supported cluster (100 %) contains S. verbenae (<strong>CBS</strong><br />

113438, 113481), two unidentified species of Septoria (CPC 19304,<br />

from Vigna unguiculata subsp. sesquipedalis and CPC 19793, from<br />

Syzygium cordatum), and M. coacervata (<strong>CBS</strong> 113391). Subclade<br />

5b (100 %, 11 strains) comprises S. helianthicola (<strong>CBS</strong> 122.81),<br />

three strains of S. stellariae, <strong>CBS</strong> 503.76 identified as S. acetosae,<br />

three strains of S. astragali, “Cercospora sp.” (<strong>CBS</strong> 112737), and<br />

furthermore S. hippocastani (<strong>CBS</strong> 411.61 and MP11).<br />

Examining the distribution of host families throughout the tree,<br />

an interesting disjunct pattern is found for the families that are<br />

represented by more than a few specimens (see legend in Fig. 2).<br />

For example, the 28 species infecting Asteraceae are found in all<br />

clades and most subclades of the tree, including Sphaerulina; nine<br />

species infecting Apiaceae are found in clade 3 and subclades<br />

4a–d of Septoria; 10 species of Rosaceae in Septoria clades 4, 5<br />

and Sphaerulina (clades 1 and 2); six species infecting Lamiaceae<br />

are dispersed in subclades 4b, c, and d-1.<br />

TAXONOMY<br />

Caryophylloseptoria Verkley, Quaedvlieg & Crous, gen.<br />

nov. MycoBank MB804469.<br />

Etymology: Named after the plant family on which these taxa occur,<br />

Caryophyllaceae.<br />

Conidiomata pycnidial, epiphyllous or predominantly epiphyllous,<br />

globose to subglobose, or slightly depressed, with a central<br />

ostiolum. Conidiomatal wall composed of textura angularis or<br />

globulosa-angularis. Conidiogenous cells hyaline, holoblastic,<br />

proliferating percurrently 1–many times with indistinct annellations,<br />

www.studiesinmycology.org<br />

233


Verkley et al.<br />

Fig. 3. Caryophylloseptoria lychnidis. A. <strong>CBS</strong> 109098, colony on OA. B. Ibid., on CMA. C. Conidia and conidiogenous cells in planta (<strong>CBS</strong> 109098). D. Conidia on OA (<strong>CBS</strong><br />

109098). Scale bars = 10 µm.<br />

or (in addition) proliferating sympodially. Conidia cylindrical, straight,<br />

curved or flexuous, multiseptate, not or somewhat constricted<br />

around the septa, hyaline, contents with several oil-droplets and<br />

granular material in each cell.<br />

Type species: Caryophylloseptoria lychnidis (Desm.) Verkley,<br />

Quaedvlieg & Crous.<br />

Caryophylloseptoria lychnidis (Desm.) Verkley, Quaedvlieg<br />

& Crous, comb. nov. MycoBank MB804470. Fig. 3.<br />

Basionym: Septoria lychnidis Desm., Annls Sci. Nat., sér. 3, Bot.<br />

11: 347. 1849.<br />

For extended synonymy see Shin & Sameva (2004).<br />

Description in planta: Symptoms leaf spots circular, whitish to pale<br />

yellow, surrounded by a brown border; Conidiomata pycnidial,<br />

epiphyllous, several in each leaf spot, globose to subglobose, dark<br />

brown, semi-immersed, 50–100(–120) µm diam; ostiolum central,<br />

initially circular, 25–45 µm wide, later more irregular and up to<br />

100 µm wide, surrounding cells concolorous or somewhat darker;<br />

conidiomatal wall 10–20µm thick, composed of textura angularis<br />

without distinctly differentiated layers, the cells 3–5 µm diam,<br />

the outer cells with brown, somewhat thickened walls, the inner<br />

cells with hyaline and thinner walls; Conidiogenous cells hyaline,<br />

cylindrical and tapering gradually towards the apex, or narrowly<br />

ampulliform with a relatively wide and long neck, holoblastic,<br />

proliferating percurrently 1–many times with indistinct annellations,<br />

rarely also proliferating sympodially, 6–17.5(–22) × 3–4(–5) µm.<br />

Conidia cylindrical, straight, more often slightly curved or flexuous,<br />

with a narrowly to broadly rounded, sometimes more distinctly<br />

pointed apex, towards the broadly truncate base barely attenuated,<br />

(0–)3–5(–7)-septate, not constricted around the septa, hyaline,<br />

contents with several oil-droplets and minute granular material in<br />

each cell in the living state, with inconspicuous oil-droplets and<br />

granular contents in the rehydrated state, (22–)39–75(–85) × 2–3<br />

µm (rehydrated). Sexual morph unknown.<br />

Description in vitro: Colonies on OA (3–)4–6 mm diam in 12 d (7–11<br />

mm in 3 wk), with an even, pure yellow to straw, glabrous margin,<br />

the pigment diffusing into the surrounding medium; colonies<br />

spreading, but in the centre quite distinctly elevated, immersed<br />

mycelium pure yellow to straw, later locally citrine-green or citrine;<br />

after 10–15 d darkened by numerous immersed or superficial<br />

pycnidia arranged in random patterns, the outer wall of the<br />

superficial pycinidia entirely covered by white to glaucous hyphae,<br />

tardily releasing initially buff to straw, later salmon conidial slime;<br />

reverse pure yellow, but centre olivaceous and citrine to greenish<br />

olivaceous after 3 wk. After incubation over about 7 wk olivaceousblack<br />

sectors become visible in the colony consisting mostly of<br />

immersed strands of dark-walled hyphae, alternating with yellow<br />

sectors; some colonies develop wider sectors that remain yellow<br />

above, but more ochreous on reverse. Colonies on CMA 4–6 mm<br />

diam in 12 d (9–12 mm in 3 wk), as on OA, but sporulating earlier.<br />

Colonies on MEA 2–4 mm diam in 12 d (5–7(–9) mm in 3 wk; 17–24<br />

mm in 7 wk), with an even to ruffled, colourless to buff, glabrous<br />

margin; no diffusing pigment seen; colonies restricted, irregularly<br />

pustulate up to 3 mm high, the surface dark, blackish or chestnut,<br />

covered by a short, dense mat of white to glaucous-grey, after 7<br />

wk straw to pale yellow, aerial mycelium; conidiomata releasing<br />

droplets, later larger masses of first whitish, then salmon conidial<br />

slime; reverse brown-vinaceous in the centre, surrounded by hazel<br />

or cinnamon areas. Colonies on CHA 4.5 mm diam in 3 wk (24 mm<br />

in 7 wk); colony as on MEA, but the surface almost entirely hidden<br />

under a dense mat of woolly, white aerial mycelium, locally with a<br />

pure yellow to straw haze which later becomes more intense, and<br />

a yellowish pigment diffusing into the surrounding medium; reverse<br />

234


A new approach to species delimitation in Septoria<br />

Fig. 4. Caryophylloseptoria silenes. A–C. Colonies <strong>CBS</strong> 109100. A. On OA. B. On CHA. C. On MEA. D. Conidia and conidiogenous cells in planta (<strong>CBS</strong> H-21160). E. Ibid., on<br />

OA (<strong>CBS</strong> 109100). F–G. Conidia on OA (<strong>CBS</strong> 109100). Scale bars = 10 µm.<br />

umber to sienna; densely aggregated superficial conidiomata in the<br />

centre releasing masses of amber to pale salmon conidial slime.<br />

Conidiomata pycnidial, as in planta, but somewhat larger, 70–145<br />

µm diam, mostly single, sometimes merged into complexes,<br />

without differentiated ostiolum; conidiogenous cells as in planta,<br />

proliferating percurrently with distinct annellations or sympodially,<br />

8.5–25 × 3.5–6 µm; conidia cylindrical, straight, slightly curved or<br />

flexuous, with a rounded apex, lower part barely attenuated into<br />

a broad truncate base, (0–)1–5-septate, not constricted around<br />

the septa, hyaline, with several oil-droplets and minute granular<br />

material in each cell, (44–)77–94.5 × (2–)2.5–3 µm.<br />

Hosts: Lychnis spp. and Silene spp. (incl. Melandrium).<br />

Material examined: Austria, Tirol, Inntal, near Telfs, on living leaves of Silene<br />

pratensis (syn. M. album), 4 Aug. 2000, G. Verkley 1047, <strong>CBS</strong> H-21161, living<br />

culture <strong>CBS</strong> 109098, 109102; same loc., host, date, G. Verkley 1048, <strong>CBS</strong> H-21162,<br />

living culture <strong>CBS</strong> 109099, 109101; Netherlands, Hilversum, on living leaves of<br />

Silene dioica (syn. Melandrium rubrum), 22 June 1985, H.A. van der Aa 9524, <strong>CBS</strong><br />

H-18112.<br />

Notes: This fungus has been reported from several species of<br />

Lychnis and Silene (including Melandrium), and the size ranges<br />

of conidia given by various authors differ considerably. In the<br />

original description by Desmazières, the fungus was characterised<br />

as having 5–7-septate conidia, measuring 50–70 ×2.5–3 µm, in<br />

widely opening pycnidia. Diedicke (1915) gave the same spore<br />

measurements, but Grove (1935) reported 30–50 × 2–3 µm, while<br />

Jørstad (1965) gave different ranges on different hosts (overall<br />

extremes 27–72 × 2–3 µm). Radulescu et al. (1973) reported 30–76<br />

× 2.2–3.3 µm, and Vanev et al. (1997) 26–93.5 × 1.5–3.2 µm. The<br />

characters of the Austrian material studied here generally agree<br />

well with previous records, and the range of conidial sizes agrees<br />

best with that given by Vanev et al. (1997). The authors cited above<br />

have listed various names as synonyms of S. lychnidis, including<br />

S. lychnidis var. pusilla (= S. pusilla). Two strains isolated from<br />

Lychnis cognata in South Korea (<strong>CBS</strong> 128614, 128630) first also<br />

identitifed as S. lychnidis, were shown by sequence analyses to<br />

belong to a distinct species, for which the name C. pseudolychnidis<br />

is introduced by Quaedvlieg et al. (2013).<br />

Caryophylloseptoria silenes (Westend.) Verkley,<br />

Quaedvlieg & Crous, comb. nov. MycoBank MB804471.<br />

Fig. 4.<br />

Basionym: Septoria silenes Westend., in Westendorp & Wallays,<br />

Herb. crypt. Belge, Fasc. 19, no 955. 1854; Bull. Acad. R. Belg. Cl.<br />

Sci., Sér. 2, 2: 575. 1857.<br />

Description in planta: Symptoms leaf spots circular or elliptical,<br />

pale yellow to pale brown, surrounded by a dark purplish border;<br />

Conidiomata pycnidial, amphigenous but predominately epiphyllous,<br />

numerous in each leaf spot, globose to subglobose, immersed,<br />

www.studiesinmycology.org<br />

235


Verkley et al.<br />

50–80(–100) µm diam; ostiolum central, initially circular, 20–45<br />

µm wide, later more irregular and up to 50 µm wide, surrounding<br />

cells somewhat darker; conidiomatal wall only 10–15 µm thick,<br />

composed of textura angularis without distinctly differentiated<br />

layers, the outer cells with brown, somewhat thickened walls and<br />

4–7.5 µm diam, the inner cells hyaline and thin-walled and 3.5–5<br />

µm diam; Conidiogenous cells hyaline, ampuliform, or cylindrical<br />

and widest near the apex, hyaline, holoblastic, proliferating<br />

percurrently 1–several times with distinct scars (annellations),<br />

sympodial proliferation not observed, 4–10 × 3–5 µm. Conidia<br />

cylindrical, straight or slightly curved, with a rounded apex, lower<br />

part attenuated more or less abruptly into a broad truncate base,<br />

(0–)1(–4)-septate, somewhat constricted around the septa, hyaline,<br />

contents with several oil-droplets in each cell in the living state, with<br />

conspicuous oil-droplets and granular contents in the rehydrated<br />

state, 21–37 × 2–3.5(–4) µm (rehydrated; in turgescent state up to<br />

4.5 µm wide). Sexual morph unknown.<br />

Description in vitro: Colonies on OA 7–9 mm diam in 12 d (7–10 mm<br />

in 3 wk; 21–23 mm in 7 wk), with an even, later undulating, pure<br />

yellow to luteous, glabrous margin, the pigment diffusing into the<br />

medium around the colony; colonies spreading, but in the centre<br />

quite distinctly elevated, immersed mycelium luteous to ochreousorange,<br />

darkened by numerous simple, first brownish, then black<br />

pycnidia arranged in concentric patterns, releasing droplets of initally<br />

milky white, later pale pure yellow conidial slime; immersed mycelium<br />

later mostly luteous to sienna, much darker after 7 wk; most of the<br />

colony covered by a high, woolly-floccose mat of pale grey, later<br />

straw to pure yellow aerial mycelium; reverse luteous, in the centre<br />

umber, ultimately becoming almost black. Colonies on CMA 5–7<br />

mm diam in 12 d (7–9 mm in 3 wk; 18–19 mm in 7 wk), as on OA,<br />

but immersed mycelium and (more scarce) aerial mycelium more<br />

intensely pigmented, immersed mycelium appearing rust to sienna<br />

after 3, but mostly black after 7 wk, and conidial slime earlier pure<br />

yellow. Colonies on MEA 3–5 mm diam in 12 d (5–9 mm in 3 wk; 17–<br />

20 mm in 7 wk), with a ruffled, yellowish, glabrous margin; diffusing<br />

yellow pigment distinct around the colony; colonies restricted,<br />

irregularly pustulate up to 3 mm high, the surface dark, blackish or<br />

chestnut, covered by a short, dense, almost pruinose mat of grey<br />

to pure yellow aerial mycelium; conidiomata releasing droplets of<br />

initially pale pure yellow, later almost amber conidial slime; reverse<br />

chestnut or blood. Colonies on CHA 3.5–5 mm diam in 12 d (7–8 mm<br />

in 3 wk; 12–17 mm in 7 wk), with an even or irregular margin, mostly<br />

hidden underneath white aerial hyphae; yellow pigment very clear<br />

diffusing beyond the colony margin after 3 wk; colonies restricted,<br />

conical or hemispherical, the surface very dark, but mostly covered<br />

by a dense mat of woolly, initially white, then pure yellow aerial<br />

mycelium; reverse sienna to fulvous. Sporulating scarcely after 3, but<br />

more intensely after 7 wk, cirrhi or droplets of pale pure yellow, later<br />

amber conidial slime released by superficial conidiomata.<br />

Conidiomata pycnidial, as in planta, but larger, 90–155 µm<br />

diam, mostly single, sometimes merged into complexes with several<br />

ostioli; conidiogenous cells as in planta, but often with a more<br />

elongated neck, proliferating percurrently with distinct annellations<br />

or sympodially, 7–17 × 3–5 µm; conidia cylindrical, straight or<br />

slightly curved, with a rounded apex, lower part attenuated more<br />

or less abruptly into a broad truncate base, (0–)1–3(–4)-septate,<br />

somewhat constricted around the septa, hyaline, with several oildroplets<br />

in each cell, (24–)26.5–35(–42) × 3–4(–5) µm.<br />

Hosts: Silene spp.<br />

Material examined: Austria, Tirol, Ötztal, Horlachtal, Mühl near Niederthai, alt. 1500<br />

m, on living leaves of Siline nutans, 3 Aug. 2000, G. Verkley 1041, <strong>CBS</strong> H-21160,<br />

living cultures <strong>CBS</strong> 109100, 109103.<br />

Notes: Jørstad (1965) examined type material from BR in<br />

Westend., Herb. crypt. Belge 955, on Silene armeria. He reported<br />

that among numerous immature pycnidia were a few thin-walled<br />

pycnidia with 0-septate conidia measuring 21–24 × 2–2.5 µm, but<br />

in his opinion there was no doubt that collections from other hosts<br />

like Silene cucubalus (= S. inflata), and from Silene rupestris with<br />

predominantly 1-septate spores up to 31 µm in length belonged<br />

to the same species. In the material collected in Austria, we have<br />

observed predominantly 1-septate conidia, but conidial length did<br />

vary in different fruitbodies: some pycnidia produced conidia 21–<br />

28 µm in length, others conidia measuring 26–37 µm in length.<br />

However, isolates from these pycnidia were similar in colony<br />

characters and conidia produced did not show such differences in<br />

size range.<br />

Priest (2006) noted that there are at least two taxa of Septoria<br />

occurring on Silene, a short-spored taxon represented by S.<br />

silenes, and a long-spored taxon for which the name S. silenicola<br />

applies. This author referred all collections from Australia on this<br />

host genus to S. silenicola, for which conidia measure (34–)48–<br />

65(–85) × 2–2.5(–3) µm.<br />

As pointed out by Petrak (1925) and Jørstad (1965), several of<br />

the Septoria described on Silene spp. (and Melandrium) are likely<br />

to be conspecific with S. silenes. Septoria dominii Bubák 1905 was<br />

already placed in the synonymy of S. silenes by Jørstad (1965),<br />

and the same could be correct for S. dimera from Silene nutans.<br />

According to the original diagnosis, the conidia of S. dimera are<br />

1-septate and measure 28–32 × 4 µm. Radulescu et al. (1973) and<br />

Markevičius & Treigienė (2003) treated S. dimera as a separate<br />

species next to S. silenes, reporting measurements for conidia of S.<br />

dimera as 25–40 × 3–4 µm, and 21–35 × 3.2–4.3 µm, respectively.<br />

Vanev et al. (1997) also treated S. dimera, reporting conidial<br />

measurements 26–65 × 2.5–4 µm, but they included material from<br />

Silene spp. and Cucubalus baccifer.<br />

Caryophylloseptoria spergulae (Westend.) Verkley,<br />

Quaedvlieg & Crous, comb. nov. MycoBank MB804472.<br />

Fig. 5.<br />

Basionym: Septoria spergulae Westend., in Westendorp & Wallays,<br />

Herb. crypt. Belge, Fasc. 23-24, no. 1155. 1857; Bull. Acad. R.<br />

Belg. Cl. Sci., Sér. 2, 2: 576. 1857.<br />

Description in planta: Symptoms absent. Conidiomata pycnidial,<br />

black, in dense groups on dead stems and leaves, only partly<br />

immersed in the host tissue, globose or slightly depressed,<br />

(50–)75–150 µm diam; ostiolum circular, central, 10–12.5 µm<br />

wide, without distinctly differentiated cells; pycnidial wall with an<br />

outer layer of textura globulosa-angularis containing cells 8–12<br />

µm diam with brown walls, thickened unevenly up to 3µm, and<br />

an inner layer of textura globulosa-angularis containing cells 5–8<br />

µm diam with hyaline or pale brown walls. Conidiogenous cells<br />

hyaline, ampuliform, or elongated ampulliform with a distinct neck,<br />

hyaline or very pale brown near the base, holoblastic, proliferating<br />

percurrently 1–many times with indistinct annellations, also<br />

sympodially, 5–10(–16) × 3–5 µm. Conidia cylindrical, regularly<br />

curved, or abruptly bent in the lower cell, gradually attenuated to<br />

the rounded apex, gradually or more abruptly attenuated into a<br />

truncate base, 1(–2)-septate, not or indistinctly constricted around<br />

the septum, hyaline, contents rich in small guttulae, minutely<br />

236


A new approach to species delimitation in Septoria<br />

Fig. 5. Caryophylloseptoria spergulae. A, B. Colonies <strong>CBS</strong> 109010. A. On OA. B. On MEA. C. Conidia and conidiogenous cells in planta (<strong>CBS</strong> H-21150). D–H. Conidia on OA<br />

(<strong>CBS</strong> 109010). Scale bars = 10 µm.<br />

granular material and large vacuoles in the living state, oil-droplets<br />

merged into larger guttules in the rehydrated state, (18–)24–33<br />

(–40) × 2.0–2.5(–3.0) µm (rehydrated). Sexual morph unknown.<br />

Description in vitro: Colonies on OA less than 2 mm diam after 2<br />

wk (6–8 mm in 28 d), restricted, though not much elevated, with<br />

an even, colourless, glabrous margin; colony surface covered by<br />

a dense continuous or discontinuous mat of grey, finely felted to<br />

somewhat woolly, low aerial mycelium, agar around the colony<br />

showing a yellow diffusing pigment; immersed mycelium pale<br />

luteous to saffron, reverse concolorous, but olivaceous-black<br />

under areas with well-developed aerial mycelium or conidiomata.<br />

Colony sporulating in the centre after about 2 wk, with spores in<br />

large pale salmon droplets oozing from pycnidioid complexes.<br />

Colonies on CMA 8–10 mm diam in 28 d, as on OA, but immersed<br />

mycelium soon darkening and olivaceous-black, while the aerial<br />

mycelium is somewhat more greenish, and the mat denser and<br />

more continuous; reverse olivaceous-black. Colonies on MEA 5<br />

mm diam in 2 wk (8–10 mm in 28 d), restricted, with an even, buff,<br />

glabrous margin; colony surface black, but with a diffuse mat of<br />

greyish white, often with some sulphur yellow (centre), woolly aerial<br />

mycelium; fruitbodies developing tardily on the colony surface,<br />

sporulating with large, dirty white to pale reddish masses in watery<br />

droplets; reverse dark brick to olivaceous-black. Colonies on CHA<br />

7–9 mm diam in 2 wk, as on MEA, but aerial mycelium higher and<br />

denser, in the centre also conspicuously yellowish-pale citrine. No<br />

sporulation observed.<br />

Conidiomata mostly olivaceous-brown, irregular merged<br />

complexes of initially closed, but soon widely opening stromata,<br />

only rarely pycnidial and structurally similar to those on the natural<br />

substratum. Conidiogenous cells hyaline, ampuliform, or elongated<br />

ampulliform with a relatively long neck, hyaline or very pale brown<br />

www.studiesinmycology.org<br />

237


Verkley et al.<br />

near the base, holoblastic, proliferating percurrently 1–many times<br />

with indistinct annellations, also sympodially, mostly after one or<br />

more percurrent proliferations, 7– 14(–22) × 3–5 µm. Conidia on<br />

OA hyaline, pale salmon in mass, cylindrical and regularly curved,<br />

or abruptly bent in the lower or upper cell, gradually attenuated<br />

to the rounded apex, more abruptly attenuated into a truncate<br />

base, contents granular with large vacuoles, 1(–3)-septate, not or<br />

indistinctly constricted around the septa, contents rich in minute<br />

guttulae and granular material, 25.5–41 × (2.0–)2.5–3.0(–4.5) µm.<br />

Hosts: On dead leaves and stems of Spergula spp.<br />

Material examined: Belgium, Beverloo, on dry leaves and stems of Spergula<br />

arvensis, M. Torquinet s.n., isotype BR-MYCO 159328-54, also distributed<br />

in Westendorp & Wallay, Herb.crypt.Belg., Fasc. 23-24: no.1155. Germany,<br />

Brandenburg, Kreis Nieder-Barnim, near Prenden, on leaves and stems of Spergula<br />

vernalis, 24 July 1920, H. & P. Sydow s.n., distributed in Sydow, Mycotheca<br />

germanica 1688, <strong>CBS</strong> H-4765. Netherlands, on Dianthus caryophyllus, Schouten<br />

s.n., <strong>CBS</strong> 397.52 (sub S. dianthi Desm.); Prov. Gelderland, ‘t Harde, Doornspijkse<br />

Heide, De Zanden, on decaying leaves of Spergula morisonii, A. Aptroot 48300, 13<br />

June 2000, epitype designated here <strong>CBS</strong> H-21150 “MBT175350”, living culture<br />

ex-epitype <strong>CBS</strong> 109010.<br />

Notes: This fungus was originally described from dry leaves<br />

and stems of Spergula arvensis by Westendorp, who described<br />

the conidia as 30 × 2.5 µm. The type from BR is well-preserved<br />

and rich in fruitbodies on leaves and stems, where conidia are<br />

1(–2)-septate, 20–38 × 2–2.5(–3) µm. The collection Aptroot<br />

48300 from Spergula morisonii agrees in morphology and can be<br />

identified as conspecific, although it contains a larger proportion<br />

of 2-septate conidia (that are mostly 30–40 µm long) than in the<br />

type. The material on Spergula vernalis that was distributed as<br />

Mycotheca germanica 1688 morphologically also agrees with these<br />

collections.<br />

Other names were later introduced for Septoria on members of<br />

the plant genus Spergularia (= Alsine), which is closely related to<br />

Spergula: S. alsines Rostr. 1903 from Spergularia sp., conidia 20–<br />

31 × 2–3 µm formed in 55–120 µm wide pycnidia (Teterevnikova-<br />

Babayan 1987; conidia 20–25 × 2–3 µm and 3-septate, in the<br />

original diagnosis of Rostrup 1903, based on material from<br />

Alsine verna non Spergula vernalis), S. spergulariae 1903, on<br />

Spergularia rubra (conidia 30–45 × 2.5–3 µm, “multiseptate”), S.<br />

vandasii 1906, on Alsine glomerata, and S. spergularina 1945,<br />

on Spergularia longipes (no conidial measurements available).<br />

Some of these names could be synonymous with S. spergulae or<br />

perhaps S. alsines, but in order to corroborate this, new material<br />

needs to be collected and compared to the types. According to<br />

Teterevnikova-Babayan (1987), S. alsines differs from S. spergulae<br />

in conidial shape in that the conidial base is more truncate than<br />

in S. spergulae, and in that it is capable of also killing Minuartia<br />

glomerata. Rhabdospora alsines Mont. 1892, which was described<br />

from dead stems of Alsine tenuifolia, is unlikely to be conspecific<br />

with S. spergulae, as its conidia were described as 16–18 × 2 µm<br />

and 1-septate.<br />

Muthumary (1999) studied type material of S. dianthi 1849 (PC<br />

344) and by the drawings he made of it the conidia of this fungus<br />

and those of S. spergulae appear very similar in shape. Muthumary<br />

reported that the conidia of S. dianthi were 32–48 (av. 40) × 3–4 (av.<br />

3) µm, and mostly 1-, rarely 2-septate. Given these measurements,<br />

on average, the conidia in the type of S. dianthi are clearly longer<br />

than in S. spergulae (on average below or around 30). Moreover,<br />

S. dianthi is a fungus causing leaf spots on several Dianthus spp.,<br />

while S. spergulae is only known from dry and dead host tissues,<br />

and is therefore believed to be saprobic (and possibly endophytic).<br />

<strong>CBS</strong> 109010 and the only strain available for S. dianthi (<strong>CBS</strong><br />

397.52) show 100 % sequence homology of the LSU, ITS, Btub<br />

and Cal, while there are only minor differences in Act (99.25 %),<br />

EF (97.54 %), and RPB2 (99.42 %). Further work is required to<br />

establish that S. dianthi and S. spergulae are truely distinct taxa.<br />

Septoria Sacc., Syll. Fung. 3 : 474. 1884. nom. cons.<br />

Type species : S. cytisi Desm.<br />

A generic description is provided by Quaedvlieg et al. (2013, this<br />

volume).<br />

Septoria aegopodii Desm. ex J. Kickx, Pl. Crypt. Fland. 1:<br />

427. 1876 [Annls Sci. Nat., sér. 6, 7: no 616. 1878?]. Fig. 6.<br />

= Septoria podagrariae Lasch, in Rabenh., Herb. mycol. I, no 458. 1843.<br />

nomen nudum.<br />

= Sphaeria podagrariae Roth, Catal. Bot. 1: 230. 1797.<br />

≡ Mycosphaerella podagrariae (Roth : Fr.) Petr., Annls mycol. 19 (3/4):<br />

203. 1921.<br />

= Cryptosporium aegopodii Preuss, Linnaea 24: 719 (Fungi Hoyersw., no.<br />

322). 1853.<br />

≡ Phloeospora aegopodii (Preuss) Grove, British Stem- and Leaf-fungi<br />

(Coelomycetes) 1: 434. 1935.<br />

≡ Septoria aegopodii (Preuss) Sacc., Syll. Fung. 3: 529. 1884 [non Desm.<br />

1878].<br />

?= Septoria podagrariae var. pimpinellae-magnae Kabát & Bubák, in Bubák &<br />

Kabát, Ber. naturw.-med. Ver. Innsbruck 30: 19-36 (extr. 11). 1906.<br />

= Mycosphaerella aegopodii Potebnia, Annls mycol. 8(1): 49. 1910.<br />

Description in planta: Symptoms leaf spots numerous but small,<br />

angular and delimited by veinlets, visible on both sides of the leaf,<br />

white to pale yellow. Conidiomata pycnidial, developing soon after<br />

first discolouration of the host tissue, predominantly epiphyllous,<br />

mostly also visible from the underside of the lesion, several<br />

scattered in each leaf spot, globose to subglobose, pale to dark<br />

brown (drying black), immersed, 125–190 µm diam, releasing<br />

conidia in white cirrhi; ostiolum central, initially circular and 17–35<br />

µm wide, later becoming more irregular and up to 100 µm wide,<br />

surrounding cells dark brown, with thickened cell walls; conidiomatal<br />

wall except for the part surrounding the ostiolum poorly developed,<br />

about 10–20 µm thick, composed of pale brown to hyaline<br />

angular cells 3.5–8 µm diam with thin walls. Conidiogenous cells<br />

hyaline, discrete, cylindrical to narrowly or broadly ampulliform,<br />

holoblastic, proliferating sympodially, 8–15(–18) × 2.5–4.5 µm.<br />

Conidia filiform-cylindrical, straight, curved to somewhat flexuous,<br />

attenuated gradually to a relatively broadly rounded apex and<br />

broadly truncate base often provided with a collar of gelatinous<br />

material, (0–)1–2(–3)-septate (second and later septa very thin<br />

and easily overlooked), not constricted around the septa, hyaline,<br />

contents with numerous minute oil-droplets and granular material<br />

in each cell in the living state, with minute oil-droplets and granular<br />

contents in the rehydrated state, (30–)55–95(–115) × 3.5–4 µm<br />

(living; 30–72(–80) × 2.5–4 µm, rehydrated).<br />

Description in vitro: All attempts to grow the isolates from conidia<br />

failed. Some conidia germinated at the apical cells, but mycelia<br />

died within 1–2 d after germination.<br />

Hosts: Aegopodium podagraria and Pimpinella sp.<br />

Material examined: Austria, Tirol, Ötztal, Ötz near Habichen, on living leaves of<br />

Pimpinella sp., 24 July 2000, G. Verkley 1001, <strong>CBS</strong> H-21187. Netherlands, Prov.<br />

Overijssel, Losser, in garden at Mollenbergstraat, on living leaves of Aegopodium<br />

podagraria, June 1999, G. Verkley 800, <strong>CBS</strong> H-21192; same substr., Prov. Overijssel,<br />

238


A new approach to species delimitation in Septoria<br />

Fig. 6. Septoria aegopodii. A–E. Conidia in planta. A–C. <strong>CBS</strong> H-21262. D, E. <strong>CBS</strong> H-21199. Scale bars = 10 µm.<br />

Losser, Arboretum Poort-Bulten, June 1999, G. Verkley 801, <strong>CBS</strong> H-21193; same<br />

substr., Prov. Utrecht, ‘s Graveland, Gooilust, 5 Sep. 1999, G. Verkley 916, <strong>CBS</strong><br />

H-21199; same substr., Prov. Limburg, St. Jansberg, near Plasmolen, 9 Sep.<br />

1999, G. Verkley 931, <strong>CBS</strong> H-21211; same substr., Prov. Zeeland, Zuid-Beveland,<br />

Community of Borsele, Schouwersweel near Nisse, 27 Aug. 2001, G. Verkley 1116,<br />

<strong>CBS</strong> H-21165; same substr., Prov. Utrecht, Soest, 29 July 2008, G. Verkley 5020,<br />

<strong>CBS</strong> H-21262.<br />

Notes: This species is common on Aegopodium podagraria,<br />

especially on plants growing under less favourable conditions.<br />

Jørstad (1965) noted that in autumn the pycnidia are commonly<br />

accompanied by immature perithecia (or by “sclerotia”) of<br />

Mycosphaerella aegopodii in Sweden, but we have not found any<br />

in The Netherlands. According to van der Aa (pers. comm.), the<br />

sexual morph only matures in montane habitats. Aptroot (2006),<br />

who studied herbarium specimens collected at high altitudes<br />

in several localities in Europe also did not observe any mature<br />

ascomata. Type material of M. podagrariae could not be located<br />

(Aptroot 2006). Simon et al. (2009) studied the cellular interactions<br />

between M. podagrariae and Aegopodium podagraria based on<br />

German material (no cultures preserved).<br />

We have not seen the type of S. podagrariae var. pimpinellaemagnae<br />

1906 described from Pimpinella magna (= P. major?) in<br />

Tirol, but since the conidial characters given by Saccardo & Trotter<br />

(1913, 45–60 × 2.5–4 µm, 3-septate) are well within the range of S.<br />

aegopodii, it is placed here tentatively as a synonym. On Pimpinella,<br />

eight other Septoria species or varieties have been described in the<br />

literature, but these could not be studied here. The oldest available<br />

name would be S. pimpinellae Ellis 1893 (later homonyms Laubert<br />

1920 and Hollós 1926). According to the diagnoses the conidial sizes<br />

described for these taxa largely overlap, and range from 15–35 ×<br />

1–1.5(–2) µm, thus all considerably smaller than in S. aegopodii.<br />

Septoria aegopodina Sacc., Michelia 1: 185. 1878. Fig. 7.<br />

= Septoria aegopodina var. villosa Gonz. Frag., Assoc. españ. Progr. Cienc.<br />

Congr. Oporto, 6. Cienc. natur.: 47. 1921.<br />

= Septoria aegopodina var. trailii Grove, British Stem-and Leaf-Fungi<br />

(Coelomycetes) 1: 396. 1935.<br />

Description in planta: Symptoms leaf spots numerous, indefinite<br />

and soon covering large parts of the leaf lamina, visible on both<br />

sides of the leaf, first yellow then pale orange-brown. Conidiomata<br />

pycnidial, predominantly hypophyllous, scattered or gregarious,<br />

globose to subglobose, pale to dark brown, immersed, 90–160 µm<br />

diam, releasing conidia in white cirrhi; ostiolum central, circular and<br />

15–25 µm wide, surrounded by cells with dark brown to almost<br />

black, thickened walls; conidiomatal wall 10–28 µm thick, composed<br />

of an outer cell layer of pale brown to hyaline isodiametric angular<br />

or globose cells, 3.5–8 µm diam with thickened walls, and an inner<br />

layer of one or more hyaline cells with not or only slightly thickened<br />

walls. Conidiogenous cells hyaline, discrete, mostly broadly<br />

ampulliform, holoblastic, rarely proliferating sympodially, possibly<br />

also percurrently but no annellations visible, 4–7(–8) × 3–4.5 µm.<br />

Conidia filiform to filiform-cylindrical, straight or curved, attenuated<br />

gradually to a narrowly rounded to somewhat pointed apex, and<br />

attenuated gradually or more abruptly to a narrowly truncate base,<br />

(0–)1–3-septate, not constricted around the septa, hyaline, with<br />

numerous minute and several larger oil-droplets in each cell in the<br />

living state, and minute oil-droplets and granular contents in the<br />

rehydrated state, (22–)30–42.5 × 1.5–2(–2.5) µm (rehydrated).<br />

Sexual morph unknown.<br />

Description in vitro (20 ºC, diffuse daylight): Colonies on OA<br />

7–10 mm diam in 2 wk, with a very narrow, glabrous and rosybuff<br />

margin; colony restricted, somewhat elevated, immersed<br />

mycelium colourless to faintly brick, or much darker, brownvinaceous,<br />

but mostly hidden under a dense, woolly mat of pure<br />

white to faintly yellow aerial mycelium; reverse olivaceous-black<br />

to dark brick; a vinaceous pigment diffusing into the surrounding<br />

medium. Colonies on MEA 8–15 mm diam in 2 wk, the margin<br />

covered by pure white aerial hyphae; colony restricted, irregularly<br />

postulate in the central area, mostly covered by a dense woollyfloccose<br />

mat of smoke grey aerial mycelium, but after 2 wk<br />

numerous glabrous, black conidiomata appear on the colony<br />

surface in the centre, releasing milky white conidial slime.<br />

Reverse of colony olivaceous-black.<br />

www.studiesinmycology.org<br />

239


Verkley et al.<br />

Fig. 7. Septoria aegopodina. A, B. Colonies <strong>CBS</strong> 123740. A. On OA. B. On MEA. C–F. Conidia in planta (<strong>CBS</strong> H-21249). G. Conidia and conidiogenous cells in planta (<strong>CBS</strong><br />

H-21249). H, I. Conidia on OA (<strong>CBS</strong> 123741). J. Conidia on MEA (<strong>CBS</strong> 123740). Scale bars = 10 µm.<br />

Conidia on MEA elongated ellipsoidal to cylindrical, straight<br />

to distinctly curved, rounded to narrowly pointed at the apex,<br />

attenuated gradually to a narrowly truncate base, 0–1-septate,<br />

0-septate 8–12 × 2–2.5(–3), 1-septate 10–21 × 2–2.5 μm; Conidia<br />

on OA cylindrical, straight or slightly to distinctly curved, narrowly<br />

rounded to slightly pointed at the apex, attenuated gradually to a<br />

narrowly truncate base, 1–3-septate, (16–)20–32 × 1.5–2 μm.<br />

Hosts: Aegopodium podagraria and Pimpinella spp.<br />

240


A new approach to species delimitation in Septoria<br />

Fig. 8. Septoria anthrisci. A. Conidia and conidiogenous cells in planta (<strong>CBS</strong> H-21185). B. Conidia on OA (<strong>CBS</strong> 109020). Scale bars = 10 µm.<br />

Material examined: Czech Republic, Moravia, Veltice, Forest of Rendez Vous,<br />

on living leaves of Aegopodium podagraria, 16 Sep. 2008, G. Verkley 6013, <strong>CBS</strong><br />

H-21249, living cultures <strong>CBS</strong> 123740, 123741.<br />

Notes: Morphologically, the material from the Czech Republic<br />

available here agrees well with S. aegopodina as described by<br />

Vanev et al. (1997) and Shin & Sameva (2004), although the<br />

pycnidia are larger than described by these authors (55–85 μm<br />

diam). The species can easily be distinguished from S. aegopodii<br />

occurring on the same host plant, as the conidia of that fungus<br />

are considerably larger (30–115 × 3.5–4 µm), and appear<br />

predominantly 1-septate. The conidia more closely resemble<br />

those of S. anthrisci. The diagnoses of S. aegopodina var. trailii<br />

based on material on Pimpinella saxifraga, and of S. aegopodina<br />

var. villosa on Pimpinella villosa, agree with the description of the<br />

type variety. Both varieties are therefore considered synonyms of<br />

S. aegopodina. In the multigene phylogeny S. aegopodina groups<br />

fairly closely with S. oenanthicola, S. sii and S. oenanthis from the<br />

same host family (Apiaceae), but other taxa from that family like<br />

S. anthrisci are relative distant and belong elsewhere the Septoria<br />

clade (Fig. 2). Other isolates grouping with S. aegopodii include<br />

those of S. mazi from Mazus japonicus (Scrophulariaceae), S.<br />

campanulae from Campanula takesimana (Campanulaceae), and<br />

S. gentianae from Gentiana scabra var. buergeri (Gentianaceae).<br />

Septoria anthrisci Pass. & Brunaud, Rev. Mycol. (Toulouse)<br />

5: 250. 1883 [non P. Karst., Meddn Soc. Fauna Flora fenn.<br />

13: 10. 1884]. Fig. 8.<br />

Description in planta: Symptoms leaf spots numerous but small,<br />

circular to elliptical, visible on both sides of the leaf, the centre white<br />

to pale ochreous, surrounded by a relatively narrow, somewhat<br />

elevated, dark reddish brown to black margin. Conidiomata<br />

pycnidial, epiphyllous, sometimes also visible from the underside<br />

of the lesion, mostly one, rarely up to three in each leaf spot,<br />

subglobose to lenticular, sometimes becoming cupulate, brown<br />

to black, immersed, 115–190 µm diam; ostiolum central, initially<br />

circular and 30–55 µm wide, later becoming more irregular and<br />

up to 100 µm wide, surrounding cells concolorous; conidiomatal<br />

wall about 12–20 µm thick, composed of an outer layer of pale<br />

brown angular cells 4.5–7 µm diam with somewhat thickened<br />

walls, and an inner layer of thin-walled, pale yellow angular<br />

to globose cells 2.5–5 µm diam. Conidiogenous cells hyaline,<br />

discrete, rarely integrated in 1-septate conidiophores, globose<br />

or narrowly or broadly ampulliform, holoblastic, mostly with a<br />

relatively narrow elongated neck, proliferating percurrently several<br />

times with distinct annellations, often also sympodially after or in<br />

between a few percurrent proliferations, 6–14(–18) × 2.5–5(–6)<br />

µm. Conidia filiform, straight, curved to flexuous, attenuated<br />

gradually to a narrowly pointed apex and narrowly truncate base,<br />

(0–)1–3(–4)-septate (septa very thin and easily overlooked), not<br />

constricted around the septa, hyaline, contents with several minute<br />

oil-droplets and granular material in each cell in the living state, with<br />

minute oil-droplets and granular contents in the rehydrated state,<br />

(18–)25–59 (–65) × 1–2 µm (living; rehydrated, 1–1.8 µm wide).<br />

Sexual morph unknown.<br />

Description in vitro: Colonies on OA 4–6(–9) mm diam in 1 wk (18–<br />

22 mm in 22 d), with an even, glabrous, peach, later coral margin,<br />

with a concolorous pigment diffusing beyond the colony margin;<br />

colonies after 1 wk restricted, distinctly elevated in the centre,<br />

immersed mycelium first peach to pale coral, then deep coral, the<br />

colony already appearing darker in the centre after 1 wk due to<br />

numerous almost black pycnidial conidiomata in part merging into<br />

large complexes, releasing pale whitish or rosy-buff droplets of<br />

conidial slime from one to several short-papillate or more elongated<br />

neck-like openings; reverse in the centre blood colour, surrounded<br />

by a first intense peach, later scarlet or coral area. Colonies on<br />

CMA 7–8(–9) mm diam in 1 wk (18–21 mm in 22 d), as on OA.<br />

Colonies on MEA 6–11 mm diam in 1 wk (24–29 mm in 22 d), with<br />

www.studiesinmycology.org<br />

241


Verkley et al.<br />

an even, almost glabrous, buff margin, without a diffusing pigment;<br />

colonies restricted, irregularly pustulate to hemispherical, already<br />

up to 4 mm high after 1 wk, immersed mycelium leaden grey to<br />

olivaceous-grey, covered by well-developed white to greyish,<br />

appressed, woolly aerial mycelium; conidiomata abundantly<br />

developing at the surface in the central area, releasing cirrhi of buff<br />

to pale luteous to rosy-buff conidial slime; reverse fuscous black to<br />

brown-vinaceous, surrounded by a narrow pale luteous marginal<br />

zone. Colonies on CHA 7–12 mm diam in 1 wk (29–31 mm in 22 d),<br />

as on MEA, but the surface more glaucous to glaucous blue green,<br />

the margin rosy-buff, and the conidial slime pale flesh.<br />

Conidiomata pycnidial, single, brown to black, 100–250 µm<br />

diam, conidiogenous cells as in planta; conidia as in planta, 25–<br />

55(–69) × 1.2–2 µm.<br />

Hosts: Anthriscus spp., and also Chaerophyllum spp.<br />

(Teterevnikova-Babayan 1987; Vanev et al. 1997).<br />

Material examined: Austria, Tirol, Ötztal, Sautens, on living leaves of Anthriscus sp.,<br />

30 July 2000, G. Verkley 1022, <strong>CBS</strong> H-21185, living culture <strong>CBS</strong> 109019, 109020.<br />

Notes: According to the short and incomplete original diagnosis,<br />

the conidia of S. anthrisci are continuous, 40–50 µm long. The type<br />

host is Anthriscus vulgaris. The description of the species on the<br />

host agrees well with those provided by Vanev et al. (1997) and<br />

Teterevnikova-Babayan (1987), although the latter reported conidia<br />

up to 75 µm long. The species is close to S. petroselini (<strong>CBS</strong><br />

182.44 and <strong>CBS</strong> 109521), from which it cannot be distinguished by<br />

ITS sequence, but the EF and Act sequences proved to differ by 4<br />

and 27 %, respectively.<br />

Of other Septoria species found on the family Apiaceae, only<br />

S. petroselini is relatively closely related. Septoria petroselini can<br />

be distinguished from S. anthrisci by the larger conidia (29-80 ×<br />

1.9-2.5 mm) with up to 7 septa on the host plant, usually species of<br />

Petroselinum or Coriandrum.<br />

Septoria apiicola Speg., Boln Acad. nac. Cienc. Córdoba<br />

11: 294. 1888. Fig. 9.<br />

≡ Rhabdospora apiicola (Speg.) Kuntze, Revisio generum plantarum 3<br />

(2): 509. 1898.<br />

= Septoria apii Chester, Bull. Torrey Bot. Club 18: 371. 1891 [non Rostr.,<br />

Gartn. Tidende 180. 1893, later homonym].<br />

= Septoria petroselini var. apii Briosi & Cavara, I funghi parassiti delle piante<br />

coltivate de utili essicati, delineati e descritti, Fasc. 6, no 144. 1891.<br />

= Septoria apii-graveolentis Dorogin, Mater. Mikol. Fitopat. Ross. 1 (4): 72.<br />

1915.<br />

Description in planta: Symptoms on leaves numerous spots,<br />

scattered, separate but not well-delimited, circular to elliptical, or<br />

confluent, yellowish or pale brown and in dry conditions also with a<br />

white centre, visible on both sides of the leaf. Conidiomata pycnidial,<br />

amphigenous, single, numerous in each lesion, scattered, in small<br />

clusters or in more or less distinct concentric patterns, globose<br />

to subglobose, dark brown to black, immersed, (60–)75–170 µm<br />

diam; ostiolum circular, central, somewhat papillate, 15–45(–<br />

55) µm wide, surrounded by darker cells with thickened walls;<br />

conidiomatal wall composed of textura angularis, 12.5–20 µm<br />

thick, with an outer layer of cells, 4–6.5(–8) µm diam with brown,<br />

thickened walls, and an inner layer of hyaline and thin-walled<br />

cells 3.5–4 µm diam. Conidiogenous cells cylindrical, or broadly<br />

to elongated ampulliform mostly without distinct neck, hyaline,<br />

holoblastic, proliferating percurrently, annellations indistinct, rarely<br />

also sympodially, 4–8(–10) × 3.5–5 µm. Conidia filiform, straight,<br />

curved, or flexuous, gradually attenuated to a narrowly rounded to<br />

more or less pointed apex, more or less abruptly attenuated into<br />

a truncate base, (1–)2–3(–5)-septate, not or only inconspicuously<br />

constricted around the septa in the living state, hyaline, containing<br />

one to several relatively small oil-droplets in each cell, in the<br />

rehydrated state with larger oil-masses, 20–48(–56) × 2–2.5 µm<br />

(living; rehydrated, NT 1.5–2 µm wide). Sexual morph unknown.<br />

Description in vitro (based on <strong>CBS</strong> 400.54): Colonies on OA<br />

12–18 mm diam in 2 wk, with an even to slightly ruffled, glabrous,<br />

colourless margin; colonies spreading, remaining almost plane,<br />

immersed mycelium dull green to dark herbage green; aerial<br />

mycelium moderately to well-developed, woolly-floccose, white;<br />

dark brown to black single globose pycnidia developing after<br />

7–10 d scattered over the agar surface, more rarely immersed in<br />

the agar, 70–100(–140) µm diam, ostioli often reduced or absent,<br />

releasing droplets of milky white conidial slime; reverse dark bluish<br />

green to black, diffusing pigment absent. Conidiogenous cells as in<br />

planta, but more often proliferating sympodially, 4–12.5 × 3.5–4.5<br />

µm. Conidia as in planta, mostly 30–55(–68) × 2–2.5 µm.<br />

Hosts: Apium australe, A. graveolens var. graveolens (celery), A.<br />

graveolens var. rapaceum (celeriac), A. prostratum.<br />

Material examined: Italy, Perugia, culture ex leaf of Apium graveolens, deposited<br />

June 1959, M. Ribaldi s.n., <strong>CBS</strong> 389.59; Netherlands, culture ex Apium sp.,<br />

deposited Aug. 1952, isolated by G. van den Ende s.n., <strong>CBS</strong> 395.52; Prov. Utrecht,<br />

Baarn, Cantonspark, culture ex living leaves of A.graveolens, 1953, deposited<br />

Oct. 1954, J.A. von Arx s.n., <strong>CBS</strong> 400.54 = IMI 092628; Prov. Limburg, Venray,<br />

Vreedepeel, on living leaves of A. graveolens var. graveolens, Aug. 2004, collector<br />

unknown (G. Verkley 3046), <strong>CBS</strong> H-21261; same substr., Noord-Brabant, between<br />

Zevenbergen and Zevenbergschen Hoek, 26 Aug. 2004, R. Munning (G. Verkley<br />

3048), <strong>CBS</strong> H-21163, living culture <strong>CBS</strong> 116465.<br />

Notes: According to Priest (2006), it is apparent that at least two<br />

species of Septoria occur on Apium spp. worldwide. Earlier studies<br />

demonstrated considerable variation in the dimensions of conidia<br />

in material on Apium spp. especially in conidial width, along with<br />

other minor morphological differences, and differences in leaf spot<br />

type (Cochran 1932, Sheridan 1968). Gabrielson & Grogan (1964)<br />

concluded that there was just one species involved, characterised<br />

by pycnidia 55–190 µm diam and conidia 10–72 × 0.9–3.0 µm.<br />

They accepted the name S. apiicola, and placed S. apii and S.<br />

apii-graveolentis in its synonymy. Jørstad (1965) placed S. apii in<br />

the synonymy of S. petroselini, while Sutton & Waterston (1966)<br />

followed Gabrielson & Grogan but described the conidia as 22–56<br />

× 2–2.5 µm. As was the case in the material from Australia studied<br />

more recently by Priest (2006; conidia 30–48 × 2–2.5 µm), most<br />

conidia in the collections available for the present study are 2–2.5<br />

µm wide. These collections proved highly homogenous in DNA<br />

sequences of the genes investigated and in most morphological<br />

characters. However, morphological and molecular investigations<br />

of more material on Apium from various host species and<br />

geographical regions is required before conclusions can be drawn<br />

about the number of taxa involved on this host genus.<br />

According to Sutton & Waterston (1966) and also Priest (2006),<br />

the conidiogenous cells of S. apiicola are phialidic, producing<br />

several conidia enteroblastically and seceding at the same level,<br />

and these authors did not report sympodial proliferation. In the<br />

material we were able to examine however, percurrent proliferation<br />

was mostly seen and rarely also sympodial in planta, while<br />

sympodially proliferating conidiogenous cells were more common<br />

in vitro. The difference may result from the fact that here we studied<br />

242


A new approach to species delimitation in Septoria<br />

Fig. 9. Septoria apiicola. a. Colony on OA (<strong>CBS</strong> 400.54). B, C. Conidia in planta (<strong>CBS</strong> H-21261). D. Conidia on OA (<strong>CBS</strong> 400.54). E. Conidia and conidiogenous cells on OA<br />

(<strong>CBS</strong> 400.54). F. Ibid., in planta (<strong>CBS</strong> H-21261). Scale bars = 10 µm.<br />

living material, as we noted that after rehydration of the herbarium<br />

vouchers it is indeed very difficult to still see the details, in particular<br />

progressive annellations.<br />

Septoria astragali Roberge ex Desm., Annls Sci. Nat., sér.<br />

2, Bot. 19: 345. 1843. Fig. 10.<br />

?= Septoria astragali var. brencklei Sacc., Atti Memorie Accad. patavina 33:<br />

171 (as ‘brinklei’). 1917.<br />

Description in planta: Symptoms leaf spots circular or more<br />

irregular, often indefinite or delimited by a dark brown border,<br />

white, pale ochreous to yellowish brown, usually several on each<br />

leaflet. Conidiomata pycnidial, often visible on both sides of the<br />

leaf, amphigenous, but either predominantly hypo- (V6023) or<br />

epiphyllous (V1036), scattered, globose, immersed to semiimmersed,<br />

125–170 µm diam; ostiolum circular, central, 20–55 µm<br />

wide, surrounding cells somewhat darker; conidiomatal wall up to<br />

30 μm thick, composed of an outer layer of isodiametric to irregular<br />

cells 3.5–8.5 μm diam with brown walls which are thickened up to<br />

1 μm, and an inner layer of hyaline, thin-walled cells 3–7 μm diam.<br />

Conidiogenous cells hyaline, ampuliform, or elongated ampulliform<br />

with a distinct neck, hyaline, holoblastic, proliferating sympodially,<br />

and sometimes (also) percurrently 1–2 times with indistinct<br />

annellations, 10–17 × 5–8 µm. Conidia cylindrical, straight,<br />

curved, or flexuous, gradually attenuated to a narrowly rounded to<br />

somewhat pointed apex and a truncate base, (5–)7–9(–11)-septate,<br />

somewhat constricted around the septa in the living state (“T”), not<br />

constricted in the rehydrated state, hyaline, contents granular or<br />

with numerous small and a few larger oil-droplets in each cell, (85–)<br />

105–145 × 3.5–4 µm (living; rehydrated, 3–3.5 μm wide). Sexual<br />

morph unknown.<br />

Description in vitro: Colonies on OA 2–4 mm diam in 10 d (34–37<br />

mm in 7 wk), with an even or irregular, glabrous, colourless margin;<br />

colonies spreading, the surface plane, immersed mycelium mostly<br />

colourless to buff with very diffuse, short, whitish aerial mycelium,<br />

the centre of the colony darkened by numerous superficial and<br />

immersed, separate or confluent pycnidial conidiomata, the outer<br />

www.studiesinmycology.org<br />

243


Verkley et al.<br />

Fig. 10. Septoria astragali, <strong>CBS</strong> 109116. A–C. Colonies (15 C, nUV). A. On OA. B. On CHA. C. On MEA. D. Conidia and conidiogenous cells on OA (<strong>CBS</strong> 109116); E–G. Conidia<br />

in planta (<strong>CBS</strong> H-21258). H. Conidiogenous cells on OA (<strong>CBS</strong> 123878). I. Conidia on OA (<strong>CBS</strong> 123878). Scale bars = 10 µm.<br />

walls covered with short mycelial outgrowth, with a single opening<br />

releasing a stout cirrhus of pale whitish to rosy-buff conidial slime;<br />

reverse mostly olivaceous-black due to the conidiomata; after<br />

incubation of 5–7 wk, more of the immersed mycelium darkens<br />

to olivaceous-black, with traces of a red pigment especially near<br />

the margin, and the aerial mycelium becomes more dominant,<br />

white or grey. Colonies on CMA 2–3 mm diam in 10 d (27–28 mm<br />

in 7 wk), as on OA, but the reddish pigment at the margin more<br />

conspicuous in old cultures. Colonies on MEA 1.5–3 mm diam in 10<br />

d ((8–)14–17 mm in 7 wk), with an even to irregular, glabrous, buff<br />

margin; colonies first restricted, while later faster growing hyphal<br />

strands colonize the medium underneath the surface of the agar,<br />

pustulate to hemispherical, the surface first ochreous or amber,<br />

later olivaceous-grey or black covered by fairly dense, short,<br />

white aerial mycelium; some superficial or immersed pycnidial<br />

conidiomata formed, releasing cirrhi of pale buff conidial slime;<br />

reverse dark umber to brown-vinaceous. Colonies on CHA 1.5–3<br />

mm diam in 10 d (15–17 mm in 7 wk), with an irregular margin<br />

which is hardly visible from above; colonies restricted, irregularly<br />

pustulate to hemispherical, the surface dark brick to dark slate<br />

244


A new approach to species delimitation in Septoria<br />

blue, covered by a diffuse, very short, felty, white aerial mycelium;<br />

abundant superficial conidiomata releasing stout cirrhi of rosy-buff<br />

conidial slime; reverse blood colour.<br />

Hosts: Astragalus spp.<br />

Material examined: Austria, Tirol, Ötztal, Ötz, near Habichen W of Ötztaler Aache,<br />

1 Aug. 2000, on living leaves of Astragalus glycyphyllos, G. Verkley 1036, epitype<br />

designated here <strong>CBS</strong> H-21151 “MBT175673”, living cultures ex-epitype <strong>CBS</strong><br />

109116, 109117; Carinthia, near Töschling at Wörthersee, on living leaves of A.<br />

glycyphyllos, July (year not indicated), Keissler, distributed in Keissler, Kryptogam.<br />

exsicc. 1331, PC 0084566. Czech Republic, Moravia, Pavlov, forest around ruin, 18<br />

Sep. 2008, on living leaves of A. glycyphyllos, G. Verkley 6023, <strong>CBS</strong> H-21258, living<br />

culture <strong>CBS</strong> 123878. France, Lower Normandy, Calvados, Baynes near Forêt de<br />

Cerisy, 20-21 Sep. 1842, on leaves of A. glycyphyllos, Roberge, “Col. Desmazieres<br />

1863, no. 8, 59”, isotype PC 0084563; Côte-d’Or, Montagne de Bard, same substr.,<br />

June 1901, Fautrey, PC 0084565 (herb. Mussat); same substr., Pinsguel, near<br />

Toulouse, 30 Aug. 1935, Moesz, PC 0084564. Poland, Puszcza Bialowieska, Aug.<br />

1922, on living leaves of A. glycyphyllos, W. Siemaszko, distributed in W. Siemaszko,<br />

Fung. Bialowiezenses exsicc. 73, PC 0084569. Romania, Transsilvania, distr.<br />

Istriţa-Năsăud, Arcalia Arboretum, 1 July 1966, on living leaves of A. glycyphyllos,<br />

A. Crişan, distributed in Flora Romania exsicc 3127, PC 0084567; same substr.,<br />

Muntenia, distr. Ilfov, Pantelimon, 18 July 1926, T. Săvulescu & C. Sandhu,<br />

distributed in Săvulescu, Herb. Mycol. Romanicum 4, 166, PC 0084568 (sub S.<br />

astragali f. santonensis).<br />

Notes: The type specimen in PC of S. astragali contains several<br />

mounted leaves and is provided with a hand-written description in<br />

French. Conidia observed in this material are mostly 7–9-septate,<br />

85–130 × 2.5–3.5 μm. The type thus agrees well with the original<br />

description which indicated conidia 120 × 3 µm, with 9–10 septa.<br />

Of the other collections available for this study that generally<br />

all agree with the type in morphology and leaf symptoms, 1036<br />

from Tirol is chosen as epitype. Various authors have reported<br />

comparable conidial measurements for this large-spored Septoria.<br />

Jørstad (1965) reported conidial measurements 48–128 × 3–3.5<br />

µm, Teterevnikova-Babayan (1987) 60–140 × 3–4 µm, Vanev et al.<br />

(1997), 58–112 × 2.5–3.5 µm. According to the original diagnosis,<br />

S. astragali var. brencklei, described from Lathyrus venosus in<br />

North Dakota, has 8–10-septate conidia, 130–150 × 4–5 µm,<br />

and Teterevnikova-Babayan (1987) placed it in synonymy with S.<br />

astragali. Septoria astragali is one of the first of over 200 Septoria<br />

that were described from plants of the family Fabaceae.<br />

Septoria campanulae (Lév.) Sacc., Syll. Fung. 3: 544. 1884.<br />

Fig. 11.<br />

Basionym: Ascochyta campanulae Lév., Annls Sci. Nat., sér. 3, Bot.<br />

5: 277. 1846.<br />

Description in planta: Symptoms definite, circular to irregular, pale<br />

to dark brown leaf spots, epigenous, usually delimited by blackened<br />

veinlets. Conidiomata pycnidial, predominantly ephiphyllous, rarely<br />

hyphyllous, scattered, globose to subglobose, immersed to semiimmersed,<br />

40–125 µm diam; ostiolum circular, central, 10–20 µm<br />

wide, surrounding cells darker; conidiomatal wall 10–20 µm diam,<br />

composed of an outer layer of brown-walled cells 3.5–10 µm diam,<br />

and an inner layer of hyaline cells 3.5–6 µm diam. Conidiogenous<br />

cells discrete or integrated in 1–2-septate conidiophores, cylindrical,<br />

or ampuliform, sometimes with an elongated neck, hyaline,<br />

holoblastic, proliferating sympodially, and often in the same cell<br />

also percurrently showing indistinct annellations, 5–15 × 3–5 µm.<br />

Conidia filiform, straight or slightly curved, gradually attenuated to<br />

a narrowly rounded or somewhat pointed apex, gradually or more<br />

abruptly attenuated into a narrowly truncate base, 0–1(–3)-septate,<br />

not or indistinctly constricted around the septa, hyaline, contents<br />

Fig. 11. Septoria campanulae. A. Conidia and conidiogenous cells in planta (<strong>CBS</strong><br />

H-21178). B. Ibid., on CHA (<strong>CBS</strong> 109114). Scale bars = 10 µm.<br />

with small oil-droplets and minutely granular material in the<br />

living state and rehydrated state, (12.5–)15–25(–32) × 1.5–2 µm<br />

(rehydrated). Sexual morph unknown.<br />

Description in vitro: Colonies on OA 6–9 mm diam in 10 d (28–32<br />

mm in 3 wk; > 65 mm in 7 wk), with an even, somewhat undulating,<br />

glabrous, colourless margin; colonies spreading, the surface plane,<br />

immersed mycelium pale luteous to ochreous, but radiating greenish<br />

or olivaceous hyphal strands soon developing, which later dominate<br />

the olivaceous-black colonies, then also a distinct red pigment is<br />

produced which diffuses beyond the colony margin; scattered, mostly<br />

superficial pycnidial conidiomata, which are first dark olivaceous, then<br />

www.studiesinmycology.org<br />

245


Verkley et al.<br />

almost black, glabrous, with a single or up to 5 ostioli placed on short<br />

papillae or more elongated necks, that release pale whitish conidial<br />

slime; aerial mycelium scanty, diffuse, woolly-floccose, white; reverse<br />

in the centre most dark slate blue, first surrounded and intermixed<br />

with ochreous to rust, later more coral. Colonies on CMA 5–9 mm<br />

diam in 10 d (24–28 mm in 3 wk; > 70 mm in 7 wk), with an even,<br />

glabrous margin; as on OA but immersed mycelium with a greenish<br />

haze throughout, later almost entirely olivaceous-black; aerial<br />

mycelium even more scanty, but higher and reverse darker, dark<br />

slate blue throughout most of the colony; conidiomata similar as on<br />

OA, but necks shorter or absent. Colonies on MEA 7–9 mm diam in 2<br />

wk (24–30 mm in 3 wk; > 70 mm in 7 wk), with an even, undulating to<br />

ruffled, glabrous, buff to honey margin; colonies first more restricted,<br />

pustulate to almost conical, but later growing faster with a plane<br />

submarginal area; immersed mycelium rather dark, near the margin<br />

covered by woolly to felty white aerial mycelium; mostly composed<br />

of spherical conidiomatal initials, superficial mature conidiomata<br />

releasing milky white conidial slime; reverse first dark brick in the<br />

centre, near the margin locally grey-olivaceous or cinnamon, later<br />

sepia to brown-vinaceous, the margin honey. Colonies on CHA 4–10<br />

mm diam in 10 d (17–32 mm in 3 wk; 45–65 mm in 7 wk), with an<br />

irregular or even, buff margin covered by a diffuse, felty white, later<br />

grey aerial mycelium; further as on MEA, but the colony surface<br />

less elevated and especially near the margin with greyish, felty to<br />

tufty aerial mycelium; in the centre numerous conidiomata develop<br />

at the surface, after 3 wk releasing milky white to rosy-buff droplets<br />

of conidial slime; reverse in the centre blood colour, dark brick to<br />

cinnamon at the margin.<br />

Conidiogenous cells as in planta, but often with relatively<br />

longer necks due to repetitive percurrent proliferation. Conidia as in<br />

planta, but more often 2 and also 3-septate, and mostly 18–34.5 ×<br />

1.5–2 µm (OA), 13–32 × 1.5–2 µm (CHA).<br />

Hosts: Campanula glomerata, C. takesimana.<br />

Material examined: Austria, Tirol, Ötztal, Sulztal, Gries, along the river in the<br />

village, on living leaves of Campanula glomerata, 1 Aug. 2000, G. Verkley 1034,<br />

<strong>CBS</strong> H-21178, living cultures <strong>CBS</strong> 109114, 109115. Korea, Taean, on living leaves<br />

of C. takesimana, H.D. Shin, living culture SMKC 21949 = KACC 42622 = <strong>CBS</strong><br />

128589; Daejeon, same substr., H.D. Shin, living culture SMKC 24476 = KACC<br />

44787 = <strong>CBS</strong> 128604.<br />

Notes: The first species described on Campanula is S. campanulae,<br />

for which Shin & Sameva (2004) provided a detailed description<br />

based on material occurring in Korea on C. punctata and C.<br />

takeshimana (conidia mostly 1-septate, 13–24 × 1.5–2 µm). Shin<br />

& Sameva summerised the history of the Septoria species on the<br />

genus Campanula. Of the three species most often accepted, viz.,<br />

S. campanulae, S. obscura, and S. trachelii, S. campanulae fits the<br />

current material best. Septoria arcautei was not mentioned by Shin<br />

& Sameva. This species was described from C. glomerata in Spain,<br />

and according to the original description by Unanumo, the pycnidia<br />

are predominantly epiphyllous, 55.8–74.8 µm diam, and the conidia<br />

continuous, 20–25.7 × 0.8 µm. Septoria campanulae is closely related<br />

to several species from hosts in Apiaceae, including S. aegopodina,<br />

S. oenanthis, and S. sii (Fig. 2). Sequencing results of <strong>CBS</strong> 109114<br />

and 109115 were puzzling, suggesting possible contamination.<br />

Septoria cerastii Roberge ex Desm., Annls Sci. Nat., sér. 3,<br />

Bot. 11: 347. 1849. Fig. 12.<br />

Description in planta: Symptoms indefinite, yellow to brown leaf<br />

spots, but more often on withering parts of leaves, stems and bracts.<br />

Conidiomata pycnidial, on leaves amphigenous but predominately<br />

epiphyllous, scattered or aggregated, globose, semi-immersed,<br />

80–125(–150) µm diam; ostiolum circular, central, 20–45 µm wide,<br />

surrounding cells somewhat darker; conidiomatal wall composed<br />

of textura angularis without distinctly differentiated layers, the<br />

outer cells with brown, somewhat thickened walls and 4–6.5 µm<br />

diam, the inner cells hyaline and thin-walled and 3.5–6 µm diam.<br />

Conidiogenous cells ampulliform, or elongated ampulliform with a<br />

distinct neck, hyaline, holoblastic, proliferating percurrently 1–many<br />

times with indistinct annellations, also sympodially, 5–10 × 3–5 µm.<br />

Conidia filiform to filiform-cylindrical, straight, curved, or flexuous,<br />

gradually attenuated to a rounded or more or less pointed apex,<br />

abruptly attenuated into a truncate base, (1–)2–4(–5)-septate,<br />

not or indistinctly constricted around the septa, hyaline, contents<br />

moderately rich in small guttulae, minutely granular material and<br />

large vacuoles in the living state, in the rehydrated state with<br />

inconspicuous contents and no oil-droplets, (21–)30–52(–57) ×<br />

1.5–2 µm (rehydrated). Sexual morph unknown.<br />

Description in vitro: Colonies on OA 2–4 mm diam in 2 wk (10–13<br />

mm in 6 wk), the margin irregular to ruffled, almost as dark as rest<br />

of the colony, covered by diffuse, grey aerial mycelium; the colony<br />

spreading, almost plane to somewhat irregularly lifted and pustulate,<br />

immersed mycelium olivaceous-black to black, covered with dense,<br />

grey, woolly aerial mycelium; conidiomata starting to develop at the<br />

surface after 10–15 d; reverse olivaceous-black. Colonies on CMA<br />

2–5 mm diam in 2 wk (13–17 mm in 6 wk), as on OA; conidial<br />

slime milky white; reverse greenish grey to almost black. Colonies<br />

on MEA 0.5–1.5 mm diam in 2 wk (4–6 mm in 6 wk), as on OA,<br />

with equally dense and long, woolly, grey aerial mycelium; colony<br />

hemispherical, with scarce pycnidial conidiomata developing<br />

tardily; reverse dark slate blue to black. Colonies on CHA 1–3 mm<br />

diam in 2 wk (8–12 mm in 6 wk), as on OA, but colonies more<br />

distinctly lifted above the agar surface, hemispherical, and aerial<br />

mycelium denser but shorter; conidiomata developing scarcely at<br />

the surface.<br />

Conidiomata pycnidial and similar as in planta, 100–150 µm<br />

diam, or merged into larger complexes especially on the agar<br />

surface, dark olivaceous-black to black, up to 250 µm diam; ostiolum<br />

as in planta, or absent; Conidiogenous cells hyaline, ampuliform, or<br />

elongated ampulliform to cylindrical, with a distinct neck, holoblastic,<br />

proliferating percurrently 1–many times with indistinct scars<br />

(annellations), also sympodially, 5–12(–15) × 3–5(–6.5) µm. Conidia<br />

on OA similar as in planta, 1–3(–5)-septate, indistinctly constricted<br />

around the septa, hyaline, contents moderately rich in small guttulae,<br />

minutely granular material and large vacuoles in the living state,<br />

(26–)35–50(–57) × 1.5–2.5 µm (T), released from superficial<br />

conidiomata in whitish cirrhi or slimy masses.<br />

Hosts: In leaf spots and on withering leaves, stems and bracts of<br />

Cerastium spp. According to Markevičius & Treigienė (2003), also<br />

on Stellaria holostea.<br />

Material examined: Korea, Hoengseong, on C. holosteoides var. hallaisanense,<br />

14 May 2006, H.D. Shin, <strong>CBS</strong> 128586 = KACC 42367 = SMKC 21781; same<br />

loc., substr., H.D. Shin, <strong>CBS</strong> 128612 = KACC 42831 = SMKC 22609; Jeju, on<br />

C. holosteoides, 1 Nov. 2007, H.D. Shin, <strong>CBS</strong> 128626 = KACC 43220 = SMKC<br />

23137. Netherlands, prov. Utrecht, Baarn, on living leaves of Cerastium sp., 9 Aug.<br />

1968, H.A. van der Aa 731, <strong>CBS</strong> H-18069; same loc., substratum, 18 Oct. 1962,<br />

H.A. van der Aa, <strong>CBS</strong> H-18070, and 19 Oct. 1963, <strong>CBS</strong> H-18071; Prov. Noord<br />

Holland, Amsterdamse Waterleidingduinen, near Ruigeveld, on withering leaves<br />

of Cerastium fontanum subsp. vulgare, 31 Aug. 1999, G. Verkley & A. van Iperen<br />

915, epitype designated here <strong>CBS</strong> H-21158 “MBT175351”, living culture ex-epitype<br />

<strong>CBS</strong> 102323. Romania, distr. Ilfov, Malu-Spart, on living leaves of C. fontanum<br />

246


A new approach to species delimitation in Septoria<br />

Fig. 12. Septoria cerastii, <strong>CBS</strong> 102323. A–C. Colonies (15 ºC, nUV). A. On OA. B. On CHA. C. On MEA. D. Conidia and conidiogenous cells in planta (<strong>CBS</strong> H-21158, epitype).<br />

E. Conidia on OA (<strong>CBS</strong> 102323). Scale bars = 10 µm.<br />

subsp. triviale, 20 May 1973, G. Negrean, <strong>CBS</strong> H-18072, distributed in Herb. Mycol.<br />

Romanicum, fasc. 50, no. 2475.<br />

Notes: The material on Cerastium fontanum examined here<br />

agrees in morphology with the detailed description of Muthumary<br />

(1999), who studied type material of S. cerastii (PC 1324) and also<br />

provided excellent illustrations. The type host was identified as<br />

C. vulgatum, which is a synonym of C. fontanum subsp. vulgare<br />

(and C. holosteoides). According to Muthumary, no definite spots<br />

are on the leaves in this collection, but the fungus is nonetheless<br />

interpreted as parasitic. We have the impression from our collection<br />

that it may be endophytic or a very weak pathogen, but in Korea the<br />

fungus causes very characteristic symptoms on C. holosteoides<br />

var. hallaisanense (Shin & Sameva 2004).<br />

This species and S. stellariae occur on two very closely related<br />

host genera, Cerastium and Stellaria (Smissen et al. 2002), but<br />

the two can be distinguished morphologically by conidiogenesis<br />

and conidial morphology in planta, and the cultures also differ<br />

considerably in pigmentation and growth speed especially on OA.<br />

DNA sequence data also support the hypothesis that S. cerastii<br />

and S. stellariae are distinct species, as they differ for example by<br />

6 base positions on ITS 1, and the distance in the multilocus tree<br />

is considerable. Jørstad (1965) also regarded S. cerastii and S.<br />

stellariae as distinct species, indicating that on average the spores<br />

in the latter were much longer (22–96 µm) than in the former<br />

(20–43 µm). He mentioned that in two collections of S. cerastii<br />

from Iceland the conidia reached lengths of 57–60 µm, whereas<br />

in collections from Norway attributed to the same species conidia<br />

www.studiesinmycology.org<br />

247


Verkley et al.<br />

were no longer than 43 µm. In the Dutch collection studied here,<br />

conidia also reached 57 µm in length.<br />

Septoria chromolaenae Crous & den Breeÿen, Fungal<br />

Diversity 23: 90. 2006.<br />

A detailed description of the species in planta and in vitro was given<br />

by Den Breeÿen et al. (2006).<br />

Material examined: Cuba, near Havana, Chromolaena odorata, S. Neser, 28 Oct.<br />

1997, holotype <strong>CBS</strong> H-19756, culture ex-type <strong>CBS</strong> 113373.<br />

Notes: This species is closely related to two strains identified as S.<br />

ekmanniana (<strong>CBS</strong> 113385, 113612) originating from Chromolaena<br />

odorata (Asteraceae) in Mexico. The two species can readily be<br />

distinguished by conidial sizes, particularly in culture (Den Breeÿen<br />

et al. 2006). Other species in this clade include S. passiflorae (<strong>CBS</strong><br />

102701) and S. passifloricola (<strong>CBS</strong> 129431), and S. anthurii (<strong>CBS</strong><br />

148.41, 346.58) and S. sisyrinchii (<strong>CBS</strong> 112096).<br />

Septoria chrysanthemella complex<br />

Septoria chrysanthemella Sacc., Syll. Fung. 11: 542. 1895. nom.<br />

nov. pro S. chrysanthemi Cavara, Atti Ist. bot. Univ. Lab. crittogam.<br />

Pavia, Ser. 2, 2: 266. 1892 [non Allesch., 1891].<br />

A description in planta was provided by Punithalingam (1967a) and<br />

Priest (2006). Sexual morph: unknown.<br />

Multilocus sequencing revealed that five of the isolates studied<br />

here that were identified as S. chrysanthemella belong to a species<br />

complex, showing the presence of two cryptic sister species. The<br />

first group includes <strong>CBS</strong> 354.73, 128616 and 128617, originating<br />

from Chrysanthemum morifolium in New Zealand and Korea,<br />

respectively. The second group comprises the two European<br />

isolates <strong>CBS</strong> 351.58 and 483.63, and <strong>CBS</strong> 128622 from Korea,<br />

from various Chrysanthemum spp. A description of the isolates is<br />

provided below.<br />

Group 1: Description in vitro (<strong>CBS</strong> 354.73): Colonies on OA<br />

20–23 mm diam in 2 wk, with an even, glabrous margin; colonies<br />

spreading, immersed mycelium grey-olivaceous and in the centre<br />

with a brown haze, mostly glabrous but locally with some tufts of<br />

pure white aerial mycelium; reverse greenish grey to olivaceousgrey.<br />

Pycnidia developing immersed and on the agar surface after<br />

10–12 d, releasing pale white conidial slime. Colonies on MEA<br />

17–20 mm diam in 2 wk, with an even, colourless to buff margin;<br />

colonies restricted to spreading, in the centre irregularly pustulate,<br />

the surface dark, provided with diffuse or more dense mat of grey,<br />

appressed aerial mycelium; reverse brown-vinaceous. Conidiomata<br />

developing on the agar surface in the centre, releasing milky white<br />

masses of conidial slime.<br />

Material examined: New Zealand, Taranaki, Chrysanthemum morifolium, G.F.<br />

Laundon, 24 Nov. 1972, LEV 6807, living culture <strong>CBS</strong> 354.73. South Korea,<br />

Hongcheon, Chr. morifolium, H.D. Shin, 10 Sep. 2007, living culture SMKC 22860 =<br />

KACC 43086 = <strong>CBS</strong> 128617.<br />

Group 2: Description in vitro (<strong>CBS</strong> 351.58): Colonies on OA<br />

reaching 32–36 mm diam in 2 wk, with an even, glabrous margin;<br />

colonies spreading, immersed mycelium pale luteous to faintly<br />

saffron, mostly glabrous but locally with some tufts of pure<br />

white aerial mycelium; reverse flesh to saffron. Pycnidia formed<br />

immersed or on the agar surface after 10–12 d, releasing pale<br />

white conidial slime. Colonies on MEA reaching 36–40 mm diam in<br />

2 wk, with an even, cvolourless to buff margin; colonies spreading,<br />

the surface entirely covered by a dense mat of pure white to rose,<br />

woolly aerial mycelium; reverse fulvous to ochreous, dark brick in<br />

the centre. Pycnidia formed mostly on the agar surface after 10–2<br />

wk, releasing pale white conidial slime.<br />

Material examined: Germany, Berlin, Chrysanthemum indicum, R. Schneider,<br />

June 1957, living culture BBA 8432 = <strong>CBS</strong> 351.58. Netherlands, Baarn, on Chr<br />

ysanthemum sp., isol. H.A. van der Aa, dep. J.A. von Arx Nov. 1963, living culture<br />

<strong>CBS</strong> 483.63. South Korea, Hoengseong, on Chr. boreale, H.D. Shin, 16 Oct. 2007,<br />

living culture SMKC 23025 = KACC 43191 = <strong>CBS</strong> 128622.<br />

Notes: Saccardo (1895) did not specify the host species of S.<br />

chrysanthemella, but in the original diagnosis of Cavara (for<br />

which Saccardo proposed a nomen novum to replace the name<br />

S. chrysanthemi because it was antedated by S. chrysanthemi<br />

Allesch. 1891), the host was indicated to be Chrysanthemum<br />

indicum. The fungus was described to produce conidia 55–65 ×<br />

1.5–2 µm, and lacking septa. It will have to be resolved to which<br />

group of the complex the name S. chrysanthemella should be<br />

applied.<br />

Septoria clematidis Roberge ex Desm., Annls Sci. Nat., sér.<br />

3, Bot. 20: 93. 1853 [non Pandotra & K.S.M. Sastry, nom.<br />

illeg., Art. 53]. Fig. 13.<br />

Description in planta: Symptoms leaf spots angular to circular,<br />

initially mostly pale yellowish brown, then greyish brown, sometimes<br />

surrounded by a darker border, visible on both sides of the leaf.<br />

Conidiomata pycnidial, epiphyllous, several in each leaf spot,<br />

globose to subglobose, dark brown, immersed, 65–120(–160) µm<br />

diam; ostiolum central, circular, 55–80(–100) µm wide, surrounding<br />

cells concolorous or somewhat darker; conidiomatal wall 20–<br />

35 µm thick, composed of textura angularis without distinctly<br />

differentiated layers, the cells 3–10 µm diam, the outer cells with<br />

brown, somewhat thickened walls, the inner cells with hyaline and<br />

thinner walls. Conidiogenous cells hyaline, narrowly to broadly<br />

ampulliform with a relatively wide and sometimes elongated neck,<br />

holoblastic, proliferating sympodially and possibly also percurrently<br />

in some cells but annellations not observed, 8–12.5 × 4–5(–6) µm.<br />

Conidia cylindrical to filiform-cylindrical, straight, more often curved<br />

or slightly flexuous, with a relatively broadly rounded, sometimes<br />

somewhat pointed apex, barely attenuated towards the broadly<br />

truncate base, (1–)4–5(–6)-septate, not or indistinctly constricted<br />

around the septa, hyaline, contents with a few oil-droplets and<br />

minute granular material in each cell in the living state, with<br />

inconspicuous oil-droplets and granular contents in the rehydrated<br />

state, (40–)47–67(–80) × (3–)3.5–4 µm (rehydrated). Sexual<br />

morph unknown.<br />

Description in vitro: Colonies on OA 3–6(–8) mm diam in 3 wk<br />

(12–15 mm in 7 wk), the margin irregular to ruffled, colourless,<br />

glabrous; the colony almost plane to somewhat irregularly lifted<br />

and pustulate, immersed mycelium initially in the centre pale greyolivaceous<br />

with some long aerial hyphae, darkening entirely in<br />

older colonies to olivaceous-black, this darkening starting where<br />

pycnicial stromata are formed releasing milky white droplets of<br />

conidial slime after about 3 wk; reverse of colony dark slate blue<br />

to olivaceous-black. Colonies on CMA 4–7(–9) mm diam in 3<br />

wk (12–17 mm in 7 wk), as on OA, but aerial mycelium denser<br />

248


A new approach to species delimitation in Septoria<br />

Fig. 13. Septoria clematidis. A, B. Colonies <strong>CBS</strong> 108983 (15 ºC, nUV). A. On OA. B. On MEA. C. Conidia and conidiogenous cells in planta (<strong>CBS</strong> H-21182, epitype). D. Ibid.,<br />

<strong>CBS</strong> 108983 on OA. Scale bars = 10 µm.<br />

on sterile parts of the colony. Numerous pycnidial conidiomata<br />

developing after 2 wk in the agar, on its surface, and also in the<br />

aerial mycelium, but no fertile ones observed. Colonies on MEA<br />

4.5–7 mm diam in 3 wk (11–18(–22) mm in 7 wk), with a barely<br />

visible margin; colony restricted, hemispherical, the surface very<br />

dark or black, covered by short, diffuse to dense white or grey<br />

aerial hyphae; pycnidial conidiomata at the surface releasing clear<br />

droplets without conidial slime after 3 wk, and later first buff, then<br />

dirty luteous droplets with conidia; reverse dark slate blue to black,<br />

margin pale luteous or buff. Colonies on CHA 4.5–7 mm diam in 3<br />

www.studiesinmycology.org<br />

249


Verkley et al.<br />

wk (15–18 mm in 7 wk), as on MEA, but aerial mycelium denser<br />

with longer hyphae; conidiomatal initials developing scarcely at the<br />

surface, still sterile after 3 wk, but later on releasing dirty buff to<br />

pale ochreous droplets of conidial slime. In older colonies on MEA<br />

and CHA a grey or greyish white, dense mat of aerial hyphae may<br />

cover small or larger sectors.<br />

Conidiomata as in vitro, pycnidial, often merged to complex<br />

stromata, first brownish, then black, glabrous or the surface covered<br />

by short white hyphae; conidiogenous cells as in planta, but larger,<br />

7.5–20 × 3–5(–6) µm, holoblastic, proliferating sympodially, no<br />

percurrent proliferation observed; conidia similar in shape as in<br />

planta but mostly 3–7-septate, (45–)55–85(–105) × 4–5(–7) µm.<br />

Hosts: Clematis spp.<br />

Material examined: Austria, Tirol, Ötztal, Brunau, on living leaves of Clematis<br />

vitalba, 30 July 2000, G. Verkley 1025, epitype designated here <strong>CBS</strong> H-21182<br />

“MBT175353”, living cultures ex-epitype <strong>CBS</strong> 108983, 108984; same loc.,<br />

substr., date, G. Verkley 1026, <strong>CBS</strong> H-21183; same substr., S. Tirol, Eggenthal,<br />

Birchabruck, 23 July 1904, J. Kabát, distributed in Kabát & Bubák, Fungi imperfecti<br />

exsicc. 163, PC 0084599. France, Parc de Lébisey, 27 July 1848, Roberge (?), ‘Col.<br />

Desmazieres 1863, no. 8, 448’, isotype PC 0084593; same loc., substr., June 1848,<br />

Roberge, PC 0084596; same substr., Paris, Parc de St Cloud, Aug. 1908, Ludwig,<br />

PC 0084607; same substr., Fontainebleau forest, Aug. 1885, PC 0084604; same<br />

substr., Clères, 27 Aug. 1896 (herb. Mussat), PC 0084598; same substr., Seine-et-<br />

Oise, Meudon, 15 Nov. 1844, Roussel (Herb. Roussel), PC 0084594, PC 0084595.<br />

Romania, distr. Iaşi, Moldova, Bârnova, same substr., 30 Aug. 1934, T. Săvulescu<br />

& C. Sandhu, distributed in Săvulescu, Herb. Mycol. Romanicum 24, 1160, PC<br />

0084603, 0084608, 0084597.<br />

Notes: This is one of the large-spored species of Septoria from<br />

the genus Clematis. Teterevnikova-Babayan (1987), who studied<br />

collections from several species of Clematis observed, 4–6-septate<br />

conidia 60–90 × 3–5 µm. Vanev et al. (1997) reported conidia<br />

as 39–100 × 2.5–4 µm. The type of S. clematidis in PC showed<br />

4-7-septate conidia 52–78 × 3–3.5 µm, in good agreement with the<br />

ones observed in the Austrian material (<strong>CBS</strong> H-21182), which is<br />

designated above as epitype.<br />

The taxonomy of the 15 described species of Septoria on<br />

Clematis is still unresolved (Shin & Sameva 2004), and would<br />

certainly benefit from study of additional fresh material and cultures<br />

which could be compared with type material. Septoria clematidis<br />

Roberge is probably distinct from S. clematidis Pandotra & K.S.M.<br />

Sastry, a taxon described on Clematis grata in India that should be<br />

renamed because it is a later homonym. According to Muthumary<br />

(1999), the conidia in the type of S. clematidis Pan. & Sastry are<br />

1–3-septate, 38–66 × 2.5–3 µm, whereas in the original diagnosis<br />

the conidia are described as “ septate”, 25.6–44.8 (av. 36.3) × 2.3–<br />

3.2 (av. 2.7). Two other large-spored species are S. jackmanii Ellis<br />

& Everh. 1892, which was described from Clematis jackmanii in<br />

Geneva, New York and, according to the diagnosis, has conidia 40–<br />

70 × 2.5–3 µm (number of septa not given), and also S. williamsiae<br />

Priest, based on material on C. aristata in Australia, which has<br />

(1–)3(–4)-septate conidia 20–45(–55) × (1.5–)2 µm (Priest 2006).<br />

Septoria convolvuli Desm., Annls Sci. Nat., sér. 2, Bot.17:<br />

108. 1842. Fig. 14.<br />

Description in planta: Symptoms leaf lesions circular, single or<br />

confluent to form irregular extended lesions, pale to dark brown,<br />

showing one to several concentric lines and a dark brown,<br />

slightly raised line or zone delimiting the lesion, visible on both<br />

sides of the leaf. Conidiomata pycnidial, epiphyllous, several in<br />

each lesion, immersed, subglobose to globose, brown to black,<br />

(65–)90–120(–145) µm diam; ostiolum central, circular to irregular,<br />

initially 20–40 µm wide, later becoming more irregular and up to<br />

70 µm wide, surrounding cells somewhat darker; conidiomatal<br />

wall 10–15 µm thick, composed of a homogenous tissue of<br />

hyaline, angular cells, 2.5–4.5 µm diam, the outermost cells pale<br />

brown with slightly thickened walls, the inner cells thin-walled.<br />

Conidiogenous cells hyaline, discrete, rarely integrated in 1-septate<br />

conidiophores, narrowly to broadly ampulliform, holoblastic,<br />

proliferating percurrently several times, with indistinct annellations<br />

on a relatively elongated neck, or sympodially, 6–10(–17) ×<br />

2.5–3.5(–4) µm. Conidia filiform to filiform-cylindrical, slightly to<br />

strongly curved, often elegantly flexuous, attenuated in the upper<br />

cell to a narrowly rounded to pointed tip, narrowly truncate at the<br />

base, 1–3(–4)-septate, not constricted around the septa, hyaline,<br />

contents minute oil-droplets and granular material in the rehydrated<br />

state, (15–)23–42(–50) × 1.5–2 µm (rehydrated). Sexual morph<br />

unknown.<br />

Description in vitro: Colonies on OA 3–5 mm diam in 1 wk (16–20<br />

mm in 25 d; 40–48 mm in 33 d), with an even, glabrous margin,<br />

which is colourless, or faintly salmon due to a diffusable pigment<br />

already visible after 1 wk (but fading after 3 wk); colonies first<br />

restricted, conical to irregularly pustulate, but later spreading,<br />

immersed mycelium in the centre becoming first yellowish or citrine,<br />

then herbage green or darker olivaceous, surrounded by a more<br />

palid, rosy-buff or pale salmon, later hazel outer zone; pycnidia<br />

already developing in clusters or radiating rows at the colony<br />

surface, but they remain scarce, later releasing pale rosy-buff or<br />

whitish droplets of conidial slime; aerial mycelium remaining scanty,<br />

but in the centre it may be well-developed, white, woolly; reverse<br />

in the centre olivaceous-black to olivaceous-grey, surrounded by<br />

a first salmon or rosy-buff zone where the diffusable pigment is<br />

formed, but this becomes hazel. Colonies on CMA 3–5 mm diam<br />

in 1 wk [(15–)18–21 mm in 25 d; 38–40 mm in 33 d], as on OA, but<br />

salmon pigment only faintly visible after 20 d, the margin becoming<br />

rosy-buff; centre much darker earlier on, entirely olivaceous-black,<br />

numerous black papillate to rostrate pycnidia developing after 21 d,<br />

releasing pale whitish to buff droplets of conidial slime. Colonies on<br />

MEA 2–5 mm diam in 1 wk [5–11 mm in 25 d; 16–18(– 23) mm in 33<br />

d], with a ruffled, mostly colourless margin already covered by white<br />

aerial hyphae after 1 wk; a halo of a diffusing pigment is visible after<br />

1 wk, which fades later on; colonies restricted, irregularly pustulate<br />

and up to 3 mm high after 1 wk, immersed mycelium dark, but<br />

mostly invisible from above due to well-developed, white to greyish,<br />

dense and short-felted aerial mycelium; black conidiomata already<br />

developing after 1 wk, releasing large masses of buff conidial<br />

slime; reverse mostly sepia to isabelline. Some colonies may show<br />

a more spreading growth after 2 wk in sectors, that are glabrous,<br />

immersed mycelium almost black. Colonies on CHA 3–5 mm diam<br />

in 1 wk (18–30 mm in 25 d; 30–34 in 33 d), with an even, glabrous,<br />

colourless margin; colonies irregularly pustulate, up to 3 mm high<br />

after 1 wk, immersed mycelium colourless to pale ochreous, but in<br />

the centre the surface may be already almost black, while after 25<br />

d the entire colony attains that colour, the larger part covered by<br />

well-developed, low, dense, pure white, later smoke-grey to greyolivaceous,<br />

felty to woolly-floccose, aerial mycelium; conidiomatal<br />

initials developing mainly in the centre after 1 wk; reverse mostly<br />

fawn, but later almost entirely brown-vinaceous.<br />

Conidiomata single, 60–150 µm diam, or merged to small<br />

clusters of up to 350 µm diam, olivaceous to brown, formed mostly<br />

on the agar surface; conidiogenous cells as in planta, 6–20 ×<br />

2.5–4(–5) µm; conidia as in planta, but often some conidia with<br />

250


A new approach to species delimitation in Septoria<br />

Fig. 14. Septoria convolvuli. A, B. Conidia in planta (<strong>CBS</strong> H-21244). C. Conidia and conidiogenous cells on OA (<strong>CBS</strong> 102325). Scale bars = 10 µm.<br />

cells that are somewhat inflated, and constricted around septa,<br />

(22–)30–45(–55) × 1.8–2.5 µm.<br />

Hosts: Calystegia spp. and Convolvulus spp.<br />

Material examined: Germany, Eiffel, Schalkenmehren near Maar, Daun, on living<br />

leaves of Convolvulus arvensis, 16 Sep. 1970, H.A. van der Aa 2276, <strong>CBS</strong> H-18082.<br />

Netherlands, Prov. Hoord-Holland, Laren, on living leaves of Calystegia sepium, 18<br />

July 1970, H.A. van der Aa 2198, <strong>CBS</strong> H-18081; Prov. Flevoland, Erkemeder beach,<br />

in edge of marshland bordering the lake, on living leaves of Ca. sepium, 8 Sep.<br />

1999, G. Verkley 927, <strong>CBS</strong> H-21209, living culture <strong>CBS</strong> 102325. New Zealand,<br />

North Island, Coromandel, Tairua Forest, along roadside of St. Hway 25, near<br />

crossing 25A, on living leaves of Ca. sepium, 21 Jan. 2003, G. Verkley 1844, <strong>CBS</strong><br />

H-21244, living culture <strong>CBS</strong> 113111; same substr., North Isl., Waikato, Taupiri, Bob<br />

Byrne Memorial Park, 27 Jan. 2003, G. Verkley 1896, <strong>CBS</strong> H-21248; same substr.,<br />

North Isl., Northland, Russell, 30 Jan. 2003, G. Verkley 2014, <strong>CBS</strong> H-21245. South<br />

Korea, Kangnung, isolated from Ca. soldanella, H.D. Shin, 8 Nov. 2007, KACC<br />

43226 = <strong>CBS</strong> 128627.<br />

Notes: Morphologically and genetically the collections available<br />

proved highly homogeneous. Muthumary (1999) and Priest (2006)<br />

both reported sympodial conidiogenesis for this species, but did<br />

not observe annellidic conidiogenesis. According to Shin & Sameva<br />

(2004), the conidia can be up to 68 µm long and 7-septate. Jørstad<br />

(1965) listed several Septoria names that were based on material<br />

from Convolvulaceae in the synonymy of S. convolvuli, including<br />

S. septulata. Beach (1919) reported physiological differences for<br />

the species on Convolvulus arvensis, but whether this correlates<br />

with genetic differences still remains to be investigated. Moreover,<br />

as already pointed out by Priest (2006), a number of species on<br />

Calystegia and Convolvulus still have to be critically re-examined,<br />

which would have to include studies in culture.<br />

Septoria coprosmae Cooke, Grevillea 14: 129. 1886.<br />

Description in vitro: Colonies on OA 32 mm diam in 28 d (45 mm in<br />

38 d), with a glabrous, colourless, even margin; colony spreading,<br />

the surface glabrous with only a few tufts of pure white aerial<br />

mycelium near the centre, immersed mycelium mostly cinnamon,<br />

but brick in the centre, reverse concolorous; no diffusing pigments<br />

observed. Conidiomata formed after 3–10 d, on the agar surface or<br />

submerged, simple or complex, with dark, first reddish-brown, then<br />

black walls, preformed opening undifferentiated or lacking, tardily<br />

releasing pale salmon to whitish conidial slime (after 30 d or later).<br />

Colonies on MEA (Oxoid, 3 %) 35 mm diam in 28 d (45 mm in 38<br />

d), spreading but slightly elevated in the centre, with a colourless<br />

to rosy-buff, glabrous, even margin; colony surface leaden-grey to<br />

black, but with a fine felt coverage of minute, white aerial hyphae,<br />

reverse mostly dark brick to sepia, surrounded by cinnamon near<br />

the margin; no diffusing pigments observed. Conidiomata formed<br />

from 10 d onwards, mostly superficial, complex, opening by<br />

tearing of the upper wall and releasing milky white conidial slime.<br />

Spermatogonia of an Asteromella-state also formed.<br />

www.studiesinmycology.org<br />

251


Verkley et al.<br />

Conidiomata simple or complex, with several merging cavities,<br />

lacking a differentiated ostiolum, opening by tearing of the wall;<br />

conidiomatal wall composed of a single layer of isodiametric cells,<br />

6–13 μm diam. Conidiogenous cells discrete, or integrated in<br />

short, 1–2-septate conidiophores, hyaline, cylindrical, holoblastic,<br />

sympodial; conidia cylindrical, hyaline, smooth-walled, mostly<br />

curved, rounded at the tip, attenuated to a truncate base,<br />

(0–)1–3-septate , not or only slightly constricted around the septa,<br />

with minute oil-droplets near the ends and the septa, 9–31 × 1.8–<br />

2.2 μm (MEA), 17–30 × 1.7–2.0(–2.5) µm (OA); Spermatia hyaline,<br />

ellipsoid, with rounded ends and minutely granular contents, 3–5 ×<br />

0.8–1.2 μm.<br />

Hosts: Coprosma robusta, Coprosma sp.<br />

Material examined: New Zealand, North Island, Bay of Islands area, N. of Russell,<br />

mycosphaerella-like sexual morph on living leaves of Coprosma robusta, G. Verkley<br />

2020, <strong>CBS</strong> H-21246, living single ascospore isolate <strong>CBS</strong> 113391.<br />

Notes: <strong>CBS</strong> 113391 was obtained from rehydrated spotted leaves<br />

of Coprosma robusta collected in New Zealand that contained a<br />

mycosphaerella-like sexual morph. No mature asci were observed<br />

in this material, nor a septoria-like morph, but the isolate obtained<br />

developed pycnidia agreeing with conidia described for S.<br />

coprosmae (30 × 2 µm). In the multilocus phylogeny <strong>CBS</strong> 113391<br />

groups with CPC 19304, originating from Vigna unguiculata subsp.<br />

sesquipedalis in Australia, and CPC 19793, isolated from Syzygium<br />

cordatum in Australia, and is also relatively closely related to S.<br />

verbenae (<strong>CBS</strong> 113438, 113481) isolated from Verbena officinalis<br />

in New Zealand. Aptroot (2006) investigated an isotype of<br />

Mycosphaerella coacervata from BPI and could only find “various<br />

coelomycetes”. It is unclear whether it contained a Septoria. Sydow<br />

(1924) provided a description of the sexual morph of M. coacervata<br />

and an associated spermatial state, but not of a Septoria.<br />

Septoria cruciatae Roberge ex Desm., Annls Sci. Nat., sér.<br />

3, Bot. 8: 20. 1847. Fig. 15.<br />

= Septoria urens Pass., Atti Soc. crittog. ital. 2: 31. 1879.<br />

= Septoria aparines Ellis & Kellerm., J. Mycol. 5: 143. 1889.<br />

≡ Rhabdospora aparines (Ellis & Kellerm.) Kuntze, Revisio generum<br />

plantarum 3 (2): 509. 1898.<br />

= Septoria asperulae Bäumler, Verh. zool.-bot. Ges. Wien 40: 142. 1890.<br />

= Septoria galii-borealis Henn., Bot. Jahrb. Syst. 37: 163. 1905 [non Bubák<br />

& Kabát].<br />

= Septoria galii-borealis Bubák & Kabát, Hedwigia 52: 350. 1912 [non Henn.,<br />

later homonym].<br />

?= Phleospora bresadolae Allesch., Ber. bot. Ver. Landshut 12: 60. 1892.<br />

?= Septoria relicta Bubák, Annls mycol. 4: 116. 1906.<br />

For more synonyms see Jørstad (1965).<br />

Description in planta. Symptoms leaf lesions indefinite, usually a<br />

single one on each leaf expanding to ultimately cover the entire<br />

lamina, brown. Conidiomata pycnidial, epiphyllous, numerous,<br />

semi-immersed to immersed, subglobose to globose, dark brown<br />

to black, 170–240 µm diam; ostiolum central, circular, initially<br />

25–55 µm wide, later becoming more irregular and up to 90 µm<br />

wide, surrounding cells concolourous; conidiomatal wall 20–35 µm<br />

thick, composed of an inner layer of isodiametric to irregular cells<br />

mostly 2.5–4.5 µm diam with hyaline cell walls up to 2 μm thick,<br />

and an outer layer of hyphal cells, 8–15 × 5–6.5 μm with orange<br />

brown walls thickened up to 2 μm, well developed and up to 15<br />

μm thick in the upper part of the pycnidium wall. Conidiogenous<br />

cells hyaline, discrete, rarely integrated in 1-septate conidiophores,<br />

cylindrical, or narrowly to broadly ampulliform, holoblastic,<br />

proliferating rarely percurrently showing 1–2 indistinct annellations,<br />

sometimes (also) proliferating sympodially, 10–15(–22) × 3–5.5<br />

(–6) µm. Conidia filiform, curved to flexuous, rounded to somewhat<br />

pointed at the apex, attenuated modestly towards the truncate<br />

base, (0–)2–3-septate, not constricted around the septa, hyaline,<br />

containing several large oil-droplets and granular material in the<br />

living state and rehydrated state, (30–)42–54(–60) × 2.5–3.2 µm<br />

(living; rehydrated, 2.0–2.5 µm wide), released in white cirrhi.<br />

Description in vitro (20 ºC, diffuse daylight). Colonies on OA 8–12<br />

mm diam in 2 wk, with a glabrous, colourless, even margin; colony<br />

restricted, the surface mostly covered by pure white, woolly-floccose<br />

aerial mycelium, immersed mycelium mostly bright or darker<br />

herbage-green, brick in the centre, reverse dark green to black; a<br />

red pigment diffuses into the medium. Conidiomata developing in<br />

the centre on the surface of the colony or in the aerial mycelium,<br />

releasing pale milky white to rosy-buff conidial slime. Colonies on<br />

MEA 5–7 mm diam in 2 wk, with a barely visible, irregularly ruffled<br />

margin; colony restricted, hemispherical to irregularly pustulate,<br />

the surface entirely covered by a dense felty to woolly mat of<br />

pale olivaceous-grey, locally reddish, aerial mycelium, immersed<br />

mycelium almost black; reverse olivaceous-black to black;<br />

conidiomata developing on the surface in the centre of colonies,<br />

releasing milky white to rosy-buff conidial slime. Conidiomata on<br />

OA olivaceous-brown to olivaceous, globose, single or aggregated,<br />

200–380 μm diam, on the agar mostly without a well-developed<br />

ostiolum, the wall composed of a rather undifferentiated outer layer<br />

of loosely interwoven, pale brown hyphae with barely thickened<br />

walls, and an inner layer of globose to angular cells with hyaline<br />

walls up to 2 μm thick. Conidia as in planta, mostly 3-septate, 35–<br />

65 × 2–2.5(–3) µm (OA).<br />

Hosts: Galium spp.<br />

Material examined: Czech Republic, Moravia, Milovice, forest Milovika stran, 15<br />

Sep. 2008, on living or decaying leaves of Galium odoratum, G. Verkley 6007,<br />

epitype designated here <strong>CBS</strong> H-21250 “MBT175354”, living cultures ex-epitype<br />

<strong>CBS</strong> 123747, 123748. France, Libisey near Caen, on living leaves of G. cruciatum,<br />

Jul.-Sep. 1844, M. Roberge, “Col. Desmazieres 1863, no. 8, 200”, isotype PC<br />

0084552, with handwritten description in French; Libisey near Caen, on living leaves<br />

of G. cruciatum, July 1844, M. Roberge, PC 0084551; Puy-de-Dôme, Ambert, on G.<br />

cruciatum, 23 Aug. 1903, L. Brevière, PC 0084553. Germany, Thüringen, Berka a.<br />

Ilm, on leaves of G. rotundifolium, 21 July 1912, H. Diedicke, distributed in Sydow,<br />

Mycotheca germanica 1132, PC 0084548. Iran, Pass Ghaleh, on G. coronatum, 10<br />

July 1968, Sharif, PC 0084549. Romania, Bucharest, on G. mollugo, 4 Oct. 1974,<br />

G. Negrean, distributed in Herb. Mycol. Romanicum 50, 2476, PC 0084550.<br />

Notes: The description given above is based on the collections on<br />

Galium odoratum and G. cruciatum, including the well-preserved<br />

type specimen from PC and the collection V6007, which agrees<br />

well with this type material. Although the latter is from Czech<br />

Republic and another host species than the type, it is selected here<br />

as epitype as two cultures derived from it are also preserved in<br />

<strong>CBS</strong>. According to Jørstad (1965), on G. boreale conidia are 23–73<br />

× (1–)1.5–2(–2.5) µm (with mostly 3 septa), and on G. aparine<br />

37–88 × 1–1.5 µm (with up to 5 septa). Jørstad placed five names<br />

in the synonymy of S. cruciatae, including S. asperulae from G.<br />

odoratum. He reported limited differences between material on<br />

different species of Galium, and it is not unlikely that there is just one<br />

species capable of infecting several species of Galium. In addition<br />

to the names he listed as synonyms of S. cruciatae, S. relicta and<br />

Phleospora bresadolae, both described from G. odoratum (syn.<br />

Asperula odorata) in Czech Republic and Germany, respectively,<br />

252


A new approach to species delimitation in Septoria<br />

Fig. 15. Septoria cruciatae. A, B. Colonies <strong>CBS</strong> 123747. A. On OA. B. On MEA. C, D. Conidia in planta (<strong>CBS</strong> H-21250, epitype). E. Conidia on OA (<strong>CBS</strong> 123748). F. Conidia in<br />

planta (<strong>CBS</strong> H-21250). G. Conidia and conidiogenous cells in planta (<strong>CBS</strong> H-21250). H. Conidia on OA (<strong>CBS</strong> 123747). Scale bars = 10 µm.<br />

may also be regarded as synonyms, but we have not studied type<br />

material for those (conidia reported 38–60 × 3–3.5 μm and 40–60<br />

× 2.5–3.5 μm for these two respectively). The multigene phylogeny<br />

shows that the epitype of S. cruciatae is not part of the main<br />

Septoria clade (Fig 1), but basal to a clade of pseudocercosporellalike<br />

fungi. A new genus may have to be proposed for it in future.<br />

Septoria cucubali Lebedeva, Materialy po mikol. obsled.<br />

Rossii 5, 3: 3. 1921. Fig. 16.<br />

Description in planta: Symptoms indefinite colourless to pale<br />

yellowish brown lesions, both on the lamina and along the leaf<br />

margins. Conidiomata pycnidial, epiphyllous, mostly gregarious,<br />

globose, black, semi-immersed, 50 –95 µm diam; osiolum central,<br />

circular, 20–35 µm wide, provided with slightly darker cells;<br />

conidiomatal wall relatively thin, composed of textura angularis,<br />

the outer cells 3.5–5 µm diam, with brown, somewhat thickened<br />

walls, the inner cells 2.5–4.5 µm diam, with hyaline and thin walls.<br />

Conidiogenous cells ampulliform to cylindrical, without a distinct<br />

neck, hyaline, holoblastic, appearing to be phialidic, but proliferating<br />

percurrently with indistinct and close annellations, rarely also<br />

proliferating sympodially, 5–8(–10) × 2–3 µm. Conidia fusiformcylindrical<br />

to cylindrical, weakly curved, gradually attenuated to a<br />

rounded or more or less pointed apex, abruptly attenuated into a<br />

narrow, truncate base, mostly 0–1(–3)-septate, not or indistinctly<br />

constricted around the septa, hyaline, contents minutely granular<br />

in the living state, in the rehydrated state with no distinct contents,<br />

(9–)15–42(–52) × 2–2.5 µm (rehydrated). Sexual morph unknown.<br />

Description in vitro: Colonies on OA 13–18 mm diam in 2 wk (50–55<br />

mm in 6 wk), with an even, glabrous, first colourless margin; colony<br />

spreading, immersed mycelium in the centre pale ochreous to<br />

www.studiesinmycology.org<br />

253


Verkley et al.<br />

Fig. 16. Septoria cucubali. A–C. Colonies. A. <strong>CBS</strong> 102367, on OA. B. Ibid., on CHA. C, D. <strong>CBS</strong> 102386. C. On MEA. D. On OA. E, F. Conidia on OA (<strong>CBS</strong> 102386). G. Conidia<br />

and spermatia on OA (<strong>CBS</strong> 102367). H. Conidia and conidiogenous cells in planta (<strong>CBS</strong> H-21159). I. Conidia on OA (<strong>CBS</strong> 102386). Scale bars = 10 µm.<br />

sienna with a distinct citrine to olivaceous tone especially towards<br />

the margin, or a faint salmon haze; aerial mycelium scanty to welldeveloped,<br />

woolly-floccose, greyish white, gradually attaining a<br />

reddish haze; reverse rust to bay, with olivaceous-black areas.<br />

Surface of the colony first plane, but later irregularly lifted, with<br />

blackish stromata developing on the surface and immersed in the<br />

agar, first spherical, closed, later opening widely to expose a milky<br />

white to luteous conidial slime. Colonies on CMA 9–15 mm diam<br />

254


A new approach to species delimitation in Septoria<br />

in 2 wk (43–45 mm in 6 wk), with an even, glabrous, colourless<br />

to buff margin; further as on OA, but immersed mycelium only in<br />

the centre sienna, for the most olivaceous to almost dull green;<br />

aerial mycelium similar in colour and texture, but scarcer; reverse<br />

olivaceous-black, with distinct rust central areas; conidiomata less<br />

developed. Colonies on MEA 9–16 mm diam in 2 wk, with an even,<br />

buff or peach to scarlet margin, mostly hidden under tufts of aerial<br />

mycelium; colonies hemispherical, sometimes radially striate,<br />

immersed mycelium dark ochreous to greyish brown or olivaceousblack,<br />

mostly covered by finely felty or floccose-tufty, white, greyish<br />

or scarlet aerial mycelium; luteous to reddish diffusable pigment<br />

sometimes present; reverse rust to chestnut, margin apricot;<br />

stromata scarcely developing, releasing milky white to rosy-buff<br />

conidial slime. Colonies on CHA (4–)6–9 mm diam in 2 wk [(30–)<br />

40–46 mm in 6 wk], as on MEA, conidial slime first rosy-buff, later<br />

ochreous.<br />

Conidiomata pycnidial, as in planta but often larger, 100–<br />

175µm, or merging into larger complexes; conidiogenous cells as<br />

in planta, but annellations more distinct. Conidia fusiform-cylindrical<br />

to cylindrical, straight or weakly curved, gradually attenuated to a<br />

rounded or more or less pointed apex, abruptly attenuated into<br />

a narrow, truncate base, (0–)1–3(–4)-septate, not or indistinctly<br />

constricted around the septa, hyaline, contents minutely granular<br />

with small oil-droplets, (9–)15–29(–52) × 2–2.5 µm.<br />

Both on the plant and in culture spermatogonia of an Asteromella<br />

state were produced, in which 0-septate, ellipsoid spermatia were<br />

formed 2–3 × 1–1.5 µm. No sexual morph was observed.<br />

Hosts: on living leaves of Cucubalus baccifer and Saponaria<br />

officinalis.<br />

Material examined: Germany, isolated from leaf litter of Fagus sylvatica, M.<br />

Unterseher, living culture <strong>CBS</strong> 124874. Netherlands, Prov. Gelderland, Millingen<br />

aan de Rijn, Millingerwaard, on living leaves of Cucubalus baccifer, 6 Oct. 1999, G.<br />

Verkley 941, <strong>CBS</strong> H-21159, living cultures <strong>CBS</strong> 102367, 102368; same loc., date,<br />

brown leaf margin on living leaves of Saponaria officinalis, 6 Oct. 1999, G. Verkley<br />

938, <strong>CBS</strong> H-21218, living culture <strong>CBS</strong> 102386.<br />

Notes: The material on Cucubalus available for this study showed<br />

conidia (9–)15–19(–23) × 2–2.5 µm, thus much shorter and<br />

somewhat narrower than reported for S. cucubali in the original<br />

diagnosis (34–50 × 1.5–2 µm; based on material collected in<br />

July), and by Teterevnikova-Babayan (1987). This Dutch material<br />

was collected much later in the season than the type, and under<br />

relatively dry conditions. Averages of conidial width and especially<br />

lengths seen in specimens collected under adverse conditions<br />

such as drought or cold can be lower as compared to material<br />

collected under optimal conditions. The isolates obtained from this<br />

material were, however, capable of producing conidia up to 52 µm<br />

in length. This would be in good agreement with S. cucubali, as are<br />

the morphology of the pycnidia, the shape and width of the conidia,<br />

as well as the symptoms on the plant described by Teterevnikova-<br />

Babayan (1987) for S. cucubali. Markevičius & Treigiene (2003)<br />

reported S. dimera on Cucubalus, and that species is characterised<br />

by conidia that are wider (21–35 × 3.2–4.3 µm; Vanev et al. 1997<br />

report 26–65 × 2.5–4 µm for that species).<br />

The isolates from Cucubalus were also very similar to those<br />

obtained from the material collected in the same area on Saponaria,<br />

and the sequences obtained indicate that these isolates all belong<br />

to a single species. The material on the plant studied here differs<br />

from the description of S. saponariae provided by Teterevnikova-<br />

Babayan (1987), who describes conidia as 1–3-septate, 25–59 ×<br />

3.3–4.5 µm. That species thus has much wider conidia. Host range<br />

of S. cucubali in literature only mentions Cucubalus, but it is clear<br />

from the present study that it also includes Saponaria officinalis.<br />

The strain isolated from beech leaf litter may be an accidental<br />

dweller and originate from a Caryophyllaceae host growing in the<br />

vicinity. That the fungus would be capable of infecting Fagus leaves<br />

as an endophyte seems unlikely but cannot be excluded.<br />

Septoria cucurbitacearum Sacc., Nuovo G. bot. ital. 8: 205.<br />

1876.<br />

Description in vitro: Colonies on OA 38 mm diam in 5 wk, with an<br />

even, or slightly undulating, colourless, glabrous margin; colonies<br />

restricted to moderately spreading, almost entirely olivaceousblack,<br />

due to brown-walled immersed hyphae, the surface mostly<br />

glabrous, yet in the centre and around pycnidia often with greyish<br />

white, pruinose aerial hyphae. Conidiomata numerous, scattered or<br />

gregarious, black, pycnidial, with a single often quite long ostiolate<br />

neck, but fruitbodies often bursting somewhere in the lower wall,<br />

conidial slime pale white; reverse concolourous. Conidiogenous<br />

cells hyaline, discrete, ampulliform to cylindrical, holoblastic, with<br />

1–3 percurrent proliferations, 8–16 × 3.5–5 µm. Conidia filiform,<br />

curved or flexuous, hyaline, 3–5(–7)-septate, not constricted<br />

around the septa, narrowly rounded at the top, slighty attenuating<br />

to a narrowly truncate base, with minute oil-droplets, (30–)35–55<br />

(–72) × 1.5–2(–2.5) µm.<br />

Hosts: Cucurbita spp., Cucumis spp. and Citrullus vulgaris.<br />

Material examined: New Zealand, culture isolated from living leaves of Cucurbita<br />

maxima, date of collection and isolation unknown (deposited in Feb. 1977), H. J.<br />

Boesewinkel s.n., <strong>CBS</strong> 178.77.<br />

Notes: No specimens on plant material were available for this study.<br />

A description based on specimens from Cucumis, Cucurbita and<br />

Citrullus collected in Australia is provided by Priest (2006), and the<br />

sporulating structures observed in <strong>CBS</strong> 178.77 on OA agree well<br />

with that description. Septoria cucurbitacearum is the oldest name<br />

on plants of the family Cucurbitaceae, and Punithalingam (1982)<br />

discussed the relationship with the other taxa on the host genera<br />

Cucurbita and Cucumis. On the basis of the multilocus sequence<br />

analysis it can be concluded that S. cucurbitacearum is closely<br />

related to S. lycospersici (<strong>CBS</strong> 354.49 and 128654), S. malagutii<br />

(<strong>CBS</strong> 106.80), and S. apiicola.<br />

Septoria digitalis Pass., Atti Soc. crittog. ital. 2: 36. 1879.<br />

Fig. 17.<br />

Description in planta (based on <strong>CBS</strong> H-18090): Symptoms leaf<br />

spots hologenous, scattered, circular to elliptical, pale yellowish<br />

brown, definite with a dark brown border, or indefinite, surrounded<br />

by a larger area of the leaf which turns reddish purple. Conidiomata<br />

pycnidial, epiphyllous, numerous scattered in each leaf spot,<br />

subglobose to globose, immersed, brown to black, (70–)85–130<br />

µm diam; ostiolum central, initially circular and 20–45 µm wide,<br />

later more irregular and up to 60 µm wide, surrounding cells<br />

undifferentiated; conidiomatal wall about 12.5–20 µm thick,<br />

composed of an outer layer of isodiametric cells 4.5–8(–10) µm<br />

diam or more irregular cells with brown walls 1–2 µm thick, and<br />

an inner layer of angular to globose cells 2.5–4(–6) µm diam with<br />

relatively thin, hyaline walls. Conidiogenous cells hyaline, discrete,<br />

rarely integrated in 1-septate conidiophores, globose, doliiform or<br />

www.studiesinmycology.org<br />

255


Verkley et al.<br />

Fig. 17. Septoria digitalis. A, B. Colonies <strong>CBS</strong> 328.67 (15 ºC, nUV). A. On OA. B. On MEA. C, D. Colonies <strong>CBS</strong> 391.63 (15 ºC, nUV). C. On OA. D. On MEA. E. Conidia on OA<br />

(<strong>CBS</strong> 328.67). Scale bars = 10 µm.<br />

ampulliform, holoblastic, proliferating sympodially and often also<br />

percurrently, with close indistinct annellations on an elongated<br />

neck, 3–8.5(–10) × 2–3.5(–4.5) µm. Conidia filiform-cylindrical to<br />

cylindrical, straight to slightly curved, rarely somewhat flexuous,<br />

attenuated gradually to a narrowly rounded to pointed apex, and<br />

attenuated gradually or more abruptly to a narrowly truncate<br />

base, 1–3(–4)-septate, not constricted around the septa, hyaline,<br />

contents with minute oil-droplets and granular contents in the<br />

rehydrated state, (16.5–)22–44 × 1.5–2(–2.5) µm (rehydrated).<br />

Sexual morph unknown.<br />

Description in vitro (18 ºC, near UV light) <strong>CBS</strong> 328.67: Colonies<br />

on OA 12–13 mm diam in 2 wk, with an even to slightly ruffled,<br />

glabrous margin; colonies restricted to spreading, with some irregular<br />

pustulate elevations in the centre, immersed mycelium dark rust to<br />

chestnut, mostly covered by a more or less dense mat of low, woolly<br />

to woolly-floccose, greyish to somewhat reddish aerial mycelium,<br />

with scattered higher tufts, reverse blood colour; producing a red<br />

pigment diffusing into the surrounding agar medium. Colonies on<br />

MEA 10–13 mm diam in 2 wk, with an even margin which is mostly<br />

covered by aerial mycelium; colonies restricted, irregularly pustulate<br />

and up to 2 mm high in the centre, immersed mycelium dark, entirely<br />

covered by a dense mat of appressed, finely felted, grey to ochreous<br />

or rust aerial mycelium, the surface showing numerous sterile black<br />

stromata; reverse dark brick or sepia in the centre, surrounded by<br />

dark violet slate. No sporulation or diffusing pigment observed. <strong>CBS</strong><br />

391.63: Colonies on OA 23–25 mm diam in 2 wk, with an even,<br />

glabrous margin; colonies spreading, immersed mycelium fulvous<br />

to rust, or some brown-vinaceous, glabrous, or with barely any<br />

aerial mycelium, no sporulation observed; reverse blood colour in<br />

centre, fading to red or coral towards the margin; producing some<br />

red pigment diffusing into the surrounding agar medium. Colonies<br />

on MEA 25–30 mm diam in 2 wk, with an even, undulating, glabrous,<br />

buff margin; colonies restricted to spreading, radially striate, up to 2<br />

mm high in the centre, immersed mycelium dark, entirely covered by<br />

a dense mat of appressed, finely felted, rosy vinaceous to flesh aerial<br />

mycelium with greysih or white zones ; reverse brown-vinaceous to<br />

blood colour. No sporulation or diffusing pigment observed.<br />

Conidia (OA) as in planta, 20–48(–52) × 1.5–2.5 µm.<br />

Hosts: Digitalis spp.<br />

Material examined: Czech Republic, South Bohemia, Písek, on Digitalis lanata,<br />

Sep. 1962 V. Holubová-Jechová, living culture <strong>CBS</strong> 391.63. Netherlands,<br />

Doornspijk, herbal garden, in leaf spot on D. lanata, 22 June 1967, H.A. van der Aa<br />

72, <strong>CBS</strong> H-18090, and dried culture on OA <strong>CBS</strong> H-18092, living culture <strong>CBS</strong> 328.67.<br />

Notes: The two strains investigated here showed some notable<br />

differences in colony features, and they are therefore described<br />

separately above. Nonetheless, these strains showed highly<br />

homologous sequences of all loci investigated here. The strains<br />

are relatively distant from the closest relatives in the Septoriaclade,<br />

viz., among others, S. epilobii (<strong>CBS</strong> 109084, 109085), S.<br />

verbascicola (<strong>CBS</strong> 102401), and the strains of S. stachydis and S.<br />

galeopsidis. According to the original diagnosis, based on material<br />

on Digitalis lutea, the conidia of S. digitalis are continuous, 25–30<br />

× 1.5 µm (also in Radulescu et al. 1973, Teterevnikova-Babayan<br />

1983). Although conidia observed in the material on D. lanata<br />

studied here are up to 44 µm long and provided with up to 4 septa,<br />

it is concluded that the name S. digitalis can be applied to this<br />

material.<br />

Septoria epilobii Westend., Bull. Acad. r. Belg., Cl. Sci., Sér.<br />

2, 19: 120. 1852 [non Roberge ex Desm. 1853]. Fig. 18.<br />

= S. epilobii Roberge ex Desm., Annls Sci. Nat., ser. 3, 20 : 94. 1853 [Nom.<br />

illeg., later homonym].<br />

?= S. epilobii Westend. var. durieui Unamuno, Boln R. Soc. esp. Hist. nat. 34:<br />

250. 1934.<br />

Description in planta: Symptoms leaf lesions sparse to numerous,<br />

single, circular to irregular, rarely entended to the margin of the leaf,<br />

brown, often with a greyish centre, well-delimited by a dark brown<br />

elevated line, visible on both sides of the leaf. Conidiomata pycnidial,<br />

epiphyllous, several in each lesion, subglobose to globose, brown<br />

to black, 48–75 µm diam; ostiolum central, circular, initially 15–24<br />

µm wide, later becoming more irregular and up to 40 µm wide,<br />

surrounding cells dark brown; conidiomatal wall 12–20 µm thick,<br />

composed of a homogenous tissue of hyaline, angular cells, 3–6.5<br />

µm diam, the outermost cells pale brown with slightly thickened<br />

walls, the inner cells hyaline and thin-walled. Conidiogenous cells<br />

256


A new approach to species delimitation in Septoria<br />

Fig. 18. Septoria epilobii. A–C. Colonies <strong>CBS</strong> 109084 (15 ºC, nUV). A. On OA. B. On CHA. C. On MEA. D. Conidia in planta (<strong>CBS</strong> H-21171, epitype). E. Conidia and<br />

conidiogenous cells on OA (<strong>CBS</strong> 109094). Scale bars = 10 µm.<br />

hyaline, discrete, rarely also integrated in 1-septate conidiophores,<br />

cylindrical, or narrowly to broadly ampulliform, holoblastic,<br />

proliferating sympodially, sometimes with a relatively narrow and<br />

elongated neck (no annellations seen), 5–14 × 3.5–6 µm. Conidia<br />

cylindrical or filiform-cylindrical, straight to slightly curved, narrowly<br />

to broadly rounded at the apex, narrowing slightly or more distinctly<br />

to a truncate base, (0–)1–3-septate, not or slightly constricted<br />

around the septa, hyaline, contents with few minute oil-droplets and<br />

granular material in each cell in the rehydrated state, 25–35(–40) ×<br />

1.5–2(–2.5) µm (rehydrated). Sexual morph unknown.<br />

Description in vitro: Colonies on OA 12–15(–17) mm diam in 3 wk<br />

(45–48 mm in 7 wk), with an even, glabrous, colourless or vaguely<br />

buff margin; colonies spreading, plane, in the centre olivaceousblack,<br />

surrounded by olivaceous radiating hyphal strands; reverse<br />

concolourous; aerial mycelium absent, or a tuft of white or grey<br />

woolly aerial mycelium in the centre; abundant olivaceous to<br />

brown, then black, pycnidial conidiomata developing after 3 wk,<br />

releasing milky white droplets of conidial slime. Colonies on CMA<br />

12–14(–16) mm diam in 3 wk (45–50 mm in 7 wk), as on OA, but<br />

centre more homogeneous olivaceous-black after 3 wk; after 7 wk<br />

larger outer area saffron to pale ochreous, margin buff; reverse<br />

concolourous; sporulation as on OA, but older conidial slime pale<br />

saffron. Colonies on MEA (7–)10–16 mm diam in 3 wk (46–50 mm<br />

in 7 wk), with an even, glabrous, rosy-buff or buff margin; colonies<br />

restricted, conical, in the centre with more irregular pustulate<br />

protruberances, after about 4 wk becoming more spreading, the<br />

surface brown-vinaceous to almost black, locally ochreous to dirty<br />

peach, covered by a diffuse, low, minutely felty whitish to grey aerial<br />

mycelium; reverse brown-vinaceous to dark slate blue, locally<br />

cinnamon to ochreous; conidiomatal initials developing from 3 wk<br />

onwards in most of the colonies, but sporulation occurs sparsely in<br />

submarginal pycnidia after 7 wk in dirty white to rosy-buff droplets.<br />

Colonies on CHA 7–12(–16) mm diam in 3 wk (34–38 mm in 7 wk),<br />

as on MEA, including sporulation.<br />

Conidiomata as in planta, single or merged, with a single or a<br />

few papillate openings, which can be positioned on an elongated<br />

neck; conidiogenous cells as in planta, proferating sympodially and<br />

possibly also percurrently, but the presence of annellations could<br />

not be confirmed, 5–18 × 3.5–6 µm; conidia as in planta, 24–41 ×<br />

1.8–2.5 µm.<br />

Hosts: Chamaenerion angustifolium and Epilobium spp.<br />

Material examined: Austria, Tirol, Ober Inntal, Samnaun Gruppe, Zanderstal near<br />

Spiss, alt. 1800 m, on rocky bank of Zandersbach, on living leaves of Epilobium<br />

fleischeri, 11 Aug. 2000, G. Verkley 1068, epitype designated here <strong>CBS</strong> H-21171<br />

“MBT175355”, living cultures ex-epitype <strong>CBS</strong> 109084, 109085. Belgium, on the<br />

bank of river Wépion, near Namur, on leaves of E. spicatum (= E. angustifolium,<br />

Chamaenerion angustifolium), 1829, Bellynck, “Westendorp & Wallay Herb. Crypt.<br />

no. 727”, isotype BR-MYCO 158690-95. Netherlands, prov. Utrecht, Baarn,<br />

www.studiesinmycology.org<br />

257


Verkley et al.<br />

Baarnsche bos, ex leaf spot of E. angustifolium, 17 Sep. 1967, L. Marvanová s.n.,<br />

living culture <strong>CBS</strong> 435.67 no longer available (infected with basidiomycete).<br />

Notes: In the type specimen of S. epilobii on Epilobium angustifolium<br />

(= Chamaenerion angustifolium), from BR, 1–3-septate conidia, 20–<br />

40 × 1–1.5 µm are observed. Although the collection of S. epilobii<br />

from Tirol was collected on another host species, E. fleischeri, it<br />

agrees morphologically well with the type material, and therefore<br />

this Austrian collection is chosen here as epitype. It is considered<br />

likely that a single taxon is capable of infecting various members<br />

of the genera Epilobium and its sister-genus Chamaenerion. The<br />

concept of S. epilobii maintained here concurs with that of most<br />

authors (Radulescu et al. 1973, Teterevnikova-Babayan 1987),<br />

except Vanev et al. (1997), who gave a much wider length range of<br />

conidia, viz., 12–72 ×1–2 µm, but their concept of S. epilobii may<br />

erroneously have been based in part on specimens of S. alpicola.<br />

Septoria epilobii is very distinct from S. alpicola Sacc. 1897, a<br />

species causing systemic infections in Epilobium spp. in alpine<br />

and boreal regions (type host E. alpinum), developing pycnidia on<br />

symptomless leaves as well as stems that produce conidia, 24–95<br />

× 0.7–1.5(–2) µm, with up to 7 septa (Jørstad 1965).<br />

Septoria epilobii var. durieui Unamuno, which has been<br />

described from E. duriaei in Spain, with conidia 30–55 × 1.5 µm, is<br />

tentatively placed here in the synonymy of S. epilobi.<br />

As can be seen in the multilocus phylogeny (Fig. 2), the strains<br />

of Septoria epilobii are closely related to <strong>CBS</strong> 102401, which was<br />

isolated from Verbascum nigrum, and preliminarily identified as S.<br />

verbascicola Berk. & M.A. Curtis. This name is a nomen nudum and<br />

the type should be studied. Other closely related species include S.<br />

taraxaci (<strong>CBS</strong> 567.75), S. stachydis, S. galeopsidis, and S. digitalis.<br />

Septoria erigerontis Peck, Rep. N.Y. St. Mus. nat. Hist. 24:<br />

87. 1872 [non Berk. & M.A. Curtis 1874; nec Hollós 1926,<br />

later homonyms]. Fig. 19.<br />

≡ Septoria erigerontea Sacc., Syll. Fung. 3: 547. 1884 [nom. illeg., Art. 52.<br />

superfluous nom. nov.].<br />

= Septoria erigeronata Thüm., Bull. Soc. Imp. Nat. Moscou 56: 132. 1881.<br />

= Septoria schnabliana (Allesch.) Died., KryptogFl. M. Brandenb. 9: 454. 1914.<br />

≡ Rhabdospora schnabliana Allesch., Hedwigia 34: 273. 1895.<br />

= Septoria chanousii Ferraris, Malpighia 16: 27. 1902.<br />

= Septoria stenactidis Vill, in Sydow, Annls mycol. 8: 493. 1910.<br />

?= Septoria bosniaca Picb., Glasnik Zemal. Muz. Bosn. Herceg. 45: 68. 1933.<br />

Description in planta: Symptoms leaf spots hologenous, scattered,<br />

circular to irregular, pale brown, indefinite or surrounded by<br />

a slightly darker margin. Conidiomata pycnidial, epiphyllous,<br />

numerous scattered in each leaf spot, subglobose to globose,<br />

brown to black, semi-immersed, 75–130 µm diam; ostiolum<br />

central, initially circular and 15–35 µm wide, later more irregular,<br />

up to 55 µm wide, surrounding cells dark brown and with more<br />

thickened walls; conidiomatal wall about 8–12.5 µm thick,<br />

composed of a homogenous tissue of hyaline, angular cells 2.5–4<br />

µm diam with relatively thin, hyaline walls, surrounded by a layer of<br />

pale to dark brown cells, 2–5 µm diam, with somewhat thickened<br />

walls. Conidiogenous cells hyaline, discrete, rarely integrated in<br />

1–2-septate conidiophores, cylindrical to doliiform, or narrowly to<br />

broadly ampulliform, holoblastic, proliferating mostly sympodially,<br />

rarely also percurrently with indistinct annellations, 6–10 ×<br />

2.5–4.5 µm. Conidia filiform, straight, slightly curved to flexuous,<br />

attenuated gradually to a narrowly rounded to pointed apex and<br />

narrowly truncate base, (0–)1–3(–5)-septate, not constricted<br />

around the septa, hyaline, contents with several minute oil-droplets<br />

and granular material in each cell in the living state, with minute<br />

oil-droplets and granular contents in the rehydrated state, (17–)25–<br />

50(–62.5) × 1–1.5(–2) µm (rehydrated). Sexual morph unknown.<br />

Description in vitro: Colonies on OA 8–11 mm diam in 12 d (42–44<br />

mm in 7 wk), with an even, glabrous, colourless to pale red or<br />

coral margin, the pigment also clearly diffusing beyond the margin;<br />

colonies spreading, the surface almost plane, immersed mycelium<br />

translucent and red everywhere (12 d), in the centre with densely<br />

aggregated superficial pycnidial conidiomata often with distinct<br />

papillate to rostrate openings, which later may elongate further,<br />

pycnidia elsewhere in radiating rows, later also in concentric<br />

rings, releasing milky white to pale buff droplets of conidial slime;<br />

aerial mycelium white, felty, scanty, mostly in the centre; reverse<br />

concolorous. Colonies on CMA 7–10 mm diam in 12 d (50–59 mm in<br />

7 wk), as on OA, but immersed hyphae darker and olivaceous, but<br />

red pigmentation still distinct, especially around the colony margin.<br />

Colonies on MEA 4–7 mm diam in 12 d (45–48 mm in 7 wk), with a<br />

ruffled, colourless to pale buff, plane marginal zone; colony initially<br />

restricted, hemispherical after 12 d, with an irregularly pustulateworty<br />

surface, later for the most plane and spreading, immersed<br />

mycelium very dark chestnut to black, aerial mycelium on elevated<br />

surface almost absent, but near margin forming short-tufty mat of<br />

pure white hyphae; superficial pycnidial conidiomata releasing pale<br />

flesh or milky white droplets of conidial slime. Colonies on CHA<br />

6–8 mm diam in 12 d (29–36 mm in 7 wk), as on MEA, but in some<br />

sectors with an even, rosy-buff margin; colonies less elevated in<br />

the centre than on MEA, covered with diffuse, woolly, greyish aerial<br />

mycelium in the centre, and a low, dense mat of reddish hyphae<br />

near the margin; pycnidial conidiomata more numerous than on<br />

MEA, later in distinct, concentric patterns, producing flesh, later<br />

salmon droplets of conidial slime.<br />

Conidiogenous cells (OA) as in planta, but more frequently<br />

proliferating percurrently and with distinct annellations. Conidia as<br />

in planta, up to 85 µm long and 2.5 µm wide.<br />

Hosts: Conyza spp. and Erigeron spp.<br />

Material examined: Austria, Tirol, Inntal W of Innsbruck, S of Telfs, along road 171,<br />

on living leaves of Erigeron annuus, 4 Aug. 2000, G. Verkley 1045, <strong>CBS</strong> H-21176,<br />

living culture <strong>CBS</strong> 109094, 109095; same substr., country unknown, M. Vurro, living<br />

culture <strong>CBS</strong> 186.93 (sub S. schnabliana). South Korea, Namyangju, same substr.,<br />

H.D. Shin, 3 May 2006, living culture SMKC 21739 = KACC 42356 = <strong>CBS</strong> 128606;<br />

same country, loc. unknown, same substr., living culture CPC 12340 = <strong>CBS</strong> 131893.<br />

Notes: The material available for this study agreed generally<br />

well with the detailed descriptions given for this species in recent<br />

literature (Shin & Sameva 2004, Priest 2006). However, Priest<br />

(2006) did not observe sympodial proliferation in the conidiogenous<br />

cells. Shin & Sameva (2004) reported conidia up to 70 µm long<br />

in material from South Korea. Verkley & Starink-Willemse (2004)<br />

already showed that the ITS sequence of <strong>CBS</strong> 186.93 identified<br />

as S. schnabliana is identical to that in S. erigerontis (<strong>CBS</strong><br />

109094), and suspected the conspecificity of this material. Strong<br />

evidence for this conspecificity is provided here, as the additional<br />

genes sequenced were all (almost) identical for the three isolates<br />

investigated, and also for <strong>CBS</strong> 128606 (= KACC 42356) and <strong>CBS</strong><br />

131893 (= CPC 12340) from the same host in South Korea.<br />

According to the diagnosis, Septoria stenactidis, described<br />

from Stenactis annua (= E. annuum), has continuous (or<br />

indistinctly septate) conidia, 35–40 × 1 µm, which agrees well with<br />

S. erigerontis on the type host, and it was already placed in the<br />

synonymy by Jørstad (1965), and recently also by Priest (2006).<br />

Priest also included S. chanousii in the synonymy of S. erigerontis.<br />

258


A new approach to species delimitation in Septoria<br />

Fig. 19. Septoria erigerontis. A–C. Colonies <strong>CBS</strong> 109094 (15 ºC, nUV). A. On OA. B. On CHA. C. On MEA. D. Conidia in planta (<strong>CBS</strong> H-21176). E. Conidia and conidiogenous<br />

cells on OA (<strong>CBS</strong> 109094). F, G. Conidia in planta (<strong>CBS</strong> H-21176). H, I. Conidia on OA (<strong>CBS</strong> 186.93). Scale bars = 10 µm.<br />

This fungus was originally decribed on E. uniflora in Italy, with<br />

3–4-septate conidia measuring 45–50 × 1.5 µm. Likewise,<br />

S. bosniaca from Erigeron polymorphus described in the diagnosis<br />

as a fungus with 0(–3)-septate conidia, 19–42 × 1.3–1.9 µm, is<br />

probably also a synonym.<br />

www.studiesinmycology.org<br />

259


Verkley et al.<br />

Septoria galeopsidis Westend., Bull. Acad. r. Belg., Cl. Sci.,<br />

Sér. 2, 2: 577. 1857. Fig. 20.<br />

= Ascochyta galeopsidis Lasch in Rabenh., Herb. Myc. I, 1058. 1846 [nom.<br />

nud.].<br />

= Septoria cotylea Pat. & Har., Bull. Soc. Mycol. France 21: 85. 1905.<br />

Description in planta: Symptoms leaf spots irregular or angular,<br />

becoming dark brown, in yellow parts of the leaf lamina.<br />

Conidiomata pycnidial, hypophyllous, often numerous in each<br />

leaf spot, globose to subglobose, dark brown, almost completely<br />

immersed, 75–100(–130) µm diam; ostiolum central, initially<br />

circular, 15–25 µm wide, surrounding cells somewhat darker;<br />

conidiomatal wall 10–22 µm thick, composed of textura angularis<br />

without distinctly differentiated layers, the cells 3–8 µm diam,<br />

the outer cells with brown, somewhat thickened walls, the inner<br />

cells with hyaline and thinner walls. Conidiogenous cells discrete,<br />

sometimes integrated into 1–2-septate conidiophores, hyaline,<br />

narrowly or broadly ampulliform with a relatively narrow neck,<br />

holoblastic, proliferating percurrently with indistinct annellations,<br />

and also sympodially, 6–12(–15) × 3.5–5(–6) µm. Conidia filiform,<br />

straight or slightly curved, sometimes flexuous, with a rounded or<br />

somewhat pointed apex, attenuated towards the narrowly truncate<br />

base, (0–)3(–5)-septate, not constricted around the septa, hyaline,<br />

contents with several minute oil-droplets and granular material in<br />

each cell in the living state, with inconspicuous oil-droplets and<br />

granular contents in the rehydrated state, 20.5–44 × 1.5–2.5 µm<br />

(living; rehydrated, 1–2 µm wide). Sexual morph unknown.<br />

Description in vitro: Colonies on OA 7–13 mm diam in 2 wk (35–43<br />

mm in 6 wk), with an even, glabrous, colourless margin; colonies<br />

almost plane, immersed mycelium homogeneously olivaceousblack<br />

to greenish black (also near the margin); aerial mycelium<br />

scanty, woolly-floccose, white or greyish; superficial pycnidial<br />

conidiomata scanty, scattered over the central aerea, releasing<br />

milky white droplets of conidial slime; reverse dark slate blue to<br />

black. Colonies on CMA 7–13 mm diam in 2 wk (33–37 mm in 6<br />

wk), as on OA, but concentration of conidiomatal development in<br />

elevated pustules on the elsewhere flat colony. Colonies on MEA<br />

6–11 mm diam in 2 wk (33–39(–46) mm in 6 wk), the margin even,<br />

later undulating, buff, narrow and glabrous; colonies hemispherical,<br />

often irregularly pustulate or with columnar outgrowths up to 5<br />

mm high, immersed mycelium olivaceous-black to black, mostly<br />

covered by a dense mat of finely velted, greyish aerial mycelium;<br />

faster growing, glabrous sectors with buff immersed mycelium may<br />

appear after several weeks; conidiomata starting to develop on<br />

the (dark) colony surface, tardily sporulating with whitish to flesh<br />

droplets of conidial slime; reverse brown-vinaceous or olivaceousblack.<br />

Colonies on CHA 5–10(–15) mm diam in 2 wk (20–29 mm<br />

in 6 wk), with an even, glabrous to nearly so, buff margin; colonies<br />

irregularly pustulate, immersed mycelium olivaceous-black, mostly<br />

covered by a dense but appressed mat of woolly-floccose, grey<br />

aerial mycelium, in some slightly faster growing sectors pure white;<br />

scattered but scarce superficial conidiomata releasing pale flesh<br />

droplets of conidial slime; reverse blood colour to black.<br />

Conidiomata pycnidial and similar as in planta, 100–150 µm<br />

diam, or merged into larger complexes especially on the agar<br />

surface, dark brown, up to 200 µm diam; ostiolum as in planta,<br />

or absent. Conidiogenous cells hyaline, ampuliform, or elongated<br />

ampulliform to cylindrical, with a distinct neck, holoblastic,<br />

proliferating percurrently with indistinct scars (annellations), or<br />

sympodially, 8–13(–15) × 3–4.5(–5) µm. Conidia cylindrical,<br />

straight or slightly curved, tapering to a rounded or somewhat<br />

pointed apex, lower part slightly or more clearly attenuated into a<br />

broad truncate base, (0–)1–3(–5)-septate, not constricted around<br />

the septa, hyaline, with several oil-droplets and minute granular<br />

material in each cell, (37–)50–65 (–70) × 2–2.5 µm.<br />

Hosts: Galeopsis angustifolia, G. ladanum, G. pubescens, G.<br />

speciosa and G. tetrahit.<br />

Material examined: Belgium, in the vicinity of Mons, on leaves of Galeopsis tetrahit,<br />

R. P. Clém. Dumont, distributed in Westendorp & Wallays, Herb. crypt. Belge, Fasc.<br />

23-24, no 1134, isotype BR-MYCO 158116-06. Czech Republic, Moravia, Mikulov,<br />

on living leaves of Galeopsis sp., 15 Sep. 2008, G. Verkley 6003, <strong>CBS</strong> H-21256,<br />

living cultures <strong>CBS</strong> 123744, 123749; same substr., date, Moravia, Milovice, forest<br />

Milovika stran, G. Verkley 6006, <strong>CBS</strong> H-21254, living cultures <strong>CBS</strong> 123745, 123746.<br />

France, Corrèze, Prât Alleyrat, on living leaves of G. tetrahit, 25 July 1976, H.A. van<br />

der Aa 5344, <strong>CBS</strong> H-18099; loc. unknown, isol. C. Killian ex Galeopsis sp., living<br />

culture <strong>CBS</strong> 191.26. Netherlands, prov. Noord-Brabant, Cromvoirt, on living leaves<br />

of G. tetrahit, 2 June 1963, H.A. van der Aa s.n., <strong>CBS</strong> H-18097; prov. Gelderland,<br />

Putten, on living leaves of G. tetrahit, 8 Aug. 1984, G. de Hoog s.n., <strong>CBS</strong> H-18100;<br />

prov. Utrecht, Soest, on living leaves of G. tetrahit, 4 Aug. 1999, G. Verkley 902, <strong>CBS</strong><br />

H-21195, living culture <strong>CBS</strong> 102314; prov. Limburg, St. Jansberg near Plasmolen,<br />

on living leaves of G. tetrahit, 9 Sep. 1999, G. Verkley 934, epitype designated<br />

here <strong>CBS</strong> H-21215 “MBT175356”, living culture ex-epitype <strong>CBS</strong> 102411. Romania,<br />

distr. Satu-Mare, Pir, on living leaves of G. ladanum, 27 Aug. 1973, G. Negrean s.n.,<br />

<strong>CBS</strong> H-18098.<br />

Notes: Jørstad (1965) reported comparable conidial size ranges<br />

in specimens on different host species, viz. G. speciosa (extreme<br />

values 20–64 × 1–2.5 µm) and G. tetrahit (28–60 × 1–2 µm),<br />

although in most Norwegian collections on G. tetrahit, the maximum<br />

conidial length varied downwards to 48 µm. In the original<br />

diagnosis of S. galeopsidis conidia are described as 30–40 ×<br />

1–1.5 µm (Saccardo 1884), while Radulescu et al. (1973) reported<br />

measurements ranging between 20–45 µm in length in collections<br />

on various hosts. In the type material from BR investigated here<br />

conidia are mostly 3–5-septate, 19–40 × 1.5–2 µm. In other<br />

material available for the present study, maximum length of conidia<br />

was only 44 µm in planta, whereas the strains obtained from it were<br />

capable of forming conidia with a maximum length of 70 µm on OA.<br />

The differences with S. lamiicola are discussed under that species.<br />

Septoria galeopsidis is closely related to only some of the other<br />

Septoria species occurring on plants from the family Lamiaceae,<br />

especially S. melissae (<strong>CBS</strong> 109097) and S. stachydis. Septoria<br />

lamiicola on Lamium spp., which is morphologically quite similar<br />

to S. galeopsidis, proves genetically very distinct, although these<br />

taxa can barely be distinguished by their ITS sequence (99.5 %).<br />

Several house-keeping genes do allow an easy identification of<br />

these species.<br />

Septoria heraclei (Lib.) Desm., Pl. crypt. Fr., Fasc. 11, no<br />

534. 1831. Fig. 21.<br />

Basionym: Ascochyta heraclei Lib., Pl. crypt. Ard., Cent. 1: no. 51.<br />

1830.<br />

≡ Cylindrosporium heraclei (Lib.) Höhn., Sber. Akad. Wiss. Wien, Math.-<br />

naturw. Kl. 115, I: 378. 1906 [non Oudem. 1873, nec Ellis & Everh. 1888].<br />

≡ Phloeospora heraclei (Lib.) Petr., Annls mycol. 17: 71. 1919 [non (Lib.)<br />

Maire, Bull. Soc. Mycol. France 46: 241. 1930].<br />

≡ Cylindrosporium umbelliferarum Wehm., Mycologia 39: 475. 1947.<br />

nom. nov.<br />

= Septoria heraclei-palmati Maire, Bull. Soc. Mycol. France 21: 167. 1905.<br />

Description in planta: Symptoms leaf spots numerous but small,<br />

irregular in outline, best visible on the upper side of the leaf,<br />

initially yellowish or ochreous, later becoming pale to dark brown,<br />

in places white due to loosening of the epidermis. Conidiomata<br />

pseudopycnidial, hypophyllous, one, rarely up to three in each<br />

260


A new approach to species delimitation in Septoria<br />

Fig. 20. Septoria galeopsidis, <strong>CBS</strong> 102314. A–C. Colonies (15 ºC, nUV). A. On OA. B. On CHA. C. On MEA. D. Conidia on OA. E. Conidia and conidiogenous cells in planta<br />

(<strong>CBS</strong> H-21195). F–H. Conidia on OA (<strong>CBS</strong> 123744). Scale bars = 10 µm.<br />

leaf spot, lenticular, immersed, the upper wall rupturing in an early<br />

stage and conidial masses breaking through the leaf epidermis,<br />

pale brown, 115–200 µm diam; ostiolum absent; conidiomatal wall<br />

about 15–28 µm thick, composed of an outer layer of pale brown<br />

angular cells, 5–10 µm diam with somewhat thickened walls,<br />

and an inner layer of thin-walled, pale yellow angular to globose<br />

cells, 4.5–8 µm diam. Conidiogenous cells hyaline, discrete,<br />

rarely integrated in 1-septate conidiophores, cylindrical, or broadly<br />

ampulliform, holoblastic, proliferating percurrently one to several<br />

times with distinct annellations, sometimes also sympodially,<br />

www.studiesinmycology.org<br />

261


Verkley et al.<br />

already considered this name as a synonym of S. heraclei. Other<br />

authors have mostly accepted S. heracleicola as a further Septoria<br />

species on Heracleum, describing the conidia as continuous and<br />

ranging roughly in size 20–40 × 1–2 µm (Radulescu et al. 1973,<br />

Teterevnikova-Babayan 1987, Vanev et al. 1997). Four further<br />

Septoria and two Rhabdospora species have been described in the<br />

literature based on material found on various members of the genus<br />

Heracleum, all of which according to their original descriptions<br />

have conidia more or less within this range, so with much narrower<br />

conidia than S. heraclei.<br />

Septoria hypochoeridis Petrov, Materialy po mikol. i fitopat.<br />

Rossii (Leningrad) 6 (1): 55. 1927. Fig. 22.<br />

Description in planta: Symptoms leaf spots scattered, 2–5 mm<br />

diam, definite, circular, hologenous, grey to white in the centre,<br />

surrounded by a slightly elevated, dark reddish purple or black<br />

zone. Conidiomata pycnidial, hypophyllous, one to a few in each<br />

leaf spot, (sub)globose, immersed, dark brown, 60–95 µm diam;<br />

ostiolum central, circular, 15–28 µm diam, surrounded by darker<br />

cells; conidiomatal wall about 10–20 µm thick, composed of an<br />

outer layer isodiametric or more irregular cells, 5–10 µm diam,<br />

with somewhat thickened, pale brown walls, and an inner layer<br />

of thin-walled, hyaline angular to globose cells, 4.5–7 µm diam.<br />

Conidiogenous cells hyaline, discrete, cylindrical, or broadly<br />

ampulliform, holoblastic, proliferating sympodially, percurrent<br />

proliferation not observed, 8–15 × 3.5–4(–5.5) µm. Conidia filiform,<br />

straight to slightly curved, attenuated gradually to a somewhat<br />

pointed apex, or more abruptly just above the broadly truncate<br />

base, 0–1(–2)-septate, not constricted at the septum, hyaline,<br />

contents with granular material in the rehydrated state, 15–24 ×<br />

1–1.5 µm (rehydrated). Sexual morph unknown.<br />

Fig. 21. Septoria heraclei, conidia and conidiogenous cells in planta (<strong>CBS</strong> H-21224).<br />

Scale bars = 10 µm.<br />

10–25 × 5–7(–8) µm. Conidia cylindrical, usually strongly curved,<br />

attenuated gradually to a blunt to somewhat pointed apex,<br />

attenuated gradually, or more abruptly just above the broadly<br />

truncate base, (0–)1–2(–4)-septate, not or indistinctly constricted<br />

around the septa, hyaline, contents with numerous small oildroplets<br />

and granular material in each cell in the living state, with<br />

amorphous granular contents in the rehydrated state, 40–55(–70)<br />

× 4–6 µm (living; rehydrated, 3–5 µm wide).<br />

Description in vitro: Several attempts were made to isolate this<br />

species but unfortunately no conidia survived after germination.<br />

Hosts: Heracleum spp.<br />

Material examined: Austria, Tirol, Ötztal, Ötz near Habichen, on living leaves of<br />

Heracleum sphondylium, 24 July 2000, G. Verkley 1002, <strong>CBS</strong> H-21186. Netherlands,<br />

Prov. Limburg, Gulpen, near Stokhem, on living leaves of H. sphondylium, 28 June<br />

2000, G. Verkley 957, <strong>CBS</strong> H-21224; same substr., Prov. Limburg, upper edge of<br />

Savelsbos, G. Verkley 959, <strong>CBS</strong> H-21225.<br />

Notes: The conidia of this fungus are much wider than in most other<br />

Septoria species on Apiaceae. Jørstad (1965) reported conidia 35–<br />

57 × 3–5 µm, usually with 1 septum. Vanev et al. (1997) observed<br />

conidia up to 85 µm long, and 1.8–3.5 µm wide. Septoria heracleipalmati<br />

was originally described from Heracleum palmatum in<br />

Greece, with 1-septate conidia, 50–70 × 3 µm. Jørstad (1965)<br />

Description in vitro: No cultures could be obtained. Conidia placed<br />

on MEA and OA died shortly after germination.<br />

Hosts: Hypochoeris radicata and other Hypochoeris spp.<br />

Material examined: New Zealand, North Island, Taupo distr., Tongariro Nat. Park,<br />

Taurewa, along road 47, on decaying leaf base of Hypochoeris radicata, 25 Jan.<br />

2003, G. Verkley 1871, <strong>CBS</strong> H-21234.<br />

Additional material examined: New Zealand, North Island, Taupo distr., Lake Taupo,<br />

shoreline E of Motutaiko Island, on living leaves of Crepis capillaris, 25 Jan. 2003,<br />

G. Verkley 1870, <strong>CBS</strong> H-21235.<br />

Notes: The material on Hypochoeris radicata from New Zealand<br />

agrees well with the original description and drawing of Septoria<br />

hypochoeridis; conidia are reported as continuous to 1-septate,<br />

19–22 × 1.5 µm. According to Teterevnikova-Babayan (1987), the<br />

conidia of this species can be somewhat larger, 20–25 × 1.5–2<br />

µm, and Hypochoeris grandiflora is also infected. Rhabdospora<br />

hypochoeridis was described from dead stems of H. radicata in<br />

Germany, with curved conidia, 16–30 × 0.6–1 µm, which, according<br />

to Priest (2006), is suggestive of a Phomopsis with β-conidia rather<br />

than a Septoria. Another species ocurring on this host and other<br />

Asteraceae is Septoria lagenophorae, which occurs in association<br />

with Puccinia spp. and other fungi (Priest 2006). This fungus can<br />

be distinguished from S. hypochoeridis by 1–2-septate conidia,<br />

15–32 µm long, and conidiogenous cells which are not proliferating<br />

sympodially but produce successive conidia enteroblastically at the<br />

same level through a narrow opening (Priest 2006), so appearing<br />

phialidic.<br />

262


A new approach to species delimitation in Septoria<br />

Fig. 22. Septoria hypochoeridis, <strong>CBS</strong> H-21234. A, B. Conidia in planta. Scale bars = 10 µm.<br />

The collection on Crepis capillaris studied here may also belong<br />

to S. hypochoeridis, but no earlier reports from the host genus Crepis<br />

have been documented. This material agrees in all morphological<br />

characters with the collection on Hypochoeris, but the conidia lack<br />

septa. It is certainly morphologically different from Septoria crepidis,<br />

which produces much larger, mostly 3-septate conidia [22–55 ×<br />

1.5–2(–2.5) cf. Shin & Sameva 2004]. The S. crepidis strains <strong>CBS</strong><br />

128608 (= KACC 42396), 128619 (= KACC 43092) and 131895 (=<br />

CPC 12539) isolated from Crepis japonica (syn. Youngia japonica)<br />

in South Korea, group with <strong>CBS</strong> 128650, Septoria sp. (originally<br />

identified as S. taraxaci), but by lack of cultures and molecular data<br />

for S. hypochoeridis the phylogenetic relationship with S. crepidis<br />

and allied Septoria remains to be resolved.<br />

Septoria lactucae Pass., Atti Soc. crittog. ital. 2: 34. 1879<br />

[non Peck, Bot. Gaz. 4: 170. 1879. Later homonym, nom.<br />

illeg. Art. 53]. Fig. 23.<br />

Description in vitro: Colonies on OA 8–9 mm diam in 2 wk, with<br />

an even to undulating, colourless margin; colonies spreading<br />

to restricted, immersed mycelium pale luteous, without aerial<br />

mycelium, conidiomata developing immersed and on the agar<br />

surface, mostly in the centre and in radiating rows, conidiomata<br />

releasing milky white to rosy-buff conidial masses; reverse hazel<br />

with a tinge of ochreous. Colonies on MEA 4.5–6 mm diam in 2 wk,<br />

with a minutely ruffled, buff margin; colonies restricted, irregularly<br />

pustulate, the surface almost black, with low and weakly developed,<br />

finely felted, white to grey aerial mycelium but also glabrous areas<br />

occur; reverse chestnut to brown-vinaceous. No sporulation<br />

observed.<br />

Conidia (OA) filiform to cylindrical, weakly to strongly curved,<br />

attenuated gradually towards the relatively broadly, more rarely<br />

narrowly rounded apex, attenuated gradually or more abruptly to<br />

a truncate base, hyaline, (0–)1–3-septate, contents granular and<br />

sometimes also with minute oil-droplets, (22–)28–38.5(–46) ×<br />

2–2.5 µm (living). Sexual morph unknown.<br />

Hosts: Lactuca sativa and L. serriola.<br />

Material examined: Germany, Potsdam, on leaf of Lactuca sativa, 20 Nov. 1958,<br />

G. Sörgel 628, living culture <strong>CBS</strong> 352.58. Netherlands, on seed of L. sativa, Sep.<br />

2000, P. Grooteman s.n., living culture <strong>CBS</strong> 108943.<br />

Notes: Septoria lactucae is the oldest name described in Septoria<br />

from the host Lactuca sativa. Three others have been described<br />

from lettuce (including two later homonyms), and another eight from<br />

other species of the genus Lactuca. Symptoms of the minor leaf<br />

spot disease of lettuce were described by Punithalingam & Holiday<br />

(1972). They describe the conidia as 1–2(–3)-septate, 25–40 ×<br />

1.5–2 µm. Muthumary (1999) examined the type and described<br />

the conidia as fusiform, straight to slightly curved, narrowed at the<br />

tip, truncate at the base, 1–3 septate, 32–52 (av. 35) × 2–2.5 µm.<br />

According to Jørstad (1965), conidia of S. lactucae are 19–48 ×<br />

1.5–2 µm with up to 2 septa, while Priest (2006) describes them<br />

as 1–3-septate, 22–33(–36) × 2–2.5(–3) µm. <strong>CBS</strong> 128757 (KACC<br />

43221) isolated from Sonchus asper in South Korea, and identified<br />

as Septoria sonchi, is very closely related and groups in a cluster<br />

with 100 % bootstrap support with the strains of S. lactucae<br />

(Fig. 2).<br />

Septoria lamiicola Sacc., Syll. Fung. 3: 358. 1884. nom.<br />

nov. pro S. lamii Sacc., Michelia 1: 180. 1878. Fig. 24.<br />

≡ Septoria heterochroa Roberge ex Desm. f. lamii Desm., Annls Sci. Nat.,<br />

sér. 3, Bot. 8: 22. 1847.<br />

= Septoria lamii Westend., in Bellynck, Bull. Acad. Roy. Sci. Belgique 19: 63.<br />

1852.<br />

= Septoria lamii Pass., in Thüm., Mycoth. univ., Cent. 12, no 1183. 1878; Atti<br />

Soc. crittog. ital. 2: 37. 1879.<br />

Description in planta: Symptoms leaf spots circular to angular, white<br />

to pale brown, surrounded by a dark brown border. Conidiomata<br />

pycnidial, epiphyllous, several in each leaf spot, globose to<br />

subglobose, dark brown, immersed to semi-immersed, 65–100<br />

µm diam; ostiolum central, initially circular, 20–35 µm wide, later<br />

up to 50 µm wide, surrounding cells concolorous or somewhat<br />

darker; conidiomatal wall 12–25 µm thick, composed of textura<br />

angularis without distinctly differentiated layers, the cells 3.5–8<br />

µm diam, the outer cells with brown, somewhat thickened walls,<br />

the inner cells with hyaline and thinner walls. Conidiogenous cells<br />

hyaline, narrowly or broadly ampulliform with a relatively narrow<br />

www.studiesinmycology.org<br />

263


Verkley et al.<br />

Fig. 23. Septoria lactucae. A–D. Colonies <strong>CBS</strong> 108943 (15 °C, nUV). A. On OA. B. On MEA. C. Colony margin on OA. D. Colony margin on MEA. E–I. Conidia on OA (<strong>CBS</strong><br />

108943). Scale bars = 10 µm.<br />

neck, holoblastic, proliferating sympodially, and towards the apex<br />

often also percurrently 1–many times with indistinct annellations,<br />

5–10(–12) × 3.5–4(–5) µm. Conidia filiform to filiform-cylindrical,<br />

straight or slightly curved, rarely flexuous, with a rounded or<br />

somewhat pointed apex, attenuated towards the narrowly truncate<br />

base, (0–)3(–5)-septate, not constricted around the septa, hyaline,<br />

contents with several minute oil-droplets and granular material in<br />

each cell in the living state, with inconspicuous oil-droplets and<br />

granular contents in the rehydrated state, (26–)35–50(–54) × 1.5–<br />

2.5( –3) µm (living; rehydrated, 1–2 µm wide; V1032, rehydrated,<br />

33–52 × 1.5–2). Sexual morph unknown.<br />

Description in vitro: Colonies on OA 8–14 mm diam in 2 wk (40–45<br />

mm in 6 wk), with an even, glabrous, colourless margin; colonies<br />

plane, immersed mycelium colourless to pale primrose or buff, later<br />

becoming homogeneously dark herbage green, soon appearing<br />

darker by numerous immersed and superficial pycnidial conidiomata,<br />

that release dirty white to rosy-buff conidial slime; aerial mycelium<br />

absent, only developing in the centre after several wk as a sharply<br />

delimited, dense, white, woolly floccose mat; reverse buff at the<br />

margin, inwards dark olivaceous-grey. Colonies on CMA 4–8 mm<br />

diam in 2 wk (20–27 mm in 6 wk), with an even, glabrous margin;<br />

as on OA but immersed mycelium more honey to pale luteous<br />

throughout, later becoming more greenish, the pycnidial conidiomata<br />

as on OA, but in more regular concentric rings, releasing rosy-buff,<br />

later salmon conidial slime. Colonies on MEA 7–9 mm diam in 2<br />

wk (28–33 mm in 6 wk), with an even (later undulating), glabrous,<br />

buff to honey margin; colonies pustulate to almost hemispherical,<br />

immersed mycelium rather dark, locally covered by woolly to felty<br />

white aerial mycelium; mostly composed of spherical conidiomatal<br />

264


A new approach to species delimitation in Septoria<br />

Fig. 24. Septoria lamiicola, <strong>CBS</strong> 102329. A–C. Colonies (15 °C, nUV). A. On OA. B. On CHA. C. On MEA. D. Conidia in planta (<strong>CBS</strong> H-21181). E. Ibid. (<strong>CBS</strong> H-21216). F.<br />

Conidia and conidiogenous cells on OA (<strong>CBS</strong> 102380). Scale bars = 10 µm.<br />

initials, superficial mature conidiomata releasing a dirty white, later<br />

buff conidial slime; reverse dark brick in the centre, near the margin<br />

cinnamon to honey. Colonies on CHA 8–14 mm diam in 2 wk (35–42<br />

mm in 6 wk), with an even, but later irregular, buff margin covered<br />

by a diffuse, felty white aerial mycelium; further as on MEA, but the<br />

colony surface less elevated, and more homogeneously covered<br />

by diffuse, felty, white aerial mycelium; conidial slime abundantly<br />

produced, first milky white, later dirty honey; reverse in the centre<br />

blood colour, dark brick at the margin.<br />

Conidiomata pycnidial, first olivaceous, then almost<br />

black, glabrous, 150–450 µm diam, with 1–5 ostioli placed on<br />

short papillae or more elongated necks up to 350 µm long;<br />

conidiogenous cells as in planta, proliferating sympodially and<br />

mostly also percurrently with distinct annellations, 8–16 × 3–8<br />

µm; conidia cylindrical, straight or slightly curved, tapering to a<br />

rounded apex, lower part slightly attenuated into a broad truncate<br />

base, (0–)1–5-septate, not constricted around the septa, hyaline,<br />

with several oil-droplets and minute granular material in each cell,<br />

(34–)50–65(–70) × 2–3 µm.<br />

Hosts: Lamium album, L. maculatum, L. purpureum and several<br />

other Lamium spp.<br />

Material examined: Austria, Tirol, Ötztal, Sulztal, Gries, alt. 1570 m, on living leaves<br />

of Lamium album, 1 Aug. 2000, G. Verkley 1032, <strong>CBS</strong> H-21181, living cultures<br />

<strong>CBS</strong> 109112, 109113. Czech Republic, Moravia, Pavlov, forest around ruin, on<br />

living leaves of Lamium sp., 18 Sep. 2008, G. Verkley 6020, <strong>CBS</strong> H-21251, living<br />

cultures <strong>CBS</strong> 123882, 123883, and 6021, <strong>CBS</strong> H-21252, living culture <strong>CBS</strong> 123884.<br />

Netherlands, prov. Limburg, St. Jansberg near Plasmolen, on living leaves of L.<br />

album, 9 Sep. 1999, G. Verkley 925, <strong>CBS</strong> H-21207, living cultures <strong>CBS</strong> 102328,<br />

102329; prov. Gelderland, Millingen aan den Rijn, Millingerwaard, on living leaves of<br />

L. album, 6 Oct. 1999, G. Verkley 936, <strong>CBS</strong> H-21216, living cultures <strong>CBS</strong> 102379,<br />

102380.<br />

Notes: According to Jørstad (1965), conidia of S. lamiicola are<br />

3-septate, 24–60 × 1–2 µm, while Teterevnikova-Babayan (1987)<br />

reported 35–50 × 0.75–1.5 µm from seven Lamium species.<br />

For the current study, only fresh material on Lamium album was<br />

available. Jørstad (1965) mentioned the resemblance of the<br />

conidia with those in S. galeopsidis, but also noted a difference<br />

in the wall thickness of the pycnidia, which we did not observe. A<br />

www.studiesinmycology.org<br />

265


Verkley et al.<br />

much more profound difference is seen between cultures of the<br />

two species, with colonies of S. galeopsidis on OA being opaque<br />

and dark olivaceous-black even at the margin, while colonies of<br />

S. lamiicola are more translucent yellowish to ochreous, becoming<br />

darker only due to the formation of pycnidia. Priest (2006) pointed<br />

towards differences in conidial width and conidiogenesis between<br />

S. lamiicola and S. galeopsidis, but having compared both species<br />

morphologically in planta and in vitro, we conclude that these<br />

species cannot be distinguished using these criteria. These two<br />

species are, however, readily distinguished by DNA sequence<br />

data, and the multilocus phylogeny provides evidence for a close<br />

relationship with S. matricariae (<strong>CBS</strong> 109000, <strong>CBS</strong> 109001), while<br />

other Septoria occurring on the same plant family as S. lamiicola<br />

(Lamiaceae) are all much more distant (Fig. 2). The Austrian<br />

and Dutch collections of S. lamiicola on L. album are sufficiently<br />

homogenous to consider them conspecific.<br />

Septoria leucanthemi Sacc. & Speg., in Saccardo, Michelia<br />

1: 191. 1878. Fig. 25.<br />

≡ Rhabdospora leucanthemi (Sacc. & Speg.) Petr., Sydowia 11: 351.<br />

1957.<br />

For addditional synonyms see Punithalingam (1967b).<br />

Description in planta: Symptoms leaf spots hologenous or<br />

epigenous, scattered, circular to irregular, pale to dull brown<br />

throughout or with whitish central area, indefinite with concentric<br />

zones or delimited by a slightly darker margin. Conidiomata<br />

pycnidial, predominantly epiphyllous, numerous scattered in each<br />

leaf spot, subglobose to globose, brown to black, semi-immersed,<br />

130–220(–240) µm diam; ostiolum central, circular, 35–100 µm<br />

wide, surrounding cells dark brown and with more thickened<br />

walls; conidiomatal wall about 8–12.5 µm thick, composed of a<br />

homogenous tissue of hyaline, angular cells, 2.5–5 µm diam with<br />

relatively thin, hyaline walls, surrounded by a layer of pale to dark<br />

brown angular to more irregular cells, 3–6.5 µm diam with slightly<br />

thickened walls. Conidiogenous cells hyaline, discrete, rarely<br />

integrated in 1–2-septate conidiophores, cylindrical to doliiform,<br />

or ampulliform, holoblastic, proliferating percurrently with indistinct<br />

annellations, or sympodially, 6–18 × 4–6.5(–7.5) µm. Conidia filiform<br />

to filiform-cylindrical, straight, curved, sometimes slightly flexuous,<br />

attenuated gradually to a narrowly rounded to pointed apex, widest<br />

near the base, where attenuating abruptly or more gradually into a<br />

narrowly truncate base, (5–)6–13-septate (later secondary septa<br />

are developed in some cells), not constricted around the septa,<br />

hyaline, contents with several minute oil-droplets and granular<br />

material in each cell in the living state, with minute oil-droplets and<br />

granular contents in the rehydrated state, (67–)80–100(–125) ×<br />

2.5–3.0(–3.5) µm (rehydrated). Sexual morph unknown.<br />

Description in vitro: Colonies on OA 6–8(–11) mm diam in 2 wk<br />

(11–14(–17) mm in 3 wk), with an even, glabrous, colourless<br />

margin; colonies spreading, the surface plane, immersed mycelium<br />

pale buff, later more or less rosy-buff; in the centre complexes of<br />

pycnidial conidiomata with pale brown or olivaceous walls release<br />

masses of pale whitish to buff conidial slime; reverse concolorous,<br />

but honey in the centre. Colonies on CMA 9–11(–13) mm diam in<br />

2 wk (15–18 mm in 3 wk), as on OA, but with some white diffuse<br />

and high aerial hyphae in the centre, and later more elevated in the<br />

centre; reverse in the centre hazel to fawn after 3 wk; conidiomata<br />

much more numerous and larger than on OA, developing in<br />

concentric or random patterns as discrete, large acervuloid (later<br />

almost discoid to cupulate) stromata with olivaceous sterile tissues,<br />

releasing large masses of pale white to pale buff conidial slime.<br />

Colonies on MEA 7–10 mm diam in 2 wk (14–17 mm in 3 wk),<br />

with an even, colourless, glabrous margin; colonies restricted,<br />

irregularly pustulate to hemispherical, the bumpy surface<br />

consisting of numerous protruding conidiomatal initials, appearing<br />

dark, with sepia, dark brick and cinnamon tinges, aerial mycelium<br />

mostly absent, locally dense, pure white and woolly; reverse mostly<br />

sepia to fawn or vinaceous buff. Sporulation only observed after<br />

about 7 wk. Colonies on CHA 7–13 mm diam in 2 wk (15–20 mm<br />

in 3 wk), with an even, glabrous, pale vinaceous buff margin;<br />

colonies restricted, irregularly pustulate to conical, the surface<br />

bumpy, immersed mycelium honey to hazel, covered by dense to<br />

diffuse, pure white, woolly aerial mycelium; conidiomata sparsely<br />

developing at the surface after 2 wk, the wall slightly darker than<br />

the surrounding hyphae, releasing pale white conidial slime (even<br />

after 3 wk); reverse cinnamon in the centre, vinaceous buff or pale<br />

ochreous at the margin.<br />

Conidiomata and conidiogenous cells as in planta. Conidia as<br />

in planta, 5–13(–17)-septate, 70–125(–175) × 3–4 µm (OA).<br />

Hosts: Various species of the genera Chrysanthemum, Tagetes,<br />

Achillea, Centaurea and Helianthus (Waddell & Weber 1963,<br />

Punithalingam 1967b, c).<br />

Material examined: Austria, Tirol, Ober Inntal, Samnaun Gruppe, Böderweg on<br />

Lazidalm, on living leaves of Chrysanthemum leucanthemum, 8 Aug. 2000, G.<br />

Verkley 1055, <strong>CBS</strong> H-21173, living cultures <strong>CBS</strong> 109090, 109091; Same substr.,<br />

Tirol, Zanderstal near Spiss, 11 Aug. 2000, G. Verkley 1069, <strong>CBS</strong> H-21170, living<br />

cultures <strong>CBS</strong> 109083, 109086. Germany, Hamburg, on living leaves of Chr.<br />

maximum, Sep. 1958, R. Schneider s.n. <strong>CBS</strong> H-18111, living culture <strong>CBS</strong> 353.58 =<br />

BBA 8504 = IMI 91322. New Zealand, Coromandel distr., Coromandel peninsula,<br />

Waikawau, coast along St. Hwy 25, on living leaves of Chr. leucanthemum, 22 Jan.<br />

2003, G. Verkley 1826, <strong>CBS</strong> H-21247; same substr., North Island, Coromandel,<br />

Tairua Forest, along roadside of St. Hway 25, near crossing 25A, 23 Jan. 2003, G.<br />

Verkley 1842b, <strong>CBS</strong> H-21243, living culture <strong>CBS</strong> 113112.<br />

Notes: The six strains studied here showed minor differences in<br />

morphological characters and DNA sequences, which show highest<br />

similarity to sequences of <strong>CBS</strong> 128621, an isolate originating from<br />

Cirsium setidens in South Korea, and identified as S. cirsii (Fig. 2).<br />

Septoria leucanthemi is also closely related to a number of other<br />

Septoria species from Asteraceae, such as S. senecionis and S.<br />

putrida (Senecio spp.), S. obesa (Chrysanthemum spp., Artemisia)<br />

and S. astericola (Aster sp.). It is confirmed here that Septoria<br />

obesa, which has been regarded as a synonym of S. leucanthemi<br />

by Jørstad (1965), should be treated as a separate species (see<br />

also the note on S. obesa).<br />

Septoria lycoctoni Speg. ex Sacc., Michelia 2 : 167. 1880.<br />

Fig. 26.<br />

Description in planta: Symptoms leaf spots epigenous, numerous,<br />

circular to irregular, single or confluent, white to pale greyish,<br />

surrounded by an initially red, then dark brown to black and thickened<br />

border. Conidiomata pycnidial, epiphyllous, inconspicuous, up to a<br />

few in each leaf spot, globose to subglobose, brown, immersed,<br />

90–145(–220) µm diam; ostiolum central, circular, more or less<br />

papillate, 25–55 µm wide; conidiomatal wall 17–35 µm thick,<br />

composed of textura angularis, differentiated layers absent, the<br />

cells mostly 3.5–5(–11) µm diam, the outer cells with brown,<br />

somewhat thickened walls, the inner cells with thinner, hyaline<br />

walls. Conidiogenous cells hyaline, cylindrical, or elongated<br />

ampulliform with a relatively narrow neck which widens at the top,<br />

266


A new approach to species delimitation in Septoria<br />

Fig. 25. Septoria leucanthemi. A–C. Colonies <strong>CBS</strong> 109090 (15 °C, nUV). A. On OA. B. On MEA. C. On CHA. D. Conidia and conidiogenous cells on OA (<strong>CBS</strong> 109090). E, F.<br />

Conidia in planta (<strong>CBS</strong> H-21243). G. Conidia on MEA (<strong>CBS</strong> 109090). Scale bars = 10 µm.<br />

hyaline, holoblastic, proliferating sympodially, 7–18 × 3.5–6 µm.<br />

Conidia filiform, straight, more often curved, sometimes flexuous,<br />

gradually attenuated to the pointed apex, more or less attenuated<br />

towards the broadly truncate base, (0–)2–5(–6)-septate, not or<br />

indistinctly constricted around the septa, hyaline, with several oildroplets<br />

and granular contents in each cell in the rehydrated state,<br />

26–47 × 1.5–2 µm (rehydrated; up to 2.5 µm wide in the living<br />

state). Sexual morph unknown.<br />

Description in vitro: Colonies on OA 9–11 mm diam in 2 wk (18–20<br />

mm in 3 wk), with an even, glabrous, colourless margin; immersed<br />

mycelium mostly coral to scarlet, the pigment diffusing into the<br />

surrounding medium; in the centre black and slightly elevated with<br />

mostly superficial, glabrous pycnidia, surrounded by an area with<br />

more scattered pycnidia, releasing pale white to pale flesh droplets<br />

of conidial slime; aerial mycelium only present in the centre, but<br />

well-developed, dense, appressed, woolly, white or greyish, locally<br />

with a flesh haze; reverse scarlet to coral, the centre darker, blood<br />

www.studiesinmycology.org<br />

267


Verkley et al.<br />

Fig. 26. Septoria lycoctoni. A–C. Colonies <strong>CBS</strong> 109089 (15 °C, nUV). A. On OA. B. On CHA. C. On MEA. D. Conidia and conidiogenous cells in planta (<strong>CBS</strong> H-21155). E.<br />

Conidia on OA (<strong>CBS</strong> 109089). Scale bars = 10 µm.<br />

colour. Colonies on CMA 9–12 mm diam in 2 wk (17–19 mm in 3<br />

wk), as on OA, but pycnidia more numerous, usually only formed in<br />

the centre of the colony. Colonies on MEA (3–)5–9 mm diam in 2 wk<br />

(13–18 mm in 3 wk), with an irregular margin; colonies restricted,<br />

the surface cerebriform to irregularly pustulate, up to 3 mm high,<br />

the surface pale brown, later black, at first almost glabrous, or<br />

(especially in brighter-coloured faster growing sectors/colonies)<br />

already covered by dense mat of pure white to flesh, woolly aerial<br />

mycelium, that later covers most of the colony surface; large<br />

masses of honey or pale amber conidial slime locally emerging<br />

from immersed conidiomata; reverse of the colony either dark brick<br />

or luteous to ochreous, paler towards the margin. Colonies on CHA<br />

8–13 mm diam in 2 wk (15–19(–22) mm in 3 wk), with an even or<br />

undulating, colourless margin mostly hidden under aerial hyphae;<br />

immersed mycelium greenish grey, grey-olivaceous to olivaceousblack,<br />

throughout covered by well-developed, tufty whitish grey<br />

aerial mycelium that later shows a reddish haze; reverse blood<br />

colour, but margin paler; in the central part of the colony numerous<br />

pycnidia develop, releasing pale whitish to rosy-buff conidial slime;<br />

in older colonies the central surface becomes cerebriform and<br />

about 3 mm high, much like on MEA.<br />

Conidiomata as in planta, pycnidial with barely protruding<br />

ostioli, which later often grow out to elongated necks up 50–150 µm<br />

long; on CMA less differentiated and fairly large, opening by tearing<br />

of the upper wall; conidiogenous cells as in planta, but larger, 9–25<br />

× 3.5–7.5 µm, proliferating sympodially and also percurrently, but<br />

annellations on the necks are inconspicuous; conidia similar in<br />

shape as in planta but longer, 3–5(–6)-septate, 30–75 × 1.5–2.5<br />

µm.<br />

Hosts: Aconitum vulparia (= A. lycoctoni), A. anthora, A.<br />

conversiflorum and several other Aconitum spp.<br />

Material examined: Austria, Ober Inntal, Samnaun Gruppe, Lawenalm near<br />

Serfaus, alt. 2000 m., on living leaves of Aconitum vulparia (syn. A. lycoctonum), 8<br />

Aug. 2000, G. Verkley 1053, <strong>CBS</strong> H-21155, living culture <strong>CBS</strong> 109089.<br />

268


A new approach to species delimitation in Septoria<br />

Notes: In the diagnosis of S. lycoctoni, the conidia were<br />

described as “indistinctly multiseptate”, measuring 25–35 × 1.5–<br />

2 (Saccardo 1884). This fungus was found on A. lycoctonum in<br />

Italy. Teterevnikova-Babayan (1987) gave conidial size ranges of<br />

25–70 × 1–2 µm for this species, and she included several of the<br />

varieties which were described after 1880, viz., var. sibirica 1896,<br />

var. macrospora 1909, var. anthorae 1928. Petrak (1957) observed<br />

conidia 20–60 (rarely 70 to 80) × 1.5–2 µm in his collection on<br />

Aconitum moldavicum.<br />

The colonies of Septoria lycoctoni and S. napelli look very<br />

similar on all media tested, although in S. napelli more red pigment<br />

seems to be produced than in S. lycoctoni, and the conidial slime<br />

is salmon rather than flesh. The two species can more readily be<br />

distinguished from each other by the shape of their conidia. In<br />

S. lycoctoni, the mature conidia only attenuate towards the apex<br />

above the uppermost septum, while in S. napelli, the tapering of<br />

the conidium walls is visible below the second septum from the<br />

top. The difference between the conidia of these species is also<br />

clear on the plant. Because the conidia of S. napelli are wider, the<br />

septa and the attenuations are easier to observe. In the case of<br />

S. lycoctoni the apical attenuation of conidia is not so clear, which<br />

may explain why Petrak (1957), who compared this species also to<br />

collections identified as S. napelli (but for reasons explained below<br />

probably misidentified), circumscribed the conidia of S. lycoctoni as<br />

not-attenuated.<br />

The strains of S. napelli (<strong>CBS</strong> 109104–109106) originating<br />

from Aconitum napellus and <strong>CBS</strong> 109089 of S. lycoctoni are very<br />

closely related and form a monophyletic group in the multilocus<br />

phylogeny (Fig. 2).<br />

Septoria lysimachiae (Lib.) Westend., Bull. Acad. r. Belg.,<br />

Cl. Sci., Sér. 2, 19: 120. 1852. Fig. 27.<br />

Basionym: Ascochyta lysimachiae Lib., Pl. Crypt. Ard. Fasc. 3, 252.<br />

1834.<br />

Description in planta: Symptoms leaf lesions indefinite, usually only<br />

a few scattered over the leaf lamina, or a single one, most often<br />

developing from the tip to the petiole, greyish to reddish brown.<br />

Conidiomata pycnidial, epiphyllous, immersed, subglobose to<br />

globose, black, 95–120(–165) µm diam; ostiolum central, circular,<br />

initially 25–35 µm wide, later becoming more irregular and up to<br />

90 µm wide, surrounding cells concolourous; conidiomatal wall<br />

10–20 µm thick, composed of an outer layer of angular to irregular<br />

cells mostly 4.5–10 µm diam with pale to orange brown walls,<br />

and an inner layer of isodiametric, hyaline cells 3–6 μm diam.<br />

Conidiogenous cells hyaline, discrete, rarely integrated in 1-septate<br />

conidiophores, cylindrical, or narrowly to broadly ampulliform,<br />

holoblastic, proliferating sympodially, and often also percurrently<br />

showing 1–3 indistinct annellations on a neck-like protrusion, 8–15<br />

× 3–5(–6) µm. Conidia cylindrical to filiform-cylindrical, slightly to<br />

strongly curved, rarely somewhat flexuous, narrowly rounded to<br />

pointed at the apex, attenuated gradually or more abruptly towards<br />

a narrowly truncate base, (0–)3–5, later with secondary septa<br />

dividing the cells, conidia sometimes breaking up into smaller<br />

fragments in the cirrhus, not or slightly constricted around the septa,<br />

hyaline, containing several large oil-droplets and granular material<br />

in the living and rehydrated state, (28–)35–70(–88) × 2.5–3.5 (–4)<br />

µm (living; rehydrated, 2.0–3 µm wide). Sexual morph unknown.<br />

Description in vitro: Colonies on OA rather variable in growth speed<br />

and pigmentation, 3.5–7 mm diam in 1 wk (20–26 mm in 2 wk),<br />

with an even, glabrous, colourless margin; colonies spreading,<br />

flat,immersed mycelium first mostly buff, then either rosy-buff to<br />

pale salmon turning olivaceous or hazel, or long colourless and<br />

later becoming olivaceous-black to greenish black; aerial mycelium<br />

woolly-floccose, white or greyish, mostly developing only in the<br />

centre; reverse olivaceous-black to greenish grey or dark slate blue<br />

to black. Conidiomata developing scarcely immersed in the agar,<br />

producing small amounts of conidia that are released as rosy-buff<br />

droplet. Colonies on CMA 2–4 mm diam in 1 wk (15–20 mm in 3<br />

wk), as on OA, but centre of the colony somewhat elevated, and<br />

colourlous marginal zone narrow, immersed mycelium becoming<br />

more rapidly pigmented with a vinaceous buff tint, in the centre<br />

becoming brown-vinaceous; reverse hazel, in the centre almost<br />

black. Colonies on MEA 3.5–6 mm diam in 1 wk (8–17(–19) mm<br />

in 3 wk), with an even to slightly ruffled, buff to rosy-buff, glabrous<br />

margin; some strains with a more uneven outline, strongly fimbriate,<br />

with faster growing deeply immersed mycelium often extending<br />

well beyond the colony margin at the level of the agar surface;<br />

colonies spreading, but often distinctly elevated or irregularly<br />

pustulate in the centre; immersed mycelium variable in colour, buff,<br />

ochreous or brownish, and in the faster growing sectors often with<br />

a glaucous haze; aerial mycelium diffuse to dense, pure white,<br />

(vinaceous) greyish or brownish, finely felted to woolly; reverse<br />

versicoloured, margin and parts of faster growing sectors buff to<br />

honey, in other parts darker, hazel to brown-vinaceous, sometimes<br />

mostly olivaceous-black. Some strains show a conspicuous halo<br />

of diffusing reddish pigment (<strong>CBS</strong> 108996, 108997). Scarce dark<br />

conidiomata beginning to develop in the centre after 1 wk, releasing<br />

pale white droplets of conidial slime after about 3 wk. Colonies on<br />

CHA 2–4(–6) mm diam in 1 wk [18–24(–26) mm in 21 d], with an<br />

even or slightly ruffled, glabrous, colourless to buff margin; colonies<br />

irregularly pustulate, immersed mycelium olivaceous-black; aerial<br />

mycelium soon covering most of the colony, woolly-floccose, smoke<br />

grey with an olivaceous haze, locally grey-olivaceous, in slightly<br />

faster growing sectors sometimes pure white; reverse mostly<br />

brown-vinaceous. Superficial, blackish conidiomata in the centre<br />

releasing pale rosy-buff to white masses of conidial slime after 1<br />

wk; reverse mostly blood colour, or fawn and brown-vinaceous in<br />

the centre.<br />

Conidia (OA) cylindrical, slightly to strongly curved to flexuous,<br />

narrowly rounded to somewhat pointed at the apex, attenuated<br />

gradually or more abruptly towards a truncate base, mostly<br />

3–7(–11)-septate, including the soon formed secondary septa, cells<br />

soon loosing their turgesence and often separating into smaller<br />

fragments, in the turgescent state constricted around the septa,<br />

hyaline, with many vacuuoles and also containing several large oildroplets<br />

and granular material in the living state and rehydrated<br />

state, (30–)40–80–(90) × 2.5–3.5 (–4) µm (living; rehydrated NT<br />

2.0–3 µm wide).<br />

Hosts: Lysimachia spp.<br />

Material examined: Belgium, near Namur, on leaves of Lysimachia vulgaris,<br />

Bellynck, isotype BR-MYCO 145978-90, also distributed in M. A. Libert, Pl. Crypt.<br />

Ard. Fasc. 3, no. 253. Czech Republic, Mikulov, on living leaves of Lysimachia<br />

sp., 15 Sep. 2008, G. Verkley 6004, <strong>CBS</strong> H-21255, living cultures <strong>CBS</strong> 123794,<br />

123795. Netherlands, Prov. Utrecht, Baarn, De Hooge Vuursche, in the forest, on<br />

L. vulgaris, 22 June 2000, G. Verkley 955, epitype designated here <strong>CBS</strong> H-21227<br />

“MBT175357”, living cultures ex-epitype <strong>CBS</strong> 108998, 108999; Prov. Utrecht, Soest,<br />

Stadhouderslaan near monument “De Naald”, on living leaves of L.vulgaris, 4 Aug.<br />

1999, G. Verkley 903, <strong>CBS</strong> H-21196, living culture <strong>CBS</strong> 102315; Prov. Gelderland,<br />

Amerongen, Park Kasteel Amerongen, on living leaves of L. vulgaris, 11 July 2000,<br />

G. Verkley 971, <strong>CBS</strong> H-21230, living culture <strong>CBS</strong> 108996, 108997.<br />

www.studiesinmycology.org<br />

269


Verkley et al.<br />

Fig. 27. Septoria lysimachiae. A–C. Colonies (15 °C, nUV). A. <strong>CBS</strong> 123794 on OA. B. <strong>CBS</strong> 108998 on MEA. C. Ibid., colony margin on MEA. D. Conidia in planta (<strong>CBS</strong><br />

H-21196). E. Conidia on OA (<strong>CBS</strong> 108998). F. Conidia in planta (<strong>CBS</strong> H-21196). G. Conidia on OA (<strong>CBS</strong> 108998). H. Conidia on OA (<strong>CBS</strong> 108999). Scale bars = 10 µm.<br />

Notes: Shin & Sameva (2003) provided a detailed description of<br />

S. lysimachiae (conidia 35–80 × 1.5–2.5 µm, 3–7-septate). In the<br />

type material from BR the conidia are mostly 3–5-septate, 25–72<br />

× 2.5–3.5 µm, and very similar in shape to those observed in the<br />

material that was collected from the field for the present study. The<br />

isolates show more variation in colony characters than observed in<br />

most other species of Septoria, but this phenotypic heterogeneity is<br />

neither reflected in the sporulating structures nor in the sequence<br />

data obtained. The EF, Btub and RPB2 gene sequences proved<br />

100 % identical among strains originating from the Netherlands<br />

270


A new approach to species delimitation in Septoria<br />

Fig. 28. Septoria matricariae. A. Conidia<br />

and conidiogenous cells in planta (<strong>CBS</strong><br />

H-21228). B. Conidia on OA (<strong>CBS</strong><br />

109001). Scale bars = 10 µm.<br />

(<strong>CBS</strong> 102315, 108998 and 108999) and Czech Republic (<strong>CBS</strong><br />

123794, 123795), while differences found between the Dutch and<br />

Czech isolates for Cal and Act were only 3 (99.3 % similarity) and 1<br />

bp (99.6 %), respectively. It is concluded therefore that the material<br />

studied belongs to a single species. Septoria saccardoi, based<br />

on material from Lysimachia vulgaris in Italy, is characterised by<br />

cylindrical, curved, 3-septate conidia, 38–40 × 3.5 µm (Saccardo<br />

1906). Quaedvlieg et al. (2013) describe this species in detail<br />

based on an isolate originating from of Lysimachia vulgaris var.<br />

davuricai in Korea (<strong>CBS</strong> 128665 = KACC 43962) and because it is<br />

distant to other septoria-like fungi, they propose a new genus name<br />

to accommodate it, Xenoseptoria. <strong>CBS</strong> 128758, isolated from L.<br />

clethoroides in Korea was identified as S. lysimachiae, but based<br />

on sequence analyses it is a distant fungus belonging in the genus<br />

Sphaerulina.<br />

Septoria matricariae Hollós, Annls Mus. nat. Hung. 8: 5.<br />

1910 [non Syd. 1921; nec Cejp, Fassatiova & Zavrel, Zpravy<br />

153: 13. 1971; later homonyms]. Fig. 28.<br />

= S. chamomillae Andrian., Mikol. i Fitopat. 30: 10. 1996. Nom. nov. pro S.<br />

matricariae Syd., Annls mycol. 19: 143. 1921; nom. illeg. Art. 53 [non Marchal<br />

& Sternon, 1923].<br />

?= S. chamomillae Marchal & Sternon, Bull. Soc. r. Bot. Belg. 55: 50. 1922.<br />

Description in planta: Symptoms lesions indefinite, leaves<br />

becoming affected from the top towards base, discolouring<br />

to yellow and brown. Conidiomata pycnidial, amphigenous,<br />

numerous, more or less evenly dispersed over the affected area,<br />

globose to subglobose, dark brown to black, immersed, 75–125(–<br />

150) µm diam; ostiolum central, circular, often papillate, breaking<br />

through the leaf epidermis, 25–43(–50) µm wide, surrounding cells<br />

concolorous or somewhat darker; conidiomatal wall 10–20 µm<br />

thick, composed of textura angularis without distinctly differentiated<br />

layers, the cells 2–6 µm diam, the outer cells with yellowish<br />

brown, thickened walls, the inner cells with hyaline, also relatively<br />

thick walls; Conidiogenous cells hyaline, discrete or integrated in<br />

1–2-septate conidiophores up to 17.5 µm long, doliiform, narrowly<br />

to broadly ampulliform, holoblastic, proliferating sympodially and/<br />

or also percurrently with one or two indistinct annellations, 3.5–10<br />

× 3–4.5(–5.5) µm. Conidia filiform, straight, curved or slightly<br />

flexuous, attenuated gradually towards a relatively narrowly<br />

rounded to pointed apex, barely attenuated towards the broadly<br />

truncate base, indistinctly (1–)2–3(–6)-septate, not or indistinctly<br />

constricted around septa, hyaline, contents with a few minute oildroplets<br />

and granular material in each cell in the living state, with<br />

inconspicuous oil-droplets and granular contents in the rehydrated<br />

state, 41–58 × 2–3 µm (living; rehydrated, 1.5–2.4 µm wide).<br />

Sexual morph unknown.<br />

Description in vitro: Colonies on OA 19–24 mm diam in 3 wk (44–48<br />

mm in 6 wk), with an even, glabrous, colourless margin; colonies<br />

spreading, the surface plane, immersed mycelium olivaceous-black<br />

www.studiesinmycology.org<br />

271


Verkley et al.<br />

to very dark dull green, with numerous dark, radiating hyphae,<br />

almost entirely glabrous, few tufts of greyish aerial mycelium<br />

in the centre; numerous scattered single or complex pycnidial<br />

conidiomata developed already after 1 wk, with a single ostiole or<br />

several papillate or rostrate openings, from which pale rosy-buff<br />

droplets of conidial slime are released; reverse concolourous.<br />

Colonies on CMA 16–18(–20) mm diam in 3 wk (38–50 mm in 6<br />

wk), as on OA. Colonies on MEA 9–12(–14) mm diam in 3 wk (27–<br />

39 mm in 6 wk), with an even to slightly ruffled buff margin; colonies<br />

restricted, conical and up to 3 mm high after 3 wk, immersed<br />

mycelium near the margin grey-olivaceous, but most of the colony<br />

surface iron grey to greenish black, the outer areas mostly covered<br />

by a low but dense, finely felted, grey aerial mycelium, the centre<br />

almost glabrous; superficial semi-immersed conidiomata releasing<br />

pale whitish droplets of conidial slime after 2–3 wk; reverse mostly<br />

dark slate blue with olivaceous areas. Colonies on CHA 16–22 mm<br />

diam in 3 wk (39–46 mm in 6 wk), as on MEA, but conidiomata<br />

more numerous, releasing pale whitish to pale rosy-buff droplets or<br />

cirrhi of conidial slime, and reverse with a brown-vinaceous tinge.<br />

Conidiomata as in planta, pycnidial with a single ostiolum,<br />

dark brown to black, rarely merged into complex fruitbodies;<br />

conidiogenous cells as in planta, but larger and more often<br />

integrated in 1–3-septate conidiophores, 10–15(–23) × 3–6(–7)<br />

µm; conidia as in planta, but longer, 36–78(–90) × (1.6–)1.7–2.2<br />

µm, contents several oil-droplets in each cell.<br />

Hosts: Matricaria spp.<br />

Material examined: Netherlands, prov. Limburg, Zuid-Limburg, along roadside near<br />

Savelsbos, on living leaves of Matricaria discoidea (= M. matricarioides), 28 June<br />

2000, G. Verkley 960, <strong>CBS</strong> H-21228, living cultures <strong>CBS</strong> 109000, 109001. Romania,<br />

Suceava, Siret, on leaves of M. discoidea, 7 July 1969, distributed in Contantinescu<br />

& Negrean, Herb. mycol. Romanicum Fasc. 40, no. 199, <strong>CBS</strong> H-18115.<br />

Notes: The phylogenetic analyses indicate that S. matricariae is<br />

closest to S. lamiicola, yet rather distant from other Septoria occurring<br />

on Asteraceae. The indefinite lesions caused by this species<br />

are reminiscent of those developed by S. stellariae on Stellaria<br />

media. The leaves seem to whither more rapidly and pycnidia<br />

develop soon after discolouration of the leaf tissues starts. Stems<br />

are not affected. In the original diagnosis of S. matricariae, based<br />

on material from Matricaria discoidea in Hungary, the conidia are<br />

described as continuous and 40–60 × 2–2.5 µm. The Dutch and also<br />

the Romanian material studied here contain conidia with mostly 1–3<br />

septa, but otherwise agree well with Hollós’ description of the type.<br />

According to Radulescu et al. (1973) the conidia in material from the<br />

same host plant are also continuous, measuring 25–50 × 1.5–2 µm.<br />

As in several other Septoria spp., the septa in S. matricariae are not<br />

easy to observe, and Hollós and others may have overlooked them.<br />

Sydow described a Septoria under the same name from<br />

Matricaria chamomilla in Germany with multiseptate conidia 30–60<br />

× 1–1.5 µm. The name he proposed was illegitimate because it is<br />

a later homonym of S. matricariae Hollós, as is also S. matricariae<br />

Cejp et al.. Septoria chamomillae was also described from M.<br />

chamomillae in Belgium and has 3–5-septate conidia 35–52 × 1–2<br />

µm. Although we have not seen the types of either of these names,<br />

we consider them tentatively as synonyms of S. matricariae.<br />

Septoria melissae Desm., Annls Sci. Nat., sér. 3, Bot., 20:<br />

87. 1853. Fig. 29.<br />

≡ Phloeospora melissae (Desm.) Parisi, Bull. Bot. R. Univ. Napoli 6: 292.<br />

1921.<br />

Description in vitro: Colonies on OA 12–13 mm diam in 2 wk, with<br />

an even to slightly ruffled, mostly colourless margin; colonies<br />

restricted to spreading, somewhat elevated in the centre, immersed<br />

mycelium greenish black, with greenish hyphal strands radiating into<br />

or even beyond the colourless margin, the surface mostly glabrous<br />

or provided with very diffuse, finely felted, grey aerial hyphae,<br />

the elevations in the centre bearing tufts of more well-developed,<br />

grey aerial mycelium; conidiomata developing mostly in the centre<br />

immersed or on the agar surface, releasing pale rosy to rosy-buff<br />

conidial slime. No diffusing pigment observed. Colonies on MEA<br />

5–7(–9) mm diam in 2 wk, with a slightly ruffled margin; colonies<br />

restricted, pustulate with cerebriform elevations in the centre, the<br />

surface black, covered by a diffuse to dense mat of finely felted,<br />

mostly grey aerial mycelium; reverse very dark brown-vinaceous.<br />

Conidiomata sparsely developing on the colony surface, releasing<br />

dirty reddish brown conidial slime. A very faint pigment is visible<br />

around the colony.<br />

Conidiogenous cells (OA) globose to ampulliform, holoblastic,<br />

hyaline, discrete or integrated in 1(–2)-septate conidiophores,<br />

proliferating sympodially, percurrent proliferation not observed,<br />

4–10 × 3–5 µm. Conidia filiform, straight to flexuous, weakly to<br />

more strongly curved, attenuated gradually to a narrowly rounded,<br />

typically pointed apex, attenuated gradually to a narrowly truncate<br />

to somewhat rounded base, hyaline, with fine granular material and<br />

minute oil-droplets, (0–)3(–5)-septate, (22–)30–50(–61) × 1.5–2<br />

µm. Sexual morph unknown.<br />

Host: Melissa officinalis.<br />

Material examined: Netherlands, Baarn, garden Eemnesserweg, on living leaves<br />

of Melissa officinalis, 11 Sep. 2000, H.A. van der Aa s.n. (G. Verkley 1073), <strong>CBS</strong><br />

H-21169, living cultures <strong>CBS</strong> 109096, 109097.<br />

Notes: This species is the only Septoria described from the genus<br />

Melissa. The type material originates from Melissa officinalis in<br />

France (not seen). According to the short original diagnosis, S.<br />

melissae produces conidia 30 × 1.6 µm, and no septa were reported.<br />

Radulescu et al. (1973) described the conidia as continuous or with<br />

1–3 septa, 25–38 × 1.6 µm. These measurements agree quite<br />

well with those given by Teterevnikova-Babayan (1987; 28–38<br />

× 1.5 µm), but Vanev et al. (1997) gave a much wider range of<br />

measurements, 20.5–58 × 1.5–2.2 µm (septa 2–5). Genetically<br />

<strong>CBS</strong> 109097 is very closely related to S. galeopsidis, but a 5 bp<br />

insertion found in the Btub gene is absent in all sequenced strains of<br />

S. galeopsidis. Septoria melissae can furthermore be distinguished<br />

in culture from S. galeopsidis by the narrower conidia on OA (1.5–2<br />

µm, in S. galeopsidis 2–2.5 µm), and the conidiogenous cells,<br />

which only proliferate sympodially and not percurrently.<br />

Septoria napelli Speg, Decades mycologicae italicae I-XII:<br />

no. 117. 1879; Atti Soc. crittog. ital., Ser. 2, 3: 69. 1880. Fig.<br />

30.<br />

≡ Rhabdospora napelli (Speg.) Petr., Sydowia 11: 376. 1957<br />

[misapplication].<br />

Description in planta: Symptoms leaf spots hologenous, circular to<br />

irregular, single, white to pale greyish, surrounded by a first red,<br />

then black, relatively wide border, often completely blackening the<br />

narrow leaflets. Conidiomata pycnidial, epiphyllous, rarely also<br />

hypohyllous, conspicuous, one to many in each leaf spot, globose<br />

to subglobose, black, semi-immersed, 100–150(–200) µm diam;<br />

ostiolum central, circular, initially 15–25 µm wide, later opening<br />

272


A new approach to species delimitation in Septoria<br />

Fig. 29. Septoria melissae, <strong>CBS</strong> 109097. A–C. Colonies (15 °C, nUV). A. On OA. B. On MEA. C. On MEA, detail of colony margin. D. Conidia and conidiogenous cells on OA.<br />

E–F. Conidia on OA. Scale bars = 10 µm.<br />

more widely; conidiomatal wall 15–28 µm thick, composed of<br />

textura angularis, differentiated layers absent, the cells mostly<br />

4–10 µm diam, the outer cells with brown, somewhat thickened<br />

walls, the inner cells with hyaline and thinner walls. Conidiogenous<br />

cells hyaline, cylindrical, broadly to narrowly ampulliform, with a<br />

distinct neck of variable length, hyaline, holoblastic, with several<br />

distinct percurrent proliferations, more rarely also sympodial after<br />

a sequence of percurrent proliferations of the same cell, 10–22 ×<br />

3.5–8 µm. Conidia filiform, straight, more often irregularly curved,<br />

gradually attenuated to the pointed apex, weakly or more distinctly<br />

attenuated towards the broadly truncate base, (3–)4–5(–7)-septate,<br />

not constricted around the septa, hyaline, with several relatively<br />

large oil-droplets and also minute granular contents in each cell in<br />

the rehydrated state, 59–80 × (1.5–)2–3.5 µm (rehydrated; up to 4<br />

µm wide in the living state). Sexual morph unknown.<br />

Description in vitro: Colonies on OA 9–15 mm diam in 2 wk (45–53<br />

mm in 49 d), with an even, glabrous, colourless margin; immersed<br />

mycelium coral to scarlet, with pigment diffusing beyond the<br />

colony margin; colony becoming black in the centre and somewhat<br />

elevated due to superficial pycnidia, surrounded by an area with<br />

more scattered pycnidia, releasing flesh to salmon droplets of<br />

conidial slime; aerial mycelium well-developed and dense in the<br />

centre, appressed, woolly, white to pale grey; reverse scarlet to<br />

coral, in the centre blood colour. Colonies on CMA 8–12 mm diam<br />

in 2 wk (62–65 mm in 49 d), as on OA. Colonies on MEA 5–9 mm<br />

diam in 2 wk (38–44 mm in 49 d), the margin irregular; colonies<br />

restricted, with a cerebriform surface, becoming about 5 mm high,<br />

the surface soon black, first almost glabrous, later mostly covered<br />

by a dense mat of white to flesh, woolly aerial mycelium; honey<br />

or amber conidial slime masses are released from immersed<br />

pycnidia; reverse of the colony dark brick or luteous, paler towards<br />

the margin. Colonies on CHA 8–13 mm diam in 2 wk (55–58 mm<br />

in 49 d), with an even or undulating, colourless margin, partly<br />

hidden under aerial hyphae; immersed mycelium grey-olivaceous<br />

or olivaceous-black, covered with well-developed, grey and partly<br />

greenish glaucous, later reddish, aerial mycelium; reverse blood<br />

colour, the margin paler; in the central part of the colony numerous<br />

pycnidia develop, releasing rosy-buff conidial slime.<br />

Conidiomata as in vitro pycnidial, ostioli initially barely protruding,<br />

but later often growing out to form elongated necks up to 100 µm<br />

long; on CMA conidiomata less differentiated, sometimes without<br />

ostiolum and opening by tearing of the upper wall; conidiogenous<br />

cells as in planta, but larger, 10–32 × 3.5–8.5(–10) µm, proliferating<br />

sympodially and also percurrently, with distinct annellations on the<br />

elonated necks. Conidia similar in shape as in planta but longer,<br />

5–7(–11)-septate, 64–95(–118) × 2–3.5(–4) µm.<br />

Hosts: Aconitum spp.<br />

www.studiesinmycology.org<br />

273


Verkley et al.<br />

Fig. 30. Septoria napelli. A–C. Colonies <strong>CBS</strong> 109104 (15 °C, nUV). A. On OA. B. On CHA. C. On MEA. D. Conidia and conidiogenous cells on OA (<strong>CBS</strong> 109104). E. Conidia<br />

in planta (<strong>CBS</strong> H-21153). Scale bars = 10 µm.<br />

Material examined: Austria, Ober Inntal, Samnaun Gruppe, Zanderstal near Spiss,<br />

alt. 1800 m., on living leaves of Aconitum napellus, 11 Aug. 2000, G. Verkley 1070,<br />

<strong>CBS</strong> H-21153, living cultures <strong>CBS</strong> 109104, 109105; same loc., host, date, G. Verkley<br />

1071, <strong>CBS</strong> H-21154, living culture <strong>CBS</strong> 109106. Romania, reg. Mureş-Autonomă<br />

Maghiară, on living leaves of A. degenii, 25 Aug. 1953, C. Sandu-Ville s.n., <strong>CBS</strong><br />

H-18117, distributed in Herb. Mycol. Romanicum, fasc. 35, no. 1742.<br />

Notes: According to the brief original diagnosis, S. napelli is<br />

characterised by 120–130 µm wide hypophyllous pycnidia,<br />

and indistinctly septate conidia measuring 50–100 × 2–4 µm.<br />

Teterevnikova-Babayan (1987) reported up to 9-septate conidia<br />

measuring 40–100 × 3–4 µm, and Shin & Sameva (2004)<br />

3–9-septate conidia, 40–105 × (2.5–)3–5 µm in Korean material.<br />

It is doubtful whether the description by Petrak (1957) of S. napelli<br />

was based on correctly identified material. Pycnidia of that fungus<br />

were mostly hypophyllous, with 3–7, rarely 8–9-septate conidia<br />

measuring 40–70 (rarely up to ca. 100) × 3–4 µm, arising from<br />

septate and branched conidiophores. The pycnidial wall was<br />

composed of globose to angular cells 5–8(–10) µm diam, with<br />

walls thickened to an extent which would avoid any compression.<br />

Petrak (1957) also observed young fruitbodies of a sexual morph<br />

on dead leaves in between old and empty conidiomata. Although<br />

this sexual morph was immature, in his opinion it was “undoubtedly<br />

Pleosporaceae, perhaps a species of Leptosphaeria, but certainly<br />

not Mycosphaerella”. Certain similarities in the walls of the asexual<br />

and sexual morph, made him suspect that they were produced in<br />

different stages in the life-cycle of a single fungus. Because of the<br />

large size of the pycnidia of Petrak’s S. napelli, the structure of<br />

the pycnidial wall and conidial ontogeny, which were unlike typical<br />

Septoria, he proposed the combination Rhabdospora napelli.<br />

Petrak’s observations of S. napelli probably pertained to a different<br />

septoria-like fungus (Stagonospora?), probably with pleosporalean<br />

affinities, but of which the exact identity remains unclear.<br />

274


A new approach to species delimitation in Septoria<br />

The fungus studied in the present study, which is a member of<br />

the Septoria clade, generally agrees with the original description<br />

of S. napelli. It is unknown whether S. napelli has a sexual morph.<br />

Two Mycosphaerella names have been published from Aconitum,<br />

M. antonovii on Aconitum excelsum in Siberia, and M. aconitorum,<br />

on Aconitum sp. in Austria. Both names were introduced by<br />

Petrak, who did not observe associated asexual morphs for these<br />

Mycosphaerella spp. A comparison with S. lycoctoni, including the<br />

molecular results, is provide above in the notes on S. lycoctoni.<br />

<strong>CBS</strong> 128664 isolated from Aconitum pseudolaeve var. erectum<br />

in Korea, is genetically distinct from both Septoria spp. on Aconitum<br />

in Europe. The new name S. pseudonapelli is proposed for this<br />

fungus by Quaedvlieg et al. (2013, this volume).<br />

Septoria obesa Syd., in Syd. & P. Syd., Annls mycol. 12:<br />

163. 1914.<br />

= S. artemisiae Unamuno, Assoc. españ. Progr. Cienc. Congr. Salamanca: 46.<br />

1923 [nom. illeg., later homonym, non Passerini, 1879].<br />

Descriptions in planta are provided by Punithalingam (1967c) and<br />

Priest (2006). Sexual morph unknown.<br />

Hosts: Artemisia lavandulaefolia and Chrysanthemum spp.<br />

Material examined: Germany, Weihenstephan, on Chrysanthemum indicum, R.<br />

Schneider Sep. 1957, living culture <strong>CBS</strong> 354.58 = BBA 8554 = IMI 091324. South<br />

Korea, Hongcheon, on Artemisia lavandulaefolia, H.D. Shin, 28 June 2006, living<br />

culture SMKC 21934 = KACC 42453 = <strong>CBS</strong> 128588; Bonghwa, on Chr. indicum,<br />

H.D. Shin, 18 Oct. 2007, living culture SMKC 23048 = KACC 43193 = <strong>CBS</strong> 128623;<br />

Jeju, on Chr. morifolium, 5 July 2008, living culture KACC 43858 = <strong>CBS</strong> 128759.<br />

Notes: Jørstad (1965) regarded S. obesa as a synonym of S.<br />

leucanthemi, as both have similar conidial morphologies and<br />

occur on several Chrysanthemum spp. Punithalingam (1967b, c),<br />

however, recognised S. obesa and S. leucanthemi as separate<br />

species, noting that the conidia of S. obesa are consistently wider<br />

than those of S. leucanthemi. Verkley & Starink-Willemse (2004)<br />

found additional, molecular support for the treatment.as separate<br />

species in eight polymorphisms found on the ITS sequences<br />

of strains representing these species. Further evidence is now<br />

provided here based on sequences of six other loci. The host<br />

ranges of the two species are also different: S. leucanthemi<br />

is capable of infecting various species of a wide range plant<br />

genera, viz. Chrysanthemum, Tagetes, Achillea, Centaurea and<br />

Helianthus (Waddell & Weber 1963, Punithalingam 1967b).<br />

Septoria obesa seems to mainly infect Chrysanthemum spp.,<br />

but it does also infect Artemisia lavendulaefolia, as could be<br />

demonstrated in this study with <strong>CBS</strong> 128588, a strain originally<br />

identified as S. artemisiae. The strain is genetically very close to<br />

the other strains of S. obesa studied here and therefore regarded<br />

as conspecific. The conidia produced by <strong>CBS</strong> 128588 are in good<br />

agreement with S. obesa as well, being much larger than in S.<br />

artemisiae (30–33 × 1.5 µm, according to the original diagnosis<br />

of S. artemisiae Passerini). The later homonym S. artemisiae<br />

described by Unamuno based on material on Artemisia vulgaris<br />

in Spain with 4-septate conidia 35.5–52.5 × 2.5–3 µm, is placed<br />

here in the synonymy of S. obesa.<br />

The conidia of the sunflower pathogen S. helianthi (50–85 ×<br />

2–3 μm) are similar to those of S. obesa (50–90 × 2.5–3.5 μm, cf.<br />

Priest 2006), but they can be distinguished by the number of septa<br />

formed, viz., seldom more than 5 in S. helianthi and 5–11 septa in<br />

S. obesa. Verkley & Starink already showed that ITS sequences of<br />

these species differ by more than 20 base positions, which is also<br />

supported by the results found in the present study for other genes<br />

(Fig. 2).<br />

Septoria paridis Pass., Atti Soc. crittog. ital. 2: 41. 1879. Fig.<br />

31.<br />

Description in planta: Symptoms leaf spots single, scarce, circular to<br />

irregular, white to pale ochreous, surrounded by a vague orange to<br />

reddish brown zone, visible on both sides of the leaf, decaying to shotholes.<br />

Conidiomata pycnidial, epiphyllous, one to a few in each leaf<br />

spot, globose, black, immersed, 60–100 µm diam; ostiolum central,<br />

circular and 35–40 µm wide, surrounding cells concolorous to slightly<br />

darker; conidiomatal wall up to 15 µm thick, composed throughout of<br />

hyaline, angular cells, 2.5–5 µm diam, the outermost cells brown with<br />

somewhat thickened walls, the inner cells hyaline and thin-walled.<br />

Conidiogenous cells hyaline, discrete, globose, doliiform, or broadly<br />

ampulliform, holoblastic, proliferating percurrently several times with<br />

distinct annellations thus forming a relatively narrow neck, rarely<br />

also sympodially, 5–8(–11) × 2.5–5 µm. Conidia filiform, straight, or<br />

slightly curved, attenuated gradually to a narrowly pointed apex and<br />

a narrowly truncate base, 0–3-septate (septa very thin and easily<br />

overlooked), not constricted around the septa, contents with several<br />

minute oil-droplets and granular material in each cell in the living<br />

state, with minute oil-droplets and granular contents in the rehydrated<br />

state, (18–)20–28.5(–34) × 1–1.5(–2) µm (living; rehydrated, 1 µm<br />

wide). Sexual morph unknown.<br />

Description in vitro: Colonies on OA 8–11 mm diam in 10 d (30–35<br />

mm in 3 wk; more than 75 mm in 7 wk), with an even, glabrous,<br />

colourless margin; immersed mycelium mostly homogeneously<br />

pale coral to pale red, some pigment diffusing beyond the colony<br />

margin, olivaceous to greenish hyphal radial strands also weakly<br />

or more strongly developing in some sectors or entire colonies<br />

(especially after 7 wk, when most of the red pigment is no longer<br />

visible); in the centre olivaceous-black and slightly elevated due<br />

to superficial and immersed pycnidia, surrounded by an area with<br />

more scattered pycnidia, releasing pale whitish droplets of conidial<br />

slime; aerial mycelium very scanty, few minute white tufts; reverse<br />

olivaceous-black to greenish grey, surrounded by coral to sienna<br />

areas. Colonies on CMA 7–10 mm diam in 10 d (28–33 mm in 3<br />

wk; more than 75 mm in 7 wk), as on OA, but the colonies sooner<br />

pigmented, dark green, dark blueish green or olivaceous, and a<br />

red pigment tardily formed, but more persistent and still well visible<br />

after 7 wk. Sporulation as on OA. Colonies on MEA 6–11 mm<br />

diam in 10 d (23–30 mm in 3 wk; 64–75 mm in 7 wk), the margin<br />

even, glabrous, buff; colonies spreading, but the centre elevated,<br />

irregularly pustulate, up to 2 mm high, the surface dark greyish<br />

brown, later black, covered by short felty white aerial mycelium,<br />

or higher tufts; reverse of the colony brown-vinaceous or sepia,<br />

paler towards the margin. Pycnidia mostly superficial, in dense<br />

groups. Colonies on CHA 5–8 mm diam in 10 d (28–35 mm in 3 wk;<br />

45–55 mm in 7 wk), with an even to ruffled, glabrous, colourless to<br />

buff margin; immersed mycelium in areas where first sporulation<br />

occurs becoming dark, greenish grey to dark slate blue, later<br />

more throughout colony, covered by well-developed, tufty whitish<br />

grey aerial mycelium that later shows a reddish haze; reverse<br />

olivaceous-black to sepia, but margin paler; in the central part of<br />

the colony numerous pycnidia develop; in older colonies the centre<br />

becomes up to 3 mm high.<br />

Conidiomata (OA) as in planta, immersed or developing on<br />

the agar surface, single or merged into complexes 100–220 µm<br />

www.studiesinmycology.org<br />

275


Verkley et al.<br />

Fig. 31. Septoria paridis. A–C. Colonies (15 °C, nUV). A. On OA (<strong>CBS</strong> 109110). B. On CHA (<strong>CBS</strong> 109110). C. On MEA (<strong>CBS</strong> 109108). D. Conidia and conidiogenous cells in<br />

planta (<strong>CBS</strong> H-21177, Paris quadrifolia). E. Ibid. (<strong>CBS</strong> H-21152, Viola palustris). F. Conidia on OA (<strong>CBS</strong> 109108). Scale bars = 10 µm.<br />

diam, superficial pycnidia mostly forming one to several elongated<br />

necks, initially pale brown, then almost black, releasing pale whitish<br />

conidial slime, later becoming rosy-buff. Conidiogenous cells as<br />

in planta, 7–12(–14) × 2.5–5 µm. Conidia as in planta but some<br />

considerably longer, 22–38(–45) × 1–1.5 µm.<br />

276


A new approach to species delimitation in Septoria<br />

Hosts: Paris quadrifolia, P. incompleta and Viola palustris.<br />

Material examined: Austria, Tirol, Leutaschtal Weidach, on river bank, on living<br />

leaves of Paris quadrifolia, 2 Aug. 2000, G. Verkley 1038, <strong>CBS</strong> H-21177, living<br />

cultures <strong>CBS</strong> 109110, 109111; Tirol, Ötztal, Sölden, near Hoch-Sölden, on living<br />

leaves of Viola palustris, 31 July 2000, G. Verkley 1037, <strong>CBS</strong> H-21152, living<br />

cultures <strong>CBS</strong> 109108, 109109.<br />

Notes: According to the original description, conidia of S. paridis<br />

are 20 × 1 µm and aseptate. Vanev et al. (1997) describe the<br />

conidia as 18–25 × 1–1.3 µm, Teterevnikova-Babayan (1983),<br />

20–25 × 1 µm. As is seen in several other Septoria, the conidia<br />

can reach considerably greater length in culture than on the natural<br />

host plant. In shape of the conidia the species strongly resembles<br />

S. galeopsidis and S. scabiosicola, as do the cultures, although S.<br />

galeopsidis does not produce a red pigment on OA. The material on<br />

Viola palustris (Violaceae) collected in Tirol was initially identified<br />

as S. violae-palustris, but based on the DNA sequence analyses<br />

of seven loci (Fig. 2) and the agreeing phenotype it is concluded<br />

that the material is conspecific with S. paridis. This is the first report<br />

of this fungus on another host genus than Paris, and also outside<br />

the Liliaceae. A second Septoria occurring on Paris quadrifolia is<br />

S. umbrosa. That species differs from S. paridis by much larger<br />

conidia, 30–85 × 3–4.5 µm, which are 5–7-septate.<br />

Septoria passifloricola Punith., CMI Descr. Pathogenic<br />

Fungi & Bacteria no. 670. 1980.<br />

≡ S. passiflorae Louw, Sci. Bull. Dept. Agric. For. Un. S. Africa 229: 34.<br />

1941. Nom. illeg. Art 53 [non Syd., Annls mycol. 37: 408. 1939].<br />

Description in vitro: Colonies on OA 12–15 mm diam in 2 wk, with<br />

an even, glabrous, buff margin; colonies spreading, immersed<br />

mycelium mostly homogeneous orange, but no diffusion of<br />

pigments beyond the margin observed; the surface covered by<br />

appressed, greyish white to grey aerial mycelium developing in<br />

concentric areas, beneath which mostly superficial, dark brown<br />

to almost black pycnidia or more complex conidiomata develop,<br />

releasing pale whitish to dirty greyish droplets of conidial slime;<br />

reverse orange to sienna. Colonies on CMA 10–14 mm diam in 2<br />

wk, as on OA. Colonies on MEA 5–7(–10) mm diam in 2 wk, with an<br />

even, weakly lobed, black margin, which may be covered by short<br />

fluffy, pure white aerial mycelium; colonies spreading but elevated<br />

at the centre, the surface almost black, with immersed conidiomatal<br />

complexes soon covered by masses of first pale white, buff, and<br />

then brick conidial slime; the central area later entirely covered<br />

by cerebriform, brick masses of slime; reverse brick to almost<br />

vinaceous, and fawn. Colonies on CHA 8–10(–14) mm diam in<br />

2 wk, with an even, buff margin covered by a diffuse, felty aerial<br />

mycelium; further as on MEA, but surface less elevated, and largely<br />

covered by diffuse, felty, grey-white aerial mycelium; conidial<br />

slime as on MEA abundantly produced from similar conidiomatal<br />

complexes, but more intensely pigmented, deep scarlet; reverse<br />

blood colour.<br />

Conidiogenous cells (OA) hyaline, discrete, broadly<br />

ampulliform to cylindrical, holoblastic, with one or two indistinct<br />

percurrent proliferations (sympodial proliferation not observed),<br />

8–14 × 3–6 µm; conidia filiform, hyaline, narrowly rounded at the<br />

top, attenuated to a truncate base, straight to somewhat curved,<br />

1–2(–3)-septate, not constricted around the septa, mostly 10–30(–<br />

35) × 1.5–2(–2.5) µm.<br />

Host: Passiflora edulis.<br />

Material examined: Australia, Victoria, Wonthaggi, on Passiflora edulis, Mar. 2011,<br />

C. Murdoch, living culture <strong>CBS</strong> 129431. New Zealand, Auckland, Mt Albert, on<br />

living leaves of P. edulis, 21 Feb. 2000, C. F. Hill MAF LYN-118a, living culture <strong>CBS</strong><br />

102701.<br />

Notes: Priest (2006) provided a description of the fungus on the<br />

host, and discussed the nomenclature. He also mentioned the<br />

anonymous reporting of a Septoria state observed in ascospore<br />

isolates from a Mycosphaerella sp. found on fruits lesions, but<br />

whether this truly is the sexual morph of S. passifloricola remains<br />

to be corroborated. The multilocus phylogeny (Fig. 2) provides<br />

evidence of a close relationship with S. ekmanniana (<strong>CBS</strong> 113385,<br />

113612) and S. chromolaenae (<strong>CBS</strong> 113373), and also S. sisyrinchii<br />

(<strong>CBS</strong> 112096) and S. anthurii (<strong>CBS</strong> 148.41, 346.58).<br />

Septoria petroselini (Lib.) Desm., Mem. Soc. Roy. Sci. Lille<br />

1843: 97. 1843. Fig. 32.<br />

Basionym: Ascochyta petroselini Lib., Pl. Crypt. Arduenna 3: 252.<br />

1834.<br />

≡ Phleospora petroselini (Lib.) Westend., Bull. Acad. r. Bruxelles 12 (9):<br />

252. 1845.<br />

Description in planta: Symptoms leaf spots indefinite, without a<br />

distinct border, pale brown, visible on both sides in green parts<br />

of leaves or barely discoloured petioles. Conidiomata pycnidial,<br />

numerous, mostly epiphyllous, semi-immersed, black, mostly<br />

80–200 mm diam, with a central, first narrow, later wider opening,<br />

releasing pale white cirrhi of conidia; conidiomatal wall composed<br />

of one or two layers of brown-walled, angular cells, lined by a<br />

layer of hyaline cells. Conidiogenous cells hyaline, discrete,<br />

holoblastic, sympodially or percurrently proliferating, ampulliform,<br />

6–10 × 3–6 mm. Conidia hyaline, filiform, straight to somewhat<br />

flexuous, the upper cell tapered into the obtuse apex, relatively<br />

widely truncate at the base, (1–)3–5(–7) septate, not or only<br />

indistinctly constricted at the septa, contents granular or with<br />

minute oil-droplets around the septa and at the ends, 29–80 ×<br />

1.9–2.5 mm (living; rehydrated, 1.2–1.5 mm wide). Sexual morph<br />

unknown.<br />

Description in vitro (18 °C, near UV) <strong>CBS</strong> 109521: Colonies on<br />

OA 13–16 mm diam in 2 wk, with an even, colourless margin;<br />

colonies spreading, immersed mycelium mostly pale ochreous,<br />

soon appearing dull green due to the development of dark green<br />

hyphal strands, particularly in a discontinuous submarginal<br />

zone; reverse in the centre ochreous to fulvous, surrounded by<br />

olivaceous-grey. Conidiomata developing after 5–7 d immersed<br />

in the agar or on its surface, most numerous in the centre of the<br />

colony, releasing milky white to rosy-buff conidial slime. Conidia<br />

also produced directly from mycelium near the centre of the<br />

colony. Colonies on MEA 17–20 mm diam in 2 wk, with an even<br />

to somewhat ruffled, buff margin; colonies spreading to restricted,<br />

somewhat elevated towards the centre, the surface black with<br />

many stromata developing and releasing milky white droplets of<br />

conidial slime, aerial mycelium diffuse to more dense and low,<br />

grey; reverse mostly greenish grey to iron-grey, in the centre with<br />

fawn to dark brick haze.<br />

Conidiomata and conidiogenous cells as in planta. Conidia<br />

(OA) filiform to filiform-cylindrical, straight, flexuous or curved,<br />

attenuated gradually to the narrowly rounded to pointed apex,<br />

attenuated gradually or more abruptly to the narrowly truncate<br />

base, (0–)3–5(–7)-septate, 30–54(–65) × 2–2.5(–3) µm.<br />

www.studiesinmycology.org<br />

277


Verkley et al.<br />

Fig. 32. Septoria petroselini. A, B. Colonies <strong>CBS</strong> 109521 (15 °C, nUV). A. On OA. B. On MEA. C, D. Conidia on OA (<strong>CBS</strong> 109521). E. Conidia and conidiogenous cells in planta<br />

(<strong>CBS</strong> H-21166). F. Conidia on OA (<strong>CBS</strong> 182.44). G. Conidia on OA (<strong>CBS</strong> 109521). Scale bars = 10 µm.<br />

Hosts: Petroselinum crispum (syn. Apium petroselinum), other<br />

Petroselinum spp. and Coriandrum sativum (Priest 2006).<br />

Material examined: Netherlands, Prov. Utrecht, Baarn, garden Eemnesserweg 90,<br />

on living leaves of Petroselinum crispum, 29 Mar. 2001, H.A. van der Aa 12642,<br />

<strong>CBS</strong> H-21166, living culture <strong>CBS</strong> 109521; Laren, on living leaves of P. sativum, June<br />

1944, S. Dudok de Wit s.n., living culture <strong>CBS</strong> 182.44 = IMI 100279, dried specimen<br />

of culture on CMA, <strong>CBS</strong> H-18128.<br />

Notes: <strong>CBS</strong> 182.44, isolated from Petroselinum sativum, produces<br />

conidia 29–49 × 1–2 µm, and this range of sizes agrees with<br />

those given for S. petroselini by most authors [26–45(–52) ×<br />

(1–)1.5–2 µm cf. Priest 2006; 16–46 × 1–2 mm cf. Jørstad 1965<br />

on Petroselinum]. In contrast, the conidia in the collection on P.<br />

crispum (<strong>CBS</strong> H-21166), as well as in the isolate <strong>CBS</strong> 109521<br />

derived from it, were up to 80 µm long and 2.5 µm wide, and the<br />

pycnidia were also larger than described for S. petroselini, for which<br />

this material was initially identified as S. apiicola, but the molecular<br />

data provide evidence that it also belongs to S. petroselini. The<br />

material is 100 % homologous on ITS, Act, RPB2 and EF, and<br />

99.7 % on Cal with <strong>CBS</strong> 182.44. The range of conidial sizes for S.<br />

petroselini is therefore expanded here, although it should be noted<br />

that the conidia formed in vitro are not over 65 µm in length in the<br />

material available. The ITS sequence of S. anthrisci is distinct from<br />

that of S. apiicola, but identical to that of S. petroselini and other<br />

species. Septoria anthrisci can be distinguished from S. petroselini<br />

by the Act, EF and RPB2 sequences.<br />

Septoria phlogis Sacc. & Speg., in Sacc., Michelia 1: 184.<br />

1878 [as “phlocis”; non Ellis & Everh., in G. Martin, J. Mycol.<br />

3: 85. 1887; nec P. Syd., Mycoth. March., Cent. 18, no 1757;<br />

Cent. 23, no 2278. 1887; later homonyms]. Fig. 33.<br />

Description in planta: Symptoms leaf lesions developing in areas<br />

of the leaf lamina that first turn yellow, indefinite or delimited by<br />

darkening veinlets, hologenous, pale to dark brown. Conidiomata<br />

pycnidial, epiphyllous, numerous, semi-immersed to immersed,<br />

subglobose to globose, dark brown to black, 100–160 µm<br />

diam; ostiolum central, circular, initially 25–35 µm wide, later<br />

becoming more irregular and up to 70 µm wide, surrounding cells<br />

concolourous; conidiomatal wall 15–28 µm thick, composed of an<br />

outer layer of isodiametric to irregular cells mostly 5–9 µm diam<br />

with pale brown cell walls up to 2 μm thick, and an inner layer of<br />

hyphal to isodiametric cells 3–5 μm diam with thin, hyaline walls.<br />

Conidiogenous cells hyaline, discrete or integrated in 1–2-septate<br />

conidiophores up to 22 µm long, cylindrical, or narrowly to broadly<br />

ampulliform, holoblastic, often proliferating percurrently with<br />

indistinct annellations as well as sympodially, 5–7.5(–8) × 2.5–<br />

4(–5) µm. Conidia cylindrical, filiform, straight to slightly curved,<br />

278


A new approach to species delimitation in Septoria<br />

Notes: Priest (2006) described the conidia of S. phlogis as filiform,<br />

1–4-septate, straight to curved, (35–)50–73 × (1–)1.5–2 µm,<br />

hyaline, with a truncate base and obtuse apex. He accepted S.<br />

divaricatae as a separate species, with Phlox drummondi (syn. P.<br />

divaricata) as the only known host plant, and S. drummondi as a<br />

synonym. Septoria divaricatae has similarly shaped but smaller<br />

conidia than S. phlogis, 1–3-septate, (13–)25–40(–45) × 1–1.5<br />

µm. The overlap in length of the conidia of the two is minimal, at<br />

least on the host plant, indicating that they might be truly separate<br />

taxa. Several other authors have also accepted S. divaricatae as<br />

a distinct entity (Teterevnikova-Babayan 1987, Muthumary 1999).<br />

However, Jørstad (1965) considered S. divaricatae a synonym of<br />

S. phlogis, and also S. phlogina. Both S. phlogis and S. divaricatae<br />

occur on P. drummondi and this may have contributed to the<br />

confusion. Investigations based on fresh material on different Phlox<br />

species, and studies of cultures derived thereof, as well as type<br />

material of the names mentioned above, will be required in order to<br />

settle the complicated taxonomy of Septoria on Phlox.<br />

Molecular identification of S. phlogis is straight-forward, as all<br />

protein-coding genes investigated here, particularly Btub, Cal and<br />

RPB2, show unique diagnostic sequences. Septoria epambrosiae<br />

(<strong>CBS</strong> 128629, 128636) is a sister species to S. phlogis. Septoria<br />

epambrosiae is a pathogen of Ambrosia artemisiifolia (Asteraceae),<br />

which today is the prime cause of hay fever in many areas where<br />

this weed occurs.<br />

Fig. 33. Septoria phlogis. Conidia and conidiogenous cells in planta (<strong>CBS</strong> H-21198).<br />

Scale bars = 10 µm.<br />

narrowly rounded to somewhat pointed at the apex, attenuated<br />

gradually or more abruptly towards the narrowly truncate base,<br />

(0–)1–3(–4)-septate, not constricted around the septa, hyaline,<br />

containing minute oil-droplets and granular material in the living<br />

and rehydrated state, (22–)32–50(–60) × 1.5–2 µm (rehydrated;<br />

living, 2–2.5 µm wide). Sexual morph unknown.<br />

Description in vitro: Colonies on OA 15–18 mm diam in 19 d, with an<br />

even, glabrous, buff to rosy-buff margin; colonies spreading, plane;<br />

immersed mycelium variably pigmented over sectors, usually either<br />

brownish olivaceous, or cinnamon to saffron (honey with a reddish<br />

haze); aerial mycelium scanty, white, locally forming a diffuse woollyfloccose<br />

mat; reverse olivaceous-black and cinnamon or saffron.<br />

Colonies on CMA 13–18 mm diam in 19 d, as on OA. Colonies on<br />

MEA 12–17 mm diam in 19 d, with an even, glabrous, buff margin;<br />

colonies spreading, the surface mostly plane, only somewhat<br />

elevated or folded towards the centre; immersed mycelium mostly<br />

dark salmon to olivaceous-black, covered by a dense, appressed<br />

mat of woolly, mostly white to faintly rosy-buff aerial mycelium; an<br />

ochreous pigment diffuses into the surrounding medium; reverse<br />

mostly sienna or blood colour, with an ochreous to saffron margin.<br />

Colonies on CHA 12–18 mm diam in 19 d, as on MEA.<br />

Hosts: Phlox spp.<br />

Material examined: Netherlands, Prov. Noord-Holland, Enkhuizen, on living leaves<br />

of Phlox sp., 6 Sep. 1949, J.A. von Arx s.n., <strong>CBS</strong> H-4862; Prov. Utrecht, Baarn,<br />

Cantonspark, on living leaves of Phlox sp., 27 Aug. 1999, G. Verkley 911, <strong>CBS</strong><br />

H-21198, living culture <strong>CBS</strong> 102317; same substr., Jan. 1932, D. Moll s.n., living<br />

culture <strong>CBS</strong> 312.32; Garden in Baarn, same substr., 16 Oct. 1990, H.A. van der Aa<br />

10919, <strong>CBS</strong> H-18130, living culture <strong>CBS</strong> 577.90; same substr., loc., 27 Aug. 1997,<br />

H.A. van der Aa 12302, <strong>CBS</strong> H-18131.<br />

Septoria polygonorum Desm., Annls Sci. Nat., sér. 2,<br />

Bot.17: 108. 1842. Fig. 34.<br />

≡ Spilosphaeria polygonorum (Desm.) Rabenh., Herb. Mycol. II, no.<br />

442a. 1856.<br />

Description in planta: Symptoms leaf spots small, circular,<br />

hologenous, ochreous to brown, sharply delimited by a dark redbrown<br />

zone. Conidiomata pycnidial, mainly epiphyllous, several<br />

to many developed in each leaf spot after some time, subglobose<br />

to lenticular, not protruding strongly, brown to almost black, 50–<br />

120 µm diam; ostiolum central, initially circular and 25–45 µm<br />

wide, surrounding cells concolorous to somewhat darker brown;<br />

conidiomatal wall about 10–25 µm thick, composed of angular<br />

cells 2.0–6.5 µm diam, the outermost cells pale yellowish brown<br />

with somewhat thickened walls, the inner cells thin-walled.<br />

Conidiogenous cells hyaline, discrete, narrowly or broadly<br />

ampulliform with a relatively wide neck, holoblastic, often first<br />

proliferating sympodially, and later also percurrently 1–several times<br />

with distinct annellations, 5–10(–14) × 3.–5.5(–6.5) µm. Conidia<br />

filiform to filiform-cylindrical, straight or slightly curved, or flexuous,<br />

attenuated gradually to a narrowly rounded to pointed apex,<br />

attenuated more abruptly towards the truncate base, 1–4-septate,<br />

not or only inconspicuously constricted around the septa, hyaline,<br />

contents with several minute oil-droplets and granular material in<br />

each cell in the living state, with inconspicuous oil-droplets and<br />

granular contents in the rehydrated state, (17–)22–45(–53) × 1.5–2<br />

µm (living; rehydrated, 1.2–1.8 µm wide). Sexual morph unknown.<br />

Description in vitro: Colonies normally slow-growing, but sometimes<br />

with fast-growing sectors (diam including these between brackets)<br />

on all media except MEA. On OA 3–5 [6–7] mm diam in 2 wk [6–7<br />

(22–30) mm in 6 wk], the margin regular, glabrous, colourless;<br />

colonies spreading, plane, immersed mycelium olivaceous-black,<br />

but grey-olivaceous to greenish grey in faster growing sectors that<br />

sometimes develop from typically slow-growing colonies; aerial<br />

mycelium generally absent or very scanty, but woolly-floccose<br />

www.studiesinmycology.org<br />

279


Verkley et al.<br />

Fig. 34. Septoria polygonorum. A–C. Colonies <strong>CBS</strong> 102331 (15 °C, nUV). A. On OA. B. On CHA. C. On MEA. D. Conidia and conidiogenous cells in planta (<strong>CBS</strong> H-21212). E.<br />

Ibid., on OA (<strong>CBS</strong> 108982). F, G. Conidia on OA (<strong>CBS</strong> 347.67). Scale bars = 10 µm.<br />

appressed on the above mentioned sectors; white conidial<br />

slime produced from numerous, scattered pycnidial or stromatic<br />

conidiomata; reverse dark slate blue to olivaceous-black. Colonies<br />

on CMA 4–5 (6–7) mm diam in 2 wk [5–7 (22–27) mm in 6 wk], as<br />

on OA, with similar fast-growing sectors. Colonies on MEA 3–4 mm<br />

diam in 2 wk (6–8 mm in 6 wk), the margin regular, glabrous, barely<br />

280


A new approach to species delimitation in Septoria<br />

visible; colonies irregularly pustulate to hemispherical, immersed<br />

mycelium olivaceous-black to black, glabrous, the surface bearing<br />

numerous droplets of milky white to dirty buff conidial slime emerging<br />

from scattered pycnidial conidiomata; reverse olivaceous-black to<br />

black. Colonies on CHA 3–5 mm diam in 2 wk [7–10 (22–26) mm in<br />

6 wk], the margin distinctly ruffled, glabrous, ochreous to greyish;<br />

colonies irregularly pustulate, immersed mycelium olivaceousblack,<br />

lacking aerial mycelium; milky white to dirty buff conidial<br />

slime emerging from scattered pycnidial conidiomata; reverse<br />

blood colour.<br />

Conidiomata (OA) as in planta, single and pycnidial, brown<br />

to black, glabrous, 85–150 µm diam, with a single ostiolum up to<br />

50 µm wide, rarely also merged into multilocular stromata up to<br />

300 µm diam which may have several openings; conidiogenous<br />

cells as in planta, proliferating sympodially and/or percurrently,<br />

9–20 × 4–7 µm; conidia as in planta but longer, 30–65(–72) ×<br />

1.5–2(–2.2) µm.<br />

Hosts: Polygonum spp.<br />

Material examined: Austria, Tirol, Ötztal, Sautens, on living leaves of Polygonum<br />

persicaria, 30 July 2000, G. Verkley 1024, <strong>CBS</strong> H-21213, living culture <strong>CBS</strong> 108982.<br />

Netherlands, prov. Utrecht, Baarn, Zandvoordtweg, same substr., 9 July 1967,<br />

H.A. van der Aa 98, <strong>CBS</strong> H-18695, living culture <strong>CBS</strong> 347.67; same substr., prov.<br />

Limburg, St. Jansberg, near Plasmolen, 9 Sep. 1999, G. Verkley 926, <strong>CBS</strong> H-21208,<br />

living cultures <strong>CBS</strong> 102330, 102331; same substr., prov. Limburg, Savelsbos, 28<br />

June 2000, G. Verkley 967, <strong>CBS</strong> H-21212, living cultures <strong>CBS</strong> 109007, 109008;<br />

Prov. Zeeland, Zuid-Beveland, community of Borsele, Valdijk near Nisse, 27 Aug.<br />

2001, G. Verkley 1110, <strong>CBS</strong> H-21164, living culture <strong>CBS</strong> 109834. New Zealand,<br />

North Island, Coromandel, Tairua Forest, along roadside of St. Hway 25, near<br />

crossing 25A, 23 Jan. 2003, G. Verkley 1843, <strong>CBS</strong> H-21242, living culture <strong>CBS</strong><br />

113110.<br />

Notes: More than ten Septoria species have been described from<br />

the host genus Polygonum, of which S. polygonorum is the oldest<br />

one. The material available for the present study agrees generally<br />

well in morphology with the description of S. polygonorum provided<br />

by other authors. Priest (2006) described the conidiogenous cells<br />

as holoblastic (first conidium), producing subsequent conidia<br />

enterobastically, seceding at the same level (mode “Event 13:<br />

enteroblastic non-progressive”). Muthumary (1999), who studied<br />

type material of S. polygonorum from PC, observed sympodially<br />

proliferated cells. Priest may have overlooked the sympodial<br />

conidiogenesis, as in the present study sympodially proliferating<br />

cells were also observed in field specimens of S. polygonorum.<br />

The strains available from distant geographical origins showed<br />

highly similar sequences for seven loci. The multilocus phylogeny<br />

indicates a rather isolated position of S. polygonorum (Fig. 2).<br />

Septoria protearum Viljoen & Crous, S. Afr. J. Bot. 64: 144.<br />

1998.<br />

Description in planta: Symptoms leaf spots varied according to the<br />

host. Conidiomata pycnidial, epiphyllous or amphigenous, semiimmersed<br />

or becoming erumpent, subglobose to globose, dark<br />

brown to black, 65–200 µm diam; ostiolum central, circular, slightly<br />

papillate, 18–30(–60) µm wide, surrounding cells concolourous,<br />

releasing white cirrhi of conidial slime; conidiomatal wall 10–22 µm<br />

thick, composed of 3–4 layers of brown, isodiametric to irregular<br />

cells mostly 5–10 µm diam with dark brown cell walls up to 2 μm<br />

thick, sometimes with an an inner layer of hyphal to isodiametric<br />

cells 3.5–5 μm diam with thin, hyaline walls. Conidiogenous cells<br />

hyaline, discrete and globose or doliiform often with an elongated<br />

neck, or integrated in 1–5-septate conidiophores up to 30 µm<br />

long and narrowly to broadly ampulliform, holoblastic, proliferating<br />

percurrently with indistinct annellations as well as sympodially,<br />

4–12 × 1.5–3.5(–5) µm. Conidia hyaline, cylindrical, subcylindrical<br />

to obclavate, straight to curved, rounded to somewhat pointed<br />

at the apex, attenuated gradually or more abruptly towards the<br />

truncate base, (0–)1–3(–4)-septate, not constricted around the<br />

septa, containing minute oil-droplets and granular material in<br />

rehydrated state, (6–)12–22(–30) × 1.5–2 µm (rehydrated). Sexual<br />

morph unknown.<br />

Description in vitro (18 ºC, near UV): Colonies on OA 11–16 mm<br />

diam in 1 wk, 23–30 mm in 2 wk, with an even, slightly undulating,<br />

colourless margin; colonies plane, spreading, immersed mycelium<br />

ochreous to pale luteous or rosy-buff and rarely also with greenish<br />

tinges, aerial mycelium absent or scarce with few grey to rosybuff<br />

tufts; conidiomata developing mostly immersed in the agar,<br />

scattered or in concentric zones, olivaceous-black, releasing<br />

droplets of milky white to pale salmon conidial slime. Reverse<br />

cinnamon to hazel or fawn, or rosy-buff. Colonies on MEA 32–36<br />

mm diam in 2 wk, with an even, (vinaceous) buff to colourless<br />

undulating margin; colonies restricted with a cerebriform elevated<br />

central area or lower and more spreading, radially striate, the entire<br />

surface covered by a dense mat of finely felted, somewhat woolly,<br />

white to greysh, or salmon to flesh aerial mycelium; reverse dark,<br />

fawn to brown-vinaceous, or olivaceous-black mixed with bright<br />

rust to coral. Conidiomata developing after 1 wk, mostly immersed<br />

and releasing whitish conidial slime. Colonies on CHA 17–19 mm<br />

diam in 1 wk, 25–31 mm in 2 wk, with an even, saffron margin with<br />

some diffuse white aerial mycelium; colonies spreading but slightly<br />

elevated in the centre, entirely covered by a dense mat of pure<br />

white, locally weakly salmon, woolly and somewhat sticky aerial<br />

mycelium, in the marginal area later with a glaucous haze; reverse<br />

in the centre chestnut, surrounded by rust and apricot zones,<br />

margin saffron. Sporulation as on MEA.<br />

Conidiomata (OA) pycnidial, globose, single or merging into<br />

complexes up to 220 µm diam, brown to black, the wall composed<br />

of pale brown textura angularis with cells up to 10 µm diam, inner<br />

cells smaller and hyaline. Conidiogenous cells hyaline, discrete<br />

or integrated in simple, 1(–2)-septate conidiophores, cylindrical<br />

or narrowly to broadly ampulliform, holoblastic, proliferating<br />

sympodially, and/or percurrently with indistinct annellations, and<br />

then often showing a narrow neck of variable length, 5–10(–13.5)<br />

× 2.5–3(–3.5) µm. Conidia filiform to cylindrical, straight, more<br />

often curved or flexuous, or bent irregularly, rounded to somewhat<br />

pointed at the apex, attenuated gradually or more abruptly towards<br />

the narrowly truncate base, (0–)1–3-septate, not constricted at<br />

the septa, hyaline, contents as in planta, (8–)12–22(–25) × 1.5–2<br />

µm (<strong>CBS</strong> 119942), (12–)15–23.5(–31) × 1–1.5 µm (<strong>CBS</strong> 179.77),<br />

17–35 × 1–1.5(–2) µm (<strong>CBS</strong> 658.77).<br />

Hosts: Asplenium ruta-muraria, Boronia denticulata, Geum sp.,<br />

Ligustrum vulgare, Myosotis sp., Nephrolepis sp., Pistacia vera,<br />

Protea cynaroides, Protea sp., Skimmia sp. and Zanthedeschia<br />

aethiopica.<br />

Material examined: Germany, Potsdam, Maulbeerallee beneath the Orangerie, on<br />

living leaves of Asplenium ruta-muraria, 17 Nov. 2005, V. Kummer 0045/3, <strong>CBS</strong><br />

H-19729, living culture <strong>CBS</strong> 119942. Italy, details of loc. unknown, on Pistacia vera,<br />

June 1951, deposited by G. Goidánich, living culture <strong>CBS</strong> 420.51; on Ligustrum<br />

vulgare, June 1959, M. Ribaldi, living culture <strong>CBS</strong> 390.59. Netherlands, Reeuwijk,<br />

in leaf spot of Skimmia sp., commercially cultivated under plastic ‘tunnels’, 1996, J.<br />

de Gruyter, <strong>CBS</strong> H-21190, PD 96/11330 = <strong>CBS</strong> 364.97. New Zealand, Auckland,<br />

on Myosotis sp., Dec. 1976, H.J. Boesewinkel, <strong>CBS</strong> H=18209, living culture<br />

www.studiesinmycology.org<br />

281


Verkley et al.<br />

<strong>CBS</strong> 179.77; same area, on Nephrolepis sp., Sep. 1977, H.J. Boesewinkel, <strong>CBS</strong><br />

H-18211, living culture <strong>CBS</strong> 164.78; same area, on leaves and stems of Boronia<br />

denticulata, 5 Apr. 1977, H. J. Boesewinkel, <strong>CBS</strong> H-18120, living culture isolated,<br />

<strong>CBS</strong> 658.77; same area, Albert Park, on leaves of Geum sp., 21 Jan. 2003, G.<br />

Verkley V1821, <strong>CBS</strong> H-21233, living culture <strong>CBS</strong> 113114. South Africa, Gauteng<br />

Province, on leaves of Protea cynaroides, Sep. 1996, L. Viljoen, living ex-type culture<br />

of Septoria protearum STE-U 1470 = <strong>CBS</strong> 778.97; Pilgrims Rest, on Zanthedeschia<br />

aethiopica, 15 July 2011, P.W. Crous, living culture CPC 19675.<br />

Notes: The description of S. protearum given by Crous et al.<br />

(2004) has been emended here using observations on material<br />

isolated from other hosts than Protea. These fungi are, despite<br />

minor differences in colony characteristics, genetically very similar,<br />

and therefore regarded as conspecific. The name S. protearum is<br />

adopted as it is based on well-decribed type material and ex-type<br />

cultures. The distinction with a number of strains isolated from<br />

Citrus spp., Fragaria sp., Gerbera jamesonii, Gevuina avellana,<br />

Hedera helix, Lobelia erinus, and Masdevallia sp. is doubtful<br />

but, based on the morphological differences in combination with<br />

a limited number of polymorphisms on the house-keeping genes,<br />

they are treated here as part of Septoria citri (which clusters in the<br />

S. protearum complex), which is a species complex that needs to<br />

be further resolved. Material studied and some cultural characters<br />

of <strong>CBS</strong> 113392 are provided below.<br />

Additional material of the Septoria citri complex examined: Country and host<br />

unknown, May 1937, L.L. Huiller, living culture <strong>CBS</strong> 315.37 (sub Septoria citri).<br />

Argentina, in leaf spot of Lobelia erinus, S. Wolcon s.n., ‘V1466’, living culture<br />

<strong>CBS</strong> 113392. Italy, Sicilia, on Gerbera jamesonii, Nov. 1961, W. Gerlach, living<br />

cultures <strong>CBS</strong> 410.61 = BBA 9588 (sub S. gerberae). Netherlands, Paterwolde, in<br />

glasshouse, in leaf spots of Masdevallia sp., Feb. 1998, W. Veenbaas-Rijks (<strong>CBS</strong><br />

H-18124), living culture <strong>CBS</strong> 101013 (sub S. orchidacearum). New Zealand, leaf<br />

of Gevuina avellana, Nov. 1998, S. Ganev, living culture <strong>CBS</strong> 101354; Waitakere,<br />

culture isolated from leaf of Fragaria sp., Nov. 1975, H. J.Boesewinkel, living culture<br />

<strong>CBS</strong> 177.77 (sub Septoria aciculosa). Portugal, Algarve, Monchique, in leaf spot on<br />

Hedera helix, 14 June 1988, H.A. van der Aa 10494, living culture <strong>CBS</strong> 566.88 (sub<br />

S. hederae Desm.).<br />

Description in vitro (18 ºC, near UV, <strong>CBS</strong> 113392): Colonies 23–26<br />

mm diam in 2 wk, with an even, glabrous colourless margin; colonies<br />

spreading, immersed mycelium orange, lacking aerial mycelium;<br />

reverse bay to scarlet. Conidiomata developing in concentric patterns,<br />

immersed and on the agar surface, releasing milky white masses<br />

of conidial slime. Colonies on MEA 17–23 mm diam in 2 wk, with<br />

an even colourless margin mostly covered by white aerial hyphae;<br />

colonies spreading but developing cerebriform elevations in the centre,<br />

immersed mycelium livid vinaceous to vinaceous buff, with diffuse to<br />

dense, appressed, whitish to vinaceous buff aerial mycelium.<br />

Conidiogenous cells (OA) varied in shape, globose, doliiform<br />

to ampulliform or cylindrical, discrete, rarely integrated in 1-septate<br />

conidiophores, holoblastic, proliferating sympodially, and also<br />

percurrently with several close and indisctinct annellations,<br />

hyaline, 4.5–8(–10) × 3–5 µm. Conidia filiform to cylindrical,<br />

straight to flexuous, often weakly curved, attenuated gradually to a<br />

narrowly rounded to somewhat pointed apex, attenuated gradually<br />

or more abruptly to a narrowly truncate to almost rounded base,<br />

contents granular with few minute oil-droplets in the living state,<br />

(0–)1–3-septate, (12–)15–28 × 1.5–2 µm (living); <strong>CBS</strong> 177.77 (OA)<br />

17–35.5 × 1–2 µm (living).<br />

Septoria putrida Strasser, Verh. zool.-bot. Ges. Wien 65:<br />

180. 1915. Fig. 35F–J.<br />

Description in planta: Symptoms definite leaf spots, hologenous or<br />

epigenous, scattered or in clusters, initially pale yellowish, later grey<br />

to white, surrounded by a black elevated zone or merely delimited<br />

by leaf veins. Conidiomata pycnidial, one to several in each leaf<br />

spot, scattered, semi-immersed, predominantly epiphyllous, pale<br />

brown, lenticular to globose, 80–180 µm diam; ostiolum circular,<br />

central, initially 25–50 µm wide, later opening to 80 µm diam,<br />

lacking distinctly differentiated cells; conidiomatal wall composed<br />

of textura angularis without distinctly differentiated layers, mostly<br />

10–20 µm thick, the outer cells with brown, somewhat thickened<br />

walls and 4.5–10 µm diam, the inner cells hyaline, thin-walled,<br />

4–9 µm diam. Conidiogenous cells hyaline, discrete or integrated<br />

in short, 1-septate conidiophores, cylindrical, or ampuliform with<br />

a mostly relatively short, but sometimes strongly elongated neck<br />

(8–10 µm long), hyaline, holoblastic, proliferating percurrently with<br />

distinct annellations, sometimes also sympodially, 6.5–12(–19.5) ×<br />

3.5–5 µm. Conidia cylindrical, usually strongly curved or flexuous,<br />

gradually attenuated to a rounded apex, gradually attenuated<br />

into a broadly truncate base, (0–)3–5-septate, not or indistinctly<br />

constricted around the septa, hyaline, contents with several small<br />

guttulae and numerous granules in each cell in the living state, oildroplets<br />

rarely merged into larger guttules in the rehydrated state,<br />

(32–)40–70(–85) × 2–2.5(–3.0) µm (rehydrated). Sexual morph<br />

unknown.<br />

Description in vitro: Colonies on OA 5.5–8.5 mm diam in 12 d<br />

(13–15 mm in 3 wk; 50–55 mm in 7 wk), with an even, somewhat<br />

undulating, glabrous, colourless margin; colonies plane, immersed<br />

mycelium buff to primrose, in some sectors also with dark herbage<br />

green to dull green radiating hyphal stands, after 7 wk mostly<br />

dark greenish; pycnidial conidiomata scattered immersed and<br />

superficial, which are first dark olivaceous, then almost black,<br />

glabrous or beset with short hyphal protrusions, 150–450 µm diam,<br />

mostly with a single ostiolum placed on short papillae, that releases<br />

pale whitish or buff conidial slime; aerial mycelium diffuse, woollyfloccose,<br />

white to grey; reverse dull green to olivaceous-black in<br />

the centre. Colonies on CMA 4–7 mm diam in 12 d (11–14 mm<br />

in 3 wk; 50–55 mm in 7 wk), with an even, glabrous, colourless<br />

margin; immersed mycelium apart from margin olivaceous-black,<br />

at the margin with some local production of a coral pigment after 7<br />

wk; aerial mycelium higher, diffuse woolly, greyish; reverse darker<br />

as on OA; conidiomata similar as on OA. Colonies on MEA 2.5–5<br />

mm diam in 12 d (11–13 mm in 3 wk; 42–46 mm in 7 wk), with an<br />

even to ruffled, glabrous, colourless to buff margin, which may be<br />

irregularly lobate after 7 wk; colonies restricted, pustulate to almost<br />

hemispherical, immersed mycelium rather dark, aerial mycelium<br />

diffuse, short, felty white, behind the margin denser and higher;<br />

superficial mature conidiomata releasing first milky white, later pale<br />

luteous to saffron, then salmon conidial slime; reverse olivaceousblack<br />

in the centre, near the margin honey. Colonies on CHA 5–7<br />

mm diam in 12 d (8–11 mm in 3 wk), with an irregular, ruffled,<br />

colourless margin, older colonies distinctly lobate; the surface<br />

mostly covered by a low, dense to diffuse, felty white, later grey<br />

aerial mycelium, near the margin pure white felty to tufty; further as<br />

on MEA; conidial slime abundantly produced, first milky white, later<br />

salmon or saffron; reverse in the centre blood colour, dark brick to<br />

cinnamon at the margin.<br />

Conidia as in planta, (0–)3–5(–6)-septate, 40–85(–97) ×<br />

2–2.5(–3) µm.<br />

Host: Senecio nemorensis.<br />

Material examined: Austria, Tirol, Ober Inntal, Samnaun Gruppe, Lawenalm, on<br />

living leaves of Senecio nemorensis subsp. fuchsii, 8 Aug. 2000, G. Verkley 1052a,<br />

282


A new approach to species delimitation in Septoria<br />

Fig. 35. A–E. Septoria senecionis. A–C. Colonies <strong>CBS</strong> 102381 (15 °C, nUV). A. On OA. B. On CHA. C. On MEA. D. Conidia and conidiogenous cells in planta (<strong>CBS</strong> H-21219,<br />

epitype). E. Conidia in planta (<strong>CBS</strong> H-21219). F–J. Septoria putrida. F, G. Conidia in planta (<strong>CBS</strong> H-21174). H. Conidiogenous cells in planta (<strong>CBS</strong> H-21174). I. Conidia and<br />

conidiogenous cells in planta (<strong>CBS</strong> H-21174). J. Ibid., on OA (<strong>CBS</strong> 109088). Scale bars = 10 µm.<br />

<strong>CBS</strong> H-21174, living cultures <strong>CBS</strong> 109087, 109088.<br />

Notes: Septoria putrida was originally described from Senecio<br />

nemorensis found in Austria (Sonntagberg), reportedly with<br />

www.studiesinmycology.org<br />

283


Verkley et al.<br />

0(–9–11?)-septate conidia, 70–80 × 2 µm. The multilocus sequence<br />

analysis indicates that S. putrida and S. senecionis are closely<br />

related but genetically distinct species (Fig. 2). Morphologically<br />

these sister taxa can best be distinguished based on conidial length;<br />

conidia in S. putrida can be up to 85 µm long in planta and even<br />

longer (up to 97 µm) in culture, whereas those of S. senecionis are<br />

rarely longer than 65 in planta and not over 70 µm long in culture.<br />

Thirteen more taxa have been described in Septoria on Senecio,<br />

of which S. anaxaea Sacc. is another distinctive, long-spored species<br />

described from Senecio grandidentatus (?= S. praealtus), and<br />

recently also from several other Senecio spp. in Australia. According<br />

to Priest (2006), conidia are 3(–6)-septate, 28–75 × 2.5–3 µm (50–<br />

130 × 3.5–5 µm, Teterevnikova-Babayan 1987). Most other Septoria<br />

spp. on Senecio may be synonyms of S. senecionis, and this needs<br />

to be confirmed by study of the type material.<br />

Septoria rumicum Sacc. & Paol., in Saccardo, Bull. Soc. r.<br />

Bot. Belg. 28: 23. 1889.<br />

Description in vitro: Colonies on OA 3–5 mm diam in 3 wk, with an<br />

even colourless margin; colonies restricted, irregularly pustulate,<br />

immersed mycelium olivaceous-black mostly hidden under a low,<br />

dense mat of felty grey to white aerial mycelium; reverse olivaceousgrey.<br />

Colonies on MEA 6–10(–12) mm diam in 3 wk, with an even or<br />

lobed, colourless margin; colonies restricted, irregularly pustulate,<br />

immersed mycelium appearing olivaceous-grey under a dense<br />

mat of woolly-floccose, white to grayish aerial mycelium; reverse<br />

olivaceous-black. No sporulation observed.<br />

Conidia (OA) cylindrical, filiform, straight or slightly curved,<br />

attenuated gradually towards a narrowly rounded to almost pointed<br />

apex, attenuated gradually or more abruptly towards the narrowly<br />

truncate base, 3–5(–7)-septate, mostly 60–82 × 2–3 µm.<br />

Hosts: Rumex spp. (R. acetosa, R. alpinum).<br />

Material examined: France, Corrèze, Roumignac, on leaves of Rumex acetosa,<br />

H.A. van der Aa 5338, <strong>CBS</strong> H-18050, living culture <strong>CBS</strong> 503.76 ; Haute-Savoie, Mt.<br />

Beaudin, on stem of R. alpinus, July 1978, H.A. van der Aa 9594c, <strong>CBS</strong> H-18163,<br />

living culture <strong>CBS</strong> 522.78.<br />

Notes: Jørstad (1965) noted that S. rumicis Trail, which was<br />

published in the same year as S. rumicum, may be conspecific.<br />

Septoria acetosae Oud. was also regarded as a synonym.<br />

According to Saccardo (1892, Syll. Fung. 10: 380), S. rumicum<br />

produces mostly epiphyllous pycnidia 100–125 µm diam, and<br />

continuous (?) conidia 50–68 × 3 µm. Septoria rumicis produces<br />

chiefly epiphyllous pycnidia 90–100 µm diam and conidia 24–40<br />

× 2–2.5 µm (Teterevnikova-Babayan 1987), according to Jørstad<br />

(1965), 20–50 × 2.5–3.5, with 2–3(–5) septa. Septoria acetosae<br />

was treated as a separate species by Teterevnikova-Babayan<br />

(1987). According to the latter author, it is characterised by<br />

1–3-septate conidia, 28–50 × 3–5 µm. As the conidial sizes of the<br />

material available here agree best with the original description of<br />

S. rumicum, this name is adopted here. Several other species of<br />

Septoria have been described from Rumex, most of which need to<br />

be restudied to assess their status.<br />

Septoria scabiosicola (Desm.) Desm., Annls Sci. Nat., sér.<br />

3, Bot. 20: 96. 1853. Fig. 36.<br />

Basionym: Depazea scabiosicola Desm., Annls Sci. Nat., sér. 2,<br />

Bot. 6: 247. 1836.<br />

Description in planta: Symptoms leaf spots numerous but small,<br />

circular, some merging to irregular patterns, centre white,<br />

surrounded by a relatively broad, dark margin with a distinct<br />

red or purple periphery. Conidiomata pycnidial, epiphyllous but<br />

sometimes also visible from the underside of the lesion, one to<br />

a few in each leaf spot, subglobose to globose, brown to black,<br />

usually fully immersed, 65–130 µm diam; ostiolum central,<br />

initially circular and 35–60 µm wide, later becoming more<br />

irregular and up to 80 µm wide, surrounding cells concolorous<br />

to pale brown; conidiomatal wall about 10–15 µm thick,<br />

composed of a homogenous tissue of hyaline, angular cells<br />

2.5–6.5 µm diam, the outermost cells pale brown with somewhat<br />

thickened walls, the inner cells thin-walled. Conidiogenous cells<br />

hyaline, discrete, doliiform, or narrowly to broadly ampulliform,<br />

holoblastic, with a relatively narrow elongated neck, proliferating<br />

percurrently several times with distinct annellations, often also<br />

sympodially after a few percurrent proliferations, 6–9(–12) ×<br />

2.5–3(–5) µm. Conidia filiform to filiform-cylindrical, straight,<br />

slightly curved to flexuous, attenuated gradually to a narrowly<br />

pointed apex and narrowly truncate base, (0–)3–5(–6)-septate<br />

(septa very thin and easily overlooked), not constricted around<br />

the septa, hyaline, contents with several minute oil-droplets and<br />

granular material in each cell in the living state, with minute oildroplets<br />

and granular contents in the rehydrated state, (17–)30–<br />

55 (–79) × 1–2 µm (living; rehydrated, 1–1.8 µm wide). Sexual<br />

morph unknown.<br />

Description in vitro: Colonies on OA 9–13 mm diam in 2 wk, with<br />

an even, glabrous, colourless margin; immersed mycelium mostly<br />

homogeneously coral to scarlet, the pigment diffusing beyond<br />

the colony margin; in the centre black and slightly elevated due<br />

to immersed and more frequently superficial pycnidia, surrounded<br />

by an area with more scattered pycnidia, releasing pale flesh<br />

droplets of conidial slime; aerial mycelium scanty, consisting of<br />

minute white tufts; reverse scarlet to coral, the centre darker, blood<br />

colour. Colonies may develop sectors that are unpigmented and<br />

glabrous. Colonies on CMA 8–11 mm diam in 2 wk; similar as on<br />

OA, but generally less strongly pigmented. Colonies on MEA 6–9<br />

mm diam in 2 wk, the margin irregular; colonies restricted, the<br />

centre elevated and cerebriform to irregularly pustulate, up to 2<br />

mm high, the surface pale brown, later black, with scanty white<br />

areal mycelium; reverse of the colony dark brick, paler towards the<br />

margin. Colonies on CHA 6–11 mm diam in 2 wk, with an even,<br />

glabrous, colourless margin; immersed mycelium greenish grey to<br />

dark slate blue, throughout covered by well-developed, tufty whitish<br />

grey arial mycelium that later attains a reddish haze; reverse blood<br />

colour, but margin paler; in the central part of the colony numerous<br />

pycnidia develop, releasing pale vinaceous to rosy-buff conidial<br />

slime; in older colonies the centre becomes cerebriform and up to<br />

3mm high, much as on MEA.<br />

Conidiomata (OA) as in planta, pycnidial, sometimes merged<br />

into larger complex stromata dark brown, glabrous, 80–180<br />

µm diam, with a single ostiolum, or without preformed opening<br />

and simply bursting open; conidiogenous cells as in planta, but<br />

more often integrated in 1–2-septate conidiophores, often only<br />

proliferating percurrently and/or sympodially, 6–15 × 3–7.5 µm;<br />

conidia as in planta, 1–6(–7)-septate, not constricted around the<br />

septa, hyaline, with several minute oil-droplets and numerous<br />

granules in each cell, (30–)40–80(–100) ×1.5–2(–2.5) µm.<br />

Hosts: Knautia spp., Succisa spp. and Scabiosa spp.<br />

284


A new approach to species delimitation in Septoria<br />

Fig. 36. Septoria scabiosicola, <strong>CBS</strong> 102333. A–C. Colonies (15 °C, nUV). A. On OA. B. On CHA. C. On MEA. D. Conidia and conidiogenous cells in planta (<strong>CBS</strong> H-21180).<br />

E. Conidia on OA (<strong>CBS</strong> 109021). Scale bars = 10 µm.<br />

Material examined: Austria, Tirol, Ötztal, Brunau, along roadside, on living leaves<br />

of Knautia arvensis, 30 July 2000, G. Verkley 1023, <strong>CBS</strong> H-21184, living cultures<br />

<strong>CBS</strong> 108981, 109021; Tirol, Ötztal, Sautens, in meadow, 30 July 2000, G. Verkley<br />

1030, <strong>CBS</strong> H-21180, living cultures <strong>CBS</strong> 108985, 108986; Tirol, Ötztal, Ötz, near<br />

Piburger See along forest road, on living leaves of K. dipsacifolia, 1 Aug. 2000,<br />

G. Verkley 1033, <strong>CBS</strong> H-21179, living cultures <strong>CBS</strong> 109092, 109093; Tirol, Ober<br />

Inntal, Samnaun Gruppe, Serfaus, on living leaves of K. dipsacifolia, 9 Aug. 2000,<br />

G. Verkley 1062, <strong>CBS</strong> H-21172, living cultures <strong>CBS</strong> 109128, 109129. France,<br />

on living leaves of Succissa pratensis, H.A. van der Aa 11375, living culture <strong>CBS</strong><br />

182.93. Germany, on living leaves of Scabiosa lucida, R. Schneider, living culture<br />

<strong>CBS</strong> 356.58. Netherlands, prov. Gelderland, near Winssen, along Waalbanddijk,<br />

on living leaves of K. arvensis, 9 Sep. 1999, G. Verkley 919, <strong>CBS</strong> H-21201, living<br />

cultures <strong>CBS</strong> 102333, 102334; same loc., host, date, G. Verkley 920, <strong>CBS</strong> H-21203,<br />

living cultures <strong>CBS</strong> 102335, 102336; same loc., host, date, G. Verkley 921, <strong>CBS</strong><br />

H-21202; unknown host, July 1937, living culture <strong>CBS</strong> 317.37.<br />

Notes: Jørstad (1965) and Radulescu et al. (1973) reported<br />

variability in the maximum length of conidia on the host plant. This<br />

is confirmed in the present study, where the highest and lowest<br />

maximum lengths observed in specimens were 79 and 42 µm, in<br />

specimens <strong>CBS</strong> H-21184 and <strong>CBS</strong> H-21180, respectively. Both<br />

specimens were collected from the same host at comparable<br />

altitudes (ca. 700 m), from localities in Tirol, Austria less than three<br />

kilometers apart. Isolates obtained from these two collections<br />

proved equally capable of producing conidia up 100 µm long under<br />

standard conditions of incubation.<br />

These isolates as well as other from Knautia arvensis, and<br />

strains originating from Scabiosa and Succissa showed no<br />

correlation between conidial sizes and host, and although some<br />

variation in gene sequences was observed, especially in Act and EF,<br />

the data firmly support the hypothesis that they belong to a single<br />

taxon. Several formae have been described in S. scabiosicola, but<br />

evidence to support these as separate entities is wanting. Septoria<br />

scabiosicola is relatively distantly related from other members of<br />

the Septoria clade (Fig. 2).<br />

Septoria senecionis Westend., Bull. Acad. r. Belg., Cl. Sci.,<br />

Sér. 2, 19: 121. 1851. Fig. 35A–E.<br />

Description in planta: Symptoms indefinite, hologenous leaf<br />

lesions, often eventually affecting large parts of the leaf lamina,<br />

initially pale yellowish, later pale to dark brown. Conidiomata<br />

pycnidial, numerous, scattered, immersed, mostly epiphyllous,<br />

pale brown, lenticular to globose, (45–)65–120(–160) µm diam;<br />

ostiolum circular, central, initially 20–35 µm wide, later opening<br />

www.studiesinmycology.org<br />

285


Verkley et al.<br />

to 60 µm diam, lacking distinctly differentiated cells; conidiomatal<br />

wall composed of textura angularis without distinctly differentiated<br />

layers, mostly 15–20 µm thick, the outer cells with brown,<br />

somewhat thickened walls and 4.5–10 µm diam, the inner cells<br />

hyaline and thin-walled and of comparable diam. Conidiogenous<br />

cells hyaline, discrete or integrated in short, 1–2-septate<br />

conidiophores, cylindrical, or ampuliform with a relatively short<br />

neck, hyaline, holoblastic, proliferating sympodially, and sometimes<br />

also percurrently with indistinct annellations, 6.5–10(–12.5) × 2.5–<br />

4.5 µm. Conidia cylindrical, weakly to strongly curved, or flexuous,<br />

gradually attenuated to a rounded apex, gradually or more abruptly<br />

attenuated into a broadly truncate base, (0–)2–5(–6)-septate, not<br />

or indistinctly constricted around the septa, hyaline, contents with<br />

several small guttules and numerous granules in each cell in the<br />

living state, oil-droplets rarely merged into larger guttules in the<br />

rehydrated state, (20–)40–65 × 2–2.5(–3) µm (rehydrated). Sexual<br />

morph unknown.<br />

Description in vitro: Colonies on OA 7–10 mm diam in 2 wk (22–<br />

26 mm in 6 wk), with an even, somewhat undulating, glabrous,<br />

colourless margin; colonies spreading, the surface plane, immersed<br />

mycelium pale luteous or buff, with scattered immersed and<br />

superficial pycnidial conidiomata, which are first dark olivaceous,<br />

then almost black, glabrous, 150–450 µm diam, with a single or<br />

several (up to 5!) ostioli placed on short papillae or more elongated<br />

necks (up to 350 µm), that release buff to rosy-buff later salmon<br />

conidial slime; aerial mycelium diffuse, woolly-floccose, white;<br />

reverse honey, but isabelline to hazel in the centre. Colonies on<br />

CMA 6–8 mm diam in 2 wk (18–23 mm in 6 wk), with an even,<br />

glabrous margin; as on OA but immersed mycelium with a greenish<br />

haze; aerial mycelium higher and reverse darker, later hazel with<br />

olivaceous and yellow tinges; conidiomata similar as on OA.<br />

Colonies on MEA 7–9 mm diam in 2 wk (18–21 mm in 6 wk), with<br />

an even or somewhat undulating, glabrous, buff to honey margin;<br />

colonies pustulate to almost hemispherical, immersed mycelium<br />

rather dark, near the margin covered by woolly to felty white aerial<br />

mycelium; mostly composed of spherical conidiomatal initials,<br />

superficial mature conidiomata releasing rosy-buff to salmon, later<br />

honey conidial slime; reverse dark brick in the centre, near the<br />

margin cinnamon to honey. Colonies on CHA 7–14 mm diam in 2<br />

wk (20–28 mm in 6 wk), with an irregular, buff margin covered by a<br />

diffuse, felty white, later grey aerial mycelium; further as on MEA,<br />

but the colony surface less elevated and especially near the margin<br />

with greyish felty to tufty aerial mycelium; conidial slime abundantly<br />

produced, first rosy-buff, later salmon to ochreous; reverse in the<br />

centre blood colour, dark brick to cinnamon at the margin.<br />

Conidiomata on OA see above. Conidia as in planta, mostly<br />

(0–)3–5(–6)-septate, 44–63(–70) × 2.5–3 µm.<br />

Hosts: Senecio fluviatilis and S. nemorensis.<br />

Material examined: Belgium, Château de Namur, on leaves of Senecio sarracenica,<br />

1829, A. Bellynck, isotype BR-MYCO 155500-09. Netherlands, Prov. Gelderland,<br />

Millingen a/d Rijn, Millingerwaard, on living leaves of S. fluviatilis, 6 Oct. 1999, G.<br />

Verkley 939, epitype designated here <strong>CBS</strong> H-21219 “MBT175358”, living cultures<br />

ex-epitype <strong>CBS</strong> 102366, 102381.<br />

Notes: The first Septoria that was described on the genus Senecio<br />

was S. senecionis. The type host is Senecio sarracenica (=<br />

Senecio fluviatilis), and in later literature it has also been reported<br />

from several other species of Senecio (Radulescu et al. 1973).<br />

According to the diagnosis by Westendorp, the conidia are 40 ×<br />

1.5 µm and 3–4-septate. Vanev et al. (1997) described the conidia<br />

of S. senecionis as 2–6-septate, 29–68 × 2–2.5 µm, Radulescu<br />

et al. (1973) as 3–4-septate, 33–57 × 1.2–2 µm. By examining<br />

the type specimen from BR it is here confirmed that conidia are in<br />

fact wider than described by Westendorp. It contains a single leaf<br />

with a few lesions, and conidia observed are 30–55 × 1.5–2.5 µm,<br />

and mostly 3–5-septate. The fresh material that was collected in<br />

the Netherlands from the same host species, Senecio fluviatilis,<br />

and from which <strong>CBS</strong> 102366 and 102381 were isolated, is in<br />

sufficient agreement with the type and is therefore designated here<br />

as epitype of S. senecionis. Differences with Septoria putrida are<br />

discussed under that species.<br />

Septoria sii Roberge ex Desm., Pl. crypt. Fr., Fasc. 44, no<br />

2185; Annls Sci. Nat., sér. 3, Bot. 20: 92. 1853. Fig. 37.<br />

Description in planta: Symptoms leaf spots, yellow to brown, initially<br />

vaguely delimited but later well-delimited by veinlets, scattered,<br />

later often confluent over large areas, visible on both sides of the<br />

leaf. Conidiomata pycnidial, epiphyllous, rarely also hypophyllous,<br />

single, scattered or in small clusters, globose to subglobose,<br />

immersed, (60–)80–110 µm diam; ostiolum circular, central, 12.5–<br />

25(–35) µm wide, surrounding cells concolorous; conidiomatal wall<br />

composed of textura angularis 5–10 µm thick, with an outer layer of<br />

cells 3–4.5 µm diam with brown, thickened walls, and an inner layer<br />

of hyaline and thin-walled cells, 2.5–4 µm diam. Conidiogenous<br />

cells hyaline, broadly or elongated ampulliform, normally with<br />

a distinct neck, hyaline, holoblastic, proliferating percurrently,<br />

annellations indistinct, 5–8.5 × 3–5 µm. Conidia cylindrical, straight,<br />

curved, or flexuous, gradually attenuated to a relatively broadly<br />

rounded apex, more or less abruptly attenuated into a truncate<br />

base, 1–3(–4)-septate, slightly to distinctly constricted around the<br />

septa in the fresh, fully hydrated state, hyaline, containing one to<br />

several relatively large oil-droplets in each cell, in the rehydrated<br />

state with irregular oil-masses (20–)29–35(–42) × 2–2.5(–3) µm<br />

(living; rehydrated, 1.5–2 µm wide). Sexual morph unknown.<br />

Description in vitro: Colonies on OA 4–9 mm diam in 2 wk [(15–)<br />

19–23 mm in 6 wk], with an even, glabrous, colourless margin;<br />

colonies remaining almost plane, immersed mycelium olivaceousblack,<br />

locally however peach is dominant, which becomes scarlet<br />

after several wk; aerial mycelium mostly well-developed, woollyfloccose,<br />

white; scattered, mostly immersed pycnidial to stromatic<br />

conidiomata developing in the centre, releasing droplets of<br />

milky white to rosy-buff conidial slime; reverse dark slate blue to<br />

olivaceous-black, and locally peach, the pigment not diffusing into<br />

the medium. Colonies on CMA up to 1.5 mm diam in 2 wk [7–10<br />

(–25) mm in 6 wk], as on OA, but peach pigment diffusing into the<br />

medium, while the colony itself is predominantly olivaceous-black.<br />

Colonies frequently develop faster growing sectors that first are<br />

buff and sporulate directly from the mycelium, later become pale<br />

luteous with a distinct scarlet pigmentation and forming numerous<br />

mostly superficial pycnidia. Colonies on MEA 3–6 mm diam in<br />

2 wk [12–14(–26) mm in 6 wk], the margin ruffled, olivaceousblack;<br />

colony concolorous, irregularly pustulate-worty, covered by<br />

diffuse to dense felty white or greyish aerial mycelium; numerous<br />

conidiomatal initials developing at the surface, mature ones<br />

releasing cirrhi of conidia that first are milky white, later salmon,<br />

sometimes merging to form slimy masses covering areas of the<br />

colony surface; the agar surrounding the colony slightly discoloured<br />

by diffusing pigment(s). Colonies on CHA 5–6 mm diam in 2 wk<br />

[8–13(–15) mm in 6 wk], as on MEA; some parts of the colonies<br />

286


A new approach to species delimitation in Septoria<br />

Fig. 37. Septoria sii. A–C. Colonies <strong>CBS</strong> 102370 (15 °C, nUV). A. On OA. B. On CHA. C. On MEA. D. Conidia and conidiogenous cells in planta (<strong>CBS</strong> H-21223). E. Ibid., on<br />

OA (<strong>CBS</strong> 102369). Scale bars = 10 µm.<br />

pale ochreous, tardily sporulating, releasing pale flesh to salmon<br />

droplets of conidial slime from superficial pycnidial conidiomata.<br />

Cultures sporulating with conidiogenous cells developing in<br />

(superficial) mycelial hyphae, solitary or in sequences, in addition<br />

to conidiomata. Conidiomata on OA pycnidial, single, dark brown<br />

to black, 80–185 µm diam, ostiolum single 30–60 µm diam, or<br />

stromatic without a differentiated opening and up to 220 µm diam;<br />

conidiogenous cells inside pycnidia as in planta but often with<br />

more elongated neck, holoblastic, percurrently proliferating one to<br />

several times with indistinct annellations, 7–12.5 × 3–6 µm. Conidia<br />

as in planta, 22–43 × 2.2–2.5 µm.<br />

Hosts: Sium latifolium, other Sium spp. and Berula erecta (syn.<br />

Sium erectum).<br />

Material examined: Netherlands, Prov. Friesland, Terschelling, ditch in polder S<br />

of Hoorn, on living leaves of Berula erecta, 19 Aug. 1995, H.A. van der Aa 12029,<br />

<strong>CBS</strong> H-18173, living culture <strong>CBS</strong> 118.96; same substr., Prov. Utrecht, ‘s Graveland,<br />

Kortenhoefse plassen, “Oppad”, 14 Oct. 1999, G. Verkley & H.A. van der Aa 945,<br />

<strong>CBS</strong> H-21223, living culture <strong>CBS</strong> 102369; same loc., substr., date, G. Verkley & H.A.<br />

van der Aa 946, <strong>CBS</strong> H-21222, living culture <strong>CBS</strong> 102370.<br />

Notes: The stout conidia with blunt apices and distinct constrictions<br />

around the septa (at least in the living, turgescent state) and the<br />

absence of sympodial proliferation in conidiogenesis distinguish this<br />

species from most other Septoria on Apiaceae here investigated,<br />

including S. apiicola. According to the original diagnosis, based on<br />

material from Sium latifolium in France, the conidia are 30–40 ×<br />

2.5 µm. Most later authors have reported somewhat different size<br />

ranges; for example Teterevnikova-Babayan (1985) observed<br />

conidia 20–60 × 1–1.5 µm, Vanev et al. (1997) 20–41 × 1.5–2.2 µm,<br />

and Radulescu et al. (1973) reported 30–40 × 2–3 µm. The material<br />

available for this study proved homogeneous in morphology and<br />

genotype. The phylogenetic data indicate that this species is very<br />

closely related to S. mazi, a fungus occurring on Mazus japonica<br />

(Scrophulariaceae), but also to S. aegopodina on Aegopodium sp.<br />

(Apiaceae). The conidia of S. mazi morphologically resemble those<br />

of S. sii, but they are narrower and the septa normally indistinct<br />

[15–42 × 1.5–2(–2.5) µm, Shin & Sameva 2004].<br />

Septoria sisyrinchii Speg., An. Mus. nac. Hist. nat. B. Aires,<br />

6: 324. 1899. Fig. 38.<br />

Description in planta: Symptoms leaf lesions developing in large<br />

areas of the leaf lamina that first turn yellow, indefinite, hologenous,<br />

pale to dark brown, appearing black due to numerous conidiomata.<br />

Conidiomata pycnidial, amphigenous, numerous, semi-immersed<br />

to immersed, subglobose to globose, black, 70–100(–120) µm<br />

diam; ostiolum central, circular, 15–35 µm wide, sometimes<br />

opening more widely, releasing white to pale yellowish cirrhi of<br />

conidial slime, surrounding cells concolourous or somewhat darker;<br />

conidiomatal wall 15–20 µm thick, composed of an outer layer of<br />

isodiametric cells 5–8 µm diam with brown, slightly thickened cell<br />

walls up to 1 μm thick, and an inner layer of globose to isodiametric<br />

cells 3–6 μm diam with thin, hyaline walls. Conidiogenous cells<br />

hyaline, discrete or integrated in 1-septate conidiophores up 15<br />

µm long, cylindrical, or ampulliform, holoblastic, proliferating<br />

sympodially, percurrent proliferations not observed, 5–10 × 2.5–3.5<br />

µm. Conidia cylindrical to cylindrical-filiform, slightly to strongly<br />

curved, sometimes flexuous, narrowly rounded to somewhat<br />

pointed at the apex, attenuated gradually or more abruptly towards<br />

www.studiesinmycology.org<br />

287


Verkley et al.<br />

Fig. 38. Septoria sisyrinchii, <strong>CBS</strong> 112096. A–D. Colonies (15 °C, nUV). A. On OA. B. Ibid., reverse. C. On MEA. D. Ibid., detail of colony margin. E–G. Conidia on OA. Scale<br />

bars = 10 µm.<br />

the truncate base, (0–)1–3-septate, not constricted around<br />

the septa, hyaline, containing minute oil-droplets and granular<br />

material in the rehydrated state, (15.5–)20–30 × 1.5–2(–2.5) µm<br />

(rehydrated). Sexual morph unknown.<br />

Description in vitro (18 ºC, near UV): Colonies on OA 11–15 mm diam<br />

in 2 wk, with an even, buff margin; colonies restricted to spreading,<br />

immersed mycelium a mixture of luteous and saffron, the surface<br />

provided with a very diffuse, white fluffy to woolly aerial mycelium,<br />

which is denser in zones; reverse sienna; numerous conidiomata<br />

developing after 5–7 d especially in the centre, releasing milky<br />

white rosy-buff conidial slime. Colonies on MEA 10–14 mm diam<br />

in 2 wk, with a buff, minutely ruffled margin; colonies restricted,<br />

radially striate and somewhat elevated in the centre, the surface<br />

dirty greyish brown, soon covered by large masses ochreous to<br />

pale brown masses of conidia. Reverse chestnut to blood color, or<br />

brown-vinaceous.<br />

Conidiomata and conidiogenous cells as in planta. Conidia as<br />

in planta, mostly 18–35× 1.5–2.5 µm.<br />

Hosts: Sisyrinchum spp.<br />

Material examined: New Zealand, Auckland, Manurewa, Auckland Botanical<br />

Gardens, on leaf of Sisyrinchum sp., 28 Dec. 2002, C. F. Hill LYN 755, <strong>CBS</strong><br />

H-21259, living culture <strong>CBS</strong> 112096.<br />

Notes: The material from Auckland agrees well with the original<br />

diagnosis of S. sisyrinchii, which was based on material from<br />

Sisyrinchium bonariense in Argentina. Conidia were described as<br />

0–3-septate, 15–24 × 2.5 µm. The multilocus phylogeny indicates<br />

that S. anthurii of the genus Anthurium (Araceae) is a closely<br />

related species (Fig. 2).<br />

Septoria stachydis Roberge ex Desm., Annls Sci. Nat., sér.<br />

3, Bot. 8: 19. 1847. Fig. 39.<br />

Description in planta: Symptoms leaf spots angular or irregular,<br />

greyish to yellowish brown, with a somewhat darker to black border.<br />

Conidiomata pycnidial, epiphyllous, rarely also hypophyllous,<br />

mostly 1–5 in each leaf spot, globose to subglobose, dark brown,<br />

semi-immersed, 65–100(–125) µm diam; ostiolum central,<br />

circular, 12–20 µm wide, later opening more widely up to 50 µm,<br />

surrounding cells somewhat darker; conidiomatal wall 12–18 µm<br />

thick, composed of angular and irregular cells 2.5–6 µm diam,<br />

the outer cells with brown, somewhat thickened walls, the inner<br />

cells with hyaline and thinner walls. Conidiogenous cells discrete,<br />

sometimes integrated into 1–septate conidiophores, hyaline,<br />

broadly ampulliform with a relatively narrow neck, holoblastic,<br />

proliferating percurrently with indistinct annellations, rarely also<br />

sympodially, 5–8(–10) × 2.5–3.5(–5) µm. Conidia filiform to filiformcylindrical,<br />

curved or irregularly bent, rarely straight or flexuous,<br />

with a narrowly rounded or somewhat pointed apex, with a truncate<br />

base, (0–)1–3(–5)-septate, not constricted around the septa,<br />

hyaline, contents with several minute oil-droplets and granular<br />

material in each cell in the living state, with inconspicuous oildroplets<br />

and granular contents in the rehydrated state, (17–)20–<br />

42 × 1–2 µm (living; rehydrated, 1–1.5 µm wide). Sexual morph<br />

unknown.<br />

Description in vitro: Colonies on OA 13–16 mm diam in 2 wk<br />

(V1049: 8–10 mm in 12 d, 16–18 mm in 3 wk; > 50 mm in 7 wk),<br />

with an even, glabrous, colourless margin; immersed mycelium<br />

mostly homogeneously coral after 2 wk, the centre of the<br />

colony already appearing almost black by numerous superficial<br />

and immersed pycnidia; olivaceous-black sectors with dark<br />

288


A new approach to species delimitation in Septoria<br />

Fig. 39. Septoria stachydis. A–C. Colonies <strong>CBS</strong> 102337 (15 °C, nUV). A. On OA. B. On CHA. C. On MEA. D. Conidia in planta (<strong>CBS</strong> H-21226). E. Conidia in planta (<strong>CBS</strong><br />

H-21175). F–I. Conidia on OA (<strong>CBS</strong> 123750). Scale bars = 10 µm.<br />

pigmented radiating sterile hyphae also present, later becoming<br />

more dominant, or sectors covered by salmon masses of conidia<br />

formed directly from mycelial hyphae; aerial mycelium absent;<br />

reverse concolorous, but blood colour in the centre, later mainly<br />

olivaceous-black or dark slate blue. Surface of the colony smooth.<br />

Pycnidia numerous after 2 wk, superficial or immersed, releasing<br />

salmon or rosy-buff droplets of conidial slime. Colonies on CMA<br />

8–12 mm diam in 2 wk (11–14 mm in 12 d, 14–24 mm in 3 wk), as<br />

www.studiesinmycology.org<br />

289


Verkley et al.<br />

on OA, but olivaceous-black sectors more dominant, sometimes<br />

colony almost entirely so. Colonies on MEA 8–10 (slow growing<br />

sectors) to 12–16 (fast growing sectors) in 2 wk (18–21 mm<br />

in 3 wk; 43–58 mm in 7 wk), with an even, glabrous, honey to<br />

buff margin; immersed mycelium very dark blood colour; centre<br />

of the colony rising high above the agar surface, cerebriform,<br />

covered by dirty ochreous conidial slime formed from separate<br />

or fused pycnidial conidiomata. Aerial mycelium in slow-growing<br />

sectors scanty, scattered minute tufts of white aerial mycelium,<br />

in faster growing sectors well-developed, dense, woolly-cottony,<br />

first white, later olivaceous-grey to glaucous grey, locally with a<br />

reddish discoloration; some colonies with a more homogeneous,<br />

olivaceous-black felty surface, sporulating after 3 wk in the centre,<br />

with superficial black pycnidial conidiomata releasing milky white<br />

masses of conidial slime. Colonies on CHA 12–18 mm in 2 wk<br />

(15–18 mm in 3 wk; 34–38 mm in 7 wk), with an even, glabrous,<br />

colourless margin; immersed mycelium greenish grey to dark slate<br />

blue, the outer zone covered by well-developed, tufty whitish grey<br />

aerial mycelium; reverse blood colour, but margin paler; in the<br />

central part of the colony numerous pycnidia develop, releasing<br />

pale vinaceous to rosy-buff conidial slime; in older colonies the<br />

centre becomes cerebriform, much as on MEA.<br />

Conidiomata (OA) immersed in the agar or on the agar surface,<br />

black, single, globose, 100–175 µm diam, or irregular, and merged<br />

into large complexes 190–350 µm diam, with relatively thick walls;<br />

ostiolum as in planta, or absent; Conidiogenous cells as in planta,<br />

but more often integrated in 1–3-septate conidiophores. Conidia as<br />

in planta, 22–47(–54.5) × 1–2 µm.<br />

Hosts: Stachys spp.<br />

Material examined: Austria, Tirol, Ober Inntal, Lawenwald near Serfaus, on living<br />

leaves of Stachys sylvatica, 8 Aug. 2000, G. Verkley 1049, <strong>CBS</strong> H-21175, living<br />

cultures <strong>CBS</strong> 109126, 109127. Czech Republic, Moravia, Veltice, Forest of<br />

Rendez Vous, on living leaves of Stachys sp., 16 Sep. 2008, G. Verkley 6008, <strong>CBS</strong><br />

H-21253, living cultures <strong>CBS</strong> 123750, 123879. Netherlands, prov. Utrecht, Baarn,<br />

Kasteel Groeneveld, on living leaves of St. sylvatica, 7 July 1968, H.A. van der<br />

Aa 685, <strong>CBS</strong> H-18175, living culture <strong>CBS</strong> 449.68; prov. Gelderland, Wageningen,<br />

Binnenveld, on living leaves of Stachys sp., 23 July 1981, H.A. van der Aa 7952,<br />

<strong>CBS</strong> H-18176; prov. Gelderland, Winssen, Kasteel Doddendael, on living leaves<br />

of St. sylvatica, 9 Sep. 1999, G. Verkley 922, <strong>CBS</strong> H-21204, living cultures <strong>CBS</strong><br />

102326, 102337; prov. Limburg, Gulpen, near Stokhem, on living leaves of St.<br />

sylvatica, 28 June 2000, G. Verkley 965, <strong>CBS</strong> H-21226, living cultures <strong>CBS</strong> 109005,<br />

109006. Romania, distr. Ilfov, pădurea Malu Spart, on living leaves of St. sylvatica,<br />

27 June 1971, G. Negrean & A. Voicu s.n., <strong>CBS</strong> H-18178, distributed in Herb. Mycol.<br />

Romanicum, fasc. 41, no. 2001; distr. Prahova, Sinaia, Valea Peleşului, on living<br />

leaves of St. sylvatica, 4 Sep. 1971, G. Negrean s.n., <strong>CBS</strong> H-18177, distributed in<br />

Herb. Mycol. Romanicum, fasc. 41, no. 2002.<br />

Additional material examined – Germany, loc. unknown, isol. Ziekler, living culture<br />

<strong>CBS</strong> 307.31, preserved as S. stachydis, identity uncertain.<br />

Notes: According to Jørstad (1965), the conidia of S. stachydis on<br />

Stachys sylvatica are 16–57 × 1–1.5(–2) µm, with a lowest maximum<br />

length for any collection of 32 µm. In the collections available for<br />

the present study, conidia are up to 42 µm in length in planta, and<br />

54.5 µm long in vitro. The species differs morphologically from S.<br />

stachydicola (Bubák. ex Serebrian.) Jacz., which occurs on the<br />

same host genus. Shin & Sameva (2004) gave a description of<br />

S. stachydicola, based on two collections of Stachys riederi var.<br />

japonica from Korea. According to these authors, the conidia of that<br />

species are 38–72 × 2–3 µm (3–7-septate), so longer and wider<br />

than those of S. stachydis. Also, the pycnidia are smaller in diam<br />

(40–80 µm) and ostioli much wider (20–36 µm) than in S. stachydis.<br />

<strong>CBS</strong> 128668 (= KACC 44796) is described by Quaedvlieg et al.<br />

(2013) as Septoria cf. stachydicola. This isolate, and also <strong>CBS</strong><br />

128662 (=KACC 43871) are both distant from European isolates<br />

of S. stachydis.<br />

Septoria stellariae Roberge ex Desm., Annls Sci. Nat., sér.<br />

3, Bot. 8: 22. 1847. Fig. 40.<br />

? = Sphaeria isariphora Desm., Annls Sci. Nat., sér. 2, Bot. 19: 358. 1843.<br />

≡ Mycosphaerella isariphora (Desm.) Johanson, Öfvers. K. Svensk.<br />

Vetensk.-Akad. Förhandl. 41 (no. 9): 165. 1884.<br />

Description in planta: Symptoms indefinite white or pale yellow to<br />

pale brown leaf lesions on lower leaves of plants, often starting<br />

at the leaf margin, extending rapidly over the lamina and leading<br />

to complete withering of leaves and their petioles. Conidiomata<br />

pycnidial, brown, in dense groups on withering petioles and leaves,<br />

where mostly epiphyllous, only partly immersed in the host tissue,<br />

globose or lenticular, (85–)120–160(–210) µm diam; ostiolum<br />

circular, central, initially 20–35 µm wide, later opening to 80 µm diam,<br />

without distinctly differentiated cells; conidiomatal wall composed<br />

of textura angularis without distinctly differentiated layers, mostly<br />

15–25 µm thick, the outer cells with brown, somewhat thickened<br />

walls and 4.5–8 µm diam, the inner cells hyaline and thin-walled<br />

and 3.5–6.5 µm diam; conidiogenous cells lining the whole inner<br />

surface of the pycnidium. Conidiogenous cells hyaline, discrete or<br />

integrated in short simple, 1–2-septate conidiophores, cylindrical,<br />

or ampuliform to elongated ampulliform with a relatively short neck,<br />

hyaline, holoblastic, proliferating sympodially, 5–12(–15) × 2.5–4<br />

µm. Conidia cylindrical to filiform, weakly curved or abruptly bent<br />

in the lower cell, sometimes flexuous, gradually attenuated to the<br />

rounded apex, gradually or more abruptly attenuated into a broadly<br />

truncate base, (0–)1–3(–5)-septate, not or indistinctly constricted<br />

around the septa, hyaline, contents with several small guttulae and<br />

numerous granules in each cell in the living state, oil-droplets rarely<br />

merged into larger guttules in the rehydrated state, (21–)30–64<br />

(–70) × 1.5–2.5(–3) µm (living; rehydrated, 1–2 µm wide).<br />

Description in vitro: Colonies on OA 3–5 mm diam in 2 wk, with an<br />

even, glabrous, colourless margin; a yellow pigment diffusing into<br />

the agar beyond the margin; immersed mycelium mostly colourless<br />

to buff or saffron with scanty, whitish aerial mycelium, the centre<br />

of the colony darkened by numerous superficial and immersed,<br />

separate or confluent pycnidial conidiomata, releasing rosy-buff<br />

to salmon conidial slime; reverse pale luteous to saffron, but<br />

olivaceous-black in areas with numerous conidiomata. Colonies<br />

on CMA 3–6 mm diam in 2 wk, as on OA. Colonies on MEA 2–5<br />

mm diam in 2 wk, with an even, glabrous, colourless margin,<br />

locally with rapidly outgrowing hyphae forming superficial pycnidial<br />

conidiomata; colonies pustulate to hemispherical, the surface<br />

greenish grey to olivaceous-black covered by fairly dense greyish<br />

to saffron, woolly aerial mycelium; some superficial or immersed<br />

pycnidial conidiomata formed; reverse dark umber to blood colour.<br />

Colonies on CHA 4–8 mm diam in 2 wk, remaining almost plane,<br />

with an irregular margin; immersed mycelium greenish grey to<br />

dark slate-blue in the centre, buff near the margin; aerial mycelium<br />

well-developed, greyish to white, with a distinct flesh discoloration<br />

especially at the margin; reverse blood colour; abundant immersed<br />

and superficial pycnidial conidiomata formed, releasing a buff to<br />

saffron conidial slime.<br />

Conidiomata (OA) pycnidial and similar as in planta, single,<br />

100–250 µm diam, but more often merged into larger complexes,<br />

brown to olivaceous brown, and up to 350 µm diam; ostiolum as<br />

in planta, or absent. Conidiogenous cells hyaline, as in planta but<br />

290


A new approach to species delimitation in Septoria<br />

Fig. 40. Septoria stellariae. A–D. Colonies <strong>CBS</strong> 102364. A, B. On OA. C. On CHA. D. On MEA. E. Conidia and conidiogenous cells on OA (<strong>CBS</strong> 102364). Scale bars = 10 µm.<br />

predominantly cylindrical, holoblastic, proliferating sympodially,<br />

rarely percurrently with indistinct annellations, 5–15(–22) × 2.5–4.5<br />

µm. Conidia similar as in planta, (0–)3–5-septate, not or indistinctly<br />

constricted around the septa, hyaline, contents with several small<br />

guttules and numerous granules in each cell, (20–)30–75(–84) ×<br />

2–2.5(–3.0) µm.<br />

Hosts: Stellaria spp. and Myosoton spp.<br />

Material examined: Germany, Eifel, Gunderath, near Heilbachsee, on living<br />

leaves of Stellaria media, 22 June 1992, H.A. van der Aa 11341, <strong>CBS</strong> H-5333.<br />

Netherlands, Prov. Utrecht, Baarn, on leaves of S. media, 18 May 1985, H.A. van<br />

der Aa 9492, <strong>CBS</strong> H-18179; Prov. Noord-Holland, Laren, on leaves of S. media, 18<br />

Feb. 1967, H.A. van der Aa s.n., <strong>CBS</strong> H-18180; prov. Noord-Brabant, Valkenswaard,<br />

on withering leaves and stems of St. media, 1 May 1967 , H.A. van der Aa s.n.,<br />

<strong>CBS</strong> H-18179; Ameland, Nes, on leaves of St. media, 27 May 1967 , H.A. van<br />

der Aa s.n., <strong>CBS</strong> H-18182; Prov. Gelderland, Landgoed Staverden, on withering<br />

leaves and petioles of St. media, 1 Aug. 1999, G. Verkley 901, <strong>CBS</strong> H-21156, living<br />

cultures <strong>CBS</strong> 102364, 102410; Prov. Limburg, Mook en Middelaar, St. Jansberg,<br />

near Plasmolen, on withering leaves and petioles of St. media, 9 Sept 1999, G.<br />

Verkley 933, <strong>CBS</strong> H-21157, living culture <strong>CBS</strong> 102378; Prov. Flevoland, Erkemeder<br />

strand, on withering leaves and petioles of St. media, 8 Sept 1999, G. Verkley 929,<br />

<strong>CBS</strong> H-21217, living culture <strong>CBS</strong> 102376; Prov. Flevoland, Ketelmeer, IJsseloog,<br />

on withering leaves and petioles of St. media, 22 May 2002, G. Verkley 1141, <strong>CBS</strong><br />

H-21260. Romania, distr. Vîlcea, Muntele Cozia, Stîna Foarfeca, on living leaves of<br />

S. media, 14 Oct. 1976, G. Negrean s.n., <strong>CBS</strong> H-18183, distributed in Herb. Mycol.<br />

Romanicum, fasc. 60, no. 2990.<br />

Notes: This fungus is a weak pathogen of Stellaria media in the<br />

Netherlands, on which it is only seen under very humid conditions.<br />

Especially the lower parts of plants that are sheltered by the<br />

surrounding vegetation are affected. Jørstad (1965) observed<br />

conidia up to 82 µm in length on Stellaria crassifolia, and up to 96<br />

µm long on Stellaria media, the type host. It has also been reported<br />

from other Stellaria spp., and Myosoton (Radulescu et al. 1973,<br />

Vanev et al. 1997, Markevičius & Treigienė 2003). Septoria stellariae<br />

var. macrospora was originally described from the same host as<br />

S. stellariae, Stellaria media. According to Teterevnikova-Babayan<br />

(1987), conidia of this variety measure 50–120 × 2.5–4 µm. On<br />

fresh plant material studied here conidia longer than 70 µm were<br />

not observed, but the isolates obtained thereof did produce conidia<br />

up to 84 µm long. Sequence analyses of <strong>CBS</strong> 102376, 102378,<br />

and 102410 originating from three different localities showed no<br />

significant polymorphisms in the seven loci, indicating that material<br />

belongs to a single taxon. Whether the variety macrospora is<br />

tenable, is unclear at this point. We agree with Jørstad (1965), that<br />

the connection with the sexual morph Mycosphaerella isariphora<br />

suggested in the literature, requires confirmation. It is therefore<br />

listed as a tentative synonym of S. stellariae.<br />

Septoria urticae Roberge ex Desm., Annls Sci. Nat., sér. 3,<br />

Bot. 8: 24. 1847. Fig. 41.<br />

Description in planta: Symptoms leaf spots small, angular, often<br />

merging to irregular patterns, initially pale yellowish brown,<br />

partly becoming dark greyish brown later, with a dark border.<br />

Conidiomata pycnidial, epiphyllous, several in each leaf spot,<br />

subglobose to lenticular, pale brown, usually fully immersed,<br />

70–120 µm diam; ostiolum central, initially circular and 30–45<br />

µm wide, later becoming more irregular and up to 80 µm wide,<br />

surrounding cells concolorous to pale brown; conidiomatal wall<br />

about 10–17 µm thick, composed of a homogenous tissue of<br />

hyaline, angular cells 2.5–6.5 µm diam, the outermost cells pale<br />

yellowish brown with somewhat thickened walls, the inner cells<br />

thin-walled. Conidiogenous cells hyaline, mostly discrete, narrowly<br />

or broadly ampulliform with a relatively narrow neck, holoblastic,<br />

www.studiesinmycology.org<br />

291


Verkley et al.<br />

Fig. 41. Septoria urticae, epitype. A. Conidia and<br />

conidiogenous cells in planta (<strong>CBS</strong> H-21221). B. Ibid.,<br />

on OA (<strong>CBS</strong> 102371). Scale bars = 10 µm.<br />

often first proliferating sympodially, and later also percurrently 1–<br />

several times with distinct annellations, 6–12(–16) × 4–5.5(–7)<br />

µm. Conidia cylindrical, straight or slightly curved, flexuous, or<br />

irregularly bent, with a narrowly rounded apex, attenuated towards<br />

the narrowly truncate base, (0–)1–5(–7)-septate, not constricted<br />

around the septa, hyaline, contents with several oil-droplets and<br />

granular material in each cell in the living state, with inconspicuous<br />

oil-droplets and granular contents in the rehydrated state, (18–)<br />

30–57(–75) × 2– 3 µm (living; rehydrated, 2–2.5 µm wide). Sexual<br />

morph unknown.<br />

Description in vitro: Colonies on OA 6–7 mm diam in 2 wk (19–<br />

22 mm in 6 wk), with an even, glabrous, red to coral margin, the<br />

pigment also clearly diffusing beyond the margin; colonies almost<br />

plane, immersed mycelium near the margin red, in the centre very<br />

dark, blood colour to black, also due to mostly superficial pycnidial<br />

conidiomata releasing pale flesh droplets of conidial slime; white,<br />

felty aerial mycelium scanty, mostly only just behind the margin;<br />

reverse concolorous. Colonies on CMA 4-6 mm diam in 2 wk (16–<br />

17 mm in 6 wk), as on OA. Colonies on MEA 6–7(–9) mm diam in<br />

2 wk [20–22(–28) mm in 6 wk], with an even, buff to very pale flesh<br />

plane marginal zone; the pigment diffusing into the medium; colony<br />

often hemispherical with an irregularly pustulate-worty surface,<br />

immersed mycelium very dark chestnut to black, aerial mycelium<br />

absent, except in faster growing sectors, which are entirely covered<br />

by a dense, felty mat of reddish aerial mycelium; superficial pycnidial<br />

conidiomata releasing dirty white to flesh droplets of conidial slime.<br />

Colonies on CHA 4–6 mm diam in 2 wk (17–22 mm in 6 wk), as<br />

on MEA, but with an initially ruffled (later more even), rather dark<br />

margin and more numerous conidiomata producing flesh droplets<br />

of conidial slime.<br />

Conidiomata (OA) pycnidial, pale brown to dark brown,<br />

glabrous, 100–230 µm diam, with a single ostiolum as in planta,<br />

or ostioli barely differentiated; conidiogenous cells as in planta,<br />

but more often integrated in 1–2-septate conidiophores, often only<br />

proliferating percurrently with distinct annellations on an elongated<br />

neck, 6–14 × 3–7.5 µm; conidia cylindrical, straight or slightly<br />

curved, tapering to a rounded apex, lower part attenuated into a<br />

broad truncate base, 1–7(–9)-septate, not constricted around the<br />

septa, hyaline, with several minute oil-droplets and numerous<br />

granulae in each cell, (34–)40–70(–90) ×2.5–3(–3.5) µm.<br />

Hosts: Urtica spp. and Glechoma hederacea.<br />

Material examined: Netherlands, Prov. Utrecht, Soest, Overhees, on living leaves<br />

of Glechoma hederacea, in leaf spots associated with Puccinia glechomatis, 8 Aug.<br />

1999, G. Verkley 904, <strong>CBS</strong> H-21197, living culture <strong>CBS</strong> 102316; Prov. Utrecht, ‘s<br />

Graveland, Kortenhoefse plassen, “Oppad”, on living leaves of Urtica dioica, 14 Oct.<br />

1999, H.A. van der Aa & G. Verkley 947, epitype designated here <strong>CBS</strong> H-21221<br />

“MBT175359”, living cultures ex-epitype <strong>CBS</strong> 102371, 102375.<br />

292


A new approach to species delimitation in Septoria<br />

Fig. 42. Septoria verbenae. A. Conidia and conidiogenous cells in planta<br />

(<strong>CBS</strong> H-21241). B. Conidia on OA (<strong>CBS</strong> 113438). Scale bars = 10 µm.<br />

Notes: Muthumary (1999) provided a description and illustration<br />

of type material of S. urticae (PC 1309). Because there are only<br />

insignificant differences between his observations of the type and<br />

those observed here in the Dutch collection on the same host, Urtica<br />

dioica, the latter is selected as epitype. Muthumary reported ostioli<br />

20–40 µm wide, while in the Dutch material the ostioli eventually<br />

open up further to about 80 µm wide. Muthumary observed<br />

conidia 35–50 × 2–2.5 µm with 3–4 septa, but other authors have<br />

found that conidia in planta can be much longer and have more<br />

septa. Jørstad (1965) found that conidia in Norwegean material<br />

on U. dioica were 22–81 × 1–1.5 µm, with up to 6 septa. Priest<br />

(2006), who studied material on U. insidia and U. urens in Australia<br />

reported conidia (26–)35–50(–70) × 1.5–2 µm, 3–5-septate. The<br />

present study shows that in vitro conidia can even be up to 90<br />

µm long in this species. The material from Glechoma hederaceae<br />

sporulating in association with the rust Puccinia glechomatis,<br />

proved morphologically in good agreement with that on Urtica<br />

dioica, and since it is also genetically similar to the material from<br />

that host, it is regarded conspecific. Other Septoria species have<br />

also occasionally been found in association with rust sori, viz., S.<br />

lagenophorae, which is regarded to be a hyperparasite of rusts,<br />

and occasionally also other leaf-spotting fungi (Priest 2006).<br />

According to Muthumary, the conidiogenous cells of S. urticae<br />

each produce a solitary terminal conidium and often also proliferate<br />

sympodially. It is established here that S. urticae is also capable<br />

of proliferating percurrently, and that this mode of proliferation is<br />

more frequent in pure culture. In contrast, Priest (2006) observed<br />

conidiogenous cells that first produced a conidium holoblastically,<br />

and subsequent conidia enteroblastically at the same level from a<br />

narrow conidiogenous locus, viz. like in phialidic conidiogenesis. It is<br />

unclear whether this is truly phialidic conidiogenesis, or just cryptic<br />

percurrent proliferation as observed in S. chrysanthemella, where<br />

the scars of the subsequent secessions are indistinguishable due<br />

to the limitations in the resolution of the light microscope (Verkley<br />

1998a).<br />

Septoria verbenae Roberge ex Desm., Annls Sci. Nat., sér.<br />

3, Bot., 8: 19. 1847. Fig. 42.<br />

Description in planta: Symptoms stem lesions and leaf spots small,<br />

angular to irregular, and merging to elongated areas, initially red to<br />

purplish red, then becoming pale in the centre with a darker border.<br />

Conidiomata pycnidial, epiphyllous, one to a few in each lesion,<br />

globose, dark brown, immersed, 70–140 µm diam; ostiolum central,<br />

circular, 25–40 µm wide, surrounding cells dark; conidiomatal wall<br />

about 12.5–20 µm thick, composed of a homogenous tissue of<br />

textura angularis with hyaline cells 2.5–7.5 µm diam, the outermost<br />

cells mid brown with somewhat thickened walls, the inner cells<br />

thin-walled and pale yellowish brown. Conidiogenous cells hyaline,<br />

discrete, or integrated in 1–2-septate conidiophores, narrowly<br />

www.studiesinmycology.org<br />

293


Verkley et al.<br />

ampulliform to almost cylincrical, often with a relatively narrow neck,<br />

holoblastic, first proliferating sympodially, and in some cells later<br />

also percurrently 1–several times with indistinct annellations, 12–<br />

18(–20) × 2.5–6 µm. Conidia cylindrical, straight or slightly curved,<br />

flexuous, with a narrowly rounded to somewhat pointed apex,<br />

attenuated towards the narrowly truncate base, (1–)3(–5)-septate,<br />

not constricted around the septa, hyaline, contents with several oildroplets<br />

and granular material in each cell in the living state, with<br />

inconspicuous oil-droplets and granular contents in the rehydrated<br />

state, (22–)16–48 × (1–)1.5–2 µm (rehydrated). Sexual morph<br />

unknown.<br />

Description in vitro: Colonies on OA 10–13 mm diam in 2 wk,<br />

with an even, colourless margin; colonies restricted to spreading,<br />

immersed mycelium citrine to grey-olivaceous, locally soon darker<br />

radiating strands occur, glabrous but in the centre of colonies,<br />

where irregular elevations are formed, covered by well-developed,<br />

grey to white finely felted aerial mycelium; reverse greenish grey<br />

to olivaceous-black. Conidiomata developing immersed or on the<br />

agar surface after 10–2 wk. Colonies on MEA 10–13 mm diam in 2<br />

wk, with a slighlty ruffled, buff to amber margin; colonies restricted,<br />

irregularly pustulate, the surface entirely covered by a low, dense<br />

mat of whitish to grey finely felted aerial mycelium; reverse dark<br />

brown to almost black, locally fulvous to sienna. No sporulation<br />

observed.<br />

Conidia (OA) filiform to cylindrical, typically weakly to strongly<br />

curved, sometimes straight or flexuous, attenuated gradually to<br />

a somewhat pointed apex, attenuated gradually or more abruptly<br />

to the narrowly truncate to almost rounded base, hyaline, with<br />

granular contents and minute oil droplets, (1–)3–5(–7)-septate,<br />

(22–)28–46(–54) × 1.5–2(–2.5) µm.<br />

≡ Cylindrosporium pseudoplatani (Roberge ex Desm.) Died., Annls<br />

mycol. 10: 486. 1912.<br />

= Sphaerella latebrosa Cooke, Handb. Brit. Fungi 2: no. 2754. 1871.<br />

≡ Mycosphaerella latebrosa (Cooke) J. Schröt., in Cohn, Krypt.-Fl.<br />

Schlesien (Breslau) 3.2(3): 334. 1894 [1908].<br />

≡ Carlia latebrosa (Cooke) Höhn., Hedwigia 62: 73. 1920.<br />

= Septoria seminalis var. platanoidis Allesch., Hedwigia 35: 34. 1896.<br />

≡ Cylindrosporium platanoidis (Allesch.) Died., Annls mycol. 10(5): 486.<br />

1912.<br />

= Septoria epicotylea Sacc., Malpighia 11: 314. 1897.<br />

= Phloeospora pseudoplatani Bubák & Kabát in Bubák, Sber. K. böhm. Ges.<br />

Wiss., Math.-naturw, Kl., 7: 16. 1903.<br />

Description in planta: Symptoms small (0.2–0.5 mm diam), circular<br />

to angular, hologenous reddish brown leaf spots. Conidiomata<br />

acervular, epi- or hypophyllous, one to a few in each leaf spot,<br />

pale brown (drying dark brown), 105–180(–220) µm diam,<br />

releasing conidia in white columnar masses; conidiomatal wall<br />

Host: Verbena officinalis.<br />

Material examined: New Zealand, North Isl., Northland, Bay of Islands area,<br />

Manawaora along roadside, on living leaves of Verbena officinalis, 30 Jan. 2003, G.<br />

Verkley 2017, <strong>CBS</strong> H-21240; same loc., date, on stems of V. officinalis, G. Verkley<br />

2023, <strong>CBS</strong> H-21241, living culture <strong>CBS</strong> 113438, 113481.<br />

Notes: Priest (2006) gave a detailed description based on a collection<br />

from New South Wales, Australia [conidia (1–)3-septate, 26–48<br />

× 1.5(–2) µm]. The two strains available proved morphologically<br />

similar. These New Zealand strains proved to have identical Act,<br />

Btub, Cal, EF, and RPB2 sequences, distinct from other Septoria.<br />

Sphaerulina<br />

Type species: Sphaerulina myriadea (DC.) Sacc., Michelia 1 : 399.<br />

1878.<br />

Quaedvlieg et al. (2013, this volume) provide a description based<br />

on the sexual morph and treat several additional species with<br />

septoria-like asexual morphs.<br />

Sphaerulina aceris (Lib.) Verkley, Quaedvlieg & Crous,<br />

comb. nov. MycoBank MB804473. Fig. 43.<br />

Basionym: Ascochyta aceris Lib., Pl. crypt. Ard., Cent. 1: no. 54.<br />

1830.<br />

≡ Septoria aceris (Lib.) Berk. & Broome, Ann. Mag. Nat. Hist. Ser. 2, 5:<br />

379. 1850.<br />

≡ Phloeospora aceris (Lib.) Sacc., Syll. Fung. 3: 577. 1884.<br />

= Septoria pseudoplatani Roberge ex Desm., Annls Sci. Nat., sér. 3, Bot. 8:<br />

21. 1847.<br />

Fig. 43. Sphaerulina aceris. A, B. Colonies <strong>CBS</strong> 183.97. A. On OA. B. On MEA. C,<br />

D. Conidia in planta (<strong>CBS</strong> H-21239). Scale bars = 10 µm.<br />

294


A new approach to species delimitation in Septoria<br />

Fig. 44. Sphaerulina cornicola. A–C. Colonies <strong>CBS</strong> 102324. A. On OA. B. On CHA. C. On MEA.<br />

mainly consisting of a basal 15–25(–35) µm thick layer of angular<br />

to subglobose, subhyaline to pale brown cells 5–10 µm diam,<br />

lateral wall absent or very poorly developed, composed of similar,<br />

somewhat darker cells. Conidiogenous cells hyaline, discrete or<br />

integrated in 1(–2)-septate conidiophores, subglobose, doliiform<br />

or ampulliform, holoblastic, proliferating percurrently with one to<br />

several disctinct annellations, or sympodially, sometimes both<br />

types of proliferation occur in a single conidiogenous cell, 8–15<br />

(–20) × 2.5–4 µm. Conidia cylindrical, straight or more or less curved,<br />

attenuated gradually to a broadly rounded apex, attenuated more<br />

or less abruptly to a truncate base, (1–)3-septate, conspicuously<br />

constricted around the septa in fresh and rehydrated state, hyaline,<br />

contents with numerous minute oil-droplets and granular material<br />

in each cell in the living state, with minute oil-droplets and granular<br />

contents in the rehydrated state, (32–)37–47(–50) × 3–4 µm (living;<br />

rehydrated, 2–3 µm wide).<br />

Description in vitro. Colonies on OA 3–4 mm diam in 2 wk, with a<br />

undulating even margin; colonies restricted, irregularly pustulate,<br />

the surface buff or much darker grey to brown, locally glabrous<br />

but mostly covered by a dense mat of finely felted white aerial<br />

mycelium, conidiomata developing on the surface releasing conidia<br />

in clear droplets, or in milky white to rosy-buff masses; reverse<br />

dark greyish or brown-vinaceous. Colonies on MEA 3–4(–8) mm<br />

diam in 2 wk, with a undulating even margin; colonies restricted,<br />

irregularly pustulate, the surface almost black provided with low<br />

and finely felted, diffuse, grey to white aerial mycelium, conidiomata<br />

developing just beneath the colony surface, releasing white cirrhi<br />

of conidia; reverse a palet of brown-vinaceous, cinnamon and<br />

olivaceous-grey.<br />

Conidia (OA) as in planta, (31–)34–50(–58) × 3.5–5 µm.<br />

Microconidia (spermatia of the Asteromella state) ellipsoid, hyaline,<br />

0-septate, 3–4 × 1.5 µm.<br />

Hosts: Acer campestre, A. circinatum, A. hyrcanum (Vanev et al.<br />

1997) and A. pseudoplatanus.<br />

Material examined: France, locality unknown, on leaves of Acer campestre,<br />

distributed in Libert, Pl. Cryptog. Ard. Fasc. 1 (1830): no. 54, isotype BR–MYCO<br />

153858-16, type of Ascochyta aceris Lib. Netherlands, prov. Utrecht, Baarn, on<br />

Acer pseudoplatanus, July 1969, I. Blok, living culture <strong>CBS</strong> 514.69; Baarn, garden<br />

WCS, on living leaves of Acer pseudoplatanus, 23 July 1985, H.A. van der Aa<br />

9537, <strong>CBS</strong> H-14666, living culture <strong>CBS</strong> 652.85; same substr., prov. Zuid-Holland,<br />

Wassenaar, Hollandsch Duin, 14 Aug. 1994, G. Verkley 227, <strong>CBS</strong> H-18040, living<br />

culture <strong>CBS</strong> 687.94; same substr., prov. Zuid-Holland, Wassenaar, Ganzenhoek, 8<br />

Aug. 1995, G. Verkley 307, <strong>CBS</strong> H-21239, living culture <strong>CBS</strong> 187.96; same substr.,<br />

prov. Utrecht, Baarn, Eemnesserweg, 7 May 1996, H.A. van der Aa 12120, <strong>CBS</strong><br />

H-14665, living culture <strong>CBS</strong> 183.97; USA, Oregon, Lane Co., Proxy Falls Trail, on<br />

living leaves of Acer circinatum, 11 Oct. 1996, J. K. Stone & G. Verkley 480, <strong>CBS</strong><br />

H-21236, living culture <strong>CBS</strong> 655.97.<br />

Notes: This is the oldest septoria-like species described from<br />

members of the family Aceraceae. It occurs on several species<br />

of the genus Acer. In the original diagnosis of Libert, three host<br />

species were mentioned, viz., A. campestre, A. pseudoplatanus<br />

and A. platanoides. Jørstad (1965) treated forms on A. platanoides<br />

with conidia 26–60 × 2–2.5 µm as S. apatela All. (synonyms S.<br />

seminalis var. platanoidis All., Phleospora platanoidis Kabát &<br />

Bubák, Phloeospora samarigena Bubák & Krieg.), while those on A.<br />

campestre remained unsettled. According to Jørstad (1965) conidia<br />

of S. aceris are 24–43 × 2–3 µm, with 3 septa, which agrees well<br />

with the sizes observed in the type specimen available in the present<br />

study. This material also showed a small proportion of 4-septate<br />

conidia in one of the fruitbodies. More species with conidia longer<br />

than 60 µm have been described from A. platanoides, and these<br />

need to be critically assessed in a comprehensive study including<br />

isolates of all Septoria occurring on the genus Acer. No isolates<br />

from the the type host A. campestre that would be most suitable<br />

as epitype, were available, hence no epitypification is proposed<br />

here. The ultrastructure of conidiogenesis and conidia of S. aceris<br />

was studied by Verkley (1998b), who showed that in a single cell<br />

percurrent as well as sympodial proliferation can occur.<br />

A description of the sexual morph known as Mycosphaerella<br />

latebrosa was provided by Kuijpers & Aptroot (2002), but their<br />

species concept included several discrete entities that are<br />

distinguishable by their conidial states and occur on distantly related<br />

host plants. It is unlikely that these entities can be distinguished<br />

at all by the morphology of the sexual state (Verkley & Starink-<br />

Willemse 2004).<br />

Sphaerulina cornicola (DC.: Fr.) Verkley, Quaedvlieg &<br />

Crous, comb. nov. MycoBank MB804474. Fig. 44.<br />

Basionym: Depazea cornicola DC.: Fr., in De Candolle & Lamarck,<br />

Flore Française VI: 146. 1815.<br />

≡ Septoria cornicola (DC.: Fr.) Desm., Pl. crypt. Fr., Fasc. 7, no 342.<br />

1828; Index Pl. crypt. Fr.: 24. 1851.<br />

= S. cornicola var. ampla H. C. Greene, Amer. Midl. Nat. 41: 755. 1949 (fide<br />

Farr 1991).<br />

For extended synonymy see Farr (1991). Neotype on Cornus<br />

sanguinea, France (BPI, designated by Farr 1991), not seen.<br />

Description in planta: Symptoms starting as red discolorations of<br />

the leaf lamina and margin, which develop to scattered, circular<br />

to irregular, hologenous leaf spots, that later become pale brown,<br />

and surrounded by a dark brown to black bordering zone and a<br />

distinct red or purple periphery. Conidiomata pycnidial, epiphyllous,<br />

numerous scattered in each leaf spot, subglobose to globose,<br />

brown to black, immersed or semi-immersed, 55–100(–120) µm<br />

diam; ostiolum central, initially circular and 25–40 µm wide, later<br />

becoming more irregular and up to 60 µm wide, surrounding cells<br />

concolorous to pale brown. Conidiomatal wall about 10–15 µm<br />

thick, composed of a outer layer of hyphal to irregular cells 3.0–8 µm<br />

diam with brown walls, and an inner layer of hyaline cells 3–5 µm<br />

www.studiesinmycology.org<br />

295


Verkley et al.<br />

diam; Conidiogenous cells hyaline, discrete, doliiform, or narrowly<br />

to broadly ampulliform, holoblastic, proliferating sympodially,<br />

sometimes also percurrently with indistinct annellations, 5–12.5(–<br />

15) × 3–4(–8) µm. Conidia cylindrical, regularly curved, attenuated<br />

gradually to a rounded or somewhat pointed apex and a narrowly<br />

truncate base, (0–)1–3(–5)-septate, distinctly constricted around<br />

the septa only in the fresh state, hyaline, contents with several<br />

minute oil-droplets and granular material in each cell in the living<br />

state, with amorphous material and granular contents in the<br />

rehydrated state, (20–)24–40 × 3–4 µm (living; rehydrated, 2–3<br />

µm wide). Sexual morph unknown.<br />

Description in vitro: Colonies on OA 4–7mm diam in 2 wk (12–<br />

16 mm in 6 wk), with an even, glabrous, buff margin; colonies<br />

spreading, the surface first plane, then somewhat pustulate,<br />

immersed mycelium a mixture of fawn and rosy-buff tinges, locally<br />

darker olivaceous, the surface largely covered by a rosy-buff to<br />

vinaceous buff masses or a film of conidial slime produced directly<br />

by the mycelium; reverse rosy-buff with isabelline to hazel areas,<br />

later darker in the centre. Colonies on CMA 3–4 mm diam in 2 wk<br />

(8–12 mm in 6 wk), as on OA. Colonies on MEA 4.5–7 mm diam<br />

in 2 wk (9–14(–16) mm in 6 wk), restricted, the entire surface of<br />

the colony regularly cerebriform with large masses of conidial<br />

slime (also covering the margin), first salmon, later darkening to<br />

ochreous or umber, eventually even chestnut; reverse sienna to<br />

bay. Colonies on CHA 4–6 mm diam in 2 wk (11–14 mm in 6 wk),<br />

as on MEA.<br />

Conidia (OA) as in planta, but showing secondary conidiation,<br />

1–8(–16)-septate, conidia germinating from intermediate<br />

cells (laterally) or the basal cells (axially) to form new conidial<br />

fragments of variable length, or branched complexes, rendering a<br />

heterogeneous mixture.<br />

Host: Cornus sanguinea.<br />

Material examined: Germany, Baden-Württemberg, Kussa-Rheinheim, 3 Sep. 1999,<br />

A. Aptroot 46371, <strong>CBS</strong> H-21191. Netherlands, Prov. Noord Brabant, Eindhoven,<br />

Milieu- & Educatiecentrum Eindhoven, on living leaves of Cornus sanguinea, 4 Sep.<br />

1999, A. van Iperen (G. Verkley 918), <strong>CBS</strong> H-21237, living cultures <strong>CBS</strong> 102324,<br />

102332; same substr., prov. Limburg, Gulpen, near Stokhem, 28 June 2000, G.<br />

Verkley 963, <strong>CBS</strong> H-21238. USA, Maryland, Prince Georges Co., on C. sanguinea,<br />

14 Sep. 2004, A. Y. Rossman 4089 (BPI), living culture <strong>CBS</strong> 116778.<br />

Notes: The material examined has the typical conidia of Sphaerulina<br />

cornicola, agreeing with those described by Farr (1991). Septoria<br />

cornina can be distinguished from Sphaer. cornicola by more<br />

variously curved, most commonly hooked, falcate or lunate conidia<br />

(23–)32–90(–110) × 2–4(–5) µm with rounded apex (Farr 1991,<br />

Shin & Sameva 2004). The phylogenetic relationship with S.<br />

cornina remains to be clarified.<br />

Sphaerulina frondicola (Fr.) Verkley, Quaedvlieg & Crous,<br />

comb. nov. MycoBank MB804477.<br />

Basionym: Septoria populi Desm, Annls Sci. Nat., sér 2, Bot., 19:<br />

345. 1843. nom. nov. pro Depazea frondicola Fr., Observationes<br />

mycologicae, 2: 365, t. 5: 6–7. 1818.<br />

≡ Sphaeria frondicola (Fr.) Fr., Syst. Mycol. 2: 529. 1822.<br />

= Sphaerella populi Auersw., in Gonnermann & Rabenhorst, Mycol. eur.<br />

Abbild. Sämmtl. Pilze Eur. 5–6: 11 .1869.<br />

≡ Mycosphaerella populi (Auerw.) J. Schroet., in Cohn, Krypt.-Fl.<br />

Schlesien (Breslau) 3.2 (3): 336. 1894.<br />

Description in vitro (<strong>CBS</strong> 391.59): Colonies on OA 3–5 mm diam<br />

in 2 wk, with an even or slightly ruffled, colourless, glabrous<br />

margin; colonies restricted and up to 2 mm high after 2 wk,<br />

immersed mycelium mostly olivaceous to dark herbage green,<br />

with moderately developed, greyish white, woolly-floccose aerial<br />

mycelium; numerous large, simple or complex, olivaceous to<br />

reddish brown stromatic conidiomata formed that open widely<br />

to release masses of rosy-buff conidial slime; reverse mostly<br />

olivaceous-black. Colonies on MEA 2–3(–4) mm diam in 2 wk,<br />

with a ruffled, buff, glabrous margin; colonies restricted, up to 2<br />

mm high, irregularly pustulate, the surface appearing dark brown<br />

to black, but with numerous hemispherical stromata at the surface<br />

which are fawn to vinaceous brown, some of which start sporulating<br />

directly from the surface forming masses of rosy-buff conidial slime<br />

after 2 wk; aerial mycelium scarce, locally denser, white; reverse<br />

almost black. Colonies on CHA 4–6 mm diam in 2 wk, with an even,<br />

rosy-buff margin covered by pure white, woolly aerial mycelium;<br />

colonies restricted, up to 2 mm high, immersed mycelium entirely<br />

hidden under a dense mat of pure white, high, woolly aerial<br />

mycelium; reverse brown-vinaceous in the centre, surrounded by<br />

a rosy-buff to buff marginal zone.Conidiomata not well-developed.<br />

Conidiogenous cells observed holoblastic, some cells with a single<br />

percurrent proliferation. Conidia showing signs of degeneration. In<br />

addition, cylindrical to dumpbell-shaped spermatia or microconidia,<br />

(5.5–)7.5–13.5(–14.5) × 1.2–1.7 mm, are formed from phialides in<br />

the same fruitbodies.<br />

Host: Populus pyramidalis.<br />

Material examined: Germany, Berlin-Kladow, on living leaves of Populus<br />

pyramidalis, Dec. 1959, R. Schneider s.n., BBA 8987, <strong>CBS</strong> H-18150, living culture<br />

<strong>CBS</strong> 391.59<br />

Notes: <strong>CBS</strong> 391.59 groups in a subclade of the Sphaerulinaclade<br />

(Fig. 2), that was named after the type species Sphaerulina<br />

myriadea that resides in it (Quaedvlieg et al. 2013). Closest relatives<br />

are the other poplar pathogens Sphaer. populicola (syns Septoria<br />

populicola Peck, Mycosphaerella populicola, <strong>CBS</strong> 100042) and<br />

several isolates of Sphaer. musiva (synonyms Septoria musiva,<br />

Mycosphaerella populorum). <strong>CBS</strong> 391.59 now only develops<br />

atypical sporulating structures not described in detail here.<br />

Sphaerulina gei (Roberge ex Desm.) Verkley, Quaedvlieg &<br />

Crous, comb. nov. MycoBank MB804475. Fig. 45E–G.<br />

Basionym: Septoria gei Roberge ex Desm., Annls Sci. Nat., sér. 2,<br />

Bot. 19: 343. 1843.<br />

Description in planta: Symptoms leaf lesions irregular, greyish<br />

brown, well-delimited by a dark brown line, surrounding leaf tissue<br />

often yellowish; Conidiomata pycnidial, amphigenous though<br />

predominantly epiphyllous, numerous in each lesion, subglobose<br />

to cupulate, brown to black, 35–80 µm diam; ostiolum central,<br />

circular, initially 35–60 µm wide, later becoming more irregular and<br />

up to 80 µm wide, surrounding cells dark brown; conidiomatal wall<br />

10–15 µm thick, composed of a homogenous tissue of hyaline,<br />

angular cells 2.5–6.5 µm diam, the outermost cells pale brown with<br />

slightly thickened walls, the inner cells thin-walled. Conidiogenous<br />

cells hyaline, discrete, rarely also integrated in 1–2-septate<br />

conidiophores, cylindrical or narrowly to broadly ampulliform,<br />

holoblastic, often with a relatively narrow and elongated neck,<br />

proliferating percurrently several times with distinct annellations,<br />

rarely also sympodially, 6–10(–15) × 3.5–5(–6) µm. Conidia filiform,<br />

slightly curved to flexuous, rarely straight, narrowly rounded at the<br />

apex, narrowly truncate at the base, (0–)2–5(–8)-septate (septa<br />

296


A new approach to species delimitation in Septoria<br />

Fig. 45. A–D. Sphaerulina hyperici. A–C. Colonies <strong>CBS</strong> 102313. A. On OA. B. On CHA. C. On MEA. D. Conidia and conidiogenous cells in planta (<strong>CBS</strong> H-21194, epitype).<br />

E–G. Sphaerulina gei. E. Colony on OA (KACC 44051 = <strong>CBS</strong> 128632). F. Conidia and conidiogenous cells in planta (<strong>CBS</strong> H-21194, epitype). G. Ibid., on OA (<strong>CBS</strong> 102318).<br />

Scale bars = 10 µm.<br />

very thin and easily overlooked), not constricted around the septa,<br />

hyaline, contents with several minute oil-droplets and granular<br />

material in each cell in the living state, with minute oil-droplets and<br />

granular contents in the rehydrated state, 33–65(–75) × 2–2.8(–3)<br />

µm (living; rehydrated, 1.8–2.5 µm wide). Sexual morph unknown.<br />

Description in vitro: Colonies on OA 6–8(–15) mm diam in 3 wk, with<br />

an even, glabrous, colourless to buff margin; colonies spreading,<br />

immersed mycelium at first buff to rosy-buff, tardily becoming<br />

olivaceous to olivaceous-black, occassionally some sectors<br />

remaining buff; aerial mycelium mostly wanting, but sometimes with<br />

a few greyish tufts, the surface of the colony centre soon covered by<br />

rosy-buff masses of conidial slime, produced from conidiogenous<br />

cells directly on the mycelium or in pycnidial conidiomata; reverse<br />

olivaceous-black, margin buff. Colonies on CMA 7–9 mm diam in<br />

3 wk, as on OA, but green pigmentation developing more rapidly.<br />

Colonies on MEA 7–9(–11) mm diam in 3 wk, with an irregular,<br />

glabrous, rosy-buff margin; a reddish pigment diffusing into the<br />

agar; colony spreading to restricted, the surface cerebriform to<br />

irregularly lobed, up to 2 mm high, very dark, but locally covered<br />

either by grey, felted aerial mycelium or masses of salmon conidial<br />

slime, produced directly from hyphae or in superficial stromatal<br />

conidiomata; reverse rust to chestnut. Colonies on CHA 6–7(–10)<br />

mm diam in 3 wk, colony features and sporulation as on MEA, but<br />

the margin covered by whitish aerial mycelium; diffusing pigment<br />

also present. Sporulating structures on OA very similar to those in<br />

planta, but conidia up to 85 µm long.<br />

Hosts: Geum spp.<br />

Material examined: Czech Republic, Bohemia, near Tábor, on living leaves<br />

of Geum urbanum, 20 July 1903, F. Bubák, distributed in Kabát & Bubák, Fungi<br />

imperfecti exsicc. 114, PC 0084558. France, Caen, on living leaves of G. urbanum,<br />

“Col. Desmazieres 1863, no. 8, 58”, “Jun-Sep. 1842”, isotype PC 0084556; forest<br />

near Caen, on living leaves of G. urbanum, 1841, Roberge, PC 0084555. Germany,<br />

Brandenburg, Buchmühle near Lagow, on living leaves of G. urbanum, 10 Sep.<br />

1909, P. Sydow, PC 0084559. Korea, Hoengseong, on living leaves of G. japonicum,<br />

H.D. Shin, living culture <strong>CBS</strong> 128616 = KACC 43029 = SMKC 22748; same substr.,<br />

Pyeongchang, H.D. Shin, living culture <strong>CBS</strong> 128632 = KACC 44051 = SMKC 23686.<br />

Latvia, prov. Vidzeme, Kr. Riga, Ogre, on living leaves of G. urbanum, 19 July 1936,<br />

J. Smarods, PC 0084557. Netherlands, Prov. Limburg, Schimperbosch, SW of<br />

Vaals, on the same substr., 29 Aug. 1999. H.A. van der Aa s.n., <strong>CBS</strong> H-21168; Prov.<br />

Noord Holland, Amsterdamse Waterleidingduinen, Panneland, on living leaves of<br />

G. urbanum, 31 Aug. 1999, G. Verkley & A. van Iperen 914, epitype designated<br />

here <strong>CBS</strong> H-21167 “MBT175360”, living culture ex-epitype <strong>CBS</strong> 102318. Romania,<br />

distr. Prahova, Muntenia, Cheia, on living leaves of G. rivale, T. Săvulescu & C.<br />

Sandhu, distributed in Săvulescu, Herb. Mycol. Romanicum 8, 377, PC 0084560.<br />

Sweden, Gotland, Endre parish, Hulte, on living leaves of G. urbanum, 16 July<br />

1898, T. Vestergren, PC 0084561.<br />

www.studiesinmycology.org<br />

297


Verkley et al.<br />

Notes: The type material from PC studied contains one leaf showing<br />

the typical symptoms, and although only old empty fruitbodies<br />

were observed in it, it is almost certain that these are the product<br />

of this well-known and common “Septoria” species. The other<br />

material studied here was in much better condition and proved<br />

highly homogeneous in both symptoms and morphology of the<br />

sporulating structures, including the collection from Geum rivale,<br />

with most conidia observed below 70 µm long. Some authors found<br />

conidia up to about 75 µm long in various European collections<br />

(Jørstad 1965, Vanev et al. 1997). In the fresh material from The<br />

Netherlands, conidia were no longer than 65 µm on the host plant,<br />

but the isolates obtained from it produced conidia up to 85 µm long.<br />

This material is chosen here to epitypify Sphaer. gei because it is<br />

geographically the closest one for which also a culture is available.<br />

Several authors have recognised Septoria gei f. immarginata<br />

for material on Geum urbanum with smaller conidia, viz. Radulescu<br />

et al. (1973), reporting conidia as continuous, 33–56 × 1.1–1.5 µm<br />

(in majority 40–46 × 1.5 µm), and Teterevnikova-Babayan (1983),<br />

reporting 20–33 × 1.5 µm. Shin & Sameva (2004) considered this<br />

forma a synonym of S. gei, for which they noted the wide range of<br />

conidial sizes. In Asian collections identified as S. gei the conidia<br />

appear to be longer than in material from elsewhere (Shin & Sameva<br />

2004), but the Korean isolates included here are genetically very<br />

close to the ex-epitype strain <strong>CBS</strong> 102318, and regarded as<br />

conspecific. Sequence analyses of the cultures of Sphaer. gei<br />

indicate a close relationship with species such as Sphaer. patriniae<br />

(<strong>CBS</strong> 128653, 129153), from Patrinia scabiosaefolia and P. villosa<br />

(Valerianaceae) and Sphaer. cercidis (Quaedvlieg et al. 2013).<br />

Sphaerulina hyperici (Roberge ex Desm.) Verkley,<br />

Quaedvlieg & Crous, comb. nov. MycoBank MB804476. Fig.<br />

45A–D.<br />

Basionym: Septoria hyperici Roberge ex Desm., Annls Sci. Nat.,<br />

sér. 2, Bot.17: 110. 1842.<br />

≡ Phleospora hyperici (Roberge ex Desm.) Westend., Bull. Acad. r.<br />

Bruxelles 12 (9): 251. 1845.<br />

Description in planta: Symptoms leaf lesions indefinite, usually<br />

starting to develop from the tip of leaf lamina and progressing<br />

towards the basis, irregular, reddish brown, surrounding leaf tissue<br />

often yellowish; Conidiomata pycnidial, amphigenous, densly<br />

dispersed in each lesion, only partly immersed, subglobose to<br />

globose or flask-shaped, brown to black, 55–90(–130) µm diam;<br />

ostiolum central, circular, often lifted above the leaf surface,<br />

25–35(–50) µm wide, surrounded by concolorous or somewhat<br />

darker cells; conidiomatal wall 10–22 µm thick, composed of<br />

a homogenous tissue of hyaline, angular cells 2–5.5 µm diam,<br />

the outermost cells pale brown with slightly thickened walls, the<br />

inner cells thin-walled. Conidiogenous cells hyaline, discrete or<br />

integrated in 1–2-septate conidiophores, terminal ones narrowly<br />

to broadly ampulliform, holoblastic, producing a single conidium or<br />

proliferating sympodially, 6–8(–10) × 3.5–5 µm. Conidia cylindrical,<br />

straight, more often slightly curved or flexuous, broadly rounded at<br />

the apex, narrowing slightly to the truncate base, 1–3(–5)-septate,<br />

not or slightly constricted around the septa, hyaline, contents with<br />

a few oil-droplets and minute granular material in each cell in the<br />

living state, with oil-droplets and granular contents in the rehydrated<br />

state, 24–55(–63) × 2.5–3.5 µm (living; rehydrated, 1.8–2.8 µm<br />

wide). Sexual morph unknown (see notes).<br />

Description in vitro: Colonies on OA 4–7 mm diam in 2 wk, with an<br />

even, glabrous, colourless margin; centre and some outgrowing<br />

sectors entirely pale luteous to buff, where conidia are formed<br />

directly on the immersed and superficial mycelium; submarginal<br />

area blackish, due to dark pigmented hyphae and superficial<br />

pycnidia, covered by diffuse, white tufty to woolly aerial mycelium;<br />

reverse concolourous. Colonies on CMA as on OA. Colonies on<br />

MEA 3–7 mm diam in 2 wk (32–40 mm in 6 wk), with an irregular,<br />

glabrous margin; a reddish pigment diffusing into the agar; colony<br />

restricted, the surface cerebriform to irregularly lobed, up to 2 mm<br />

high, immersed mycelium dark, mostly covered by dense, pure white,<br />

woolly aerial mycelium, or salmon to saffron by masses of conidia;<br />

reverse cinnamon to brick. Colonies on CHA 3–5 mm diam in 2 wk,<br />

with an irregular, glabrous margin; colony restricted, the surface<br />

cerebriform to irregularly lobed, up to 2 mm high, dark but mostly<br />

covered by salmon to saffron conidial masses, and some areas with<br />

a dense, pure white, woolly-floccose aerial mycelium; reverse dark<br />

brick.<br />

Hosts: Hypericum spp.<br />

Material examined: Bulgaria, Camkorije, on leaves of Hypericum quadrangulum,<br />

31 Aug. 1907, Fr. Bubák, distributed in Kabát & Bubák, Fungi imperfecti exsicc. 469<br />

(PC 0084544). Czech Republic, Bohemia, Bukovina, on leaves of H. perforatum,<br />

9 June 1906, J. Kabát, distributed in Kabát & Bubák, Fungi imperfecti exsicc. 421<br />

(PC 0084542); same substr., E. Moravia, M. Weisskirchen, Aug. 1941, F. Petrak<br />

(PC 0084545). France, loc. unknown, on leaves of H. perforatum, isotype PC<br />

0084532; Lighhouse of Libisey near Caen, same substr., June 1841, M. Roberge,<br />

PC 0084531; same substr., Bois de Plaisir, 16 July 1935 (Herb. G. Viennot-Bourgin),<br />

PC 0084533; same substr., Allier, Gennetines, 5 Apr. 1959, A. Lachmann, PC<br />

0084535; Landes, Etang near Seignosse, on H. helodes, 5 Aug. 1964, G. Durrieu,<br />

PC 0084536; Seine-et-Marne, Fontainebleau forest, on leaves of H. hirsutum, July<br />

1888, Feuilleaubols, PC 0084537, 0084540. Germany, Hessen-Nassau, Dillkreis,<br />

Langenaubach, on leaves of H. quadrangulum, 12 July 1931, A. Ludwig, distributed<br />

in Sydow, Mycotheca germanica 2570, PC 0084538; Brandenburg, Sadowa, on<br />

leaves of H. perforatum, 4 Aug. 1907, P. Sydow, distributed in Sydow, Mycotheca<br />

germanica 625, PC 0084543. Netherlands, Prov. Utrecht, Soest, along railroad<br />

between Lange Duinen and De Zoom, on living leaves of Hypericum sp., 28 July<br />

1999, G. Verkley 900, epitype designated here <strong>CBS</strong> H-21194 “MBT175361”, living<br />

culture ex-epitype <strong>CBS</strong> 102313. Romania, Moldova, distr. Iaşi, Poeni, on leaves of<br />

H. hirsutum, 1 Aug. 1948, C. Sandu-Ville & I. Rădulescu, distributed in Tr. Săvulescu,<br />

Herb. Mycol. Romanicum, fasc. 29, no. 1445, PC 0084534, 0084546. Sweden, E.<br />

Götland, Gryt parish, ca. 300 m E.-S.E. of Strömmen, on leaves of H. maculatum,<br />

18 July 1947, J.A. Nannfeldt 9386, distributed in S. Lundell & J.A. Nannfeldt, Fungi<br />

exsicc. Suecici, praes. Upsal. 1910, PC 0084547.<br />

Notes: According to Jørstad (1965), the pycnidia of Sphaer. hyperici<br />

are immersed hypophylously, but in most collections investigated<br />

here they protrude with their ostioli from either side of the leaf in<br />

about equal numbers. Jørstad (1965) further noted that the conidial<br />

sizes varied considerably between collections, with extreme values<br />

ranging between 15 and 57 µm for length and 1.5–2.5 µm for<br />

width of conidia. Vanev et al. (1997) reported conidia 21.5–54 ×<br />

2–3.2 µm. In the type specimen, which is rich in conidiomata with<br />

protruding dry spore-masses, conidia are mostly 1–3-septate, 25–<br />

50 × 2–2.5 µm, thus in good agreement with the collection V900,<br />

which is designated as epitype.<br />

Four varieties of Septoria hyperici and a few more Septoria<br />

species have been described on species of the genus Hypericum.<br />

Most of these taxa have conidia in the size range given here<br />

for Sphaer. hyperici, indicating that these might be conspecific.<br />

However, more strains should be isolated from the different species<br />

of Hypericum and compared with type material of these taxa,<br />

before firm conclusions about their status can be drawn. Septoria<br />

hypericorum, which was described from H. perforatum with conidia<br />

reported 15–35 × 4–6 µm, is likely to belong in Stagonospora or<br />

another related asexual morph. The ex-epitype strain of Sphaer.<br />

hyperici <strong>CBS</strong> 102313 is closely related to strains identified as S.<br />

298


A new approach to species delimitation in Septoria<br />

menispermi (<strong>CBS</strong> 128666, 128761), and somewhat more distant<br />

from species such as Sphaer. gei, and Sphaer. cercidis (<strong>CBS</strong><br />

501.50).<br />

Petrak (1925) stated that Mycosphaerella hyperici is the sexual<br />

morph of Septoria hyperici, but this has not been confirmed by culture<br />

studies. The only culture available of M. hyperici for comparison,<br />

<strong>CBS</strong> 280.49, was sequenced by Zalar et al. (2007) and shown<br />

to group with isolates of Cladosporium halotolerans, so it may be<br />

a culture contaminant. No strain is available for M. hypericina, a<br />

species originally described from Hypericum prolificum in the<br />

US. No asexual morph is known for this taxon which, according<br />

to Aptroot (2006), is morphologically indistinguishable from M.<br />

punctiformis (anam. Ramularia endophylla; Verkley et al. 2004c).<br />

Sphaerulina socia (Pass.) Quaedvlieg, Verkley & Crous,<br />

comb. nov. MycoBank MB804478.<br />

Basionym: Septoria socia Pass., Funghi Parm. Septor.: no. 74; Atti<br />

Soc. crittog. ital. 2: 33. 1879.<br />

Description in planta: Symptoms leaf lesions circular to irregular,<br />

single or confluent to form irregular extended lesions, pale to dark<br />

brown, usually surrounded by a red or purple zone, mostly visible<br />

on both sides of the leaf. Conidiomata pycnidial, mostly epiphyllous,<br />

a few to many in each lesion, immersed, globose, brown to black,<br />

80–100(–110) µm diam; ostiolum central, circular, 15–25 µm<br />

wide, surrounding cells darker; conidiomatal wall 10–17 µm thick,<br />

composed 2–3 layers of isodiametric cells, 2–3.5(–5) µm diam, the<br />

cells in the outermost layer(s) pale brown with slightly thickened<br />

walls, the inner cells thin-walled. Conidiogenous cells hyaline,<br />

discrete, rarely integrated in 1(–2)-septate conidiophores, globose,<br />

or narrowly to broadly ampulliform, holoblastic, proliferating<br />

percurrently and/or sympodially, sometimes with indistinct<br />

annellations on an elongated neck, 4–8.5(–12) × 2–3(–3.5) µm.<br />

Conidia cylindrical, straight to slightly curved, rarely flexuous,<br />

attenuated in the upper cell to a pointed to narrowly rounded tip,<br />

attenuated gradually or more abruptly towards a sub-truncate base,<br />

1–3(–5)-septate, not constricted around the septa, hyaline, contents<br />

minute oil-droplets and granular material in the rehydrated state,<br />

(19–)22–34 × 1–1.5(–2) µm (rehydrated). Sexual morph unknown.<br />

Hosts: Chrysanthemum leucanthemum and other wild or cultivated<br />

Chrysanthemum spp.<br />

Material examined: Germany, Torstedt near Harburg, Sep. 1957, R. Schneider s.n.,<br />

BBA 8514, living culture <strong>CBS</strong> 357.58. New Zealand, North Island, Coromandel,<br />

Tairua Forest, along roadside of St. Hway 25, near crossing 25A, on living leaves of<br />

Chrysanthemum leucanthemum, 23 Jan. 2003, G. Verkley 1842a, <strong>CBS</strong> H-21243.<br />

Additional material examined: Netherlands, on leaf of Rosa sp., isolated June 1958<br />

by Plant Protection Service, Wageningen, <strong>CBS</strong> 355.58 (preserved as S. rosae;<br />

possibly infection of a fungus originally identified as S. rosae).<br />

Notes: Punithalingam (1967d) described the conidiogenous cells<br />

as obpyriform, undifferentiated cells producing blastospores, while<br />

Muthumary (1999) also observed sympodially proliferating cells in a<br />

collection from India; the present material from New Zealand clearly<br />

showed both percurrent and sympodial conidiogenesis, even in<br />

a single conidiogenous cell. In this respect, S. socia is similar to<br />

S. chrysanthemella, for which both these proliferations were<br />

observed with transmission electron microscopy (Verkley 1998a).<br />

According to Teterevnikova-Babayan (1987) conidia are<br />

21–35 × 1–1.5 µm, so with these measurements the present<br />

observations are in good agreement. Verkley & Starink-Willemse<br />

(2004) noted that the ITS sequence of <strong>CBS</strong> 357.58 identified<br />

as S. socia suggested a relatively distant relationship with other<br />

Septoria species on the family Asteraceae, and that it was more<br />

closely related to species such as the maple pathogen Sphaerulina<br />

aceris (syn. Septoria aceris, Mycosphaerella latebrosa) and poplar<br />

pathogen Sphaerulina populicola. Multilocus sequencing performed<br />

here confirms that <strong>CBS</strong> 357.58 groups in the Sphaerulina-clade,<br />

and that <strong>CBS</strong> 355.58 originally identified as S. rosae likely got<br />

infected with S. socia. Septoria rosae is a large spored species<br />

(70–90 × 3.5–4 µm) for which the name of the presumed sexual<br />

morph Sphaerulina rehmiana would be accepted (Quaedvlieg et<br />

al. 2013). Based on the huge difference in conidial size it seems<br />

very unlikely that it was confused with S. socia. The material from<br />

New Zealand studied here failed to grow in culture, so a genetic<br />

comparison was not possible. More isolates will be required to<br />

determine the affinities of Sphaerulina rehmiana.<br />

Sphaerulina tirolensis Verkley, Quaedvlieg & Crous, sp.<br />

nov. MycoBank MB804479. Fig. 46.<br />

Etymology: named after the region in Austria where the type<br />

material was collected, Tirol.<br />

Description in planta: Symptoms leaf lesions numerous, circular<br />

to irregular, mostly single, or confluent, dull brown, amphigenous<br />

but on the lower surface barely visible due to the white hairs of<br />

the host; Conidiomata pycnidial, epiphyllous, many in each lesion,<br />

immersed, subglobose to globose, brown to black, 55–100 µm<br />

diam; ostiolum central, circular, initially 15–30 µm wide, later up<br />

to 50 µm wide, surrounding cells somewhat darker; conidiomatal<br />

wall 15–22 µm thick, composed of an outer layer of pale brown<br />

angular to irregular cells, 8–12 µm wide with walls thickened to 1.5<br />

µm, and an inner layer of hyaline, angular to globose, thin-walled<br />

cells. Conidiogenous cells hyaline, discrete, rarely integrated<br />

in 1-septate conidiophores, cylindrical or narrowly to broadly<br />

ampulliform, holoblastic, some proliferating percurrently 1–several<br />

times with indistinct annellations and forming an elongated neck,<br />

rarely proliferating sympodially, 5–12.5(–15) × 3.5–4(–5) µm.<br />

Conidia cylindrical, straight, slightly curved to flexuous, narrowly<br />

to broadly rounded at the apex, truncate or slightly narrowed at<br />

the base, (1–)3–7(–9)-septate, not constricted around the septa,<br />

hyaline, with granular contents and minute oil-droplets, 40–70(–78)<br />

× 2.5–3(–3.5) µm (rehydrated). Sexual morph not observed.<br />

Description in vitro: Colonies on OA 2.5–4(–5) mm diam in 2 wk;<br />

16–20 mm in 7 wk), with an even, glabrous, colourless or buff to<br />

rosy-buff margin; immersed mycelium dark green or dull green,<br />

showing some salmon or rosy-buff colours only after more than 6<br />

wk of incubation; colonies restricted, but with irregular elevations<br />

in the centre on which complexes of stromatic conidiomata and<br />

single pycnidia are formed, releasing whitish conidial slime; aerial<br />

mycelium variable, almost wanting, to well developed as a dense,<br />

white, woolly-floccose mat; reverse mostly olivaceous-black,<br />

locally buff to rosy-buff. Colonies on CMA 3–4.5(–5) mm daim in<br />

2 wk, 6–8 mm in 3 wk (22–25 mm in 7 wk), as on OA, but with<br />

a narrower colourless margin. Conidial slime also milky white, as<br />

on OA. Colonies on MEA 2–4(–6) mm diam in 2 wk, 6–9 mm in 3<br />

wk (16–22 mm in 7 wk), with an even, glabrous colourless to buff<br />

margin; colonies restricted, irregularly pustulate to hemispherical,<br />

sometimes with rather high, subglobose outgrowths; immersed<br />

mycelium buff to honey usually only near the margin, olivaceousblack<br />

in the centre; almost entirely covered by a dense, appressed<br />

www.studiesinmycology.org<br />

299


Verkley et al.<br />

Fig. 46. Sphaerulina tirolensis. A. Conidia in planta (<strong>CBS</strong> H-21232, holotype). B. Conidia on OA (<strong>CBS</strong> 109017). Scale bars = 10 µm.<br />

mat of white or grey aerial mycelium; a diffusable pigment staining<br />

the surrounding agar more or less ochreous; reverse usually dark<br />

umber or olivaceous-black in the centre, surrounded by ochreous,<br />

which later becomes fulvous to apricot. Colonies on CHA 3–4 mm<br />

diam in 2 wk, 5–6 mm in 3 wk (12–16 mm in 7 wk), with an even<br />

but later more irregular, glabrous, buff, rosy-buff or flesh margin;<br />

colonies pustulate to almost hemispherical, the surface olivaceousblack<br />

to dark slate blue, glabrous, or covered by diffuse, greyish or<br />

flesh aerial mycelium, some colonies later covered by a pure white,<br />

dense mat of aerial mycelium; diffusable pigment not observed;<br />

reverse blood colour to umber. Cultures produce large masses of<br />

pale flesh conidial slime, aggregating around the colony margin.<br />

Conidiomata pycnidial or merged into stromatic complexes.<br />

Conidiogenous cells as in planta. Conidia straight to curved<br />

or flexuous, narrowly to broadly rounded at the apex, narrowly<br />

truncate at the base, 3–7(–9)-septate, not constricted around the<br />

septa, hyaline, contents granular with minute oil-droplets, 54–96(–<br />

108) × 2.5–3 µm.<br />

Host: Rubus idaeus.<br />

Material examined: Austria, Tirol, Pitztal, Arzl, on living leaves of Rubus idaeus, 30<br />

July 2000, G. Verkley 1021, holotype <strong>CBS</strong> H-21232, living cultures ex-type <strong>CBS</strong><br />

109017, 109018.<br />

Notes: Sphaerulina tirolensis differs from another septoria-like<br />

fungus described on R. idaeus, viz. Rhabdospora rubi var. rubiidaei<br />

described from stems of R. idaeus in Romania, with conidia<br />

(36–)40–50(–60) × 2(–2.5) µm. Demaree & Wilcox (1943) studied<br />

Septoria leaf-spot diseases of raspberry (R. idaeus) in North<br />

America. Cylindrosporium rubi, of which the sexual morph is<br />

Sphaerulina rubi cf. Demaree & Wilcox (1943), is also different.<br />

The sequences of the various protein-coding genes fully support<br />

Sphaer. tirolensis as a separate species from the next taxon,<br />

Sphaer. westendorpii. The latter can be distinguished from Sphaer.<br />

tirolensis by the smaller conidia in planta [24–45(–50) × 1.8–2.2<br />

µm] and also in culture [30–68(–80) × 1.5–2(–2.5) µm].<br />

Sphaerulina westendorpii Verkley, Quaedvlieg & Crous,<br />

comb. et nom. nov. MycoBank MB804480. Fig. 47.<br />

Basionym: Septoria rubi Westend., in Westend. & Wallay, Herb.<br />

crypt. Belge, Fasc. 19, no. 938. 1854; Kickx, Fl. crypt. Flandr. 1:<br />

432. 1867.<br />

= Mycosphaerella rubi Roark, Phytopathology 11: 329. 1921.<br />

Description in planta: Symptoms leaf lesions numerous, circular<br />

to irregular, single or confluent, pale yellowish brown to greyish<br />

brown, partly well-delimited by a dark red brown line or zone.<br />

Conidiomata pycnidial, epiphyllous, several in each lesion,<br />

immersed, subglobose to globose, brown to black, 55–90 µm<br />

diam; ostiolum central, circular, initially 20–40 µm wide, later<br />

becoming more irregular and up to 70 µm wide, surrounding cells<br />

somewhat darker; conidiomatal wall 10–15 µm thick, composed of<br />

a homogenous tissue of hyaline, angular cells 2.5–3.5 µm diam,<br />

the outermost cells pale brown with slightly thickened walls, the<br />

inner cells thin-walled. Conidiogenous cells hyaline, discrete,<br />

rarely integrated in 1-septate conidiophores, narrowly to broadly<br />

300


A new approach to species delimitation in Septoria<br />

Fig. 47. Sphaerulina westendorpii. A. conidia in planta (<strong>CBS</strong> H-21229, epitype); B. conidia on OA (<strong>CBS</strong> 102327). Scale bars = 10 µm.<br />

ampulliform, holoblastic, proliferating percurrently several times<br />

with indistinct annellations thus forming a relatively elongated neck,<br />

rarely also sympodially, 5–10(–15) × 2.5–3.5(–4) µm. Conidia<br />

filiform-cylindrical, straight, slightly curved to flexuous, narrowly<br />

to broadly rounded at the apex, narrowly truncate at the base,<br />

(0–)2–3(–5)-septate, not constricted around the septa, hyaline,<br />

contents granular material, sometimes with minute oil-droplets both<br />

in the living and rehydrated state, 24–45(–50) × 1.8–2.2 µm (living;<br />

rehydrated, 1.5–2.0 µm wide).<br />

Description in vitro: Colonies on OA 8–10 mm diam in 19 d, with an<br />

even, glabrous, colourless or buff to rosy-buff margin; immersed<br />

mycelium dark green or dull green, but sectors or other parts of<br />

colonies may be only olivaceous-buff or rosy-buff to salmon;<br />

colonies spreading, with irregular elevations in the centre on which<br />

conidiomata are formed, releasing a whitish conidial slime; aerial<br />

mycelium almost absent to well developed and forming a dense,<br />

white, woolly-floccose mat; reverse olivaceous-black, locally buff<br />

to rosy-buff. Colonies on CMA 5–7(–10) mm diam in 19 d, as on<br />

OA, but more distinctly elevated and restricted. In faster growing<br />

sectors salmon to ochreous pigmentation (due to weak production<br />

of red pigment?) in a peripheral zone preceedes the formation<br />

a dominant greens. Conidial slime also milky white, as on OA.<br />

Colonies on MEA 9–12 mm diam in 19 d, with an even, glabrous<br />

colourless to buff margin; colonies restricted, irregularly pustulate to<br />

hemispherical; immersed mycelium buff to honey near the margin,<br />

olivaceous-black in the centre, sometimes mostly honey; almost<br />

entirely covered by a dense, appressed mat of white or grey aerial<br />

mycelium; a diffusable pigment staining the surrounding agar more<br />

or less ochreous; reverse usually dark umber or olivaceous-black in<br />

the centre, surrounded by ochreous, which later becomes fulvous<br />

to apricot. Colonies on CHA 7–9 mm diam in 19 d, with an even<br />

but later more irregular, glabrous, buff, rosy-buff or flesh margin;<br />

colonies pustulate to almost hemispherical, the surface ochreous<br />

to sienna, glabrous, or covered by diffuse, greyish or flesh aerial<br />

mycelium; diffusable pigment not observed; reverse blood colour<br />

to umber.<br />

Conidiomata pycnidial or merged into stromatic complexes,<br />

as in planta. Conidiogenous cells as in planta, mostly cylindrical<br />

and proliferating percurrently, rarely also sympodially, 7–15(–18) ×<br />

2.5–3.5(–4) µm; Conidia as in planta but mostly 3–5-septate and<br />

considerably longer, 30–68(–80) × 1.5–2(–2.5) µm.<br />

Hosts: Rubus spp.<br />

Material examined: Belgium, Oostacker, near Gand, on leaves of Rubus sp.,<br />

isotype BR-MYCO 159265-88, also distributed in Westend. & Wallay, Herb. crypt.<br />

Belge, Fasc. 19, no. 938. Czech Republic, Mikulov, on living leaves of Rubus<br />

sp., 15 Sep. 2008, G. Verkley 6002, <strong>CBS</strong> H-21257. Netherlands, prov. Limburg,<br />

Gerendal, on living leaves of R. fruticosus s.l., 28 June 2000, G. Verkley 964,<br />

epitype designated here <strong>CBS</strong> H-21229 “MBT175362”, living cultures ex-epitype<br />

<strong>CBS</strong> 109002, 109003; Prov. Limburg, Mookerheide, in mixed forest, on living leaves<br />

of R. fruticosus s.l., 9 Sep. 1999, G. Verkley 923, <strong>CBS</strong> H-21205, living culture <strong>CBS</strong><br />

102327; same loc. and substr., 23 Aug. 2004, G. Verkley & M. Starink 3036, <strong>CBS</strong><br />

H-21263, living culture <strong>CBS</strong> 117478; same substr., Prov. Limburg, St. Jansberg<br />

near Plasmolen, in mixed forest, G. Verkley 924, <strong>CBS</strong> H-21206; Prov. Flevoland,<br />

Erkemeder strand, in sandy dunes, on living leaves of R. fruticosus s.l., 8 Sep. 1999,<br />

G. Verkley 930, <strong>CBS</strong> H-21210.<br />

Notes: Jørstad (1965) discussed the problems regarding the<br />

taxonomy of Septoria species described from Rubus. Some of the<br />

later described taxa have been placed in synonymy with Septoria<br />

rubi, but most still need to be reevaluated based on fresh material,<br />

culture studies, and molecular characterisation. The type material<br />

in BR contains several well-preserved leaves of the R. fruticosus<br />

complex, showing typical symptoms. Fruitbodies investigated<br />

contained mostly 1–3-septate conidia, 17.5–40 × 1–1.5 µm, and<br />

with the typical shape of this common fungus on Rubus spp. The<br />

specimen <strong>CBS</strong> H-21229 from R. fruticosus in the south of the<br />

Netherlands, is chosen as epitype. This species is nested within<br />

the Sphaerulina-clade, and a new name in Sphaerulina should<br />

www.studiesinmycology.org<br />

301


Verkley et al.<br />

therefore be proposed for it. Sphaerulina rubi Demaree & Wilcox<br />

is already in use for another fungus with a Cylindrosporium sexual<br />

state (C. rubi Ellis & Morgan, conidia 40–55 × 2.5 µm cf. Saccardo),<br />

so Sphaer. westendorpii is proposed here as nomen novum.<br />

Sphaerulina rehmiana has been associated with Septoria rosae<br />

<strong>CBS</strong> 355.58, which has been identified as S. rosae, is genetically<br />

distinct from Sphaer. westendorpii (Quaedvlieg et al. 2013).<br />

Insufficiently known species<br />

For the following species no host material was available and these<br />

have only been studied in culture, mostly based on older isolates,<br />

for which details are not described when the strain is regarded as<br />

degenerate.<br />

Septoria hippocastani Berk. & Broome, Ann. Mag. nat.<br />

Hist., Ser. 2, 5: 379. 1850.<br />

Material examined: Germany, Pfälzer Wald, on Aesculus hippocastanum, Sep<br />

1961, deposited Nov 1961, W. Gerlach, living culture <strong>CBS</strong> 411.61 (= BBA 9619).<br />

Note: <strong>CBS</strong> 411.61 is degenerated and sterile, but based on<br />

multilocus sequence analysis it can be concluded that it is a<br />

Septoria s. str. (Fig. 2).<br />

Septoria limonum Pass., Atti Soc. crittog. ital., 2: 23. 1879.<br />

Description in vitro (18 ºC, near UV): Colonies on OA 20–29 mm<br />

diam in 3 wk, with an even, colourless margin; colonies plane,<br />

spreading, immersed mycelium in the centre flesh, surrounded by a<br />

broad zone of dark vinaceous to brown-vinaceous, aerial mycelium<br />

absent, or scarce, with few tufts of pure white aerial hyphae; reverse<br />

concolorous. No sporulation observed. Colonies on MEA 25–32 mm<br />

diam in 3 wk, with an even to somewhat ruffled, buff to colourless<br />

margin; colonies spreading, somewhat elevated in the centre,<br />

immersed mycelium appearing grayish, the colony surface almost<br />

entirely covered by a dense mat of white to grey, woolly-floccose<br />

aerial mycelium; reverse in the centre rust, surrounded by a broad<br />

zone of olivaceous-grey to greenish grey, which is sharply bordered<br />

by the narrow buff to luteous margin. No sporulation observed.<br />

Material examined: Italy, Citrus limonium, isolated Mar. 1951, deposited by G.<br />

Goidanich, living culture <strong>CBS</strong> 419.51.<br />

Notes: In the multilocus sequence analysis (Fig. 2) this strain<br />

groups with <strong>CBS</strong> 356.36 (S. citricola) and few other strains in a<br />

weakly supported clade close to the plurivorous Septoria protearum<br />

and isolates of Septoria citri. Due to the lack of morphological<br />

information linked to this strain, its identity remains uncertain.<br />

DISCUSSION<br />

The type species of the genus Septoria, S. cytisi, could not be<br />

included in the multilocus analysis due to the fact that only LSU and<br />

ITS sequences were available for this species. However, as shown<br />

by Quaedvlieg et al. (2011), the position of this taxon is beyond<br />

doubt central to the clade indicated here as the main Septoria<br />

clade. Several “typical” Septoria species infecting herbaceous<br />

plants proved genetically distant from S. cytisi and its relatives, and<br />

can best be classified in separate genera, Sphaerulina (Quaedvlieg<br />

et al. 2013) and Caryophylloseptoria.<br />

The identification of Septoria has thus far mainly relied on host<br />

taxonomy and morphological characters of the shape, size, and<br />

septation of conidia (Jørstad 1965, Teterevnikova-Babayan 1987,<br />

Andrianova 1987, Vanev et al. 1997, Muthumary 1999, Shin &<br />

Sameva 2004, Priest 2006). Taxonomists have noted that conidial<br />

width is generally a more reliable character for species identification<br />

than conidial length, which is more variable. Some also noticed that<br />

Septoria material collected from the same location and host species,<br />

but under different environmental conditions or at different times in<br />

the same season, can differ considerably in average conidial sizes,<br />

particularly length (Jørstad 1965). These findings are also confirmed<br />

in our study. Reliable identification based on morphological<br />

comparison alone is not possible for many Septoria species, and<br />

reference sequences will have to be produced for many more taxa<br />

in future. This will require critical studies of type specimens and<br />

also require the recollection of fresh material. It is crucial that the<br />

types of the oldest names available for Septoria on certain hosts<br />

will need to be studied as part of such work, and where necessary<br />

epitypes designated to fix the genetic application of these names.<br />

Although hardly practised thus far by taxonomists, isolation and study<br />

in culture is a valuable and indispensable tool for Septoria species<br />

delimitation and identification. We noted that the shape of conidia<br />

on OA generally agree best with those in the source material on<br />

the natural substrate. Under standardised incubation conditions on<br />

standard media cultures originating from deviant voucher material,<br />

for example because it developed under adverse conditions, show<br />

again their “normal” phenotypes which is better for comparison<br />

purposes. Extracting DNA from axenic cultures is straight-forward<br />

and less prone to errors caused by contaminants, a problem often<br />

encountered when extracting DNA from plant tissue.<br />

The K2P results show that the five protein coding genes used<br />

during this research should all theoretically be able to distinquish<br />

every species in this dataset as their average inter- to intraspecific<br />

distance ration is over 10:1. The problem is that these are average<br />

numbers, not absolute numbers. For example, the Btub K2P graph<br />

in Fig. 1 starts at 0 and not at at 0.29, meaning that there actually<br />

are a few species in our dataset that are not distinguishable by Btub<br />

alone (although obviously by far most species in fact are). To avoid<br />

this, we recommend using at least two of the protein coding loci<br />

used in this study for identification of Septoria and allied genera.<br />

Because EF and Btub both have very high PCR success rates<br />

and have the highest species resolution percentage of all the loci<br />

used in this study, we recommend using these two loci for species<br />

identification purposes. It is advisable, however, to first sequence<br />

the ITS and LSU for a preliminary genus identification by blasting in<br />

GenBank and other useful databases.<br />

The multilocus sequence dataset generally provided good<br />

resolution, with maximum to high bootstrap support for almost all<br />

terminal and most of the deeper nodes of the phylogenetic tree. The<br />

intraspecific variation in the genes investigated is limited for most<br />

taxa, even if specimens originate from such distant geographic<br />

origins as New Zealand, Korea and Europe (S. convolvuli, S.<br />

leucanthemi, S. polygonorum). Strains assigned to Septoria citri<br />

possibly represent a species complex, one of few groups within<br />

the main Septoria clade that was not resolved. One case of cryptic<br />

speciation is revealed in the S. chrysanthemella complex, where<br />

at least two genetically discrete entities can be found that are<br />

phenotypically difficult to distinguish.<br />

Our results confirm that most species of Septoria have narrow<br />

host ranges, being limited to a single genus or a few genera of the<br />

same plant family. There were a few notable exceptions, however.<br />

We demonstrated that the supposed single-family host ranges<br />

302


A new approach to species delimitation in Septoria<br />

of Septoria paridis (Liliaceae) and S. urticae (Urticaceae), each<br />

actually included one additional family (Violaceae and Lamiaceae,<br />

respectively). More surprisingly Septoria protearum, previously<br />

only associated with Proteaceae (Protea) (Crous et al. 2004), was<br />

now found to be also associated with Araceae (Zanthedeschia),<br />

Aspleniaceae (Asplenium), Rutaceae (Boronia), Boraginaceae<br />

(Myosotis), Oleandraceae (Nephrolepis), and Rosaceae (Geum).<br />

To our knowledge this is the first study to provide DNA-based<br />

evidence confirming that multiple family-associations occur for a<br />

single species in Septoria. It is to be expected that collecting and<br />

sequencing of more material will show more taxa to be plurivorous,<br />

and perhaps S. paridis and S. urticae will be among those.<br />

Coevolution of plant pathogenic fungi and their hosts has<br />

been documented for several groups. Other possible patterns of<br />

evolution have already been suggested for septoria-like fungi in<br />

previous studies but the data available were not sufficient to fully<br />

understand the evolution of these fungi (Feau et al. 2006). The<br />

robust phylogeny we inferred revealed polyphyletic distribution<br />

patterns over the entire range of the Septoria clade for no less than<br />

10 (singletons excluded) of the host families represented. These<br />

results clearly reject the coevolution hypothesis for Septoria, as<br />

species do not seem to consistently coevolve with hosts from a<br />

single host family but frequently jump successfully to hosts in new<br />

families. Caryophylloseptoria seems an exceptional genus in that it<br />

only comprises species infecting Caryophyllaceae, but it should be<br />

noted that it now only contains four species, as three other species<br />

infecting this family cluster distant within the Septoria clade (S.<br />

cucubali, S. cerastii, and S. stellariae). In the other clades some<br />

single-host family clusters can be found, but they do not comprise<br />

more than six fungal species (S. chrysanthemella and close<br />

relatives of Asteraceae within subclade 4b).<br />

We conclude that trans-family host jumping must be a major<br />

force driving the evolution of Septoria and Sphaerulina. Species<br />

like S. paridis and S. urticae infecting (at least) two plant families<br />

may in fact be cases in point, as they could be in a transitional<br />

period of gradually changing from one principal host family to<br />

another, unrelated one. The genetic basis for successful host<br />

jumping is unclear. It may involve horizontal gene transfer, transient<br />

phases of endophytic infections in “non-hosts” as a first step in a<br />

process of genetic adaptation to new optimal hosts, or perhaps a<br />

combination of both. Plant pathological research may shed more<br />

light on the mechanisms driving Septoria evolution which would be<br />

important, as it may in future allow accurate assessment of risks<br />

involved with the introduction of new crops in areas where Septoria<br />

species occur on the local flora.<br />

Host family index<br />

The taxa fully described in the Taxonomy section of this study are<br />

listed below according to the host family.<br />

Aceraceae<br />

Sphaerulina aceris<br />

Apiaceae<br />

Septoria aegopodii<br />

S. aegopodina<br />

S. anthrisci<br />

S. apiicola<br />

S. heraclei<br />

S. petroselini<br />

S. sii<br />

Araceae<br />

Septoria protearum<br />

Aspleniaceae<br />

Septoria protearum<br />

Asteraceae<br />

Septoria chromolaenae<br />

S. chrysanthemella<br />

S. ekmanniana<br />

S. erigerontis<br />

S. hypochoeridis<br />

S. lactucae<br />

S. leucanthemi<br />

S. matricariae<br />

S. putrida<br />

S. senecionis<br />

Sphaerulina socia<br />

Betulaceae<br />

Sphaerulina betulae<br />

Boraginaceae<br />

Septoria protearum<br />

Campanulaceae<br />

Septoria campanulae<br />

S. citri complex<br />

Caryophyllaceae<br />

Caryophylloseptoria lychnidis<br />

C. silenes<br />

C. spergulae<br />

Septoria cerastii<br />

S. cucubali<br />

S. stellariae<br />

Convolvulaceae<br />

Septoria convolvuli<br />

Cornaceae<br />

Sphaerulina cornicola<br />

Cucurbitaceae<br />

Septoria cucurbitacearum<br />

Dipsacaceae<br />

Septoria scabiosicola<br />

Fabaceae<br />

Septoria astragali<br />

Hypericaceae<br />

Septoria hyperici<br />

Iridaceae<br />

Septoria sisyrinchii<br />

Lamiaceae<br />

Septoria galeopsidis<br />

S. lamiicola<br />

S. melissae<br />

S. stachydis<br />

Liliaceae<br />

Septoria paridis<br />

Oleandraceae<br />

Septoria protearum<br />

Onagraceae<br />

Septoria epilobii<br />

Passifloraceae<br />

Septoria passifloricola<br />

Polemoniaceae<br />

Septoria phlogis<br />

Polygonaceae<br />

Septoria polygonorum<br />

www.studiesinmycology.org<br />

303


Verkley et al.<br />

S. rumicum<br />

Primulaceae<br />

Septoria lysimachiae<br />

Ranunculaceae<br />

Septoria clematidis<br />

S. lycoctoni<br />

S. napelli<br />

Rosaceae<br />

Septoria citri complex<br />

Sphaerulina gei<br />

Sphaer. tirolensis<br />

Sphaer. westendorpii<br />

Rubiaceae<br />

Septoria cruciatae<br />

S. coprosmae<br />

Rutaceae<br />

Septoria protearum<br />

Salicaceae<br />

Sphaerulina frondicola<br />

Scrophulariaceae<br />

Septoria digitalis<br />

Urticaceae<br />

Septoria urticae<br />

Verbenaceae<br />

Septoria verbenae<br />

Violaceae<br />

Septoria paridis<br />

ACKNOWLEDGEMENTS<br />

We thank the technical staff of the <strong>CBS</strong> Collection for their support during this<br />

project. Arien van Iperen (cultures) and Marjan Vermaas (photographic plates)<br />

are acknowledged for their invaluable assistance. Huub van der Aa is thanked<br />

for his help during collecting and identifying material. Simeon Vanev is gratefully<br />

acknowledged for his support with collecting bibliographic data and translating<br />

Russian diagnoses. Part of the DNA barcode sequencing results used in this study<br />

was financially supported by the Fonds Economische Structuurversterking (FES,<br />

Dutch Ministery of Education, Culture and Science grant BEK/BPR-2009/137964-U,<br />

“Making the Tree of Life Work”).<br />

REFERENCES<br />

Andrianova TV (1987). Problems of classification and phylogeny of Septoria<br />

species. Mikologiya i Fitopatologiya 21: 393–399.<br />

Aptroot A (2006). Mycosphaerella and its anamorphs 2. Conspectus of<br />

Mycosphaerella. <strong>CBS</strong> Biodiversity Series 5. <strong>CBS</strong>-<strong>KNAW</strong> Fungal Biodiversity<br />

Centre, Utrecht, The Netherlands.<br />

Arx JA von (1983). Mycosphaerella and its anamorphs. Proceedings Koninklijke<br />

Nederlandse Akademie van Wetenschappen, Series C - Biological and Medical<br />

Sciences 86 (1): 15–54.<br />

Beach WS (1919). Biological spezialization in the genus Septoria. American Journal<br />

of Botany 6: 1–33.<br />

Braun U (1995). A monograph of Cercosporella, Ramularia and allied genera<br />

(<strong>Phytopathogenic</strong> Hyphomycetes). Vol. 1. IHW-Verlag, Eching.<br />

Breeÿen A den, Groenewald JZ, Verkley GJM, Crous PW (2006). Morphological and<br />

molecular characterisation of Mycosphaerellaceae associated with the invasive<br />

weed, Chromolaena odorata. Fungal Diversity 23: 89–110.<br />

Cheewangkoon R, Crous PW, Hyde KD, Groenewald JZ, To-anan C (2008). Species<br />

of Mycosphaerella and related anamorphs on Eucalyptus leaves from Thailand.<br />

Persoonia 21: 77–91.<br />

Cochran LC (1932). A study of two Septoria leaf spots of celery. Phytopathology<br />

22: 791–812.<br />

Constantinescu O (1984). Taxonomic revision of Septoria-like fungi parasitic on<br />

Betulaceae. Transactions of the British Mycological Society 83: 383–398.<br />

Crous PW, Aptroot A, Kang J-C, Braun U, Wingfield MJ (2000). The genus<br />

Mycosphaerella and its anamorphs. Studies in Mycology 45: 107–121.<br />

Crous PW, Groenewald JZ (2005). Hosts, species and genotypes: opinions versus<br />

data. Australasian Plant Pathology 34: 463–470.<br />

Crous PW, Denman S, Taylor JE, Swart L, Palm, ME (2004a).Cultivation and<br />

diseases of Proteaceae: Leucadendron, Leucospermum and Protea. <strong>CBS</strong><br />

Biodiversity Series 2: 1–228.<br />

Crous PW, Groenewald JZ, Pongpanich K, Himaman W, Arzanlou M, Wingfield MJ<br />

(2004b). Cryptic speciation and host specificity among Mycosphaerella spp.<br />

occurring on Australian Acacia species grown as exotics in the tropics. Studies<br />

in Mycology 50: 457–469.<br />

Crous PW, Kang J-C, Braun U (2001). A phylogenetic redefinition of anamorph<br />

genera in Mycosphaerella based on ITS rDNA sequences and morphology.<br />

Mycologia 93: 1081–1101.<br />

Crous PW, Slippers B, Wingfield MJ, Rheeder J, Marasas WFO, et al. (2006a).<br />

Phylogenetic lineages in the Botryosphaeriaceae. Studies in Mycology 55:<br />

235–253.<br />

Crous PW, Verkley GJM, Groenewald JZ, Samson RA (2009). <strong>CBS</strong> Laboratory<br />

Manual Series 1. <strong>CBS</strong>-<strong>KNAW</strong> Fungal Biodiversity Centre, Utrecht, The<br />

Netherlands.<br />

Crous PW, Wingfield MJ, Mansilla JP, Alfenas AC, Groenewald JZ (2006b).<br />

Phylogenetic reassessment of Mycosphaerella spp. and their anamorphs<br />

occurring on Eucalyptus. II. Studies in Mycology 55: 99–131.<br />

Demaree JB, Wilcox MS (1943). The fungus causing the so-called “Septoria leafspot<br />

disease” of raspberry. Phytopathology 33: 986–1003.<br />

Diedicke H (1915). Pilze VII, Sphaeropsidaea, Melanconiae,. Kryptogamenfl. Mark<br />

Brandenburg 9: 1–962.<br />

Farr DF (1991). Septoria species on Cornus. Mycologia 83: 611–623.<br />

Farr DF (1992). Species of Septoria on the Fabaceae, subfamily Faboidae, tribe<br />

Genistae. Sydowia 44: 13–31.<br />

Feau N, Hamelin RC, Bernier L (2006). Attributes and congruence of three molecular<br />

data sets: inferring phylogenies among Septoria-related species from woody<br />

perennial plants. Molecular Phylogenetics and Evolution 40: 808–829.<br />

Gabrielson RL, Grogan RG (1964). The late blight organism Septoria apiicola.<br />

Phytopathology 54: 1251–1257.<br />

Goodwin SB, Dunkle LD, Zismann VL (2001). Phylogenetic analysis of Cercospora<br />

and Mycosphaerella based on the internal transcribed spacer region of<br />

ribosomal DNA. Phytopathology 91: 648–658.<br />

Grove WB (1935). British stem and leaf fungi (Coelomycetes). Vol. I: Sphaeropsidales,<br />

Sphaerioideae with hyaline conidia: 1–488.<br />

Hall TA (1999). BioEdit: A user-friendly biological sequence alignment editor and<br />

analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series 41:<br />

95–98.<br />

Hebert PDN, Cywinska A, Ball SL, DeWaard JR (2003). Biological identifications<br />

through DNA barcodes. Proceedings of the Royal Society of London Series<br />

B 270: 313–321.<br />

Huelsenbeck JP, Ronquist F (2001). MRBAYES: Bayesian inference of phylogenetic<br />

trees. Bioinformatics 17: 754–755.<br />

Jørstad I (1965). Septoria and septoroid fungi on dicotyledones in Norway. Skrifter<br />

utgitt av Det Norske Videnskaps-Akademi i Oslo, I: Mat-Naturv. Klasse 22:1-<br />

110.<br />

Katoh K, Misawa K, Kuma K, Miyata T (2002). MAFFT: a novel method for rapid<br />

multiple sequence alignment based on fast Fourier transform. Nucleic Acids<br />

Research 30: 3059–3066.<br />

Kuijpers AFA, Aptroot A (2004). A revision of Mycosphaerella section Longispora<br />

(Ascomycetes). Nova Hedwigia 75: 451–468.<br />

Lombard L, Crous PW, Wingfield BD, Wingfield MJ (2010). Species concepts in<br />

Calonectria (Cylindrocladium). Studies in Mycology 66: 1–13.<br />

Markevičius V, Treigienė A (2003). Sphaeropsidales. Genus Septoria. Mycota<br />

Lithuaniae 10, 3: 1–199.<br />

Mason-Gamer RJ, Kellogg EA (1996). Testing for phylogenetic conflict among<br />

molecular data sets in the tribe Triticeae (Gramineae). Systematic Biology 45:<br />

524–545.<br />

Muthumary J (1999). First contribution to a monograph of Septoria species in India.<br />

Madras: Centre for advanced studies in Botany.<br />

Nylander JAA (2004). MrModeltest v2. Program distributed by the author.<br />

Evolutionary Biology Centre Uppsala University.<br />

Petrak F (1925). Beiträge zur Pilzflora Südost-Galiziens und der Zentralkarpathen.<br />

Hedwigia 65: 179–330.<br />

Petrak F (1957). Die auf Aconiten vorkommenden Arten der Gattung Septoria.<br />

Sydowia 11: 375–379.<br />

Priest MJ (2006). Fungi of Australia. Septoria. ABRS, Canberra: CSIRO Publishing,<br />

Melbourne.<br />

Punithalingam E (1967a). Septoria chrysanthemella. CMI Descriptions of Pathogenic<br />

Fungi and Bacteria 137. Commonwealth Mycological Institute, Kew.<br />

Punithalingam E (1967b). Septoria leucanthemi. CMI Descriptions of Pathogenic<br />

Fungi and Bacteria 138. Commonwealth Mycological Institute, Kew<br />

Punithalingam E (1967c). Septoria obesa. CMI Descriptions of Pathogenic Fungi<br />

and Bacteria 139. Commonwealth Mycological Institute, Kew.<br />

304


A new approach to species delimitation in Septoria<br />

Punithalingam E (1967d). Septoria socia. CMI Descriptions of Pathogenic Fungi and<br />

Bacteria 140. Commonwealth Mycological Institute, Kew.<br />

Punithalingam E (1982). Septoria cucurbitacearum. CMI Descriptions of Pathogenic<br />

Fungi and Bacteria 740. Commonwealth Mycological Institute, Kew.<br />

Punithalingam E, Holiday P (1972). Septoria lactucae. CMI Descriptions of<br />

Pathogenic Fungi and Bacteria 335. Commonwealth Mycological Institute,<br />

Kew.<br />

Punithalingam E, Wheeler BEJ (1965). Septoria spp. occurring on species of<br />

Chrysanthemum. Transactions of the British Mycological Society 48: 423–439.<br />

Quaedvlieg W, Kema GHJ, Groenewald JZ, Verkley GJM, Seifbarghi S, Razavi M,<br />

Gohari A, Mirzadi, Mehrabi R, Crous PW (2011). Zymoseptoria gen. nov.: a<br />

new genus to accommodate Septoria-like species occurring on graminicolous<br />

hosts. Persoonia 26: 57–69.<br />

Quaedvlieg W, Groenewald JZ, Jesús Yáñez-Morales M, Crous PW (2012). DNA<br />

barcoding of Mycosphaerella species of quarantine importance to Europe.<br />

Persoonia 29: 101–115.<br />

Quaedvlieg W, Verkley GJM, Shin H-D, Barreto RW, Algenas AC, Swart WJ,<br />

Groenewald JZ, Crous PW (2013). Sizing up Septoria. Studies in Mycology 75:<br />

307–390. (this volume).<br />

Radulescu E, Negru A, Docea E (1973). Septoriozele din România. Bucureşti:<br />

Editura Academiei Republicii Socialiste România.<br />

Rayner RW (1970). A mycological colour chart. CMI and British Mycological Society.<br />

Kew, UK.<br />

Saccardo PA (1884). Sylloge Fungorum: Sylloge Sphaeropsidearum et<br />

Melanconiearum. 3: 542. Padova, Italy.<br />

Saccardo PA (1895). Sylloge fungorum: Supplemental Universale, Pars III 11:<br />

1–753. Padova, Italy.<br />

Saccardo PA (1906). Sylloge fungorum: Supplemental Universale, Pars VII 18:<br />

1–838. Padova, Italy.<br />

Saccardo PA, Sydow P (1899). Sylloge Fungorum: Supplemental Universale, Pars<br />

IV 14: 1–1316. Padova, Italy.<br />

Sheridan JE (1968). Conditions for infection of celery by Septoria apiicola. Plant<br />

Disease Report 52: 142–145.<br />

Shin HD, Sameva EF (2004). Septoria in Korea (Plant Pathogens of Korea 11).<br />

National Institute of Agricultural Science and Technology, Republic of Korea.<br />

Simon UK, Groenewald JZ, Stierhof Y-D, Crous PW, Bauer R (2009). A necrotrophic<br />

phytopathogen forming a special cellular interaction with its host Aegopodium<br />

podagraria. Mycological Progress 9: 49–56.<br />

Smissen RD, Clement JC, Garnock-Jones PJ, Chambers JK (2002). Subfamilial<br />

relationships within Caryophyllaceae as inferred from 5’ ndhF sequences.<br />

American Journal of Botany 89: 1336–1341.<br />

Stewart EL, Liu Z, Crous PW, Szabo LJ (1999). Phylogenetic relationships among<br />

some cercosporoid anamorphs of Mycosphaerella based on rDNA sequence<br />

analysis. Mycological Research 103: 1491–1499.<br />

Sutton BC (1980). The Coelomycetes. Fungi imperfecti with Pycnidia, Acervuli and<br />

Stromata. Commonwealth Mycological Institute, Kew, Surrey, England.<br />

Sutton BC, Pascoe IG (1987). Septoria species on Acacia. Transactions of the<br />

British Mycological Society 89: 521–532.<br />

Sutton BC, Pascoe IG (1989). Some Septoria species on native Australian plants.<br />

Studies in Mycology 31: 177–186.<br />

Sutton BC, Hennebert GL (1994). Interconnections amongst anamorphs and their<br />

possible contribution to ascomycete systematics. In Ascomycete systematics:<br />

problems and perspectives in the nineties (Hawksworth DL, ed.), pp. 77–98.<br />

Plenum Press, New York, USA.<br />

Sutton BC, Waterston JM (1966) Septoria apiicola. CMI Descriptions of Pathogenic<br />

Fungi and Bacteria 88. Commonwealth Mycological Institute, Kew.<br />

Sydow H von (1924). Beiträge zur Kenntnis der Pilzflora Neu-Seelands. I. Annales<br />

Mycologici 22: 299–317.<br />

Tamura K, Dudley J, Nei M, Kumar S (2007). MEGA4: Molecular evolutionary<br />

genetics analysis (MEGA) software version 4.0. Molecular Biology and<br />

Evolution 24: 1596–1599.<br />

Teterevnikova-Babayan DN (1987). Fungi of the genus Septoria in the U.S.S.R.<br />

Yerevan: Akademia Nauk Armyanskoi SSR.<br />

Vanev SG, Sameva EF, Bakalova GG (1997). Fungi Bulgaricae 3. Ordo<br />

Sphaeropsidales. Sofia: Editio Academica Prof. Marin Drinov.<br />

Verkley GJM (1998a). Ultrastructural evidence for two types of proliferation in a<br />

single conidiogenous cell of Septoria chrysanthemella. Mycological Research<br />

102: 368–372.<br />

Verkley GJM (1998b). Ultrastructure of conidiogenesis and conidia in two species of<br />

Septoria sensu lato. Mycologia 90: 189–198.<br />

Verkley GJM, Priest MJ (2000). Septoria and similar coelomycetous anamorphs of<br />

Mycosphaerella. Studies in Mycology 45: 123–128.<br />

Verkley GJM, Starink-Willemse M (2004a). A phylogenetic study of some Septoria<br />

species pathogenic to Asteraceae based on ITS ribosomal DNA sequences.<br />

Mycological Progress 3: 315–322.<br />

Verkley GJM, Starink-Willemse M, Iperen A van, Abeln ECA (2004b). Phylogenetic<br />

analyses of Septoria species based on the ITS and LSU-D2 regions of nuclear<br />

ribosomal DNA. Mycologia 96: 558–571.<br />

Verkley GJM, Crous PW, Groenewald JZ, Braun U, Aptroot A (2004c). Mycosphaerella<br />

punctiformis revisited: morphology, phylogeny, and epitypification of the type<br />

species of the genus Mycosphaerella (Dothideales, Ascomycota). Mycological<br />

Research 108: 1271–1282.<br />

Waddell HT, Weber GF (1963). Physiology and pathology of Septoria species on<br />

Chrysanthemum. Mycologia 55: 442–452.<br />

White TJ, Bruns T, Lee S, Taylor JW (1990). Amplification and direct sequencing of<br />

fungal ribosomal RNA genes for phylogenetics. In: PCR protocols: a guide to<br />

methods and applications (Innis MA, Gelfland DH, Sininsky JJ, White TJ, eds).<br />

Academic Press, San Diego, USA: 315–322.<br />

Zalar P, Hoog GS de, Schroers H-J (2007). Phylogeny and ecology of the ubiquitous<br />

saprobe Cladosporium sphaerospermum, with descriptions of seven new<br />

species from hypersaline environments. Studies in Mycology 58: 157–183.<br />

www.studiesinmycology.org<br />

305


306


Studies in Mycology 75: 307–390.<br />

Sizing up Septoria<br />

W. Quaedvlieg 1,2 , G.J.M. Verkley 1 , H.-D. Shin 3 , R.W. Barreto 4 , A.C. Alfenas 4 , W.J. Swart 5 , J.Z. Groenewald 1 , and P.W. Crous 1,2,6*<br />

1<br />

<strong>CBS</strong>-<strong>KNAW</strong> Fungal Biodiversity Centre, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands; 2 Wageningen University and Research Centre (WUR), Laboratory of Phytopathology,<br />

Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands; 3 Utrecht University, Department of Biology, Microbiology, Padualaan 8, 3584 CH Utrecht, The Netherlands;<br />

2<br />

Microbiology, Department of Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands; 3 Division of Environmental Science and Ecological Engineering,<br />

Korea University, Seoul 136-701, Korea; 4 Departamento de Fitopatologia, Universidade Federal de Viçosa, 36750 Viçosa, Minas Gerais, Brazil; 5 Department of Plant<br />

Sciences, University of the Free State, P.O. Box 339, Bloemfontein 9300, South Africa; 6 Wageningen University and Research Centre (WUR), Laboratory of Phytopathology,<br />

Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands<br />

*Correspondence: Pedro W. Crous, p.crous@cbs.knaw.nl<br />

Abstract: Septoria represents a genus of plant pathogenic fungi with a wide geographic distribution, commonly associated with leaf spots and stem cankers of a broad range of<br />

plant hosts. A major aim of this study was to resolve the phylogenetic generic limits of Septoria, Stagonospora, and other related genera such as Sphaerulina, Phaeosphaeria and<br />

Phaeoseptoria using sequences of the the partial 28S nuclear ribosomal RNA and RPB2 genes of a large set of isolates. Based on these results Septoria is shown to be a distinct<br />

genus in the Mycosphaerellaceae, which has mycosphaerella-like sexual morphs. Several septoria-like species are now accommodated in Sphaerulina, a genus previously linked to<br />

this complex. Phaeosphaeria (based on P. oryzae) is shown to be congeneric with Phaeoseptoria (based on P. papayae), which is reduced to synonymy under the former. Depazea<br />

nodorum (causal agent of nodorum blotch of cereals) and Septoria avenae (causal agent of avenae blotch of barley and rye) are placed in a new genus, Parastagonospora, which<br />

is shown to be distinct from Stagonospora (based on S. paludosa) and Phaeosphaeria. Partial nucleotide sequence data for five gene loci, ITS, LSU, EF-1α, RPB2 and Btub were<br />

generated for all of these isolates. A total of 47 clades or genera were resolved, leading to the introduction of 14 new genera, 36 new species, and 19 new combinations.<br />

Studies in Mycology<br />

Key words: Capnodiales, Multi-Locus Sequence Typing (MLST), Mycosphaerella, Mycosphaerellaceae, Phaeoseptoria, Phaeosphaeria, Phaeosphaeriaceae, Pleosporales,<br />

Septoria, Sphaerulina, Stagonospora, systematics.<br />

Taxonomic novelties: New genera – Acicuseptoria Quaedvlieg, Verkley & Crous, Cylindroseptoria Quaedvlieg, Verkley & Crous, Kirstenboschia Quaedvlieg, Verkley & Crous,<br />

Neoseptoria Quaedvlieg, Verkley & Crous, Neostagonospora Quaedvlieg, Verkley & Crous, Parastagonospora Quaedvlieg, Verkley & Crous, Polyphialoseptoria Quaedvlieg, R.W.<br />

Barreto, Verkley & Crous, Ruptoseptoria Quaedvlieg, Verkley & Crous, Septorioides Quaedvlieg, Verkley & Crous, Setoseptoria Quaedvlieg, Verkley & Crous, Stromatoseptoria<br />

Quaedvlieg, Verkley & Crous, Vrystaatia Quaedvlieg, W.J. Swart, Verkley & Crous, Xenobotryosphaeria Quaedvlieg, Verkley & Crous, Xenoseptoria Quaedvlieg, H.D. Shin, Verkley<br />

& Crous. New species – Acicuseptoria rumicis Quaedvlieg, Verkley & Crous, Caryophylloseptoria pseudolychnidis Quaedvlieg, H.D. Shin, Verkley & Crous, Coniothyrium sidae<br />

Quaedvlieg, Verkley, R.W. Barreto & Crous, Corynespora leucadendri Quaedvlieg, Verkley & Crous, Cylindroseptoria ceratoniae Quaedvlieg, Verkley & Crous, Cylindroseptoria<br />

pistaciae Quaedvlieg, Verkley & Crous, Kirstenboschia diospyri Quaedvlieg, Verkley & Crous, Neoseptoria caricis Quaedvlieg, Verkley & Crous, Neostagonospora caricis<br />

Quaedvlieg, Verkley & Crous, Neostagonospora elegiae Quaedvlieg, Verkley & Crous, Paraphoma dioscoreae Quaedvlieg, H.D. Shin, Verkley & Crous, Parastagonospora<br />

caricis Quaedvlieg, Verkley & Crous, Parastagonospora poae Quaedvlieg, Verkley & Crous, Phlyctema vincetoxici Quaedvlieg, Verkley & Crous, Polyphialoseptoria tabebuiaeserratifoliae<br />

Quaedvlieg, Alfenas & Crous, Polyphialoseptoria terminaliae Quaedvlieg, R.W. Barreto, Verkley & Crous, Pseudoseptoria collariana Quaedvlieg, Verkley & Crous,<br />

Pseudoseptoria obscura Quaedvlieg, Verkley & Crous, Sclerostagonospora phragmiticola Quaedvlieg, Verkley & Crous, Septoria cretae Quaedvlieg, Verkley & Crous, Septoria<br />

glycinicola Quaedvlieg, H.D. Shin, Verkley & Crous, Septoria oenanthicola Quaedvlieg, H.D. Shin, Verkley & Crous, Septoria pseudonapelli Quaedvlieg, H.D. Shin, Verkley & Crous,<br />

Setophoma chromolaenae Quaedvlieg, Verkley, R.W. Barreto & Crous, Setoseptoria phragmitis Quaedvlieg, Verkley & Crous, Sphaerulina amelanchier Quaedvlieg, Verkley &<br />

Crous, Sphaerulina pseudovirgaureae Quaedvlieg, Verkley & Crous, Sphaerulina viciae Quaedvlieg, H.D. Shin, Verkley & Crous, Stagonospora duoseptata Quaedvlieg, Verkley<br />

& Crous, Stagonospora perfecta Quaedvlieg, Verkley & Crous, Stagonospora pseudocaricis Quaedvlieg, Verkley, Gardiennet & Crous, Stagonospora pseudovitensis Quaedvlieg,<br />

Verkley & Crous, Stagonospora uniseptata Quaedvlieg, Verkley & Crous, Vrystaatia aloeicola Quaedvlieg, Verkley, W.J. Swart & Crous, Xenobotryosphaeria calamagrostidis<br />

Quaedvlieg, Verkley & Crous, Xenoseptoria neosaccardoi Quaedvlieg, H.D. Shin, Verkley & Crous. New combinations – Parastagonospora avenae (A.B. Frank) Quaedvlieg,<br />

Verkley & Crous, Parastagonospora nodorum (Berk.) Quaedvlieg, Verkley & Crous, Phaeosphaeria papayae (Speg.) Quaedvlieg, Verkley & Crous, Pseudocercospora domingensis<br />

(Petr. & Cif.) Quaedvlieg, Verkley & Crous, Ruptoseptoria unedonis (Roberge ex Desm.) Quaedvlieg, Verkley & Crous, Septorioides pini-thunbergii (S. Kaneko) Quaedvlieg, Verkley<br />

& Crous, Sphaerulina abeliceae (Hiray.) Quaedvlieg, Verkley & Crous, Sphaerulina azaleae (Voglino) Quaedvlieg, Verkley & Crous, Sphaerulina berberidis (Niessl) Quaedvlieg,<br />

Verkley & Crous, Sphaerulina betulae (Pass.) Quaedvlieg, Verkley & Crous, Sphaerulina cercidis (Fr.) Quaedvlieg, Verkley & Crous, Sphaerulina menispermi (Thüm.) Quaedvlieg,<br />

Verkley & Crous, Sphaerulina musiva (Peck) Quaedvlieg, Verkley & Crous, Sphaerulina oxyacanthae (Kunze & J.C. Schmidt) Quaedvlieg, Verkley & Crous, Sphaerulina patriniae<br />

(Miura) Quaedvlieg, Verkley & Crous, Sphaerulina populicola (Peck) Quaedvlieg, Verkley & Crous, Sphaerulina quercicola (Desm.) Quaedvlieg, Verkley & Crous, Sphaerulina<br />

rhabdoclinis (Butin) Quaedvlieg, Verkley & Crous, Stromatoseptoria castaneicola (Desm.) Quaedvlieg, Verkley & Crous. Typifications: Epitypifications – Phaeosphaeria oryzae I.<br />

Miyake, Phaeoseptoria papayae Speg.; Neotypification – Hendersonia paludosa Sacc. & Speg.<br />

doi:10.3114/sim0017. Hard copy: June 2013.<br />

Introduction<br />

Fungal species belonging to Septoria are among the most common<br />

and widespread leaf-spotting fungi worldwide. Septoria Sacc.<br />

(Mycosphaerella, Capnodiales, <strong>Dothideomycetes</strong>) is based on<br />

Septoria cytisi, which was first described by Desmazières (1847)<br />

as a pathogen of Cytisus laburnum (= Laburnum anagyroides).<br />

Copyright <strong>CBS</strong>-<strong>KNAW</strong> Fungal Biodiversity Centre, P.O. Box 85167, 3508 AD Utrecht, The Netherlands.<br />

The genus Septoria is extremely large, and during the past 150<br />

years more than 2000 taxa have been ascribed to this asexual<br />

genus (Verkley & Priest 2000, Verkley et al. 2004). Presently,<br />

Septoria s.lat. represents a polyphyletic assembly of genera that<br />

cluster mostly in the Mycosphaerellaceae (a family incorporating<br />

many plant pathogenic coelomycetes), although fungi with<br />

septoria-like morphology have also evolved outside this family<br />

You are free to share - to copy, distribute and transmit the work, under the following conditions:<br />

Attribution:<br />

You must attribute the work in the manner specified by the author or licensor (but not in any way that suggests that they endorse you or your use of the work).<br />

Non-commercial: You may not use this work for commercial purposes.<br />

No derivative works: You may not alter, transform, or build upon this work.<br />

For any reuse or distribution, you must make clear to others the license terms of this work, which can be found at http://creativecommons.org/licenses/by-nc-nd/3.0/legalcode. Any of the above conditions can be waived if you get<br />

permission from the copyright holder. Nothing in this license impairs or restricts the author’s moral rights.<br />

307


Quaedvlieg et al.<br />

(Crous et al. 2009a, c). Although many species of Septoria have<br />

mycosphaerella-like sexual states, the name Mycosphaerella does<br />

not apply to them, and should not be used in this context.<br />

Following a proposal accepted by the International Code of<br />

Nomenclature for algae, fungi and plants (ICN), the generic name<br />

Septoria Sacc. was conserved over the older synonym Septaria<br />

Fr. (original spelling). The arguments preceding the typification<br />

of Septoria and subsequent proposals for name conservation<br />

by Wakefield (1940), Rogers (1949) and Donk (1964) between<br />

Septoria sensu Saccardo or Septaria Fries were various. In the<br />

end the committee for fungi appointed by the ICN followed the<br />

recommendation of Donk (1964), and decided on Septoria Sacc.<br />

over Septaria Fr., arguing that Septoria Sacc. had already been in<br />

prevalent use for many years, and should therefore be accepted as<br />

the correct name.<br />

After examining several herbarium specimens of S. cytisi, Sutton<br />

(1980) circumscribed Septoria as follows: Mycelium immersed,<br />

branched, septate, pale brown. Conidiomata pycnidial, immersed,<br />

separate or aggregated (but not confluent), globose, papillate (or<br />

not), brown, thin-walled of pale brown textura angularis, often with<br />

a smaller-celled inner layer, somewhat darker and more thickwalled<br />

around the ostiole. Conidiophores reduced to conidiogenous<br />

cells. Conidiogenous cells holoblastic, either determinate or<br />

indeterminate, with a limited number of sympodial proliferations.<br />

Each locus has a broad, flat, unthickened scar, discrete, hyaline,<br />

smooth, ampulliform, doliiform or lageniform to short cylindrical.<br />

Conidia hyaline, multiseptate, filiform, smooth and either continuous<br />

or constricted at septa. Later work by Constantinescu (1984),<br />

Sutton & Pascoe (1987, 1989) and Farr (1991, 1992) augmented<br />

Sutton’s previous generic circumscription by also including species<br />

with sympodial, enteroblastic and percurrent conidial proliferation.<br />

Furthermore, based on similarities in conidiomatal development,<br />

von Arx (1983) and Braun (1995) adopted an even wider concept of<br />

Septoria that included the acervular forms normally accommodated<br />

in Phloeospora.<br />

Morphological traits in Septoria are generally conserved,<br />

and specific morphological characters by which to describe and<br />

identify Septoria and septoria-like species are limited. This lack<br />

of specific morphological characters caused Septoria taxonomy<br />

to be largely dependent on associated host data, leading to many<br />

of the described species only being identifiable by host plant, and<br />

by variation in informative supplementary characters like conidial<br />

length, width and septation (Jørstad 1965, 1967, Sutton 1980). Of<br />

these supplementary characters, conidial width appears to be the<br />

most stable (i.e. it shows the least amount of intraspecific variation)<br />

and in most Septoria species, intraspecific conidial width rarely<br />

varies more than 1 μm (Priest 2006).<br />

This reliance on host data in Septoria taxonomy is far from<br />

perfect, and should be avoided for identification purposes (see<br />

Verkley et al. 2013, this volume). Extensive host inoculation<br />

experiments by Beach (1919) and Teterevnikova-Babayan (1987)<br />

have shown that identification of Septoria spp. by host specificity<br />

alone is error prone because many Septoria species are not<br />

restricted to a single specific host (i.e. several taxa have broader<br />

host ranges). Septoria species like S. lactucicola and S. lycopersici<br />

can not only infect multiple plant species within the same genus,<br />

but can also infect plants belonging to closely allied families and<br />

genera. In contrast to this, morphologically well distinguishable<br />

Septoria species can also parasitise the same hosts (e.g. multiple<br />

distinct Septoria species can be found on both Chrysanthemum<br />

and Rubus hosts) (Demaree & Wilcox 1943, Punithalingam<br />

1976, Shin & Sameva 2004). Because host specificity has been<br />

one of the main criteria used for describing new, morphologically<br />

indistinguishable Septoria species over the past 150 years, one<br />

can expect that a certain number of described taxa are in fact<br />

synonyms of species from related hosts.<br />

Septoria and septoria-like genera in the molecular<br />

era<br />

Although it had previously been speculated by Sutton (1980) that<br />

Septoria was in fact polyphyletic, definitive proof of this hypothesis<br />

awaited the introduction of molecular techniques. Cunfer & Ueng<br />

(1999) were the first to use rDNA sequence data of the internal<br />

transcribed spacer region (ITS) to postulate that Zymoseptoria tritici<br />

(then known as Septoria tritici) and several Stagonospora spp. (a<br />

morphologically similar genus, previously linked to Septoria) actually<br />

belonged to two distinct genera. Verkley et al. (2004) extended this<br />

study by employing a combination of 28S nrDNA (LSU) and ITS<br />

data to prove that Septoria was in fact both poly- and paraphyletic.<br />

Their work showed that septoria-like species such as Z. tritici and<br />

Z. passerinii were more closely related to Ramularia than to the<br />

majority of the other Septoria species used in their datasets.<br />

Feau et al. (2006) were the first to use a multi-locus polyphasic<br />

sequencing approach to reliably identify Septoria spp. Besides ITS<br />

and LSU sequence data, they also used β-tubulin (Btub) sequence<br />

data to separate closely related species into distinct monophyletic<br />

groups that frequently correlated with their respective host<br />

families. These results supported the approach of using multi-gene<br />

sequence data for studying a large collection of Septoria strains at<br />

species level.<br />

Septoria s. str. was finally demarcated when Quaedvlieg et<br />

al. (2011) managed to obtain both ITS and LSU sequence data<br />

from S. cytisi herbarium specimens. Phylogenetic analysis of the<br />

obtained S. cytisi LSU sequence data clearly proved that Z. tritici<br />

and Z. passerinii [as previously indicated by Cunfer & Ueng (1999)<br />

and Verkley et al. (2004)] did not belong to Septoria s. str., but in<br />

fact belonged to a separate genus, closely related to Ramularia.<br />

These two species were subsequently split off from Septoria and<br />

placed in a new genus, Zymoseptoria (named for the yeast-like<br />

state produced in culture). Since the initial Zymoseptoria paper, five<br />

additional species from members of Poaceae have been described<br />

in this genus (Crous et al. 2012a, Stukenbrock et al. 2012).<br />

Septoria-like asexual genera<br />

Since the description of Septoria by Desmazières (1847), several<br />

additional septoria-like genera (pycnidial/acervular/stromatic<br />

conidioma with filiform conidia) have been described which could<br />

be mistaken for Septoria s. str.<br />

The two economically most important septoria-like genera are<br />

probably Zymoseptoria (sexual morph mycosphaerella-like) and<br />

Parastagonospora (sexual morph phaeosphaeria-like; see below).<br />

Both of these genera are pathogenic on Poaceae (grasses) and are<br />

directly or indirectly responsible for significant annual crop losses<br />

worldwide on cereals such as barley and wheat (Eyal et al. 1987).<br />

Quaedvlieg et al. (2011) determined that Zymoseptoria formed a<br />

distinct clade in the Mycosphaerellaceae, while Stagonospora was<br />

found to cluster in the Phaeosphaeriaceae within the Pleosporales,<br />

near other genera like Phoma and Phaeosphaeria (Cunfer &<br />

Ueng 1999, Solomon et al. 2006) which contain important plant<br />

pathogens. However, besides Zymoseptoria and Parastagonospora<br />

there are many other, lesser-known septoria-like genera awaiting<br />

308


Sizing up Septoria<br />

elucidation. The goal of the present study is therefore to conduct an<br />

in-depth morphological and molecular analysis of these septorialike<br />

genera, and resolve the affinities of Stagonospora and its<br />

purported sexual morph, Phaeosphaeria. To this end a collection of<br />

370 Septoria and septoria-like isolates (Table 1) were subjected to<br />

morphological examination and multi-gene DNA analyses.<br />

Materials and Methods<br />

Isolates<br />

Symptomatic leaves were incubated in moist chambers for up<br />

to 1 wk to enhance sporulation before single conidial colonies<br />

were established on 2 % malt extract agar (MEA) (Crous et al.<br />

2009d). Leaf spots bearing ascomata were soaked in water for<br />

approximately 2 h, after which they were attached to the inner<br />

surface of Petri dish lids over plates containing MEA. Ascospore<br />

germination patterns were examined after 24 h, and single<br />

ascospore cultures established as described previously (Crous et<br />

al. 1991, Crous 1998). Colonies were sub-cultured onto synthetic<br />

nutrient-poor agar (SNA) containing sterile Hordeum vulgare<br />

(barley) and Urtica dioica (stinging nettle) stems, potato-dextrose<br />

agar (PDA), oatmeal agar (OA), and MEA (Crous et al. 2009d),<br />

and incubated at 25 °C under continuous near-ultraviolet light to<br />

promote sporulation. Isolates were also obtained from the culture<br />

collections of the <strong>CBS</strong>-<strong>KNAW</strong> Fungal Biodiversity Centre (<strong>CBS</strong>)<br />

in Utrecht, and the working collection of Pedro Crous (CPC).<br />

Reference strains were deposited <strong>CBS</strong> (Table 1).<br />

DNA extraction, amplification and sequencing<br />

Genomic DNA was extracted from fungal mycelium growing on<br />

MEA, using the UltraClean® Microbial DNA Isolation Kit (Mo Bio<br />

Laboratories, Inc., Solana Beach, CA, USA). Strains (Table 1) were<br />

screened for five loci (β-tubulin (Btub), internal transcribed spacer<br />

(ITS), Translation elongation factor 1-alpha (EF-1α) 28S nrDNA<br />

(LSU) and RNA polymerase II second largest subunit (RPB2) using<br />

the primer sets listed in Table 2. The PCR amplifications were<br />

performed in a total volume of 12.5 µL solution containing 10–20<br />

ng of template DNA, 1 × PCR buffer, 0.7 µL DMSO (99.9 %), 2 mM<br />

MgCl 2<br />

, 0.4 µM of each primer, 25 µM of each dNTP and 1.0 U Taq<br />

DNA polymerase (GoTaq, Promega). PCR amplification conditions<br />

were set as follows: an initial denaturation temperature of 96 °C<br />

for 2 min, followed by 40 cycles of denaturation temperature of 96<br />

°C for 45 s, primer annealing at the temperature stipulated in Table<br />

2, primer extension at 72 °C for 90 s and a final extension step at<br />

72 °C for 2 min. The resulting fragments were sequenced using the<br />

PCR primers together with a BigDye Terminator Cycle Sequencing<br />

Kit v. 3.1 (Applied Biosystems, Foster City, CA). Sequencing<br />

reactions were performed as described by Cheewangkoon et al.<br />

(2008). All novel sequences were deposited in NCBI’s GenBank<br />

database and alignments and phylogenetic trees in TreeBASE.<br />

Phylogenetic analyses<br />

A basic alignment of the obtained sequence data was first done<br />

using MAFFT v. 7 [(http://mafft.cbrc.jp/alignment /server/index. html)<br />

(Katoh et al. 2002)] and if necessary, manually improved in BioEdit<br />

v. 7.0.5.2 (Hall 1999). To check the congruency of the RPB2 and<br />

LSU dataset, a 70 % neighbour-joining (NJ) reciprocal bootstrap<br />

method with maximum likelihood distance was performed (Mason-<br />

Gamer & Kellogg 1996, Lombard et al. 2010). Bayesian analyses<br />

(critical value for the topological convergence diagnostic set to<br />

0.01) were performed on the concatenated loci using MrBayes<br />

v. 3.2.1 (Huelsenbeck & Ronquist 2001) as described by Crous<br />

et al. (2006) using nucleotide substitution models that were<br />

selected using MrModeltest v.2.3 (Table 3) (Nylander 2004). In<br />

order to keep the trees manageable for publication, two separate<br />

Bayesian trees were run. The first tree was run with all the Septoria<br />

and septoria-like isolates that either belonged to, or where more<br />

closely related to the Mycosphaerellaceae (Fig. 1) while the second<br />

tree contained all the septoria-like isolates either belonging to, or<br />

being more closely related to the Phaeosphaeriaceae (Fig. 2).<br />

Parastagonospora nodorum (<strong>CBS</strong> 259.49) was used as outgroup<br />

for the Mycosphaerellaceae dataset, while Dothistroma pini (<strong>CBS</strong><br />

121005) was used as outgroup for the Phaeosphaeriaceae dataset.<br />

As the novel genera and species described in this study were<br />

already clearly distinquishable in the LSU/RPB2 trees, the ITS,<br />

EF-1α and Btub sequence data of these isolates were deposited<br />

in GenBank without their subsequent trees being published in this<br />

paper.<br />

Taxonomy<br />

Taxonomic descriptions were based on isolates sporulating in<br />

culture. Diseased leaf tissue was viewed under a Zeiss V20<br />

Discovery stereo-microscope, while a Zeiss Axio Imager 2 light<br />

microscope with differential interference contrast (DIC) illumination<br />

and an AxioCam MRc5 camera with Zen software was used to<br />

capture morphological structures. Adobe Photoshop CS3 was<br />

used for the final editing of acquired images and photographic<br />

preparations. For measurements, 30–50 replicates of all relevant<br />

morphological features were made at ×1000 magnification. Colony<br />

characters and pigment production were noted after 2–4 wk of<br />

growth on MEA, PDA and OA (Crous et al. 2009d) incubated at<br />

25 ºC in the dark. Colony colours (surface and reverse) were rated<br />

according to the colour charts of Rayner (1970).<br />

Results<br />

DNA sequencing and phylogenetic analysis<br />

The RPB2 and LSU sequence datasets did not show any conficts<br />

in both the Mycosphaerellaceae and Phaeosphaeriaceae tree<br />

topologies for the 70 % reciprocal bootstrap trees, allowing us to<br />

combine them in the multigene analyses. For the Mycosphaerellaceae<br />

tree, the gene boundaries were: 1–327 bp for RPB2 and 332–1120<br />

bp for LSU. For the Phaeosphaeriaceae tree (Fig. 2), the gene<br />

boundaries were 1–777 bp for LSU and 782–1108 bp for RPB2.<br />

During the generation of the Mycosphaerellaceae tree (Fig. 1), a total<br />

of 57 048 trees were sampled out of the generated 76 062 trees (75<br />

%). During the generation of the Phaeosphaeriaceae tree (Fig. 2),<br />

a total of 2844 trees were sampled out of the generated 3792 trees<br />

(75 %).<br />

Taxonomy<br />

A total of 347 isolates representing 170 species were subjected to<br />

DNA analysis and morphological comparison. Phylogenetic analyses<br />

based on the LSU and RPB2 genes resolved a total of 47 clades of<br />

www.studiesinmycology.org<br />

309


Quaedvlieg et al.<br />

Table 1. Collection details and GenBank accession numbers of isolates included in this study.<br />

Species Isolate no. 1 Host Location Collector GenBank accession no. 2<br />

EF-1α Btub RPB2 LSU ITS<br />

Acicuseptoria rumicis <strong>CBS</strong> 522.78 Rumex alpinus France H.A. van der Aa KF253105 KF252643 KF252153 KF251648 KF251144<br />

Boeremia telephii <strong>CBS</strong> 135415; S670 Lavatera thuringiaca Germany U. Damm – KF252644 KF252154 KF251649 KF251145<br />

Caryophylloseptoria lychnidis <strong>CBS</strong> 109098 Silene pratensis Austria G.J.M. Verkley KF253234 KF252768 KF252292 KF251790 KF251286<br />

<strong>CBS</strong> 109099 Silene pratensis Austria G.J.M. Verkley KF253235 KF252769 KF252293 KF251791 KF251287<br />

<strong>CBS</strong> 109101 Silene pratensis Austria G.J.M. Verkley KF253236 KF252770 KF252294 KF251792 KF251288<br />

<strong>CBS</strong> 109102 Silene pratensis Austria G.J.M. Verkley KF253237 KF252771 KF252295 KF251793 KF251289<br />

Car. pseudolychnidis <strong>CBS</strong> 128614 Lychnis cognata South Korea H.D. Shin KF253238 KF252772 KF252296 KF251794 KF251290<br />

<strong>CBS</strong> 128630 Lychnis cognata South Korea H.D. Shin KF253239 KF252773 KF252297 KF251795 KF251291<br />

Car. silenes <strong>CBS</strong> 109100 Silene nutans Austria G.J.M. Verkley KF253240 KF252774 KF252298 KF251796 KF251292<br />

<strong>CBS</strong> 109103 Silene pratensis Austria G.J.M. Verkley KF253241 KF252775 KF252299 KF251797 KF251293<br />

Car. spergulae <strong>CBS</strong> 397.52 Dianthus caryophyllus Netherlands Schouten KF253243 KF252777 KF252301 KF251799 KF251295<br />

<strong>CBS</strong> 109010 Spergula morisonii Netherlands A. Aptroot KF253242 KF252776 KF252300 KF251798 KF251294<br />

Cercospora beticola <strong>CBS</strong> 124.31; CPC 5070 Beta vulgaris Romania – KF253106 KF252645 KF252155 KF251650 KF251146<br />

Cer. capsici <strong>CBS</strong> 118712 – Fiji P. Tyler KF253244 KF252778 KF252302 KF251800 KF251296<br />

Cer. zebrina <strong>CBS</strong> 137.56 Hedysarum coronarium Italy M. Ribaldi KF253245 KF252779 KF252303 KF251801 KF251297<br />

<strong>CBS</strong> 118790; IMI 262766 Trifolium subterraneum Australia M.J. Barbetti KF253107 KF252646 KF252156 KF251651 KF251147<br />

Chaetosphaeronema hispidulum <strong>CBS</strong> 216.75 Anthyllis vulneraria Germany R. Schneider KF253108 KF252647 KF252157 KF251652 KF251148<br />

Coniothyrium carteri <strong>CBS</strong> 105.91 Quercus robur Germany H. Schill KF253165 KF252700 KF252214 KF251712 KF251209<br />

<strong>CBS</strong> 101633 Quercus sp. Netherlands – KF253166 KF252701 KF252215 KF251713 KF251210<br />

Con. glycinicola <strong>CBS</strong> 124141 Glycine max Zimbabwe C. Lavy KF253167 KF252702 KF252216 KF251714 KF251211<br />

Con. sidae <strong>CBS</strong> 135108; CPC 19602 Sida sp. Brazil R.W. Barreto KF253109 KF252648 KF252158 KF251653 KF251149<br />

Corynespora leucadendri <strong>CBS</strong> 135133; CPC 19345 Leucadendron sp. South Africa S. Lee KF253110 KF252639 KF252159 KF251654 KF251150<br />

Cylindroseptoria ceratoniae <strong>CBS</strong> 477.69 Ceratonia siliqua Spain H.A. van der Aa KF253111 KF252649 KF252160 KF251655 KF251151<br />

Cyl. pistaciae <strong>CBS</strong> 471.69 Pistacia lentiscus Spain H.A. van der Aa KF253112 KF252650 KF252161 KF251656 KF251152<br />

Cytostagonospora martiniana <strong>CBS</strong> 135102; CPC 17727 Acacia pycnantha Australia P.W. Crous KF253113 KF252651 KF252162 KF251657 KF251153<br />

Dissoconium commune CPC 12397 Eucalyptus globulus Australia I. Smith KF253190 KF252724 KF252242 KF251740 KF251237<br />

Dothistroma pini <strong>CBS</strong> 116484 Pinus nigra USA G. Adams JX901622 JX902193 JX901948 JX901824 JX901736<br />

<strong>CBS</strong> 116485 Pinus nigra USA G. Adams JX901625 JX902196 JX901951 JX901827 JX901739<br />

<strong>CBS</strong> 116487 Pinus nigra USA G. Adams JX901620 JX902191 JX901946 JX901822 GU214532<br />

<strong>CBS</strong> 121005 Pinus pallasiana Russia T. S. Bulgakov KF253115 KF252653 – KF251659 KF251155<br />

<strong>CBS</strong> 121011 Pinus pallasiana Russia A.C. Usichenko KF253250 – KF252307 KF251806 KF251302<br />

Dot. septosporum <strong>CBS</strong> 383.74 Pinus coulteri France M. Morelet KF253251 – KF252308 KF251807 KF251303<br />

310


Sizing up Septoria<br />

Table 1. (Continued).<br />

Species Isolate no. 1 Host Location Collector GenBank accession no. 2<br />

EF-1α Btub RPB2 LSU ITS<br />

CPC 16798 Pinus mugo ‘Rostrata’ Netherlands W. Quaedvlieg JX901627 JX902198 JX901953 JX901829 JX901741<br />

CPC 16799 Pinus mugo Netherlands W. Quaedvlieg JX901628 JX902199 JX901954 JX901830 JX901742<br />

Kirstenboschia diospyri <strong>CBS</strong> 134911; CPC 19869 Diospyros whyteana South Africa P.W. Crous KF253116 KF252640 KF252164 KF251660 KF251156<br />

CPC 19870 Diospyros whyteana South Africa P.W. Crous KF253117 KF252641 KF252165 KF251661 KF251157<br />

Lecanosticta acicola <strong>CBS</strong> 322.33 – – P.V. Siggers JX901639 JX902213 JX901968 JX901844 JX901755<br />

<strong>CBS</strong> 133791 Pinus strobus USA B. Ostrofsky KC013002 KC013008 KC013014 KC013017 KC012999<br />

Lec. brevispora <strong>CBS</strong> 133601 Pinus sp. Mexico J.Y. Morales JX901649 JX902224 JX901979 JX901855 JX901763<br />

Lec. guatamalensis IMI 281598 Pinus oocarpa Guatemala H.C. Evans JX901650 JX902225 JX901980 JX901856 JX901764<br />

Lec. longispora <strong>CBS</strong> 133602 Pinus sp. Mexico J.Y. Morales JX901651 JX902227 JX901982 JX901858 JX901766<br />

Leptosphaeria albopunctata <strong>CBS</strong> 254.64 Spartina alterniflora USA J. Kohlmeyer KF253118 KF252654 KF252166 KF251662 KF251158<br />

Mycosphaerella brassicicola <strong>CBS</strong> 228.32 Brassica oleracea Denmark C.A. Jörgensen KF253252 KF252783 KF252309 KF251808 KF251304<br />

<strong>CBS</strong> 267.53 Brassica oleracea Netherlands F. Quak KF253253 KF252784 KF252310 KF251809 KF251305<br />

Mycosphaerella sp. <strong>CBS</strong> 135464; CPC 11677 Draba nemorosa var.<br />

hebecarpa<br />

South Korea H.D. Shin – KF252786 KF252312 KF251811 KF251307<br />

Neoseptoria caricis <strong>CBS</strong> 135097; S653 Carex acutiformis Netherlands W. Quaedvlieg – – KF252167 KF251663 KF251159<br />

Neosetophoma samarorum <strong>CBS</strong> 138.96 Phlox paniculata Netherlands – KF253119 KF252655 KF252168 KF251664 KF251160<br />

<strong>CBS</strong> 139.96 Poa sp. Netherlands – KF253120 KF252656 KF252169 KF251665 KF251161<br />

<strong>CBS</strong> 568.94 Urtica dioica Netherlands G.J.M. Verkley KF253121 KF252657 KF252170 KF251666 KF251162<br />

Neostagonospora caricis <strong>CBS</strong> 135092; S616 Carex acutiformis Netherlands W. Quaedvlieg – KF252658 KF252171 KF251667 KF251163<br />

Neost. elegiae <strong>CBS</strong> 135101; CPC 16977 Elegia cuspidata South Africa S. Lee KF253122 KF252659 KF252172 KF251668 KF251164<br />

Paraphoma chrysanthemicola <strong>CBS</strong> 172.70 Chrysanthemum morifolium Netherlands R. Schneider KF253123 KF252660 KF252173 KF251669 KF251165<br />

<strong>CBS</strong> 522.66 Chrysanthemum morifolium UK – KF253124 KF252661 KF252174 KF251670 KF251166<br />

Parap. dioscoreae <strong>CBS</strong> 135100; CPC 11357 Dioscorea tokoro South Korea H.D. Shin KF253125 KF252662 KF252175 KF251671 KF251167<br />

CPC 11355 Dioscorea tokoro South Korea H.D. Shin KF253126 KF252663 KF252176 KF251672 KF251168<br />

CPC 11361 Dioscorea tokoro South Korea H.D. Shin KF253127 KF252664 KF252177 KF251673 KF251169<br />

Parap. fimeti <strong>CBS</strong> 170.70 Apium graveolens Netherlands M.A. de Waard KF253128 KF252665 KF252178 KF251674 KF251170<br />

<strong>CBS</strong> 368.91 Juniperus communis Switzerland – KF253129 KF252666 KF252179 KF251675 KF251171<br />

Parap. radicina <strong>CBS</strong> 111.79 Malus sylvestris Netherlands G.H. Boerema KF253130 KF252667 KF252180 KF251676 KF251172<br />

<strong>CBS</strong> 102875 Lycopersicon esculentum Germany – KF253131 KF252668 KF252181 KF251677 KF251173<br />

Parastagonospora avenae <strong>CBS</strong> 289.69 Lolium perenne Germany U.G. Schlösser KF253132 KF252669 KF252182 KF251678 KF251174<br />

<strong>CBS</strong> 290.69 Lolium perenne Germany U.G. Schlösser KF253133 KF252670 KF252183 KF251679 KF251175<br />

Paras. caricis <strong>CBS</strong> 135671; S615 Carex acutiformis Netherlands W. Quaedvlieg KF253134 KF252671 KF252184 KF251680 KF251176<br />

www.studiesinmycology.org<br />

311


Quaedvlieg et al.<br />

Table 1. (Continued).<br />

Species Isolate no. 1 Host Location Collector GenBank accession no. 2<br />

EF-1α Btub RPB2 LSU ITS<br />

Paras. nodorum <strong>CBS</strong> 110109 Lolium perenne Denmark M.P.S. Câmara KF253135 KF252672 KF252185 KF251681 KF251177<br />

Paras. “nodorum” <strong>CBS</strong> 259.49 Triticum sp. Canada – KF253143 KF252679 KF252192 KF251688 KF251185<br />

Paras. poae <strong>CBS</strong> 135089; S606 Poa sp. Netherlands S.I.R. Videira KF253136 KF252673 KF252186 KF251682 KF251178<br />

<strong>CBS</strong> 135091; S613 Poa sp. Netherlands S.I.R. Videira KF253137 KF252674 KF252187 KF251683 KF251179<br />

Passalora depressa CPC 14915 Angelica gigas South Korea H.D. Shin KF253256 KF252788 KF252314 KF251813 KF251309<br />

Pas. dioscoreae <strong>CBS</strong> 135460; CPC 10855 Dioscorea tokoro South Korea H.D. Shin KF253257 KF252789 KF252315 KF251814 KF251310<br />

<strong>CBS</strong> 135463; CPC 11513 Dioscorea tenuipes South Korea H.D. Shin KF253258 KF252790 KF252316 KF251815 KF251311<br />

Phaeophleospora eugeniae CPC 15143 Eugenia uniflora Brazil A.C. Alfenas KF253138 KF252642 – JX901875 KF251180<br />

CPC 15159 Eugenia uniflora Brazil A.C. Alfenas JX901667 JX902245 JX901999 JX901876 FJ493189<br />

“Phaeosphaeria” alpina <strong>CBS</strong> 456.84 Phleum alpinum Switzerland A. Leuchtmann KF253139 KF252675 KF252188 KF251684 KF251181<br />

Phaeos. caricicola <strong>CBS</strong> 603.86 Carex pendula Switzerland A. Leuchtmann KF253140 KF252676 KF252189 KF251685 KF251182<br />

Phaeos. juncicola <strong>CBS</strong> 110108 Phlox sp. Netherlands M.P.S. Câmara KF253141 KF252677 KF252190 KF251686 KF251183<br />

Phaeos. nigrans <strong>CBS</strong> 307.79 Zea mays Switzerland – KF253142 KF252678 KF252191 KF251687 KF251184<br />

Phaeos. oryzae <strong>CBS</strong> 110110 Oryza sativa South Korea L. Hausch – KF252680 KF252193 KF251689 KF251186<br />

Phaeos. papayae <strong>CBS</strong> 135416 Carica papaya Brazil A.C. Alfenas – KF252681 KF252194 KF251690 KF251187<br />

“Phaeos.” phragmiticola <strong>CBS</strong> 459.84 Phragmites australis Switzerland A. Leuchtmann KF253144 KF252682 KF252195 KF251691 KF251188<br />

“Phaeos.” pontiformis <strong>CBS</strong> 117487 – Netherlands J. Harrak KF253145 KF252683 KF252196 KF251692 KF251189<br />

Phaeosphaeria sp. <strong>CBS</strong> 206.87 Zea mays Gabon J.L. Notteghem KF253146 KF252684 KF252197 KF251693 KF251190<br />

<strong>CBS</strong> 135465; CPC 11894 Zea mays South Africa P.W. Crous KF253147 KF252685 KF252198 KF251694 KF251191<br />

“Phaeos.” typharum <strong>CBS</strong> 296.54 Nardus stricta Switzerland L.E. Wehmeyer KF253148 KF252686 KF252199 KF251695 KF251192<br />

“Phaeos.” vagans <strong>CBS</strong> 604.86 Calamagrostis arundinacea Sweden A. Leuchtmann KF253149 KF252687 KF252200 KF251696 KF251193<br />

phaeosphaeria-like sp. <strong>CBS</strong> 123.76 Prunus domestica Serbia M. Arseijevic KF253150 KF252688 KF252201 KF251697 KF251194<br />

<strong>CBS</strong> 135461; CPC 11231 Musa sp. Mauritius Y. Jaufeerally-Fakim KF253151 KF252689 KF252202 KF251698 KF251195<br />

<strong>CBS</strong> 135466; CPC 12131 Acacia crassicarpa Thailand W. Himaman KF253153 KF252691 KF252204 KF251700 KF251197<br />

<strong>CBS</strong> 135469; CPC 12881 Pinus monticola USA G. Newcombe & R.G.<br />

Ganley<br />

KF253154 KF252692 KF252205 KF251701 KF251198<br />

CPC 12130 Acacia crassicarpa Thailand W. Himaman KF253152 KF252690 KF252203 KF251699 KF251196<br />

Phaeosphaeriopsis glaucopunctata <strong>CBS</strong> 653.86 Ruscus aculeatus Switzerland A. Leuchtmann KF253155 KF252693 KF252206 KF251702 KF251199<br />

Phloeospora ulmi <strong>CBS</strong> 344.97 Ulmus glabra Austria W. Gams KF253158 KF252696 – KF251705 KF251202<br />

<strong>CBS</strong> 613.81 Ulmus sp. Austria H.A. van der Aa KF253159 KF252697 KF252208 KF251706 KF251203<br />

<strong>CBS</strong> 101564 Ulmus sp. Netherlands H.A. van der Aa KF253156 KF252694 KF252207 KF251703 KF251200<br />

<strong>CBS</strong> 109835 Ulmus sp. Netherlands G.J.M. Verkley KF253157 KF252695 – KF251704 KF251201<br />

Phlogicylindrium eucalyptorum <strong>CBS</strong> 111680 Eucalyptus nitens Australia P.W. Crous KF253160 KF252698 KF252209 KF251707 KF251204<br />

312


Sizing up Septoria<br />

Table 1. (Continued).<br />

Species Isolate no. 1 Host Location Collector GenBank accession no. 2<br />

EF-1α Btub RPB2 LSU ITS<br />

<strong>CBS</strong> 111689 Eucalyptus nitens Australia P.W. Crous KF253161 – KF252210 KF251708 KF251205<br />

Phlyctema vincetoxici <strong>CBS</strong> 123726 Vincetoxicum officinale Czech Republic G.J.M. Verkley KF253162 KF252699 KF252211 KF251709 KF251206<br />

<strong>CBS</strong> 123727 Vincetoxicum officinale Czech Republic G.J.M. Verkley KF253163 – KF252212 KF251710 KF251207<br />

<strong>CBS</strong> 123743 Vincetoxicum officinale Czech Republic G.J.M. Verkley KF253164 – KF252213 KF251711 KF251208<br />

Phoma herbarum <strong>CBS</strong> 615.75 Rosa multiflora Netherlands G.H. Boerema KF253168 KF252703 KF252217 KF251715 KF251212<br />

Polyphialoseptoria tabebuiaeserratifoliae<br />

<strong>CBS</strong> 112650 Tabebuia serratifolia Brazil A.C. Alfenas KF253169 KF252704 KF252218 KF251716 KF251213<br />

Pol. terminaliae <strong>CBS</strong> 135106; CPC 19611 Terminalia catappa Brazil R.W. Barreto KF253170 KF252705 KF252219 KF251717 KF251214<br />

<strong>CBS</strong> 135475; CPC 19487 Terminalia catappa Brazil R.W. Barreto KF253171 – KF252220 KF251718 KF251215<br />

Pseudocercospora chiangmaiensis <strong>CBS</strong> 123244 Eucalyptus camaldurensis Thailand R. Cheewangkoon JX901676 JX902254 JX902008 JX901885 JX901781<br />

Pse. eucalyptorum <strong>CBS</strong> 116303 Eucalyptus nitens South Africa P.W. Crous KF253172 KF252706 KF252221 KF251719 KF251216<br />

CPC 13816 Eucalyptus glaucescens UK S. Denman KF253230 KF252764 KF252288 KF251786 KF251282<br />

Pse. madagascariensis <strong>CBS</strong> 124155 Eucalyptus camaldulensis Madagascar M.J. Wingfield KF253265 – KF252322 KF251822 KF251318<br />

Pse. natalensis <strong>CBS</strong> 111069 Eucalyptus nitens South Africa T. Coutinho KF302389 KF302384 KF302393 KF302405 KF302399<br />

Pse. norchiensis <strong>CBS</strong> 120738 Eucalyptus sp. Italy W. Gams JX901684 JX902263 JX902017 JX901894 JX901785<br />

Pse. robusta <strong>CBS</strong> 111175 Eucalyptus robur Malaysia M.J. Wingfield JX901694 JX902273 JX902027 JX901904 DQ303081<br />

Pse. schizolobii <strong>CBS</strong> 120029 Schizolobium parahybum Ecuador M.J. Wingfield KF253269 KF252798 KF252326 KF251826 KF251322<br />

Pse. tereticornis CPC 13299 Eucalyptus tereticornis Australia P.W. Crous JX901701 JX902280 JX902034 JX901911 GQ852770<br />

Pseudocercosporella capsellae <strong>CBS</strong> 127.29 – – K. Togashi KF253273 KF252801 KF252330 KF251830 KF251326<br />

<strong>CBS</strong> 112032 Brassica sp. UK R. Evans KF253267 KF252797 KF252324 KF251824 KF251320<br />

<strong>CBS</strong> 112033 Brassica sp. UK R. Evans KF253254 KF252785 KF252311 KF251810 KF251306<br />

<strong>CBS</strong> 118412 Brassica sp. New Zealand C.F. Hill KF253272 KF252800 KF252329 KF251829 KF251325<br />

“Pella.” magnusiana <strong>CBS</strong> 114735 Geranium silvaticum Sweden E. Gunnerbeck KF253274 KF252802 – KF251831 KF251327<br />

Pella. pastinacae <strong>CBS</strong> 114116 Laserpitium latifolium Sweden L. Holm KF253275 KF252803 KF252331 KF251832 KF251328<br />

Pseudoseptoria collariana <strong>CBS</strong> 135104; CPC 18119 Bambusoideae sp. Iran A. Mirzadi Gohari KF253174 KF252707 KF252223 KF251721 KF251218<br />

Pseudos. obscura <strong>CBS</strong> 135103; CPC 18118 Bambusoideae sp. Iran A. Mirzadi Gohari KF253175 KF252708 KF252224 KF251722 KF251219<br />

Ramularia endophylla <strong>CBS</strong> 113265 Quercus robur Netherlands G.J.M. Verkley KF253176 KF252709 KF252225 KF251723 KF251220<br />

Eucalyptus grandis var.<br />

Ram. eucalypti <strong>CBS</strong> 120726<br />

grandiflora Maiden Italy W. Gams KF253177 KF252710 KF252226<br />

KF251724 KF251221<br />

Ram. lamii CPC 11312 Leonurus sibiricus South Korea H.D. Shin KF253178 KF252711 KF252227 KF251725 KF251222<br />

Ram. pratensis CPC 11294 Rumex crispus South Korea – KF253179 KF252712 KF252228 KF251726 KF251223<br />

Ramularia sp. <strong>CBS</strong> 115913 Cerastium semidecandrum Netherlands A. Aptroot KF253180 – KF252229 KF251727 KF251224<br />

Readeriella angustia <strong>CBS</strong> 124998 Eucalyptus delegatensis Australia B.A. Summerel KF253181 KF252713 KF252230 KF251728 KF251225<br />

Rea. eucalypti CPC 13401 Eucalyptus sp. Portugal P.W. Crous KF253173 – KF252222 KF251720 KF251217<br />

www.studiesinmycology.org<br />

313


Quaedvlieg et al.<br />

Table 1. (Continued).<br />

Species Isolate no. 1 Host Location Collector GenBank accession no. 2<br />

EF-1α Btub RPB2 LSU ITS<br />

Rea. readeriellophora CPC 12920 Eucalyptus sp. Australia A. Carnegie KF253114 KF252652 KF252163 KF251658 KF251154<br />

Ruptoseptoria unedonis <strong>CBS</strong> 355.86 Arbutus unedo France H.A. van der Aa – KF252715 KF252233 KF251731 KF251228<br />

<strong>CBS</strong> 755.70 Arbutus unedo Croatia J.A. von Arx – KF252716 KF252234 KF251732 KF251229<br />

Sclerostagonospora phragmiticola <strong>CBS</strong> 338.86 Phragmites australis France H.A. van der Aa KF253184 KF252717 KF252235 KF251733 KF251230<br />

Septoria abei <strong>CBS</strong> 128598 Hibiscus syriacus South Korea H.D. Shin KF253280 KF252805 KF252336 KF251837 KF251333<br />

Sep. “agropyrina” <strong>CBS</strong> 387.64 – Japan – KF302392 KF302387 KF302398 KF302410 KF302404<br />

Sep. anthrisci <strong>CBS</strong> 109020 Anthriscus sp. Austria G.J.M. Verkley KF253286 KF252811 KF252340 KF251843 KF251339<br />

Sep. anthurii <strong>CBS</strong> 346.58 Anthurium scherzerianum Germany R. Schneider KF253288 KF252813 KF252342 KF251845 KF251341<br />

Sep. apiicola <strong>CBS</strong> 400.54 Apium graveolens Netherlands J.A. von Arx KF253292 KF252817 KF252346 KF251849 KF251345<br />

“Sep.” arundinacea <strong>CBS</strong> 133.68 Phragmites australis Netherlands H.A. van der Aa KF253185 KF252718 KF252236 KF251734 KF251231<br />

<strong>CBS</strong> 281.72 Phragmites australis Netherlands J.W. Veenbaas-Rijks KF253186 KF252719 KF252237 KF251735 KF251232<br />

Sep. astericola <strong>CBS</strong> 128593 Aster yomena South Korea H.D. Shin KF253294 KF252819 KF252348 KF251851 KF251347<br />

Sep. astragali <strong>CBS</strong> 109116 Astragalus sp. Austria G.J.M. Verkley KF253298 KF252823 KF252352 KF251855 KF251351<br />

<strong>CBS</strong> 123878 Astragalus glycyphyllos Czech Republic G.J.M. Verkley KF253297 KF252822 KF252351 KF251854 KF251350<br />

Sep. atropurpurea <strong>CBS</strong> 348.58 Aster canus Germany R. Schneider KF253299 KF252824 KF252353 KF251856 KF251352<br />

Sep. bothriospermi <strong>CBS</strong> 128599 Bothriospermum tenellum South Korea H.D. Shin KF253301 KF252826 KF252355 KF251858 KF251354<br />

Sep. bupleuricola <strong>CBS</strong> 128603 Bupleurum falcatum South Korea H.D. Shin KF253303 KF252828 KF252357 KF251860 KF251356<br />

Sep. calendulae <strong>CBS</strong> 349.58 Calendula arvensis Italy R. Schneider KF253304 KF252829 KF252358 KF251861 KF251357<br />

Sep. callistephi <strong>CBS</strong> 128590 Callistephus chinensis South Korea H.D. Shin KF253305 KF252830 KF252359 KF251862 KF251358<br />

Sep. campanulae <strong>CBS</strong> 128604 Campanula takesimana South Korea H.D. Shin KF253308 KF252833 KF252362 KF251865 KF251361<br />

Sep. cerastii <strong>CBS</strong> 128612 Cerastium holosteoides South Korea H.D. Shin KF253311 KF252836 KF252365 KF251868 KF251364<br />

Sep. cf. agrimoniicola <strong>CBS</strong> 128585 Agrimonia pilosa South Korea H.D. Shin KF253283 KF252808 KF252337 KF251840 KF251336<br />

<strong>CBS</strong> 128602 Agrimonia pilosa South Korea H.D. Shin KF253284 KF252809 KF252338 KF251841 KF251337<br />

Sep. cf. rubi <strong>CBS</strong> 128646 Rubus crataegifolius South Korea H.D. Shin KF253314 KF252839 KF252368 KF251871 KF251367<br />

Sep. cf. stachydicola <strong>CBS</strong> 128668 Stachys riederi var. japonica South Korea H.D. Shin KF253512 KF253033 KF252558 KF252070 KF251565<br />

Sep. chelidonii <strong>CBS</strong> 128607 Chelidonium majus South Korea H.D. Shin KF253319 KF252844 KF252373 KF251876 KF251372<br />

Sep. chromolaenae <strong>CBS</strong> 113373 Chromolaena odorata Cuba S. Neser KF253321 KF252846 KF252375 KF251878 KF251374<br />

Sep. chrysanthemella <strong>CBS</strong> 128622 Chrysanthemum boreale South Korea H.D. Shin KF253323 KF252848 KF252377 KF251880 KF251376<br />

<strong>CBS</strong> 128716 – South Africa E. Oh KF253325 KF252850 KF252379 KF251882 KF251378<br />

Sep. cirsii <strong>CBS</strong> 128621 Cirsium setidens South Korea H.D. Shin KF253328 KF252853 KF252382 KF251885 KF251381<br />

Sep. citricola <strong>CBS</strong> 356.36 Citrus sinensis Italy G. Ruggieri KF253329 KF252854 KF252383 KF251886 KF251382<br />

Sep. clematidis <strong>CBS</strong> 108983 Clematis vitalba Germany G.J.M. Verkley KF253330 KF252855 KF252384 KF251887 KF251383<br />

Sep. codonopsidis <strong>CBS</strong> 128620 Codonopsis lanceolata South Korea H.D. Shin KF253333 KF252858 KF252387 KF251890 KF251386<br />

314


Sizing up Septoria<br />

Table 1. (Continued).<br />

Species Isolate no. 1 Host Location Collector GenBank accession no. 2<br />

EF-1α Btub RPB2 LSU ITS<br />

Sep. convolvuli <strong>CBS</strong> 128627 Calystegia soldanella South Korea H.D. Shin KF253336 KF252861 KF252390 KF251893 KF251389<br />

Sep. coprosma <strong>CBS</strong> 113391 Coprosma robusta New Zealand G.J.M. Verkley KF253255 KF252787 KF252313 KF251812 KF251308<br />

Sep. crepidis <strong>CBS</strong> 128608 Youngia japonica South Korea H.D. Shin KF253337 KF252862 KF252391 KF251894 KF251390<br />

<strong>CBS</strong> 128619 Youngia japonica South Korea H.D. Shin KF253338 KF252863 KF252392 KF251895 KF251391<br />

Sep. cretae <strong>CBS</strong> 135095; CPC 651 Nerium oleander Greece U. Damm – KF252720 KF252238 KF251736 KF251233<br />

Sep. cruciatae <strong>CBS</strong> 123747 Galium odoratum Czech Republic G.J.M. Verkley KF253340 KF252865 KF252394 KF251897 KF251393<br />

Sep. cucubali <strong>CBS</strong> 102386 Saponaria officinalis Netherlands G.J.M. Verkley KF253344 KF252869 KF252398 KF251901 KF251397<br />

Sep. cucurbitacearum <strong>CBS</strong> 178.77 Cucurbita maxima New Zealand H.J. Boesewinkel KF253346 – KF252400 KF251903 KF251399<br />

Sep. dearnessii <strong>CBS</strong> 128624 Angelica dahurica South Korea H.D. Shin KF253347 KF252871 KF252401 KF251904 KF251400<br />

Sep. digitalis <strong>CBS</strong> 391.63 Digitalis lanata Czech Republic V. Holubová KF253349 KF252873 KF252403 KF251906 KF251402<br />

Sep. dysentericae <strong>CBS</strong> 131892; CPC 12328 Inula britannica South Korea H.D. Shin KF253353 KF252877 KF252406 KF251910 KF251406<br />

Sep. epambrosiae <strong>CBS</strong> 128629 Ambrosia trifida South Korea H.D. Shin KF253356 KF252880 KF252407 KF251913 KF251409<br />

Sep. epilobii <strong>CBS</strong> 109084 Epilobium fleischeri Austria G.J.M. Verkley KF253358 KF252882 KF252409 KF251915 KF251411<br />

<strong>CBS</strong> 109085 Epilobium fleischeri Austria G.J.M. Verkley KF253359 KF252883 KF252410 KF251916 KF251412<br />

Sep. erigerontis <strong>CBS</strong> 186.93 Erigeron annuus Italy M. Vurro KF253364 KF252887 KF252537 KF252048 KF251543<br />

<strong>CBS</strong> 109094 Erigeron annuus Austria G.J.M. Verkley KF253360 KF252884 KF252411 KF251917 KF251413<br />

<strong>CBS</strong> 131893; CPC 12340 Erigeron annuus South Korea H.D. Shin KF253363 KF252888 KF252414 KF251920 KF251416<br />

Sep. eucalyptorum <strong>CBS</strong> 118505 Eucalyptus sp. India W. Gams KF253365 KF252889 KF252415 KF251921 KF251417<br />

Sep. exotica <strong>CBS</strong> 163.78 Hebe speciosa New Zealand H.J. Boesewinkel KF253366 KF252890 KF252416 KF251922 KF251418<br />

Sep. galeopsidis <strong>CBS</strong> 191.26 Galeopsis sp. – C. Killian KF253370 KF252894 KF252420 KF251926 KF251422<br />

<strong>CBS</strong> 102314 Galeopsis tetrahit Netherlands G.J.M. Verkley KF253371 KF252895 KF252421 KF251927 KF251423<br />

<strong>CBS</strong> 102411 Galeopsis tetrahit Netherlands G.J.M. Verkley KF253372 KF252896 KF252422 KF251928 KF251424<br />

Sep. gentianae <strong>CBS</strong> 128633 Gentiana scabra South Korea H.D. Shin KF253374 KF252898 KF252424 KF251930 KF251426<br />

“Sep.” gladioli <strong>CBS</strong> 121.20 – – W.J. Kaiser KF253375 KF252899 KF252425 KF251931 KF251427<br />

<strong>CBS</strong> 353.29 – Netherlands J.C. Went KF253376 KF252900 KF252426 KF251932 KF251428<br />

Sep. glycinicola <strong>CBS</strong> 128618 Glycine max South Korea H.D. Shin KF253378 KF252902 KF252427 KF251934 KF251430<br />

Sep. helianthi <strong>CBS</strong> 123.81 Helianthus annuus – M. Muntañola KF253379 KF252903 KF252428 KF251935 KF251431<br />

Sep. hibiscicola <strong>CBS</strong> 128615 Hibiscus syriacus South Korea H.D. Shin KF253382 KF252906 KF252431 KF251938 KF251434<br />

Sep. hippocastani <strong>CBS</strong> 411.61 Aesculus hippocastanum Germany W. Gerlach KF253383 KF252907 KF252432 KF251939 KF251435<br />

CPC 23103; MP11 Aesculus sp. Netherlands S.I.R. Videira KF253510 KF253031 KF252556 KF252068 KF251563<br />

Sep. justiciae <strong>CBS</strong> 128625 Justicia procumbens South Korea H.D. Shin KF253385 KF252909 KF252434 KF251941 KF251437<br />

Sep. lactucae <strong>CBS</strong> 352.58 Lactuca sativa Germany G. Sörgel KF253388 KF252912 KF252437 KF251944 KF251440<br />

www.studiesinmycology.org<br />

315


Quaedvlieg et al.<br />

Table 1. (Continued).<br />

Species Isolate no. 1 Host Location Collector GenBank accession no. 2<br />

EF-1α Btub RPB2 LSU ITS<br />

<strong>CBS</strong> 108943 Lactuca sativa Netherlands P. Grooteman KF253387 KF252911 KF252436 KF251943 KF251439<br />

Sep. lamiicola <strong>CBS</strong> 123884 Lamium sp. Czech Republic G.J.M. Verkley KF253397 KF252921 KF252446 KF251953 KF251449<br />

Sep. lepidiicola <strong>CBS</strong> 128635 Lepidium virginicum South Korea H.D. Shin KF253398 KF252922 KF252447 KF251954 KF251450<br />

Sep. leptostachyae <strong>CBS</strong> 128613 Phryma leptostachya South Korea H.D. Shin KF253399 KF252923 KF252448 KF251955 KF251451<br />

<strong>CBS</strong> 128628 Phryma leptostachya South Korea H.D. Shin KF253400 KF252924 KF252449 KF251956 KF251452<br />

Sep. leucanthemi <strong>CBS</strong> 109090 Chrysanthemum<br />

leucanthemum<br />

Austria G.J.M. Verkley KF253403 KF252927 KF252452 KF251959 KF251455<br />

Sep. limonum <strong>CBS</strong> 419.51 Citrus limonum Italy G. Goidánich KF253407 KF252931 KF252456 KF251963 KF251459<br />

Sep. linicola <strong>CBS</strong> 316.37 Linum usitatissimum – H.W. Hollenweber KF253408 KF252932 KF252457 KF251964 KF251460<br />

Sep. lycoctoni <strong>CBS</strong> 109089 Aconitum vulparia Austria G.J.M. Verkley KF253409 KF252933 KF252458 KF251965 KF251461<br />

Sep. lycopersici <strong>CBS</strong> 128654 Lycopersicon esculentum South Korea H.D. Shin KF253410 KF252934 KF252459 KF251966 KF251462<br />

Sep. lycopicola <strong>CBS</strong> 128651 Lycopus ramosissimus South Korea H.D. Shin KF253412 KF252936 KF252461 KF251968 KF251464<br />

Sep. lysimachiae <strong>CBS</strong> 102315 Lysimachia vulgaris Netherlands G.J.M. Verkley KF253413 KF252937 KF252462 KF251969 KF251465<br />

<strong>CBS</strong> 123795 Lysimachia sp. Czech Republic G.J.M. Verkley KF253417 KF252941 KF252466 KF251973 KF251469<br />

Sep. malagutii <strong>CBS</strong> 106.80 Solanum sp. Peru G.H. Boerema KF253418 – KF252467 KF251974 KF251470<br />

Sep. matricariae <strong>CBS</strong> 109001 Matricaria discoidea Netherlands G.J.M. Verkley KF253420 KF252943 KF252469 KF251976 KF251472<br />

Sep. mazi <strong>CBS</strong> 128755 Mazus japonicus South Korea H.D. Shin KF253422 KF252945 KF252471 KF251978 KF251474<br />

Sep. melissae <strong>CBS</strong> 109097 Melissa officinalis Netherlands H.A. van der Aa KF253423 KF252946 KF252472 KF251979 KF251475<br />

Sep. napelli <strong>CBS</strong> 109105 Aconitum napellus Austria G.J.M. Verkley KF253426 KF252949 KF252474 KF251982 KF251478<br />

Sep. obesa <strong>CBS</strong> 354.58 Chrysanthemum indicum Germany R. Schneider KF253431 – KF252479 KF251987 KF251483<br />

<strong>CBS</strong> 128588 Artemisia lavandulaefolia South Korea H.D. Shin KF253428 KF252951 KF252476 KF251984 KF251480<br />

<strong>CBS</strong> 128623 Chrysanthemum indicum South Korea H.D. Shin KF253429 KF252952 KF252477 KF251985 KF251481<br />

Sep. oenanthicola <strong>CBS</strong> 128649 Oenanthe javanica South Korea H.D. Shin KF253187 KF252721 KF252239 KF251737 KF251234<br />

Sep. oenanthis <strong>CBS</strong> 128667 Cicuta virosa South Korea H.D. Shin KF253432 KF252953 KF252481 KF251989 KF251485<br />

Sep. orchidearum <strong>CBS</strong> 457.78 Listera ovata France H.A. van der Aa KF253435 KF252956 KF252483 KF251991 KF251487<br />

<strong>CBS</strong> 128631 Cyclamen fatrense South Korea H.D. Shin KF253434 KF252955 KF252482 KF251990 KF251486<br />

Sep. pachyspora <strong>CBS</strong> 128652 Zyathoxylum schinifolium South Korea H.D. Shin KF253437 KF252958 KF252485 KF251993 KF251488<br />

Sep. paridis <strong>CBS</strong> 109108 Viola sp. Austria G.J.M. Verkley KF253440 KF252961 KF252488 KF251996 KF251491<br />

<strong>CBS</strong> 109111 Paris quadrifolia Austria G.J.M. Verkley KF253438 KF252959 KF252486 KF251994 KF251489<br />

Sep. passiflorae <strong>CBS</strong> 102701 Passiflora edulis New Zealand C.F. Hill KF253442 KF252963 KF252490 KF251998 KF251493<br />

Sep. perillae <strong>CBS</strong> 128655 Perilla frutescens South Korea H.D. Shin KF253444 KF252965 KF252491 KF252000 KF251495<br />

Sep. petroselini <strong>CBS</strong> 182.44 Petroselinum sativum Netherlands S.D. de Wit KF253446 KF252967 KF252493 KF252002 KF251497<br />

Sep. phlogis <strong>CBS</strong> 128663 Phlox paniculata South Korea H.D. Shin KF253448 KF252969 KF252495 KF252004 KF251499<br />

316


Sizing up Septoria<br />

Table 1. (Continued).<br />

Species Isolate no. 1 Host Location Collector GenBank accession no. 2<br />

EF-1α Btub RPB2 LSU ITS<br />

Sep. polygonorum <strong>CBS</strong> 347.67 Polygonum persicaria Netherlands H.A. van der Aa KF253455 KF252976 KF252502 KF252011 KF251506<br />

<strong>CBS</strong> 109834 Polygonum persicaria Netherlands G.J.M. Verkley KF253453 KF252974 KF252500 KF252009 KF251504<br />

Sep. posoniensis <strong>CBS</strong> 128645 Chrysosplenium japonicum South Korea H.D. Shin KF253456 KF252977 KF252503 KF252012 KF251507<br />

Sep. protearum <strong>CBS</strong> 177.77 Fragaria sp. New Zealand H.J. Boesewinkel KF253463 KF252984 KF252509 KF252019 KF251514<br />

<strong>CBS</strong> 390.59 Ligustrum vulgare Italy M. Ribaldi KF253467 KF252987 KF252513 KF252023 KF251518<br />

<strong>CBS</strong> 566.88 Hedera helix France H.A. van der Aa KF253470 KF252990 KF252515 KF252026 KF251521<br />

<strong>CBS</strong> 778.97 Protea cynaroides South Africa L. Viljoen KF253472 KF252992 KF252517 KF252028 KF251523<br />

<strong>CBS</strong> 135477; CPC 19675 Zantedeschia aethiopica South Africa P.W. Crous KF253473 KF252993 KF252518 KF252029 KF251524<br />

Sep. pseudonapelli <strong>CBS</strong> 128664 Aconitum pseudolaeve var.<br />

erectum<br />

South Korea H.D. Shin KF253475 KF252995 KF252520 KF252031 KF251526<br />

Sep. putrida <strong>CBS</strong> 109088 Senecio nemorensis Austria G.J.M. Verkley KF253477 KF252997 KF252522 KF252033 KF251528<br />

Sep. rumicum <strong>CBS</strong> 503.76 Rumex acetosa France H.A. van der Aa KF253478 KF252998 KF252523 KF252034 KF251529<br />

Sep. saccardoi <strong>CBS</strong> 128756 Lysimachia vulgaris South Korea H.D. Shin KF253479 KF252999 KF252524 KF252035 KF251530<br />

Sep. scabiosicola <strong>CBS</strong> 102334 Knautia arvensis Netherlands G.J.M. Verkley KF253481 KF253001 KF252526 KF252037 KF251532<br />

<strong>CBS</strong> 102336 Knautia arvensis Netherlands G.J.M. Verkley KF253483 KF253003 KF252528 KF252039 KF251534<br />

<strong>CBS</strong> 108981 Knautia arvensis Germany G.J.M. Verkley KF253484 KF253004 KF252529 KF252040 KF251535<br />

<strong>CBS</strong> 109093 Knautia dipsacifolia Austria G.J.M. Verkley KF253487 KF253007 KF252532 KF252043 KF251538<br />

Sep. senecionis <strong>CBS</strong> 102366 Senecio fluviatilis Netherlands G.J.M. Verkley KF253492 KF253012 KF252538 KF252049 KF251544<br />

<strong>CBS</strong> 102381 Senecio fluviatilis Netherlands G.J.M. Verkley KF253493 KF253013 KF252539 KF252050 KF251545<br />

Sep. siegesbeckiae <strong>CBS</strong> 128659 Siegesbeckia glabrescens South Korea H.D. Shin KF253494 KF253014 KF252540 KF252051 KF251546<br />

<strong>CBS</strong> 128661 Siegesbeckia pubescens South Korea H.D. Shin KF253495 KF253015 KF252541 KF252052 KF251547<br />

Sep. sii <strong>CBS</strong> 102370 Berula erecta Netherlands G.J.M. Verkley KF253497 KF253017 KF252543 KF252054 KF251549<br />

Sep. sisyrinchii <strong>CBS</strong> 112096 Sysirinchium sp. New Zealand C.F. Hill KF253499 KF253019 KF252545 KF252056 KF251551<br />

Septoria sp. <strong>CBS</strong> 128650 Taraxacum officinale South Korea H.D. Shin KF253504 KF253024 KF252550 KF252061 KF251556<br />

<strong>CBS</strong> 128658 Chrysosplenium japonicum South Korea H.D. Shin KF253505 KF253025 KF252551 KF252062 KF251557<br />

<strong>CBS</strong> 128757 Sonchus asper South Korea H.D. Shin KF253500 KF253020 KF252546 KF252057 KF251552<br />

<strong>CBS</strong> 135472; CPC 19304 Vigna unguiculata ssp.<br />

sesquipedalis<br />

Austria P.W. Crous KF253506 KF253026 KF252552 KF252063 KF251558<br />

<strong>CBS</strong> 135474; CPC 19485 Conyza canadensis Brazil R.W. Barreto KF253507 KF253027 KF252553 KF252064 KF251559<br />

<strong>CBS</strong> 135478; CPC 19716 Eucalyptus sp. India W. Gams KF253188 KF252722 KF252240 KF251738 KF251235<br />

<strong>CBS</strong> 135479; CPC 19793 Syzygium cordatum South Africa P.W. Crous – KF253029 KF252555 KF252066 KF251561<br />

CPC 19976 Feijoa sellowiana Italy G. Polizzi KF253509 KF253030 – KF252067 KF251562<br />

www.studiesinmycology.org<br />

317


Quaedvlieg et al.<br />

Table 1. (Continued).<br />

Species Isolate no. 1 Host Location Collector GenBank accession no. 2<br />

EF-1α Btub RPB2 LSU ITS<br />

CPC 21105 Cluvia sp. South Africa P.W. Crous – – KF302396 KF302408 KF302402<br />

CPC 23104 – Italy E. van Agtmaal KF253511 KF253032 KF252557 KF252069 KF251564<br />

Sep. stachydis <strong>CBS</strong> 347.58 Aster canus Germany R. Schneider KF253295 KF252820 KF252349 KF251852 KF251348<br />

<strong>CBS</strong> 102326 Stachys sylvatica Netherlands G.J.M. Verkley KF253514 KF253035 KF252560 KF252072 KF251567<br />

<strong>CBS</strong> 109115 Campanula glomerata Austria G.J.M. Verkley KF253502 KF253022 KF252548 KF252059 KF251554<br />

<strong>CBS</strong> 109127 Stachys sylvatica Austria G.J.M. Verkley KF253517 KF253038 KF252563 KF252075 KF251570<br />

Sep. stellariae <strong>CBS</strong> 102376 Stellaria media Netherlands G.J.M. Verkley KF253521 KF253042 KF252567 KF252079 KF251574<br />

“Sep.” steviae <strong>CBS</strong> 120132 Stevia rebaudiana Japan J. Ishiba KF253191 – KF252243 KF251741 KF251238<br />

“Sep.” tanaceti <strong>CBS</strong> 358.58 Tanacetum vulgare Germany R. Schneider KF253192 – KF252244 KF251742 KF251239<br />

Sep. taraxaci <strong>CBS</strong> 567.75 Taraxacum sp. Armenia H.A. van der Aa KF253524 KF253045 KF252570 KF252082 KF251577<br />

Sep. tinctoriae <strong>CBS</strong> 129154 Serratula coronata South Korea H.D. Shin KF253525 KF253046 KF252571 KF252083 KF251578<br />

Sep. tormentillae <strong>CBS</strong> 128643 Potentilla fragarioides South Korea H.D. Shin KF253526 KF253047 KF252572 KF252084 KF251579<br />

<strong>CBS</strong> 128647 Potentilla fragarioides South Korea H.D. Shin KF253527 KF253048 KF252573 KF252085 KF251580<br />

Sep. urticae <strong>CBS</strong> 102316 Glechoma hederacea Netherlands G.J.M. Verkley KF253528 KF253049 KF252574 KF252086 KF251581<br />

<strong>CBS</strong> 102375 Urtica dioica Netherlands G.J.M. Verkley KF253530 KF253051 KF252576 KF252088 KF251583<br />

Sep. verbascicola <strong>CBS</strong> 102401 Verbascum nigrum Netherlands G.J.M. Verkley KF253531 KF253052 KF252577 KF252089 KF251584<br />

Sep. verbenae <strong>CBS</strong> 113438 Verbena officinalis New Zealand G.J.M. Verkley KF253532 KF253053 KF252578 KF252090 KF251585<br />

Sep. villarsiae <strong>CBS</strong> 514.78 Nymphoides peltata Netherlands H.A. van der Aa KF253534 KF253055 KF252580 KF252092 KF251587<br />

Sep. violae-palustris <strong>CBS</strong> 128644 Viola selkirkii South Korea H.D. Shin KF253537 KF253058 KF252583 KF252095 KF251590<br />

<strong>CBS</strong> 128660 Viola yedoensis South Korea H.D. Shin KF253538 KF253059 KF252584 KF252096 KF251591<br />

septoria-like sp. <strong>CBS</strong> 134910; CPC 19500 Tibouchina herbacea Brazil D.F. Parreira KF302391 KF302386 KF302397 KF302409 KF302403<br />

<strong>CBS</strong> 135471; CPC 19294 Corymbia gummifera Australia P.W. Crous KF253193 KF252725 KF252245 KF251743 KF251240<br />

<strong>CBS</strong> 135473; CPC 19311 Phragmites sp. USA – KF253194 KF252726 KF252246 KF251744 KF251241<br />

<strong>CBS</strong> 135481; CPC 22154;<br />

S672<br />

Polygonatum sp. Netherlands U. Damm – – KF252247 KF251745 KF251242<br />

Septorioides pini-thunbergii <strong>CBS</strong> 473.91 Pinus thunbergii Japan S. Kaneko & Y. Zinno – KF252727 KF252248 KF251746 KF251243<br />

Setophoma chromolaenae <strong>CBS</strong> 135105; CPC 18553 Chromolaena odorata Brazil R.W. Barreto KF253195 KF252728 KF252249 KF251747 KF251244<br />

Setop. sacchari <strong>CBS</strong> 333.39 Saccharum officinarum Brazil A.A. Bitancourt – – KF252250 KF251748 KF251245<br />

Setop. terrestris <strong>CBS</strong> 335.29 Allium sativum USA H.N. Hansen KF253196 KF252729 KF252251 KF251749 KF251246<br />

<strong>CBS</strong> 335.87 Allium cepa Senegal – KF253197 KF252730 KF252252 KF251750 KF251247<br />

<strong>CBS</strong> 377.52 Allium cepa – R.H. Larson KF253198 KF252731 KF252253 KF251751 KF251248<br />

<strong>CBS</strong> 135470; CPC 18417 Zea mays South Africa S. Lamprecht KF253189 KF252723 KF252241 KF251739 KF251236<br />

318


Sizing up Septoria<br />

Table 1. (Continued).<br />

Species Isolate no. 1 Host Location Collector GenBank accession no. 2<br />

EF-1α Btub RPB2 LSU ITS<br />

Setoseptoria phragmitis <strong>CBS</strong> 114802 Phragmites australis Hong Kong K.D. Hyde KF253199 KF252732 KF252254 KF251752 KF251249<br />

<strong>CBS</strong> 114966 Phragmites australis Hong Kong K.D. Hyde KF253200 KF252733 KF252255 KF251753 KF251250<br />

Sphaerulina abeliceae <strong>CBS</strong> 128591 Zelkova serrata South Korea H.D. Shin KF253539 – KF252585 KF252097 KF251592<br />

Sph. aceris <strong>CBS</strong> 687.94 Acer pseudoplatanus Netherlands G.J.M. Verkley KF253542 KF253061 KF252588 KF252100 KF251595<br />

Sph. amelanchier <strong>CBS</strong> 102063 Actinidia deliciosa New Zealand C.F. Hill KF253581 KF253096 KF252627 KF252140 KF251635<br />

<strong>CBS</strong> 135110; MP8 Amelanchier sp. Netherlands S.I.R. Videira KF253543 KF253062 KF252589 KF252101 KF251596<br />

CPC 23105; MP22 Quercus sp. Netherlands S.I.R. Videira KF253544 KF253063 KF252590 KF252102 KF251597<br />

CPC 23106; MP7 Castanea sp. Netherlands S.I.R. Videira KF253545 KF253064 KF252591 KF252103 KF251598<br />

CPC 23107; MP9 Betula sp. Netherlands S.I.R. Videira KF253583 KF253098 KF252626 KF252139 KF251634<br />

Sph. azaleae <strong>CBS</strong> 352.49 Rhododendron sp. Belgium J. van Holder KF253547 KF253066 KF252593 KF252105 KF251600<br />

<strong>CBS</strong> 128605 Rhododendron sp. South Korea H.D. Shin KF253546 KF253065 KF252592 KF252104 KF251599<br />

Sph. berberidis <strong>CBS</strong> 324.52 Berberis vulgaris Switzerland E. Müller KF253548 KF253067 KF252594 KF252106 KF251601<br />

Sph. betulae <strong>CBS</strong> 116724 Betula pubescens Netherlands S. Green KF253549 KF253068 KF252595 KF252107 KF251602<br />

<strong>CBS</strong> 128600 Betula platyphylla var. japonica South Korea H.D. Shin KF253552 KF253071 KF252598 KF252110 KF251605<br />

Sph. cercidis <strong>CBS</strong> 501.50 Cercis siliquastrum Netherlands G. van den Ende KF253556 KF253075 KF252601 KF252113 KF251608<br />

<strong>CBS</strong> 118910 Eucalyptus sp. France P.W. Crous KF253553 KF253072 KF252602 KF252114 KF251609<br />

<strong>CBS</strong> 128634 Cercis siliquastrum Argentina H.D. Shin KF253554 KF253073 KF252599 KF252111 KF251606<br />

<strong>CBS</strong> 129151 Cercis siliquastrum Argentina H.D. Shin KF253555 KF253074 KF252600 KF252112 KF251607<br />

Sph. cornicola <strong>CBS</strong> 102324 Cornus sp. Netherlands A. van Iperen KF253557 KF253076 KF252603 KF252115 KF251610<br />

<strong>CBS</strong> 102332 Cornus sp. Netherlands A. van Iperen KF253558 KF253077 KF252604 KF252116 KF251611<br />

Sph. frondicola <strong>CBS</strong> 391.59 Populus pyramidalis Germany R. Schneider KF253572 – KF252617 KF252130 KF251625<br />

Sph. gei <strong>CBS</strong> 102318 Geum urbanum Netherlands G.J.M. Verkley KF253560 KF253079 KF252605 KF252118 KF251613<br />

<strong>CBS</strong> 128632 Geum japonicum South Korea H.D. Shin KF253562 KF253081 KF252607 KF252120 KF251615<br />

Sph. hyperici <strong>CBS</strong> 102313 Hypericum sp. Netherlands G.J.M. Verkley KF253563 KF253082 KF252608 KF252121 KF251616<br />

Sph. menispermi <strong>CBS</strong> 128666 Menispermum dauricum South Korea H.D. Shin KF253564 KF253083 KF252609 KF252122 KF251617<br />

<strong>CBS</strong> 128761 Menispermum dauricum South Korea H.D. Shin KF253565 KF253084 KF252610 KF252123 KF251618<br />

Sph. musiva <strong>CBS</strong> 130570 Populus deltoides Canada J. LeBoldus JX901725 JX902304 JX902058 JX901935 JX901812<br />

Sph. myriadea <strong>CBS</strong> 124646 Quercus dentata Japan K. Tanaka KF253201 KF252734 KF252256 KF251754 KF251251<br />

Sph. oxyacanthae <strong>CBS</strong> 135098; S654 Crataegus sp. Netherlands W. Quaedvlieg KF253202 KF252735 KF252257 KF251755 KF251252<br />

Sph. patriniae <strong>CBS</strong> 128653 Patrinia scabiosaefolia South Korea H.D. Shin KF253570 KF253087 KF252615 KF252128 KF251623<br />

Sph. populicola <strong>CBS</strong> 100042 Populus trichocarpa USA G. Newcombe KF253573 – KF252618 KF252131 KF251626<br />

Sph. pseudovirgaureae <strong>CBS</strong> 135109; S669 Solidago gigantea Netherlands S.I.R. Videira KF253203 KF252736 KF252258 KF251756 KF251253<br />

www.studiesinmycology.org<br />

319


Quaedvlieg et al.<br />

Table 1. (Continued).<br />

Species Isolate no. 1 Host Location Collector GenBank accession no. 2<br />

EF-1α Btub RPB2 LSU ITS<br />

Sph. quercicola <strong>CBS</strong> 663.94 Quercus robur Netherlands H.A. van der Aa KF253577 KF253092 KF252622 KF252135 KF251630<br />

<strong>CBS</strong> 109009 Quercus rubra Netherlands G.J.M. Verkley KF253574 KF253089 KF252619 KF252132 KF251627<br />

<strong>CBS</strong> 115016 Quercus robur Netherlands G.J.M. Verkley KF253575 KF253090 KF252620 KF252133 KF251628<br />

<strong>CBS</strong> 115136 Quercus robur Netherlands G.J.M. Verkley KF253576 KF253091 KF252621 KF252134 KF251629<br />

<strong>CBS</strong> 115137 Quercus robur Netherlands G.J.M. Verkley KF302390 KF302385 KF302394 KF302406 KF302400<br />

Sph. socia <strong>CBS</strong> 355.58 Rosa sp. – – KF253579 KF253094 KF252624 KF252137 KF251632<br />

<strong>CBS</strong> 357.58 Chrysanthemum leucanthemum Germany R. Schneider KF253580 KF253095 KF252625 KF252138 KF251633<br />

Sph. tirolensis <strong>CBS</strong> 109017 Rubus idaeus Austria G.J.M. Verkley KF253584 KF253099 KF252629 KF252142 KF251637<br />

<strong>CBS</strong> 109018 Rubus idaeus Austria G.J.M. Verkley KF253585 KF253100 KF252630 KF252143 KF251638<br />

Sph. viciae <strong>CBS</strong> 131898 Vicia amurense South Korea H.D. Shin KF253586 KF253101 KF252631 KF252144 KF251639<br />

Sph. westendorpii <strong>CBS</strong> 117478 Rubus fruticosus Netherlands G.J.M. Verkley KF253589 KF253104 KF252634 KF252147 KF251642<br />

Stagonospora cf. paludosa <strong>CBS</strong> 130005 Carex sp. Russia – KF253204 KF252737 KF252259 KF251757 KF251254<br />

Sta. duoseptata <strong>CBS</strong> 135093; S618 Carex acutiformis Netherlands W. Quaedvlieg KF253205 KF252738 KF252260 KF251758 KF251255<br />

“Sta.” foliicola <strong>CBS</strong> 110111 Phalaris arundinacea USA N. O’Neil KF253206 KF252739 KF252261 KF251759 KF251256<br />

Sta. paludosa <strong>CBS</strong> 135088; S601 Carex acutiformis Netherlands W. Quaedvlieg KF253207 KF252740 KF252262 KF251760 KF251257<br />

Sta. perfecta <strong>CBS</strong> 135099; S656 Carex acutiformis Netherlands W. Quaedvlieg KF253208 – KF252263 KF251761 KF251258<br />

Sta. pseudocaricis <strong>CBS</strong> 135132; S610 Carex acutiformis France A. Gardiennet KF253210 KF252742 KF252265 KF251763 KF251260<br />

<strong>CBS</strong> 135414; S609 Carex acutiformis France A. Gardiennet – KF302383 KF302395 KF302407 KF302401<br />

Sta. pseudovitensis <strong>CBS</strong> 135094; S620 Carex acutiformis Netherlands W. Quaedvlieg KF253211 KF252743 KF252266 KF251764 KF251261<br />

S602 Carex acutiformis Netherlands W. Quaedvlieg KF253212 KF252744 KF252267 KF251765 KF251262<br />

Stagonospora sp. <strong>CBS</strong> 135096; 652 Carex acutiformis France A. Gardiennet – – KF252268 KF251766 KF251263<br />

Sta. uniseptata <strong>CBS</strong> 135090; S611 Carex acutiformis Netherlands W. Quaedvlieg – KF252745 KF252269 KF251767 KF251264<br />

CPC 22150; S608 Carex acutiformis Netherlands W. Quaedvlieg KF253214 KF252747 KF252271 KF251769 KF251266<br />

CPC 22151; S607 Carex acutiformis Netherlands W. Quaedvlieg KF253213 KF252746 KF252270 KF251768 KF251265<br />

stagonospora-like sp. <strong>CBS</strong> 516.74 Triticum aestivum Brazil Y.R. Mehta KF253215 KF252748 KF252272 KF251770 KF251267<br />

<strong>CBS</strong> 135482; CPC 22155; Poa sp. Netherlands W. Quaedvlieg KF253216 KF252749 KF252273 KF251771 KF251268<br />

S526<br />

<strong>CBS</strong> 135483; CPC 22157; S617<br />

Carex acutiformis Netherlands W. Quaedvlieg KF253217 KF252750 KF252274 KF251772 KF251269<br />

S619 Carex acutiformis Netherlands W. Quaedvlieg KF253218 KF252751 KF252275 KF251773 KF251270<br />

Stromatoseptoria castaneicola <strong>CBS</strong> 102322 Castanea sativa Netherlands G.J.M. Verkley KF253219 KF252752 KF252276 KF251774 KF251271<br />

<strong>CBS</strong> 102377 Castanea sativa Netherlands G.J.M. Verkley KF253220 KF252753 KF252277 KF251775 KF251272<br />

Teratosphaeria juvenalis <strong>CBS</strong> 111149 Eucalyptus cladocalyx South Africa P.W. Crous KF253221 KF252754 KF252278 KF251776 KF251273<br />

320


Sizing up Septoria<br />

Table 1. (Continued).<br />

Species Isolate no. 1 Host Location Collector GenBank accession no. 2<br />

EF-1α Btub RPB2 LSU ITS<br />

Ter. molleriana <strong>CBS</strong> 111164 Eucalyptus globulus Portugal M.J. Wingfield KF253222 KF252755 KF252279 KF251777 KF251274<br />

Ter. parva <strong>CBS</strong> 119901 Eucalyptus globulus Ethiopia A. Gezahgne KF253223 KF252756 KF252280 KF251778 KF251275<br />

Ter. pseudoeucalypti <strong>CBS</strong> 124577 Eucalyptus grandis ×<br />

Australia V. Andjic KF253224 KF252757 KF252281 KF251779 KF251276<br />

E. camaldulensis<br />

Ter. suberosa CPC 13106 Eucalyptus dunnii Australia A.J. Carnegie KF253183 – KF252232 KF251730 KF251227<br />

Ter. toledana <strong>CBS</strong> 113313 Eucalyptus sp. Spain P.W. Crous & G. Bills KF253225 KF252758 KF252282 KF251780 KF251277<br />

Vrystaatia aloeicola <strong>CBS</strong> 135107; CPC 20617 Aloe maculata South Africa P.W. Crous & W.J. Swart – KF252759 KF252283 KF251781 KF251278<br />

Xenobotryosphaeria calamagrostidis <strong>CBS</strong> 303.71 Calamagrostis sp. Italy G.A. Hedjaroude KF253226 KF252760 KF252284 KF251782 KF251279<br />

Xenoseptoria neosaccardoi <strong>CBS</strong> 120.43 Cyclamen persicum Netherlands Roodenburg KF253227 KF252761 KF252285 KF251783 KF251280<br />

<strong>CBS</strong> 128665 Lysimachia vulgaris var. South Korea H.D. Shin KF253228 KF252762 KF252286 KF251784 KF251281<br />

davurica<br />

Zasmidium anthuriicola <strong>CBS</strong> 118742 Anthurium sp. Thailand C.F. Hill KF253229 KF252763 KF252287 KF251785 FJ839626<br />

Zas. citri CPC 13467 Eucalyptus sp. Thailand W. Himaman KF253182 KF252714 KF252231 KF251729 KF251226<br />

Zas. lonicericola <strong>CBS</strong> 125008 Lonicera japonica South Korea H.D. Shin KF253231 KF252765 KF252289 KF251787 KF251283<br />

Zas. nocoxi <strong>CBS</strong> 125009 Twig debris USA P.W. Crous KF253232 KF252766 KF252290 KF251788 KF251284<br />

Zas. scaevolicola <strong>CBS</strong> 127009 Scaevola taccada Australia R.G. Shivas & P.W Crous KF253233 KF252767 KF252291 KF251789 KF251285<br />

Zymoseptoria brevis <strong>CBS</strong> 128853 Phalaris minor Iran – JQ739777 JF700968 JF700799 JQ739833 JF700867<br />

CPC 18109 Phalaris paradoxa Iran – JQ739779 JF700970 JF700801 JQ739835 JF700869<br />

CPC 18112 Phalaris paradoxa Iran – JQ739782 JF700973 JF700804 JQ739838 JF700872<br />

Zym. halophila <strong>CBS</strong> 128854; CPC 18105 Hordeum glaucum Iran M. Razavi KF253592 – JF700808 KF252150 KF251645<br />

Zym. passerinii <strong>CBS</strong> 120384 Hordeum vulgare USA S. Ware JQ739788 JF700878 JF700979 JQ739844 JF700810<br />

<strong>CBS</strong> 120385 Hordeum vulgare USA S. Ware JQ739789 JF700980 JF700811 JQ739845 JF700879<br />

Zym. pseudotritici <strong>CBS</strong> 130976 Dactylis glomerata Iran M. Javan-Nikkhah JQ739772 JN982484 JN982482 JQ739828 JN982480<br />

Zym. tritici CPC 18117 Avena sp. Iran – JQ739801 JF700986 JF700817 JQ739857 JF700885<br />

1 <strong>CBS</strong>: <strong>CBS</strong>-<strong>KNAW</strong> Fungal Biodiversity Centre, Utrecht, The Netherlands; CPC: Culture collection of Pedro Crous, housed at <strong>CBS</strong>; IMI: International Mycological Institute, CABI-Bioscience, Egham, Bakeham Lane, U.K.; MP: Working collection of Sandra<br />

Videira; S: Working collection of William Quaedvlieg.<br />

2 Btub: β-tubulin; EF-1α: Translation elongation factor 1-alpha; ITS: internal transcribed spacers and intervening 5.8S nrDNA; LSU: 28S large subunit of the nrRNA gene; RPB2: RNA polymerase II second largest subunit.<br />

www.studiesinmycology.org<br />

321


Quaedvlieg et al.<br />

0.1<br />

0.96<br />

0.98<br />

0.56<br />

0.8<br />

0.95<br />

0.58<br />

Septoria galeopsidis <strong>CBS</strong> 102314<br />

Septoria calendulae <strong>CBS</strong> 349.58<br />

Septoria epilobii <strong>CBS</strong> 109084<br />

Septoria epilobii <strong>CBS</strong> 109085<br />

Septoria galeopsidis <strong>CBS</strong> 102411<br />

Septoria galeopsidis <strong>CBS</strong> 191.26<br />

Septoria melissae <strong>CBS</strong> 109097<br />

Septoria orchidearum <strong>CBS</strong> 457.78<br />

Septoria verbascicola <strong>CBS</strong> 102401<br />

Septoria taraxaci <strong>CBS</strong> 567.75<br />

Septoria stachydis <strong>CBS</strong> 109115<br />

Septoria stachydis <strong>CBS</strong> 109127<br />

Septoria stachydis <strong>CBS</strong> 347.58<br />

Septoria orchidearum <strong>CBS</strong> 128631<br />

Septoria siegesbeckiae <strong>CBS</strong> 128659<br />

Septoria siegesbeckiae <strong>CBS</strong> 128661<br />

Septoria stachydis <strong>CBS</strong> 102326<br />

Septoria cerastii <strong>CBS</strong> 128612<br />

Septoria violae-palustris <strong>CBS</strong> 128644<br />

Septoria chelidonii <strong>CBS</strong> 128607<br />

Septoria digitalis <strong>CBS</strong> 391.63<br />

Septoria sp. CPC 23104<br />

Septoria leptostachyae <strong>CBS</strong> 128613<br />

1 Septoria leptostachyae <strong>CBS</strong> 128628<br />

Septoria codonopsidis <strong>CBS</strong> 128620<br />

Septoria urticae <strong>CBS</strong> 102316<br />

Septoria urticae <strong>CBS</strong> 102375<br />

Septoria crepidis <strong>CBS</strong> 128619<br />

1<br />

Septoria crepidis <strong>CBS</strong> 128608<br />

Septoria tormentillae <strong>CBS</strong> 128643<br />

1<br />

Septoria tormentillae <strong>CBS</strong> 128647<br />

Septoria callistephi <strong>CBS</strong> 128590<br />

Septoria convolvuli <strong>CBS</strong> 128627<br />

Septoria perillae <strong>CBS</strong> 128655<br />

Septoria dysentericae CPC 12328<br />

Septoria pachyspora <strong>CBS</strong> 128652<br />

Septoria sp. <strong>CBS</strong> 128650<br />

Septoria glycinicola <strong>CBS</strong> 128618<br />

Septoria villarsiae <strong>CBS</strong> 514.78<br />

Septoria phlogis <strong>CBS</strong> 128663<br />

Septoria polygonorum <strong>CBS</strong> 109834<br />

Septoria polygonorum <strong>CBS</strong> 347.67<br />

Septoria epambrosiae <strong>CBS</strong> 128629<br />

Septoria cf. stachydicola <strong>CBS</strong> 128668<br />

Septoria saccardoi <strong>CBS</strong> 128756<br />

Septoria exotica <strong>CBS</strong> 163.78<br />

Septoria posoniensis <strong>CBS</strong> 128645<br />

Septoria chrysanthemella <strong>CBS</strong> 128622<br />

Septoria cirsii <strong>CBS</strong> 128621<br />

Septoria lycoctoni <strong>CBS</strong> 109089<br />

Septoria napelli <strong>CBS</strong> 109105<br />

Septoria violae-palustris <strong>CBS</strong> 128660<br />

Septoria lamiicola <strong>CBS</strong> 123884<br />

1 Septoria senecionis <strong>CBS</strong> 102366<br />

Septoria senecionis <strong>CBS</strong> 102381<br />

Septoria leucanthemi <strong>CBS</strong> 109090<br />

1 Septoria<br />

Mycosphaerellaceae<br />

Fig. 1. A Bayesian 50 % majority rule RPB2/LSU consensus tree containing all Septoria and septoria-like taxa available at the <strong>CBS</strong>, which cluster in or near the Mycosphaerellaceae.<br />

Bayesian posterior probabilities support values for the respective nodes are displayed in the tree. A stop rule (set to 0.01) for the critical value for the topological convergence<br />

diagnosticwas used for the Bayesian analysis. The tree was rooted to Phaeosphaeria nodorum (<strong>CBS</strong> 259.49). The scalebar indicates 0.1 expectedchanges per site.<br />

322


Sizing up Septoria<br />

0.1<br />

0.56<br />

0.71<br />

Septoria obesa <strong>CBS</strong> 128588<br />

1 Septoria obesa <strong>CBS</strong> 128623<br />

Septoria obesa <strong>CBS</strong> 354.58<br />

Septoria chrysanthemella <strong>CBS</strong> 128716<br />

Septoria pseudonapelli <strong>CBS</strong> 128664<br />

Septoria putrida <strong>CBS</strong> 109088<br />

Septoria lycopicola <strong>CBS</strong> 128651<br />

Septoria paridis <strong>CBS</strong> 109111<br />

Septoria paridis <strong>CBS</strong> 109108<br />

Septoria sp. <strong>CBS</strong> 128658<br />

1 Septoria malagutii <strong>CBS</strong> 106.80<br />

Septoria lycopersici <strong>CBS</strong> 128654<br />

Septoria cucurbitacearum <strong>CBS</strong> 178.77<br />

Septoria apiicola <strong>CBS</strong> 400.54<br />

Septoria petroselini <strong>CBS</strong> 182.44<br />

Septoria anthrisci <strong>CBS</strong> 109020<br />

Septoria astericola <strong>CBS</strong> 128593<br />

Septoria cf. rubi <strong>CBS</strong> 128646<br />

Septoria cf. agrimoniicola <strong>CBS</strong> 128602<br />

Septoria cf. agrimoniicola <strong>CBS</strong> 128585<br />

Septoria tinctoriae <strong>CBS</strong> 129154<br />

Septoria bothriospermi <strong>CBS</strong> 128599<br />

Septoria erigerontis <strong>CBS</strong> 109094<br />

1<br />

Septoria erigerontis <strong>CBS</strong> 186.93<br />

Septoria erigerontis CPC 12340<br />

Septoria lysimachiae <strong>CBS</strong> 102315<br />

Septoria lysimachiae <strong>CBS</strong> 123795<br />

Septoria helianthi <strong>CBS</strong> 123.81<br />

Septoria matricariae <strong>CBS</strong> 109001<br />

Septoria atropurpurea <strong>CBS</strong> 348.58<br />

Septoria sp. CPC 19976<br />

Septoria protearum <strong>CBS</strong> 177.77<br />

Septoria protearum <strong>CBS</strong> 390.59<br />

1 Septoria limonum <strong>CBS</strong> 419.51<br />

Septoria protearum <strong>CBS</strong> 778.97<br />

Septoria protearum <strong>CBS</strong> 135477<br />

0.83<br />

Septoria sp. CPC 21105<br />

Septoria citricola <strong>CBS</strong> 356.36<br />

Septoria justiciae <strong>CBS</strong> 128625<br />

Septoria linicola <strong>CBS</strong> 316.37<br />

0.59<br />

0.74<br />

0.67<br />

1<br />

0.98<br />

0.76<br />

1<br />

1<br />

Septoria cretae <strong>CBS</strong> 135095<br />

Septoria cucubali <strong>CBS</strong> 102386<br />

Septoria sp. CPC 19793<br />

Septoria sp. CPC 19304<br />

Septoria protearum <strong>CBS</strong> 566.88<br />

Septoria lepidiicola <strong>CBS</strong> 128635<br />

Septoria cruciatae <strong>CBS</strong> 123747<br />

Septoria verbenae <strong>CBS</strong> 113438<br />

Septoria sisyrinchii <strong>CBS</strong> 112096<br />

Septoria chromolaenae <strong>CBS</strong> 113373<br />

Septoria anthurii <strong>CBS</strong> 346.58<br />

Septoria passiflorae <strong>CBS</strong> 102701<br />

Septoria abei <strong>CBS</strong> 128598<br />

Septoria hibiscicola <strong>CBS</strong> 128615<br />

Septoria eucalyptorum <strong>CBS</strong> 118505<br />

1 Septoria (continued)<br />

Mycosphaerellaceae<br />

Fig. 1. (Continued).<br />

www.studiesinmycology.org<br />

323


Quaedvlieg et al.<br />

0.1<br />

0.99<br />

0.64<br />

0.53<br />

1<br />

0.55<br />

0.98<br />

0.91<br />

0.86<br />

0.73<br />

0.85<br />

1<br />

1<br />

1<br />

0.94<br />

0.84<br />

0.55<br />

Septoria rumicum <strong>CBS</strong> 503.76<br />

Septoria stellariae <strong>CBS</strong> 102376<br />

Septoria scabiosicola <strong>CBS</strong> 102336<br />

Septoria scabiosicola <strong>CBS</strong> 108981<br />

Septoria scabiosicola <strong>CBS</strong> 109093<br />

Septoria scabiosicola <strong>CBS</strong> 102334<br />

“Pseudocercosporella” magnusiana <strong>CBS</strong> 114735<br />

Septoria bupleuricola <strong>CBS</strong> 128603<br />

Septoria clematidis <strong>CBS</strong> 108983<br />

Septoria sp. CPC 19716<br />

0.98<br />

0.55<br />

0.97<br />

0.97<br />

Septoria oenanthis <strong>CBS</strong> 128667<br />

Septoria sii <strong>CBS</strong> 102370<br />

Septoria mazi <strong>CBS</strong> 128755<br />

Septoria lactucae <strong>CBS</strong> 108943<br />

1 Septoria lactucae <strong>CBS</strong> 352.58<br />

Septoria sp. <strong>CBS</strong> 128757<br />

Septoria gentianae <strong>CBS</strong> 128633<br />

Septoria oenanthicola <strong>CBS</strong> 128649<br />

Septoria coprosma <strong>CBS</strong> 113391<br />

Septoria campanulae <strong>CBS</strong> 128604<br />

Septoria sp. CPC 19485<br />

Septoria dearnessii <strong>CBS</strong> 128624<br />

Septoria hippocastani CPC 23103<br />

Septoria hippocastani <strong>CBS</strong> 411.61<br />

Septoria astragali <strong>CBS</strong> 109116<br />

1<br />

Septoria astragali <strong>CBS</strong> 123878<br />

Sphaerulina amelanchier CPC 23106<br />

Sphaerulina amelanchier <strong>CBS</strong> 135110<br />

Sphaerulina amelanchier CPC 23107<br />

Sphaerulina amelanchier CPC 23105<br />

Sphaerulina amelanchier <strong>CBS</strong> 102063<br />

Sphaerulina pseudovirgaureae <strong>CBS</strong> 135109<br />

Sphaerulina gei <strong>CBS</strong> 102318<br />

1<br />

Sphaerulina gei <strong>CBS</strong> 128632<br />

Sphaerulina viciae <strong>CBS</strong> 131898<br />

Sphaerulina patriniae <strong>CBS</strong> 128653<br />

Sphaerulina cercidis <strong>CBS</strong> 129151<br />

Sphaerulina cercidis <strong>CBS</strong> 501.50<br />

Sphaerulina cercidis <strong>CBS</strong> 128634<br />

Sphaerulina cercidis <strong>CBS</strong> 118910<br />

1 Sphaerulina menispermi <strong>CBS</strong> 128761<br />

1 Sphaerulina menispermi <strong>CBS</strong> 128666<br />

Sphaerulina hyperici <strong>CBS</strong> 102313<br />

Sphaerulina azaleae <strong>CBS</strong> 128605<br />

Sphaerulina azaleae <strong>CBS</strong> 352.49<br />

Sphaerulina berberidis <strong>CBS</strong> 324.52<br />

Sphaerulina tirolensis <strong>CBS</strong> 109018<br />

Sphaerulina tirolensis <strong>CBS</strong> 109017<br />

Sphaerulina socia <strong>CBS</strong> 355.58<br />

Sphaerulina socia <strong>CBS</strong> 357.58<br />

Sphaerulina quercicola <strong>CBS</strong> 109009<br />

Sphaerulina quercicola <strong>CBS</strong> 663.94<br />

1<br />

1<br />

1<br />

1<br />

1<br />

1<br />

Sphaerulina quercicola <strong>CBS</strong> 115137<br />

Sphaerulina quercicola <strong>CBS</strong> 115136<br />

Sphaerulina quercicola <strong>CBS</strong> 115016<br />

1 Sphaerulina populicola <strong>CBS</strong> 100042<br />

Sphaerulina musiva <strong>CBS</strong> 130570<br />

Sphaerulina frondicola <strong>CBS</strong> 391.59<br />

Sphaerulina aceris <strong>CBS</strong> 687.94<br />

Sphaerulina betulae <strong>CBS</strong> 116724<br />

Sphaerulina betulae <strong>CBS</strong> 128600<br />

1 Septoria (continued)<br />

2 Sphaerulina<br />

Mycosphaerellaceae<br />

Fig. 1. (Continued).<br />

324


Sizing up Septoria<br />

0.1<br />

1<br />

1<br />

1<br />

1<br />

0.99<br />

0.98<br />

1<br />

0.96<br />

1<br />

1<br />

0.94<br />

0.55<br />

1<br />

0.69<br />

0.59<br />

0.75<br />

0.57<br />

1<br />

Sphaerulina oxyacanthae <strong>CBS</strong> 135098<br />

Sphaerulina abeliceae <strong>CBS</strong> 128591<br />

1 Sphaerulina cornicola <strong>CBS</strong> 102332<br />

Sphaerulina cornicola <strong>CBS</strong> 102324<br />

Sphaerulina westendorpii <strong>CBS</strong> 117478<br />

Sphaerulina myriadea <strong>CBS</strong> 124646<br />

Caryophylloseptoria lychnidis <strong>CBS</strong> 109099<br />

1 Caryophylloseptoria lychnidis <strong>CBS</strong> 109102<br />

Caryophylloseptoria lychnidis <strong>CBS</strong> 109098<br />

Caryophylloseptoria lychnidis <strong>CBS</strong> 109101<br />

1 Caryophylloseptoria silenes <strong>CBS</strong> 109100<br />

Caryophylloseptoria silenes <strong>CBS</strong> 109103<br />

1 Caryophylloseptoria spergulae <strong>CBS</strong> 397.52<br />

Caryophylloseptoria spergulae <strong>CBS</strong> 109010<br />

Caryophylloseptoria pseudolychnidis <strong>CBS</strong> 128614<br />

1<br />

Caryophylloseptoria pseudolychnidis <strong>CBS</strong> 128630<br />

Caryophylloseptoria pseudolychnidis <strong>CBS</strong> 128630<br />

Pseudocercosporella capsellae <strong>CBS</strong> 112032<br />

Pseudocercosporella capsellae <strong>CBS</strong> 112033<br />

Pseudocercosporella capsellae <strong>CBS</strong> 118412<br />

Pseudocercosporella capsellae <strong>CBS</strong> 127.29<br />

0.98<br />

Mycosphaerella brassicicola <strong>CBS</strong> 228.32<br />

Mycosphaerella brassicicola <strong>CBS</strong> 267.53<br />

Mycosphaerella sp. CPC 11677<br />

Passalora depressa CPC 14915<br />

Pseudocercosporella pastinacae <strong>CBS</strong> 114116<br />

Cercospora zebrina <strong>CBS</strong> 118790<br />

1<br />

Cercospora zebrina <strong>CBS</strong> 137.56<br />

Cercospora zebrina IMI 262766<br />

Cercospora capsici <strong>CBS</strong> 118712<br />

1<br />

Cercospora capsici <strong>CBS</strong> 118712<br />

1 Cercospora beticola <strong>CBS</strong> 124.31<br />

Cercospora beticola CPC 5070<br />

Phloeospora ulmi <strong>CBS</strong> 101564<br />

Phloeospora ulmi <strong>CBS</strong> 109835<br />

1<br />

Phloeospora ulmi <strong>CBS</strong> 344.97<br />

Phloeospora ulmi <strong>CBS</strong> 613.81<br />

‘Septoria’ gladioli <strong>CBS</strong> 353.29<br />

‘Septoria’ gladioli <strong>CBS</strong> 121.20<br />

1 Passalora dioscoreae CPC 10855<br />

Passalora dioscoreae CPC 11513<br />

Neoseptoria caricis <strong>CBS</strong> 135097<br />

Pseudocercospora eucalyptorum <strong>CBS</strong> 116303<br />

0.58 Pseudocercospora eucalyptorum CPC 13816<br />

1 Pseudocercospora robusta <strong>CBS</strong> 111175<br />

Pseudocercospora natalensis <strong>CBS</strong> 111069<br />

Pseudocercospora norchiensis <strong>CBS</strong> 120738<br />

1 Pseudocercospora chiangmaiensis <strong>CBS</strong> 123244<br />

0.99 Pseudocercospora schizolobii <strong>CBS</strong> 120029<br />

1 Pseudocercospora madagascariensis <strong>CBS</strong> 124155<br />

Pseudocercospora tereticornis CPC 13299<br />

Zymoseptoria brevis <strong>CBS</strong> 128853<br />

1 Zymoseptoria brevis CPC 18112<br />

Zymoseptoria brevis CPC 18109<br />

Zymoseptoria pseudotritici <strong>CBS</strong> 130976<br />

Zymoseptoria tritici CPC 18117<br />

Zymoseptoria passerinii <strong>CBS</strong> 120385<br />

1 Zymoseptoria passerinii <strong>CBS</strong> 120384<br />

Zymoseptoria halophila CPC 18105<br />

Ramularia eucalypti <strong>CBS</strong> 120726<br />

Ramularia pratensis CPC 11294<br />

Ramularia lamii CPC 11312<br />

Ramularia sp. <strong>CBS</strong> 115913<br />

Ramularia endophylla <strong>CBS</strong> 113265<br />

0.82<br />

1<br />

2 Sphaerulina (continued)<br />

3 Caryophylloseptoria<br />

4 pseudocercosporella-like<br />

5 Cercospora<br />

6 Phloeospora<br />

7 septoria-like<br />

8 passalora-like<br />

9 Neoseptoria<br />

10 Pseudocercospora<br />

11 Zymoseptoria<br />

12 Ramularia<br />

Mycosphaerellaceae<br />

Fig. 1. (Continued).<br />

www.studiesinmycology.org<br />

325


Quaedvlieg et al.<br />

8x<br />

1<br />

0.1<br />

4x<br />

1<br />

1<br />

0.98<br />

1<br />

1<br />

1<br />

0.91<br />

1<br />

1<br />

1<br />

1<br />

Dothistroma pini <strong>CBS</strong> 116484<br />

Dothistroma pini <strong>CBS</strong> 116485<br />

Dothistroma pini <strong>CBS</strong> 116487<br />

Dothistroma pini <strong>CBS</strong> 121005<br />

Dothistroma pini <strong>CBS</strong> 121011<br />

Dothistroma septosporum CPC 16799<br />

1<br />

Dothistroma septosporum <strong>CBS</strong> 383.74<br />

Dothistroma septosporum CPC 16798<br />

Stromatoseptoria castaneicola <strong>CBS</strong> 102322<br />

Stromatoseptoria castaneicola <strong>CBS</strong> 102377<br />

L. acicola <strong>CBS</strong> 322.33<br />

L. acicola <strong>CBS</strong> 133791<br />

1 L. guatamalensis IMI 281598<br />

1<br />

L. longispora <strong>CBS</strong> 133602<br />

0.66<br />

L. brevispora <strong>CBS</strong> 133601<br />

1<br />

1 Ph. eugeniae CPC 15143<br />

Ph. eugeniae CPC 15159<br />

Cy. martiniana <strong>CBS</strong> 135102<br />

0.51 Z. citri CPC 13467<br />

0.92 Z. scaevolicola <strong>CBS</strong> 127009<br />

1 Z. anthuriicola <strong>CBS</strong> 118742<br />

1 Z. lonicericola <strong>CBS</strong> 125008<br />

1<br />

Z. nocoxi <strong>CBS</strong> 125009<br />

Po. terminaliae <strong>CBS</strong> 135475<br />

1 Po. terminaliae <strong>CBS</strong> 135106<br />

Po. tabebuiae-serratifoliae <strong>CBS</strong> 112650<br />

1 Ruptoseptoria unedonis <strong>CBS</strong> 355.86<br />

Ruptoseptoria unedonis <strong>CBS</strong> 755.70<br />

D. commune CPC 12397<br />

0.95 Readeriella eucalypti CPC 13401<br />

1 Readeriella readeriellophora CPC 12920<br />

1<br />

Readeriella angustia <strong>CBS</strong> 124998<br />

T. suberosa CPC 13106<br />

Teratosphaeria parva <strong>CBS</strong> 119901<br />

Teratosphaeria molleriana <strong>CBS</strong> 111164<br />

Teratosphaeria toledana <strong>CBS</strong> 113313<br />

Teratosphaeria juvenalis <strong>CBS</strong> 111149<br />

Teratosphaeria pseudoeucalypti <strong>CBS</strong> 124577<br />

septoria-like sp. <strong>CBS</strong> 134910<br />

0.73<br />

Cylindroseptoria ceratoniae <strong>CBS</strong> 477.69<br />

Cylindroseptoria pistaciae <strong>CBS</strong> 471.69<br />

1 Pseudoseptoria obscura <strong>CBS</strong> 135103<br />

Pseudoseptoria collariana <strong>CBS</strong> 135104<br />

Phaeosphaeria “nodorum” <strong>CBS</strong> 259.49<br />

13 Dothistroma<br />

14 Stromatoseptoria<br />

15 Lecanosticta<br />

16 Phaeophleospora<br />

17 Cytostagonospora<br />

18 Zasmidium<br />

19 Polyphialoseptoria<br />

20 Ruptoseptoria<br />

21 Dissoconium<br />

22 Readeriella<br />

23 Teratosphaeria<br />

24 septoria-like<br />

25 Cylindroseptoria<br />

26 Pseudoseptoria<br />

Mycosphaerellaceae<br />

Dissoconiaceae<br />

Teratosphaeriaceae<br />

Incertae sedis<br />

Dothideaceae<br />

Dothioraceae<br />

Fig. 1. (Continued).<br />

Table 2. Primer combinations used during this study for generic amplification and sequencing.<br />

Locus Primer Primer sequence 5’ to 3’ Annealing<br />

temperature (°C)<br />

Orientation<br />

Reference<br />

Translation elongation factor-1α EF1-728F CATCGAGAAGTTCGAGAAGG 52 Forward Carbone & Kohn (1999)<br />

EF-2 GGARGTACCAGTSATCATGTT 52 Reverse O’Donnell et al. (1998)<br />

β-tubulin T1 AACATGCGTGAGATTGTAAGT 52 Forward O’Donnell & Cigelnik (1997)<br />

β-Sandy-R GCRCGNGGVACRTACTTGTT 52 Reverse Stukenbrock et al. (2012)<br />

RNA polymerase II second largest fRPB2-5F GAYGAYMGWGATCAYTTYGG 49 Forward Liu et al. (1999)<br />

subunit<br />

fRPB2-414R ACMANNCCCCARTGNGWRTTRTG 49 Reverse Quaedvlieg et al. (2011)<br />

LSU LSU1Fd GRATCAGGTAGGRATACCCG 52 Forward Crous et al. (2009a)<br />

LR5 TCCTGAGGGAAACTTCG 52 Reverse Vilgalys & Hester (1990)<br />

ITS ITS5 GGAAGTAAAAGTCGTAACAAGG 52 Forward White et al. (1990)<br />

ITS4 TCCTCCGCTTATTGATATGC 52 Reverse White et al. (1990)<br />

326


Sizing up Septoria<br />

Table 3. Amplification success, phylogenetic data and the substitution models used in the phylogenetic analysis, per locus.<br />

Locus RPB2 LSU<br />

Amplification succes (%) 99.20 % 100 %<br />

Number of characters 327 792<br />

Unique site patterns 197 216<br />

Substitution model used GTR-I-gamma GTR-I-gamma<br />

Number of generations (1000×) 2575<br />

Total number of trees (n) 5152<br />

Sampled trees (n) 3864<br />

which 26 contained species belonging to the Septoria (-like) complex.<br />

These 47 resolved clades belong to a multitude of different families<br />

within the Dothidiomycetes ranging from the Mycosphaerellaceae in<br />

the Capnodiales to the Lentitheciaceae in the Pleosporales. It is still<br />

unclear within the Dothidiomycetes where the phylogenetic family<br />

borders are located, or even how many phylogenetically substainable<br />

families there actually are. The family annotation in the phylogenetic<br />

trees (Figs 1, 2) is therefore based on the closest LSU neighbour that<br />

was available in GenBank, with clades treated as incertae sedis if no<br />

closer relationship than 97 % could be found.<br />

Septoria and septoria-like genera<br />

In addition to Septoria s. str., numerous septoria-like genera<br />

(pycnidial/acervular/stromatic conidioma with filiform conidia) have<br />

since been described. Although the majority of these have no extype<br />

culture available for DNA analysis, many have type material<br />

deposited in herbaria, which were available for morphological<br />

examination. A summary of these genera is provided below.<br />

Pycnidial forms<br />

Cytostagonospora Bubák, Ann. Mycol. 14: 150. 1916. Fig.<br />

3.<br />

Mycelium immersed, dark brown, branched, septate. Conidiomata<br />

pycnidial, amphigenous, separate, globose, dark brown to black,<br />

immersed, unilocular, thick-walled, clypeate; walls of dark brown,<br />

thick-walled textura angularis to textura globulosa, becoming<br />

hyaline towards the conidiogenous region, extending in the upper<br />

part to become a circular clypeus of similar thickness to the wall.<br />

Ostiole central, circular, papillate to shortly rostrate, depressed,<br />

situated immersed within the clypeus. Conidiophores reduced to<br />

conidiogenous cells. Conidiogenous cells holoblastic, determinate,<br />

discrete, lageniform, hyaline, smooth, formed from the inner cells of<br />

the pycnidial wall. Conidia hyaline, 0–2-euseptate, not constricted<br />

at septa, base truncate, apex obtuse, thin-walled, eguttulate,<br />

smooth, filiform, often curved (Sutton 1980).<br />

Type species: C. photiniicola Bubák, Ann. Mycol. 14(3–4): 150.<br />

1916.<br />

Notes: Von Arx (1983) and Sutton (1980) disagreed about the link<br />

of Cytostagonospora to Septoria. Von Arx treated it as a synonym<br />

of Septoria, while Sutton retained it as a separate genus.<br />

Dearnessia Bubák, Hedwigia 58: 25. 1916.<br />

Mycelium hyaline to brown, branched, septate. Conidiomata<br />

pycnidial, amphigenous, separate, globose, immersed, brown;<br />

wall of thin-walled textura angularis. Ostiole central, circular,<br />

papillate. Setae ostiolar, approximately straight, unbranched,<br />

tapered towards apex, dark brown, smooth, thin-walled, septate.<br />

Conidiogenous cells holoblastic, determinate, discrete, doliiform<br />

to ampulliform, hyaline, smooth and formed from the inner layer<br />

of the pycnidial wall. Conidia cylindrical to irregular, hyaline,<br />

1–multi-transversely euseptate, rarely with 1–2 longitudinal<br />

eusepta, continuous or constricted, often tapered at the apex,<br />

base truncate, thin-walled, smooth, guttulate or not (Sutton 1980).<br />

Type species: D. apocyni Bubák, Hedwigia 58: 25. 1916.<br />

Dearnessia apocyni Bubák, Hedwigia 58: 25. 1916. Figs 4,<br />

5.<br />

Leaf spots amphigenous, irregular, feathery to angular, dark brown,<br />

3–6 mm diam, surrounded by a wide chlorotic zone up to 3 mm<br />

diam. Conidiomata epiphyllous, pycnidial, erumpent, up to 150<br />

µm diam, with central ostiole; wall of 3–6 layers of brown textura<br />

angularis. Conidiogenous cells doliiform, globose to subcylindrical,<br />

hyaline, smooth, thin-walled, mode of proliferation obscure, 5–10 ×<br />

4–6 µm. Conidia hyaline, smooth, subcylindrical to obclavate, apex<br />

obtuse, base truncate to subobtuse, straight to irregular (lateral<br />

swellings?), 1–4-septate, 16–33 × 5–8 µm.<br />

Specimen examined: Canada, Ontario, London, on leaves of Apocynum<br />

androsaemifolium (Apocynaceae), 11 Aug. 1910, J. Dearness, holotype F43227.<br />

Notes: Because the specimen is in poor condition, no definite<br />

conclusion could be reached about its potential relationships.<br />

However, D. apocyni does appear septoria-like in general<br />

morphology.<br />

Jahniella Petr., Ann. Mycol. 18: 123. 1921. [1920]. Figs 6, 7.<br />

Mycelium branched, immersed, septate, brown. Conidiomata<br />

pycnidial, superficial on epidermis, immersed, separate, globose,<br />

papillate, dark brown, thick-walled, sclerenchymatic; wall consisting<br />

of an outer layer of dark brown, thick-walled textura angularis,<br />

a middle layer of 8 cells thick, of hyaline to pale brown, thickwalled<br />

cells, and an inner layer of thin-walled, hyaline, irregular<br />

cells. Ostiole single, circular, with a distinct channel and hyaline<br />

www.studiesinmycology.org<br />

327


Quaedvlieg et al.<br />

0.01<br />

0.94<br />

0.93<br />

0.55<br />

0.86<br />

0.98<br />

0.97<br />

0.78<br />

1<br />

0.91<br />

Parastagonospora avenae <strong>CBS</strong> 289.69<br />

0.83<br />

1 Parastagonospora avenae <strong>CBS</strong> 290.69<br />

0.99 Parastagonospora caricis <strong>CBS</strong> 135671<br />

Parastagonospora nodorum <strong>CBS</strong> 110109<br />

1<br />

Phaeosphaeria nigrans <strong>CBS</strong> 307.79<br />

0.84<br />

Parastagonospora poae <strong>CBS</strong> 135089<br />

1<br />

1<br />

Parastagonospora poae <strong>CBS</strong> 135091<br />

Parastagonospora “nodorum” <strong>CBS</strong> 259.49<br />

1<br />

“Septoria” agropyrina <strong>CBS</strong> 387.64<br />

1<br />

“Stagonospora” foliicola <strong>CBS</strong> 110111<br />

“Septoria” arundinacea <strong>CBS</strong> 133.68<br />

0.96<br />

0.83<br />

Neostagonospora elegiae <strong>CBS</strong> 135101<br />

Neostagonospora caricis <strong>CBS</strong> 135092<br />

phaeosphaeria-like sp. <strong>CBS</strong> 135469<br />

1<br />

0.94 Chaetosphaeronema hispidulum <strong>CBS</strong> 216.75<br />

1 Phaeosphaeria caricicola <strong>CBS</strong> 603.86<br />

Phaeosphaeria juncicola <strong>CBS</strong> 110108<br />

0.79<br />

Phaeosphaeriopsis glaucopunctata <strong>CBS</strong> 653.86<br />

stagonospora-like sp. <strong>CBS</strong> 135483<br />

1<br />

1 stagonospora-like sp. S619<br />

0.66 “Phaeosphaeria” vagans <strong>CBS</strong> 604.86<br />

“Phaeosphaeria” pontiformis <strong>CBS</strong> 117487<br />

1<br />

“Septoria” arundinacea <strong>CBS</strong> 281.72<br />

0.70<br />

Leptosphaeria albopunctata <strong>CBS</strong> 254.64<br />

1<br />

Sclerostagonospora phragmiticola <strong>CBS</strong> 338.86<br />

0.77 “Phaeosphaeria” phragmiticola <strong>CBS</strong> 459.84<br />

phaeosphaeria-like sp. <strong>CBS</strong> 135466<br />

1<br />

phaeosphaeria-like sp. CPC 12130<br />

0.98<br />

Phaeosphaeria sp. <strong>CBS</strong> 206.87<br />

1 Phaeosphaeria papayae <strong>CBS</strong> 135416<br />

0.99<br />

Phaeosphaeria oryzae <strong>CBS</strong> 110110<br />

stagonospora-like sp. <strong>CBS</strong> 135482<br />

Phaeosphaeria sp. <strong>CBS</strong> 135465<br />

stagonospora-like sp. <strong>CBS</strong> 516.74<br />

phaeosphaeria-like sp. <strong>CBS</strong> 123.76<br />

1<br />

phaeosphaeria-like sp. <strong>CBS</strong> 135461<br />

1 Neosetophoma samarorum <strong>CBS</strong> 139.96<br />

Neosetophoma samarorum <strong>CBS</strong> 568.94<br />

1<br />

Neosetophoma samarorum <strong>CBS</strong> 138.96<br />

“Phaeosphaeria” typharum <strong>CBS</strong> 296.54<br />

1<br />

“Phaeosphaeria” alpina <strong>CBS</strong> 456.84<br />

Paraphoma chrysanthemicola <strong>CBS</strong> 172.70<br />

1<br />

Paraphoma chrysanthemicola <strong>CBS</strong> 522.66<br />

0.98<br />

Paraphoma radicina <strong>CBS</strong> 111.79<br />

1<br />

0.59 Paraphoma radicina <strong>CBS</strong> 102875<br />

Paraphoma dioscoreae CPC 11361<br />

1<br />

0.71 Paraphoma dioscoreae <strong>CBS</strong> 135100<br />

Paraphoma dioscoreae CPC 11355<br />

1 Paraphoma fimeti <strong>CBS</strong> 170.70<br />

1<br />

Paraphoma fimeti <strong>CBS</strong> 368.91<br />

Xenoseptoria neosaccardoi <strong>CBS</strong> 120.43<br />

1<br />

Xenoseptoria neosaccardoi <strong>CBS</strong> 128665<br />

Vrystaatia aloeicola <strong>CBS</strong> 135107<br />

Setophoma terrestris <strong>CBS</strong> 135470<br />

1<br />

Setophoma terrestris <strong>CBS</strong> 335.87<br />

1<br />

Setophoma terrestris <strong>CBS</strong> 377.52<br />

Setophoma terrestris <strong>CBS</strong> 335.29<br />

Setophoma sacchari <strong>CBS</strong> 333.39<br />

1<br />

Setophoma chromolaenae <strong>CBS</strong> 135105<br />

0.96<br />

27 Parastagonospora<br />

28 Neostagonospora<br />

29 Phaeosphaeriopsis<br />

30 Incertae sedis<br />

31 Phaeosphaeria<br />

32 Neosetophoma<br />

33 Paraphoma<br />

34 Xenoseptoria<br />

35 Vrystaatia<br />

36 Setophoma<br />

Phaeosphaeriaceae<br />

Fig. 2. A Bayesian 50 % majority rule RPB2/LSU consensus tree containing all Septoria and septoria-like taxa available at the <strong>CBS</strong>, which cluster in or near the<br />

Phaeosphaeriaceae. Bayesian posterior probabilities support values for the respective nodes are displayed in the tree. A stop rule (set to 0.01) for the critical value<br />

for the topological convergence diagnosticwas used for the Bayesian analysis. The tree was rooted to Dothistroma pini (<strong>CBS</strong> 121005). The scalebar indicates 0.01<br />

expectedchanges per site.<br />

328


Sizing up Septoria<br />

1.6x<br />

0.93<br />

1.4x<br />

1<br />

1<br />

3.8x<br />

3x<br />

1.2x<br />

Fig. 2. (Continued).<br />

0.99<br />

1<br />

0.54<br />

1<br />

Coniothyrium carteri <strong>CBS</strong> 101633<br />

Coniothyrium carteri <strong>CBS</strong> 105.91<br />

0.82<br />

Coniothyrium glycinicola <strong>CBS</strong> 124141<br />

37 Coniothyrium<br />

0.93<br />

Coniothyrium sidae <strong>CBS</strong> 135108<br />

Xenobotryo. calamagrostidis <strong>CBS</strong> 303.71<br />

“Septoria” steviae <strong>CBS</strong> 120132<br />

0.97<br />

1 Boeremia telephii <strong>CBS</strong> 135415<br />

38 Xenobotryosphaeria<br />

39 Phoma<br />

0.59<br />

Phoma herbarum <strong>CBS</strong> 615.75<br />

Acicuseptoria rumicis <strong>CBS</strong> 522.78<br />

Stagonospora pseudocaricis <strong>CBS</strong> 135132<br />

40 Acicuseptoria<br />

1 Stagonospora pseudocaricis <strong>CBS</strong> 135414<br />

1<br />

Stagonospora paludosa <strong>CBS</strong> 135088<br />

Stagonospora cf. paludosa <strong>CBS</strong> 130005<br />

0.62<br />

Stagonospora pseudovitensis S602<br />

1<br />

1 Stagonospora pseudovitensis <strong>CBS</strong> 135094<br />

0.94<br />

Stagonospora perfecta <strong>CBS</strong> 135099<br />

41 Stagonospora<br />

0.89<br />

Stagonospora sp. <strong>CBS</strong> 135096<br />

0.97<br />

Stagonospora duoseptata <strong>CBS</strong> 135093<br />

Stagonospora uniseptata CPC 22151<br />

1 1<br />

Stagonospora uniseptata CPC 22150<br />

Stagonospora uniseptata <strong>CBS</strong> 135090<br />

0.95<br />

Corynespora leucadendri <strong>CBS</strong> 135133 42 Corynespora<br />

Setoseptoria phragmitis <strong>CBS</strong> 114966<br />

1<br />

1 Setoseptoria phragmitis <strong>CBS</strong> 114802<br />

septoria-like sp. <strong>CBS</strong> 135473<br />

43 Setoseptoria<br />

Septorioides pini-thunbergii <strong>CBS</strong> 473.91 44 Septorioides<br />

Phlyctema vincetoxici <strong>CBS</strong> 123727<br />

1 Phlyctema vincetoxici <strong>CBS</strong> 123726<br />

1<br />

Phlyctema vincetoxici <strong>CBS</strong> 123743<br />

45 Phlyctema<br />

septoria-like sp. <strong>CBS</strong> 135481<br />

septoria-like sp. <strong>CBS</strong> 135471<br />

“Septoria” tanaceti <strong>CBS</strong> 358.58<br />

1<br />

Kirstenboschia diospyri <strong>CBS</strong> 134911<br />

Kirstenboschia diospyri CPC 19870<br />

46 Kirstenboschia<br />

1<br />

Phlogicylindrium eucalyptorum <strong>CBS</strong> 111680<br />

Phlogicylindrium eucalyptorum <strong>CBS</strong> 111689<br />

45 Phlogicylindrium<br />

Dothistroma pini <strong>CBS</strong> 121005<br />

0.01<br />

Coniothyriaceae<br />

Pleosporales<br />

Didymellaceae<br />

Massarinaceae<br />

Leptosphaeriaceae<br />

Corynesporascaceae<br />

Lentitheciaceae<br />

Botryosphaeriaceae<br />

Dermateaceae<br />

Incertae sedis<br />

Incertae sedis<br />

Sordariomycetes<br />

incertae sedis<br />

periphysoid cells. Conidiophores reduced to conidiogenous cells.<br />

Conidiogenous cells holoblastic, determinate, discrete, hyaline,<br />

ampulliform, lining the wall of the pycnidium. Conidia straight or<br />

slightly curved, hyaline, thin-walled, smooth, 3–4-euseptate,<br />

eguttulate, truncate at the base, slightly tapered to the apex (Sutton<br />

1980).<br />

Type species: J. bohemica Petr., Ann. Mycol. 18(4–6): 123. 1921.<br />

[1920]<br />

Specimen examined: Czech Republic, Bohemia, on stems of Scrophularia nodosa<br />

(Scrophulariaceae), 18 Mar. 1916, J. Jahn, holotype K(M) 180917, slides ex BPI.<br />

Note: The specimen correlates closely with the description provided<br />

by Sutton (1980), except that the conidiomata are superficial, not<br />

immersed in the epidermis.<br />

Megaloseptoria Naumov, Morbi Plantarum 14: 144. 1925.<br />

Figs 8, 9.<br />

Mycelium immersed, branched, septate, brown. Conidiomata<br />

pycnidial, separate, globose, slightly papillate, dark brown to<br />

black, superficial, sessile, often aggregated in groups, unilocular,<br />

thick-walled; wall of several cell layers of brown textura angularis,<br />

more darkly pigmented on the outside. Ostiole single, circular.<br />

Conidiophores hyaline, branched, septate (mainly at the base),<br />

smooth, straight or irregular, formed from the inner cells of the<br />

pycnidial wall. Conidiogenous cells enteroblastic, determinate,<br />

discrete or integrated, doliiform, ampulliform or irregularly<br />

cylindrical, hyaline, smooth, collarette evident, channel wide,<br />

periclinal thickening present. Conidia hyaline to pale brown with<br />

several transverse eusepta, continuous, tapered near the obtuse<br />

apex and truncate base, thin-walled, smooth, cylindrical, straight<br />

or slightly curved, often with 2 guttules in each cell (Sutton 1980).<br />

Type species: M. mirabilis Naumov, Morbi Plant. Script. Sect.<br />

Phytopath. Hort. Bot. Prince. USSR 14: 144. 1925.<br />

Megaloseptoria mirabilis Naumov, Morbi Plantarum 14:<br />

144. 1925.<br />

Conidiomata aggregated in a black stroma at the ends of<br />

branchlets, globose, black, smooth, with central ostiole, up to<br />

600 µm diam, papillate; wall of 3–8 layers of dark brown textura<br />

www.studiesinmycology.org<br />

329


Quaedvlieg et al.<br />

Fig. 3. Conidia and conidiogenous cells of Cytostagonospora photiniicola (redrawn from Sutton 1980). Scale bar = 10 µm.<br />

Fig. 4. Conidia and conidiogenous cells of Dearnessia apocyni (F43227). Scale bars = 10 µm.<br />

Fig. 5. Dearnessia apocyni (F43227). A. Leaf spot. B, C. Conidiogenous cells. D. Conidia. Scale bars = 10 µm.<br />

330


Sizing up Septoria<br />

Fig. 6. Conidia and conidiogenous cells of Jahniella bohemica (redrawn from Sutton 1980). Scale bar = 10 µm.<br />

Fig. 7. Jahniella bohemica [K(M) 180917]. A. Vertical section through conidioma. B. Ostiolar region with loose cells. C. Conidiogenous cells. D. Conidia. Scale bars = 10 µm.<br />

Fig. 8. Conidia and conidiogenous cells of Megaloseptoria mirabilis (MA-Fungi 6978-1). Scale bars = 10 µm.<br />

www.studiesinmycology.org<br />

331


Quaedvlieg et al.<br />

Fig. 9. Megaloseptoria mirabilis (MA-Fungi 6978-1). A. Conidiomata on host tissue. B. Conidiogenous cells. C. Conidia. Scale bars = 10 µm.<br />

angularis. Conidiogenous cells lining the cavity, subcylindrical<br />

to ampulliform, hyaline, smooth, 7–15 × 4–8 µm; proliferating<br />

percurrently near apex. Conidia solitary, scolecosporous, variously<br />

curved, subcylindrical, tapering in upper third to obtuse apex, base<br />

truncate, 3–4 µm diam, transversely 30–40-septate, (170–)200–<br />

250 × (5–)6(–7) µm.<br />

Specimen examined: Switzerland, Zürich, St. Schnach., on branchlets of Pinus<br />

pungens var. glauba (Pinaceae), 10 July 1951, E. Müller, holotype MA-Fungi 6978-<br />

1.<br />

Note: Megaloseptoria differs from Septoria in that the conidiomata<br />

are aggregated in a black stroma, which is not the case in Septoria<br />

s. str.<br />

Phaeoseptoria Speg., Revista Mus. La Plata 15(2): 39.<br />

1908.<br />

Leaf spots angular-subcircular, 0.5–3 mm diam, becoming confluent.<br />

Conidiomata pycnidial, epiphyllous, subepidermal, black, 60–90 µm<br />

diam. Conidiogenesis cells hyaline, smooth, holoblastic (?). Conidia<br />

filiform, obclavate, smooth, 1–3-euseptate, medium brown, 30 × 3 µm<br />

(Saccardo & Trotter 1913, Walker et al. 1992, Crous et al. 1997).<br />

Type species: P. papayae Speg., Revista Mus. La Plata 15(2): 39.<br />

1908.<br />

Notes: Phaeoseptoria papayae was originally described from<br />

leaf spots on Carica papaya collected in the São Paulo Botanical<br />

Garden, Brazil. Presently there are numerous clades that contain<br />

isolates conforming to this morphology, and this matter can only be<br />

resolved once fresh material of P. papayae has been recollected to<br />

clarify its phylogeny (see below).<br />

Pseudoseptoria Speg., Ann. Mus. Nac. B. Aires, Ser. 3 13:<br />

388. 1910.<br />

Mycelium immersed, branched, septate, pale brown. Conidiomata<br />

pycnidial, solitary or linearly aggregated, immersed, brown, globose,<br />

unilocular; walls thin, of pale brown textura angularis. Ostiole<br />

distinct, central, circular. Conidiophores reduced to conidiogenous<br />

cells. Conidiogenous cells discrete, determinate or indeterminate,<br />

hyaline, smooth, ampulliform with a prominent cylindrical papilla<br />

with several percurrent proliferations at the apex. Conidia falcate,<br />

fusoid, acutely rounded at each end, hyaline, aseptate, guttulate,<br />

smooth, thin-walled (Sutton 1980).<br />

Type species: P. donacicola Speg., Ann. Mus. Nac. B. Aires, Ser. 3<br />

13: 388. 1910.<br />

Note: Species of Pseudoseptoria are plant pathogenic to members<br />

of Poaceae.<br />

Rhabdospora (Durieu & Mont. ex Sacc.) Sacc., Syll. Fung.<br />

(Abellini) 3: 578. 1884. nom. cons.<br />

Basionym: Septoria sect. Rhabdospora Durieu & Mont., in Durieu,<br />

Expl. Sci. Alg. 1 (livr. 15): 592. 1849. [1846–1849].<br />

Type species: R. oleandri Durieu & Mont., in Durieu, Expl. Sci. Alg.<br />

1 (livr. 15): 593. 1849 [1846–1849].<br />

Notes: Rhabdospora is a poorly defined genus, originally<br />

established to accommodate septoria-like species occurring on<br />

stems (Priest 2006). Of the 11 species treated by Sutton (1980),<br />

most are currently placed in Septoria. This genus is in need of<br />

revision pending the recollection of fresh material (on Nerium<br />

oleander from Algeria).<br />

Sclerostagonospora Höhn., Hedwigia 59: 252. 1917.<br />

Conidiomata pycnidial, immersed, separate, dark brown to black,<br />

globose, unilocular; walls thin, composed of thick-walled, dark<br />

brown textura angularis; ostiole single, circular, central, papillate.<br />

Conidiophores reduced to conidiogenous cells. Conidiogenous cells<br />

holoblastic, determinate, discrete, hyaline, smooth, ampulliform to<br />

irregular, formed from the inner cells of the pycnidial wall. Conidia<br />

subcylindrical, pale brown, thin-walled, minutely verruculose,<br />

3-euseptate, sometimes slightly constricted at the septa (from<br />

Sutton 1980).<br />

Type species: S. heraclei (Sacc.) Höhn., Hedwigia 59: 252. 1917.<br />

Note: Sclerostagonospora differs from Stagonospora in having<br />

pigmented conidia.<br />

Septoria (Sacc.) Sacc., Syll. Fung 3: 474. 1884. nom. cons.<br />

Figs 10, 11.<br />

= Septaria Fr., Novit. Fl. Svec. 5: 78. 1819. nom. rejic.<br />

Mycelium slow-growing, pale brown, septate, immersed.<br />

Conidiomata pycnidial, immersed, separate or aggregated (but<br />

not confluent), globose, papillate (or not), brown, wall of thin, pale<br />

332


Sizing up Septoria<br />

Conidiomata pycnidial, immersed, unilocular, globose, separate,<br />

ostiolate; walls of dark brown, thick-walled textura angularis, and<br />

on the inside of hyaline, thin-walled, flattened cells. Conidiophores<br />

reduced to conidiogenous cells. Conidiogenous cells doliiform,<br />

hyaline, with several percurrent proliferations at the apex, formed<br />

from the inner cells of the pycnidial wall. Conidia hyaline, smooth to<br />

finely verruculose, 1–multiseptate, cylindrical or fusoid-ellipsoidal,<br />

straight or slightly curved, often guttulate, constricted or not at<br />

septa.<br />

Type species: S. paludosa (Sacc. & Speg.) Sacc., Syll. Fung.<br />

(Abellini) 3: 453. 1884.<br />

Fig. 10. Conidia and conidiogenous cells of Septoria cytisi (BPI USO 378994). Scale<br />

bars = 10 µm.<br />

brown textura angularis, inner layer of flattened, hyaline textura<br />

angularis, frequently somewhat darker and more thick-walled<br />

around the ostiole. Ostiole single, circular, central. Conidiophores<br />

reduced to conidiogenous cells. Conidiogenous cells holoblastic,<br />

either determinate or indeterminate, proliferating sympodially<br />

and/or percurrently, hyaline, smooth, ampulliform, dolliform or<br />

lageniform to short cylindrical; scars unthickened. Conidia hyaline,<br />

multiseptate, filiform, smooth, continuous or constricted at septa.<br />

Sexual states are mycosphaerella-like.<br />

Type species: S. cytisi Desm., Ann. Sci. Nat. Bot. 8: 24. 1847.<br />

Specimen examined: Slovakia, Muehlthal near Bratislava (Pressburg), on leaves<br />

of Laburnum anagyroides (Leguminosae), 1884, J.A. Baeumler, BPI USO 378994.<br />

Note: The ITS and LSU sequences of this specimen were published<br />

respectively under GenBank accession numbers JF700932 and<br />

JF700954.<br />

Stagonospora (Sacc.) Sacc., Syll. Fung. (Abellini) 3: 445.<br />

1884. nom. cons.<br />

Basionym: Hendersonia subgen. Stagonospora Sacc., Michelia 2<br />

(no. 6): 8. 1880.<br />

Stenocarpella Syd. & P. Syd., Ann. Mycol. 15(3–4): 258.<br />

1917. Fig. 12.<br />

Mycelium immersed, brown, branched, septate. Conidiomata<br />

pycnidial, separate or sometimes confluent, globose or elongated,<br />

dark brown, subepidermal, unilocular, thick-walled; walls<br />

composed of dark brown, thick-walled textura angularis. Ostiole<br />

single, circular, papillate, protruding. Conidiophores usually absent.<br />

Conidiogenous cells cylindrical, hyaline, determinate, discrete,<br />

phialidic, with collarette and minute periclinal thickening, lining the<br />

inner layer of the pycnidial wall. Conidia subcylindrical, straight or<br />

curved, fusiform, apex obtuse, base tapered, truncate, thick-walled,<br />

smooth-walled, granular, pale to medium brown, 0–3-euseptate.<br />

Beta conidia hyaline, scolecosporous, curved (Crous et al. 2006,<br />

Lamprecht et al. 2011).<br />

Type species: S. zeae Syd. & P. Syd., Ann. Mycol. 15(3–4): 258.<br />

1917. [= S. macrospora (Earle) B. Sutton]<br />

Specimens examined: South Africa, KwaZulu-Natal, Hlabisa, rain-damaged Bt Zea<br />

mays hybrid (Poaceae), 2003-04 season, J. Rheeder (ex-epitype, <strong>CBS</strong> 117560 =<br />

MRC 8615, designated in Crous et al. 2006); KwaZulu-Natal, Zea mays kernels,<br />

2005, P. Caldwell, CPC 11863 = <strong>CBS</strong> 128560.<br />

Notes: Stenocarpella presently contains two species, S. macrospora<br />

and S. maydis, both causing “Diplodia ear rot of maize”. These<br />

two taxa were previously assigned to Diplodia and Macrodiplodia,<br />

respectively (Petrak & Sydow 1927, Sutton 1964). Several years<br />

later, Sutton re-examining these taxa and placed them in their own<br />

genus, Stenocarpella (Sutton 1977, 1980). Recent phylogenetic<br />

studies confirmed that these taxa indeed cluster by themselves<br />

Fig. 11. Septoria cytisi (BPI USO 378994). A. Leaf with symptoms. B. Close-up of leaf spot with conidiomata. C, D. Conidiogenous cells giving rise to conidia. E. Conidia. Scale<br />

bars = 10 µm.<br />

www.studiesinmycology.org<br />

333


Quaedvlieg et al.<br />

Type species: Z. tritici (Desm.) Quaedvlieg & Crous, Persoonia 26:<br />

67. 2011.<br />

Notes: Zymoseptoria was split off from Septoria s. str. and<br />

redescribed by Quaedvlieg et al. (2011) based on LSU sequence<br />

data when said authors delimitated Septoria s. str. by sequencing<br />

the ITS and LSU sequences out of S. cytisi herbarium material.<br />

Phylogenetic analysis showed that Zymoseptoria species cluster<br />

within a distinct clade inside the Mycosphaerellaceae that is closely<br />

related to Ramularia, but located distant from Septoria s. str.<br />

Acervular forms<br />

Asteromidium Speg., Ann. Soc. cient. argent. 26(1): 66.<br />

1888. Figs 13, 14.<br />

Fig. 12. Stenocarpella maydis (top) and S. macrospora (bottom) (redrawn from<br />

Sutton 1980). Scale bars = 10 µm.<br />

within the Diaporthales (Crous et al. 2006, Lamprecht et al. 2011),<br />

supporting the decision of Sutton (1980).<br />

Trichoseptoria Cavara, Atti Ist. Bot. Univ. Lab. Crittog. Pavia<br />

2: 40. 1892.<br />

Type species: T. alpei Cavara, Atti Ist. Bot. Univ. Lab. Crittog. Pavia<br />

2: 40. 1892.<br />

Notes: Not much is known about this septoria-like genus, except<br />

that it is distinguished from Septoria by having setae on its pycnidia<br />

with 1–2-septate, hyaline conidia. This genus is in further need of<br />

revision once fresh material has been recollected (Citrus vulgaris,<br />

Belgiojoso, Alps).<br />

Mycelium immersed, branched, septate, hyaline. Conidiomata<br />

acervular, subcuticular, separate or confluent, pulvinate to doliiform,<br />

at the base, composed of hyaline to pale brown, thin-walled textura<br />

angularis which extends laterally, finally with separate cells dispersed<br />

in a mucilaginous matrix to form the overlying wall; cuticle discoloured<br />

and occasionally pseudoparenchymatous, walls adjacent to the upper<br />

epidermal wall also discoloured; dehiscence irregular. Conidiogenous<br />

cells holoblastic, discrete, indeterminate, ± cylindrical, hyaline, smooth,<br />

with 1–2 sympodial proliferations, scars unthickened, flat, formed from<br />

the basal and lateral walls. Conidia cylindrical to fusoid, gently tapered<br />

at each end, apex obtuse, base truncate, thin-walled, guttulate to<br />

granular, hyaline, 3-septate (Sutton 1980).<br />

Type species: A. imperspicuum Speg., Ann. Soc. cient. argent.<br />

26(1): 66. 1888.<br />

Specimen examined: Paraguay, on leaves of Sapindaceae, 1883, isotype K(M)<br />

180228, ex B. Balansa Pl. du Paraguay No. 4085.<br />

Notes: This genus has to be recollected (Sapindaceae, Paraguay)<br />

to allow for a molecular comparison to other existing genera in this<br />

Zymoseptoria Quaedvlieg & Crous, Persoonia 26: 64. 2011.<br />

Conidiomata pycnidial, semi-immersed to erumpent, dark brown<br />

to black, subglobose, with central ostiole; wall of 3–4 layers of<br />

brown textura angularis. Conidiophores hyaline and smooth,<br />

1–2-septate, or reduced to conidiogenous cells, lining the inner<br />

cavity. Conidiogenous cells are tightly aggregated and ampulliform<br />

to doliiform or subcylindrical, phialidic with periclinal thickening,<br />

or with 2–3 inconspicuous, percurrent proliferations at the apex.<br />

Conidia (Type I) solitary, hyaline, smooth, guttulate, narrowly<br />

cylindrical to subulate, tapering towards acutely rounded apex, with<br />

bluntly rounded to truncate base, transversely euseptate; hila not<br />

thickened nor darkened. On OA and PDA media plates the aerial<br />

hyphae disarticulate into phragmospores (Type II conidia) that<br />

again give rise to Type I conidia via microcyclic conidiation; yeastlike<br />

growth and microcyclic conidiation (Type III conidia) common<br />

on agar media (Quaedvlieg et al. 2011).<br />

Fig. 13. Conidia and conidiogenous cells of Asteromidium imperspicuum (redrawn<br />

from Sutton 1980). Scale bar = 10 µm.<br />

334


Sizing up Septoria<br />

Fig. 14. Asteromidium imperspicuum [K(M) 180228]. A. Conidiomata on host surface. B. Section through conidioma. C, D. Conidiogenous cells and conidia. Scale bars: B =<br />

75 µm, all others = 10 µm.<br />

complex. The morphology of the specimen examined correlates<br />

well with the description provided by Sutton (1980).<br />

Ciferriella Petr., Ann. Mycol. 28(5/6): 409. 1930.<br />

Type species: C. domingensis Petr. & Cif., Ann. Mycol. 28(5/6):<br />

409. 1930.<br />

= Pseudocercospora Speg., Anales Mus. Nac. Hist. Nat. B. Aires, Ser. 3,<br />

20: 437. 1910.<br />

Pseudocercospora domingensis (Petr. & Cif.) Quaedvlieg,<br />

Verkley & Crous, comb. nov. MycoBank MB804401. Figs 15,<br />

16.<br />

Basionym: Ciferriella domingensis Petr. & Cif., Ann. Mycol. 28(5/6):<br />

409. 1930.<br />

Leaf spots amphigenous, subcircular, medium brown with dark purple<br />

margin, 1.5–6 mm diam. Sporulation hypophyllous, fasciculate to<br />

sporodochial, brown, arising from a brown stroma, up to 50 µm diam.<br />

Conidiophores medium brown, smooth, subcylindrical, 0–2-septate,<br />

straight to once geniculate, 15–20 × 3–5 µm. Conidiogenous<br />

cells terminal, brown, smooth to finely verruculose, ampulliform to<br />

subcylindrical, proliferating sympodially or percurrently, tapering<br />

to a truncate apex, 2 µm diam, 10–15 × 3–4 µm. Conidia brown,<br />

smooth, straight to slightly curved, obclavate, apex subobtuse, base<br />

obconically truncate, 0–3-septate, 35–60 × 3–4 µm.<br />

Specimen examined: Dominican Republic, on Vitex umbrosa (Lamiaceae), 26 May<br />

1929, coll. R. Ciferri, det. F. Petrak, holotype ex N.Y. Bot. Gard. No 01048475.<br />

Notes: The dimensions of the conidia and conidiophores correlate<br />

with the observations of Sutton (1980). However, the conidiomata<br />

are sporodochial to fasciculate, and not acervular. Ciferriella<br />

domingensis is a typical Pseudocercospora sensu Crous et al.<br />

(2013). Based on the species presently known from Vitex (Crous<br />

& Braun 2003), it appears to represent a distinct taxon, for which a<br />

new combination in Pseudocercospora is proposed.<br />

Colletogloeum Petr., Sydowia 7: 368. 1953.<br />

Mycelium immersed, branched, septate, hyaline to pale brown.<br />

Conidiomata acervular, epidermal to subepidermal, separate,<br />

occasionally confluent, composed of hyaline to pale brown, thin-walled<br />

textura angularis. Conidiophores hyaline to pale brown, sparsely<br />

branched, septate, smooth, cylindrical or slightly irregular, formed from<br />

Fig. 15. Conidia and conidiogenous cells of Pseudocercospora domingensis (NY<br />

No 01048475). Scale bars = 10 µm.<br />

the upper cells of the acervulus. Conidiogenous cells integrated or<br />

discrete, indeterminate, cylindrical or doliiform, with several percurrent<br />

proliferations at apex. Conidia hyaline to pale brown, 0-multiseptate,<br />

straight, curved or irregular, truncate at the base, obtuse at the apex,<br />

usually thin-walled, smooth, guttulate or not.<br />

Type species: C. dalbergiae (S. Ahmad) Petr., Sydowia 7: 369.<br />

1953. [= C. sissoo (Syd.) B. Sutton, Mycol. Pap. 97: 14. 1964.]<br />

Notes: The exact taxonomic position of Colletogloeum was unclear<br />

for a long time as it included many species that appear to represent<br />

asexual morphs of Teratosphaeria. Crous et al. (2009a–c) used ITS<br />

sequence data from a specimen representative of C. sissoo (IMI<br />

119162) to demonstate that the type of Colletogloeum clustered near<br />

the Pseudocercospora complex within the Mycosphaerellaceae.<br />

Cylindrosporium Grev., Scott. crypt. fl. (Edinburgh) 1: pl.<br />

27. 1822.<br />

= Cylindrodochium Bonord., Handb. Allgem. mykol. (Stuttgart): 132. 1851.<br />

Mycelium immersed, branched, septate, hyaline. Conidiomata<br />

acervular, white, slimy, subcuticular, separate or confluent,<br />

formed of pale brown to hyaline, thin-walled textura angularis;<br />

dehiscence irregular. Conidiophores hyaline, parallel, branched<br />

www.studiesinmycology.org<br />

335


Quaedvlieg et al.<br />

Fig. 16. Pseudocercospora domingensis (NY No 01048475). A. Leaf spot. B, C. Conidiogenous cells. D. Conidia. Scale bars = 10 µm.<br />

only at the base, 1–2-septate, smooth, formed from the upper<br />

pseudoparenchyma. Conidiogenous cells enteroblastic, phialidic,<br />

integrated, cylindrical, hyaline, smooth. Conidia straight or<br />

slightly curved, aseptate, cylindrical, thin-walled, smooth, hyaline,<br />

eguttulate (Sutton 1980).<br />

Type species: C. concentricum Unger, Exanth. Pflanzen (Wien) 2:<br />

9. 1833.<br />

Notes: Sutton (1980), Von Arx (1983), Deighton (1987) and Braun<br />

(1990) could not agree on the taxonomic status of this genus,<br />

which is associated with light leaf spot of oil seed rape (sexual<br />

morph Pyrenopeziza brassicae). This genus is in need of revision,<br />

awaiting the recollection of fresh material of C. concentricum (on<br />

Pulmonaria officinalis, Germany).<br />

Phloeospora Wallr., Fl. Crypt. Germ. (Norimbergae) 2: 176.<br />

1833.<br />

Mycelium immersed, septate, hyaline. Conidiomata acervular,<br />

subepidermal, circular, discrete or confluent, composed of hyaline<br />

to pale brown, thin-walled textura angularis; dehiscence irregular.<br />

Conidiophores reduced to conidiogenous cells or with one or two<br />

supporting cells, branched at base or not. Conidiogenous cells<br />

holoblastic, annellidic, occasionally also sympodial, discrete,<br />

indeterminate hyaline, smooth, cylindrical, with several apical<br />

inconspicuous annellations, formed from the upper cells of the<br />

acervuli. Conidia hyaline, septate, smooth, guttulate or not,<br />

cylindrical, curved, attenuated towards the apices, apex obtuse to<br />

subobtuse, base truncate, with minute marginal frill.<br />

Type species: P. ulmi (Fr.) Wallr., Fl. Crypt. Germ. (Norimbergae)<br />

2: 177. 1833.<br />

Notes: Sexual morphs of Phloeospora have been linked to genera<br />

that resemble the concepts of Mycosphaerella, Didymella and<br />

Sphaerulina. Verkley & Priest (2000) already noted that this genus<br />

is heterogeneous and in need of revision. The phylogenetic analysis<br />

performed in this study confirmed that Phloeospora (based on P.<br />

ulmi) clusters close to, but separate from Septoria s. str. (Fig. 1).<br />

Fig. 17. Conidia and conidiogenous cells of Phloeosporella ceanothi (redrawn from<br />

Sutton 1980). Scale bar = 10 µm.<br />

to pale brown, thin-walled textura angularis. Conidiogenous cells<br />

holoblastic, sympodial, discrete, indeterminate, hyaline, smooth,<br />

lageniform to cylindrical, with 1–2 broad, flat unthickened apical<br />

scars, formed from the upper pseudoparenchyma. Conidia hyaline,<br />

2-euseptate, thin-walled, smooth, guttulate, straight, curved or<br />

irregular, tapered gradually to an obtuse apex and abruptly to a<br />

truncate base (Sutton 1980).<br />

Type species: P. ceanothi (Ellis & Everh.) Höhn., Ann. Mycol. 22(1–<br />

2): 201. 1924.<br />

Notes: Not much is known of the sexual state of this genus, but<br />

P. padi has been linked to Blumeriella jaapii (Sutton 1980). A<br />

phylogenetic analysis performed on available isolates (unpubl.<br />

data) indicated that Phloeosporella is polyphyletic. However, as the<br />

type is not known from culture (on Ceanothus, California, USA),<br />

this matter could not be resolved.<br />

Phloeosporella Höhn., Ann. Mycol. 22: 201. 1924. Fig. 17.<br />

Mycelium immersed, branched, septate, hyaline. Conidiomata<br />

acervular, subepidermal, ± circular, discrete, composed of hyaline<br />

Septogloeum Sacc., Michelia 2(6): 11. 1880.<br />

Mycelium immersed, branched, septate, hyaline. Conidiomata<br />

acervular, epidermal to subepidermal, separate or confluent, formed<br />

336


Sizing up Septoria<br />

of pale brown thin-walled pseudoparenchyma. Conidiophores<br />

short, stout, 1–2-septate, hyaline, smooth, branched at the base,<br />

formed from the upper pseudoparenchyma. Conidiogenous cells<br />

phialidic, discrete or integrated, determinate, cylindrical, doliiform to<br />

obpyriform, hyaline, smooth, with minute collarette and prominent<br />

periclinal thickening. Conidia hyaline, 1–3-euseptate, thin-walled,<br />

smooth, eguttulate, base truncate, apex obtuse, straight or curved,<br />

constricted, obovoid (Sutton 1980).<br />

Type species: S. carthusianum (Sacc.) Sacc., Michelia 2(6): 11.<br />

1880.<br />

Notes: Although more than 120 species of Septogloeum have been<br />

described, the genus was reduced to just two species by Sutton &<br />

Pollack (1974). Sexual morphs have been linked to Pleuroceras in<br />

the Diaporthales (Monod 1983). The genus is in need of revision<br />

pending fresh collections.<br />

Xenocylindrosporium Crous & Verkley, Fungal Planet 44.<br />

2009.<br />

Conidiomata immersed, black, opening by irregular rupture,<br />

acervuloid, up to 300 μm diam; wall consisting of 3–4 layers of<br />

pale brown textura angularis. Conidiophores hyaline, smooth,<br />

subcylindrical, branched, septate, or reduced to ampulliform<br />

conidiogenous cells. Conidiogenous cells hyaline, smooth,<br />

ampulliform to subcylindrical, terminal or lateral on septate<br />

conidiophores, monophialidic with minute periclinal thickening.<br />

Conidia solitary, hyaline, smooth, curved, widest in middle, tapering<br />

to acutely rounded apex and truncate base, 0 –1-septate.<br />

Type species: X. kirstenboschense Crous & Verkley, Fungal Planet<br />

44. 2009.<br />

Stromatic forms<br />

Dothistroma Hulbary, Bull. Ill. Nat. Hist. Surv. 21: 235. 1941.<br />

Mycelium immersed, branched, septate, pale brown to hyaline.<br />

Conidiomata sometimes acervular, initially subepidermal later<br />

erumpent, composed of pale brown, thin-walled textura angularis,<br />

sometimes eustromatic, multilocular and of darker brown, thickwalled<br />

tissue. Stromata are strongly erumpent and finally pulvinate.<br />

Conidiogenous cells holoblastic, discrete, determinate, ampulliform,<br />

hyaline, smooth, non-proliferating, formed from the upper cells of<br />

stroma or from inner cells of the locular walls. Conidia hyaline,<br />

straight or curved, filiform, 1–5-euseptate, continuous, thin-walled<br />

and smooth (Barnes et al. 2004).<br />

Type species: D. pini Hulbary, Bull. Ill. Nat. Hist. Surv. 21: 235.<br />

1941.<br />

Notes: Dothistroma sexual morphs are mycosphaerella-like (Evans<br />

1984), and the two species of Dothistroma that have been subjected<br />

to DNA sequencing (D. septosporum and D. pini) cluster together<br />

in the “Dothistroma clade” as described by Crous et al. (2009a, c).<br />

Because of a lack of recognisable morphological characteristics,<br />

it is virtually impossible to discriminate between D. septosporum<br />

and D. pini without molecular tools (Barnes et al. 2004). Multiple<br />

morphological varieties of both D. septosporum and D. pini have<br />

Fig. 18. Conidia and conidiogenous cells of Phlyctaeniella humuli (IMI 202260)<br />

(redrawn from Sutton 1980). Scale bar = 10 µm.<br />

been described based on differences in conidia length alone (e.g.<br />

D. septosporum var. keniense). However, controversy exists as<br />

to whether spore size represents an adequate characteristic<br />

to distinguish among these Dothistroma varieties, as since the<br />

introduction of molecular tools only D. septosporum and D. pini<br />

have been confirmed as distinct species.<br />

Phlyctaeniella Petr., Ann. Mycol. 20: 323. 1922. Fig. 18.<br />

Mycelium immersed, branched, septate, hyaline. Conidiomata<br />

eustromatic, separate, immersed, pale brown, globose, unilocular,<br />

scarcely erumpent; side wall and base of several cell layers of<br />

hyaline, thin-walled textura angularis, above of larger pale brown<br />

tissue. Ostiole indistinct, and dehiscence by rupture of the upper<br />

wall. Conidiophores hyaline, smooth, septate, irregularly branched,<br />

especially at the base, formed from the inner cells of the stroma wall.<br />

Conidiogenous cells phialidic, integrated or discrete, determinate,<br />

hyaline, markedly tapered at the apices, smooth, with apical or<br />

lateral apertures, collarette minute, with periclinal thickening;<br />

only rarely becoming percurrent. Conidia hyaline, smooth, thinwalled,<br />

irregularly guttulate, filiform, straight, curved or irregular,<br />

multiseptate (Sutton 1980).<br />

Type species: P. polonica Petr., Ann. Mycol. 20: 323. 1922.<br />

Note: Fresh material needs to be collected of this taxon (on Aruncus<br />

silvestris, Austria), before its taxonomy can be resolved.<br />

Septocyta Petr., Ann. Mycol. 25: 330. 1927. Figs 19, 20.<br />

Mycelium immersed, branched, septate, hyaline to pale brown.<br />

Conidiomata eustromatic, immersed, separate, erumpent, dark<br />

brown to black, finally opening widely, unilocular, multilocular or<br />

convoluted, thick-walled; wall of pale brown, thin-walled textura<br />

angularis except in the dehiscent region which is darker brown and<br />

more thick-walled. Ostiole absent, dehiscence by breakdown of the<br />

upper wall. Conidiogenous cells are holoblastic, sympodial with 1–3<br />

www.studiesinmycology.org<br />

337


Quaedvlieg et al.<br />

Specimen examined: Germany, Brandenberg, on Rubus fructicosus (Rosaceae),<br />

7 June 1923, coll. P. Sydow, det. H. Sydow, Sydow Mycoth. Germ. PDD 51271.<br />

Notes: Septocyta ramealis, the type of Septocyta, has a long list<br />

of synonyms. The specimen examined here (PDD 51271), differs<br />

somewhat from the description provided by Sutton (1980), and<br />

appears to represent a species of Septoria s. str., as the mode<br />

of conidiogenesis is not that different. Presently there is a single<br />

ITS sequence labelled as S. ruborum available on GenBank<br />

(JN133277.1), placing it in the middle of Septoria s. str. As no<br />

type material of S. ramealis could be located, this matter remains<br />

unresolved.<br />

Septopatella Petr., Ann. Mycol. 23: 128. 1925.<br />

Fig. 19. Conidia and conidiogenous cells of Septocyta ramealis (PDD 51271). Scale<br />

bars = 10 µm.<br />

apical, scarcely protruding, unthickened denticles, indeterminate,<br />

discrete, ampulliform to lageniform, hyaline, smooth, formed from<br />

the inner cells of the locular walls. Conidia hyaline, 1–3 euseptate,<br />

smooth, straight or slightly curved, acicular, apex obtuse, base<br />

truncate, often with minute guttules associated with septa (Sutton<br />

1980).<br />

Type species: S. ramealis (Roberge ex Desm.) Petr., Ann. Mycol.<br />

25: 330. 1927.<br />

Septocyta ramealis (Roberge ex Desm.) Petr., Ann. Mycol.<br />

25: 330. 1927.<br />

Conidiomata eustromatic to pycnidial, black, up to 160 µm diam,<br />

aggregated in clusters, erumpent through ruptures in epidermis,<br />

convulated; wall of 3–8 layers of brown textura angularis.<br />

Conidiophores lining the inner cavity, reduced to conidiogenous<br />

cells, or one or two supporting cells. Conidiogenous cells hyaline,<br />

smooth, ampulliform, proliferating sympodially and percurrently<br />

near apex, also with lateral denticle-like protrusions, 6–12 × 2.5–4<br />

µm. Conidia hyaline, smooth, guttulate, (9–)20–30(–35) × 1.5(–2)<br />

µm, 1(–3)-septate, irregularly curved, subcylindrical, apex obtuse,<br />

base tapering slightly to truncate hilum, 0.5 µm diam.<br />

Mycelium immersed, branched, septate, hyaline to subhyaline.<br />

Conidiomata superficial, often subtended by a superficial, pale<br />

brown, septate, branched mycelium, pulvinate, separate to<br />

occasionally aggregated, dark brown to black, finally opening widely,<br />

cupulate; basal wall of small-celled, brown, thin-walled textura<br />

angularis, becoming textura porrecta as it merges into the periclinal<br />

walls; a hypostroma attaches the conidioma to the substrate;<br />

Ostiole absent. Conidiophores hyaline, septate, branched at the<br />

base, thin-walled, cylindrical, formed from the gelatinized basal<br />

wall of the conidioma. Conidiogenous cells holoblastic, sympodial,<br />

integrated, indeterminate, cylindrical, hyaline, smooth, produced as<br />

2–3 branches from the apex of the conidiophores. Conidia hyaline,<br />

3–4-euseptate, thin-walled, smooth, minutely guttulate, straight<br />

or curved, occasionally irregularly filiform (Dyko & Sutton 1979,<br />

Sutton 1980).<br />

Type species: S. septata (Jaap) Petr., Ann. Mycol. 23: 129. 1925.<br />

Note: Not much is known about this genus, and as no cultures<br />

of S. septata are presently available (on Pinus montana, Czech<br />

Republic) this matter cannot be resolved.<br />

Stictosepta Petr., Sydowia 17: 230. 1964. [1963]. Fig. 21.<br />

Mycelium immersed, branched, septate, hyaline. Conidiomata<br />

eustromatic, immersed, globose to collabent, papillate, unilocular,<br />

often convoluted, hyaline; walls thick, of hyaline, thin-walled<br />

Fig. 20. Septocyta ramealis (PDD 51271). A. Conidiomata on host tissue. B, C. Conidiogenous cells. D. Conidia. Scale bar = 10 µm.<br />

338


Sizing up Septoria<br />

to verruculose-echinulate; hila distinct, slightly to conspicuously<br />

thickened, darkened, refractive; conidial secession schizolytic.<br />

Ascomata immersed to superficial, uniloculate, globose to<br />

subglobose with papillate, central, periphysate ostiole, dark brown<br />

to black, scattered or gregarious. Peridium of 3–6 layers of thin- to<br />

thick-walled textura angularis, dark brown to black. Hamathecium<br />

dissolves at maturity, and no stromatic tissue remains between the<br />

asci. Asci bitunicate, fissitunicate, 8-spored, cylindrical to cylindricclavate,<br />

ovoid to ampulliform or saccate, sessile to subsessile, apex<br />

rounded with distinct or indistinct ocular chamber. Ascospores bi- to<br />

tri- or multiseriate, ellipsoid-fusoid to obclavate or subcylindrical,<br />

hyaline, medianly 1-septate, often constricted at the septum,<br />

smooth-walled, granular to guttulate, mostly lacking any sheath.<br />

Type species: Ramularia pusilla Unger, Exanth. Pflanzen (Wien):<br />

169. 1833.<br />

Fig. 21. Conidia and conidiogenous cells of Stictosepta cupularis (redrawn from<br />

Sutton 1980). Scale bar = 10 µm.<br />

textura intricata. Ostiole central and circular, single, furfuraceous.<br />

Conidiophores hyaline, septate, branched, anastomosing, formed<br />

from the inner cells of the locular wall. Conidiogenous cells<br />

sympodial or synchronous, integrated, indeterminate, hyaline,<br />

thin-walled, with usually two small, unthickened, apical, slightly<br />

protuberant conidiogenous loci. Conidia hyaline, thin-walled,<br />

smooth, multiseptate, slightly constricted at the septa, each cell<br />

medianly guttulate, straight or curved, base truncate, apex obtuse<br />

(Sutton 1980).<br />

Type species: S. cupularis Petr., Sydowia 17: 230. 1964. [1963].<br />

Note: Not much is known about this genus, but as no isolate of<br />

S. cupularis is presently available (on stems of Fraxinus, Czech<br />

Republic), it will not be treated here.<br />

Sexual morphs linked to Septoria<br />

Several sexual genera have been linked to Septoria and allied<br />

genera in literature, but very few have been confirmed in culture.<br />

Most sexual states cluster in the Mycosphaerella complex.<br />

Mycosphaerella Johanson, Öfvers. K. Svensk. Vetensk.-<br />

Akad. Förhandl. 41(no. 9): 163. 1884.<br />

= Ramularia Unger, Exanth. Pflanzen (Wien): 119. 1833.<br />

Mycelium immersed to superficial, septate, hyaline, branched.<br />

Caespituli usually whitish to greyish on host tissue. Conidiophores<br />

fasciculate to synnematal, rarely solitary, or forming small<br />

sporodochia, emerging through stomata, from inner hyphae<br />

or stromata; conidiophores straight, subcylindric to geniculatesinuous,<br />

aseptate or septate, hyaline, occasionally branched,<br />

smooth, rarely rough. Conidiogenous cells integrated, terminal,<br />

polyblastic, elongating sympodially, apex more or less straight<br />

to geniculate-sinuous or strongly curved, cicatrized, conidial<br />

scars hardly to conspicuously thickened, but always darkened,<br />

refractive. Conidia solitary to catenate, sometimes in branched<br />

chains, 0–4(–multi)-septate, hyaline, ellipsoid-ovoid to cylindricalfusoid,<br />

rarely filiform, occasionally constricted at the septa, smooth<br />

Notes: Species of Ramularia (including the Mycosphaerella sexual<br />

morph) have evolved over a broad developmental and physiological<br />

adaptation range that includes endophytes, saprophytes and<br />

symbionts. However, for a major part Ramularia consists of a wide<br />

range of narrow host range, foliicolous plant pathogens which are<br />

the cause of significant economical losses in both temperate and<br />

tropical crops worldwide (Crous et al. 2001). Verkley et al. (2004)<br />

showed that Mycosphaerella s. str. (linked to M. punctiformis) was<br />

in fact restricted to species with Ramularia anamorphs, leaving<br />

many “Mycosphaerella” species to be disposed to other genera.<br />

In employing the one fungus = one name concept (Hawksworth<br />

et al. 2011, Wingfield et al. 2012), the choice is to use Ramularia<br />

over Mycosphaerella, as the former is monophyletic and recently<br />

monographed (Braun 1995, 1998), while Mycosphaerella is polyand<br />

paraphyletic, and consists of more than 40 genera, many as<br />

yet untreated (Crous et al. 2009c)<br />

Sphaerulina Sacc., Michelia 1(no. 4): 399. 1878.<br />

Ascomata pseudothecial, immersed, subepidermal, erumpent at<br />

the top, single to clustered, globose, papillate. Ostiole central, with<br />

hyaline periphyses; wall of textura angularis, composed of 2–4<br />

layers of brown cells. Hamathecium dissolving at maturity. Asci<br />

bitunicate, fissitunicate, clustered, cylindrical to obclavate, rounded<br />

at apex, with or without a shallow apical chamber, short-stipitate<br />

or sessile, with 8 biseriate to triseriate ascospores. Ascospores<br />

subcylindrical to fusiform, rounded at ends, slightly tapered,<br />

straight or slightly curved, 1–3-septate, with a primary septum<br />

nearly median, hyaline, smooth, without sheath or appendages.<br />

Type species: Sphaerulina myriadea (DC.) Sacc., Michelia 1(no.<br />

4): 399. 1878.<br />

Notes: The genus Sphaerulina was chiefly separated from<br />

Mycosphaerella on the basis of ascospore septation (Crous et<br />

al. 2011). Sphaerulina myriadea, which occurs on hosts in the<br />

Fagaceae, appears to be a species complex. Results in this<br />

paper show that Sphaerulina myriadea clusters together with<br />

many septoria-like species in a clade that is distinct, but very<br />

closely related to Septoria s. str. The septoria-like species in this<br />

Sphaerulina clade were subsequently rediscribed in Sphaerulina.<br />

Species including ones with 1-septate ascospores and septorialike<br />

asexual morphs are treated below and by Verkley et al. (2013).<br />

www.studiesinmycology.org<br />

339


Quaedvlieg et al.<br />

Treatment of phylogenetic clades<br />

Based on the phylogenetic data generated in this study, we<br />

were able to delineate several clades in the Septoria complex.<br />

Recognised clades, as well as novel species and genera, are<br />

described and discussed below. Taxa with descriptions that are<br />

freely available online in MycoBank or open access journals, are<br />

not repeated here.<br />

Clade 1: Septoria<br />

Description: See above.<br />

Type species: S. cytisi Desm., Ann. Sci. Nat. Bot. 8: 24. 1847.<br />

Septoria cf. agrimoniicola Bondartsev, Mater. mikol.<br />

obslêed. Ross. 2: 6. 1921.<br />

Leaf spots on the upper leaf surface, distinct, scattered, brown<br />

with purplish margin, circular to angular, sometimes vein-limited,<br />

discrete lesions 2–4 mm diam, reaching 10 mm wide when<br />

confluent, finally the center becoming pale colored to nearly whitish;<br />

on the lower leaf surface similar but discoloured (Shin & Sameva<br />

2004). On sterile Carex leaves on WA. Conidiomata pycnidial,<br />

separate but frequently aggregated and linked by brown stromatic<br />

tissue in a stroma; globose, black, exuding a creamy conidial mass<br />

via a central ostiole; conidiomata up to 350 µm diam; wall of 6–12<br />

layers of dark brown, thick-walled textura angularis. Conidiophores<br />

reduced to conidiogenous cells or 1–2 supporting cells, hyaline,<br />

subcylindrical, lining the inner layer of conidioma. Conidiogenous<br />

cells hyaline, smooth, subcylindrical to ampulliform, 10–17 × 3–4<br />

µm; proliferating sympodially but also percurrently near apex.<br />

Conidia hyaline, smooth, guttulate, filiform, apex subobtuse, base<br />

long obconically truncate, 1–4-septate, (20–)25–35(–40) × 1.5–2(–<br />

2.5) µm; microcyclic conidiation observed.<br />

Culture characteristics: Colonies on PDA flat, undulate with<br />

sparse, white aerial mycelium, surface olivaceous-black,<br />

reverse olivaceous-black, after 14 d, 3.5 cm diam; on MEA with<br />

sparse white aerial mycelium, surface olivaceous-black, reverse<br />

olivaceous-black, after 14 d, 5 cm diam; on OA with sparse white<br />

aerial mycelium, surface olivaceous, reverse olivaceous, after 14<br />

d, 3 cm diam.<br />

confluent, finally the center becoming paler or nearly whitish; on<br />

the lower leaf surface similar but discoloured (Shin & Sameva<br />

2004). On OA. Conidiomata solitary to aggregated, black, globose,<br />

becoming somewhat papillate, up to 250 µm diam, opening by<br />

means of central ostiole, up to 40 µm diam; wall of 6–8 layers<br />

of thick-walled, brown textura angularis; exuding a creamy<br />

conidial mass. Conidiophores reduced to conidiogenous cells.<br />

Conidiogenous cells lining the inner wall layer, hyaline, discrete,<br />

ampulliform to lageniform, 4–10 × 3–5 µm, proliferating sympodially<br />

or percurrently with inconspicuous proliferations. Conidia filiform,<br />

curved or flexuous, rarely straight, (60–)65–75(–90) × 1.5–2(–3)<br />

µm, hyaline, guttulate, 4–7(–11)–septate, apex subobtuse, slightly<br />

tapering from basal septum to truncate base, 1.5–2 µm.<br />

Culture characteristics: Colonies on PDA erumpent, with feathery<br />

margin, with sparse white aerial mycelium, surface greenish-black,<br />

reverse olivaceous-black, after 14 d, 2.5 cm diam; on MEA with<br />

sparse white aerial mycelium, surface cinnamon to olivaceousblack<br />

in the younger patches, reverse cinnamon to olivaceousblack<br />

in patches, after 14 d, 4 cm diam; on OA with sparse white<br />

aerial mycelium, surface greenish-black, reverse fuscous-black,<br />

after 14 d, 3 cm diam.<br />

Specimen examined: South Korea, Incheon, leaf of Stachys riederi var. japonica<br />

(Lamiaceae), 14 Aug. 2008, H.D. Shin (<strong>CBS</strong> H-21278, culture <strong>CBS</strong> 128668 = KACC<br />

44796 = SMKC 24663).<br />

Note: The Korean collection was originally identified as Septoria<br />

stachydicola, which fits the original description provided for this<br />

taxon (Shin & Sameva 2004). However, authentic European<br />

material is required for a comparison to confirm this identification,<br />

as we suspect S. stachydicola may be restricted to Europe.<br />

Septoria cretae Quaedvlieg, Verkley & Crous, sp. nov.<br />

MycoBank MB804402. Figs 22, 23.<br />

Etymology: Named after Crete, the island from where it was<br />

collected.<br />

On sterile Carex leaves on WA. Conidiomata up to 250 µm diam,<br />

brown, immersed, subepidermal, pycnidial, subglobose with central<br />

Specimen examined: South Korea, Guri, on leaves of Agrimonia pilosa (Rosaceae),<br />

11 Jul. 2009, H.D. Shin (<strong>CBS</strong> H-21279, culture <strong>CBS</strong> 128602 = KACC 44644 = SMKC<br />

24292).<br />

Notes: This fungus was first reported from Korea by Shin & Sameva<br />

(2002) as S. agrimoniicola, and fits well with the original description<br />

of this European taxon. However, fresh European collections and<br />

cultures are required for comparison, as S. agrimoniicola may well<br />

be restricted to Europe.<br />

Septoria cf. stachydicola Hollós, Mathem. Természettud.<br />

Közlem. Magg. Tudom. Akad. 35(1): 60. 1926.<br />

Leaf spots on the upper leaf surface distinct, scattered, brown<br />

with purplish margin, circular to angular, sometimes vein-limited,<br />

discrete lesions 2–4 mm diam, reaching 10 mm wide when<br />

Fig. 22. Conidia and conidiogenous cells of Septoria cretae (<strong>CBS</strong> 135095). Scale<br />

bar = 10 µm.<br />

340


Sizing up Septoria<br />

Fig. 23. Septoria cretae (<strong>CBS</strong> 135095). A. Colony sporulating in culture. B–F. Conidiophores and conidiogenous cells giving rise to conidia. G. Conidia. Scale bars = 10 µm.<br />

ostiole, exuding creamy conidial mass; wall of 2–3 layers of brown<br />

textura angularis. Conidiophores reduced to conidiogenous cells, or<br />

with a supporting cell that gives rise to several conidiogenous cells.<br />

Conidiogenous cells phialidic, hyaline, smooth, aggregated, lining<br />

the inner cavity, ampulliform to subcylindrical, straight to curved,<br />

proliferating sympodially near apex, 10–20 × 2–3.5 µm. Conidia<br />

hyaline, smooth, thin-walled, subcylindrical to narrowly obclavate,<br />

granular, with subobtuse apex and obconically truncate to truncate<br />

base, 1–3-septate, (8–)15–22(–27) × 2(–3) µm.<br />

Culture characteristics: Colonies on PDA erumpent, with feathery<br />

margin, lacking aerial mycelium, surface fuscous-black, reverse<br />

olivaceous-black, after 14 d, 3.5 cm diam; on MEA surface fuscousblack,<br />

reverse olivaceous-black, after 14 d, 4 cm diam; on OA<br />

surface fuscous-black, reverse fuscous-black, after 14 d, 3.5 cm<br />

diam.<br />

Specimen examined: Greece, Crete, on leaves of Nerium oleander (Apocynaceae),<br />

7 Jul. 2012, U. Damm, (holotype <strong>CBS</strong> H-21277, culture ex-type <strong>CBS</strong> 135095).<br />

Notes: Several species of Septoria are known on Nerium oleander,<br />

namely S. juliae [conidia 1–6(–7)-septate, 26–54 × 2.5–5.5 µm], S.<br />

neriicola (conidia 1-septate, 30–40 × 0.7–1 µm), S. oleandriicola<br />

[conidia 1–3-septate, 12.5–22.5–37.5(–40) × 2.5–3(–4.5) µm], S.<br />

oleandrina (conidia 0–1-septate, 9–19 × 1–1.5 µm), and S. rollhansenii<br />

(conidia 0–4-septate, 25–39 × 3–4 µm) (Bedlan 2011),<br />

which differ from S. cretae based on conidial dimensions and<br />

septation.<br />

Septoria glycinicola Quaedvlieg, H.D. Shin, Verkley &<br />

Crous, sp. nov. MycoBank MB804403. Fig. 24.<br />

Etymology: Named after the host genus on which it was collected,<br />

Glycine.<br />

On OA. Conidiomata forming in concentric circles, pycnidial,<br />

separate, black, globose, up to 150 µm diam, opening by a<br />

central ostiole, up to 30 µm diam, exuding a creamy conidial<br />

mass; wall consisting of 3–6 layers of brown textura angularis.<br />

Conidiophores reduced to conidiogenous cells. Conidiogenous<br />

cells lining the inner cavity, hyaline, smooth, ampulliform, 10–16<br />

× 2.5–3.5 µm, proliferating sympodially near apex, holoblastic.<br />

Fig. 24. Septoria glycinicola (<strong>CBS</strong> 128618). A, B. Colonies sporulating on PDA. C. Conidiogenous cells. D. Conidia. Scale bars = 10 µm.<br />

www.studiesinmycology.org<br />

341


Quaedvlieg et al.<br />

Conidia hyaline, smooth, guttulate to granular, subcylindrical to<br />

narrowly obclavate, irregularly to gently curved, apex subobtuse,<br />

base long obconically truncate, 3–6-septate, (33–)45–55(–65) ×<br />

(1.5–)2 µm.<br />

Culture characteristics: Colonies on PDA flat, circular, with<br />

sparse black aerial mycelium with black tufts, surface patches of<br />

olivaceous-black to fawn in the younger parts, reverse with patches<br />

of olivaceous-black in the older parts to mouse-grey and pale<br />

purplish grey in the younger mycelium, after 14 d, 6.5 cm diam,<br />

pinkish exudate; on OA lobate, with sparse white aerial mycelium,<br />

surface patches of vinaceous to olivaceous-black, reverse fuscousblack<br />

to vinaceous-buff; after 14 d, 8.5 cm diam, pinkish exudate;<br />

on MEA with radial lobes, very short white aerial mycelium, surface<br />

fuscous-black, reverse olivaceous-black; after 14 d, 4.5 cm diam.<br />

Specimen examined: South Korea, Namyangju, on leaves of Glycine max<br />

(Fabaceae), 22 Sep. 2008, H.D. Shin (holotype <strong>CBS</strong> H-21270, culture ex-type <strong>CBS</strong><br />

128618 = KACC 43091 = SMKC 22879).<br />

Notes: Septoria glycines is the common Septoria species<br />

associated with brown spot of soybeans. Septoria glycinicola is<br />

distinct from S. glycines (conidia 1–4 septate, 21–45 × 1.5–2 µm)<br />

in that it has larger conidia.<br />

Septoria oenanthicola Quaedvlieg, H.D. Shin, Verkley &<br />

Crous, sp. nov. MycoBank MB804405. Fig. 25.<br />

Etymology: Named after the host genus from which it was collected,<br />

Oenanthe.<br />

On sterile Carex leaves on WA. Conidiomata pycnidial, separate<br />

but aggregated, black, globose, up to 200 µm diam, opening by<br />

central ostiole, up to 20 µm diam, exuding a creamy conidial mass;<br />

wall consisting of dark brown, thickened, 6–10 layers of textura<br />

angularis. Conidiophores reduced to conidiogenous cells or to one<br />

supporting cell. Conidiogenous cells hyaline, smooth, 3–5 × 3–7<br />

µm, ampulliform, proliferating sympodially near apex, holoblastic.<br />

Conidia hyaline, smooth, guttulate, subcylindrical to narrowly<br />

obclavate, apex subobtuse, base long obconically truncate,<br />

1–6-septate, (17–)25–45(–55) × (2–)2.5(–3) µm.<br />

Culture characteristics: Colonies on PDA flat, undulate with sparse,<br />

white aerial mycelium, surface olivaceous-grey, reverse olivaceous,<br />

after 14 d, 2.5 cm diam; on MEA with sparse, white aerial mycelium,<br />

surface olivaceous-grey, reverse olivaceous-black, after 14 d, 5 cm<br />

diam; on OA with sparse white aerial mycelium, surface olivaceousgrey,<br />

reverse olivaceous, after 14 d, 3 cm diam.<br />

Specimen examined: South Korea, Yangpyeong, on leaves of Oenanthe javanica<br />

(Apiaceae), 25 May 2006, H.D. Shin (holotype <strong>CBS</strong> H-21281, culture ex-type <strong>CBS</strong><br />

128649 = KACC 42394 = SMKC 21807).<br />

Notes: This fungus was originally recorded from Korea by Shin<br />

(1998) as Septoria oenanthis. However, conidia of Korean<br />

specimens (30–60 ×1.5–2.5 µm; Shin & Sameva 2004) are much<br />

larger than that of the American type collection (20–35 × 1.5–2<br />

µm; Saccardo 1895), and therefore better treated as a separate<br />

taxon.<br />

Septoria pseudonapelli Quaedvlieg, H.D. Shin, Verkley &<br />

Crous, sp. nov. MycoBank MB804404. Fig. 26.<br />

Etymology: Named after its morphological similarity to Septoria<br />

napelli.<br />

Leaf spots on the upper leaf surface, scattered to confluent, distinct,<br />

angular to irregular, usually vein-limited, small to large, up to 30 mm<br />

when confluent, at first appearing small angular brown discoloration,<br />

later turning blackish brown with or without distinct border line, finally<br />

central area becoming blackish and surrounded by pale greenish<br />

margin; on the lower leaf surface similar but discoloured (Shin<br />

Fig. 25. Septoria oenanthicola (<strong>CBS</strong> 128649). A. Colony sporulating on MEA. B. Section through conidiomata. C–G. Conidiogenous cells. H. Conidia. Scale bars: B = 200 µm,<br />

all others = 10 µm.<br />

342


Sizing up Septoria<br />

Fig. 26. Septoria pseudonapelli (<strong>CBS</strong> 128664). A. Colony sporulating on PDA. B. Section through conidioma. C–E. Conidiogenous cells. F. Conidia. Scale bars: B = 125 µm,<br />

all others = 10 µm.<br />

& Sameva 2004). On sterile Carex leaves on WA. Conidiomata<br />

pycnidial, separate, black, globose, papillate with short neck (at times<br />

1–2 necks develop), up to 250 µm wide, 500 µm high with central<br />

ostiole; wall of 5–7 layers of brown textura angularis. Conidiophores<br />

reduced to conidiogenous cells. Conidiogenous cells ampulliform,<br />

lining the inner cavity, hyaline, smooth, with sympodial or apical<br />

percurrent proliferation, 10–13 × 5–7 µm. Conidia filiform, curved to<br />

flexuous, (50–)75–90(–100) × (2.5–)3(–3.5) µm, hyaline, guttulate,<br />

4–10-septate, apex subobtuse, base obconically truncate, 2 µm<br />

diam.<br />

Culture characteristics: Colonies on PDA flat, undulate with sparse,<br />

white aerial mycelium, surface olivaceous-black, reverse olivaceousblack,<br />

after 14 d, 2 cm diam; on MEA with sparse white aerial mycelium,<br />

surface olivaceous-black, reverse olivaceous-black, after 14 d, 4 cm<br />

diam; on OA with sparse white aerial mycelium, surface olivaceous,<br />

reverse olivaceous, after 14 d, 2 cm diam.<br />

Specimen examined: South Korea, Chuncheon, on leaves of Aconitum pseudolaeve<br />

var. erectum (Ranunculaceae), 4 Sep. 2008, H.D. Shin (holotype <strong>CBS</strong> H-21280,<br />

culture ex-type <strong>CBS</strong> 128664 = KACC 43952 = SMKC 23638).<br />

Notes: This taxon was originally reported as Septoria napelli from<br />

Korea by Shin & Sameva (2004), and broadly corresponds with the<br />

original description provided for this taxon (Petrak 1957). However,<br />

we have examined European material authentic for the name (see<br />

Verkley et al. 2013, this issue), from which the Korean fungus is<br />

genetically different. Based on these observations we describe the<br />

Korean collection as new.<br />

Clade 2: Sphaerulina<br />

Sphaerulina Sacc., Michelia 1(no. 4): 399. 1878.<br />

Description: See above.<br />

Type species: Sphaerulina myriadea (DC.) Sacc., Michelia 1(no.<br />

4): 399. 1878.<br />

Specimens examined: Germany, Driesen, Lasch [Rabenhorst, Fungi Eur. no. 149]<br />

(L). Japan, Aomori, Tsugaru, Kidukuri, Bense-marsh (40°51′53″ N, 140°17′42″E),<br />

on leaves of Q. dentata, 21 Apr. 2007, K. Tanaka 2243 (HHUF 29940; single<br />

ascospore culture <strong>CBS</strong> 124646 = JCM 15565). UK, on leaves of Quercus robur<br />

(Fagaceae), J.E. Vize [Microfungi Brit. Ex. No. 195] (ex IMI 57186, K(M) 167735).<br />

USA, California: Sequoia National Park. alt. 2590 m, on leaves of Castanopsis<br />

sempervirens, 18 Jun. 1931, H.E. Parks (BPI 623686); Lake Co., Hoberg’s Resort,<br />

on leaves of Q. kelloggii, 15 May 1943, V. Miller (BPI 623707); Maryland, Marlboro,<br />

on leaves of Q. alba, 26 Apr. 1929, C.L. Shear ( BPI 623705); Texas, Houston, on<br />

leaves of Q. alba, 8 Apr. 1869, H.W. Ravenel (BPI 623704).<br />

Notes: Sivanesan (1984) linked Sphaerulina to Septoria,<br />

Cercospora and Cercosporella asexual morphs, though these<br />

were never confirmed based on DNA data. The latter two<br />

genera have since been shown to be distinct (Crous et al. 2013,<br />

Groenewald et al. 2013; this volume), which leaves septoria-like<br />

asexual morphs such as Sphaerulina rubi Demaree & Wilcox<br />

(linked to Cylindrosporium rubi Ellis & Morgan), and S. rehmiana<br />

(linked to Septoria rosae), which confirms the results obtained<br />

here (Fig. 1).<br />

Sphaerulina abeliceae (Hiray.) Quaedvlieg, Verkley &<br />

Crous, comb. nov. MycoBank MB804406.<br />

Basionym: Septoria abeliceae Hiray., Mem. Col. Agr. Kyoto. Imp.<br />

Univ. 13(3): 33. 1931.<br />

Specimen examined: South Korea, Jeonju, on leaves of Zelkova serrata<br />

(Ulmaceae), 29 Oct. 2006, H.D. Shin, <strong>CBS</strong> 128591 = KACC 42626.<br />

Sphaerulina amelanchier Quaedvlieg, Verkley & Crous, sp.<br />

nov. MycoBank MB804407. Figs 27, 28.<br />

Etymology: Named after the host genus from which it was collected,<br />

Amelanchier.<br />

On sterile Carex leaves on WA. Conidiomata pycnidial, brown,<br />

separate, immersed, globose, up to 150 µm diam, exuding a<br />

creamy conidial mass via central ostiole; wall of 3–6 layers of brown<br />

textura angularis. Conidiophores reduced to conidiogenous cells.<br />

Conidiogenous cells hyaline, smooth, subcylindrical, irregularly<br />

curved, branched to once geniculate-sinuous, 5–20 × 3–4 µm;<br />

proliferating sympodially. Conidia hyaline, smooth, guttulate,<br />

filiform, narrowly obclavate, apex subacutely rounded, base long<br />

obconically truncate, 1–8-septate, (25–)40–55(–60) × (1.5–)2(–2.5)<br />

µm; microcyclic conidiation common. Ascomata globose, brown,<br />

www.studiesinmycology.org<br />

343


Quaedvlieg et al.<br />

Fig. 27. Conidia, conidiogenous cells, ascospore and ascus of Sphaerulina amelanchier (<strong>CBS</strong> 135110). Scale bars = 10 µm.<br />

Fig. 28. Sphaerulina amelanchier (<strong>CBS</strong> 135110). A. Colony on PDA. B. Conidiogenous cells. C. Ascomata on host tissue. D. Germinating ascospore. E, F. Asci. G. Ascospores.<br />

H. Conidia. Scale bars = 10 µm.<br />

separate, immersed to erumpent, up to 150 µm diam. Asci broadly<br />

ellipsoid to obclavate, 22–35 × 7–9 µm; apical chamber visible,<br />

1–1.5 µm diam. Ascospores fusoid-ellipsoid, hyaline, smooth,<br />

granular, not to slightly constricted at median septum, widest just<br />

above septum, prominently curved, (13–)17–20(–25) × (2.5–)3(–<br />

3.5) µm. Ascospores germinating from both ends, with germ tubes<br />

parallel to the long axis, developing lateral branches and becoming<br />

constricted at septum, 3–4 µm diam.<br />

Culture characteristics: Colonies on PDA radially striate with lobate<br />

edge, sparse white aerial mycelium, surface fuscous-black to buff<br />

for the younger tissue, reverse cinnamon to olivaceous-black, after<br />

14 d, 3 cm diam; on MEA surface patches of hazel to fawm to<br />

fuscous-black, reverse sepia to olivaceous-black, after 14 d, 4.5<br />

cm diam; on OA surface pale-vinaceous to fuscous-black, reverse<br />

cinnamon to fuscous-black, after 14 d, 3 cm diam.<br />

Specimen examined: Netherlands, Houten, on leaf litter of Amelanchier sp.<br />

(Rosaceae), 28 Mar. 2012, S. Videira (holotype <strong>CBS</strong> H-21282, culture ex-type <strong>CBS</strong><br />

135110 = MP8 = S544).<br />

Note: Presently there are no known species of septoria-like<br />

fungi known from Amelanchier. Phylogenetically, it is similar<br />

to Sphaerulina rhabdoclinis (conidia 8–30 × 1.5–2 µm), which<br />

infects needles of Pseudotsuga menziesii. Phylogenetically similar<br />

344


Sizing up Septoria<br />

isolates occur on Betula, Castanea and Quercus. More isolates<br />

and molecular data are required to resolve this complex.<br />

Sphaerulina azaleae (Voglino) Quaedvlieg, Verkley & Crous,<br />

comb. nov. MycoBank MB804408.<br />

Basionym: Septoria azaleae Voglino, Syll. Fung. (Abellini) 14(2):<br />

976. 1899.<br />

≡ Phloeospora azaleae (Voglino) Priest, Fungi of Australia: 224. 2006.<br />

Specimens examined: Belgium, on leaves of Rhododendron sp. (Ericaceae), J. van<br />

Holder, <strong>CBS</strong> 352.49. South Korea, Hongcheon, on leaves of Rhododendron sp., 18<br />

Oct. 2009, H.D. Shin, KACC 44865 = <strong>CBS</strong> 128605.<br />

Sphaerulina berberidis (Niessl) Quaedvlieg, Verkley &<br />

Crous, comb. nov. MycoBank MB804409.<br />

Basionym: Septoria berberidis Niessl, in Rabenhorst, Bot. Ztg. 24:<br />

411. 1866.<br />

= Sphaerella berberidis Auersw., in Gonnermann & Rabenhorst, Mycol. eur.<br />

Abbild. Sämmtl. Pilze Eur. 5-6: 3. 1869 (nom. nov. for Sphaeria berberis<br />

Nitschke ex Fuckel).<br />

≡ Mycosphaerella berberidis (Auersw.) Lindau, in Engler & Prantl, Nat.<br />

Pflanzenfam., Teil. I (Leipzig) 1(1): 424. 1897.<br />

Description in vitro (<strong>CBS</strong> 116724): Colonies on OA 16–20 mm diam<br />

after 14 d, with an even, colourless margin; colonies spreading to<br />

restricted, somewhat elevated in the centre, the surface covered<br />

by a dense mat of pure white, woolly aerial mycelium; reverse in<br />

the centre dark brick to brown vinaceous, surrounded by cinnamon<br />

tinges; small amounts of a yellow to greenish pigment diffusies into<br />

the surrounding medium. Colonies on MEA 8–10 mm diam after 14<br />

d, with an even to slighlty ruffled vinaceous buff margin; colonies<br />

restricted, pustulate, the surface ochraceous or darker, with diffuse<br />

to locally more dense finely felted grey aerial mycelium; reverse<br />

brown vinaceous to vinaceous buff. Culture remained sterile.<br />

Specimen examined: Switzerland, Kt. Graubünden, Rodels-Realta, on Berberis<br />

vulgaris (Berberidaceae), 2 Jun. 1951, E. Müller, specimen <strong>CBS</strong>-H4984, culture<br />

<strong>CBS</strong> 324.52.<br />

Sphaerulina betulae (Pass.) Quaedvlieg, Verkley & Crous,<br />

comb. nov. MycoBank MB804410.<br />

Basionym: Septoria betulae Pass., Primo Elenc. Funghi Parm.: no.<br />

52. 1867.<br />

Specimens examined: Netherlands, Olst, leaves of Betula pubescens (Betulaceae),<br />

Sep. 2004, S. Green, <strong>CBS</strong> 116724. South Korea, Hongcheon, leaves of B.<br />

platyphylla var. japonica, 27 May 2008, H.D. Shin, <strong>CBS</strong> 128600 = KACC 43769.<br />

Sphaerulina menispermi (Thüm.) Quaedvlieg, Verkley &<br />

Crous, comb. nov. MycoBank MB804412.<br />

Basionym: Septoria menispermi Thüm., Pilzflora Siber.: no. 818. 1880.<br />

Specimens examined: South Korea, Chuncheon, on leaves of Menispermum<br />

dauricum (Menispermaceae), 16 Jun. 2008, H.D. Shin, KACC 43848 = <strong>CBS</strong><br />

128761; Pyeongchang, on leaves of M. dauricum, 23 Sep. 2008, H.D. Shin, KACC<br />

43968 = <strong>CBS</strong> 128666.<br />

Sphaerulina musiva (Peck) Quaedvlieg, Verkley & Crous,<br />

comb. nov. MycoBank MB804413.<br />

Basionym: Septoria musiva Peck, Ann. Rep. N.Y. St. Mus. Nat.<br />

Hist. 35: 138. 1883 [1881]<br />

= Mycosphaerella populorum G.E. Thomps., Phytopathology 31: 246. 1941.<br />

≡ Davidiella populorum (G.E. Thomps.) Aptroot, <strong>CBS</strong> Diversity Ser.<br />

(Utrecht) 5: 164. 2006.<br />

= Cylindrosporium oculatum Ellis & Everh., J. Mycol. 5(3): 155. 1889.<br />

Specimen examined: Canada, Quebec, leaf spot of Populus deltoids (Salicaceae),<br />

J. LeBoldus, <strong>CBS</strong> 130570.<br />

Sphaerulina oxyacanthae (Kunze & J.C. Schmidt)<br />

Quaedvlieg, Verkley & Crous, comb. nov. MycoBank<br />

MB804414. Figs 29, 30.<br />

Basionym: Septoria oxyacanthae Kunze & J.C. Schmidt, Myk.<br />

Hefte (Leipzig) 2: 108. 1823.<br />

≡ Phloeospora oxyacanthae (Kunze & J.C. Schmidt) Wallr., Fl. Crypt.<br />

Germ. (Norimbergae) 2: 117. 1833.<br />

Leaf spots amphigenous, medium to dark brown, subcircular<br />

to angular, 1–6 mm diam, with dark brown border. Conidiomata<br />

epiphyllous, up to 150 µm diam, brown, immersed, subepidermal,<br />

opening by irregular rupture of upper layer, with 3–4 apical flaps,<br />

exuding a long crystalline flame-like cirrhus of conidia; wall<br />

3–8 layers of brown textura angularis. On sterile Carex leaves<br />

on WA. Conidiophores reduced to conidiogenous cells, or with<br />

one supporting cell that can become fertile, forming a lateral<br />

conidiogenous locus just below the septum, 10–20 × 2.5–4 µm.<br />

Conidiogenous cells hyaline, smooth, aggregated, lining the inner<br />

cavity, terminal and lateral, ampulliform, 5–10 × 2.5–3.5 µm;<br />

proliferating several times percurrently near apex. Conidia hyaline,<br />

smooth, guttulate, 6–12-septate, falcate, widest in lower third of<br />

conidium, flexuous, apical cell tapering to subacute apex, forming a<br />

curved apical appendage-like elongation, 10–17 µm long, median<br />

cells are 5–10 µm long, basal cell forming an eccentric appendage<br />

that tapers to a subacutely rounded base, scar approximately 2–4<br />

Sphaerulina cercidis (Fr.) Quaedvlieg, Verkley & Crous,<br />

comb. nov. MycoBank MB804411.<br />

Basionym: Septoria cercidis Fr., in Léveillé, Ann. Sci. Nat., Bot.,<br />

Sér. 3 9: 251. 1848.<br />

= Septoria provencialis Crous, Stud. Mycol. 55: 127. 2006.<br />

Specimens examined: Argentina, La Plata, on Cercis siliquastrum<br />

(Caesalpiniaceae), 12 Feb. 2008, H.D. Shin, KACC 43596 = <strong>CBS</strong> 129151; on<br />

C. siliquastrum, 1 Sep. 2007, H.D. Shin, KACC 44497 = <strong>CBS</strong> 128634. France,<br />

Provence, Cheval Blanc camping site, on leaves of Eucalyptus sp., 29 Jul. 2005,<br />

P.W. Crous, holotype of S. provincialis, <strong>CBS</strong> H-19701, culture ex-type <strong>CBS</strong> 118910.<br />

Netherlands, on C. siliquastrum, Sep. 1950, G. van den Ende, <strong>CBS</strong> 501.50.<br />

Fig. 29. Conidia and conidiogenous cells of Sphaerulina oxyacanthae (<strong>CBS</strong><br />

135098). Scale bars = 10 µm.<br />

www.studiesinmycology.org<br />

345


Quaedvlieg et al.<br />

Fig. 30. Sphaerulina oxyacanthae (<strong>CBS</strong> 135098). A. Leaves with leaf spots. B. Close-up of conidiomata. C. Section though conidioma. D–F. Conidiogenous cells. G. Conidia<br />

(note appendages). Scale bars: C = 150 µm, all others = 10 µm.<br />

µm below basal septum; basal cell (incl. appendage) 11–20 µm<br />

long, conidia (60–)75–90(–100) × 2(–2.5) µm.<br />

Culture characteristics: Colonies on PDA umbonate with undulate<br />

edge and sparse, white aerial mycelium, surface isabelline, reverse<br />

greyish sepia, after 14 d, 3 cm diam; similar on MEA and PDA.<br />

Specimen examined: Netherlands, Wageningen, 51°57’50.43”N 5°41’0.41”E, on<br />

leaves of Crataegus sp. (Rosaceae), Sep. 2012, W. Quaedvlieg (<strong>CBS</strong> H-21291,<br />

culture <strong>CBS</strong> 135098 = S654).<br />

Notes: Several septoria-like species have been described from<br />

leaves of Crataegus (Farr & Rossman 2013). The present<br />

collection matches the description of Septoria oxyacanthae (leaf<br />

spots on Crataegus oxyacantha in Germany, conidia 8–12-septate;<br />

conidial dimensions not given). Unfortunately we have been unable<br />

to locate type material of this species.<br />

Sphaerulina patriniae (Miura) Quaedvlieg, Verkley & Crous,<br />

comb. nov. MycoBank MB804415.<br />

Basionym: Septoria patriniae Miura, Flora of Manchuria and East<br />

Mongolia, III Cryptogams, Fungi (Industr. Contr. S. Manch. Rly 27)<br />

3: 465. 1928.<br />

Specimen examined: South Korea, Pocheon, on leaves of Patrinia scabiosaefolia<br />

(Valerianaceae), 20 Aug. 2006, H.D. Shin, KACC 42518 = <strong>CBS</strong> 128653.<br />

Sphaerulina populicola (Peck) Quaedvlieg, Verkley &<br />

Crous, comb. nov. MycoBank MB804416.<br />

Basionym: Septoria populicola Peck, Ann. Rep. N.Y. St. Mus. 40:<br />

59. 1887.<br />

= Septoria populicola House, Bull. N.Y. St. Mus.: 59. 1920. (nom. illegit.)<br />

= Mycosphaerella populicola C.H. Thomps., Phytopathology 31: 251. 1941.<br />

Specimen examined: USA, Washington, Puyallup, on Populus trichocarpa<br />

(Salicaceae), 2 May 1997, G. Newcombe, <strong>CBS</strong> 100042.<br />

Fig. 31. Conidia, conidiogenous loci on a hypha, and conidiogenous cells of<br />

Sphaerulina pseudovirgaureae (<strong>CBS</strong> 135109). Scale bars = 10 µm.<br />

Sphaerulina pseudovirgaureae Quaedvlieg, Verkley &<br />

Crous, sp. nov. MycoBank MB804417. Figs 31, 32.<br />

Etymology: Named after its similarity to Septoria virgaureae.<br />

Conidiomata pycnidial, separate, erumpent, globose, up to 120 µm<br />

diam, dark brown, exusing a creamy conidial cirrhus through central<br />

ostiole, somewhat papillate; wall of 2–3 laters of brown textura<br />

angularis. Conidiophores reduced to conidiogenous cells or with<br />

one supporting cell, subcylindrical, 0–1-septate, branched below<br />

or not, pale brown at base, 10–20 × 3–5 µm. Conidiogenous cells<br />

integrated, hyaline, but pale brown at base, smooth, proliferating<br />

sympodially near apex, 7–17 × 2–3 µm. Conidia solitary,<br />

hyaline, smooth, guttulate, subcylindrical to narrowly obclavate,<br />

scolecosporous, irregularly curved, apex subobtuse, base truncate<br />

or narrowly obconically truncate, 3–10-septate, (30–)40–60(–80) ×<br />

2.5(–3) µm.<br />

Culture characteristics: Colonies spreading, erumpent with sparse<br />

aerial mycelium and smooth, lobate margin and folded surface;<br />

reaching 13 mm diam after 2 wk. On MEA surface saffron with<br />

346


Sizing up Septoria<br />

Fig. 32. Sphaerulina pseudovirgaureae (<strong>CBS</strong> 135109). A. Conidiomata forming in culture. B. Conidiogenous cells. C. Microcyclic conidiation. D. Conidia. Scale bars = 10 µm.<br />

patches of dirty white, reverse saffron to orange; on PDA surface<br />

and reverse saffron; on OA surface saffron.<br />

Specimen examined: Netherlands, Nijmegen, de Duffelt, on leaves of Solidago<br />

gigantea (Asteraceae), Aug. 2012, S. Videira (holotype <strong>CBS</strong> H-21327, culture extype<br />

<strong>CBS</strong> 135109 = S669).<br />

Notes: Several septoria-like species have been recorded on<br />

Solidago (Farr & Rossman 2013). Of these taxa Sphaerulina<br />

pseudovirgaureae is most similar to Septoria virguareae (conidia<br />

80–100 × 1.5 µm) except that its conidia are shorter and wider.<br />

Sphaerulina quercicola (Desm.) Quaedvlieg, Verkley &<br />

Crous, comb. nov. MycoBank MB804419. Figs 33, 34.<br />

Basionym: Septoria incondita var. quercicola Desm., Ann. Sci. nat.,<br />

Sér. 3, Bot. 20: 95. 1853.<br />

≡ Septoria quercicola (Desm.) Sacc., Michelia 1: 174. 1879.<br />

≡ Phleospora quercicola (Desm.) Sacc., in P. A. Saccardo & D. Saccardo,<br />

1906. Syll. Fung. 18: 490. 1906.<br />

= Septoria quercina Fautr., in Fautrey & Lambotte, Revue Mycol. 17: 170.<br />

1895 (nom. illeg., art. 53; non Desmazières, 1847). Nom. nov. pro Septoria<br />

quercicola f. macrospora Roum., Revue Mycol. 13: 80. 1891.<br />

Description in vivo. Symptoms definite, small hologenous leaf<br />

spots, scattered or in clusters, in the centre orange brown, pale<br />

yellowish brown to white, usually delimited by a blackened,<br />

somewhat elevated zone, the surrounding leaf tissues becoming<br />

red or yellow. Conidiomata pycnidial or acervuloid, one to a few<br />

in each leafspot, scattered, semi-immersed, predominantly<br />

hypophyllous, pale to dark brown, lenticular to globose, 100–200<br />

µm diam; ostiolum often not well-developed, initially circular,<br />

central, soon opening widely, lacking distinctly differentiated cells;<br />

conidiomatal wall composed of textura angularis without distinctly<br />

differentiated layers and sometimes only well-developed in the<br />

lower part of the conidioma, mostly 10–15 µm thick, the outer cells<br />

with brown, somewhat thickened walls and 4.5–8 µm diam, the<br />

inner cells hyaline, thin-walled, 3–8 µm diam. Conidiogenous cells<br />

hyaline, discrete or integrated in simple, short, (1–)3–5-septate<br />

conidiophores which may be branched at the base, doliiform,<br />

cylindrical, or ampuliform, hyaline, holoblastic, proliferating<br />

percurrently with one to several, more or less distinct annellations,<br />

or sympodially, sometimes both types of proliferation occurring in<br />

a single conidiogenous cell, 4.5–16(–22.5) × 3–4.5 µm. Conidia<br />

cylindrical, curved or flexuous, broadly rounded at the apex<br />

which is provided with a cap of mucilaginous material, attenuated<br />

Fig. 33. Ascospores and asci of Sphaerulina quercicola (<strong>CBS</strong> 113266). Scale bar<br />

= 10 µm.<br />

gradually to a broadly or more narrowly truncate base which often<br />

is also provided with an amorphous mass of mucilaginous material,<br />

hyaline, (0–)1–3-septate, constricted around the septa, sometimes<br />

at one or more septa also some amorphous mucilaginous material<br />

may be present, contents with numerous small oil droplets,<br />

(32.5–)38–50(–65) × 3–4 µm. Ascomata not clearly associated<br />

with leaf spots, pseudothecial, predominantly hypophyllous, black,<br />

subepidermal, erumpent to superficial, globose, 100–150 µm<br />

diam; apical ostiole 5–10 µm wide; wall consisting of 2–3 layers of<br />

medium brown textura angularis. Asci aparaphysate, fasciculate,<br />

bitunicate, subsessile, broadly ellipsoidal to subcylindrical, straight<br />

to slightly curved, 8-spored, 35–50 × 9–12 µm. Ascospores tri- to<br />

www.studiesinmycology.org<br />

347


Quaedvlieg et al.<br />

Fig. 34. Sphaerulina quercicola (<strong>CBS</strong> 663.94). A. Leaves with leaf spots. B. Close-up of lesion. C. Conidiogenous cells. D. Conidia. Scale bars = 10 µm.<br />

Fig. 35. Sphaerulina rhabdoclinis (<strong>CBS</strong> 102195). A. Conidiomata forming in culture. B. Sporulation on PDA. C. Conidia. Scale bar = 10 µm.<br />

multiseriate, overlapping, hyaline, guttulate, thin-walled, curved,<br />

rarely straight, fusoid-ellipsoidal with obtuse ends, widest at septum<br />

or just above, medianly 1-septate, not constricted at the septum,<br />

tapering towards both ends, (13–)15–18(–20) × (3.5–)4–4.5(–5)<br />

µm (av. 17 × 4.5 µm).<br />

Culture characteristics: Colonies on OA reaching 5–7 mm diam<br />

in 21 d, with an even to undulating, colourless margin; colonies<br />

restricted, irregularly pustulate, immersed mycelium appearing<br />

dark greyish to olivaceous black, rosy buff near the margin,<br />

covered mostly with a dense mat of woolly, pure white or greyish<br />

aerial mycelium; reverse in the centre brown vinaceous or more<br />

greyish black, surrounded by brick to rosy buff. Pycnidia developing<br />

on the agar surface in the centre, releasing droplets of rosy-buff<br />

conidial slime. Colonies on MEA reaching 4–6(–8) mm diam in 21<br />

d, with an even, to irregularly undulating margin which is mostly<br />

hidden under the aerial mycelium; colonies restricted, irregularly<br />

pustulate, the surface mostly blackish or very dark grey, covered by<br />

dense to diffuse, finely felted, white aerial mycelium; reverse mostly<br />

olivaceous black, near the margin cinnamon to buff. Numerous<br />

single and aggregated pycnidia developing on the colony surface<br />

in the centre, releasing milky white to rosy buff conidial slime.<br />

Conidia as in planta (<strong>CBS</strong> 663.94) though on average considerably<br />

longer, 51.5–74.5 × 3–4(–4.5) µm (OA), the apex, base and area<br />

around septa normally both provided with mucilaginous material as<br />

described above, (0–)1–3(–5)-septate.<br />

Specimens examined: Austria, endophyte culture ex twig of Quercus petraea<br />

(Fagaceae), Aug. 1991, E. Halmschlager 212 (H. A. van der Aa 10986), <strong>CBS</strong> 456.91.<br />

France, loc. unknown, on leaves of Quercus sp. (“divers Chênes”), distributed in<br />

Desmazières, Pl. crypt. Fr., Fasc. 43, no. 2193 (PC, type of Septoria incondita var.<br />

quercicola Desm.). Netherlands, Utrecht, Baarn, on living leaves of Q. robur, 11<br />

Aug. 1994, G. Verkley 225 (<strong>CBS</strong> H-21188), living culture <strong>CBS</strong> 663.94; prov. Utrecht,<br />

Soest, De Stompert, on living leaves of Q. rubra, 15 Aug. 1995, G. Verkley 310<br />

(<strong>CBS</strong> H-21189), <strong>CBS</strong> 791.95; Same loc., dead fallen leaves of Q. robur, Apr. 2003,<br />

G. Verkley s.n., single ascospore-isolate <strong>CBS</strong> 113266 (‘Crous 3’); Same loc., G.<br />

Verkley & I. van Kempen, endophyte isolates ex green leaves of Q. robur <strong>CBS</strong><br />

115016, 115136, 115137; Prov. Gelderland, Amerongen, Park Kasteel Amerongen,<br />

leaf spot of Q. rubra, 11 Jul. 2000, G. Verkley 973 (<strong>CBS</strong> H-21231), living culture <strong>CBS</strong><br />

109009; Prov. Utrecht, Amelisweerd, on dead leaves of Q. robur, 25 Apr. 2005, G.<br />

Verkley 3108A, culture <strong>CBS</strong> 117803, CPC 12097.<br />

Sphaerulina rhabdoclinis (Butin) Quaedvlieg, Verkley &<br />

Crous, comb. nov. MycoBank MB804420. Fig. 35.<br />

Basionym: Dothistroma rhabdoclinis Butin, For. Path. 30: 196.<br />

2000.<br />

Specimen examined: Germany, Wolfenbüttel, on needles of Pseudotsuga menziesii<br />

(Pinaceae), 24 May 1998, H. Butin, culture ex-type <strong>CBS</strong> 102195.<br />

Note: Sphaerulina rhabdoclinis is phylogenetically closely related to<br />

S. amelanchier, which appears to be a species complex occurring<br />

on unrelated hosts (see Verkley et al. 2013).<br />

Sphaerulina viciae Quaedvlieg, H.D. Shin, Verkley & Crous,<br />

sp. nov. MycoBank MB804418. Figs 36, 37.<br />

Etymology: Named after the host genus from which it was collected,<br />

Vicia.<br />

348


Sizing up Septoria<br />

On Anthriscus stem. Conidiomata pycnidial, solitary, erumpent,<br />

brown, globose, up to 150 µm diam, with central ostiole; wall<br />

of 3–6 layers of textura angularis. Conidiophores reduced<br />

to conidiogenous cells. Conidiogenous cells lining the inner<br />

cavity, hyaline, smooth, subcylindrical, tapering and proliferating<br />

sympodially at apex, 5–10 × 3–4 µm. Conidia hyaline, smooth,<br />

guttulate, subcylindrical, irregularly curved, apex obtuse, base<br />

truncate, (3–)6–multiseptate, not or slightly constricted at septa<br />

(especially constricted on SNA, OA and MEA), (45–)55–75(–110)<br />

× (2.5–)3(–3.5) µm.<br />

Culture characteristics: Colonies erumpent, spreading with folded<br />

surface and sparse aerial mycelium, and smooth, lobate margin;<br />

reaching 12 mm diam after 2 wk. On MEA and PDA surface and<br />

reverse olivaceous-grey. On OA surface pale olivaceous-grey.<br />

Specimen examined: South Korea, on leaves of Vicia amurense (Fabaceae), 12<br />

Aug. 2004, H.D. Shin (holotype <strong>CBS</strong> H-21283, culture ex-type CPC 11414, 11416,<br />

11415 = <strong>CBS</strong> 131898).<br />

Notes: Several septoria-like species are known from Vicia (Farr<br />

& Rossman 2013). Of these, Sphaerulina viciae is most similar to<br />

Septoria viceae (conidia 30–60 × 2.5 µm), but distinct in having<br />

longer and wider conidia.<br />

Clade 3: Caryophylloseptoria<br />

Description: See Verkley et al. (2013)<br />

Type species: Caryophylloseptoria lychnidis (Desm.) Verkley,<br />

Quaedvlieg & Crous.<br />

Caryophylloseptoria pseudolychnidis Quaedvlieg, H.D.<br />

Shin, Verkley & Crous, sp. nov. MycoBank MB804481. Fig.<br />

38.<br />

Etymology: Named after its morphological similarity to Septoria<br />

lychnidis.<br />

Fig. 36. Conidia and conidiogenous cells of Sphaerulina viciae (<strong>CBS</strong> 131898). Scale<br />

bars = 10 µm.<br />

Leaf spots on the upper leaf surface, scattered to confluent,<br />

distinct, circular, angular to irregular, usually very large, reaching<br />

up to 20 mm diam, often surrounded with yellow halo, lacking<br />

concentric rings, initially dark brown with pale green border,<br />

becoming brown to dark brown, finally turning greyish brown to<br />

pallid in the centre; on the lower leaf surface greyish brown to<br />

brown with yellowish margin (Shin & Sameva 2004). On sterile<br />

Carex leaves on WA. Conidiomata pycnidial, globose, up to 250<br />

µm diam, black with central ostiole, but frequently splitting open<br />

at maturity, appearing acervular; wall of 6–8 layers of dark brown<br />

textura angularis. Conidiophores subcylindrical, lining the inner<br />

cavity, hyaline, smooth, reduced to conidiogenous cells, or with<br />

1–2 supporting cells, frequently branched at base, 10–25 × 3–5<br />

µm. Conidiogenous cells subcylindrical to ampulliform, 7–15 × 3–5<br />

µm; proliferating sympodially or percurrently near apex. Conidia<br />

Fig. 37. Sphaerulina viciae (<strong>CBS</strong> 131898). A. Conidiomata forming in culture. B, C, E. Conidiogenous cells. D, F. Conidia. Scale bars = 10 µm.<br />

www.studiesinmycology.org<br />

349


Quaedvlieg et al.<br />

Fig. 38. Caryophylloseptoria pseudolychnidis (<strong>CBS</strong> 128630). A. Colony sporulating on MEA. B. Vertical section through conidiomata. C, D. Conidiogenous cells. E. Conidia.<br />

Scale bar: B = 250 µm, others = 10 µm.<br />

hyaline, smooth, guttulate, cylindrical, apex obtuse to subobtuse,<br />

base truncate, 3–3.5 µm; 1–3(–5)-septate, (25–)32–45(–50) ×<br />

(2–)2.5–3(–3.5) µm.<br />

Culture characteristics: Colonies on PDA flat, undulate, very<br />

sparse, mixed grey and white aerial mycelium, surface isabelline<br />

to fuscous-black, reverse olivaceous-black to isabelline for the<br />

younger tissue, after 14 d, 3 cm diam; on MEA umbonate, striate,<br />

undulate, surface fuscous-black to honey for the younger tissue<br />

after 14 d 3.5 cm diam; on OA surface dark-mouse-grey, reverse<br />

iron-grey to mouse-grey.<br />

Specimen examined: South Korea, Yangpyeong, Jungmi mountain, on leaves<br />

of Lychnis cognata (Caryophyllaceae), 27 May 2007, H.D. Shin (holotype <strong>CBS</strong><br />

H-21292, culture ex-type <strong>CBS</strong> 128630 = KACC 43866 = SMKC 23519).<br />

Notes: Shin (1995) recorded this species for the first time in<br />

Korea, while Shin & Sameva (1999) provided a full morphologial<br />

description. Although it compared well with the original description<br />

of this European taxon, its conidia tend to be smaller than those of<br />

S. lychnidis (50–70 × 2.5–3 µm), of which we have also examined<br />

European material (see Verkley et al. 2013, this issue).<br />

Clade 4: pseudocercosporella-like<br />

Note: See Frank et al. (2010).<br />

Clade 5: Cercospora<br />

Note: See Groenewald et al. (2013).<br />

Clade 6: Phloeospora<br />

Description: See above.<br />

Type species: P. ulmi (Fr.) Wallr., Fl. Crypt. Germ. (Norimbergae)<br />

2: 177. 1833.<br />

Phloeospora ulmi (Fr.) Wallr., Fl. Crypt. Germ. (Norimbergae)<br />

2: 177. 1833. Figs 39, 40.<br />

≡ Septoria ulmi Fr. [as ‘Septaria’], Novit. Fl. Svec. 5(cont.): 78. 1819.<br />

Fig. 39. Conidia and conidiogenous cells of Phloeospora ulmi (<strong>CBS</strong> 613.81). Scale<br />

bars = 10 µm.<br />

≡ Septogloeum ulmi (Fr. & Kunze) Died., Krypt. Fl. Brandenburg (Leipzig)<br />

9: 836. 1915.<br />

≡ Cylindrosporium ulmi (Fr.) Vassiljevsky, Fungi Imperfecti Parasitici 2:<br />

580. 1950.<br />

= Mycosphaerella ulmi Kleb., Z. PflKrankh. 12: 257. 1902.<br />

= Sphaerella ulmi (Kleb.) Sacc. & D. Sacc., Syll. Fung. (Abellini) 17: 642. 1905.<br />

Leaf spots angular, vein limited, separate, becoming somewhat<br />

confluent, initially small yellow-green spots that finally turn brown.<br />

Conidiomata acervular, hypophyllous, separate, subepidermal,<br />

composed of thin-walled, medium brown textura angularis, up to<br />

200 µm diam, opening by irregular rupture, and exuding a prominent<br />

cirrhus of orange to yellow-orange conidia. Conidiophores reduced<br />

to conidiogenous cells, or with 1–2 supporting cells, branched<br />

below or not, subcylindrical, 10–30 × 4–5 µm. Conidiogenous<br />

cells hyaline, smooth, subcylindrical, straight to once geniculate,<br />

with numerous prominent percurrent proliferations at apex, 10–15<br />

× 4–5 µm. Conidia solitary, hyaline, smooth, straight to curved,<br />

guttulate or not, fusiform, tapering towards an obtuse or subobtuse<br />

apex, and truncate base, 2–3 µm diam, with minute marginal frill,<br />

350


Sizing up Septoria<br />

Fig. 40. Phloeospora ulmi (<strong>CBS</strong> 613.81). A, B, D, E. Conidiomata bursting through host tissue. G, H. Microconidiogenous cells. K. Spermatia. C, F, I, J, L. Macroconidiogenous<br />

cells (arrows denote percurrent proliferation). M. Conidia. Scale bars = 10 µm.<br />

3–5-septate, (20–)30–50(–60) × (3.5–)4–5(–6) µm. Leaf spots also<br />

contain black spermatogonia and ascomata.<br />

Specimens examined: Austria, Innsbruck, near Hungerburg, on leaves of Ulmus sp.<br />

(Ulmaceae), 21 Sep. 1981, H.A. van der Aa, <strong>CBS</strong> H-14740, H-14861, culture <strong>CBS</strong><br />

613.81; Innsbruck, road to Hungerburg, on leaves of Ulmus glabra, 20 Oct. 1996, W.<br />

Gams, <strong>CBS</strong> 344.97. Netherlands, Baarn, garden of <strong>CBS</strong>, Oosterstraat 1, on leaves<br />

of Ulmus sp., 26 Aug. 1998, H.A. van der Aa, <strong>CBS</strong> H-14739, culture <strong>CBS</strong> 101564.<br />

Unknown, on leaves of Ulmus pedunculata, 15 Jul. 1901, A. van Luijk, <strong>CBS</strong> H-920.<br />

Note: Distinct from Septoria s. str. by having acervuli, and<br />

conidiogenous cells with prominent percurrent proliferation.<br />

Clade 7: septoria-like<br />

Septoria gladioli Pass., in Rabenhorst, Fungi europ. exsicc.:<br />

no. 1956. 1875. Passerini, Atti Soc. crittog. ital. 2: 41. 1879.<br />

Descripton in vitro (18 ºC, NUV). <strong>CBS</strong> 121.20: Colonies on OA 15–<br />

18 mm diam after 21 d, with an even to slightly ruffled, colourless<br />

margin; colonies plane, immersed mycelium olivaceous black,<br />

fading over amber towards the margin, aerial mycelium absent;<br />

reverse concolorous. No sporulation observed. Colonies on MEA<br />

10–15 mm diam after 21 d, with an even, pale luteous to amber<br />

margin; colonies restricted, irregularly pustulate to cerebriform,<br />

immersed mycelium ochreous to salmon, covered by diffuse, finely<br />

felted, white aerial mycelium; reverse in the centre rust, fading<br />

towards the margin over apricot to pale luteous. No sporulation<br />

observed. <strong>CBS</strong> 353.29: Colonies on OA 16–20 mm diam after<br />

21 d, with an even to slightly ruffled, colourless margin; colonies<br />

plane, immersed mycelium rosy buff mixed with some olivaceous<br />

grey, aerial mycelium absent; reverse mainly pale purplish grey<br />

to pale mouse grey. No sporulation observed. Colonies on MEA<br />

14–22(–26) mm diam after 21 d, with an even to lobed, buff margin;<br />

colonies restricted, elevated towards the centre, radially striate,<br />

immersed mycelium greenish olivaceous fading to ochreous or buff<br />

salmon, the central part mostly covered by diffuse, finely felted,<br />

white aerial mycelium; reverse in the centre dark brick to isabelline<br />

or hazel, fading towards the margin over pale cinnamon to buff. No<br />

sporulation observed.<br />

Specimen examined: Netherlands, Mar. 1929, J.C. Went, <strong>CBS</strong> 353.29. Unknown<br />

location and host, 1920, W.J. Kaiser, <strong>CBS</strong> 121.20.<br />

www.studiesinmycology.org<br />

351


Quaedvlieg et al.<br />

Notes: Priest (2006) provided a complete description of S. gladioli<br />

on host material, based on observations of an isotype in MEL, and<br />

several specimens on Gladiolus cultivars collected in Australia.<br />

The two strains available from the <strong>CBS</strong> are old and sterile, and<br />

show some differences that also seem to be reflected in the DNA<br />

data obtained. Septoria gladioli is the only species of septorioid<br />

fungi described from the genus Gladiolus. An unusual feature of<br />

the species is that it overwinters as “sclerotia”, that cause leaf<br />

infections in the next season (Priest 2006). The conidiogenous<br />

cells are holoblastic and very distinctly proliferate percurrently to<br />

form subsequent conidia, but no sympodial proliferation has been<br />

reported. Based on the multilocus phylogeny, the aforementioned<br />

isolates should be placed in their own genus, with the genus<br />

Phloeospora as its closest relative. Recollecting material will be<br />

required to determine the generic disposition, the delimitation of the<br />

taxa (as there seem to be at least two) and to which of these taxa<br />

the name Septoria gladioli should be applied.<br />

Clade 8: passalora-like<br />

Passalora dioscoreae (Ellis & G. Martin) U. Braun & Crous,<br />

in Crous & Braun, <strong>CBS</strong> Biodiversity Ser. (Utrecht) 1: 162.<br />

2003.<br />

mass; wall of 2–3 layers of brown textura angularis. Conidiophores<br />

0–2-septate, subcylindrical, hyaline to pale brown at base, smooth,<br />

straight to geniculate-sinuous. Conidiogenous cells phialidic,<br />

hyaline, smooth, aggregated, lining the inner cavity, subcylindrical<br />

to ampulliform, straight to geniculate-sinuous; proliferating<br />

several times percurrently near apex, rarely sympodially. Conidia<br />

scolecosporous, hyaline, smooth, flexuous, rarely straight, granular,<br />

thin-walled, narrowly obclavate, apex subobtuse, base long<br />

obconically truncate, tapering to a truncate hilum, 3–multiseptate.<br />

Type species: Neoseptoria caricis Quaedvlieg, Verkley & Crous.<br />

Note: The genus Neoseptoria is morphologically similar to Septoria,<br />

but distinct in having mono- to polyphialidic conidiogenous cells<br />

that proliferate percurrently at the apex.<br />

Neoseptoria caricis Quaedvlieg, Verkley & Crous, sp. nov.<br />

MycoBank MB804422. Figs 41, 42.<br />

Etymology: Named after the host genus on which it occurs, Carex.<br />

Specimen examined: South Korea, on leaves of Dioscorea tokoro (Dioscoreaceae),<br />

24 Oct. 2003, H.D. Shin (CPC 10855); ibid., on leaves of Dioscorea tenuipes, 1 Jan.<br />

2004, H.D. Shin (CPC 11513).<br />

Notes: Passalora dioscoreae is not congeneric with the type<br />

species of the genus, P. bacilligera. The taxonomy of Passalora<br />

and its relatives will be treated in a future publication (Videira et<br />

al., in prep.).<br />

Clade 9: Neoseptoria<br />

Neoseptoria Quaedvlieg, Verkley & Crous, gen. nov.<br />

MycoBank MB804421.<br />

Etymology: Resembling the genus Septoria.<br />

Foliicolous. Conidiomata black, immersed, subepidermal,<br />

pycnidial, subglobose with central ostiole, exuding creamy conidial<br />

Fig. 41. Conidia and conidiogenous cells of Neoseptoria caricis (<strong>CBS</strong> 135097).<br />

Scale bars = 10 µm.<br />

Fig. 42. Neoseptoria caricis (<strong>CBS</strong> 135097). A, B. Conidiomata developing in culture. C, D. Conidiogenous cells. E, F. Conidia. Scale bars = 10 µm.<br />

352


Sizing up Septoria<br />

On sterile Carex leaves on WA. Conidiomata up to 150 µm diam,<br />

black, immersed, subepidermal, pycnidial, subglobose with central<br />

ostiole, exuding creamy conidial mass; wall of 2–3 layers of brown<br />

textura angularis. Conidiophores reduced to conidiogenous cells, or<br />

0–2-septate, subcylindrical, hyaline to pale brown at base, smooth,<br />

straight to geniculate-sinuous, 10–30 × 2.5–3.5 µm. Conidiogenous<br />

cells phialidic, hyaline, smooth, aggregated, lining the inner cavity,<br />

subcylindrical to ampulliform, straight to geniculate-sinuous, 8–15 ×<br />

2.5–3 µm; proliferating several times percurrently near apex, rarely<br />

sympodially. Conidia scolecosporous, hyaline, smooth, flexuous, rarely<br />

straight, granular, thin-walled, narrowly obclavate, apex subobtuse,<br />

base long obconically truncate, tapering to a truncate hilum, 1.5–2 µm<br />

diam, 3(–5)-septate, (40–)55–68(–80) × (2.5–)3(–3.5) µm.<br />

Culture characteristics: Colonies on PDA erumpent, undulate,<br />

lacking aerial mycelium, reverse iron-grey, after 14 d, 3 cm diam;<br />

on MEA reverse greyish sepia, after 14 d, 3 cm diam, with fine,<br />

pale pink to orange aerial mycelium; on OA similar to MEA, but with<br />

pinkish tufts of aerial mycelium.<br />

Specimen examined: Netherlands, Wageningen, on leaves of Carex acutiformis<br />

(Cyperaceae), Aug. 2012, W. Quaedvlieg (holotype <strong>CBS</strong> H-21293, culture ex-type<br />

<strong>CBS</strong> 135097 = S653).<br />

Notes: Several septoria-like species have been described from<br />

Carex (Farr & Rossman 2013). Of these, N. caricis is most similar<br />

to S. caricicola (conidia 25–55 × 4 µm; (6–)7(–8)-septate), but<br />

distinct in having longer and narrower conidia with less septa.<br />

Clade 10: Pseudocercospora<br />

Note: See Crous et al. (2013)<br />

Clade 11: Zymoseptoria<br />

Note: See Quaedvlieg et al. (2011).<br />

Clade 12: Ramularia<br />

Note: See Crous et al. (2009a, c).<br />

Clade 13: Dothistroma<br />

Note: See Barnes et al. (2004).<br />

Clade 14: Stromatoseptoria<br />

Stromatoseptoria Quaedvlieg, Verkley & Crous, gen. nov.<br />

MycoBank MB804423.<br />

Etymology: Stroma = referring to central stoma in pycnidium that<br />

gives rise to conidiophores; Septoria = septoria-like morphology.<br />

Foliicolous, plant pathogenic. Conidiomata pycnidial,<br />

hypophyllous, subglobose to lenticular, very pale brown to<br />

dark brown, immersed to erumpent, exuding conidia in white<br />

cirrhus; ostiolum central, circular, surrounding cells concolorous;<br />

conidiomatal wall composed of a homogenous tissue of hyaline<br />

to very pale brown, angular to irregular cells. Conidiophores<br />

subcylindrical, branched, hyaline, septate. Conidiogenous cells<br />

hyaline, discrete or integrated, cylindrical or narrowly ampulliform,<br />

holoblastic, often also proliferating percurrently. Conidia<br />

cylindrical, slightly to distinctly curved, broadly rounded apex,<br />

attenuated towards a truncate base, transversely euseptate,<br />

mostly constricted at septa.<br />

Type species: Stromatoseptoria castaneicola (Desm.) Quaedvlieg,<br />

Verkley & Crous.<br />

Notes: Stromatoseptoria is distinguished from Septoria based on<br />

the central cushion or stroma that gives rise to its conidiophores<br />

(sensu Coniella and Pilidiella; van Niekerk et al. 2004), and conidia<br />

that tend to be olivaceous-brown in mass, and also turn olivaceous<br />

and verruculose with age.<br />

Stromatoseptoria castaneicola (Desm.) Quaedvlieg,<br />

Verkley & Crous, comb. nov. MycoBank MB804424. Fig. 43.<br />

Basionym: Septoria castaneicola Desm., Ann. Sci. Nat., Sér. 3, Bot.<br />

8: 26. 1847.<br />

≡ (?) Phleospora castanicola (Desm.) D. Sacc., Mycoth. Ital., Cent. 1-2,<br />

no. 173.<br />

= Septoria gilletiana Sacc., Michelia 1: 359. 1878.<br />

? = Septoria castaneae Lév., Ann. Sci. Nat., Sér. 3, Bot. 5: 278. 1846.<br />

≡ Cylindrosporium castaneae Krenner, Bot. Közl. 41(3-4): 126. 1944.<br />

Description in vivo. Leaf spots numerous, small, angular, and often<br />

merging to irregular patterns, visible on both sides of the leaf,<br />

initially pale yellowish brown, later reddish brown with a narrow,<br />

darker border; Conidiomata pycnidial, hypophyllous, several in each<br />

Fig. 43. Stromatoseptoria castaneicola (<strong>CBS</strong> 102320). A. Colony sporulating on MEA. B. Stroma giving rise to conidiogenous cells. C, D. Conidiogenous cells. E. Conidia. Scale<br />

bars: B = 200 µm, all others = 10 µm.<br />

www.studiesinmycology.org<br />

353


Quaedvlieg et al.<br />

leaf spot, subglobose to lenticular, very pale brown to dark brown,<br />

usually fully immersed, 80–150(–200) µm diam, releasing conidia<br />

in white cirrhi; ostiolum not well-differentiated, central, circular,<br />

18–50 µm wide, surrounding cells concolorous; conidiomatal<br />

wall about 10–17 µm thick, composed of a homogenous tissue of<br />

hyaline to very pale brown, angular to irregular cells 4–10 µm diam;<br />

Conidiophores subcylindrical, branched at base, hyaline, smooth,<br />

1–2-septate; base frequently brown, verruculose. Conidiogenous<br />

cells hyaline, discrete or integrated in conidiophores cylindrical<br />

or narrowly ampulliform, holoblastic, often also proliferating<br />

percurrently with up to 3 closely positioned annellations, 7–17(–<br />

20) × 3–4(–5) µm. Conidia cylindrical, slightly to distinctly curved,<br />

irregularly bent or flexuous, with a relatively broadly rounded apex,<br />

attenuated towards a truncate base, basal and apical cell often<br />

both wider than intermediate cells, (0–)2–3(–4)-septate, mostly<br />

constricted around the septa in the living state, hyaline, contents<br />

with several oil-droplets and granular material in each cell in the<br />

living state, with granular contents in the rehydrated state, 30–<br />

46 × 3–4 µm ("T"; rehydrated, "NT" 2–3 µm wide). Conidia are<br />

olivaceous-brown in mass, and older conidia also turn olivaceous<br />

and verruculose, and at times anastomose in culture.<br />

Culture characteristics: Colonies (<strong>CBS</strong> 102322) on OA reaching<br />

4–8 mm diam in 25 d (9–12 mm in 33 d), with an even, glabrous,<br />

buff margin; colonies restricted, up to 1 mm high, immersed<br />

mycelium homogeneously buff, where conidiomatal complexes<br />

develop dark brick to black, in part covered by pure white, dense,<br />

appressed and woolly aerial mycelium, later a salmon haze occurs<br />

in the immersed mycelium; reverse buff, locally cinnamon to sepia.<br />

Colonies on CMA reaching (4–)7–11 mm diam in 25 d (8–12 mm<br />

in 33 d), as on OA, but with a halo of reddish to salmon, diffusing<br />

pigment, which becomes more intense after 33 d, and immersed<br />

mycelium in the centre darker, and aerial mycelium more strongly<br />

developed, later becoming locally salmon or citrine; reverse brick<br />

and dark brick, surrounded by a reddish to salmon zone. Colonies<br />

on MEA reaching 6.5–9 mm diam in 25 d (9–11.5 mm in 33 d),<br />

with an even, buff to cinnamon margin, entirely hidden under the<br />

aerial mycelium, with a very faint halo of diffusing pigment; colonies<br />

restricted, up to 4 mm high, hemispherical to irregularly pustulate,<br />

entirely covered by a dense mat of felted aerial mycelium, which,<br />

especialy in the centre, attains a rosy buff or primrose to citrine<br />

haze; reverse cinnamon to hazel, around a brick to dark brick<br />

centre. Colonies on CHA reaching 7–9 mm diam in 25 d (9–11 mm<br />

in 33 d), as on MEA, but no diffusing pigment observed around<br />

the colonies. Conidiomata on OA developing after 10–15 d, black,<br />

globose, single or merged to complexes up to 250 µm diam,<br />

releasing milky white conidial slime. Conidiogenous cells as in<br />

planta. Conidia as in planta, mostly 3-septate, 30–45 × 3.5–4.5 µm<br />

(<strong>CBS</strong> 102320, OA, "T"; "NT" 3 µm wide).<br />

Specimens examined: Austria, Tirol, Klausen, on leaves of Castanea vesca<br />

(Fagaceae), Aug., distributed in F. von Höhnel, Krypt. exsicc. no. 415, (PC0084576,<br />

PC0084583). France, Lébisey, Aug. and Sep. 1843, M. Roberge, ‘Coll.<br />

Desmazières 1863, no. 8’, on leaves of Castanea sativa (PC0084574, type of<br />

Septoria castanicola Desm.); same substr., Meudon, 1 Aug. 1849 (PC0084571,<br />

PC0084589, PC0084590, PC0084591) and Jul. 1852 (PC0084572); same substr.,<br />

loc. and date unknown, ‘Coll. Desmazières 1863, no. 8’ (PC0084570); Seine-et-<br />

Marne, Fontainebleau, Sep 1881, distributed in Roumeguère, Fungi Gallici exsicc.<br />

no. 2029 (PC0084575). Netherlands, prov. Utrecht, Baarn, Lage Vuursche, on<br />

living leaves of Castanea sativa, 29 Aug. 1999, G. Verkley 912 (<strong>CBS</strong> H-21200),<br />

cultures <strong>CBS</strong> 102320–102322; same substr., prov. Limburg, St. Jansberg, 9 Sep.<br />

1999, G. Verkley 932 (<strong>CBS</strong> H-21214), culture <strong>CBS</strong> 102377; same substr., prov.<br />

Limburg, Molenhoek, Heumense Schans (46-12-55), 23 Aug. 2004, G. Verkley & M.<br />

Starink 3040, culture <strong>CBS</strong> 116464.<br />

Notes: According to the original diagnosis that Desmazières<br />

published in 1847 based on material on Castanea collected in<br />

autumn, the conidia are elongated, thin and curved, and about<br />

40 µm in length. No further details like conidial septa were<br />

given. The material PC0084574 is the only collection received<br />

from PC that antidates the publication and assumedly is the<br />

type. It consists of several leaves with numerous pycnidia in leaf<br />

spots, some of which belong to Septoria castaneicola with the<br />

characteristic conidia, but most are a spermatial state of most<br />

likely the Mycosphaerella punctiformis complex (= Ramularia,<br />

Verkley et al. 2004).<br />

Teterevnikova-Babayan (1987) treated S. castaneicola Desm.<br />

as a synonym of S. castaneae Lév., and both originally were<br />

described from the same host, Castanea sativa (syn. C. vesca).<br />

Teterevnikova-Babayan (1987) described the conidia as 3-septate,<br />

25–40 × 2.5–4.5 µm, which is in fairly good agreement with present<br />

observations. The type of S. castanaea Lév. could not be studied<br />

and the name remains doubtful. Even though Léveillé described<br />

symptoms that match those of S. castaneicola fairly well, he<br />

described the conidia as aseptate, and failed to give information<br />

about their size.<br />

Clade 15: Lecanosticta<br />

Note: See Quaedvlieg et al. (2012).<br />

Clade 16: Phaeophleospora<br />

Note: See Crous et al. (2009b, c).<br />

Clade 17: Cytostagonospora<br />

Cytostagonospora Bubák, Ann. Mycol. 14: 150. 1916.<br />

Description: See above.<br />

Type species: Cytostagonospora photiniicola Bubák [as<br />

“photinicola”], Ann. Mycol. 14: 150. 1916.<br />

Cytostagonospora martiniana (Sacc.) B. Sutton & H.J.<br />

Swart, Trans. Br. mycol. Soc. 87: 99. 1986. Figs 44, 45.<br />

Basionym: Septoria martiniana Sacc., Syll. Fung. (Abellini) 10: 351.<br />

1892.<br />

= Septoria phyllodiorum Cooke & Massee, Grevillea 19(90): 47. 1890, non S.<br />

phyllodiorum Sacc., Hedwigia 29: 156. 1890.<br />

On sterile Carex leaves on WA. Leaf spots amphigenous, circular,<br />

grey to brown with raised dark brown border, 1–3 mm diam.<br />

Conidiomata immersed, subepidermal, epiphyllous, solitary to<br />

aggregated with stromatic tissue, with central ostiolar opening<br />

exuding a creamy to white conidial mass, rupturing at maturity<br />

(pycnidial to acervular), brown, globose, up to 400 µm diam; wall<br />

of 3–6 layers of brown textura angularis. Conidiophores hyaline,<br />

smooth, subcylindrical, 0–5-septate, branched or not, 10–15(–50)<br />

× 3–4 µm, giving rise to terminal and lateral conidiogenous cells.<br />

Conidiogenous cells hyaline, smooth, subcylindrical or ampulliform,<br />

4–8 × 3–4 µm, polyphialidic, with apical and lateral loci, with visible<br />

periclinal thickening, at times also proliferating percurrently (both<br />

modes can also be present on the same conidiogenous cell).<br />

Conidia hyaline, smooth, granular, irregularly curved, subcylindrical<br />

354


Sizing up Septoria<br />

to narrowly obclavate, apex subobtuse, base long, obconically<br />

truncate, (1–)3-septate, (18–)32–45(–50) × (1.5–)2(–3) µm; base<br />

not thickened, 0.5–1 µm diam.<br />

Culture characteristics: Colonies on PDA convex, erumpent with<br />

feathery margin, lacking aerial mycelium, surface fuscous-black,<br />

reverse olivaceous-black, after 14 d, 4 cm diam, with a beautifull<br />

purple exudate at the outer edges; on MEA, after 14 d, 3.5 cm<br />

diam, lacking any exudate; on OA surface fuscous-black, reverse<br />

olivaceous-grey, after 14 d, 4 cm diam, purplish-red coloured<br />

exudate.<br />

Specimen examined: Australia, Warneet close to Melbourne, S38º13’37.8”<br />

E145º18’25.4”, on leaves of Acacia pycnantha (Mimosaceae), 21 Oct. 2009, P.W.<br />

Crous (specimen <strong>CBS</strong> H-21297, culture <strong>CBS</strong> 135102 = CPC 17727).<br />

Notes: The present collection matches the description of<br />

Cytostagonospora martiniana provided by Sutton & Swart (1986).<br />

As discussed by the authors, this genus is distinct from Septoria<br />

s. str. based on its conidiomata aggregated in stromatic tissue,<br />

and unique mode of conidiogenesis. In culture conidiogenous cells<br />

exhibited a mixture of sympodial proliferation, or were polyphialidic<br />

with periclinal thickening, but also proliferated percurrently. Species<br />

of Septoria occurring on Acacia were treated by Sutton & Pascoe<br />

(1987).<br />

Clade 18: Zasmidium<br />

Note: See Crous et al. (2007a, b, 2009c).<br />

Clade 19: Polyphialoseptoria<br />

Polyphialoseptoria Quaedvlieg, R.W. Barreto, Verkley &<br />

Crous, gen. nov. MycoBank MB804425.<br />

Etymology: Polyphialo = polyphialides; Septoria = septoria-like.<br />

Foliicolous, plant pathogenic. Conidiomata brown, erumpent,<br />

pycnidial (acervular in culture), globose, brown; wall of 3–6<br />

layers of pale brown textura angularis. Conidiophores reduced<br />

to conidiogenous cells. Conidiogenous cells hyaline, smooth,<br />

subcylindrical to ampulliform; proliferating sympodially at apex,<br />

forming polyphialides with minute periclinal thickening, or as<br />

solitary loci on superficial mycelium in culture. Conidia hyaline,<br />

smooth, granular to guttulate, scolecosporous, irregularly curved,<br />

apex subobtuse, base long obconically truncate, transversely multieuseptate,<br />

in older cultures disarticulating at septa; microcyclic<br />

conidiation also common in older cultures.<br />

Fig. 44. Conidia and conidiogenous cells of Cytostagonospora martiniana (<strong>CBS</strong><br />

135102). Scale bars = 10 µm.<br />

Type species: Polyphialoseptoria terminaliae Quaedvlieg, R.W.<br />

Barreto, Verkley & Crous.<br />

Fig. 45. Cytostagonospora martiniana (<strong>CBS</strong> 135102). A. Leaf spot. B. Conidiomata forming in culture. C–F. Conidiogenous cells. G. Conidia. Scale bars = 10 µm.<br />

www.studiesinmycology.org<br />

355


Quaedvlieg et al.<br />

Polyphialoseptoria tabebuiae-serratifoliae Quaedvlieg,<br />

Alfenas & Crous, sp. nov. MycoBank MB804427. Figs 46,<br />

47.<br />

Etymology: Named after its host, Tabebuia serratifolia.<br />

Leaf spots variable in number on mature leaves; initially as small<br />

spots or purple-brown areas, with the inner part becoming greywhite<br />

with age, surrounded by a purple-brown halo. Conidiomata<br />

developing on sterile barley leaves on WA, pale cream in colour,<br />

erumpent, globose, up to 180 µm diam; wall of 2–3 layers of<br />

pale brown textura angularis. Conidiophores hyaline, smooth,<br />

cylindrical, septate, branched, 10–35 × 1.5 µm. Conidiogenous<br />

cells terminal and lateral, cylindrical, hyaline, smooth, proliferating<br />

sympodially, 10–15 × 1.5 µm. Conidia solitary, hyaline, smooth,<br />

granular, irregularly curved, subcylindrical, apex subobtuse, base<br />

truncate, (0–)1–3(–4)-septate, (15–)25–35(–55) × 1.5(–2) µm.<br />

Culture characteristics: Colonies flat, spreading, with sparse aerial<br />

mycelium and smooth, even margins, reaching 40 mm diam after<br />

2 wk. On OA surface dirty pink; on PDA surface and reverse dirty<br />

white. On MEA surface folded, dirty white, reverse cinnamon.<br />

Specimen examined: Brazil, Minas Gerais, Viçosa, on leaves of Tabebuia serratifolia<br />

(Bignoniaceae), 1999, A.C. Alfenas (holotype <strong>CBS</strong> H-21299, culture ex-type <strong>CBS</strong><br />

112650).<br />

Notes: Inácio & Dianese (1998) described Septoria tabebuiaeimpetiginosae<br />

on T. impetiginosa (conidia 25–67 × 2–4 µm,<br />

2–6-septate), and also compared this species to S. tabebuiae<br />

(18–40 × 1.7–2.5 µm, aseptate conidia) on T. berteroi, and S.<br />

cucutana (34–40 × 0.8–1 µm) on T. pentaphylla and T. spectabilis.<br />

Furthermore, they also referred to an undescribed species Ferreira<br />

(1989) mentioned on T. serratifolia in Viçosa, Minas Gerais,<br />

which is named as S. tabebuiae-serratifoliae in the present study.<br />

Polyphialoseptoria tabebuiae-serratifoliae is distinct from species<br />

of Septoria known from Tabebuia based on its conidial morphology.<br />

Polyphialoseptoria terminaliae Quaedvlieg, R.W. Barreto,<br />

Verkley & Crous, sp. nov. MycoBank MB804426. Fig. 48.<br />

Etymology: Named after the host genus from which it was collected,<br />

Terminalia.<br />

Leaf spots irregular to subcircular, amphigenous, mostly aggregated<br />

along leaf veins, pale brown, 3–8 mm diam, surrounded by a<br />

prominent, wide, red-purple border. On sterile Carex leaves on<br />

WA. Conidiomata brown, erumpent, pycnidial (acervular in culture),<br />

up to 600 µm diam, globose, brown, exuding a crystalline cirrhus<br />

of conidia; wall of 3–6 layers of pale brown textura angularis.<br />

Conidiophores reduced to conidiogenous cells. Conidiogenous<br />

cells hyaline, smooth, subcylindrical to ampulliform, 5–10 × 3–4<br />

µm; proliferating sympodially at apex, forming polyphialides<br />

with minute periclinal thickening, or as solitary loci on superficial<br />

mycelium in culture. Conidia hyaline, smooth, granular to guttulate,<br />

scolecosporous, irregularly curved, apex subobtuse, base long<br />

obconically truncate (1–1.5 µm diam), multiseptate (–16), in<br />

older cultures disarticulating at septa; microcyclic conidiation also<br />

common in older cultures, (40–)75–120(–140) × 2–3(–3.5) µm.<br />

Culture characteristics: Colonies on PDA erumpent with feathery<br />

margin, lacking aerial mycelium, surface fuscous-black, reverse<br />

olivaceous-black to buff in the younger tissue, after 14 d, 1 cm<br />

diam; on MEA surface and reverse isabelline to greyish-sepia; on<br />

OA surface pale-vinaceous, reverse rosy-buff to buff.<br />

Specimen examined: Brazil, Minas Gerais, Viçosa, on leaves of Terminalia catappa<br />

(Combretaceae), 18 May 2010, R.W. Barreto (holotype <strong>CBS</strong> H-21298, culture extype<br />

<strong>CBS</strong> 135106 = CPC 19611); ibed., (<strong>CBS</strong> 135475 = CPC 19487)<br />

Notes: As far as we could establish there are presently no species<br />

of Septoria described from Terminalia, and as this taxon is distinct<br />

from all taxa in GenBank, we herewith describe it as a novel species.<br />

A Septoria sp. has been reported on leaves of Terminalia sp. in<br />

Florida and Venezuela (Farr & Rossman 2013). Polyphialoseptoria<br />

is distinct from Septoria based on the presence of polyphialides.<br />

Neoseptoria also has phialides as observed in Polyphialoseptoria,<br />

but these tend to chiefly be monophialides.<br />

Clade 20: Ruptoseptoria<br />

Fig. 46. Conidia and conidiogenous loci on hypha of Polyphialoseptoria tabebuiaeserratifoliae<br />

(<strong>CBS</strong> 112650). Scale bars = 10 µm.<br />

Ruptoseptoria Quaedvlieg, Verkley & Crous, gen. nov.<br />

MycoBank MB804428.<br />

Fig. 47. Polyphialoseptoria tabebuiae-serratifoliae (<strong>CBS</strong> 112650). A. Conidiomata forming in culture. B. Conidiogenous cells. C. Conidia. Scale bars = 10 µm.<br />

356


Sizing up Septoria<br />

Fig. 48. Polyphialoseptoria terminaliae (<strong>CBS</strong> 135106). A. Leaves with leaf spots. B, C. Conidiomata sporulating in culture. D–F. Conidiogenous cells and loci. G. Conidia. Scale<br />

bars = 10 µm.<br />

Etymology: Rupto = irregular rupture of conidiomata; Septoria =<br />

septoria-like.<br />

Foliicolous, plant pathogenic. Conidiomata black, appressed,<br />

elongated, pycnidial, but opening via irregular rupture, convulated;<br />

exuding a creamy white conidial mass; outer wall dark brown,<br />

crusty, consisting of 6–8 layers of dark brown textura angularis;<br />

giving rise to 2–3 inner layers of pale brown to hyaline textura<br />

angularis. Conidiophores lining the inner cavity, hyaline, smooth<br />

or pale brown, verruculose at base, branched below, septate,<br />

subcylindrical. Conidiogenous cells integrated, terminal,<br />

subcylindrical, smooth; proliferating sympodially at apex, or apex<br />

phialidic with minute periclinal thickening. Conidia solitary, hyaline,<br />

smooth, guttulate, subcylindrical to narrowly obclavate, gently<br />

to irregularly curved, apex subobtuse, base truncate to narrowly<br />

obovoid, transversely septate.<br />

Type species: Ruptoseptoria unedonis (Roberge ex Desm.)<br />

Quaedvlieg, Verkley & Crous.<br />

Ruptoseptoria unedonis (Roberge ex Desm.) Quaedvlieg,<br />

Verkley & Crous, comb. nov. MycoBank MB804429. Figs 49,<br />

50.<br />

Basionym: Septoria unedonis Roberge ex Desm., Ann. Sci. Nat.,<br />

Bot., Sér. 3(8): 20. 1847.<br />

= Sphaerella arbuticola Peck, Bull. Torrey Bot. Club 10(7): 75. 1883.<br />

≡ Mycosphaerella arbuticola (Peck) Jaap, Ann. Mycol. 14(1/2): 13. 1916.<br />

≡ Mycosphaerella arbuticola (Peck) House, Contr. Univ. Mich. Herb. 9(8):<br />

587. 1972.<br />

Leaf spots numerous, small, amphigenous, irregular to subcircular,<br />

whitish in the middle, with very broad, purple borders. Conidiomata<br />

black, appressed, elongated, pycnidial, but opening via irregular<br />

rupture, convulated, up to 450 µm diam, exuding a creamy white<br />

conidial mass; outer wall dark brown, crusty, consisting of 6–8<br />

layers of dark brown textura angularis; giving rise to 2–3 inner<br />

Fig. 49. Conidia and conidiogenous cells of Ruptoseptoria unedonis (<strong>CBS</strong> 355.86).<br />

Scale bars = 10 µm.<br />

layers of pale brown to hyaline textura angularis. Conidiophores<br />

lining the inner cavity, hyaline, smooth or pale brown, verruculose<br />

at base, branched below, 1–2-septate, subcylindrical, 10–15 ×<br />

2–4 µm. Conidiogenous cells integrated, terminal, subcylindrical,<br />

smooth, 6–12 × 2.5–3.5 µm; proliferating sympodially at apex, or<br />

apex phialidic with minute periclinal thickening. Conidia solitary,<br />

hyaline, smooth, guttulate, subcylindrical to narrowly obclavate,<br />

gently to irregularly curved, apex subobtuse, base truncate to<br />

narrowly obovoid, 1–3(–6)-septate, (25–)30–47(–56) × 2(–3) um.<br />

www.studiesinmycology.org<br />

357


Quaedvlieg et al.<br />

Fig. 50. Ruptoseptoria unedonis (<strong>CBS</strong> 355.86). A, C. Conidiomata forming in culture. B, D. Conidiogenous cells. E. Conidia. Scale bars: A = 450 µm, C = 110 µm, all others =<br />

10 µm.<br />

Culture characteristics: Colonies on OA spreading with moderate<br />

aerial mycelium and smooth, even margins; surface olivaceousgrey<br />

in outer region, centre dirty white to pale pink, reverse iron<br />

grey; on MEA surface dark-mouse-grey to mouse-grey, reverse<br />

greenish-black; on PDA surface mouse-grey to dark-mouse-grey,<br />

reverse greenish-black.<br />

Specimen examined: France, Seignosse le Penon, Lamdes, Forest communale de<br />

Seignosse, on leaves of Arbutus unedo (Ericaceae), Aug. 1986, H.A. van der Aa<br />

(<strong>CBS</strong> H-14645, culture <strong>CBS</strong> 355.86).<br />

Notes: Mycosphaerella arbuticola (<strong>CBS</strong> 355.86) is a species<br />

pathogenic to Arbutus menziesii in California (Aptroot 2006),<br />

clusters with “Septoria” unedonis (<strong>CBS</strong> 755.70, <strong>CBS</strong> H-18192),<br />

which is associated with leaf spots on Arbutus unedo in Croatia, and<br />

elsewhere in Europe. Based on these results, the sexual-asexual link<br />

between these two names is confirmed. Morphologically, however,<br />

Ruptoseptoria is similar to Septoria, and can only be distinguished<br />

based on its conidiomata that are convulated, opening by irregular<br />

rupture, and conidiogenous cells that are frequently phialidic.<br />

Clade 21: Dissoconium (Dissoconiaceae)<br />

Note: See Li et al. (2012).<br />

Clade 22: Readeriella (Teratosphaeriaceae)<br />

Note: See Crous et al. (2007a, 2009a–c).<br />

Clade 23: Teratosphaeria<br />

Note: See Crous et al. (2007, 2009c).<br />

Clade 24: septoria-like<br />

Specimen examined: Brazil, Nova Friburgo, on leaves of Tibouchina herbacea<br />

(Melastomataceae), 15 Dec. 2007, D.F. Parreira (<strong>CBS</strong> 134910 = CPC 19500).<br />

Note: The taxonomy of this species could not be resolved, as<br />

isolate CPC 19500 proved to be sterile.<br />

Clade 25: Cylindroseptoria<br />

Cylindroseptoria Quaedvlieg, Verkley & Crous, gen. nov.<br />

MycoBank MB804430.<br />

Etymology: Cylindro = cylindrical conidia; Septoria = septoria-like.<br />

Conidiomata pycnidial with central ostiole, or cupulate, separate,<br />

brown, short-stipitate, tapering towards base; rim with elongated<br />

brown, thick-walled cells with obtuse ends; rim covered with mucoid<br />

layer that flows over from conidiomatal cavity, filled with conidial<br />

mass; wall of 3–4 layers of medium brown textura angularis,<br />

becoming hyaline towards inner region. Conidiogenous cells<br />

hyaline, smooth, ampulliform, lining inner cavity, with prominent<br />

periclinal thickening at apex. Conidia solitary, hyaline, smooth,<br />

granular or not, cylindrical with obtuse apex, tapering at base to<br />

truncate scar, aseptate.<br />

Type species: Cylindroseptoria ceratoniae Quaedvlieg, Verkley &<br />

Crous.<br />

Cylindroseptoria ceratoniae Quaedvlieg, Verkley & Crous,<br />

sp. nov. MycoBank MB804431. Figs 51, 52.<br />

Etymology: Named after the host genus on which it occurs,<br />

Ceratonia.<br />

Conidiomata separate, brown, cupulate, short-stipitate, rim up to<br />

300 µm diam, 100–180 µm tall, tapering towards base, 20–50 µm<br />

diam (on Anthriscus sylvestris stems, not on OA or PDA, where<br />

they appear more flattened with agar surface); rim with elongated<br />

brown, thick-walled cells with obtuse ends, 5–12 × 4–5 µm; rim<br />

covered with mucoid layer that flows over from conidiomatal cavity,<br />

filled with conidial mass; wall of 3–4 layers of medium brown textura<br />

angularis, becoming hyaline towards inner region. Conidiogenous<br />

cells hyaline, smooth, ampulliform, lining inner cavity, 7–12 × 4–6<br />

µm; apex 2 µm diam, with prominent periclinal thickening. Conidia<br />

solitary, hyaline, smooth, granular or not, cylindrical with obtuse<br />

358


Sizing up Septoria<br />

apex, tapering at base to truncate scar 1 µm diam, aseptate, (10–)<br />

12–14(–16) × 3(–3.5) µm.<br />

Culture characteristics: Colonies spreading, reaching 28 mm diam<br />

after 2 wk, with sparse aerial mycelium and even, lobate margins.<br />

On MEA surface iron-grey, reverse olivaceous-grey. On OA surface<br />

olivaceous-grey. On PDA surface and reverse iron-grey.<br />

Specimen examined: Spain, Mallorca, Can Pastilla, on leaves of Ceratonia siliqua<br />

(Caesalpinaceae), 24 May 1969, H.A. van der Aa (holotype <strong>CBS</strong> H-21300, culture<br />

ex-type <strong>CBS</strong> 477.69).<br />

Notes: Cylindroseptoria ceratoniae is quite distinct in that it<br />

has cup-shaped acervuli, ampilliform conidiogenous cells with<br />

periclinal thickening, and hyaline, aseptate, cylindrical conidia.<br />

Cylindroseptoria needs to be compared with Satchmopsis<br />

(infundibular conidiomata), Cornucopiella (tubular conidiomata) and<br />

Thaptospora (cylindrical / lageniform / campanulate conidiomata),<br />

but the combination of cupulate conidiomata and cylindrical, and<br />

aseptate conidia is distinct.<br />

Cylindroseptoria pistaciae Quaedvlieg, Verkley & Crous,<br />

sp. nov. MycoBank MB804432. Figs 53, 54.<br />

Etymology: Named after the host genus on which it occurs, Pistacia.<br />

Conidiomata pycnidial, erumpent, globose, black, separate,<br />

with black crusty outer layer of cells, up to 200 µm diam, with<br />

central ostiole; wall of 3–6 layers of brown textura angularis.<br />

Conidiophores reduced to conidiogenous cells. Conidiogenous<br />

cells phialidic (mostly monophialidic, but a few observed to also be<br />

polyphialidic), lining the inner cavity, hyaline, smooth, ampulliform,<br />

5–8 × 3–4 µm, proliferating percurrently (inconspicuous) or with<br />

periclinal thickening at apex (also occurring as solitary loci on<br />

superficial hyphae surrounding pycnidia). Conidia hyaline, smooth,<br />

cylindrical, mostly straight, rarely slightly curved, apex subobtuse,<br />

base truncate, guttulate, aseptate, (9–)11–13(–18) × 2.5–3(–3.5)<br />

µm.<br />

Culture characteristics: Colonies on PDA flat, circular, lacking<br />

aerial mycelium, surface fuscous-black, reverse olivaceous-black,<br />

after 14 d, 3.5 cm diam; on MEA surface fuscous-black, reverse<br />

olivaceous-black, after 14 d, 4.5 cm diam; on OA similar to PDA.<br />

Specimen examined: Spain, Mallorca, El Arenal, on leaves of Pistacia lentiscus<br />

(Anacardiaceae), 25 May 1969, H.A. van der Aa (holotype <strong>CBS</strong> H-21301, culture<br />

<strong>CBS</strong> 471.69).<br />

Notes: Cylindroseptoria pistaciae is tentatively placed in<br />

Cylindroseptoria, as it has pycnidial rather than cupulate<br />

conidiomata. However, synapomorphies with Cylindroseptoria<br />

include phialides with periclinal thickening, and cylindrical, aseptate<br />

conidia. Further collections are required to determine if conidiomatal<br />

anatomy is more important than conidiogenesis and conidial<br />

morphology. For the present, however, the generic circumscription<br />

Fig. 51. Conidia and conidiogenous cells of Cylindroseptoria ceratoniae (<strong>CBS</strong><br />

477.69). Scale bar = 10 µm.<br />

Fig. 53. Conidia and conidiogenous cells of Cylindroseptoria pistaciae (<strong>CBS</strong><br />

471.69). Scale bars = 10 µm.<br />

Fig. 52. Cylindroseptoria ceratoniae (<strong>CBS</strong> 477.69). A, B. Conidiomata forming in culture. C, D. Conidiogenous cells giving rise to conidia. E. Conidia. Scale bars: B = 45 µm,<br />

all others = 10 µm.<br />

www.studiesinmycology.org<br />

359


Quaedvlieg et al.<br />

Fig. 54. Cylindroseptoria pistaciae (<strong>CBS</strong> 471.69). A, B. Conidiomata sporulating in culture. C, D. Intercalary chains of chlamydospore-like cells. E, F. Conidiogenous cells. G,<br />

H. Conidia. Scale bars = 10 µm.<br />

of Cylindroseptoria has been widened to include taxa with pycnidial<br />

conidiomata. Cylindroseptoria pistaciae could be confused with<br />

Septoria pistaciae, though conidia of the latter are 20–30 × 1.6 µm,<br />

and are 1(–3)-septate (Chitzanidis & Michaelides 2002).<br />

Clade 26: Pseudoseptoria<br />

Pseudoseptoria Speg., Ann. Mus. Nac. B. Aires, Ser. 3 13:<br />

388. 1910.<br />

= Aphanofalx B. Sutton, Trans. Brit. Mycol. Soc. 86: 21. 1986.<br />

Caulicolous and foliicolous, plant pathogenic or saprobic.<br />

Conidiomata stromatic, pycnidioid, unilocular, glabrous, black,<br />

ostiolate; wall of textura angularis, in some cases cells in the upper<br />

wall larger and darker than cells in the lower wall. Conidiophores<br />

reduced to conidiogenous cells lining the cavity of the conidioma.<br />

Conidiogenous cells discrete or integrated, cylindrical or lageniform,<br />

colourless, smooth-walled, invested in mucus, with a prominent<br />

cylindrical papilla with several percurrent proliferations at the<br />

apex; collarette prominent and extanding past conidia, or reduced<br />

and inconspicuous. Conidia fusiform, lunate or irregular, curved,<br />

unicellular, colourless, smooth-walled with or without an excentric<br />

basal appendage, continuous with conidium body, plectronoid to<br />

podiform, or with a blunt or spathulate distal end.<br />

Type species: P. donacicola Speg., Ann. Mus. Nac. B. Aires, Ser. 3<br />

13: 388. 1910. [= P. donacis (Pass.) B. Sutton].<br />

Pseudoseptoria collariana Quaedvlieg, Verkley & Crous,<br />

sp. nov. MycoBank MB804433. Fig. 55.<br />

Etymology: Named after its prominently flared collarettes, forming<br />

a sleeve.<br />

On sterile Carex leaves on WA. Conidiomata immersed to erumpent,<br />

globose, dark brown, up to 400 µm diam, unilocular, opening via<br />

central ostiole; wall of 6–10 layers of brown textura angularis.<br />

Conidiophores reduced to conidiogenous cells, or branched at<br />

the base with one supporting cell that is dark brown, encased<br />

Fig. 55. Pseudoseptoria collariana (<strong>CBS</strong> 135104). A, B. Colonies sporulating in culture. C–F. Conidiogenous cells with prominent collarettes. G, H. Conidia. Scale bars: A = 400<br />

µm, all others = 10 µm.<br />

360


Sizing up Septoria<br />

Fig. 56. Pseudoseptoria obscura (<strong>CBS</strong> 135103). A, B. Colony sporulating in culture. C. Chlamydospore-like cells developing. D, E. Conidiogenous cells. F–H. Conidia. Scale<br />

bars: B = 250 µm, all others = 10 µm.<br />

in a mucilaginous matrix. Conidiogenous cells subcylindrical to<br />

ampulliform, hyaline, smooth to pale brown, finely verruculose,<br />

18–35 × 3.5–8 µm; apical region with numerous conspicuous<br />

percurrent proliferations, with long, prominent collarettes that<br />

completely enclose and extend above young, developing conidia,<br />

but disintegrating into a mucoid mass with age. Conidia fusiform,<br />

lunate, curved, aseptate, hyaline, smooth, tapering to an subobtuse<br />

to spathulate apex, base truncate (1 µm diam), with a single,<br />

unbranched, eccentric basal appendage, 2–4 µm long; conidia<br />

(from apex to hilum) (24–)26–28(–30) × (2.5–)3 µm.<br />

Culture characteristics: Colonies on PDA flat, round with feathery<br />

margins, lacking aerial mycelium, surface olivaceous-black to rosybuff<br />

for younger tissue, reverse olivaceous-black, to rosy-buff for<br />

younger tissue, after 14 d 1.5 cm diam; on MEA surface olivaceousblack<br />

to buff for younger tissue, reverse olivaceous-black to brick<br />

for younger tissue, after 14 d, 2 cm diam; on OA similar to MEA.<br />

Specimen examined: Iran, Golestan Province, on leaves of Bamboo (Poaceae), 12<br />

May 2009, A. Mirzadi Gohari (holotype <strong>CBS</strong> H-21302, culture ex-type <strong>CBS</strong> 135104<br />

= CPC 18119).<br />

Pseudoseptoria obscura Quaedvlieg, Verkley & Crous, sp.<br />

nov. MycoBank MB804434. Fig. 56.<br />

Etymology: Named after the obscure basal appendage that occurs<br />

on some conidia.<br />

On sterile Carex leaves on WA. Conidiomata immersed to<br />

erumpent, globose, dark brown, up to 250 µm diam (smaller than in<br />

18119), unilocular, opening via central ostiole; wall of 3–6 layers of<br />

brown textura angularis. Conidiophores reduced to conidiogenous<br />

cells. Conidiogenous cells subcylindrical to doliiform, hyaline,<br />

smooth to pale brown, finely verruculose, 6–12 × 2–5 µm; apical<br />

region with numerous inconspicuous to conspicuous percurrent<br />

proliferations; collarettes absent to prominent. Conidia fusiform,<br />

lunate, curved, aseptate, hyaline, smooth, tapering to an subobtuse<br />

apex; base truncate, rarely with a single, unbranched, eccentric<br />

basal appendage, 1–2 µm long; conidia (from apex to hilum) (8–)<br />

12–14(–15) × (2–)2.5(–3) µm.<br />

Culture characteristics: Colonies on PDA flat, undulate with<br />

feathery margins, lacking aerial mycelium, surface concentric rings<br />

of fuscous-black to pale purplish grey to fuscous-black, reverse<br />

concentric rings of greyish-sepia to fawn to fuscous-black, after 14<br />

d, 2 cm diam; on MEA similar to PDA; OA flat, undulate, lacking<br />

aerial mycelium, surface fuscous-black to purplish grey for the<br />

younger tissue, reverse greyish-sepia to vinaceous-buff for the<br />

younger tissue.<br />

Specimen examined: Iran, Golestan Province, on leaves of Bamboo (Poaceae), 12<br />

May 2009, A. Mirzadi Gohari (holotype <strong>CBS</strong> H-21303, culture ex-type <strong>CBS</strong> 135103<br />

= CPC 18118).<br />

Notes: Species of the genus Aphanofalx occur on members of<br />

Poaceae, presumably as saprobes. The genus is characterised<br />

by having taxa with pycnidial conidiomata, and percurrently<br />

proliferating conidiogenous cells, and hyaline, aseptate conidia<br />

with a basal, excentric appendage. In contrast, species of<br />

Pseudoseptoria are known to occur on members of Poaceae<br />

as plant pathogens. The genus is also characterised by having<br />

taxa with pycnidial conidiomata, and percurrently proliferating<br />

conidiogenous cells, and hyaline, aseptate conidia that lack basal<br />

appendages. During this study we also investigated three strains<br />

identified as P. donasis (<strong>CBS</strong> 291.69, 313.68 and 417.51), the<br />

type species of Pseudoseptoria. Much to our surprise they formed<br />

a monophyletic lineage (results not shown) with the two strains<br />

described here (which have basal appendages), suggesting that<br />

Pseudoseptoria represents an older name for Aphanofalx, and that<br />

the basal appendage is a species-specific character, as also found<br />

in other groups of coelomycetes (Crous et al. 2012b).<br />

Aphanofalx is presently known from two species, A. mali (conidia<br />

26–33 × 2–2.5 µm), and A. irregularis (conidia 12–28(–31) × (2–)2.5–<br />

www.studiesinmycology.org<br />

361


Quaedvlieg et al.<br />

3(–3.5) µm (Nag Raj 1993). Pseudoseptoria collariana [conidia (24–)<br />

26–28(–30) × (2.5–)3 µm] and P. obscura [conidia (8–)12–14(–15) ×<br />

(2–)2.5(–3) µm] are easily distinguished from these taxa based on<br />

their conidial dimensions. The three species of Pseudoseptoria treated<br />

by Sutton (1980), namely P. donacis (conidia 20–23 × 2–2.5 µm), P.<br />

stromaticola (conidia 16–18.5 × 2 µm) and P. bromigena (conidia 20–<br />

23 × 2–2.5 µm) can be distinguished from P. collorata and P. obscura<br />

by conidial dimensions, and lacking basal conidial appendages.<br />

Clade 27: Parastagonospora<br />

Parastagonospora Quaedvlieg, Verkley & Crous, gen. nov.<br />

MycoBank MB804435.<br />

Etymology: Resembling the genus Stagonospora.<br />

Foliicolous, plant pathogenic. Ascocarps immersed, globose,<br />

becoming depressed, medium brown to black; wall of 3–6 layers<br />

of thick-walled, brown textura angularis; ostiole slightly papillate.<br />

Asci clavate, cylindrical or curved, shortly stipitate, 8-spored;<br />

ascus wall thick, bitunicate. Ascospores fusoid, subhyaline to<br />

pale brown, transversely euseptate (–3), constricted at the septa,<br />

penultimate cell swollen. Pseudoparaphyses filiform, hyaline,<br />

septate. Conidiomata black, immersed, subepidermal, pycnidial,<br />

subglobose with central ostiole, exuding creamy conidial mass;<br />

wall of 2–3 layers of brown textura angularis. Conidiophores<br />

reduced to conidiogenous cells. Conidiogenous cells phialidic,<br />

hyaline, smooth, aggregated, lining the inner cavity, ampulliform<br />

to subcylindrical, with percurrent proliferation near apex. Conidia<br />

hyaline, smooth, thin-walled, cylindrical, granular to multi-guttulate,<br />

with obtuse apex and truncate base, transversely euseptate.<br />

Type species: Parastagonospora nodorum (Berk.) Quaedvlieg,<br />

Verkley & Crous.<br />

Notes: The genus Parastagonospora is introduced to accommodate<br />

several serious cereal pathogens that were formerly accommodated<br />

in either Septoria/Stagonospora, or Leptosphaeria/Phaeosphaeria.<br />

As shown previously, Septoria is not available for these fungi<br />

(Quaedvlieg et al. 2011), and neither is Leptosphaeria (de Gruyter<br />

et al. 2013). Furthermore, in the present study we also clarify the<br />

phylogenetic positions of Stagonospora and Phaeosphaeria, which<br />

cluster apart from this group of cereal pathogens, which are best<br />

accommodated in their own genus, Parastagonospora.<br />

Parastagonospora is distinguished from Stagonospora in that<br />

Stagonospora has conidiogenous cells that proliferate percurrently,<br />

or via phialides with periclinal thickening, and conidia that are<br />

subcylindrical to fusoid-ellipsoidal. Sexual morphs known for<br />

species of Parastagonospora are phaeosphaeria-like, whereas<br />

those observed for Stagonospora s. str. are didymella-like.<br />

Specimens examined: Germany, Kiel-Kitzeberg, on Lolium multiflorum, 1968, U.G.<br />

Schlösser, <strong>CBS</strong> 290.69, <strong>CBS</strong> 289.69.<br />

Notes: Although the oldest epithet for this taxon is Pleospora<br />

tritici (1874), “avenae” has been well established in literature, and<br />

accepted by the community. We thus recommend that this epithet<br />

be retained for this pathogen. Parastagonospora avenae leaf blotch<br />

of barley and rye (f.sp. tritici), appears distinct from the pathogen on<br />

oats (f.sp. avenaria) (Cunfer 2000), and further research is required<br />

to resolve this issue.<br />

Parastagonospora caricis Quaedvlieg, Verkley & Crous,<br />

sp. nov. MycoBank MB804437. Figs 57, 58.<br />

Etymology: Named after the host genus from which it was collected,<br />

Carex.<br />

On sterile Carex leaves on WA. Conidiomata up to 250 µm diam,<br />

black, immersed, subepidermal, pycnidial, subglobose with central<br />

ostiole, exuding pale pink conidial cirrhus; wall of 2–3 layers of<br />

brown textura angularis. Conidiophores reduced to conidiogenous<br />

cells. Conidiogenous cells phialidic, hyaline, smooth, aggregated,<br />

lining the inner cavity, ampulliform, 8–15 × 4–6 µm, with percurrent<br />

proliferation at apex. Conidia hyaline, smooth, thin-walled,<br />

scolecosporous, subcylindrical, with subobtuse apex and truncate<br />

base, 7–15-septate, (50–)60–70(–75) × (5–)6 µm.<br />

Culture characteristics: Colonies on PDA flat, undulate, with short,<br />

white aerial mycelium, surface olivaceous-black in the older parts,<br />

vinaceous-buff in the younger mycelium, reverse olivaceous-black in<br />

the older parts, brick in the younger mycelium, after 14 d, 4 cm diam;<br />

on MEA convex, fimbriate, surface fawn to hazel, reverse fusceousblack<br />

to cinnamon, after 14 d, 3 cm diam; on OA similar to MEA.<br />

Specimen examined: Netherlands, Veenendaal, de Blauwe Hel, on leaves of Carex<br />

acutiformis (Cyperaceae), 25 Jul. 2012, W. Quaedvlieg (holotype <strong>CBS</strong> H-21304,<br />

culture ex-type <strong>CBS</strong> 135671 = S615).<br />

Note: Conidia of P. caricis are larger than those of P. avenae, which<br />

are (1–)3(–7)-septate, 17–46 × 2.5–4.5 µm (Bissett 1982), and<br />

narrower than those of Stagonospora gigaspora, which are 58–84<br />

× 10–14 µm (Ellis & Ellis 1997).<br />

Parastagonospora avenae (A.B. Frank) Quaedvlieg,<br />

Verkley & Crous, comb. nov. MycoBank MB804436.<br />

Basionym: Septoria avenae A.B. Frank, Ber. Dt. Bot. Ges. 13: 64.<br />

1895.<br />

≡ Stagonospora avenae (A.B. Frank) Bissett [as ‘avena’], Fungi<br />

Canadenses, Ottawa 239: 1. 1982<br />

= Leptosphaeria avenaria G.F. Weber, Phytopath. 12: 449. 1922.<br />

≡ Phaeosphaeria avenaria (G.F. Weber) O.E. Erikss., Ark. Bot., Ser. 2<br />

6: 408. 1967.<br />

= Pleospora tritici Garov., Arch. Triennale Lab. Bot. Crittog. 1: 123. 1874.<br />

Fig. 57. Conidia and conidiogenous cells of Parastagonospora caricis (<strong>CBS</strong><br />

H-21304). Scale bars = 10 µm.<br />

362


Sizing up Septoria<br />

Fig. 58. Parastagonospora caricis (<strong>CBS</strong> H-21304). A. Colony sporulating in culture. B, C. Conidiogenous cells. D. Conidia. Scale bars = 10 µm.<br />

Fig. 59. Parastagonospora nodorum (<strong>CBS</strong> H-13909). A, C. Ascomata and conidiomata forming in culture. B, D, F. Asci with ascospores. E, G. Conidia. Scale bars = 10 µm.<br />

Parastagonospora nodorum (Berk.) Quaedvlieg, Verkley &<br />

Crous, comb. nov. MycoBank MB804438. Fig. 59.<br />

Basionym: Depazea nodorum Berk., Gard. Chron., London: 601.<br />

1845.<br />

≡ Septoria nodorum (Berk.) Berk., Gard. Chron., London: 601. 1845.<br />

≡ Stagonospora nodorum (Berk.) E. Castell. & Germano, Annali Fac. Sci.<br />

Agr. Univ. Torino 10: 71. 1977. [1975–76]<br />

= Leptosphaeria nodorum E. Müll., Phytopath. J. 19: 409. 1952.<br />

≡ Phaeosphaeria nodorum (E. Müll.) Hedjar., Sydowia 22: 79. 1969.<br />

[1968]<br />

Specimen examined: Denmark, on Lolium perenne, Feb. 2002, M.P.S. Câmara,<br />

<strong>CBS</strong> 110109.<br />

Notes: Parastagonospora nodorum blotch is an important disease<br />

of cereals, having been reported from barley and wheat in most<br />

countries where these crops are cultivated (Cunfer 2000). Recent<br />

studies have also indicated that P. nodorum probably resembles a<br />

species complex, awaiting further morphological characterisation<br />

(McDonald et al. 2013).<br />

Parastagonospora poae Quaedvlieg, Verkley & Crous, sp.<br />

nov. MycoBank MB804439. Figs 60, 61.<br />

Etymology: Named after the host genus from which it was collected,<br />

Poa.<br />

On sterile Carex leaves on WA. Conidiomata up to 250 µm diam,<br />

black, immersed, subepidermal, pycnidial, subglobose with central<br />

ostiole, exuding creamy conidial mass; wall of 2–3 layers of brown<br />

textura angularis. Conidiophores reduced to conidiogenous cells.<br />

Conidiogenous cells phialidic, hyaline, smooth, aggregated, lining<br />

the inner cavity, ampulliform to subcylindrical, with percurrent<br />

proliferation near apex, 6–10 × 3–4(–5) µm. Conidia hyaline,<br />

smooth, thin-walled, cylindrical, granular, with obtuse apex and<br />

truncate base, medianly 1-septate, (20–)25–27(–32) × (2–)2.5(–<br />

2.5) µm; ends becoming swollen and guttulate with age.<br />

Culture characteristics: Colonies on PDA flat, circular, with sparse,<br />

white aerial mycelium, surface dark-mouse-grey, reverse black,<br />

www.studiesinmycology.org<br />

363


Quaedvlieg et al.<br />

after 14 d, 8.5 cm diam; on MEA surface hazel, reverse dark-brick<br />

to sepia; OA similar to MEA.<br />

Specimens examined: Netherlands, Wageningen, on leaves of Poa sp. (Poaceae),<br />

2 Aug. 2012, S. Videira J (holotype <strong>CBS</strong> H-21305, culture ex-type <strong>CBS</strong> 135089 =<br />

S606); Wageningen, on leaves of Poa sp., 2 Aug. 2012, S. Videira <strong>CBS</strong> 135091 =<br />

S613).<br />

Note: Conidia of P. poae are narrower than those of P. nodorum,<br />

which are (0–)1–3-septate, 13–28 × 2.8–4.6 µm (Bissett 1982).<br />

Clade 28: Neostagonospora<br />

Neostagonospora Quaedvlieg, Verkley & Crous, gen. nov.<br />

MycoBank MB804440.<br />

Etymology: Resembling the genus Stagonospora.<br />

Foliicolous. Conidiomata immersed, pycnidial, globose, exuding a<br />

pale luteous to creamy conidial mass; wall of 2–3 layers of pale<br />

brown textura angularis. Conidiophores reduced to conidiogenous<br />

cells. Conidiogenous cells phialidic, hyaline, smooth, aggregated,<br />

lining the inner cavity, ampulliform to doliiform, tapering at apex with<br />

prominent periclinal thickening. Conidia hyaline, smooth, granular,<br />

thin-walled, narrowly fusoid-ellipsoidal to subcylindrical, apex<br />

subobtusely rounded, base truncate, widest in middle, transversely<br />

euseptate, becoming constricted with age.<br />

Type species: Neostagonospora caricis Quaedvlieg, Verkley &<br />

Crous.<br />

Note: Neostagonospora is similar to Stagonospora by having<br />

pycnidial conidiomata with euseptate, hyaline, fusoid-ellipsoidal<br />

to subcylindrical conidia, but distinct in having conidiogenous cells<br />

that are phialidic, with prominent periclinal thickening.<br />

Neostagonospora caricis Quaedvlieg, Verkley & Crous, sp.<br />

nov. MycoBank MB804441. Figs 62, 63.<br />

Etymology: Named after the host genus on which it occurs, Carex.<br />

On sterile Carex leaves on WA. Conidiomata immersed,<br />

pycnidial, globose, up to 200 µm diam, exuding a pale luteous<br />

to creamy conidial mass; wall of 2–3 layers of pale brown textura<br />

angularis. Conidiophores reduced to conidiogenous cells.<br />

Conidiogenous cells phialidic, hyaline, smooth, aggregated, lining<br />

the inner cavity, ampulliform to doliiform, 5–7 × 5–7 µm; tapering<br />

at apex with prominent periclinal thickening. Conidia hyaline,<br />

smooth, granular, thin-walled, narrowly fusoid-ellipsoidal, apex<br />

subobtusely rounded, base truncate, widest in middle, 1-septate,<br />

becoming constricted with age, (10–)13–16(–19) × (3–)3.5(–4)<br />

µm.<br />

Fig. 60. Conidia and conidiogenous cells of Parastagonospora poae (<strong>CBS</strong> 135091).<br />

Scale bars = 10 µm.<br />

Fig. 62. Conidia and conidiogenous cells of Neostagonospora caricis (<strong>CBS</strong> 135092).<br />

Scale bars = 10 µm.<br />

Fig. 61. Parastagonospora poae (<strong>CBS</strong> 135091). A, B. Conidiomata forming in culture. C–E. Conidiogenous cells. F, G. Conidia. Scale bars = 10 µm.<br />

364


Sizing up Septoria<br />

Fig. 63. Neostagonospora caricis (<strong>CBS</strong> 135092). A. Conidioma forming in culture. B, C. Conidiogenous cells. D. Conidia. Scale bars = 10 µm.<br />

Culture characteristics: Colonies on PDA flat, undulate, with<br />

sparse, powdery white aerial mycelium, surface greyish-sepia to<br />

isabelline, reverse olivaceous-grey to pale olivaceous-grey, after<br />

14 d, 8.5 cm diam; on MEA erumpent, circular, with fine white<br />

aerial mycelium, surface honey, reverse cinnamon, after 14 d,<br />

6 cm diam; on OA similar to PDA but surface honey, reverse<br />

cinnamon.<br />

Specimen examined: Netherlands, Veenendaal, de Blauwe Hel, on leaves of Carex<br />

acutiformis (Cyperaceae), Aug. 2012, W. Quaedvlieg (holotype <strong>CBS</strong> H-21306,<br />

culture ex-type <strong>CBS</strong> 135092 = S616).<br />

Note: Neostagonospora caricis is similar to Septoria caricis<br />

(conidia 1-septate, 20–35 × 2.5–3 µm; Ellis & Ellis 1997), although<br />

its conidia are shorter.<br />

Neostagonospora elegiae Quaedvlieg, Verkley & Crous,<br />

sp. nov. MycoBank MB804442. Figs 64, 65.<br />

Etymology: Named after the host genus from which it was collected,<br />

Elegia.<br />

On Anthriscus stem. Conidiomata pycnidial, up to 150 µm diam,<br />

erumpent, globose, brown, opening by a central ostiole, exuding<br />

a crystalline conidial mass; wall consisting of 3–6 layers of pale<br />

brown textura angularis. Conidiophores reduced to conidiogenous<br />

cells. Conidiogenous cells phialidic, lining the inner cavity,<br />

hyaline, smooth, ampulliform, 4–7 × 4–6 µm; apex with prominent<br />

periclinal thickening. Conidia hyaline, smooth, guttulate to granular,<br />

scolecosporous, irregularly curved, subcylindrical, apex subobtuse,<br />

base truncate (slight taper from apical septum to apex and basal<br />

septum to hilum visible in some conidia), (0–)3-septate, (20–)50–<br />

65(–70) × (2.5–)3 µm.<br />

Culture characteristics: Colonies spreading, erumpent with<br />

moderate aerial mycelium and smooth, even margins; reaching 35<br />

mm diam after 2 wk. On OA pale luteous. On MEA dirty white on<br />

surface, luteous in reverse. On PDA dirty white on surface, pale<br />

luteous in reverse.<br />

Specimen examined: South Africa, Western Cape Province, Harold Porter<br />

Botanical Garden, on leaves of Elegia cuspidata (Restionaceae), 30 Nov. 2001, S.<br />

Lee (holotype <strong>CBS</strong> H-21307, culture ex-type <strong>CBS</strong> 135101 = CPC 16977).<br />

Fig. 64. Conidia and conidiogenous cells of Neostagonospora elegiae (<strong>CBS</strong><br />

135101). Scale bars = 10 µm.<br />

Notes: No septoria-like fungi are presently known from Elegia (Lee<br />

et al. 2004). Neostagonospora elegiae is distinguished from N.<br />

caricis based on its conidial morphology.<br />

Clade 29: Phaeosphaeriopsis<br />

Phaeosphaeriopsis M.P.S. Câmara, M.E. Palm & A.W.<br />

Ramaley, Mycol. Res. 107: 519. 2003.<br />

Saprobic or plant pathogenic. Ascomata solitary or aggregated,<br />

immersed, subepidermal to erumpent, pushing up flaps of the<br />

epidermis, globose to pyriform, often papillate, solitary or gregarious<br />

in a stroma of scleroplectenchyma or dark brown textura angularis,<br />

often surrounded by septate, brown hyphae extending into the host<br />

tissues. Asci 8-spored, bitunicate, cylindrical to broadly fusoid, short<br />

stipitate, with visible apical chamber. Ascospores uni- to triseriate,<br />

cylindrical, broadly rounded at apex, tapering to narrowly rounded<br />

base, 4–5-septate, first septum submedian, often constricted,<br />

medium brown, echinulate, punctate or verrucose. Asexual<br />

morph coniothyrium-like or phaeostagonospora-like. Conidiomata<br />

pseudoparenchymatous, sometimes of scleroplectenchyma.<br />

Conidiogenous cells lining locule, ampulliform, hyaline, proliferating<br />

percurrently, resulting in inconspicuous annellations. Conidia<br />

cylindrical, with bluntly rounded ends, 0–3-septate, yellowish<br />

brown, punctate (Câmara et al. 2003, Zhang et al. 2012).<br />

www.studiesinmycology.org<br />

365


Quaedvlieg et al.<br />

Fig. 65. Neostagonospora elegiae (<strong>CBS</strong> 135101). A. Conidioma forming in culture. B–D. Conidiogenous cells. E. Conidia. Scale bars: A = 150 µm, all others = 10 µm.<br />

Type species: Phaeosphaeriopsis glaucopunctata (Grev.) M.P.S.<br />

Câmara, M.E. Palm & A.W. Ramaley, Mycol. Res., 107: 519. 2003.<br />

Phaeosphaeriopsis glaucopunctata (Grev.) M.P.S.<br />

Câmara, M.E. Palm & A.W. Ramaley, Mycol. Res. 107: 519.<br />

2003. Figs 66, 67.<br />

Basionym: Cryptosphaeria glaucopunctata Grev., Fl. Edin.: 362.<br />

1824.<br />

≡ Paraphaeosphaeria glaucopunctata (Grev.) Shoemaker & C. E. Babc.,<br />

Can. J. Bot. 63: 1286. 1985.<br />

= Sphaeria rusci Wallr., Fl. Crypt. Germ. 2: 776. 1833.<br />

≡ Leptosphaeria rusci (Wallr.) Sacc., Syll. Fung. 2: 74. 1883.<br />

≡ Paraphaeosphaeria rusci (Wallr.) O. E. Erikss., Ark. Bot., Ser. 2 6: 406.<br />

1967.<br />

Ascomata scattered or aggregated, immersed, globose to<br />

subglobose, up to 250 µm diam; peridium up to 25 µm wide, of<br />

thick-walled textura angularis; hamathecium of dense, wide, cellular<br />

pseudoparaphyses, 3–5 μm diam. Asci 8-spored, bitunicate,<br />

cylindrical to broadly fusoid, with a short pedicel and small apical<br />

chamber, 50–110 × 10–16 μm. Ascospores uni- to triseriate,<br />

cylindrical, medium brown, 4(−5)-septate, without constriction<br />

or slightly constricted at the basal septum, the forth cell from the<br />

apex usually slightly inflated, the basal cell often longer, 14–28 ×<br />

(3.5–)5–7.5 μm. Conidiomata pycnidial, immersed, scattered or<br />

aggregated, dark brown, subglobose, ostiolate, up to 200 μm diam.<br />

Conidiophores reduced to conidiogenous cells. Conidiogenous cells<br />

lining the inner cavity, ampulliform, hyaline, smooth, 5–10 × 3–6<br />

µm; proliferating percurrently at apex. Conidia aseptate, smooth<br />

to finely verruculose, medium brown, subcylindrical, straight to<br />

reniform with obtuse ends, (5–)7–9(–10) × (2.5–)3(–5) μm.<br />

Culture characteristics: On PDA colonies flat, spreading, with<br />

sparse aerial mycelium and smooth, lobate, even margins, surface<br />

primrose, reverse olivaceous-buff, On OA buff with patches of<br />

isabelline due to sporulating conidiomata. On MEA dirty white on<br />

surface, isabelline in reverse (centre), cinnamon in outer region.<br />

Specimen examined: Switzerland, Kt. Basel-Stadt, Park Basel, on Ruscus aculeatus<br />

(Ruscaceae), 25 Sep. 1980, A. Leuchtmann (<strong>CBS</strong> H-21308, culture <strong>CBS</strong> 653.86).<br />

Fig. 66. Conidia and conidiogenous cells of Phaeosphaeriopsis glaucopunctata<br />

(<strong>CBS</strong> 653.86). Scale bar = 10 µm.<br />

Notes: The genus Phaeosphaeriopsis is characterised by having<br />

uni- or multiloculate stromata and 4–5-septate ascospores.<br />

It presently contains species with coniothyrium-like, and<br />

phaeostagonospora-like asexual morphs (e.g. P. musae;<br />

Arzanlou & Crous 2006). The type species, Phaeosphaeriopsis<br />

glaucopunctata, is associated with leaf spot and necrosis on Ruscus<br />

aculeatus (Câmara et al. 2003, Golzar & Wang 2012). The fact that<br />

an isolate identified as Chaetosphaeronema hispidulum (lectotype<br />

of Chaetosphaeronema) clusters in this clade is puzzling. The<br />

genus Chaetosphaeronema is characterised by setose, dark brown<br />

pycnidia with thick-walled outer cell layers, producing hyaline,<br />

1-septate conidia (Sutton 1980). Isolate <strong>CBS</strong> 216.75 proved to be<br />

sterile, however, so this matter could unfortunately not be resolved.<br />

Clade 30: Sclerostagonospora<br />

Description: See above.<br />

Type species: S. heraclei (Sacc.) Höhn., Hedwigia 59: 252. 1917.<br />

Sclerostagonospora phragmiticola Quaedvlieg, Verkley &<br />

Crous, sp. nov. MycoBank MB804443. Fig. 68.<br />

366


Sizing up Septoria<br />

Fig. 67. Phaeosphaeriopsis glaucopunctata (<strong>CBS</strong> 653.86). A. Colony on MEA. B. Colony on OA. C–F. Conidiogenous cells giving rise to conidia. G. Conidia. Scale bars = 10 µm<br />

Fig. 68. Sclerostagonospora phragmiticola (<strong>CBS</strong> 338.86). A. Colony sporulating in culture. B, C. Conidiogenous cells. D. Conidia. Scale bars = 10 µm.<br />

Etymology: Named after the host genus from which it was collected,<br />

Phragmites.<br />

On sterile Carex leaves on WA. Conidiomata pycnidial, brown,<br />

globose, immersed to erumpent, up to 400 µm diam with central<br />

ostiole; wall of 6–8 layers of brown textura angularis. Conidiophores<br />

reduced to conidiogenous cells. Conidiogenous cells lining the<br />

inner cavity of conidioma, hyaline to pale olivaceous, smooth,<br />

subcylindrical to doliiform, 6–15 × 3–4 µm, proliferating several<br />

times percurrently at apex. Conidia brown, smooth, subcylindrical,<br />

apex obtuse, base truncate, straight to gently curved,<br />

(1–)3(–5)-euseptate, older conidia swelling, becoming widest in<br />

second or third cell from base, (15–)20–25(–27) × (3–)3.5(–4) µm.<br />

Specimen examined: France, Landes, Seignosse, Étang d’Hardy, on leaves of<br />

Phragmites australis (Poaceae), 11 June 1986, H.A. van der Aa (holotype <strong>CBS</strong><br />

H-21309, culture ex-type <strong>CBS</strong> 338.86).<br />

Notes: Sclerostagonospora caricicola fits the concept of<br />

Sclerostagonospora by having pycnidial conidiomata that give rise<br />

to hyaline conidiogenous cells that proliferate percurrently, and<br />

subcylindrical, pigmented conidia. Until fresh material of the type<br />

species, S. heraclei has been recollected and subjected to DNA<br />

analysis, the application of this generic name will remain tentative.<br />

Several other species cluster in this clade, suggesting that the<br />

sexual morph is phaeosphaeria-like.<br />

Clade 31: Phaeosphaeria<br />

Phaeosphaeria I. Miyake, Bot. Mag., Tokyo 23: 93. 1909.<br />

= Phaeoseptoria Speg., Revta Mus. La Plata 15: 39. 1908.<br />

Foliicolous. Ascomata immersed, subepidermal, ellipsoidal to<br />

globose, glabrous; ostiole central, devoid of periphyses; wall<br />

of 2–3 layers of brown textura angularis. Pseudoparaphyses<br />

transversely septate, guttulate, encased in mucous. Asci stipitate,<br />

clavate to cylindrical, stalked, biseriate. Ascospores brown,<br />

narrowly fusiform, straight or slightly curved, transversely septate,<br />

smooth to verruculose, enclosed in a mucoid sheath or not.<br />

Conidiomata pycnidial, immersed, becoming erumpent, brown,<br />

with central ostiole; wall of 2–3 layers of brown textura angularis.<br />

Conidiophores reduced to conidiogenous cells. Conidiogenous<br />

cells hyaline, ampulliform to subcylindrical or doliiform; proliferating<br />

inconspicuously percurrently near apex. Conidia solitary, pale<br />

brown, smooth, guttulate, subcylindrical to narrowly obclavate,<br />

apex obtuse, base truncate, straight to curved, transversely<br />

euseptate, at times slightly constricted at septa; hilum not darkened<br />

nor thickened.<br />

Type species: P. oryzae I. Miyake, Bot. Mag. Tokyo, 23(266): 93.<br />

1909.<br />

Notes: Phaeosphaeria (1909; based on P. oryzae) is congeneric<br />

with Phaeoseptoria (1908; based on P. papayae). We choose to<br />

www.studiesinmycology.org<br />

367


Quaedvlieg et al.<br />

use the sexual name Phaeosphaeria, as it is well established, and<br />

less confused than Phaeoseptoria, which has become a confused<br />

concept applied to numerous septoria-like taxa with pigmented<br />

conidia (see Walker et al. 1992).<br />

Phaeosphaeria oryzae I. Miyake, Bot. Mag. Tokyo, 23(266):<br />

93. 1909. Figs 69, 70.<br />

≡ Pleospora oryzae (I. Miyake) Hara, J. Agric. Soc. Japan 31(361): 17.<br />

1927.<br />

≡ Trematosphaerella oryzae (I. Miyake) Padwick, A manual of rice<br />

diseases: 153. 1950.<br />

≡ Leptosphaerella oryzae (I. Miyake) Hara, A monograph of rice diseases:<br />

53. 1959.<br />

≡ Leptosphaerulina oryzae (I. Miyake) Karan, Mycopath. Mycol. Appl. 24:<br />

88. 1964.<br />

= Phaeoseptoria oryzae I. Miyake, J. Coll. Agric. Imp. Univ. Tokyo 2(4): 260.<br />

1910.<br />

Ascomata immersed, subepidermal, ellipsoidal to globose,<br />

glabrous, up to 150 µm diam, ostiole central, up to 20 µm diam,<br />

devoid of periphyses; wall of 2–3 layers of brown textura angularis.<br />

Pseudoparaphyses 2–3 µm diam, transversely septate, guttulate,<br />

encased in mucous. Asci stipitate, cylindrical, 30–55 × 7–9 µm,<br />

stalked, biseriate. Ascospores brown, narrowly fusiform, straight or<br />

slightly curved, (15–)17–20(–23) × 4(–5) µm, 3-septate, uniformly<br />

verruculose, enclosed in a mucoid sheath; after discharge,<br />

ascospores become prominently swollen, up to 33 µm long and<br />

8 µm wide.<br />

Specimens examined: Japan, No. 196178, on 2, Prov. Susuya Shizuoka, Sep.<br />

1907, ex Herb. Sydow, ex S., as Leptosphaeria oryzae Hori = Phaeosphaeria oryzae<br />

I. Miyake, slides prepared by O. Eriksson, lectotype (UPS). Korea, on leaf of Oryza<br />

sativa (Poaceae), intercepted at Port San Francisco, CA, 29 Dec. 1997, coll. L.<br />

Hausch, det. M.E. Palm, epitype designated here as BPI 744438, culture ex-epitype<br />

<strong>CBS</strong> 110110 (MBT175330).<br />

Notes: Several detailed accounts of this species are available<br />

(Eriksson 1967, Shoemaker & Babcock 1989, Fukuhara 2002). The<br />

epitype chosen here closely matches the lectotype in morphology.<br />

Phaeosphaeria papayae (Speg.) Quaedvlieg, Verkley &<br />

Crous, comb. nov. MycoBank MB804444. Figs 71, 72.<br />

Basionym: Phaeoseptoria papayae Speg., Revta Mus. La Plata:<br />

39. 1908.<br />

Fig. 69. Asci and ascospores of Phaeosphaeria oryzae (BPI 744438). Scale bars<br />

= 10 µm.<br />

Leaf spots associated with infections of Asperisporium caricae,<br />

amphigenous, pale brown to grey-white, subcircular to angular,<br />

1–5 mm diam, with red-purple margin; conidiomata developing<br />

Fig. 70. Phaeosphaeria oryzae (BPI 744438). A. Ascomata on host tissue. B–G. Asci. H. Ascospores. Scale bars = 10 µm.<br />

368


Sizing up Septoria<br />

and sporulating on leaves when incubated in moist chambers,<br />

with white, fluffy mycelium erumpting from lesions. Conidiomata<br />

amphigenous, pycnidial, brown, globose, up to 120 µm diam,<br />

with central ostiole, exuding a brown conidial cirrhus; wall of<br />

3–4 layers of brown textura angularis. Conidiophores reduced<br />

to conidiogenous cells. Conidiogenous cells lining the inner<br />

cavity, hyaline, smooth, ampulliform to subcylindrical or doliiform,<br />

5–12 × 4–6 µm; proliferating inconspicuously percurrently near<br />

apex (conidiogenous cells disintegrating at maturity). Conidia<br />

solitary, pale brown, smooth, guttulate, subcylindrical to narrowly<br />

obclavate, apex obtuse, base truncate, (1–)3(–4)-septate, at times<br />

slightly constricted at septa, straight to slightly curved, (15–)26–<br />

32(–35) × (2.5–)3 µm; hilum not darkened nor thickened, 2 µm<br />

diam. Ascomata developed after 4 wk in culture on sterile nettle<br />

stems: aggregated in black clusters, globose, up to 150 µm diam,<br />

with central ostiole; wall of 2–3 layers of brown textura angularis.<br />

Asci bitunicate, curved to straight, fasciculate, short stipitate with<br />

ocular chamber, 40–60 × 8–11 µm. Pseudoparaphyses hyaline,<br />

smooth, 2–3 µm, septate, constricted at septa, not anastomosing,<br />

hypha-like with obtuse ends, distributed among asci. Ascospores<br />

tri to multiseriate, fusoid, curved to straight, brown, verruculose<br />

throughout, somewhat constricted at septa with age, second cell<br />

from apex swollen, (18–)24–26(–29) × (3–)4(–5) µm.<br />

Culture characteristics: Colonies with abundant aerial mycelium,<br />

covering dish within 2 wk at 24 ºC, fast growing, olivaceous-grey on<br />

MEA (surface and reverse); margins smooth, even, sterile on MEA,<br />

PDA and OA, as well as on SNA with sterile barley leaves.<br />

Specimens examined: Brazil, São Paulo, Botanical Garden, on leaves of Carica<br />

papaya (Caricaceae), Sep. 1908, IMI 246301, slide ex-holotype; Minas Gerais,<br />

Viçosa, UFV campus, on leaves of Carica papaya, Mar. 2013, A.C. Alfenas, epitype<br />

designated here as <strong>CBS</strong> H-21310, culture ex-epitype <strong>CBS</strong> 135416 (MBT175331).<br />

Fig. 71. Conidia, ascospores and ascus of Phaeosphaeria papayae (<strong>CBS</strong> H-21310).<br />

Scale bars = 10 µm.<br />

Notes: It is interesting to note that Walker et al. (1992) also<br />

observed Phaeoseptoria papayae to co-occur with Asperisporium<br />

Fig. 72. Phaeosphaeria papayae (<strong>CBS</strong> H-21310). A. Leaf spot. B. Conidioma with ostiole (arrow). C–E. Conidiogenous cells. F. Conidia. G–K. Asci and ascospores. Scale bars<br />

= 10 µm.<br />

www.studiesinmycology.org<br />

369


Quaedvlieg et al.<br />

caricae on the holotype specimen (noted by Spegazzini as<br />

Cercospora caricae), suggesting that the co-occurrence of these<br />

two pathogens is quite common. The fresh collection obtained in<br />

this study enabled us to elucide the conidiogenesis of the fungus<br />

(not observed by Walker et al. 1992), and also designate an epitype<br />

specimen. Phylogenetically it is closely related to Phaeosphaeria<br />

oryzae, which has Phaeoseptoria oryzae as asexual morph.<br />

Clade 32: Neosetophoma<br />

Neosetophoma Gruyter, Aveskamp & Verkley, Mycologia<br />

102(5): 1075. 2010.<br />

Foliicolous, plant pathogenic. Conidiomata pycnidial, solitary<br />

to confluent, on upper surface of agar, globose to irregular, with<br />

mycelial outgrowths, or confluent, with papillate ostioles, sometimes<br />

developing long necks, honey to olivaceous or olivaceous-black,<br />

with up to 10 layers of pseudoparenchymatal cells. Conidiogenous<br />

cells hyaline, monophyalidic. Conidia slightly yellowish,<br />

0–1(–3)-septate, ellipsoidal to cylindrical, usally attenuate at one<br />

end, often guttulate.<br />

Type species: N. samarorum Gruyter, Aveskamp & Verkley,<br />

Mycologia 102(5): 1075. 2010.<br />

Type species: P. radicina (McAlpine) Morgan-Jones & J.F. White,<br />

Mycotaxon 18: 60. 1983.<br />

Paraphoma dioscoreae Quaedvlieg, H.D. Shin, Verkley &<br />

Crous, sp. nov. MycoBank MB804445. Figs 73, 74.<br />

Etymology: Named after the host genus from which it was collected,<br />

Dioscorea.<br />

On Anthriscus stem. Conidiomata pycnidial, separate, immersed<br />

becoming erumpent, globose, with papillate neck and central<br />

ostiole exuding a crystalline conidial mass; conidiomata up to 350<br />

µm diam, neck up to 150 µm diam, of darker brown cells than<br />

body, which is pale brown; wall of 3–6 layers of pale brown textura<br />

angularis. Conidiophores hyaline, smooth, subcylindrical, reduced to<br />

conidiogenous cells, 1–5-septate, irregularly branched, 5–20 × 3–5<br />

µm. Conidiogenous cells phialidic, hyaline, smooth, ampulliform to<br />

subcylindrical (long, elongated neck on Anthriscus stem, but not on<br />

MEA), 5–15 × 2–3 µm; apex with prominent periclinal thickening, or<br />

with several percurrent prolferations (especially on conidiogenous<br />

cells with elongated necks). Conidia solitary, straight to slightly<br />

curved, hyaline, smooth, aseptate, cylindrical with obtuse ends and<br />

a guttule at each end, (5–)6(–7) × 2(–2.5) µm.<br />

Note: The fact that several strains with a phaeosphaeria-like<br />

morphology cluster in this clade, suggests that sexual states do<br />

exist for species of Neosetophoma.<br />

Clade 33: Paraphoma<br />

Paraphoma Morgan-Jones & J.F. White, Mycotaxon 18: 58.<br />

1983.<br />

Mycelium consisting of branched, septate, subhyaline to pale<br />

brown, smooth hyphae. Conidiomata pycnidial, solitary to<br />

aggregated, superficial to immersed, dark brown, globose to<br />

subglobose, papillate, uniloculate, setose; ostiole circular, single;<br />

wall of 3–6 layers of brown textura angularis. Setae copious, straight<br />

to flexuous, smooth to verruculose, thick-walled, septate, pale<br />

brown to brown. Conidiogenous cells lageniform, monophalidic,<br />

formed from inner layer of conidiomatal wall, hyaline to subhyaline,<br />

discrete. Conidia ellipsoid, aseptate, hyaline, smooth, guttulate.<br />

Chlamydospores if present unicellular.<br />

Fig. 73. Conidia and conidiogenous cells of Paraphoma dioscoreae (<strong>CBS</strong> 135100).<br />

Scale bar = 10 µm.<br />

Fig. 74. Paraphoma dioscoreae (<strong>CBS</strong> 135100). A. Conidioma forming in culture. B–E. Conidiogenous cells. F. Conidia. Scale bars: B = 350 µm, all others = 10 µm.<br />

370


Sizing up Septoria<br />

Culture characteristics: Colonies flat, spreading with sparse aerial<br />

mycelium and even, smooth margins; after 2 wk reaching 30 mm<br />

diam on MEA, 40 mm on PDA and 50 mm on OA. On PDA dark<br />

brick, reverse fuscous-black. On OA dark brick with patches of<br />

sienna and ochreous. On MEA surface dirty white (due to aerial<br />

mycelium), also somewhat sectored, reverse umber.<br />

Specimen examined: South Korea, on leaves of Dioscorea tokoro (Dioscoreaceae),<br />

24 Oct. 2003, H.D. Shin (holotype <strong>CBS</strong> H-21311, culture ex-type CPC 11357 = <strong>CBS</strong><br />

135100).<br />

Note: Paraphoma dioscoreae is phylogenetically distinct from the<br />

three other species presently known in the genus (de Gruyter et<br />

al. 2010).<br />

Clade 34: Xenoseptoria<br />

Xenoseptoria Quaedvlieg, H.D. Shin, Verkley & Crous, gen.<br />

nov. MycoBank MB804446.<br />

Etymology: Similar to the genus Septoria s. str., but distinct.<br />

Xenoseptoria neosaccardoi Quaedvlieg, H.D. Shin, Verkley<br />

& Crous, sp. nov. MycoBank MB804447. Figs 75, 76.<br />

Etymology: Resembling Septoria saccardoi, but morphologically<br />

distinct.<br />

Leaf spots on the upper leaf surface, scattered, distinct, circular,<br />

2–4 mm diam, initially appearing as reddish brown discolouration,<br />

later turning brown to reddish brown without a distinct border<br />

line, finally central area becoming greyish brown to dull grey and<br />

surrounded by reddish to dark brown margin, reddish pigments<br />

may diffuse outward to form a halo; on the lower leaf surface<br />

initially showing reddish discolouration, later becoming brown with<br />

distinct border line, center greyish brown to grey with indistinct<br />

border (Shin & Sameva 2004). On sterile Carex leaves on WA.<br />

Conidiomata separate, pycnidial, immersed becoming erumpent,<br />

globose, up to 350 µm diam, brown, becoming ostiolate, developing<br />

1–3 papillate necks, exuding a pink to orange conidial mass; wall<br />

of 4–8 layers of brown textura angularis. Conidiophores hyaline,<br />

Foliicolous, plant pathogenic. Conidiomata separate, pycnidial,<br />

immersed becoming erumpent, globose, brown, developing 1–3<br />

papillate necks, exuding a pink to orange conidial mass; wall of<br />

4–8 layers of brown textura angularis. Conidiophores hyaline,<br />

smooth, reduced to conidiogenous cells or septate, branched<br />

below. Conidiogenous cells lining the inner cavity, hyaline, smooth,<br />

ampulliform to doliiform or subcylindrical, mono- to polyphialidic,<br />

with prominent periclinal thickening, but also with percurrent<br />

proliferation. Conidia hyaline, smooth, guttulate, scolecosporous,<br />

straight to irregularly curved, cylindrical to obclavate, transversely<br />

euseptate, tapering to subobtuse apex, base obtuse.<br />

Type species: Xenoseptoria neosaccardoi Quaedvlieg, Verkley &<br />

Crous.<br />

Fig. 75. Conidia and conidiogenous cells of Xenoseptoria neosaccardoi (<strong>CBS</strong><br />

128665). Scale bars = 10 µm.<br />

Fig. 76. Xenoseptoria neosaccardoi (<strong>CBS</strong> 128665). A, B. Pycnidia forming in culture. C–E. Conidiogenous cells. F, G. Conidia. Scale bars: B = 170 µm, all others = 10 µm.<br />

www.studiesinmycology.org<br />

371


Quaedvlieg et al.<br />

smooth, reduced to conidiogenous cells or 1–2-septate, branched<br />

below, 10–20 × 4–6 µm. Conidiogenous cells lining the inner cavity,<br />

hyaline, smooth, ampulliform to doliiform or subcylindrical, monoto<br />

polyphialidic, with prominent periclinal thickening, but also with<br />

percurrent proliferation, 5–15 × 3–5 µm. Conidia hyaline, smooth,<br />

guttulate, scolecosporous, straight to irregularly curved, cylindrical<br />

to obclavate, (1–)3-septate, (23–)33–45(–48) × (2.5-)3(–4) µm,<br />

tapering to subobtuse apex, base obtuse, 2–2.5 µm diam.<br />

Culture characteristics: Colonies flat, spreading, with sparse aerial<br />

mycelium and lobate, feathery mergins, reaching 30 mm after 2 wk.<br />

On PDA surface iron-grey, reverse olivaceous-grey; on OA surface<br />

olivaceous-grey; on MEA surface folded, bay, reverse umber.<br />

Specimen examined: South Korea, Pyeongchang, on leaves of Lysimachia vulgaris<br />

var. davurica (Primulaceae), 30 May 2007, H.D. Shin (holotype <strong>CBS</strong> H-21312,<br />

culture ex-type <strong>CBS</strong> 128665 = KACC 43962 = SMKC 23666).<br />

Notes: An isolate of Septoria saccardoi (<strong>CBS</strong> 128756) clusters in<br />

Septoria s. str., thus well apart from this taxon, which was collected<br />

in Korea. The Korean collection closely matches that of the original<br />

description of Septoria saccardoi (on Lysimachia vulgaris in Italy),<br />

having 3-septate, curved, cylindrical conidia, 38–40 × 3.5 µm,<br />

3-septate (Saccardo & Saccardo 1906). Xenoseptoria is however<br />

distinct from Septoria s. str. in forming pycnidia with multiple papillate<br />

necks, and having conidiogenous cells that are mono- or polyphialidic.<br />

wall of 6–8 layers of pale brown textura angularis; exuding cirrhus<br />

of orange conidia. Conidiophores reduced to conidiogenous cells.<br />

Conidiogenous cells lining the inner cavity of conidioma, globose<br />

to ampulliform, rarely allantoid, hyaline, smooth; with prominent<br />

periclinal thickening, or proliferating several times percurrently near<br />

apex, giving rise to macro- and microconidia. Macroconidia solitary,<br />

hyaline, smooth, guttulate, subcylindrical to narrowly obclavate<br />

or acicular, apex obtuse to subobtuse, base truncate to long<br />

obconically truncate, conidia widest at or just above basal septum,<br />

transversely euseptate. Microconidia hyaline, smooth, aseptate,<br />

pear-shaped to globose or ellipsoid, apex obtuse, base truncate.<br />

Type species: Vrystaatia aloeicola Quaedvlieg, Verkley, W.J. Swart<br />

& Crous.<br />

Vrystaatia aloeicola Quaedvlieg, Verkley, W.J. Swart &<br />

Crous, sp. nov. MycoBank MB804449. Figs 77, 78.<br />

Etymology: Named after the host genus from which it was collected,<br />

Aloe.<br />

Clade 35: Vrystaatia<br />

Vrystaatia Quaedvlieg, W.J. Swart, Verkley & Crous, gen.<br />

nov. MycoBank MB804448.<br />

Etymology: Named after the Free State Province in South Africa,<br />

“Vrystaat” in Afrikaans, where this fungus was collected.<br />

Foliicolous. Conidiomata black, globose, pycnidial with central,<br />

dark brown ostiolar area, substomatal on host, erumpent in culture;<br />

Fig. 77. Macro- and microconidia and conidiogenous cells of Vrystaatia aloeicola<br />

(<strong>CBS</strong> 135107). Scale bars = 10 µm.<br />

Fig. 78. Vrystaatia aloeicola (<strong>CBS</strong> 135107). A. Conidiomata sporulating on PDA, with characteristic orange conidial cirrhi. B–D. Conidiogenous cells. E, F. Conidia. Scale bars<br />

= 10 µm.<br />

372


Sizing up Septoria<br />

On sterile Carex leaves on WA. Conidiomata black, globose, pycnidial<br />

with central, dark brown ostiolar area, substomatal on host, erumpent<br />

in culture; wall of 6–8 layers of pale brown textura angularis; exuding<br />

cirrhus of orange conidia. Conidiophores reduced to conidiogenous<br />

cells. Conidiogenous cells lining the inner cavity of conidioma,<br />

globose to ampulliform, rarely allantoid, hyaline, smooth, 5–12 ×<br />

4–6 µm; with prominent periclinal thickening, or proliferating several<br />

times percurrently near apex, 2–2.5 µm diam, giving rise to macroand<br />

microconidia. Macroconidia solitary, hyaline, smooth, guttulate,<br />

subcylindrical to narrowly obclavate or acicular, apex obtuse to<br />

subobtuse, base truncate to long obconically truncate, conidia widest<br />

at or just above basal septum, (1–)3-septate, (30–)40–52(–65) × (2.5–)<br />

3(–3.5) µm. Microconidia hyaline, smooth, aseptate, pear-shaped to<br />

globose or ellipsoid, apex obtuse, base truncate, 4–6 × 3–3.5 µm.<br />

Culture characteristics: On MEA colonies spreading fast, with<br />

moderate aerial mycelium and smooth, even margin, reaching 30<br />

mm diam after 2 wk; surface with concentric zones of umber and<br />

apricot; reverse umber, produces brown exudates; on PDA round<br />

lobate margins, lacking aerial mycelium, reaching 20 mm diam after<br />

2 wk, surface fuscous-black to greyish-sepia for younger mycelium,<br />

reverse fuscous-black to greyish-sepia for younger mycelium; on<br />

OA round, lobate, lacking aerial mycelium, reaching 30 mm diam<br />

after 2 wk, surface vinaceous-grey, reverse greyish sepia.<br />

Clade 36: Setophoma<br />

Setophoma Gruyter, Aveskamp & Verkley, Mycologia 102:<br />

1077. 2010.<br />

Conidiomata pycnidial, solitary to confluent, superficial or<br />

submerged in agar, globose to subglobose, setose, with papillate<br />

ostioles, honey to olivaceous to olivaceous-black, with 2–7(–11)<br />

layers of pseudoparenchymatal cells. Conidiogenous cells hyaline,<br />

monophyalidic. Conidia aseptate, ellipsoidal to subcylindrical to<br />

subfusoid, guttulate.<br />

Type species: S. terrestris (H.N. Hansen) Gruyter, Aveskamp &<br />

Verkley, Mycologia 102: 1077. 2010.<br />

Setophoma chromolaenae Quaedvlieg, Verkley, R.W.<br />

Barreto & Crous, sp. nov. MycoBank MB804450. Figs 79,<br />

80.<br />

Specimen examined: South Africa, Orange Free State, Bloemfontein, Free State<br />

National Botanical Garden, on dead leaf tips of Aloe maculata (Aloaceae), 7 May<br />

2012, P.W. Crous & W.J. Swart (holotype <strong>CBS</strong> H-21313, culture ex-type <strong>CBS</strong><br />

135107 = CPC 20617).<br />

Notes: Vrystaatia is distinct from Septoria s. str. in that it has phialidic<br />

conidiogenous cells that proliferate percurrently or with prominent<br />

periclinal thickening, and form macro- as well as microconidia in<br />

culture, which is not typical of Septoria. Rhabdospora aloetica was<br />

described from stems of Aloe sp. in Portugal, with aseptate conidia,<br />

12–16 × 1.5 µm (Saccardo & Saccardo 1906); it is likely this is<br />

an asexual morph of Diaporthe. As far as we could establish, no<br />

septoria-like fungi have thus far been described from Aloe.<br />

Fig. 79. Conidia and conidiogenous cells of Setophoma chromolaenae (<strong>CBS</strong><br />

135105). Scale bar = 10 µm.<br />

Fig. 80. Setophoma chromolaenae (<strong>CBS</strong> 135105). A. Conidiomata forming on OA. B, C, F. Conidiomata with setae. D, E. Conidiogenous cells. G. Conidia. Scale bars: B = 22<br />

µm, C, F = 45 µm, all others = 10 µm.<br />

www.studiesinmycology.org<br />

373


Quaedvlieg et al.<br />

Etymology: Named after the host genus from which it was collected,<br />

Chromolaena.<br />

Conidiomata pycnidial, brown, globose, separate, erumpent, up to<br />

90 µm diam; outer surface covered in brown setae, up to 80 µm<br />

long, brown, thick-walled, 3–5 µm diam, 1–4-septate, with slight<br />

apical taper to obtuse apex; conidial wall of 3–6 layers of brown<br />

textura angularis. Conidiophores reduced to conidiogenous cells.<br />

Conidiogenous cells lining the inner cavity, ampulliform, hyaline,<br />

smooth, 4–6 × 3–6 µm, with prominent periclinal thickening at<br />

apex. Conidia hyaline, smooth, subcylindrical, somewhat narrowly<br />

ellipsoid when old, with two prominent guttules at ends, (4.5–)5–6<br />

(–7) × (2–)2.5(–3) µm.<br />

Culture characteristics: On MEA spreading, with sparse aerial<br />

mycelium, folded surface, margin smooth, lobate; surface umber<br />

with patches of apricot and dirty white, reverse ochreous. On PDA<br />

surface iron-grey, reverse olivaceous-grey. On OA surface irongrey,<br />

surrounded by orange to apricot diffuse pigment layer in agar;<br />

reaching 55 mm diam after 2 wk.<br />

Specimen examined: Brazil, Rio de Janeiro, Fazenda Santa Rosa, Ponte das<br />

Laranjeiras, on leaves of Chromolaena odorata (Asteraceae), 6 Apr. 2010, R.W.<br />

Barreto (holotype <strong>CBS</strong> H-21314, culture ex-type <strong>CBS</strong> 135105 = CPC 18553).<br />

Note: Setophoma chromolaenae is phylogenetically distinct from S.<br />

sacchari and S. terrestris, the two other species presently known<br />

from the genus (de Gruyter et al. 2010).<br />

Clade 37: Coniothyrium (Coniothyriaceae)<br />

Coniothyrium Corda, Icon. Fung. (Prague) 4: 38. 1840.<br />

Mycelium immersed, consisting of septate, hyaline to brown,<br />

branched hyphae. Conidiomata pycnidial, separate, globose, pale<br />

to dark brown, immersed, unilocular, thin-walled; wall of brown,<br />

thick-walled textura angularis. Ostiole circular, central, papillate or<br />

not. Conidiophores reduced to conidiogenous cells. Conidiogenous<br />

cells lining the inner cavity, phialidic, annellidic, indeterminate,<br />

discrete, doliiform to cylindrical, hyaline to pale brown, smooth,<br />

several annellations at apex. Conidia subcylindrical, spherical,<br />

ellipsoid or broadly clavate, brown, thick-walled, 0(–1)-euseptate,<br />

smooth to verruculose, apex obtuse, base truncate, at times with<br />

minute marginal frill (Sutton 1980).<br />

Type species: C. palmarum Corda, Icon. Fung. (Prague) 4: 38.<br />

1840.<br />

Coniothyrium sidae Quaedvlieg, Verkley, R.W. Barreto &<br />

Crous, sp. nov. MycoBank MB804451. Figs 81, 82.<br />

Etymology: Named after the host genus from which it was collected,<br />

Sida.<br />

Conidiomata pycnidial, globose, immersed becoming erumpent, up<br />

to 200 µm diam; wall consisting of 3–4 layers of subhyaline to pale<br />

brown textura angularis. Ostiole central, papillate, dark brown, up<br />

to 30 µm diam, surrounded by a whorl of brown setae, smooth,<br />

thick-walled, 4–8-septate, straight to curved, tapering to subobtuse<br />

apices, up to 130 µm long, 5–8 µm diam at base. Conidiogenous<br />

cells hyaline, smooth, lining the inner cavity, ampulliform to<br />

Fig. 81. Conidia and conidiogenous cells of Coniothyrium sidae (<strong>CBS</strong> 135108).<br />

Scale bar = 10 µm.<br />

globose, 4–7 × 4–6 µm; apex with prominent periclinal thickening.<br />

Conidia solitary, hyaline, smooth, aseptate, granular (in Shear’s<br />

medium, prominently guttulate in lactic acid), fusoid-ellipsoidal,<br />

straight to slightly curved, apex obtuse, base truncate to bluntly<br />

rounded, (9–)10–12(–13) × (2.5–)3 µm. Ascomata developing<br />

after several weeks on MEA, separate, pseudothecial, erumpent,<br />

uniloculate, papillate, brown, up to 300 µm diam; wall of 4–8<br />

layers of brown textura angularis. Asci fasciculate, 8-spored,<br />

short papillate, hyaline, smooth, subcylindrical, bitunicate, with<br />

well-developed apical chamber, 2 µm diam, 55–65 × 8–11 µm.<br />

Ascospores bi- to triseriate, brown, smooth, guttulate, straight to<br />

slightly curved, (3–)5-septate, apical cell obtusely rounded, basal<br />

cell somewhat elongated and subobtuse; in ascospores that are<br />

4-septate, the second cell from the apex is markedly swollen,<br />

in 5-septate ascospores the third cell from the apex is markedly<br />

swollen, (18–)20–24(–26) × (4–)5(–5.5) µm. Pseudoparaphyses<br />

hyaline, smooth, intermingled among asci, anastomosing, cellular,<br />

constricted at septa, up to 80 µm long, 2–4 µm diam.<br />

Culture characteristics: Colonies erumpent, spreading, moderate<br />

aerial mycelium even, lobate margins. On MEA surface olivaceousgrey,<br />

reverse umber. On OA suface olivaceous-grey with diffuse<br />

umber pigment in agar. On PDA surface and reverse olivaceousgrey.<br />

Specimen examined: Brazil, Rio de Janeiro, Nova Friburgo, Riograndina, along<br />

roadside on Sida sp. (Malvaceae), 24 Feb. 2008, R.W. Barreto (holotype <strong>CBS</strong><br />

H-21315, culture ex-type CPC 19602 = RWB 866 = <strong>CBS</strong> 135108).<br />

Note: De Gruyter et al. (2013) placed several phoma-like species<br />

with a similar morphology in the genus Coniothyrium, to which<br />

C. sidae is allied. Of interest is the paraphaeosphaeria-like<br />

sexual morph that developed in culture, which is newly linked<br />

here to Coniothyrium. The genus Paraphaeosphaeria is linked to<br />

Paraconiothyrium (Verkley et al. 2004).<br />

Clade 38: Xenobotryosphaeria<br />

Xenobotryosphaeria Quaedvlieg, Verkley & Crous, gen.<br />

nov. MycoBank MB804452.<br />

Etymology: Resembling the genus Botryosphaeria, but distinct.<br />

374


Sizing up Septoria<br />

Fig. 82. Coniothyrium sidae (<strong>CBS</strong> 135108). A–E. Conidiomata forming in culture, showing setae. F, G. Conidiogenous cells. H. Conidia. I–K. Asci and ascospores. Scale bars:<br />

B, D, E = 100 µm, all others = 10 µm.<br />

Ascomata brown, globose, smooth, ostiolate, superficial on stems;<br />

wall of 3–4 layers of brown textura angularis. Asci clavate, hyaline,<br />

smooth, short stipitate, fasciculate, bitunicate, thin-walled, apical<br />

chamber not visible, 6–8-spored. Ascospores multiseriate, hyaline,<br />

smooth and thin-walled, granular, broadly ellipsoid, ends obtuse,<br />

aseptate. Pseudoparaphyses not seen.<br />

Type species: Xenobotryosphaeria calamagrostidis Quaedvlieg,<br />

Verkley & Crous.<br />

Xenobotryosphaeria calamagrostidis Quaedvlieg, Verkley<br />

& Crous, sp. nov. MycoBank MB804453. Figs 83, 84.<br />

Etymology: Named after the host genus from which it was collected,<br />

Calamagrostis.<br />

On Anthriscus stem. Ascomata brown, globose, smooth, superficial on<br />

stems, ostiolate, up to 180 µm diam; wall of 3–4 layers of brown textura<br />

angularis. Asci clavate, hyaline, smooth, short stipitate, fasciculate,<br />

bitunicate, thin-walled, apical chamber not visible, 6–8-spored, 60–80 ×<br />

30–40 µm. Ascospores multiseriate, hyaline, smooth and thin-walled,<br />

granular, broadly ellipsoid, ends obtuse, aseptate, (17–)18–20(–24) ×<br />

(11–)12–13(–14) µm. Pseudoparaphyses not seen.<br />

Culture characteristics: Colonies flat, spreading, with sparse to no<br />

aerial mycelium. On PDA surface and reverse dirty white; on MEA<br />

concolorous with agar; on OA pale pink on surface.<br />

Specimen examined: Italy, Bergamo Vigolo, on Calamagrostis sp. (Poaceae), 20<br />

Jun. 1967, G.A. Hedjaroude (holotype <strong>CBS</strong> H-21316, culture ex-type <strong>CBS</strong> 303.71).<br />

Notes: Hedjaroude (1968) studied the specimen (ETH 7131; as<br />

Phaeosphaeria silvatica), but obviously the incorrect fungus was<br />

cultivated, as X. calamagrostidis is quite distinct from P. silvatica,<br />

which has cylindrical-fusoid, brown, 6–8-septate ascospores,<br />

18–18 × 4–5 µm. Xenobotryosphaeria is reminiscent of genera in<br />

the Botryosphaeriales, but is phylogenetically distinct (Crous et al.<br />

2006, Phillips et al. 2008, Liu et al. 2012). It also resembles species<br />

of Muyocopron (Muyocopronaceae), but the latter genus differs<br />

in that it has circular, flattened ascomata, as well as prominent<br />

pseudoparaphyses, which are absent in Xenobotryosphaeria.<br />

Clade 39: Phoma<br />

Fig. 83. Ascospores and asci of Xenobotryosphaeria calamagrostidis (<strong>CBS</strong> 303.71).<br />

Scale bars = 10 µm.<br />

Note: See Aveskamp et al. (2010), de Gruyter et al. (2009, 2013).<br />

www.studiesinmycology.org<br />

375


Quaedvlieg et al.<br />

Fig. 84. Xenobotryosphaeria calamagrostidis (<strong>CBS</strong> 303.71). A, C. Ascomata forming in culture. E, G. broken wall with asci. B, D, F. Asci. H. Ascospores. Scale bars: C = 45<br />

µm, all others = 10 µm.<br />

Clade 40: Acicuseptoria<br />

Acicuseptoria Quaedvlieg, Verkley & Crous, gen. nov.<br />

MycoBank MB804454.<br />

Etymology: Acicu- from acicular (conidia), and Septoria = septorialike.<br />

Conidiomata pycnidial, erumpent, brown, globose, with central<br />

ostiole, exuding a cream conidial mass; wall consisting of 3–6<br />

layers of thin, brown textura angularis. Conidiophores reduced<br />

to conidiogenous cells. Conidiogenous cells hyaline, smooth,<br />

ampulliform; proliferating inconspicuously and percurrently at apex,<br />

or simply appearing holoblastic. Conidia solitary, hyaline, granular,<br />

acicular, straight to gently curved, tapering towards apex that is<br />

acutely rounded, base truncate, transversely euseptate.<br />

Type species: Acicuseptoria rumicis Quaedvlieg, Verkley & Crous.<br />

Acicuseptoria rumicis Quaedvlieg, Verkley & Crous, sp.<br />

nov. MycoBank MB804455. Fig. 85.<br />

Fig. 85. Acicuseptoria rumicis (<strong>CBS</strong> 522.78). A. Conidiomata sporulating in culture. B–E. Conidiogenous cells. F, G. Conidia. Scale bars = 10 µm.<br />

376


Sizing up Septoria<br />

Etymology: Named after the host genus from which it was collected,<br />

Rumex.<br />

On sterile Carex leaves on WA. Conidiomata pycnidial, erumpent,<br />

brown, globose, up to 300 µm diam, with central ostiole, exuding<br />

a cream conidial mass; wall consisting of 3–6 layers of thin, brown<br />

textura angularis. Conidiophores reduced to conidiogenous cells.<br />

Conidiogenous cells hyaline, smooth, ampulliform, 7–15 × 5–7 µm;<br />

proliferating inconspicuously and percurrently at apex, or simply<br />

appearing holoblastic. Conidia solitary, hyaline, granular, acicular,<br />

straight to gently curved, tapering towards apex that is acutely<br />

rounded, base truncate, 1.5–2 µm diam, up to 8-septate, (32–)40–<br />

60(–70) × 2(–2.5) µm.<br />

Culture characteristics: Colonies lobate, flat with little appressed,<br />

white aerial mycelium. On MEA surface olivaceous-grey, reverse<br />

umber. On OA suface olivaceous-grey. On PDA surface and<br />

reverse olivaceous-grey.<br />

Specimen examined: France, Haute Savoie, Mt. Beaudin, 2000 m alt., stem<br />

of Rumex alpinus (Polygonaceae), Oct. 1978, H.A. van der Aa (holotype <strong>CBS</strong><br />

H-18163, culture ex-type <strong>CBS</strong> 522.78).<br />

Notes: Acicuseptoria rumicis was originally deposited as Septoria<br />

rumicum, but is distinct from the latter in having acicular, narrower<br />

conidia. Acicuseptoria is distinct from Septoria s. str. in having<br />

acicular conidia.<br />

Clade 41: Stagonospora<br />

Stagonospora (Sacc.) Sacc., Syll. Fung. (Abellini) 3: 445.<br />

1884.<br />

Description: See above.<br />

Type species: S. paludosa (Sacc. & Speg.) Sacc., Syll. Fung.<br />

(Abellini) 3: 453. 1884.<br />

Stagonospora duoseptata Quaedvlieg, Verkley & Crous,<br />

sp. nov. MycoBank MB804459. Figs 86, 87.<br />

Etymology: Named after the fact that conidia are 2-septate.<br />

Fig. 86. Conidia and conidiogenous cells of Stagonospora duoseptata (<strong>CBS</strong><br />

135093). Scale bars = 10 µm.<br />

On sterile Carex leaves on WA. Conidiomata dark brown,<br />

immersed, subepidermal, pycnidial, globose, up to 400 µm<br />

diam, exuding a short, hyaline cirrhus of conidia; wall of 3–4<br />

layers of medium brown textura angularis. Conidiophores<br />

hyaline, smooth, lining inner cavity, 0–1-septate, subcylindrical,<br />

10–20 × 4–5 µm. Conidiogenous cells phialidic, hyaline,<br />

smooth, aggregated, lining the inner cavity, subcylindrical to<br />

ampulliform or doliiform, 6–8 × 3–4 µm; phialidic with several<br />

apical percurrent proliferations. Conidia hyaline, smooth, thinwalled,<br />

granular, fusoid-ellipsoidal, 2-septate, with septa 4–6<br />

µm inwards from both obtuse conidial ends; conidia widest in<br />

middle, (18–)20–23(–25) × (5–)6(–7) µm.<br />

Culture characteristics: Colonies on PDA flattened, circular with<br />

lobate edges, and fine grey aerial mycelium, surface mouse-grey,<br />

reverse olivaceous-black, after 14 d, 4 cm diam; on MEA after 14 d,<br />

4.5 cm diam; on OA similar to MEA.<br />

Specimen examined: Netherlands, Nijmegen, de Duffelt, on leaves of a Carex<br />

acutiformis (Cyperaceae), 29 Jul. 2012, W. Quaedvlieg (holotype <strong>CBS</strong> H-21321,<br />

culture ex-type <strong>CBS</strong> 135093 = S618).<br />

Notes: Stagonospora duoseptata is distinct from other species<br />

occurring on Carex in that it has fusoid-ellipsoidal, 2-septate<br />

conidia, (18–)20–23(–25) × (5–)6(–7) µm, with septa positioned<br />

4–6 µm inwards from its obtuse conidial ends. Stagonospora<br />

biseptata (occurring on Carex lanuginosa, Wisconsin, USA) has<br />

conidia that are larger, (35–)40–50(–55) × (2–)10–11(–13) µm<br />

(Greene 1961).<br />

Fig. 87. Stagonospora duoseptata (<strong>CBS</strong> 135093). A. Conidiomata forming in culture. B, C. Conidiogenous cells. D. Conidia. Scale bars = 10 µm.<br />

www.studiesinmycology.org<br />

377


Quaedvlieg et al.<br />

Stagonospora paludosa (Sacc. & Speg.) Sacc., Syll. Fung.<br />

(Abellini) 3: 453. 1884. Figs 88, 89.<br />

Basionym: Hendersonia paludosa Sacc. & Speg., Michelia 1(no.<br />

3): 353. 1878.<br />

On sterile Carex leaves on WA. Conidiomata black, immersed,<br />

subepidermal, pycnidial, globose, up to 400 µm diam, exuding a<br />

short, hyaline cirrhus of conidia; wall of 3–4 layers of medium brown<br />

textura angularis. Conidiophores reduced to conidiogenous cells.<br />

Conidiogenous cells phialidic, hyaline, smooth, aggregated, lining<br />

the inner cavity, ampulliform to doliiform, 5–10 × 5–10 µm; tapering<br />

at apex with prominent periclinal thickening or 1–2 inconspicuous<br />

percurrent proliferations visible at apex. Conidia hyaline, smooth,<br />

thin-walled, granular, or each cell with a large central guttule,<br />

subcylindrical to fusoid, apex subobtusely to obtusely rounded, base<br />

truncate (4–7 µm diam), (6–)7–8-septate (becoming constricted at<br />

septa with age), (45–)55–63(–65) × (9–)10–11 µm.<br />

Culture characteristics: Colonies on PDA flat, circular, with grey<br />

aerial mycelium, reverse olivaceous-black to buff at the margins,<br />

after 14 d, 8.5 cm diam; on MEA umbonate, round, with appressed,<br />

grey aerial mycelium, with white patches; OA similar to PDA, but<br />

reverse buff with iron-grey patches at the outer region.<br />

Specimens examined: Italy, on Carex riparia (Cyperaceae), Feb. 1878, holotype<br />

(presumably lost). Netherlands, Utrecht, Veenendal, de Blauwe Hel, Carex<br />

acutiformis (Cyperaceae), 23 Jul. 2012, W. Quaedvlieg (neotype designated here<br />

<strong>CBS</strong> H-21317, culture ex-type S601 = <strong>CBS</strong> 135088) (MBT175339).<br />

Notes: For more than a century, Stagonospora was confused<br />

with Septoria. The introduction of molecular techniques around<br />

the turn of the century made it possible to definitively establish<br />

that Stagonospora was not linked to Septoria, and that it in fact<br />

clusters with other important plant pathogenic genera like Phoma<br />

and Leptosphaeria in the Pleosporales (Cunfer & Ueng 1999,<br />

Solomon et al. 2006). The type of Stagonospora (S. paludosa)<br />

was recollected from a Carex during this study and phylogenetic<br />

analyses showed that this species clustered separately from most<br />

other known “Stagonospora” spp. (mostly isolated from Poaceae),<br />

but together with several other Stagonospora species that were also<br />

collected from Carex. This led to the conclusion that Stagonospora<br />

s. str. was limited to Carex, and that other commercially important<br />

stagonospora-like species on Poaceae (e.g. S. avenae and S.<br />

nodorum) in fact belonged to different genera.<br />

Stagonospora perfecta Quaedvlieg, Verkley & Crous, sp.<br />

nov. MycoBank MB804458. Figs 90, 91.<br />

Etymology: Named after the fact that both sexual and asexual<br />

morphs of the fungus developed in culture.<br />

On sterile Carex leaves on SNA. Ascomata developing on SNA,<br />

solitary, globose, brown, erumpent, up to 300 µm diam, with<br />

central ostiole; wall of 3–4 layers of brown textura angularis.<br />

Pseudoparaphyses intermingled among asci, hyaline, smooth,<br />

guttulate, multi-septate, constricted at septa, branched, hyphallike,<br />

4–6 µm diam, filling entire cavity. Asci stipitate, hyaline,<br />

smooth, clavate to fusoid-ellipsoidal, bitunicate, with prominent<br />

apiculus, 1.5–2.5 µm diam, 8-spored, 45–100 × 12–18 µm.<br />

Ascospores hyaline, smooth, 3- to multi-seriate in ascus,<br />

Fig. 88. Conidia and conidiogenous cells of Stagonospora paludosa (<strong>CBS</strong> 135088).<br />

Scale bars = 10 µm.<br />

Fig. 90. Conidia, conidiogenous cells and ascus with ascospores of Stagonospora<br />

perfecta (<strong>CBS</strong> 135099). Scale bars = 10 µm.<br />

Fig. 89. Stagonospora paludosa (<strong>CBS</strong> 135088). A, B. Conidiomata forming in culture. C, D. Conidiogenous cells. E, F. Conidia. Scale bars: B = 400 µm, all others = 10 µm.<br />

378


Sizing up Septoria<br />

Fig. 91. Stagonospora perfecta (<strong>CBS</strong> 135099). A. Conidiomata forming in culture. B. Ascomata forming in culture. C–F, I, J. Asci and pseudoparaphyses. G, H. Conidiogenous<br />

cells. K. Conidia. Scale bars: B = 300 µm, all others = 10 µm.<br />

fusoid-ellipsoidal with median septum, prominently constricted<br />

at septum, tapering towards subobtuse apices, with 1–2 large<br />

guttules per cell, thin-walled, widest just above septum in<br />

upper cell, (20–)23–25(–27) × (5–)6–7(–8) µm. Conidiomata<br />

up to 300 µm diam, brown, immersed, subepidermal, pycnidial,<br />

subglobose with central ostiole, exuding crystalline to creamy<br />

conidial mass; wall of 2–3 layers of brown textura angularis.<br />

Conidiophores reduced to conidiogenous cells. Conidiogenous<br />

cells phialidic, hyaline, smooth, aggregated, lining the inner<br />

cavity, ampulliform to doliiform or subcylindrical, with several<br />

percurrent proliferations near apex, 5–12 × 4–6 µm. Conidia<br />

hyaline, smooth, thin-walled, subcylindrical to narrowly fusoidellipsoidal,<br />

with obtuse apex and bluntly rounded base,<br />

2–3-septate, slightly constricted at septa, with 1–2 large guttules<br />

per cell, (19–)25–29(–32) × (6–)7(–8) µm.<br />

Culture characteristics: Colonies on PDA flattened, convex, circular,<br />

with white aerial mycelium, surface fuscous-black, reverse irongrey<br />

to black, after 14 d, 8.5 cm diam; on MEA surface fuscousblack,<br />

reverse olivaceous-black; on OA surface isabelline, reverse<br />

fuscous-black.<br />

Specimen examined: Netherlands, Limburg, Weert, Moerselpeel, on leaves<br />

of Carex acutiformis (Cyperaceae), Sep. 2012, W. Quaedvlieg (holotype <strong>CBS</strong><br />

H-21320, culture ex-type <strong>CBS</strong> 135099 = S656).<br />

Notes: Stagonospora perfecta is the first species with a confirmed<br />

sexual state in the genus Stagonospora. Of interest is the fact that it is<br />

didymella-like, rather than phaeosphaeria-like in morphology, which<br />

also explains it clustering in the Didymellaceae. Morphologically S.<br />

perfecta resembles S. vitensis (18–32 × 4–6 µm, 2–3(–4)-septate;<br />

Ellis & Ellis 1997), but conidia are wider. Stagonospora perfecta is<br />

closely related to S. pseudovitensis, though in the latter conidia are<br />

slightly longer, more fusoid-ellipsoidal in shape, and lack a sexual<br />

morph in culture.<br />

Stagonospora pseudocaricis Quaedvlieg, Verkley,<br />

Gardiennet & Crous, sp. nov. MycoBank MB804456. Figs<br />

92, 93.<br />

Etymology: Named after the species that it resembles,<br />

Stagonospora caricis.<br />

On sterile Carex leaves on WA. Conidiomata black, immersed,<br />

subepidermal, pycnidial, globose, up to 400 µm diam, exuding a<br />

short, hyaline cirrhus of conidia; wall of 3–4 layers of medium brown<br />

textura angularis. Conidiophores reduced to conidiogenous cells.<br />

Conidiogenous cells phialidic, hyaline, smooth, aggregated, lining<br />

the inner cavity, ampulliform to doliiform, 5–9 × 5–8 µm; tapering<br />

at apex with prominent periclinal thickening or 1–2 inconspicuous<br />

percurrent proliferations visible at apex. Conidia hyaline, smooth,<br />

thin-walled, granular, or each cell with a large central guttule,<br />

subcylindrical to fusoid, apex subobtusely to obtusely rounded,<br />

base truncate, (5–)6(–7)-septate, (35–)42–48(–50) × (6–)7–8 µm.<br />

Culture characteristics: Colonies on PDA flat, circular, with appressed,<br />

grey aerial mycelium, surface sepia, reverse olivaceous-black to buff,<br />

after 14 d, 8.5 cm diam; on MEA umbonate, round, with appressed,<br />

grey aerial mycelium with white patches, surface greyish sepia,<br />

reverse fuscous-black to olivaceous-black; OA similar to PDA.<br />

Specimens examined: France, Foncegrive, Rive de la Venelle, on Carex acutiformis<br />

(Cyperaceae), Oct. 2012, A. Gardiennet (holotype <strong>CBS</strong> H-21318, culture ex-type<br />

<strong>CBS</strong> 135132 = S610); ibed., S609 = <strong>CBS</strong> 135414).<br />

www.studiesinmycology.org<br />

379


Quaedvlieg et al.<br />

Note: Conidia of S. pseudocaricis closely resemble those of S.<br />

caricis (25–45 × 4–8 µm, 5–7-septate; Ellis & Ellis 1997), but are<br />

longer.<br />

Stagonospora pseudovitensis Quaedvlieg, Verkley &<br />

Crous, sp. nov. MycoBank MB804457. Figs 94, 95.<br />

Etymology: Named after the species that it resembles,<br />

Stagonospora vitensis.<br />

On sterile Carex leaves on WA. Conidiomata black, immersed,<br />

subepidermal, pycnidial, globose with central ostiole, up to 180 µm<br />

diam; wall of 3–4 layers of pale brown textura angularis. Conidiophores<br />

reduced to conidiogenous cells. Conidiogenous cells phialidic,<br />

hyaline, smooth, aggregated, lining the inner cavity, ampulliform<br />

to doliiform, 5–7 × 4–5 µm; tapering at apex with inconspicuous<br />

periclinal thickening or percurrent proliferation. Conidia hyaline,<br />

smooth, thin-walled, granular, subcylindrical with obtuse apex and<br />

truncate to bluntly rounded base, 3–4 µm diam, 3-septate, with large<br />

central guttule in each cell, (25–)28–33(–36) × (6–)7(–8) µm.<br />

Culture characteristics: Colonies on PDA flat, circular, aerial<br />

mycelium consisting of some grey tufts, surface pale mouse-grey,<br />

reverse olivaceous-black, after 14 d, 8.5 cm diam; on MEA similar<br />

to PDA, but with appressed, white aerial mycelium, and with some<br />

grey tufts; OA similar to MEA, but reverse olivaceous-grey.<br />

Specimens examined: Netherlands, Veenendaal, de Blauwe Hel, on leaves of<br />

Carex acutiformis (Cyperaceae), 23 Jul. 2012, W. Quaedvlieg (holotype <strong>CBS</strong><br />

H-21319, culture ex-type <strong>CBS</strong> 135094 = S620); ibed., S602.<br />

Note: Conidia of S. pseudovitensis differ from that of S. vitensis<br />

(18–32 × 4–6 µm, 2–3(–4)-septate; Ellis & Ellis 1997), by having<br />

consistently 3-septate, wider conidia.<br />

Stagonospora uniseptata Quaedvlieg, Verkley & Crous,<br />

sp. nov. MycoBank MB804460. Figs 96, 97.<br />

Etymology: Named after the fact that conidia are 1-septate.<br />

On sterile Carex leaves on WA. Conidiomata up to 150 µm diam,<br />

black, immersed, subepidermal, pycnidial, globose with central<br />

ostiole, exuding yellow conidial masses; wall of 3–4 layers of redbrown<br />

textura angularis. Conidiophores reduced to conidiogenous<br />

cells. Conidiogenous cells phialidic, hyaline, smooth, aggregated,<br />

lining the inner cavity, ampulliform to subcylindrical, 5–8 × 3–4 µm,<br />

with percurrent proliferation at apex. Conidia hyaline, smooth, thinwalled,<br />

fusoid-ellipsoidal, with obtuse apex and truncate to bluntly<br />

rounded base (2 µm diam), medianly 1-septate, prominently<br />

constricted at septum, straight to irregularly curved, widest in<br />

middle of either apical or basal cell, granular, including yellowgreen<br />

reflective guttules, (13–)16–20(–22) × (5–)5.5(–6) µm.<br />

Fig. 92. Conidia of Stagonospora pseudocaricis (<strong>CBS</strong> 135132). Scale bar = 10 µm.<br />

Fig. 94. Conidia and conidiogenous cells of Stagonospora pseudovitensis (<strong>CBS</strong><br />

135094). Scale bars = 10 µm.<br />

Fig. 93. Stagonospora pseudocaricis (<strong>CBS</strong> 135132). A. Conidiomata forming in culture. B, C. Conidia. Scale bars = 10 µm.<br />

380


Sizing up Septoria<br />

Fig. 95. Stagonospora pseudovitensis (<strong>CBS</strong> 135094). A. Conidiomata forming in culture. B, C. Conidiogenous cells. D. Conidia. Scale bars = 10 µm.<br />

Fig. 96. Conidia and conidiogenous cells of Stagonospora uniseptata (<strong>CBS</strong> 135090). Scale bars = 10 µm.<br />

Fig. 97. Stagonospora uniseptata (<strong>CBS</strong> 135090). A. Conidiomata sporulating in culture. B. Conidiogenous cells. C. Conidia. Scale bars = 10 µm.<br />

Culture characteristics: Colonies on PDA appressed, circular,<br />

with short, greyish-white aerial mycelium, surface fusous-black,<br />

reverse olivaceous-black to hazel, after 14 d, 8.5 cm diam; on<br />

MEA surface hazel, reverse cinnamon; on OA with patches of<br />

white aerial mycelium, surface isabelline, reverse olivaceous to<br />

fuscous-black.<br />

Specimens examined: Netherlands, Nijmegen, de Duffelt, on leaves of a Carex<br />

acutiformis (Cyperaceae), 29 Jul. 2012, W. Quaedvlieg, (holotype <strong>CBS</strong> H-21322,<br />

culture ex-type <strong>CBS</strong> 135090 = S611); ibed., S607, S608 = CPC 22151 and CPC 22150.<br />

Notes: Of the Stagonospora and Septoria species occurring on<br />

Carex, Stagonospora uniseptata is most similar to Septoria caricis<br />

(conidia 20–35 × 2.5–3 µm, 1-septate; Ellis & Ellis 1997), but<br />

distinct in that conidia are shorter and wider.<br />

Clade 42: Corynespora<br />

Corynespora Güssow, Z. PflKrankh. PflPath. PflSchutz 16:<br />

10. 1906.<br />

Mycelium immersed or superficial. Stroma present in some species.<br />

Setae and hyphopodia absent. Conidiophores macronematous,<br />

mononematous, straight or flexuous, unbranched, brown or<br />

olivaceous brown, smooth. Conidiogenous cells monotretic,<br />

integrated, terminal, percurrent, cylindrical or doliiform. Conidia<br />

solitary or catenate, dry, acrogenous, simple, obclavate, rarely<br />

cylindrical, subhyaline, pale to dark brown or olivaceous brown<br />

or straw-coloured, euseptate or distoseptate, smooth, rarely<br />

verruculose (Ellis 1971).<br />

www.studiesinmycology.org<br />

381


Quaedvlieg et al.<br />

Type species: C. mazei Güssow, Consp. Regni Veget. (Leipzig) 16:<br />

13. 1906. [= C. cassiicola (Berk. & M.A. Curtis) C.T. Wei, Mycol.<br />

Pap. 34: 5. 1950.]<br />

Corynespora leucadendri Quaedvlieg, Verkley & Crous,<br />

sp. nov. MycoBank MB804461. Figs 98, 99.<br />

Etymology: Named after the host genus from which it was collected,<br />

Leucadendron.<br />

On MEA and PDA after 2 wk. Mycelium consisting of creeping,<br />

branched, septate, hyaline, smooth, 3–4(–5) µm diam hyphae<br />

that become brown close to conidiophores; stroma lacking.<br />

Conidiophores subcylindrical, erect, medium brown, 100–300 µm<br />

tall, 4–6(–7) µm diam, thick-walled, transversely multiseptate,<br />

with several swollen nodes of conidiophore rejuvenation (up to<br />

12 µm diam). Conidiogenous cells terminal, cylindrical, medium<br />

brown, smooth, ends swollen or not, central locus somewhat<br />

darkened or inconspicuous, 15–40 × 5–6(–7) µm. Conidia<br />

medium brown, obclavate to subcylindrical, straight to slightly<br />

curved, thick-walled, (3–)4–6(–10)-distoseptate, basal locus<br />

thickened, darkened, protruding, 2–3 µm diam, (35–)70–110(–<br />

170) × (6–)7–8(–11) µm.<br />

Culture characteristics: Colonies erumpent, spreading with moderate<br />

aerial mycelium and smooth, even margin; reaching 25 mm diam<br />

after 2 wk. On MEA surface dirty white, reverse cinnamon. On PDA<br />

surface dirty white, reverse buff to rosy buff with diffuse rosy buff<br />

pigment. On OA surface dirty white with diffuse rosy buff pigment<br />

in agar.<br />

Specimen examined: South Africa, Western Cape Province, Helderberg Nature<br />

Reserve, from the leaves of Leucadendron sp. (Proteaceae), 14 Aug. 2000, S. Lee<br />

(holotype <strong>CBS</strong> H-21323, culture ex-type <strong>CBS</strong> 135133 = CPC 19345).<br />

Notes: This species was not treated by Marincowitz et al. (2008),<br />

and presently no species of Corynespora are known from<br />

Leucadendron. Furthermore, based on conidial morphology, none<br />

of the species treated by Ellis (1971, 1976) resemble C. leucadendri,<br />

nor is it similar to any Corynespora sequence presently deposited<br />

in GenBank. For these reasons we thus introduce C. leucadendri<br />

as a new taxon.<br />

Clade 43: Setoseptoria<br />

Setoseptoria Quaedvlieg, Verkley & Crous, gen. nov.<br />

MycoBank MB804462.<br />

Etymology: Named after its conidiomata which are septoria-like,<br />

but setose.<br />

Conidiomata pycnidial, brown, immersed, globose with central<br />

ostiole, somewhat papillate, apical erumpent part at times with<br />

brown, verruculose to warty setae; wall of 6–8 layers of brown<br />

textura angularis; inner layer of 6–10 layers of hyaline textura<br />

angularis. Conidiophores lining the inner cavity, reduced to<br />

conidiogenous cells, or with one supporting cell. Conidiogenous<br />

cells hyaline, smooth, subcylindrical to doliiform; apical region with<br />

several inconspicuous percurrent proliferations, or with periclinal<br />

thickening; collarette inconspicuous, or prominent, flared. Conidia<br />

hyaline, smooth, becoming somewhat olivaceous and verruculose<br />

in older cultures, subcylindrical, tapering in apical part to obtuse or<br />

subobtuse apex, base truncate, transversely euseptate, straight to<br />

somewhat curved, mostly with one large central guttule per cell,<br />

older conidia becoming constricted at septa, disarticulating into<br />

phragmospores.<br />

Fig. 98. Conidia and conidiogenous loci of Corynespora leucadendri (<strong>CBS</strong> 135133).<br />

Scale bar = 10 µm.<br />

Type species: Setoseptoria phragmites Quaedvlieg, Verkley &<br />

Crous.<br />

Fig. 99. Corynespora leucadendri (<strong>CBS</strong> 135133). A–C. Conidiogenous cells giving rise to conidia. D. Conidia. Scale bars = 10 µm.<br />

382


Sizing up Septoria<br />

Fig. 100. Setoseptoria phragmitis (<strong>CBS</strong> 114802). Conidioma sporulating in culture. B. Setae. C, D. Conidiogenous cells. E. Conidia. Scale bars = 10 µm.<br />

Setoseptoria phragmitis Quaedvlieg, Verkley & Crous, sp.<br />

nov. MycoBank MB804463. Fig. 100.<br />

Etymology: Named after the host genus from which it was collected,<br />

Phragmites.<br />

On sterile Carex leaves on WA. Conidiomata pycnidial, brown,<br />

immersed, globose with central ostiole, up to 30 µm diam,<br />

somewhat papillate, up to 200 µm diam, apical erumpent part at<br />

times with brown, verruculose to warty setae; wall of 6–8 layers<br />

of brown textura angularis; inner layer of 6–10 layers of hyaline<br />

textura angularis. Conidiophores lining the inner cavity, reduced to<br />

conidiogenous cells, or with one supporting cell. Conidiogenous<br />

cells hyaline, smooth, subcylindrical to doliiform, 7–12 × 3–4 µm;<br />

apical region with several inconspicuous percurrent proliferations,<br />

or with periclinal thickening; collarette inconspicuous, or prominent,<br />

flared. Conidia hyaline, smooth, becoming somewhat olivaceous<br />

and verruculose in older cultures, subcylindrical, (1–)3-septate,<br />

(19–)25–35(–38) × (3.5–)4 µm, tapering in apical part to obtuse<br />

or subobtuse apex, base truncate, 1.5–2.5 µm diam, straight to<br />

somewhat curved, mostly with one large central guttule per cell,<br />

older conidia becoming constricted at septa, disarticulating into<br />

phragmospores.<br />

Culture characteristics: Colonies on PDA umbonate, round, fluffy<br />

grey white aerial mycelium on the younger parts with longer grey<br />

blackish tufts on the older parts, surface olivaceous-black to buff at<br />

the younger mycelium, reverse olivaceous-black at the older parts<br />

to buff at the younger mycelium, after 14 days 6 cm diam; on MEA<br />

similar toPDA but after 14 d, 7 cm diam; on OA similar to PDA.<br />

Specimens examined: Hong Kong, Mai Po Mangrove, from the leaves of<br />

Phragmites australis (Poaceae), 12 Mar. 1998, K.D. Hyde (holotype <strong>CBS</strong> H-21324,<br />

culture ex-type <strong>CBS</strong> 114802 = HKUCC 2689); ibid., 3 Feb. 2000, K.D. Hyde (<strong>CBS</strong><br />

114966 = HKUCC 6029).<br />

Notes: Setoseptoria needs to be compared to Dearnessia and<br />

Trichoseptoria (see above). The genus Trichoseptoria is poorly<br />

known, and details about its conidiogenesis is lacking, and thus<br />

it cannot be compared until it has been recollected. Setoseptoria<br />

is distinct from Dearnessia in that it has conidiogenous cells with<br />

prominent percurrent proliferation, and conidia that tend to become<br />

olivaceous and verruculose in older cultures, and disarticulate into<br />

phragmospores. Several Septoria species have been described<br />

from Phragmites, including S. phragmitis (conidia 20–30 × 1.5–2<br />

µm), S. arundinacea (conidia 6–7-septate, 60–70 × 5–6 µm), S.<br />

curva (conidia 14–20 × 3.5–4.5 µm), and S. graminum (conidia<br />

multiseptate, 55–75 × 1–1.3 µm), all of which appear to differ from<br />

Setoseptoria phragmitis based on its conidial morphology.<br />

Clade 44: Septorioides<br />

Septorioides Quaedvlieg, Verkley & Crous, gen. nov.<br />

MycoBank MB804464.<br />

Etymology: Resembling the genus Septoria.<br />

Foliicolous. Conidiomata black, unilocular, globose, flattened,<br />

opening by means of irregular rupture; wall consisting of 6–10 layers<br />

of dark brown textura irregularis to angularis, exuding a crystal<br />

conidial mass. Paraphyses intermingled among conidiophores,<br />

hyaline, cylindrical, branched at base, septate with obtuse ends.<br />

Microconidia hyaline, smooth, cylindrical, mostly straight, apex<br />

obtuse, base truncate. Conidiophores reduced to conidiogenous<br />

cells or with a supporting cell. Conidiogenous cells lining the inner<br />

cavity in basal layer, hyaline, smooth, subcylindrical to ampulliform,<br />

giving rise to macro- and microconidia. Spermatia formed in<br />

conidiomata, cylindrical, hyaline, smooth, straight to curved.<br />

Macroconidia hyaline, smooth, guttulate, subcylindrical, straight to<br />

irregularly curved, tapering in apical cell to subobtuse apex, base<br />

truncate, transversely euseptate.<br />

Type species: Septorioides pini-thunbergii (S. Kaneko) Quaedvlieg,<br />

Verkley & Crous.<br />

Septorioides pini-thunbergii (S. Kaneko) Quaedvlieg,<br />

Verkley & Crous, comb. nov. MycoBank MB804465. Fig.<br />

101.<br />

Basionym: Septoria pini-thunbergii S. Kaneko, Trans. Mycol. Soc.<br />

Japan 30(4): 463. 1989.<br />

Associated with needle blight, or isolated as endophyte. On PDA.<br />

Conidiomata black, unilocular, globose, flattened, up to 400 µm<br />

diam, opening by means of irregular rupture; wall consisting of 6–10<br />

layers of dark brown textura irregularis to angularis, exuding a crystal<br />

conidial mass. Paraphyses intermingled among conidiophores,<br />

hyaline, cylindrical, branched at base, septate with obtuse ends,<br />

2–2.5 µm diam, up to 80 µm long. Microconidia hyaline, smooth,<br />

www.studiesinmycology.org<br />

383


Quaedvlieg et al.<br />

Fig. 101. Septorioides pini-thunbergii (<strong>CBS</strong> 473.91). A. Colony sporulating on PDA. B. Spermatia. C–E. Conidiogenous cells. F. Conidia. Scale bars = 10 µm.<br />

cylindrical, mostly straight, apex obtuse, base truncate, 5–15 ×<br />

2–2.5 µm. Conidiophores reduced to conidiogenous cells or with<br />

a supporting cell. Conidiogenous cells lining the inner cavity in<br />

basal layer, hyaline, smooth, subcylindrical to ampulliform, 10–15<br />

× 4–6 µm, giving rise to macro- and microconidia. Spermatia<br />

formed in conidiomata, cylindrical, hyaline, smooth, straight to<br />

curved, 3–7 × 2 µm. Macroconidia hyaline, smooth, guttulate,<br />

subcylindrical, straight to irregularly curved, tapering in apical cell<br />

to subobtuse apex, base truncate, (60–)70–80(–110) × 3.5(–4) µm,<br />

(1–)3–6(–10)-septate.<br />

Specimen examined: Japan, Akita Prefecture, Tenno-cho, on needles of Pinus<br />

thunbergii (Pinaceae), Aug. 1984, S. Kaneko & Y. Zinno, culture ex-type of Septoria<br />

pini-thunberghii (<strong>CBS</strong> 473.91).<br />

Note: Septorioides is distinguished from Septoria by having<br />

conidiomata that open by means of an irregular split (acervular),<br />

and having paraphyses intermingled among its conidiophores.<br />

Septorioides pini-thunbergii was originally described from blighted<br />

needles of Pinus thunbergii in Japan (Kaneko et al. 1989). It was<br />

also recently isolated as endophyte from needles of P. densiflora in<br />

Korea (Yoo & Eom 2012).<br />

Clade 45: Phlyctema<br />

Phlyctema Desm., Ann. Sci. Nat., Sér. 3, 8: 16. 1847.<br />

= Allantozythia Höhn., Mykol. Unters. 3: 322. 1923.<br />

hyaline conidiophores, and phialidic conidiogenous cells that give<br />

rise to hyaline, aseptate, fusiform, straight to curved conidia. The<br />

genus has more than 80 names, and is in need of revision. . The<br />

type species is linked to a sexual morph known as Neofabraea alba<br />

(Verkley 1999).<br />

Phlyctema vincetoxici Quaedvlieg, Verkley & Crous, sp.<br />

nov. MycoBank MB804466. Figs 102, 103.<br />

Etymology: Named after the host genus from which it was collected,<br />

Vincetoxicum.<br />

Conidiomata immersed, separate, eustromatic, unilocular,<br />

convulated, opening by irregular rupture, becoming acervular<br />

to sporodochial, up to 450 µm diam; wall of 3–6 layers of brown<br />

textura angularis; outer surface covered in brown, warty hyphae.<br />

Conidiophores hyaline, smooth, subcylindrical, lining the inner<br />

layer, branched, 1–4-septate, 15–50 × 4–5 µm. Conidiogenous<br />

cells phialidic, hyaline, smooth, subcylindrical to cymbiform or<br />

doliiform, with apical periclinal thickening and minute, non-flaring<br />

collarette, 7–18 × 3.5–5 µm. Conidia hyaline, smooth, guttulate,<br />

aseptate, fusiform, curved, tapering to subobtuse apex and truncate<br />

base, (27–)33–37(–40) × 3(–3.5) µm.<br />

Mycelium immersed, branched, septate, hyaline. Conidiomata<br />

eustromatic, immersed, erumpent, sporodochial, separate, yellowish<br />

brown, pulvinate, circular, unilocular but convoluted, thick-walled;<br />

wall of textura angularis, darker brown and thicker-walled at base<br />

than at the sides. Ostiole absent, dehiscence by irregular rupture.<br />

Conidiophores hyaline, septate, branched irregularly, cylindrical to<br />

filiform, formed from the wall lining the conidiomata. Conidiogenous<br />

cells enteroblastic, phialidic, integrated or discrete, determinate,<br />

hyaline, with minute collarette and periclinal thickening. Conidia<br />

hyaline, aseptate, fusiform, eguttulate, straight to slightly curved or<br />

irregular (Sutton 1980).<br />

Type species: P. vagabunda Desm., Ann. Sci. Nat., Bot., Sér. 3, 8:<br />

16. 1847.<br />

Notes: Phlyctema is characterised by having eustromatic,<br />

convulated, pulvinate to sporodochial conidiomata, branched,<br />

Fig. 102. Conidia and conidiogenous cells of Phlyctema vincetoxici (<strong>CBS</strong> 123727).<br />

Scale bar = 10 µm.<br />

384


Sizing up Septoria<br />

Fig. 103. Phlyctema vincetoxici (<strong>CBS</strong> 123727). A. Colonies forming on OA. B, C. Conidiogenous cells. D. Conidia. Scale bars = 10 µm.<br />

Culture characteristics: Colonies on PDA flat, circular, with sparse,<br />

white aerial mycelium, surface dark-brick, reverse greyish sepia,<br />

after 14 d, 7 cm diam; on MEA undulate, lacking aerial mycelium,<br />

after 14 d, 6 cm diam; on OA flat, circular, lacking aerial mycelium,<br />

after 14 d, 8.5 cm diam.<br />

Specimen examined: Czech Republic, Moravia, Podyji National Park, Masovice,<br />

Klinka area, on leaves of Vincetoxicum officinale (Asclepiadaceae), 17 Sep. 2008,<br />

G. Verkley (holotype <strong>CBS</strong> H-21325, culture ex-type <strong>CBS</strong> 123727 = V6015.2).<br />

Notes: No species of Phlyctema has thus far been described on<br />

Vincetoxicum. Septoria vincetoxici (conidia 30–50 × 1–1.5 µm;<br />

Saccardo 1884) has somewhat longer, narrower conidia. Phlyctema<br />

vincetoxici was found sporulating in leaf spots showing numerous<br />

hypophyllous teleospore sori of the rust fungus Cronartium<br />

flaccidum (identified by H.A. van der Aa).<br />

Clade 46: Kirstenboschia<br />

Kirstenboschia Quaedvlieg, Verkley & Crous, gen. nov.<br />

MycoBank MB804467.<br />

Etymology: Kirstenbosch National Botanical Garden is one of the<br />

most acclaimed botanical gardens of the world, set against the foot<br />

of Cape Town’s Table Mountain. With more than 7000 plant species,<br />

it has also proven to be a source of numerous undescribed fungal<br />

species. Kirstenbosch was established in 1913, and to celebrate its<br />

centenary (2013), the fungal genus Kirstenboschia is named after<br />

this beautiful garden.<br />

Kirstenboschia diospyri Quaedvlieg, Verkley & Crous, sp.<br />

nov. MycoBank MB804468. Figs 104, 105.<br />

Etymology: Named after the host genus from which it was collected,<br />

Diospyros.<br />

Conidiomata erumpent, sporodochial, up to 300 µm diam, separate,<br />

appearing creamy to pale yellow when sporulating on SNA with<br />

barley leaves, with slightly raised outer margin of 3–10 layers of<br />

textura intricata. Conidiophores lining the inner cavity, hyaline,<br />

smooth, 0–4-septate, subcylindrical, branched below and above,<br />

5–15 × 2–4 µm. Conidiogenous cells 5–10 × 2–3 µm, terminal and<br />

lateral, hyaline, smooth, ampulliform to subcylindrical, proliferating<br />

sympodially, apical loci truncate, at times appearing subdenticulate,<br />

1 µm diam. Conidia solitary, hyaline, scolecosporous, smooth,<br />

granular, thin-walled, acicular to narrowly obclavate with subobtuse<br />

apex and truncate to long obconically truncate base, 3-septate,<br />

irregularly curved, (40–)60–70(–75) × (1.5–)2 µm.<br />

Culture characteristics: Colonies on PDA erumpent, with moderate<br />

aerial mycelium, and smooth, lobate margin; surface and reverse<br />

dirty white. On OA dirty white with diffuse brown pigment in agar.<br />

On MEA surface folded, irregular, strongly erumpent, dirty white,<br />

reverse sienna.<br />

Foliicolous. Conidiomata erumpent, sporodochial, separate, with<br />

slightly raised outer margin of 3–10 layers of textura intricata.<br />

Conidiophores lining the inner cavity, hyaline, smooth, septate,<br />

subcylindrical, branched below and above. Conidiogenous cells<br />

terminal and lateral, hyaline, smooth, ampulliform to subcylindrical,<br />

proliferating sympodially, apical loci truncate, at times appearing<br />

subdenticulate. Conidia solitary, hyaline, scolecosporous, smooth,<br />

granular, thin-walled, acicular to narrowly obclavate with subobtuse<br />

apex and truncate to long obconically truncate base, 3-septate,<br />

irregularly curved.<br />

Type species: K. diospyri Quaedvlieg, Verkley & Crous.<br />

Fig. 104. Conidia and conidiogenous cells of Kirstenboschia diospyri (<strong>CBS</strong> 134911).<br />

Scale bars = 10 µm.<br />

www.studiesinmycology.org<br />

385


Quaedvlieg et al.<br />

Fig. 105. Kirstenboschia diospyri (<strong>CBS</strong> 134911). A. Conidiomata forming in culture. B, C. Conidiogenous cells. D. Conidia. Scale bars: A = 300 µm, all others = 10 µm.<br />

Specimen examined: South Africa, Western Cape Province, Kirstenbosch Botanical<br />

Garden, on leaves of Diospyros whyteana (Ebenaceae), 9 Aug. 2011, P.W. Crous<br />

(holotype <strong>CBS</strong> H-21326, culture ex-type <strong>CBS</strong> 134911 = CPC 19869).<br />

Note: Kirstenboschia is distinguished from Septoria s. str. and<br />

allied genera based on its distinctive, sporodochial conidiomata,<br />

and conidiogenous cells that proliferate sympodially, but at times<br />

are subdenticulate.<br />

Clade 47: Phlogicylindrium<br />

Phlogicylindrium Crous, Summerb. & Summerell, Fungal<br />

Diversity 23: 340. 2006.<br />

Foliicolous. Conidiomata synnematal to sporodochial, pale brown.<br />

Macroconidiophores arising from a brown stroma of 3–6 layers<br />

of textura angularis, giving rise to subcylindrical, hyaline (dark<br />

brown at the base), smooth, frequently branched conidiophores,<br />

0–2(–6)-septate. Macroconidiogenous cells hyaline, smooth,<br />

subcylindrical, proliferating sympodially and percurrently near<br />

apex. Macroconidia hyaline, smooth, subcylindrical, transversely<br />

septate, apex obtusely rounded, base truncate, slightly<br />

curved. Microconidia formed in acervular conidiomata together<br />

with macroconidia. Microconidiophores intermingled among<br />

macroconidiophores, hyaline, smooth, subcylindrical, branched,<br />

1–4-septate. Microconidiogenous cells terminal and lateral,<br />

hyaline, smooth, ampulliform, phialidic, solitary or in penicillate<br />

clusters. Microconidia hyaline, smooth, hamate, curved, apex<br />

subobtuse, base truncate, widest in upper third, aseptate<br />

(Summerell et al. 2006).<br />

subcylindrical, 10–15 × 2–4 μm, proliferating sympodially<br />

and percurrently near apex. Macroconidia hyaline, smooth,<br />

subcylindrical, 1(–3)-septate, apex obtusely rounded, base<br />

truncate, slightly curved, (27–)40–50(–55) × 2–2.5(–3) μm.<br />

Microconidia formed in acervular conidiomata together with<br />

macroconidia. Microconidiophores intermingled among<br />

macroconidiophores, hyaline, smooth, subcylindrical, branched,<br />

1–4-septate, 20–40 × 2–2.5 µm. Microconidiogenous cells<br />

terminal and lateral, hyaline, smooth, ampulliform, phialidic,<br />

5–16 × 2–2.5 µm, solitary or in penicillate clusters of up to 3.<br />

Microconidia hyaline, smooth, hamate, curved, apex subobtuse,<br />

base truncate, widest in upper third, aseptate, (16–)17–20(–24)<br />

1.5(–2) µm.<br />

Specimens examined: Australia, Victoria, Otway Ranges, (near Gellibrand),<br />

latitude: -38.568412, longitude: 143.539586, elevation: 175 m, on leaves of<br />

Eucalyptus globulus (Myrtaceae), Sep. 2005, I. Smith, holotype <strong>CBS</strong> H-19771,<br />

cultures ex-type CPC 12429 = <strong>CBS</strong> 120221; New South Wales, on leaves of E.<br />

nitens, 22 Nov. 1996, P.W. Crous (<strong>CBS</strong> 111689 = CPC 1547 = STE-U 1547).<br />

Notes: The present strain represents the second collection of this<br />

fungus. Isolates from this collection formed a microconidial state<br />

not observed in the type (Crous et al. 2007c), and novel for species<br />

of Phlogicylindrium.<br />

Type species: P. eucalypti Crous, Summerb. & Summerell, Fungal<br />

Diversity 23: 340. 2006.<br />

Phlogicylindrium eucalyptorum Crous, Fungal Planet 20.<br />

2007. Figs 106, 107.<br />

On OA. Conidiomata synnematal to sporodochial, pale<br />

brown up to 300 μm diam. Macroconidiophores arising from<br />

a brown stroma of 3–6 layers of textura angularis, giving rise<br />

to subcylindrical, hyaline (dark brown at the base), smooth,<br />

frequently branched conidiophores, 0–2(–6)-septate, 15–25(–<br />

45) × 3–4 μm. Macroconidiogenous cells hyaline, smooth,<br />

Fig. 106. Macro- and microconidia and conidiogenous cells of Phlogicylindrium<br />

eucalyptorum (<strong>CBS</strong> 111689). Scale bars = 10 µm.<br />

386


Sizing up Septoria<br />

Fig. 107. Phlogicylindrium eucalyptorum (<strong>CBS</strong> 111689). A. Colony on OA. B, E. Microcyclic conidiation with macro- and macroconidia. C. Macroconidiogenous cells. D.<br />

Microconidia. F. Macroconidia. Scale bars = 10 µm.<br />

DISCUSSION<br />

The main question considered in the present study was: what is<br />

Septoria? To address this we included 370 isolates representing<br />

170 species, sampled from six continents. Furthermore, we<br />

also generated several phylogenetic datasets based on partial<br />

sequences of the ITS, LSU, Btub, RPB2 and EF-1α loci. In the<br />

final analysis, it was clear that Septoria is a well-defined genus<br />

and phylogenetic clade, with pycnidial, ostiolate conidiomata,<br />

conidiophores reduced to conidiogenous cells that proliferate<br />

sympodially, and hyaline, filiform conidia with transverse eusepta,<br />

fitting the original concept of Sutton (1980). However, when host<br />

material has been incubated for a while, several pycnidial species<br />

tend to form acervuli (also not clearly defined when studied in<br />

culture on normal agar media), and conidiogenous cells could<br />

have a combination of sympodial and percurrent proliferation (as<br />

observed in Pseudocercospora; Crous et al. 2013).<br />

The present study, including that of Verkley et al. (2013)<br />

defined an additional 15 genera that were formerly treated as<br />

“septoria” in the widest sense. Although it has recently been shown<br />

that Phoma is a generic complex representing many morphologic<br />

and phylogenetic genera (Aveskamp et al. 2010, de Gruyter et al.<br />

2010, 2013), this was not expected to also be the case for Septoria.<br />

Furthermore, many of the septoria-like genera discussed earlier in<br />

this paper are presently still not known from sequence, and thus<br />

their phylogeny remains to be resolved, meaning that they could<br />

add futher entities to the list of acknowledged septoria-like genera.<br />

Although Septoria s. str. is a genus in the Mycosphaerellaceae<br />

(Capnodiales), several of the septoria-like genera clustered outside<br />

this family. Species of Septoria are morphologically conserved,<br />

and in the past many taxa were identified based on host, which<br />

has been shown to be unreliable (see Verkley et al. 2013), as<br />

several taxa have wide host ranges. Another complication revealed<br />

in the present study is that many septoria-like genera cluster in<br />

different phylogenetic clades, but have still retained the Septoria<br />

morphological characters, which means that as in Phoma, future<br />

identifications in this complex will also have to rely on DNA<br />

sequence data to support morphological conclusions.<br />

The genus Stagonospora has always been separated from<br />

Septoria on the basis that Septoria has conidiogenous cells with<br />

sympodial proliferation, whereas in Stagonospora they proliferate<br />

percurrently. As shown in the present study, however, conidiogenesis<br />

is far too broad a feature to define all genera that express these modes<br />

of proliferation in their conidiogenous cells. Stagonospora, which is<br />

based on S. paludosa, was epitypified in this study, and shown to<br />

cluster apart from Septoria s. str. Another major surprise lies in the fact<br />

that Septoria nodorum blotch, caused by “Stagonospora” nodorum,<br />

clusters in a distinct genus, unrelated to Stagonospora s. str., and<br />

also separate from Phaeosphaeria s. str. A repercussion from these<br />

findings is the fact that the common cereal pathogens, which are<br />

neither Stagonospora, Septoria, Phaeosphaeria or Leptosphaeria<br />

(see de Gruyter et al. 2013), now have to be accommodated in<br />

a new genus, Parastagonospora. Furthermore, it appears that<br />

Stagonospora s. str. occurs on Poaceae, but has thus far only been<br />

confirmed from Carex, though further sampling will undoubtedly<br />

extend the host range of this genus. Parastagonospora is thus a<br />

novel, distinct stagonospora-like genus, which has sexual morphs<br />

that are phaeosphaeria-like in morphology, thus quite unlike those of<br />

Stagonospora s. str., which are more didymella-like in morphology.<br />

The genus Phaeosphaeria is based on P. oryzae (asexual<br />

morph Phaeoseptoria oryzae), for which we could designate<br />

an epitype in this study. Furthermore, we also recollected the<br />

type species of Phaeoseptoria, P. papayae, for which we also<br />

designated an epitype. As expected, Phaeoseptoria clusters with<br />

Phaeosphaeria, for which we choose the name of the sexual<br />

morph, Phaeosphaeria, on the basis that it is clearly resolved,<br />

and well established in literature. In contrast, Phaeoseptoria has<br />

in recent years become a muddled concept harbouring unrelated<br />

coelomycetes with pigmented conidia.<br />

Obtaining a culture of Cytostagonospora martiniana clarified<br />

the phylogenetic position of the genus as distinct from Septoria,<br />

resolving the difference of opinion between von Arx (1983), who<br />

regarded it as synonym of Septoria, versus Sutton (1980), who<br />

www.studiesinmycology.org<br />

387


Quaedvlieg et al.<br />

retained it as separate genus. Of interest is the unique mode of<br />

conidiogenesis, ranging from holoblastic sympodial to polyphialides<br />

with periclinal thickening to percurrent proliferation. It should be<br />

noted, however, that although this is a distinct genus, C. mariniana<br />

is not the type of Cytostagonospora, and C. photiniicola (occurring<br />

on Photinia serrulata, Austria) will have to be recollected to confirm<br />

that these two fungi are congeneric.<br />

The genus Phloeospora (based on P. ulmi) has for long been<br />

assumed to be a synonym of Septoria based on morphology. It<br />

is thus good to finally see it resolved as separate phylogenetic<br />

lineage, which is also supported morphologically based on its<br />

acervular conidiomata and conidiogenous cells with prominent<br />

percurrent proliferation. In spite of resolving 21 genera, several<br />

lineages remain unresolved, and are simply treated as “septorialike”<br />

awaiting the recollection of additional material.<br />

It is surprising that so many of the cereal pathogens actually<br />

have a confused taxonomy. Eyespot disease of wheat, formely<br />

treated as Tapesia (Ramulispora asexual states), was shown to<br />

represent a distinct genus Oculimacula (Helgardia asexual states)<br />

(Crous et al. 2003), while Quaedvlieg et al. (2011) determined that<br />

Septoria tritici blotch, caused by “Septoria” tritici, is in fact better<br />

accommodated in a new genus, Zymoseptoria, which appears<br />

to be restricted to members of Poaceae. The present study also<br />

resolved the phylogenetic position of Septoria nodorum blotch, which<br />

proved to not represent a member of Septoria, Stagonospora, or<br />

Phaeosphaeria, but to represent a distinct genus, described here<br />

as Parastagonospora. Clearly more attention should be directed<br />

towards resolving the taxonomy of the pathogens of agricultural<br />

crops of major economic importance in future, as these findings<br />

also have implications for genomic studies, where organisms from<br />

different genera, and even families get compared to one another,<br />

and new evolutionary hypotheses are proposed on the assumption<br />

that these taxa are congeneric. To clarify the taxonomy of well-known<br />

plant pathogens, however, many species will have to be recollected,<br />

and epitypified, so that authentic cultures and DNA barcodes will<br />

become available to fix the genetic application of these names.<br />

General conclusions<br />

The genus Septoria is defined by having pycnidial to acervular<br />

conidiomata, and hyaline conidiophores that give rise to<br />

conidiogenous cells that proliferate sympodially and percurrently,<br />

forming hyaline, filiform conidia with transverse eusepta. Many<br />

species have wide host ranges, and host occurrence should not be<br />

used as primary character for identification (see Verkley et al. 2013,<br />

this issue). Although species of Septoria and several of the novel<br />

genera introduced here have mycosphaerella-like sexual states,<br />

the name Mycosphaerella is restricted to the genus Ramularia, and<br />

is unavailable for species of Septoria and related genera.<br />

ACKNOWLEDGEMENTS<br />

We thank the technical staff, Arien van Iperen (cultures), and Marjan Vermaas<br />

(photographic plates), for their invaluable assistance. The research leading to<br />

these results has received funding from the European Community’s Seventh<br />

Framework Program (FP7/2007–2013)/grant agreement no. 226482 (Project: QBOL<br />

- Development of a new diagnostic tool using DNA barcoding to identify quarantine<br />

organisms in support of plant health) by the European Commission under the theme<br />

“Development of new diagnostic methods in support of Plant Health policy” (no.<br />

KBBE-2008-1-4-01). Special thanks also go to Dr Ellen van Agtmaal who prepared<br />

the line drawings included in this paper from photomicrographs and published<br />

materials (Sutton 1980) using Adobe Photoshop CS3.<br />

REFERENCES<br />

Aptroot A (2006). Mycosphaerella and its anamorphs. 2, Conspectus of<br />

Mycosphaerella. <strong>CBS</strong> Biodiversity Series 5. <strong>CBS</strong>-<strong>KNAW</strong> Fungal Biodiversity<br />

Centre, Utrecht, The Netherlands.<br />

Arx JA von (1983). Mycosphaerella and its anamorphs. Proceedings of the<br />

Koninklijke Nederlandse Akademie van Wetenschappen Series C-Biological<br />

and Medical Sciences 86(1): 15–54.<br />

Arzanlou M, Crous PW (2006). Phaeosphaeriopsis musae. Fungal Planet 9. <strong>CBS</strong>-<br />

<strong>KNAW</strong> Fungal Biodiversity Centre, Utrecht, The Netherlands.<br />

Aveskamp M, Gruyter H de, Woudenberg J, Verkley G, Crous PW (2010). Highlights<br />

of the Didymellaceae: A polyphasic approach to characterise Phoma and<br />

related pleosporalean genera. Studies in Mycology 65: 1–60.<br />

Barnes I, Crous PW, Wingfield BD, Wingfield MJ (2004). Multigene phylogenies<br />

reveal that red band needle blight of Pinus is caused by two distinct species of<br />

Dothistroma, D. septosporum and D. pini. Studies in Mycology 50: 551–565.<br />

Beach WS (1919). Biologic specialization in the genus Septoria. American Journal<br />

of Botany 6: 1–32.<br />

Bedlan G (2011). Septoria juliae sp. nov. – a new Septoria species on Nerium<br />

oleander. Journal für Kulturpflanzen 63: 430–431.<br />

Bissett J (1982). Stagonospora avenae. Fungi Canadenses 239. National<br />

Mycological Herbarium, Biosystematics Research Institute, Agriculture<br />

Canada, Ottawa.<br />

Braun U (1990). Taxonomic problems of the Ramularia / Cercosporella complex.<br />

Studies in Mycology 32: 65–75.<br />

Braun U (1995). A monograph of Cercosporella, Ramularia and allied genera<br />

(<strong>Phytopathogenic</strong> Hyphomycetes). Vol. 1. IHW-Verlag, Eching.<br />

Braun U (1998). A monograph of Cercosporella, Ramularia and allied genera<br />

(<strong>Phytopathogenic</strong> Hyphomycetes). Vol. 2. IHW-Verlag, Eching.<br />

Câmara MPS, Ramaley AW, Castlebury LA, Palm ME (2003). Neophaeosphaeria<br />

and Phaeosphaeriopsis , segregates of Paraphaeosphaeria. Mycological<br />

Research 107: 516–522.<br />

Carbone I, Kohn LM (1999). A method for designing primer sets for speciation<br />

studies in filamentous ascomycetes. Mycologia 91: 553–556.<br />

Cheewangkoon R, Crous PW, Hyde KD, Groenewald JZ, To-anan C (2008). Species<br />

of Mycosphaerella and related anamorphs on Eucalyptus leaves from Thailand.<br />

Persoonia 21: 77–91.<br />

Constantinescu O (1984). Taxonomic revision of Septoria-like fungi parasitic on<br />

Betulaceae. Transactions of the British Mycological Society 83: 383–398.<br />

Crous PW (1998). Mycosphaerella spp. and their anamorphs associated with leaf<br />

spot diseases of Eucalyptus. Mycologia Memoir 21. APS Press, MN, USA.<br />

Crous PW, Braun U (2003). Mycosphaerella and its anamorphs: 1. Names published<br />

in Cercospora and Passalora. <strong>CBS</strong> Biodiversity Series 1. <strong>CBS</strong>-<strong>KNAW</strong> Fungal<br />

Biodiversity Centre, Utrecht, The Netherlands.<br />

Crous PW, Braun U, Groenewald JZ (2007a). Mycosphaerella is polyphyletic.<br />

Studies in Mycology 58: 1–32.<br />

Crous PW, Braun U, Hunter GC, Wingfield MJ, Verkley GJM, et al. (2013).<br />

Phylogenetic lineages in Pseudocercospora. Studies in Mycology 75: 37–114.<br />

Crous PW, Braun U, Schubert K, Groenewald JZ (2007b). Delimiting Cladosporium<br />

from morphologically similar genera. Studies in Mycology 58: 33–56.<br />

Crous PW, Ferreira FA, Sutton BC (1997). A comparison of the fungal genera<br />

Phaeophleospora and Kirramyces (coelomycetes). South African Journal of<br />

Botany 63: 111–115.<br />

Crous PW, Groenewald JZ, Gams W (2003). Eyespot of cereals revisited: ITS<br />

phylogeny reveals new species relationships. European Journal of Plant<br />

Pathology 109: 841–850.<br />

Crous PW, Groenewald JZ, Smith IW (2007c). Phlogicylindrium eucalyptorum.<br />

Fungal Planet 20. <strong>CBS</strong>-<strong>KNAW</strong> Fungal Biodiversity Centre, Utrecht, The<br />

Netherlands.<br />

Crous PW, Kang JC, Braun U (2001). A phylogenetic redefinition of anamorph<br />

genera in Mycosphaerella based on ITS rDNA sequence and morphology.<br />

Mycologia 93: 1081–1101.<br />

Crous PW, Schoch CL, Hyde KD, Wood AR, Gueidan C, et al. (2009a). Phylogenetic<br />

lineages in the Capnodiales. Studies in Mycology 64: 17–47.<br />

Crous PW, Shivas RG, Wingfield MJ, Summerell BA, Rossman AY, et al. (2012a).<br />

Fungal Planet description sheets 128–127. Persoonia 29: 138–153.<br />

Crous PW, Slippers B, Wingfield MJ, Rheeder J, Marasas WFO, et al. (2006).<br />

Phylogenetic lineages in the Botryosphaeriaceae. Studies in Mycology 55:<br />

235–253.<br />

Crous PW, Summerell BA, Carnegie AJ, Wingfield MJ, Groenewald JZ (2009b).<br />

Novel species of Mycosphaerellaceae and Teratosphaeriaceae. Persoonia 23:<br />

119–146.<br />

Crous PW, Summerell BA, Carnegie AJ, Wingfield MJ, Hunter GC, et al. (2009c).<br />

Unravelling Mycosphaerella: do you believe in genera? Persoonia 23: 99–118.<br />

Crous PW, Tanaka K, Summerell BA, Groenewald JZ (2011). Additions to the<br />

Mycosphaerella complex. IMA Fungus 2: 49–64.<br />

388


Sizing up Septoria<br />

Crous PW, Verkley GJM, Christensen M, Castañeda-Ruiz RF, Groenewald JZ<br />

(2012b). How important are conidial appendages? Persoonia 28: 126–137.<br />

Crous PW, Verkley GJM, Groenewald JZ, Samson RA (2009d). <strong>CBS</strong> Laboratory<br />

Manual Series 1. <strong>CBS</strong>-<strong>KNAW</strong> Fungal Biodiversity Centre, Utrecht, The<br />

Netherlands.<br />

Crous PW, Wingfield MJ, Park RF (1991). Mycosphaerella nubilosa a synonym of M.<br />

molleriana. Mycological Research 95: 628–632.<br />

Cunfer BM (2000). Stagonospora and Septoria diseases of barley, oat, and rye.<br />

Canadian Journal of Plant Pathology 22: 332–348.<br />

Cunfer BM, Ueng PP (1999). Taxonomy and identification of Septoria and<br />

Stagonospora species on small-grain cereals. Annual Review of Phytopathology<br />

37: 267–284.<br />

Deighton FC (1987). New species of Pseudocercospora and Mycovellosiella, and<br />

new combinations into Pseudocercospora and Phaeoramularia. Transactions<br />

of the British Mycological Society 88: 365–391.<br />

Demaree JB, Wilcox MS (1943). The fungus causing the so-called “Septoria leafspot<br />

disease” of raspberry. Phytopathology 33: 986–1003.<br />

Desmazières JBHJ (1847). Quatorzième notice sur les plantes cryptogames<br />

récemment découvertes en France. Annales des Sciences Naturelles<br />

Botanique, Série 3, 8: 9–37, 172–193.<br />

Donk MA (1964). Nomina conervana proposita. Deuteromycetes. Regnum<br />

Vegetable 34: 7–15.<br />

Dyko BJ, Sutton BC (1979). Two new and unusual deuteromycetes. Transactions of<br />

the British Mycological Society 72: 411–417.<br />

Ellis MB (1971). Dematiaceous Hyphomycetes. Commonwealth Mycological<br />

Institute, Kew, Surrey, UK.<br />

Ellis MB (1976). More Dematiaceous Hyphomycetes. Commonwealth Mycological<br />

Institute, Kew, Surrey, UK.<br />

Ellis MB, Ellis JP (1997). Microfungi on Land Plants – An Identification Handbook.<br />

Richmond Publishing, England.<br />

Eriksson OE (1967). On graminicolous pyrenomycetes from Fennoscandia I, II, Ill.<br />

Phragmosporous and scolecosporous species. Arkiv för Botanik Series 2, 6:<br />

381–440.<br />

Evans HC (1984). The genus Mycosphaerella and its anamorphs Cercoseptoria,<br />

Dothistroma and Lecanosticta on pines. Mycological Papers 153: 1–102.<br />

Eyal Z, Sharen AL, Prescott JM, Ginkel M van (1987). The Septoria diseases of<br />

wheat: concepts and methods of disease management. Mexico, DF, CIMMYT.<br />

Farr DF (1991). Septoria species on cornus. Mycologia 83: 611–623.<br />

Farr DF (1992). Species of Septoria on the Fabaceae, subfamily Faboidae, tribe<br />

Genistae. Sydowia 44: 13–31.<br />

Farr DF, Rossman AY (2013). Fungal Databases, Systematic Mycology and<br />

Microbiology Laboratory, ARS, USDA. Retrieved May 3, 2013, from http://<br />

nt.ars-grin.gov/fungaldatabases/<br />

Feau N, Hamelin RC, Bernier L (2006). Attributes and congruence of three molecular<br />

data sets: Inferring phylogenies among Septoria related species from woody<br />

perennial plants. Molecular Phylogenetics and Evolution 40: 808–829.<br />

Ferreira FA (1989). Patologia Florestal. Principais Doenças Florestais No Brasil.<br />

Sociedade de Investigaçoes Florestais, Viçosa, MG, Brasil.<br />

Frank J, Crous PW, Groenewald JZ, Oertel B, Hyde KD, et al. (2010). Microcyclospora<br />

and Microcyclosporella: novel genera accommodating epiphytic fungi causing<br />

sooty blotch on apple. Persoonia 24: 93–105.<br />

Fukuhara M (2002). Three Phaeosphaeria species and Paraphaeosphaeria michotii<br />

isolated from Phragmites leaves in Osaka, Japan. Mycoscience 43: 275–382.<br />

Golzar H, Wang C (2012). First report of Phaeosphaeriopsis glaucopunctata as the<br />

cause of leaf spot and nectrosis on Ruscus aculeatus in Australia. Australasian<br />

Plant Disease Notes 7: 13–15.<br />

Goodwin SB (2004). Minimum phylogenetic coverage: An additional criterion to<br />

guide the selection of microbial pathogens for initial genomic sequencing<br />

efforts. Phytopathology 94: 800–804.<br />

Greene HC (1961). Notes on Wisconsin parasitic fungi. XXVII. Wisconsin Academy<br />

of Sciences, Arts and Letters 50: 141–161.<br />

Groenewald JZ, Nakashima C, Nishikawa J, Shin H-D, Park J-H, et al. (2013).<br />

Species concepts in Cercospora: spotting the weeds among the roses. Studies<br />

in Mycology 75: 115–170.<br />

Gruyter J de, Woudenberg JHC, Aveskamp MM, Verkley GJM, Groenewald JZ, Crous<br />

PW (2010). Systematic reappraisal of species in Phoma section Paraphoma,<br />

Pyrenochaeta and Pleurophoma. Mycologia 102: 1066–1081.<br />

Gruyter J de, Woudenberg JHC, Aveskamp MM, Verkley GJM, Groenewald JZ,<br />

Crous PW (2013). Redisposition of Phoma-like anamorphs in Pleosporales.<br />

Studies in Mycology 75: 1–36.<br />

Hall TA (1999). BioEdit: A user-friendly biological sequence alignment editor and<br />

analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series 41:<br />

95–98.<br />

Hawksworth DL, Crous PW, Redhead SA, Reynolds DR, Samson RA, et al. (2011).<br />

The Amsterdam Declaration on Fungal Nomenclature. IMA Fungus 2: 105–112.<br />

Huelsenbeck JP, Ronquist F (2001). MRBAYES: Bayesian inference of phylogenetic<br />

trees. Bioinformatics 17: 754–755.<br />

Inácio CA, Dianese JC (1998). Some foliicolous fungi on Tabebuia species.<br />

Mycological Research 102: 695–708.<br />

Jørstad I (1965). Septoria and septoroid fungi on dicotyleones in Norway. Oslo<br />

University Press, Oslo.<br />

Jørstad I (1967). Septoria and Septoroid fungi on Gramineae in Norway. Oslo<br />

University Press, Oslo.<br />

Kaneko S, Fujioka H, Zinno Y (1989). A new species of Septoria on Japanese black<br />

pine. Transactions of the Mycological Society of Japan 30: 463–466.<br />

Katoh K, Misawa K, Kuma K, Miyata T (2002). MAFFT: a novel method for rapid<br />

multiple sequence alignment based on fast Fourier transform. Nucleic Acids<br />

Research 30: 3059–3066.<br />

Lamprecht SC, Crous PW, Groenewald JZ, Tewoldemedhin YT, Marasas WFO<br />

(2011). Diaporthaceae associated with root rot of maize. IMA Fungus 2: 13–24.<br />

Lee S, Mel’nik V, Taylor JE, Crous PW (2004). Diversity of saprobic hyphomycetes<br />

on Proteaceae and Restionaceae from South Africa. Fungal Diversity 17:<br />

91–114.<br />

Li HY, Sun GY, Zhai XR, Batzer JC, Mayfield DA, et al. (2012). Dissoconiaceae<br />

associated with sooty blotch and flyspeck on fruits in China and the United<br />

States. Persoonia 28: 113–125.<br />

Liu JK, Phookamsak R, Mingkhuan M, Wikee S, Li YM, et al. (2012) Towards a<br />

natural classification of Botryosphaeriales. Fungal Diversity 57: 149–210.<br />

Liu Y, Whelen S, Hall B (1999). Phylogenetic relationships among ascomycetes:<br />

evidence from an RNA polymerse II subunit. Molecular Biology and Evolution<br />

16: 1799–1808.<br />

Lombard L, Crous PW, Wingfield BD, Wingfield MJ (2010). Species concepts in<br />

Calonectria (Cylindrocladium). Studies in Mycology 66: 1–13.<br />

Marincowitz S, Crous PW, Groenewald JZ, Wingfield MJ (2008). Microfungi<br />

occurring on Proteaceae in the fynbos. <strong>CBS</strong> Biodiversity Series 7. <strong>CBS</strong>-<strong>KNAW</strong><br />

Fungal Biodiversity Centre, Utrecht, The Netherlands.<br />

Mason-Gamer RJ, Kellogg EA (1996). Testing for phylogenetic conflict among<br />

molecular data sets in the tribe Triticeae (Gramineae). Systematic Biology 45:<br />

524–545.<br />

McDonald MC, Razavi M, Friesen TL, Brunner PC, McDonald BA (2012).<br />

Phylogenetic and population genetic analyses of Phaeosphaeria nodorum and<br />

its close relatives indicate cryptic species and an origin in the Fertile Crescent.<br />

Fungal Genetics and Biology 49: 882–895.<br />

Michaelides T, Morgan DP, Doster MA (1995). Foliar and fruit fungal diseases. In:<br />

Pistachio Production (L Ferguson, ed). Center for Fruit and Nut Crop Research<br />

and Information, Pomology Department, University of California, Davis CA.:<br />

148–159.<br />

Monod M (1983). Monographie taxonomique des gnomoniacées ascomycètes de<br />

l’ordre des Diaporthales. Sydowia 9: 1–315.<br />

Nag Raj TR (1993). Coelomycetous anamorphs with appendage-bearing conidia.<br />

Mycologue Publications, Waterloo, Ontario.<br />

Niekerk JM van, Groenewald JZ, Verkley GJM, Fourie PH, Wingfield MJ, Crous PW<br />

(2004). Systematic reappraisal of Coniella and Pilidiella, with specific reference<br />

to species occurring on Eucalyptus and Vitis in South Africa. Mycological<br />

Research 108: 283–303.<br />

Nylander JAA (2004). MrModeltest v2. Program distributed by the author.<br />

Evolutionary Biology Centre Uppsala University 2: 1–2.<br />

O’Donnell K, Kistler HC, Cigelnik E, Ploetz RC (1998). Multiple evolutionary origins<br />

of the fungus causing Panama disease of banana: Concordant evidence from<br />

nuclear and mitochondrial gene genealogies. Proceedings of the National<br />

Academy of Sciences of the United States of America 95: 2044–2049.<br />

Petrak F (1957). Über die auf Aconitum vorkommenden Arten der gattung Septoria.<br />

Sydowia 11: 375–379.<br />

Petrak F, Sydow H (1927). Die Gattungen der Pyrenomyzeten, Sphaeropsideen<br />

und Melanconieen. 1. Teil. Die phaeosporen Sphaeropsideen und die Gattung<br />

Macrophoma. Repertorium specierum novarum regni vegetabilis, Beihefte Bd<br />

42.<br />

Phillips AJL, Alves A, Pennycook SR, Johnston PR, Ramaley A, et al. (2008).<br />

Resolving the phylogenetic and taxonomic status of dark-spored teleomorph<br />

genera in the Botryosphaeriaceae. Persoonia 21: 29–55.<br />

Priest MJ (2006). Fungi of Australia: Septoria. ABRS, Canberra: CSIRO publishing,<br />

Melbourne, Australia.<br />

Punithalingam E (1976). Septoria chrysanthemella. CMI Descriptions of Pathogenic<br />

Fungi and Bacteria 669. Commonwealth Mycological Institute, Kew, UK<br />

Quaedvlieg W, Groenewald JZ, de Jesús Yáñez-Morales M, Crous PW (2012). DNA<br />

barcoding of Mycosphaerella species of quarantine importance to Europe.<br />

Persoonia 29: 101–115.<br />

Quaedvlieg W, Kema GHJ, Groenewald JZ, Verkley GJM, Seifbarghi S, et al. (2011).<br />

Zymoseptoria gen. nov.: a new genus to accommodate Septoria-like species<br />

occurring on graminicolous hosts. Persoonia 26: 57–69.<br />

Rayner RW (1970). A mycological colour chart. CMI and British Mycological Society.<br />

Kew, UK.<br />

Rogers DP (1949). Nomina conservanda proposita and nomina confusa – Fungi:<br />

Nomina conservanda. Farlowia 3: 425–493.<br />

www.studiesinmycology.org<br />

389


Quaedvlieg et al.<br />

Saccardo PA (1884). Sylloge Fungorum: Sylloge Sphaeropsidearum et<br />

Melanconiearum 3: 542. Padova, Italy.<br />

Saccardo PA (1895). Sylloge Fungorum: Supplementum Universale, Pars III 11:<br />

542. Padova, Italy.<br />

Saccardo PA, Saccardo D (1906). Sylloge Fungorum: Supplementum Universale,<br />

Pars VII 18: 1–828. Padova, Italy.<br />

Saccardo PA, Trotter A (1913). Sylloge Fungorum: Supplementum Universale, Pars<br />

IX 22: 1–1612. Padova, Italy.<br />

Shin HD (1995). New fungal diseases of economic resource plants in Korea (II).<br />

Korean Journal of Plant Pathology 11: 120–131.<br />

Shin HD, Sameva EF (2002). Taxonomic notes on the genus Septoria in Korea (II).<br />

Mycotaxon 83: 287–300.<br />

Shin HD, Sameva EF (2004). Septoria in Korea. National Institute of Agricultural<br />

Science and Technology, Republic of Korea.<br />

Shoemaker RA, Babcock CE (1989). Phaeosphaeria. Canadian Journal of Botany<br />

67: 1500–1599.<br />

Sivanesan A (1984). The Bitunicate Ascomycetes and their anamorphs. J. Cramer,<br />

Vaduz, Germany.<br />

Solomon PS, Lowe RGT, Tan KC, Waters ODC, Oliver RP (2006). Stagonospora<br />

nodorum: cause of stagonospora nodorum blotch of wheat. Molecular Plant<br />

Pathology 7: 147–156.<br />

Stukenbrock EH, Quaedvlieg W, Javan-Nikhah M, Zala M, Crous PW, McDonald<br />

BA (2012). Zymoseptoria ardabilia and Z. pseudotritici, two progenitor species<br />

of the septoria tritici leaf blotch fungus Z. tritici (synonym: Mycosphaerella<br />

graminicola). Mycologia 104: 1397–1407.<br />

Summerell BA, Groenewald JZ, Carnegie AJ, Summerbell RC, Crous PW (2006).<br />

Eucalyptus microfungi known from culture. 2. Alysidiella, Fusculina and<br />

Phlogicylindrium genera nova, with notes on some other poorly known taxa.<br />

Fungal Diversity 23: 323–350.<br />

Sutton B, Pollack F (1974). Microfungi on Cercocarpus. Mycopathologia 52: 331–<br />

351.<br />

Sutton BC, Pascoe IG (1987). Septoria species on Acacia. Transactions of the<br />

British Mycological Society 89: 521–532.<br />

Sutton BC, Pascoe IG (1989). Some Septoria species on native Australian plants.<br />

Studies in Mycology 31: 177–186.<br />

Sutton BC, Swart HJ (1986). Australian leaf-inhabiting fungi XXIII. Colletogloeum<br />

species and similar fungi on Acacia. Transactions of the British Mycological<br />

Society 87: 93–102.<br />

Sutton BC (1964). Coelomycetes III. Annellolacinia gen. nov., Aristastoma,<br />

Phaecytostroma, Seimatosporium, etc. Mycological Papers 64. Commonwealth<br />

Mycological Institute, Kew, UK.<br />

Sutton BC (1977). Coelomycetes VI. Nomenclature of generic names proposed for<br />

Coelomycetes. Mycological Papers 141. Commonwealth Mycological Institute,<br />

Kew, UK.<br />

Sutton BC (1980). The coelomycetes. Fungi imperfecti with pycnidia, acervuli and<br />

stromata. Commonwealth Mycological Institute, Kew, UK.<br />

Teterevnikova-Babayan DN (1987). Fungi of the genus Septoria in the U.S.S.R.<br />

Akademiya Nauk Armyanskoi SSR, Yerevan.<br />

Verkley GJM (1999). A monograph of the genus Pezicula and its anamorphs.<br />

Studies in Mycology 44: 1–180.<br />

Verkley GJM, Priest MJ (2000). Septoria and similar coelomycetous anamorphs of<br />

Mycosphaerella. Studies in Mycology 45: 123–128.<br />

Verkley GJM, Crous PW, Groenewald JZ, Braun U, Aptroot A (2004a). Mycosphaerella<br />

punctiformis revisited: morphology, phylogeny, and epitypification of the type<br />

species of the genus Mycosphaerella (Dothideales, Ascomycota). Mycological<br />

Research 108: 1271–1282.<br />

Verkley GJM, Silva da M, Wicklow DT, Crous PW (2004b). Paraconiothyrium, a new<br />

genus to accommodate the mycoparasite Coniothyrium minitans, anamorphs of<br />

Paraphaeosphaeria, and four new species. Studies in Mycology 50: 323–335.<br />

Verkley GJM, Starink-Willemse M, van Iperen A, Abeln ECA (2004c). Phylogenetic<br />

analyses of Septoria species based on the ITS and LSU-D2 regions of nuclear<br />

ribosomal DNA. Mycologia 96: 558–571.<br />

Verkley GJM, Quaedvlieg W, Shin HD, Crous PW (2013). A new approach to species<br />

delimitation in Septoria. Studies in Mycology 75: 213–305.<br />

Vilgalys R, Hester M. 1990. Rapid genetic identification and mapping of<br />

enzymatically amplified ribosomal DNA from several Cryptococcus species.<br />

Journal of Bacteriology 172: 4238–4246.<br />

Wakefield EM (1940). Nomina generica conservanda. Transactions of the British<br />

Mycological Society 24: 282–293.<br />

Walker J, Sutton BC, Pascoe IG (1992). Phaeoseptoria eucalypti and similar fungi<br />

on Eucalyptus, with description of Kirramyces gen. nov. (Coelomycetes).<br />

Mycological Research 96: 911–924.<br />

White TJ, Bruns T, Lee S, Taylor J (1990). Amplification and direct sequencing of<br />

fungal ribosomal RNA genes for phylogenetics. In: PCR Protocols: a guide to<br />

methods and applications (Innis MA, Gelfand DH, Sninsky JJ, White TJ, eds).<br />

Academic Press, San Diego, California: 315–322.<br />

Wingfield MJ, De Beer ZW, Slippers B, Wingfield BD, Groenewald JZ, et al. (2012).<br />

One fungus, one name promotes progressive plant pathology. Molecular Plant<br />

Pathology 13: 604–613.<br />

Yoo J-J, Eom A-H (2012). Molecular identification of endophytic fungi isolated<br />

from needle leaves of conifers in Bohyeon Mountain, Korea. Mycobiology 40:<br />

231–235.<br />

Zhang Y, Crous PW, Schoch CL, Hyde KD (2012). Pleosporales. Fungal Diversity<br />

53: 1–221.<br />

390


INDEX OF FUNGAL NAMES<br />

Alphabetical list of fungal species, genera and families treated in<br />

the Taxonomy sections of the included manuscripts.<br />

A<br />

Acicuseptoria 376–377<br />

Acicuseptoria rumicis 376–377<br />

Allantozythia 384<br />

Allewia 183<br />

Allewia eureka 193<br />

Allewia proteae 193<br />

Alternaria 183, 186, 190, 193, 198, 207<br />

Alternaria abundans 189<br />

Alternaria acalyphicola 200<br />

Alternaria agerati 200<br />

Alternaria agripestis 200<br />

Alternaria allii 191<br />

Alternaria alternantherae 185<br />

Alternaria alternariae 206<br />

Alternaria alternarina 195<br />

Alternaria alternata 183, 185–186<br />

Alternaria anagallidis 200<br />

Alternaria angustiovoidea 187<br />

Alternaria anigozanthi 193<br />

Alternaria aragakii 200<br />

Alternaria araliae 199<br />

Alternaria arborescens 187, 201<br />

Alternaria arbusti 195<br />

Alternaria argyranthemi 207<br />

Alternaria argyroxiphii 200<br />

Alternaria armoraciae 189<br />

Alternaria aspera 201<br />

Alternaria atra 204<br />

Alternaria avenicola 198–199<br />

Alternaria axiaeriisporifera 193<br />

Alternaria bataticola 200<br />

Alternaria blumeae 200<br />

Alternaria bornmuelleri 206–207<br />

Alternaria botryospora 193<br />

Alternaria botrytis 206<br />

Alternaria brassicae 202, 204, 207<br />

Alternaria brassicae var. tabaci 187<br />

Alternaria brassicae-pekinensis 204<br />

Alternaria brassicicola 188, 197<br />

Alternaria breviramosa 189<br />

Alternaria burnsii 187<br />

Alternaria caespitosa 195<br />

Alternaria calendulae 200<br />

Alternaria californica 196<br />

Alternaria calycipyricola 198–199<br />

Alternaria cantlous 204<br />

Alternaria capsici 200–201<br />

Alternaria capsici-annui 206<br />

Alternaria caricis 197<br />

Alternaria carotiincultae 202<br />

Alternaria carthami 200<br />

Alternaria cassiae 200<br />

Alternaria celosiae 185<br />

Alternaria celosiicola 185<br />

Alternaria cerealis 187<br />

Alternaria cetera 188–189<br />

Alternaria chartarum 201<br />

Alternaria chartarum f. stemphylioides 201<br />

Alternaria cheiranthi 189<br />

Alternaria chlamydospora 190, 199<br />

Alternaria chlamydosporigena 190<br />

Alternaria “chlamydosporum” 199<br />

Alternaria chrysanthemi 204<br />

Alternaria cichorii 200<br />

Alternaria cinerariae 202<br />

Alternaria cinerea 207<br />

Alternaria cirsinoxia 200<br />

Alternaria citriarbusti 187<br />

Alternaria citrimacularis 187<br />

Alternaria colombiana 187<br />

Alternaria concatenata 201<br />

Alternaria conjuncta 196<br />

Alternaria conoidea 188<br />

Alternaria “consortiale” 204<br />

Alternaria consortialis 204<br />

Alternaria crassa 200<br />

Alternaria cretica 200<br />

Alternaria cucumerina 200<br />

Alternaria cucurbitae 204<br />

Alternaria cumini 193<br />

Alternaria cyphomandrae 201<br />

Alternaria danida 201<br />

Alternaria dauci 201<br />

Alternaria daucicaulis 196<br />

Alternaria daucifollii 187<br />

Alternaria dennisii 207<br />

Alternaria destruens 187<br />

Alternaria dianthicola 190, 193–194<br />

Alternaria dichondrae 201<br />

Alternaria didymospora 199<br />

Alternaria dumosa 187<br />

Alternaria elegans 190<br />

Alternaria ellipsoidea 189, 193<br />

Alternaria embellisia 190–191<br />

Alternaria eryngii 198–199<br />

Alternaria ethzedia 196<br />

Alternaria euphorbiicola 201<br />

Alternaria eureka 193<br />

Alternaria frumenti 196<br />

Alternaria fulva 207<br />

Alternaria gaisen 187<br />

Alternaria geniostomatis 193<br />

Alternaria gomphrenae 185<br />

Alternaria gossypii 189<br />

Alternaria gossypina 186<br />

Alternaria graminicola 196<br />

Alternaria grandis 201<br />

Alternaria grisae 186<br />

Alternaria grossulariae 186<br />

Alternaria gypsophilae 193<br />

Alternaria hawaiiensis 201<br />

Alternaria helianthiinficiens 207<br />

Alternaria “helianthinficiens” 207<br />

Alternaria herbiphorbicola 187<br />

Alternaria heterospora 204<br />

Alternaria hordeiaustralica 196<br />

www.studiesinmycology.org<br />

391


Alternaria hordeicola 196<br />

Alternaria humuli 196<br />

Alternaria hyacinthi 193<br />

Alternaria incomplexa 196<br />

Alternaria indefessa 189<br />

Alternaria infectoria 194, 196, 198<br />

Alternaria intercepta 196<br />

Alternaria iridis 186<br />

Alternaria japonica 188, 197<br />

Alternaria juxtiseptata 193<br />

Alternaria kikuchiana 187<br />

Alternaria leptinellae 193<br />

Alternaria leucanthemi 204<br />

Alternaria limaciformis 199<br />

Alternaria limicola 201<br />

Alternaria limoniasperae 187<br />

Alternaria lini 186<br />

Alternaria linicola 201<br />

Alternaria lolii 193<br />

Alternaria longipedicellata 201<br />

Alternaria longipes 187<br />

Alternaria macrospora 201<br />

Alternaria malorum 189<br />

Alternaria malvae 186<br />

Alternaria maritima 186<br />

Alternaria matthiolae 197<br />

Alternaria merytae 196<br />

Alternaria metachromatica 196<br />

Alternaria mimicula 188<br />

Alternaria molesta 199<br />

Alternaria mouchaccae 199<br />

Alternaria multiformis 204<br />

Alternaria multirostrata 201<br />

Alternaria nelumbii 186<br />

Alternaria nepalensis 197<br />

Alternaria nitrimali 201<br />

Alternaria nobilis 193<br />

Alternaria novae-zelandiae 196<br />

Alternaria obclavata 189<br />

Alternaria obovoidea 204<br />

Alternaria oregonensis 196<br />

Alternaria oudemansii 206<br />

Alternaria oxytropis 207<br />

Alternaria panax 198–199<br />

Alternaria papavericola 190<br />

Alternaria papaveris 190<br />

Alternaria passiflorae 201<br />

Alternaria peglionii 194<br />

Alternaria penicillata 189–190<br />

Alternaria perangusta 187<br />

Alternaria perpunctulata 185<br />

Alternaria petroselini 202<br />

Alternaria photistica 194, 198–199<br />

Alternaria phragmospora 199<br />

Alternaria planifunda 193<br />

Alternaria poonensis 201<br />

Alternaria porri 199, 201<br />

Alternaria porri f.sp. cichorii 200<br />

Alternaria postmessia 187<br />

Alternaria proteae 193<br />

Alternaria protenta 201<br />

Alternaria pseudorostrata 201<br />

Alternaria radicina 201–202<br />

Alternaria radicina var. petroselini 202<br />

Alternaria resedae 186, 188–189<br />

Alternaria rhadina 186<br />

Alternaria ricini 201<br />

Alternaria rostellata 201<br />

Alternaria saponariae 193<br />

Alternaria scirpicola 197–198<br />

Alternaria scirpinfestans 198<br />

Alternaria scirpivora 198<br />

Alternaria scorzonerae 201<br />

Alternaria sect. Alternantherae 185<br />

Alternaria sect. Alternata 185–186, 200<br />

Alternaria sect. Brassicicola 188–189<br />

Alternaria sect. Chalastospora 188<br />

Alternaria sect. Cheiranthus 189<br />

Alternaria sect. Crivellia 189–190<br />

Alternaria sect. Dianthicola 190, 193–194<br />

Alternaria sect. Embellisia 190, 207<br />

Alternaria sect. Embellisioides 193<br />

Alternaria sect. Eureka 193<br />

Alternaria sect. Gypsophilae 193<br />

Alternaria sect. Infectoriae 194<br />

Alternaria sect. Japonicae 188, 197<br />

Alternaria sect. Nimbya 197<br />

Alternaria sect. Panax 194, 198<br />

Alternaria sect. Phragmosporae 199<br />

Alternaria sect. Porri 199–200<br />

Alternaria sect. Pseudoulocladium 201<br />

Alternaria sect. Radicina 201<br />

Alternaria sect. Sonchi 202<br />

Alternaria sect. Teretispora 202<br />

Alternaria sect. Ulocladioides 189–190, 201, 204, 206<br />

Alternaria sect. Ulocladium 204, 206<br />

Alternaria sect. Undifilum 206–207<br />

Alternaria selini 202<br />

Alternaria septorioides 188–189<br />

Alternaria septospora 201<br />

Alternaria sesami 201<br />

Alternaria simsimi 190<br />

Alternaria slovaca 196<br />

Alternaria smyrnii 202<br />

Alternaria solani 201, 204<br />

Alternaria solani-nigri 201<br />

Alternaria “solani-nigrii” 201<br />

Alternaria soliaridae 207<br />

Alternaria solidaccana 188<br />

Alternaria sonchi 202<br />

Alternaria stemphylioides 201<br />

Alternaria steviae 201<br />

Alternaria subcucurbitae 204<br />

Alternaria subcylindrica 201<br />

Alternaria tagetica 201<br />

Alternaria tangelonis 188<br />

Alternaria tellustris 191<br />

Alternaria tenuis 187<br />

Alternaria tenuissima 188<br />

Alternaria terricola 206<br />

Alternaria thalictrigena 207<br />

Alternaria tomato 186<br />

Alternaria tomatophila 201<br />

Alternaria toxicogenica 188<br />

392


Alternaria triglochinicola 193<br />

Alternaria triticimaculans 196<br />

Alternaria triticina 196<br />

Alternaria tropica 201<br />

Alternaria tuberculata 206<br />

Alternaria tumida 193<br />

Alternaria turkisafria 188<br />

Alternaria vaccariae 193–194<br />

Alternaria vaccariicola 193–194<br />

Alternaria ventricosa 196<br />

Alternaria viburni 196<br />

Alternaria zinniae 201<br />

Ancylospora 74<br />

Ancylospora costi 74<br />

Aphanofalx 360–361<br />

Aphanofalx irregularis 361<br />

Aphanofalx mali 361<br />

Apocytospora 21<br />

Apocytospora visci 22<br />

Aposphaeria corallinolutea 28<br />

Aposphaeria fusco-maculans 25<br />

Aposphaeria populina 29<br />

Aposphaeria pulviscula 25<br />

Ascochyta aceris 294<br />

Ascochyta campanulae 245<br />

Ascochyta caulina 24<br />

Ascochyta galeopsidis 260<br />

Ascochyta heraclei 260<br />

Ascochyta hyalospora 24<br />

Ascochyta lysimachiae 269<br />

Ascochyta obiones 25<br />

Ascochyta petroselini 277<br />

Ascochytula obiones 25<br />

Asperisporium caricae 370<br />

Asteroma tiliae 26<br />

Asteromella 255, 295<br />

Asteromella lupini 22<br />

Asteromella tiliae 27<br />

Asteromidium 334<br />

Asteromidium imperspicuum 334<br />

Aureobasidium slovacum 196<br />

B<br />

Bakerophoma tracheiphila 22<br />

Batcheloromyces 63<br />

Baudoinea 63<br />

Beverwykella pulmonaria 29<br />

Blumeriella jaapii 336<br />

Botryomyces 183<br />

Botryomyces caespitosus 195<br />

Botryosphaeria 374<br />

Brachycladium 183<br />

Brachycladium papaveris 190<br />

Brachycladium penicillatum 190<br />

Byssothecium circinans 28<br />

C<br />

Capnobotryella 63<br />

Carlia latebrosa 294<br />

Caryophylloseptoria 233, 349<br />

www.studiesinmycology.org<br />

Caryophylloseptoria lychnidis 234, 349<br />

Caryophylloseptoria pseudolychnidis 235, 349<br />

Caryophylloseptoria silenes 235<br />

Caryophylloseptoria spergulae 236<br />

Catenulostroma 63<br />

Centrospora cantuariensis 61<br />

Cephalosporium chrysanthemi 21<br />

Cercocladospora 74<br />

Cercocladospora adinae 74<br />

Cercoseptoria 74<br />

Cercoseptoria balsaminae 79<br />

Cercoseptoria ligustrina 61<br />

Cercoseptoria pini-densiflorae 96<br />

Cercoseptoria pruni-persicae 99<br />

Cercoseptoria prunicola 98<br />

Cercoseptoria tinea 108<br />

Cercospora 67–68, 108, 144, 147–149, 151–152, 154–156,<br />

159, 161–165, 343, 350<br />

Cercospora abelmoschi 76<br />

Cercospora acaciae-mangii 164–165<br />

Cercospora achyranthis 143–144, 147, 159, 162<br />

Cercospora agavicola 144, 152, 162<br />

Cercospora albido-maculans 160<br />

Cercospora alchemillicola 144, 148, 158, 162–164, also see<br />

Cercospora cf. alchemillicola<br />

Cercospora althaeicola 144<br />

Cercospora althaeina 144, 146, 161, 164, 167<br />

Cercospora althaeina var. althaeae-officinalis 144<br />

Cercospora althaeina var. praecincta 144<br />

Cercospora amadelpha 92<br />

Cercospora angolensis 77<br />

Cercospora apii 144–145, 147–148, 153–154, 158, 160–161,<br />

163, 165, 167<br />

Cercospora apiicola 145, 165<br />

Cercospora araliae 78<br />

Cercospora armoraciae 144, 145–146, 148, 153, 161, 164, 167<br />

Cercospora “atramarginalis” 78<br />

Cercospora atriplicis 148<br />

Cercospora atrogrisea 146<br />

Cercospora atromaculans 78<br />

Cercospora atromarginalis 78<br />

Cercospora avicularis var. sagittati 159<br />

Cercospora barbareae 146<br />

Cercospora batatae 108<br />

Cercospora berteroae 146<br />

Cercospora beticola 145, 146–147, 152–153, 160, 165<br />

Cercospora bizzozeriana 146<br />

Cercospora bizzozeriana var. drabae 146<br />

Cercospora bondarzevii 148<br />

Cercospora brassicicola 146<br />

Cercospora bremeri 106<br />

Cercospora brunkii 147, also see Cercospora cf. brunkii<br />

Cercospora callicarpae 79<br />

Cercospora callicarpicola 79<br />

Cercospora camarae 146<br />

Cercospora campi-silii 147, 159, 162<br />

Cercospora canescens 147–148, 165–166<br />

Cercospora cantuariensis 61<br />

Cercospora capreolata 96<br />

Cercospora capsici 146, 148, 157<br />

Cercospora “cardaminae” 146<br />

Cercospora cardamines 146<br />

393


Cercospora caricae 370<br />

Cercospora catappae 79<br />

Cercospora celosiae 144, 148, 162–163<br />

Cercospora cercidis 80<br />

Cercospora cf. alchemillicola 144, 148, 158, 162–164<br />

Cercospora cf. brunkii 145, 147, 155, 157<br />

Cercospora cf. chenopodii 149, 152, 161, 163<br />

Cercospora cf. citrulina 150, 156<br />

Cercospora cf. coreopsidis 148, 152<br />

Cercospora cf. erysimi 153<br />

Cercospora cf. flagellaris 147, 155, 157, 161, 163<br />

Cercospora cf. helianthicola 150, 156–157<br />

Cercospora cf. ipomoeae 155–156, 161–162, 164, 167<br />

Cercospora cf. malloti 157, 164<br />

Cercospora cf. modiolae 153, 157<br />

Cercospora cf. nicotianae 157–158<br />

Cercospora cf. physalidis 144, 158, 162–163<br />

Cercospora cf. resedae 145, 159<br />

Cercospora cf. richardiicola 147, 156–157, 160–161, 164–165<br />

Cercospora cf. sigesbeckiae 144, 155–156, 159–161, 164–165<br />

Cercospora cf. zinniae 167<br />

Cercospora cheiranthi 145–146<br />

Cercospora chengtuensis 80<br />

Cercospora chenopodii 145, 148–149, also see Cercospora cf.<br />

chenopodii<br />

Cercospora chenopodii var. atriplicis patulae 148<br />

Cercospora chenopodii var. micromaculata 148<br />

Cercospora chinensis 150, 153<br />

Cercospora chionanthi-retusi 81<br />

Cercospora chionea 79<br />

Cercospora chrysanthemicola 81<br />

Cercospora circumscissa 99<br />

Cercospora cistinearum 160<br />

Cercospora citrullina 153, also see Cercospora cf. citrulina<br />

Cercospora coniogrammes 151<br />

Cercospora contraria 81<br />

Cercospora copallina 104<br />

Cercospora corchori 150, 151–152, 165<br />

Cercospora coreopsidis see Cercospora cf. coreopsidis<br />

Cercospora coriariae 82<br />

Cercospora cornicola 82<br />

Cercospora corylopsidis 82<br />

Cercospora “cotoneasteris” 82<br />

Cercospora cotoneastri 82<br />

Cercospora crassa 200<br />

Cercospora crepidis 164<br />

Cercospora cydoniae 84<br />

Cercospora cynanchi 159<br />

Cercospora daizu 162<br />

Cercospora delaireae 149, 152, 161–164<br />

Cercospora depazeoides 67<br />

Cercospora deutziae 163<br />

Cercospora difformis 166<br />

Cercospora dioscoreae-pyrifoliae 165<br />

Cercospora dispori 150, 153<br />

Cercospora dovyalidis 84<br />

Cercospora drabae 146<br />

Cercospora dubia 148<br />

Cercospora dubia var. atriplicis 148<br />

Cercospora dubia var. urbica 148<br />

Cercospora duplicata 96<br />

Cercospora eremochloae 68<br />

Cercospora erysimi 153, also see Cercospora cf. erysimi<br />

Cercospora eucommiae 67–68<br />

Cercospora euphorbiae-sieboldianae 153, 159<br />

Cercospora exosporioides 86<br />

Cercospora “fagariae” 110<br />

Cercospora fagaricola 110<br />

Cercospora fagopyri 154–156, 161, 166–167<br />

Cercospora flagellaris 155, also see Cercospora cf. flagellaris<br />

Cercospora flexuosa 106<br />

Cercospora fruticola 157<br />

Cercospora fukuokaensis 87<br />

Cercospora fuligena 87<br />

Cercospora ganjetica 159<br />

Cercospora glauca 87<br />

Cercospora guatemalensis 163<br />

Cercospora guianensis 87<br />

Cercospora hamamelidis 82<br />

Cercospora hayi 151, 164<br />

Cercospora helianthicola see Cercospora cf. helianthicola<br />

Cercospora helvola 167<br />

Cercospora helvola var. zebrina 167<br />

Cercospora hibisci 76<br />

Cercospora hibisci-manihotis 76<br />

Cercospora humuli 89<br />

Cercospora humuli-japonici 89<br />

Cercospora “hypticola” 94<br />

Cercospora hyptidicola 94–95<br />

Cercospora impatientis 147<br />

Cercospora ipomoeae 156, 164, also see Cercospora cf.<br />

ipomoeae<br />

Cercospora ipomoeae-pedis-caprae 164<br />

Cercospora ipomoeae-purpureae 108<br />

Cercospora ixeridis-chinensis 156<br />

Cercospora jacquiniana 161<br />

Cercospora jussiaeae 89<br />

Cercospora kaki 90<br />

Cercospora kakivora 90<br />

Cercospora kellermanii 144<br />

Cercospora kiggelariae 90<br />

Cercospora kikuchii 147, 155–156, 160–161, 164<br />

Cercospora krugeriana 159<br />

Cercospora kusanoi 106, 108<br />

Cercospora lactucae 156<br />

Cercospora lactucae-indicae 156<br />

Cercospora lactucae-sativae 152–153, 156, 165<br />

Cercospora lagerstroemiae 91<br />

Cercospora lagerstroemiae-subcostatae 91<br />

Cercospora lagerstroemiicola 91<br />

Cercospora langloisii 96<br />

Cercospora latens 91<br />

Cercospora lepidii 146<br />

Cercospora ligustrina 61<br />

Cercospora longispora 156<br />

Cercospora longissima 156<br />

Cercospora lonicericola 91<br />

Cercospora ludwigiae 89<br />

Cercospora lycii 148<br />

Cercospora lycopodis 95<br />

Cercospora lyoniae 91<br />

Cercospora lythracearum 91<br />

Cercospora malloti 157, 160, also see Cercospora cf. malloti<br />

Cercospora mercurialis 148, 157, 159<br />

394


Cercospora mercurialis var. annuae 157<br />

Cercospora mercurialis var. latvici 157<br />

Cercospora mercurialis var. multisepta 157<br />

Cercospora modiolae 157, also see Cercospora cf. modiolae<br />

Cercospora mori 106<br />

Cercospora myrti 92<br />

Cercospora myrticola 92<br />

Cercospora nasturtii 146<br />

Cercospora nasturtii subsp. barbareae 146<br />

Cercospora nicandrae 148<br />

Cercospora nicotianae 157, also see Cercospora cf. nicotianae<br />

Cercospora nigri 78<br />

Cercospora ocimicola 94<br />

Cercospora oenotherae 95<br />

Cercospora olivascens 158<br />

Cercospora pallida 96<br />

Cercospora paraguayensis 96<br />

Cercospora penicillata 67<br />

Cercospora penicillata f. chenopodii 148<br />

Cercospora persicae 68<br />

Cercospora physalidis 148, 158, also see Cercospora cf.<br />

physalidis<br />

Cercospora piaropi 155, 161<br />

Cercospora pileae 159<br />

Cercospora pileicola 153, 157, 158–159<br />

Cercospora pini-densiflorae 96<br />

Cercospora polygonacea 144, 154, 159<br />

Cercospora polygonaeae 159<br />

Cercospora polygoni-blumei 159<br />

Cercospora polygoni-caespitosi 159<br />

Cercospora praecincta 144<br />

Cercospora profusa 97<br />

Cercospora protearum var. leucadendri 91<br />

Cercospora pruni-persicae 99<br />

Cercospora pruni-yedoensis 98<br />

Cercospora prunicola 98–99<br />

Cercospora psophocarpicola 151<br />

Cercospora punctiformis 154, 159<br />

Cercospora punctiformis f. catalaunica 159<br />

Cercospora pyracanthae 100<br />

Cercospora ramularia 144<br />

Cercospora ranjita 101<br />

Cercospora resedae 160, also see Cercospora cf. resedae<br />

Cercospora rhoina 104<br />

Cercospora rhoina var. nigromaculans 104<br />

Cercospora richardiicola<br />

richardiicola<br />

Cercospora ricinella 149, 152, 160, 163<br />

Cercospora ricini 160<br />

Cercospora rigospora 78<br />

Cercospora rodmanii 156, 160–161, 164, 167<br />

Cercospora rumicis 145–146, 161, 167<br />

Cercospora saccardoana 92<br />

Cercospora salina 207<br />

Cercospora sciadophila 148<br />

Cercospora scirpicola 198<br />

Cercospora securinegae 106<br />

Cercospora senecionicola 161<br />

Cercospora senecionis 161<br />

Cercospora senecionis-grahamii 161<br />

156, 160, also see Cercospora cf.<br />

Cercospora senecionis-walkeri 154, 161<br />

Cercospora sigesbeckiae 161, also see Cercospora cf.<br />

sigesbeckiae<br />

Cercospora snelliana 106<br />

Cercospora sojina 67, 144, 147, 159, 162<br />

Cercospora solanacea 148<br />

Cercospora solani 148<br />

Cercospora solani-biflori 78<br />

Cercospora sp. A 162<br />

Cercospora sp. B 162<br />

Cercospora sp. C 148, 162<br />

Cercospora sp. D 148, 162<br />

Cercospora sp. E 153, 157, 162<br />

Cercospora sp. F 158, 162–163<br />

Cercospora sp. G 158, 162–163<br />

Cercospora sp. H 162–163<br />

Cercospora sp. I 144, 148, 158, 162–163<br />

Cercospora sp. J 148, 163<br />

Cercospora sp. K 149, 152, 161–163<br />

Cercospora sp. L 144, 146, 161, 164, 167<br />

Cercospora sp. M 144, 156, 160–161, 164<br />

Cercospora sp. N 160–161, 164<br />

Cercospora sp. O 144, 156, 160–161, 164<br />

Cercospora sp. P 144, 147, 156–157, 160–161, 164–165<br />

Cercospora sp. Q 144, 147–148, 156, 160–162, 164–165<br />

Cercospora sp. R 152, 165<br />

Cercospora sp. S 152, 157, 165<br />

Cercospora stanleyae 146<br />

Cercospora stephanandrae 108<br />

Cercospora stolziana 167<br />

Cercospora terminaliae 79<br />

Cercospora terminariae 79<br />

Cercospora thlaspi 146<br />

Cercospora “thlaspiae” 146<br />

Cercospora timorensis 108<br />

Cercospora tinea 108<br />

Cercospora tosensis 78<br />

Cercospora trinctatis 166<br />

Cercospora udagawana 108<br />

Cercospora vignicaulis 165–166<br />

Cercospora vignigena 150, 154, 165<br />

Cercospora violae 146, 161, 166–167<br />

Cercospora violae var. minor 166<br />

Cercospora violae-kiusianae 166<br />

Cercospora violae-tricoloris 166<br />

Cercospora “viteae” 108<br />

Cercospora viticicola 108<br />

Cercospora viticis 108<br />

Cercospora viticis-quinatae 108<br />

Cercospora weigelae 110<br />

Cercospora wildemanii 81<br />

Cercospora xanthoxyli 110<br />

Cercospora zeae-maydis 166–167<br />

Cercospora zebrina 144–146, 148, 161, 164, 166–167<br />

Cercospora zeina 167<br />

Cercospora zelkowae 110<br />

Cercospora zinniae see Cercospora cf. zinniae<br />

Cercosporella 71, 343<br />

Cercosporella chaenomelis 70–71<br />

Cercosporidium campi-silii 147<br />

Cercosporidium dubium 148<br />

Cercosporidium sojinum 162<br />

Cercosporina cydoniae 84<br />

Cercosporina drabae 146<br />

www.studiesinmycology.org<br />

395


Cercosporina kikuchii 156<br />

Cercosporina lythracearum 91<br />

Cercosporina ramularia 144<br />

Cercosporina ricinella 160<br />

Cercosporina sojina 162<br />

Cercosporina zebrina 167<br />

Cercosporiopsis araliae 78<br />

Cercosporiopsis profusa 97<br />

Cercostigmina protearum var. hakeae 88<br />

Cercostigmina protearum var. leucadendri 91<br />

Cercostigmina tinea 108<br />

Chaetodiplodia caulina 24<br />

Chaetosphaeronema 366<br />

Chaetosphaeronema hispidulum 366<br />

Chalastospora 183, 188–189<br />

Chalastospora cetera 189<br />

Chalastospora ellipsoidea 189<br />

Chalastospora gossypii 189<br />

Chalastospora obclavata 189<br />

Chiajaea hendersoniae 22<br />

Chmelia 183, 194<br />

Chmelia slovaca 196<br />

Ciferriella 335<br />

Ciferriella domingensis 335<br />

Cladosporiaceae 63<br />

Cladosporium 63<br />

Cladosporium gossypii 189<br />

Cladosporium herbarum 63<br />

Cladosporium malorum 189<br />

Clasterosporium mori 106, 108<br />

Clasterosporium scirpicola 198<br />

Clathrospora scirpicola 198<br />

Clathrospora typhicola 25<br />

Clisosporium fuckelii 25<br />

Clisosporium palmarum 24<br />

Colletogloeum 335<br />

Colletogloeum dalbergiae 335<br />

Colletogloeum sissoo 335<br />

Coniella 353<br />

Coniothyriaceae 23–24, 374<br />

Coniothyrium 374<br />

Coniothyrium carteri 23<br />

Coniothyrium dolichi 23<br />

Coniothyrium fuckelii 25<br />

Coniothyrium fuckelii var. sporulosum 25<br />

Coniothyrium glycines 23<br />

Coniothyrium minitans 26<br />

Coniothyrium minutum 23<br />

Coniothyrium multiporum 24<br />

Coniothyrium obiones 25<br />

Coniothyrium “obionis” 25<br />

Coniothyrium palmarum 24, 374<br />

Coniothyrium sidae 374<br />

Coniothyrium telephii 24<br />

Conoplea eryngii 199<br />

Cornucopiella 359<br />

Corynespora 381–382<br />

Corynespora cassiicola 382<br />

Corynespora leucadendri 382<br />

Corynespora mazei 382<br />

Crivellia 183, 189–190<br />

Crivellia papaveracea 190<br />

Cronartium flaccidum 385<br />

Cryptosphaeria glaucopunctata 366<br />

Cryptosporium aegopodii 238<br />

Cucurbitaria hendersoniae 22<br />

Cucurbitaria papaveracea 189–190<br />

Cucurbitariaceae 24<br />

Cylindrodochium 335<br />

Cylindroseptoria 358–360<br />

Cylindroseptoria ceratoniae 358–359<br />

Cylindroseptoria pistaciae 359–360<br />

Cylindrosporium 302, 335<br />

Cylindrosporium capsellae 70<br />

Cylindrosporium castaneae 353<br />

Cylindrosporium concentricum 336<br />

Cylindrosporium heraclei 260<br />

Cylindrosporium oculatum 345<br />

Cylindrosporium platanoidis 294<br />

Cylindrosporium pseudoplatani 294<br />

Cylindrosporium rubi 300, 302, 343<br />

Cylindrosporium ulmi 350<br />

Cylindrosporium umbelliferarum 260<br />

Cyphellophora 60<br />

Cyphellophora laciniata 60<br />

Cystocoleus 63<br />

Cytostagonospora 327, 354<br />

Cytostagonospora martiniana 354–355<br />

Cytostagonospora “photinicola” 354<br />

Cytostagonospora photiniicola 327, 354<br />

D<br />

Davidiella 63<br />

Davidiella populorum 345<br />

Davisoniella 63<br />

Dearnessia 327, 383<br />

Dearnessia apocyni 327<br />

Dendrophoma pleurospora 27<br />

Dendryphiella “arenaria” 208<br />

Dendryphiella arenariae 208<br />

Dendryphiella salina 207<br />

Dendryphion papaveris 190<br />

Dendryphion penicillatum 190<br />

Depazea cornicola 295<br />

Depazea frondicola 296<br />

Depazea nodorum 363<br />

Depazea scabiosicola 284<br />

Deuterophoma 21<br />

Deuterophoma tracheiphila 22<br />

Devriesia 63<br />

Diaporthe 373<br />

Didymella 336<br />

Didymellaceae 379<br />

Didymosphaeriaceae 31<br />

Diplodia 333<br />

Diplodia hyalospora 24<br />

Diplodina ellisii 24<br />

Diplodina obiones 25<br />

Diplodina “obionis” 25<br />

Diploplenodomus 21<br />

Dissoconiaceae 64, 358<br />

Dissoconium 64, 358<br />

Dissoconium aciculare 64<br />

396


Dothidea hysterioides 31<br />

Dothistroma 337, 353<br />

Dothistroma pini 337<br />

Dothistroma rhabdoclinis 348<br />

Dothistroma septosporum 337<br />

Dothistroma septosporum var. keniense 337<br />

E<br />

Elasticomyces 63<br />

Elosia 183<br />

Embellisia 183, 190–191, 193, 199<br />

Embellisia abundans 189<br />

Embellisia allii 190–191<br />

Embellisia annulata 208<br />

Embellisia chlamydospora 190<br />

Embellisia conoidea 188<br />

Embellisia dennisii 207<br />

Embellisia didymospora 199<br />

Embellisia eureka 193<br />

Embellisia hyacinthi 193<br />

Embellisia indefessa 189<br />

Embellisia leptinellae 193<br />

Embellisia lolii 193<br />

Embellisia novae-zelandiae 193<br />

Embellisia oxytropis 207<br />

Embellisia phragmospora 199<br />

Embellisia planifunda 193<br />

Embellisia proteae 193<br />

Embellisia “telluster” 191<br />

Embellisia tellustris 190–191<br />

Embellisia tumida 193<br />

Exosporium eryngianum 199<br />

Exosporium eryngii 199<br />

F<br />

Falciformispora lignatilis 28<br />

Friedmanniomyces 63<br />

Fusariella cladosporioides 92<br />

Fusicladium cynanchi 159<br />

G<br />

Gloeosporium betae 24<br />

H<br />

Helicominia 74<br />

Helicominia caperonia 74<br />

Helminthosporium allii 190–191<br />

Helminthosporium bornmuelleri 207<br />

Helminthosporium brassicicola 188<br />

Helminthosporium cheiranthi 189<br />

Helminthosporium eryngii 199<br />

Helminthosporium papaveris 190<br />

Helminthosporium septosporum 201<br />

Helminthosporium smyrnii 202<br />

Helminthosporium tenuissimum 188<br />

“Helmisporium” cheiranthi 189<br />

Hendersonia paludosa 378<br />

Hendersonia subgen. Stagonospora 333<br />

Heptameria circinans 28<br />

Heptameria scrophulariae 196<br />

Herpotrichia juniperi 29<br />

Heterospora 18<br />

Heterospora chenopodii 18<br />

Heterospora dimorphospora 18<br />

Hortea 63<br />

J<br />

Jahniella 327<br />

Jahniella bohemica 329<br />

K<br />

Kirstenboschia 385–386<br />

Kirstenboschia diospyri 385<br />

L<br />

Lecanosticta 354<br />

Lentitheciaceae 28, 327<br />

Leptophoma 18<br />

Leptophoma acuta 19<br />

Leptophoma doliolum 19<br />

Leptosphaerella oryzae 368<br />

Leptosphaeria 18–20, 274, 362, 378<br />

Leptosphaeria agnita 20–21<br />

Leptosphaeria avenaria 362<br />

Leptosphaeria biglobosa 21<br />

Leptosphaeria calvescens 24<br />

Leptosphaeria chenopodii-albi 18<br />

Leptosphaeria circinans 28<br />

Leptosphaeria clavata 24<br />

Leptosphaeria collinsoniae 21<br />

Leptosphaeria conferta 21<br />

Leptosphaeria congesta 21<br />

Leptosphaeria conoidea 18–19<br />

Leptosphaeria doliolum 18, 19–20<br />

Leptosphaeria doliolum subsp. conoidea 19<br />

Leptosphaeria doliolum subsp. errabunda 19<br />

Leptosphaeria doliolum subsp. pinguicula 18<br />

Leptosphaeria doliolum var. conoidea 18<br />

Leptosphaeria doliolum var. doliolum 20<br />

Leptosphaeria dryadis 20<br />

Leptosphaeria dryadophila 20<br />

Leptosphaeria errabunda 19<br />

Leptosphaeria etheridgei 19<br />

Leptosphaeria fallaciosa 22<br />

Leptosphaeria filamentosa 24<br />

Leptosphaeria hendersoniae 22<br />

Leptosphaeria libanotidis 22<br />

Leptosphaeria “libanotis” 22<br />

Leptosphaeria lindquistii 22<br />

Leptosphaeria macrocapsa 19<br />

Leptosphaeria macrospora 20<br />

Leptosphaeria maculans 20–22<br />

Leptosphaeria nitschkei 20<br />

Leptosphaeria nodorum 363<br />

Leptosphaeria pedicularis 19<br />

Leptosphaeria pimpinellae 22<br />

Leptosphaeria praetermissa 21<br />

www.studiesinmycology.org<br />

397


Leptosphaeria rostrata 20<br />

Leptosphaeria rubefaciens 19<br />

Leptosphaeria rusci 366<br />

Leptosphaeria sclerotioides 19<br />

Leptosphaeria scrophulariae 196<br />

Leptosphaeria sect. Eu-Leptosphaeria 20<br />

Leptosphaeria sect. Paraleptosphaeria 20<br />

Leptosphaeria senecionis 20<br />

Leptosphaeria slovacica 19<br />

Leptosphaeria sydowii 20<br />

Leptosphaeria veronicae 20<br />

Leptosphaeriaceae 18<br />

Leptosphaerulina oryzae 368<br />

Lewia 183, 194<br />

Lewia alternarina 195<br />

Lewia avenicola 198–199<br />

Lewia daucicaulis 196<br />

Lewia ethzedia 196<br />

Lewia eureka 193<br />

Lewia hordeiaustralica 196<br />

Lewia hordeicola 196<br />

Lewia infectoria 196<br />

Lewia intercepta 196<br />

Lewia photistica 198–199<br />

Lewia scrophulariae 196<br />

Lewia viburni 196<br />

M<br />

Macrodiplodia 333<br />

Macrospora scirpicola 198<br />

Macrospora scirpinfestans 198<br />

Macrospora scirpivora 198<br />

Macrospora typhicola 25<br />

Macrosporium 183<br />

Macrosporium anatolicum 200<br />

Macrosporium araliae 199<br />

Macrosporium bataticola 200<br />

Macrosporium brassicae 207<br />

Macrosporium calendulae 200<br />

Macrosporium cheiranthi 189<br />

Macrosporium cichorii 200<br />

Macrosporium consortiale 204<br />

Macrosporium cucumerinum 200<br />

Macrosporium euphorbiae 201<br />

Macrosporium longipes 187<br />

Macrosporium macrosporum 201<br />

Macrosporium nashi 187<br />

Macrosporium nobile 193<br />

Macrosporium porri 201<br />

Macrosporium ricini 201<br />

Macrosporium saponariae 193<br />

Macrosporium septosporum 201<br />

Macrosporium sesami 201<br />

Macrosporium smyrnii 202<br />

Macrosporium solani 201<br />

Macrosporium tenuissimum 188<br />

Macrosporium vaccariae 194<br />

Massaria eburnea 28<br />

Massarina eburnea 28<br />

Massarinaceae 28<br />

Massariosphaeria clavata 24<br />

Medicopsis 28<br />

Medicopsis romeroi 28<br />

Megaloseptoria 329, 332<br />

Megaloseptoria mirabilis 329<br />

Melanomma dryadis 20<br />

Melanomma hendersoniae 22<br />

Melanomma pulvis-pyrius 30<br />

Melanomma vindelicorum 28<br />

Melanommataceae 28<br />

Melogramma rubronotatum 31<br />

Metasphaeria macrospora 20<br />

Microcyclospora 63–64<br />

Microcyclospora pomicola 64<br />

Microcyclospora quercina 64<br />

Microcyclosporella 65<br />

Microcyclosporella mali 65<br />

Microdiplodia henningsii 24<br />

Microdiplodia palmarum 24<br />

Microsphaeropsis fuckelii 25<br />

Miuraea 67–68<br />

Miuraea degenerans 68<br />

Miuraea persicae 68<br />

Montagnulaceae 25<br />

Muyocopron 375<br />

Muyocopronaceae 375<br />

Mycocentrospora 61<br />

Mycocentrospora acerina 61<br />

Mycocentrospora cantuariensis 61<br />

Mycopappus 61<br />

Mycopappus aceris 61<br />

Mycosphaerella 274–275, 277, 336, 339<br />

“Mycosphaerella” acaciigena 74<br />

Mycosphaerella aconitorum 275<br />

Mycosphaerella aegopodii 238–239<br />

Mycosphaerella antonovii 275<br />

Mycosphaerella arbuticola 357–358<br />

Mycosphaerella berberidis 345<br />

“Mycosphaerella” capsellae 70<br />

Mycosphaerella chaenomelis 70–71<br />

Mycosphaerella coacervata 252<br />

Mycosphaerella contraria 81<br />

“Mycosphaerella” crystallina 74<br />

“Mycosphaerella” gibsonii 96<br />

Mycosphaerella heimii 74<br />

“Mycosphaerella” heimioides 74<br />

“Mycosphaerella” holualoana 74<br />

Mycosphaerella hyperici 299<br />

Mycosphaerella hypericina 299<br />

“Mycosphaerella” irregulariramosa 74<br />

Mycosphaerella isariphora 290–291<br />

“Mycosphaerella” konae 74<br />

Mycosphaerella latebrosa 295, 299<br />

Mycosphaerella podagrariae 238–239<br />

Mycosphaerella populi 296<br />

Mycosphaerella populicola 296, 346<br />

Mycosphaerella populorum 296, 345<br />

“Mycosphaerella” pruni-persicae 68<br />

Mycosphaerella punctiformis 299, 339, 354<br />

Mycosphaerella rubi 300<br />

Mycosphaerella stigmina-platani 99–100<br />

Mycosphaerella ulmi 350<br />

Mycosphaerellaceae 61, 65, 327, 334–335<br />

398


N<br />

Neofabraea alba 384<br />

Neophaeosphaeria filamentosa 24<br />

Neoseptoria 352, 356<br />

Neoseptoria caricis 352–353<br />

Neosetophoma 370<br />

Neosetophoma samarorum 370<br />

Neostagonospora 364<br />

Neostagonospora caricis 364–365<br />

Neostagonospora elegiae 365<br />

Neottiosporina paspali 28<br />

Nigrograna 31<br />

Nigrograna mackinnonii 31<br />

Nimbya 183, 185, 197<br />

Nimbya alternantherae 185<br />

Nimbya caricis 197<br />

Nimbya celosiae 185<br />

Nimbya gomphrenae 185<br />

Nimbya perpunctulata 185<br />

Nimbya scirpicola 197–198<br />

Nimbya scirpinfestans 197–198<br />

Nimbya scirpivora 197–198<br />

P<br />

Pallidocercospora 73–74<br />

Pallidocercospora acaciigena 74<br />

Pallidocercospora crystallina 74<br />

Pallidocercospora heimii 74<br />

Pallidocercospora heimioides 74<br />

Pallidocercospora holualoana 74<br />

Pallidocercospora irregulariramosa 74<br />

Pallidocercospora konae 74<br />

Pantospora 74<br />

Pantospora guazumae 74<br />

Papulaspora pulmonaria 29<br />

Paracercospora 65, 67<br />

Paracercospora egenula 65<br />

Paraconiothyrium 25–26, 374<br />

Paraconiothyrium estuarinum 25<br />

Paraconiothyrium flavescens 25<br />

Paraconiothyrium fuckelii 25<br />

Paraconiothyrium fusco-maculans 25<br />

Paraconiothyrium lini 26<br />

Paraconiothyrium maculicutis 26<br />

Paraconiothyrium minitans 26<br />

Paraconiothyrium sporulosum 25<br />

Paraconiothyrium tiliae 26<br />

Paradendryphiella 183, 207<br />

Paradendryphiella arenariae 208<br />

Paradendryphiella salina 207<br />

Paraleptosphaeria 20<br />

Paraleptosphaeria dryadis 20<br />

Paraleptosphaeria macrospora 20<br />

Paraleptosphaeria nitschkei 20<br />

Paraleptosphaeria orobanches 20<br />

Paraleptosphaeria praetermissa 21<br />

Paraphaeosphaeria 374<br />

Paraphaeosphaeria filamentosa 24<br />

Paraphaeosphaeria glaucopunctata 366<br />

Paraphaeosphaeria michotii 28<br />

Paraphaeosphaeria rusci 366<br />

Paraphoma 27, 370<br />

Paraphoma dioscoreae 370–371<br />

Paraphoma radicina 370<br />

Parastagonospora 362<br />

Parastagonospora avenae 362<br />

Parastagonospora avenae f.sp. avenaria 362<br />

Parastagonospora avenae f.sp. tritici 362<br />

Parastagonospora caricis 362<br />

Parastagonospora nodorum 362, 363–364<br />

Parastagonospora poae 363–364<br />

Passalora 67, 79, 82, 99, 144, 147, 149, 161–162, 352<br />

Passalora bacilligera 352<br />

Passalora brachycarpa 65<br />

Passalora campi-silii 147<br />

Passalora circumscissa 99<br />

Passalora dioscoreae 352<br />

Passalora dubia 148–149<br />

Passalora eucalypti 76<br />

Passalora hamamelidis 82<br />

Passalora leptophlebiae 76<br />

Passalora protearum 91<br />

Passalora senecionicola 161<br />

Passalora sojina 67, 162<br />

Passeriniella circinans 28<br />

Penidiella 63<br />

Perisporium funiculatum 30<br />

Phaeomycocentrospora 61<br />

Phaeomycocentrospora cantuariensis 61<br />

Phaeophleospora 354<br />

Phaeoramularia angolensis 77<br />

Phaeoseptoria 332, 367–368<br />

Phaeoseptoria oryzae 368, 370<br />

Phaeoseptoria papayae 332, 367–369<br />

Phaeosphaeria 362, 367–368<br />

Phaeosphaeria avenaria 362<br />

Phaeosphaeria nodorum 363<br />

Phaeosphaeria oryzae 367–368, 370<br />

Phaeosphaeria papayae 368<br />

Phaeosphaeria silvatica 375<br />

Phaeosphaeriopsis 365–366<br />

Phaeosphaeriopsis glaucopunctata 366<br />

Phaeothecoidea 63<br />

Phialophora chrysanthemi 21<br />

Phleospora bresadolae 252<br />

Phleospora castanicola 353<br />

Phleospora hyperici 298<br />

Phleospora petroselini 277<br />

Phleospora platanoidis 295<br />

Phleospora quercicola 347<br />

Phloeospora 67, 70, 336, 350, 352<br />

Phloeospora aceris 294<br />

Phloeospora aegopodii 238<br />

Phloeospora azaleae 345<br />

Phloeospora heraclei 260<br />

Phloeospora melissae 272<br />

Phloeospora oxyacanthae 345<br />

Phloeospora pseudoplatani 294<br />

Phloeospora samarigena 295<br />

Phloeospora ulmi 70, 336, 350<br />

Phloeospora villosa 298<br />

www.studiesinmycology.org<br />

399


Phloeosporella 336<br />

Phloeosporella ceanothi 336<br />

Phloeosporella padi 336<br />

Phlogicylindrium 386<br />

Phlogicylindrium eucalypti 386<br />

Phlogicylindrium eucalyptorum 386<br />

Phlyctaeniella 337<br />

Phlyctaeniella polonica 337<br />

Phlyctema 384–385<br />

Phlyctema vagabunda 384<br />

Phlyctema vincetoxici 384–385<br />

Phoma 23, 27, 375, 378<br />

Phoma acuta 19<br />

Phoma acuta subsp. acuta f.sp. “phlogis” 19<br />

Phoma acuta subsp. amplior 18–19<br />

Phoma acuta subsp. errabunda 19<br />

Phoma agnita 21<br />

Phoma apiicola 23<br />

Phoma betae 24<br />

Phoma “capitula” 30<br />

Phoma capitulum 30<br />

Phoma carteri 23<br />

Phoma cava 23<br />

Phoma chenopodii 18<br />

Phoma chenopodiicola 18<br />

Phoma conferta 21<br />

Phoma congesta 21<br />

Phoma dimorphospora 18<br />

Phoma doliolum 18–19<br />

Phoma drobnjacensis 23<br />

Phoma enteroleuca 21<br />

Phoma enteroleuca var. enteroleuca 21<br />

Phoma enteroleuca var. influorescens 22<br />

Phoma errabunda 19<br />

Phoma etheridgei 19<br />

Phoma exigua var. exigua 18<br />

Phoma fallens 25<br />

Phoma flavescens 25<br />

Phoma flavigena 25<br />

Phoma fusco-maculans 25<br />

Phoma glaucispora 25<br />

Phoma glycines 23<br />

Phoma glycinicola 23<br />

Phoma herbicola 19<br />

Phoma heteromorphospora 18<br />

Phoma hoehnelii 19<br />

Phoma hoehnelii subsp. amplior 18<br />

Phoma hoehnelii var. hoehnelii 19<br />

Phoma hoehnelii var. urticae 19<br />

Phoma incompta 25<br />

Phoma intricans 22<br />

Phoma korfii 20–21<br />

Phoma leonuri 19<br />

Phoma lingam 22<br />

Phoma lini 26<br />

Phoma lupini 22<br />

Phoma macdonaldii 22<br />

Phoma macrocapsa 19<br />

Phoma minuta 23<br />

Phoma minutispora 31<br />

Phoma multipora 24<br />

Phoma oryzae 31<br />

Phoma ostiolata 30<br />

Phoma ostiolata var. brunnea 30<br />

Phoma ostiolata var. ostiolata 30<br />

Phoma “pedicularidis” 19<br />

Phoma pedicularis 19<br />

Phoma phlogis 19<br />

Phoma pimpinellae 21–22<br />

Phoma pratorum 24<br />

Phoma rostrata 20<br />

Phoma rostrupii 22<br />

Phoma rubefaciens 19<br />

Phoma sanguinolenta 22<br />

Phoma sclerotioides 19<br />

Phoma sect. Heterospora 18<br />

Phoma sect. Plenodomus 21<br />

Phoma senecionis 20<br />

Phoma septicidalis 24<br />

Phoma sydowii 20<br />

Phoma telephii 24<br />

Phoma tracheiphila 22<br />

Phoma tracheiphila f.sp. chrysanthemi 21<br />

Phoma typharum 25<br />

Phoma typhina 25<br />

Phoma valerianae 23<br />

Phoma variospora 18<br />

Phoma vasinfecta 21<br />

Phoma veronicae 20<br />

Phoma veronicicola 20<br />

Phoma violae-tricoloris 23<br />

Phoma violicola 23<br />

Phoma wasbiae 21, 23<br />

Phoma westendorpii 18<br />

Phomopsis 262<br />

Phyllosticta betae 24<br />

Phyllosticta chenopodii 18<br />

Phyllosticta dimorphospora 18<br />

Phyllosticta glaucispora 25<br />

Phyllosticta oleandri 25<br />

Phyllosticta oryzae 31<br />

Phyllosticta tabifica 24<br />

Phyllosticta typhina 25<br />

Phyllosticta valerianae-tripteris f. minor 23<br />

Phyllosticta violae f. violae-hirtae 23<br />

Phyllosticta violae f. violae-sylvaticae 23<br />

Pilidiella 353<br />

Plectophomella 21, 23<br />

Plectophomella visci 22–23<br />

Plenodomus 20–21, 23<br />

Plenodomus acutus 19<br />

Plenodomus agnitus 21<br />

Plenodomus biglobosus 21<br />

Plenodomus chenopodii 18<br />

Plenodomus chondrillae 21<br />

Plenodomus chrysanthemi 21<br />

Plenodomus collinsoniae 21<br />

Plenodomus confertus 21<br />

Plenodomus congestus 21<br />

Plenodomus doliolum 19<br />

Plenodomus enteroleucus 21<br />

Plenodomus fallaciosus 22<br />

Plenodomus fusco-maculans 25<br />

Plenodomus gentianae 19<br />

400


Plenodomus hendersoniae 22<br />

Plenodomus influorescens 22<br />

Plenodomus leonuri 19<br />

Plenodomus libanotidis 22<br />

Plenodomus lindquistii 22<br />

Plenodomus lingam 21, 22<br />

Plenodomus lupini 22<br />

Plenodomus macrocapsa 19<br />

Plenodomus meliloti 19<br />

Plenodomus microsporus 18<br />

Plenodomus pimpinellae 22<br />

Plenodomus rabenhorstii 21–22<br />

Plenodomus rostratus 20<br />

Plenodomus sclerotioides 19<br />

Plenodomus senecionis 20<br />

Plenodomus tracheiphilus 22<br />

Plenodomus visci 22<br />

Plenodomus wasabiae 23<br />

Pleomassaria siparia 30<br />

Pleopora obiones 25<br />

Pleospora 190<br />

Pleospora angustis 24<br />

Pleospora avenae 362<br />

Pleospora betae 24<br />

Pleospora bjoerlingii 24<br />

Pleospora calvescens 24<br />

Pleospora chenopodii 24<br />

Pleospora clavata 24<br />

Pleospora “clavatis” 24<br />

Pleospora fallens 25<br />

Pleospora flavigena 25<br />

Pleospora halimiones 25<br />

Pleospora herbarum 25<br />

Pleospora hyalospora 24<br />

Pleospora incompta 25<br />

Pleospora infectoria 196<br />

Pleospora libanotidis 22<br />

Pleospora “libanotis” 22<br />

Pleospora macrospora 20<br />

Pleospora oryzae 368<br />

Pleospora papaveracea 190<br />

Pleospora phaeocomoides var. infectoria 196<br />

Pleospora scrophulariae 196<br />

Pleospora tritici 362<br />

Pleospora typhicola 25<br />

Pleosporaceae 24, 274<br />

Pleuroceras 337<br />

Pleurophoma 27<br />

Pleurophoma pleurospora 26–27<br />

Polyphialoseptoria 355–356<br />

Polyphialoseptoria tabebuiae-serratifoliae 356<br />

Polyphialoseptoria terminaliae 355–356<br />

Preussia funiculata 30<br />

Pseudocercospora 61, 65, 67–68, 74, 76, 79, 94–97, 99–100,<br />

102, 104, 110, 335, 353<br />

Pseudocercospora abelmoschi 76<br />

Pseudocercospora acaciigena 74<br />

Pseudocercospora adinicola 74<br />

Pseudocercospora ampelopsis 76–77<br />

Pseudocercospora angolensis 77<br />

Pseudocercospora anisomelicola 97<br />

Pseudocercospora araliae 78<br />

Pseudocercospora atromarginalis 78, 80<br />

Pseudocercospora balsaminae 79<br />

Pseudocercospora basiramifera 65<br />

Pseudocercospora brachypus 76<br />

Pseudocercospora callicarpae 79<br />

Pseudocercospora cantuariensis 61<br />

Pseudocercospora caperoniae 74<br />

Pseudocercospora catalpigena 79<br />

Pseudocercospora catappae 79<br />

Pseudocercospora cercidicola 79–80<br />

Pseudocercospora cercidis-chinensis 79–80<br />

Pseudocercospora chengtuensis 78, 80<br />

Pseudocercospora chionanthi-retusi 80–81<br />

Pseudocercospora chionanthicola 81<br />

Pseudocercospora chrysanthemicola 81<br />

Pseudocercospora circumscissa 99<br />

Pseudocercospora colebrookiae 97<br />

Pseudocercospora colebrookiicola 97<br />

Pseudocercospora colombiensis 76<br />

Pseudocercospora contraria 81<br />

Pseudocercospora coriariae 82<br />

Pseudocercospora cornicola 82<br />

Pseudocercospora corylopsidis 82<br />

Pseudocercospora costina 74<br />

Pseudocercospora cotoneastri 82<br />

Pseudocercospora crispans 82–83<br />

Pseudocercospora crocea 83–84<br />

Pseudocercospora crystallina 74<br />

Pseudocercospora cydoniae 71, 84<br />

Pseudocercospora domingensis 335<br />

Pseudocercospora dovyalidis 84<br />

Pseudocercospora eucalyptorum 86<br />

Pseudocercospora eucommiae 68<br />

Pseudocercospora exosporioides 86<br />

Pseudocercospora fagaricola 110<br />

Pseudocercospora fijiensis 65<br />

Pseudocercospora flavomarginata 86–87<br />

Pseudocercospora fraxinites 92<br />

Pseudocercospora fukuokaensis 87<br />

Pseudocercospora fuligena 87<br />

Pseudocercospora glauca 87<br />

Pseudocercospora guianensis 87<br />

Pseudocercospora haiweiensis 87<br />

Pseudocercospora hakeae 88<br />

Pseudocercospora handelii 104<br />

Pseudocercospora heimii 74<br />

Pseudocercospora heimioides 74<br />

Pseudocercospora humuli 89<br />

Pseudocercospora humuli-japonici 89<br />

Pseudocercospora humulicola 89<br />

Pseudocercospora ipomoea-purpureae 108<br />

Pseudocercospora irregulariramosa 74<br />

Pseudocercospora jussiaeae 89<br />

Pseudocercospora kaki 90<br />

Pseudocercospora kiggelariae 90<br />

Pseudocercospora lagerstroemiae-subcostatae 91<br />

Pseudocercospora lamiacearum 97<br />

Pseudocercospora latens 91<br />

Pseudocercospora leucadendri 91<br />

Pseudocercospora leucadis 97<br />

Pseudocercospora lonicericola 91<br />

Pseudocercospora lycopodis 97<br />

www.studiesinmycology.org<br />

401


Pseudocercospora lyoniae 91<br />

Pseudocercospora lythracearum 91<br />

Pseudocercospora lythri 92<br />

Pseudocercospora marginalis 92<br />

Pseudocercospora melicyti 92<br />

Pseudocercospora mori 108<br />

Pseudocercospora myrticola 92<br />

Pseudocercospora ocimi-basilici 92, 94<br />

Pseudocercospora ocimicola 94–95, 97<br />

Pseudocercospora oenotherae 95<br />

Pseudocercospora oxalidis 72<br />

Pseudocercospora paederiae 95–96<br />

Pseudocercospora pallida 96<br />

Pseudocercospora paraguayensis 96<br />

Pseudocercospora perillulae 97<br />

Pseudocercospora pileae 84<br />

Pseudocercospora pini-densiflorae 96<br />

Pseudocercospora plectranthi 96–97<br />

Pseudocercospora pogostemonis 97<br />

Pseudocercospora profusa 97, 159<br />

Pseudocercospora proteae 98<br />

Pseudocercospora protearum 98<br />

Pseudocercospora protearum var. hakeae 88<br />

Pseudocercospora protearum var. leucadendri 91<br />

Pseudocercospora protearum var. protearum 91<br />

Pseudocercospora pruni-yedoensis 99<br />

Pseudocercospora prunicola 98–99<br />

Pseudocercospora pseudoeucalyptorum 86<br />

Pseudocercospora pseudostigmina-platani 74, 99–100<br />

Pseudocercospora pyracanthae 100–101<br />

Pseudocercospora pyracanthigena 100–101<br />

Pseudocercospora ranjita 101<br />

Pseudocercospora ravenalicola 102<br />

Pseudocercospora rhabdothamni 103<br />

Pseudocercospora rhamnaceicola 104<br />

Pseudocercospora rhamnellae 103–104<br />

Pseudocercospora rhododendri-indici 104<br />

Pseudocercospora rhododendricola 104<br />

Pseudocercospora rhoina 104<br />

Pseudocercospora riachuelii var. horiana 76–77<br />

Pseudocercospora salvia 97<br />

Pseudocercospora sambucigena 105<br />

Pseudocercospora scutellariae 97<br />

Pseudocercospora securinegae 106<br />

Pseudocercospora snelliana 106, 108<br />

Pseudocercospora stephanandrae 108<br />

Pseudocercospora stromatosa 98<br />

Pseudocercospora thailandica 76<br />

Pseudocercospora tibouchina 67<br />

Pseudocercospora tibouchinigena 67<br />

Pseudocercospora timorensis 108<br />

Pseudocercospora udagawana 108<br />

Pseudocercospora viburnigena 108<br />

Pseudocercospora viticicola 108<br />

Pseudocercospora viticigena 108<br />

Pseudocercospora viticis 108<br />

Pseudocercospora viticis-quinatae 108<br />

Pseudocercospora vitis 76<br />

Pseudocercospora weigelae 110<br />

Pseudocercospora xanthocercidis 110<br />

Pseudocercospora xanthoxyli 110<br />

Pseudocercospora zelkovae 110<br />

Pseudocercosporella 65, 67–68, 70–72, 165<br />

Pseudocercosporella arcuata 70<br />

Pseudocercosporella capsellae 70<br />

Pseudocercosporella chaenomelis 70–71<br />

Pseudocercosporella crataegi 71<br />

Pseudocercosporella dovyalidis 84<br />

Pseudocercosporella gei 71<br />

Pseudocercosporella ipomoeae 70<br />

Pseudocercosporella koreana 71<br />

Pseudocercosporella myopori 165<br />

Pseudocercosporella oxalidis 72<br />

Pseudocercosporella potentillae 71<br />

Pseudocercosporella tephrosiae 72<br />

Pseudocercosporella viticis 108<br />

Pseudophaeoramularia angolensis 77<br />

Pseudoseptoria 332, 360–362<br />

Pseudoseptoria bromigena 362<br />

Pseudoseptoria collariana 360, 362<br />

Pseudoseptoria collorata 362<br />

Pseudoseptoria donacicola 332, 360<br />

Pseudoseptoria donacis 360–362<br />

Pseudoseptoria obscura 361–362<br />

Pseudoseptoria stromaticola 362<br />

Pseudostemphylium chlamydosporum 190<br />

Pseudostemphylium consortiale 204<br />

Pseudostemphylium radicinum 202<br />

Pseudotaeniolina 63<br />

Pyrenochaeta 27<br />

Pyrenochaeta cava 23<br />

Pyrenochaeta dolichi 23<br />

Pyrenochaeta gentianae 23<br />

Pyrenochaeta glycines 23<br />

Pyrenochaeta mackinnonii 31<br />

Pyrenochaeta minuta 23<br />

Pyrenochaeta romeroi 28<br />

Pyrenochaeta telephii 24<br />

Pyrenochaetopsis 27<br />

Pyrenochaetopsis pratorum 24<br />

Pyrenopeziza brassicae 336<br />

Pyrenophora alternarina 195<br />

Pyrenophora calvescens 24<br />

Pyrenophora echinella var. betae 24<br />

Pyrenophora scirpicola 198<br />

Pyrenophora typhicola 25<br />

R<br />

Racodium 63<br />

Ramularia 334, 339, 353–354<br />

Ramularia batatae 108<br />

Ramularia catappae 79<br />

Ramularia dubia 148<br />

Ramularia endophylla 299<br />

Ramularia pusilla 339<br />

Readeriella 63, 358<br />

Recurvomyces 63<br />

Rhabdospora 262, 332<br />

Rhabdospora aloetica 373<br />

Rhabdospora alsines 238<br />

Rhabdospora aparines 252<br />

Rhabdospora apiicola 242<br />

Rhabdospora hypochoeridis 262<br />

402


Rhabdospora leucanthemi 266<br />

Rhabdospora napelli 272, 274<br />

Rhabdospora oleandri 332<br />

Rhabdospora rubi var. rubi-idaei 300<br />

Rhabdospora schnabliana 258<br />

Rhopalidium 183<br />

Roussoella hysterioides 31<br />

Ruptoseptoria 356, 358<br />

Ruptoseptoria unedonis 357<br />

S<br />

Satchmopsis 359<br />

Sclerostagonospora 332, 366–367<br />

Sclerostagonospora caricicola 367<br />

Sclerostagonospora heraclei 332, 366–367<br />

Sclerostagonospora phragmiticola 366<br />

Sclerotium orobanches 20–21<br />

Scolecobasidium arenarium 208<br />

Scolecobasidium salinum 207<br />

Scolecostigmina 73–74<br />

Scolecostigmina mangiferae 74<br />

Seifertia 61<br />

Septaria 332<br />

“Septaria” ulmi 350<br />

Septocyta 337–338<br />

Septocyta ramealis 338<br />

Septocyta ruborum 338<br />

Septogloeum 336–337<br />

Septogloeum carthusianum 337<br />

Septogloeum ulmi 350<br />

Septopatella 338<br />

Septopatella septata 338<br />

Septoria 67, 70, 72, 236, 238, 241–242, 245–246, 250–253,<br />

256, 260, 262–263, 266, 270, 272, 274–275, 277, 279, 281,<br />

284–287, 293–295, 298–299, 301–302, 327, 332, 334, 336,<br />

338–339, 340–343, 351–352, 355–356, 358, 362, 371–373,<br />

377–378, 381, 383–384, 386<br />

Septoria abeliceae 343<br />

Septoria aceris 294–295, 299<br />

Septoria acetosae 284<br />

Septoria aegopodii 238–239, 241<br />

Septoria aegopodina 239, 241, 246, 287<br />

Septoria aegopodina var. trailii 239, 241<br />

Septoria aegopodina var. villosa 239, 241<br />

Septoria agrimoniicola 340, also see Septoria cf. agrimoniicola<br />

Septoria alpicola 258<br />

Septoria alsines 238<br />

Septoria anaxaea 284<br />

Septoria anthrisci 241–242, 278<br />

Septoria anthurii 248, 277, 288<br />

Septoria aparines 252<br />

Septoria apatela 295<br />

Septoria apii 242<br />

Septoria apii-graveolentis 242<br />

Septoria apiicola 242, 255, 278, 287<br />

Septoria arcautei 246<br />

Septoria artemisiae 275<br />

Septoria arundinacea 383<br />

Septoria asperulae 252<br />

Septoria astericola 266<br />

Septoria astragali 243, 245<br />

Septoria astragali var. brencklei 243, 245<br />

Septoria astragali var. “brinklei” 243<br />

Septoria avenae 362<br />

Septoria azaleae 345<br />

Septoria berberidis 345<br />

Septoria betulae 345<br />

Septoria bosniaca 258–259<br />

Septoria campanulae 241, 245–246<br />

Septoria caricicola 353<br />

Septoria caricis 365, 381<br />

Septoria castaneae 353–354<br />

Septoria castaneicola 353–354<br />

Septoria cerastii 246–247<br />

Septoria cercidis 345<br />

Septoria cf. agrimoniicola 340<br />

Septoria cf. stachydicola 290, 340<br />

Septoria chamomillae 271–272<br />

Septoria chanousii 258<br />

Septoria chromolaenae 248, 277<br />

Septoria chrysanthemella 248, 293, 299<br />

Septoria chrysanthemi 248<br />

Septoria cirsii 266<br />

Septoria citri 282, 302, also see Septoria protearum<br />

Septoria citricola 302<br />

Septoria clematidis 248, 250<br />

Septoria convolvuli 250–251<br />

Septoria coprosmae 251–252<br />

Septoria cornicola 295<br />

Septoria cornicola var. ampla 295<br />

Septoria cornina 296<br />

Septoria cotylea 260<br />

Septoria crepidis 263<br />

Septoria cretae 340–341<br />

Septoria cruciatae 252–253<br />

Septoria cucubali 253, 255<br />

Septoria cucurbitacearum 255<br />

Septoria cucutana 356<br />

Septoria curva 383<br />

Septoria cytisi 72, 238, 333–334, 340<br />

Septoria dianthi 238<br />

Septoria digitalis 255–256, 258<br />

Septoria dimera 236, 255<br />

Septoria divaricatae 279<br />

Septoria dominii 236<br />

Septoria drummondi 279<br />

Septoria ekmanniana 248, 277<br />

Septoria epambrosiae 279<br />

Septoria epicotylea 294<br />

Septoria epilobii 256, 258<br />

Septoria epilobii var. durieui 256, 258<br />

Septoria erigeronata 258<br />

Septoria erigerontea 258<br />

Septoria erigerontis 258<br />

Septoria galeopsidis 256, 258, 260, 265–266, 272, 277<br />

Septoria galii-borealis 252<br />

Septoria gei 296<br />

Septoria gei f. immarginata 298<br />

Septoria gentianae 241<br />

Septoria gilletiana 353<br />

Septoria gladioli 351–352<br />

Septoria glycines 342<br />

Septoria glycinicola 341–342<br />

www.studiesinmycology.org<br />

403


Septoria graminum 383<br />

Septoria helianthi 275<br />

Septoria heraclei 260, 262<br />

Septoria heraclei-palmati 260, 262<br />

Septoria heracleicola 262<br />

Septoria heterochroa f. lamii 263<br />

Septoria hippocastani 302<br />

Septoria hyperici 298–299<br />

Septoria hypericorum 298<br />

Septoria hypochoeridis 262–263<br />

Septoria incondita var. quercicola 347<br />

Septoria jackmanii 250<br />

Septoria juliae 341<br />

Septoria lactucae 263<br />

Septoria lagenophorae 262, 293<br />

Septoria lamii 263<br />

Septoria lamiicola 260, 263, 265–266, 272<br />

Septoria leucanthemi 266, 275<br />

Septoria limonum 302<br />

Septoria lychnidis 234–235, 349–350<br />

Septoria lychnidis var. pusilla 235<br />

Septoria lycoctoni 266, 269, 275<br />

Septoria lycoctoni var. anthorae 269<br />

Septoria lycoctoni var. macrospora 269<br />

Septoria lycoctoni var. sibirica 269<br />

Septoria lycospersici 255<br />

Septoria lysimachiae 269–271<br />

Septoria malagutii 255<br />

Septoria martiniana 354<br />

Septoria matricariae 266, 271–272<br />

Septoria mazi 241, 287<br />

Septoria melissae 260, 272<br />

Septoria menispermi 299, 345<br />

Septoria musiva 296, 345<br />

Septoria napelli 269, 272, 274–275, 342–343<br />

Septoria neriicola 341<br />

Septoria nodorum 363<br />

Septoria obesa 266, 275<br />

Septoria obscura 246<br />

Septoria oenanthicola 241, 342<br />

Septoria oenanthis 241, 246, 342<br />

Septoria oleandriicola 341<br />

Septoria oleandrina 341<br />

Septoria oxyacanthae 345–346<br />

Septoria paridis 275, 277<br />

Septoria passiflorae 248, 277<br />

Septoria passifloricola 248, 277<br />

Septoria patriniae 346<br />

Septoria petroselini 242, 277–278<br />

Septoria petroselini var. apii 242<br />

Septoria “phlocis” 278<br />

Septoria phlogina 279<br />

Septoria phlogis 278–279<br />

Septoria phragmitis 383<br />

Septoria phyllodiorum 354<br />

Septoria pimpinellae 239<br />

Septoria pini-thunbergii 383<br />

Septoria pistaciae 360<br />

Septoria podagrariae 238<br />

Septoria podagrariae var. pimpinellae-magnae 238–239<br />

Septoria polygonorum 279, 281<br />

Septoria populi 296<br />

Septoria populicola 296, 346<br />

Septoria protearum 281–282, 302<br />

Septoria provencialis 345<br />

Septoria pseudonapelli 275, 342<br />

Septoria pseudoplatani 294<br />

Septoria pusilla 235<br />

Septoria putrida 266, 282–284, 286<br />

Septoria quercicola 347, 353<br />

Septoria quercicola f. macrospora 347<br />

Septoria quercina 347<br />

Septoria relicta 252<br />

Septoria roll-hansenii 341<br />

Septoria rosae 299, 302, 343<br />

Septoria rubi 300–301<br />

Septoria rumicis 284<br />

Septoria rumicum 284, 377<br />

Septoria saccardoi 271, 371–372<br />

Septoria saponariae 255<br />

Septoria scabiosicola 277, 284–285<br />

Septoria schnabliana 258<br />

Septoria sect. Rhabdospora 332<br />

Septoria seminalis var. platanoidis 295<br />

Septoria senecionis 266, 284, 285–286<br />

Septoria septulata 251<br />

Septoria sii 241, 246, 286–287<br />

Septoria silenes 235–236<br />

Septoria silenicola 236<br />

Septoria sisyrinchii 248, 277, 287–288<br />

Septoria socia 299<br />

Septoria sonchi 263<br />

Septoria spergulae 236, 238<br />

Septoria spergulariae 238<br />

Septoria spergularina 238<br />

Septoria stachydicola 290, 340, also see Septoria cf.<br />

stachydicola<br />

Septoria stachydis 256, 258, 260, 288, 290<br />

Septoria stellariae 247, 272, 290–291<br />

Septoria stellariae var. macrospora 291<br />

Septoria stenactidis 258<br />

Septoria tabebuiae 356<br />

Septoria tabebuiae-impetiginosae 356<br />

Septoria tabebuiae-serratifoliae 356<br />

Septoria taraxaci 258, 263<br />

Septoria trachelii 246<br />

Septoria ulmi 350<br />

Septoria umbrosa 277<br />

“Septoria” unedonis 357–358<br />

Septoria urens 252<br />

Septoria urticae 291, 293<br />

Septoria vandasii 238<br />

Septoria verbascicola 256, 258<br />

Septoria verbenae 252, 293<br />

Septoria viceae 349<br />

Septoria vincetoxici 385<br />

Septoria violae-palustris 277<br />

Septoria virguareae 346–347<br />

Septoria westendorpii 18<br />

Septoria williamsiae 250<br />

Septorioides 383–384<br />

Septorioides pini-thunbergii 383–384<br />

Setophoma 373<br />

Setophoma chromolaenae 373–374<br />

404


Setophoma sacchari 374<br />

Setophoma terrestris 373–374<br />

Setoseptoria 382–383<br />

Setoseptoria phragmites 382–383<br />

Sinomyces 183, 206<br />

Sinomyces alternariae 206<br />

Sirosporium mori 106<br />

Sonderhenia 72–73<br />

Sonderhenia eucalypticola 73<br />

Sonderhenia eucalyptorum 73<br />

Sphaerella arbuticola 357<br />

Sphaerella berberidis 345<br />

Sphaerella latebrosa 294<br />

Sphaerella populi 296<br />

Sphaerella ulmi 350<br />

Sphaeria acuta 19<br />

Sphaeria agnita 21<br />

Sphaeria berberis 345<br />

Sphaeria calvescens 24<br />

Sphaeria doliolum 19<br />

Sphaeria frondicola 296<br />

Sphaeria herbarum 25<br />

Sphaeria infectoria 196<br />

Sphaeria isariphora 290<br />

Sphaeria juniperi 29<br />

Sphaeria lingam 22<br />

Sphaeria maculans 22<br />

Sphaeria michotii 27<br />

Sphaeria pertusa 28<br />

Sphaeria platani 28<br />

Sphaeria podagrariae 238<br />

Sphaeria praetermissa 21<br />

Sphaeria pulvis-pyrius 30<br />

Sphaeria rusci 366<br />

Sphaeria scirpicola 198<br />

Sphaeria scrophulariae 196<br />

Sphaeria siparia 30<br />

Sphaeria typhicola 25<br />

Sphaeronaema gentianae 19<br />

Sphaeronaema senecionis 20<br />

Sphaeronaema veronicae 20<br />

“Sphaeronema” gentianae 19<br />

Sphaerulina 271, 294, 296, 299, 301, 336, 339, 343<br />

Sphaerulina abeliceae 343<br />

Sphaerulina aceris 294, 299<br />

Sphaerulina amelanchier 343, 348<br />

Sphaerulina azaleae 345<br />

Sphaerulina berberidis 345<br />

Sphaerulina betulae 345<br />

Sphaerulina cercidis 298–299, 345<br />

Sphaerulina cornicola 295–296<br />

Sphaerulina frondicola 296<br />

Sphaerulina gei 296, 298–299<br />

Sphaerulina gei f. immarginata 298<br />

Sphaerulina hyperici 298<br />

Sphaerulina menispermi 345<br />

Sphaerulina musiva 296, 345<br />

Sphaerulina myriadea 294, 296, 339, 343<br />

Sphaerulina oxyacanthae 345<br />

Sphaerulina patriniae 298, 346<br />

Sphaerulina populicola 296, 299, 346<br />

Sphaerulina pseudovirgaureae 346–347<br />

Sphaerulina quercicola 347<br />

Sphaerulina rehmiana 299, 302, 343<br />

Sphaerulina rhabdoclinis 344, 348<br />

Sphaerulina rubi 300, 302, 343<br />

Sphaerulina socia 299<br />

Sphaerulina tirolensis 299–300<br />

Sphaerulina viciae 348–349<br />

Sphaerulina westendorpii 300, 302<br />

Spilosphaeria polygonorum 279<br />

Splanchnonema platani 28<br />

Sporidesmium alternariae 206<br />

Sporidesmium exitiosum var. dauci 201<br />

Sporidesmium longipedicellatum 201<br />

Sporidesmium polymorphum var. chartarum 201<br />

Sporidesmium scirpicola 198<br />

Sporidesmium scorzonerae 201<br />

Sporidesmium septorioides 188<br />

Sporormia minima 30<br />

Sporormiaceae 30<br />

Sporormiella minima 30<br />

Stagonospora 274, 298, 332–333, 362, 364, 377–379, 381<br />

Stagonospora “avena” 362<br />

Stagonospora avenae 362, 378<br />

Stagonospora biseptata 377<br />

Stagonospora caricis 379–380<br />

Stagonospora chenopodii 18<br />

Stagonospora duoseptata 377<br />

Stagonospora gigaspora 362<br />

Stagonospora nodorum 363, 378<br />

Stagonospora paludosa 333, 377–378<br />

Stagonospora paspali 28<br />

Stagonospora perfecta 378–379<br />

Stagonospora pseudocaricis 379–380<br />

Stagonospora pseudovitensis 379–380<br />

Stagonospora uniseptata 380–381<br />

Stagonospora vitensis 379–380<br />

Staninwardia 63<br />

Stemphylium alternariae 206<br />

Stemphylium atrum 204<br />

Stemphylium botryosum var. botrytis 206<br />

Stemphylium botryosum var. ulocladium 206<br />

Stemphylium consortiale 204<br />

Stemphylium herbarum 25<br />

Stemphylium ilicis 204<br />

Stemphylium petroselini 202<br />

Stemphylium radicinum 202<br />

Stemphylium radicinum var. petroselini 202<br />

Stenella 63<br />

Stenocarpella 333<br />

Stenocarpella macrospora 333<br />

Stenocarpella zeae 333<br />

Stictosepta 338<br />

Stictosepta cupularis 339<br />

Stigmina 61, 100<br />

Stigmina protearum var. leucadendri 91<br />

Strelitziana 60<br />

Strelitziana africana 60<br />

Strelitziana australiensis 60<br />

Strelitziana eucalypti 60<br />

Strelitziana mali 60<br />

Stromatoseptoria 353<br />

Stromatoseptoria castaneicola 353<br />

www.studiesinmycology.org<br />

405


Subplenodomus 23<br />

Subplenodomus apiicola 23<br />

Subplenodomus drobnjacensis 23<br />

Subplenodomus valerianae 23<br />

Subplenodomus violicola 23<br />

T<br />

Teratosphaeria 63, 335, 358<br />

Teratosphaeria fibrillosa 63<br />

Teratosphaeriaceae 63–64, 358<br />

Teretispora 183, 204<br />

Teretispora leucanthemi 204<br />

Thaptospora 359<br />

Thedgonia 60–61<br />

Thedgonia ligustrina 61<br />

Thyridaria rubronotata 31<br />

Thyrospora radicina 202<br />

Torula alternata 186<br />

Trematosphaerella oryzae 368<br />

Trematosphaeria circinans 28<br />

Trematosphaeria pertusa 28, 30<br />

Trematosphaeria vindelicorum 28<br />

Trematosphaeriaceae 28<br />

Trichoconiella 183<br />

Trichoseptoria 334, 383<br />

Trichoseptoria alpei 334<br />

Trochophora 73, 75<br />

Trochophora simplex 76<br />

U<br />

Ulocladium 183, 189–190, 204, 206<br />

Ulocladium alternariae 206<br />

Ulocladium arborescens 201<br />

Ulocladium atrum 204<br />

Ulocladium botrytis 206<br />

Ulocladium brassicae 204<br />

Ulocladium cantlous 204<br />

Ulocladium capsici 201<br />

Ulocladium “capsicuma” 201<br />

Ulocladium chartarum 201<br />

Ulocladium chlamydosporum 199<br />

Ulocladium consortiale 204<br />

Ulocladium cucurbitae 204<br />

Ulocladium multiforme 204<br />

Ulocladium obovoideum 204<br />

Ulocladium oudemansii 206<br />

Ulocladium septosporum 201<br />

Ulocladium solani 204<br />

Ulocladium subcucurbitae 204<br />

Ulocladium tuberculatum 206<br />

Undifilum 183, 206<br />

Undifilum bornmuelleri 207<br />

Undifilum cinereum 207<br />

Undifilum fulvum 207<br />

Undifilum oxytropis 207<br />

V<br />

Vrystaatia 372–373<br />

Vrystaatia aloeicola 372<br />

W<br />

Westerdykella 30<br />

Westerdykella capitulum 30<br />

Westerdykella minutispora 31<br />

Westerdykella ornata 30–31<br />

X<br />

Xanthoriicola 63<br />

Xenobotryosphaeria 374–375<br />

Xenobotryosphaeria calamagrostidis 375<br />

Xenocercospora 67<br />

Xenocylindrosporium 337<br />

Xenocylindrosporium kirstenboschense 337<br />

Xenoseptoria 271, 371–372<br />

Xenoseptoria neosaccardoi 371<br />

Xenostigmina 61<br />

Xenostigmina zilleri 61<br />

Y<br />

Ybotromyces 183, 194<br />

Ybotromyces caespitosus 195<br />

Z<br />

Zasmidium 355<br />

Zymoseptoria 334, 353<br />

Zymoseptoria tritici 334<br />

406


Studies in Mycology<br />

Studies in Mycology 74 (March 2013)<br />

Development of Aspergillus niger<br />

Studies in Mycology 74: Development of Aspergillus niger<br />

J. Dijksterhuis and H.A.B. Wösten (eds)<br />

This issue of Studies in Mycology deals with vegetative growth and development of Aspergillus in general and A. niger<br />

Jan Dijksterhuis and Han Wösten, editors<br />

in particular. Aspergillus niger is a member of the Aspergillus section Nigri, a group of 26 species that are dubbed<br />

“the black Aspergilli”. Aspergillus niger is a cosmopolitan fungus. It can be isolated from all continents and is not very<br />

selective with respect to environmental conditions. Aspergillus niger is used as a cell factory for the production of<br />

enzymes and metabolites such as organic acids.<br />

The issue starts with a review on molecular mechanisms underlying differentiation processes in the vegetative<br />

mycelium and during asexual and sexual development of aspergilli.<br />

The articles of van Leeuwen et al. show that the RNA composition of dormant conidia is highly different from that<br />

of germinating conidia (i.e. of conidia during isotropic and polarized growth). The transcriptome of conidia changes<br />

most dramatically during the first two hours of germination enabling initiation of protein synthesis and respiration. The<br />

antifungal natamycin does neither affect differential expression of genes nor germination of A. niger conidia during<br />

the first 2 h of the process. Notably, subsequent stages of germination were effectively blocked by the anti-fungal<br />

compound, and the transcriptome inside the cells had changed thoroughly. The article of van Veluw et al. focusses on<br />

stages following germination namely the formation of micro-colonies. It is shown that micro-colonies of a control strain<br />

<strong>CBS</strong>-<strong>KNAW</strong> Fungal Biodiversity Centre,<br />

Utrecht, The Netherlands<br />

are smaller and more heterogeneous in size when compared to strains in which pigmentation genes are inactivated.<br />

An institute of the Royal Netherlands Academy of Arts and Sciences<br />

These results are of interest from a biotechnological point of view since productivity is related to the morphology of<br />

micro-colonies. The results of Van Veluw et al. also indicate the existence of transcriptionally and translationally highly<br />

active and lowly active hyphae in 1 mm wide micro-colonies of A. niger as was previously shown in macro-colonies with<br />

a diameter of about 5–7 cm. However, the existence of distinct populations of hyphae with high and low transcriptional<br />

and translational activity seems to be less robust when compared to macro-colonies. Why colonies have hyphae with different transcriptional and translational activity is still<br />

not clear but it may have a role in survival in an environment where conditions are dynamic. The article of Bleichrodt et al. focusses on sporulating colonies. Evidence is<br />

presented that GFP but not mRNA streams from the vegetative mycelium to conidiophores. Apparently, flow of molecules to the reproductive structure is selective. Absence<br />

of RNA streaming would explain why distinct RNA profiles were found in the aerial mycelium when compared to the vegetative mycelium. Future studies should reveal why<br />

GFP flows but mRNA does not.<br />

85 pp., fully illustrated with colour pictures (A4 format), paperback, 2013. € 40<br />

Studies in Mycology 73: Colletotrichum: complex species or species complexes?<br />

U. Damm, P.F. Cannon and P.W. Crous (eds)<br />

This volume of Studies in Mycology is dedicated to Brian C. Sutton, in honour of his scientific contributions to our present<br />

understanding of the genus Colletotrichum, and for providing a framework for morphology-based identification of taxa in<br />

the genus. The volume consists of contributions that revise three of the major Colletotrichum species complexes, and a<br />

concluding paper that summarises the present situation. It provides an online identification tool to all presently recognised<br />

species, and also gives insight into future research directions. The research papers continue the trend of applying multilocus<br />

phylogenetics to elucidate cryptic species complexes, and in the process designates numerous epitype specimens<br />

to fix the genetic application of names. Furthermore, numerous novel taxa are introduced in the C. acutatum (treating<br />

31 taxa, and introducing 21 novel species), C. boninense (treating 17 taxa, and introducing 12 novel species), and C.<br />

gloeosporioides (treating numerous taxa of which 22 are accepted, and introducing 9 novel taxa, as well as one novel<br />

subspecies) species complexes. Although some species appear to have preferences to specific hosts or geographical<br />

regions, others are plurivorous and are present in multiple regions. The future for Colletotrichum biology will thus have<br />

to rely on consensus classification and robust online identification tools. In support of these goals, a Subcommission on<br />

Colletotrichum has been formed under the auspices of the International Commission on Taxonomy of Fungi, which will<br />

administer a carefully curated barcode database for sequence-based identification of species within the BioloMICS web<br />

environment.<br />

Studies in Mycology 73 (September 2012)<br />

Colletotrichum: complex species or species<br />

complexes?<br />

Ulrike Damm, Paul F. Cannon and Pedro W. Crous, editors<br />

<strong>CBS</strong>-<strong>KNAW</strong> Fungal Biodiversity Centre,<br />

Utrecht, The Netherlands<br />

An institute of the Royal Netherlands Academy of Arts and Sciences<br />

213 pp., fully illustrated with colour pictures (A4 format), paperback, 2012. € 65<br />

Studies in Mycology 72 (June 2012)<br />

The genus Cladosporium<br />

Konstanze Bensch, Uwe Braun, Johannes Z. Groenewald and Pedro W. Crous<br />

<strong>CBS</strong>-<strong>KNAW</strong> Fungal Biodiversity Centre,<br />

Utrecht, The Netherlands<br />

An institute of the Royal Netherlands Academy of Arts and Sciences<br />

Studies in Mycology 72: The genus Cladosporium<br />

K. Bensch, U. Braun, J.Z. Groenewald and P.W. Crous<br />

A monographic revision of the hyphomycete genus Cladosporium s. lat. (Cladosporiaceae, Capnodiales) is presented. It<br />

includes a detailed historic overview of Cladosporium and allied genera, with notes on their phylogeny, systematics and<br />

ecology. True species of Cladosporium s. str. (anamorphs of Davidiella), are characterised by having coronate conidiogenous<br />

loci and conidial hila, i.e., with a convex central dome surrounded by a raised periclinal rim. Recognised species are<br />

treated and illustrated with line drawings and photomicrographs (light as well as scanning electron microscopy). Species<br />

known from culture are described in vivo as well as in vitro on standardised media and under controlled conditions. Details<br />

on host range/substrates and the geographic distribution are given based on published accounts, and a re-examination<br />

of numerous herbarium specimens. Various keys are provided to support the identification of Cladosporium species in<br />

vivo and in vitro. Morphological datasets are supplemented by DNA barcodes (nuclear ribosomal RNA gene operon,<br />

including the internal transcribed spacer regions ITS1 and ITS2, the 5.8S nrDNA, as well as partial actin and translation<br />

elongation factor 1-α gene sequences) diagnostic for individual species. In total 993 names assigned to Cladosporium s.<br />

lat., including Heterosporium (854 in Cladosporium and 139 in Heterosporium), are treated, of which 169 are recognised<br />

in Cladosporium s. str. The other taxa are doubtful, insufficiently known or have been excluded from Cladosporium in its<br />

current circumscription and re-allocated to other genera by the authors of this monograph or previous authors.<br />

401 pp., fully illustrated with colour pictures (A4 format), paperback, 2012. € 70<br />

For a complete list of all <strong>CBS</strong>-<strong>KNAW</strong> publications, please visit our website www.cbs.knaw.nl


<strong>CBS</strong> Laboratory Manual Series<br />

,<br />

Food and Indoor Fungi<br />

cbs laboratory manual series<br />

Food and Indoor Fungi<br />

R.A. Samson, J. Houbraken, U. Thrane, J. C. Frisvad & B. Andersen<br />

<strong>CBS</strong> Laboratory Manual Series 2: Food and Indoor Fungi<br />

R.A. Samson, J. Houbraken, U. Thrane, J.C. Frisvad and B. Andersen<br />

This book is the second in the new <strong>CBS</strong> Laboratory Manual Series and is based on the seventh edition<br />

of INTRODUCTION TO FOOD AND AIRBORNE FUNGI. This new version, FOOD AND INDOOR<br />

FUNGI, has been transformed into a practical user’s manual to the most common micro-fungi found<br />

in our immediate environment – on our food and in our houses. The layout of the book starts at the<br />

beginning with the detection and isolation of food borne fungi and indoor fungi in chapters 1 and 2,<br />

describing the different sampling techniques required in the different habitats. Chapter 3 deals with<br />

the three different approaches to identification: morphology, genetics and chemistry. It lists cultivation<br />

media used for the different genera and describes step by step how to make microscope slides and<br />

tape preparations for morphological identification. The chapter also describes how to do molecular<br />

and chemical identification from scratch, how to evaluate the results and warns about pitfalls.<br />

Chapter 4 gives all the identification keys, first for the major phyla (Ascomycetes, Basidiomycetes<br />

and Zygomycetes) common on food and indoors, then to the different genera in the Zygomycetes and<br />

the Ascomycetes, with a large section on the anamorphic fungi and a section for yeasts. The section<br />

on anamorphic fungi contains two keys to the different genera: a dichotomous key and a synoptic key.<br />

For each genus a key to the species treated is provided, followed by entries on the different species.<br />

For each species colour plates are accompanied by macro- and a micro-morphological descriptions,<br />

information on molecular and chemical identification markers, production of mycotoxins, habitats<br />

and physiological and ecological characteristics. The book is concluded with an extensive reference<br />

list and appendices on the associated mycobiota on different food types and indoor environments,<br />

mycotoxins and other secondary metabolites, a glossary on the mycological terms used in the book<br />

and lastly a detailed appendix on the media used for detection and identification.<br />

<strong>CBS</strong> · <strong>KNAW</strong> · Fungal Biodiversity Centre Utrecht, The Netherlands<br />

An institute of the Royal Netherlands Academy of Arts and Sciences<br />

390 pp., fully illustrated with colour pictures (A4 format). Hardbound, 2010. € 70<br />

<strong>CBS</strong> Laboratory Manual Series 1: Fungal Biodiversity<br />

P.W. Crous, G.J.M. Verkley, J.Z. Groenewald and R.A. Samson (eds)<br />

This book is the first in the new “<strong>CBS</strong> Laboratory Manual Series”, and focuses on techniques for<br />

isolation, cultivation, molecular and morphological study of fungi and yeasts. It has been developed<br />

as a general text, which is based on the annual mycology course given at the <strong>CBS</strong>-<strong>KNAW</strong> Fungal<br />

Biodiversity Centre (Centraalbureau voor Schimmelcultures). It provides an introductory text to<br />

systematic mycology, starting with a concise treatise of Hyphochytridiomycota and Oomycota, which<br />

have long been subject of study by mycologists, but are now classified in the Kingdom Chromista.<br />

These are followed by sections on the groups of “true fungi”: Chytridiomycota, Zygomycota,<br />

Ascomycota and Basidiomycota. This descriptive part is illustrated by figures of life-cycles and<br />

schematic line-drawings as well as photoplates depicting most of the structures essential for the study<br />

and identification of these fungi. Special attention is given to basic principles of working with axenic<br />

cultures, good morphological analysis, and complicated issues for beginners such as conidiogenesis<br />

and the understanding of life-cycles. Exemplar taxa for each of these fungal groups, in total 37<br />

mostly common species in various economically important genera, are described and illustrated in<br />

detail. In a chapter on general methods a number of basic techniques such as the preparation and<br />

choice of media, microscopic examination, the use of stains and preparation of permanent slides,<br />

and herbarium techniques are explained. Further chapters deal with commonly used molecular<br />

and phylogenetic methods and related identification tools such as BLAST and DNA Barcoding,<br />

fungal nomenclature, ecological groups of fungi such as soil-borne and root-inhabiting fungi, water<br />

moulds, and fungi on plants and of quarantine importance. Some topics of applied mycology are also<br />

treated, including fungi in the air- and indoor environment and fungi of medical importance. Common<br />

mycological terminology is explained in a glossary, with reference to illustrations in the book. A<br />

chapter providing more than 60 mycological media for fungal cultivation, and a comprehensive list of<br />

cited references are also provided. The book is concluded with an index, and dendrograms reflecting<br />

our current understanding of the evolutionary relationships within the Fungi.<br />

270 pp., fully illustrated with colour pictures (A4 format). Hardbound, 2009. € 50<br />

<strong>CBS</strong> 001 Omslag <strong>CBS</strong> Laboratory manual series 4dec09_Original Green.indd 1<br />

Fungal Biodiversity<br />

1<br />

cbs laboratory manual series<br />

Fungal Biodiversity<br />

Edited by<br />

P.W. Crous, G.J.M. Verkley, J.Z. Groenewald & R.A. Samson<br />

<strong>CBS</strong> · <strong>KNAW</strong> · Fungal Biodiversity Centre Utrecht, The Netherlands<br />

An institute of the Royal Netherlands Academy of Arts and Sciences<br />

12/7/2009 2:15:04 PM<br />

For a complete list of all <strong>CBS</strong>-<strong>KNAW</strong> publications, please visit our website www.cbs.knaw.nl


ering plants in the Southern Hemisphere. Because of their beauty, unique<br />

aceae cut-flowers have become a highly desirable crop for the export<br />

industry that provides employment in countries where these flowers are<br />

ctive agriculturally. Diseases cause a loss in yield, and also limit the export<br />

ations. In this publication the fungi that cause leaf, stem and root diseases<br />

e treated. Data are provided pertaining to the taxonomy, identification,<br />

ar characteristics and control of these pathogens. Taxonomic descriptions<br />

uded to distinguish species in genera where a number of species affect<br />

nd colour photographs are included. Where known, factors that affect<br />

anagement strategies are also presented that will assist growers and<br />

cing disease in specific areas. Information is also provided relating to crop<br />

g and export considerations. Further development and expansion of this<br />

isease-free germplasm from countries where these plants are indigenous.<br />

fungi that occur on Proteaceae, and to establish the distribution of these<br />

ne services for use in risk assessments.<br />

annia – Leptographium – Sporothrix. These are<br />

lagued forestry and agriculture for millennia, and<br />

s. Their symbioses with insects, particularly bark<br />

tic mites, allow them to rapidly spread into new<br />

try, from one continent to another. Whether they<br />

f lumber, or diseases of root crops or coffee, the<br />

uarantine and biosecurity specialists who regulate<br />

k provides new perspectives on the taxonomy,<br />

i, new information on their occurrence in previously<br />

reviews their interactions with invertebrates, their<br />

iological control might play in controlling them.<br />

216mm<br />

iversity Series 13<br />

<strong>CBS</strong> Biodiversity Series<br />

Cultivation and Diseases of Proteaceae<br />

Crous • Denman • Taylor • Swart • Bezuidenhout • Hoffman • Palm • Groenewald<br />

24mm<br />

<strong>CBS</strong> Biodiversity Series<br />

Cultivation and Diseases of<br />

Proteaceae:<br />

Leucadendron, Leucospermum and Protea<br />

No. 13: Cultivation and Diseases of Proteaceae: Leucadendron, Leucospermum and Protea<br />

Pedro W. Crous, Sandra Denman, Joanne E. Taylor, Lizeth Swart, Carolien M. Bezuidenhout, Lynn Hoffman, Mary E. Palm and Johannes<br />

Z. Groenewald<br />

Proteaceae represent a prominent family of flowering plants in the Southern Hemisphere. Because of their beauty, unique appearance, and<br />

relatively long shelf life, Proteaceae cut-flowers have become a highly desirable crop for the export market. The cultivation of Proteaceae<br />

is a thriving industry that provides employment in countries where these flowers are grown, often in areas that are otherwise unproductive<br />

agriculturally. Diseases cause a loss in yield, and also limit the export of these flowers due to strict phytosanitary regulations. In this<br />

publication the fungi that cause leaf, stem and root diseases on Leucadendron, Leucospermum and Protea are treated. Data are provided<br />

pertaining to the taxonomy, identification, host range, distribution, pathogenicity, molecular characteristics and control of these pathogens.<br />

Pedro W. Crous, Sandra Denman, Joanne E. Taylor, Lizeth Swart, Taxonomic descriptions and illustrations are provided and keys are included to distinguish species in genera where a number of species affect<br />

Carolien M. Bezuidenhout, Lynn Hoffman,<br />

13<br />

Mary E. Palm & Johannes Z. Groenewald<br />

Proteaceae. Disease symptoms are described and colour photographs are included. Where known, factors that affect disease epidemiology<br />

are discussed. Disease management strategies are also presented that will assist growers and advisors in making appropriate choices for<br />

reducing disease in specific areas. Information is also provided relating to crop improvement, cultivation techniques, harvesting and export considerations. Further development and<br />

expansion of this industry depends on producing and obtaining disease-free germplasm from countries where these plants are indigenous. For that reason it is important to document<br />

the fungi that occur on Proteaceae, and to establish the distribution of these fungi. These data are essential for plant quarantine services for use in risk assessments.<br />

303mm<br />

ersity Series 12<br />

360 pp., fully illustrated (A4 format). Hardbound, 2013. € 75<br />

Fold area<br />

No. 12: Ophiostomatoid Fungi: Expanding Frontiers<br />

OphiOStOmAtOid Fungi – Expanding Spine 23mm Frontiers<br />

Seifert . de Beer . Wingfield<br />

12<br />

OphiOStOmAtOid Fungi<br />

Expanding Frontiers<br />

Edited by Keith A. Seifert, Z. Wilhelm de Beer<br />

& Michael J. Wingfield<br />

Keith A. Seifert, Z. Wilhelm de Beer and Michael J. Wingfield (eds)<br />

The 1992 Convention on Biological Diversity created a new awareness of the economic impact of living organisms. Regulators and<br />

quarantine specialists in governments all over the world now scrutinise dots on maps, as real-time online disease mapping and prediction<br />

models allow us to track (and try to prevent) the spread of diseases across borders. Woodlands are more managed, include less genetic<br />

diversity, and seem to be more susceptible to rapidly spreading disease. Different jurisdictions use different terminology, Biosecurity,<br />

Alien Invasive Species, Quarantine, but it is now commonplace to see large signs in airports, along highways, and on public hiking<br />

trails, warning citizens not to accidentally or deliberately facilitate the spread of unwanted pests or microbes. With the ophiostomatoid<br />

fungi, scientists have to cope with the overlapping behaviour of a triumvirate of kingdoms, the fungi, the animals (bark beetles, mites or<br />

nematodes), and how all of these impact trees in our forests and cities.<br />

This book includes 21 papers divided among five themes, plus an appendix. It is a sequel to Ceratocystis and Ophiostoma: Taxonomy,<br />

Ecology, and Pathogenicity, published by the APS Press in 1993, and like that book is derived from an international symposium, this<br />

one held on North Stradbroke Island, Australia prior to the 9 th International Mycological Congress. A year before this volume was completed, mycological taxonomy formally<br />

abandoned the historical two name system, known as dual nomenclature, and we are now adopting a single name binomial system. The appendix to this book provides a<br />

preliminary view of the nomenclature of the ophiostomatoid fungi using the new single name system. In an attempt at consistency, this naming system is used in all chapters.<br />

337 pp., fully illustrated (A4 format). Hardbound, 2013. € 75<br />

ersity Series 11<br />

Taxonomic Manual of the Erysiphales<br />

(Powdery Mildews)<br />

Uwe Braun . Roger T.A. Cook<br />

11<br />

Taxonomic Manual<br />

of the Erysiphales<br />

(Powdery Mildews)<br />

Uwe Braun<br />

Roger T.A. Cook<br />

No. 11: Taxonomic Manual of the Erysiphales (Powdery Mildews)<br />

Uwe Braun and Roger T.A. Cook<br />

The “Taxonomic Manual of the Erysiphales (Powdery Mildews)” is a fully revised, expanded new version of U. Braun’s former monograph<br />

from 1987, which is out of print. The present book covers the taxonomy of all powdery mildew fungi. New chapters have been prepared<br />

for phylogenetic relationships, conidial germination, conidia as viewed by Scanning Electron Microscopy, fossil powdery mildews,<br />

and holomorph classification. The treatment of the Erysiphales, its tribes and genera are based on recent molecular phylogenetic<br />

classifications. A key to the genera (and sections), based on teleomorph and anamorph characters is provided, supplemented by<br />

a key solely using anamorph features. Keys to the species are to be found under the particular genera. A special tabular key to<br />

species based on host families and genera completes the tools for identification of powdery mildew taxa. In total, 873 powdery mildew<br />

species are described and illustrated in 853 figures (plates). The following data are given for the particular species and subspecific<br />

taxa: bibliographic data, synonyms, references to descriptions and illustrations in literature, full descriptions, type details, host range,<br />

distribution and notes. A further 236 taxonomic novelties are introduced, comprising the new genus Takamatsuella, 55 new species,<br />

four new varieties, six new names and 170 new combinations. A list of excluded and doubtful taxa with notes and their current status is attached, followed by a list of references<br />

and a glossary. This manual deals with the taxonomy of the Erysiphales worldwide, and provides an up-todate basis for the identification of taxa, as well as comprehensive<br />

supplementary information on their biology, morphology, distribution and host range. This monograph is aimed at biologists, mycologists and phytopathologists that encounter<br />

or study powdery mildew diseases.<br />

707 pp., fully illustrated with 853 pictures and line drawings (A4 format). Hardbound, 2012. € 80<br />

rsity Series 10<br />

Guarro . Gene . Stchigel . Figueras<br />

10<br />

Atlas of Soil Ascomycetes<br />

Atlas of Soil<br />

Ascomycetes<br />

JOSEP GUARRO<br />

JOSEPA GENĖ<br />

ALBERTO M. STCHIGEL<br />

M. JOSĖ FIGUERAS<br />

No. 10: Atlas of Soil Ascomycetes<br />

Josep Guarro, Josepa Gené, Alberto M. Stchigel and M. José Figueras<br />

This compendium includes almost all presently known species of ascomycetes that have been reported in soil and which sporulate in<br />

culture. They constitute a very broad spectrum of genera belonging to very diverse orders, but mainly to the Onygenales, Sordariales,<br />

Eurotiales, Thelebolales, Pezizales, Melanosporales, Pleosporales, Xylariales, Coniochaetales and Microascales. The goal of this<br />

book is to provide sufficient data for users to recognise and identify these species. It includes the description of 146 genera and<br />

698 species. For each genus a dichotomous key to facilitate species identification is provided and for each genus and species the<br />

salient morphological features are described. These descriptions are accompanied by line drawings illustrating the most representative<br />

structures. Light micrographs, supplemented by scanning electron micrographs and Nomarski interference contrast micrographs of<br />

most of the species treated in the book are also included. In addition, numerous species not found in soil but related to those included<br />

in this book are referenced or described. This book will be of value not only to soil microbiologists and plant pathologists concerned with<br />

the soilborne fungi and diseases, but also to anyone interested in identifying fungi in general, because many of the genera included here<br />

are not confined to soil. Since most of the fungi of biotechnological or clinical interest (dermatophytes, dimorphic fungi and opportunists)<br />

are soil-borne ascomycetes, the content of this book is of interest for a wide range of scientists.<br />

486 pp., fully illustrated with 322 pictures and line drawings (A4 format). Hardbound, 2012. € 70<br />

For a complete list of all <strong>CBS</strong>-<strong>KNAW</strong> publications, please visit our website www.cbs.knaw.nl


<strong>CBS</strong> Biodiversity Series<br />

No. 9: The Genera of Hyphomycetes<br />

Keith Seifert, Gareth Morgan-Jones, Walter Gams and Bryce Kendrick<br />

The Genera of Hyphomycetes is the essential reference for the identification of moulds to all those who work with these fungi,<br />

including plant pathologists, industrial microbiologists, mycologists and indoor environment specialists, whether they be professionals<br />

or students. The book compiles information on about 1480 accepted genera of hyphomycetes, and about 1420 genera that are<br />

synonyms or names of uncertain identity. Each accepted genus is described using a standardized set of key words, connections with<br />

sexual stages (teleomorphs) and synanamorphs are listed, along with known substrates or hosts, and continental distribution. When<br />

available, accession numbers for representative DNA barcodes are listed for each genus. A complete bibliography is provided for each<br />

genus, giving the reader access to the literature necessary to identify species. Most accepted genera are illustrated by newly prepared<br />

line drawings, including many genera that have never been comprehensively illustrated before, arranged as a visual synoptic key.<br />

More than 200 colour photographs supplement the line drawings. Diagnostic keys are provided for some taxonomic and ecological<br />

groups. Appendices include an integrated classification of hyphomycete genera in the phylogenetic fungal system, a list of teleomorphanamorph<br />

connections, and a glossary of technical terms. With its combination of information on classical morphological taxonomy,<br />

molecular phylogeny and DNA diagnostics, this book is an effective modern resource for researchers working on microfungi.<br />

997 pp., fully illustrated with colour pictures and line drawings (A4 format). Hardbound, 2011. € 80<br />

Other <strong>CBS</strong> publications<br />

Atlas of Clinical Fungi CD-ROM version 3.1<br />

G.S. de Hoog, J. Guarro, J. Gené and M.J. Figueras (eds)<br />

A new electronic version of the 3rd edition is available since November 2011. It will allows fast and very comfortable search through<br />

the entire Atlas text the engine is fully equiped for simple as well as advanced search. Items are strongly linked enabling direct use<br />

of the electronic version as a benchtool for identification and comparison. Text boxes with concise definitions appear explaining all<br />

terminology while reading. Illustrations are of highest quality and viewers are provided for detailed observation. The Atlas is interactive<br />

in allowing personal annotation which will be maintained when later versions will be downloaded.<br />

The electronic version has been developed by T. Weniger. The third edition will contain about 530 clinically relevant species, following<br />

all major developments in fungal diagnostics. Regular electronic updates of the Atlas are planned, which should include numerous<br />

references to case reports, as well as full data on antifungals. Future features will include links to extended databases with verified<br />

molecular information. Note: The Atlas runs on Windows only! Not compatible with Mac<br />

Atlas of Clinical Fungi version 3.1, interactive CD-ROM, 2011. € 105<br />

Identification of Common Aspergillus Species<br />

Maren A. Klich<br />

Descriptions and identification keys to 45 common Aspergillus species with their teleomorphs (Emericella, Eurotium, Neosartorya and<br />

Sclerocleista). Each species is illustrated with a one page plate and three plates showing the most common colony colours.<br />

116 pp., 45 black & white and 3 colour plates (Letter format), paperback, 2002. € 45<br />

A revision of the species described in Phyllosticta<br />

Huub A. van der Aa and Simon Vanev<br />

2936 taxa are enumerated, based on the original literature and on examination of numerous herbarium (mostly type) specimens<br />

and isolates. 203 names belong to the genus Phyllosticta s.str., and are classified in 143 accepted species. For seven of them new<br />

combinations are made and for six new names are proposed. The great majority, 2733 taxa, were redisposed to a number of other<br />

genera. A complete list of these novelties, as included in the book’s abstract, can also be consulted on the web-site of <strong>CBS</strong>.<br />

510 pp. (17 x 25 cm), paperback, 2002. € 55<br />

For a complete list of all <strong>CBS</strong>-<strong>KNAW</strong> publications, please visit our website www.cbs.knaw.nl


Studies in Mycology (ISSN 0166-0616)<br />

The <strong>CBS</strong> taxonomy series “Studies in Mycology” is issued as individual booklets. Regular subscribers receive each issue automatically. Prices of backvolumes<br />

are specified below.<br />

For more information and ordering of other <strong>CBS</strong> books and publications see www.cbs.knaw.nl and www.studiesinmycology.org.<br />

75 Crous PW, Verkley GJM, Groenewald JZ (eds) (2013). <strong>Phytopathogenic</strong> <strong>Dothideomycetes</strong>. 406 pp., € 70.00<br />

74 Dijksterhuis J, Wösten H (eds) (2013). Development of Aspergillus niger. 85 pp., €40.00<br />

73 Damm U, Cannon PF, Crous PW (eds) (2012). Colletotrichum: complex species or species complexes? 217 pp., € 65.00<br />

72 Bensch K, Braun U, Groenewald JZ, Crous PW (2012). The genus Cladosporium. 401 pp., € 70.00<br />

71 Hirooka Y, Rossmann AY, Samuels GJ, Lechat C, Chaverri P (2012). A monograph of Allantonectria, Nectria, and Pleonectria (Nectriaceae, Hypocreales,<br />

Ascomycota) and their pycnidial, sporodochial, and synnematous anamorphs. 210 pp., € 65.00<br />

70 Samson RA, Houbraken J (eds) (2011). Phylogenetic and taxonomic studies on the genera Penicillium and Talaromyces. 183 pp., € 60.00<br />

69 Samson RA, Varga J, Frisvad JC (2011). Taxonomic studies on the genus Aspergillus. 97 pp., € 40.00<br />

68 Rossman AY, Seifert KA (eds) (2011). Phylogenetic revision of taxonomic concepts in the Hypocreales and other Ascomycota - A tribute to Gary J.<br />

Samuels. 256 pp., € 65.00<br />

67 Bensch K, Groenewald JZ, Dijksterhuis J, Starink-Willemse M, Andersen B, Summerell BA, Shin H-D, Dugan FM, Schroers H-J, Braun U, Crous PW<br />

(2010). Species and ecological diversity within the Cladosporium cladosporioides complex (Davidiellaceae, Capnodiales). 96 pp., € 40.00<br />

66 Lombard L, Crous PW, Wingfield BD, Wingfield MJ (2010). Systematics of Calonectria: a genus of root, shoot and foliar pathogens. 71 pp., € 40.00<br />

65 Aveskamp M, Gruyter H de, Woudenberg J, Verkley G, Crous PW (2010). Highlights of the Didymellaceae: A polyphasic approach to characterise<br />

Phoma and related pleosporalean genera. 64 pp., € 40.00<br />

64 Schoch CL, Spatafora JW, Lumbsch HT, Huhndorf SM, Hyde KD, Groenewald JZ, Crous PW (2009). A phylogenetic re-evaluation of <strong>Dothideomycetes</strong>.<br />

220 pp., € 65.00<br />

63 Jaklitsch WA (2009). European species of Hypocrea. Part I. The green-spored species. 93 pp., € 40.00<br />

62 Sogonov MV, Castlebury LA, Rossman AY, Mejía LC, White JF (2008). Leaf-inhabiting genera of the Gnomoniaceae, Diaporthales. 79 pp., € 40.00<br />

61 Hoog GS de, Grube M (eds) (2008). Black fungal extremes. 198 pp., € 60.00<br />

60 Chaverri P, Liu M, Hodge KT (2008). Neotropical Hypocrella (anamorph Aschersonia), Moelleriella, and Samuelsia. 68 pp., € 40.00<br />

59 Samson RA, Varga J (eds) (2007). Aspergillus systematics in the genomic era. 206 pp., € 65.00<br />

58 Crous PW, Braun U, Schubert K, Groenewald JZ (eds) (2007). The genus Cladosporium and similar dematiaceous hyphomycetes. 253 pp., € 65.00<br />

57 Sung G-H, Hywel-Jones NL, Sung J-M, Luangsa-ard JJ, Shrestha B, Spatafora JW (2007). Phylogenetic classification of Cordyceps and the<br />

clavicipitaceous fungi. 63 pp., € 40.00<br />

56 Gams W (ed.) (2006). Hypocrea and Trichoderma studies marking the 90 th birthday of Joan M. Dingley. 179 pp., € 60.00<br />

55 Crous PW, Wingfield MJ, Slippers B, Rong IH, Samson RA (2006). 100 Years of Fungal Biodiversity in southern Africa. 305 pp., € 65.00<br />

54 Mostert L, Groenewald JZ, Summerbell RC, Gams W, Crous PW (2006). Taxonomy and Pathology of Togninia (Diaporthales) and its Phaeoacremonium<br />

anamorphs. 115 pp., € 55.00<br />

53 Summerbell RC, Currah RS, Sigler L (2005). The Missing Lineages. Phylogeny and ecology of endophytic and other enigmatic root-associated fungi.<br />

252 pp., € 65.00<br />

52 Adams GC, Wingfield MJ, Common R, Roux J (2005). Phylogenetic relationships and morphology of Cytospora species and related teleomorphs<br />

(Ascomycota, Diaporthales, Valsaceae) from Eucalyptus. 147 pp., € 55.00<br />

51 Hoog GS de (ed.) (2005). Fungi of the Antarctic, Evolution under extreme conditions. 82 pp., € 40.00<br />

50 Crous PW, Samson RA, Gams W, Summerbell RC, Boekhout T, Hoog GS de, Stalpers JA (eds) (2004). <strong>CBS</strong> Centenary: 100 Years of Fungal Biodiversity<br />

and Ecology (Two parts). 580 pp., € 105.00<br />

49 Samson RA, Frisvad JC (2004). Penicillium subgenus Penicillium: new taxonomic schemes, mycotoxins and other extrolites. 253 pp., € 55.00<br />

48 Chaverri P, Samuels GJ (2003). Hypocrea/Trichoderma (Ascomycota, Hypocreales, Hypocreaceae): species with green ascospores. 113 pp., € 55.00<br />

47 Guarro J, Summerbell RC, Samson RA (2002). Onygenales: the dermatophytes, dimorphics and keratin degraders in their revolutionary context. 220<br />

pp., € 55.00<br />

46 Schroers HJ (2001). A monograh of Bionectria (Ascomycota, Hypocreales, Bionectriaceae) and its Clonostachys anamorphs. 214 pp., € 55.00<br />

45 Seifert KA, Gams W, Crous PW, Samuels GJ (eds) (2000). Molecules, morphology and classification: Towards monophyletic genera in the Ascomycetes.<br />

200 pp., € 55.00<br />

44 Verkley GJM (1999). A monograph of the genus Pezicula and its anamorphs. 180 pp., € 55.00<br />

43 Hoog GS de (ed.) (1999). Ecology and evolution of black yeasts and their relatives. 208 pp., € 55.00<br />

42 Rossman AY, Samuels GJ, Rogerson CT, Lowen R (1999). Genera of Bionectriaceae, Hypocreaceae and Nectriaceae (Hypocreales, Ascomycetes). 248<br />

pp., € 55.00<br />

41 Samuels GJ, Petrini O, Kuhls K, Lieckfeldt E, Kubicek CP (1998).The Hypocrea schweinitzii complex and Trichoderma sect. Longibrachiatum. 54 pp., €<br />

35.00<br />

40 Stalpers JA (1996). The aphyllophoraceous fungi II. Keys to the species of the Hericiales. 185 pp., € 25.00<br />

39 Rubner A (1996). Revision of predacious hyphomycetes in the Dactylella-Monacrosporium complex. 134 pp., € 25.00<br />

38 Boekhout T, Samson RA (eds) (1995). Heterobasidiomycetes: Systematics and applied aspects. 190 pp., € 35.00<br />

37 Aptroot A (1995). A monograph of Didymosphaeria. 160 pp., € 30.00<br />

36 Swertz CA (1994). Morphology of germlings of urediniospores and its value for the identification and classification of grass rust fungi. 152 pp., € 30.00<br />

35 Stalpers JA (1993). The aphyllophoraceous fungi I. Keys to the species of the Thelephorales. 168 pp. (out of stock).<br />

34 Reijnders AFM, Stalpers JA (1992). The development of the hymenophoral trama in the Aphyllophorales and the Agaricales. 109 pp., € 25.00<br />

For a complete list of the Studies in Mycology see www.cbs.knaw.nl.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!