18.11.2012 Views

Lichens and higher plants on stone: a review - AseanBiodiversity.info

Lichens and higher plants on stone: a review - AseanBiodiversity.info

Lichens and higher plants on stone: a review - AseanBiodiversity.info

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Abstract<br />

<str<strong>on</strong>g>Lichens</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>higher</str<strong>on</strong>g> <str<strong>on</strong>g>plants</str<strong>on</strong>g> <strong>on</strong> st<strong>on</strong>e: a <strong>review</strong><br />

Marcello Lisci a , Michela M<strong>on</strong>te b , Ettore Pacini a;∗;1<br />

a Department of Envir<strong>on</strong>mental Sciences, Botany Divisi<strong>on</strong>, Via Mattioli 4, 53100 Siena, Italy<br />

b Nati<strong>on</strong>al Research Council, Centre for C<strong>on</strong>servati<strong>on</strong> of Works of Art, Via M<strong>on</strong>te d’Oro 28, 00186 Rome, Italy<br />

This <strong>review</strong> article deals with the site <str<strong>on</strong>g>and</str<strong>on</strong>g> col<strong>on</strong>izati<strong>on</strong> mode of <str<strong>on</strong>g>plants</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> lichens <strong>on</strong> the wall of historical buildings, freezes <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

statues. Higher <str<strong>on</strong>g>plants</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> lichen col<strong>on</strong>izati<strong>on</strong> is essentially c<strong>on</strong>diti<strong>on</strong>ed by the adaptability of the species <str<strong>on</strong>g>and</str<strong>on</strong>g> the e ciency of their mode<br />

of reproducti<strong>on</strong>. A list of the more comm<strong>on</strong> <str<strong>on</strong>g>plants</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> lichens living <strong>on</strong> historical building is given as well as the type of damage. Nine<br />

niche types are distinguished for <str<strong>on</strong>g>plants</str<strong>on</strong>g>. The chemical <str<strong>on</strong>g>and</str<strong>on</strong>g> mechanical e ects of plant col<strong>on</strong>izati<strong>on</strong> of walls, <str<strong>on</strong>g>and</str<strong>on</strong>g> the methods of c<strong>on</strong>serving<br />

the aesthetic <str<strong>on</strong>g>and</str<strong>on</strong>g> functi<strong>on</strong>al integrity of the walls, are also presented <str<strong>on</strong>g>and</str<strong>on</strong>g> discussed.<br />

Keywords: Biodegradati<strong>on</strong>; Wall <str<strong>on</strong>g>plants</str<strong>on</strong>g>; <str<strong>on</strong>g>Lichens</str<strong>on</strong>g>; Water availability; Col<strong>on</strong>izati<strong>on</strong>; Exposure; Substrate; Damage<br />

1. Introducti<strong>on</strong><br />

One of the principal stages in the evoluti<strong>on</strong> of civilizati<strong>on</strong><br />

has been the c<strong>on</strong>structi<strong>on</strong> of buildings <str<strong>on</strong>g>and</str<strong>on</strong>g> their decorati<strong>on</strong><br />

with sculptures. The types of st<strong>on</strong>e <str<strong>on</strong>g>and</str<strong>on</strong>g> clay found <strong>on</strong> the site<br />

of towns determined the types of material used for building<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> the development of the arts of c<strong>on</strong>structi<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> sculpture.<br />

In a town like Siena, in which the buildings of artistic<br />

interest are mainly Medieval or Renaissance, the main materials<br />

come from sites within a radius of 30 km (Giamello<br />

et al., 1992). In ancient Rome, because of its political<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> ec<strong>on</strong>omic importance, some of the materials used for<br />

buildings in the imperial epoch were transported from great<br />

distances (Adam, 1988). On archaeological ruins <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

even relatively recent walls <str<strong>on</strong>g>and</str<strong>on</strong>g> buildings (Plate 2a), various<br />

types of <str<strong>on</strong>g>plants</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> related organisms have become<br />

established in di erent historical periods (Warsheid <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

Braams, 2000). Bacteria <str<strong>on</strong>g>and</str<strong>on</strong>g> fungi, for instance, cause<br />

alterati<strong>on</strong>s (e.g. loss of cohesi<strong>on</strong>, stains) the biological<br />

matrix of which cannot be identi ed by direct observati<strong>on</strong>.<br />

Algae <str<strong>on</strong>g>and</str<strong>on</strong>g> lichens, <strong>on</strong> the other h<str<strong>on</strong>g>and</str<strong>on</strong>g>, manifest as<br />

green or brightly colored lms <str<strong>on</strong>g>and</str<strong>on</strong>g> crusts, <str<strong>on</strong>g>and</str<strong>on</strong>g> are indicative<br />

of certain envir<strong>on</strong>mental c<strong>on</strong>diti<strong>on</strong>s. Mosses are<br />

green <str<strong>on</strong>g>and</str<strong>on</strong>g> evident in the rainy seas<strong>on</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g> vascular <str<strong>on</strong>g>plants</str<strong>on</strong>g><br />

∗ Corresp<strong>on</strong>ding<br />

232-860.<br />

author. Tel.: +39-577-232-863; fax: +39-577-<br />

E-mail address: pacini@unisi.it (E. Pacini).<br />

1 Illustrator of the gures.<br />

0964-8305/02/$ - see fr<strong>on</strong>t matter ? 2002 Elsevier Science Ltd. All rights reserved.<br />

PII: S 0964-8305(02)00071-9<br />

withroots, stem <str<strong>on</strong>g>and</str<strong>on</strong>g> leaves may also col<strong>on</strong>ize st<strong>on</strong>e m<strong>on</strong>uments<br />

(Fig. 1). Plants attract attenti<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> give ruins a picturesque<br />

appearance, <str<strong>on</strong>g>and</str<strong>on</strong>g> have often been depicted by artists<br />

(Pacini, 1994). The <str<strong>on</strong>g>plants</str<strong>on</strong>g> that grow <strong>on</strong> buildings <str<strong>on</strong>g>and</str<strong>on</strong>g> walls<br />

are generally found in the surrounding envir<strong>on</strong>ment. Centranthus<br />

ruber grows <strong>on</strong> the edge of the crater of Vesuvius<br />

(Naples) <str<strong>on</strong>g>and</str<strong>on</strong>g> a few hundred meters lower down in the ruins<br />

of Pompeii.<br />

On allochth<strong>on</strong>ous substrates, <strong>on</strong> the other h<str<strong>on</strong>g>and</str<strong>on</strong>g>, an interesting<br />

lichen ora that includes species rare or absent in the<br />

area, may become established. When the growth of lichens<br />

does not severely prejudice the c<strong>on</strong>servati<strong>on</strong> of a building,<br />

in our opini<strong>on</strong> it should be regarded as enriching the cultural<br />

value of the m<strong>on</strong>ument, <str<strong>on</strong>g>and</str<strong>on</strong>g> adding historical <str<strong>on</strong>g>and</str<strong>on</strong>g> artistic<br />

interest.<br />

The chemical compositi<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> texture of the materials<br />

determine the resistance of a building to atmospheric agents<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> col<strong>on</strong>izati<strong>on</strong> by forms of life. Certain marbles found at<br />

ancient Ostia (Rome) are still in perfect c<strong>on</strong>diti<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> do<br />

not host lichens or other <str<strong>on</strong>g>plants</str<strong>on</strong>g>. On the other h<str<strong>on</strong>g>and</str<strong>on</strong>g>, where<br />

restorati<strong>on</strong> has been performed, with the use of modern materials,<br />

they are completely covered by lichens (Plate 1a).<br />

Plants are never indi erent to their substrate: so<strong>on</strong>er<br />

or later, they all cause damage, whether due to the acid<br />

metabolites they produce, or because their roots penetrate the<br />

building material or develop in spaces between st<strong>on</strong>es. Our<br />

experience <strong>on</strong> this topic regards archaeological areas in<br />

Latium (Nimis et al., 1987; M<strong>on</strong>te, 1991b) <str<strong>on</strong>g>and</str<strong>on</strong>g> Sardinia<br />

(Tretiachet al., 1991) as far as lichens are c<strong>on</strong>cerned, <str<strong>on</strong>g>and</str<strong>on</strong>g>


Fig. 1. Block diagram of the fate of a building in relati<strong>on</strong> to human <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

envir<strong>on</strong>mental interventi<strong>on</strong>.<br />

several towns in the south of France, Italy <str<strong>on</strong>g>and</str<strong>on</strong>g> Tunisia as far<br />

as vascular <str<strong>on</strong>g>plants</str<strong>on</strong>g> are c<strong>on</strong>cerned (Lisci <str<strong>on</strong>g>and</str<strong>on</strong>g> Pacini, 1993a,<br />

b). Since these sites range around the Mediterranean, they<br />

re ect the situati<strong>on</strong> of much of the Mediterranean Basin<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> the m<strong>on</strong>uments of forty centuries of history.<br />

Since lichens <str<strong>on</strong>g>and</str<strong>on</strong>g> vascular <str<strong>on</strong>g>plants</str<strong>on</strong>g> establish in di erent<br />

ways, cause di erent types of damage <str<strong>on</strong>g>and</str<strong>on</strong>g> require di erent<br />

methods of c<strong>on</strong>trol, they are dealt with separately in the<br />

pages that follow.<br />

2. <str<strong>on</strong>g>Lichens</str<strong>on</strong>g><br />

2.1. Types of lichens: structure <str<strong>on</strong>g>and</str<strong>on</strong>g> distributi<strong>on</strong><br />

<str<strong>on</strong>g>Lichens</str<strong>on</strong>g> are fungi (Ascomycetes or seldom Basidiomycetes)<br />

that live in symbiosis with photosynthesizing<br />

organisms (cyanobacteria or green algae) (Hale, 1974).<br />

The partners of the symbiosis, the fungus (mycobi<strong>on</strong>t) <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

the alga (phycobi<strong>on</strong>t), give rise to a simple structure known<br />

as a thallus. The lichen thallus grows where the alga <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

fungus, al<strong>on</strong>e, could not survive. This is why lichens col<strong>on</strong>ize<br />

a large variety of substrates: trees (epiphytes), the<br />

ground (terricolous lichens), st<strong>on</strong>e (epilithic lichens) <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

even glass.<br />

On st<strong>on</strong>e objects, the pH of the substrate performs the<br />

rst selecti<strong>on</strong> of lichen ora. Calcicolous species develop<br />

<strong>on</strong> neutral <str<strong>on</strong>g>and</str<strong>on</strong>g> alkaline substrates <str<strong>on</strong>g>and</str<strong>on</strong>g> silicicolous species <strong>on</strong><br />

acid substrates. The forms of growth of thalli that col<strong>on</strong>ize<br />

st<strong>on</strong>e (Fig. 2) may be:<br />

• crust-like: the thallus adheres closely to the surface <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

penetrates it, forming a kind of crust;<br />

• foliose: the thallus penetrates the substrate <strong>on</strong>ly with its<br />

rhizines (thread-like anchorage devices) <str<strong>on</strong>g>and</str<strong>on</strong>g> can easily<br />

be removed from the surface of the st<strong>on</strong>e;<br />

• fruticose: the thallus develops in three dimensi<strong>on</strong>s, taking<br />

<strong>on</strong> a hanging, rami ed form, generally anchored to the<br />

substrate by a type of butt<strong>on</strong>;<br />

• endolithic: these <strong>on</strong>ly occur <strong>on</strong> calcareous st<strong>on</strong>e: the thallus<br />

is completely immersed in the substrate <str<strong>on</strong>g>and</str<strong>on</strong>g> is di cult<br />

to distinguish, being white in color. It is generally noticed<br />

when it reproduces because the fruiting bodies emerge<br />

from the st<strong>on</strong>e, leaving behind small pits.<br />

Lichen reproducti<strong>on</strong> occurs by germinati<strong>on</strong> of spores or<br />

multiplicati<strong>on</strong> of the cells of the soredia <str<strong>on</strong>g>and</str<strong>on</strong>g> isidia. Spores<br />

arising from fruiting bodies (Fig. 3c) are formed by sexual<br />

reproducti<strong>on</strong> of the fungal partner <strong>on</strong>ly. Dispersed in the<br />

envir<strong>on</strong>ment, they rec<strong>on</strong>stitute a symbiosis if they encounter<br />

a suitable phycobi<strong>on</strong>t. The soredia, balls of fungal laments<br />

around an algal cell (Fig. 3a), <str<strong>on</strong>g>and</str<strong>on</strong>g> isidia, appendages of the<br />

upper cortex of the thallus that envelop several algae (Fig.<br />

3b), are structures of vegetative reproducti<strong>on</strong> in which both<br />

partners of the symbiosis take part.<br />

The reproductive structures are dispersed in the atmosphere<br />

by wind or transported by birds <str<strong>on</strong>g>and</str<strong>on</strong>g> insects. If they<br />

fall into cracks, pores or cavities that retain water, new<br />

growthmay arise (Garty, 1992).<br />

It is not a coincidence that di erent types of lichens<br />

grow <strong>on</strong> m<strong>on</strong>uments. Eachspecies can <strong>on</strong>ly live in a de -<br />

nite range of pH, humidity, luminosity <str<strong>on</strong>g>and</str<strong>on</strong>g> nitrogen supply;<br />

some species can <strong>on</strong>ly live in a very narrow range of values<br />

(stenoic) whereas other species grow over a wider interval<br />

of c<strong>on</strong>diti<strong>on</strong>s (euroic).<br />

Wirth (1980) devised indices of pH, hygrophytism,<br />

nitrophytism <str<strong>on</strong>g>and</str<strong>on</strong>g> photophytism <strong>on</strong> the basis of detailed<br />

knowledge of the ecology of the various species <str<strong>on</strong>g>and</str<strong>on</strong>g> their<br />

relati<strong>on</strong>ships. These indices can be used to characterize<br />

the pH range of substrates, their humidity, solar radiati<strong>on</strong><br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> eutrophicati<strong>on</strong> <strong>on</strong> the basis of the species identi ed<br />

(M<strong>on</strong>te, 1991a). This <strong>info</strong>rmati<strong>on</strong> is useful for establishing<br />

existing gradients of humidity values <str<strong>on</strong>g>and</str<strong>on</strong>g> solar radiati<strong>on</strong> so<br />

that alterati<strong>on</strong>s can be interpreted (M<strong>on</strong>te, 1991b; Corball,<br />

et al., 2001).<br />

<str<strong>on</strong>g>Lichens</str<strong>on</strong>g> behave as natural sensors of atmospheric polluti<strong>on</strong><br />

because the symbiosis between fungus <str<strong>on</strong>g>and</str<strong>on</strong>g> alga has its<br />

weak points. Highpolluti<strong>on</strong>, particularly by sulfur dioxide,<br />

damages the lichen thallus, rst leading to retarded growth<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> then to death. The number of species tends to decrease<br />

drastically from the periphery to the center of urbanized areas,<br />

with a decrease in the number of species <str<strong>on</strong>g>and</str<strong>on</strong>g> of the<br />

surface area col<strong>on</strong>ized (Seaward, 1976).


Plate 1. (a) Statue in archaeological site in ancient Ostia. The lichens <strong>on</strong>ly grow where restorati<strong>on</strong> has been performed. (b) Orvieto Cathedral with<br />

lichens growing al<strong>on</strong>g paths of water run-o <str<strong>on</strong>g>and</str<strong>on</strong>g> obscuring the black <str<strong>on</strong>g>and</str<strong>on</strong>g> white b<str<strong>on</strong>g>and</str<strong>on</strong>g>s. (c) Column of north portal of Orvieto Cathedral. The lichen<br />

Dirina massiliensis causes pitting that is visible when the thalli drop o . (d) Typical Sardinian “nuraghe”. Exposure plays a fundamental role in lichen<br />

col<strong>on</strong>izati<strong>on</strong>. Note also <str<strong>on</strong>g>plants</str<strong>on</strong>g> growing between st<strong>on</strong>es.<br />

2.2. <str<strong>on</strong>g>Lichens</str<strong>on</strong>g> as agents of damage<br />

In the past, the role of lichens in the break-down of<br />

st<strong>on</strong>e was muchdiscussed. They were regarded as primary<br />

col<strong>on</strong>izers <str<strong>on</strong>g>and</str<strong>on</strong>g> believed to precede any other form of life.<br />

They were thought capable of col<strong>on</strong>izing surfaces that<br />

had not underg<strong>on</strong>e any previous alterati<strong>on</strong>, whether<br />

chemical or physical.


Fig. 2. Di erent forms of lichen growth <strong>on</strong> st<strong>on</strong>e: (a) crust-like lichen;<br />

(b) foliose lichen; (c) fruticose lichen; (d) endolithic lichen.<br />

According to Savoye <str<strong>on</strong>g>and</str<strong>on</strong>g> Lallemant (1980), however,<br />

lichens establish <strong>on</strong> a substrate after it has been partly transformed<br />

by substances in the air <str<strong>on</strong>g>and</str<strong>on</strong>g> then by bacteria. This<br />

hypothesis seems veri ed by the fact that lichens grow more<br />

readily <strong>on</strong> archaeological ruins <strong>on</strong> which mould facilitates<br />

bacterial growth <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>on</strong> st<strong>on</strong>e surfaces that have become<br />

porous.<br />

Although the role of primary col<strong>on</strong>izer seems doubtful,<br />

lichens, especially the crust-like <str<strong>on</strong>g>and</str<strong>on</strong>g> endolithic forms, nevertheless<br />

transform st<strong>on</strong>e substrates, causing de-cohesi<strong>on</strong><br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> biocorrosi<strong>on</strong>. Certain alterati<strong>on</strong>s were dem<strong>on</strong>strated by<br />

Gehrmann et al. (1988) to be typical of crust-like lichens.<br />

Mechanical damage is due, in the rst place, to penetrati<strong>on</strong><br />

of the substrate by the hyphae (Fig. 2). The depth to which<br />

the thallus penetrates depends <strong>on</strong> the lichen species <str<strong>on</strong>g>and</str<strong>on</strong>g> the<br />

nature of the substrate. A study by Syers (1964) showed that<br />

penetrati<strong>on</strong> may range from a minimum of 0:3 mm to a maximum<br />

of 16 mm. Loss of cohesi<strong>on</strong> may also occur as a result<br />

of the expansi<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> c<strong>on</strong>tracti<strong>on</strong> of the thallus as it undergoes<br />

uctuati<strong>on</strong>s in water supply (Fry, 1924; 1927). <str<strong>on</strong>g>Lichens</str<strong>on</strong>g><br />

may also damage a substrate by means of acid substances<br />

suchas carb<strong>on</strong> dioxide, lichenic acids <str<strong>on</strong>g>and</str<strong>on</strong>g> oxalic acid. Carb<strong>on</strong><br />

dioxide, produced by respirati<strong>on</strong> of the thallus, dissolves<br />

calcareous rocks in the presence of moisture, leading to the<br />

formati<strong>on</strong> of soluble bicarb<strong>on</strong>ates that may be washed away<br />

or cause encrustati<strong>on</strong>. This type of alterati<strong>on</strong> is characteristic<br />

of endolithic lichens (Syers <str<strong>on</strong>g>and</str<strong>on</strong>g> Isk<str<strong>on</strong>g>and</str<strong>on</strong>g>er, 1973). A large<br />

variety of substances produced by the lichen symbiosis are<br />

grouped under the name of lichenic acids. Shatz (1963) <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

later Isk<str<strong>on</strong>g>and</str<strong>on</strong>g>er <str<strong>on</strong>g>and</str<strong>on</strong>g> Syers (1972) showed that some of these<br />

substances are chelating agents <str<strong>on</strong>g>and</str<strong>on</strong>g> in aqueous suspensi<strong>on</strong>s<br />

of basalt, granite <str<strong>on</strong>g>and</str<strong>on</strong>g> biotite, form metal complexes of low<br />

solubility. Ascaso et al. (1976) detected mineral complexes<br />

that were not present <strong>on</strong> the naked rock surface, at the<br />

lichen-substrate interface. Fragments of thallus incubated in<br />

suspensi<strong>on</strong>s of the same pulverized rock formed minerals<br />

similar to those found at the interface. Further c<strong>on</strong> rmati<strong>on</strong><br />

of the capacity of lichenic acids to produce alterati<strong>on</strong> was<br />

provided by Galvan et al. (1981) <str<strong>on</strong>g>and</str<strong>on</strong>g> this enabled a series<br />

of minerals associated with the presence of lichens to be<br />

identi ed.<br />

It has l<strong>on</strong>g been known that lichens produce oxalic acid<br />

(Bracc<strong>on</strong>ot, 1825). Unlike lichenic acids, oxalic acid is not<br />

an exclusive product of lichens. It is also found in fungi as<br />

a nal product (Chiari et al., 1989) <str<strong>on</strong>g>and</str<strong>on</strong>g> is comm<strong>on</strong> in all<br />

living organisms as an intermediate of the Krebs cycle. It<br />

reacts withsubstrate minerals to form various oxalates, according<br />

to the cati<strong>on</strong>s available <str<strong>on</strong>g>and</str<strong>on</strong>g> the state of hydrati<strong>on</strong><br />

of the rock (Corball et al., 2001). Calcium oxalate is by<br />

far the most comm<strong>on</strong> of these; usually it crystallizes as a<br />

m<strong>on</strong>ohydrate (whewellite), but may also occur in the dihydrated<br />

form (weddelite) (J<strong>on</strong>es et al., 1980). Due to their low<br />

solubility, oxalates tend to accumulate inside the thallus (Enderman<br />

et al., 1977), or at the lichen-substrate interface (Ascaso<br />

et al., 1976), sometimes forming a crystalline layer <strong>on</strong><br />

the upper surface of the thallus (Jacks<strong>on</strong>, 1981). Del M<strong>on</strong>te<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> Sabbi<strong>on</strong>i (1987) suggested that oxalate patinas <strong>on</strong> ancient<br />

m<strong>on</strong>uments (Guidobaldi et al., 1984) are the result of<br />

the metabolic activity of lichens of the past that have disappeared<br />

from towns due to polluti<strong>on</strong>. This hypothesis caused<br />

much c<strong>on</strong>troversy <str<strong>on</strong>g>and</str<strong>on</strong>g> stimulated research which, far from<br />

settling the dispute about the origin of the patinas, nevertheless<br />

revealed that they can protect the underlying st<strong>on</strong>e by<br />

virtue of their low solubility (Aless<str<strong>on</strong>g>and</str<strong>on</strong>g>rini, 1989).<br />

2.3. Recogniti<strong>on</strong> of biodeteriorati<strong>on</strong> of a material<br />

As for <str<strong>on</strong>g>plants</str<strong>on</strong>g>, the identi cati<strong>on</strong> of lichens is based <strong>on</strong><br />

the diagnostic characters of the di erent species. The main<br />

lichen characters used are form of growth, color, thallus<br />

size, surface structures (isidia, soredia <str<strong>on</strong>g>and</str<strong>on</strong>g> so forth), fruiting<br />

bodies, number <str<strong>on</strong>g>and</str<strong>on</strong>g> form of spores, <str<strong>on</strong>g>and</str<strong>on</strong>g> speci c substances<br />

in the thallus. Identi cati<strong>on</strong> is generally performed in<br />

situ. When microscopic observati<strong>on</strong> is necessary, fragments<br />

of thallus <str<strong>on</strong>g>and</str<strong>on</strong>g> fruiting bodies are removed with a scalpel<br />

without damaging the rock surface. In the laboratory, special<br />

reagents are used that give a color reacti<strong>on</strong> with speci c<br />

lichen chemicals.<br />

To study the distributi<strong>on</strong> of lichens over vast areas, phytosociological<br />

surveys can be performed according to the<br />

method of Braun-Blanquet (1964). Each survey c<strong>on</strong>sists of<br />

a list of species identi ed in a de ned area. Eachspecies is<br />

assigned a substrate cover value in a scale of several classes.<br />

The type of substrate, its inclinati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> aspect are noted for<br />

eachsurvey. The data is classi ed <str<strong>on</strong>g>and</str<strong>on</strong>g> ordered to identify<br />

clusters <str<strong>on</strong>g>and</str<strong>on</strong>g> relati<strong>on</strong>ships between groups by the method of<br />

Wildi <str<strong>on</strong>g>and</str<strong>on</strong>g> Orloci (1988). The ecological characterizati<strong>on</strong> of<br />

the various groups can be performed by associating the indices<br />

of pH, nitrophytism, hygrophytism <str<strong>on</strong>g>and</str<strong>on</strong>g> photophytism<br />

proposed by Wirth(1980).<br />

Deteriorati<strong>on</strong> can be observed at the rock-lichen interface<br />

by combined methods such as the study of translucent or


Fig. 3. Di erent structures of vegetative (a,b) <str<strong>on</strong>g>and</str<strong>on</strong>g> sexual (c) reproducti<strong>on</strong> of lichens: (a) soredium; (b) isidium; (c) spores.<br />

thin secti<strong>on</strong>s, X-ray di racti<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> scanning electr<strong>on</strong> microscope<br />

(SEM) observati<strong>on</strong> using a microprobe. Salvadori <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

Lazzarini (1991) dem<strong>on</strong>strated oxalates by polarizati<strong>on</strong> microscope<br />

observati<strong>on</strong> of thin secti<strong>on</strong>s. Modenesi <str<strong>on</strong>g>and</str<strong>on</strong>g> Lajolo<br />

(1988) proposed various preparati<strong>on</strong> techniques for samples<br />

of marble col<strong>on</strong>ized by Aspicilia c<strong>on</strong>torta for polarizati<strong>on</strong><br />

microscope <str<strong>on</strong>g>and</str<strong>on</strong>g> SEM observati<strong>on</strong>; these methods involved<br />

removing calcium carb<strong>on</strong>ate by placing the samples in<br />

dilute soluti<strong>on</strong>s of hydrochloric or acetic acid.<br />

2.4. Organisms involved <str<strong>on</strong>g>and</str<strong>on</strong>g> examples of biological attack<br />

Like other species of animals <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>plants</str<strong>on</strong>g>, lichens have a<br />

geographic distributi<strong>on</strong>, the range of which depends <strong>on</strong> the<br />

adaptability of eachsymbiotic organism. The species involved<br />

therefore vary from place to place in relati<strong>on</strong> to climate<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> other envir<strong>on</strong>mental factors. Here we give some<br />

examples of lichens growing <strong>on</strong> m<strong>on</strong>uments, their e ect<br />

<strong>on</strong> the substrate <str<strong>on</strong>g>and</str<strong>on</strong>g> the envir<strong>on</strong>mental characteristics that<br />

in uence col<strong>on</strong>izati<strong>on</strong>.<br />

Orvieto Cathedral is extensively col<strong>on</strong>ized by lichens<br />

around the tympanum of the main facade (Nimis <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

M<strong>on</strong>te, 1988). One reas<strong>on</strong> for lichen growth is enrichment<br />

of the substrate by the excrement of birds that roost <str<strong>on</strong>g>higher</str<strong>on</strong>g><br />

up. Nitrates are washed over the st<strong>on</strong>e by rain. On the north<br />

side, moreover, moister c<strong>on</strong>diti<strong>on</strong>s due to c<strong>on</strong>densati<strong>on</strong><br />

have favored lichen col<strong>on</strong>izati<strong>on</strong> of vast areas, even by n<strong>on</strong>nitrophiles.<br />

Unaesthetic color changes <strong>on</strong> the dark basalt<br />

b<str<strong>on</strong>g>and</str<strong>on</strong>g>s of the cathedral are due to the growth of pale-colored<br />

lichens (Haematomma ochroleucum var. porphyrium <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

Tephromela atra) (Plate 1b). Seaward (1988) showed the<br />

di erent roles played by various lichen species in the deteriorati<strong>on</strong><br />

of st<strong>on</strong>e m<strong>on</strong>uments in Rome. The sporadic growth<br />

of Lecanora muralis has caused mechanical decay of the<br />

substrate. Species suchas Lecanora dispersa, C<str<strong>on</strong>g>and</str<strong>on</strong>g>elariella<br />

vitellina <str<strong>on</strong>g>and</str<strong>on</strong>g> Lecidea fuscoatra that also have signi cant<br />

cover, do not cause evident modi cati<strong>on</strong> of the substrate.<br />

Nimis <str<strong>on</strong>g>and</str<strong>on</strong>g> Zappa (1988) studied the col<strong>on</strong>izati<strong>on</strong> of<br />

st<strong>on</strong>e by endolithic calcicolous lichens such as Bagliet-<br />

toa parmigerella, Bagliettoa parmigera <str<strong>on</strong>g>and</str<strong>on</strong>g> Caloplaca<br />

ochracea <str<strong>on</strong>g>and</str<strong>on</strong>g> showed that they cause dissoluti<strong>on</strong>.<br />

In a comparative study of lichen ora growing <strong>on</strong> the<br />

buildings of Salento, Seaward et al. (1989) observed that the<br />

species were di erent from those found in the surrounding<br />

natural envir<strong>on</strong>ment. In this case, factors associated with<br />

human activities were more important than natural <strong>on</strong>es in<br />

determining lichen vegetati<strong>on</strong>.<br />

Nimis et al. (1987) in Latium <str<strong>on</strong>g>and</str<strong>on</strong>g> Tretiachet al. (1991)<br />

in Sardinia identi ed about 300 di erent species <strong>on</strong> archaeological<br />

remains. On close, microcrystalline calcareous rock<br />

exposed to the sun, the main species were Caloplaca aurantia,<br />

Caloplaca avescens, Aspicilia calcarea, Aspicilia<br />

radiosa <str<strong>on</strong>g>and</str<strong>on</strong>g> Verrucaria nigrescens. On porous calcareous<br />

rock exposed to the north, in shaded positi<strong>on</strong>s or near the<br />

soil, the main species were Bagliettoa parmigera, Placintium<br />

nigrum <str<strong>on</strong>g>and</str<strong>on</strong>g> Caloplaca ochracea. On vertical brick<br />

walls of the Capitolium (ancient Ostia) exposed to the<br />

north, Dirina massiliensis, Dirina stenhammari, Lecidella<br />

carpathica, Roccella phycopsis prevailed. The cover of<br />

the latter was greater several meters above ground level<br />

where the substrate is exposed to moist winds from the sea.<br />

Dirina massiliensis was also found <strong>on</strong> the marble portal<br />

of the Cathedral of Orvieto, where it is causing corrosi<strong>on</strong><br />

(Plate 1c). Seaward <str<strong>on</strong>g>and</str<strong>on</strong>g> Giacobini (1989) have c<strong>on</strong> rmed<br />

the corrosive e ect of Dirina massiliensis growing <strong>on</strong> frescoes<br />

of Palazzo Farnese at Caprarola. On granite, trachyte,<br />

basalt <str<strong>on</strong>g>and</str<strong>on</strong>g> tu “nuraghi” of NW Sardinia (Plate 1d), the<br />

distributi<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> reproductive <str<strong>on</strong>g>and</str<strong>on</strong>g> propagati<strong>on</strong> strategies of<br />

the species are in uenced by solar radiati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> humidity<br />

(M<strong>on</strong>te, 1993). Fig. 4 summarizes the dispositi<strong>on</strong> of different<br />

lichen communities <strong>on</strong> a typical “nuraghe” in relati<strong>on</strong><br />

to exposure. The characteristic species of each community<br />

are indicated.<br />

Deruelle et al. (1979) examined lichens <strong>on</strong> the Basilica<br />

of Notre-Dame de l’Epine, in the country 8 km from<br />

Chal<strong>on</strong>s-sur-Marne. On the west wall, unsightly populati<strong>on</strong>s<br />

of green <str<strong>on</strong>g>and</str<strong>on</strong>g> orange lichens had become established.<br />

Identi cati<strong>on</strong> of the nitrophiles C<str<strong>on</strong>g>and</str<strong>on</strong>g>elariella medians,


Fig. 4. Distributi<strong>on</strong> of 12 lichen communities <strong>on</strong> acid rock of a Sardinian “nuraghe”. A: upper part of the nuraghe; B: lower part of the nuraghe.<br />

Phaeophyscia orbicularis, Xanthoria c<str<strong>on</strong>g>and</str<strong>on</strong>g>elaria <str<strong>on</strong>g>and</str<strong>on</strong>g> Caloplaca<br />

citrina showed that nutrient enrichment of the st<strong>on</strong>e<br />

substrate had caused lichen growth. The nitrates were attributed<br />

to fertilizers dusted <strong>on</strong> crops in the surrounding elds.<br />

On the tower of the Cathedral of Seville, la Giralda, calcicolous<br />

species (almost all crust-like <str<strong>on</strong>g>and</str<strong>on</strong>g> epilithic) have<br />

been identi ed. Their growthis associated withbird excrement.<br />

These species usually live <strong>on</strong> deteriorated calcareous<br />

substrates (Saiz-Jimenez, 1981).<br />

On the pavement mosaics of the Romanesque town of<br />

Italica (Seville), the tesserae <str<strong>on</strong>g>and</str<strong>on</strong>g> mortar were attacked by<br />

Aspicilia radiosa, Aspicilia ho mannii <str<strong>on</strong>g>and</str<strong>on</strong>g> several species<br />

of the genus Caloplaca (Garcia Rowe <str<strong>on</strong>g>and</str<strong>on</strong>g> Saiz-Jimenez,<br />

1988).<br />

2.5. Methods of preventi<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> c<strong>on</strong>trol<br />

The opportunity of removing lichens from st<strong>on</strong>e substrates<br />

must be evaluated case by case, since the damage caused<br />

by eachspecies is di erent. The rst step is to identify <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

perform an ecological characterizati<strong>on</strong> of the species so as to<br />

be able to choose a speci c agent to eliminate the lichen <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

the cause of its growth. Foliose <str<strong>on</strong>g>and</str<strong>on</strong>g> fruticose lichens have<br />

very di erent sensitivities to chemical agents (Giacobini et<br />

al., 1979). If the factors favoring lichen growth are known,<br />

preventive measures can be suggested to halt or slow down<br />

processes of col<strong>on</strong>izati<strong>on</strong>.<br />

Before removing nitrophilic species, which are relatively<br />

fast-growing <str<strong>on</strong>g>and</str<strong>on</strong>g> cause substantial damage, it is advisable<br />

to nd a way of avoiding nitrate enrichment of the st<strong>on</strong>e<br />

surfaces. This can be achieved by c<strong>on</strong>trolling the bird populati<strong>on</strong>s<br />

of towns, the use of fertilizers in nearby elds,<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> water ow over the surfaces. Water run-o is generally<br />

avoided by sheltering or re-directing the water (Nimis <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

M<strong>on</strong>te, 1988).<br />

For surfaces col<strong>on</strong>ized by endolithic lichens, Nimis <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

Zappa (1988) advise against eliminati<strong>on</strong>, as degenerati<strong>on</strong> of<br />

the thallus leaves the surface porous <str<strong>on</strong>g>and</str<strong>on</strong>g> more vulnerable<br />

to envir<strong>on</strong>mental acids, whereas the damage caused by the<br />

lichens is limited due to their extremely slow growth.<br />

In the past, normal restorati<strong>on</strong> practice involved the mechanical<br />

removal of the lichen thalli. Today this is d<strong>on</strong>e<br />

<strong>on</strong>ly for foliose <str<strong>on</strong>g>and</str<strong>on</strong>g> fruticose lichens since they do not<br />

adhere str<strong>on</strong>gly to the substrate. Mechanical removal of<br />

crust-like lichens, the thallus of which penetrates deeply<br />

into the st<strong>on</strong>e, requires the use of hard brushes <str<strong>on</strong>g>and</str<strong>on</strong>g> much<br />

washing with water <str<strong>on</strong>g>and</str<strong>on</strong>g> detergents. This process disperses<br />

the spores <str<strong>on</strong>g>and</str<strong>on</strong>g> causes much st<strong>on</strong>e to be lost. To avoid these<br />

problems, Clarke (1976) advised applying an amm<strong>on</strong>ium<br />

hydroxide soluti<strong>on</strong> to kill the thalli <str<strong>on</strong>g>and</str<strong>on</strong>g> loosen them, before<br />

mechanical removal. Nimis et al. (1987) advised against<br />

mechanical removal of thalli with soredia in order to avoid<br />

dispersal of these asexual reproductive structures <str<strong>on</strong>g>and</str<strong>on</strong>g> spread<br />

of the lichens.<br />

<str<strong>on</strong>g>Lichens</str<strong>on</strong>g> are generally removed by applicati<strong>on</strong> of chemical<br />

products (see Appendix A) which may be combined<br />

with mechanical methods. A large variety of biocides that<br />

damage either the phycobi<strong>on</strong>t (algicides) or the mycobi<strong>on</strong>t<br />

(fungicides) are available (Lloyd, 1971). The most<br />

important parameters to c<strong>on</strong>sider in the choice of products<br />

to use for restorati<strong>on</strong> are e cacy, n<strong>on</strong>reactivity with<br />

the substrate <str<strong>on</strong>g>and</str<strong>on</strong>g> toxicological characteristics. E cacy<br />

against the lichen should be a maximum at the minimum<br />

dose. The biocides should be of broad spectrum <str<strong>on</strong>g>and</str<strong>on</strong>g> have<br />

a l<strong>on</strong>g-lasting e ect. Chemical soluti<strong>on</strong>s should have a<br />

neutral pH to avoid corroding the st<strong>on</strong>e <str<strong>on</strong>g>and</str<strong>on</strong>g> interfering<br />

with any soluble salts (Richards<strong>on</strong>, 1976). They should<br />

not cause changes in color, loss of translucence, whitening<br />

or increased re ectance. Richards<strong>on</strong> (1976, 1987) advises<br />

against the use of copper compounds <str<strong>on</strong>g>and</str<strong>on</strong>g> phenols because<br />

they color the substrate, <str<strong>on</strong>g>and</str<strong>on</strong>g> of borates that favor the formati<strong>on</strong><br />

of soluble salts. For vast areas it is preferable to<br />

use low toxicity products (Class III or IV, expressed as<br />

LD50 or LC50) so as to avoid c<strong>on</strong>taminati<strong>on</strong> of the envir<strong>on</strong>ment<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> pois<strong>on</strong>ing of the operators. Biocides may be<br />

applied by spraying, brushing or pasting. Spraying should


e avoided <strong>on</strong> windy days <str<strong>on</strong>g>and</str<strong>on</strong>g> brushing when the surface<br />

is friable. Paste is used when the agent must be kept in<br />

c<strong>on</strong>tact with the surface for a l<strong>on</strong>ger period. The materials<br />

usually used for pasting are paper pulp, rice paper, cott<strong>on</strong><br />

wool <str<strong>on</strong>g>and</str<strong>on</strong>g> substances suchas carboxymethylcellulose (Mora<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> Mora, 1972). Richards<strong>on</strong> (1976) recommends the use<br />

of quaternary amm<strong>on</strong>ia salts applied witha low pressure<br />

spray. The c<strong>on</strong>centrati<strong>on</strong> should be chosen in relati<strong>on</strong> to<br />

the porosity of the substrate. Samidi (1981) successfully<br />

used a soluti<strong>on</strong> of quaternary amm<strong>on</strong>ia salts to eliminate<br />

lichens from the temple of Boradubur in Ind<strong>on</strong>esia. He recommends<br />

performing the operati<strong>on</strong> in a dry period as rain<br />

could cancel the inhibitory e ect of the products. Soluti<strong>on</strong>s<br />

of pentachlorophenol <str<strong>on</strong>g>and</str<strong>on</strong>g> PanaciderJ have been applied<br />

by brushto Aboriginal rock paintings in Australia (Clarke,<br />

1976). Small silic<strong>on</strong> channels were mounted above these<br />

paintings to prevent water from owing over the painted<br />

surface. An interesting study by Lloyd (1971) reports the<br />

testing of pentachloro-phenyl-laurate, Cu-8-quinolate, <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

pentachloro- <str<strong>on</strong>g>and</str<strong>on</strong>g> trichloro-phenoxy-isopropanol <strong>on</strong> algae of<br />

the genus Trebouxia <str<strong>on</strong>g>and</str<strong>on</strong>g> fungi of the genus Cladosporium.<br />

Since it is di cult to determine the moment in which the<br />

lichen is no l<strong>on</strong>ger alive because its death does not imply<br />

loss of its chitin structure, deciding the appropriate dose<br />

can be problematical. Only a l<strong>on</strong>g time after treatment is<br />

it possible to observe morphological changes indicative of<br />

death. In fact this problem underlies the not always positive<br />

results obtained by Giacobini et al. (1979) when his<br />

group applied uometur<strong>on</strong>, chlorobromur<strong>on</strong>, terbutryn <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

vaneide 51 by spray <str<strong>on</strong>g>and</str<strong>on</strong>g> paste to a large variety of st<strong>on</strong>e<br />

substrates. More than a year was necessary to be able to<br />

observed lichen death directly. Bettini <str<strong>on</strong>g>and</str<strong>on</strong>g> Villa (1981)<br />

proposed the following program of treatments:<br />

• repeated washing with water <str<strong>on</strong>g>and</str<strong>on</strong>g> the n<strong>on</strong>-i<strong>on</strong>ic detergent<br />

Lito 7, brushing <str<strong>on</strong>g>and</str<strong>on</strong>g> nal rinsing to remove dirt <str<strong>on</strong>g>and</str<strong>on</strong>g> dust<br />

trapped in the lichens;<br />

• applicati<strong>on</strong> of the biocides, Lito 3, <str<strong>on</strong>g>and</str<strong>on</strong>g> further brushing<br />

to remove dry material.<br />

In central India, vigorous cleaning withagents suchas<br />

acetic acid, hydrogen peroxide <str<strong>on</strong>g>and</str<strong>on</strong>g> amm<strong>on</strong>ia teepol was performed<br />

before applying agents to kill lichens (Santobrite,<br />

benzal, k<strong>on</strong>ium chloride) <strong>on</strong> Indian temples (Sharma et al.,<br />

1985). The use of these products is questi<strong>on</strong>able as they<br />

have very acid or basic pH <str<strong>on</strong>g>and</str<strong>on</strong>g> could corrode the st<strong>on</strong>e.<br />

3. Higher <str<strong>on</strong>g>plants</str<strong>on</strong>g><br />

3.1. Invasi<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> col<strong>on</strong>izati<strong>on</strong><br />

The growth of <str<strong>on</strong>g>plants</str<strong>on</strong>g> <strong>on</strong> a historical building depends <strong>on</strong><br />

its state of c<strong>on</strong>servati<strong>on</strong>, the building material <str<strong>on</strong>g>and</str<strong>on</strong>g> climate<br />

(Fig. 1). Plants usually take more than 10 years to col<strong>on</strong>ize a<br />

wall. In that period of time, Parietaria di usa, for instance,<br />

will grow to a diameter of 20–30 cm in the mortar between<br />

the bricks of a wall. In the col<strong>on</strong>izati<strong>on</strong> process, there are<br />

Fig. 5. The stages of <strong>on</strong>e mode of col<strong>on</strong>izati<strong>on</strong> of a wall. Hardy pi<strong>on</strong>eer<br />

<str<strong>on</strong>g>plants</str<strong>on</strong>g> grow in substrate created by break-down of the wall structure <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

are succeeded by less hardy <str<strong>on</strong>g>plants</str<strong>on</strong>g> <strong>on</strong> a more abundant substrate.<br />

always pi<strong>on</strong>eer <str<strong>on</strong>g>plants</str<strong>on</strong>g> (herbaceous annuals <str<strong>on</strong>g>and</str<strong>on</strong>g> perennials)<br />

that cause little damage, <str<strong>on</strong>g>and</str<strong>on</strong>g> are replaced by more detrimental<br />

<str<strong>on</strong>g>plants</str<strong>on</strong>g> suchas small shrubs or trees (Plate 2a <str<strong>on</strong>g>and</str<strong>on</strong>g> 2b).<br />

On the basis of this sequence, two modes of col<strong>on</strong>izati<strong>on</strong><br />

that di er in relati<strong>on</strong> to positi<strong>on</strong>, water availability <str<strong>on</strong>g>and</str<strong>on</strong>g> the<br />

type of <str<strong>on</strong>g>plants</str<strong>on</strong>g> that succeed each other can be identi ed.<br />

Fig. 5 shows the various stages of <strong>on</strong>e type of col<strong>on</strong>izati<strong>on</strong><br />

that is independent of the positi<strong>on</strong>s illustrated in Fig. 7<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> occurs even when little water is available. The rst<br />

assault <strong>on</strong> the wall is usually the result of abiotic factors<br />

(Fig. 5), that create c<strong>on</strong>diti<strong>on</strong>s suitable for the growth of bacteria,<br />

fungi <str<strong>on</strong>g>and</str<strong>on</strong>g> lichens (Hyvarinen et al., 2002). These organisms<br />

accelerate the deteriorati<strong>on</strong> of the structure <str<strong>on</strong>g>and</str<strong>on</strong>g> lead<br />

to the formati<strong>on</strong> of a substrate for the germinati<strong>on</strong> of seeds<br />

of hardy pi<strong>on</strong>eer <str<strong>on</strong>g>plants</str<strong>on</strong>g> such as S<strong>on</strong>chus tenerrimus (herbaceous<br />

annual) <str<strong>on</strong>g>and</str<strong>on</strong>g> Parietaria di usa (herbaceous perennial).<br />

Atmospheric dust, bird excrement <str<strong>on</strong>g>and</str<strong>on</strong>g> human wastes<br />

c<strong>on</strong>tribute to the layer of substrate so that other <str<strong>on</strong>g>plants</str<strong>on</strong>g> can<br />

develop. In some cases, the detritus of the pi<strong>on</strong>eer <str<strong>on</strong>g>plants</str<strong>on</strong>g><br />

forms a suitable substrate for the <str<strong>on</strong>g>plants</str<strong>on</strong>g> that follow.<br />

The sec<strong>on</strong>d mode of col<strong>on</strong>izati<strong>on</strong> occurs mostly <strong>on</strong> horiz<strong>on</strong>tal<br />

surfaces witha better water supply (Fig. 6). In this<br />

case the pi<strong>on</strong>eer <str<strong>on</strong>g>plants</str<strong>on</strong>g> are mosses that trap atmospheric dust,<br />

leading to the formati<strong>on</strong> of su cient substrate for the germinati<strong>on</strong><br />

of other <str<strong>on</strong>g>plants</str<strong>on</strong>g> (Plate 2c). Plants can grow in mortar<br />

between st<strong>on</strong>es or bricks, in building material itself <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>on</strong><br />

substrate formed as described above. The type of st<strong>on</strong>e used<br />

determines the species that grow. Soft, porous st<strong>on</strong>e that is<br />

not very compact, like travertine, crumbles readily, retains<br />

water <str<strong>on</strong>g>and</str<strong>on</strong>g> hosts mosses <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>higher</str<strong>on</strong>g> <str<strong>on</strong>g>plants</str<strong>on</strong>g>. In either case,<br />

the roots of <str<strong>on</strong>g>higher</str<strong>on</strong>g> <str<strong>on</strong>g>plants</str<strong>on</strong>g> penetrate the wall, destroying the<br />

materials <str<strong>on</strong>g>and</str<strong>on</strong>g> increasing the quantity of substrate.


Plate 2. (a) Fourteenth century tower of San Giovanni, Elba isl<str<strong>on</strong>g>and</str<strong>on</strong>g>. The same kinds of lichens <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>plants</str<strong>on</strong>g> grow <strong>on</strong> the surrounding granite <str<strong>on</strong>g>and</str<strong>on</strong>g> the st<strong>on</strong>es<br />

of the tower, also of local granite. (b) Archof an 18thcentury gate at Vignano, Siena. A cypress about 3 m highis growing between the bricks, to<br />

the detriment of the structure. (c) Crassulaceous plant (Sedum pachyphyllum) originating from a pot plant, growing <strong>on</strong> a mound of detritus c<strong>on</strong>sisting<br />

of moss <str<strong>on</strong>g>and</str<strong>on</strong>g> atmospheric dust at the base of the Altar of the Fatherl<str<strong>on</strong>g>and</str<strong>on</strong>g>, Rome (early twenties). (d) Walls of the town of San Quirico d’Orcia (Siena<br />

Province), hosting a plum tree. The roots of the plant have already dislodged many st<strong>on</strong>es. (e) Two examples of Dittrichia viscosa growing <strong>on</strong> the<br />

m<strong>on</strong>ument to Petrarch in Arezzo. The rhizome of the lower plant has already caused the marble to crack. (f) Ruins of the town of Maktar in Tunisia.<br />

Plants grow mostly in cracks <str<strong>on</strong>g>and</str<strong>on</strong>g> are periodically removed to keep the site accessible to tourists.<br />

3.2. Comm<strong>on</strong> <str<strong>on</strong>g>plants</str<strong>on</strong>g> col<strong>on</strong>izing m<strong>on</strong>uments<br />

Botanists have l<strong>on</strong>g been interested in <str<strong>on</strong>g>plants</str<strong>on</strong>g> that grow in<br />

the walls of European towns such as Cambridge (Rishbeth,<br />

1948), Durham (Woodell <str<strong>on</strong>g>and</str<strong>on</strong>g> Rossiter, 1959), Padua (Beguinot,<br />

1912, 1913, 1916a–c), Pavia (Traverso, 1898, 1899),<br />

Florence (Arrig<strong>on</strong>i <str<strong>on</strong>g>and</str<strong>on</strong>g> Rizzotto, 1994), Rome (Anzal<strong>on</strong>e,<br />

1951), Palermo (Cannarella, 1909, 1912) <str<strong>on</strong>g>and</str<strong>on</strong>g> other c<strong>on</strong>tinental<br />

towns (Kunick, 1982; Sukopp <str<strong>on</strong>g>and</str<strong>on</strong>g> Werner, 1983). In<br />

a recent study (Lisci <str<strong>on</strong>g>and</str<strong>on</strong>g> Pacini, 1993a, b), we examined<br />

the microsites in which <str<strong>on</strong>g>plants</str<strong>on</strong>g> become established, <str<strong>on</strong>g>and</str<strong>on</strong>g> their<br />

methods of col<strong>on</strong>izati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> reproducti<strong>on</strong>.


Fig. 6. The stages of a sec<strong>on</strong>d mode of wall col<strong>on</strong>izati<strong>on</strong>. A moss spore (a) falls <strong>on</strong> porous st<strong>on</strong>e, such as travertine, <str<strong>on</strong>g>and</str<strong>on</strong>g> develops (b). Atmospheric<br />

dust collects <strong>on</strong> the moss (c) forming a small amount of substrate (d). A seed falls <strong>on</strong> the substrate (e), germinates (f), grows (g) <str<strong>on</strong>g>and</str<strong>on</strong>g> owers (h). The<br />

moss does not damage the substrate but the plant roots penetrate it.<br />

Irrespective of the age or historical interest of the building,<br />

<str<strong>on</strong>g>plants</str<strong>on</strong>g> that grow in walls have anatomical <str<strong>on</strong>g>and</str<strong>on</strong>g> physiological<br />

characteristics that enable them to survive in a dry,<br />

inhospitable envir<strong>on</strong>ment with little soil. These characteristics<br />

include:<br />

1. Seeds that can reach cracks or small cavities in the<br />

building material. The main agents of dispersal that can<br />

achieve this are wind (for light seeds produced in large<br />

quantity: e.g. of Parietaria di usa, Centranthus ruber),<br />

ants (e.g. for Chelid<strong>on</strong>ium majus, Mercurialis annua),<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> birds that eat eshy fruits (e.g. of Ficus carica,<br />

Hedera helix). Man can also act as agent in the case of<br />

<str<strong>on</strong>g>plants</str<strong>on</strong>g> that “escape” from gardens <str<strong>on</strong>g>and</str<strong>on</strong>g> grow wild in walls<br />

(e.g. Antirrhinum majus, Cheiranthus cheiri, Matthiola<br />

incana).<br />

2. Seeds that germinate with a minimum of moisture.<br />

3. Early sexual maturity. Arboreal species that grow in walls<br />

can be regarded as “natural b<strong>on</strong>sai”.<br />

4. Vegetative reproducti<strong>on</strong>, permitting the plant to have an<br />

alternative method when sexual reproducti<strong>on</strong> fails.<br />

5. Drought resistance. Centranthus ruber, for example,<br />

grows <strong>on</strong> the edge of the crater of Vesuvius <str<strong>on</strong>g>and</str<strong>on</strong>g> in<br />

the ruins of Pompei, envir<strong>on</strong>ments with little water or<br />

substrate.<br />

6. Deep rooting <str<strong>on</strong>g>and</str<strong>on</strong>g> capable of growing in rock crevice.<br />

The microsites in which these <str<strong>on</strong>g>plants</str<strong>on</strong>g> grow are illustrated<br />

in Fig. 7 <str<strong>on</strong>g>and</str<strong>on</strong>g> described below. The positi<strong>on</strong>s occupied<br />

by <str<strong>on</strong>g>plants</str<strong>on</strong>g> <strong>on</strong> the ideal ruin hold for any historical<br />

building.<br />

A. Cavities at ground level. This situati<strong>on</strong> hosts many<br />

species since substrate naturally collects there <str<strong>on</strong>g>and</str<strong>on</strong>g> rain water<br />

does not run o . The roots of the plant may even penetrate<br />

the earth. Plants growing in this situati<strong>on</strong> su er less<br />

envir<strong>on</strong>mental stress.<br />

B. Cavities in inclined surfaces. This situati<strong>on</strong> o ers more<br />

possibilities for seeds to lodge <str<strong>on</strong>g>and</str<strong>on</strong>g> for moisture than vertical<br />

surfaces.<br />

C: Cavities between two types of building material. The<br />

greater the chemical di erence between the two materials,<br />

the more nutrients are available.<br />

D. Cavities in a vertical face of homogeneous material.<br />

This situati<strong>on</strong> is the most hostile to plant growth since water<br />

is limited to wind-driven rain.<br />

E. Cavities in horiz<strong>on</strong>tal surfaces. Water availability is<br />

good but the plant must be capable of retaining it.<br />

F. Cavities at the juncti<strong>on</strong> of vertical <str<strong>on</strong>g>and</str<strong>on</strong>g> horiz<strong>on</strong>tal surfaces.<br />

This situati<strong>on</strong> has similar water availability to A, but<br />

there is less substrate.<br />

G. Cavities where two vertical surfaces meet. This<br />

situati<strong>on</strong> is similar to F but o ers less moisture.<br />

H. Substrate formed <strong>on</strong> a horiz<strong>on</strong>tal porous surface.The<br />

situati<strong>on</strong> is c<strong>on</strong>stituted by a corbel, a decorative element in<br />

Roman buildings <str<strong>on</strong>g>and</str<strong>on</strong>g> Baroque <str<strong>on</strong>g>and</str<strong>on</strong>g> Renaissance churches.<br />

It is usually made of marble, travertine or s<str<strong>on</strong>g>and</str<strong>on</strong>g>st<strong>on</strong>e.


Fig. 7. The main microsites for plant growth: cavities A, at ground level; B, <strong>on</strong> inclined surface; C, at juncti<strong>on</strong> of two materials; D, in homogeneous<br />

vertical face; E, in horiz<strong>on</strong>tal surface; F, at juncti<strong>on</strong> of vertical <str<strong>on</strong>g>and</str<strong>on</strong>g> horiz<strong>on</strong>tal faces; G, at juncti<strong>on</strong> of two vertical faces; substrate, H, <strong>on</strong> horiz<strong>on</strong>tal<br />

porous surface; I, <strong>on</strong> ruined st<strong>on</strong>ework; space, J, between wall <str<strong>on</strong>g>and</str<strong>on</strong>g> st<strong>on</strong>e facade. Rhizomes, K, from <str<strong>on</strong>g>plants</str<strong>on</strong>g> growing in soil may invade the wall. Moisture<br />

is di erent in eachsituati<strong>on</strong>. Sites B, C <str<strong>on</strong>g>and</str<strong>on</strong>g> D are very dry, receiving <strong>on</strong>ly wind-driven rain. Sites A, F <str<strong>on</strong>g>and</str<strong>on</strong>g> G retain some rainwater <str<strong>on</strong>g>and</str<strong>on</strong>g> E, H, I, J <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

K are the wetest because the horiz<strong>on</strong>tal substrate absorbs all the rain it receives (modi ed from Lisci <str<strong>on</strong>g>and</str<strong>on</strong>g> Pacini, 1993a).<br />

I. Substrate formed <strong>on</strong> ruined st<strong>on</strong>ework. This is a special<br />

situati<strong>on</strong> mainly found in Roman ruins. It results from the<br />

destructi<strong>on</strong> of rubble <str<strong>on</strong>g>and</str<strong>on</strong>g> lime mortar- lled walls or pillars.<br />

J. Spaces between a wall <str<strong>on</strong>g>and</str<strong>on</strong>g> its st<strong>on</strong>e facade. This situati<strong>on</strong><br />

hosts <str<strong>on</strong>g>plants</str<strong>on</strong>g> with rhizomes, which if vigorous, may<br />

detachthe facade.<br />

K. Wall invaded by the rhizome of a plant in adjacent<br />

soil. This situati<strong>on</strong> occurs with retaining walls <str<strong>on</strong>g>and</str<strong>on</strong>g> has been<br />

observed withtrees <str<strong>on</strong>g>and</str<strong>on</strong>g> shrubs suchas Celtis australis,<br />

Ailanthus altissima <str<strong>on</strong>g>and</str<strong>on</strong>g> Syringa vulgaris, <str<strong>on</strong>g>and</str<strong>on</strong>g> withrhizomatous<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> stol<strong>on</strong>iferous herbs.<br />

Table 1 lists the most comm<strong>on</strong> <str<strong>on</strong>g>plants</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> the main microsites<br />

that they occupy (in terms of Fig. 7). Comparis<strong>on</strong><br />

of Fig. 7 <str<strong>on</strong>g>and</str<strong>on</strong>g> Table 1 reveals that the number of <str<strong>on</strong>g>plants</str<strong>on</strong>g> that<br />

grow <strong>on</strong> buildings is greatest for horiz<strong>on</strong>tal surfaces (Fig.<br />

7: E,H,I). This is because these situati<strong>on</strong> o er: (a) better<br />

c<strong>on</strong>diti<strong>on</strong>s for growth(i.e. more water <str<strong>on</strong>g>and</str<strong>on</strong>g> substrate); (b)<br />

more chance of seeds l<str<strong>on</strong>g>and</str<strong>on</strong>g>ing; (c) a good perch for birds<br />

that excrete seeds; (d) a good site for ant nests where seeds<br />

are stored. The number of <str<strong>on</strong>g>plants</str<strong>on</strong>g> decreases in envir<strong>on</strong>ments<br />

in which there is little precipitati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> relative humidity<br />

is low all year round. The ruins of Roman towns in north<br />

Africa (Tunisia <str<strong>on</strong>g>and</str<strong>on</strong>g> Libya) host <strong>on</strong>ly drought resistant<br />

species. Buildings of historical interest in parts of Asia<br />

(Burma, China, India, Ind<strong>on</strong>esia, Thail<str<strong>on</strong>g>and</str<strong>on</strong>g>) <str<strong>on</strong>g>and</str<strong>on</strong>g> America<br />

(Mexico, Peru), characterized by high rainfall, develop<br />

luxuriant vegetati<strong>on</strong> which is destructive if not c<strong>on</strong>trolled.


3.3. Damage<br />

Vegetati<strong>on</strong> growing <strong>on</strong> historical buildings <str<strong>on</strong>g>and</str<strong>on</strong>g> ruins may<br />

be picturesque but it is also <strong>on</strong>e of the main reas<strong>on</strong>s for their<br />

deteriorati<strong>on</strong> (Dia <str<strong>on</strong>g>and</str<strong>on</strong>g> Not, 1991; Mouga <str<strong>on</strong>g>and</str<strong>on</strong>g> Almeida 1994;<br />

Almeida et al., 1994). Both the roots <str<strong>on</strong>g>and</str<strong>on</strong>g> the aerial part of<br />

the <str<strong>on</strong>g>plants</str<strong>on</strong>g> damage the structure of the walls. The branches<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> leaves hide the building so that it cannot be appreciated,<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> cause static damage due to their weight, which may<br />

cause st<strong>on</strong>es or large porti<strong>on</strong>s of wall to fall (Plate 2d). They<br />

increase the risk of re with all the destructi<strong>on</strong> that it can<br />

cause. The roots may penetrate deep into the structure <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

grow to a large size, causing physical <str<strong>on</strong>g>and</str<strong>on</strong>g> chemical damage.<br />

The secreti<strong>on</strong>s of roots c<strong>on</strong>tain substances that attack<br />

building materials, <str<strong>on</strong>g>and</str<strong>on</strong>g> their mechanical force opens cracks,<br />

causes crumbling <str<strong>on</strong>g>and</str<strong>on</strong>g> loosens st<strong>on</strong>es <str<strong>on</strong>g>and</str<strong>on</strong>g> large fragments<br />

of wall. The damage is not limited to that which the plant<br />

causes to the building, but also includes the c<strong>on</strong>sequences<br />

of falling st<strong>on</strong>es (Plate 2D).<br />

Not all <str<strong>on</strong>g>plants</str<strong>on</strong>g> cause the same type or quantity of damage<br />

(Table 1). Herbaceous <str<strong>on</strong>g>plants</str<strong>on</strong>g> like Mercurialis annua,<br />

Parietaria di usa <str<strong>on</strong>g>and</str<strong>on</strong>g> S<strong>on</strong>chus tenerrimus are certainly<br />

less destructive than trees <str<strong>on</strong>g>and</str<strong>on</strong>g> shrubs like Ailanthus altissima,<br />

Capparis spinosa, Clematis vitalba, Ficus carica,<br />

Hedera helix <str<strong>on</strong>g>and</str<strong>on</strong>g> Rubus ulmifolius (Almeida et al., 1994).<br />

Herbaceous perennials, suchas Cynod<strong>on</strong> dactyl<strong>on</strong>, Dittrichia<br />

viscosa <str<strong>on</strong>g>and</str<strong>on</strong>g> Cheiranthus cheiri, are more harmful<br />

than herbaceous annuals. However, the most destructive<br />

<str<strong>on</strong>g>plants</str<strong>on</strong>g> of all are those with vegetative reproducti<strong>on</strong> (Fig. 7).<br />

Stol<strong>on</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g> rhizomes cause the infesting <str<strong>on</strong>g>plants</str<strong>on</strong>g> to increase<br />

in size <str<strong>on</strong>g>and</str<strong>on</strong>g> propagate over large areas, to the obvious detriment<br />

of building structure. The damage caused by this type<br />

of vegetati<strong>on</strong> is especially destructive to statues (Plate 2e).<br />

A plant that is aesthetically very attractive but which<br />

causes many types of damage is Hedera helix. The fruit is<br />

eaten by birds <str<strong>on</strong>g>and</str<strong>on</strong>g> the seeds germinate in many microsites<br />

(Fig. 7). The damage varies according to whether the plant<br />

grows as a liana from the soil or actually germinates <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

grows in the wall. In the rst case, the damage is due to the<br />

weight of the aerial part; in the sec<strong>on</strong>d, there is additi<strong>on</strong>ally<br />

the destructive acti<strong>on</strong> of the roots. If it grows <strong>on</strong> a stuccoed<br />

wall, it may cause the plaster to fall away.<br />

3.4. Methods of c<strong>on</strong>trol<br />

Methods of c<strong>on</strong>trol vary according to the type of plant,<br />

the structure of the building, its state of c<strong>on</strong>servati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

its locati<strong>on</strong>. Recent buildings made of classical materials<br />

(squared st<strong>on</strong>es <str<strong>on</strong>g>and</str<strong>on</strong>g> bricks), should be checked to prevent<br />

the formati<strong>on</strong> of substrate <str<strong>on</strong>g>and</str<strong>on</strong>g> the growth of pi<strong>on</strong>eer <str<strong>on</strong>g>plants</str<strong>on</strong>g><br />

(Fig. 1). The speed of col<strong>on</strong>izati<strong>on</strong> depends <strong>on</strong> building<br />

structure <str<strong>on</strong>g>and</str<strong>on</strong>g> materials (Fig. 1). Decorati<strong>on</strong>s suchas ledges<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> cornices favor the formati<strong>on</strong> of substrate. Porous materials<br />

or those with cracks, like travertine <str<strong>on</strong>g>and</str<strong>on</strong>g> red bricks,<br />

provide good microsites (Fig. 6). The state of c<strong>on</strong>servati<strong>on</strong><br />

of a building is very important in determining the appropriate<br />

method of c<strong>on</strong>trol. For ruins, periodic clearing of <str<strong>on</strong>g>plants</str<strong>on</strong>g><br />

should be performed to prevent plant growth between the<br />

st<strong>on</strong>es <str<strong>on</strong>g>and</str<strong>on</strong>g> crumbling of the remains (Plate 2f). Large buildings<br />

of historical interest in towns should be checked for<br />

aesthetic reas<strong>on</strong>s, in the interests of their c<strong>on</strong>servati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

for the safety of inhabitants <str<strong>on</strong>g>and</str<strong>on</strong>g> visitors. Two very ancient<br />

examples are the Panthe<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> Coliseum in Rome, but even<br />

Baroque <str<strong>on</strong>g>and</str<strong>on</strong>g> Renaissance buildings can be dangerous in a<br />

city like Rome if they are infested with <str<strong>on</strong>g>plants</str<strong>on</strong>g>. Buildings<br />

fenced o <strong>on</strong> archaeological sites present less of a peril to<br />

visitors.<br />

The surest method of c<strong>on</strong>trol with l<strong>on</strong>g term advantages<br />

is total removal of the <str<strong>on</strong>g>plants</str<strong>on</strong>g>, including their roots. After<br />

this the cracks are lled so that other seeds do not germinate<br />

in them. This method works well for herbaceous <str<strong>on</strong>g>plants</str<strong>on</strong>g><br />

but the roots of ligneous <str<strong>on</strong>g>plants</str<strong>on</strong>g> are di cult to remove,<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> pieces remaining may give rise to new growth. Other<br />

di culties are encountered when the walls are impervious<br />

or very high. The surface may be damaged if tools such as<br />

saws, chisels <str<strong>on</strong>g>and</str<strong>on</strong>g> drills are used. Manual weeding is useful<br />

for preventing the establishment of herbaceous <str<strong>on</strong>g>plants</str<strong>on</strong>g>, but<br />

as we already menti<strong>on</strong>ed, they are <strong>on</strong>ly the rst col<strong>on</strong>izers.<br />

When the wall already hosts luxuriant vegetati<strong>on</strong> in which<br />

the herbaceous <str<strong>on</strong>g>plants</str<strong>on</strong>g> have been replaced by ligneous <strong>on</strong>es,<br />

manual weeding is no l<strong>on</strong>ger e cacious, <str<strong>on</strong>g>and</str<strong>on</strong>g> more complex<br />

methods must be used. These may include killing the<br />

plant with chemicals, or if the positi<strong>on</strong> of the plant in the<br />

building permits, removing st<strong>on</strong>es, extirpating the roots <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

rebuilding.<br />

Chemical herbicides are much faster <str<strong>on</strong>g>and</str<strong>on</strong>g> more e cient<br />

than manual weeding, but certain envir<strong>on</strong>mental (climate,<br />

chemical <str<strong>on</strong>g>and</str<strong>on</strong>g> physical properties of the building materials,<br />

analysis of the vegetati<strong>on</strong> in the area where the chemical<br />

is to be applied) <str<strong>on</strong>g>and</str<strong>on</strong>g> toxicological (toxicity, volatility,<br />

biodegradability) aspects need to be veri ed before they are<br />

used. Today herbicides with speci c properties <str<strong>on</strong>g>and</str<strong>on</strong>g> di erent<br />

mechanisms of acti<strong>on</strong> (c<strong>on</strong>tact, systemic, residual, <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

so forth) are available (Appendix A). Their careful use can<br />

help greatly in the maintenance <str<strong>on</strong>g>and</str<strong>on</strong>g> protecti<strong>on</strong> of buildings<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> m<strong>on</strong>uments (Caneva <str<strong>on</strong>g>and</str<strong>on</strong>g> De Marco, 1986; Caneva<br />

et al., 1991). C<strong>on</strong>tact <str<strong>on</strong>g>and</str<strong>on</strong>g> systemic herbicides bel<strong>on</strong>g to the<br />

latest generati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> are especially indicated because of<br />

their reduced envir<strong>on</strong>mental impact. They may be applied<br />

sporadically or repeatedly, up to three times. The same product<br />

may be used or others may be alternated to exploit their<br />

di erent possibilities.<br />

The most comm<strong>on</strong>ly applied herbicidal methods are: (a)<br />

total eliminati<strong>on</strong> of all vegetati<strong>on</strong> (bare ground) which has<br />

a l<strong>on</strong>g term e ect; (b) temporary (short term) weeding; (c)<br />

selective weeding of herbaceous <str<strong>on</strong>g>plants</str<strong>on</strong>g>; (d) brush c<strong>on</strong>trol,<br />

c<strong>on</strong>sisting in removing shrubs <str<strong>on</strong>g>and</str<strong>on</strong>g> trees <str<strong>on</strong>g>and</str<strong>on</strong>g> leaving herbaceous<br />

vegetati<strong>on</strong>. The last two methods are the most frequent<br />

in archaeological sites, whereas total <str<strong>on</strong>g>and</str<strong>on</strong>g> temporary<br />

weeding are used for historical buildings <str<strong>on</strong>g>and</str<strong>on</strong>g> m<strong>on</strong>uments in<br />

towns. Bettini <str<strong>on</strong>g>and</str<strong>on</strong>g> Villa (1975) <str<strong>on</strong>g>and</str<strong>on</strong>g> Bettini <str<strong>on</strong>g>and</str<strong>on</strong>g> Cinquanta


Table 1<br />

List of the principal species growing <strong>on</strong> the walls of historical interest. Tree <str<strong>on</strong>g>and</str<strong>on</strong>g> shrub species are more destructive than herbaceous <str<strong>on</strong>g>plants</str<strong>on</strong>g>. Not all<br />

species are capable of growing <strong>on</strong> vertical surfaces. Nomenclature according to Flora Europea (Tutin et al., 1964–1980); comm<strong>on</strong> names from Clapham<br />

et al. (1962)<br />

Families <str<strong>on</strong>g>and</str<strong>on</strong>g> species<br />

Adiantaceae<br />

Comm<strong>on</strong> names Forms Microsites Damage<br />

Adiantum capillus-veneris L.<br />

Hypolepidaceae<br />

Maidenhair-fern HP A,B,C,D,J, +<br />

Pteridium aquilinum (L.) Kuhn<br />

Aspleniaceae<br />

Bracken HP A,B,C,D,J +<br />

Asplenium trichomanes L. Maidenhair Spleenwort HP A,B,C,D,J +<br />

Ceterach o<br />

Ulmaceae<br />

cinarum DC. Rusty-back Fern HP A,B,C,D,J +<br />

Celtis australis L. Nettle-tree T E,F,H,I,K ++++<br />

Ulmus minor Miller<br />

Moraceae<br />

Elm S=T E,F,H,I ++++<br />

Ficus carica L.<br />

Urticaceae<br />

Fig S=T A,B,C,D,E,F,H,I,K ++++<br />

Parietaria di usa Mert. & KochPellitory of the Wall HP A,B,C,D,E,F,G,H,I,J +<br />

Urtica dubia Forska l<br />

Caryophyllaceae<br />

Nettle HP A,B,C,D,E,F,H,I +<br />

Arenaria serpyllifolia L. Thyme-leaved S<str<strong>on</strong>g>and</str<strong>on</strong>g>wort HA A,B,F,H,I +<br />

Minuartia hybrida (Vill.) Schischk. Fine-leaved S<str<strong>on</strong>g>and</str<strong>on</strong>g>wort HA A,B,F,H,I +<br />

Stellaria media (L.) Vill.<br />

Ranunculaceae<br />

Chickweed HA A,B,F,H,I +<br />

Clematis vitalba L.<br />

Papaveraceae<br />

Traveller’s Joy S F,G,H,I,J,K +++<br />

Chelid<strong>on</strong>ium majus L. Greater Cel<str<strong>on</strong>g>and</str<strong>on</strong>g>ine HP A,F,H,I ++<br />

Fumaria o<br />

Capparidaceae<br />

cinalis L. Comm<strong>on</strong> Fumitory HA A,B,D,F,H,I +<br />

Capparis spinosa L.<br />

Cruciferae<br />

Caper S B,C,D,G ++++<br />

Cheiranthus cheiri L. Wall ower HP A,B,C,D,E,F,H,I +++<br />

Diplotaxis muralis (L.) DC. Wall Rocket HA A,F,E,I +<br />

Draba muralis L. Wall Whitlow Grass HA A,C,H,I +<br />

Matthiola incana (L.) R.Br. Stock HP A,B,C,E,F,H,I +++<br />

Sinapis arvensis L.<br />

Crassulaceae<br />

Charlock HA A,E,F,G,H ++<br />

Sedum album L. White St<strong>on</strong>ecrop HP B,C,D,E,F,G,H,I +<br />

Sedum dasyphyllum L. Thick-leaved St<strong>on</strong>ecrop HP B,C,D,E,F,G,H,I +<br />

Umbilicus rupestris (Salisb.) D<str<strong>on</strong>g>and</str<strong>on</strong>g>y<br />

Rosaceae<br />

Pennywort HP B,C,D,E,F,G,H,I +<br />

Rubus sp.<br />

Leguminosae<br />

Blackberry S F,G,H,I,J,K +++<br />

Robinia pseudacacia L.<br />

Euphorbiaceae<br />

Acacia T A,E,I,J,K ++++<br />

Mercurialis annua L.<br />

Simaroubaceae<br />

Annual Mercury HA A,E,F,H,I +<br />

Ailanthus altissima (Miller) Swingle<br />

Celastraceae<br />

Tree of Heaven S=T A,E,I,J,K ++++<br />

Eu<strong>on</strong>ymus europaeus L.<br />

Rhamnaceae<br />

Spindle-tree T A,E,I,J,K +++<br />

Rhamnus alaternus L.<br />

Guttiferae<br />

Buckthom S A,E,I,J,K +++<br />

Hypericum perforatum L.<br />

Araliaceae<br />

Comm<strong>on</strong> St John’s Wort HP A,B,C,D,E,F,H,I +<br />

Hedera helix L.<br />

Oleaceae<br />

Ivy S A,B,C,D,G,J,K ++++<br />

Syringa vulgaris L.<br />

Boraginaceae<br />

Lilac T A,E,I,J,K +++<br />

Echium vulgare L.<br />

Labiatae<br />

Vipers’ Bugloss HP C,E,F,G,H,J +<br />

Calamintha nepeta (L.) Savi Lesser Calamint HP A,B,C,D,E,H,I,J +<br />

Lamium amplexicaule L. Henbit HA A,B,C,D,E,H,I,J +<br />

Micromeria graeca (L.) Bentham HP A,B,C,D,E,H,I,J +


Table 1. C<strong>on</strong>tinued<br />

Families <str<strong>on</strong>g>and</str<strong>on</strong>g> species Comm<strong>on</strong> names Forms Microsites Damage<br />

Scrophulariaceae<br />

Antirrhinum majus L. Snapdrag<strong>on</strong> HP B,C,D,E,F,H,I,J ++<br />

Cymbalaria muralis Gaer., Mey & Scher. Ivy-leaved Toad ax HP B,C,D,E,F,H,I,J +<br />

Caprifoliaceae<br />

Sambucus nigra L. Elder T A,E,I,K +++<br />

Valerianaceae<br />

Centranthus ruber (L.) DC. Red Valerian HP B,C,D,E,F,H,I +++<br />

Compositae<br />

Anthemis tinctoria L. Yellow Chamomile HP B,C,D,E,F,H,I,J +<br />

C<strong>on</strong>yza canadensis (L.) Cr<strong>on</strong>q. Canadian Fleabane HA A,B,E,H,I,J +<br />

Crepis setosa Heller Bristly Hawk’s-beard HA D,E,F,H,I +<br />

Dittrichia viscosa (L.) Greuter HP A,B,C,D,E,F,G,H,I,J +++<br />

Helichrysum italicum (Roth) G.D<strong>on</strong> l. HP B,C,D,E,F,G,H,I ++<br />

Mycelis muralis (L.) Dum. Wall Lettuce HP D,E,G,H,I +<br />

Picris hieracioides L. Hawkweed Ox-T<strong>on</strong>gue HP A,E,H,I ++<br />

Senecio vulgaris L. Groundsel HA A,E,F,G,H,I +<br />

S<strong>on</strong>chus asper (L.) Hill Sow-Thistle HA A,B,C,D,E,H,I,J +<br />

S<strong>on</strong>chus tenerrimus L. HA A,B,C,D,E,H,I,J +<br />

Taraxacum o cinale Weber Comm<strong>on</strong> D<str<strong>on</strong>g>and</str<strong>on</strong>g>eli<strong>on</strong> HP A,E,H,I +<br />

Liliaceae<br />

Allium ampeloprasum L. Wild Leek HP A,C,E,H,I,J ++<br />

Gramineae<br />

Bromus madritensis L. Compact Brome HA A,C,D,E,F,H,I +<br />

Cynod<strong>on</strong> dactyl<strong>on</strong> (L.) Pers. Bermuda-grass HP A,C,D,E,F,H,I,J ++<br />

Dactylis glomerata L. Cock’s-foot HP A,C,D,E,F,H,I,J ++<br />

Desmazeria rigida (L.) Tutin Hard Poa HA A,C,D,E,F,H,I +<br />

Hordeum murinum L. Wall Barley HA A,C,D,E,F,H,I +<br />

HP, herbaceous perennial; HA, herbaceous annual; S, shrub; T, tree. Microsites are indicated as in Fig. 7. Score for damage to walls ranges<br />

from ++++ (major) to + (minor).<br />

Table 2<br />

Active principle Product <str<strong>on</strong>g>and</str<strong>on</strong>g> manufacturer=supplier Spectrum of acti<strong>on</strong> References<br />

3 Alkyl-trimethyl- Gloquat C–A.B.M. Chem <str<strong>on</strong>g>Lichens</str<strong>on</strong>g> Richards<strong>on</strong>, 1976<br />

amm<strong>on</strong>ium chloride<br />

Amm<strong>on</strong>ium phosamine Krenite–Du P<strong>on</strong>t <str<strong>on</strong>g>Lichens</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>higher</str<strong>on</strong>g> <str<strong>on</strong>g>plants</str<strong>on</strong>g> Bettini <str<strong>on</strong>g>and</str<strong>on</strong>g> Cinquanta, 1990<br />

Benzalc<strong>on</strong>io chloride Hyamine 3500–Rohm & Haas <str<strong>on</strong>g>Lichens</str<strong>on</strong>g> Samidi, 1981<br />

(alkyl-dimethyl-benzylamm<strong>on</strong>ium<br />

chloride)<br />

Bromacile Xyvar X–Du P<strong>on</strong>t Algae, mosses, lichens <str<strong>on</strong>g>and</str<strong>on</strong>g> Bettini <str<strong>on</strong>g>and</str<strong>on</strong>g> Cinquanta, 1990<br />

<str<strong>on</strong>g>higher</str<strong>on</strong>g> <str<strong>on</strong>g>plants</str<strong>on</strong>g><br />

Diur<strong>on</strong> Karmex–Du P<strong>on</strong>t Algae, mosses, lichens <str<strong>on</strong>g>and</str<strong>on</strong>g> Bettini <str<strong>on</strong>g>and</str<strong>on</strong>g> Cinquanta, 1990<br />

<str<strong>on</strong>g>higher</str<strong>on</strong>g> <str<strong>on</strong>g>plants</str<strong>on</strong>g><br />

Fluometur<strong>on</strong> (3-(3- Lito 3–Ciba Geigy Algae, mosses, lichens Bettini <str<strong>on</strong>g>and</str<strong>on</strong>g> Villa, 1981<br />

tri uoromethyl-phenyl)1,1dimethylurea<br />

Glyphosate Roundup Rodeo–M<strong>on</strong>santo Higher <str<strong>on</strong>g>plants</str<strong>on</strong>g> Bettini <str<strong>on</strong>g>and</str<strong>on</strong>g> Cinquanta, 1990<br />

Hexazin<strong>on</strong>e Velpar–Du P<strong>on</strong>t Higher <str<strong>on</strong>g>plants</str<strong>on</strong>g>; sometimes Bettini <str<strong>on</strong>g>and</str<strong>on</strong>g> Cinquanta, 1990<br />

against mosses <str<strong>on</strong>g>and</str<strong>on</strong>g> lichens<br />

Salicylanilide Shirlan–Plus I.C.L. <str<strong>on</strong>g>Lichens</str<strong>on</strong>g> Clarke, 1976<br />

Simazine Gesatop Weedex–Ciba Geigy Higher <str<strong>on</strong>g>plants</str<strong>on</strong>g>; sometimes Bettini <str<strong>on</strong>g>and</str<strong>on</strong>g> Cinquanta, 1990<br />

against mosses <str<strong>on</strong>g>and</str<strong>on</strong>g> lichens<br />

Sodium dimethylthiocarbamate Vancide 51–V<str<strong>on</strong>g>and</str<strong>on</strong>g>erbilt <str<strong>on</strong>g>Lichens</str<strong>on</strong>g> Giacobini et al., 1979<br />

+ sodium 2-mercapto-benzothiazolo<br />

Sodium tetraborate Polybor–Borax C<strong>on</strong>s. Lim. <str<strong>on</strong>g>Lichens</str<strong>on</strong>g> Richards<strong>on</strong>, 1987<br />

(1990) studied the use of a variety of herbicides at di erent<br />

c<strong>on</strong>centrati<strong>on</strong>s <strong>on</strong> archaeological sites <str<strong>on</strong>g>and</str<strong>on</strong>g> Italian m<strong>on</strong>uments<br />

(see Appendix A).<br />

The methods should be chosen according to whether the<br />

vegetati<strong>on</strong> to be destroyed is growing <strong>on</strong> archaeological remains<br />

or ruins in open areas, or <strong>on</strong> historical buildings <str<strong>on</strong>g>and</str<strong>on</strong>g>


m<strong>on</strong>uments in towns. Chemicals should not be used indiscriminately<br />

in towns as problems of eliminati<strong>on</strong> could arise<br />

withalready polluted air.<br />

4. Current trends <str<strong>on</strong>g>and</str<strong>on</strong>g> research<br />

Until a few years ago, research<strong>on</strong> this topic c<strong>on</strong>sisted of<br />

classi cati<strong>on</strong> of the vegetati<strong>on</strong> growing in these anthropized<br />

envir<strong>on</strong>ments. As far as lichens were c<strong>on</strong>cerned, even this<br />

type of study was rare up until the sixties. Recently, however,<br />

there has been much interest in lichens <str<strong>on</strong>g>and</str<strong>on</strong>g> they have<br />

been studied not <strong>on</strong>ly from the tax<strong>on</strong>omic point of view, but<br />

also as envir<strong>on</strong>mental bioindicators or sensors of polluti<strong>on</strong>,<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> as agents degrading building materials <str<strong>on</strong>g>and</str<strong>on</strong>g> m<strong>on</strong>uments.<br />

As bioindicators, lichens supply useful <strong>info</strong>rmati<strong>on</strong> <strong>on</strong> atmospheric<br />

polluti<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> other parameters that a ect the<br />

c<strong>on</strong>servati<strong>on</strong> of m<strong>on</strong>uments. Lichen damage to buildings<br />

varies in severity according to species <str<strong>on</strong>g>and</str<strong>on</strong>g> substrate, <str<strong>on</strong>g>and</str<strong>on</strong>g> is<br />

usually much slower than that caused by vascular <str<strong>on</strong>g>plants</str<strong>on</strong>g>.<br />

The decisi<strong>on</strong> to eliminate lichens with chemical substances<br />

should be evaluated <strong>on</strong> a case by case basis, c<strong>on</strong>sidering in<br />

additi<strong>on</strong> the e ects that atmospheric pollutants could cause<br />

to a surface devoid of lichens. As new products are tested<br />

for the eliminati<strong>on</strong> of lichens, it is necessary to st<str<strong>on</strong>g>and</str<strong>on</strong>g>ardize<br />

the methods to ascertain quickly whether the death of the<br />

lichen has occurred, rather than wait for the slower appearance<br />

of morphological changes. If envir<strong>on</strong>mental c<strong>on</strong>diti<strong>on</strong>s<br />

do not change after treatment with chemical products,<br />

new forms of biological col<strong>on</strong>izati<strong>on</strong> will so<strong>on</strong>er or later<br />

occur. A new attack of lichens <str<strong>on</strong>g>and</str<strong>on</strong>g>=or microorganisms<br />

is facilitated by the porosity of the substrate left by the<br />

previous col<strong>on</strong>y. It is therefore advisable to protect surfaces<br />

with substances that render them compact <str<strong>on</strong>g>and</str<strong>on</strong>g> resistant to<br />

biological agents.<br />

As far as <str<strong>on</strong>g>higher</str<strong>on</strong>g> <str<strong>on</strong>g>plants</str<strong>on</strong>g> are c<strong>on</strong>cerned, papers <strong>on</strong> the applied<br />

ecology of wall <str<strong>on</strong>g>plants</str<strong>on</strong>g> have recently appeared. The<br />

microsites in which these <str<strong>on</strong>g>plants</str<strong>on</strong>g> grow have been identi ed<br />

(Lisci <str<strong>on</strong>g>and</str<strong>on</strong>g> Pacini, 1993a, b) <str<strong>on</strong>g>and</str<strong>on</strong>g> germinati<strong>on</strong> trials are underway<br />

<strong>on</strong> the seeds of the most comm<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> most harmful<br />

am<strong>on</strong>g them (Lisci <str<strong>on</strong>g>and</str<strong>on</strong>g> Pacini, 1994). The purpose of this is<br />

to nd weak points in the development of these <str<strong>on</strong>g>plants</str<strong>on</strong>g> with<br />

a view to preventi<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> c<strong>on</strong>trol. In parallel, zoologists have<br />

been studying ways to limit bird fauna from roosting <strong>on</strong> Italian<br />

centers of art. The bird excrement causes four-fold damage:<br />

Corrosi<strong>on</strong>; aesthetic damage; dispersal of seeds of wall<br />

vegetati<strong>on</strong> (e.g. g seeds); <str<strong>on</strong>g>and</str<strong>on</strong>g> c<strong>on</strong>tributes to the formati<strong>on</strong><br />

of substrates for plant growth. Another line of research is<br />

c<strong>on</strong>cerned with what species to plant <strong>on</strong> archaeological sites.<br />

Such <str<strong>on</strong>g>plants</str<strong>on</strong>g> should have the following characteristics: (a)<br />

they should not invade the ruins; (b) they should be green<br />

for most of the year to grace the ruins; (c) they should be<br />

native to the surrounding envir<strong>on</strong>ment; <str<strong>on</strong>g>and</str<strong>on</strong>g> (d) they should<br />

not cause allergies.<br />

<str<strong>on</strong>g>Lichens</str<strong>on</strong>g> form a patina that testi es to the aging of a m<strong>on</strong>ument,<br />

whereas <str<strong>on</strong>g>plants</str<strong>on</strong>g> c<strong>on</strong>tribute a picturesque appearance.<br />

These two aspects, however, need to be c<strong>on</strong>trolled if we are<br />

to enjoy the m<strong>on</strong>ument for as l<strong>on</strong>g as possible.<br />

Appendix A. List of some comm<strong>on</strong>ly used herbicides in<br />

Italian archaeological <str<strong>on</strong>g>and</str<strong>on</strong>g> m<strong>on</strong>umental areas as shown in<br />

Table 2<br />

References<br />

Adam, J., 1988. La c<strong>on</strong>structi<strong>on</strong> romaine. Materiaux et techniques.<br />

Editi<strong>on</strong>s A. et J. Picard, Paris.<br />

Aless<str<strong>on</strong>g>and</str<strong>on</strong>g>rini, G., 1989. The oxalate lms: origin <str<strong>on</strong>g>and</str<strong>on</strong>g> signi cance in the<br />

c<strong>on</strong>servati<strong>on</strong> of works of art. Centro C.N.R. “Gino Bozza”, Milano,<br />

pp. 381.<br />

Almeida, M.T., Mouga, T., Barracosa, P., 1994. The weathering ability<br />

of <str<strong>on</strong>g>higher</str<strong>on</strong>g> <str<strong>on</strong>g>plants</str<strong>on</strong>g>. The case of Ailanthus altissima (Miller) Swingle.<br />

Internati<strong>on</strong>al Biodeteriorati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> Niodegradati<strong>on</strong> 12, 333–343.<br />

Anzal<strong>on</strong>e, B., 1951. Flora e vegetazi<strong>on</strong>e dei muri di Roma. Annali di<br />

Botanica (Roma) 23 (3), 393–497.<br />

Arrig<strong>on</strong>i, P.V., Rizzotto, M., 1994. Caratteri della ora e della vegetazi<strong>on</strong>e<br />

urbana di Firenze. Alli<strong>on</strong>ia 32, 231–243.<br />

Ascaso, C., Galvan, J., Rodriguez-Pascual, C., 1976. Studies <strong>on</strong> the<br />

pedogenetic acti<strong>on</strong> of lichen acids. Pedobiologia 16, 321–332.<br />

Beguinot, A., 1912. La ora delle mura e delle vie di Padova. Studio<br />

Biogeogra co. Malpighia 24, 413–428.<br />

Beguinot, A., 1913. (C<strong>on</strong>tinuazi<strong>on</strong>e). Malpighia 25, 61–84.<br />

Beguinot, A., 1916a. (C<strong>on</strong>tinuazi<strong>on</strong>e). Malpighia 27, 244–259.<br />

Beguinot, A., 1916b. (C<strong>on</strong>tinuazi<strong>on</strong>e). Malpighia 27, 439–454.<br />

Beguinot, A., 1916c. (C<strong>on</strong>tinuazi<strong>on</strong>e e ne). Malpighia 27, 547–582.<br />

Bettini, C., Cinquanta, A., 1990. Vegetazi<strong>on</strong>e e m<strong>on</strong>umenti: esigenze<br />

e metodologie nel c<strong>on</strong>trollo delle infestanti ruderali. Uni<strong>on</strong> Printing,<br />

Viterbo.<br />

Bettini, C., Villa, A., 1975. Il problema della vegetazi<strong>on</strong>e infestante<br />

nelle aree archeologiche. Proceedings of Internati<strong>on</strong>al Symposium “The<br />

C<strong>on</strong>servati<strong>on</strong> of St<strong>on</strong>e”. Centro C<strong>on</strong>servazi<strong>on</strong>e Sculture all’Aperto,<br />

Bologna, pp. 191–204.<br />

Bettini, C., Villa, A., 1981. Descripti<strong>on</strong> of a method for<br />

clearing tombst<strong>on</strong>es. Proceedings of Internati<strong>on</strong>al Symposium “The<br />

C<strong>on</strong>servati<strong>on</strong> of St<strong>on</strong>e”. Centro C<strong>on</strong>servazi<strong>on</strong>e Sculture all’Aperto,<br />

Bologna, pp. 523–534.<br />

Bracc<strong>on</strong>ot, H., 1825. De la presence de l’oxalate de chaux dans le regne<br />

mineral: existance du meme sel en quantite enorme dans les plantes<br />

de la famille des <str<strong>on</strong>g>Lichens</str<strong>on</strong>g>, et moyen avantageux d’en extraire l’acide<br />

oxalique. Annales de Chimimie et Physique 28, 318–322.<br />

Braun-Blanquet, J., 1964. P anzensoziologie. Grundzuge der<br />

Vegetati<strong>on</strong>skunde. Springer Verlag, Wien.<br />

Caneva, G., De Marco, G., 1986. Il c<strong>on</strong>trollo della vegetazi<strong>on</strong>e nelle<br />

aree archeologiche e m<strong>on</strong>umentali. Atti del C<strong>on</strong>vegno Scienze e Beni<br />

Culturali. Lib. progetto Ed. Padova, Bressan<strong>on</strong>e, pp. 553–569.<br />

Caneva, G., NugarI, M.P., Salvadori, O., 1991. Biology in the<br />

C<strong>on</strong>servati<strong>on</strong> of Works of Art. Internati<strong>on</strong>al Center for the Study of<br />

the Preservati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> the Restorati<strong>on</strong> of Cultural Property, Rome.<br />

Cannarella, P., 1909. Flora urbica palermitana. Bullettino Societa Botanica<br />

Italiana 3, 73–81.<br />

Cannarella, P., 1912. (C<strong>on</strong>tinuazi<strong>on</strong>e). Bullettino Societa Botanica Italiana<br />

7, 172–183.<br />

Chiari, G., Sampo, S., Torraca, G., 1989. Formazi<strong>on</strong>e di ossalati di calcio<br />

su super ci marmoree da parte dei funghi. Le pellicole ad ossalato:<br />

origine e signi cato nella c<strong>on</strong>servazi<strong>on</strong>e delle opere d’arte. Centro<br />

C.N.R. “Gino Bozza”, Milano, pp. 85–90.<br />

Clapham, A.R., Tutin, T.G., Warburg, E.F., 1962. Flora of the British<br />

Isles. Cambridge University Press, L<strong>on</strong>d<strong>on</strong>.<br />

Clarke, J., 1976. A lichen c<strong>on</strong>trol experiment at an aboriginal rock<br />

engraving site. Bolgart, Western Australia. ICCM Bulletin 2 (3),<br />

15–17.


Corball, R., Paz-Bermudez, G., Sanchez-Beisma, M.T., Prieto, B., 2001.<br />

Lichen col<strong>on</strong>izati<strong>on</strong> of coastal churces in galica: biodeteriorati<strong>on</strong><br />

implicati<strong>on</strong>s. Internati<strong>on</strong>al Biodeteriorati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> Biodegradati<strong>on</strong> 47,<br />

157–163.<br />

Del M<strong>on</strong>te, M., Sabbi<strong>on</strong>i, C., 1987. A study of the patina called<br />

“scialbatura” <strong>on</strong> Imperial Roman marbles. Studies in C<strong>on</strong>servati<strong>on</strong> 32,<br />

114–121.<br />

Deruelle, S., Lallemant, R., Roux, C., 1979. La vegetati<strong>on</strong> lichenique<br />

de la Basilique de Notre-Dame de l’Epine (Marne). Documents<br />

Phytosociologiques N.S. 4, 218–234.<br />

Dia, M.G., Not, R., 1991. Gli agenti biodeteriogeni degli edi ci<br />

m<strong>on</strong>umentali del centro storico della citta di Palermo. Quaderni di<br />

Botanica Ambientale Applicata 2, 3–10.<br />

Enderman, J.A., Gough, L.P., White, R.W., 1977. Calcium oxalate<br />

as source of high ash yields in the terricolous lichen Parmelia<br />

chlorochroa. The Bryologist 80, 334–339.<br />

Fry, E.J., 1924. A suggested explanati<strong>on</strong> of the mechanical acti<strong>on</strong> of<br />

lithophytic lichens <strong>on</strong> rocks (shale). Annals of Botany (L<strong>on</strong>d<strong>on</strong>) 38,<br />

175–196.<br />

Fry, E.J., 1927. The mechanical acti<strong>on</strong> of crustaceous lichens <strong>on</strong> substrata<br />

of shale, schist, gneiss, limest<strong>on</strong>e <str<strong>on</strong>g>and</str<strong>on</strong>g> obsidian. Annals of Botany<br />

(L<strong>on</strong>d<strong>on</strong>) 41, 437–460.<br />

Galvan, J., Rodriguez, C., Ascaso, C., 1981. The pedogenic acti<strong>on</strong> of<br />

lichens in metamorphic rocks. Pedobiologia 21, 60–73.<br />

Garcia Rowe, J., Saiz-Jimenez, C., 1988. Col<strong>on</strong>izati<strong>on</strong> of mosaics by<br />

lichens: the case study of Italica (Spain). Studia Geobotanica 8, 65–72.<br />

Garty, J., 1992. The post re recovery of rock-inhabiting algae, microfungi<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> lichens. Canadian Journal of Botany 70, 301–312.<br />

Gehrmann, C., Krumbein, W.E., Petersen, K., 1988. Lichen weathering<br />

activities <strong>on</strong> mineral <str<strong>on</strong>g>and</str<strong>on</strong>g> rock surfaces. Studia Geobotanica 8, 33–46.<br />

Giacobini, C., Bettini, C., Villa, A., 1979. Il c<strong>on</strong>trollo dei licheni, alghe<br />

e muschi. III C<strong>on</strong>gr. Intern. Deterioramento e C<strong>on</strong>servazi<strong>on</strong>e della<br />

Pietra, Venezia, pp. 305–312.<br />

Giamello, M., Guasparri, G., Neri, R., Sabatini, G., 1992. Building<br />

materials in Siena architecture: type, distributi<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> state of<br />

c<strong>on</strong>servati<strong>on</strong>. Science <str<strong>on</strong>g>and</str<strong>on</strong>g> Technology for Cultural Heritage 1, 55–65.<br />

Guidobaldi, F., Laurenzi Tabasso, M., Meucci, C., 1984. M<strong>on</strong>umenti in<br />

marmo di epoca imperiale a Roma: indagine sui residui di trattamenti<br />

super ciali. Bollettino d’arte 24, 121–134.<br />

Hale, M.E., 1974. The Biology of <str<strong>on</strong>g>Lichens</str<strong>on</strong>g>, 2nd Editi<strong>on</strong>. Arnold, L<strong>on</strong>d<strong>on</strong>.<br />

Hyvarinen, A., Meklin, T., Vespalainen, T., 2002. Fungi <str<strong>on</strong>g>and</str<strong>on</strong>g> actinobacteria<br />

in moisture-damaged building material: c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> diversity.<br />

Internati<strong>on</strong>al Biodeteriorati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> Biodegradati<strong>on</strong> 49, 21–25.<br />

Isk<str<strong>on</strong>g>and</str<strong>on</strong>g>er, I.K., Syers, J.K., 1972. Metal complex formati<strong>on</strong> by lichen<br />

compounds. Journal of Soil Science 23, 255–265.<br />

Jacks<strong>on</strong>, D.W., 1981. An SEM study of lichen pruina crystal morphology.<br />

Scanning Electr<strong>on</strong> Microscopy 3, 279–284.<br />

J<strong>on</strong>es, D., Wils<strong>on</strong>, M.J., Tait, J.M., 1980. Weathering of a basalt by<br />

Pertusaria corallina. Lichenologist 12, 277–289.<br />

Kunick, W., 1982. Comparis<strong>on</strong> of the ora of some cities of central<br />

European lowl<str<strong>on</strong>g>and</str<strong>on</strong>g>s. In: Bornkamm, R., Lee, J.A., Seaward, M.R.D.<br />

(Eds.), Urban Ecology. Blackwell, Oxford, pp. 13–22.<br />

Lisci, M., Pacini, E., 1993a. Plants growing <strong>on</strong> the walls of Italian towns<br />

1. Sites <str<strong>on</strong>g>and</str<strong>on</strong>g> distributi<strong>on</strong>. Phyt<strong>on</strong> (Horn, Austria) 33 (1), 15–26.<br />

Lisci, M., Pacini, E., 1993b. Plants growing <strong>on</strong> the walls of Italian towns<br />

2. Reproductive ecology. Giornale Botanico Italiano 127, 1053–1078.<br />

Lisci, M., Pacini, E., 1994. Germinati<strong>on</strong> ecology of drupelets of the g<br />

(Ficus carica L.). Botanical Journal of Linnean Society 114, 133–146.<br />

Lloyd, A.O., 1971. An approach to the testing of lichen inhibitors.<br />

Biodeteriorati<strong>on</strong> of Materials 2, 185–191.<br />

Modenesi, P., Lajolo, L., 1988. Microscopical investigati<strong>on</strong> <strong>on</strong> a marble<br />

encrusting lichen. Studia Geobotanica 8, 47–64.<br />

M<strong>on</strong>te, M., 1991a. <str<strong>on</strong>g>Lichens</str<strong>on</strong>g> <strong>on</strong> m<strong>on</strong>uments: envir<strong>on</strong>mental bioindicators.<br />

Science, Technology <str<strong>on</strong>g>and</str<strong>on</strong>g> European Cultural Heritage. Published for the<br />

Commissi<strong>on</strong> of the European Communities by Butterworth-Heinemann<br />

Ltd, pp. 355–359.<br />

M<strong>on</strong>te, M., 1991b. Multivariate analysis applied to the c<strong>on</strong>servati<strong>on</strong> of<br />

m<strong>on</strong>uments: lichens <strong>on</strong> the Roman aqueduct Anio Vetus in S. Gregorio.<br />

Internati<strong>on</strong>al Biodeteriorati<strong>on</strong> 28, 133–150.<br />

M<strong>on</strong>te, M., 1993. The in uence of envir<strong>on</strong>mental c<strong>on</strong>diti<strong>on</strong>s <strong>on</strong> the<br />

reproducti<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> distributi<strong>on</strong> of epilithic lichens. Aerobiologia 9, 169–<br />

179.<br />

Mora, P., Mora, L., 1972. Metodo per la rimozi<strong>on</strong>e di incrostazi<strong>on</strong>i su<br />

pietre calcaree e dipinti murali. C.N.R. Centro di studio sulle cause<br />

di deperimento e sui metodi di c<strong>on</strong>servazi<strong>on</strong>e delle opere d’arte. Nota<br />

interna n. 12.<br />

Mouga, T., Almeida, M.T., 1994. Excavated m<strong>on</strong>uments as envir<strong>on</strong>ment<br />

for <str<strong>on</strong>g>plants</str<strong>on</strong>g>—Cunimbriga, portugal: a study case. III Internati<strong>on</strong>al<br />

Symposium <strong>on</strong> the C<strong>on</strong>servati<strong>on</strong> of M<strong>on</strong>uments in the Mediterranean<br />

Basin, pp. 323–328.<br />

Nimis, P.L., M<strong>on</strong>te, M., 1988. The lichen vegetati<strong>on</strong> <strong>on</strong> the cathedral of<br />

Orvieto (Central Italy). Studia Geobotanica 8, 77–88.<br />

Nimis, P.L., Zappa, L., 1988. I licheni endolitici calcicoli su m<strong>on</strong>umenti.<br />

Studia Geobotanica 8, 125–133.<br />

Nimis, P.L., M<strong>on</strong>te, M., Tretiach, M., 1987. Flora e vegetazi<strong>on</strong>e lichenica<br />

di aree archeologiche del Lazio. Studia Geobotanica 7, 3–161.<br />

Pacini, E., 1994. Purposes <str<strong>on</strong>g>and</str<strong>on</strong>g> manners of representati<strong>on</strong> of <str<strong>on</strong>g>plants</str<strong>on</strong>g> in the<br />

European art of 13th–17th century. Pact Journal 42, 172–180.<br />

Richards<strong>on</strong>, B.A., 1976. C<strong>on</strong>trol of moss, lichen <str<strong>on</strong>g>and</str<strong>on</strong>g> algae <strong>on</strong> st<strong>on</strong>e.<br />

Proceedings of Internati<strong>on</strong>al Symposium “The C<strong>on</strong>servati<strong>on</strong> of St<strong>on</strong>e”.<br />

Centro C<strong>on</strong>servazi<strong>on</strong>e Sculture all’Aperto, Bologna, pp. 225–231.<br />

Richards<strong>on</strong>, B.A., 1987. C<strong>on</strong>trol of microbial growths <strong>on</strong> st<strong>on</strong>e <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

c<strong>on</strong>crete. Biodeteriorati<strong>on</strong>, Elsevier Applied Science 7, 101–106.<br />

Rishbeth, J., 1948. The ora of Cambridge walls. Journal of Ecology 36,<br />

136–148.<br />

Saiz-Jimenez, C., 1981. Weathering of building materials of the Giralda<br />

(Seville-Spain) by lichens. Proceedings of the ICOM Sixth Triennial<br />

Meeting, Ottawa, pp. 92–97.<br />

Salvadori, O., Lazzarini, L., 1991. Lichen deteriorati<strong>on</strong> <strong>on</strong> st<strong>on</strong>es of<br />

Aquileian m<strong>on</strong>uments (Italy). Botanika Chr<strong>on</strong>ika 12, 961–968.<br />

Samidi, S., 1981. How to c<strong>on</strong>trol the organic growth <strong>on</strong> Borobudur st<strong>on</strong>es<br />

after the restorati<strong>on</strong>. Proceedings of Internati<strong>on</strong>al Symposium “The<br />

C<strong>on</strong>servati<strong>on</strong> of St<strong>on</strong>e”. Centro C<strong>on</strong>servazi<strong>on</strong>e Sculture all’Aperto,<br />

Bologna, pp. 759–768.<br />

Savoye, D., Lallemant, R., 1980. Evoluti<strong>on</strong> de la micro ored’un substrat<br />

avant er pendant sa col<strong>on</strong>isati<strong>on</strong> par les lichens. I Le cas de toitures<br />

en amiante-ciment en z<strong>on</strong>e sub-urbaine. Cryptogamie Bryologie<br />

Lichenolologie 1 (1), 21–31.<br />

Seaward, M.R.D., 1976. Performance of Lecanora muralis in an urban<br />

envir<strong>on</strong>ment. In: Lichenology: Progress <str<strong>on</strong>g>and</str<strong>on</strong>g> Problems. Academic Press,<br />

L<strong>on</strong>d<strong>on</strong>, pp. 323–357.<br />

Seaward, M.R.D., 1988. Lichen damage to ancient m<strong>on</strong>uments: a case<br />

study. Lichenologist 20 (3), 291–295.<br />

Seaward, M.R.D., Giacobini, C., 1989. Oxalate encrustati<strong>on</strong> by lichen<br />

Dirina massiliensis forma sorediata <str<strong>on</strong>g>and</str<strong>on</strong>g> its role in the deteriorati<strong>on</strong> of<br />

works of art. In: The Oxalate Films: Origin <str<strong>on</strong>g>and</str<strong>on</strong>g> Signi cance in the<br />

C<strong>on</strong>servati<strong>on</strong> of Works of Art. Centro C.N.R. “Gino Bozza”, Milano,<br />

pp. 215–219.<br />

Seaward, M.R.D., Capp<strong>on</strong>i, G., Giacobini, C., 1989. Biodeterioramento da<br />

licheni in Puglia. Proceedings of the First Internati<strong>on</strong>al Symposium “La<br />

C<strong>on</strong>servazi<strong>on</strong>e dei m<strong>on</strong>umenti nel bacino del Mediterraneo”, Leterze<br />

Bari, pp. 243–245.<br />

Sharma, B.R.N., Chaturvedi, K., Samadhia, N.K., Taylor, P.N., 1985.<br />

Biological growthremoval <str<strong>on</strong>g>and</str<strong>on</strong>g> comparative e ectiveness of fungicides<br />

from Central India Temples for a decade in situ. Proceedings of the<br />

SixthInternati<strong>on</strong>al C<strong>on</strong>gress <strong>on</strong> Deteriorati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> C<strong>on</strong>servati<strong>on</strong> of<br />

St<strong>on</strong>e, Losanna, pp. 675–683.<br />

Shatz, A., 1963. Soil microrganisms <str<strong>on</strong>g>and</str<strong>on</strong>g> soil chelati<strong>on</strong>. The pedogenetic<br />

acti<strong>on</strong> of lichens <str<strong>on</strong>g>and</str<strong>on</strong>g> lichen acids. Agricultural <str<strong>on</strong>g>and</str<strong>on</strong>g> Food Chemistry<br />

11 (2), 113–118.<br />

Sukopp, J., Werner, P., 1983. Urban envir<strong>on</strong>ments <str<strong>on</strong>g>and</str<strong>on</strong>g> vegetati<strong>on</strong>. In:<br />

Holzner, W., Werger, M.J.A., Ikusima, I. (Eds.), Man’s Impact <strong>on</strong><br />

Vegetati<strong>on</strong>. Junk, The Hague, pp. 247–260.


Syers, J.K., 1964. A study of soil formati<strong>on</strong> <strong>on</strong> carb<strong>on</strong>iferous limest<strong>on</strong>e<br />

with particular reference to lichens as pedogenetica agents. Ph.D.<br />

Thesis, University of Durham, Engl<str<strong>on</strong>g>and</str<strong>on</strong>g>.<br />

Syers, J.K., Isk<str<strong>on</strong>g>and</str<strong>on</strong>g>er, I.K., 1973. Pedogenetic signi cance of lichens.<br />

In: Ahmadjian, V., Hale, M.E. (Eds.), The <str<strong>on</strong>g>Lichens</str<strong>on</strong>g>. Academic Press,<br />

L<strong>on</strong>d<strong>on</strong>, pp. 225–248.<br />

Traverso, G.B., 1898. Flora urbica pavese. Catalogo delle piante vascolari<br />

che cresc<strong>on</strong>o sp<strong>on</strong>taneamente nella citta di Pavia. (I centuria). Nuovo<br />

Giornale Botanico Italiano 5, 57–75.<br />

Traverso, G.B., 1899. Flora urbica pavese. (II centuria). Nuovo Giornale<br />

Botanico Italiano 6, 241–253.<br />

Tretiach, M., M<strong>on</strong>te, M., Nimis, P.L., 1991. A new hygrophytism index<br />

for epilithic lichens developed <strong>on</strong> basaltic Nuraghes in N.W. Sardinia.<br />

Botanika Chr<strong>on</strong>ika 12, 953–960.<br />

Tutin, T.G., Heywood, V.H., Burges, N.A., Valentine, D.H., Walters,<br />

S.M., Webb, D.A., Flora Europea. Cambridge University Press,<br />

L<strong>on</strong>d<strong>on</strong>, 1964–1980.<br />

Warsheid, T., Braams, J., 2000. Biodeteriorati<strong>on</strong> of st<strong>on</strong>e: overview.<br />

Internati<strong>on</strong>al Biodeteriorati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> Biodegradati<strong>on</strong> 46, 343–368.<br />

Wildi, O., Orloci, L., 1988. Mulva-4, a package for multivariate analysis<br />

of vegetati<strong>on</strong> data. Swiss Fed. Inst. For. Res. Rep., Birmensdorf.<br />

Wirth, V., 1980. Flechten ora. Ulmer, Stuttgart.<br />

Woodell, S.R.J., Rossiter, J., 1959. The ora of Durham walls. Proceedings<br />

of Botanical Society of BritishIsles 3, 257–273.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!