20.11.2012 Views

BARLEY GENETICS NEWSLETTER - GrainGenes - US Department ...

BARLEY GENETICS NEWSLETTER - GrainGenes - US Department ...

BARLEY GENETICS NEWSLETTER - GrainGenes - US Department ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Barley Genetics Newsletter<br />

Volume 37<br />

Editorial Committee<br />

P. Bregitzer<br />

U. Lundqvist<br />

V. Carollo Blake


Table of Contents<br />

Information about the Barley Genetics Newsletter<br />

The Barley Genetics Newsletter is published electronically at<br />

http://wheat.pw.usda/gov/ggpages/bgn<br />

Contributions for publication in the Barley Genetics Newsletter should be sent to the<br />

Technical Editor, Dr. Phil Bregitzer (see Instructions to contributors below for details on<br />

submission). Reports on research activities (including ongoing projects, descriptions of<br />

new genetic and cytological techniques, and current linkage maps) are invited for the<br />

Research Notes section. Researchers are encouraged to submit descriptions of genetic<br />

stocks for the Barley Genetic Stocks section. Letters to the editors are welcome and will<br />

be published. Please inform the Technical Editor of any errors you notice in this volume<br />

or in previous volumes; corrections will be published in future volumes, and electronic<br />

copy will be appropriately corrected.<br />

All correspondence and contributions to the Barley Genetics Newsletter should be in<br />

English. Please include your complete mailing address, including your country, and an email<br />

address (if you have one) with all correspondence and contributions.<br />

Acknowledgements<br />

The contributors of research reports and the diligence of the many Coordinators make<br />

this publication possible. Victoria Carollo Blake and the <strong>GrainGenes</strong> team at the <strong>US</strong>DA-<br />

ARS make possible the electronic version of BGN.


Instructions for contributors<br />

Volume 37 (2007) of the Barley Genetics Newsletter<br />

Submissions will be published via the internet (http://wheat.pw.usda.gov/ggpages/bgn/).<br />

Approximately quarterly, new submissions will be appended to existing submissions; the<br />

page numbers of existing submissions will not change and citation information will<br />

remain constant. BGN 37 will consist of all submissions received prior to the end of the<br />

calendar year of 2007, and will be compiled into a printable version that will be available<br />

via the Graingenes website. Send submissions to:<br />

Dr. Phil Bregitzer, BGN Technical Editor,<br />

<strong>US</strong>DA-ARS, 1691 S. 2700 W.,<br />

Aberdeen, ID, 83210, <strong>US</strong>A.<br />

Telephone: (voice) 208-397-4162 ext. 116; (fax) 208-397-4165<br />

e-mail: pbregit@uidaho.edu<br />

Coordinators assigned at the International Barley Genetics Symposium should submit<br />

their reports to:<br />

Dr. Udda Lundqvist<br />

Coordinator, Barley Genetics Newsletter<br />

Nordic Genetic Resource Center<br />

P.O. Box 41<br />

SE-230 53 Alnarp, Sweden<br />

Phone: +46 40 536640<br />

FAX: +46 40 536650<br />

Cell phone: +46 70 624 1502<br />

E-mail: udda@nordgen.org<br />

Manuscripts should be written in English and be brief. Each paper should be prepared<br />

separately, with the title and the authors' names and addresses at the top of the first page.<br />

For each paper to be included in Barley Genetics Newsletter Volume 37, submit a file to<br />

the Technical Editor in one of the following ways (in order of preference):<br />

1. As an attachment to an e-mail message<br />

2. A 3.5" diskette or CD; include also one high quality printed copy<br />

3. High-quality paper copy (acceptable only in unusual circumstances)<br />

Instructions for file preparation<br />

Text and tables for each article can be in one file, but place each figure in a separate file.<br />

Name these files with your initials, a manuscript number, and "txt" or "fig" (in the case of<br />

separate files for text and figures), and a number for each figure (in the case of separate<br />

files). For example, the files for a manuscript plus two figures from Phil Bregitzer would<br />

be: pb1txt.wpd, pb1fig1.gif , and pb1fig2.gif .


File Formats for Text and Tables: Preferred: Word or WordPerfect, PC-compatible<br />

formatting. Macintosh formats are not acceptable.<br />

Please keep formatting simple and consistent with that of BGN 36. Use Times New<br />

Roman Font, 12 pt, with both right and left justification, except for the title and author<br />

information and tables, which should be centered. Please use only tabs and hard returns in<br />

the preparation of text files. Tables must be prepared using the table feature of your word<br />

processing program, and not prepared using tabs. Please do not add additional lines to<br />

your table except with the table formatting tools in your word processor. Please use<br />

center justification for tables, and not "full" justification (i.e. left and right justification,<br />

that is used for text). Figures can be submitted in any common format but avoid the<br />

necessity of color for interpretation, to enable printing and copying hardcopy in black and<br />

white without losing information contained in the figures.


Table of Contents<br />

Barley Genetics Newsletter, Volume 37, 2007<br />

[Other volumes of the Barley Genetics Newsletter]<br />

Click here for a complete printable version of Volume 37 (Please Note: 2.12 MB)<br />

Information about the Barley Genetics Newsletter, p. i<br />

Instructions for contributors, p. ii<br />

Research Notes<br />

Dominance and recessiveness of parameters of Aluminum-resistance of<br />

barley F2 hybrids at different concentrations of stress factor (.doc, .pdf)<br />

F. M. Lisitsyn, I. I. Lisitsyna<br />

Frequency distributions and composite interval mapping for QTL<br />

analysis in ‘Steptoe’ x ‘Morex’ barley mapping population (.doc, pdf)<br />

H. S. Rao, O. P. Basha, N. K. Singh, K. Sato, H. S. Dhaliqal<br />

PCR-based markers targeting barley putative grain yield and quality<br />

QTLs regions (.doc, pdf)<br />

I. A. del Blanco, D. A. Schmierer, A. Kleinhofs , S. E. Ullrich<br />

Genetic architecture for yield and quality component traits over two<br />

environments in barley (Hordeum vulgare L.) (.doc, .pdf)<br />

A. K. Verma, S.R. Vishwakarma and P.K. Singh<br />

Line x tester analysis in barley (Hordeum vulgare L.) across<br />

environments (.doc, .pdf)<br />

A. K. Verma, S.R. Vishwakarma and P.K. Singh<br />

Four new barley mutants (.doc, .pdf)<br />

S.A.I .Wright, M. Azarang, A. B. Falk<br />

The Scandinavian barley chlorophyll mutant collection (.doc, .pdf)<br />

M. Hansson<br />

CAPS markers targeting barley Rpr1 region (.doc, .pdf)<br />

L. Zhang, A. Kleinhofs<br />

1 – 4<br />

5 - 20<br />

21 - 23<br />

24 - 28<br />

29 - 33<br />

34 - 36<br />

37 - 43<br />

44 - 46<br />

Tolerance to high copper ions concentration in the nutrient medium of 47 - 49


some Bulgarian cultivars (.doc, .pdf)<br />

J. Stoinova, S. Phileva, M. Merakchyiska, S. Paunova<br />

Coordinator's Reports<br />

Rules for Nomenclature and Gene Symbolization in Barley (.doc, .pdf)<br />

J. D. Franckowiak , U. Lundqvist<br />

Overal Coordinator's Report (.doc, .pdf)<br />

U. Lundqvist<br />

Barley Genetic Stocks for 2007 (.doc, .pdf)<br />

L. Dahleen, J.D. Franckowiak, U. Lundqvist<br />

Descriptions of Barley Genetic Stocks for 2007 (.doc, .pdf)<br />

L. Dahleen, J.D. Franckowiak, U. Lundqvist<br />

100 - 104<br />

105 - 153<br />

153 - 187<br />

188 - 301


Barley Genetics Newsletter 37:1-4 (2007)<br />

Dominance and recessiveness of parameters of Aluminum-resistance of barley<br />

F2 hybrids at different concentrations of stress factor<br />

E. M. Lisitsyn and I. I. Lisitsyna<br />

North-East Agricultural Research Institute, 166-а Lenin street, Kirov, 610007, Russia<br />

e-mail: edaphic@mail.ru<br />

Till now there is no uniform opinion in the scientific literature about number and type of<br />

action of genes coding barley aluminum resistance. For example, Rigin, Yakovleva (2001)<br />

considers, that it is controlled by two oligogenes, as a minimum, with possible action of genes<br />

with weaker effect. Other authors assume the control of the parameter by one dominant gene Pht<br />

[Stolen, Andersen, 1978], or gene Alp [Reid, 1971], both located on chromosome 4 [Minella,<br />

Sorrells, 1997].<br />

Gourley et al [1990] concluded, that type of action of genes coding aluminum resistance in<br />

sorghum (additive, partially or completely dominant), depends not only on a researched genotype,<br />

but also on used Al concentration. Aniol [1995, 1996] has established, that when the<br />

concentration of aluminum in test solution is low (30-40 µМ), cereal cultures (wheat, rye) use<br />

mechanisms that block accumulation of aluminum in roots (for example, chelation of aluminum<br />

at the expense of exudation of organic acids by root system), at higher concentration of<br />

aluminum in root growth environment (200-300 µМ) the basic role is played by other<br />

physiological mechanisms of Al-resistance. Thus the author remarks [Aniol, 1997] that the<br />

aluminum resistance of wheat plants at a concentration of 296 µМ is controlled by 2 genes and<br />

at a concentration of 592 µМ aluminum resistance is controlled by three genes. He wrote, that<br />

genes located in D-genome of wheat, are expressed only at high Al concentration, and genes<br />

located on chromosome 5А are expressed at all studied concentrations.<br />

The aim of our research was to determine the influence of Al concentration on a direction<br />

and character of dominance of parameters of roots growth of barley F2 hybrid seedlings.<br />

Material and Methods<br />

The direct and reciprocal F2 hybrids of four selection numbers of barley (№№ 565-98,<br />

889-93, 999-93 and 1030-93), bred in North-East Agricultural Research Institute (Kirov, Russia)<br />

were taken for the analysis. By results of the preliminary laboratory analyses the parental forms<br />

of these hybrids differed significantly on a level of Al-resistance that corresponded to the<br />

research aim. A level of Al-resistance (relative root length - RRL) was estimated under<br />

conditions of rolled culture on five-day barley seedlings according to the technique described<br />

earlier [Lisitsyn, 2000] by division of value of root length of each individual seedling in test<br />

treatment variant (0.5 and 1.0 mM of aluminum as sulphate salt, рН 4.3) on value of average root<br />

length of control variant (without the stress factor, рН 6.0). Each sample volume consists of 99-<br />

105 seedlings in each treatment variant.<br />

Character of dominance for parameters of root growth of F2 hybrid plants was estimated by<br />

equation [Petr, Frey, 1966]:<br />

d = F2 - MP<br />

HP-MP<br />

1


Barley Genetics Newsletter 37:1-4 (2007)<br />

,<br />

where d = degree of dominance; F2, НР, МР = means of F2 hybrids, resistant parent value, and<br />

mid parent value, respectively.<br />

Results and Discussion<br />

Expression of Al-resistance genes appreciably depend on a concentration of aluminum in<br />

test solution and with its increase the resistance of all hybrids was reduced without exception<br />

(table 1).<br />

Table 1. Parameters of root growth of barley F2 hybrids under laboratory condition<br />

Hybrid<br />

0 mM Al<br />

Root length, mm<br />

0.5 mM Al 1.0 mM Al<br />

RRL, %<br />

0.5 mM 1.0 mM<br />

565-98 x 889-93 109.2±1.5 71.2±1.2 56.3±1.0 65.2±0.6 51.6±0.5<br />

889-93 x 565-93 103.0±1.1 84.7±1.3 71.3±1.2 82.3±0.7 69.2±0.7<br />

565-98 x 999-93 113.6±1.6 71.8±1.8 48.3±1.2 63.2±0.9 42.6±0.6<br />

999-93 x 565-98 103.3±2.2 65.8±0.9 55.3±1.2 63.7±0.5 53.5±0.7<br />

565-98 x 1030-93 112.7±1.1 74.2±1.1 57.0±1.3 65.8±0.6 50.6±0.7<br />

1030-93 x 565-98 110.8±1.4 79.3±1.3 65.2±1.0 71.6±0.7 58.8±0.5<br />

889-93 x 999-93 107.7±2.2 76.0±1.7 61.0±1.5 70.5±0.7 56.6±0.8<br />

999-93 x 889-93 106.9±1.1 70.7±1.5 58.2±0.8 66.1±0.8 54.5±0.4<br />

889-93 x 1030-93 107.6±1.4 75.0±2.0 64.5±1.5 69.7±1.1 59.9±0.8<br />

1030-93 x 889-93 102.1±1.6 79.0±1.0 62.9±0.8 77.4±0.6 61.6±0.5<br />

999-93 x 1030-93 104.9±1.6 75.6±1.6 52.2±1.7 72.0±0.9 49.8±0.9<br />

1030-93 x 999-93 111.2±1.2 77.4±1.0 59.6±1.2 69.5±0.5 53.6±0.6<br />

As it is visible from data, submitted in table 2, depending on the cross and aluminum<br />

concentration used, for some hybrids the large value of root length was dominated, for others<br />

hybrids – the smaller value, but for the third part of hybrids dominance of root length was absent<br />

practically. It is possible to note the same character of dominance for RRL parameter. The<br />

similar phenomenon was earlier marked in the literature for other cereals. So, [Camargo, 1981,<br />

1984] pointed out, that Al-resistance of wheat F2 population was coded by dominant genes at<br />

concentration of aluminum 3 mg/l, but became recessive at increase of concentration of the<br />

stressful factor up to 10 mg/l. Similar results were described in the researches with wheat [Bona<br />

et al., 1994].<br />

2


Barley Genetics Newsletter 37:1-4 (2007)<br />

Table 2. Influence of direction of crossing on character of dominance of parameters of root<br />

growth of barley F2 hybrids<br />

Degree of dominance of a parameter<br />

Hybrid<br />

Root length RRL<br />

0 mM Al 0.5 mM Al 1.0 mM Al 0.5 mM 1.0 mM<br />

565-98 x 889-93 0.33 -0.78 -1.94 -1.21 -5.35<br />

889-93 x 565-93 -0.94 0.34 1.26 0.99 5.00<br />

565-98 x 999-93 1.19 -1.42 -1.51 -4.65 -3.13<br />

999-93 x 565-98 -0.44 -2.12 -0.70 -4.50 -0.85<br />

565-98 x 1030-93 -0.81 -0.45 -0.51 -0.37 -0.40<br />

1030-93 x 565-98 -2.00 -0.05 0.44 0.11 0.13<br />

889-93 x 999-93 4.33 1.18 1.10 -0.16 0.23<br />

999-93 x 889-93 3.80 -0.38 0.40 -1.16 -0.47<br />

889-93 x 1030-93 -0.25 10.14 1.98 1.67 1.15<br />

1030-93 x 889-93 -1.11 15.96 1.58 3.47 1.40<br />

999-93 x 1030-93 -0.35 1.05 -4.00 0.59 0.17<br />

1030-93 x 999-93 0.44 1.49 7.00 0.30 1.22<br />

As it is follows from data, submitted in table 2, depending on a concrete combination of<br />

crossing domination of root length under control conditions, under both Al treatments and of<br />

RRL parameter can have positive or negative meanings, changing from negative superdomination<br />

till positive super-domination. Character and direction of domination can coincide<br />

for parameters of roots length under control conditions and under aluminum treatment, but<br />

sometimes can have an opposite direction.<br />

Directions of crossing caused opposite character of dominance of researched parameters of<br />

Al-resistance for hybrids 565-98 х 889-93 and 889-93 х 565-98. This tendency is some less expressed<br />

at hybrids received from crossing of breeding numbers 565-98 and 1030-93. At the same<br />

time direct and reciprocal hybrids between breeding number 565-98 and breeding number 999-<br />

93 for main part of researched parameters have shown only different degree of dominance, but<br />

not its different direction.<br />

Direct and reciprocal hybrids between selection numbers 889-93 and 1030-93 had least<br />

differences on a direction and character of dominance.<br />

References:<br />

Aniol A.M. 1995. Physiological aspects of aluminum tolerance associated with the long arm of<br />

chromosome 2D of the wheat (Triticum aestivum L.) genome. Theor Appl Genet. 91: 510-<br />

516<br />

Aniol A. 1996. Aluminum uptake by roots of rye seedlings of differing tolerance to aluminum<br />

toxicity. Euphytica 92: 155-162.<br />

3


Barley Genetics Newsletter 37:1-4 (2007)<br />

Aniol A. 1997. the aluminum tolerance in wheat. plant Breeding: Theories, achievements and<br />

problems. Proc. Int. Conf., Dotnuva - Akademija, Lithuania: 14-22<br />

Ригин Б.В., Яковлева О.В. 2001. Генетические аспекты толерантности ячменя к токсичным<br />

ионам алюминия [Genetic aspects of barley tolerance against toxic Al ions] Генетические<br />

ресурсы культурных растений. Межд. науч.-практ. конф., 13-16 ноября, С-Пб: 397 [In<br />

Russian]<br />

Minella E., Sorrells M.E. 1997. Inheritance and chromosom locationof Alp. A gene controlling<br />

aluminum tolerance in 'Dayton' barley. Plant Breeding, V.116: 465-469<br />

Reid D.A. 1971. Genetic control of reaction to aluminum in winter barley. Barley Genetics II –<br />

Proc. 2 nd Int. Barley Genetics Symp., Pullman, Wash.: 409-413<br />

Stolen O., Andersen S. 1978. Inheritance of tolerance to low soil pH in barley. Hereditas, V.88.<br />

101-105<br />

Gourley L.M., Rogers S.A., Ruiz-Gomez C., Clark R.B. 1990. Genetic aspects of aluminum<br />

tolerance in sorghum. Plant Soil, V.123: 211-216.<br />

Petr F.C., Frey K.J. 1966. Genotype correlations, dominance and heritability of quantitative<br />

characters in oats. Crop Sci., V.6. 259-262<br />

Bona L., Carver B.F., Wright R.J., Baligar V.C. 1994. Aluminum tolerance of segregating wheat<br />

populations in acidic soil and nutrient solutions. Communic. Soil Sci. Plant Anal., V.25.<br />

327-339<br />

Camargo C.E.O. 1981. Wheat improvement. 1. The heritability of tolerance to aluminum<br />

toxicity. Bragantia, V.40. 33-45<br />

Camargo C.E.O. 1984. Wheat improvement. IV. Heritability studies on aluminum tolerance<br />

using three concentrations of aluminum in nutrient solutions. Bragantia, V.44. 49-64<br />

Lisitsyn E. M. 2000. Intravarietal Level of Aluminum Resistance in Cereal Crops. J Plant Nutrit.,<br />

V.23(6): 793-804<br />

4


Barley Genetics Newsletter 37:5-20 (2007)<br />

Frequency distributions and composite interval mapping for QTL analysis in<br />

‘Steptoe’ x ‘Morex’ barley mapping population<br />

ABSTRACT<br />

H. S. Rao 1, 2† , O. P. Basha 1 , N. K. Singh 1 , K. Sato 3 , H. S. Dhaliwal 1 *<br />

Indian Institute of Technology Roorkee, UA, India<br />

1 <strong>Department</strong> of Biotechnology, Indian Institute of Technology Roorkee,<br />

Roorkee 247667, Uttaranchal, INDIA<br />

2 Present address: 101, Maize Genetics Unit, Division of Genetics, LBS Building,<br />

Indian Agricultural Research Institute, New Delhi 110012, INDIA<br />

3 Barley Germplasm Center, Okayama University, Kurashiki 710-1146, JAPAN<br />

*corresponding author Email: hsdhafbs@iitr.ernet.in<br />

FAX: 91-1332-273560 Tel.: 01332-285259<br />

† Additional author Email: hsr_f12@rediffmail.com<br />

With the advancement of QTL mapping strategies, the traditional approaches for the<br />

identification of genes and their effects responsible for trait expression are gradually losing<br />

significance. The phenotypic data for heading days, plant height, peduncle length, number of<br />

tillers and stripe rust was recorded on 150 recombinant inbred line (RIL) population developed<br />

from a barley cross of ‘Steptoe’ and ‘Morex’. Preliminary examinations of frequency distribution<br />

plots were fairly useful in the prediction of number of genes governing traits expression in barley<br />

(Hordeum vulgare L.). The predictions were then systematically confirmed through QTL<br />

mapping. Molecular marker data for the population available at the public domain (<strong>GrainGenes</strong><br />

website) was used for the construction of linkage map and QTL analysis. Clear colinearity was<br />

observed between the number of QTLs identified and the number of genes predicted based upon<br />

frequency distribution study alone. A total of 17 QTLs were detected for the five traits evaluated.<br />

Several major QTLs were detected on chromosome 2H, which could serve as candidate for mapbased<br />

studies of phenomena such as pleiotropism, recombination hot spots, gene-rich regions and<br />

QTL clustering.<br />

Keywords. Barley, frequency distribution, quantitative trait loci, recombinant inbred line,<br />

peduncle length, stripe rust, gene rich region.<br />

INTRODUCTION<br />

Cultivated barley (Hordeum vulgare L.) is a diploid (2n=14) which ranks fourth among<br />

the most important cereal crops in the world after rice, wheat and maize. Barley belongs to the<br />

same tribe Triticeae as that of wheat and rye and it resembles wheat in many respects. Barley is<br />

however, more tolerant to soil salinity and drought than wheat. Many important traits of<br />

economic and agronomic importance in barley are quantitative in nature displaying continuous<br />

5


variation. The efficiency of breeding programs depends on our knowledge of the genetic control<br />

and genomic location of QTLs governing the trait(s) of interest. With the advent of molecular<br />

markers (Botstein et al. 1980) and the user-friendly statistical software it has become possible to<br />

resolve and map the QTLs for complex traits on chromosomes.<br />

QTL analysis in barley is significant not only for the crop itself but also for comparative<br />

mapping with other cereal crops. The identification of diverse taxa sharing segments of similar<br />

gene orders throughout their genomes has been the major outcome of comparative mapping<br />

where chromosome alignment has hastened identification of new genes for their ultimate<br />

introgression into suitable cultivars. The genetic maps of diploid wheat, Triticum monococcum<br />

and barley, Hordeum vulgare L. are remarkably conserved except for few regions where<br />

translocation and inversion of chromosome segments have taken place (Dubcovsky et al. 1996).<br />

There is also a high level of genomic conservation at specific regions with rice, maize and oat<br />

(Deynze et al. 1995, Han et al. 1998).<br />

The results of several QTL mapping studies have indicated that there are only few major<br />

genes, which interact with numerous minor genes and environment to give continuous trait<br />

phenotype characteristic of quantitative traits. Thus examination of frequency distribution plots<br />

at single location is useful in assessing the probable number of major genes controlling a trait.<br />

This is particularly useful when resources are limiting and a decision has to be taken on priority<br />

basis before starting a breeding program for which trait QTL mapping experiment should be<br />

undertaken. The present article deals with the mapping of QTLs for a number of traits in a barley<br />

‘Steptoe’ x ‘Morex’ RIL mapping population and its relationship with the predictive value of<br />

frequency distribution for the traits.<br />

MATERIALS AND METHODS<br />

Plant Material<br />

150 recombinant inbred lines (RILs) derived from a cross between two barley (Hordeum<br />

vulgare L.) genotypes ‘Steptoe’ and ‘Morex’, obtained from Dr. Kazuhiro Sato, Okayama<br />

University, Japan was used as a mapping population and it was phenotyped for five traits. Each<br />

of the RILs and the parents were sown as a single one meter row with row to row spacing of<br />

30cm in the experimental field at the Indian Institute of Technology Roorkee, India in the winter<br />

season of 2005. Normal fertilizers, irrigation and other agronomic practices were followed for<br />

growing the population. Both ‘Steptoe’ and ‘Morex’ are hulled, six-rowed spring barley<br />

varieties. ‘Steptoe’ is a late flowering and dwarf line with reduced peduncle, few tillers per plant<br />

and moderate resistance to stripe rust. On the other hand, ‘Morex’ is early flowering and tall<br />

genotype with long peduncle, more tillers per plant and high susceptibility to stripe rust.<br />

Phenotypic Data<br />

The data on five quantitative traits were recorded as the average of five competitive<br />

plants per RIL. The number of days to heading was recorded as the number of days from sowing<br />

till half of the tillers in a RIL had flowered. Plant height (cm) was recorded as the length of plant<br />

from the base at the soil surface to the tip of spike of the tallest tiller excluding awns. Peduncle<br />

6


length was measured as the length of peduncle from the base of flag leaf to the base of basal<br />

spikelet of a spike. The number of effective tillers bearing spikes was taken as the number of<br />

tillers per plant. The data on natural incidence of stripe rust at the adult plant stage under field<br />

conditions was recorded as percent severity of the leaf area covered by stripes of uredia and the<br />

type of pustules, where the symbol S for susceptible was used for large pustules without any<br />

necrotic area; MS, MR for moderately susceptible/resistance for small pustules with or without<br />

necrotic areas around them and R for hypersensitive immune reaction without any pustule.<br />

Data Analysis<br />

The basic statistical analysis was performed for all the traits recorded. Mean, range and<br />

standard deviations were estimated. Correlation coefficient among various traits was calculated<br />

to infer probable inter-relationships between the traits studied. Frequency distribution plots for<br />

traits were presented as about ten phenotypic classes in the RIL population.<br />

Genotypic data and Linkage mapping<br />

Genotypic data for 343 molecular markers available at the public domain (<strong>GrainGenes</strong><br />

website: http://www.gene.pbi.nrc.ca) for 150 RILs of ‘Steptoe’ x ‘Morex’ mapping population<br />

was utilized for the construction of linkage map. Standard χ 2 test was used to test the segregation<br />

pattern of each marker. Linkage map was constructed by using the software package<br />

MAPMAKER/EXP version 3.0 (Lincoln et al. 1992). A LOD score of 3.0 and a maximum<br />

recombination frequency of 0.40 were used to declare linkage between two markers.<br />

QTL mapping<br />

QTL analysis was performed using the method of Composite Interval Mapping (CIM)<br />

(Zeng 1994) as in QTL Cartographer version 2.5 (Wang et al. 2005). Composite interval<br />

mapping combines the approaches of interval mapping (IM) and Single Marker Analysis in a<br />

multiple regression framework. Initially it builds cofactors by selecting most significant markers<br />

through Single Marker Analysis methodology. Once the model containing cofactors is built, the<br />

entire genome is rescanned using interval mapping. We used model 6 with window size 10 cM<br />

where forward and backward regression method was utilized. Walk speed was set at 2 cM to<br />

scan the entire genome. We performed 1000 permutations at 0.05 significance level to balance<br />

type 1 and type 2 errors and declare appropriate threshold levels for QTL (Churchill and Doerge<br />

1994). The best estimate of QTL location was assumed to correspond to the position having the<br />

peak significance level and the confidence interval was drawn according to 1-LOD support<br />

interval (Lander and Botstein 1989).<br />

RESULTS<br />

Frequency distribution for various traits<br />

The frequency distributions for the five traits evaluated are given in Figure 1. Only plant<br />

height showed normal distribution while all other traits displayed various levels of skewedness.<br />

The days to heading trait was roughly partitioned into two phenotypic classes, one with early<br />

7


heading habit while the other showing late heading trait. Peduncle length also showed two<br />

phenotypic classes but the distribution tended to be strongly influenced by embedded peduncle<br />

genotype rather than emerged peduncle. Tiller numbers showed broad range with transgressive<br />

segregation towards both ends. The histogram for stripe rust showed continuous disease<br />

distribution pattern and the phenotypic classes were clearly partitioned into five clusters.<br />

Phenotypic data Analysis<br />

Except for the heading days all traits showed transgressive segregation and their phenotypic<br />

values exceeded beyond both of the mean parental values (Table 1). The correlation coefficients<br />

between most of the trait combinations were found to be significant ( Table 2). As expected<br />

peduncle length had extraordinarily high correlation with heading days and plant height.<br />

Peduncle length and heading habit were negatively correlated, i.e. the emerged peduncle inbred<br />

lines had more probability of early heading habit whereas the embedded peduncle lines had late<br />

heading. The significant positive correlation between plant height and peduncle extrusion could<br />

explain the fact that in taller plants, peduncle grew faster to emerge out of the boot leaf before<br />

anthesis.<br />

TABLE 1. Trait means in parent and trait means, standard deviations (SD) and range in RILs of<br />

Steptoe x Morex population<br />

Parents RIL population<br />

Trait Steptoe Morex Range Mean ± SD<br />

Heading days 126.0 100.0 101.0 – 126.0 112.05 ± 7.35<br />

Plant height (cm) 66.4 100.1 61.0 – 126.6 95.57 ± 13.27<br />

Peduncle length (cm) 5.7 24.2 0 – 28.6 10.21 ± 6.61<br />

Tiller number 2.6 3.1 1.2 – 6.4 3.49 ± 1.08<br />

Stripe rust (%) 12.5 75 0 – 100 43.11 ± 22.83<br />

TABLE 2. Correlation coefficient (r) among various traits in RIL population<br />

Plant height Peduncle length Tiller number Stripe rust<br />

Heading days -0.5491* -0.7392* -0.4987* -0.2056<br />

Plant height 0.6360* 0.5112* 0.1595<br />

Panicle exertion 0.3880* 0.1334<br />

Tiller number 0.2111<br />

* P < 0.0001<br />

Linkage map<br />

Out of the 434 polymorphic molecular markers data available at <strong>GrainGenes</strong> website, we<br />

selected 343 by rejecting markers with more than 40% missing genotypes and those showing<br />

segregation distortion at 0.05 significance level (χ 2 =3.841). Except for the two regions in<br />

chromosomes 5 (1H) and 6 (6H), the whole genome was adequately covered with markers and<br />

the centromeres were placed on consensus positions based on marker orders along the<br />

chromosomes. The order of markers and centromere positions did not vary much from their<br />

8


established map positions. The combined length of the linkage map was 824.1 cM with average<br />

spacing of 2.40 cM between adjacent markers.<br />

Genomic distribution of QTLs<br />

QTLs detected by CIM analysis as implemented in QTL Cartographer version 2.5 are<br />

presented in Table 3. The parent contributing respective alleles for increasing trait value for<br />

heading days (HD), plant height (PH), peduncle length (PL), number of tillers (TN) and the allele<br />

conferring resistance to stripe rust (SR) were indicated in the table. In the present study, five<br />

QTLs were identified for heading days exceeding the threshold LOD score. ‘Morex’ parent<br />

contributed early heading alleles for all the QTLs identified. Most of the phenotypic variance<br />

was explained by the QTLs on 2H and 1H while those on 7H and 3H had only a minor effect.<br />

Identification of several plant height QTLs spread throughout genome (7H, 2H, 2H, 3H, 6H, 6H<br />

and 5H) supported the results of frequency distribution. The two QTLs on 2H and 3H together<br />

explained about 40% of the phenotypic variance. The alleles responsible for increase or decrease<br />

in height had come from both of the parents and thus supporting transgressive segregation<br />

observed for some of the RILs. Two major QTLs, one each on chromosomes 2H and 3H were<br />

identified for peduncle length while a third putative QTL detected on 1H had only a minor effect.<br />

Only one QTL was identified for tillering ability on chromosome 2H. For stripe rust, although<br />

four resistance QTLs spread across chromosomes 2H, 3H, 4H and 5H were identified, none of<br />

them explained significant phenotypic variance.<br />

TABLE 3. Chromosome mapping of various QTLs with nearest linked molecular marker for<br />

different traits<br />

Trait Chrom Marker interval Position LOD Additiv R 2 x Allele<br />

Heading<br />

date<br />

Plant<br />

height<br />

Peduncle<br />

length<br />

osome<br />

(cM)<br />

1 (7H) ABC156d - ABG022A 41.61 4.35 1.8964 6.60 S<br />

2 (2H) ABG005 - Pox 33.41 18.78 4.1443 31.42 S<br />

2 (2H) Adh8 – CDO537 47.00 6.39 2.47 8.00 S<br />

3 (3H) ABG471 - ABG399 38.11 3.22 1.6616 4.96 S<br />

5 (1H) ABC307A-cMWG706A 31.31 11.69 3.2381 19.35 S<br />

1 (7H) Pgk2B - PSR129 67.91 2.49 2.8861 4.72 S<br />

2 (2H) ABG005 - Pox 33.41 8.83 -5.7128 18.43 M<br />

2 (2H) Adh8 - CDO537 43.31 8.41 -6.1379 20.57 M<br />

3 (3H) ABC156c - AtpbB 46.81 12.37 -5.7998 18.77 M<br />

6 (6H) CDO497 - ABR335 40.91 3.07 3.2705 6.00 S<br />

6 (6H) BCD340E - ksuD17 45.91 3.74 3.5796 7.24 S<br />

7 (5H) ABG708 - Dor5 30.31 4.93 -4.2142 9.72 M<br />

2 (2H) ABG358 - ABG459 28.71 19.30 -3.9943 36.24 M<br />

3 (3H) ABG471 - ABG399 38.11 4.63 -2.6111 15.38 M<br />

5 (1H) ABC307A 92.31 2.61 -1.7200 6.76 M<br />

Tiller # 2 (2H) MWG858 - ABG358 28.61 4.89 -0.3615 11.02 M<br />

Stripe rust<br />

resistance<br />

2 (2H) MWG858 - ABG358 26.61 2.95 -4.9528 6.22 S<br />

3 (3H) ABG377 - MWG555b 61.31 5.10 7.0202 11.30 M<br />

4 (4H) ABC321 - ABR315 30.21 3.24 -5.1908 6.88 S<br />

7 (5H) ABG391 124.81 2.64 -4.6547 5.56 S<br />

9<br />

e<br />

100


DISC<strong>US</strong>SIONS<br />

Frequency distribution of various traits<br />

RILs are inbred lines derived from a cross of two diverse parents in which the individual<br />

genes are resolved into homozygous progenies. If we construct a histogram on such a population,<br />

the number and size of phenotypic classes obtained is directly related to the number of genes<br />

influencing the trait. For example, if a single gene controls the trait, there will be two phenotypic<br />

classes of equal sizes and if two genes control the trait there will be three phenotypic classes in<br />

1:2:1 size proportion. If we assume the genes are additive and explaining equal variance, their<br />

should be n + 1 number of phenotypic classes observed for n number of genes in the population<br />

for as many number of additive gene combinations. On the other hand if epistatic interactions<br />

were significant and the individual genes were contributing unequally towards the overall<br />

phenotype, the distribution of phenotypic classes becomes skewed. From the preliminary<br />

observation of histograms (Figure 1) the approximate number of genes responsible for each trait<br />

could be predicted. For example, there should be one gene explaining most of the phenotypic<br />

variance for heading days as we observed two broad phenotypic classes in the histogram. There<br />

should also be one more gene with lesser but significant effect, which is responsible for minor<br />

third phenotypic class in between the two major classes. Height is the perfect example of<br />

quantitative inheritance where we expect large number of alleles acting additively to give normal<br />

distribution. The presence of two phenotypic classes is the indicative of single gene inheritance<br />

for peduncle length, but their unequal proportion could be explained by presence of one more<br />

parallel allele contributing towards short peduncle length phenotype. Tillering trait showed<br />

normal distribution and large transgressive segregation beyond both parental types. Thus, in<br />

barley we do not expect tiller number to be governed by single gene. Although we observed only<br />

one QTL exceeding the threshold LOD score, there is an indication of two more putative QTLs<br />

on chromosomes 7H and 1H (Figure 3). Also, some of the QTLs on chromosomes 3H and 6H<br />

identified by Franckowiak and Lundqvist, 2002, Buck-Sorlin, 2002 and Babb and Muehlbauer,<br />

2003, remained undetected in the present study. The most probable explanation could be that<br />

‘Steptoe’ and ‘M’ are not diverse enough with respect to tillering ability and it actually limited<br />

the QTL mapping approach to detect all genes of the trait. Frequency distribution of stripe rust<br />

has shown overall normal disease distribution pattern clustered in three major segregative and<br />

two minor transgressive groups. Both parents were susceptible to stripe rust but the rust<br />

progressed slowly in ‘Steptoe’ with very low terminal severity, usually called slow rusting. The<br />

five classes for rust severity could be explained by the presence of four genes, each of which was<br />

contributing additively towards resistance to stripe rust. When the resistance alleles for all four<br />

genes were present in a single genotype (4R), maximum resistance is expected which was<br />

observed with zero percent rust severity in the first transgressive group. Similarly, genotypes<br />

with 3R+1S, 2R+2S, 1R+3S and 4S allele combinations explained second, third, fourth and fifth<br />

groups, respectively in the frequency distribution plot.<br />

QTL Analysis<br />

Heading Days: Days to Flower or heading days is considered to be an important trait for<br />

planning of a breeding program. Early-heading genotypes are preferred when the objective is to<br />

10


grow a cultivar late or early in the growing season. Heading time in barley and wheat is governed<br />

by three major genetic systems: vernalization requirement (response to low temperature at the<br />

initial stages of plant development), photoperiod sensitivity (day length) and narrow-sense<br />

earliness (response to sum of temperature over a long period). Vernalization is the requirement<br />

of low temperature period to plants for transition from a vegetative to a reproductive phase.<br />

Among the vrn loci, Vrn1 on the group 5 chromosomes of Triticeae (A, B, D and H genomes)<br />

are the most extensively characterized in terms of its effects and inheritance (Law et al. 1976,<br />

Galiba et al. 1993, Kato et al. 1999). The vernalization responsive phenotype is often found in<br />

conjunction with photoperiod sensitivity, a delay in flowering when plants are grown under<br />

short-day conditions (Karsai et al. 2001). Low vernalization requirement of barley was probably<br />

met with partially but longer photoperiod could be available only in the last week of March and<br />

hence delayed flowering in RILs with Ppd. The Ppd – H1 photosensitivity locus was first<br />

described by Laurie et al. (1994) on the short arm of chromosome 2H. In barley, eps 2S, located<br />

near the centromere region of the 2H chromosome has been reported to be a QTL for the<br />

environment independent narrow-sense earliness (Laurie et al. 1995). The RILs in the present<br />

investigation were sown without vernalization treatment. The QTL analysis carried out without<br />

partitioning of heading trait into three categories identified two significant QTL on 2H which<br />

probably represent Ppd and eps loci. Thus major effect on heading days under field conditions<br />

was due to the photoperiod and environment independent narrow sense earliness genes. Major<br />

role of 2H in determining heading days in barley is also inferred from the investigations carried<br />

out by Marquez-Cedillo et al. (2001), Kicherer et al. (2000), Karsai et al. (2005) and Qi et al.<br />

(1998) who detected heading days QTL on chromosomes 2H; 2H; 2H, 4H, 5H; and 2H, 7H,<br />

respectively.<br />

Plant Height: Before the green revolution, one of the major causes of yield loss was lodging of<br />

tall cultivars during rain and strong winds. Plant height and culm stiffness are reported to be the<br />

two most important traits determining lodging resistance in cereal plants (Keller et al. 1999).<br />

Murthy and Rao (1980) and Stanca et al. (1979) have worked out significant correlation between<br />

lodging resistance and dwarfness in barley. Recently Chloupek et al. (2006) demonstrated the<br />

significance of different sets of semi-dwarf genes in the determination of different root system<br />

size that was further implicated with biotic and abiotic stresses. With the development of semidwarf<br />

varieties, yield loss was largely overcome and the plant utilized its resources in increasing<br />

harvest index rather than its biomass. If the objective of the breeding program is to enhance the<br />

grain production as in most instances, the breeder prefers dwarf variety but if the objective is to<br />

utilize the plant for dual purpose for fodder as well, then the breeder obviously goes with taller<br />

varieties. Several studies in the recent past had identified QTL for plant height in barley<br />

distributed throughout genome but the major QTLs identified in the present study on<br />

chromosome 2H and 3H were found to occur more often than others. For example, Thomas et al.<br />

(1995) detected plant height QTLs on 1H, 3H and 7H; Marquez-Cedillo et al. (2001) on 2H, 3H,<br />

4H and 5H; Kicherer et al. (2000) identified on 2H and 3H; Qi et al. (1998) on 2H, 3H and 7H;<br />

Teulat et al. (2001) on 2H, 3H, 4H, 5H, 6H and 7H; Zhu et al. (1999) on 1H, 3H, 4H and 6H; and<br />

Chloupek et al. (2006) on 3H, 4H, 5H and 7H.<br />

Peduncle length: Peduncle length is an important character in barley as the inability of spikes to<br />

emerge out of boot leaf not only eliminates outcrossing but also adversely affects the use of its<br />

photosynthetic contribution to seed-setting and seed development. From the preliminary<br />

11


observation on correlation coefficient, we can predict that heading date and plant height jointly<br />

influences the ability of peduncle to emerge out since early heading and tall plants had emerged<br />

peduncle. We can infer that photoperiod (2H) had major effect on peduncle length while narrow<br />

sense earliness (2H and 1H) had relatively minor effect on peduncle length. Chromosome 3H<br />

also had significant influence on the trait which might be coming from major plant height QTL<br />

on the same chromosome. Hence, we can conclude that peduncle length is a composite trait<br />

whose component traits include heading days and plant height.<br />

Number of Tillers: Tiller number is regarded as an important yield component in wheat, barley<br />

and rice as the number of effective tillers is equal to the number of spikes. The plants with lesser<br />

tiller number generally have long spikes with increased grain weight and overall sturdy plant<br />

architecture (Vasu at al. 2006). But the advantage of high tiller numbered plant is that the overall<br />

harvest index from single plant is much higher and it saves the unit area of land required to grow<br />

plants for similar yields. In the present study, the tillering ability of plants behaved as a single<br />

gene inherited trait and only one QTL on chromosome 2H could be detected. Although earlier<br />

studies have also indicated single gene inheritance pattern for the trait, chromosomal locations of<br />

QTLs were not consistent with the present study. Franckowiak and Lundqvist, 2002, Buck-Sorlin<br />

2002 and Babb and Muehlbauer 2003 have identified major QTL lnt1 on chromosome 3HL and<br />

a second QTL cul2 on 6HL.<br />

Stripe Rust: Stripe rust is a major disease in Triticeae and its causal organism in barley is a<br />

biotrophic fungus, Puccinia striiformis f. sp. hordei. The characteristic feature of the disease is<br />

the appearance of pale stripes on leaves followed by emergence of orange brown uredosori that<br />

contain fungal spores. Yield loss of upto 30 % may occur, as photosynthetic and metabolic<br />

capabilities of the plant are severely impaired. Rust resistance in Triticeae is mainly of two types<br />

viz., vertical and horizontal. Vertical resistance is race-specific conditioned by gene-for-gene<br />

interaction between host and pathogen (Flor 1946). Horizontal resistance, on the other hand is<br />

race-non-specific governed by multiple genes with small effects. The results of the present<br />

analysis show that the resistance QTLs identified were acting in a race non-specific manner<br />

where they prevent pathogen(s) to form a basic compatibility reaction. The ‘Steptoe’ is a slow<br />

stripe rusting genotype. The rust infection is of susceptible type but the disease progresses very<br />

slowly without causing an appreciable loss. Some of the QTLs for resistance mapped in the<br />

present study were colinear with the previously mapped QTL using different barley populations<br />

on chromosomes 4H, 5H (Chen et al. 1994); 2H, 3H, 1H, 6H (Toojinda et al. 2000); 1H, 2H, 4H,<br />

6H, 7H (Berloo et al. 2001); 2H, 4H (Kicherer et al. 2000); and on 3H, 4H, 7H (Toojinda et al.<br />

1998) using local rust pathotypes further confirming their race-non-specific resistance. The<br />

QTLs with their low individual phenotypic variances when pyramided in a single genotype could<br />

confer high overall resistance. The approach for pyramiding of resistance QTLs was well<br />

demonstrated for 1H, 4H and 7H conferring resistance to stripe rust at seedling stage in barley by<br />

Castro et al., (2003).<br />

QTL clusters<br />

Although the large genome size (4.9 × 10 9 bp) of barley makes the genetic manipulations<br />

difficult, some of the recent advances in comparative genomics have suggested the presence of<br />

recombination hot spots and gene-rich regions in Triticeae where targeted approaches could be<br />

utilized for genome analysis (Gill et al. 1996). Identification of multiple QTLs on chromosomes<br />

12


2H and 3H were also indicative of gene-rich regions in barley. 2H is especially important<br />

because it contained QTLs for all of the traits analyzed in the present study. Aissani and Bernardi<br />

(1991) suggested the distribution of less conserved genes in euchromatic regions while the<br />

distribution of conserved genes in the heterochromatin region. This could be of evolutionary<br />

significance as the genes in euchromatin region exposed to manipulations were providing<br />

diversity for the plants to adjust to different environmental conditions while the genes of<br />

heterochromatin region might be regulatory in function, which must be conserved for their<br />

essential role in the very existence of the organism.<br />

Although the QTL analysis is of tremendous use in the identification of genomic regions<br />

pertaining to the traits of economic importance, it fails to identify the complete set of genes of a<br />

biochemical pathway leading to the expression of trait. Many of the conserved genes for which<br />

there are no allelic variants cannot be detected by this approach. Such genes have been conserved<br />

through evolutionary forces and any attempt to change them could have deleterious effect on the<br />

survival ability of the organism.<br />

CONCL<strong>US</strong>ION<br />

It has been shown here that QTL mapping is an accurate approach for the identification<br />

of genes underlying a trait but it is also cost intensive to carry out such exercise for all traits. On<br />

the other hand, construction of frequency distribution plots in routinely developed mapping<br />

populations could be used as diagnostic assessment for the prediction of number and effects of<br />

genes before planning QTL mapping experiment. Although such an approach is very crude, it<br />

would be useful in making appropriate allocation of resources.<br />

In the present study, it has been found that proximal region of chromosome 2H is of<br />

special interest as it contains QTLs for all of the traits studied explaining large phenotypic<br />

variances and thus the region could serve as candidates for further investigation. Significant<br />

correlation among various traits was because of QTL linked in coupling phase and in some of the<br />

instances pleiotropism cannot be ruled out. The other genomic regions of interest include<br />

chromosome 3(3H) and chromosome 5(1H), which harbors QTL for heading, peduncle length<br />

and plant height. Further study needs to be carried out to fine map and ultimately dissect out the<br />

individual genes in the region. Map-based cloning is gradually becoming a feasible approach for<br />

dissection of the QTL genes in Triticeae (Li et al. 2003). The individual QTL effects could be<br />

studied efficiently by generating near isogenic lines (NILs) in an organized backcross program,<br />

which specifically nullifies the background noise. In the recent past bioinformatics tools have<br />

gained significant importance to aid in silico comparative genomic studies in species with large<br />

unmanipulable genomes like barley and wheat with the help of well studied genomes such as<br />

Arabidopsis thaliana, rice and maize.<br />

ACKNOWLEDGEMENT<br />

The authors extend thanks to Dr. Firoz Hossain, Indian Agricultural Research Institute, New<br />

Delhi for his valuable suggestions and discussion while preparing the manuscript.<br />

13


Figure 1. Frequency distribution plots for heading days (HD), plant height (PH), peduncle length<br />

(PL), tiller number (TN), and stripe rust (SR) in RILs of Steptoe x M population.<br />

14


Figure 2. Genetic map of SM barley RIL population with 343 molecular markers indicating QTLs<br />

for heading days (HD), plant height (PH), peduncle length (PL), number of tillers (TN) and stripe<br />

rust (SR). Vertical bar and the symbols represent confidence interval and peak LOD scores<br />

respectively for various QTLs<br />

15


Figure 2. (continued) Genetic map of SM barley RIL population with 343 molecular markers<br />

indicating QTLs for heading days (HD), plant height (PH), peduncle length (PL), number of<br />

tillers (TN) and stripe rust (SR). Vertical bar and the symbols represent confidence interval and<br />

peak LOD scores respectively for various QTLs.<br />

16


Figure 3. QTL likelihood maps for various traits obtained from composite interval mapping<br />

(CIM) analysis indicating LOD score along the ordinate while genetic map (all chromosomes<br />

together) along the abscissa. The respective threshold LOD estimated by 1000 permutations at<br />

0.05 significance, are represented as horizontal line.<br />

17


REFERENCES<br />

Aissani, B., and G. Bernardi, 1991: CpG islands: features and distribution in the genomes of<br />

vertebrates. Gene 106, 173-183<br />

Babb, S., G. J. Muehlbauer, 2003: Genetic and morphological characterization of the barley<br />

uniculm2 (cul2) mutant. Theor. Appl. Genet. 106, 846–857<br />

Botstein, D., R. L. White, M. Skolnick, and R. W. Davis, 1980: Construction of genetic linkage<br />

map in man using restriction fragment length polymorphisms. Am. J. Hum. Genet. 32,<br />

314-331<br />

Buck-Sorlin, G. H. 2002: The search for QTL in barley (Hordeum vulgare L.) using a new<br />

mapping population. Cell Mol. Biol. Lett. 7, 523–535<br />

Castro, A. J., X. Chen, P. M. Hayes, and M. Johnston, 2003: Pyramiding Quantitative Trait<br />

Locus (QTL) Alleles Determining Resistance to Barley Stripe Rust: Effects on Resistance<br />

at the Seedling Stage. Crop Sci. 43, 651–659<br />

Chen, F. Q., D. Prehn, P. M. Hayes, D. Mulroney, A. Corey and H. E. Vivar, 1994: Mapping<br />

genes for resistance to barley stripe rust (Puccinia striiformis f. sp. hordei). Theor. Appl.<br />

Genet. 88, 215–219<br />

Chloupek, O., B. P. Forster, and W. T. B. Thomas, 2006: The effect of semi-dwarf genes on root<br />

system size in field-grown barley. Theor. Appl. Genet. 112, 779–786<br />

Churchill, G. A., and R. W. Doerge, 1994: Empirical threshold values for quantitative trait<br />

mapping. Genetics 138, 963-971<br />

Deynze, A. E. V., J. C. Nelson, E. S. Yglesias, S. E. Harrington, D. P. Braga, S. R. McCouch,<br />

and M. E. Sorrells, 1995: Comparative mapping in grasses. Wheat relationships. Mol.<br />

Genet. Genomics 248, 744-754<br />

Dubcovsky, J., Ming-Cheng Luo, Gan-Yuan Zhong, R. Bransteitter, A. Desai, A. Kilian, A.<br />

Kleinhofs, and J. Dvorak, 1996: Genetic map of diploid wheat, Triticum monocuccum L.<br />

and its comparison with maps of Hordeum vulgare L. Genetics 143, 983-999<br />

Flor, H.H., 1946: Genetics of pathogenicity in Melampsora lini. J. Agric. Res. 73, 335–357<br />

Franckowiak, J. D., and U. Lundqvist, 2002: Current List of New and Revised Barley Genetic<br />

Stock Descriptions. Barley Genet. Newsl. 32, 47<br />

Galiba, G., S. A. Quarrie, J. Sutka, A. Morgounov, and J. W. Snape, 1995: RFLP mapping of<br />

vernalization (Vrn1) and frost resistance (Fr1) genes on chromosome 5A of wheat. Theor.<br />

Appl. Genet. 90, 1174-1179<br />

Gill, K. S., B. S. Gill, T. R. Endo, E. V. Boyko, 1996: Identification and high-density mapping of<br />

gene-rich regions in chromosome group 5 of wheat. Genetics 143, 1001-1012<br />

Han, F., A. Kleinhofs, S. E. Ullrich, A. Kilian, M. Yano, and T. Sasaki, 1998: Synteny with rice:<br />

Analysis of barley malting quality QTL and rpg4 chromosome regions. Genome 41, 373–<br />

380<br />

Karsai, I., K. Meszaros, L. Lang, P. M. Hayes, and Z. Bedo, 2001: Multivariate analysis of traits<br />

determining adaptation in cultivated barley. Plant Breed. 120, 217-222<br />

Karsai, I., P. Szucs, K. Meszaros, T. Filichkina, P. M. Hayes, J. S. Skinner, L. Lang, and Z.<br />

Bedo, 2005: The Vrn-H2 locus is a major determinant of flowering time in a facultative x<br />

winter growth habit barley (Hordeum vulgare L.) mapping population. Theor. Appl. Genet.<br />

110, 1458-1466<br />

Kato, K,, H. Miura, and S. Sawada, 1999: QTL mapping of genes controlling ear emergence time<br />

and plant height on chromosome 5A of wheat. Theor. Appl. Genet. 98, 472-477<br />

18


Keller, M., Ch. Karutz, J. E. Schmid, P. Stamp, M. Winzeler, B. Keller, and M. M. Messmer,<br />

1999: Quantitative trait loci for lodging resistance in a segregating wheat x spelt<br />

population. Theor. Appl. Genet. 98, 1171-1182<br />

Kicherer, S., G. Backes, U. Walther, and A. Jahoor, 2000: Localising QTLs for leaf rust<br />

resistance and agronomic traits in barley (Hordeum vulgare L.). Theor. Appl. Genet. 100,<br />

881-888<br />

Lander, E. S., and D. Botstein, 1989: Mapping Mendelian factors underlying Quantitative traits<br />

using RFLP linkage maps. Genetics 121, 185-199<br />

Laurie, D. A., N. Pratchett, J. H. Bezant, and J. W. Snape, 1994: Genetic analysis of a<br />

photoperiod response gene on the short arm of chromosome 2 (2H) of Hordeum vulgare<br />

(barley). Heredity 72, 619-627<br />

Laurie, D. A., N. Pratchett, J. H. Bezant, and J. W. Snape, 1995: RFLP mapping of five major<br />

genes and eight quantitative trait loci controlling flowering time in winter x spring barley<br />

(Hordeum vulgare L.) cross. Genome 38, 575-585<br />

Law, C. N., A. J. Worland, B. Giorgi, 1976: The genetic control of ear-emergence time by<br />

chromosomes 5A and 5D of wheat. Heredity 36, 49-58<br />

Li, H., S. A. Brooks, W. Li, J. P. Fellers, H. N. Trick, and B. S. Gill, 2003: Map-based cloning of<br />

leaf rust resistance gene Lr21 from the large and polyploid genome of bread wheat.<br />

Genetics 164, 655-664<br />

Lincoln, S. E., M. Daly, and E. S. Lander, 1992: Constructing genetic maps with<br />

MAPMAKER/EXP 3.0. Whitehead Institute technical report, 3 rd edn. Cambridge<br />

Marquez-Cedillo, L. A., P. M. Hayes, A. Kleinhofs, W. G. Legge, B. G. Rossnagel, K. Sato, S.<br />

E. Ullrich, and D. M. Wesenberg, The North American Barley Genome Mapping Project,<br />

2001: QTL analysis of agronomic traits in barley based on the doubled haploid progeny of<br />

two elite North American varieties representing different germplasm groups. Theor. Appl.<br />

Genet. 103, 625-637<br />

Murthy, B. N., and M. V. Rao, 1980: Evolving suitable index for lodging resistance in barley.<br />

Indian J. Genet. Plant. Breed. 40, 253-261<br />

Qi, X., R. E. Niks, P. Stam, and P. Lindhout, 1998: Identification of QTLs for partial resistance<br />

to leaf rust ( Puccinia hordei) in barley. Theor. Appl. Genet. 96, 1205–1215<br />

Stanca, A. M., G. Jenkins, and P. R. Hanson, 1979: Varietal responses in spring barley to natural<br />

and artificial lodging and to a growth regulator. J. Agric. Sci. Camb. 93, 449-456<br />

Teulat, B., O. Merah, I. Souyris, and D. This, 2001: QTLs for agronomic traits from a<br />

Mediterranean barley progeny grown in several environments. Theor. Appl. Genet. 103,<br />

774–787<br />

Thomas, W. T. B., W. Powell, R. Waugh, K. J. Chalmers, U. M. Barua, P. Jack, V. Lea, B. P.<br />

Forster, J. S. Swanston, R. P. Ellis, P. R. Hanson, and R. C. M. Lance, 1995: Detection of<br />

quantitative trait loci for agronomic, yield, grain and disease characters in spring barley<br />

(Hordeum vulgare L.). Theor. Appl. Genet. 91, 1037-1047<br />

Toojinda, T., E. Baird, A. Booth, L. Broers, P. Hayes, W. Powell, W. Thomas, H. Vivar, and G.<br />

Young, 1998: Introgression of quantitative trait loci (QTLs) determining stripe rust<br />

resistance in barley: an example of marker-assisted line development. Theor. Appl. Genet.<br />

96, 123–131<br />

Toojinda, T., L. H. Broers, X. M. Chen, P. M. Hayes, A. Kleinhofs, J. Korte, D. Kudrna, H.<br />

Leung, R. F. Line, W. Powell, L. Ramsay, H. E. Vivar, and R. Waugh, 2000: Mapping<br />

19


quantitative and qualitative disease resistance genes in a doubled haploid population of<br />

barley (Hordeum vulgare). Theor. Appl. Genet. 101, 580–589<br />

van Berloo, R., H. Aalbers, A. Werkman, and R. E. Niks, 2001: Resistance QTL confirmed<br />

through development of QTL-NILs for barley leaf rust resistance. Mol. Breed. 8, 187-195<br />

Vasu K., S. Sood, H. S. Dhaliwal, P. Chhuneja, B. S. Gill, 2006: Identification and mapping of a<br />

tiller inhibition gene (tin3) in wheat. Theor. Appl. Genet. (Published online)<br />

Wang, S., C. J. Basten, Z. B. Zeng, 2005: Windows QTL Cartographer 2.5. <strong>Department</strong> of<br />

Statistics, North Carolina State University, Raleigh<br />

http://www.statgen.ncsu.edu/qtl/crt/WQTL.htm<br />

Zang, Z. B., 1994: Precision mapping of quantitative trait loci. Genetics 136, 1457-1468<br />

Zhu, H., L. Gilchrist, P. Hayes, A. Kleinhofs, D. Kudrna, Z. Liu, L. Prom, B. Steffenson, T.<br />

Toojinda, and H. Vivar, 1999: Does function follow form? Principal QTLs for Fusarium<br />

head blight (FHB) resistance are coincident with QTLs for inflorescence traits and plant<br />

height in a doubled-haploid population of barley. Theor. Appl. Genet. 99, 1221–123<br />

20


Barley Genetics Newsletter 37:21-23 (2007)<br />

PCR-based markers<br />

targeting barley putative grain yield and quality QTLs regions<br />

Isabel A. del Blanco*, Deric A. Schmierer, Andris Kleinhofs and Steven E. Ullrich<br />

<strong>Department</strong> of Crop and Soil Sciences, Washington State University, Pullman, WA, 99164-6420<br />

*e-mail: mailto:blanco@wsu.edu<br />

Abstract<br />

Eight restriction fragment length polymorphism (RFLP) and two genes delimiting, or included<br />

in, chromosome fragments containing putative QTLs for grain yield and quality were sequenced<br />

and converted to PCR-markers. Eight markers were co-dominant between two-rowed barley<br />

cultivars Harrington and Baronesse after digestion with restriction enzymes. Three were<br />

dominant-recessive after designing specific primers exploiting single nucleotides polymorphisms<br />

(SNPs) between those two cultivars.<br />

Introduction<br />

Two chromosomal regions from Baronesse have been reported as containing putative grain yield<br />

QTLs, one on chromosome 2(2HL) (between markers ABG461C and MWG699) and the other<br />

on chromosome 3(3HL) (between markers MWG571A and MWG961) (Schmierer et al., 2004).<br />

Subsequent analysis of Harrington/Baronesse derived inbred lines suggested other additional<br />

regions as candidates for grain yield QTLs. These regions are on chromosome 7(5HL) (between<br />

markers ABC717 and ABC718) and on the telomeric region of the short arm of chromosome<br />

2(2HS) (ABG058).<br />

Since RFLP methodology needs large amounts of DNA and entails a complex procedure with<br />

radioactively labeled probes and Southern blotting, which requires several days to produce<br />

results, we converted RFLP targeting those putative QTL regions to PCR-markers: cleaved<br />

amplified polymorphic sites (CAPS) and SNPs. The conversion of RFLP clones to PCR-based<br />

markers rendered a much simpler technique that facilitated the screening of large numbers of<br />

genotypes at the seedling stage, since it requires a small amount of DNA.<br />

Materials and Methods<br />

Genomic DNA extraction was modified from Edwards et al. (1991); the modification added an<br />

extra-step of chloroform-isoamyl alcohol (24:1) extraction. CAPS were developed from RFLP<br />

clones. Primers were designed from the cloned sequences and used to amplify genomic DNA<br />

from the parental cultivars Harrington and Baronesse. If no fragment length polymorphism was<br />

observed, the fragments from both parents were sequenced to discover SNPs. These SNPs were<br />

analyzed to identify restriction enzymes that could be used to develop CAPS, or to design<br />

cultivar-specific primers. CAPS markers were also developed for gene Dhn1 (Choi et al., 2000)<br />

and a candidate gene for seed dormancy and/or pre-harvest sprouting, GA20-oxidase (Li et al.,<br />

2004). Reactions for SNPs were set under stringent conditions (annealing temperatures ~ Tm)<br />

and short cycles (annealing ≤ 15 s). Extensions were 1min or 2min depending on product size.<br />

21


Primer3 software (Rozen and Skaletsky, 2000) assisted the process of primer design. PCR<br />

products were visualized on 1% or 2%, depending on the fragment size, agarose gel under UV<br />

light. PCR products were purified with Exonuclease I (Exo-SAP-IT, UBS, Cleveland, OH).<br />

Sequencing reactions were performed on an Applied Biosystems 3100 Genetic Analyzer (Perkin<br />

Elmer Applied Biosystem Division, Foster City, CA) with the ABI PRISM Big Dye Terminator<br />

v3.1 cycle sequencing kit. Products were confirmed by sequencing in both directions. Analysis<br />

of sequences to find restriction sites and/or SNPs was done with the tools provided by the San<br />

Diego Super Computer Center (SDSC, http://workbench.sdsc.edu).<br />

Results and Discussion<br />

Details of developed PCR markers are listed in Tables 1 (CAPS) and 2 (SNPs). CAPS marker<br />

MWG699 yielded small fragments difficult to visualize after digestion with enzyme Taq1, even<br />

when 3% UltraPure Agarose-1000 was used to run PCR products. To avoid this problem,<br />

cultivar-specific markers were developed taking advantage of SNPs between the parental<br />

genotypes. The two SNP sites are different than the TaqI restriction site, for this reason they are<br />

considered two different markers for locus MWG699.<br />

Table 1. Summary of developed CAPS markers, their location, primers and restriction enzymes<br />

Chr. Locus Bin Forward primer<br />

Reverse primer<br />

3(3H) MWG571A 009 5’-GTATCGTCAACACGGCAGCGT-3’<br />

5’-TACCTGTCAGAAGTGCAGTACC-3’<br />

3(3H) MWG961 012 5’-TCAACTCCAGCCTTCACACACAAC-3’<br />

5’-AAGACGAAGGAGACGTTGTTCATG-3’<br />

2(2H) MWG699 010 5’-ACCCACTGGGTTTGATACTACAAAG-3’<br />

5’-GTGATGTTATTGGTGACTTGAACTC-3’<br />

1(7H)<br />

7(5H)<br />

MWG851A<br />

Dhn1**<br />

001<br />

011<br />

5’-CAAGAACTCCATTCCAATGTACCTG-3’<br />

5’-TACTTCCAGATCCATGACAAGCTAC-3’<br />

5’-TCACTGTTCGTACTTCGTAGCACC-3’<br />

5’-TCCGCAGTTGCTCCTCCAAT-3’<br />

7(5H) ABC309 015 5’-CAGAGATACCACTGGGATTCTAAAC-3’<br />

5’-CGAAAACCCTAGGAGAGCTAATC-3’<br />

7(5H) MWG2249 015 5’-AGCCATGCCGGTCTTGTCAAGAAAG-3’<br />

5’-ATGCATCTGATCCCTGGAGAAGAAC-3’<br />

7(5H) GA20-oxidase 015 5’-GTCCATCATGCGCCTCAACTACTAC-3’<br />

5’-TAGCAAATCTTGCCATCCATCCATG-3’<br />

Enzyme<br />

BamHI<br />

BsgI<br />

TaqI*<br />

HaeIII, MspI<br />

TaqI, HpyCH4 IV<br />

HinfI<br />

* Restriction enzyme (TaqI) previously reported by Tanno et al. (2002) in a different population<br />

** Primers from Choi et al. (TAG 101:350-354)<br />

22<br />

AluI<br />

AvaI


Table 2. Cultivar-specific PCR primers developed exploiting nucleotide polymorphisms<br />

between Harrington (H) and Baronesse (B) cultivars<br />

Chr. Locus Bin Forward primer<br />

Reverse primer<br />

2(2H) MWG699-H* 010 5’-ATGGCTATCGCTTGACCAA-3’<br />

5’-GTGATGTTATTGGTGACTTGAACTC-3’<br />

2(2H) MWG699-B* 010 5’-ATGGCTATCGTTTGACCAG-3’<br />

5’-GTGATGTTATTGGTGACTTGAACTC-3’<br />

2(2H) ABG058-H 001 5’-TCTAGGCTTGCATTTGTCTACAAAG-3’<br />

5’-ATGCTGCTTCGCTGTCTACAATAAC-3’<br />

2(2H) ABG058-B 001 5’-CAATAATCTCTCTTGCCATCATGCC-3’<br />

5’-ATGCTGCTTCGCTGTCTACAATAAC-3’<br />

7(5H) ABC717-H* 009 5’-AACCAAGGCTACCAAGGTAATCCTG-3’<br />

5’-CTCGTACTAACTTCCTACATGGCAA-3’<br />

7(5H) ABC717-B* 009 5’-AACCAAGGCTACCAAGGTAATCCTG-3’<br />

5’-CTCGTACTAACTTCCTACATGGCAC-3’<br />

*Note: These primers require stringent conditions when running PCR<br />

References<br />

Choi, D.W., M.C. Koag and T.J. Close. 2000. Map locations of barley Dhn genes determined by<br />

gene-specific PCR. Theor. Appl. Genet. 101:350-354.<br />

Edwards K., C. Johnstone and C. Thompson. 1991. A simple and rapid method for the<br />

preparation of plant genomic DNA for PCR analysis. Nucleic Acids Res. 19(6):1349.<br />

Li, C., P. Ni, M. Francki, A. Hunter, Y. Zhang, D. Schibeci, H. Li, A. Tarr, J. Wang, M. Cakir, J.<br />

Yu, M. Bellgard, R. Lance and R. Appels. 2004. Genes controlling seed dormancy and<br />

pre-harvest sprouting in a rice-wheat-barley comparison. Funct. Integr. Genomics 4:84-<br />

93.<br />

Schmierer, D.A., N. Kandemir, D.A. Kudrna, B.L. Jones, S.E. Ullrich and A. Kleinhofs. 2004.<br />

Molecular marker-assisted selection for enhanced yield in malting barley. Mol. Breed.<br />

14:463-473.<br />

Rozen, S. and H.J. Skaletsky. 2000. Primer3 on the SSS for general users and for biologist<br />

programmers. In S. Krawetz and S. Misener (ed.) Bioinformatics methods and protocols:<br />

Methods in molecular biology. Humana Press, Totowa, NJ, p. 365-386. Available at<br />

http://www.bioinformatics.nl/cgi-bin/primer3plus/primer3plusAbout.cgi (verified April<br />

2007).<br />

Tanno, K., S. Taketa, K. Takeda and T. Komatsuda. 2002. A DNA marker closely linked to the<br />

vrs1 locus (row-type gene) indicates multiple origins of six-rowed cultivated barley<br />

(Hordeum vulgare L.). Theor. Appl. Genet. 104:54-60.<br />

23


Barley Genetics Newsletter 37: 24-28 (2007)<br />

Genetic Architecture for Yield and Quality Component Traits Over Two<br />

Environments in Barley (Hordeum vulgare L.)<br />

Ambresh Kumar Verma, S.R. Vishwakarma and P.K. Singh<br />

<strong>Department</strong> of Genetics and Plant Breeding<br />

Narendra Deva University of Agriculture and Technology,<br />

Kumarganj, Faizabad, (UP) 224 229, INDIA.<br />

e-mail: ambreshv@gmail.com<br />

Abstract<br />

Triple test-cross analysis involving three testers K-560, Narendra Jau-3 and their hybrid K-560 x<br />

Narendra Jau-3, were cross to 15 strains/varieties of barley to estimate the epistatic, additive and<br />

dominance components of genetic variance. Modified triple test-cross was done for eleven<br />

metric traits in two [normal fertile soil (E1) and saline sodic soil (E2)] environments. Epistasis<br />

was evident for all the characters under study in both environments except plant height in E2,<br />

protein content in E1 and lysine content in both conditions. The i type epistasis was significant<br />

for seed yield per plant in E1 only, while j and l type epistasis were significant for most of the<br />

traits. Additive (D) component was important in all cases in both conditions except number of<br />

effective tillers per plant in E1 and lysine content in E1 & E2 where as non fixable dominance (H)<br />

component were significant for all the characters in both conditions except number of effective<br />

tillers per plant in E1, length of main spike in E2 and lysine content in both environments. The<br />

most of the traits showed partial dominance and directional element, F was non- significant for<br />

all the traits, suggesting ambidirectional nature of dominance.<br />

Key words: barley, modified triple test-cross, genetic variation, protein content, seed yield<br />

Introduction<br />

To enable present barley varieties acceptable in the international market, there is need to develop<br />

better quality genotypes suitable for making product with consumer acceptability. Thus there is<br />

an urgent need to improve grain quality as well as develop better quality genotypes for suitable<br />

processing industry. The consumer acceptability of genotype is affected by chemical constituent<br />

of the grains. It is therefore, desirable to access basic physiochemical characteristics of the grains<br />

so that these can be combined with high yield. The information about nature and magnitude of<br />

genetic components of variance for yield and quality characters is essential for planning an<br />

efficient breeding programme in any crop. The modified triple test-cross analysis of (Ketata et<br />

al., 1976) provide efficient detection and estimation of epistatic variance along with unbiased<br />

estimates of additive and dominance component of genetic variance in determining the<br />

inheritance of eleven traits in barley using modified triple test-cross (TTC) analysis.<br />

Materials and Methods<br />

Two barley pure lines, viz. testers K-560, Narendra Jau-3 and their hybrid (K-560 x Narendra<br />

Jau-3) were cross to 15 lines (Kedar, RD-2552, Narendra Jau-1, Narendra Jau-2, Narendra Jau-4,<br />

RD-2035, BL-2, BH-512, Ratna, Jagrati, DL-88, Azad, K-603, NDB-1173 and RD-2624) of<br />

barley to develop a set of 45 crosses. The experimental materials consisting of 3 testers, 15 lines,<br />

24


30 single crosses and 15 three-way crosses were evaluated in randomized block design with three<br />

replications during rabi 2004-05 in two viz. normal fertile soil (E1) and saline sodic (E2)<br />

condition at Genetics and Plant Breeding Research Farm of Narendra Deva University of<br />

Agriculture & Technology, Kumarganj , Faizabad, U.P. India. Each entry was shown in a 3 m<br />

long single row plant with 10 cm spacing within and 25 cm between rows. Observations were<br />

recorded on five randomly selected competitive plants for eleven quantitative traits (Table 1).<br />

The pelshenke vale, protein content and lysine content were estimated by the method of<br />

(Pelshenke, 1933; Lowery’s, 1951; and Felker et al.; 1978) respectively. Character means were<br />

used for modified triple test- cross analysis (Ketata et al., 1976).<br />

Results and Discussion<br />

The triple test-cross (TTC) analysis revealed that significant epistasis was present for all the<br />

characters in both environments except plant height in E2 , protein content in E1 and lysine<br />

content in both conditions (Table 1). The partitioning of epistasis in to i and j and l types showed<br />

that additive x additive (i) interaction was significant for seed yield per plant in normal fertile<br />

soil condition only. The j and l type epistasis was significant for all the characters in both the<br />

environments except days to maturity and protein content in E1 while lysine content in both<br />

environments. Existence of significant epistasis in inheritance of seed yield and some other yield<br />

components in barley was reported by others also (Gorshkova and Gorodov, 1981). Greater<br />

importance of j and l type epistasis than i component was reported earlier by (Singh, et al., 1984;<br />

Tripati and Singh, 1983; Verma and Yunus, 1986.). On the contrary, (Nanda, et al., 1982)<br />

reported i type epistasis to be more important than j and l type epistasis, and (Singh, 1980)<br />

reported equal importance of these two sub components. The estimates of the components of<br />

genetic variance, additive (D), dominance (H) and F components and the degree of dominance<br />

(H/D 0.5 ) are given in Table 2. The additive (D) component was important in all cases in both<br />

conditions except number of effective tillers per plant in E1 and lysine content in E1 & E2 where<br />

as non fixable dominance (H) component was significant for all the characters in both condition<br />

except number of effective tillers per plant in E1, length of main spike in E2 and lysine content in<br />

both environments. The estimates of D were higher than H for most of the traits, which<br />

suggested partial dominance. The directional element of dominance, F was non-significant for all<br />

the characters in both environments indicated presence of ambidirectional dominance, and alleles<br />

with increasing and decreasing effects appear to be dominant and recessive to the same extent.<br />

The significant of additive component for seed yield and quality component traits, except<br />

number of effective tillers per plant and lysine content indicates that substantial improvement in<br />

yield status can still be achieved by following conventional breeding procedure in barley. The<br />

significant contribution of additive x additive type epistasis for seed yield suggested that this<br />

component should not be ignored while predicting the recombinants extractable from segregating<br />

generations. Further results provided evidence of j and l type epistasis for most of the traits<br />

studied. However, in autogamus crops like barley, where commercial exploitation of hybrid has<br />

started, this type of epistasis is of more use.<br />

References<br />

Felker, C.; Libanauskas, C.K.; Wainer, G. 1978. Estimation of lysine in foods. Crops Sci.<br />

18:480-490.<br />

25


Gorshkova, V.A.; Gorodova, V.T. 1981. Use of top crosses in studying breeding material of<br />

spring barley. Biological Lelektsiyai Semeno Vod Zorm Culture 47:54.<br />

Ketata, H.; Smith, E.L.; Edwards, L.H.; McNew, R.W. 1976. Detection of epistatic, additive and<br />

dominance variance in winter wheat (Triticum aestivum L.). Crop Sci. 16:1- 4.<br />

Lowry’s, O.H.; Roserbrough, N.J.; Farr, A.L.; Randall, R.J. 1951. Protein measurement with the<br />

folin phenol reagent. J. Biol. Chem. 193:265-278.<br />

Nanda, G.S.; Singh, P.; Gill, K.S. 1982. Epistasis, additive and dominance variation in triple test<br />

cross of bread wheat. Theor. Appl. Genet. 62:49-52.<br />

Pelshenke, P.A. 1933. A short method for determination of gluten quality of wheat. Cereal<br />

Chem. 10-90.<br />

Singh, G.; Nanda, G.S.; Gill, K.S. 1984. Inheritance of yield and its components in five crosses<br />

of spring wheat. Indian J. agric. Sci. 54:943-949.<br />

Singh, S. 1980. Detection of component of genetic variance and genotype x environment<br />

interaction in spring wheat. J. agric. Sci. Camb. 95:67-72.<br />

Tripathi, I.D.; Singh, M. 1983. Triple test-cross analysis in three barley populations under saline<br />

alkaline soil conditions. J. agric. Sci. Camb. 101:117-121.<br />

Verma, S.S.; Yunus,M. 1986. Role of epistasis in the analysis of genetic component of variance<br />

in bread wheat. Indian J. agric. Sci. 56:687-689.<br />

26


Table 1. ANOVA (mean square) of triple test-cross to test epistasis for eleven characters in barley under<br />

normal fertile soil (E1) and saline sodic soil condition (E2)<br />

Sources of<br />

variation<br />

Environ-<br />

ments<br />

d.f. Days to<br />

maturity<br />

Plant<br />

height<br />

(cm)<br />

No. of<br />

effective<br />

tillers<br />

/plant<br />

Length<br />

of main<br />

spike<br />

(cm)<br />

Grains<br />

per<br />

spike<br />

Seed<br />

yield/<br />

plant<br />

(g)<br />

1000<br />

seed<br />

weight<br />

(g)<br />

Pelshenke<br />

value<br />

(minutes)<br />

‘i’ Type epistasis<br />

‘j+I’ type pistasis<br />

E1<br />

E2<br />

E1<br />

1<br />

14<br />

7.20<br />

369.80<br />

37.53<br />

3.99<br />

220.81<br />

34.78*<br />

0.17<br />

8.28<br />

8.13**<br />

10.86<br />

3.64<br />

1.64**<br />

428.76<br />

366.35<br />

206.09**<br />

22.36*<br />

300.13<br />

81.08**<br />

9.16<br />

0.793<br />

25.28**<br />

2121.80<br />

1355.77<br />

315.23**<br />

0.61<br />

2.11<br />

4.40<br />

0.75<br />

1.49<br />

0.56<br />

5.83<br />

1.12<br />

205.13**<br />

E2<br />

*<br />

74.66** 43.17*<br />

*<br />

11.57** 1.21** 307.31** 169.98** 23.90* 330.28** 7.46** 0.97 131.66**<br />

Total epistasis E1<br />

E2<br />

15 35.51*<br />

94.33**<br />

32.73*<br />

*<br />

55.01<br />

7.60**<br />

11.35**<br />

2.25**<br />

1.37**<br />

220.93**<br />

311.24**<br />

77.16**<br />

178.65**<br />

24.20**<br />

22.36*<br />

435.66**<br />

398.64**<br />

4.15<br />

7.10**<br />

0.57<br />

0.90<br />

191.84**<br />

122.96**<br />

‘i’ type epistasis<br />

x blocks<br />

E1<br />

E2<br />

2 1.80<br />

92.45**<br />

1.00<br />

55.20*<br />

4.34**<br />

2.07**<br />

2.71**<br />

0.91**<br />

107.19**<br />

91.59*<br />

5.59<br />

75.03**<br />

2.29**<br />

0.198<br />

530.45**<br />

338.94**<br />

0.15<br />

0.527<br />

0.19<br />

3.73<br />

1.46<br />

0.28<br />

‘j+I’ type<br />

E1 28 15.64 7.92 0.14 0.43 24.12 3.34 0.18 32.68 9.62 1.28 2.03<br />

epistasis x blocks E2<br />

2.53 14.17 0.32 0.15 23.78 0.723 12.15 11.18 0.71 1.80 0.31<br />

Total epistasis x E1 30 14.72 7.46 0.14 0.55 29.66 3.49 0.32 36.86 10.00 2.42 1.99<br />

blocks<br />

E2<br />

8.53 16.91 0.43 0.20 28.30 5.68 11.36 33.03 0.69 2.68 0.49<br />

*, ** Significant at 5% and 1% probability levels, respectively.<br />

27<br />

Protein<br />

content<br />

(%)<br />

Lysine<br />

content<br />

(%)<br />

Husk<br />

content<br />

(%)


Table 2. Estimates of additive (D) and dominance (H) components of variance, parameter F, and degree of dominance (H/D) 0.5<br />

in barley under normal fertile soil (E1) and saline sodic soil (E2 ) condition<br />

Sources of<br />

variation<br />

Environ-<br />

ments<br />

D E1<br />

E2<br />

H E1<br />

E2<br />

(H/D) 0.5<br />

E1<br />

E2<br />

F E1<br />

E2<br />

Days to<br />

maturity<br />

Plant<br />

height<br />

(cm)<br />

Number<br />

o f<br />

effective<br />

tillers /<br />

plant<br />

Length<br />

of main<br />

spike<br />

(cm)<br />

Grains per<br />

spike<br />

Seed<br />

yield/<br />

plant<br />

(g)<br />

1000<br />

seed<br />

weight<br />

(g)<br />

Pelshenke<br />

value<br />

(minutes)<br />

Protein<br />

content<br />

(%)<br />

Lysine<br />

content<br />

(%)<br />

Husk<br />

content<br />

(%)<br />

25.51** 429.12** 4.67 4.70** 520.15** 67.72** 17.21** 250.46** 16.77** 1.63 125.83**<br />

40.72** 150.58** 2.64** 2.60** 239.90** 50.43** 22.74** 190.35** 14.75** 1.90 78.26**<br />

20.09** 20.06** 3.11 1.46** 167.30** 33.78** 12.57** 374.09** 4.89** 0.86 77.24**<br />

37.45** 45.28** 4.41** 0.76 224.90** 69.57** 10.56** 237.02** 8.30** 0.65 57.05**<br />

0.60 0.22 0.82 0.56 0.57 0.71 0.85 1.22 0.54 0.74 0.83<br />

0.96 0.55 1.29 0.54 0.81 1.17 0.68 1.12 0.75 0.58 0.85<br />

0.28 0.18 0.31 0.03 0.02 0.04 0.26 -0.08 -0.06 -0.25 0.20<br />

0.10 -0.02 0.15 0.12 0.11 -0.10 0.20 -0.27 0.01 -0.05 0.19<br />

*, ** Significant at 5% and 1% probability levels, respectively.<br />

28


Barley Genetics Newsletter 37: 29–33 (2007)<br />

Line x Tester Analysis in Barley (Hordeum vulgare L.) Across Environments<br />

Ambresh Kumar Verma, S.R. Vishwakarma and P.K. Singh<br />

<strong>Department</strong> of Genetics and Plant Breeding<br />

Narendra Deva University of Agriculture and Technology,<br />

Kumarganj, Faizabad, (UP) 224 229 India.<br />

e-mail: ambreshv@gmail.com<br />

Abstract<br />

A combining ability effects study was conducted through line x tester analysis under normal<br />

fertile and saline sodic soil environments. The results indicated the predominance of nonadditive<br />

gene action for all the traits. The line Kedar and tester K-560 in normal fertile soil and<br />

tester Lakhan in saline sodic soil while RD-2552, Narendra Jau-4 and NDB-1173 under both<br />

environments proved good general combiners for seed yield and quality components characters.<br />

The crosses Kedar x K-560, K-603 x K-560, DL-88 x Lakhan and RD-2035 x K-560 in normal<br />

and RD-2552 x Narendra Jau-3, Narendra Jau-1 x K-560, Narendra Jau-4 x Lakhan, NDB-1173<br />

x K-560, and RD-2624 x K-560, in saline sodic soil while RD-2552 x Lakhan, RD-2035 x<br />

Narendra Jau-3, BL-2 x Lakhan and Jagrati x K-560 in both environment exhibited highest sca<br />

effects for seed yield and other quality traits, showing their desirability to offer transgressive<br />

segregants in succeeding generations.<br />

Key words: barley, combining ability, gene action, protein content, lysine content.<br />

Introduction<br />

Research on barley (Hordeum vulgare L.) bears special significance due to its great elasticity of<br />

adaptation under various stresses and lot of potential both for domestic and industrial uses.<br />

Barley also has been very important winter cereal crop in India , because of its versatile nature,<br />

lower cost of cultivation, superior nutritional qualities and many other uses. The major uses of<br />

barley grains, however are in the production of malt, which is used to make beer, beverage<br />

industrial alcohol, whisky, malt syrups, malted milk and vinegar. The spent malt after brewing is<br />

used as feed. Combining ability analysis helps in identification of desirable parents and crosses<br />

for their further exploitation in breeding programme. Therefore, the present study was<br />

undertaken to estimate combining ability effects for yield and quality components characters and<br />

also to identify suitable parents and crosses in barley under normal fertile and saline soil<br />

environments.<br />

Materials and Methods<br />

The material consisted of 15 lines, namely RD-2552, Narendra Jau-1, Narendra Jau-2, Narendra<br />

Jau-4, RD-2035, BL-2, BH-512, Ratna, Kedar, Jagrati, DL-88, Azad, K-603, NDB-1173 and<br />

RD-2624 with 3 testers viz., Narendra Jau-3, K-560 and Lakhan crosses were attempted in line x<br />

tester fashion. The resulting 45 F1s along with lines and testers were planted in a randomized<br />

block design with three replicates during rabi 2004-2005 under normal fertile soil and saline<br />

sodic environments at Research Farm of Narendra Deva University of Agriculture and<br />

Technology, Kumarganj, Faizabad. Each treatment (genotype) was shown in 3 m length having<br />

row to row and plant to plant distance of 25 cm and 10 cm, respectively. The observations were<br />

recorded on days to maturity, plant height (cm), number of effective tillers/plant, length of main<br />

29


spike (cm), grains per spike, seed yield/plant (g), 1000 seed weight (g), pelshenke value<br />

(minutes), protein content (%), lysine content (%) and husk content (%) on five randomly<br />

selected plants from each replication and environments. The combining ability analysis was<br />

carried out following the method proposed by (Kempthorne,1957).<br />

Results and Discussion<br />

The analysis of variance for combining ability for eleven characters showed that variances due to<br />

gca and sca were significant for the characters like days to maturity, plant height, length of main<br />

spike, grains per spike, seed yield per plant, 1000 seed weight, pelshenke value, protein content<br />

and husk content under both normal fertile and saline sodic soil conditions, suggesting thereby<br />

importance of both additive and non additive gene actions for the inheritance of these characters.<br />

The role of both additive and non-additive effects to grain yield and its component characters in<br />

barley have been reported previously (Choo et al.,1988; Bhatnagar and Sharma1995;1998).<br />

However, the component of variation due to sca was higher than gca for all the characters in all<br />

the environments indicating the predominance of non-additive gene action. Such results infers<br />

that the chosen material had high selection history. Similar results of predominance of sca<br />

variance over gca variance have also been reported by (Guo and Xu,1994; Phogat et al.1995;<br />

Madic,1996; El-Seidy,1997a & 1997b; Bouzerzour and Djakoune,1998).<br />

A perusal of the gca estimates (Table1) showed that the parents RD-2552, Narendra Jau-4, NDB-<br />

1173 in both environments while, Kedar & K-560 in E 1, and Lakhan in E2<br />

were the best<br />

combiners for seed yield and good/ medium combiner for most of the important yield and quality<br />

component characters. Further the parents Ratna, Narendra Jau-1, RD-2552, Narendra Jau-3,<br />

Narendra Jau-1 for early maturity, Lakhan, Narendra Jau-1 for dwarf plant height, Azad, RD-<br />

2624, NDB-1173 and Ratna for high protein content and Narendra Jau-1, Narendra Jau-2 and<br />

Lakhan for high lysine content were found to be good general combiners in both the<br />

environments.<br />

Significant gca values indicated the importance of additive or additive x additive gene effect as<br />

earlier reported by (Griffing,1956). In view of this, these parents offered the best possibilities for<br />

the development of improved lines of barley through hybridization programme. It is, therefore,<br />

recommended that to improve yield one should breed for superior combining ability for the<br />

component traits with an ultimate objective to improve the pace of its genetic improvement.<br />

The estimates of specific combining ability effects of top five ranking crosses for all the<br />

characters are present in Table 2. The perusal of sca effects revealed that crosses Kedar x K-560,<br />

K-603 x K-560, DL-88 x Lakhan RD-2552 x K-560 in normal and RD-2552 x Narendra Jau-3,<br />

Narendra Jau-1 x K-560, Narendra Jau-4 x Lakhan, NDB-1173 x K-560 & RD-2624 x K-560 in<br />

saline sodic and RD-2552 x Lakhan, RD-2035 x Narendra Jau-3, BL-2 x Lakhan and Jagrati x K-<br />

560 under both environments were for seed yield per plant and with other characters. The crosses<br />

RD-2035 x Narendra Jau-3 and BL-2 x Lakhan are excellent crosses for seed yield in both<br />

environments. Therefore, these crosses should be particularly exploited vigorously in future<br />

breeding programmes to obtain good segregants which would lead to buildup a population with<br />

high genetic yield potential with develop salt tolerant genotypes.<br />

30


References<br />

Bhatnagar, V. K., Sharma, S. N. 1995. Diallel analysis for combining ability for grain yield and<br />

its components in barley. Indian J. Genet. 55:228-232.<br />

Bhatnagar, V. K., Sharma, S. N. 1998. Diallel analysis for grain yield and harvest index in barley<br />

under diverse environments. Rachis. 16:22-27.<br />

Bouzerzour, H., Djakoune, A. 1998. Inheritance of grain yield and grain yield components in<br />

barley. Rachis. 16:9-16.<br />

Choo, T. M., Reinbergs, E., Jui, P. Y.1988. Comparison of F2 and F1<br />

diallel analyses in barley.<br />

Genome 30:865-869.<br />

El-Seidy, E. S. H.1997a. Inheritance of earliness and yield in some barley crosses. Ann. Agric.<br />

Sci. Moshtohor. 35:715-30.<br />

El-Seidy, E. S. H. 1997b. Inheritance of plant height, grain yield and its components in three<br />

barley crosses (Hordeum vulgare L.). Ann. Agric. Sci. Moshtohor. 35:63-76.<br />

Guo, Y. Y., Xu, S. Y. 1994. Genetic analysis of yield traits in two-rowed barley. Acta Agric.<br />

Zhejiangensis 6:156-60.<br />

Griffing, B.1956. Concept of general and specific combining ability in relation to diallel crossing<br />

system. Aust. J. Biol. Sci. 9:463-493<br />

Kempthorne, O. 1957. An Introduction to Genetical Statistics. John Wiley & Sons. Inc. New<br />

York.<br />

Madic, M. 1996. Inheritance of spike traits and grain yield in barley (H. vulgare L.) hybrids.<br />

Rev. Res. Work, Fac. Agric. Belgrade 41:53-65.<br />

Phogat, D. S., Singh,D., Dahiya, G. S., Singh, D. 1995. Genetics of yield and yield components<br />

in barley (Hordeum vulgare L.). Crop Res. Hisar. 9:363-369.<br />

31


Table 1. Estimates of general combining ability (gca) effects of parents (lines & testers) for 11 characters in<br />

barley under normal fertile soil condition (E1) & saline sodic soil condition (E2)<br />

Parents<br />

Kedar<br />

K-603<br />

DL-88<br />

RD-2552<br />

Azad<br />

Narendra Jau -1<br />

Narendra Jau -2<br />

Narendra Jau -4<br />

NDB-1173<br />

RD-2035<br />

RD-2624<br />

BL-2<br />

Jagrati<br />

BH-512<br />

Ratna<br />

SE (gi) lines<br />

SE(gi-gj) lines<br />

K-560<br />

Narendra Jau-3<br />

Lakhan<br />

SE (gi) testers<br />

Environments<br />

Days to<br />

maturity<br />

Plant<br />

height<br />

(cm)<br />

No. of<br />

effective<br />

tillers<br />

/plant<br />

Length<br />

of main<br />

spike<br />

(cm)<br />

* Significant at 5% probability level, ** Significant at 1% probability level<br />

32<br />

Grains<br />

/spike<br />

Seed<br />

yield/<br />

plant<br />

(g)<br />

1000<br />

seed<br />

weight<br />

(g)<br />

Pelshenke<br />

value<br />

(minute)<br />

Protein<br />

content<br />

(%)<br />

Lysine<br />

content<br />

(%)<br />

Husk<br />

content<br />

(%)<br />

E1 0.63** 3.45** 0.40* -0.18* -0.71 1.02* 1.10* 6.58** 0.39** -0.12** 2.30**<br />

E2 1.23** 5.76** 0.26 -0.13 -0.72 0.73 0.99** 5.25** 0.27** -0.26** 1.35**<br />

E1 -0.12 -0.62 0.20 -0.26** -3.08** -0.45 -1.04* -1.92* 0.26** -0.18** 0.13<br />

E2 -1.27** 3.62** -0.27 -0.60** -5.51** -1.58** -1.67** -1.67 0.26** -0.13** 0.44*<br />

E1 0.63** 3.85** -1.02** -0.63** -4.14** -3.04** -0.74 0.33 -0.21** 0.02 -1.67**<br />

E2 -0.19 3.40** -0.34 -0.46** -1.82* -0.77 -0.86** 0.58 -0.32** 0.07** -1.23**<br />

E1 -0.62** -4.96** 0.14 0.04 6.76** 1.19* -1.11* -9.92** -0.68** 0.25** -1.88**<br />

E2 -0.69** -2.65** 0.37* 0.11 4.37** 1.83** -0.83** -7.58** -0.52** 0.33** -1.15**<br />

E1 2.21** -6.84** -0.11 0.17* 4.86** 0.53 0.11 7.16** 2.06** -0.59** 1.24**<br />

E2 2.56** 0.42 0.08 0.18 5.20** 0.57 0.08 6.17** 1.94** -0.53** 0.93**<br />

E1 -0.62** -2.76** 0.34* 0.32** -0.54 0.54 0.55 -0.34 -1.38** 0.56** -0.23<br />

E2 -0.52* -4.57** 0.29 0.19 1.50 0.71 0.67** 0.42 -0.49** 0.59** -0.60**<br />

E1 -1.54** 3.59** 0.08 0.80** 1.23 0.48 0.28 -3.42** -1.68** 0.51** 1.50**<br />

E2 0.06 -4.55** 0.33 0.49** 0.34 0.46 0.14 -3.25** -1.77** 0.52** 1.44**<br />

E1 0.29 -2.66** 1.31** 0.65** 4.73** 3.54** -0.32 -6.76** -1.01** 0.34** 0.35<br />

E2 1.14** 2.68** 0.50** 0.50** 1.78 0.90* -0.29 -6.83** -1.05** 0.10** 0.69**<br />

E1 -2.71** -1.98** -0.11 0.71** 6.99** 2.14** 1.75** -1.76* 0.93** -0.28** -1.99**<br />

E2 -2.11** -4.08** 0.00 0.52** 6.08** 1.24** 2.09** -1.67 0.99** -0.32** -1.98**<br />

E1 0.13 0.22 -0.21 -0.23* 4.15** 0.66 -0.99* -2.34** -0.35** 0.11** 1.05**<br />

E2 -0.36 -1.69** 0.09 -0.15 3.43** 0.02 -0.94** -2.08* -0.46** 0.12** 0.98**<br />

E1 0.71** -3.44** -0.45** -0.38** -9.32** -3.52** -1.60** 0.08 1.63** -0.40** -0.63**<br />

E2 -0.19 -0.77 -0.60** -0.05 -3.70** -2.36** -1.47** 0.33 1.54** -0.35** -0.40<br />

E1 1.54** 1.89** 0.43* -0.13 -2.49* 0.63 0.29 3.24** -0.09* -0.03 -1.33**<br />

E2 0.23 -2.29** 0.36* -0.08 -3.35** 0.66 0.03 3.33** -0.18** -0.04** -1.35**<br />

E1 1.13** 4.50** -0.26 -0.32** -4.47** -1.22** 1.20** 1.24 -0.30** 0.15** 0.93**<br />

E2 1.39** -2.44** -0.45* -0.21 -3.45** -0.98* 1.12** 1.58 -0.47** 0.18** 0.69**<br />

E1 -0.12 7.09** -0.31 -0.36** 1.19 -0.74 0.03 0.99 0.02 -0.05 2.49**<br />

E2 0.31 4.29** -0.18 -0.35* 0.12 -0.41 0.12 -0.33 -0.07** -0.03* 2.14**<br />

E1 -1.54** -1.34* -0.44** -0.21* -5.17** -1.75** 0.49 6.83** 0.41** -0.29** -2.26**<br />

E2 -1.61** 2.87** -0.45* 0.04 -4.27** -1.04* 0.83** 5.75** 0.33** -0.25** -1.94**<br />

E1 0.22 0.64 0.17 0.09 0.97 0.45 0.45 0.75 0.04 0.03 0.21<br />

E2 0.22 0.52 0.17 0.13 0.93 0.45 0.21 0.88 0.03 0.01 0.20<br />

E1 0.31 0.90 0.23 0.13 1.37 0.64 0.64 1.05 0.06 0.04 0.30<br />

E2 0.31 0.74 0.25 0.19 1.31 0.64 0.30 1.24 0.04 0.02 0.29<br />

E1 0.88** 1.83** 0.27** 0.18** 0.68 0.76** 0.19 -5.77** 0.18** -0.04** -1.20**<br />

E2 1.31** -0.87** 0.07 0.05 0.41 0.41 -0.22* -5.17** 0.14** -0.06** -0.87**<br />

E1 -0.81** 2.69** 0.31** 0.09 -0.18 0.21 0.24 1.94** 0.07** -0.06** 0.17<br />

E2 -0.36** 0.59* -0.04 0.08 0.48 -0.02 0.17 1.97** 0.34** -0.11** -0.12<br />

E1 0.10 -6.63** -0.90** -0.16** 0.79 -1.11** -0.42 2.30** -0.44** 0.22** 1.37**<br />

E2 0.02 -0.70* 0.17 -0.05 0.09 0.78** 0.15 2.06** -0.60** 0.26** 1.40**<br />

E1 0.11 0.33 0.09 0.05 0.5 0.23 0.23 0.39 0.02 0.02 0.11<br />

E2 0.11 0.27 0.09 0.07 0.48 0.23 0.11 0.45 0.01 0.01 0.10<br />

E1 0.16 0.46 0.12 0.06 0.71 0.33 0.33 0.54 0.03 0.02 0.15<br />

SE(gi-gj)<br />

testers E2 0.16 0.38 0.13 0.10 0.68 0.33 0.15 0.64 0.02 0.01 0.15


Table 2. Promising crosses for seed yield and quality component in barley under normal<br />

fertile soil and saline sodic soil condition.<br />

Characters Normal fertile soil environment Saline sodic soil environment<br />

Days to maturity Kedar x Lakhan, RD-2552 x K-560, RD-<br />

2552 x Narendra Jau-3, Narendra Jau-1 x<br />

K-560, RD-2624 x Lakhan<br />

Plant height (cm) Jagrati x Lakhan, BL-2 x Lakhan,<br />

Narendra Jau-2 x Lakhan, RD-2035 x<br />

Lakhan, Kedar x Narendra Jau-3<br />

K-603 x K-560, RD-2624 x Lakhan,<br />

Narendra Jau-1 x K-560, Kedar x Lakhan,<br />

Jagrati x Narendra Jau-3<br />

Ratna x Narendra Jau-4, BL-2 x Lakhan,<br />

DL-88 x K-560, RD-2035 x Lakhan, RD-<br />

2624 x Lakhan<br />

Number of effective<br />

tillers/plant<br />

RD-2035 x K-560, BL-2 x Narendra Jau-3,<br />

Jagrati x K-560, BL-2 x Lakhan<br />

Narendra Jau-1 x K-560, Narendra Jau-4 x<br />

Lakhan, NDB-1173 x K-560, RD-2035 x<br />

Narendra Jau-3<br />

Length of main spike<br />

(cm)<br />

K-603 x K560, K-603 x Narendra Jau-3,<br />

DL-88 x Lakhan, RD-2035 x K-560,Jagrati<br />

x K-560<br />

Grains/spike BL-2 x Lakhan, Kedar x K-560, K-603 x<br />

K-560, DL-88 x Lakhan, RD-2035 x<br />

Lakhan<br />

Seed yield per plant<br />

(g)<br />

BL-2 x Lakhan, RD-2035 x Narendra Jau-<br />

3, Jagrati x K-560, RD-2552 x Lakhan,<br />

Kedar x K-560<br />

DL-88 x Lakhan, NDB-1173 x Lakhan,<br />

RD-2035 x Lakhan<br />

BL-2 x Lakhan, RD-2624 x K-560, DL-88<br />

x Lakhan, Narendra Jau-4 x Narendra Jau-<br />

3, RD-2035 x Narendra Jau-3<br />

Narendra Jau-1 x K-560, Narendra Jau-4 x<br />

Lakhan, NDB-1173 x K560, RD-2053 x<br />

Narendra Jau-3, BL-2 x Lakhan<br />

1000-seed BL-2 x Lakhan, Jagrati x K-560, BL-2 x Lakhan, Narendra Jau-4 x Lakhan<br />

weight (g) RD-2035 x Narendra Jau-3, Narendra Jau-<br />

4 x Lakhan,<br />

Pelshenke Narendra Jau- 1 x K-560, RD-2552 x K-<br />

value (minute) 560, RD-2624 x Lakhan, Narendra Jau- 4 x<br />

K-560, BL-2 x Narendra Jau-3<br />

Protein RD-2552 x K-560, Narendra Jau-4 x K-<br />

content (%)<br />

560, Kedar x Narendra Jau-3, BH-512 x<br />

Lakhan, Ratna x K-560<br />

Lysine DL-88 x K-560, Kedar x K-560, K-603 x<br />

content (%)<br />

K-560,<br />

RD-2035 x Narendra Jau-3, RD-2552 x<br />

Lakhan<br />

Husk Narendra Jau-2 x Narendra Jau-3, Kedar x<br />

content (%)<br />

Narendra Jau-3, K-603 x K-560, Azad x<br />

K-560, DL-88 x K-560<br />

33<br />

RD-2552 x Narendra Jau-3, RD-2035 x<br />

Narendra Jau-3, Jagrati x Narendra Jau-3<br />

RD-2552 x K-560, Narendra Jau- 4 x<br />

Lakhan, RD-2552 x Narendra Jau-3, RD-<br />

2035 x Narendra Jau-3, Jagrati x Narendra<br />

Jau-3<br />

Narendra Jau-4 x K-560, RD-2552 x K-<br />

560, K-603 x Narendra Jau-3, NDB-1173<br />

x K-560, Kedar x Narendra Jau-3<br />

K-603 x K-560, DL-88 x K-560, Narendra<br />

Jau-4 x Lakhan, Kedar x Lakhan, Narendra<br />

Jau-4 x Narendra Jau-3<br />

Narendra Jau-2 x Narendra Jau-3, Kedar x<br />

Narendra Jau-3, Narendra Jau-4 x<br />

Narendra Jau-3, K-603 x K-560,<br />

DL-88 x K-560


Barley Genetics Newsletter 37: 34–36 (2007)<br />

Four new barley mutants<br />

Sandra AI Wright 1 , Manochehr Azarang 2 , Anders B Falk 3<br />

1 Dipartimento di Scienze Animali, Vegetali e dell’Ambiente, Facoltà di Agraria, Università del<br />

Molise, Campobasso, Italy<br />

2 Maselaboratorierna, Uppsala, Sweden 3 <strong>Department</strong> of Plant Biology and Forest Genetics,<br />

University of Agricultural Sciences, Uppsala, Sweden<br />

Introduction<br />

We screened a fast-neutron mutated barley population to isolate and characterize barley lesion<br />

mimic mutants. The albino mutant frequency in this population was found to be around 2%,<br />

suggesting that a sufficiently high level of mutants could potentially be found. From a screen of<br />

about 5000 M2 spikes, we found four mutants that were characterized by the presence of necrotic<br />

or chlorotic leaf areas in the form of spots or stripes. The four mutants were designated 1661,<br />

2721, 3091 and 3550. The mutants were characterized with respect to their visual appearance. In<br />

order to relate these mutants properly to previously described barley lesion mimic mutants, we<br />

cultivated all previously described barley mutants with aberrant leaf phenotypes (Davis et al..<br />

1997) and compared the phenotypes to those of the newly obtained mutants.<br />

Materials and Methods<br />

The near-isogenic barley line Bowman(Rph3) was obtained from Dr Jerry D. Franckowiak,<br />

North Dakota, <strong>US</strong>A. It was constructed by introgression of the Rph3 resistance gene from the<br />

cultivar Estate into the cultivar Bowman, and represents the 7th backcross. Mutation was<br />

performed with fast neutrons at the International Atomic Energy Agency (IAEA), Vienna,<br />

Austria, with a dose of 5 Gy. Five thousand M2 spikes were sown and the mutant plants were<br />

screened for aberrant leaf phenotype. Selected mutants were backcrossed twice to wildtype<br />

Bowman (Rph3), and their phenotypes were analyzed using the backcrossed material. Plants<br />

were grown either in a greenhouse or in caged outdoor compartments during the summer.<br />

Experiments were done in controlled growth chambers at 22°C with 16/8 hours of light/darkness<br />

(long day conditions), or 8/16 hours of light/darkness (short day conditions). Allelism tests were<br />

done as inspections of leaf phenotypes of F1 plants resulting from crosses between relevant<br />

mutants. An AFLP-based procedure was used to screen for molecular markers linked to the<br />

mutants (Castiglioni et al. 1998).<br />

Results and Discussion<br />

Mutant 1661 displays chlorotic stripes (Figure 1). These stripes are most pronounced on the first<br />

leaf. Under long day conditions, the stripes do not appear on the later emerging leaves and the<br />

plants eventually seem to recover from the phenotype conferred by the mutation. Under short<br />

day conditions the mutation is semi-lethal since all leaves develop the characteristic chlorotic<br />

stripes and the plants fail to reach maturity and produce seeds. However, the phenotype initially<br />

proves to be more severe under long day conditions. Mutant 1661 is phenotypically similar to the<br />

previously described mutants mottled leaf 1 and mottled leaf 5, which have clearly marked white<br />

34


ands across the leaves (Davis et al. 1997). Allelism tests indicated that 1661 is not allelic to<br />

these. None of the pre-mapped Proctor-Nudinka AFLP markers were linked to mutant 1661.<br />

Mutant 2721 is characterized by chlorotic leaf spots and streaks that coalesce and eventually<br />

form large white patches on the leaves (Figure 1). The phenotype is displayed on all leaves and<br />

as the leaves mature, the white regions gradually become darker, seeming to undergo necrosis<br />

and death. Often the necrosis affects the leaf edges, resulting in wrinkled leaf edges. Under short<br />

day conditions, the leaf phenotype is delayed by several days and is reduced in severity.<br />

Eventually all leaves display the phenotype even under short day conditions. The mutant initially<br />

appears to be similar to the mottled leaf 2 (Davis et al. 1997) and mottled leaf 6 (Franckowiak<br />

2002) mutants, which display yellow bands on the leaves. However, these mutants do not display<br />

the necrosis of 2721. Allelism tests suggest that 2721 is not allelic to the mottled leaf mutants.<br />

None of the pre-mapped Proctor-Nudinka AFLP markers were linked to mutant 2721.<br />

Mutant 3091 has brown spots towards the leaf tips and leaf edges, particularly on the first leaf<br />

(Figure 1). Short days do not significantly alter the phenotype. The leaf phenotype resembles<br />

those of mutants nec4 and nec5 (Davis et al.. 1997). However, allelism tests indicate that mutant<br />

3091 is not allelic to either of these two. For the mutation in 3091, linkage was detected to the<br />

AFLP marker E37M33-6 on barley chromosome 3 (3H).<br />

Mutant 3550 has conspicuous black or brown spots on the leaves (Figure 1). The spots usually<br />

do not coalesce. They appear on all above-ground parts of the plant including the bristles. Mutant<br />

3550 is delayed in maturation and ripening, with seeds being ready for harvest about four weeks<br />

later than in the wildtype. Short day conditions lead to a slightly less pronounced phenotype.<br />

Mutant 3550 is similar to the nec1 mutant (Davis et al. 1997), but allelism could be ruled out due<br />

to different mapping positions. The mutation in 3550 was localized on chromosome 7 (5H).<br />

Linkage was detected to the AFLP markers E40M38-7, E36M36-5, E42M36-14, E42M40-2 and<br />

E41M32-5.<br />

References:<br />

Castiglioni, P., Pozzi, C., Heun, M., Terzi, V., Müller, K.J., Rodhe, W. and Salamini, F. 1998.<br />

An AFLP-based procedure for the efficient mapping of mutations and DNA probes in<br />

barley. Genetics 149:2039–2056.<br />

Davis, M.P., J.D. Franckowiak, T. Konishi, and U. Lundqvist, 1997. New and revised<br />

descriptions of barley genes. Barley Genetics Newsletter 26: 22-516.<br />

Franckowiak, J.D. 2002., BGS 629 Mottled leaf 6. Barley Genetics Newsletter 32:170.<br />

35


Bowman(Rph3)<br />

1661 2721 3091 3550<br />

Figure 1. Leaf phenotypes of the parent cultivar Bowman(Rph3) and four lesion mimic mutants; 1661, 2721, 3091,<br />

3550.<br />

36


Barley Genetics Newsletter 37: 37 – 43 (2007)<br />

The Scandinavian Barley Chlorophyll Mutation Collection<br />

Mats Hansson<br />

<strong>Department</strong> of Biochemistry, Lund University<br />

P.O. Box 124, SE-221 00 Sweden<br />

Barley (Hordeum vulgare L.) albina, striata, chlorina, tigrina, viridis and xantha mutants, which<br />

can be obtained from the <strong>Department</strong> of Biochemistry, Lund University, Sweden.<br />

The collection was previously held at the Carlsberg Laboratory, Copenhagen, Denmark, by<br />

Professor Diter von Wettstein.<br />

Please contact the cordinator for Nuclear genes affecting the chloroplast:<br />

Mats Hansson<br />

<strong>Department</strong> of Biochemistry<br />

Lund University<br />

Box 124<br />

SE-22100 Lund, Sweden<br />

Tel. +46 46 2220105<br />

Fax +46 46 2224116<br />

Email mats.hansson@biochemistry.lu.se<br />

Available mutants are marked by “×”. If missing, the mutant might be present in the collection of<br />

the Nordic Gene Bank (www.nordgen.org).<br />

Albina mutants<br />

alb 7 ×<br />

alb 10<br />

alb 11 ×<br />

alb 12<br />

alb 13 ×<br />

alb 14<br />

alb 15<br />

alb 16 ×<br />

alb 17 ×<br />

alb 18 ×<br />

alb 19 ×<br />

alb 20<br />

alb 21<br />

37<br />

alb 22 ×<br />

alb 24 ×<br />

alb 25 ×<br />

alb 26 ×<br />

alb 27 ×<br />

alb 28 ×<br />

alb 29<br />

alb 30<br />

alb 32 ×<br />

alb 33<br />

alb 34<br />

alb 35<br />

alb 36


alb 37<br />

alb 38<br />

alb 40<br />

alb 41<br />

alb 42 ×<br />

alb 43<br />

alb 44<br />

alb 45 ×<br />

alb 46 ×<br />

alb 47<br />

alb 48<br />

alb 49<br />

alb 50 ×<br />

alb 51<br />

alb 52 ×<br />

alb 53<br />

alb 54<br />

alb 55 ×<br />

alb 56<br />

alb 57<br />

alb 58<br />

alb 59 ×<br />

alb 60 ×<br />

alb 61<br />

alb 62<br />

alb 63<br />

alb 64<br />

alb 65<br />

alb 66 ×<br />

alb 67<br />

alb 68<br />

alb 69<br />

alb 70<br />

alb 71<br />

alb 72<br />

alb 73<br />

alb 74<br />

alb 75<br />

alb 76 ×<br />

alb 77<br />

alb 78 ×<br />

alb 80<br />

alb 81 ×<br />

alb 82<br />

38<br />

alb 83<br />

alb 84<br />

alb 85<br />

alb 86<br />

alb 87<br />

alb 88<br />

alb 89 ×<br />

alb 90 ×<br />

alb 91<br />

alb 92<br />

alb 94<br />

alb 95 ×<br />

alb 96<br />

alb 97<br />

alb 98<br />

alb 99<br />

alb 100<br />

alb 101<br />

alb 102<br />

alb 103<br />

alb 104<br />

alb 105<br />

alb 106<br />

alb 107<br />

alb 108<br />

alb 109<br />

alb 110<br />

alb 111 ×<br />

alb 112<br />

alb 113 ×<br />

alb 114<br />

alb 115<br />

alb 116<br />

alb 117<br />

alb 118<br />

alb 119<br />

alb 120<br />

alb 122 ×<br />

alb 123<br />

alb 124<br />

alb 125<br />

alb 126<br />

alb 127<br />

alb 128


alb 129<br />

alb 130<br />

alb 131<br />

alb 132<br />

alb 133 ×<br />

Striata mutants<br />

Arnason ×<br />

Arnason grøn<br />

striata 4 ×<br />

striata 6 ×<br />

striata 7 ×<br />

striata 8<br />

striata 11<br />

striata 12<br />

striata 13<br />

striata 15<br />

striata 16<br />

striata 17<br />

striata 19<br />

striata 21<br />

striata 22 ×<br />

striata 23<br />

striata 26<br />

striata 33 ×<br />

striata 34 ×<br />

striata 35 ×<br />

striata 36 ×<br />

striata 37<br />

striata 38<br />

striata 39<br />

striata 104 ×<br />

striata 105 ×<br />

39<br />

alb 134 ×<br />

alb 135


Chlorina mutants<br />

clo 101 ×<br />

clo 102 ×<br />

clo 103 ×<br />

clo 104 ×<br />

clo 105 ×<br />

clo 106 L ×<br />

clo 106 L (A+B) ×<br />

clo 106 line LA<br />

clo 106 line LB<br />

clo 106 line M ×<br />

clo 106 line ML ×<br />

clo 107 ×<br />

clo 108 ×<br />

clo 109 ×<br />

clo 110 ×<br />

clo 111 ×<br />

clo 112 ×<br />

clo 113 ×<br />

clo 114 ×<br />

clo 115 ×<br />

clo 116 ×<br />

clo 117 ×<br />

clo 118a ×<br />

clo 118b ×<br />

clo 119 ×<br />

clo 121 ×<br />

clo 122 ×<br />

clo 123 ×<br />

clo 124 ×<br />

clo 125 = Xan-h.Clo125 ×<br />

clo 126 ×<br />

clo 127 ×<br />

clo 130 ×<br />

clo 131a<br />

clo 131b<br />

clo133a ×<br />

clo133b ×<br />

clo 134 ×<br />

clo135 ×<br />

40<br />

clo 136 ×<br />

clo 137 ×<br />

clo 138 ×<br />

clo 140 ×<br />

clo 141 ×<br />

clo 142 ×<br />

clo 143 ×<br />

clo 144 ×<br />

clo 145 ×<br />

clo 146 ×<br />

clo 147 ×<br />

clo 148 ×<br />

clo149 ×<br />

clo 150 ×<br />

clo 151 ×<br />

clo 152 ×<br />

clo 153 ×<br />

clo 154 ×<br />

clo 155 ×<br />

clo 157 = Xan-h.Clo157 ×<br />

clo 158 ×<br />

clo 159 ×<br />

clo 160 ×<br />

clo 161 = Xan-h.Clo161 ×<br />

clo 164 ×<br />

clo 165 ×<br />

clo 166 ×<br />

clo 167 het<br />

clo170 ×<br />

clo 171 ×<br />

clo 173 ×<br />

clo 174 ×<br />

clo 175 ×<br />

clo 176 ×<br />

clo 177<br />

clo 179 ×<br />

clo 180 ×


Tigrina mutants<br />

tig 1 ×<br />

tig 3<br />

tig 6 ×<br />

tig 7 ×<br />

tig 11 ×<br />

tig 12 ×<br />

tig 13<br />

tig 14<br />

tig 15 ×<br />

tig 17<br />

tig 18<br />

tig 19 ×<br />

tig 20 ×<br />

tig 21 ×<br />

tig 22<br />

Viridis mutants<br />

vir 10 ×<br />

vir 11 ×<br />

vir 12 ×<br />

vir 13 ×<br />

vir 14 ×<br />

vir 15 ×<br />

vir 17 ×<br />

vir 18 ×<br />

vir 19 ×<br />

vir 21 ×<br />

vir 23 ×<br />

vir 24 ×<br />

vir 25 ×<br />

vir 27 ×<br />

vir 29 ×<br />

xan 75 = vir 30 ×<br />

vir 33 ×<br />

vir 34 ×<br />

vir 35 ×<br />

vir 38 ×<br />

vir 39 ×<br />

41<br />

tig 23 ×<br />

tig 24 ×<br />

tig 24 hom<br />

tig 25 ×<br />

tig 26 ×<br />

tig 27 ×<br />

tig 28 ×<br />

tig 29 hom ×<br />

tig 30 ×<br />

tig 31 ×<br />

tig 32 ×<br />

tig 33 ×<br />

tig 34 ×<br />

vir 41 ×<br />

vir 42 ×<br />

vir 43 ×<br />

vir 44 ×<br />

vir 45 ×<br />

vir 46 ×<br />

vir 47 ×<br />

vir 49 ×<br />

vir 50 ×<br />

vir 51<br />

vir 52 ×<br />

vir 55 ×<br />

xan 76 = vir 56 ×<br />

vir 59<br />

vir 60 ×<br />

vir 61 ×<br />

vir 63 ×<br />

vir 64 ×<br />

vir 65 ×<br />

vir 68 ×<br />

vir 69 ×


vir 101 ×<br />

vir 102 ×<br />

vir 103<br />

vir 104 ×<br />

vir 105<br />

vir 106<br />

vir 107<br />

vir 108<br />

vir 109<br />

vir 109<br />

vir 110<br />

vir 111<br />

vir 112<br />

vir 113 light<br />

vir 113 dark<br />

vir 114<br />

vir 115 ×<br />

vir 119<br />

vir 120 ×<br />

vir 121 ×<br />

vir 122 ×<br />

vir 123 ×<br />

vir 129<br />

vir 130 ×<br />

vir 131<br />

vir 132 ×<br />

vir 133 ×<br />

vir 134<br />

Xantha mutants<br />

xan 3 ×<br />

xan 10 ×<br />

xan 11 ×<br />

xan 12 ×<br />

xan 13 ×<br />

xan 14<br />

xan 15 ×<br />

xan 16 ×<br />

xan 17 ×<br />

xan 18 ×<br />

xan 19 ×<br />

42<br />

vir 135<br />

vir 137 ×<br />

vir 138<br />

vir 139<br />

vir 141<br />

vir 142 hom<br />

vir 142<br />

vir 143 ×<br />

vir 144<br />

vir 145 hom<br />

vir 145<br />

vir 149<br />

vir 152 ×<br />

vir 156 ×<br />

vir 157 ×<br />

vir 158<br />

vir 159 ×<br />

vir 160 ×<br />

vir 165<br />

vir 166 ×<br />

vir 167<br />

vir 168 ×<br />

vir 169<br />

vir 170 = xan 83 ×<br />

vir 519 ×<br />

xan 20 ×<br />

xan 21 ×<br />

xan 22<br />

xan 23 ×<br />

xan 24<br />

xan 25 ×<br />

xan 26 ×<br />

xan 27 ×<br />

xan 28 ×<br />

xan 29<br />

xan 30 ×


xan 31 ×<br />

xan 32<br />

xan 33<br />

xan 35 ×<br />

xan 37 ×<br />

xan 38 ×<br />

xan 39 ×<br />

xan 40 ×<br />

xan 41 ×<br />

xan 42 ×<br />

xan 43<br />

xan 44 ×<br />

xan 45 ×<br />

xan 46 ×<br />

xan 47 ×<br />

xan 48 ×<br />

xan 49 ×<br />

xan 50 ×<br />

xan 51 ×<br />

xan 52 ×<br />

xan 53 ×<br />

xan 54<br />

xan 55 ×<br />

xan 56 ×<br />

xan 57 ×<br />

xan 58 ×<br />

xan 59 ×<br />

xan 60 ×<br />

xan 62 ×<br />

xan 63 ×<br />

xan 64 ×<br />

xan 65<br />

xan 66<br />

xan 68 ×<br />

xan 69<br />

xan 70<br />

xan 71 ×<br />

xan 72 ×<br />

xan 73 ×<br />

xan 74 ×<br />

xan-q.75 = vir30<br />

xan-q.76 = vir56<br />

xan-q.77 = vir-xa1<br />

43<br />

xan-q.78 = vir-alb1<br />

xan-q.79 = xa-alb3<br />

xan-q.80 = alb-l.26<br />

xan 81 = Proto 1 ×<br />

xan 82 = Proto 2 ×<br />

xan 83 = vir 170 (Proto 3) ×<br />

xan 84 = Proto 4 ×<br />

xan 101<br />

xan 102<br />

xan 103<br />

xan 104<br />

xan 105<br />

xan 106<br />

xan 107


Barley Genetics Newsletter (2007) 37: 44-46<br />

CAPS markers targeting barley Rpr1 region<br />

Ling Zhang* and Andris Kleinhofs<br />

<strong>Department</strong> of Crop and Soil Sciences<br />

Washington State University, Pullman, WA, 99164-6420<br />

*E-mail: lzhang1@wsu.edu<br />

Abstract<br />

Eight cleaved amplified polymorphic sequences (CAPS) markers were developed around Rpr1<br />

genetic region. Eight markers were co-dominant between barley cultivars Morex and Steptoe<br />

after digestion with restriction enzymes.<br />

Introduction<br />

In barley, resistance to Puccinia graminis f. sp. tritici pathotype MCC requires the presence of at<br />

least of two host genes, Rpg1 (Brueggeman et al., 2002) and Rpr1 (Zhang et al., 2006).<br />

Mutational analysis and transcript-based cloning were used to isolate 3 candidate Rpr1 genes.<br />

These 3 candidate Rpr1 genes, HU03D17U_s_at, Contig4901_s_at and Contig7061_s_at were<br />

mapped to chromosome 4 bin 5. Screening recombinants between the three candidate genes will<br />

identify the real Rpr1 gene. Therefore, molecular markers in this region are needed.<br />

Cleaved amplified polymorphic sequences (CAPS) markers are PCR-based markers, requires a<br />

small amount of genomic DNA, which will facilitate the screening of large numbers of<br />

genotypes at the seedling stage. 141 probesets representing a major Rpr1 eQTL served as a<br />

starting point to develop CAPS markers. Here we report the development and mapping of CAPS<br />

markers in the Rpr1 region.<br />

Materials and Methods<br />

CAPS markers development<br />

Plant genomic DNA extraction was modified from Edwards et al. (1991); the modification added<br />

an extra-step of chloroform-isoamyl alcohol (24:1) extraction. Barley EST unigene sequences<br />

(HarvEST assembly#21; http://harvest.ucr.edu/) were used as templates for primer design. RFLP<br />

clone MWG058 was sequenced using primers T3 and T7 with the BigDye terminator system on<br />

ABI Prizm 377 DNA sequencer (Applied Biosystems) at the Bioanalytical Center, Washington<br />

State University, Pullman. A pair of primers was designed from the MWG058 sequence. All the<br />

primer pairs listed in Table 1 were used to amplify genomic DNA from the parent cultivars<br />

Morex and Steptoe. All PCRs of 20μl contained 20-50ng of genomic DNA, 0.1mMdNTP mix,<br />

12.5 pmol of each primer, 1μl of RedTaq DNA polymerase (Sigma), and 2 μl of 10xRedTaq<br />

reaction buffer. Amplification was performed in a PTC-100 programmable thermal controller<br />

(MJ Research, Cambridge, MA) at 95°C for 4 min, followed by 35 cycles of 95°C for 1 min,<br />

60°C for 1 min, and 72°C for 1 min; this was followed by 7 min at 72°C. PCR products were<br />

purified using the Gel Extraction Kit (Qiagen, Valencia, CA) and sequenced. Steptoe sequence<br />

was compared to the Morex sequence in order to identify single nucleotide polymorphisms<br />

(SNPs) that could be utilized for CAPS marker development. Sequence analysis was done by<br />

VectorNTI software (Invitrogen). SNPs were identified and restriction enzymes (New England<br />

44


BioLabs) were selected (Table 1). All the PCR products were digested directly using restriction<br />

enzymes correspondingly. Cleaved PCR products were then separated on 1% agarose gel.<br />

Genetic mapping<br />

The Steptoe x Morex "minimapper" population consisting of 35 selected doubled-haploid lines<br />

(DHL), was used to map the molecular markers to the barley Bin map (Kleinhofs and Graner<br />

2002). CAPS marker genetic order and the distance between snp_3139 and LZ2502 was<br />

estimated based on segregation data from Steptoe x Rpr1 F2 population.<br />

Results and Discussion<br />

Details of developed CAPS markers are listed in Tables 1 and Fig. 1. Molecular mapping in<br />

Steptoe x Morex population with CAPS markers showed that LZ6641, LZ13393 and LZ10152<br />

co-segregated with LZMWG058, ABG484 and BCD453B, respectively. Markers snp_3139<br />

(Druka, personal communication) and LZ2502 are the closest to Rpr1 delimiting the 3 markers<br />

LZ17u, LZ4901 and LZ7061 that co-segregate with Rpr1. LZ2502 and sn3139 are about 1cM<br />

apart and can be used to screen recombinants in Steptoe x rpr1 F2 population.<br />

Figure 1. Chromosome locations of eight CAPS marker in barley chr. 4 (4H).<br />

45


Table 1. Summary of developed CAPS markers, primers, restriction enzymes and annotation. All<br />

the CAPS markers were mapped to Chr 4 (4H), except LZ15227 was mapped to Chr 7 (5H).<br />

Markers<br />

Affymetrix<br />

Probesets<br />

LZ2502 Contig<br />

2502_at<br />

LZ6641 Contig<br />

6641_at<br />

LZ6435 Contig<br />

6435_at<br />

LZ13393 Contig<br />

13393_at<br />

LZ15227 Contig<br />

15227_s_at<br />

LZ1321 Contig<br />

1321_at<br />

LZ10152 Contig<br />

10152_at<br />

LZMWG058 a<br />

snp_3139 b<br />

Forward Primer<br />

Reverse Primer<br />

2502F: AGCTTCAGCTTCAGGTCGAT<br />

2502R: GAAACTTAGAACCTGAACC<br />

6641F: TGATTGATCCTTTGCTGTCT<br />

6641R: CTGGAAAGCGTTCAAATGCT<br />

6435F:ACACCAGGAAGATCATCGAC<br />

6435R:ACAATGGAGAACACATGGTT<br />

13393F:AAGTGGACCGCGAAGCACGT<br />

13393R:GCAGCATGTCAGGTTATACA<br />

15227F:ATGGACTAATGACCCCAACA<br />

15227R:TGCAACACACAAAGCCAGTC<br />

1321F: CACTATCGACTTCCCGGAAT<br />

1321R: ACTGCAATCAGGGTTCATCA<br />

10152F: AGATCTCCGGCTACGTGCTG<br />

10152R: CGTACATCAGCTCGAAGAAA<br />

MWG058F: ATTCATGCATCTACCCATCTCA<br />

MWG058R: TTGGATTGGCTAGAATCCTGGA<br />

3139F: AACCACGCAGCAAGCCTAT<br />

3139R: CTCGCTTCCTCCGTCATCAT<br />

Enzyme Annotation<br />

HpyCH4V putative IAA1 protein<br />

AvaII putative expressed SLT1 protein<br />

DdeI phosphoenolpyruvate carboxykinase<br />

(ATP) -like protein<br />

AvaII hypothetical protein<br />

AseI microtubule associated protein<br />

Sau3A or<br />

MboI<br />

Sau3A or<br />

MboI<br />

calmodulin<br />

BtsI unknown<br />

DdeI unknown<br />

putative membrane protein<br />

a<br />

LZMWG058 was developed from RFLP clone MWG058.<br />

b<br />

snp_3139 sequence provided by Druka A, Scottish Crop Research Institute (SCRI), Invergowrie,<br />

Dundee DD2 5DA, UK<br />

References<br />

Brueggeman R., Rostoks N., Kudrna D., Kilian A., Han F., Chen J., Druka A., Steffenson B.,<br />

Kleinhofs A. 2002. The barley stem rust-resistance gene Rpg1 is a novel diseaseresistance<br />

gene with homology to receptor kinases. Proc. Natl. Acad. Sci. <strong>US</strong>A 99: 9328-<br />

9333.<br />

Edwards K., Johnstone C., Thompson C. 1991. A simple and rapid method for the preparation of<br />

plant genomic DNA for PCR analysis. Nucleic Acids Res. 19 (6):1349.<br />

Kleinhofs A., Graner A. 2002. An integrated map of the barley genome. In: R. L. Phillips and I.<br />

Vasil, eds., DNA-Based Markers in Plants, 2nd Edition. Kluwer Academic Publishers,<br />

Boston. pp. 187-199.<br />

Zhang L., Fetch T., Nirmala J., Schmierer D., Brueggeman R., Steffenson B., Kleinhofs A. 2006.<br />

Rpr1, a gene required for Rpg1-dependent resistance to stem rust in barley. Theor Appl<br />

Genet 113: 847-855<br />

46


Barley Genetics Newsletter (2007) 37: 47-49<br />

Tolerance to high copper ions concentration in the nutrient medium of some<br />

Bulgarian barley cultivars<br />

J. Stoinova 1 , S. Phileva 1 , M. Merakchyiska 2 and S. Paunova 2<br />

1 D. Kostov Institute of Genetics, Bulgarian Academy of Sciences, 1113 Bulgaria<br />

2 M. Popov Institute of Plant Physiology, Bulgarian Academy of<br />

Sciences, 1113 Bulgaria<br />

Abstract. The winter two-rowed barley cultivars Obzor, Krasii 2, Vihren and Karan were<br />

examined for tolerance to environmental copper ions pollution. The plants were treated with 10 -6<br />

M and 10 -5 M CuSO4.5H2O for 7 days. It was found that under 10 -6 M the roots of cultivars<br />

Krassi 2 and Vihren were longer by 9% and 16% respectively, while plant green part was<br />

identical to that of the control. The root of cultivar Karan was severely inhibited its length<br />

reaching 77% that of the control. The green part was less affected. The data suggest that cultivars<br />

Krasii 2 and Vihren are tolerant while cultivar Karan is susceptible to increased copper ions<br />

concentration in the environment.<br />

Key words: barley, tolerance, copper ions<br />

Barley is an economically important crop being efficiently used in animal husbandry and<br />

brewing. Resistant to abiotic and biotic stress barley cultivars are a reliable tool to produce high<br />

quality stuff avoiding diverse chemical substances for pest control and other agricultural<br />

practices. Acevedo and Fereres (1993 ) concluded that breeding for abiotic stress resistance is<br />

becoming more promising with the recognition that selection showed be carried out in the target<br />

environment and that it is related to narrow adaption.<br />

During the last decades barley resistance to certain heavy metals has been examined in<br />

different aspects. It was shown that increased boron concentration in the environment reduce<br />

plant growth rate, while relative susceptibility of the genotypes to boron toxicity was not<br />

affected ( Nable et al.,1999). The effect of high boron concentration on barley was studied on<br />

cell level ( Jenkin et al.,1993). Data from studies with leaf protoplasts revealed that lack of cell<br />

walls prevents manifestation of differences between tolerant and susceptible barley genotypes.<br />

Treatment of H. vulgare seeds with nickel sulphate resulted into morphological alterations and<br />

increased chlorophyll and protein percentage, as well as that of the aberrant cells (Mishra and<br />

Singh, 1999). Addition of copper (2-4 kg/ha) led to higher grain yield from wheat, rye and oats<br />

(Piening et al., 1989). Tang et al. (2000) studied the location of genes for tolerance to<br />

aluminium and found that the latter is disposed to the long arm of 4H chromosome, while<br />

according to Rigin and Yakovleva (2001) the tolerance is coded by two polygenes.<br />

The purpose of this investigation was to examine the tolerance to increased copper ions<br />

concentration in the nutrient medium of four Bulgarian barley cultivars.<br />

Materials and Methods<br />

The winter two-rowed cultivars Obzor, Krassi 2, Vihren and Karan were studied. The seeds<br />

were germinated in moist filter paper rols in a semi-dark chamber at 18° C. After germination<br />

(2.5 – 3.5 cm root length) the shoots were transffered on a solution containing 10 -6 M or 10 -5 M<br />

CuSO4.5H2O at a temperature of while the control plants were grown in distilled water. All<br />

47


plants were grown at 12 h illumination/12 h dark and 20°- 24° C. After 7 days treatment<br />

biometric data were collected. To determine copper tolerance of the plants usually the tolerance<br />

index (Simon, 1978) was used, i.e. the plant growth in a heavy metal polluted medium was<br />

compared to that under control conditions:<br />

growth in a polluted medium<br />

IT =<br />

100<br />

growth under control conditions<br />

The data of copper influence on length of root and shoot have been processed by the variation<br />

statistical method.<br />

Results and Discussion<br />

A three-fold treatment with 10 -6 M copper ions concentration of the root (cultivar Obzor)<br />

caused inhibition (93-94% as compared to the control ) or stimulation up to 103%. In the case of<br />

the cultivar Karan the roots were strongly inhibited their length varying from 62% to 94% of the<br />

control. The plants of the cultivar Krassi 2 and cultivar Vihren responded to two of the<br />

treatments through stimulated root growth from 122% to 135% and from 116% to 129%,<br />

respectively. The shoot length was less affected, some inhibition varying from 1% to 6% or<br />

stimulation up to 2 – 4% being manifested by the cultivars Obzor, Krassi 2 and Vihren. More<br />

significant inhibition was manifested by cultivar Karan.<br />

The higher (10 -5 M) copper ions concentration severely inhibited both root and shoot of the<br />

plants from all cultivars after the three treatment accomplished.<br />

The mean data (Table 1) show that 10 -6 M ions stimulate (9-16%) root growth of the plants<br />

from cultivars Krassi 2 and Vihren while the roots of the plants from Karan reaced only 77% of<br />

the control. The green part of the plants was equal to that of the control ones. The variation<br />

coefficients revealed slight heterogenic variation, while the plant green part length variation was<br />

homogenic, exept that for cultivar Karan. Higher (10 -5 M) copper ions concentration highly<br />

reduced root growth, root length reaching 32-41% that of the control. The aboveground part of<br />

the plants from cultivar Krassi 2 and cultivar Vihren was identical to that of the control while<br />

those of cultivar Karan and Obzor were 69-75% that of the control. The variation coefficients<br />

revealed slight heterogenic variation.<br />

Under 10 -6 M copper ions concentration root mass of cultivar Obzor and cultivar Karan<br />

reaching 90-91% that of the control, the negative effect being stronger than that exerted on<br />

cultivars Krassi 2 and Vihren. The green part mass increased (1-3%) in the case of cultivar<br />

Obzor, cultivar Krassi 2 and cultivar Vihren, while that of cultivar Karan was slightly inhibited.<br />

10 -5 M copper ions concentration redused plant green part and root mass to 75-79% and 52-<br />

61%, respectively.<br />

To conclude, the cultivars Krassi 2 and Vihren manifested tolerance to increased copper ions<br />

concentration in the environment as under 10 -6 M the root was 9-16% longer than that of the<br />

control combined with less reduction of the mass (94%) of the control. The grain yield was 672<br />

kg/da and 677 kg/da, respectively. Therefore, they are suitable for cultivation in highly polluted<br />

regions.<br />

Cultivar Karan proved to be susceptible to copper pollution its root being severely reduced.<br />

Reference<br />

48


Barley Genetics Newsletter (2007) 37: 47-49<br />

Avecedo,E. and Fereres, E. 1993. Resistance to abiotic stress. In: Plant Breeding: principles and prospects<br />

(ed. by Hayward, M .D; Bosemark, N. O., Romagoza, I.). London, UK, Chapman and Hall Ltd,<br />

406-421.<br />

Jenkin, M., Hu, H. N.,Brown, P., Graham, R., Lance, R. and Sparrow, D. 1993. Investigation on boron<br />

uptake at the cellular level. Plant and Soil, 155/56, 143-146.<br />

Mishra, K. and Singh, R. J. 1999. Nickel genotoxicity assessment in Hordeum vulgare. J of<br />

Environmental Biology, 20, 71-72.<br />

Nable, R. O., Lance, R. C. H. and Cartwright, B. 1990. Uptake of boron and silicon by barley genotypes<br />

with differing susceptibilities to boron toxicity. Annals of Botany, 66, 83-90.<br />

Piening, L. J., Mac Pherson, D. J. and Malhi, S. S. 1989. Stem melanosis of some wheat, barley and oat<br />

cultivars on a copper deficient soil. Can. J of Plant Pathology, 11, 65-67.<br />

Rigin, B.V. and Yakovleva, O. V. 2001. Genetic aspects of barley tolerance to toxic aluminium ions.<br />

International research-practic conference Sankt-Peterburg, 13-16 november, 2001, p. 397.<br />

Simon, E. 1978. Heavy metals in soils, vegetation development and heavy metal tolerance in plant<br />

populations from metalliferous areas. New. Phytol., 81, 175-188.<br />

Tang, Y., Sorre, M. E., Kohain, L.V. and Garvin, D. F. 2000. Identification of RFLP markers linked to<br />

the barley aluminium tolerance gene Alp. Crop science, 40, 778-782.<br />

Table 1. Influence of copper ions on the length of root and shoot<br />

Variant Cultivar<br />

Length root Length shoot<br />

%control M ± m Vc% %control M ± m Vc%<br />

Control 100 12.0 ± 0.13 10.57 100 14.30 ± 0.13 8.93<br />

10 -6 M 97 11.7 ± 0.18 12.84 99 14.20 ±.0.13 7.88<br />

10 -5 Obzor<br />

M<br />

38 4.6 ±.0.36 14.82 75 10.67 ±.0.13 11.91<br />

Control 100 12.8 ± 0.21 15.28 100 14.40 ±.0.13 9.62<br />

10 -6 M 116 14.8 ± 0.23 15.51 100 14.40 ± 0.12 8.49<br />

10 -5 Krassi 2<br />

M<br />

41 5.3 ± 0.25 12.40 73 10.50 ± 0.11 11.11<br />

Control 100 13.7 ± 0.29 19.65 100 16.40 ± 0.15 8.40<br />

10 -6 M 109 15.0 ± 0.23 15.29 99 16.20 ±.0.16 9.47<br />

10 -5 Vihren<br />

M<br />

40 5.5 ± 0.08 15.75 72 11.80 ± 0.16 12.85<br />

Control 100 14.5 ± 0.23 14.65 100 15.40 ± 0.18 10.26<br />

10 -6 M 77 11.2 ± 0.22 16.50 98 15.10 ± 0.21 12.16<br />

10 -5 Karan<br />

M<br />

32 4.6 ± 0.08 16.49 69 10.60 ± 0.19 16.15<br />

49


Barley Genetics Newsletter (2007) 37: 100 - 104<br />

Rules for Nomenclature and Gene Symbolization in Barley<br />

Jerome D. Franckowiak 1 and Udda Lundqvist 2<br />

1 HermitageResearch Station<br />

Queensland <strong>Department</strong> of Primary Industries and Fisheries<br />

Warwick, Queensland 4370, Australia<br />

2 Nordic Gene Bank<br />

P.O. Box 41, SE-230 53 Alnarp, Sweden<br />

In this volume of the Barley Genetics Newsletter the recommended rules for nomenclature and<br />

gene symbolization in barley as reported in BGN 2:11-14, BGN 11:1-16, BGN 21:11-14, BGN<br />

26:4-8, and BGN 31:76-79 are again reprinted. Also, the current lists of new and revised BGS<br />

descriptions are presented by BGS number order (Table 1) and by locus symbol in alphabetic<br />

order (Table 2) in this issue.<br />

1. In naming hereditary factors, the use of languages of higher internationality should be<br />

given preference.<br />

2. Symbols of hereditary factors, derived from their original names, should be written in<br />

Roman letters of distinctive type, preferably in italics, and be as short as possible.<br />

AMENDMENT: The original name should be as descriptive as possible of the<br />

phenotype. All gene symbols should consist of three letters.<br />

COMMENTS: All new gene symbols should consist of three letters. Existing<br />

gene symbols of less than three letters should be converted to the three-letter<br />

system whenever symbols are revised. When appropriate, one or two letters<br />

should be added to existing symbols.<br />

For example, add the letters "ap" to "K" to produce the symbol "Kap" to replace<br />

"K" as the symbol for Kapuze (hooded). As another example, add the letters "ud"<br />

to "n" to produce the symbol "nud" to replace "n" as the symbol for naked seed.<br />

Similarly the letter "g" can be added to "ms" to produce the symbol "msg" for<br />

genetic male sterility and the letter "e" can be added to "ds" to produce the<br />

symbol "des" for desynapsis. When inappropriate or when conflicts arise,<br />

questions should be referred to the Committee on Genetic Marker Stocks,<br />

Nomenclature, and Symbolization of the International Barley Genetics<br />

Symposium for resolution.<br />

3. Whenever unambiguous, the name and symbol of a dominant begin with a capital letter<br />

and those of a recessive with a small letter.<br />

100


AMENDMENT: When ambiguous (co-dominance, incomplete dominance, etc.) all<br />

symbols should consist of a capital letter followed by two small letters that designate the<br />

character, a number that represents a particular locus, and a letter or letters that represents<br />

a particular allele or mutational event at that particular locus.<br />

COMMENTS: As an example, the letters "Mdh" can be used to designate the<br />

character malate dehydrogenase, "Mdh1" would represent a particular locus for<br />

malate dehydrogenase and "Mdh1a", "Mdh1b", "Mdh1c", etc. would represent<br />

particular alleles or mutational events at the "Mdh1" locus. Row number can be<br />

used as an example of symbolizing factors showing incomplete dominance. At the<br />

present time, the symbol "v" is used to represent the row number in Hordeum<br />

vulgare, "V" is used to represent the row number in Hordeum distichum, and "V t "<br />

is used to represent the row number in Hordeum deficiens. According to the<br />

amendment to Rule 3, if row number were to be designated by the letters "Vul",<br />

the designation of the locus on chromosome 2 would then become "Vul1" and the<br />

alleles "v", "V", and "V t " would be designated "Vul1a", "Vul1b", and "Vul1c".<br />

SUPPLEMENTARY AMENDMENT: A period should be placed before the allele<br />

symbol in the complete gene symbol.<br />

COMMENTS: Since DNA sequences similar to those of the original locus may<br />

occur at several positions in the Hordeum vulgare genome, a three-letter symbol<br />

plus a number is inadequate to represent all potential loci. Also, both numbers and<br />

letters have been assigned to specific mutants and isozymes in Hordeum vulgare.<br />

The six-rowed spike locus is used as an example although the symbol Vul1 for<br />

row number in Hordeum vulgare is not recommended because the botanical<br />

classification of Hordeum spp has changed. The locus symbol vrs1 and the name<br />

six-rowed spike 1 are recommended for the v locus. Gene symbols recommended<br />

for common alleles at the vrs1 locus are vrs1.a, vrs1.b, vrs1.c, and vrs1.t for the<br />

"v", "V", "v lr ", and "V t " genes, respectively.<br />

4. Literal or numeral superscripts are used to represent the different members of an allelic<br />

series.<br />

AMENDMENT: All letters and numbers used in symbolization should be written on one<br />

line; no superscripts or subscripts should be used.<br />

5. Standard or wild type alleles are designated by the gene symbols with a + as a superscript<br />

or by a + with the gene symbol as a superscript. In formulae, the + alone may be used.<br />

AMENDMENT: This rule will not be used in barley symbolization.<br />

6. Two or more genes having phenotypically similar effects are designated by a common<br />

basic symbol. Non-allelic loci (mimics, polymeric genes, etc.) are distinguished by an<br />

additional letter or Arabic numeral either on the same line after a hyphen or as a<br />

subscript. Alleles of independent mutational origin may be indicated by a superscript.<br />

101


AMENDMENT: Barley gene symbols should consist of three letters that designate the<br />

character, a number that represents a particular locus, and a letter or letters that represents<br />

a particular allele or mutational event at that particular locus. All letters and numbers<br />

should be written on the same line without hyphens or spaces. Alleles or mutational<br />

events that have not been assigned to a locus should be symbolized by three letters that<br />

designate the character followed by two commas used to reserve space for the locus<br />

number when determined, followed by a letter or letters representing the particular allele<br />

or mutational event. After appropriate allele testing, the correct locus number will be<br />

substituted for the commas. Where appropriate (when assigning new symbols or when<br />

revising existing symbols) letters representing alleles or mutational events should be<br />

assigned consecutively without regard to locus number or priority in discovery or<br />

publication.<br />

COMMENTS: The use of the proposed system of symbolization can be<br />

illustrated by the desynaptic mutants. Two loci are known: lc on chromosome 1<br />

(7H) and ds on chromosome 3 (3H). These will be resymbolized as des1a and<br />

des2b. A large number of desynaptic mutants have been collected. They will be<br />

designated des,,c, des,,d, des,,e, etc. If allele tests show that des,,c is at a different<br />

locus than des1 and des2, des,,c will become des3c. If allele tests show that des,,d<br />

is at the same locus as des2, des,,d will become des2d. In practical use, the<br />

symbol des will be used when speaking of desynapsis in general or if only one<br />

locus was known for the character. The symbol des2 will be used when speaking<br />

of that particular locus, and the symbol des2b will be used only when speaking of<br />

that particular allele or mutational event. If additional designation is needed in<br />

particular symbolization, it can be obtained by adding numbers behind the allele<br />

letters, and, if still further designation is needed, letters can be added to the<br />

symbol behind the last number. Symbolization consisting of alternation of letters<br />

and numbers written on the same line without hyphens or spaces will allow for<br />

the expansion of the symbol as future needs arise. In any work with large numbers<br />

of polymeric gene mutants, every mutant has to be given a designation not shared<br />

by any other mutant of this polymeric group and this designation should become a<br />

part of the permanent symbol representing that particular allele or mutational<br />

event. This requirement can be met by assigning allele designations in<br />

consecutive order without regard to locus number.<br />

SUPPLEMENTARY AMENDMENT: A period should be used instead of two commas<br />

in gene symbols for mutants within a polymeric group that can not be assigned to a<br />

specific locus.<br />

COMMENTS: The des symbol should be used when referring to desynapsis in<br />

general; des1 and des2, for specific loci; des1.a and des2.b for specific genes or<br />

alleles at their respective loci; and des.c, des.d, des.e etc., for desynaptic mutants<br />

not assigned to a specific locus.<br />

SUPPLEMENTARY AMENDMENT:<br />

Even if the locus in question is the only one known that affects a given phenotype, the<br />

three-letter basic symbol is followed by a serial number.<br />

102


7. Inhibitors, suppressors, and enhancers are designated by the symbols I, Su, and En, or by<br />

i, su, and en if they are recessive, followed by a hyphen and the symbol of the allele<br />

affected.<br />

AMENDMENT<br />

This rule is no longer appicable and will not be used in barley symbolization.<br />

8. Whenever convenient, lethals should be designated by the letter l or L and sterility and<br />

incompatibility genes by s or S.<br />

AMENDMENT: This rule will not be used in barley symbolization.<br />

COMMENTS: J.G. Moseman (BGN 2:145-147) proposed that the first of the<br />

three letters for designating genes for reaction to pests should be R. The second<br />

and third letters will be the genus and species names of the pest.<br />

SUPPLEMENTARY COMMENT: A motion was passed during the workshop on<br />

"Linkage Groups and Genetic Stock Collections" at the Fifth International Barley<br />

Genetics Symposium in 1986 (Barley Genetics V:1056-1058, BGN 17:1-4), that<br />

the International Committee for Nomenclature and Symbolization of Barley<br />

Genes should "recommend use of Ml as the designation of genes for resistance to<br />

powdery mildew.”<br />

9. Linkage groups and corresponding chromosomes are preferably designated by Arabic<br />

numerals.<br />

SUPPLEMENTARY AMENDMENT: The current wheat homoeologous group<br />

numbering scheme (the Triticeae system) is recommended for Hordeum vulgare<br />

chromosomes. Arabic numerals followed by an H will indicate specific barley<br />

chromosomes. The H. vulgare chromosomes should be 7H, 2H, 3H, 4H, 1H, 6H, and 5H<br />

instead of 1, 2, 3, 4, 5, 6, and 7, respectively.<br />

10. The letter X and Y are recommended to designate sex chromosomes.<br />

AMENDMENT: This rule will not be used in barley symbolization.<br />

11. Genic formulae are written as fractions with the maternal alleles given first or above.<br />

Each fraction corresponds to a single linkage group. Different linkage groups written in<br />

numerical sequence are separated by semicolons. Symbols of unlocated genes are placed<br />

within parenthesis at the end of the formula. In euploids and aneuploids, the gene<br />

symbols are repeated as many times as there are homologous loci.<br />

12. Chromosomal aberrations should be indicated by abbreviations: Df for deficiency, Dp for<br />

duplication, In for inversion, T for translocation, Tp for transposition.<br />

13. The zygotic number of chromosomes is indicated by 2n, the gametic number by n, and<br />

basic number by x.<br />

103


14. Symbols of extra-chromosomal factors should be enclosed within brackets and precede<br />

the genic formula.<br />

The following recommendations made by the International Committee for Nomenclature and<br />

Symbolization of Barley Genes at the Fourth International Barley Genetics Symposium in 1981<br />

(Barley Genetics IV:959-961) on gene and mutation designations were as follows.<br />

AMENDMENT:<br />

A. Present designations for genes and mutations. - Most of the present designations should<br />

be maintained. However, new designations may be given, when additional information<br />

indicates that new designations would aid in the identification of genes and mutations.<br />

B. New designations for genes and mutations. - New genes or mutations will be designated<br />

by characteristic, locus, allele, and then the order of identification or mutational event.<br />

Three letters will be used to identify new characteristics. Consecutive numbers will be<br />

used to identify the order of identification or mutational event. Loci will be designated by<br />

numbers and alleles by letters when they are identified. For example, des-6 indicates that<br />

this is the sixth gene or mutation identified for the characteristic des (desynaptic). des 1-6<br />

and des 2-7 indicate that gene or mutational events 6 and 7 for the desynaptic<br />

characteristic have been shown to be at different loci and those loci are then designated 1<br />

and 2, respectively. des 1a6 and des 1b8, indicate that the gene or mutational events 6<br />

and 8 for the characteristic desynaptic have been shown to be at different alleles at locus<br />

1 and those alleles are then designated a and b.<br />

SUPPLEMENTARY COMMENT:<br />

A motion was passed during the workshop of the "Nomenclature and Gene<br />

Symbolization Committee" at the Fifth International Barley Genetics Symposium in 1986<br />

(Barley Genetics V:1056-1058) that "the recommended systems for Nomenclature and<br />

Gene Symbolization of the International Committee be published annually in the Barley<br />

Genetics Newsletter."<br />

SUPPLEMENTARY COMMENT 2:<br />

At the workshop for ”Recommendations of Barley Nomenclature” held at Saskatoon,<br />

July 31, 1996 and adopted at the General Meeting of the Seventh International Barley<br />

Genetics Symposium, it was recommended that a period instead of a dash be used to<br />

designate the allele portion of the gene symbol. Consequently, the first gene symbol for<br />

the characteristic des (desynapsis) should be expressed as des1.a. The code des1<br />

identifies a specific locus. The period indicates that the symbol a identifies a specific<br />

allele or mutational event that produces a desynaptic phenotype. (The allele symbol a<br />

will be always associated with this specific desynaptic mutant even if the locus symbol is<br />

changed based on subsequent research results.)<br />

104


Barley Genetics Newsletter (2007) 37: 105-153<br />

REPORTS OF THE COORDINATORS<br />

Overall coordinator’s report<br />

Udda Lundqvist<br />

Nordic Gene Bank<br />

P.O. Box 41. SE-230 53 Alnarp<br />

e-mail: udda@nordgen.org<br />

Since the latest overall coordinator’s report in Barley Genetics Newsletter Volume 36, some<br />

changes of the coordinators have taken place. I do hope that most of you are willing to continue<br />

with this work and provide us with new important information and literature search in the future.<br />

A replacement was found for Chromosome 4H, namely Arnis Druka, Genetics Programme at the<br />

Scottish Crop Research Institute, Invergowrie, Dundee, United Kingdom. Please observe some<br />

address changes have taken place since the last volume of BGN. Jerry Franckowiak, the<br />

Coordinator for chromosome 2H, the semi-dwarf collection and all his immense efforts creating<br />

isogenic lines in the Bowman genetic background of many different barley genetic stocks has<br />

moved from North Dakota State University to Warwick, Queensland, Australia. The Curator, An<br />

Hang, for the Barley Genetics Stock Center at the <strong>US</strong>DA-ARS station at Aberdeen, Idaho, <strong>US</strong>A,<br />

has retired during the year 2007. Dr. Harold Bockelman from the same station is nominated as<br />

successor. An Hang has been involved and engaged in Barley Genetics since many decades, first<br />

together with Tak Tsuchiya at Fort Collins, Colorado and since 1990 at Aberdeen, Idaho. He<br />

took care of the move of all genetic barley stocks from Fort Collins to Aberdeen, has been<br />

evaluating and increasing most of them. He has been a considerable collaborator and colleague<br />

to the barley community, handled with big carefulness all the different barley types and<br />

transferred a large knowledge to all of us. I take this opportunity to thank him for all his<br />

kindness, helpfulness, enthusiasm and inspiration during all these years. All the best wishes to<br />

him in the future and his retirement. But I want to thank those who have resigned for their good<br />

corporation and the reliability of sending informative reports during all the years.<br />

In this connection I also want to call upon the barley community to pay attention on the AceDB<br />

database for ’Barley Genes and Barley Genetic Stocks’. It contains much information connected<br />

with images and is useful for barley research groups inducing barley mutants and looking for<br />

new characters. It gets updated continuously and some more images are added to the original<br />

version. The searchable address is: www.untamo.net/bgs<br />

In some months the 10th International Barley Genetics Symposium will be organized in<br />

Alexandria, Egypt. I hope that many of you will be to participate in the meetings. It is of big<br />

importance to discuss the future of different items, especially the coordination system and the<br />

future of Barley Genetics Newsletter. I would like to encourage the coordinators and their<br />

colleagues already to-day to provide me with suggestions, ideas, items or topics to be brought up<br />

during the meetings.<br />

105


Barley Genetics Newsletter (2007) 37: 105-153<br />

List of Barley Coordinators<br />

Chromoosome 1H (5): Gunter Backes, The University of Copenhagen, Faculty of Life Science,<br />

<strong>Department</strong> of Agricultural Sciences, Thorvaldsensvej 40, DK-1871 Fredriksberg C, Denmark.<br />

FAX: +45 3528 3468; e-mail: <br />

Chromosome 2H (2): Jerry. D. Franckowiak, Hermitage Research Station, Queensland<br />

<strong>Department</strong> of Primary Industries and Fisheries, Warwick, Queensland 4370, Australia, FAX:<br />

+61 7 4660 3600; e-mail: <br />

Chromosome 3H (3): Luke Ramsey, Genetics Programme, Scottish Crop Research Institute,<br />

Invergowrie, Dundee, DD2 5DA, United Kingdom. FAX: +44 1382 562426. E-mail:<br />

<br />

Chromosome 4H (4): Arnis Druka, Genetics Programme, Scottish Crop Research Institute,<br />

Invergowrie, Dundee, DD2 5DA, United Kingdom. FAX: +44 1382 562426. e-mail:<br />

<br />

Chromosome 5H (7): George Fedak, Eastern Cereal and Oilseed Research Centre, Agriculture<br />

and Agri-Food Canada, ECORC, Ottawa, ON, Canada K1A 0C6, FAX: +1 613 759 6559; email:<br />

<br />

Chromosome 6H (6): Duane Falk, <strong>Department</strong> of Crop Science, University of Guelph, Guelph,<br />

ON, Canada, N1G 2W1. FAX: +1 519 763 8933; e-mail: <br />

Chromosome 7H (1): Lynn Dahleen, <strong>US</strong>DA-ARS, State University Station, P.O. Box 5677,<br />

Fargo, ND 58105, <strong>US</strong>A. FAX: + 1 701 239 1369; e-mail: <br />

Integration of molecular and morphological marker maps: Andy Kleinhofs, <strong>Department</strong> of<br />

Crop and Soil Sciences, Washington State University, Pullman, WA 99164-6420, <strong>US</strong>A. FAX:<br />

+1 509 335 8674; e-mail: <br />

Barley Genetics Stock Center: An Hang, <strong>US</strong>DA-ARS, National Small Grains Germplasm<br />

Research Facility, 1691 S. 2700 W., Aberdeen, ID 83210, <strong>US</strong>A. FAX: +1 208 397 4165; e-mail:<br />

<br />

and<br />

Harold Bockelmann, National Small Grains Collection, U.S. <strong>Department</strong> of Agriculture –<br />

Agricultural Research Service, 1691 S. 2700 W., Aberdeen, ID 83210, <strong>US</strong>A. FAX: +1 208 397<br />

4165. e-mail: <br />

Trisomic and aneuploid stocks: An Hang, <strong>US</strong>DA-ARS, National Small Grains Germplasm<br />

Research Facility, 1691 S. 2700 W., Aberdeen, ID 83210, <strong>US</strong>A. FAX: +1 208 397 4165; e-mail:<br />

<br />

Translocations and balanced tertiary trisomics: Andreas Houben, Institute of Plant Genetics<br />

and Crop Plant Research, Corrensstrasse 3, DE-06466 Gatersleben, Germany. FAX: +49 39482<br />

5137; e-mail: <br />

106


Barley Genetics Newsletter (2007) 37: 105-153<br />

List of Barley Coordinators (continued)<br />

Desynaptic genes: Andreas Houben, Institute of Plant Genetics and Crop Plant Research,<br />

Corrensstrasse 3, DE-06466 Gatersleben, Germany. FAX: +49 39482 5137; e-mail:<br />

<br />

Autotetraploids: Wolfgang Friedt, Institute of Crop Science and Plant Breeding, Justus-Liebig-<br />

University, Heinrich-Buff-Ring 26-32, DE-35392 Giessen, Germany. FAX: +49 641 9937429; email:<br />

<br />

Disease and pest resistance genes: Brian Steffenson, <strong>Department</strong> of Plant Pathology,<br />

University of Minnesota, 495 Borlaug Hall, 1991 Upper Buford Circle, St. Paul, MN 55108-<br />

6030, <strong>US</strong>A. FAX: +1 612 625 9728; e-mail: <br />

Eceriferum genes: Udda Lundqvist, Nordic Gene Bank, P.O. Box 41, SE-230 53 Alnarp,<br />

Sweden. FAX:.+46 40 536650; e-mail: < udda@nordgen.org><br />

Chloroplast genes: Mats Hansson, <strong>Department</strong> of Biochemistry, University of Lund, Box 124,<br />

SE-221 00 Lund, Sweden. FAX: +46 46 222 4534 e-mail: <br />

Genetic male sterile genes: Mario C. Therrien, Agriculture and Agri-Food Canada, P.O. Box<br />

1000A, R.R. #3, Brandon, MB, Canada R7A 5Y3, FAX: +1 204 728 3858; e-mail:<br />

<br />

Ear morphology genes: Udda Lundqvist, Nordic Gene Bank, P.O. Box 41, SE-230 53 Alnarp,<br />

Sweden. FAX: +46 40 536650; e-mail: < udda@nordgen.org><br />

or<br />

Antonio Michele Stanca: Istituto Sperimentale per la Cerealicoltura, Sezione di Fiorenzuola<br />

d’Arda, Via Protaso 302, IT-29017 Fiorenzuola d’Arda (PC), Italy. FAX +39 0523 983750, email:<br />

<br />

Semi-dwarf genes: Jerry D. Franckowiak, Hermitage Research Station, Queensland <strong>Department</strong><br />

of Primary Industries and Fisheries, Warwick, Queensland 4370, Australia, FAX: +61 7 4660<br />

3600; e-mail: < Jerome.franckowiak@dpi.qld.gpv.au ><br />

Early maturity genes: Udda Lundqvist, Nordic Gene Bank, P.O. Box 41 SE-230 53 Alnarp,<br />

Sweden. FAX: +46 40 536650; e-mail: <br />

Biochemical mutants - Including lysine, hordein and nitrate reductase: Andy Kleinhofs,<br />

<strong>Department</strong> of Crop and Soil Sciences, Washington State University, Pullman, WA 99164-6420,<br />

<strong>US</strong>A. FAX: +1 509 335 8674; e-mail: <br />

Barley-wheat genetic stocks: A.K.M.R. Islam, <strong>Department</strong> of Plant Science, Waite Agricultural<br />

Research Institute, The University of Adelaide, Glen Osmond, S.A. 5064, Australia. FAX: +61 8<br />

8303 7109; e-mail: <br />

107


Barley Genetics Newsletter (2007) 37: 105-153<br />

Coordinator’s Report: Barley Chromosome 1H (5)<br />

Gunter Backes<br />

The University of Copenhagen<br />

Faculty of Life Sciences<br />

<strong>Department</strong> of Agricultural Sciences<br />

Thorvaldsensvej 40<br />

DK-1871 Frederiksberg C, Denmark<br />

guba@life.ku.dk<br />

In Arabidopsis, HLM1 encodes the cyclic nucleotide-gated ion channel 4. A mutant plant for this<br />

gene shows necrotic lesions and thereby similarities to the hypersensitive response (HR) to<br />

pathogens. Rostoks et al. (2006) isolated the homolog of this gene from the previously<br />

characterized barley mutant nec1 and localized the gene in the ‘Steptoe’ x ‘Morex’ “minimapper<br />

population” to chromosome 1H, Bin9.<br />

In an attempt to localize transcription factors (TFs ) belonging to the gene family of C-repeat<br />

binding factors (CBF), their regulators and MYB-TFs, altogether known to regulate plant<br />

response to cold and drought stress, Tondelli et al. (2006) localized several homologs to the<br />

respective Arabidopsis genes in a joined map of the three populations ‘Nure’ × ‘Tremois’,<br />

‘Proctor’ × ‘Nudinka’ and ‘Steptoe’ × ‘Morex’. Further, they compared the loci of these putative<br />

TFs with the position of published QTLs. They localized 9 homologs and assigned two further<br />

homologs by wheat-barley addition lines to the respective chromosomes. On chromosome 1H<br />

they localized HvMYB4 to Bin6, a homolog to AtMyb2 from Arabidopsis and OsMYB4 from rice,<br />

both known to be part of the regulation processes during abiotic stresses.<br />

In a similar effort, Skinner et al. (2006) localized the barley homologs of 14 Arabidopsis CBF-<br />

TFs and 2 further TFs in the barley populations ‘Steptoe’ × ‘Morex’ and 88Ab536 ×<br />

‘Strider’.The authors also tested the ‘Steptoe’ × ‘Morex’ population in climatic chambers for<br />

cold tolerance and localized QTLs based on these data. On chromosome 1H, they localized<br />

HvZFP16-1, a homolog to AtZAT12, to Bin4. A further homolog of the same Arabidopsis gene,<br />

HvZFPR16-2 was assigned to 1H by wheat-barley addition lines. A QTL for cold tolerance was<br />

localized on 1H, Bin11, by a LOD score of 5.7. No co-localization between the QTLs and the<br />

TFs localized in this study was found. Nevertheless, comparison with literature indicated QTLs<br />

at the position of two candidate gene loci on 5H.<br />

The same group (Szücs et al. 2006) published results describing the localization of photoreceptor<br />

genes and vernalization-related genes together with QTLs for photoperiod response. Mapping of<br />

both, the candidate genes and QTLs, was carried out in DH populations of the crosses ‘Dicktoe’<br />

× ‘Morex’ and ‘Dicktoe’ × ‘Kompolti korai’. While none of the candidate genes was localized on<br />

chromosome 1H, two QTL were detected with the ‘Dicktoo’ × ‘Morex’ population: a major QTL<br />

in Bin11 and a further QTL in Bin12.<br />

In order to localize qualitative and quantitative resistance against rice blast in barley, Inukai et al.<br />

(2006) analyzed a segregating DH population from the cross ‘Baroness’ × BCD47 with two<br />

different rice blast isolates in a greenhouse experiment. For one of the isolates, a qualitative<br />

segregation was found and consequently a new resistance gene, RMo1, was localized on<br />

chromosome 1H, Bin2 at or near the position of the Mla-locus. For the other isolate, a<br />

108


Barley Genetics Newsletter (2007) 37: 105-153<br />

quantitative segregation was found and a major QTL was detected at the position of RMo1, while<br />

further 3 QTLs were localized on the chromosomes 3H, 4H and 7H.<br />

Jafary et al. (2006) investigated the inheritance and specificity of plant factors that determine the<br />

degree of basal defence by host- and nonhost pathogens. For this purpose, they analyzed 152<br />

RILs from the cross ‘Vada’ x ‘SusPtrit’ with 2 rust isolates from barley rusts and 8 isolates from<br />

rusts with no barley-specificity, isolated from cultivated and wild Poaceae. ‘SusPtrit’ is an<br />

experimental barley accession selected for susceptibility to the wheat leaf rust fungus Puccinia<br />

triticina. On chromosome 1H, an R-gene against the fungus Puccinia hordei-secalini was<br />

localized. P. hordei-secalini has no host-specificity for H. vulgare. Furthermore, three different<br />

QTLs were detected. One of them conferred resistance against P. hordei-murini, one against P.<br />

graminis f.sp. lolii and one against P. graminis f.sp. tritici. Only the latter has barley-specificity.<br />

As the linkage map for 1H in this analysis purely consisted of AFLP marker, it was not possible<br />

to assign the R-gene or QTLs to the Bin-map.<br />

A new qualitative resistance gene against spot blotch, Rcs6, caused by Cochliobolus sativus, was<br />

localized on chromosome 1H either proximal on Bin1 or distal on Bin2 by Bilgic et al. (2006).<br />

They tested the DH population ‘Calcuchima-sib’ × ‘Bowman-BC’ with two different isolates<br />

both on seedlings in the greenhouse and on adult plants in the field. While one isolate identified<br />

the above mentioned resistance gene both in the seedlings and the adult plants, the other isolate<br />

detected different quantitative resistance loci for the greenhouse compared with the field, none of<br />

them on the position of Rcs6.<br />

Rsp2 and Rsp3, originally designated Sep2 and Sep3, are barley resistance genes against speckled<br />

leaf blotch in barley, caused by Septoria passerinii. These genes were mapped by Zhong et al.<br />

(2006) in an F2:3 population of the cross 'Foster' x 'Clho 4780' based on seedling tests with a<br />

specific isolate. These two genes are either closely linked or allelic and are localized on<br />

chromosome 1H and, as estimated by the flanking markers, more exactly in Bin3.<br />

Sameri et al. (2006) localized QTLs for different agronomic traits in an RIL population derived<br />

from a cross between two Japanese barley varieties ‘Azumamugi’ and ‘Kanto Nakate Gold’.<br />

‘Azumamugi’ is an oriental type barley, while ‘Kanto Nakate Gold’ belongs to the occidental<br />

type of barley varieties in Japan. The agronomic traits were evaluated in a field experiment on<br />

one location over two years. On chromosome 1H, one QTL for days to heading was localized<br />

near the position of Ppd-H2 (photoperiod sensitivity, Bin9/10) and one QTL for days to heading<br />

and days to maturity was detected near the position of eam8 (‘early maturity’, Bin14).<br />

In an F2:4 population from a cross between two wild barleys (H. v. ssp. spontaneum) from Israel,<br />

Vanhala and Stam (2006) localized QTL for seed dormancy. One of the lines (‘Mehola’)<br />

originates from the Jordan valley with low humidity and shows high seed dormancy, while the<br />

other line (‘Ashkelon’) originates from the Mediterranean coast with relatively high humidity<br />

and shows low dormancy. The germination rate was tested after 0 days, 14 days, 28 days and 42<br />

days of after-ripening at + 40˚ C. On chromosome 1H, the only QTL where the ‘Ashkelon’-allele<br />

prolongated the dormancy was found, while for the four other QTLs, on chromosomes 2H, 5H,<br />

6H and 7H, ‘Mehola’ contributed the allele with the higher dormancy. As the map of 1H was<br />

solely based on AFLPs, it was not possible to assign the position to a Bin.<br />

QTLs for grain yield (Bin11/12), heading date (Bin7), plant height (Bin14), ear length (Bin9,<br />

Bin13), spikelets/spike (Bin8/9), grain/spike (Bin8/9), spikes/plant (Bin12) and 1000-grain mass<br />

(Bin9, Bin11/12) were detected on chromosome 1H in an advanced-backcross experiment (Li et<br />

109


Barley Genetics Newsletter (2007) 37: 105-153<br />

al. 2006). The wild barley parent was the line ‘HS584’, and the recurrent cultivated parent was<br />

the variety ‘Brenda’. The field trials were carried out on 2 locations during four years. The map<br />

positions of the marker were based on the ‘Igri’ × ‘Franka’ and ‘Steptoe’ × ‘Morex’ SSR maps<br />

((Li et al., 2003).<br />

In another advanced-backcross with the wild barley line ‘ISR42-8’ and the recurrent cultivated<br />

parent ‘Scarlett’, von Korff et al. (2005) analyzed agronomic traits in a field experiments (four<br />

locations during two years). On 1H, QTLs were found for ears per m² (Bin14), heading date<br />

(Bin13), plant height (Bin13), harvest index (Bin13, Bin14) and yield (Bin6-8).<br />

References:<br />

Bilgic, H., B. J. Steffenson, and P. M. Hayes. 2006. Molecular mapping of loci conferring<br />

resistance to different pathotypes of the spot blotch pathogen in barley. Phytopathology<br />

96(7): 699-708.<br />

Inukai, T., M. I. Vales, K. Hori, K. Sato, and P. M. Hayes. 2006. RMo1 confers blast<br />

resistance in barley and is located within the complex of resistance genes containing Mla,<br />

a powdery mildew resistance gene. Mol. Plant Microbe Interact. 19(9): 1034-1041.<br />

Jafary, H., L. J. Szabo, and R. E. Niks. 2006. Innate nonhost immunity in barley to different<br />

heterologous rust fungi is controlled by sets of resistance genes with different and<br />

overlapping specificities. Mol. Plant Microbe Interact. 19(11): 1270-1279.<br />

Li, J. Z., X. Q. Huang, F. Heinrichs, M. W. Ganal, and M. S. Roder. 2006. Analysis of QTLs<br />

for yield components, agronomic traits, and disease resistance in an advanced backcross<br />

population of spring barley. Genome 49(5): 454-466.<br />

Li, J. Z., T. G. Sjakste, M. S. Röder, and M. W. Ganal. 2003. Development and genetic<br />

mapping of 127 new microsatellite markers in barley. Theor. Appl. Genet. 107(6): 1021-<br />

1027.<br />

Rostoks, N., D. Schmierer, S. Mudie, T. Drader, R. Brueggeman, D. G. Caldwell, R.<br />

Waugh, and A. Kleinhofs. 2006. Barley necrotic locus nec1 encodes the cyclic<br />

nucleotide-gated ion channel 4 homologous to the Arabidopsis HLM1. Mol. Genet.<br />

Genom 275(2): 159-168.<br />

Sameri, M., K. Takeda, and T. Komatsuda. 2006. Quantitative trait loci controlling agronomic<br />

traits in recombinant inbred lines from a cross of oriental- and occidental-type barley<br />

cultivars. Breed. Sci. 56(3): 243-252.<br />

Skinner, J. S., P. Szücs, J. von Zitzewitz, L. Marquez-Cedillo, T. Filichkin, E. J. Stockinger,<br />

M. F. Thomashow, T. H. H. Chen, and P. M. Hayes. 2006. Mapping of barley<br />

homologs to genes that regulate low temperature tolerance in Arabidopsis. Theor. Appl.<br />

Genet. 112(5): 832-842.<br />

110


Barley Genetics Newsletter (2007) 37: 105-153<br />

Szücs, P., I. Karsai, J. von Zitzewitz, K. Meszaros, L. L. D. Cooper, Y. Q. Gu, T. H. H.<br />

Chen, P. M. Hayes, and J. S. Skinner. 2006. Positional relationships between<br />

photoperiod response QTL and photoreceptor and vernalization genes in barley.<br />

Theor. Appl. Genet. 112(7): 1277-1285.<br />

Tondelli, A., E. Francia, D. Barabaschi, A. Aprile, J. S. Skinner, E. J. Stockinger, A. M.<br />

Stanca, and N. Pecchioni. 2006. Mapping regulatory genes as candidates for cold<br />

and drought stress tolerance in barley. Theor. Appl. Genet. 112(3): 445-454.<br />

Vanhala, T. K. and P. Stam. 2006. Quantitative trait loci for seed dormancy in wild barley<br />

(Hordeum spontaneum c. Koch). Genet. Resour. Crop. Evol. 53(5): 1013-1019.<br />

von Korff, M., H. Wang, and J. Léon. 2005. AB-QTL analysis in spring barley. I. Detection of<br />

resistance genes against powdery mildew, leaf rust and scald introgressed from wild<br />

barley. Theor. Appl. Genet. 111(3): 583-590.<br />

Zhong, S. B., H. Toubia-Rahme, B. J. Steffenson, and K. P. Smith. 2006. Molecular mapping<br />

and marker-assisted selection of genes for septoria speckled leaf blotch resistance in<br />

barley. Phytopathology 96(9): 993-999.<br />

111


Barley Genetics Newsletter (2007) 37: 105-153<br />

Coordinator’s report: Chromosome 2H (2)<br />

J.D. Franckowiak<br />

Hermitage Research Station<br />

Queensland <strong>Department</strong> of Primary Industries and Fisheries<br />

Warwick, Queensland 4370, Australia<br />

e-mail: jerome.franckowiak@dpi.qld.gpv.au<br />

Komatsuda et al. (2007) cloned the six-rowed spike 1 (vrs1) gene located on chromosome 2HL<br />

of barley. Expression of the Vrs1 was strictly localized in the lateral-spikelet primordia of<br />

immature spikes and suggests that the VRS1 protein suppresses development of lateral spikelets.<br />

Phylogenetic analysis of the six-rowed cultivars and mutants demonstrated that six-rowed spike<br />

trait originated repeatedly from two-rowed barley, at least three different origins among<br />

domesticated accessions. Also, the DNA sequence defects in many of vrs1 mutants held in the<br />

Nordic Gene Bank were identified.<br />

When the DNA sequence of vrs1 was determined, Pourkheirandish et al. (2007) found that the<br />

region around the vrs1 locus was collinear with rice chromosome 4. However, the rice<br />

orthologue for the vrs1 sequence was found on rice chromosome 7. The authors speculated that a<br />

transposition of the chromosomal segment Vrs1 to chromosome 2H occurred during the<br />

evolution of barley. Pourkheirandish et al. (2007) also reported that the vrs1 locus is a region of<br />

suppressed recombination based on the study of more than 13,000 gametes.<br />

Řepková et al. (2006) reported on the mapping of four new sources of resistance to powdery<br />

mildew, caused by Blumeria graminis f. sp. hordei, that were identified in accessions of wild<br />

barley, Hordeum vulgare ssp. spontaneum. Accession PI 466197 was found to have two<br />

dominant resistance genes. One is an allelic at the mla locus and the other was located on<br />

chromosome 2HS based on a highly significant linkage with molecular marker Bmac0134.<br />

Dahleen and Franckowiak (2006) found that cer-zt locus is located on chromosome 2HS based<br />

on linkage to molecular marker Bmac0134 in bin 2H-1. The cert-zt.389 mutant has very little<br />

surface wax on the spike (Lundqvist and Franckowiak, 1997), but little effect on other<br />

agronomic traits except a slightly increased number of kernels per spike (Dahleen and<br />

Franckowiak, 2006).<br />

Based on the analysis of 134 recombinant chromosome substitution lines (RCLs) from the BC3<br />

generation of the backcross of wild barley line (OUH602) into ‘Haurna Nijo’, Hori et al. (2005)<br />

found that QTLs for short spike and lax spike are on chromosome 2HL near the closed flowering<br />

(cleistogamy, cly1/Cly2) locus of Haurna Nijo. In a previous paper, Hori et al. (2003) reported<br />

that these QTLs plus one for short culm were observed in a population of doubled-haploid lines<br />

from a Haurna Nijo/OUH602 cross.<br />

Using recombinant inbred lines, Yun et al. (2005) found a QTL for resistance to Septoria<br />

speckled leaf blotch (SSLB, caused by Septoria passerinii Sacc.) from H. vulgare subsp.<br />

spontaneum, located in bins 7 to 11 of chromosome 2H. They examined a recombinant inbred<br />

line (RIL) population developed from a cross between wild barley accession OUH602 and the<br />

two-rowed malting cultivar ‘Harrington’ for reaction to SSLB. About 40% of the variation in<br />

112


Barley Genetics Newsletter (2007) 37: 105-153<br />

response to SSLB was explained by the QTL on 2H, named QTL Rsp-2H-7-ll. The mapped<br />

disease resistances were validated using an advanced backcross population (BC2F6:8) from the<br />

same donor parent, but having two more backcrosses to Harrington (Yun et al., 2006).<br />

A QTL regulating synthesis of cell wall (1,3;1,4)-beta-D-glucans was located between the<br />

markers Adh8 bin 6 and ABG019 bin 7 with the peak closer to ABG019 on 2H (Burton et al.,<br />

2006). The cellulose synthase-like (CslF) gene cluster in cereals was identified as candidates<br />

responsible for mediating cell wall (1,3;1,4)- ß -D-glucan synthesis using of rice synteny and by<br />

transforming Arabidopsis (Burton et al., 2006). The research was based on the map location of a<br />

major QTL for (1,3;1,4)-ß-D-glucan content of un-germinated barley grains on 2H. This report is<br />

believed the first example of a map-based cloning of a QTL in barley.<br />

Korff et al. (2006) reported on a large number of QTLs for agronomic traits detected in doubledhaploid<br />

lines from the second backcross of ‘Scarlett’ backcrossed to Hordeum vulgare ssp.<br />

spontaneum accession ISR42-8. Using a population 301 BC2DH in eight environments, they<br />

reported detection of 86 QTLs for nine agronomic traits. The QTLs having large effects that<br />

were associated with chromosome 2H included: ears/m2, days to head (Eam1 or Ppd-H1), plant<br />

height (sdw1 from Scarlett), and yield.<br />

Yin et al. (2005) confirmed that a QTL having an important effect on preflowering duration in<br />

the ‘Apex’/‘Prisma’ population of 94 recombinant inbred lines (RILs) was located on the long<br />

arm of chromosome 2H. The other QTL having a large effect was located on chromosome 3H at<br />

the same position as the sdw1 gene from Prisma.<br />

Dragan et al. (2007) located two members of the nicotianamine synthase (NAS) family of genes<br />

on the short arm of chromosome 2H (2HS). Nicotianamine is involved chelation of iron and<br />

other heavy metals and their transport in the plant.<br />

The number of molecular markers located on chromosome 2H has been increased by several<br />

studies. Beaubien and Smith (2006) placed 7 of the 60 new mapped SSR markers on 2H at bin<br />

positions that previously had been identified as being poorly covered by SSR markers currently<br />

available. Stein et al. (2007) published an expressed sequence tag (EST)-based map for barley<br />

based 200 anchor markers from three previously published maps. The map contained 1,055 loci<br />

and a map size of 1,118.3 cM. The map for 2H contained 179 EST loci and a map length of<br />

165.1 cM. Using barley-wheat addition lines and the Barley1 Affymetrix GeneChip probe array,<br />

Cho et al. (2006) associated 1,787 of 4,104 transcript accumulation patterns detected in Betzes,<br />

but not Chinese Spring, with specific barley chromosomes. Of these 271 were associated with<br />

the 2H addition line of Chinese Spring.<br />

Takahashi et al. (2006) mapped in barley miniature inverted-repeat transposable elements<br />

(MITEs), which represent a large superfamily of transposons that is moderately to highly<br />

repetitive and frequently found near or within plant genes. To elucidate the organization of<br />

MITEs in the barley genome, MITEs were integrated into the genetic map of barley using 93<br />

doubled haploid lines from a Haruna Nijo by H. vulgare ssp. spontaneum accession OUH602<br />

cross. They described the use of MITEs in amplified fragment length polymorphism (AFLP)<br />

mapping and demonstrate their superiority over conventional AFLP mapping. A total of 214 loci<br />

covered a total map distance of 1,165 cM, and 39 were placed on 2H.<br />

113


Barley Genetics Newsletter (2007) 37: 105-153<br />

References:<br />

Beaubien, K.A., and K. P. Smith. 2006. New SSR markers for barley derived from the EST<br />

database. Barley Genet. Newsl. 36:30-36.<br />

Burton, R.A., S.M. Wilson, M. Hrmova, A.J. Harvey, N.J. Shirley, A. Medhurst, B.A.<br />

Stone, E.J. Newbigin, A. Bacic, and G.B. Fincher. 2006. Cellulose synthase-like CslF<br />

genes mediate the synthesis of cell wall (1,3;1,4)-beta-D-glucans. Science 311:1940-<br />

1943.<br />

Cho, S., D.F. Garvin, and G.J. Muehlbauer. 2006. Transcriptome analysis and physical<br />

mapping of barley genes in wheat–barley chromosome addition lines. Genetics 172:1277-<br />

1285.<br />

Dahleen, L.S. and J.D. Franckowiak. 2006. SSR linkages to eight additional morphological<br />

marker traits. Barley Genet. Newsl. 36:12-16.<br />

Dragan Perovic, D., P. Tiffin, D. Douchkov, H. Bäumlein, and A. Graner. 2007. An<br />

integrated approach for the comparative analysis of a multigene family: The<br />

nicotianamine synthase genes of barley. Funct. Integr. Genomics 7:169-179.<br />

Hori, K., T. Kobayashi, A. Shimizu, K. Sato, K. Takeda, and S. Kawasaki. 2003. Efficient<br />

construction of high-density linkage map and its application to QTL analysis in barley.<br />

Theor. Appl. Genet. 107:806-813.<br />

Hori, K., K. Sato, N. Nankaku, and K. Takeda. 2005. QTL analysis in recombinant<br />

chromosome substitution lines and doubled haploid lines derived from a cross between<br />

Hordeum vulgare ssp. vulgare and Hordeum vulgare ssp. spontaneum. Mol. Breeding<br />

16(4):295-311.<br />

Komatsuda, T., M. Pourkheirandish, C. He, P. Azhaguvel, H. Kanamori, D. Perovic, N.<br />

Stein, A. Graner, T. Wicker, A. Tagiri, U. Lundqvist, T. Fujimura, M. Matsuoka, T.<br />

Matsumoto, and M. Yano. 2007. Six-rowed barley originated from a mutation in a<br />

homeodomain-leucine zipper I-class homeobox gene. PNAS 104:1424-1429.<br />

von Korff, M., H. Wang, J. Léon, and K. Pillen. 2006. AB-QTL analysis in spring barley: II.<br />

Detection of favourable exotic alleles for agronomic traits introgressed from wild barley<br />

(H. vulgare ssp. spontaneum). Theor. Appl. Genet. 112:1221-1231.<br />

Lundqvist, U., and J.D. Franckowiak. 1997. BGS 437, Eceriferum-zt, cer-zt. Barley Genet<br />

Newsl. 26:389<br />

Pourkheirandish, M., T. Wicker, N. Stein, T. Fujimura, and T. Komatsuda. 2007. Analysis<br />

of the barley chromosome 2 region containing the six-rowed spike gene vrs1 reveals a<br />

breakdown of the rice-barley micro collinearity by a transposition. Theor. Appl. Genet.<br />

114:1357-1365.<br />

Řepková, J., A. Dreiseitl, P. Lízal, Z. Kyjovská, K. Teturová, R. Psotková, and A. Jahoor.<br />

2006. Identification of resistance genes against powdery mildew in four accessions of<br />

Hordeum vulgare ssp. spontaneum. Euphytica 151:23-30.<br />

114


Barley Genetics Newsletter (2007) 37: 105-153<br />

Stein, N., M. Prasad, U. Scholz, T. Thiel, H. Zhang, M. Wolf, R. Kota, R.K. Varshney, D.<br />

Perovic, I. Grosse, and A. Graner. 2007. A 1,000-loci transcript map of the barley<br />

genome: new anchoring points for integrative grass genomic. Theor. Appl. Genet.<br />

114:823-839.<br />

Takahashi, H., H. Akagi, K. Mori, K. Sato, and K. Takeda. 2006. Genomic distribution of<br />

MITEs in barley determined by MITE-AFLP mapping. Genome 49:1616- 1618.<br />

Yin, X., P.C. Struik, F.A. van Eeuwijk, P. Stam, and J. Tang. 2005. QTL analysis and QTLbased<br />

prediction of flowering phenology in recombinant inbred lines of barley J. Exp.<br />

Bot. 56 (413):967-976.<br />

Yun, S.J., L. Gyenis, E. Bossolini, P.M. Hayes, I. Matus, K.P. Smith, B.J. Steffenson, R.<br />

Tuberosa, and G.J. Muehlbauer. 2006. Validation of quantitative trait loci for multiple<br />

disease resistance in barley using advanced backcross lines developed with a wild barley.<br />

Crop Sci. 46:1179-1186.<br />

Yun, S.J., L. Gyenis, P.M. Hayes, I. Matus, K.P. Smith, B.J. Steffenson, and G.J.<br />

Muehlbauer. 2005. Quantitative trait loci for multiple disease resistance in wild barley.<br />

Crop Sci. 45:2563-2572.<br />

115


Barley Genetics Newsletter (2007) 37: 105-153<br />

Coordinator’s Report: Barley Chromosome 3H<br />

L. Ramsay<br />

Genetics Programme<br />

Scottish Crop Research Institute<br />

Invergowrie, Dundee, DD2 5DA, Scotland, UK.<br />

e-mail: Luke.Ramsay@scri.ac.uk<br />

Over the last year there have been a number of publications reporting the mapping of genes and<br />

QTL on barley chromosome 3H. One of the highlights of this reporting period was the genetic<br />

mapping of over 1000 genes, including 179 on 3H, by Stein et al. (2007). This worked<br />

confirmed the syntenic relationship of 3H to rice chromosome 1 and importantly put the detailed<br />

EST information underlying this and previous reports in the public domain. This includes the<br />

details of which genes are represented by the EST derived microsatellites reported by Varshney<br />

et al. (2006) that included 35 that map to 3H. Another report of EST derived microsatellites with<br />

the associated EST information, including 11 on 3H, was that of Beaubien and Smith (2006).<br />

Another important general mapping paper was the development of a consensus map derived<br />

from DArT marker loci (Wenzl et al, 2006) that opens up the possibility of using loci derived<br />

from this technology as proxies for more expensive genic markers. Also of importance is the<br />

detailed consensus map presented by Marcel et al. (2007) which brings together standard AFLP,<br />

microsatellite and RFLP loci and that will allow additional alignment of past work with the<br />

positions of genic loci.<br />

A range of QTL on chromosome 3H were again reported this year. In a RIL population derived<br />

from a cross between Azumamugi and Kanto Nakate Gold studied by Sameri et al. (2006) QTL<br />

were found on 3H for a range of agronomic characters including plant height, spike length and<br />

awn length. The position of the QTL found indicates that they are due to the segregation of uzu<br />

in the population. Li et al. (2006) reported the positions of QTL for a range of agronomic traits<br />

using recombinant chromosome substation lines derived from a Hordeum vulgare subsp. vulgare<br />

(cltv. Brenda) by Hordeum vulgare subsp. spontaneum (accession HS584) cross to delineate<br />

association with genomic regions. The QTL found on 3H included those for yield and<br />

components such as spikelet no. per spike, grain no. per spike, thousand-grain mass as well as<br />

other traits such as heading date, plant height, ear length, leaf length and leaf area. A QTL for<br />

resistance on 3H was also found to leaf rust in two trials which may relate to the two QTL for<br />

leaf rust resistance found on chromosome 3H in a consensus map by Marcel et al. (2007) in a<br />

summary of work on six mapping populations. One of the populations used in the construction<br />

of this consensus map, L94 x Vada, was also tested for mildew and scald resistance and a novel<br />

powdery mildew resistance QTL designated Rbgq2 was detected on 3H which did not map to a<br />

region where a major gene for powdery mildew has previously been reported (Shtaya et al.<br />

2006). Another of the populations included in the report of Marcel et al. 2007 was that derived<br />

from a cross between an experimental line SusPrit and Vada to study the inheritance of non-host<br />

immunity to rusts (Jafary et al. 2006). This work found three QTL on 3H associated with host<br />

and non-host resistance to Puccinia spp. Other disease QTL reported on 3H included the<br />

improved resolution of spot blotch resistance QTL on the Calicuchima-sib / Bowman BC<br />

population by Bilgic et al. (2006) and a scald resistance QTL on the long arm of 3H identified<br />

using a partial map of a doubled haploid population derived from a Mundah/Keel cross (Cheong<br />

et al., 2006).<br />

116


Barley Genetics Newsletter (2007) 37: 105-153<br />

References:<br />

Beaubien, K.A. and K.P. Smith. 2006 New SSR markers for barley derived from the EST<br />

database. Barley Genetics Newsletter 36: 30-43.<br />

Bilgic, H., B.J. Steffenson, and P.M. Hayes. 2006. Molecular mapping of loci conferring<br />

resistance to different pathotypes of the spot blotch pathogen in barley. Phytopathology<br />

96: 699-708.<br />

Cheong, J., K. Williams, and H. Wallwork, 2006. The identification of QTLs for adult plant<br />

resistance to leaf scald in barley. Australian Journal of Agricultural Research 57: 961-<br />

965.<br />

Jafary, H., L.J. Szabo, and R.E. Niks, 2006. Innate nonhost immunity in barley to different<br />

heterologous rust fungi is controlled by sets of resistance genes with different and<br />

overlapping specificities. Molecular Plant-Microbe Interactions 19: 1270-1279.<br />

Li, J.Z., X.Q. Huang, F. Heinrichs, M.W. Ganal, and M.S. Roder, 2006. Analysis of QTLs<br />

for yield components, agronomic traits, and disease resistance in an advanced backcross<br />

population of spring barley. Genome 49: 454-466.<br />

Marcel, T.C., R.K. Varshney, M. Barbieri, H. Jafary, M.J.D. de Kock, A. Graner and R.E.<br />

Niks, 2007. A high-density consensus map of barley to compare the distribution of<br />

QTLs for partial resistance to Puccinina hordei and of defence gene homologues. Theor<br />

Appl. Genet 114: 487-500.<br />

Samuri, M., K. Takeda and Komatsuda, T. 2006. Quantitative trait loci controlling<br />

agronomic traits in recombinant inbred lines from a cross of oriental- and occidental-type<br />

barley cultivars. Breeding Science 56: 243-252.<br />

Shtaya, M.J.Y., T.C. Marcel, J.C. Sillero, R.E. Niks, and D. Rubiales, 2006. Identification of<br />

QTLs for powdery mildew and scald resistance in barley. Euphytica 151: 421-429.<br />

Stein, N., M. Prassa, U. Scholz, T. Thiel, H. Zhang, M. Wolf, R. Kota, R.K. Varshney, D.<br />

Perovic, I. Grosse and A. Graner, 2007. A 1,000-loci transcript map of the barley<br />

genome: new anchoring points for integrative grass genomics. Theor Appl Genet on-line<br />

preprint DOI 10.1007/s00122-006-0480-2<br />

Varshney, R.K., I. Grosse, U. Hahnel, R. Siefken, M. Prasad, N. Stein, P. Langridge, L.<br />

Altschmied, and A. Graner, 2006. Genetic mapping and BAC assignment of ESTderived<br />

SSR markers shows non-uniform distribution of genes in the barley genome.<br />

Theor Appl Genet 113: 239-250.<br />

Wenzl, P., H.B. Li, J. Carling, M.X. Zhou, H. Raman, E. Paul, P. Hearnden, C. Maier, L.<br />

Xia, V. Caig, J. Ovesna, M. Cakir, D. Poulsen, J.P. Wang, R. Raman, K.P. Smith,<br />

G.J. Muehlbauer, K.J. Chalmers, A. Kleinhofs, E. Huttner, and A. Kilian, 2006. A<br />

high-density consensus map of barley linking DArT markers to SSR, RFLP and STS loci<br />

and agricultural traits. BMC Genomics 7:206.<br />

117


Barley Genetics Newsletter (2007) 37: 105-153<br />

Coordinator’s Report: Chromosome 4H<br />

Arnis Druka<br />

Genetics Programme<br />

Scottish Crop Research Institute<br />

Invergowrie, Dundee, DD2 5DA, Scotland, UK.<br />

e-mail: adruka@scri.sari.ac.uk<br />

Several papers that relate to the genes on chromosome 4H have been published in 2006 - 2007.<br />

At least four of them combine mRNA abundance analyses with phenotypic trait genetic analyses<br />

clearly showing added value of such approach (Malatrasi et al., 2006; Zhang et al., 2006; Wang<br />

et al., 2007 and Walia et al., 2007).<br />

The HvMATE gene, encoding a multidrug and toxic compound extrusion protein has been<br />

identified as a candidate controlling aluminium (Al) tolerance in barley. The gene itself was<br />

found not to be polymorphic between Al-tolerant and sensitive cultivars, but it accumulates<br />

mRNA 30 times more in the Al tolerant cultivar. HvMATE mRNA accumulation was measured<br />

in the F(2:3) families and was found significantly correlated with the Al tolerance and Alactivated<br />

citrate efflux phenotypes that have been mapped on the long arm of chromosome 4H<br />

(Wang et al., 2007).<br />

A different study addressed the salt tolerance in barley by analysing single feature<br />

polymorphisms (SFPs) and an oligonucleotide pool assay for single nucleotide polymorphisms<br />

(SNPs) in the salt tolerant cultivar Golden Promise and intolerant cultivar Maythorpe. Golden<br />

Promise has been generated by inducing mutation in the cultivar Maythorpe. The transcriptome<br />

analysis indicates that the response of the two genotypes to the salinity stress is quite different..<br />

This study identified 3 haplotype blocks spanning 6.4 cM on chromosome 1H, 23.7 cM on<br />

chromosome 4H and 3.0 cM on 5H suggesting that Golden Promise is not isogenic (Walia et al.,<br />

2007).<br />

A gene encoding the branched-chain amino acid aminotransferase (HvBCAT-1) that mapped on<br />

chromosome 4H, was identified by using differential mRNA display applied to ABA, drought<br />

and cold treated barley seedling shoots. Transcript levels of Hvbcat-1 increased in response to<br />

drought stress. The complementation of a yeast double knockout strain revealed that HvBCAT-1<br />

can function as the mitochondrial (catabolic) BCATs in vivo. This allowed to put forward the<br />

hypothesis, that under drought stress conditions, one of the detoxification mechanisms could be<br />

associated with degradation of the branched-chain amino acids (Malatrasi et al., 2006).<br />

Zhang et al. (2006) have reported a novel locus that is required for Rpg1 gene mediated<br />

resistance to the stem rust (Puccinia graminis f. sp. tritici) fungus. It was identified by inducing<br />

the irradiation mutations in the resistant barley cultivar and selecting for susceptible individuals<br />

in the M2 progeny. Rpg1 gene in one such susceptible mutant plants was found to be intact and<br />

the following mutation mapping identified a locus on chromosome 4H, that was named Rpr1<br />

(Required for P. graminis resistance). Several candidate genes or novel markers for this locus<br />

were identified by using large scale parallel transcript profiling approach.<br />

Other papers that related to chromosome 4H were describing either characterization and<br />

mapping gene families and the candidate genes for certain QTLs (Brueggeman et al., 2006;<br />

118


Barley Genetics Newsletter (2007) 37: 105-153<br />

Skinner et al., 2006) or mapping novel QTLs (Friesen et al., 2006; Richardson et al., 2006; Yan<br />

and Chen 2006; von Korff et al., 2006).<br />

Thus, Brueggeman et al. (2006) reported mapping of members of the serine/threonine kinaselike<br />

protein family that encode at least one predicted catalytically active kinase domain. One of<br />

them was localized to chromosome 4H. In a different study, allelic nature and map locations of<br />

barley homologs to three classes of Arabidopsis low temperature regulatory genes-CBFs, ICE1,<br />

and ZAT12 were investigated for associations with the LT tolerance QTLs. In the same study,<br />

phenotyping of the Dicktoo x Morex (DxM) mapping population under controlled freezing<br />

conditions identified three new low temperature tolerance (LT) QTLs on 1H-L, 4H-S, and 4H-L<br />

in addition to the previously reported 5H-L Fr-H1 QTL. (Skinner et al., 2006).<br />

Barley interaction with the net blotch fungi, Pyrenophora teres f. teres (net-type net blotch<br />

(NTNB)) and Pyrenophora teres f. maculata (spot-type net blotch (STNB)) was studied using a<br />

doubled-haploid population derived from the lines SM89010 and Q21861. Major QTLs for<br />

NTNB and STNB resistance were located on chromosomes 6H and 4H, respectively (Friesen et<br />

al., 2006).<br />

Barley and the stripe rust fungus (Puccinia striiformis f. sp. hordei) interaction phenotypes, such<br />

as latency period, infection efficiency, lesion size and pustule density were mapped using i-<br />

BISON lines (intermediate barley near-isogenic lines). The (i-BISON) lines represented disease<br />

resistance QTL combined in one-, two-, and three-way combinations in a susceptible<br />

background. The 4H QTL allele had the largest effect followed by the alleles on<br />

chromosomes1H and 5H (Richardson et al., 2006).<br />

In a different study Yan and Chen (2006) reported population of 182 recombinant inbred lines<br />

(RILs) (F8) derived from cultivars Steptoe and GZ that was generated to map the resistance to<br />

two barley stripe rust fungus strains on the long arm of barley chromosome 4H.<br />

The BC2DH population derived from a cross between the spring barley cultivar Scarlett and the<br />

wild barley accession ISR42-8 (Hordeum vulgare ssp. spontaneum) was developed to evaluate<br />

nine agronomic traits. Favourable ISR42-8 alleles were detected for the yield-related traits that<br />

have QTLs on the long arm of chromosome 4H (von Korff et al., 2006).<br />

References:<br />

Brueggeman R. T. Drader, and A. Kleinhofs 2006. The barley serine/threonine kinase gene<br />

Rpg1 providing resistance to stem rust belongs to a gene family with five other members<br />

encoding kinase domains. Theor. Appl. Genet. 113(6):1147-1158.<br />

Friesen T.L., J.D. Faris, Z. Lai, and B.J. Steffenson. 2006. Identification and chromosomal<br />

location of major genes for resistance to Pyrenophora teres in a doubled-haploid barley<br />

population. Genome 49(7):855-859.<br />

Malatrasi M., M. Corradi, J.T. Svensson, T.J. Close, M. Gulli, and N. Marmiroli 2006. A<br />

branched-chain amino acid aminotransferase gene isolated from Hordeum vulgare is<br />

differentially regulated by drought stress. Theor. Appl. Genet. 113(6):965-976.<br />

119


Barley Genetics Newsletter (2007) 37: 105-153<br />

Richardson K.L., M.I. Vales, J.G. Kling, C.C. Mundt, and P.M. Hayes. 2006. Pyramiding<br />

and dissecting disease resistance QTL to barley stripe rust. Theor. Appl. Genet.<br />

113(3):485-495.<br />

Skinner J.S., P. Szucs, J. von Zitzewitz, L. Marquez-Cedillo, T. Filichkin, E.J. Stockinger,<br />

M.F. Thomashow, T.H. Chen, and P.M. Hayes. 2006. Mapping of barley homologs to<br />

genes that regulate low temperature tolerance in Arabidopsis. Theor. Appl. Genet.<br />

112(5):832-842.<br />

von Korff M., H. Wang, J. Léon, and K. Pillen. 2006. AB-QTL analysis in spring barley: II.<br />

Detection of favourable exotic alleles for agronomic traits introgressed from wild barley<br />

(H. vulgare ssp. spontaneum). Theor. Appl. Genet. 112(7):1221-1231.<br />

Walia H., C. Wilson, P. Condamine, A.M. Ismail, J. Xu, X. Cui, and T.J. Close. 2007.<br />

Array-based genotyping and expression analysis of barley cv. Maythorpe and Golden<br />

Promise. BMC Genomics. Mar 30; 8:87.<br />

Wang J., H. Raman, M. Zhou, P.R. Ryan, E. Delhaize, D.M. Hebb, N. Coombes, and N.<br />

Mendham. 2007. High-resolution mapping of the Alp locus and identification of a<br />

candidate gene HvMATE controlling aluminium tolerance in barley (Hordeum vulgare<br />

L.). Theor. Appl. Genet. Jun 6 [Epub ahead of print].<br />

Yan G.P. and X.M. Chen. Molecular mapping of a recessive gene for resistance to stripe rust in<br />

barley. Theor. Appl. Genet. 2006 113(3):529-537.<br />

Zhang L., T. Fetch, J. Nirmala, D. Schmierer, R. Brueggeman, B. Steffenson, and A.<br />

Kleinhofs. 2006. Rpr1, a gene required for Rpg1-dependent resistance to stem rust in<br />

barley. Theor. Appl. Genet. 113(5):847-855.<br />

120


Barley Genetics Newsletter (2007) 37: 105-153<br />

Coordinator’s Report: Chromosome 5H<br />

George Fedak<br />

Eastern Cereals and Oilseeds Research Centre<br />

Agriculture and Agri-Food Canada<br />

Ottawa ON K1A 0C6<br />

e-mail: fedakga@agr.gc.ca<br />

The grain hardness locus (Ha) of barley consists of a cluster of genes located on the short arm of<br />

5H designated as Hina, Hinb-1, Hinb-2 and GSP. Eighty diverse barley genotypes were screened<br />

for kernel hardness, ruminant digestibility and haplotypes of the four alleles. The highest level of<br />

genetic variation was obtained with GSP followed by Hina, Hinb-2. Hina was significantly<br />

related to grain hardness while Hinb-1 and Hinb-2 were significantly associated with dry water<br />

digestibility. (Turuspekov et al., 2007).<br />

Using the Nure (winter) x Tremois (spring) mapping population, two low temperature QTL were<br />

located on the long arm of chromosome 5H. FrHi was located in a distal position and Fr-H2 in a<br />

proximal location. The location of the latter coincided with the location of a QTL regulating the<br />

accumulation of two COR proteins; COR14b and TMC-Ap3. Six barley genes for the CBF<br />

transcription factor have been mapped in a single cluster in this region and they represent<br />

candidate genes for Fr-H2. (Francia et.al., 2007)<br />

In a related study, Lombda phage libraries were constructed from 2 spring (Morex and Tremois)<br />

and two winter (Dicktos, Nure) cultivars. Clones containing CBF genes were sequenced. It was<br />

found that the winter varieties have a large duplication at the Fr-H2 gene resulting in an increased<br />

number of CBF genes at this locus. The spring barley Tremois, however, has a significant<br />

deletion at this locus. This suggests that the relative numbers of CBF in the cluster contributes to<br />

different levels of winterhardiness (Knox et.al.,2007).<br />

References:<br />

Francia, E., D. Baraboschi, A. Tondelli, G. Laido, A.M. Stanca, E. Stockinger and N.<br />

Pecchioni, 2007. Fine mapping of a Hv CBF gene cluster, at Fr-H2, a QTL controlling<br />

frost resistance in barley. PAG - XV Poster 331. Plant and Animal Genomes XV<br />

Conference, Jan 13-17, 2007. San Diego CA.<br />

Knox, A.K., H. Chang . and E.I. Stockinger, 2007. Comparative Sequence analysis of CBF<br />

genes at the Fr-H2 locus in four barley cultivars. PAG – XV Poster 321. Plant and Animal<br />

Genomes XV Conference, Jan 13-17, 2007. San Diego CA.<br />

Turuspekov Y., B. Beecher, Y. Darlington, J. Bowman, T. Blake and M. Gioux.<br />

2007.Genetic variation of hardness locus in barley. PAG-XV Poster 329. Plant and<br />

Animal Genomes XV Conference, Jan 13-17, 2007, San Diego CA.<br />

121


Barley Genetics Newsletter (2007) 37: 105-153<br />

Coordinator’s Report: Chromosome 7H<br />

Lynn S. Dahleen<br />

<strong>US</strong>DA-Agricultural Research Service<br />

Fargo, ND 58105, <strong>US</strong>A<br />

e-mail: DAHLEEN@fargo.ars.usda.gov<br />

Barley gene mapping in 2006 showed a greater emphasis on using candidate gene approaches in<br />

addition to standard qualitative and quantitative trait mapping. Increased use of public EST and<br />

BAC libraries was evident, providing tools to better understand the barley genome.<br />

Efforts to map morphological genes have continued. Roder et al. (2006) mapped the shrunken<br />

endosperm gene seg8 to a 4.6 cM interval near the centromere of chromosome 7H, while Taketa<br />

et al. (2006) developed a fine map of the naked caryopsis nud locus, placing it in a 0.66 cM<br />

region. Rostoks et al. (2006) found that the barley homolog of the Arabidopsis HLM1 gene<br />

corresponded to the nec1 locus on chromosome 7H. Allelic variation was uncovered at the locus<br />

that causes necrotic spotting of nec1 plants. Rossini et al. (2006) examined candidate rice genes<br />

in regions syntenous with markers linked to various barley morphological mutants. On<br />

chromosome 7H they found brh1 candidate genes on rice chromosome 6 and candidates for<br />

suKF-76, suKE-74 (suppressors of Hooded) and sld4 on rice chromosomes 6 and 8. The low<br />

resolution of the barley maps in this region resulted in selection of rather large rice regions and<br />

numerous candidate genes. Yan et al. (2006) identified the AtFT flowering locus as an ortholog<br />

of the barley and wheat vernalization gene VRN3. The barley gene VRN-H3 was located on the<br />

short arm of chromosome 7H, not chromosome 1H as previously thought based on loose linkage<br />

with BLP. Szucs et al. (2006) mapped genes for photoreceptor gene families and vernalization<br />

regulation, and compared their locations to QTL for photoperiod response. The barley ortholog<br />

to a wheat flowering repressor, HvVRT-2 mapped to the short arm of chromosome 7H. This<br />

locus coincided with a photoperiod QTL with small effects mapped in the Dicktoo x Morex<br />

population. Tondelli et al. (2006), using a similar approach, mapped candidate genes for cold or<br />

drought response based on sequences identified in other plants. Two orthologs of Arabidopsis<br />

genes (AtFRY1 and AtICE1) that have a prominent role in cold acclimation were identified on<br />

chromosome 7H.<br />

QTL analyses for a variety of traits were reported this year. Chloupek et al. (2006) mapped root<br />

system size traits in a population segregating for two semidwarf genes, sdw1 and ari-e.GP. On<br />

chromosome 7H, they identified a region associated with height, and another region associated<br />

with harvest index, plant weight, root system size at grain filling and total root system size.<br />

Advanced backcross QTL analysis continued, with von Korff et al. (2006) detecting favorable<br />

alleles from wild barley in crosses with Scarlett. Out of the 86 QTL identified for 9 traits, the H.<br />

spontaneum alleles improved performance for 31. QTL for height, heading date, harvest index,<br />

lodging at flowering, vegetative dry biomass, thousand grain weight, brittleness and yield were<br />

located on chromosome 7H. Li et al. (2006), in a similar study of a wild barley x Brenda<br />

advanced backcross, found 100 QTL. Chromosome 7H QTL included yield, heading date,<br />

height, ear length, spikelets per spike, seed per spike, spikes per plant, thousand grain weight,<br />

leaf length, and leaf area loci. Yun et al. (2006) also used advanced backcross lines from a cross<br />

of H. spontaneum with Harrington to validate QTLs for disease resistance loci. A QTL for spot<br />

122


Barley Genetics Newsletter (2007) 37: 105-153<br />

blotch resistance previously identified in a RIL population was confirmed to be located on<br />

chromosome 7H.<br />

Additional disease resistance genes were located in several studies. Cheong et al. (2006) located<br />

a QTL for adult plant resistance to leaf scald using two populations. One of these QTL was<br />

located on the short arm of chromosome 7H. Rossi et al. (2006) located QTL for barley strip rust<br />

and leaf rust resistance plus a powdery mildew resistance QTL on chromosome 7H. Jafary et al.<br />

(2006) located genes involved in nonhost immunity to rust pathogens, including four QTL on<br />

chromosome 7H controlling reactions to seven rust species. Brueggeman et al. (2006) identified<br />

five additional members of the Rpg1 gene family, including one that is closely linked to Rpg1 on<br />

chromosome 7H.<br />

Kilian et al. (2006) examine haplotype structure at seven loci, including the Adh3 and Waxy loci<br />

on chromosome 7H, to compare sequence diversity between 20 domesticated and 25 wild<br />

barleys. As expected, more haplotypes were identified in the wild barley than the domesticated<br />

barley. At Adh3, wild barley showed 15 haplotypes while domesticated barley had three and at<br />

Waxy, the wilds had 17 haplotypes compared to 4 in the domesticated barley. This diversity was<br />

also evident in nucleotide sequence, with more polymorphic sites in the wild barley than in the<br />

domesticated barley. Pickering et al. (2006) examined associations between chromosomes in two<br />

H. vulgare x H. bulbosum hybrids. Chromosome 7HS-7H b S associations were higher than the<br />

average for other chromosome arms in both hybrids examined.<br />

References.<br />

Brueggeman R, T Drader and A Kleinhofs. 2006. The barley serine/threonine kinase gene<br />

Rpg1 providing resistance to stem rust belongs to a gene family with five other members<br />

encoding kinase domains. Theor Appl Genet 113:1147-1158.<br />

Cheong J, K Williams and H Wallwork. 2006. The identification of QTLs for adult plant<br />

resistance to leaf scald in barley. Austral J Agric Res 57:961-965.<br />

Chloupek O, BP Forster and WTB Thomas. 2006. The effect of semi-dwarf genes on root<br />

system size in field-grown barley. Theor Appl Genet 112:779-786.<br />

Jafary H, LJ Szabo and RE Niks. 2006. Innate nonhost immunity in barley to different<br />

heterologous rust fungi is controlled by sets of resistance genes with different and<br />

overlapping specificities. MPMI 19:1270-1279.<br />

Kilian B, H Ozkan, J Kohl, A von Haeseler, F Borale, O Deusch, A Brandolini, C Yucel, W<br />

Martin and F Salamini. 2006. Haplotype structure at seven barley genes: relevance to<br />

gene pool bottlenecks, phylogeny of ear type and site of barley domestication. Mol Gen<br />

Genomics 276:230-241.<br />

Korff M von, H Wang, J Leon and K Pillen. 2006. AB-QTL analysis in spring barley: II.<br />

Detection of favourable exotic alleles for agronomic traits introgressed from wild barley<br />

(H. vulgare ssp. spontaneum). Theor Appl Genet 112:1221-1231.<br />

Li JZ, XQ Huang, F Heinrichs, MW Ganal and MS Roder. 2006. Analysis of QTLs for yield<br />

components, agronomic traits, and disease resistance in an advanced backcross<br />

population of spring barley. Genome 49:454-466.<br />

123


Barley Genetics Newsletter (2007) 37: 105-153<br />

Pickering R, S Klatte and RC Butler. 2006. Identification of all chromosome arms and their<br />

involvement in meiotic homoeologous associations at metaphase 1 in 2 Hordeum vulgare<br />

L. x Hordeum bulbosum L. hybrids. Genome 49:73-78.<br />

Roder MS, C Kaiser and W Weschke. 2006. Molecular mapping of the shrunken endosperm<br />

genes seg8 and sex1 in barley (Hordeum vulgare L.). Genome 49:1209-1214.<br />

Rossi C, A Cuesta-Marcos, I Vales, L Gomez-Pando, G Orjeda, R Wise, K Sato, K Hori, F<br />

Capettini, H Vivar, X Chen and P Hayes. 2006. Mapping multiple disease resistance<br />

genes using a barley mapping population evaluated in Peru, Mexico, and the <strong>US</strong>A. Mol<br />

Breed 18:355-366.<br />

Rossini L, A Vecchietti, L Nicoloso, N Stein, S Franzago, F Salamini and C Pozzi. 2006.<br />

Candidate genes for barley mutants involved in plant architecture: an in silico approach.<br />

Theor Appl Genet 112:1073-1085.<br />

Rostoks N, D Schmierer, S Mudie, T Drader, R Brueggeman, DG Caldwell, R Waugh and<br />

A Kleinhofs. 2006. Barley necrotic locus nec1 encodes the cyclic nucleotide-gated ion<br />

channel 4 homologous to the Arabidopsis HLM1. Mol Gen Genomics 275:159-168.<br />

Szucs P, I Karsai, J von Zitzewitz, K Meszarus, LLD Cooper, YQ Gu, THH Chen, PM<br />

Hayes and JS Skinner. 2006. Positional relationships between photoperiod response<br />

QTL and photoreceptor and vernalization genes in barley. Theor Appl Genet 112:1277-<br />

1285.<br />

Taketa S, T Awayama, S Amano, Y Sakurai and M Ichii. 2006. High-resolution mapping of<br />

the nud locus controlling the naked caryopsis in barley. Plant Breed 125:337-342.<br />

Tondelli A, E Francia, D Barbaschi, A Aprile, JS Skinner, EJ Stockinger, AM Stanca and<br />

N Pecchioni. 2006. Mapping regulatory genes as candidates for cold and drought stress<br />

tolerance in barley. Theor Appl Genet 112:445-454.<br />

Yan L, D Fu, C Li, A Blechl, G Tranquilli, M Bonafede, A Sanchez, M Valarik, S Yasuda<br />

and J Dubcovsky. 2006. The wheat and barley vernalization gene VRN3 is an orthologue<br />

of FT. PNAS 103:19581-19586.<br />

Yun SJ, L Gyenis, E Bossolini, PM Hayes, I Matus, KP Smith, BJ Steffenson, R Tuberosa<br />

and GJ Muehlbauer. 2006. Validation of quantitative trait loci for multiple disease<br />

resistance in barley using advanced backcross lines developed with a wild barley. Crop<br />

Sci 46:1179-1186.<br />

124


Barley Genetics Newsletter (2007) 37: 105-153<br />

Integrating Molecular and Morphological/Physiological Marker Maps<br />

A. Kleinhofs<br />

Dept. Crop and Soil Sciences and<br />

School of Molecular Biosciences<br />

Washington State University<br />

Pullman, WA 99164-6420, <strong>US</strong>A<br />

e-mail: andyk@wsu.edu<br />

There has been only limited progress in mapping morphological markers during the past year.<br />

However, there is a major effort under way in Europe to map the morphological mutant isolines<br />

developed by Jerry Franckowiak (for details see<br />

http://www.smallgraincereals.org/SGCNewsletterSummer2007.pdf). This effort, when<br />

completed, should provide a map of 1000 morphological markers with accurate reference to<br />

molecular markers.<br />

A recessive barley stripe rust resistance gene rpsGZ (from Grannenlose Zweizeilige) was<br />

mapped to chromosome 4H bin9 (Yan and Chen, 2006). This gene cosegregated with several<br />

RGAP markers identified in the publication complete with primer information. It is also closely<br />

linked to SSR markers EBmac0679 and EBmac0701.<br />

Septoria speckled leaf blotch resistance genes Rsp1, Rsp2, and Rsp3 were mapped (Lee and<br />

Neate, 2007a). Rsp2 cosegregated with MWG938 placing it on chromosome 5(1H) bin2. Rsp3<br />

was closely linked to Rsp2 on chromosome 5S(1HS). Rsp2 was flanked by RAPD markers<br />

OPBA12314C and OPB17451R at 2.4 and 3.5 cM, respectively. I was not able to locate these to<br />

a specific bin. Rsp1 was mapped to chromosome 3H short arm flanked by RAPD markers<br />

OPC2441R (3.0 cM) and UBC285158R (4.3 cM). In addition closely linked DArT markers were<br />

also identified. Specific bin location was not possible. The RAPD markers were converted into<br />

sequence tagged markers and primer sequences published (Lee and Neate, 2007b).<br />

Aluminum tolerance gene Alp was mapped to chromosome 4H bin7 closely linked to ABG715<br />

and cosegregating with several markers including HvMATE (AV942930) which was proposed<br />

as a candidate gene for the Alp locus (Wang et al., 2007)<br />

Five barley flowering locus T-like (FT-like) genes were mapped (Faure et al., 2007). HvFT1<br />

maps on chromosome 1(7H) between markers AF022725 and Bmac31 closely linked to VRN-H3<br />

and ABC158 placing it in bin4. The VRN-H3 gene was previously believed to be located on<br />

chromosome 5(1H), but more recently shown to be on chromosome 1(7H) (Yan et al., 2006).<br />

HvFT2 was mapped on chromosome 3H between markers Bmac067 and MWG985 placing it in<br />

bin6. HvHT3 was mapped to chromosome 7(5H) cosegregating with PSR162 placing it in bin11.<br />

HvFT4 was mapped to the short arm of chromosome 2H proximal to cMWG663 placing it in<br />

bin6. HvHT5 was mapped to chromosome 4H long arm cosegregating with scsnp20989. It was<br />

not possible for me to determine the bin placement.<br />

125


Barley Genetics Newsletter (2007) 37: 105-153<br />

The naked caryopsis gene (nud) has been previously mapped to chromosome 1(7H) bin 7. It has<br />

now been mapped at a high resolution (Taketa et al., 2006). The closest SCAR marker SKT9,<br />

mapped 0.06 cM from the nud locus based on 4,760 gametes from 6 mapping populations.<br />

Barley lipoxygenase (Lox-1) thermostability factor was shown to cosegregate with the structural<br />

gene LoxA (Hirota et al., 2006). The LoxA and LoxC loci were previously mapped to<br />

chromosome 4H bin3 and chromosome 7(5H) probably bin 10 (van Mechelen et al., 1999).<br />

Barley homologs of large number of Arabidopsis low temperature regulatory genes were mapped<br />

assigning either linkage map or chromosome locations to 1 ICE1, 2 ZAT12 and 17 CBF<br />

homologs (Skinner et al., 2006). Eleven of the CBF genes with assigned linkage map positions<br />

formed two tandem clusters on 5HL(7L). These were coincident with reported Triticeae low<br />

temperature tolerance and CO R gene accumulation QTL and suggest that one or more of the<br />

CBF genes may be candidates for Fr-H2 QTL.<br />

Bin Assignments for Morphological Map Markers and closest molecular marker<br />

* - indicates that the gene has been cloned<br />

red - indicates that the gene is very accurately mapped with molecular markers<br />

yellow - indicates that it is fairly accurately mapped with molecular markers<br />

blue - indicates that the gene has been approximately mapped mainly using Bulked<br />

Segregant Analysis<br />

Chr.1(7H)<br />

BIN1 ABG704<br />

*Rpg1 RSB228 Brueggeman et al., PNAS 99:9328, ‘02<br />

Run1<br />

Rdg2a MWG851A Bulgarelli et al., TAG 108:1401, ‘04<br />

Rrs2 MWG555A Schweizer et al., TAG 90:920, ‘95<br />

mlt<br />

brh1 MWG2074B Li et al., 8 th IBGS 3:72, ‘00<br />

BIN2 ABG320<br />

Est5 iEst5 Kleinhofs et al., TAG 86:705, ‘93<br />

fch12 BCD130 Schmierer et al., BGN 31:12, ‘01<br />

*wax Wax Kleinhofs BGN 32:152, ‘02<br />

gsh3 His3A Kleinhofs BGN 32:152, ‘02<br />

BIN3 ABC151A<br />

fch5 ABC167A Kleinhofs BGN 32:152, ‘02<br />

Rcs5 KAJ185 Johnson & Kleinhofs, unpublished<br />

yvs2<br />

cer-ze ABG380 Kleinhofs BGN 27:105, ‘96<br />

BIN4 ABG380<br />

wnd<br />

*HvFT1 ABC158 Faure et al., Genetics 176:599, '07<br />

VrnH3 ABC158 Yan et al., PNAS 103:19581, '06<br />

Lga BE193581 Johnson & Kleinhofs, unpublished<br />

abo7<br />

126


Barley Genetics Newsletter (2007) 37: 105-153<br />

BIN5 ksuA1A<br />

ant1<br />

nar3 MWG836 Kleinhofs BGN 32:152, ‘02<br />

ert-m<br />

ert-a<br />

BIN6 ABC255<br />

ert-d<br />

fch8<br />

fst3<br />

cer-f<br />

msg14<br />

BIN7 ABG701<br />

dsp1 cMWG704 Sameri & Komatsuda JARQ 41:195, '07<br />

msg10<br />

rsm1 ABC455 Edwards & Steffenson, Phytopath. 86:184,’96<br />

sex6<br />

seg5<br />

seg2<br />

pmr ABC308 Kleinhofs BGN 27:105, ‘96<br />

mo6b Hsp17 Soule et al., J Her. 91:483, ‘00<br />

nud sKT9 Taketa et al., Plant Breeding 125:337, '06<br />

fch4 MWG003 Kleinhofs BGN 27:105, ‘96<br />

BIN8 *Amy2 Amy2 Kleinhofs et al., TAG 86:705, ‘93<br />

lks2 WG380B Costa et al., TAG 103:415, ‘01<br />

ubs4<br />

blx2<br />

BIN9 RZ242<br />

lbi3<br />

Rpt4 Psr117D Williams et al., TAG 99:323, ‘99<br />

xnt4<br />

lpa2 ? Larson et al., TAG 97:141, ‘98<br />

msg50<br />

Rym2<br />

seg4<br />

BIN10 ABC310B<br />

Xnt1 BF626025 Hansson et al., PNAS 96:1744, ‘99<br />

xnt-h BF626025 Hansson et al., PNAS 96:1744, ‘99<br />

BIN11 ABC305<br />

Rph3<br />

Tha2 Toojinda et al., TAG 101:580, ‘00<br />

BIN12 ABG461A<br />

Mlf<br />

xnt9<br />

seg1<br />

msg23<br />

BIN13 Tha<br />

Rph19 Rlch4(Nc) Park & Karakousis Plt. Breed. 121:232. ‘02<br />

127


Barley Genetics Newsletter (2007) 37: 105-153<br />

Chr.2(2H)<br />

BIN1 MWG844A<br />

sbk<br />

brh3 Bmac0134 Dahleen et al., J. Heredity 96:654, ‘05<br />

BIN2 ABG703B<br />

BIN3 MWG878A gsh6 Kleinhofs BGN 32:152, ‘02<br />

gsh1<br />

gsh8<br />

BIN4 ABG318<br />

Eam1<br />

Ppd-H1 MWG858 Laurie et al., Heredity 72:619, ‘94<br />

sld2<br />

rtt<br />

flo-c<br />

sld4<br />

BIN5 ABG358<br />

fch15<br />

brc1<br />

com2<br />

BIN6 Pox<br />

msg9<br />

abo2<br />

Rph15 P13M40 Weerasena et al., TAG 108:712 ‘04<br />

rph16 MWG874 Drescher et al., 8thIBGS II:95, ‘00<br />

BIN7 Bgq60<br />

yst4 CDO537 Kleinhofs BGN 32:152, ‘02<br />

Az94 CDO537 Kleinhofs BGN 32:152, ‘02<br />

gai MWG2058 Börner et al., TAG 99:670, ‘99<br />

msg33<br />

*HvCslF (barley Cellulose synthase-like) Burton et al., Science 311:1940 ‘06<br />

*Bmy2<br />

msg3<br />

fch1<br />

BIN8 ABC468<br />

Eam6 ABC167b Tohno-oka et al., 8thIBGS III:239, ‘00<br />

gsh5<br />

msg2<br />

eog ABC451 Kleinhofs BGN 27:105, ‘96<br />

abr<br />

cer-n<br />

BIN9 ABC451<br />

Gth<br />

hcm1<br />

wst4<br />

*vrs1 MWG699 Komatsuda et al., Genome 42:248, ‘00<br />

BIN10 MWG865<br />

cer-g<br />

Lks1<br />

mtt4<br />

Pre2<br />

128


Barley Genetics Newsletter (2007) 37: 105-153<br />

Chr. 3(3H)<br />

msg27<br />

BIN11 MWG503<br />

Rha2 AWBMA21 Kretschmer et al., TAG 94:1060, ‘97<br />

Ant2 MWG087 Freialdenhoven et al., Plt. Cell 6:983, ’94<br />

*Rar1 AW983293B Freialdenhoven et al., Plt. Cell 6:983, ’94<br />

fol-a<br />

gal MWG581A Börner et al., TAG 99:670, ‘99<br />

fch14<br />

Pau<br />

BIN12 ksuD22<br />

Pvc<br />

BIN13 ABC252<br />

lig BCD266 Pratchett & Laurie Hereditas 120:35, ‘94<br />

nar4 Gln2 Kleinhofs BGN 27:105, ‘96<br />

Zeo1 cnx1 Costa et al., TAG 103:415, ‘01<br />

lpa1 ABC157 Larson et al., TAG 97:141, ‘98<br />

BIN14 ABC165<br />

BIN15 MWG844B<br />

gpa CDO036 Kleinhofs BGN 27:105, ‘96<br />

wst7 MWG949A Costa et al., TAG 103:415, ‘01<br />

MlLa Ris16 Giese et al., TAG 85:897, ‘93<br />

trp<br />

BIN1 Rph5 ABG070 Mammadov et al., TAG 111:1651, ‘05<br />

Rph6 BCD907 Zhong et al., Phytopath. 93:604, ‘03<br />

Rph7 MWG848 Brunner et al., TAG 101:783, ‘00<br />

BIN2 JS195F BI958652; BF631357; BG369659<br />

ant17<br />

sld5<br />

mo7a ABC171A Soule et al., J. Hered. 91:483, ‘00<br />

brh8<br />

BIN3 ABG321<br />

xnt6<br />

BIN4 MWG798B<br />

btr1 Senthil & Komatsuda Euphytica 145:215, ‘05<br />

btr2 Senthil & Komatsuda Euphytica 145:215, ‘05<br />

lzd<br />

alm ABG471 Kleinhofs BGNL 27:105, ‘96<br />

BIN5 BCD1532<br />

abo9<br />

sca<br />

yst2<br />

dsp10<br />

BIN6 ABG396<br />

Rrs1 Graner et al., TAG 93: 421 ´96<br />

Rh/Pt ABG396 Smilde et al., 8th IBGS 2:178, ‘00<br />

Rrs.B87 BCD828 Williams et al., Plant Breed. 120:301, ‘01<br />

129


Barley Genetics Newsletter (2007) 37: 105-153<br />

AtpbB<br />

abo6<br />

xnt3<br />

HvHT2 Bmac067 Faure et al., Genetics 176:599, '07<br />

msg5<br />

ari-a<br />

yst1<br />

zeb1<br />

ert-c<br />

ert-ii<br />

cer-zd<br />

Ryd2 WG889B Collins et al., TAG 92:858, ‘96<br />

*uzu AB088206 Saisho et al., Breeding Sci. 54:409, ‘04<br />

BIN7 MWG571B<br />

cer-r<br />

BIN8 ABG377<br />

wst6<br />

cer-zn<br />

sld1<br />

BIN9 ABG453<br />

wst1<br />

BIN10 CDO345<br />

vrs4<br />

Int1<br />

gsh2<br />

BIN11 CDO113B<br />

als<br />

sdw1 PSR170 Laurie et al., Plant Breed. 111:198, ‘93<br />

BIN12 His4B<br />

sdw2<br />

BIN13 ABG004<br />

Pub ABG389 Kleinhofs et al., TAG 86:705, ‘93<br />

BIN14 ABC161<br />

cur2<br />

BIN15 ABC174<br />

Rph10<br />

fch2<br />

BIN16 ABC166<br />

eam10<br />

Est1/2/3<br />

*rym4 eIF4E Stein et al.,Plt. J. 42:912, ‘05<br />

*rym5 eIF4E and Kanyuka et al., Mol. Plant Path. 6:449, ’05<br />

Est4<br />

ant28<br />

Chr.4(4H)<br />

BIN1 MWG634<br />

BIN2 JS103.3<br />

fch9<br />

130


Barley Genetics Newsletter (2007) 37: 105-153<br />

sln<br />

BIN3 Ole1<br />

Dwf2 Ivandic et al., TAG 98:728, ‘99<br />

*LoxA MWG011b van Mechelen et al., Plt. Mol. Biol. 39:1283, '99<br />

LoxB van Mechelen et al., Plt. Mol. Biol. 39:1283, '99<br />

Lox-1 thermo Hirota et al., Plant breeding 125:231, '06<br />

Ynd<br />

int-c MWG2033 Komatsuda, TAG 105:85, ‘02<br />

Zeo3<br />

glo-a<br />

rym1 MWG2134 Okada et al., Breeding Sci. 54:319, ‘04<br />

BIN4 BCD402B<br />

*Kap X83518 Müller et al., Nature 374:727, ‘95<br />

lbi2<br />

zeb2<br />

lgn3<br />

BIN5 BCD808B<br />

lgn4<br />

lks5<br />

eam9<br />

msg24<br />

BIN6 ABG484<br />

glf1<br />

rym11 MWG2134 Bauer et al., TAG 95:1263, ‘97<br />

Mlg MWG032 Kurth et al., TAG 102:53, ‘01<br />

cer-zg<br />

brh2<br />

BIN7 bBE54A<br />

glf3<br />

Alp HvMATE Wang et al., TAG 115:265 '07<br />

frp<br />

min1<br />

blx4<br />

sid<br />

blx3<br />

BIN8 BCD453B<br />

blx1<br />

BIN9 ABG319A<br />

ert1<br />

rpsGZ EBmac0679 Yan & Chen, TAG 113:529, '06<br />

BIN10 KFP221<br />

*mlo P93766 Bueschges et al., Cell 88:695, ‘97<br />

BIN11 ABG397<br />

BIN12 ABG319C<br />

Hsh HVM067 Costa et al., TAG 103:415, ‘01<br />

Hln<br />

*sgh1(ZCCT-H; HvSnf2) Zitzewitz et al., PMB 59:449, ‘05<br />

yhd1<br />

BIN13 *Bmy1 pcbC51 Kleinhofs et al., TAG 86:705, ‘93<br />

rym8 MWG2307 Bauer et al., TAG 95:1263, ‘97<br />

131


Barley Genetics Newsletter (2007) 37: 105-153<br />

rym9 MWG517 Bauer et al., TAG 95:1263, ‘97<br />

Wsp3<br />

Chr. 5(1H)<br />

BIN1 Tel5P<br />

Rph4<br />

Mlra<br />

Cer-yy<br />

Sex76 Hor2 Netsvetaev BGN 27:51, ‘97<br />

*Hor5 Hor5 Kleinhofs et al., TAG 86:705, ‘93<br />

BIN2 MWG938<br />

Rsp2 MWG938 Lee & Neate, Phytopath. 97:155, '07<br />

*Hor2 Hor2 Kleinhofs et al., TAG 86:705, ‘93<br />

Rrs14 Hor2 Garvin et al., Plant Breed. 119:193-196, ‘00<br />

*Mla6 AJ302292 Halterman et al., Plt J. 25:335, ‘01<br />

BIN3 MWG837<br />

*Hor1 Hor1 Kleinhofs et al., TAG 86:705, ‘93<br />

Rps4<br />

Mlk<br />

BIN4 ABA004<br />

Lys4<br />

BIN5 BCD098<br />

Mlnn;<br />

msg31;<br />

sls;<br />

msg4;<br />

fch3;<br />

BIN6 Ica1<br />

amo1<br />

BIN7 JS074<br />

clh<br />

vrs3<br />

Ror1 ABG452 Collins et al., Plt. Phys. 125:1236, ‘01<br />

BIN8 Pcr2<br />

fst2<br />

cer-zi<br />

cer-e<br />

ert-b<br />

MlGa<br />

msg1<br />

xnt7<br />

BIN9 Glb1<br />

*nec1 BF630384 Rostoks et al., MGG 275:159, '06<br />

BIN10 DAK123B<br />

abo1<br />

Glb1<br />

BIN11 PSR330<br />

*HvFT3 PSR162 Faure et al., Genetics 176:599, '07<br />

PpdH2 PSR162 Laurie et al., Genome 38:575, '95<br />

wst5<br />

132


Barley Genetics Newsletter (2007) 37: 105-153<br />

cud2<br />

BIN12 MWG706A<br />

rlv<br />

lel1<br />

BIN13 BCD1930<br />

Blp ABC261 Costa et al., TAG 103:415, ‘01<br />

BIN14 ABC261<br />

fch7<br />

trd<br />

eam8<br />

Chr. 6(6H)<br />

BIN1 ABG062<br />

*Nar1 X57845 Kleinhofs et al., TAG 86:705, ‘93<br />

abo15<br />

BIN2 ABG378B<br />

nar8 ABG378B Kleinhofs BGN 27:105, ‘96<br />

nec3<br />

Rrs13<br />

BIN3 MWG652A<br />

BIN4 DD1.1C<br />

msg36<br />

BIN5 ABG387B<br />

nec2<br />

ant21<br />

msg6<br />

eam7<br />

BIN6 Ldh1<br />

rob HVM031 Costa et al., TAG 103:415, ‘01<br />

sex1<br />

gsh4<br />

ant13<br />

cul2 Crg4(KFP128) Babb & Muehlbauer BGN 31:28, ‘01<br />

fch11<br />

mtt5<br />

abo14<br />

BIN7 ABG474<br />

BIN8 ABC170B<br />

BIN9 *Nar7 X60173 Warner et al., Genome 38:743, ‘95<br />

*Amy1 JR115 Kleinhofs et al., TAG 86:705, ‘93<br />

*Nir pCIB808 Kleinhofs et al., TAG 86:705, ‘93<br />

mul2<br />

cur3<br />

BIN10 MWG934<br />

lax-b<br />

raw5<br />

cur1<br />

BIN11 Tef1<br />

BIN12 xnt5<br />

133


Barley Genetics Newsletter (2007) 37: 105-153<br />

Aat2<br />

BIN13 Rph11 Acp3 Feuerstein et al., Plant breed. 104:318, ‘90<br />

lax-c<br />

BIN14 DAK213C<br />

dsp9<br />

Chr. 7(5H)<br />

BIN1 DAK133<br />

abo12<br />

msg16<br />

ddt<br />

BIN2 MWG920.1A<br />

dex1<br />

msg19<br />

nld<br />

fch6<br />

glo-b<br />

BIN3 cud1 ABG705A<br />

lys3<br />

fst1<br />

blf1<br />

vrs2<br />

BIN4 ABG395<br />

cer-zj<br />

cer-zp<br />

msg18<br />

wst2<br />

Rph2 ITS1 Borovkova et al., Genome 40:236, ‘97<br />

lax-a PSR118 Laurie et al., TAG 93:81, ‘96<br />

com1<br />

ari-e<br />

ert-g<br />

ert-n<br />

BIN5 Ltp1<br />

rym3 MWG028 Saeki et al., TAG 99:727, ‘99<br />

BIN6 WG530<br />

BIN7 ABC324<br />

BIN8 ABC302A<br />

BIN9 BCD926<br />

srh ksuA1B Kleinhofs et al., TAG 86:705, ‘93<br />

cer-i<br />

mtt2<br />

lys1<br />

cer-t<br />

dsk<br />

var1<br />

cer-w<br />

Eam5<br />

134


Barley Genetics Newsletter (2007) 37: 105-153<br />

BIN10 ABG473<br />

raw1<br />

msg7<br />

BIN11 MWG514B<br />

Rph9/12ABG712 Borokova et al., Phytopath. 88:76, ‘98<br />

*Sgh2 (HvBM5A) Zitzewitz et al., PMB 59:449, ‘05<br />

*Ror2 AY246906 Collins et al., Nature 425:973, ‘03<br />

lbi1<br />

Rha4<br />

raw2<br />

BIN12 WG908<br />

none<br />

BIN13 ABG496<br />

rpg4 ARD5303 Druka et al., unpublished<br />

RpgQ ARD5304 Druka et al., unpublished<br />

BIN14 ABG390<br />

var3<br />

BIN15 ABG463<br />

135


Barley Genetics Newsletter (2007) 37: 105-153<br />

References:<br />

Babb, S.L. and G.J. Muehlbauer. 2001. Map location of the Barley Tillering Mutant uniculm2<br />

(cul2) on Chromosome 6H. BGN31:28.<br />

Bauer, E., J. Weyen, A. Schiemann, A. Graner, and F. Ordon. 1997. Molecular mapping of<br />

novel resistance genes against Barley Mild Mosaic Virus (BaMMV). Theor. Appl. Genet.<br />

95:1263-1269.<br />

Borovkova, I.G., Y. Jin, B.J. Steffenson, A. Kilian, T.K. Blake, and A. Kleinhofs. 1997.<br />

Identification and mapping of a leaf rust resistance gene in barley line Q21861. Genome<br />

40:236-241.<br />

Borokova, I.G., Y. Jin, and B.J. Steffenson. 1998. Chromosomal Location and Genetic<br />

Relationship of Leaf Rust Resistance Genes Rph9 and Rph12 in Barley. Phytopathology<br />

88:76-80.<br />

Börner, A., V. Korzun, S. Malyshev, V. Ivandic, and A. Graner. 1999. Molecular mapping of<br />

two dwarfing genes differing in their GA response on chromosome 2H of barley. Theor.<br />

Appl. Genet. 99:670-675.<br />

Brueggeman, R., N. Rostoks, D. Kudrna, A. Kilian, F. Han, J. Chen, A. Druka, B.<br />

Steffenson, and A. Kleinhofs. 2002. The barley stem-rust resistance gene Rpg1 is a<br />

novel disease-resistance gene with homology to receptor kinases. Proc. Natl. Acad. Sci.<br />

<strong>US</strong>A 99:9328-9333.<br />

Brunner, S., B. Keller, and C. Feuillet. 2000. Molecular mapping of the Rph7.g leaf rust<br />

resistance gene in barley (Hordeum vulgare L.). Theor. Appl. Genet. 101:763-788.<br />

Büschges, R., K. Hollricher, R. Panstruga, G. Simons, M. Wolter, A. Frijters, R. van<br />

Daelen, T. van der Lee, P. Diergaarde, J. Groenendijk, S. Töpsch, P. Vos, F.<br />

Salamini, and P. Schulze-Lefert. 1997. The barley mlo gene: A novel control element<br />

of plant pathogen resistance. Cell 88:695-705.<br />

Bulgarelli, D., N.C. Collins, G. Tacconi, E. Dellaglio, R. Brueggeman, A. Kleinhofs, A.M.<br />

Stanca, and G. Vale. 2004. High resolution genetic mapping of the leaf stripe resistance<br />

gene Rdg2a in barley. Theor. Appl. Genet. 108:1401-1408.<br />

Burton, R.A., S.M. Wilson, M. Hrmova, A.J. Harvey, N.J. Shirley, A. Medhurst, B.A.<br />

Stone, E.J. Newbigin, A. Bacic, and G.B. Fincher. 2006. Cellulose synthase-like CslF<br />

genes mediate the synthesis of cell wall (1,3; 1,4)-b-D-glucans. Science 311:1940-1943.<br />

Collins, N.C., N.G. Paltridge, C.M. Ford, and R.H. Symons.1996. The Yd2 gene for barley<br />

yellow dwarf virus resistance maps close to the centromere on the long arm of barley<br />

chromosome 3. Theor. Appl. Genet. 92:858-864.<br />

Collins, N.C., T. Lahaye, C. Peterhänsel, A. Freialdenhoven, M. Corbitt, and P. Schulze-<br />

Lefert. 2001. Sequence haplotypes revealed by sequence-tagged site fine mapping of the<br />

Ror1 gene in the centromeric region of barley chromosome 1H. Plant Physiology<br />

125:1236-1247.<br />

136


Barley Genetics Newsletter (2007) 37: 105-153<br />

Collins, N.C., H. Thordal-Christensen, V. Lipka, S. Bau, E. Kombrink, J-L. Qiu, R.<br />

Hückelhoven, N. Stein, A. Freialdenhoven, S.C. Somerville, and P. Schulze-Lefert.<br />

2003. Snare-protein-mediated disease resistance at the plant cell wall. Nature 425:973-<br />

976.<br />

Costa, J.M., A. Corey, M. Hayes, C. Jobet, A. Kleinhofs, A. Kopisch-Obusch, S.F. Kramer,<br />

D. Kudrna, M. Li, O. Piera-Lizaragu, K. Sato, P. Szues, T. Toojinda, M.I. Vales,<br />

and R.I. Wolfe. 2001. Molecular mapping of the Oregon Wolfe Barleys: a<br />

phenotypically polymorphic doubled-haploid population. Theor. Appl. Genet. 103:415-<br />

424.<br />

Drescher, A., V. Ivandic, U. Walther, and A. Graner. 2000. High-resolution mapping of the<br />

Rph16 locus in barley. p. 95-97. In: S. Logue (ed.) Barley Genetics VIII. Volume II.<br />

Proc. Eigth Int. Barley Genet. Symp. Adelaide. Dept. Plant Science, Waite Campus,<br />

Adelaide University, Glen Osmond, South Australia.<br />

Dahleen, L.S., L.J. Vander Wal, and J.D. Franckowiak. 2005. Characterization and molecular<br />

mapping of genes determining semidwarfism in barley. J. Heredity 96:654-662.<br />

Edwards, M.C. and B.J. Steffenson. 1996. Genetics and mapping of barley stripe mosaic virus<br />

resistance in barley. Phytopath. 86;184-187.<br />

Faure S, J. Higgins, A. Turner, and D.A. Laurie. 2007. The FLOWERING LOC<strong>US</strong> T-like<br />

gene family in barley (Hordeum vulgare). Genetics 176:599-609.<br />

Feuerstein, U., A.H.D. Brown, and J.J. Burdon. 1990. Linkage of rust resistance genes from<br />

wild barley (Hordeum spontaneum) with isoenzyme markers. Plant. Breed. 104:318-324.<br />

Freialdenhoven, A., B. Scherag, K. Hollrichter, D.B. Collinge, H. Thordal-Christensen, and<br />

P. Schulze-Lefert. 1994. Nar-1 and Nar-2, two loci required for Mla12-specified racespecific<br />

resistance to powdery mildew in barley. Plant Cell 6:983-994.<br />

Garvin, D.F., A.H.D. Brown, H. Raman, and B.J. Read. 2000. Genetic mapping of the barley<br />

Rrs14 scald resistance gene with RLFP, isozyme and seed storage protein marker. Plant<br />

Breeding 119:193-196.<br />

Giese, H., A.G. Holm-Jensen, H.P. Jensen, and J. Jensen. 1993. Localisation of the<br />

Laevigatum powdery mildew resistance gene to barley chromosome 2 by the use of<br />

RLFP markers. Theor. Appl. Genet. 85:897-900.<br />

Graner, A. and A. Tekauz. 1996. RFLP mapping in barley of a dominant gene conferring to<br />

scald (Rynchosporium secalis). Theor. Appl. Genet. 93:421-425.<br />

Haltermann, D., F. Zhou, F. Wei, R.P. Wise, and P. Schulze-Lefert. 2001. The MLA6 coiled<br />

coil, NBS-LRR protein confers AvrMla6-dependent resistance specificity to Blumeria<br />

graminis f. sp. hordei in barley and wheat. Plt. J. 25:335-348.<br />

137


Barley Genetics Newsletter (2007) 37: 105-153<br />

Hansson, A., C.G. Kannangara, D. von Wettstein, and M. Hansson. 1999. Molecular basis<br />

for semidomiance of missense mutations in the XANTHA-H (42-kDa) subunit of<br />

magnesium chelatase. Proc. Natl. Acad. Sci. <strong>US</strong>A 96:1744-1749.<br />

Hirota, N., T. Kaneko, K. Ito, and K. Takeda. 2006. Mapping a factor controlling the<br />

thermostability of seed lipoxygenase-1 in barley. Plant Breeding 125:231-235.<br />

Ivandic, V., S. Malyshev, V. Korzun, A. Graner, and A. Börner. 1999. Comparative mapping<br />

of a gibberellic acid-insensitive dwarfing gene (Dwf2) on chromosome 4HS in barley.<br />

Theor. Appl. Genet. 98:728-731.<br />

Kanyuka, K., A. Druka, D..G. Caldwell, A. Tymon, N. McCallum, R. Waugh, and M. J.<br />

Adams. 2005. Evidence that the recessive bymovirus resistance locus rym4 in barley<br />

corresponds to the eukaryotic translation initiation factor 4E gene. Molecular Plant<br />

pathology 6:449-458.<br />

Kleinhofs, A., A. Kilian, M.A. Saghai Marrof, R.M. Biyashev, P. Hayes, F.Q. Chen, N.<br />

Lapitan, A. Fenwick, T.K. Blake, V. Kanazin, E. Ananiev, L. Dahleen, D. Kudrna, J.<br />

Bollinger, S.J. Knapp, B. Liu, M. Sorells, M. Heun, J.D. Franckowiak, D. Hoffman,<br />

R. Skadsen, and B.J. Steffenson. 1993. A molecular, isozyme and morphological map<br />

of the barley (Hordeum vulgare) genome. Theor. Appl. Genet. 86:705-712.<br />

Kleinhofs, A. 1996. Integrating Barley RFLP and Classical Marker Maps. Coordinator’s report.<br />

BGN27:105-112.<br />

Kleinhofs, A. 2002. Integrating Molecular and Morphological/Physiological Marker Maps.<br />

Coordinator’s Report. BGN32:152-159.<br />

Komatsuda, T., W. Li, F. Takaiwa, and S. Oka. 1999. High resolution map around the vrs1<br />

locus controlling two- and six-rowed spike in barley. (Hordeum vulgare). Genome<br />

42:248-253.<br />

Komatsuda, T., and Y. Mano. 2002. Molecular mapping of the intermedium spike-c (int-c) and<br />

non-brittle rachis 1 (btr1) loci in barley (Hordeum vulgare L.). Theor. Appl Genet.<br />

105:85-90.<br />

Kretschmer, J.M., K.J. Chalmers, S. Manning, A. Karakousis, A.R. Barr, A.K.M.R. Islam,<br />

S.J. Logue, Y.W. Choe, S.J. Barker, R.C.M. Lance, and P. Langridge. 1997. RFLP<br />

mapping of the Ha2 cereal cyst nematode resistance in barley.Theor. Appl. Genet.<br />

94:1060-1064.<br />

Kurth, J., R. Kolsch, V. Simons, and P. Schulze-Lefert. 2001. A high-resolution genetic map<br />

and a diagnostic RFLP marker for the Mlg resistance locus to powdery mildew in barley.<br />

Theor. Appl. Genet. 102:53-60.<br />

Larson, S.R., K.A. Young, A. Cook, T.K. Blake, and V. Raboy. 1998. Linkage mapping of<br />

two mutations that reduce phytic acid content of barley grain. Theor. Appl. Genet.<br />

97:141-146.<br />

138


Barley Genetics Newsletter (2007) 37: 105-153<br />

Laurie, D.A., N. Pratchett, C. Romero, E. Simpson, and J.W. Snape. 1993. Assignment of<br />

the denso dwarfing gene to the long arm of chromosome 3 (3H) of barley by use of RFLP<br />

markers. Plant. Breed. 111:198-203.<br />

Laurie, D.A., N. Pratchett, J.H. Bezan, and J.W. Snape. 1994. Genetic analysis of a<br />

photoperiod response gene on the short arm of chromosome 2 (2H) of Hordeum vulgare<br />

(barley). Heredity 72:619-627.<br />

Laurie, D.A., N. Pratchett, J.H. Bezan, and J.W. Snape. 1995. RFLP mapping of five major<br />

genes and eight quantitative trait loci controlling flowering time in a winter x spring<br />

barley (Hordeum vulgare L.) cross. Genome 38:575-585.<br />

Laurie, D.A., N. Pratchett, R.A. Allen, and S.S. Hantke. 1996. RFLP mapping of the barley<br />

homeotic mutant lax-a. Theor. Appl. Genet. 93:81-85.<br />

Lee S.H. and S.M. Neate. 2007a. Molecular mapping of Rsp1, Rsp2, and Rsp3 genes conferring<br />

resistance to Septoria speckled leaf blotch in barley. Phytopathology 97:155-161.<br />

Lee S.H. and S.M. Neate. 2007b. Sequence tagged site markers to Rsp1, Rsp2, and Rsp3 genes<br />

for resistance to Septoria speckled leaf blotch in barley. Phytopathology 97:161-169.<br />

Li. M., D. Kudrna, and A. Kleinhofs. 2000. Fine mapping of a Semi-dwarf gene Brachytic1 in<br />

barley. p. 72-74. In: S. Logue (ed.) Barley Genetics VIII. Volume III. Proc. Eigth Int.<br />

Barley Genet. Symp. Adelaide. Dept. Plant Science, Waite Campus, Adelaide University,<br />

Glen Osmond, South Australia.<br />

Mammadov, J.A., B. J. Steffenson, and M.A. Saghai Maroof. 2005. High resolution mapping<br />

of the barley leaf rust resistance gene Rph5 using barley expressed sequence tags (ESTs)<br />

and synteny with rice. Theor. Appl. Genet. 111:1651-1660.<br />

Mechelen J.R. van, R.C. Schuurink, M. Smits, A. Graner, A.C. Douma, N.J.A. Sedee, N.F.<br />

Schmitt, and B.E Valk. 1999. Molecular characterization of two lipoxygenases from<br />

barley. Plant Molecular Biology 39:1283-1298.<br />

Müller, K.J., N. Romano, O. Gerstner, F. Gracia-Maroto, C. Pozzi, F. Salamini, and W.<br />

Rhode. 1995. The barley Hooded mutation caused by a duplication in a homeobox gene<br />

intron. Nature 374:727-730.<br />

Netsvetaev, V.P. 1997. High lysine mutant of winter barley - L76. BGN27:51-54.<br />

Okada, Y., R. Kanatani, S. Arai, and I. Kazutoshi. 2004. Interaction between barley mosaic<br />

disease-resistance genes rym1 and rym5, in the response to BaYMV strains. Breeding<br />

Science 54 (4):319-324.<br />

Park, R.F. and A. Karakousis. 2002. Characterization and mapping Rph19 conferring<br />

resistance to Puccinia hordei in the cultivar ’Rea1’ and several Australian barley. Plant<br />

Breeding 121:232-236.<br />

Pratchett, N. and D.A. Laurie. 1994. Genetic map location of the barley developmental mutant<br />

liguleless in relation to RFLP markers. Hereditas 120:35-39.<br />

139


Barley Genetics Newsletter (2007) 37: 105-153<br />

Rostoks, N., D. Schmierer, S. Mudie, T. Drader, R. Brueggeman, D. Caldwell, R. Waugh,<br />

and A. Kleinhofs. 2006. Barley necrotic locus nec1 encodes the cyclic nucleotide-gated<br />

ion channel 4 homologous to the Arabidopsis Hlm1. Mol.Gen. Genomics 275:159-168.<br />

Saeki, K., C. Miyazaki, N. Hirota, A. Saito, K. Ito, and T. Konishi. 1999. RFLP mapping of<br />

BaYMV resistance gene rym3 in barley (Hordeum vulgare). Theor. Appl. Genet. 99:727-<br />

732.<br />

Saisho, D., K.-I. Tanno, M. Chono, I. Honda, H. Kitano, and K. Takeda. 2004. Spontaneous<br />

Brassinolide-insensitive barley mutants ’uzu’ adapted to East Asia. Breeding Science<br />

54(4): 409-416.<br />

Sameri, M. and T. Komatsuda. 2007. Location of quantitative trait loci for yield components in<br />

a cross oriental x occidental barley cultivar (Hordeum vulgare L.). Japan Agricultural<br />

Research Quaterly 41(3):195-199.<br />

Schmierer, D., A. Druka, D. Kudrna, and A. Kleinhofs. 2001. Fine Mapping of the fch12<br />

chlorina seedling mutant. BGN31:12-13.<br />

Schweizer, G.F., M. Baumer, G. Daniel, H. Rugel, and M.S. Röder. 1995. RFLP markers<br />

linked to scald (Rhynchosporium secalis) resistance gene Rh2 in barley. Theor. Appl.<br />

Genet. 90:920-922.<br />

Skinner J.S., P. Szucs, J. von Zitzewitz, L. Marquez-Cedillo, T. Filichkin, E.J. Stockinger,<br />

M.F. Thomashow, T.H.H. Chen, and P.M. Hayes. 2006. Mapping of barley homologs<br />

to genes that regulate low temperature tolerance in Arabidopsis. Theor. Appl. Genet.<br />

112:832-842.<br />

Smilde, W.D., A. Tekauz, and A. Graner. 2000. Development of a high resolution map for the<br />

Rh and Pt resistance on barley Chromosome 3H. p. 178-180. In: S. Logue (ed.) Barley<br />

Genetics VIII. Volume II. Proc. Eigth Int. Barley Genet. Symp. Adelaide. Dept. Plant<br />

Science, Waite Campus, Adelaide University, Glen Osmond, South Australia.<br />

Soule, J.D., D.A. Kudrna, and A. Kleinhofs. 2000. Isolation, mapping, and characterization of<br />

two barley multiovary mutants. J. Heredity 91:483-487.<br />

Senthil, N. and T. Komatsuda. 2005. Inter-subspecific maps of non-brittle rachis gene btr1/btr2<br />

using occidental, oriental and wild barley lines. Euphytica 145:215-220.<br />

Stein, N., D. Perovic, J. Kumlehn, B. Pellio, S. Stracke, S. Streng, F. Ordon, and A. Graner.<br />

2005. The eukaryotic translation initian factor 4E confers multiallelic recessive<br />

Bymovirus resistance in Hordeum vulgare (L.). The Plant Journal 42:912-922.<br />

Taketa, S., T. Awayama, S. Amano, Y. Sakurai, and M. Ichii. 2006. High-resolution mapping<br />

of the nud locus controlling the naked caryopsis in barley. Plant Breeding 125:337-342.<br />

Tohno-oka, T., M. Ishii, R. Kanatani, H. Takahashi, and K. Takeda. 2000. Genetic Analysis<br />

of photoperiotic response of barley in different daylength conditions. p.239-241. In: S.<br />

140


Barley Genetics Newsletter (2007) 37: 105-153<br />

Logue (ed.) Barley Genetics VIII. Volume III. Proc. Eigth Int. Barley Genet. Symp.<br />

Adelaide. Dept. Plant Science, Waite Campus, Adelaide University, Glen Osmond, South<br />

Australia.<br />

Toojinda, T., L.H. Broers, X.M. Chen, P.M. Hayes, A. Kleinhofs, J. Korte, D. Kudrna, H.<br />

Leung, R.F. Line, W. Powell, L. Ramsey, H. Vivar, and R. Waugh. 2000. Mapping<br />

quantitative and qualitative disease resistance genes in a doubled haploid population of<br />

barley (Hordeum vulgare). Theor. Appl. Genet. 101:580-589.<br />

Wang, J., H. Raman, M. Zhou, P.R. Ryan, E. Delhaize, D.M. Hebb, N. Coombes, and N.<br />

Mendham. 2007. High-resolution mapping of the Alp locus and identification of a<br />

candidate gene HvMATE controlling aluminum tolerance in barley (Hordeum vulgare<br />

L.). Theor. Appl. Genet. 115:265-276.<br />

Warner, R.L., D.A. Kudrna, and A. Kleinhofs. 1995. Association of the NAD(P)H-bispecific<br />

nitrate reductase structural gene with the Nar7 locus in barley. Genome 38:743-746.<br />

Weerasena, J.S., B.J. Steffenson, and A.B. Falk. 2004. Conversion of an amplified fragment<br />

length polymorphism marker into a c-dominant marker in mapping Rph15 gene<br />

conferring resistance to barley leaf rust, Puccinia hordei Otth. Theor. Appl. Genet.<br />

108:712-719.<br />

Williams, K.J., A. Lichon, P. Gianquitto, J.M. Kretschmer, A. Karakousis, S. Manning, P.<br />

Langridge, and H. Wallwork. 1999. Identification and mapping of a gene conferring<br />

resistance to the spot form of net blotch (Pyrenophora teres f. maculata) in barley. Theor.<br />

Appl. Genet. 99: 323-327.<br />

Williams, K., P. Bogacki, L. Scott, A. Karakousis, and H. Wallwork. 2001. Mapping of a<br />

gene for leaf scald resistance in barley line ’B87/14’ and validation of microsatellite and<br />

RFLP markers for marker-assisted selection. Plant Breed. 120:301-304.<br />

Yan G.P., and X.M. Chen. 2006. Molecular mapping of a recessive gene for resistance to stripe<br />

rust in barley. Theor. Appl. Genet. 113:529-537.<br />

Yan L., D. Fu, C. Li, A. Blechl, G. Tranquilli, M. Bonafede, A. Sanchez, M. Valarik, S.<br />

Yasuda, and J. Dubcovsky. 2006. The wheat and barley vernalization gene VRN3 is an<br />

orthologue of FT. Proc. Natl. Acad. Sci. <strong>US</strong>A 103:19581-19586.<br />

Zhong, S.B., R.J. Effertz, Y. Jin, J.D. Franckowiak, and B.J. Steffenson. 2003. Molecular<br />

mapping of the leaf rust resistance gene Rph6 in barley and its linkage relationships with<br />

Rph5 and Rph7. Phytopathology 93 (5):604-609.<br />

Zitzewitz, J. von, P. Scucs, J. Dobcov, L. Yan, E. Francia, N. Pecchioni, A. Casas, T.H.H.<br />

Chen, P.M. Hayes, and J.S. Skinner. 2005. Molecular and structural characterization of<br />

barley vernalization genes. Plant Molecular Biology 59:449-467.<br />

141


Barley Genetics Newsletter (2007) 37: 105-153<br />

Coordinator’s report: Barley Genetic Stock Collection<br />

A. Hang and K. Satterfield<br />

<strong>US</strong>DA-ARS, National Small Grains Germplasm Research Facility,<br />

Aberdeen, Idaho 83210, <strong>US</strong>A<br />

e-mail: anhang@uidaho.edu<br />

In 2006, 655 barley genetic stocks were planted in the field and in the greenhouse for evaluation<br />

and for seed increase.<br />

Two mapping populations, including SSD F6 seed OSU 11/Harrington and SSD F6 seed<br />

OSU 15/Harrington, derived from single seed descent (SSD) of crosses between Hordeum<br />

vulgare subps. Spontaneum and cultivar “Harrington” obtained from Dr. Pat Hayes, Oregon<br />

State University (OSU), were planted in the field for seed increase.<br />

Four necrotic or lesion mimic mutants obtained from Dr. Anders Falk, Biological Research<br />

Center, Sweden, were also grown in the greenhouse for observation and for seed increase.<br />

Three hundred forty-five samples of barley genetic stocks were shipped to researchers in<br />

2006.<br />

Coordinator’s report: Trisomic and aneuploid stocks<br />

An Hang<br />

<strong>US</strong>DA-ARS, National Small Grains Germplasm Research Facility,<br />

Aberdeen, Idaho 83210, <strong>US</strong>A<br />

e-mail: anhang@uidaho.edu<br />

There is no new information about trisomic and aneuploid stocks. Lists of these stocks are<br />

available in BGN 25:104. Seed request for these stocks should be sent to the coordinator.<br />

142


Barley Genetics Newsletter (2007) 37: 105-153<br />

Coordinator’s report: Translocations and balanced tertiary trisomics<br />

Andreas Houben<br />

Institute of Plant Genetics and Crop Plant Research<br />

DE-06466 Gatersleben, Germany<br />

email: houben@ipk-gatersleben.de<br />

Restructured barley chromosomes have been used by Nasuda et al. (2005) to elucidate the<br />

function of centromere-localized DNA sequences. The satellite sequences (AGGGAG)(n) and<br />

Ty3/gypsy-like retrotransposons are known to localize at the barley centromeres. Using a<br />

gametocidal system, which induces chromosomal mutations in barley chromosomes added to<br />

common wheat, the authors obtained an isochromosome for the short arm of barley chromosome<br />

7H (7HS) that lacked the barley-specific satellite sequence (AGGGAG)(n). Two telocentric<br />

derivatives of the isochromosome arose in the progeny: 7HS* with and 7HS** without the<br />

pericentromeric C-band. FISH analysis demonstrated that both truncated telosomes lacked not<br />

only the barley-specific centromeric repeats but also any of the known wheat centromeric<br />

tandem repeats. Although they lacked these centromeric repeats, both truncated<br />

telochromosomes showed normal mitotic and meiotic transmission. Indirect immunostaining<br />

revealed that centromere-specific proteins localized at the centromeric region of 7HS*. The<br />

authors conclude that the barley centromeric repeats are neither sufficient nor obligatory to<br />

assemble kinetochores, and discussed the possible formation of a novel centromere in a barley<br />

chromosome.<br />

The collection is being maintained in cold storage. To the best knowledge of the coordinator,<br />

there are no new publications dealing with balanced tertiary trisomics in barley. Limited seed<br />

samples are available any time, and requests can be made to the coordinator.<br />

Reference:<br />

Nasuda, S., Hudakova, S., Schubert, I., Houben, A., and Endo, T.R. 2005. Stable barley<br />

chromosomes without centromeric repeats. Proc Natl Acad Sci U S A 102: 9842-9847.<br />

Coordinator’s report: Autotetraploids<br />

Wolfgang Friedt<br />

Institute of Crop Science and Plant Breeding I.<br />

Justus-Liebig-University, Heinrich-Buff-Ring 26-32<br />

DE-35392 Giessen, Germany<br />

e-mail: wolfgang.friedt@agrar.uni-giessen.de<br />

Fax: +49(0)641-9937429<br />

The collection of barley autotetraploids (exclusively spring types) described in former issues of<br />

BGN is maintained at the Giessen Field Experiment Station of our institute. The set of stocks,<br />

i.e. autotetraploids (4n) and corresponding diploid (2n) progenitors (if available) have last been<br />

grown in the field for seed multiplication in summer 2000. Limited seed samples of the stocks<br />

are available for distribution.<br />

143


Barley Genetics Newsletter (2007) 37: 105-153<br />

Coordinator’s report: Eceriferum Genes<br />

Udda Lundqvist<br />

Nordic Gene Bank<br />

P.O. Box 41, SE-230 53 Alnarp, Sweden<br />

e-mail: udda@nordgen.org<br />

Dahleen and Franckowiak (2006) could localize the eceriferum-zt locus on chromosome 2HS<br />

based on their molecar linkage studies and found linkage in bin 2H-01 d 16.8 distal from the<br />

SSR molecular marker Bmac 0134. Surface wax coating on the spike appears slightly reduced<br />

with eceriferum-zt. The wax code for this mutant gene is + ++ ++ .<br />

No further research work on gene localization has been reported on these collections of<br />

Eceriferum and Glossy genes. All descriptions in Barley Genetics Newsletter (BGN) Volume 26<br />

are valid and still up-to-date. All Swedish Eceriferum alleles can be seen in the SESTO database<br />

of the Nordic Gene Bank. Descriptions, images and graphic chromosome map displays of the<br />

Eceriferum and Glossy genes are available in the AceDB database for Barley Genes and Barley<br />

Genetic Stocks, and they get currently updated. Its address is found by: www.untamo.net/bgs<br />

As my possibilities in searching literature are very limited, I apologize if I am missing any<br />

important papers. Please send me notes of publications and reports to include in next year’s<br />

reports.<br />

Every research of interest in the field of Eceriferum genes, ‘Glossy sheath’ and ‘Glossy leaf’<br />

genes can be reported to the coordinator as well. Seed requests regarding the Swedish mutants<br />

can be forwarded to the coordinator udda@nordgen.org or to the Nordic Gene Bank,<br />

www.nordgen.org/ngb, all others to the Small Grain Germplasm Research Facility (<strong>US</strong>DA-<br />

ARS), Aberdeen, ID 83210, <strong>US</strong>A, nsgchb@ars-grin.gov or to the coordinator at any time.<br />

Reference:<br />

Dahleen, L.S. and J.D. Franckowiak. 2006. SSR linkages to eight additional morphological<br />

marker traits. Barley Genetic Newsletter 36:12+16.<br />

144


Barley Genetics Newsletter (2007) 37: 105-153<br />

Coordinator’s report: Nuclear genes affecting the chloroplast<br />

Mats Hansson<br />

<strong>Department</strong> of Biochemistry,<br />

Lund University, Box 124,<br />

SE-22100 Lund, Sweden<br />

E-mail: mats.hansson@biochemistry.lu.se<br />

Barley nuclear mutants deficient in chlorophyll biosynthesis and chloroplast development are<br />

named albina, xantha, viridis, chlorina, tigrina and striata depending on their colour and colour<br />

pattern. In the albina mutants the leaves are completely white due to lack of both chlorophyll and<br />

carotene pigments. The xantha mutants are yellow and produce carotene, but no chlorophyll. The<br />

chlorina and viridis mutants are both pale green, but differ in chlorina being viable. The tigrina<br />

and striata mutants are stripped transverse and along the leaves, respectively.<br />

Although the mutations are generally lethal, the large endosperm of barley seeds supports plant<br />

growth for several weeks, allowing analysis of the mutants at a seedling stage. This has been<br />

utilized in three studies concerning cold acclimation (Svensson et al. 2006), photosystem II<br />

(Morosinotto et al. 2006) and dominance/recessivity in chlorophyll biosynthesis (Axelsson et al.<br />

2006), respectively.<br />

Svensson and collaborators (2006) used the Affymetrix Barley1 GeneChip in combination with<br />

albina-e.16, albina-f.17, xantha-s.46 and xantha-b.12 to assess the effect of the chloroplast on<br />

the expression of cold-regulated genes. About 67% of wild-type cold-regulated genes were not<br />

regulated by cold in any mutant (chloroplast-dependent cold-regulated genes).They found that<br />

the lack of cold regulation in the mutants is due to the presence of signalling pathway(s)<br />

normally cold activated in wild type but constitutively active in the mutants, as well as to the<br />

disruption of low-temperature signalling pathway(s) due to the absence of active chloroplasts.<br />

They also found that photooxidative stress signalling pathway is constitutively active in the<br />

mutants. These results demonstrate the major role of the chloroplast in the control of the<br />

molecular adaptation to cold.<br />

The barley mutant viridis-zb.63 lacks photosystem I and was employed by Morosinotto et al.<br />

(2006) to mimic extreme and chronic overexcitation of photosystem II. The mutation was shown<br />

to reduce the photosystem II antenna to a minimal size of about 100 chlorophylls per<br />

photosystem II reaction centre, which was not further reducible. The minimal photosystem II<br />

unit was found to consist of a dimeric photosystem II reaction centre core surrounded by<br />

monomeric Lhcb4 (chlorophyll protein 29), Lhcb5 (chlorophyll protein 26) and trimeric lightharvesting<br />

complex II antenna proteins. This minimal photosystem II unit forms arrays in vivo,<br />

possibly to increase the efficiency of energy distribution and provide photoprotection. In wildtype<br />

plants, an additional antenna protein, chlorophyll protein 24 (Lhcb6), which is not<br />

expressed in viridis-zb.63, is proposed to associate to this minimal unit and stabilize larger<br />

antenna systems when needed. The analysis of the mutant also revealed the presence of two<br />

distinct signalling pathways activated by excess light absorbed by photosystem II: one,<br />

dependent on the redox state of the electron transport chain, is involved in the regulation of<br />

antenna size, and the second, more directly linked to the level of photoinhibitory stress perceived<br />

by the cell, participates in regulating carotenoid biosynthesis.<br />

145


Barley Genetics Newsletter (2007) 37: 105-153<br />

Axelsson et al. (2006) studied the enzyme Mg-chelatase, which catalyzes the insertion of Mg 2+ into<br />

protoporphyrin IX at the first committed step of the chlorophyll biosynthetic pathway. It consists of<br />

three subunits; I, D and H. The I-subunit belongs to the AAA-protein superfamily (ATPases<br />

associated with various cellular activities) that is known to form hexameric ring structures in an<br />

ATP-dependant fashion. Dominant mutations in the Xantha-h gene, encoding the I-subunit, revealed<br />

that it functions in a cooperative manner. Axelsson et al. demonstrated that the D-subunit, encoded<br />

by Xantha-g, forms ATP-independent oligomeric structures and should also be classified as an<br />

AAA-protein. Furthermore, the question of cooperativity of the D-subunit was addressed by<br />

characterizing xantha-g.28, -g.37, -g.44, -g.45 and -g.65 at the molecular level. The recessive<br />

behavior in vivo was explained by the absence of mutant proteins in the barley cell. The identified<br />

mutations were constructed in the corresponding gene of Rhodobacter capsulatus and the resulting<br />

D-proteins were studied in vitro. Mixtures of wild-type and mutant R. capsulatus D-subunits showed<br />

a lower activity as compared to wild-type subunits assayed alone. Thus, the mutant D-subunits<br />

displayed a dominant behavior in vitro thus revealing cooperativity between the D-subunits in the<br />

oligomeric state. Based on these results, they proposed a model where the D-oligomer forms a<br />

platform for the stepwise assembly of the I-subunits. The cooperative behavior suggests that the Doligomer<br />

takes an active part in the conformational dynamics between the subunits of the enzyme.<br />

The stock list of barley mutants defective in chlorophyll biosynthesis and chloroplast development is<br />

found elsewhere in this issue of BGN and at<br />

http://www.mps.lu.se/fileadmin/mps/People/Hansson/Barley_mutants_web.pdf<br />

Dr. Mats Hansson<br />

<strong>Department</strong> of Biochemistry<br />

Lund University<br />

Box 124<br />

SE-22100 Lund, SWEDEN<br />

Phone: +46-46-222 0105<br />

Fax: +46-46-222 4534<br />

E-mail: Mats.Hansson@biochemistry.lu.se<br />

New references:<br />

Axelsson, E., A. Sawicki, S. Nilsson, I. Schröder, S. Al-Karadaghi, R. D. Willows and M.<br />

Hansson. 2006. Recessiveness and dominance in barley mutants deficient in Mgchelatase<br />

subunit D, an AAA protein involved in chlorophyll biosynthesis. Plant Cell 18:<br />

3606-3616.<br />

Morosinotto, T., R. Bassi, S. Frigerio, G. Finazzi, E. Morris and J. Barber. 2006.<br />

Biochemical and structural analyses of a higher plant photosystem II supercomplex of a<br />

photosystem I-less mutant of barley. Consequences of a chronic over-reduction of the<br />

plastoquinone pool. FEBS J. 273: 4616-4630.<br />

146


Barley Genetics Newsletter (2007) 37: 105-153<br />

Svensson, J.T., C. Crosatti, C. Campoli, R. Bassi, A. Michele Stanca, T.J. Close, and L.<br />

Cativelli. 2006. Transcriptions analysis of cold acclimation in barley albina and<br />

xantha mutants. Plant Physiol. 141: 257-270.<br />

Coordinator’s report: The Genetic Male<br />

Sterile Barley Collection<br />

M.C. Therrien<br />

Agriculture and Agri-Food Canada<br />

Brandon Research Centre<br />

Box 1000A, RR#3, Brandon, MB<br />

Canada R7A 5Y3<br />

E-mail: MTherrien@agr.gc.ca<br />

The GMSBC has been at Brandon since 1992. If there are any new sources of male-sterile genes<br />

that you are aware of, please advice me, as this would be a good time to add any new source to<br />

the collection. For a list of the entries in the collection, simply E-mail me at the above adress. I<br />

can send the file (14Mb) in Excel format. We continue to store the collection at -20 o C and will<br />

have small (5 g) samples available for the asking. Since I have not received any reports or<br />

requests the last years, there is absolutely no summary in my report.<br />

147


Barley Genetics Newsletter (2007) 37: 105-153<br />

Coordinator’s report: Ear morphology genes.<br />

Udda Lundqvist<br />

Nordic Gene Bank<br />

P.O. Box 41 SE-230 53 Alnarp, Sweden<br />

e-mail: udda@nordgen.org<br />

A. Michele Stanca and Valeria Terzi<br />

C.R.A., Genomic Research Centre<br />

Via San Protaso 302<br />

29017-Fiorenzuola d’Arda, Italy<br />

e-mail: michele@stanca.it; v.terzi@iol.it<br />

The studies on barley development in these last years have taken advantages both from genetics<br />

and genomics approaches. Some barley genes involved in the ear morphology development<br />

have been mapped on high density molecular linkage maps and this strategy has been<br />

accompanied by candidate gene approaches (Pozzi et al., 2002).<br />

In the work of Pozzi et al. (2003) 29 genetic loci for which mutant alleles exist were placed on a<br />

restriction fragment length polymorphism- amplified fragment length polymorphism (RFLP-<br />

AFLP) map. Among the 29 loci considered in the work, some specifically affect ear morphology<br />

and assume characteristics proper to phytomers of other regions (like third outer glume and<br />

awned palea) or are characterized by the presence of modified organs (like liguleless,<br />

bracteatum, triple awned lemma and awned lemma). In Table 1 the map positions individuated<br />

by Pozzi et al. (2003) for some loci involved in ear morphology are reported.<br />

Table 1. Position of 12 developmental mutant loci in a Proctor X Nudinka AFLP map (from<br />

Pozzi et al, 2003), but revised regarding symbols and nomenclature.<br />

Mutant symbol and name Map position Closest marker<br />

adp1, awned palea1 Chr. 3H/27 E3634-8<br />

als1, absent lower laterals1 Chr 3H/28 E4234-11<br />

bra-d.7, bracteatum-d.7 Chr. 1H E3634-7<br />

dub.1, double seed.1 Chr 5H/66 and 67 E4038-4<br />

hex-v.3, hexastichon-v.3 Chr. 2H/19-21 E4343-7<br />

hex-v.4, hexastichon-v.4 Chr. 2H/19 and 20 E3438-3<br />

int- c.5, intermedium-c.5 Chr. 4H/8 E4143-5<br />

Kap1, Hooded lemma1 Chr. 4H/36 and 37 E4140-1<br />

lks2, short awn2 Chr. 7H/6 E4138-3<br />

lks5, short awn5 Chr. 4H/38 E4143-5<br />

trp1, triple awned lemma1 Chr. 2H/22 and 23 E3644-13<br />

trd1, third outher glume1 Chr.1H/52 E3634-7<br />

The genetics of barley Hooded suppression has been studied by Roig et al. (2004). The genetic<br />

basis of this phenotype is a mutation in the homeobox Bkn3. After chemical mutagenesis and<br />

148


Barley Genetics Newsletter (2007) 37: 105-153<br />

complementation tests, five suK (suppressor of K) loci were identified and mapped on<br />

chromosomes 5H and 7H.<br />

Comparative genetic studies across species has revealed syntenous conservation in the order of<br />

genes and markers along grass chromosomes. Starting from this observation, Rossini et al.<br />

(2006) used a synteny approach comparing barley and rice genomes to individuate candidate<br />

genes for a set of barley developmental mutants.<br />

The gene vrs1 (six-rowed spike 1) responsible for the six-rowed spike in barley has been recently<br />

isolated by means of positional cloning by Komatsuda et al. (2007). The wild type Vrs1 gene,<br />

present in two-rowed barley, encodes a transcription factor that includes a homeodomain with a<br />

closely linked leucine zipper motif. VRS1 protein suppresses lateral rows and give two-rowed<br />

spike, whereas a mutation in the homeodomain-leucine zipper of Vrs1 resulted into loss of<br />

function and development of six-rowed phenotype.<br />

The conservation and implementation of the barley morphological mutant collections is essential<br />

for future studies, ranging from the use of computer graphic L-system- models to simulate the<br />

final morphology of a plant (Buck-Sorlin et al., 2004) to the use of genomic tools for the<br />

elucidation of the gene functions.<br />

Regarding the Swedish mutation collection two new additional mutant loci could be mapped<br />

based on molecular mapping studies using simple sequences repeat (SSR) markers (Dahleen et<br />

al. 2005, Dahleen and Franckowiak. 2006).<br />

(1). The intermedium spike-k (int-k) gene could be localized in the centromeric region of<br />

chromosome 7H, closely linked to Bmag0217 and Bmac0162 in bins 6 to 7. This spike mutant<br />

has a short and dense spike and the lateral spikelets are enlarged with a pointed apex.<br />

Occasionally they have a short awn. The central spikelets are semi-sterile and there is no seed set<br />

in the lateral spikelets. Plants have a dense coating of wax surface. They also have significantly<br />

reduced height, peduncle length, awn length, kernels per spike, leaf length, kernel weight and<br />

yield.<br />

(2). The erectoides-t (ert-t) gene, one of the dense spike mutant loci, could be localized near the<br />

tip of chromosome 2HS, approximately 11.4 cM distal from SSR marker Bmac0134, near the<br />

boundary between bins 2H-01 and 2H-02. The spikes of this mutant gene are semicompact,<br />

rachis internode length is about 2.7 mm and culm length is about 2/3 of normal. These<br />

phenotypic traits plus short awns are inheritated together. Based on general appearance of the<br />

plants, ert-t can be placed in the brachytic class and by diallelic crosses three earlier identified<br />

Brachytic 3 (brh3) phenotypes were found to be allelic at the ert-t locus (Franckowiak, 2006).<br />

References<br />

Buck-Sorlin, G., O. Kniemeyer, and W. Kurth. 2004. Integrated grammar representation of<br />

genes, metabiolites and morphology: the example of hordeomorphs. 2004. Fourth<br />

International Workshop on Functional Structural Plant Models, Montpellier, France pp.<br />

386-389.<br />

Dahleen, L.S., L.J.Vander Val, and J.D. Franckowiak. 2005. Characterixation and molecular<br />

mapping of genes determining semidwarfism in barley. J. Hered. 96:654-662.<br />

149


Barley Genetics Newsletter (2007) 37: 105-153<br />

Dahleen, L.S., and J.D. Franckowiak. 2006. SSR Linkages to Eight Additional Morphological<br />

Marker Traits. Barley Genetics Newsletter (BGN) 36:12-16.<br />

Franckowik, J,D. 2006. Coordinator’s report: Chromosome 2H (2). BGN 36:54-56<br />

Komatsuda, T., M. Pourkheirandish, C. He, P. Azhaguvel, H. Kanamori, D. Perovic, N.<br />

Stein, A. Graner, T. Wicker , A. Tagiri, U. Lundqvist, T. Fujimura, M. Matsuoka,<br />

T. Matsumoto, and M. Yano M. 2007. Six-rowed barley originated from a mutation in a<br />

homeodomain-leucine zipper I-class homeobox gene. PNAS 104: 1424-1429.<br />

Pozzi, C., L. Rossini, L. Santi, M.R. Stile, L. Nicoloso, F. Barale, D. Vandoni, I. Decimo, C.<br />

Roig, P. Faccioli, V. Terzi, Y. Wang, and F. Salamini, F. 2002. Molecular genetics of<br />

barley development: from genetics to genomics. In: From biodiversity to genomics:<br />

breeding strategies for small grain cereals in the third millenium. Eucarpia Cereal Section<br />

Meeting, 2002. pp 463- 466.<br />

Pozzi, C., D. Di Pietro, G. Halas, C. Roig, and F. Salamini. 2003. Integration of a barley<br />

(Hordeum vulgare) molecular linkage map with the position of genetic loci hosting 29<br />

developmental mutants. Heredity, 90: 390-396.<br />

Roig, C., C. Pozzi, L. Santi, J. Muller, Y. Wang, M.R. Stile, L. Rossini, A.M. Stanca, and F.<br />

Salamini. 2004. Genetics of barley Hooded suppression. Genetics, 167: 439-448.<br />

Rossini L., A. Vecchietti, L. Nicoloso, N. Stein, S. Franzago, F. Salamini, C. and Pozzi.<br />

2006. Candidate genes for barley mutants involved in plant architecture: an in silico<br />

approach. Theoretical and Applied Genetics, 112: 1073-1085.<br />

150


Barley Genetics Newsletter (2007) 37: 105-153<br />

Coordinator’s report: Semidwarf genes<br />

J.D. Franckowiak<br />

Hermitage Research Station<br />

Queensland <strong>Department</strong> of Primary Industries and Fisheries<br />

Warwick, Queensland 4370, Australia<br />

e-mail: jerome.franckowiak@dpi.qld.gpv.au<br />

The sdw1 (denso) gene for the semidwarfism in barley was shown to be orthologous to the sd1 of<br />

rice based on similar map positions and linkage of both semidwarf genes to RFLP maker R1545<br />

(Zhang et al., 2005). Both genes are sensitive to gibberellic acid (GA) treatments and encode a<br />

GA20-oxidase mutant (HV20ox2), which produces lower levels of GA and causes the dwarf<br />

phenotype. Zhang et al. (2005) reported that the barley and rice genes shared 88% sequence<br />

similarity and 89% amino acid identity.<br />

Yin et al. (2005) confirmed that QTLs that lengthening the preflowering duration in the<br />

‘Apex’/‘Prisma’ population of 94 recombinant inbred lines (RILs) were located in the long arms<br />

of chromosome 2H and 3H and originated from Prisma. The QTL on 3HL was associated with<br />

presence of the sdw1 gene from Prisma and likely is a pleiotropic effect of sdw1 gene.<br />

Korff et al. (2006) detected the presence of the sdw1 gene from ‘Scarlett’ in doubled-haploid<br />

lines from the second backcross of Scarlett to Hordeum vulgare ssp. spontaneum accession<br />

ISR42-8. QTLs for plant height were detected also on other chromosomes by Korff et al. (2006).<br />

Gruszka et al. (2006) reported that a semidwarf mutant 093AR, which was produced by MNU<br />

(N-methyl-N-nitrosourea) treatment of variety Aramir, is allelic to the uzu (uzu1 on chromosome<br />

3HL) dwarfing gene. Their analysis of the DNA sequence of the HvBRI1 gene of 093AR showed<br />

a single-nucleotide substitution of the C to A substitutions at the positions 1760 and 1761.<br />

Gruszka et al. (2006) also confirmed that the uzu1 mutation was an A to G change at position<br />

2612 of the HvBRI1 gene. Chono et al. (2003) previously reported that the mutation resulted in<br />

an amino acid change at the highly conserved residue (His-857 to Arg-857) of the kinase domain<br />

of BRI1 (brassinosteroids) receptor protein. This change caused reduced sensitivity to BRs and<br />

reduced plant height (Chono et al., 2003).<br />

References:<br />

Gruszka, D., J. Zbieszczyk, M. Kwasniewski, I. Szarejko and M. Maluszynski. 2006. A new<br />

allele in a uzu gene encoding brassinosteroid receptor. Barley Genet. Newsl 36:1-2.<br />

author: wintergrun@op.pl<br />

Chono, M., I. Honda, H. Zeniya, K. Yoneyama, D. Saisho, K. Takeda, S. Takatsuto, T.<br />

Hoshino and Y. Watanabe. 2003. A semidwarf phenotype of barley uzu results from a<br />

nucleotide substitution in the gene encoding a putative brassinosteroid receptor. Plant<br />

Physiol. 133:1209-1219.<br />

von Korff, M., H. Wang, J. Léon, and K. Pillen. 2006. AB-QTL analysis in spring barley: II.<br />

Detection of favourable exotic alleles for agronomic traits introgressed from wild barley<br />

(H. vulgare ssp. spontaneum). Theor. Appl. Genet. 112:1221-1231.<br />

151


Barley Genetics Newsletter (2007) 37: 105-153<br />

Yin, X., P.C. Struik, F.A. van Eeuwijk, P. Stam, and J. Tang. 2005. QTL analysis and QTLbased<br />

prediction of flowering phenology in recombinant inbred lines of barley J. Exp.<br />

Bot. 56(413):967-976.<br />

Zhang, J., X. Yang, P. Moolhuijzen, C. Li, M. Bellgard, R. Lance, and R. Appels. 2005.<br />

Towards isolation of the barley green revolution gene. Australian Barley Technical<br />

Symposium 2005.<br />

http://www.cdesign.com.au/proceedings_abts2005/posters%20(pdf)/poster_li.pdf.<br />

Verified 4 July 2007.<br />

Coordinator’s report : Wheat-barley genetic stocks<br />

A.K.M.R. Islam<br />

Faculty of Agriculture, Food & Wine, The University of Adelaide, Waite Campus,<br />

Glen Osmond, SA 5064, Australia<br />

e-mail: rislam@waite.adelaide.edu.com<br />

The production of five different disomic addition lines (1Hm, 2Hm, 4Hm, 5Hm and 7Hm) of<br />

Hordeum marinum chromosomes to Chinese Spring wheat has been reported earlier. It has now<br />

been possible to isolate a monosomic addition for chromosome 6Hm. Amphiploids have also<br />

been produced between H. marinum and more cultivars of commercial wheat (Islam and Colmer,<br />

unpublished).<br />

References:<br />

Islam,S; Malik, AI; Islam, AKMR; Colmer TD. 2007. Salt tolerance in a Hordeum marinum-<br />

Triticum aestivum amphiploid, and its parents. J Experimental Botany (in Press).<br />

152


Barley Genetics Newsletter (2007) 37: 105-153<br />

Coordinator’s report: Early maturity genes<br />

Udda Lundqvist<br />

Nordic Gene Bank<br />

P-O. Box 41<br />

SE-23 053 Alnarp, Sweden<br />

e-mail: udda@nordgen.org<br />

Not much new research on gene localization has been reported on the Early maturity or<br />

Praematurum genes since the latest reports in Barley Genetic Newsletter (BGN) or in the AceDB<br />

database for Barley Genes and Barley Genetic Stocks.<br />

During the last years many reports are published on various QTLs detected in populations<br />

derived from wild x cultivated barley crosses with the goal of transferring desirable genes into<br />

cultivated barley lines.<br />

Korff et al. (2006) transferred favourable genes from wild barley to cultivated barleys and made<br />

evaluations in backcrosses of a doubled haploid population. A QTL for Early heading was<br />

associated with the Early maturity 1 (Eam1 or Ppd-H1) gene in the bin 3 region of 2HS.<br />

Several QTLs were found in crosses between two- and six-rowed cultivars. One QTL for early<br />

heading is reported and found in bin 8 of 2HL and is probably the Eam6 gene from a six-rowed<br />

parent (Franckowiak 2006).<br />

All information and descriptions made in the Barley Genetics Newsletter are valid and up-todate.<br />

As my possibilities in searching literature are very limited, I apologize if I am missing any<br />

important papers and reports. I would like to call on the barley community to assist me by<br />

sending notes of publications and reports to include in next year’s report. Descriptions, images<br />

and graphic chromosome map displays of the Early maturity or Praematurum genes are available<br />

in the AceDB database for Barley Genes and Barley Genetic Stocks. They get currently updated<br />

and are searchable under the address: www.untamo.net/bgs<br />

Every research of interest in the field of Early maturity genes can be reported to the coordinator<br />

as well. Seed requests regarding the Swedish mutants can be forwarded to the coordinator or<br />

directly to the Nordic Gene Bank, www.nordgen.org/ngb, all others to the Small Grain<br />

Germplasm Research Facility (<strong>US</strong>DA-ARS), Aberdeen, ID 83210, <strong>US</strong>A, nsgchb@ars-grin.gov<br />

or to the coordinator at any time.<br />

References:<br />

Franckowiak, J.D. 2006. Coordinator’s report: Chromosome 2H. Barley Genetics Newsletter<br />

36:54-56.<br />

Korff, M. von, H. Wang, J. Léon, and K. Pilen. 2006. AB-QTL analysis in spring barley: II.<br />

Detection of favourable exotic alleles for agronomic traits introgressed from wild barley<br />

(Hordeum vulgare ssp. spontaneum). Theor. Appl. Genet. 112:1221-1231.<br />

153


Barley Genetics Newsletter (2007) 37: 154-187<br />

Descriptions of barley genetic stocks for 2007.<br />

Lynn Dahleen, 1 , Jerome D. Franckowiak 2 , Udda Lundqvist 3<br />

1 <strong>US</strong>DA-ARS, State University Station, P.O. Box 5677,<br />

Fargo, ND 58105-5051, <strong>US</strong>A<br />

2 Hermitage Research Station,<br />

Queensland <strong>Department</strong> of Primary Industries and Fisheries<br />

Warwick, Queensland 4370, Australia<br />

3 Nordic Gene Bank<br />

P.O. Box 41, SE-230 53 Alnarp, Sweden<br />

In this volume of the Barley Genetics Newsletter, seventy six new and revised Barley Genetic<br />

Stock descriptions are published (Table 1). The current list of new and revised BGS descriptions,<br />

including those in Table 1, are again presented by BGS number order (Table 2) and by locus<br />

symbol in alphabetic order (Table 3) in this issue. Information on the description location,<br />

recommended locus name, chromosomal location, previous gene symbols, and the primary<br />

genetic stock (GSHO number) are included in these lists. The GSHO stocks are held in the<br />

<strong>US</strong>DA-ARS Barley Genetic Stocks collection at the National Small Grains collection, (U.S.<br />

<strong>Department</strong> of Agriculture – Agricultural Research Service), Aberdeen, Idaho 83210, <strong>US</strong>A. The<br />

NGB stocks are held in the Nordic Gene Bank, P.O. Box 41, SE-230 53 Alnap, Sweden. This<br />

information is available through the Internet at the following addresses:<br />

(1) www.ars.usda.gov.PacWest/Aberdeen<br />

(2) www.ars-grin.gov:7000/npgs/descriptors/barley-genetics (GRIN)<br />

(3) http://wheat.pw.usda.gov/ggpages/bgn/<br />

154


Barley Genetics Newsletter (2007) 37: 154-187<br />

Table 1. A listing of Barley Genetic Stock (BGS) descriptions published in this issue of the<br />

Barley Genetics Newsletter, giving recommended locus symbols and names, and stock<br />

location information.<br />

BGS Locus symbol* Chr. Locus name or phenotype Descr. GSHO<br />

no. Rec Prev. loc. † vol.p. no. ‡<br />

1 brh1 br, ari-i 7HS Brachytic 1 37:188 25<br />

2 fch12 fc, clo-fc 7HS Chlorina seedling 12 37:190 36<br />

6 vrs1 v, Int-d 2HL Six-rowed spike 1 37:192 196<br />

7 nud1 n, h 7HL Naked caryopsis 1 37:195 115<br />

10 lks2 lk2, lk4 7HL Short awn 2 37:197 1232<br />

22 Rsg1 Grb 7H Reaction to Schizaphis gramineum 1 37:199 1317<br />

32 Rph9 Pa9 5HL Reaction to Puccinia hordei 9 37:201 1601<br />

41 brh7 brh.w 5HS Brachytic 7 37:203 1687<br />

44 brh16 brh.v 7HL Brachytic 16 37:204 1686<br />

60 lig1 li, aur-a 2HL Liguleless 1 37:205 6<br />

79 wst7 rb 2HL White streak 7 37:207 247<br />

82 Zeo1 Knd 2HL Zeocriton 1 37:209 1613<br />

85 yst4 yst4 2HL Yellow streak 4 37:210 2502<br />

87 fch14 f14 2HL Chlorina seedling 14 37:211 1739<br />

88 Rph2 Pa2, A 5HS Reaction to Puccinia hordei 2 37:212 1593<br />

96 Rph15 Rph16 2HS Reaction to Puccinia hordei 15 37:214 1586<br />

98 Eam6 Ea6 2HS Early maturity 6 37:216<br />

100 sld4 sld.d 7HS Slender dwarf 4 37:218 2479<br />

101 als1 als 3HL Absent lower laterals 1 37:219 1065<br />

102 uzu1 uz, u 3HL Uzu 1 or semi-brachytic 1 37:220 1300<br />

108 alm1 al, ebu-a 3HS Albino lemma 1 37:222 270<br />

122 Rph5 Pa5, Rph6 3HS Reaction to Puccinia hordei 5 37:224 1597<br />

130 eam10 easp 3HL Early maturity 10 37:226 2504<br />

136 Rph7 Pa7, Pa5 3HS Reaction to Puccinia hordei 7 37:228 1318<br />

142 brh8 brh.ad 3HS Brachytic 8 37:230 1671<br />

148 brh14 brh.q 3HL Brachytic 14 37:231 1682<br />

149 Rpc1 3H Reaction to Puccinia coronata var hordei 1 37:232 1601<br />

155 glf1 gl, cer-zh 4HL Glossy leaf 1 37:233 98<br />

157 brh2 br2, ari-l 4HL Brachytic 2 37:235 573<br />

178 int-c i, v5 4HS Intermedium spike-c 37:237 776<br />

179 Hsh1 Hs 4HL Hairy leaf sheath 1 37:240 986<br />

185 brh5 brh.m 4HS Brachytic 5 37:242 1678<br />

186 sld3 sld.e 4HS Slender dwarf 3 37:243 2480<br />

187 brh9 brh.k 4HS Brachytic 9 37:244 1676<br />

203 Blp1 B 1HL Black lemma and pericarp 1 37:245 988<br />

214 eam8 eak, mat-a 1HL Early maturity 8 37:247 765<br />

222 nec1 sp,,b 1HL Necrotic leaf spot 1 37:251 989<br />

253 cul2 uc2 6HL Uniculm 2 37:253 531<br />

155


Barley Genetics Newsletter (2007) 37: 154-187<br />

Table 1 (continued)<br />

BGS Locus symbol* Chr. Locus name or phenotype Descr. GSHO<br />

no. Rec Prev. loc. † vol.p. no. ‡<br />

254 rob1 o, rob-o 6HS Orange lemma 1 37:255 707<br />

266 ert-e, dsp9 ert-e 6HL Erectoides-e 37:257 477<br />

306 var1 va 5HL Variegated 1 37:259 1278<br />

348 Eam5 Ea5 5HL Early maturity 5 37:260<br />

349 brh4 brh.j 2HL Brachytic 4 37:262 1675<br />

350 brh6 brh.s 5HS Brachytic 6 37:263 1683<br />

377 seg1 se1 7HL Shrunken endosperm genetic 1 37:264 750<br />

379 seg3 se3 3HS Shrunken endosperm genetic 3 37:265 752<br />

380 seg4 se4 7HL Shrunken endosperm genetic 4 37:267 753<br />

396 seg6 se6 3HL Shrunken endosperm genetic 6 37:268 2467<br />

397 seg7 se7 Shrunken endosperm genetic 7 37:269 2468<br />

437 cer-zt cer-zt 2HS Eceriferum-zt 37:270 1527<br />

449 cer-yf cer-yf Eceriferum-yf 37:271 1539<br />

455 seg8 seg8 7H Shrunken endosperm genetic 8 37:272 2469<br />

474 lax-a lax-a 5HL Laxatum-a 37:273 1775<br />

516 Rsp2 Sep2 1HS Reaction to septoria passerinii 2 37:275 2511<br />

517 Rsp3 Sep3 1HS Reaction to septoria passerinii 3 37:276 2512<br />

518 sdw1 denso 3HL Semidwarf 1 37:277 2513<br />

546 int-k int-k 7H Intermedium spike-k 37:279 1770<br />

547 int-m int-m Intermedium spike-m 37:280 1772<br />

566 ert-t ert-t, brh3 2HS Erectoides-t 37:281 494<br />

577 Rsg2 Rsg2 Reaction to Schizaphis gramineum 2 37:283 2513<br />

586 bra-d 1HL Bracteatum-d 37:284 1696<br />

593 adp1 adp 3HL Awned palea 1 37:285 1950<br />

599 ant17 ant17 3HS Proanthocyanin-free 17 37:286<br />

617 cul4 uc-5 3HL Uniculme 4 37:289 2493<br />

623 eli-a lig-a Eligulum-a 37:290<br />

633 mnd6 den-6 5HL Many noded dwarf 6 37:291 1713<br />

636 tst2 lin2 Tip sterile 2 37:292 1781<br />

653 brh10 brh.l 2HS Brachytic 10 37:293 1677<br />

654 brh11 brh.n 5HS Brachytic 11 37:294 1679<br />

655 brh12 brh.o 5HS Brachytic 12 37:295 1680<br />

656 brh13 brh.p 5HS Brachytic 13 37:296 1681<br />

657 brh15 brh.u Brachytic 15 37:297 1685<br />

658 brh17 brh.ab 5HS Brachytic 17 37:298 1669<br />

659 brh18 brh.ac 5HS Brachytic 18 37:299 1670<br />

660 nld2 Narrow leafed dwarf 2 37:300<br />

661 dub1 5HL Double seed 1 37:301<br />

156


Barley Genetics Newsletter (2007) 37: 154-187<br />

* Recommended locus symbols are based on utilization of a three letter code for barley genes as<br />

approved at the business meeting of the Seventh International Barley Genetics Symposium at<br />

Saskatoon, Saskatchewan, Canada, on 05 August 1996.<br />

† Chromosome numbers and arm designations are based on a resolution passed at the business<br />

meeting of the Seventh International Barley Genetics Symposium at Saskatoon, Saskatchewan,<br />

Canada, on 05 August 1996. The Burnham and Hagberg (1956) designations of barley<br />

chromosomes were 1 2 3 4 5 6 and 7 while new designations based on the Triticeae system are<br />

7H 2H 3H 4H 1H 6H and 5H, respectively.<br />

‡ The seed stock associated with each BGS number is held as a GSHO stock number in the<br />

Barley Genetics Stock Collection at the <strong>US</strong>DA-ARS National Grains Germplasm Research<br />

Facility, Aberdeen, Idaho, <strong>US</strong>A.<br />

157


Barley Genetics Newsletter (2007) 37: 154-187<br />

Table 2. A listing of Barley Genetic Stock (BGS) descriptions in recent issues of the Barley<br />

Genetics Newsletter recommended locus symbols and names, and stock location<br />

information.<br />

BGS Locus symbol * Chr. Locus name or phenotype Descr. GSHO<br />

no. Rec. Prev. loc. † vol. p. no. ‡<br />

1 brh1 br, ari-i 7HS Brachytic 1 37:188 25<br />

2 fch12 fc, clo-fc 7HS Chlorina seedling 12 37:190 36<br />

3 yvs2 yc 7HS Virescent seedling 2 26: 46 41<br />

4 abo8 ac2, alb-m 7HS Albino seedling 8 26: 47 61<br />

5 fch8 f8 7HS Chlorina seedling 8 26: 48 40<br />

6 vrs1 v, Int-d 2HL Six-rowed spike 1 37:192 196<br />

7 nud1 n, h 7HL Naked caryopsis 1 37:195 115<br />

9 dsp1 l 7HS Dense spike 1 26: 53 1232<br />

10 lks2 lk2, lk4 7HL Short awn 2 37:197 566<br />

11 ubs4 u4, ari-d 7HL Unbranched style 4 26: 56 567<br />

12 des1 lc 7H Desynapsis 1 26: 57 592<br />

13 des4 des4 7H Desynapsis 4 26: 58 595<br />

14 des5 des5 7H Desynapsis 5 26: 59 596<br />

15 blx1 bl 4HL Non-blue aleurone xenia 1 26: 60 185<br />

16 wax1 wx, glx 7HS Waxy endosperm 1 26: 61 908<br />

17 fch4 f4, yv 7HL Chlorina seedling 4 26: 63 1214<br />

18 fch5 f5, yv2 7HS Chlorina seedling 5 26: 64 1215<br />

19 blx2 bl2 7HS Non-blue aleurone xenia 2 26: 65 209<br />

20 Rym2 Ym2 7HL Reaction to BaYMV 2 26: 66 984<br />

21 Run1 Un 7HS Reaction to Ustilago nuda 1 26: 67 1324<br />

22 Rsg1 Grb 7H Reaction to Schizaphis graminum 1 37:199 1317<br />

23 wnd1 wnd 7HS Winding dwarf 1 26: 69 2499<br />

24 fst3 fs3 7HS Fragile stem 3 26: 70 1746<br />

25 Xnt1 Xa 7HL Xantha seedling 1 26: 71 1606<br />

26 snb1 sb 7HS Subnodal bract 1 26: 72 1217<br />

27 lbi3 lb3 7HL Long basal rachis internode 3 26: 73 536<br />

28 ert-a ert-a 7HS Erectoides-a 26: 74 468<br />

29 ert-d ert-d 7HS Erectoides-d 26: 76 475<br />

30 ert-m ert-m 7HS Erectoides-m 26: 78 487<br />

31 sex6 sex6 7HS Shrunken endosperm xenia 6 26: 80 2476<br />

32 Rph9 Pa9 5HL Reaction to Puccinia hordei 9 37:201 1601<br />

33 ant1 rs, rub-a 7HS Anthocyanin-less 1 26: 82 1620<br />

34 msg50 msg,,hm 7HL Male sterile genetic 50 26: 83 2404<br />

35 rsm1 sm 7HS Reaction to BSMV 1 26: 84 2492<br />

36 xnt4 xc2 7HL Xantha seedling 4 26: 85 42<br />

37 xnt9 xan,,i 7HL Xantha seedling 9 26: 86 584<br />

38 smn1 smn 7HS Seminudoides 1 32: 78 1602<br />

39 mss2 mss2 7HS Midseason stripe 2 32: 79 2409<br />

158


Barley Genetics Newsletter (2007) 37: 154-187<br />

Table 2 (continued)<br />

BGS Locus symbol * Chr. † Locus name or phenotype Descr. GSHO<br />

no. Rec. Prev. loc. vol. p. no. ‡<br />

40 prm1 prm 7HS Premature ripe 1 32: 80 2429<br />

41 brh7 brh.w 5HS Brachytic 7 37:203 1687<br />

42 Pyr1 Pyr1 7HS Pyramidatum 1 32: 82 1581<br />

43 mov1 mo5 7HL Multiovary 1 35:185<br />

44 brh16 brh.v 7HL Brachytic 16 37:204 1686<br />

51 rtt1 rt 2HS Rattail spike 1 26: 87 216<br />

52 fch15 or 2HS Chlorina seedling 15 26: 88 49<br />

53 abo2 a2 2HS Albino seedling 2 26: 89 70<br />

55 fch1 f, lg 2HS Chlorina seedling 1 26: 90 112<br />

56 wst4 wst4 2HL White streak 4 26: 91 568<br />

57 eog1 e, lep-e 2HL Elongated outer glume 1 26: 92 29<br />

58 vrs1 lr, v lr 2HL Six-rowed spike 1 26: 94 153<br />

59 gpa1 gp, gp2 2HL Grandpa 1 26: 95 1379<br />

60 lig1 li, aur-a 2HL Liguleless 1 37:205 6<br />

61 trp1 tr 2HL Triple awned lemma 1 26: 97 210<br />

62 sbk1 sk, cal-a 2HS Subjacent hood 1 32: 83 267<br />

63 yvs1 yx, alb-c2 2HS Virescent seedling 1 26: 99 68<br />

64 des7 des7 2H Desynapsis 7 26:100 598<br />

65 Eam1 Ea, Ppd-H1 2HS Early maturity 1 26:101 1316<br />

66 vrs1 V d 2HL Two-rowed spike 1 26:103 346<br />

67 vrs1 V t 2HL Deficiens 1 26:104 684<br />

68 Pvc 1 Pc 2HL Purple veined lemma 1 26:105 132<br />

69 Gth 1 G 2HL Toothed lemma 1 26:106 309<br />

70 Rph1 Pa 2H Reaction to Puccinia hordei 1 26:107 1313<br />

71 com2 bir2 2HS Compositum 2 26:108 1703<br />

72 glo-c glo-c 2H Globosum-c 26:109 1329<br />

73 fol-a fol-a 2HL Angustifolium-a 26:110 1744<br />

74 flo-c flo-c 2HS Extra floret-c 26:111 1743<br />

75 Lks1 Lk 2HL Awnless 1 26:112 44<br />

76 Pre2 Re2, P 2HL Red lemma and pericarp 2 26:113 234<br />

77 hcm1 h 2HL Short culm 1 26:115 2492<br />

78 mtt4 mt,,e, mt 2HL Mottled leaf 4 26:116 1231<br />

79 wst7 rb 2HL White streak 7 37:207 247<br />

80 ant2 pr, rub 2HL Anthocyanin-less 2 26:118 1632<br />

81 gsh7 gs7 Glossy sheath 7 26:119 1759<br />

82 Zeo1 Knd 2HL Zeocriton 1 37:209 1613<br />

83 sld2 sld2 2HS Slender dwarf 2 26:121 2491<br />

84 mss1 mss 2H Midseason stripe 1 26:122 1404<br />

85 yst4 yst4 2HL Yellow streak 4 37:210 2502<br />

86 fch13 f13 Chlorina seedling 13 26:124 16<br />

159


Barley Genetics Newsletter (2007) 37: 154-187<br />

Table 2 (continued)<br />

BGS Locus symbol * Chr. † Locus name or phenotype Descr. GSHO<br />

no. Rec. Prev. loc. vol. p. no. ‡<br />

87 fch14 f14 2HL Chlorina seedling 14 37:211 1739<br />

88 Rph2 Pa2, A 5HS Reaction to Puccinia hordei 2 37:212 1593<br />

89 ari-g ari-g, lk10 Breviaristatum-g 26:128 1655<br />

90 ert-j ert-j 2H Erectoides-j 26:129 484<br />

91 ert-q ert-q 2H Erectoides-q 26:130 1562<br />

92 ert-u ert-u, br5 2H Erectoides-u 26:131 496<br />

93 ert-zd ert-zd, br7 2H Erectoides-zd 26:132 504<br />

94 abo4 a4 2H Albino seedling 4 26:133 167<br />

95 abo13 alb,,p 2HL Albino seedling 13 26:134 585<br />

96 Rph15 Rph16 2HS Reaction to Puccinia hordei 15 37:214 1586<br />

97 acr1 acr 2HL Accordion rachis 1 32: 85 1617<br />

98 Eam6 Ea6, Ea 2HS Early maturity 6 37:216<br />

99 lin1 s, rin 2HL Lesser internode number 1 32: 88 2492<br />

100 sld4 sld.d 7HS Slender dwarf 4 37:218 2479<br />

101 als1 als 3HL Absent lower laterals 1 37:219 1065<br />

102 uzu1 uz, u 3HL Uzu 1 or semi brachytic 1 37:220 1300<br />

104 yst1 yst, ys 3HS Yellow streak 1 26:138 1140<br />

105 xnt3 xc, vir-l 3HS Xantha seedling 3 26:139 66<br />

106 abo6 ac 3HS Albino seedling 6 26:140 30<br />

107 wst1 wst, wst3 3HL White streak 1 26:141 159<br />

108 alm1 al, ebu-a 3HS Albino lemma 1 37:222 270<br />

109 yst2 yst2 3HS Yellow streak 2 26:144 570<br />

111 dsp10 lc 3HS Dense spike 10 26:145 71<br />

112 abo9 an 3HS Albino seedling 9 26:146 348<br />

113 xnt6 xs 3HS Xantha seedling 6 26:147 117<br />

114 cur2 cu2 3HL Curly 2 26:148 274<br />

115 btr1 bt1 3HS Non-brittle rachis 1 26:149 1233<br />

116 btr2 bt2 3HS Non-brittle rachis 2 26:150 842<br />

117 fch2 f2, lg5 3HL Chlorina seedling 2 26:151 107<br />

118 lnt1 rnt, int-l 3HL Low number of tillers 1 26:153 833<br />

119 des2 ds 3H Desynapsis 2 26:154 593<br />

120 zeb1 zb 3HL Zebra stripe 1 26:155 1279<br />

121 Rph3 Pa3 7HL Reaction to Puccinia hordei 3 26:156 1316<br />

122 Rph5 Pa5, Pa6 3HS Reaction to Puccinia hordei 5 37:224 1597<br />

123 Ryd2 Yd2 3HL Reaction to BYDV 2 26:158 1315<br />

124 vrs4 mul, int-e 3HL Six-rowed spike 4 26:159 775<br />

125 lzd1 lzd, dw4 3HS Lazy dwarf 1 26:161 1787<br />

126 sld1 dw1 3HL Slender dwarf 1 26:162 2488<br />

127 Pub1 Pub 3HL Pubescent leaf blade 1 26:163 1576<br />

128 sca1 sca 3HS Short crooked awn 1 26:164 2439<br />

160


Barley Genetics Newsletter (2007) 37: 154-187<br />

Table 2 (continued)<br />

BGS Locus symbol * Chr. † Locus name or phenotype Descr. GSHO<br />

no. Rec. Prev. loc. vol. p. no. ‡<br />

129 wst6 wst,,j 3HL White streak 6 26:165 2500<br />

130 eam10 easp 3HL Early maturity 10 37:226 2504<br />

131 gra-a gran-a 3HL Granum-a 26:167 1757<br />

132 ari-a ari-a 3HS Breviaristatum-a 26:168 1648<br />

133 sdw2 sdw-b 3HL Semidwarf 2 26:169 2466<br />

134 ert-c ert-c 3HL Erectoides-c 26:170 471<br />

135 ert-ii ert-ii 3HL Erectoides-ii 26:172 483<br />

136 Rph7 Pa7, Pa5 3HS Reaction to Puccinia hordei 7 37:228 1318<br />

137 Rph10 Rph10 3HL Reaction to Puccinia hordei 10 26:174 1588<br />

138 nec4 nec4 3H Necrotic leaf spot 4 26:175<br />

139 nec5 nec5 3H Necrotic leaf spot 5 26:176<br />

140 xnt8 xan,,h 3HS Xantha seedling 8 26:177 582<br />

141 rym5 Ym 3HL Reaction to Barley yellow mosaic virus 5 32: 90<br />

142 brh8 brh.ad 3HS Brachytic 8 37:230 1671<br />

143 sex8 sex.j 3HS Shrunken endosperm 8 32: 93 2471<br />

144 sld5 sld5 3HS Slender dwarf 5 32: 94 2483<br />

146 cal-d cal-d 3H Calcaroides-d 32: 95 1697<br />

147 mov2 mo 3HS Multiovary 2 35:190<br />

148 brh14 brh.q 3HL Brachytic 14 37:231 1682<br />

149 Rpc1 3H Reaction to Puccinia coronata var. hordei 1 37:232 1601<br />

151 fch9 f9 4HS Chlorina seedling 9 26:178 571<br />

152 Kap1 K 4HS Hooded lemma 1 26:179 985<br />

155 glf1 gl, cer-zh 4HL Glossy leaf 1 37:233 98<br />

156 lbi2 lb2, ert-i 4HL Long basal rachis internode 2 26:183 572<br />

157 brh2 br2, ari-l 4HL Brachytic 2 37:235 573<br />

158 yhd1 yh 4HL Yellow head 1 26:185 574<br />

160 min2 en-min Enhancer of minute 1 26:186 266<br />

161 min1 min 4HL Semi-minute dwarf 1 26:187 987<br />

163 sgh1 sh1 4HL Spring growth habit 1 26:188 575<br />

164 Hln1 Hn 4HL Hairs on lemma nerves 1 26:189 576<br />

165 glf3 gl3, cer-j 4HL Glossy leaf 3 26:190 577<br />

166 msg25 msg,,r 4HL Male sterile genetic 25 26:192 744<br />

167 rym1 Ym 4HL Reaction to barley yellow mosaic virus 1 32: 96<br />

168 glo-a glo-a 4HS Globosum-a 26:194 1328<br />

170 lgn3 lg3 4HL Light green 3 26:195 171<br />

171 lgn4 lg4, lg9 4HL Light green 4 26:196 681<br />

172 lks5 lk5, ari-c 4HL Short awn 5 26:197 1297<br />

173 blx3 bl3 4HL Non-blue aleurone xenia 3 26:198 2506<br />

174 blx4 bl4 4HL Non-blue (pink) aleurone xenia 4 26:199 2507<br />

176 ovl1 ovl 4H Ovaryless 1 35:191<br />

161


Barley Genetics Newsletter (2007) 37: 154-187<br />

Table 2 (continued)<br />

BGS Locus symbol * Chr. † Locus name or phenotype Descr. GSHO<br />

no. Rec. Prev. loc. vol. p. no. ‡<br />

178 int-c i, v5 4HS Intermedium spike-c 37:237 776<br />

179 Hsh1 Hs 4HL Hairy leaf sheath 1 37:240 986<br />

180 sid1 nls 4HL Single internode dwarf 1 26:203 2477<br />

181 eam9 ea,,c 4HL Early maturity 9 26:204 1732<br />

182 flo-a flo-a Extra floret-a 26:205 1741<br />

183 Ynd1 Yn 4HS Yellow node 1 32:98<br />

184 Zeo3 Zeo.h 4HL Zeocriton 3 32:99 1611<br />

185 brh5 brh.m 4HS Brachytic 5 37:242 1678<br />

186 sld3 ant17.567 4HS Slender dwarf 3 37:243 2480<br />

187 brh9 brh.k 4HS Brachytic 9 37:244 1676<br />

201 fch7 f7 1HL Chlorina seedling 7 26:206 4<br />

202 trd1 t, bra-c 1HL Third outer glume 1 26:207 227<br />

203 Blp1 B 1HL Black lemma and pericarp 1 37:245 988<br />

207 abo1 at 1HL Albino seedling 1 26:210 51<br />

208 fst2 fs2 1HL Fragile stem 2 26:211 578<br />

213 Sgh3 Sh3 1HL Spring growth habit 3 26:212 764<br />

214 eam8 eak, mat-a 1HL Early maturity 8 37:247 765<br />

215 des6 des6 1H Desynapsis 6 26:216 597<br />

218 Rph4 Pa4 1HS Reaction to Puccinia hordei 4 26:217 1314<br />

220 fch3 f3 1HS Chlorina seedling 3 26:218 851<br />

221 wst5 wst5 1HL White streak 5 26:219 591<br />

222 nec1 sp,,b 1HL Necrotic leaf spot 1 37:251 989<br />

223 zeb3 zb3, zbc 1HL Zebra stripe 3 26:221 1451<br />

224 ert-b ert-b 1HL Erectoides-b 26:222 470<br />

225 clh1 clh 1HL Curled leaf dwarf 1 26:223 1212<br />

226 rvl1 rvl 1HL Revoluted leaf 1 26:224 608<br />

227 sls1 sls 1HS Small lateral spikelet 1 26:225 2492<br />

228 Sil1 Sil 1HS Subcrown internode length 1 26:226 1604<br />

229 cud2 cud2 1HL Curly dwarf 2 26:227 1712<br />

230 glo-e glo-e 1HL Globosum-e 26:228 1755<br />

231 cur5 cu5 1HS Curly 5 26:229 1710<br />

232 Lys4 sex5 1HS High lysine 4 26:230 2475<br />

233 xnt7 xan,,g 1HL Xantha seedling 7 26:231 581<br />

234 mov3 mo-a 1H Multiovary 3 32:102<br />

235 lel1 lel 1HL Leafy lemma 1 32:103 1780<br />

251 mul2 mul2 6HL Multiflorus 2 26:232 1394<br />

252 eam7 ea7, ec 6HS Early maturity 7 26:233 579<br />

253 cul2 uc2 6HL Uniculm 2 37:253 531<br />

254 rob1 o, rob-o 6HS Orange lemma 1 37:255 707<br />

255 xnt5 xn 6HL Xantha seedling 5 26:237 43<br />

162


Barley Genetics Newsletter (2007) 37: 154-187<br />

Table 2 (continued)<br />

BGS Locus symbol * Chr. † Locus name or phenotype Descr. GSHO<br />

no. Rec. Prev. loc. vol. p. no. ‡<br />

257 raw5 r,,e 6HL Smooth awn 5 26:238 785<br />

258 dsp9 l9, ert-e 6HL Dense spike 9 26:239 1774<br />

260 fch11 f11 6HL Chlorina seedling 11 26:240 1738<br />

261 nec2 nec2 6HS Necrotic leaf spot 2 26:241 1224<br />

262 cur1 cu1 6HL Curly 1 26:242 1705<br />

263 cur3 cu3 6HL Curly 3 26:243 1707<br />

264 mtt5 mt,,f 6HL Mottled leaf 5 26:244 2410<br />

265 nec3 nec3 6HS Necrotic leaf spot 3 26:245 1330<br />

266 ert-e ert-e, dsp9 6HL Erectoides-e 37:257 477<br />

267 Rph11 Rph11 6HL Reaction to Puccinia hordei 11 26:247 1589<br />

268 lax-b lax-b 6HL Laxatum-b 26:248 1776<br />

269 lys6 lys6 6H High lysine 6 26:249 1786<br />

270 abo14 alb,,q 6HL Albino seedling 14 26:250 586<br />

271 abo15 alb,,t 6HS Albino seedling 15 26:251<br />

301 fst1 fs 5HL Fragile stem 1 26:252 629<br />

302 mtt2 mt2 5HL Mottled leaf 2 26:253 1398<br />

303 var3 va3 5HL Variegated 3 26:254 1277<br />

304 wst2 wst2 5HL White streak 2 26:255 766<br />

305 crm1 cm 5HL Cream seedling 1 26:256 20<br />

306 var1 va 5HL Variegated 1 37:259 1278<br />

308 lbi1 lb, rac-a 5HL Long basal rachis internode 1 26:258 580<br />

309 Sgh2 Sh2 5HL Spring growth habit 2 26:259 770<br />

311 dex1 sex2 5HS Defective endosperm xenia 1 26:260<br />

312 raw1 r 5HL Smooth awn 1 26:261 27<br />

313 fch6 f6, yv 5HL Chlorina seedling 6 26:262 1390<br />

314 vrs2 v2 5HL Six-rowed spike 2 26:263 773<br />

315 vrs3 v3, int-a 1HL Six-rowed spike 3 26:264 774<br />

317 ddt1 ddt 5HS Reaction to DDT 1 26:266 331<br />

319 rpg4 rpg4 5HL Reaction to Puccinia graminis 4 26:267 2438<br />

320 int-b int-b 5HL Intermedium spike-b 26:268 1764<br />

321 srh1 s, l 5HL Short rachilla hair 1 26:269 27<br />

322 dsk1 dsk 5HL Dusky 1 26:270 1714<br />

323 nld1 nld 5HL Narrow leafed dwarf 1 26:271 769<br />

324 cud1 cud 5HL Curly dwarf 1 26:272 1711<br />

325 crl1 crl, cl Curly lateral 1 26:273 1211<br />

326 blf1 bb 5HL Broad leaf 1 26:274 1393<br />

327 flo-b flo-b 5HL Extra floret-b 26:275 1742<br />

328 ari-e ari-e 5HL Breviaristatum-e 26:276 1653<br />

329 ari-h ari-h 5HL Breviaristatum-h 26:277 1656<br />

330 ert-g ert-g, br3 5HL Erectoides-g 26:278 479<br />

163


Barley Genetics Newsletter (2007) 37: 154-187<br />

Table 2 (continued)<br />

BGS Locus symbol * Chr. † Locus name or phenotype Descr. GSHO<br />

no. Rec. Prev. loc. vol. p. no. ‡<br />

331 ert-n ert-n 5HL Erectoides-n 26:279 488<br />

332 Ert-r Ert-r Erectoides-r 26:280 492<br />

333 Rph12 Rph12 5HL Reaction to Puccinia hordei 12 26:281 1590<br />

334 raw6 r6 5HL Smooth awn 6 26:282 2437<br />

335 msg49 msg,,jw 5HL Male sterile genetic 49 26:283 2402<br />

336 glo-b glo-b 5HL Globosum-b 26:284 1326<br />

337 blf2 bb2, nlh 5HL Broad leaf 2 26:285 1667<br />

338 lys1 lys 5HL High lysine 1 26:286 1784<br />

339 lys3 sex3 5HL High lysine 3 26:287 1785<br />

340 raw2 r2 5HL Smooth awn 2 26:289 27<br />

341 abo12 alb,,o 5HS Albino seedling 12 26:290 583<br />

342 glo-f glo-e 5HL Globosum-f 26:291<br />

343 Lfb1 Lfb 5HL Leafy bract 1 28: 30 1577<br />

344 var2 va2 5HL Variegated 2 32:104 2496<br />

345 rym3 ym3 5HS Reaction to barley yellow mosaic virus 3 32:105<br />

346 yst5 yst5 5HL Yellow streak 5 32:107 2501<br />

347 mnd4 m4 5HL Many noded dwarf 4 32:108 1798<br />

348 Eam5 Ea5 5HL Early maturity 5 37:260<br />

349 brh4 brh.j 2HL Brachytic 4 37:262 1675<br />

350 brh6 brh.s 5HS Brachytic 6 37:263 1683<br />

351 gsh1 gs1, cer-q 2HS Glossy sheath 1 26:292 735<br />

352 gsh2 gs2, cer-b 3HL Glossy sheath 2 26:294 736<br />

353 gsh3 gs3, cer-a 7HS Glossy sheath 3 26:296 737<br />

354 gsh4 gs4, cer-x 6HL Glossy sheath 4 26:298 738<br />

355 gsh5 gs5, cer-s 2HL Glossy sheath 5 26:300 739<br />

356 gsh6 gs6, cer-c 2HS Glossy sheath 6 26:302 740<br />

357 msg1 ms1 1HL Male sterile genetic 1 26:304 1810<br />

358 msg2 ms2 2HL Male sterile genetic 2 26:306 2371<br />

359 msg3 ms3 2HS Male sterile genetic 3 26:307 1130<br />

360 msg4 ms4 1H Male sterile genetic 4 26:308 2392<br />

361 msg5 ms5 3HS Male sterile genetic 5 26:309 2403<br />

362 msg6 ms6 6HS Male sterile genetic 6 26:310 2405<br />

363 msg7 ms7 5HL Male sterile genetic 7 26:311 2406<br />

364 msg8 ms8 5HL Male sterile genetic 8 26:312 2407<br />

365 msg9 ms9 2HS Male sterile genetic 9 26:313 2408<br />

366 msg10 ms10 7HS Male sterile genetic 10 26:314 1811<br />

367 msg11 ms11 Male sterile genetic 11 26:315 1812<br />

368 msg13 ms13 Male sterile genetic 13 26:316 1813<br />

369 msg14 ms14 7HS Male sterile genetic 14 26:317 1814<br />

370 msg15 ms15 Male sterile genetic 15 26:318 1815<br />

164


Barley Genetics Newsletter (2007) 37: 154-187<br />

Table 2 (continued)<br />

BGS Locus symbol * Chr. † Locus name or phenotype Descr. GSHO<br />

no. Rec. Prev. loc. vol. p. no. ‡<br />

371 msg16 ms16 5HS Male sterile genetic 16 26:319 1816<br />

372 msg17 ms17 Male sterile genetic 17 26:320 1817<br />

373 msg18 ms18 5HL Male sterile genetic 18 26:321 1818<br />

374 msg19 ms19 5HS Male sterile genetic 19 26:322 1819<br />

375 msg20 ms20 1H Male sterile genetic 20 26:323 2372<br />

376 msg21 ms21 Male sterile genetic 21 26:324 2373<br />

377 seg1 se1 7HL Shrunken endosperm genetic 1 37:264 750<br />

378 seg2 se2 7HS Shrunken endosperm genetic 2 26:326 751<br />

379 seg3 se3 3H Shrunken endosperm genetic 3 37:265 752<br />

380 seg4 se4 7HL Shrunken endosperm genetic 4 37:267 753<br />

381 seg5 se5 7HS Shrunken endosperm genetic 5 26:329 754<br />

382 sex1 lys5 6HL Shrunken endosperm xenia 1 26:330 755<br />

383 msg22 ms22 7H Male sterile genetic 22 26:331 741<br />

384 msg23 ms23 7HL Male sterile genetic 23 26:332 2375<br />

385 msg24 ms24 4HL Male sterile genetic 24 26:333 2376<br />

386 des3 des3 Desynapsis 3 26:334 594<br />

387 des8 des8 Desynapsis 8 26:335 599<br />

388 des9 des9 Desynapsis 9 26:336 600<br />

389 des10 des10 Desynapsis 10 26:337 601<br />

390 des11 des11 Desynapsis 11 26:338 602<br />

391 des12 des12 Desynapsis 12 26:339 603<br />

392 des13 des13 Desynapsis 13 26:340 604<br />

393 des14 des14 Desynapsis 14 26:341 605<br />

394 des15 des15 Desynapsis 15 26:342 606<br />

395 msg26 msg,,u 7HS Male sterile genetic 26 26:343 745<br />

396 seg6 se6 3HL Shrunken endosperm genetic 6 37:268 2467<br />

397 seg7 se7 Shrunken endosperm genetic 7 37:269 2468<br />

399 cer-d cer-d Eceriferum-d 26:346 425<br />

400 cer-e cer-e 1HL Eceriferum-e 26:347 1518<br />

401 cer-f cer-f 7HS Eceriferum-f 26:348 427<br />

402 cer-g cer-g 2HL Eceriferum-g 26:349 428<br />

403 cer-h cer-h Eceriferum-h 26:351 429<br />

404 cer-i cer-i 5HL Eceriferum-i 26:352 430<br />

405 cer-k cer-k 7HS Eceriferum-k 26:354 432<br />

406 cer-l cer-l Eceriferum-l 26:355 433<br />

407 cer-m cer-m Eceriferum-m 26:356 434<br />

408 cer-n gs9 2HL Eceriferum-n 26:357 435<br />

409 cer-o cer-o Eceriferum-o 26:359 436<br />

410 cer-p cer-p Eceriferum-p 26:360 437<br />

411 cer-r cer-r 3HL Eceriferum-r 26:361 439<br />

165


Barley Genetics Newsletter (2007) 37: 154-187<br />

Table 2 (continued)<br />

BGS Locus symbol * Chr. † Locus name or phenotype Descr. GSHO<br />

no. Rec. Prev. loc. vol. p. no. ‡<br />

412 cer-t cer-t 5HL Eceriferum-t 26:362 441<br />

413 gsh8 cer-u, gs8 2HS Glossy sheath 8 26:364 442<br />

414 cer-v cer-v 2HS Eceriferum-v 26:366 443<br />

415 cer-w cer-w 5HL Eceriferum-w 26:367 1519<br />

417 cer-y cer-y Eceriferum-y 26:368 446<br />

418 cer-z cer-z 7HS Eceriferum-z 26:369 447<br />

419 cer-za cer-za 5HL Eceriferum-za 26:370 1521<br />

420 cer-zb cer-zb Eceriferum-zb 26:371 1522<br />

421 cer-zc cer-zc Eceriferum-zc 26:372 450<br />

422 cer-zd cer-zd 3HL Eceriferum-zd 26:373 451<br />

423 cer-ze gl5 7HS Eceriferum-ze 26:374 452<br />

424 cer-zf cer-zf Eceriferum-zf 26:376 453<br />

425 cer-zg cer-zg 4HL Eceriferum-zg 26:377 454<br />

427 cer-zi cer-zi 1HL Eceriferum-zi 26:378 456<br />

428 cer-zj cer-zj 5HL Eceriferum-zj 26:379 457<br />

429 cer-zk cer-zk 2H Eceriferum-zk 26:381 458<br />

430 cer-zl cer-zl Eceriferum-zl 26:382 459<br />

431 cer-zn cer-zn 3HL Eceriferum-zn 26:383 1523<br />

432 cer-zo cer-zo Eceriferum-zo 26:384 462<br />

433 cer-zp cer-zp 5HL Eceriferum-zp 26:385 463<br />

434 cer-zq cer-zq Eceriferum-zq 26:386 1524<br />

435 cer-zr cer-zr Eceriferum-zr 26:387 1525<br />

436 cer-zs cer-zs Eceriferum-zs 26:388 1526<br />

437 cer-zt cer-zt 2HS Eceriferum-zt 37:270 1527<br />

438 cer-zu cer-zu Eceriferum-zu 26:390 1528<br />

439 cer-zv cer-zv Eceriferum-zv 26:391 1529<br />

440 cer-zw cer-zw Eceriferum-zw 26:392 1530<br />

441 cer-zx cer-zx Eceriferum-zx 26:393 1531<br />

442 cer-zy cer-zy Eceriferum-zy 26:394 1532<br />

443 cer-zz cer-zz Eceriferum-zz 26:395 1533<br />

444 cer-ya cer-ya 3HS Eceriferum-ya 26:396 1534<br />

445 cer-yb cer-yb 2HL Eceriferum-yb 26:397 1535<br />

446 cer-yc cer-yc Eceriferum-yc 26:398 1536<br />

447 cer-yd cer-yd 3HS Eceriferum-yd 26:399 1537<br />

448 cer-ye cer-ye 5HL Eceriferum-ye 26:400 1538<br />

449 cer-yf cer-yf Eceriferum-yf 37:271 1539<br />

450 cer-yg cer-yg 7HS Eceriferum-yg 26:402 1540<br />

451 cer-yh cer-yh 3HS Eceriferum-yh 26:403 1541<br />

454 blx5 bl5 7HL Non-blue aleurone xenia 5 26:404 2509<br />

455 seg8 seg8 7H Shrunken endosperm genetic 8 37:272 2469<br />

166


Barley Genetics Newsletter (2007) 37: 154-187<br />

Table 2 (continued)<br />

BGS Locus symbol * Chr. † Locus name or phenotype Descr. GSHO<br />

no. Rec. Prev. loc. vol. p. no. ‡<br />

460 cur4 cu4, glo-d 2HL Curly 4 26:406 1708<br />

461 zeb2 zb2, f10 4HL Zebra stripe 2 26:407 93<br />

462 yst3 yst,,c 3HS Yellow streak 3 26:409 48<br />

463 gig1 gig, sf 2H? Gigas 1 26:410 1650<br />

464 msg27 msg,,ae 2HL Male sterile genetic 27 26:411 2379<br />

465 msg28 msg,,as 6H Male sterile genetic 28 26:412 2380<br />

466 msg29 msg,,a 5HL Male sterile genetic 29 26:413 2381<br />

467 msg30 msg,,c 7HL Male sterile genetic 30 26:414 2382<br />

468 msg31 msg,,d 1HS Male sterile genetic 31 26:415 2383<br />

469 msg32 msg,,w 7H Male sterile genetic 32 26:416 2384<br />

470 msg33 msg,,x 2HS Male sterile genetic 33 26:417 2385<br />

471 msg34 msg,,av 6H Male sterile genetic 34 26:418 2386<br />

472 abr1 abr 2HL Accordion basal rachis internode 1 26:419 1563<br />

473 com1 bir1 5HL Compositum 1 26:420 1702<br />

474 lax-a lax-a 5HL Laxatum-a 37:273 1775<br />

475 lax-c lax-c 6HL Laxatum-c 26:423 1777<br />

498 msg35 msg,,dr 2HL Male sterile genetic 35 26:424 2387<br />

499 msg36 msg,,bk 6HS Male sterile genetic 36 26:425 2388<br />

500 msg37 msg,,hl Male sterile genetic 37 26:426 2389<br />

501 msg38 msg,,jl Male sterile genetic 38 26:427 2390<br />

502 msg39 msg,,dm 6H Male sterile genetic 39 26:428 2391<br />

503 msg40 msg,,ac 6H Male sterile genetic 40 26:429 2393<br />

504 msg41 msg,,aj Male sterile genetic 41 26:430 2394<br />

505 msg42 msg,,db 3H Male sterile genetic 42 26:431 2395<br />

506 msg43 msg,,br Male sterile genetic 43 26:432 2396<br />

507 msg44 msg,,cx Male sterile genetic 44 26:433 2397<br />

508 msg45 msg,,dp Male sterile genetic 45 26:434 2398<br />

509 msg46 msg,,ec Male sterile genetic 46 26:435 2399<br />

510 msg47 msg,,ep Male sterile genetic 47 26:436 2400<br />

511 Rpg1 T 7HS Reaction to Puccinia graminis 1 26:437 701<br />

512 Rpg2 T2 Reaction to Puccinia graminis 2 26:439 187<br />

513 xnt2 xb Xantha seedling 2 26:440 2<br />

515 Rsp1 Sep Reaction to Septoria passerinii 1 26:441 2510<br />

516 Rsp2 Sep2 Reaction to Septoria passerinii 2 37:275 2511<br />

517 Rsp3 Sep3 Reaction to Septoria passerinii 3 37:276 2512<br />

518 sdw1 denso 3HL Semidwarf 1 37:277 2513<br />

519 mnd1 m Many-noded dwarf 1 26:446 253<br />

520 msg48 msg,,jt 2H Male sterile genetic 48 26:447 2401<br />

521 mtt1 mt 1HS Mottled leaf 1 26:448 622<br />

522 cer-yi cer-yi Eceriferum-yi 26:449 1542<br />

167


Barley Genetics Newsletter (2007) 37: 154-187<br />

Table 2 (continued)<br />

BGS Locus symbol * Chr. † Locus name or phenotype Descr. GSHO<br />

no. Rec. Prev. loc. vol. p. no. ‡<br />

523 cer-yj cer-yj Eceriferum-yj 26:450 1543<br />

524 cer-yk cer-yk Eceriferum-yk 26:451 1544<br />

525 cer-yl cer-yl Eceriferum-yl 26:452 1545<br />

526 cer-ym cer-ym Eceriferum-ym 26:453 1546<br />

527 cer-yn cer-yn Eceriferum-yn 26:454 1547<br />

528 cer-yo cer-yo Eceriferum-yo 26:455 1548<br />

529 cer-yp cer-yp Eceriferum-yp 26:456 1549<br />

530 cer-yq cer-yq Eceriferum-yq 26:457 1550<br />

531 cer-yr cer-yr Eceriferum-yr 26:458 1551<br />

532 cer-ys cer-ys Eceriferum-ys 26:459 1552<br />

533 cer-yt cer-yt Eceriferum-yt 26:460 1553<br />

534 cer-yu cer-yu Eceriferum-yu 26:461 1554<br />

535 cer-yx cer-yx Eceriferum-yx 26:462 1555<br />

536 Cer-yy Gle1 1HS Eceriferum-yy 26:463 1556<br />

537 cer-yz cer-yz Eceriferum-yz 26:464 1557<br />

538 cer-xa cer-xa Eceriferum-xa 26:465 1558<br />

539 cer-xb cer-xb Eceriferum-xb 26:466 1559<br />

540 cer-xc cer-xc Eceriferum-xc 26:467 1560<br />

541 cer-xd cer-xd Eceriferum-xd 26:468 1561<br />

542 Dwf2 Dwf2 Dominant dwarf 2 24:170<br />

543 int-f int-f Intermedium spike-f 26:469 1767<br />

544 int-h int-h Intermedium spike-h 26:470 1768<br />

545 int-i int-i Intermedium spike-i 26:471 1769<br />

546 int-k int-k 7H Intermedium spike-k 37:279 1770<br />

547 int-m int-m Intermedium spike-m 37:280 1772<br />

548 Fol-b Ang Angustifolium-b 26:474 17<br />

549 Lga1 Log Long glume awn 1 26:475 835<br />

550 ari-b ari-b Breviaristatum-b 26:476 1649<br />

551 ari-f ari-f Breviaristatum-f 26:477 1654<br />

552 ari-j ari-j Breviaristatum-j 26:478 1658<br />

553 ari-k ari-k Breviaristatum-k 26:479 1659<br />

554 ari-m ari-m Breviaristatum-m 26:480 1661<br />

555 ari-n ari-n Breviaristatum-n 26:481 1662<br />

556 ari-o ari-o Breviaristatum-o 26:482<br />

557 ari-p ari-p Breviaristatum-p 26:483 1664<br />

558 ari-q ari-q Breviaristatum-q 26:484 1665<br />

559 ari-r ari-r Breviaristatum-r 26:485 1666<br />

560 ert-f ert-f Erectoides-f 26:486 478<br />

561 ert-h ert-h Erectoides-h 26:487 481<br />

562 ert-k ert-k Erectoides-k 26:488 485<br />

168


Barley Genetics Newsletter (2007) 37: 154-187<br />

Table 2 (continued)<br />

BGS Locus symbol * Chr. † Locus name or phenotype Descr. GSHO<br />

no. Rec. Prev. loc. vol. p. no. ‡<br />

563 ert-l ert-l Erectoides-l 26:489 486<br />

564 ert-p ert-p Erectoides-p 26:490 490<br />

565 ert-s ert-s Erectoides-s 26:491 493<br />

566 ert-t ert-t, brh3 2HS Erectoides-t 37:281 494<br />

567 ert-v ert-v Erectoides-v 26:493 497<br />

568 ert-x ert-x Erectoides-x 26:494 498<br />

569 ert-y ert-y Erectoides-y 26:495 499<br />

570 ert-z ert-z Erectoides-z 26:496 500<br />

571 ert-za ert-za Erectoides-za 26:497 501<br />

572 ert-zb ert-zb Erectoides-zb 26:498 502<br />

573 ert-zc ert-zc Erectoides-zc 26:499 503<br />

574 ert-ze ert-ze Erectoides-ze 26:500 505<br />

575 Rph6 Pa6 Reaction to Puccinia hordei 6 26:501 1598<br />

576 Rph8 Pa8 Reaction to Puccinia hordei 8 26:502 1600<br />

577 Rsg2 Rsg2 Reaction to Schizaphis graminum 2 37:283 2513<br />

578 mat-b mat-b Praematurum-b 26:504 1788<br />

579 mat-c mat-c Praematurum-c 26:506 1789<br />

580 mat-d mat-d Praematurum-d 26:507 1790<br />

581 mat-e mat-e Praematurum-e 26:508 1791<br />

582 mat-f mat-f Praematurum-f 26:509 1792<br />

583 mat-g mat-g Praematurum-g 26:510 1793<br />

584 mat-h mat-h Praematurum-h 26:511 1794<br />

585 mat-i mat-i Praematurum-i 26:512 1795<br />

586 bra-d bra-d 1HL Bracteatum-d 37:284 1696<br />

587 abo3 a2, alb-za Albino seedling 3 26:514 165<br />

588 abo10 at2 Albino seedling 10 26:515 57<br />

589 abo11 at3, alb t Albino seedling 11 26:516 233<br />

590 Rph13 Rph13 Reaction to Puccinia hordei 13 28: 31 1591<br />

591 Rph14 Rph14 Reaction to Puccinia hordei 14 28: 32 1592<br />

592 yhd2 yh2 Yellow head 2 28: 33 757<br />

593 adp1 adp Awned palea 1 37:285 1618<br />

594 ant3 rub Anthocyanin-deficient 3 29: 82 1641<br />

595 ant4 ant4 Anthocyanin-deficient 4 29: 83 1642<br />

596 ant5 rs2 Anthocyanin-deficient 5 29: 84 1643<br />

597 ant6 ant6 Anthocyanin-deficient 6 29: 85 1644<br />

598 ant13 ant13 6HL Proanthocyanin-free 13 29: 86 1624<br />

599 ant17 ant17 3HS Proanthocyanin-free 17 37:286<br />

600 ant18 ant18 7HL Proanthocyanin-free 18 29: 90 1630<br />

601 ant19 ant19 Proanthocyanin-free 19 29: 92 1631<br />

602 ant20 ant20 Anthocyanin-rich 20 29: 93 1633<br />

169


Barley Genetics Newsletter (2007) 37: 154-187<br />

Table 2 (continued)<br />

BGS Locus symbol * Chr. † Locus name or phenotype Descr. GSHO<br />

no. Rec. Prev. loc. vol. p. no. ‡<br />

603 ant21 ant21 6H Proanthocyanin-free 21 29: 94 1634<br />

604 ant22 ant22 7HL Proanthocyanin-free 22 29: 95 1635<br />

605 ant25 ant25 Proanthocyanin-free 25 29: 96 1638<br />

606 ant26 ant26 Proanthocyanin-free 26 29: 97 1639<br />

607 ant27 ant27 Proanthocyanin-free 27 29: 98 1640<br />

608 ant28 ant28 3HL Proanthocyanin-free 28 29: 99<br />

609 ant29 ant29 Proanthocyanin-free 29 29:100<br />

610 ant30 ant30 Proanthocyanin-free 30 29:101<br />

611 Nec6 Sp Necrotic leaf spot 6 32:112 2424<br />

612 gig2 gig2 Gigas 2 32:113 1750<br />

613 brc1 brc-5 2HS Branched 1 32:114<br />

614 Zeo2 Zeo2 Zeocriton 2 32:115 637<br />

615 wxs1 wxs1 Waxy spike 1 32:116<br />

616 cul3 cul3 Uniculme 3 32:117 2494<br />

617 cul4 uc-5 3HL Uniculme 4 37:289 2493<br />

618 mnd3 mn3, m3 3H Many noded dwarf 3 32:119 1797<br />

619 bra-a bra-a 7HS Bracteatum-a 32:120 1693<br />

620 cal-b cal-b 5H Calcaroides-b 32:121 1697<br />

621 Cal-c Cal-c 5HL Calcaroides-c 32:122 1567<br />

622 cal-e cal-23 5HS Calcaroides-e 32:123<br />

623 eli-a lig-a Eligulum-a 37:290<br />

624 ops1 op-3 Opposite spikelets 1 32:125 2427<br />

625 sci-a sci-3 Scirpoides 1 32:126<br />

626 scl-a scl-6 Scirpoides leaf-a 32:127<br />

627 viv-a viv-5 Viviparoides-a 32:128 2498<br />

628 sex7 sex.i 5HL Shrunken endosperm 7 32:129 2470<br />

629 mtt6 mtt6 Mottled leaf 6 32:130 2411<br />

630 Ari-s ari-265 Breviaristatum-s 32:131<br />

631 brh3 brh.g, ert-t Brachytic 3 32:132 1672<br />

632 mnd5 mnd5 Many noded dwarf 5 32:133<br />

633 mnd6 den-6 5HL Many noded dwarf 6 37:291 1713<br />

634 pmr2 nec-50 Premature ripe 2 32:135 2421<br />

635 nec7 nec-45 Necroticans 7 32:136 2420<br />

636 tst2 lin2 Tip sterile 2 37:292 1781<br />

637 nar1 nar1 6HS NADH nitrate reductase-deficient 1 35:194<br />

638 nar2 nar2 5HL NADH nitrate reductase-deficient 2 35:195<br />

639 nar3 nar3 7HS NADH nitrate reductase-deficient 3 35:196<br />

640 nar4 nar4 2HL NADH nitrate reductase-deficient 4 35:197<br />

641 nar5 nar5 5HL NADH nitrate reductase-deficient 5 35:198<br />

642 nar6 nar6 2HL NADH nitrate reductase-deficient 6 35:199<br />

170


Barley Genetics Newsletter (2007) 37: 154-187<br />

Table 2 (continued)<br />

BGS Locus symbol * Chr. † Locus name or phenotype Descr. GSHO<br />

no. Rec. Prev. loc. vol. p. no. ‡<br />

643 nar7 nar7 6HL NADH nitrate reductase-deficient 7 35:200<br />

644 nar8 nar8 6HS NADH nitrate reductase-deficient 8 35:201<br />

645 bsp1 bsp1 Bushy spike 1 35:202<br />

646 ovl2 ovl2 Ovaryless 2 35:204<br />

647 tst1 tst1 Tip sterile 1 35:205<br />

648 mov4 mo8 Multiovary 4 35:206<br />

649 asp1 asp1 Aborted spike 1 35:207<br />

650 sun1 sun1 Sensitivity to Ustilago nuda 1 35:208<br />

651 lam1 lam1 Late maturity 1 35:209<br />

652 ylf1 ylf1 Yellow leaf 1 35:210<br />

653 brh10 brh.l 2HS Brachytic 10 37:293 1677<br />

654 brh11 brh.n 5HS Brachytic 11 37:294 1679<br />

655 brh12 brh.o 5HS Brachytic 12 37:295 1680<br />

656 brh13 brh.p 5HS Brachytic 13 37:296 1681<br />

657 brh15 brh.u Brachytic 15 37:297 1685<br />

658 brh17 brh.ab 5HS Brachytic 17 37:298 1669<br />

659 brh18 brh.ac 5HS Brachytic 18 37:299 1670<br />

660 nld2 Narrow leafed dwarf 2 37:300<br />

661 dub1 5HL Double seed 1 37:301<br />

* Recommended locus symbols are based on utilization of a three-letter code for barley genes as<br />

approved at the business meeting of the Seventh International Barley Genetics Symposium at<br />

Saskatoon, Saskatchewan, Canada, on 05 August 5 1996.<br />

† Chromosome numbers and arm designations are based on a resolution passed at the business<br />

meeting of the Seventh International Barley Genetics Symposium at Saskatoon, Saskatchewan,<br />

Canada, on August 05 1996. The Burnham and Hagberg (1956) designations of barley<br />

chromosomes were 1 2 3 4 5 6 and 7 while new designations based on the Triticeae system are<br />

7H 2H 3H 4H 1H 6H and 5H, respectively.<br />

‡ The seed stock associated with each BGS number is held as a GSHO stock number in the<br />

Barley Genetics Stock Collection at the <strong>US</strong>DA-ARS National Small Grains Germplasm<br />

Research Facility, Aberdeen, Idaho, <strong>US</strong>A.<br />

171


Barley Genetics Newsletter (2007) 37: 154-187<br />

Table 3. An alphabetic listing of recently published Barley Genetic Stock (BGS) descriptions for<br />

loci in barley (Hordeum vulgare), including information on chromosomal locations,<br />

recommended locus names, and original cultivars.<br />

Locus symbol* BGS Chr. Locus name or phenotype Descr. Parental cultivar<br />

Rec. Prev. no. loc. † vol. p.<br />

abo1 at 207 1HL Albino seedling 1 26:210 Trebi<br />

abo2 a2 53 2HS Albino seedling 2 26:89 Nilsson-Ehle No 2<br />

abo3 alb-za 587 Albino seedling 3 26:514 Unknown cultivar<br />

abo4 a4 94 2H Albino seedling 4 26:133 Unknown cultivar<br />

abo6 ac 106 3HS Albino seedling 6 26:140 Colsess<br />

abo8 ac2 4 7HS Albino seedling 8 26:47 Coast<br />

abo9 an 112 3HS Albino seedling 9 26:146 Nigrinudum<br />

abo10 at2 588 Albino seedling 10 26:515 Canadian Thorpe<br />

abo11 at3 589 Albino seedling 11 26:516 Trebi<br />

abo12 alb,,o 341 5HS Albino seedling 12 26:290 Titan<br />

abo13 alb,,p 95 2HL Albino seedling 13 26:134 Titan<br />

abo14 alb,,q 270 6HL Albino seedling 14 26:250 Shabet<br />

abo15 alb,,t 271 6HS Albino seedling 15 26:251 Betzes<br />

abr1 abr 472 2HL Accordion basal rachis 26:419 Bonus<br />

internode 1<br />

acr1 acr 97 2HL Accordion rachis 1 32:85 Burma Girl<br />

adp1 adp 593 3HL Awned palea 1 37:285 Unknown cultivar<br />

alm1 al 108 3HS Albino lemma 1 37:222 Russia 82<br />

als1 als 101 3HL Absent lower laterals 1 37:219 Montcalm<br />

ant1 rs 33 7HS Anthocyanin-less 1 26:82 Bonus<br />

ant2 pr 80 2HL Anthocyanin-less 2 26:118 Foma<br />

ant3 594 Anthocyanin-deficient 3 29:82 Bonus<br />

ant4 595 Anthocyanin-deficient 4 29:83 Foma<br />

ant5 596 Anthocyanin-deficient 5 29:84 Bonus<br />

ant6 597 Anthocyanin-deficient 6 29:85 Foma<br />

ant13 598 6HL Proanthocyanidin-free 13 29:86 Foma<br />

ant17 599 3HS Proanthocyanidin-free 17 37:286 Nordal<br />

ant18 600 7HL Proanthocyanidin-free 18 29:90 Nordal<br />

ant19 601 Proanthocyanidin-free 19 29:92 Alf<br />

ant20 602 Anthocyanidin-rich 20 29:93 Foma<br />

ant21 603 6H Proanthocyanidin-free 21 29:94 Georgie<br />

ant22 604 7HS Proanthocyanidin-free 22 29:95 Hege 802<br />

ant25 605 Proanthocyanidin-free 25 29:96 Secobra 18193<br />

ant26 606 Proanthocyanidin-free 26 29.97 Grit<br />

ant27 607 Proanthocyanidin-free 27 29:98 Zebit<br />

ant28 608 3HL Proanthocyanidin-free 28 29:99 Grit<br />

ant29 609 Proanthocyanidin-free 29 29:100 Ca 708912<br />

ant30 610 Proanthocyanidin-free 30 29:101 Gunhild<br />

172


Barley Genetics Newsletter (2007) 37: 154-187<br />

Table 3 (continued)<br />

Locus symbol* BGS Chr. Locus name or phenotype Descr. Parental cultivar<br />

Rec. Prev. no. loc. † vol. p.<br />

ari-a 132 3HS Breviaristatum-a 26:168 Bonus<br />

ari-b 550 Breviaristatum-b 26:476 Bonus<br />

ari-e 328 5HL Breviaristatum-e 26:276 Bonus<br />

ari-f 551 Breviaristatum-f 26:477 Bonus<br />

ari-g 89 Breviaristatum-g 26:128 Bonus<br />

ari-h 329 5HL Breviaristatum-h 26:277 Foma<br />

ari-j 552 Breviaristatum-j 26:478 Bonus<br />

ari-k 553 Breviaristatum-k 26:479 Bonus<br />

ari-m 554 Breviaristatum-m 26:480 Bonus<br />

ari-n 555 Breviaristatum-n 26:481 Bonus<br />

ari-o 556 Breviaristatum-o 26:482 Bonus<br />

ari-p 557 Breviaristatum-p 26:483 Foma<br />

ari-q 558 Breviaristatum-q 26:484 Kristina<br />

ari-r 559 Breviaristatum-r 26:485 Bonus<br />

Ari-s ari-265 630 Breviaristatum-s 32:131 Kristina<br />

asp1 649 Aborted spike 1 35:207 Steptoe<br />

blf1 bb 326 5HL Broad leaf 1 26:274 Bonus<br />

blf2 bb2 337 5HL Broad leaf 2 26:285 Hannchen<br />

Blp1 B 203 1HL Black lemma and pericarp 1 37:245 Nigrinudum<br />

blx1 bl 15 4HL Non-blue aleurone xenia 1 26:60 Goldfoil<br />

blx2 bl2 19 7HS Non-blue aleurone xenia 2 26:65 Nepal<br />

blx3 bl3 173 4HL Non-blue aleurone xenia 3 26:198 Blx<br />

blx4 bl4 174 4HL Non-blue (pink) aleurone 26:199 Ab 6<br />

xenia 4<br />

blx5 bl5 454 7HL Non-blue aleurone xenia 5 26:404 BGM 122<br />

bra-a 619 7HS Bracteatum-a 32:120 Bonus<br />

bra-d 586 1HS Bracteatum-d 37:284 Foma<br />

brc1 brc-5 613 2HS Branched 1 32:114<br />

brh1 br 1 7HS Brachytic 1 37:188 Himalaya<br />

brh2 br2 157 4HL Brachytic 2 37:235 Svanhals<br />

brh3 brh.g, ert-t 631 Brachytic 3 32:132 Birgitta<br />

brh4 brh.j 349 5HS Brachytic 4 37:262 Birgitta<br />

brh5 brh.m 185 4HS Brachytic 5 37:242 Birgitta<br />

brh6 brh.s 350 5HS Brachytic 6 37:263 Akashinriki<br />

brh7 brh.w 41 5HS Brachytic 7 37:203 Volla<br />

brh8 brh.ad 142 3HS Brachytic 8 37:230 Birgitta<br />

brh9 brh.k 187 4HS Brachytic 9 37:244 Birgitta<br />

brh10 brh.l 653 2HS Brachytic 10 37:293 Birgitta<br />

brh11 brh.n 654 5HS Brachytic 11 37:294 Birgitta<br />

brh12 brh.o 655 5HS Brachytic 12 37:295 Birgitta<br />

173


Barley Genetics Newsletter (2007) 37: 154-187<br />

Table 3 (continued)<br />

Locus symbol* BGS Chr. Locus name or phenotype Descr. Parental cultivar<br />

Rec. Prev. no. loc. † vol. p.<br />

brh13 brh.p 656 5HS Brachytic 13 37:296 Birgitta<br />

brh14 brh.q 148 3HL Brachytic 14 37:231 Akashinriki<br />

brh15 brh.u 657 Brachytic 15 37:297 Julia<br />

brh16 brh.v 44 7HL Brachytic 16 37:204 Korál<br />

brh17 brh.ab 658 5HS Brachytic 17 37:298 Morex<br />

brh18 Brh.ac 659 5HS Brachytic 18 37:299 Triumph<br />

bsp1 645 Bushy spike 1 35:203 Morex<br />

btr1 bt 115 3HS Non-brittle rachis 1 26:149 A 222<br />

btr2 bt2 116 3HS Non-brittle rachis 2 26:150 Sakigoke<br />

cal-b 620 5H Calcaroides-b 32:121 Bonus<br />

Cal-c 621 5HL Calcaroides-c 32:122 Bonus<br />

cal-d 146 3H Calcaroides-d 32:95 Foma<br />

cal-e 622 5HS Calcaroides-e 32:123 Semira<br />

cer-d 399 Eceriferum-d + ++ ++ 26:346 Bonus<br />

cer-e 400 1HL Eceriferum-e -/+ ++ ++ 26:347 Bonus<br />

cer-f 401 7HS Eceriferum-f + + ++ 26:348 Bonus<br />

cer-g 402 2HL Eceriferum-g + + ++ 26:349 Bonus<br />

cer-h 403 Eceriferum-h - ++ ++ 26:351 Bonus<br />

cer-i 404 5HL Eceriferum-i - ++ ++ 26:352 Bonus<br />

cer-k 405 7HS Eceriferum-k + ++ ++ 26:354 Bonus<br />

cer-l 406 Eceriferum-l + ++ ++ 26:355 Bonus<br />

cer-m 407 Eceriferum-m +/++ + ++ 26:356 Bonus<br />

cer-n gs9 408 2HL Eceriferum-n - - ++ & 26:357 Bonus<br />

- +/- ++<br />

cer-o 409 Eceriferum-o -/+ ++ ++ 26:359 Bonus<br />

cer-p 410 Eceriferum-p ++ ++ + 26:360 Bonus<br />

cer-r 411 3HL Eceriferum-r +/- + ++ 26:361 Bonus<br />

cer-t 412 5HL Eceriferum-t +/- ++ ++ 26:362 Bonus<br />

cer-v 414 2HS Eceriferum-v +/- ++ ++ 26:366 Bonus<br />

cer-w 415 5HL Eceriferum-w +/- ++ ++ 26:367 Bonus<br />

cer-y 417 Eceriferum-y + +/++ ++ 26:368 Bonus<br />

cer-z 418 7HS Eceriferum-z - - ++ 26:369 Bonus<br />

cer-za 419 5HL Eceriferum-za ++ ++ - 26:370 Foma<br />

cer-zb 420 Eceriferum-zb - ++ ++ 26:371 Bonus<br />

cer-zc 421 Eceriferum-zc +/- ++ ++ 26:372 Bonus<br />

cer-zd 422 3HL Eceriferum-zd ++ ++ - 26:373 Bonus<br />

cer-ze gl5 423 7HS Eceriferum-ze ++ ++ - 26:374 Bonus<br />

cer-zf 424 Eceriferum-zf ++ ++ + 26:376 Bonus<br />

cer-zg 425 4HL Eceriferum-zg ++ ++ + 26:377 Foma<br />

cer-zi 427 1HL Eceriferum-zi + + ++ 26:378 Bonus<br />

174


Barley Genetics Newsletter (2007) 37: 154-187<br />

Table 3 (continued)<br />

Locus symbol* BGS Chr. Locus name or phenotype Descr. Parental cultivar<br />

Rec. Prev. no. loc. † vol. p.<br />

cer-zj 428 5HL Eceriferum-zj ++ ++ - 26:379 Bonus<br />

cer-zk 429 2H Eceriferum-zk + + +/- 26:381 Bonus<br />

cer-zl 430 Eceriferum-zl - - ++ 26:382 Bonus<br />

cer-zn 431 3HL Eceriferum-zn +/- ++ ++ 26:383 Foma<br />

cer-zo 432 Eceriferum-zo - ++ ++ 26:384 Foma<br />

cer-zp 433 5HL Eceriferum-zp ++ ++ - 26:385 Bonus<br />

cer-zq 434 Eceriferum-zq ++ ++ - 26:386 Foma<br />

cer-zr 435 Eceriferum-zr +/- ++ ++ 26:387 Foma<br />

cer-zs 436 Eceriferum-zs + ++ ++ 26:388 Foma<br />

cer-zt 437 2HS Eceriferum-zt + ++ ++ 37:270 Foma<br />

cer-zu 438 Eceriferum-zu - + ++ 26:390 Bonus<br />

cer-zv 439 Eceriferum-zv - - - 26:391 Foma<br />

cer-zw 440 Eceriferum-zw + + ++ 26:392 Foma<br />

cer-zx 441 Eceriferum-zx + + ++ 26:393 Bonus<br />

cer-zy 442 Eceriferum-zy ++ ++ + 26:394 Bonus<br />

cer-zz 443 Eceriferum-zz ++ ++ - 26:395 Bonus<br />

cer-ya 444 3HS Eceriferum-ya ++ ++ - 26:396 Bonus<br />

cer-yb 445 2HL Eceriferum-yb ++ ++ - 26:397 Bonus<br />

cer-yc 446 Eceriferum-yc - ++ ++ 26:398 Bonus<br />

cer-yd 447 3HS Eceriferum-yd - ++ ++ 26:399 Bonus<br />

cer-ye 448 5HL Eceriferum-ye ++ ++ - 26:400 Foma<br />

cer-yf 449 Eceriferum-yf ++ ++ + 37:271 Bonus<br />

cer-yg 450 7HS Eceriferum-yg - - - 26:402 Carlsberg II<br />

cer-yh 451 3HS Eceriferum-yh - ++ ++ 26:403 Bonus<br />

cer-yi 522 Eceriferum-yi ++ ++ - 26:449 Foma<br />

cer-yj 523 Eceriferum-yj ++ ++ - 26:450 Bonus<br />

cer-yk 524 Eceriferum-yk + + ++ 26:451 Bonus<br />

cer-yl 525 Eceriferum-yl - - ++ 26:452 Bonus<br />

cer-ym 526 Eceriferum-ym - - - 26:453 Bonus<br />

cer-yn 527 Eceriferum-yn + + ++ 26:454 Kristina<br />

cer-yo 528 Eceriferum-yo ++ ++ + 26:455 Bonus<br />

cer-yp 529 Eceriferum-yp ++ ++ + 26:456 Bonus<br />

cer-yq 530 Eceriferum-yq ++ ++ - 26:457 Kristina<br />

cer-yr 531 Eceriferum-yr -/+ + ++ 26:458 Foma<br />

cer-ys 532 Eceriferum-ys ++ ++ - 26:459 Bonus<br />

cer-yt 533 Eceriferum-yt - ++ ++ 26:460 Bonus<br />

cer-yu 534 Eceriferum-yu ++ ++ - 26:461 Bonus<br />

cer-yx 535 Eceriferum-yx + + ++ 26:462 Foma<br />

Cer-yy Gle1 536 1HS Eceriferum-yy - ++ ++ 26:463 Bonus<br />

cer-yz 537 Eceriferum-yz + + ++ 26:464 Bonus<br />

175


Barley Genetics Newsletter (2007) 37: 154-187<br />

Table 3 (continued)<br />

Locus symbol* BGS Chr. Locus name or phenotype Descr. Parental cultivar<br />

Rec. Prev. no. loc. † vol. p.<br />

cer-xa 538 Eceriferum-xa ++ ++ - 26:465 Foma<br />

cer-xb 539 Eceriferum-xb - ++ ++ 26:466 Bonus<br />

cer-xc 540 Eceriferum-xc + + ++ 26:467 Bonus<br />

cer-xd 541 Eceriferum-xd + + ++ 26:468 Bonus<br />

clh1 clh 225 1HL Curled leaf dwarf 1 26:223 Hannchen<br />

com1 bir1 473 5HL Compositum 1 26:420 Foma<br />

com2 bir2 71 2HS Compositum 2 26:108 CIMMYT freak<br />

crl1 cl 325 Curly lateral 1 26:273 Montcalm<br />

crm1 cm 305 5HL Cream seedling 1 26:256 Black Hulless<br />

cud1 cud 324 5HL Curly dwarf 1 26:272 Akashinriki<br />

cud2 229 1HL Curly dwarf 2 26:227 Akashinriki<br />

cul2 uc2 253 6HL Uniculm 2 37:253 Kindred<br />

cul3 616 Uniculme 3 32:117 Donaria<br />

cul4 uc-5 617 3HL Uniculme 4 37:289 Bonus<br />

cur1 cu1 262 6HL Curly 1 26:242 48-cr cr-17<br />

cur2 cu2 114 3HL Curly 2 26:148 Choshiro<br />

cur3 cu3 263 6HL Curly 3 26:243 Akashinriki<br />

cur4 cu4 460 2HL Curly 4 26:406 Asahi 5<br />

cur5 cu5 231 1HS Curly 5 26:229 Glenn<br />

ddt1 ddt 317 5HS Reaction to DDT 1 26:266 Spartan<br />

des1 lc 12 7H Desynapsis 1 26:57 Mars<br />

des2 ds 119 3H Desynapsis 2 26:154 Husky<br />

des3 386 Desynapsis 3 26:334 Betzes<br />

des4 13 7H Desynapsis 4 26:58 Betzes<br />

des5 14 7H Desynapsis 5 26:59 Betzes<br />

des6 215 1H Desynapsis 6 26:216 Betzes<br />

des7 64 2H Desynapsis 7 26:100 Betzes<br />

des8 387 Desynapsis 8 26:335 Betzes<br />

des9 388 Desynapsis 9 26:336 Betzes<br />

des10 389 Desynapsis 10 26:337 Betzes<br />

des11 390 Desynapsis 11 26:338 Betzes<br />

des12 391 Desynapsis 12 26:339 Betzes<br />

des13 392 Desynapsis 13 26:340 Betzes<br />

des14 393 Desynapsis 14 26:341 Betzes<br />

des15 394 Desynapsis 15 26:342 Ingrid<br />

dex1 sex2 311 5HS Defective endosperm xenia 1 26:260 BTT 63-j-18-17<br />

dsk1 dsk 322 5HL Dusky 1 26:270 Chikurin-Ibaraki 1<br />

dsp1 l 9 7HS Dense spike 1 26:53 Honen 6<br />

dsp9 l9, ert-e 258 6HL Dense spike 9 26:239 Akashinriki<br />

176


Barley Genetics Newsletter (2007) 37: 154-187<br />

Table 3 (continued)<br />

Locus symbol* BGS Chr. Locus name or phenotype Descr. Parental cultivar<br />

Rec. Prev. no. loc. † vol. p.<br />

dsp10 lc 111 3HS Dense spike 10 26:145 Club Mariout<br />

dub1 661 6HL Double seed 1 37:301 Bonus<br />

Dwf2 542 Dominant dwarf 2 24:170 Klages/Mata<br />

Eam1 Ea 65 2HS Early maturity 1 26:101 Estate<br />

Eam5 Ea5 348 5HL Early maturity 5 37:260 Higuerilla*2/<br />

Gobernadora<br />

eam6 Ea6, Ea 98 2HS Early maturity 6 37:216 Morex<br />

eam7 ea7 252 6HS Early maturity 7 26:233 California Mariout<br />

eam8 eak, ert-o 214 1HL Early maturity 8 37:247 Kinai 5<br />

eam9 ea,,c 181 4HL Early maturity 9 26:204 Tayeh 8<br />

eam10 easp 130 3HL Early maturity 10 37:226 Super Precoz<br />

eli-a lig-a 623 Eligulum-a 37:290 Foma<br />

eog 1 e 57 2HL Elongated outer glume 1 26:92 Triple Bearded<br />

Club Mariout<br />

ert-a ert-6 28 7HS Erectoides-a 26:74 Gull<br />

ert-b ert-2 224 1HS Erectoides-b 26:222 Gull<br />

ert-c ert-1 134 3HL Erectoides-c 26:170 Gull<br />

ert-d ert-7 29 7HS Erectoides-d 26:76 Gull<br />

ert-e dsp9 266 6HL Erectoides-e 37:257 Bonus<br />

ert-f ert-18 560 Erectoides-f 26:486 Bonus<br />

ert-g ert-24 330 5HL Erectoides-g 26:278 Bonus<br />

ert-h ert-25 561 Erectoides-h 26:487 Bonus<br />

ert-ii ert-79 135 3HL Erectoides-ii 26:172 Bonus<br />

ert-j ert.31 90 2H Erectoides-j 26:129 Bonus<br />

ert-k ert-32 562 Erectoides-k 26:488 Bonus<br />

ert-l ert-12 563 Erectoides-l 26:489 Maja<br />

ert-m ert-34 30 7HS Erectoides-m 26:78 Bonus<br />

ert-n ert-51 331 5HL Erectoides-n 26:279 Bonus<br />

ert-p ert-44 564 Erectoides-p 26:490 Bonus<br />

ert-q ert-101 91 2H Erectoides-q 26:130 Bonus<br />

Ert-r Ert-52 332 Erectoides-r 26:280 Bonus<br />

ert-s ert-50 565 Erectoides-s 26:491 Bonus<br />

ert-t brh3 566 2HS Erectoides-t 37:281 Bonus<br />

ert-u ert-56 92 2H Erectoides-u 26:131 Bonus<br />

ert-v ert-57 567 Erectoides-v 26:493 Bonus<br />

ert-x ert-58 568 Erectoides-x 26:494 Bonus<br />

ert-y ert-69 569 Erectoides-y 26:495 Bonus<br />

ert-z ert-71 570 Erectoides-z 26:496 Bonus<br />

ert-za ert-102 571 Erectoides-za 26:497 Bonus<br />

ert-zb ert-132 572 Erectoides-zb 26:498 Bonus<br />

177


Barley Genetics Newsletter (2007) 37: 154-187<br />

Table 3 (continued)<br />

Locus symbol* BGS Chr. Locus name or phenotype Descr. Parental cultivar<br />

Rec. Prev. no. loc. † vol. p.<br />

ert-zc ert-149 573 Erectoides-zc 26:499 Bonus<br />

ert-zd ert-159 93 2H Erectoides-zd 26:132 Bonus<br />

ert-ze ert-105 574 Erectoides-ze 26:500 Bonus<br />

fch1 f 55 2HS Chlorina seedling 1 26:90 Minn 84-7<br />

fch2 f2 117 3HL Chlorina seedling 2 26:151 28-3398<br />

fch3 f3 220 1HS Chlorina seedling 3 26:218 Minn 89-4<br />

fch4 f4 17 7HL Chlorina seedling 4 26:63 Montcalm<br />

fch5 f5 18 7HS Chlorina seedling 5 26:64 Gateway<br />

fch6 f6 313 5HL Chlorina seedling 6 26:262 Himalaya<br />

fch7 f7 201 1HL Chlorina seedling 7 26:206 Smyrna<br />

fch8 f8 5 7HS Chlorina seedling 8 26:48 Comfort<br />

fch9 f9 151 4HS Chlorina seedling 9 26:178 Ko A<br />

fch11 f11 260 6HL Chlorina seedling 11 26:240 Himalaya<br />

fch12 fc 2 7HS Chlorina seedling 12 37:190 Colsess<br />

fch13 f13 86 Chlorina seedling 13 26:124 Niggrinudum<br />

fch14 f14 87 2HL Chlorina seedling 14 37:211 Shyri<br />

fch15 or 52 2HS Chlorina seedling 15 26:88 Trebi IV<br />

flo-a 182 Extra floret-a 26:205 Foma<br />

flo-b 327 5HL Extra floret-b 26:275 Foma<br />

flo-c 74 2HS Extra floret-c 26:111 Foma<br />

fol-a 73 2HL Angustifolium-a 26:110 Proctor<br />

Fol-b Ang 548 Angustifolium-b 26:474 Unknown<br />

fst1 fs 301 5HL Fragile stem 1 26:252 Kamairazu<br />

fst2 fs2 208 1HL Fragile stem 2 26:211 Oshichi<br />

fst3 fs3 24 7HS Fragile stem 3 26:70 Kobinkatagi 4<br />

gig1 gig 463 2H? Gigas 1 26:410 Tochigi Golden<br />

Melon<br />

gig2 612 Gigas 2 32:113 ND12463<br />

glf1 gl 155 4HL Glossy leaf 1 ++ ++ - 37:233 Himalaya<br />

glf3 gl3 165 4HL Glossy leaf 3 ++ ++ - 26:190 Goseshikoku<br />

glo-a 168 4HS Globosum-a 26:194 Proctor<br />

glo-b 336 5HL Globosum-b 26:284 Villa<br />

glo-c 72 2H Globosum-c 26:109 Villa<br />

glo-e 230 1HL Globosum-e 26:228 Foma<br />

glo-f 342 5HL Globosum-f 26:291 Damazy<br />

gpa1 gp 59 2HL Grandpa 1 26:95 Lyallpur<br />

gra-a gran-a 131 3HL Granum-a 26:167 Donaria<br />

gsh1 gs1 351 2HS Glossy sheath 1 - - ++ 26:292 CIho 5818<br />

gsh2 gs2 352 3HL Glossy sheath 2 - - ++ 26:294 Atlas<br />

gsh3 gs3 353 7HS Glossy sheath 3 - - ++ 26:296 Mars<br />

178


Barley Genetics Newsletter (2007) 37: 154-187<br />

Table 3 (continued)<br />

Locus symbol* BGS Chr. Locus name or phenotype Descr. Parental cultivar<br />

Rec. Prev. no. loc. † vol. p.<br />

gsh4 gs4 354 6HL Glossy sheath 4 - - ++ 26:298 Gateway<br />

gsh5 gs5 355 2HL Glossy sheath 5 + - ++ 26:300 Jotun<br />

gsh6 gs6 356 2HS Glossy sheath 6 - - ++ 26:302 Betzes<br />

gsh7 gs7 81 Glossy sheath 7 - - ++ 26:119 Akashinriki<br />

gsh8 cer-u 413 2HS Glossy sheath 8 + + ++ 26:364 Bonus<br />

Gth1 G 69 2HL Toothed lemma 1 26:106 Machine<br />

(Wexelsen)<br />

hcm1 h 77 2HL Short culm 1 26:115 Morex<br />

Hln1 Hn 164 4HL Hairs on lemma nerves 1 26:189 Kogane-mugi<br />

Hsh1 Hs 179 4HL Hairy leaf sheath 1 37:240 Kimugi<br />

int-b 320 5HL Intermedium spike-b 26:268 Bonus<br />

int-c i 178 4HS Intermedium spike-c 37:237 Gamma 4<br />

int-f 543 Intermedium spike-f 26:469 Foma<br />

int-h 544 Intermedium spike-h 26:470 Kristina<br />

int-i 545 Intermedium spike-i 26:471 Kristina<br />

int-k 546 7H Intermedium spike-k 37:279 Kristina<br />

int-m 547 Intermedium spike-m 37:280 Bonus<br />

Kap1 K 152 4HS Hooded lemma 1 26:179 Colsess<br />

lam1 651 Late maturity 1 35:209 Steptoe<br />

lax-a 474 5HL Laxatum-a 37:273 Bonus<br />

lax-b 268 6HL Laxatum-b 26:248 Bonus<br />

lax-c 475 6HL Laxatum-c 26:423 Bonus<br />

lbi1 lb 308 5HL Long basal rachis internode<br />

1<br />

26:258 Wisconsin 38<br />

lbi2 lb2 156 4HL Long basal rachis internode<br />

2<br />

26:183 Montcalm<br />

lbi3 lb3 27 7HL Long basal rachis internode 26:73 Montcalm<br />

3<br />

lel1 lel 235 1HL Leafy lemma 1 32:103 G7118<br />

Lfb1 Lfb 343 5HL Leafy bract 1 28:30 Montcalm<br />

Lga1 Log 549 Long glume awn 1 26:475 Guy Mayle<br />

lgn3 lg3 170 4HL Light green 3 26:195 No 154<br />

lgn4 lg4 171 4HL Light green 4 26:196 Himalaya /<br />

Ingrescens<br />

lig1 li 60 2HL Liguleless 1 37:205 Muyoji<br />

lin1 s, rin 99 2HL Lesser internode number 1 32:88 Natural occurence<br />

Lks1 Lk 75 2HL Awnless 1 26:112 Hordeum inerme<br />

lks2 lk2 10 7HL Short awn 2 37:197 Honen 6<br />

lks5 lk5 172 4HL Short awn 5 26:197 CIho 5641<br />

lnt1 lnt 118 3HL Low number of tillers 1 26:153 Mitake<br />

179


Barley Genetics Newsletter (2007) 37: 154-187<br />

Table 3 (continued)<br />

Locus symbol* BGS Chr. Locus name or phenotype Descr. Parental cultivar<br />

Rec. Prev. no. loc. † vol. p.<br />

lys1 lys 338 5HL High lysine 1 26:286 Hiproly<br />

lys3 sex3 339 5HL High lysine 3 26:287 Bomi<br />

Lys4 sex5 232 1HS High lysine 4 26:230 Bomi<br />

lys6 269 6H High lysine 6 26:249 Bomi<br />

lzd1 lzd 125 3HS Lazy dwarf 1 26:161 Akashinriki<br />

mat-b 578 Praematurum-b 26:504 Bonus<br />

mat-c 579 Praematurum-c 26:506 Bonus<br />

mat-d 580 Praematurum-d 26:507 Bonus<br />

mat-e 581 Praematurum-e 26:508 Bonus<br />

mat-f 582 Praematurum-f 26:509 Bonus<br />

mat-g 583 Praematurum-g 26:510 Bonus<br />

mat-h 584 Praematurum-h 26:511 Bonus<br />

mat-i 585 Praematurum-i 26:512 Bonus<br />

min1 min 161 4HL Semi-minute dwarf 1 26:187 Taisho-mugi<br />

min2 en-min 160 Enhancer of minute 1 26:186 Kaiyo Bozu<br />

mnd1 m 519 Many-noded dwarf 1 26:446 Mesa<br />

mnd3 m3 618 3H Many noded dwarf 3 32:119 Montcalm<br />

mnd4 m4 347 5HL Many noded dwarf 4 32:108 Akashinriki<br />

mnd5 632 Many noded dwarf 5 32:133 C2-95-199<br />

mnd6 den-6 633 5HL Many noded dwarf 6 37:291 Bonus<br />

mov1 mo6b 43 7HL Multiovary 1 35:185 Steptoe<br />

mov2 mo7a 147 3HS Multiovary 2 35:190 Steptoe<br />

mov3 mo-a 234 1H Multiovary 3 32:102 Akashinriki<br />

mov4 648 Multiovary 4 35:206 Steptoe<br />

msg1 357 1HL Male sterile genetic 1 26:304 CIho 5368<br />

msg2 358 2HL Male sterile genetic 2 26:306 Manchuria<br />

msg3 359 2HS Male sterile genetic 3 26:307 Gateway<br />

msg4 360 1H Male sterile genetic 4 26:308 Freja<br />

msg5 361 3HS Male sterile genetic 5 26:309 Carlsberg II<br />

msg6 362 6HS Male sterile genetic 6 26:310 Hanna<br />

msg7 363 5HL Male sterile genetic 7 26:311 Dekap<br />

msg8 364 5HL Male sterile genetic 8 26:312 Betzes<br />

msg9 365 2HS Male sterile genetic 9 26:313 Vantage<br />

msg10 366 7HS Male sterile genetic 10 26:314 Compana<br />

msg11 367 Male sterile genetic 11 26:315 Gateway<br />

msg13 368 Male sterile genetic 13 26:316 Haisa II<br />

msg14 369 7HS Male sterile genetic 14 26:317 Unitan<br />

msg15 370 Male sterile genetic 15 26:318 Atlas/2*Kindred<br />

msg16 371 5HS Male sterile genetic 16 26:319 Betzes<br />

msg17 372 Male sterile genetic 17 26:320 Compana<br />

180


Barley Genetics Newsletter (2007) 37: 154-187<br />

Table 3 (continued)<br />

Locus symbol* BGS Chr. Locus name or phenotype Descr. Parental cultivar<br />

Rec. Prev. no. loc. † vol. p.<br />

msg18 373 5HL Male sterile genetic 18 26:321 Compana<br />

msg19 374 5HS Male sterile genetic 19 26:322 CIho 14393<br />

msg20 375 1H Male sterile genetic 20 26:323 Hannchen<br />

msg21 376 Male sterile genetic 21 26:324 Midwest Bulk<br />

msg22 383 7H Male sterile genetic 22 26:331 Glacier/Compana<br />

msg23 384 7HL Male sterile genetic 23 26:332 Betzes<br />

msg24 385 4HL Male sterile genetic 24 26:333 Betzes<br />

msg25 166 4HL Male sterile genetic 25 26:192 Betzes<br />

msg26 395 7HS Male sterile genetic 26 26:343 Unitan<br />

msg27 464 2HL Male sterile genetic 27 26:411 Firlbecks III<br />

msg28 465 6H Male sterile genetic 28 26:412 York<br />

msg29 466 5HL Male sterile genetic 29 26:413 Ackermans MGZ<br />

msg30 467 7HL Male sterile genetic 30 26:414 Compana<br />

msg31 468 1HS Male sterile genetic 31 26:415 51Ab4834<br />

msg32 469 7H Male sterile genetic 32 26:416 Betzes<br />

msg33 470 2HS Male sterile genetic 33 26:417 Betzes<br />

msg34 471 6H Male sterile genetic 34 26:418 Paragon<br />

msg35 498 2HL Male sterile genetic 35 26:424 Karl<br />

msg36 499 6HS Male sterile genetic 36 26:425 Betzes<br />

msg37 500 Male sterile genetic 37 26:426 Clermont<br />

msg38 501 Male sterile genetic 38 26:427 Ingrid<br />

msg39 502 6H Male sterile genetic 39 26:428 CIho 15836<br />

msg40 503 6H Male sterile genetic 40 26:429 Conquest<br />

msg41 504 Male sterile genetic 41 26:430 Betzes<br />

msg42 505 3H Male sterile genetic 42 26:431 Betzes<br />

msg43 506 Male sterile genetic 43 26:432 Betzes<br />

msg44 507 Male sterile genetic 44 26:433 HA6-33-02<br />

msg45 508 Male sterile genetic 45 26:434 RPB439-71<br />

msg46 509 Male sterile genetic 46 26:435 Hector<br />

msg47 510 Male sterile genetic 47 26:436 Sel 12384CO<br />

msg48 520 2H Male sterile genetic 48 26:447 Simba<br />

msg49 335 5HL Male sterile genetic 49 26:283 ND7369<br />

msg50 34 7HL Male sterile genetic 50 26:83 Berac<br />

mss1 mss 84 2H Midseason stripe 1 26:122 Montcalm<br />

mss2 39 7HS Midseason stripe 2 32:79 ND11258<br />

mtt1 mt 521 1HS Mottled leaf 1 26:448 Montcalm<br />

mtt2 mt2 302 5HL Mottled leaf 2 26:253 Montcalm<br />

mtt4 mt,,e 78 2HL Mottled leaf 4 26:116 Victorie<br />

mtt5 mt,,f 264 6HL Mottled leaf 5 26:244 Akashinriki<br />

mtt6 629 Mottled leaf 6 32:130 ND6809<br />

181


Barley Genetics Newsletter (2007) 37: 154-187<br />

Table 3 (continued)<br />

Locus symbol* BGS Chr. Locus name or phenotype Descr. Parental cultivar<br />

Rec. Prev. no. loc. † vol. p.<br />

mul2 251 6HL Multiflorus 2 26:232 Montcalm<br />

nar1 637 6HS NADH ntrate reductasedeficient<br />

1<br />

35:194 Steptoe<br />

nar2 638 5HL NADH ntrate reductasedeficient<br />

2<br />

35:196 Steptoe<br />

nar3 639 7HS NADH ntrate reductasedeficient<br />

3<br />

35:197 Winer<br />

nar4 640 2HL NADH ntrate reductasedeficient<br />

4<br />

35:198 Steptoe<br />

nar5 641 5HL NADH ntrate reductasedeficient<br />

5<br />

35:199 Steptoe<br />

nar6 642 2HL NADH ntrate reductasedeficient<br />

6<br />

35:200 Steptoe<br />

nar7 643 6HL NADH ntrate reductasedeficient<br />

7<br />

35:201 Steptoe<br />

nar8 644 6HS NADH ntrate reductasedeficient<br />

8<br />

35:202 Steptoe<br />

nec1 222 1HL Necrotic leaf spot 1 37:251 Carlsberg II<br />

nec2 261 6HS Necrotic leaf spot 2 26:241 Carlsberg II<br />

nec3 265 6HS Necrotic leaf spot 3 26:245 Proctor<br />

nec4 138 3H Necrotic leaf spot 4 26:175 Proctor<br />

nec5 139 3H Necrotic leaf spot 5 26:176 Diamant<br />

Nec6 Sp 611 Necrotic leaf spot 6 32:112 Awnless Atlas<br />

nec7 nec-45 635 Necroticans 7 32:136 Kristina<br />

nld1 nld 323 5HL Narrow leafed dwarf 1 26:271 Nagaoka<br />

nld2 660 Narrow leafed dwarf 2 37:300 Steptoe<br />

nud1 n, nud 7 7HL Naked caryopsis 1 37:195 Himalaya<br />

ops1 op-3 624 Opposite spikelets 1 32:125 Bonus<br />

ovl1 176 4H Ovaryless 1 35:191 Kanto Bansei Gold<br />

ovl2 646 Ovaryless 2 35:204 Harrington<br />

pmr1 pmr 40 7HS Premature ripe 1 32:80 Glenn<br />

pmr2 nec-50 634 Premature ripe 2 32:135 Bonus<br />

Pre2 Re2 76 2HL Red lemma and pericarp 2 26:113 Buckley 3277<br />

Pub1 Pub 127 3HL Pubescent leaf blade 1 26:163 Multiple Dominant<br />

Pvc1 Pc 68 2HL Purple veined lemma 1 26:105 Buckley 2223-6<br />

Pyr1 42 7HS Pyramidatum 1 32:82 Pokko/Hja80001<br />

raw1 r 312 5HL Smooth awn 1 26:261 Lion<br />

raw2 r2 340 5HL Smooth awn 2 26:289 Lion<br />

raw5 r,,e 257 6HL Smooth awn 5 26:238 Akashinriki<br />

raw6 r6 334 5HL Smooth awn 6 26:282 Glenn<br />

182


Barley Genetics Newsletter (2007) 37: 154-187<br />

Table 3 (continued)<br />

Locus symbol* BGS Chr. Locus name or phenotype Descr. Parental cultivar<br />

Rec. Prev. no. loc. † vol. p.<br />

rob1 o 254 6HS Orange lemma 1 37:255 CIho 5649<br />

Rpc1 149 3H Reaction to Puccinia<br />

coronata var. hordei 1<br />

37:232 Hor 2596<br />

Rpg1 T 511 7HS Reaction to Puccinia<br />

graminis 1<br />

26:437 Chevron<br />

Rpg2 T2 512 Reaction to Puccinia<br />

graminis 2<br />

26:439 Hietpas 5<br />

rpg4 319 5HL Reaction to Puccinia<br />

graminis 4<br />

26:267 Q21861<br />

Rph1 Pa 70 2H Reaction to Puccinia hordei<br />

1<br />

26:107 Oderbrucker<br />

Rph2 Pa2 88 5HS Reaction to Puccinia hordei<br />

2<br />

37:212 Peruvian<br />

Rph3 Pa3 121 7HL Reaction to Puccinia hordei<br />

3<br />

26:156 Estate<br />

Rph4 Pa4 218 1HS Reaction to Puccinia hordei<br />

4<br />

26:217 Gull<br />

Rph5 Pa5 122 3HS Reaction to Puccinia hordei<br />

5<br />

37:224 Magnif 102<br />

Rph6 Pa6 575 3HS Reaction to Puccinia hordei<br />

6<br />

26:501 Bolivia<br />

Rph7 Pa7 136 3HS Reaction to Puccinia hordei<br />

7<br />

37:228 Cebada Capa<br />

Rph8 Pa8 576 Reaction to Puccinia hordei<br />

8<br />

26:502 Egypt 4<br />

Rph9 Pa9 32 5HL Reaction to Puccinia hordei<br />

9<br />

37:201 HOR 2596<br />

Rph10 137 3HL Reaction to Puccinia hordei<br />

10<br />

26:174 Clipper C8<br />

Rph11 267 6HL Reaction to Puccinia hordei<br />

11<br />

26:247 Clipper C67<br />

Rph12 333 5HL Reaction to Puccinia hordei<br />

12<br />

26:281 Triumph<br />

Rph13 590 Reaction to Puccinia hordei<br />

13<br />

28:31 PI 531849<br />

Rph14 591 Reaction to Puccinia hordei<br />

14<br />

28:32 PI 584760<br />

Rph15 Rph16 96 2HL Reaction to Puccinia hordei<br />

15<br />

37:214 PI 355447<br />

183


Barley Genetics Newsletter (2007) 37: 154-187<br />

Table 3 (continued)<br />

Locus symbol* BGS Chr. Locus name or phenotype Descr. Parental cultivar<br />

Rec. Prev. no. loc. † vol. p.<br />

Rsg1 Grb 22 7H Reaction to Schizaphis<br />

graminum 1<br />

37:199 Omugi<br />

Rsg2 577 Reaction to Schizaphis<br />

graminum 2<br />

37:283 PI 426756<br />

rsm1 sm 35 7HS Reaction to BSMV 1 26:84 Modjo 1<br />

Rsp1 Sep 515 Reaction to Septoria<br />

passerinii 1<br />

26:441 CIho 14300<br />

Rsp2 Sep2 516 Reaction to Septoria<br />

passerinii 2<br />

37:275 PI 70837<br />

Rsp3 Sep3 517 Reaction to Septoria<br />

passerinii 3<br />

37:276 CIho 10644<br />

rtt1 rt 51 2HS Rattail spike 1 26:87 Goldfoil<br />

Run1 Un 21 7HS Reaction to Ustilago nuda 1 26:67 Trebi<br />

rvl1 rvl 226 1HL Revoluted leaf 1 26:224 Hakata 2<br />

Ryd2 Yd2 123 3HL Reaction to BYDV 2 26:158 CIho 2376<br />

Rym1 Ym 167 4HL Reaction to BaYMV 1 32:96 Mokusekko 3<br />

Rym2 Ym2 20 7HL Reaction to BaYMV 2 26:66 Mihori Hadaka 3<br />

rym3 ym3 345 5HS Reaction to BaYMV 3 32:105 Chikurin Ibaraki<br />

rym5 Ym 141 3HL Reaction to BaYMV 5 32:90 Mokusekko 3<br />

sbk1 sk, cal-a 62 2HS Subjacent hood 1 32:83 Tayeh 13<br />

sca1 sca 128 3HS Short crooked awn 1 26:164 Akashinriki<br />

sci-a sci-3 625 Scirpoides-a 32:126 Bonus<br />

scl-a scl-6 626 Scirpoides leaf-a 32:127 Foma<br />

sdw1 sdw 518 3HL Semidwarf 1 37:277 M21<br />

sdw2 sdw-b 133 3HL Semidwarf 2 26:169 Mg2170<br />

seg1 se1 377 7HL Shrunken endosperm genetic<br />

1<br />

37:264 Betzes<br />

seg2 se2 378 7HS Shrunken endosperm genetic<br />

2<br />

26:326 Betzes<br />

seg3 se3 379 3H Shrunken endosperm genetic<br />

3<br />

37:265 Compana<br />

seg4 se4 380 7HL Shrunken endosperm genetic<br />

4<br />

37:267 Compana<br />

seg5 se5 381 7HS Shrunken endosperm genetic<br />

5<br />

26:329 Sermo/7*Glacier<br />

seg6 se6 396 3HL Shrunken endosperm genetic<br />

6<br />

37:268 Ingrid<br />

seg7 se7 397 Shrunken endosperm genetic<br />

7<br />

37:269 Ingrid<br />

184


Barley Genetics Newsletter (2007) 37: 154-187<br />

Table 3 (continued)<br />

Locus symbol* BGS Chr. Locus name or phenotype Descr. Parental cultivar<br />

Rec. Prev. no. loc. † vol. p.<br />

seg8 455 7H Shrunken endosperm genetic<br />

8<br />

37:272 60Ab1810-53<br />

sex1 lys5 382 6HL Shrunken endosperm xenia 1 26:330 Compana<br />

sex6 31 7HS Shrunken endosperm xenia 6 26:80 K6827<br />

sex7 sex.i 628 5HL Shrunken endosperm xenia 7 32:129 I90-374<br />

sex8 sex.j 143 6HS Shrunken endosperm xenia 8 32:93 I89-633<br />

sgh1 sh1 163 4HL Spring growth habit 1 26:188 Iwate Mensury C<br />

Sgh2 Sh2 309 5HL Spring growth habit 2 26:259 Indian Barley<br />

Sgh3 Sh3 213 1HL Spring growth habit 3 26:212 Tammi/Hayakiso 2<br />

sid1 nls 180 4HL Single internode dwarf 1 26:203 Akashinriki<br />

Sil1 Sil 228 1HS Subcrown internode length 1 26:226 NE 62203<br />

sld1 dw-1 126 3HL Slender dwarf 1 26:162 Akashinriki<br />

sld2 83 2HS Slender dwarf 2 26:121 Akashinriki<br />

sld3 ant-567 186 4HS Slender dwarf 3 37:243 Manker<br />

sld4 100 7HS Slender dwarf 4 37:218 Glacier<br />

sld5 144 3HS Slender dwarf 5 32:94 Indian Dwarf<br />

sls1 sls 227 1HS Small lateral spikelet 1 26:225 Morex<br />

smn1 smn 38 7HS Seminudoides 1 32:225 Haisa<br />

snb1 sb 26 7HS Subnodal bract 1 26:72 L50-200<br />

srh1 s 321 5HL Short rachilla hair 1 26:269 Lion<br />

sun1 650 Sensitivity to Ustilago nuda 1 35:208 Steptoe<br />

trd1 trd 202 1HL Third outer glume 1 26:207 Valki<br />

trp1 tr 61 2HL Triple awned lemma 1 26:97 CIho 6630<br />

tst1 647 Tip sterile 1 35:205 Steptoe<br />

tst2 lin2 636 Tip sterile 2 37:292 Donaria<br />

ubs4 u4 11 7HL Unbranched style 4 26:56 Ao-Hadaka<br />

uzu1 uz 102 3HL Uzu 1 or semi brachytic 1 37:220 Baitori<br />

var1 va 306 5HL Variegated 1 37:259 Montcalm<br />

var2 va2 344 5HL Variegated 2 32:104 Montcalm<br />

var3 va3 303 5HL Variegated 3 26:254 Montcalm<br />

viv-a viv-5 627 Viviparoides-a 32:128 Foma<br />

vrs1 v 6 2HL Six-rowed spike 1 37:192 Trebi<br />

vrs1 lr 58 2HL Six-rowed spike 1 26:94 Nudihaxtoni<br />

vrs1 V d 66 2HL Two-rowed spike 1 26:103 Svanhals<br />

185


Barley Genetics Newsletter (2007) 37: 154-187<br />

Table 3 (continued)<br />

Locus symbol* BGS Chr. Locus name or phenotype Descr. Parental cultivar<br />

Rec. Prev. no. loc. † vol. p.<br />

vrs1 V t 67 2HL Deficiens 1 26:104 White Deficiens<br />

vrs2 v2 314 5HL Six-rowed spike 2 26:263 Svanhals<br />

vrs3 v3 315 1HL Six-rowed spike 3 26:264 Hadata 2<br />

vrs4 v4 124 3HL Six-rowed spike 4 26:159 MFB 104<br />

wax1 wx 16 7HS Waxy endosperm 1 26:61 Oderbrucker<br />

wnd1 wnd 23 7HS Winding dwarf 1 26:69 Kogen-mugi<br />

wst1 wst 107 3HL White streak 1 26:141 CIho 11767<br />

wst2 304 5HL White streak 2 26:255 Manabe<br />

wst4 56 2HL White streak 4 26:91 Kanyo 7<br />

wst5 221 1HL White streak 5 26:219 Carlsberg II<br />

wst6 wst,,j 129 3HL White streak 6 26:165 Akashinriki<br />

wst7 rb 79 2HL White streak 7 37:207 GS397<br />

Xnt1 Xa 25 7HL Xantha seedling 1 26:71 Akanshinriki<br />

xnt2 xb 513 Xantha seedling 2 26:440 Black Hulless<br />

xnt3 xc 105 3HS Xantha seedling 3 26:139 Colsess<br />

xnt4 xc2 36 7HL Xantha seedling 4 26:85 Coast<br />

xnt5 xn 255 6HL Xantha seedling 5 26:237 Nepal<br />

xnt6 xs 113 3HS Xantha seedling 6 26:147 Smyrna<br />

xnt7 xan,,g 233 1HL Xantha seedling 7 26:231 Erbet<br />

xnt8 xan,,h 140 3HS Xantha seedling 8 26:177 Carlsberg II<br />

xnt9 xan,,i 37 7HL Xantha seedling 9 26:86 Erbet<br />

yhd1 yh 158 4HL Yellow head 1 26:185 Kimugi<br />

yhd2 yh2 592 Yellow head 2 28:34 Compana<br />

ylf1 652 Yellow leaf 1 35:210 Villa<br />

Ynd1 Yn 183 4HS Yellow node 1 32:98 Morex<br />

yst1 yst 104 3HS Yellow streak 1 26:138 Gateway<br />

yst2 109 3HS Yellow streak 2 26:144 Kuromugi 148/<br />

Mensury C<br />

yst3 yst,,c 462 3HS Yellow streak 3 26:409 Lion<br />

yst4 85 2HL Yellow streak 4 37:210 Glenn<br />

yst5 346 5HL Yellow streak 5 32:107 Bowman / ant10.30<br />

yvs1 yx 63 2HS Virescent seedling 1 26:99 Minn 71-8<br />

yvs2 yc 3 7HS Virescent seedling 2 26:46 Coast<br />

zeb1 zb 120 3HL Zebra stripe 1 26:155 Mars<br />

zeb2 zb2 461 4HL Zebra stripe 2 26:407 Unknown<br />

zeb3 zb3 223 1HL Zebra stripe 3 26:221 Utah 41<br />

Zeo1 Knd 82 2HL Zeocriton 1 37:209 Donaria<br />

Zeo2 614 Zeocriton 2 32:115 36Ab51<br />

Zeo3 Mo1 184 4HL Zeocriton 3 32:99 Morex<br />

186


Barley Genetics Newsletter (2007) 37: 154-187<br />

* Recommended locus symbols are based on utilization of a three-letter code for barley genes as<br />

approved at the business meeting of the Seventh International Barley Genetics Symposium at<br />

Saskatoon, Saskatchewan, Canada, on 05 August 1996.<br />

† Chromosome numbers and arm designations are based on the Triticeae system. Utilization of<br />

this system for naming of barley chromosomes was at the business meeting of the Seventh<br />

International Barley Genetics Symposium at Saskatoon, Saskatchewan, Canada, on 05 August<br />

1996. The Burnham and Hagberg (1956) designations of barley chromosomes were 1 2 3 4 5 6<br />

and 7 while new designations based on the Triticeae system are 7H 2H 3H 4H 1H 6H and 5H,<br />

respectively.<br />

187


Barley Genetics Newsletter (2007) 37: 188-301<br />

Stock number: BGS 1<br />

Locus name: Brachytic 1<br />

Locus symbol: brh1<br />

BGS 1, Brachytic 1, brh1<br />

Previous nomenclature and gene symbolization:<br />

Brachytic = br (10, 12).<br />

Breviaristatum-i = ari-i (5, 8).<br />

Dwarf x = dx1 (6).<br />

Inheritance:<br />

Monofactorial recessive (10, 12).<br />

Located in chromosome 7HS [1S] (3), about 9.3 cM distal from the fch12<br />

(chlorina seedling 12) locus (12), 0.8 cM distal from RFLP marker BCD129 (9),<br />

about 5.0 cM from AFLP marker E4134-8 in subgroup 1 of the Proctor/Nudinka<br />

map (11), and about 13.6 cM proximal from SSR marker HVM04 in bin 1H-02 (2).<br />

Description:<br />

Plants have short leaves, culms, spikes, awns, and kernels. The seedling leaf is<br />

about 2/3 normal length. A similar reduction in the size of other organs is<br />

observed, but the awns are less than 1/2 normal length (6). The mutant<br />

phenotype is easy to classify at all stages of growth. The approximately 20%<br />

reduction in kernels size is caused primarily by a reduction in kernel length. The<br />

yields of the brh1 mutants are about 2/3 normal and lodging is greatly reduced in<br />

the Bowman brh1 lines (2). Börner (1) reported that ari-i.38 seedlings are<br />

sensitive to gibberellic acid. Powers (10) states that the assigned gene symbol<br />

for this mutant is br and that L.J. Stadler selected this symbol.<br />

Origin of mutant:<br />

A spontaneous mutant in Himalaya (CIho 1312) (10, 12).<br />

Mutational events:<br />

brh1.a in Himalaya (12); brh1.c (GSHO 229) in Moravian (PI 539135) (13); arii.38<br />

(NGB 115888, GSHO 1657) in Bonus (PI 189763) (8, 14); brh1.e (GSHO<br />

1690) in Aramir (PI 467786) (14); brh1.f (dx1, GSHO 1422) in Domen (CIho<br />

9562) (6); brh1.t (OUM136, GSHO 1691) in Akashinriki (PI 467400, OUJ659);<br />

brh1.x (7125, DWS1224, GSHO 1692) in Volla (PI 280423); brh1.z (Hja80001) in<br />

Aapo; brh1.aa (Hja80051) in a Hja80001 cross (4, 7); and brh1.ae (FN53) in<br />

Steptoe (CIho 15229) (4).<br />

Mutant used for description and seed stocks:<br />

brh1.a in Himalaya (GSHO 25); brh1.a in Bowman (PI 483237)*7 (GSHO 1820);<br />

ari-i.38 in Bowman*6 (GSHO 1821); brh1.e in Bowman*7 (GSHO 1822); brh1.t in<br />

Bowman*7 (GSHO 1823); brh1.x in Bowman*7 (GSHO 1824); brh1.z in<br />

Bowman*7 (GSHO 2179).<br />

References:<br />

1. Börner, A. 1996. GA response in semidwarf barley. Barley Genet. Newsl.<br />

25:24-26.<br />

2. Dahleen, L.S., L.J. Vander Wal, and J.D. Franckowiak. 2005. Characterization<br />

and molecular mapping of genes determining semidwarfism in barley. J. Hered.<br />

96:654-662.<br />

3. Fedak, G., T. Tsuchiya, and S.B. Helgason. 1972. Use of monotelotrisomics<br />

for linkage mapping in barley. Can. J. Genet. Cytol. 14:949-957.<br />

4. Franckowiak, J.D. 1995. The brachytic class of semidwarf mutants in barley.<br />

Barley Genet. Newsl. 24:56-59.<br />

188


Barley Genetics Newsletter (2007) 37: 188-301<br />

5. Gustafsson, Å., A. Hagberg, U. Lundqvist, and G. Persson. 1969. A proposed<br />

system of symbols for the collection of barley mutants at Svalöv. Hereditas<br />

62:409-414.<br />

6. Holm, E., and K. Aastveit. 1966. Induction and effects of the brachytic allele in<br />

barley. Adv. Front Plant Sci. 17:81-94.<br />

7. Kivi, E. 1986. (personal communications).<br />

8. Kucera, J., U. Lundqvist, and Å. Gustafsson. 1975. Inheritance of<br />

breviaristatum mutants in barley. Hereditas 80:263-278.<br />

9. Li , M., D. Kudrna, and A. Kleinhofs. 2000. Fine mapping of a semi-dwarf gene<br />

brachytic 1 in barley. p. 72-74. In S. Logue (ed.) Barley Genetics VIII. Volume III,<br />

Proc. Eighth Int. Barley Genet. Symp., Adelaide, Dept. Plant Science, Waite<br />

Campus, Adelaide University, Glen Osmond, South Australia.<br />

10. Powers, L. 1936. The nature of the interactions of genes affecting four<br />

quantitative characters in a cross between Hordeum deficiens and vulgare.<br />

Genetics 21:398-420.<br />

11. Pozzi, C., D. di Pietro, G. Halas, C. Roig, and F. Salamini. 2003. Integration<br />

of a barley (Hordeum vulgare) molecular linkage map with the position of genetic<br />

loci hosting 29 developmental mutants. Heredity 90:390-396.<br />

12. Swenson, S.P. 1940. Genetic and cytological studies on a brachytic mutant in<br />

barley. J. Agric. Res. 60:687-713.<br />

13. Szarejko, I., and M. Maluszynski. 1984. New brachytic mutant of spring<br />

barley variety Aramir. Barley Genet. Newsl. 14:33-35.<br />

14. Tsuchiya, T. 1974. Allelic relationships of genes for short-awned mutants in<br />

barley. Barley Genet. Newsl. 4:80-81.<br />

Prepared:<br />

T. Tsuchiya and T.E. Haus. 1971. BGN 1:104.<br />

Revised:<br />

T. Tsuchiya. 1980. BGN 10:100.<br />

J.D. Franckowiak. 1997. BGN 26:44.<br />

J.D. Franckowiak and L. S. Dahleen. 2007. BGN 37:188-189.<br />

189


Barley Genetics Newsletter (2007) 37: 188-301<br />

Stock number: BGS 2<br />

Locus name: Chlorina seedling 12<br />

Locus symbol: fch12<br />

BGS 2, Chlorina seedling 12, fch12<br />

Previous nomenclature and gene symbolization:<br />

Chlorina seedling-c = fc (3).<br />

Chlorina seedling-fc = clo-fc (7).<br />

Inheritance:<br />

Monofactorial recessive (3).<br />

Located in chromosome 7HS [1S] (1, 4), about 3.6 cM distal from the gsh3<br />

(glossy sheath 3) locus (6), and about 9.3 cM proximal from the brh1 (brachytic<br />

1) locus (8), in bin 7H-02 about 2.3 cM from RFLP marker KFP027 and cosegregating<br />

with markers BCD130 and ABC327 (5).<br />

Description:<br />

Seedling leaves are yellow with green tips and new leaves show a yellow base<br />

and a green tip. As the plant develops, leaf color changes to pale green (3).<br />

Plants are vigorous, but anthesis is delayed and seed yield may be low.<br />

Origin of mutant:<br />

A spontaneous mutant in Colsess (CIho 2792) (3).<br />

Mutational events:<br />

fch12.b (fc) in Colsess (Colsess V) (3); fch12.l (Trebi chlorina 453, GSHO 155),<br />

fch12.m (Trebi V, GSHO 158), fch12.n (Trebi IX, GSHO 18), fch12.o (Trebi XI,<br />

GSHO 163) in Trebi (PI 537442) (2); clo-fc.110 in Bonus (PI 189763) (7); fch12.b<br />

may be present in the brachytic chlorina stocks (GSHO 124 and GSHO 174) (9).<br />

Mutant used for description and seed stocks:<br />

fch12.b in Colsess (GSHO 36); fch12.b in Bowman (PI 483237)*7 (GSHO 1826).<br />

References:<br />

1. Fedak, G., T. Tsuchiya, and S.B. Helgason. 1972. Use of monotelotrisomics<br />

for linkage mapping in barley. Can. J. Genet. Cytol. 14:949-957.<br />

2. McMullen, M. 1972. Allelism testing of seven chlorina mutants in Trebi barley.<br />

Barley Genet. Newsl. 2:76-79.<br />

3. Robertson, D.W., and G.W. Deming. 1930. Genetic studies in barley. J. Hered.<br />

21:283-288.<br />

4. Robertson, D.W., G.W. Deming, and D. Koonce. 1932. Inheritance in barley. J.<br />

Agric. Res. 44:445-466.<br />

5. Schmierer, D., A. Druka, D. Kudrna, and A. Kleinhofs. 2001. Fine mapping of<br />

the fch12 chlorina seedling mutant. Barley Genet. Newsl. 31:12-13.<br />

6. Shahla, A., and T. Tsuchiya. 1987. Cytogenetic studies in barley chromosome<br />

1 by means of telotrisomic, acrotrisomic and conventional analysis. Theor. Appl.<br />

Genet. 75:5-12.<br />

7. Simpson, D.J., O. Machold, G. Høyer-Hansen, and D. von Wettstein. 1985.<br />

Chlorina mutants of barley (Hordeum vulgare L.). Carlsberg Res. Commun.<br />

50:223-238.<br />

8. Swenson, S.P. 1940. Genetic and cytological studies on a brachytic mutation<br />

in barley. J. Hered. 31:213-214.<br />

9. Wang, S., and T. Tsuchiya. 1991. Genetic analysis of the relationship between<br />

new chlorina mutants in genetic stocks and established f series stocks in barley.<br />

Barley Genet. Newsl. 20:63-65.<br />

Prepared:<br />

190


Barley Genetics Newsletter (2007) 37: 188-301<br />

T. Tsuchiya and T. E. Haus. 1971. BGN 1:105.<br />

Revised:<br />

T. Tsuchiya. 1980. BGN 10:101.<br />

J.D. Franckowiak and A. Hang. 1997. BGN 26:45.<br />

J.D. Franckowiak. 2007. BGN 37:190-191.<br />

191


Barley Genetics Newsletter (2007) 37: 188-301<br />

Stock number: BGS 6<br />

Locus name: Six-rowed spike 1<br />

Locus symbol: vrs1<br />

BGS 6, Six-rowed spike 1, vrs1<br />

Previous nomenclature and gene symbolization:<br />

Two-row vs six-row = Zz (21).<br />

Six-row vs two-row = Aa (6).<br />

Two-rowed = D (17).<br />

Six-row vs two-row = Vv (3).<br />

Six-row vs two-row (distichon) vs two-row (deficiens) = A, a s , a f (8).<br />

Reduced lateral spikelet appendage on the lemma = lr (9).<br />

Allelic series v, V d , V, and V t (22).<br />

Hexastichon mutants = hex-v (5, 6).<br />

Intermedium spike-d = Int-d (4).<br />

Reduced lateral spikelet appendage on the lemma = v lr (19).<br />

The vrs1 DNA sequence identified as HvHox1 (10).<br />

Inheritance:<br />

A multiple allelic series, incomplete dominant allele interactions based on the<br />

size and shape of lateral spikelets (1, 19, 22).<br />

Located in chromosome 2HL (3, 6, 12, 14), about 30.5 cM distal from the eog1<br />

(elongated outer glume 1) locus (18), in bin 2H-09 and in a 0.90-cM interval<br />

between markers cMWG699 and MWG865 (11).<br />

Description:<br />

Alleles at this complex locus modify development of the lateral spikelets and the<br />

associated lemma awn. The vrs1.a allele (v gene) is present in most six-rowed<br />

cultivars and produces well-developed lateral spikelets (6). Based on<br />

phylogenetic analysis of the six-rowed cultivars, the six-rowed gene originated<br />

independently at least three times (vrs1.a1, vrs1.a2, and vrs1.a3) from different<br />

wild type (Vrs1.b) alleles (10). The lemma awn of lateral spikelets will vary from<br />

3/4 to nearly as long as those of central spikelets, depending upon alleles<br />

present at other loci. The Vrs1.b allele (V gene, distichon) is present in many<br />

two-rowed cultivars and reduces lateral spikelets to sterile bracts with a rounded<br />

tip. The Vrs1.t allele (V t gene, deficiens) causes an extreme reduction in the size<br />

of lateral spikelets. The lr or v lr (vrs1.c) gene in Nudihaxtoni and Bozu types will<br />

not recombine with the vrs1.a allele (12, 19) and produces phenotypes similar to<br />

the Vrs1.d allele (V d gene) of Svanhals (22). The series of induced mutants in<br />

two-rowed barley called hex-v and Int-d mutants differ in the size of lateral<br />

spikelets, but they interact with the vrs1.a allele as incomplete dominants (5).<br />

Many heterozygous combinations with vrs1.a have a pointed tip on the lemma of<br />

sterile lateral spikelets. Alleles at the int-c (intermedium spike-c) locus modify<br />

lateral size in the presence of vrs1.a, Vrs1.b, and Vrs1.d, but not when Vrs1.t is<br />

present (22). Multiple origins of vrs1 alleles in six-rowed barley have been<br />

confirmed by molecular analysis (20). Komatsuda et al. (10) found that<br />

expression of the Vrs1 gene was strictly localized in the lateral-spikelet primordia<br />

of immature spikes and suggested that the VRS1 protein suppresses<br />

development of lateral spikelets.<br />

Origin of mutant:<br />

Natural occurrence in six-rowed barley and induced frequently by mutagenic<br />

agents (10, 14).<br />

192


Barley Genetics Newsletter (2007) 37: 188-301<br />

Mutational events:<br />

vrs1.a1 in most six-rowed cultivars (1, 10, 22); vrs1.a2 in Dissa and Valenci (10),<br />

vrs1.a3 in Natsudaikon Mugi (OUK735) (10), Vrs1.b in wild barley (10), Vrs1.b2<br />

in Pamella Blue (OUH630) (10), Vrs1.b3 in Bonus (PI 189763) (10), Vrs1.t in a<br />

few two-rowed cultivars (10, 22); vrs1.c or lr in Nudihaxtoni (PI 32368) (12, 19);<br />

Vrs1.d in Svanhals (PI 5474) (22); 23 induced mutants from programs in<br />

Belgium, Germany, and Hungary (2); hex-v.3 (NGB 115545), -v.4 (NGB 115546),<br />

-v.6 (NGB 115547), -v.7 (NGB115548), -v.8 (NGB 115549), -v.9 (NGB 115550), -<br />

v.10 (NGB 115551), -v.11 (NGB 115552), -v.12 (NGB 115553), -v.18 (NGB<br />

115559), -v.44 (NGB 115581), -v.45 (NGB 115582 ), -v.46 (NGB 115583 ), -v.47<br />

(NGB 115584), -v.48 (NGB 115585), in Bonus, -v.13 (NGB 115554), -v.14 (NGB<br />

115555), -v.15 (NGB 115556), -v.16 (NGB 115557), -v.17 (NGB 115558), -v.19<br />

(NGB 115560), -v.21 (NGB 115562), -v.22 (NGB 115563), -v.23 (NGB 115564),<br />

-v.24 (NGB 115565), -v.25 (NGB 115566), -v.26 (NGB 115567), -v.27 (NGB<br />

115568), -v.28 (NGB 115569), -v.29 (NGB 115570), -v.30 (NGB 115571), -v.31<br />

(NGB 115572), -v.35 (NGB 115574) in Foma (CIho 11333), -v.20 (NGB 115561)<br />

in Ingrid (CIho 10083), -v.33 (NGB 115573), -v.36 (NGB 115575), -v.38 (NGB<br />

115576), -v.39 (NGB 115577), -v.41 (NGB 115578), -v.42 (NGB 115579), -v.43<br />

(NGB 115580) in Kristina (NGB 1500) (5, 14); hex-v.49 (NGB 115586) in Bonus,<br />

-v.50 (NGB 115587), -v.51 (NGB 115588) in Sv 79353, -v.52 (NGB 119353) in<br />

Golf (PI 488529) (13); Int-d.11 (NGB 115429), -d.12 (NGB 115430), -d.22 (NGB<br />

115440), -d.24 (NGB 115442), -d.28 (NGB 115446), -d.36 (NGB 115454) in<br />

Foma, -d.40 (NGB 115458), -d.41 (NGB 115459), -d.50 (NGB 115468), -d.57<br />

(NGB 115475), -d.67 (NGB 115485), -d.68 (NGB 115486), -d.69 (NGB 115487)<br />

in Kristina (5, 15); Int-d.73 (NGB 115491), -d.80 (NGB 115498), -d.82 (NGB<br />

115500) in Bonus, -d.93 (NGB 115511), -d.94 (NGB 115512), -d.96 (NGB<br />

115514), -d.97 (NGB 115515), -d.100 (NGB 115518) in Hege (NGB 13692) (13);<br />

vrs1.o (v1b) in New Golden (16).<br />

Mutant used for description and seed stock:<br />

vrs1.a in Trebi (PI 537442, GSHO 196); vrs1.a in Bonneville (CIho 7248) (7);<br />

vrs1.a from Glenn (CIho 15769) in Bowman (PI 483237)*8 (GSHO 1907); Intd.12<br />

in Bowman*7 (GSHO 1910).<br />

References:<br />

1. Biffen, R.H. 1906. Experiments on the hybridization of barleys. Proc. Camb.<br />

Phil. Soc. 13:304-308.<br />

2. Fukuyama, T., J. Hayashi, I. Moriya, and R. Takahashi. 1972. A test for<br />

allelism of 32 induced six-rowed mutants. Barley Genet. Newsl. 2:25-27.<br />

3. Griffee, F. 1925. Correlated inheritance of botanical characters in barley, and<br />

manner of reaction to Helminthosporium sativum. J. Agric. Res. 30:915-935.<br />

4. Gustafsson, Å., A. Hagberg, U. Lundqvist, and G. Persson. 1969. A proposed<br />

system of symbols for the collection of barley mutants at Svalöv. Hereditas<br />

62:409-414.<br />

5. Gustafsson, Å., and U. Lundqvist. 1980. Hexastichon and intermedium<br />

mutants in barley. Hereditas 92:229-236.<br />

6. Harlan, H.V., and H.K. Hayes. 1920. Occurrence of the fixed intermediate,<br />

Hordeum intermedium haxtoni, in crosses between H. vulgare pallidium and H.<br />

distichum palmella. J. Agric. Res.19:575-591.<br />

7. Hockett, E.A. 1985. Registration of two- and six-rowed isogenic Bonneville<br />

barley germplasm. Crop Sci. 25:201.<br />

8. Hor, K.S. 1924. Interrelations of genetic factors in barley. Genetics 9:151-180.<br />

9. Immer, F.R., and M.T. Henderson. 1943. Linkage studies in barley. Genetics<br />

193


Barley Genetics Newsletter (2007) 37: 188-301<br />

28:419-440.<br />

10. Komatsuda, T., M. Pourkheirandish, C. He, P. Azhaguvel, H. Kanamori, D.<br />

Perovic, N. Stein, A. Graner, T. Wicker, A. Tagiri, U. Lundqvist, T. Fujimura, M.<br />

Matsuoka, T. Matsumoto, and M. Yano. 2007. Six-rowed barley originated from a<br />

mutation in a homeodomain-leucine zipper I-class homeobox gene. PNAS<br />

104:1424-1429.<br />

11. Komatsuda, T., and K. Tanno. 2004. Comparative high resolution map of the<br />

six-rowed locus 1 (vrs1) in several populations of barley, Hordeum vulgare L.<br />

Hereditas 141:68-73.<br />

12. Leonard, W.H. 1942. Inheritance of reduced lateral spikelet appendages in<br />

the Nudihaxtoni variety of barley. J. Am. Soc. Agron. 34:211-221.<br />

13. Lundqvist, U. (unpublished).<br />

14. Lundqvist, U., and A. Lundqvist. 1987. Barley mutants - diversity and<br />

genetics. p. 251-257. In S. Yasuda and T. Konishi (eds.) Barley Genetics V.<br />

Proc. Fifth Int. Barley Genet. Symp., Okayama, 1986. Sanyo Press Co.,<br />

Okayama.<br />

15. Lundqvist, U., and A. Lundqvist. 1988. Induced intermedium mutants in<br />

barley: origin, morphology and inheritance. Hereditas 108:13-26.<br />

16. Makino, T., M. Furusho, and T. Fukuoka. 1995. A mutant having six-rowed<br />

gene allelic to v locus. Barley Genet. Newsl. 24:122.<br />

17. Miyake, K., and Y. Imai. 1922. [Genetic studies in barley. 1.] Bot. Mag.,<br />

Tokyo 36:25-38. [In Japanese.]<br />

18. Swenson, S.P., and D.G. Wells. 1944. The linkage relation of four genes in<br />

chromosome 1 of barley. J. Am. Soc. Agron. 36:429-435.<br />

19. Takahashi, R., J. Hayashi, I. Moriya, and S. Yasuda. 1982. Studies on<br />

classification and inheritance of barley varieties having awnless or short-awned<br />

lateral spikelets (Bozu barley). I. Variation of awn types and classification.<br />

Nogaku Kenyu 60:13-24. [In Japanese with English summary.]<br />

20. Tanno, K., S. Taketa, K. Takeda, and T. Komatsuda. 2002. A DNA marker<br />

closely linked to the vrs1 locus (row-type gene) indicates multiple origins of sixrowed<br />

barley (Hordeum vulgare L.) Theor. Appl. Genet. 104:54-60.<br />

21. Ubisch, G. von. 1916. Beitrag zu einer Faktorenanalyse von Gerste. Z.<br />

Indukt. Abstammungs. Vererbungsl. 17:120-152.<br />

22. Woodward, R.W. 1949. The inheritance of fertility in the lateral florets of the<br />

four barley groups. Agron. J. 41:317-322.<br />

Prepared:<br />

T.E. Haus. 1975. BGN 5:106.<br />

Revised:<br />

J.D. Franckowiak and U. Lundqvist. 1997. BGN 26:49-50.<br />

U. Lundqvist and J.D. Franckowiak. 2007. BGN 37:192-194.<br />

194


Barley Genetics Newsletter (2007) 37: 188-301<br />

Stock number: BGS 7<br />

Locus name: Naked caryopsis 1<br />

Locus symbol: nud1<br />

BGS 7, Naked caryopsis 1, nud1<br />

Previous nomenclature and gene symbolization:<br />

Naked caryopsis = k (14).<br />

Naked caryopsis = s (21).<br />

Naked caryopsis = n (6, 9).<br />

Hulless = h (10).<br />

Inheritance:<br />

Monofactorial recessive (6, 14, 19).<br />

Located in chromosome 7HL [1L] (3, 11, 12, 14, 20), near the centromere (3, 11),<br />

about 9.6 cM proximal from the lks2 (short awn 2) locus (15), about 10.5 cM<br />

proximal from the dsp1 (dense spike 1) locus (15, 16), in bin 7H-07 about 13.1<br />

cM distal from RFLP marker MWG808 (2), co-segregating with AFLP markers<br />

KT3 and KT7 and SCAR marker sKT7 (7), about 0.06 cM distal from SCAR<br />

marker sTK3 and the same distance proximal from sTK9 (17).<br />

Description:<br />

The lemma and palea do not adhere to the caryopsis and the grain will thresh<br />

free of the hull at maturity. The naked caryopsis trait is expressed in all<br />

environments (16). The naked lines fail to produce a cementing substance<br />

present in covered lines (4). The nud1.a mutant depressed the expression by 10<br />

to 20% of other traits such as plant height, seed weight (1, 8) and altered malt<br />

quality parameters (8). The nud1.a gene is often associated with the dsp1.a<br />

(dense spike 1) gene in Japanese cultivars (16). Allele IV of the marker sKT7<br />

near the nud1 locus was the only one found in naked barley cultivars (18);<br />

however, the geographic distribution for haplotypes of allele IV suggest migration<br />

of naked types toward eastern Asia (18).<br />

Origin of mutant:<br />

In an unknown cultivar, but its origin was monophyletic probably in southwestern<br />

Iran (18), widespread in cultivated barley in Asia.<br />

Mutational events:<br />

nud1.a in Himalaya (CIho 1312) (21); nud1.b in Haisa (Mut 4129), nud1.c (Mut<br />

3041/62) in Ackermann's Donaria (PI 161974) (13).<br />

Mutant used for description and seed stocks:<br />

nud1.a in Himalaya (GSHO 115), nud1.a from Sermo (CIho 7776) in Betzes (PI<br />

129430)*7 (CIho 16559, GP 37), nud1.a from Sermo in Compana (CIho 5438)*7<br />

(CIho 16185, GP 41), nud1.a from Sermo in Decap (CIho 3351)*7 (CIho 16563,<br />

GP 45) (5); nud1.a from Stamm (PI 194555) in Betzes*7 (CIho 16566, GP 48),<br />

nud1.a from Stamm in Compana*7 (CIho 16183, GP 50), nud1.a from Stamm*7<br />

in Freja (CIho 7130)*7 (CIho 16568, GP 52) (5); nud1.a from R.I. Wolfe's Multiple<br />

Recessive Marker Stock in Bowman (PI 483237)*8 (GSHO 1847).<br />

References:<br />

1. Choo, T-M., K.M. Ho, and R.A. Martin. 2001. Genetic analysis of a hulless X<br />

covered cross of barley using doubled-haploid lines. Crop Sci. 41:1021-1026.<br />

2. Costa, J.M., A. Corey, M. Hayes, C. Jobet, A. Kleinhofs, A. Kopisch-Obusch,<br />

S.F. Kramer, D. Kudrna, M. Li, O. Piera-Lizaragu, K. Sato, P. Szues, T. Toojinda,<br />

M.I. Vales, and R.I. Wolfe. 2001. Molecular mapping of the Oregon Wolfe<br />

195


Barley Genetics Newsletter (2007) 37: 188-301<br />

Barleys: a phenotypically polymorphic doubled-haploid population. Theor. Appl.<br />

Genet. 103:415-424.<br />

3. Fedak, G., T. Tsuchiya, and S.B. Helgason. 1972. Use of monotelotrisomics<br />

for linkage mapping in barley. Can. J. Genet. Cytol. 14:949-957.<br />

4. Gaines, R.L., D.B. Bechtel, and Y. Pomeranz. 1985. A microscopic study on<br />

the development of a layer in barley that causes hull-caryopsis adherence.<br />

Cereal Chem. 62:35–40.<br />

5. Hockett, E.A. 1981. Registration of hulless and hulless short-awned spring<br />

barley germplasm (Reg. nos. GP 35 to 52). Crop Sci. 21:146-147.<br />

6. Hor, K.S. 1924. Interrelations of genetic factors in barley. Genetics 9:151-180.<br />

7. Kikuchi, S., S. Taketa, M. Ichii, and S. Kawasaki. 2003. Efficient fine mapping<br />

of the naked caryopsis gene (nud) by HEGS (high efficiency genome<br />

scanning)/AFLP in barley. Theor. Appl. Genet. 108:73-78.<br />

8. McGuire, C.F., and E.A. Hockett. 1981. Effect of awn length and naked<br />

caryopsis on malting quality of Betzes barley. Crop Sci. 21:18-21.<br />

9. Miyake, K., and Y. Imai. 1922. [Genetic studies in barley. 1.] Bot. Mag., Tokyo<br />

36:25-38. [In Japanese.]<br />

10. Neatby, K.W. 1926. Inheritance of quantitative and other characters in a<br />

barley cross. Sci. Agric. 7:77-84.<br />

11. Persson, G. 1969. An attempt to find suitable genetic markers for dense ear<br />

loci in barley I. Hereditas 62:25-96.<br />

12. Robertson, D.W. 1937. Inheritance in barley. II. Genetics 22:443-451.<br />

13. Scholz, F. 1955. Mutationsversuche an Kulturpflanzen. IV. Kulturpflanze<br />

3:69-89.<br />

14. So, M., S. Ogura, and Y. Imai. 1919. [A linkage group in barley.] Nogaku<br />

Kaiho 208:1093-1117. [In Japanese.]<br />

15. Takahashi, R., J. Hayashi, T. Konishi, and I. Moriya. 1975. Linkage analysis<br />

of barley mutants. BGN 5:56-60.<br />

16. Takahashi, R., J. Yamamoto, S. Yasuda, and Y. Itano. 1953. Inheritance and<br />

linkage studies in barley. Ber. Ohara Inst. landw. Forsch. 10:29-52.<br />

17. Taketa, S., T. Awayama, S. Amano, Y. Sakurai, and M. Ichii. 2006. Highresolution<br />

mapping of the nud locus controlling the naked caryopsis in barley.<br />

Plant Breed. 125:337-342.<br />

18. Taketa, S., S. Kikuchi, T. Awayama, S. Yamamoto, M. Ichii, and S. Kawasaki.<br />

2004. Monophyletic origin of naked barley inferred from molecular analyses of a<br />

marker closely linked to the naked caryopsis gene (nud). Theor. Appl. Genet.<br />

108:1236-1242.<br />

19. Tschermak, E. von. 1901. Über Züchtung neuer Getreiderassen mittelst<br />

künstlicher Kreuzung. Kritisch-historische Betrachtungen. Zeitschrift für das<br />

landwirtschaftliche Versuchswesen Oesterreich 4:1029-1060.<br />

20. Tsuchiya, T., and R.J. Singh. 1973. Further information on telotrisomic<br />

analysis in barley. Barley Genet. Newsl. 3:75-78.<br />

21. Ubisch, G. von. 1921. Beitrag zu einer Faktorenanalyse von Gerste. III. Z.<br />

Indukt. Abstammungs. Vererbungsl. 25:198-200.<br />

Prepared:<br />

T. Tsuchiya and T.E. Haus. 1971. BGN 1:110.<br />

Revised:<br />

J.D. Franckowiak and T. Konishi. 1997. BGN 26:51-52.<br />

J.D. Franckowiak. 2007. BGN 37:195-196.<br />

196


Barley Genetics Newsletter (2007) 37: 188-301<br />

Stock number: BGS 10<br />

Locus name: Short awn 2<br />

Locus symbol: lks2<br />

BGS 10, Short awn 2, lks2<br />

Previous nomenclature and gene symbolization:<br />

Short awn = a (15, 16).<br />

Short awn = lk (14).<br />

Short awn 2 = lk1 (7).<br />

Short awn 2 = lk2 (11).<br />

Short awn 4 = lk4 (2, 5).<br />

Inheritance:<br />

Monofactorial recessive (6, 7, 12).<br />

Located in chromosome 7HL [1L] (6, 13), estimates range from 7.9 to 10.5 cM<br />

distal from the nud1 (naked caryopsis 1) locus (3, 12, 13), about 2.8 cM distal<br />

from molecular marker WG541 in bin 7H-05 (8), about 8.6 cM proximal from<br />

RFLP marker WG380B in bin 7H-08 (1).<br />

Description:<br />

Awns of both central and lateral spikelets are reduced to about 3/5 of the long<br />

awned type. Texture of the short awn is finer and more flexible than that of the<br />

long awn, especially in non-uzu genotypes (13, 14). The awn length of<br />

heterozygotes in some crosses is shorter that of the normal parent. Other plant<br />

characteristics are apparently unaltered by the lks2.b gene.<br />

Origin of mutant:<br />

Spontaneous occurrence in some cultivars distributed in China, Japan, Korea,<br />

and Nepal (5, 10, 12, 14).<br />

Mutational events:<br />

lks2.b in many cultivars of Oriental origin, often associated with the dsp1.a<br />

(dense spike 1) gene (6, 12, 14); a possible mutant in Morex (CIho 15773) (9,<br />

10).<br />

Mutant used for description and seed stocks:<br />

lks2.b in Honen 6 (OUJ469, PI 307495, GSHO 566) (14); lks2.b from Sermo<br />

(CIho 7776) in Betzes (PI 129430)*7 (CIho 16558, GP 36), lks2.b from Sermo in<br />

Compana (CIho 5438)*7 (CIho 16188, GP 40), lks2.b from Sermo in Decap (CIho<br />

3351)*7 (CIho 16562, GP 44) (4); lks2.b from R.I. Wolfe's Multiple Recessive<br />

Stock in Bowman (PI 483237)*9 (GSHO 1850).<br />

References:<br />

1. Costa, J.M., A. Corey, M. Hayes, C. Jobet, A. Kleinhofs, A. Kopisch-Obusch,<br />

S.F. Kramer, D. Kudrna, M. Li, O. Piera-Lizaragu, K. Sato, P. Szues, T. Toojinda,<br />

M.I. Vales, and R.I. Wolfe. 2001. Molecular mapping of the Oregon Wolfe<br />

Barleys: a phenotypically polymorphic doubled-haploid population. Theor. Appl.<br />

Genet. 103:415-424.<br />

2. Eslick, R.F., and E.A. Hockett. 1967. Allelism for awn length, lk2, in barley<br />

(Hordeum species). Crop Sci. 7:266-267.<br />

3. Eslick, R.F., and E.A. Hockett. 1972. Recombination values of four genes on<br />

chromosome 1. BGN 2:123-126.<br />

4. Hockett, E.A. 1981. Registration of hulless and hulless short-awned spring<br />

barley germplasm (Reg. nos. GP 35 to 52). Crop Sci. 21:146-147.<br />

5. Litzenberger, S.C., and J.M. Green. 1951. Inheritance of awns in barley.<br />

Agron. J. 43:117-123.<br />

197


Barley Genetics Newsletter (2007) 37: 188-301<br />

6. Miyake, K., and Y. Imai. 1922. [Genetic studies in barley. 1.] Bot. Mag., Tokyo<br />

36:25-38. [In Japanese.]<br />

7. Myler, J.L. 1942. Awn inheritance in barley. J. Agric. Res. 65:405-412.<br />

8. Pozzi, C., P. Faccioli, V. Terzi, A.M. Stanca, S. Cerioli, P. Castiglioni, R. Fink,<br />

R. Capone, K.J. Müller, G. Bossinger, W. Rohde, and F. Salamini. 2000.<br />

Genetics of mutations affecting the development of a barley floral bract. Genetics<br />

154:1335-1346.<br />

9. Ramage, T. 1984. A semi-dominant short awn mutant in Morex. Barley Genet.<br />

Newsl. 14:19-20.<br />

10. Ramage, T., and J.L.A. Eckhoff. 1985. Assignment of mutants in Morex to<br />

chromosomes. Barley Genet. Newsl. 15:22-25.<br />

11. Robertson, D.W., G.A. Wiebe, and F.R. Immer. 1941. A summary of linkage<br />

studies in barley. J. Am. Soc. Agron. 33:47-64.<br />

12. So, M., S. Ogura, and Y. Imai. 1919. [A linkage group in barley.] Nogaku<br />

Kaiho 208:1093-1117. [In Japanese.]<br />

13. Takahashi, R., J. Hayashi, T. Konishi, and I. Moriya. 1975. Linkage analysis<br />

of barley mutants. Barley Genet. Newsl. 5:56-60.<br />

14. Takahashi, R., J. Yamamoto, S. Yasuda, and Y. Itano. 1953. Inheritance and<br />

linkage studies in barley. Ber. Ohara Inst. landw Forsch. 10:29-52.<br />

15. Takezaki, Y. 1927. [On the genetical formulae of the length of spikes and<br />

awns in barley, with reference to the computation of the valency of the heredity<br />

factors.] Rep. Agric. Exp. Sta., Tokyo 46:1-43. [In Japanese.]<br />

16. Ubisch, G. von. 1921. Beitrag zu einer Faktorenanalyse von Gerste. III. Z.<br />

Indukt. Abstammungs. Vererbungsl. 25:198-200.<br />

Prepared:<br />

R. Takahashi. 1972. BGN 2:176.<br />

Revised:<br />

R. Takahashi and T. Tsuchiya. 1973. BGN 3:119.<br />

J.D. Franckowiak and T. Konishi. 1997. BGN 26:54-55.<br />

J.D. Franckowiak 2007. BGN 37:197-198.<br />

198


Barley Genetics Newsletter (2007) 37: 188-301<br />

BGS 22, Reaction to Schizaphis graminum 1, Rsg1<br />

Stock number: BGS 22<br />

Locus name: Reaction to Schizaphis graminum 1 (greenbug)<br />

Locus symbol: Rsg1<br />

Previous nomenclature and gene symbolization:<br />

Greenbug resistance = Grb (8).<br />

Resistance to Schizaphis graminum Rondani (greenbug) = Rsg,,a (3).<br />

Inheritance:<br />

Monofactorial dominant (2, 3, 9).<br />

Located in chromosome 7H [1] (4).<br />

Description:<br />

Resistant seedlings infested with greenbugs (aphids) are not killed, while<br />

susceptible seedlings are killed, eight weeks after infestation by the buildup of<br />

the greenbug population (2, 3, 4). The resistance provided by Post 90 (PI<br />

549081), having the Rsg1.a gene, to most S. graminum biotypes was commonly<br />

2 to 3 readings on a 1 to 9 scale (7). Accessions with the Rsg1.a gene conferred<br />

resistance to most, but not all greenbug populations (5).<br />

Origin of mutant:<br />

Natural occurrence in Bozu Omugi (OUJ028, PI 87181), Derbent (PI 76504), and<br />

Kearney (PI 539126, CIho 7580) (1, 3).<br />

Mutational events:<br />

Rsg1.a in Bozu Omugi, Derbent, Kearney, Dobaku (PI 87817), and CIho 5087<br />

(PI 82683) (3, 7).<br />

Mutant used for description and seed stocks:<br />

Rsg1.a in Bozu Omugi (GSHO 1317); Rsg1.a in Post 90 (PI 549081) from Will ()<br />

(5).<br />

References:<br />

1. Atkins, I.M., and R.G. Dahms. 1945. Reaction of small-grain varieties to<br />

greenbug attack. <strong>US</strong>DA Tech. Bull. 901.<br />

2. Gardenshire, J.H. 1965. Inheritance and linkage studies on greenbug<br />

resistance in barley (Hordeum vulgare L.). Crop Sci. 5:28-29.<br />

3. Gardenshire, J.H., and H.L. Chada. 1961. Inheritance of greenbug resistance<br />

in barley. Crop Sci. 1:349-352.<br />

4. Gardenshire, J.H., N.A. Tuleen, and K.W. Stewart. 1973. Trisomic analysis of<br />

greenbug resistance in barley, Hordeum vulgare L. Crop Sci. 13:684-685.<br />

5. Mornhinweg, D.W., L.H. Edwards, L.H. Smith, G.H. Morgan, J.A. Webster,<br />

D.R. Porter, and B.F. Carver. 2004. Registration of ‘Post 90’ barley. Crop Sci.<br />

44:2263.<br />

6. Porter, D.R., J.D. Burd, and D.W. Mornhinweg. 2007. Differentiating greenbug<br />

resistance genes in barley. Euphytica 153:11-14.<br />

7. Porter, D.R., and D.W. Mornhinweg. 2004. Characterization of greenbug<br />

resistance in barley. Plant Breed. 123:493-494.<br />

8. Robertson, D.W., G.A. Wiebe, and R.G. Shands. 1955. A summary of linkage<br />

studies in cultivated barley, Hordeum species: Supplement II, 1947-1953. Agron.<br />

J. 47:418-425.<br />

9. Smith, O.D., A.M. Schlehuber, and B.C. Curtis. 1962. Inheritance studies of<br />

greenbug (Toxoptera graminum Rond.) resistance in four varieties of winter<br />

barley. Crop Sci. 2:489-491.<br />

Prepared:<br />

199


Barley Genetics Newsletter (2007) 37: 188-301<br />

J.G. Moseman. 1976. BGN 6:119.<br />

Revised:<br />

J.D. Franckowiak. 1997. BGN 26:68.<br />

J.D. Franckowiak. 2007. BGN 37:199-200.<br />

200


Barley Genetics Newsletter (2007) 37: 188-301<br />

BGS 32, Reaction to Puccinia hordei 9, Rph9<br />

Stock number: BGS 32<br />

Locus name: Reaction to Puccinia hordei 9 (barley leaf rust)<br />

Locus symbol: Rph9<br />

Previous nomenclature and gene symbolization:<br />

Resistance to Puccinia hordei Otth 9 = Pa9 (3, 7, 8).<br />

Resistance to Puccinia hordei Otth 9 = Pa9 (2).<br />

Resistance to Puccinia hordei 12 = Rph12 (1, 2, 9).<br />

Inheritance:<br />

Monofactorial dominant (1, 5, 6).<br />

Located in chromosome 5HL [7L] (5), about 26.1 cM distal from the raw1<br />

(smooth awn 1) locus (5), in bin 5H-11 about 9.3 cM proximal from esterase 9<br />

(Est9) and about 22.5 cM proximal from STS marker ABC155 (1), about 29.2 cM<br />

distal from the var1 (variegated 1) locus (1).<br />

Description:<br />

Seedling reaction types range from 0; or necrotic fleck to 23- or reduced pustule<br />

size (4, 6), but 0; reactions are more common with the Rph9.z allele, formerly<br />

Rph12.z (1, 2, 5). The resistant reaction of the Rph9.i allele is temperature<br />

sensitive and is inactivated above 20°C (3). Heterozygotes show an intermediate<br />

reaction to pathogenic isolates of Puccinia hordei (5). The original cultivar<br />

‘Trumpf’ was also marketed in the United Kingdom as ‘Triumph’.<br />

Origin of mutant:<br />

Natural occurrence in Abyssinian (Hor 2596, CIho 1234) (3, 7); natural<br />

occurrence in Hordeum vulgare subsp. spontaneum, but transferred to the<br />

cultivar Trumpf (Triumph, PI 548762, GSHO 1590) (2, 9).<br />

Mutational events:<br />

Rph9.i in Abyssinian (3, 7); Rph9.z in Trumpf (2, 9).<br />

Mutant used for description and seed stocks:<br />

Rph9.i in Abyssinian (GSHO 1601); Rph9.i in Bowman (PI 483237)*8 (GSHO<br />

1866); Rph12.z in Trumpf (GSHO 1590); Rph12.z in Bowman (PI 483237)*9<br />

(GSHO 2145).<br />

References:<br />

1. Borovkova, I.G., Y. Jin, and B.J. Steffenson. 1998. Chromosomal location and<br />

genetic relationship of leaf rust resistance genes Rph9 and Rph12 in barley.<br />

Phytopathology 88:76-80.<br />

2. Clifford, B.C. 1985. Barley leaf rust. p. 173-205. In W.R. Bushnell and A.P.<br />

Roelfs (eds.) The Cereal Rusts, Vol. II. Academic Press, New York.<br />

3. Clifford, B.C., and A.C.C. Udeogalanya. 1976. Hypersensitive resistance of<br />

barley to brown rust (Puccinia hordei Otth). p. 27-29. In Proc. 4th Eur. Medit.<br />

Cereal Rusts Conf., Interlaken, Switzerland.<br />

4. Golan, T., Y. Anikster, J.G. Moseman, and I. Wahl. 1978. A new virulent strain<br />

of Puccinia hordei. Euphytica 27:185-189.<br />

5. Jin, Y., G.D. Stadler, J.D. Franckowiak, and B.J. Steffenson. 1993. Linkage<br />

between leaf rust resistance genes and morphological markers in barley.<br />

Phytopathology 83:230-233.<br />

6. Reinhold, M., and E.L. Sharp. 1982. Virulence types of Puccinia hordei from<br />

North America, North Africa and the Middle East. Plant. Dis. 66:1009-1011.<br />

7. Tan, B.H. 1977. A new gene for resistance to Puccinia hordei in certain<br />

Ethiopian barleys. Cereal Rust Bull. 5:39-43.<br />

201


Barley Genetics Newsletter (2007) 37: 188-301<br />

8. Udeogalanya, A.C.C., and B.C. Clifford. 1976. Genetical, physiological and<br />

pathological relationships of resistance to Puccinia hordei and P. striiformis in<br />

Hordeum vulgare. Trans. Br. Mycol. Soc. 71:279-287.<br />

9. Walther, U. 1987. Inheritance of resistance to Puccinia hordei Otth in the<br />

spring barley variety Trumpf. Cereal Rusts Powdery Mildews Bull. 15:20-26.<br />

Prepared:<br />

J.D. Franckowiak and Y. Jin. 1997. BGN 26:81.<br />

J.D. Franckowiak and Y. Jin. 1997. BGN 26:281 as BGS 333, Reaction to<br />

Puccinia hordei 12, Rph12.<br />

Revised:<br />

J.D. Franckowiak. 2007. BGN 37:201-202.<br />

202


Barley Genetics Newsletter (2007) 37: 188-301<br />

Stock number: BGS 41<br />

Locus name: Brachytic 7<br />

Locus symbol: brh7<br />

BGS 41, Brachytic 7, brh7<br />

Previous nomenclature and gene symbolization:<br />

Brachytic-w = brh.w (3).<br />

Inheritance:<br />

Monofactorial recessive (3, 4).<br />

Located in chromosome 5HS [7S] (1), approximately 4.6 cM proximal from SSR<br />

marker Bmac0113 in bin 5H-04 (1).<br />

Description:<br />

Plants are about 5/6 of normal height and awns are about 3/4 of normal length.<br />

The rachis internodes are slightly shorter than normal for Bowman. The seedling<br />

leaf of brh7 plants is short and wide and leaf blades are wider than those of<br />

normal sibs. The Bowman line with brh7 showed less lodging than Bowman.<br />

Although the kernels of brh7 plants seem plumper and more globose shaped<br />

than those from normal sibs, the primary difference is a 10 to 15% reduction in<br />

kernel length. Kernel weights and grain yields of the brh7 line are slightly lower<br />

than those of normal Bowman (1, 2).<br />

Origin of mutant:<br />

An induced mutant in Volla (PI 280423) (4).<br />

Mutational events:<br />

brh7.w in Volla (7101, DWS1211) (4, 5).<br />

Mutant used for description and seed stocks:<br />

brh7.w in Volla (GSHO 1687); brh7.w in Bowman (PI 483237)*7 (GSHO 1943).<br />

References:<br />

1. Dahleen, L.S., L.J. Vander Wal, and J.D. Franckowiak. 2005. Characterization<br />

and molecular mapping of genes determining semidwarfism in barley. J. Hered.<br />

96:654-662.<br />

2. Franckowiak, J.D. (Unpublished).<br />

3. Franckowiak, J.D. 1995. The brachytic class of semidwarf mutants in barley.<br />

Barley Genet. Newsl. 24:56-59.<br />

4. Franckowiak, J.D., and A. Pecio. 1992. Coordinator’s report: semidwarf genes.<br />

A listing of genetic stocks. Barley Genet. Newsl. 21:116-127.<br />

5. Gaul, H. 1986. (Personal communications).<br />

Prepared:<br />

J.D. Franckowiak. 2002. BGN 32:81.<br />

Revised:<br />

J.D. Franckowiak and L.S. Dahleen. 2007. BGN 37:203.<br />

203


Barley Genetics Newsletter (2007) 37: 188-301<br />

Stock number: BGS 44<br />

Locus name: Brachytic 16<br />

Locus symbol: brh16<br />

BGS 44, Brachytic 16, brh16<br />

Previous nomenclature and gene symbolization:<br />

Brachytic-v = brh.v (2).<br />

Inheritance:<br />

Monofactorial recessive (2, 3).<br />

Located in chromosome 7HL [1L] (1), approximately 7.4 cM proximal from SSR<br />

marker Bmag0135 in bin 7H-13 (1).<br />

Description:<br />

Plants are less than 2/3 of normal height and awns are about 3/4 of normal<br />

length in the Bowman backcross-derived line. The peduncle is about 2/3 normal<br />

length. The rachis internodes are slightly shorter than normal. The tip of the spike<br />

has a fascinated appearance because spikelets are very close together. The<br />

seed yield of the Bowman line with brh16 was less than 1/3 of Bowman’s yield.<br />

Since kernels per spikes and kernel size were not reduced, much of the yield<br />

loss was probably associated with reduced tillering (1). The original introduction<br />

(HE 2816) contained two dwarf mutants, but only brh16.v gene was isolated in<br />

the Bowman backcross-derived line.<br />

Origin of mutant:<br />

Probably an ethyl methanesulphonate induced mutant in Korál (PI 467778) (4).<br />

Mutational events:<br />

brh16.v in HE 2816 (DWS1176) from a cross between two semidwarf mutants (3,<br />

4).<br />

Mutant used for description and seed stocks:<br />

brh16.v in HE 2816/Bowman (GSHO 1686); brh16.v in Bowman (PI 483237)*7<br />

(GSHO 2177).<br />

References:<br />

1. Dahleen, L.S., L.J. Vander Wal, and J.D. Franckowiak. 2005. Characterization<br />

and molecular mapping of genes determining semidwarfism in barley. J. Hered.<br />

96:654-662.<br />

2. Franckowiak, J.D. 1995. The brachytic class of semidwarf mutants in barley.<br />

Barley Genet. Newsl. 24:56-59.<br />

3. Franckowiak, J.D., and A. Pecio. 1992. Coordinator’s report: semidwarf genes.<br />

A listing of genetic stocks. Barley Genet. Newsl. 21:116-127.<br />

4. Váša, M. 1986. (Personal communications).<br />

Prepared:<br />

J.D. Franckowiak and L.S. Dahleen. 2007. BGN 37:204.<br />

204


Barley Genetics Newsletter (2007) 37: 188-301<br />

Stock number: BGS 60<br />

Locus name: Liguleless 1<br />

Locus symbol: lig1<br />

BGS 60, Liguleless 1, lig1<br />

Previous nomenclature and gene symbolization:<br />

Ligule and auricle less = al (9).<br />

Liguleless = li (8).<br />

Exauriculum = aur-a (1).<br />

Inheritance:<br />

Monofactorial recessive (9).<br />

Located in chromosome 2HL (6, 9, 10); about 25.1 cM distal from the mtt4<br />

(mottled leaf 4) locus (2); and near AFLP marker E3633-1 in subgroup 21 of the<br />

Proctor/Nudinka map (7).<br />

Description:<br />

The ligule and auricle of all leaves are absent, and the leaf blades are erect<br />

along the stem. Liguleless plants can be identified visually at all stages of growth<br />

(9). Reverse mutation of some mutants is possible (4). The fine structure analysis<br />

of the lig1 locus conducted by Konishi (5) showed that some mutants can<br />

recombine. Bowman backcross-derived lines with lig1 gene are similar in<br />

agronomic traits and maturity to Bowman (2).<br />

Origin of mutant:<br />

A spontaneous mutant in an unknown cultivar, Muyoji (liguleless) (8).<br />

Mutational events:<br />

lig1.my as Muyoji (OUL007) (9); lig1.ky in Koyo (PI 190819), lig1.a1 (OUM001),<br />

lig1.a2 in Akashinriki (PI 467400, OUJ659); lig1.c1, lig1.c2, lig1.c3, lig1.c4 in<br />

Chikurin Ibaraki 1 (OUJ030, CIho 7370) (5); aur-a.1 (lig1.b1) (NGB 114359), aura.2<br />

(lig1.b2) (NGB 114360), aur-a.7 (lig1.b7) (NGB 114365), aur-a.8 (lig1.b8)<br />

(NGB 114366), aur-a.9 (lig1.b9) (NGB 114367) in Bonus (PI 189763), aur-a.3<br />

(lig1.b3) (NGB 114361), aur-a.4 (lig1.b4) (NGB 114362), aur-a.5 (lig1.b5) (NGB<br />

114363), aur-a.6 (lig1.b6) (NGB 114364), aur-a.10 (lig1.b10) (NGB 114368) in<br />

Foma (CIho 11333) (5); aur-a.11 (NGB 114369), aur-a.12 (NGB 114370, NGB<br />

114371) in Kristina, aur-a.13 (NGB 114372), aur-a.14 (NGB 114373) in Bonus,<br />

aur-a.15 (NGB 119377) in Golf (PI 488529) (6); lig1.2 in Bonus, found in eli-2<br />

(eligulum-2) (NGB 115389) stock as the second mutant (2).<br />

Mutant used for description and seed stocks:<br />

lig1.my as Muyoji (GSHO 6); lig1.my in Bowman (PI 483237)*8 (GSHO 1930);<br />

lig1.2 in Bowman*5 (2).<br />

References:<br />

1. Gustafsson, Å., A. Hagberg, U. Lundqvist, and G. Persson. 1969. A proposed<br />

system of symbols for the collection of barley mutants at Svalöv. Hereditas<br />

62:409-414.<br />

2. Franckowiak, J.D. (Unpublished).<br />

3. Hayashi, J., T. Konishi, I. Moriya, and R. Takahashi. 1984. Inheritance and<br />

linkage studies in barley. VI. Ten mutant genes located on chromosomes 1 to 7,<br />

except 3. Ber. Ohara Inst. landw. Biol., Okayama Univ. 18:227-250.<br />

4. Konishi, T. 1975. Reverse mutation at the ligule-less locus (li) of barley. BGN<br />

5:21-23.<br />

5. Konishi, T. 1981. Reverse mutation and interallelic recombination at the liguleless<br />

locus in barley. p. 838-845. In M.J.C. Ascher, R.P. Ellis, A.M. Hayter, and<br />

R.N.H. Whitehouse. (eds.) Barley Genetics. IV. Proc. Fourth Int. Barley Genet.<br />

Symp. Edinburgh. Edinburgh University Press.<br />

6. Lundqvist, U. (Unpublished).<br />

205


Barley Genetics Newsletter (2007) 37: 188-301<br />

7. Pozzi, C., D. di Pietro, G. Halas, C. Roig, and F. Salamini. 2003. Integration of<br />

a barley (Hordeum vulgare) molecular linkage map with the position of genetic<br />

loci hosting 29 developmental mutants. Heredity 90:390-396.<br />

8. Robertson, D.W., G.A. Wiebe, and R.G. Shands. 1955. A summary of linkage<br />

studies in barley: Supplement II, 1947-1953. Agron. J. 47:418-425.<br />

9. Takahashi, R., J. Yamamoto, S. Yasuda, and Y. Itano. 1953. Inheritance and<br />

linkage studies in barley. Ber. Ohara Inst. landw. Forsch. 10:29-52.<br />

10. Woodward, R.W. 1957. Linkages in barley. Agron. J. 49:28-32.<br />

Prepared:<br />

T. Tsuchiya and T.E. Haus. 1971. BGN 1:120.<br />

Revised:<br />

J.D. Franckowiak, U. Lundqvist, T. Konishi. 1997. BGN26:96.<br />

U. Lundqvist and J.D. Franckowiak. 2007. BGN 37:205-206.<br />

206


Barley Genetics Newsletter (2007) 37: 188-301<br />

Stock number: BGS 79<br />

Locus name: White streak 7<br />

Locus symbol: wst7<br />

BGS 79, White streak 7, wst7<br />

Previous nomenclature and gene symbolization:<br />

Ribbon grass = rb (6).<br />

White streak-k = wst,,k (10).<br />

White streak-B = wst,,B (8).<br />

Inheritance:<br />

Monofactorial recessive (2, 11).<br />

Located in chromosome 2HL (5, 7, 8,9), about 22.0 cM distal from the gpa1<br />

(grandpa 1) locus (2, 9), over 29.4 cM distal from the lig1 (liguleless 1) locus (8),<br />

in bin 2H-15 about 6.1 cM from RFLP marker MWG949A (1).<br />

Description:<br />

Vertical white streaks of variable width and number develop in the leaf blades of<br />

young secondary tillers. Fewer white streaks and fewer tillers with white streaks<br />

occur as environmental conditions become warm. White streaks can be found<br />

until near maturity, but they are difficult to observe after heading under field<br />

conditions. Often the lower or first leaves on early tillers have more and wider<br />

streaks. The mutant has no apparent affect on agronomic traits in the Bowman<br />

backcross-derived line (4).<br />

Origin of mutant:<br />

A spontaneous mutant isolated by Robertson (6, 11).<br />

Mutational events:<br />

wst7.k in an unknown cultivar (2, 11).<br />

Mutant used for description and seed stocks:<br />

wst7.k in an unknown cultivar (GSHO 247); wst7.k from R.I. Wolfe's Multiple<br />

Recessive Marker Stock in Bowman (PI 483237)*7 (GSHO 1935).<br />

References:<br />

1. Costa, J.M., A. Corey, M. Hayes, C. Jobet, A. Kleinhofs, A. Kopisch-Obusch,<br />

S.F. Kramer, D. Kudrna, M. Li, O. Piera-Lizaragu, K. Sato, P. Szues, T. Toojinda,<br />

M.I. Vales, and R.I. Wolfe. 2001. Molecular mapping of the Oregon Wolfe<br />

Barleys: a phenotypically polymorphic doubled-haploid population. Theor. Appl.<br />

Genet. 103:415-424.<br />

2. Doney, D.L. 1961. An inheritance and linkage study of barley with special<br />

emphasis on purple pigmentation or the auricle. M.S. Thesis. Utah State Univ.,<br />

Logan.<br />

3. Franckowiak, J.D. 1996. Coordinator's report: Chromosome 2. Barley Genet.<br />

Newsl. 25:88-90.<br />

4. Franckowiak, J.D. (Unpublished).<br />

5. Kasha, K.J. 1982. Coordinator's report: Chromosome 6. Barley Genet. Newsl.<br />

12:90-92.<br />

6. Robertson, D.W., G.A. Wiebe, and R.G. Shands. 1947. A summary of linkage<br />

studies in barley: Supplement I, 1940-1946. J. Am. Soc. Agron. 39:464-473.<br />

7. Schondelmaier, J., G. Fischbeck, and A. Jahoor. 1993. Linkage studies<br />

between morphological and RFLP markers in the barley genome. Barley Genet.<br />

Newsl. 22:57-62.<br />

8. Shin, J.S., S. Chao, L. Corpuz, and T.K. Blake. 1990. A partial map of the<br />

barley genome incorporating restriction fragment length polymorphism,<br />

207


Barley Genetics Newsletter (2007) 37: 188-301<br />

polymerase chain reaction, isozyme, and morphological marker loci. Genome<br />

23:803-810.<br />

9. Walker, G.W.R. 1974. Linkage data for rb and mt3. Barley Genet. Newsl. 4:90-<br />

91.<br />

10. Wolfe, R.I., and J.D. Franckowiak. 1991. Multiple dominant and recessive<br />

genetic marker stocks in spring barley. Barley Genet. Newsl. 20:117-121.<br />

11. Woodward, R.W. 1957. Linkages in barley. Agron. J. 49:28-32.<br />

Prepared:<br />

J.D. Franckowiak and R.I. Wolfe. 1997. BGN 26:117.<br />

Revised:<br />

J.D. Franckowiak. 2007. BGN 37:207-208.<br />

208


Barley Genetics Newsletter (2007) 37: 188-301<br />

Stock number: BGS 82<br />

Locus name: Zeocriton 1<br />

Locus symbol: Zeo1<br />

BGS 82, Zeocriton 1, Zeo1<br />

Previous nomenclature and gene symbolization:<br />

"Kurz und dicht" = Knd (6).<br />

Inheritance:<br />

Monofactorial incomplete dominant (5).<br />

Located in chromosome 2HL, about 9.2 cM distal from the lig1 (liguleless 1)<br />

locus (4), in bin 2H-13 about 7.3 cM distal from RFLP marker cnx1 (1).<br />

Description:<br />

Plants heterozygous for Zeo1 have short culms, compact spikes, and wide<br />

kernels. Homozygotes have shorter culms (short peduncle), very compact<br />

spikes, large outer glumes with long awns, and reduced fertility. Generally, the<br />

spike emerges from the side of the sheath in homozygotes. Although the name<br />

zeocriton is used for this gene, this gene is not from Spratt, the dense ear type<br />

described by Engledow (2).<br />

Origin of mutant:<br />

An X-ray induced mutant in Donaria (PI 161974) (5).<br />

Mutational events:<br />

Zeo1.a in Donaria (Mut 2657) (5); Zeo1.b, received as "Kurz und dicht" and<br />

placed in R.I. Wolfe's Multiple Dominant Marker Stock (GSHO 1614), was<br />

probably derived from Mut 2657 (3, 6).<br />

Mutant used for description and seed stocks:<br />

Zeo1.a in Donaria (GSHO 1613); Zeo1.a in Bowman (PI 483237)*5 (GSHO<br />

1931); Zeo1.b in Bowman*9 (GSHO 1932).<br />

References:<br />

1. Costa, J.M., A. Corey, M. Hayes, C. Jobet, A. Kleinhofs, A. Kopisch-Obusch,<br />

S.F. Kramer, D. Kudrna, M. Li, O. Piera-Lizaragu, K. Sato, P. Szücs, T. Toojinda,<br />

M.I. Vales, and R.I. Wolfe. 2001. Molecular mapping of the Oregon Wolfe<br />

Barleys: a phenotypically polymorphic doubled-haploid population. Theor. Appl.<br />

Genet. 103:415-424.<br />

2. Engledow, F.L. 1924. Inheritance in barley. III. The awn and the lateral floret<br />

(cont'd): fluctuation: a linkage: multiple allelomorphs. J. Genet. 14:49-87.<br />

3. Franckowiak, J.D. 1992. Allelism tests among selected semidwarf barleys.<br />

Barley Genet. Newsl. 21:17-23.<br />

4. Luna Villafaña, A., and J.D. Franckowiak. 1995. (Unpublished).<br />

5. Scholz, F., and O. Lehmann. 1958. Die Gaterslebener Mutanten der<br />

Saatgerste in Beziehung zur Formenmannigfaltigkeit der Art Hordeum vulgare<br />

L.s.l. I. Kulturpflanze 6:123-166.<br />

6. Wolfe, R.I. (Unpublished).<br />

Prepared:<br />

J.D. Franckowiak and R.I. Wolfe. 1997. BGN 26:120.<br />

J.D. Franckowiak. 2007. BGN 37:209.<br />

209


Barley Genetics Newsletter (2007) 37: 188-301<br />

Stock number: BGS 85<br />

Locus name: Yellow streak 4<br />

Locus symbol: yst4<br />

BGS 85, Yellow streak 4, yst4<br />

Previous nomenclature and gene symbolization:<br />

None.<br />

Inheritance:<br />

Monofactorial recessive (2).<br />

Located in chromosome 2HL, near the vrs1 (six-rowed spike 1) locus (2), in bin<br />

2H-07 near RFLP marker CDO537 (3).<br />

Description:<br />

Plants have a yellow-green color with numerous, vertical yellow streaks in the<br />

leaves. The yellow-green color is retained until maturity, but the yellow streaks<br />

may be difficult to observe after heading. Plant vigor and height are reduced,<br />

heading is delayed, and seed yields are low.<br />

Origin of mutant:<br />

A sodium azide induced mutant in Glenn (CIho 15769) (1).<br />

Mutational events:<br />

yst4.d in Glenn (DWS1059) (2).<br />

Mutant used for description and seed stocks:<br />

yst4.d in Glenn (GSHO 2502); yst4.d in Bowman (PI 483237)*7 (GSHO 1922).<br />

References:<br />

1. Faue, A.C. 1987. Chemical mutagenesis as a breeding tool for barley. M.S.<br />

Thesis. North Dakota State Univ., Fargo.<br />

2. Faue, A.C., A.E. Foster, and J.D. Franckowiak. 1989. Allelism testing of an<br />

induced yellow streak mutant with the three known yellow streak mutants. Barley<br />

Genet. Newsl. 19:15-16.<br />

3. Kleinhofs, A. 2002. Integrating molecular and morphological/physiological<br />

marker maps. Coordinator’s Report. Barley Genet. Newsl. 32:152-159.<br />

Prepared:<br />

J.D. Franckowiak. 1997. BGN 26:123.<br />

Revised:<br />

J.D. Franckowiak. 2007. BGN 37:210.<br />

210


Barley Genetics Newsletter (2007) 37: 188-301<br />

Stock number: BGS 87<br />

Locus name: Chlorina seedling 14<br />

Locus symbol: fch14<br />

BGS 87, Chlorina seedling 14, fch14<br />

Previous nomenclature and gene symbolization:<br />

Chlorina seedling 14 = f14 (2).<br />

Inheritance:<br />

Monofactorial recessive (2, 4).<br />

Located in chromosome 2HL (2), probably between the vrs1 (six-rowed spike 1)<br />

and the ant2 (anthocyanin-less 2) loci (2), likely in bin 2H-11 (3, 4).<br />

Description:<br />

Seedlings have a pale yellow-green color. The leaves gradually become greener<br />

starting at the tip of the leaf blade, and mutant plants are indistinguishable in<br />

color from normal sibs at heading (2). When grown in the field, plants produce<br />

slightly thinner kernels with about a 10% reduction in kernel weight (1).<br />

Origin of mutant:<br />

A spontaneous mutant in Shyri (Lignee 640//Kober/Teran 78) from Ecuador (2).<br />

Mutational events:<br />

fch14.w in Shyri (2, 5).<br />

Mutant used for description and seed stocks:<br />

fch14.w in Shyri (GSHO 1739); fch14.w in Bowman (PI 483237)*6 (GSHO 1911).<br />

References:<br />

1. Franckowiak, J.D. (Unpublished).<br />

2. Franckowiak, J.D. 1995. Notes on linkage drag in Bowman backcross derived<br />

lines of spring barley. Barley Genet. Newsl. 24:63-70.<br />

3. Kleinhofs, A. 2006. Integrating molecular and morphological/physiological<br />

marker maps. Barley Genet. Newsl. 36:66-82.<br />

4. Kudrna, D., A. Kleinhofs, A. Kilian, and J. Soule. 1996. Integrating visual<br />

markers with the Steptoe x Morex RFLP map. p. 343. In A.E. Slinkard, G.J.<br />

Scoles, and B.G. Rossnagel (eds.) Proc. Fifth Int. Oat Conf. & Seventh Int.<br />

Barley Genet. Symp., Saskatoon. Univ. of Saskatchewan, Saskatoon.<br />

5. Rivendeneira, M. (Personal communications).<br />

Prepared:<br />

J.D. Franckowiak. 1997. BGN 26:125.<br />

Revised:<br />

J.D. Franckowiak. 2007. BGN 37:211.<br />

211


Barley Genetics Newsletter (2007) 37: 188-301<br />

BGS 88, Reaction to Puccinia hordei 2, Rph2<br />

Stock number: BGS 88<br />

Locus name: Reaction to Puccinia hordei 2 (barley leaf rust)<br />

Locus symbol: Rph2<br />

Previous nomenclature and gene symbolization:<br />

Resistance to Puccinia anomala Rostr = Pa (2).<br />

Resistance to Puccinia hordei Otth 2 = Pa2 (9, 15).<br />

Resistance to Puccinia hordei A = A (8, 9).<br />

Inheritance:<br />

Monofactorial incomplete dominant (2, 14).<br />

Located in chromosome 5HS [7S] (1), not in the long arm (10), distal from the<br />

secondary constriction (1), in bin 5H-04 about 3.5 cM proximal from RFLP<br />

marker CDO749 (1).<br />

Description:<br />

The seedling reaction type is 0 n - 1 c with race 4 culture 57-19 (2); heterozygotes<br />

have reaction types ranging from 1 to 3, depending on parents. Responses will<br />

vary for homozygotes and heterozygotes when different rust cultures are tested<br />

(8).<br />

Origin of mutant:<br />

Natural occurrence in Peruvian (CIho 935) and several other cultivars (2, 4, 6,<br />

12, 15, 16).<br />

Mutational events:<br />

Rph2.b in Peruvian (4, 12); Rph2.j in Batna (CIho 3391) (7, 12); Rph2.k in<br />

Weider (No 22, PI 39398) (2, 11, 15); Rph2.l in Juliaca (PI 39151) (3, 12);<br />

Rph2.m in Kwan (PI 39367, GSHO 1392) ( 2, 4, 12); Rph2.n in Chilean D (PI<br />

48136) (4, 14); an allele at the Rph2 locus is present in Purple Nepal (CIho<br />

1373), Modia (CIho 2483), Morocco (CIho 4975), Barley 305 (CIho 6015), Marco<br />

(PI 94877) (2); Austral (CIho 6358) (4, 6, 7, 12); Marocaine 079 (CIho 8334) (6);<br />

Q21861 (PI 584766), TR306 (1, 13); accessions with a second Rph gene<br />

besides the Rph2 allele include Carre 180 (CIho 3390), CIho 14077 (12); Ricardo<br />

(PI 45492) (2, 14, 16); Ariana (CIho 14081) (11, 12, 16); Quinn (PI 39401) (8, 9);<br />

Bolivia (PI 36360) (2, 8, 9); Reka 1 (CIho 5051) (4, 6, 7, 12); tentative Rph2 allele<br />

symbols are Rph2.q in Quinn, Rph2.r in Bolivia (GSHO 1598), Rph2.s in Ricardo,<br />

Rph2.t in Reka 1 (GSHO 1594), and Rph2.u in Ariana based on differential<br />

reactions and different cultivar origins (5, 8, 9, 12); Rph2.y from HJ198*3/HS2310<br />

(PI 531841, GSHO 1595) (3).<br />

Mutant used for description and seed stocks:<br />

Rph2.b in Peruvian (GSHO 1593); Rph2.b in Bowman (PI 483237)*3 (GSHO<br />

2320); Rph2.t from Rika 1 in Bowman*8 (GSHO 2321).<br />

References<br />

1. Borovkova, I.G., Y. Jin, B.J. Steffenson, A. Kilian, T.K. Blake, and A. Kleinhofs.<br />

1997. Identification and mapping of a leaf rust resistance gene in the barley line<br />

Q21861. Genome 40:236-241.<br />

2. Henderson, M.T. 1945. Studies of the sources of resistance and inheritance of<br />

reaction to leaf rust, Puccinia anomala Rostr., in barley. Ph.D. Thesis. Univ. of<br />

Minnesota, St. Paul.<br />

3. Jin, Y., G.H. Cui, B.J. Steffenson, and J.D. Franckowiak. 1996. New leaf rust<br />

resistance genes in barley and their allelic and linkage relationships with other<br />

Rph genes. Phytopathology 86:887-890.<br />

212


Barley Genetics Newsletter (2007) 37: 188-301<br />

4. Levine, M.N., and W.J. Cherewick. 1952. Studies on dwarf leaf rust of barley.<br />

U.S. Dept. Agr. Tech. Bull.1056. 17p.<br />

5. Moseman, J.G., and L.W. Greeley. 1965. New physiological strains of Puccinia<br />

hordei among physiological races identified in the United States from 1959<br />

through 1964. Plant Dis. Rep. 49:575-578.<br />

6. Moseman, J.G., and C.W. Roane. 1959. Physiologic races of barley leaf rust<br />

(Puccinia hordei) isolated in the United States from 1952 to 1958. Plant Dis. Rep.<br />

43:1000-1003.<br />

7. Reinhold, M., and E.L. Sharp. 1982. Virulence types of Puccinia hordei from<br />

North America, North Africa and the Middle East. Plant. Dis. 66:1009-1011.<br />

8. Roane, C.W. 1962. Inheritance of reaction to Puccinia hordei in barley. I.<br />

Genes for resistance among North American race differentiating varieties.<br />

Phytopathology 52:1288-1295.<br />

9. Roane, C.W., and T.M. Starling. 1967. Inheritance of reaction to Puccinia<br />

hordei in barley. II. Gene symbols for loci in different cultivars. Phytopathology<br />

57:66-68.<br />

10. Roane, C.W., and T.M. Starling. 1989. Linkage studies with genes<br />

conditioning leaf rust reaction in barley. Barley Newsl. 33:190-192.<br />

11. Sharp, E.L., and M. Reinhold. 1982. Resistance gene sources to Puccinia<br />

hordei in barley. Plant Dis. 66:1012-1013.<br />

12. Starling, T.M. 1955. Sources, inheritance, and linkage relationships of<br />

resistance to race 4 of leaf rust (Puccinia hordei Otth), race 9 of powdery mildew<br />

(Erysiphe graminis hordei El. Marchal), and certain agronomic characters in<br />

barley. Iowa State Coll. J. Sci. 30:438-439.<br />

13. Steffenson, B.J., and Y. Jin. 1997. A multi-allelic series at the Rph2 locus for<br />

leaf rust resistance in barley. Cereal Rusts Powdery Mildews Bull. (in press).<br />

14. Tan, B.H. 1977. Evaluation host differentials of Puccinia hordei. Cereal Rust<br />

Bull. 5:17-23.<br />

15. Watson, I.A., and F.C. Butler. 1947. Resistance to barley leaf rust (Puccinia<br />

anomala Rostr.). Linnean Soc. New South Wales, Proc. 72:379-386.<br />

16. Zloten, R.R. 1952. The inheritance of reaction to leaf rust in barley. M.S.<br />

Thesis. Univ. of Manitoba, Winnipeg.<br />

Prepared:<br />

Y. Jin and J.D. Franckowiak. 1997. BGN 26:126-127.<br />

Revised:<br />

J.D. Franckowiak. 2007. BGN 37:212-213.<br />

213


Barley Genetics Newsletter (2007) 37: 188-301<br />

BGS 96, Reaction to Puccinia hordei 15, Rph15<br />

Stock number: BGS 96<br />

Locus name: Reaction to Puccinia hordei 15 (barley leaf rust)<br />

Locus symbol: Rph15<br />

Previous nomenclature and gene symbolization:<br />

Rph16 = Reaction to Puccinia hordei 16 (6, 9).<br />

Inheritance:<br />

Monofactorial dominant (1, 2).<br />

Located in chromosome 2HS (1, 6); over 32.3 cM proximal from the vrs1 (sixrowed<br />

spike 1) locus (1); in bin 2H-6 near molecular markers MWG874 (6) and<br />

MWG2133 (9); cosegregation with AFLP marker P13M40 (9); about 25.2cM<br />

distal from the centromere (9); about 14 cM proximal from the Eam1 (Early<br />

maturity 1) locus (3).<br />

Description:<br />

The seedling reaction to most isolates of Puccinia hordei is a relatively large<br />

necrotic fleck, hypersensitive reaction (1). The seedling infection type of<br />

heterozygotes is indistinguishable from that of homozygous resistant seedlings.<br />

Alleles at this locus were found in six of the first seven Rph genes from Hordeum<br />

vulgare subsp spontaneum evaluated in Bowman backcross-derived lines (1, 2).<br />

The Rph15 locus is likely allelic to Rph16 based on the failure to recover<br />

susceptible recombinants (9). Only one of the 350 leaf rust isolates (90-3 from<br />

Israel) was found to be virulent on Rph15 lines (4, 9). Resistance to isolate 90-3<br />

was observed in progeny from a cross between a line with Rph15 to another<br />

source of leaf rust resistance (8). Rph15 represents one of the most effective leaf<br />

rust resistance genes reported in Hordeum vulgare (9).<br />

Origin of mutant:<br />

Natural occurrence in accession PI 355447 of Hordeum vulgare subsp<br />

spontaneum, but isolated in a selection that contained one Rph gene from the<br />

original accession crossed to Bowman (PI 483237) (1, 7).<br />

Mutational events:<br />

Rph15.ad in PI 355447 (1, 2, 5), PI 354937, PI 391024, PI 391069, PI 391089,<br />

and PI 466245 (1, 2); Rph15.ae from HS084 (6, 9); PI 466245 has at least two<br />

genes for leaf rust resistance (7).<br />

Mutant used for description and seed stocks:<br />

Rph15.ad in selection from a cross to Bowman (GSHO 1586); Rph15.ad in<br />

Bowman*8 (GSHO 2330).<br />

References:<br />

1. Chicaiza, O. 1996. Genetic control of leaf rust in barley. Ph.D. dissertation,<br />

North Dakota State Univ., Fargo.<br />

2. Chicaiza, O., J.D. Franckowiak, and B.J. Steffenson. 1996. New sources of<br />

resistance to leaf rust in barley. pp. 706-708. In A.E. Slinkard, G.J. Scoles, and<br />

B.G. Rossnagel (eds.). Proc. Fifth Int. Oat Conf. & Seventh Int. Barley Genet.<br />

Symp., Saskatoon. Univ. of Saskatchewan, Saskatoon.<br />

3. Falk, A.B. (Personal communications).<br />

4. Fetch, T.G. Jr., B.J. Steffenson, and Y. Jin. 1998. Worldwide virulence of<br />

Puccinia hordei on barley. Phytopathology 88:S28.<br />

5. Franckowiak, J.D., Y. Jin, and B.J. Steffenson. 1997. Recommended allele<br />

symbols for leaf rust resistance genes in barley. Barley Genet. Newsl. 27:36-44.<br />

6. Ivandic, V.,U. Walther, and A. Graner. 1998. Molecular mapping of a new gene<br />

214


Barley Genetics Newsletter (2007) 37: 188-301<br />

in wild barley conferring complete resistance to leaf rust (Puccinia hordei Otth).<br />

Theor. Appl. Genet. 97:1235-1239.<br />

7. Jin, Y., and B.J. Steffenson. 1994. Inheritance of resistance to Puccinia hordei<br />

in cultivated and wild barley. J. Hered. 85:451-454.<br />

8. Sun, Y., J.D. Franckowiak, and S.M. Neate. 2005. Reactions of barley lines to<br />

leaf rust, caused by Puccinia hordei. Proceedings of the 18th North American<br />

Barley Researchers Workshop, July 17-20, 2005, Red Deer, Alberta, Canada<br />

http://www1.agric.gov.ab.ca/$department/deptdocs.nsf/all/fcd10135#Reactions<br />

9. Weerasena, J.S., B.J. Steffenson, and A.B. Falk. 2004. Conversion of an<br />

amplified fragment length polymorphism marker into a co-dominant marker in the<br />

mapping of the Rph15 gene conferring resistance to barley leaf rust, Puccinia<br />

hordei Otth. Theor. Appl. Genet. 108:712-719.<br />

Prepared:<br />

J.D. Franckowiak and O. Chicaiza. 1998. BGN 28:29.<br />

Revised:<br />

J.D. Franckowiak. 2005. BGN 35:186.<br />

J.D. Franckowiak. 2007. BGN 37:214-215.<br />

215


Barley Genetics Newsletter (2007) 37: 188-301<br />

Stock number: BGS 98<br />

Locus name: Early maturity 6<br />

Locus symbol: Eam6<br />

BGS 98, Early maturity 6, Eam6<br />

Previous nomenclature and gene symbolization:<br />

Early heading = Ea (9).<br />

Early maturity 6 = Ea6 (7).<br />

Inheritance:<br />

Monofactorial dominant (9).<br />

Located in chromosome 2HS, about 13.5 cM proximal from the vrs1 (six-rowed<br />

spike 1) locus (9), near the gsh5 (glossy sheath 5) locus based on linkage drag<br />

(1, 2), near molecular marker ABC167b in bin 2H-08 (5, 8).<br />

Description:<br />

Alleles at the Eam6 locus alter the timing of floral initiation when barley is grown<br />

under long-day conditions. In temperate climates, the Eam6.h gene induces<br />

spring barley to head two to five days earlier than plants with the recessive allele<br />

(1, 5). A much stronger response to long photoperiods is associated with the<br />

Eam1 gene. Tohno-oka et al. (8) reported that Eam6 gene from Morex (CIho<br />

15773) is effective when the photoperiod is 13 hours or longer and that the Eam1<br />

gene from Steptoe (CIho 15229) induces early heading when the photoperiod is<br />

14 hours or longer. In North Dakota, plants with both the Eam1 and Eam6 genes<br />

head one to two days earlier than those with only the Eam1 gene (1). The<br />

factors, Eam1 and Eam6, for early heading were studied possibly by Yasuda (10)<br />

and named “A” and “B”, respectively. A QTL for long-day photoperiod response<br />

in North American two-rowed and six-rowed barleys in the Eam6 region of 2H<br />

was reported by Moralejo et al. (6) and Horsley et al. (3), respectively. Eam6 may<br />

interact with other maturity genes because a QTL for early heading was detected<br />

in 2HS under both short- and long-day environments in the Harrington/Morex<br />

mapping population (4).<br />

Origin of mutant:<br />

Natural occurrence in many spring, six-rowed barley, represented by the cultivar<br />

Morex (CIho 15773) (8).<br />

Mutational events:<br />

Eam6.h in an unknown cultivar (8), possibly Trebi (CIho 936) (1); Eam6.h in<br />

Morex (4, 5, 8).<br />

Mutant used for description and seed stocks:<br />

Eam6.h in Morex (CIho 15773, GSHO 2492); Eam6.h from Nordic (CIho 15216)<br />

in Bowman (PI 483237) (1).<br />

References:<br />

1. Franckowiak, J.D., and G. Yu (Unpublished).<br />

2. Franckowiak, J.D., and U. Lundqvist. 1997. BGS 355, glossy sheath 5, gsh5.<br />

Barley Genet. Newsl. 26:300-301.<br />

3. Horsley, R.D., D. Schmierer, C. Maier, D. Kudrna, C.A. Urrea, B.J. Steffenson,<br />

P.B. Schwarz, J.D. Franckowiak, M.J. Green, B. Zhang, and A. Kleinhofs. 2006.<br />

Identification of QTLs associated with Fusarium head blight resistance in barley<br />

accession CIho 4196. Crop Sci. 46:145-156.<br />

4. Krasheninnik, N. 2005. Genetic association of Fusarium head blight resistance<br />

and morphological traits in barley. Ph.D. Thesis. North Dakota state Univ., Fargo,<br />

ND.<br />

216


Barley Genetics Newsletter (2007) 37: 188-301<br />

5. Marquez-Cedillo, L.A., P.M. Hayes, A. Kleinhofs, W.G. Legge, B.G.<br />

Rossnagel, K. Sato, S.E. Ullrich, and D. M. Wesenberg. 2001. QTL analysis of<br />

agronomic traits in barley based on the doubled haploid progeny of two elite<br />

North American varieties representing different germplasm groups. Theor. Appl.<br />

Genet. 103:625-637.<br />

6. Moralejo, M., J.S. Swanston, P. Muñoz, D. Prada, M. Elía, J.R. Russell, L.<br />

Ramsay, L. Cistué, P. Codesal, A.M. Casa, I. Romagosa, W. Powell, and J.L.<br />

Molina-Cano. 2004. Use of new EST markers to elucidate the genetic differences<br />

in grain protein content between European and North American two-rowed<br />

malting barleys. Theor. Appl. Genet. 110:116-125.<br />

7. Robertson, D.W., G.A. Wiebe, R.G. Shands, and A. Hagberg. 1965. A<br />

summary of linkage studies in cultivated barley, Hordeum species: Supplement<br />

III, 1954-1963. Crop Sci. 5:33-43.<br />

8. Tohno-oka, T., M. Ishit, R. Kanatani, H. Takahashi, and K. Takeda. 2000.<br />

Genetic analysis of photoperiodic response of barley in different daylength<br />

conditions. p. 239-241. In S. Logue (ed.) Barley Genetics VIII. Volume III. Proc.<br />

Eighth Int. Barley Genet. Symp., Adelaide. Dept. Plant Science, Waite Campus,<br />

Adelaide University, Glen Osmond, South Australia.<br />

9. Woodward, R.W. 1957. Linkages in barley. Agron. J. 49:28-32.<br />

10. Yasuda, S. 1958. (Genetic analysis of the response to short photoperiod in a<br />

barley cross by means of the partitioning method.) Nogaku Kenkyu 46:54-62 [In<br />

Japanese].<br />

Prepared:<br />

J.D. Franckowiak and T. Konishi. 2002. BGN 32:86-87.<br />

Revised:<br />

J.D. Franckowiak. 2007. BGN 37:216-217.<br />

217


Barley Genetics Newsletter (2007) 37: 188-301<br />

BGS 100, Slender dwarf 4, sld4<br />

Stock number: BGS 100<br />

Locus name: Slender dwarf 4<br />

Locus symbol: sld4<br />

Previous nomenclature and gene symbolization:<br />

Slender dwarf d = sld.d (2).<br />

Inheritance:<br />

Monofactorial recessive (5, 6).<br />

Located in chromosome 7HS [5S] (4), near AFLP marker E 4134-2 in subgroup 6<br />

of the Proctor/Nudinka map (4).<br />

Description:<br />

Plants with the sld4.d gene have reduced vigor and are light green in color during<br />

early stages of growth (6). The sld4.d mutant is apparently very environmentally<br />

sensitive in the Bowman derived line. Plants can vary from less than 1/2 to 3/4 of<br />

normal height and heading can be delayed over 10 days in certain environments.<br />

The number of fertile spikelets per spike varies from 2/3 normal to near normal.<br />

Depending on the delay in heading, kernels vary from very thin to near normal.<br />

Grain yield of the Bowman backcross-derived line can vary from very low to<br />

nearly normal (1).<br />

Origin of mutant:<br />

A neutron induced mutant in Two-row Glacier (5). (Glacier is available as CIho<br />

6976.)<br />

Mutational events:<br />

sld4.d in Two-row Glacier (80-T-5899-2-13, DWS1368) (2, 3, 5).<br />

Mutant used for description and seed stocks:<br />

sld4.d in Two-row Glacier (GSHO 2479); sld4.d in Bowman (PI 483237)*7<br />

(GSHO 1880).<br />

References:<br />

1. Franckowiak, J.D. (Unpublished).<br />

2. Franckowiak, J.D. 1999. Coordinator’s report: Semidwarf genes. Barley Genet.<br />

Newsl. 29:74-79.<br />

3. Franckowiak, J.D., and A. Pecio. 1992. Coordinator’s report: Semidwarf<br />

genes. A listing of genetic stocks. Barley Genet. Newsl. 21:116-127.<br />

4. Pozzi, C., D. di Pietro, G. Halas, C. Roig, and F. Salamini. 2003. Integration of<br />

a barley (Hordeum vulgare) molecular linkage map with the position of genetic<br />

loci hosting 29 developmental mutants. Heredity 90:390-396.<br />

5. Ramage, R.T., and P. Curtis. 1981. A light green, dwarf mutant located on<br />

chromosome 2. Barley Genet. Newsl. 11:37-38.<br />

6. Ramage, R.T., and R.A. Ronstadt-Smith. 1983. Location of a light green dwarf<br />

mutant on chromosome 2. Barley Genet. Newsl. 13:62-64.<br />

Prepared:<br />

J.D. Franckowiak. 2002. BGN 32:89.<br />

Revised:<br />

J.D. Franckowiak. 2007. BGN 37:218.<br />

218


Barley Genetics Newsletter (2007) 37: 188-301<br />

BGS 101, Absent lower laterals 1, als1<br />

Stock number: BGS 101<br />

Locus name: Absent lower laterals 1<br />

Locus symbol: als1<br />

Previous nomenclature and gene symbolization:<br />

Absent lower laterals = als (2).<br />

Inheritance:<br />

Monofactorial recessive (2).<br />

Located in chromosome 3HL (2, 3, 5, 6), about 31.2 cM distal from the uzu1 (uzu<br />

1) locus (2), about 39.7 cM proximal from the cur2 (curly 2) locus (3), and near<br />

AFLP marker E4234-11 in subgroup 28 of the Proctor/Nudinka map (4).<br />

Description:<br />

Lateral spikelets at the base of the spike fail to develop or are partially<br />

developed. Tillers are large, coarse, and stiff, and only 1 or 2 tillers are produced<br />

in the six-rowed stock. The plants resemble those of the (cul2) uniculm 2 mutant<br />

(2). Plants of the Bowman backcross-derived line commonly produce 3 to 5 tillers<br />

with short spikes; and seed yields are very low (1).<br />

Origin of mutant:<br />

A gamma-ray induced mutant in Montcalm (CIho 7149) (2).<br />

Mutational events:<br />

als1.a in Montcalm (Alb Acc 281) (2).<br />

Mutant used for description and seed stocks:<br />

als1.a in Montcalm (GSHO 1065); als1.a in Bowman (PI 483237)*7 (GSHO<br />

1990).<br />

References:<br />

1. Babb, S., and G.J. Muehlbauer. 2003. Genetic and morphological<br />

characterization of the barley uniculm 2 (cul2) mutant. Theor. Appl. Genet.<br />

106:846-857.<br />

2. Kasha, K.J., and G.W.R. Walker. 1960. Several recent barley mutants and<br />

their linkages. Can. J. Genet. Cytol. 2:397-415.<br />

3. Konishi, T., J. Hayashi, I. Moriya, and R. Takahashi. 1984. Inheritance and<br />

linkage studies in barley. VII. Location of six new mutant genes on chromosome<br />

3. Ber. Ohara Inst. landw. Biol., Okayama Univ. 18:251-264.<br />

4. Pozzi, C., D. di Pietro, G. Halas, C. Roig, and F. Salamini. 2003. Integration of<br />

a barley (Hordeum vulgare) molecular linkage map with the position of genetic<br />

loci hosting 29 developmental mutants. Heredity 90:390-396.<br />

5. Shahla, A., and T. Tsuchiya. 1983. Telotrisomic analysis in Triplo 3S in barley.<br />

Barley Genet. Newsl. 13:25.<br />

6. Singh, R.J., and T. Tsuchiya. 1974. Further information on telotrisomic<br />

analysis in barley. Barley Genet. Newsl. 4:66-69.<br />

Prepared:<br />

T. Tsuchiya and T.E. Haus. 1971. BGN 1:123.<br />

Revised:<br />

J.D. Franckowiak. 1997. BGN 26:135.<br />

J.D. Franckowiak. 2007. BGN 37:219.<br />

219


Barley Genetics Newsletter (2007) 37: 188-301<br />

BGS 102, Uzu 1, uzu1<br />

Stock number: BGS 102<br />

Locus name: Uzu 1 (semi-brachytic)<br />

Locus symbol: uzu1<br />

Previous nomenclature and gene symbolization:<br />

Normal vs uzu = h (12).<br />

Uzu = u (4).<br />

Uzu (semi-brachytic) = uz (11).<br />

Uzu 2 = uz2 (3, 13, 15).<br />

Uzu 3 = uz3 (3, 13, 15).<br />

Hordeum vulgare BR-insensitive 1 = HvBRI1 (1).<br />

Inheritance:<br />

Monofactorial recessive (4, 7, 9, 11).<br />

Located in chromosome 3HL (5, 6, 11), about 17.6 cM proximal from the alm1<br />

(albino lemma 1) locus (10), in bin 3H-06 near cDNA marker, C1271 (1).<br />

Description:<br />

The uzu1.a gene has pleiotropic effects on the elongation of the coleoptile, leaf,<br />

culm, rachis internode, awn, glume, and kernel (8, 9, 11). These organs are often<br />

reduced in length and increased in width. Changes in organ length are<br />

temperature sensitive, but heading date and maturity are unaltered. The<br />

coleoptile of uzu plants shows a prominent projection or hook near the apex.<br />

Sometimes the coleoptile of the mutant shows a V-shaped notch on the side<br />

opposite from the projection. Thus, the apex of the coleoptile has two notches,<br />

one on each side (9, 13, 14). The temperature sensitive reduction in culm length<br />

of uzu1.a plants ranges from less than 15% in cool environments to over 75% in<br />

warm ones. Chono et al. (1) reported that the uzu1.a or HVBRI1 gene is caused<br />

by a mutation that changed a highly conserved residue of the kinase domain of<br />

BRI1 (Arabidopsis BR-insensitive 1) (brassinosteroids) receptor protein from His-<br />

857 to Arg-857.<br />

Origin of mutant:<br />

Natural occurrence in many cultivars of Japanese origin (8, 9).<br />

Mutational events:<br />

uzu1.a in many Japanese cultivars (9, 13, 15); uzu1.b (092AR) in Aramir (PI<br />

467781) (2).<br />

Mutant used for description and seed stocks:<br />

uzu1.a in Baitori 11 (OUJ371, PI 182624, GSHO 1300); uzu1.a in Bowman (PI<br />

483237)*7 (GSHO 1963).<br />

References:<br />

1. Chono, M., I. Honda, H. Zeniya, K. Yoneyama, D. Saisho, K. Takeda, S.<br />

Takatsuto, T. Hoshino and Y. Watanabe. 2003. A semidwarf phenotype of barley<br />

uzu results from a nucleotide substitution in the gene encoding a putative<br />

brassinosteroid receptor. Plant Physiol. 133:1209-1219.<br />

2. Gruszka, D., J. Zbieszczyk, M. Kwasniewski, I. Szarejko and M. Maluszynski.<br />

2006. A new allele in a uzu gene encoding brassinosteroid receptor. Barley<br />

Genet. Newsl. 36:1-2.<br />

3. Leonard, W.H., H.O. Mann, and L. Powers. 1957. Partitioning method of<br />

genetic analysis applied to plant height inheritance in barley. Colorado Agric.<br />

Expt. St. Tech. Bull. 60:1-24.<br />

4. Miyake, K., and Y. Imai. 1922. [Genetic studies in barley. 1.] Bot. Mag., Tokyo<br />

220


Barley Genetics Newsletter (2007) 37: 188-301<br />

36:25-38. [In Japanese.]<br />

5. Singh, R.J., A. Shahla, and T. Tsuchiya. 1982. Telotrisomic analysis of three<br />

genes with newly obtained telotrisomic, Triplo 3S, in barley. BGN 12:42-44.<br />

6. Singh, R.J., and T. Tsuchiya. 1974. Further information on telotrisomic<br />

analysis in barley. Barley Genet. Newsl. 4:66-69.<br />

7. So, M., S. Ogura, and Y. Imai. 1919. [A linkage group in barley.] J. Sci. Agric.<br />

Soc. Jpn. 208:1093-1117. [In Japanese.]<br />

8. Takahashi, R. 1942. Studies on the classification and the geographical<br />

distribution of the Japanese barley varieties. I. Significance of the bimodal curve<br />

of the coleoptile length. Ber. Ohara Inst. landw. Forsch. 9:71-90.<br />

9. Takahashi, R. 1951. Studies on the classification and geographical distribution<br />

of the Japanese barley varieties. II. Correlative inheritance of some quantitative<br />

characters with the ear types. Ber. Ohara Inst. landw. Forsch. 9:383-398.<br />

10. Takahashi, R., and J. Hayashi. 1959. Linkage study of albino lemma<br />

character in barley. Ber. Ohara Inst. landw. Biol., Okayama Univ. 11:132-140.<br />

11. Takahashi, R., and J. Yamamoto. 1951. Studies on the classification and<br />

geographical distribution of the Japanese barley varieties. III. On the linkage<br />

relation and the origin of the "uzu" or semi-brachytic character in barley. Ber.<br />

Ohara Inst. landw. Forsch. 9:399-410.<br />

12. Takezaki, Y. 1927. On the genetical formulae of the length of spikes and<br />

awns in barley, with reference to the computation of the valency of the heredity<br />

factors. Rep. Agric. Exp. Sta., Tokyo 46:1-42.<br />

13. Tsuchiya, T. 1972. Genetics of uz, uz2 and uz3 for semi-brachytic mutations<br />

in barley. Barley Genet. Newsl. 2:87-90.<br />

14. Tsuchiya, T. 1976. Allelism testing in barley. II. Allelic relationships of three<br />

uzu genes. Crop Sci. 16:496-499.<br />

15. Tsuchiya, T. 1981. Further results on the allelic relationships of three uzu<br />

genes in barley. J. Hered. 72:455-458.<br />

Prepared:<br />

T. Tsuchiya and T.E. Haus. 1971. BGN 1:124.<br />

Revised:<br />

T. Tsuchiya. 1984. BGN 14:92.<br />

J.D. Franckowiak and T. Konishi. 1997. BGN 26:136-137.<br />

J.D. Franckowiak. 2007. BGN 37:220-221.<br />

221


Barley Genetics Newsletter (2007) 37: 188-301<br />

Stock number: BGS 108<br />

Locus name: Albino lemma 1<br />

Locus symbol: alm1<br />

BGS 108, Albino lemma 1, alm1<br />

Previous nomenclature and gene symbolization:<br />

Albino lemma = al (9).<br />

Eburatum = ebu-a (3).<br />

Inheritance:<br />

Monofactorial recessive (9).<br />

Located in chromosome 3HS (9), about 16.5 cM distal from the uzu1 (uzu 1)<br />

locus (2, 5, 6, 7, 8, 9), in bin 3H-04 about 4.8 cM proximal from RFLP marker<br />

MWG844B (1).<br />

Description:<br />

The lemma and palea are white in color and mostly devoid of chlorophyll, but<br />

they terminate into green tips with green awns. The basal part of lower leaf<br />

sheaths and stem nodes are devoid of chlorophyll. Ligules and joints between<br />

the leaf sheath and blade are white in color (9, 10). Plant vigor is reduced slightly<br />

and maturity is delayed in the Bowman backcross-derived line.<br />

Origin of mutant:<br />

Spontaneous occurrence in an unknown cultivar (Russia 82) (OUU086, NSL<br />

43389) (9).<br />

Mutational events:<br />

alm1.a in Russia 82 (9); alm1.b in Liberty (CIho 9549) (2); alm1.c (Mut 966/61) in<br />

Proctor (PI 280420) (4); ebu-a.1 (NGB 115236), -a.2 (NGB 115237), -a.3 (NGB<br />

115238) in Foma (CIho 11333) (3, 10); ebu-a.4 (NGB 115239), -a.5 (NGB<br />

115240) in Foma (6).<br />

Mutant used for description and seed stocks:<br />

alm1.a in Russia 82 (GSHO 270); alm1.a in Bowman (PI 483237)*8 (GSHO<br />

1953).<br />

References:<br />

1. Costa, J.M., A. Corey, M. Hayes, C. Jobet, A. Kleinhofs, A. Kopisch-Obusch,<br />

S.F. Kramer, D. Kudrna, M. Li, O. Piera-Lizaragu, K. Sato, P. Szues, T. Toojinda,<br />

M.I. Vales, and R.I. Wolfe. 2001. Molecular mapping of the Oregon Wolfe<br />

Barleys: a phenotypically polymorphic doubled-haploid population. Theor. Appl.<br />

Genet. 103:415-424.<br />

2. Eslick, R.F., W.L. McProud. 1974. Positioning of the male sterile 5 (msg5) on<br />

chromosome 3. Barley Genet. Newsl. 4:16-23.<br />

3. Gustafsson, Å., A. Hagberg, U. Lundqvist, and G. Persson. 1969. A proposed<br />

system of symbols for the collection of barley mutants at Svalöv. Hereditas<br />

62:409-414.<br />

4. Häuser, H., and G. Fischbeck. 1972. Translocations and genetic analysis of<br />

other mutants. Barley Genet. Newsl. 2:28-29.<br />

5. Konishi, T., J. Hayashi, I. Moriya, and R. Takahashi. 1984. Inheritance and<br />

linkage studies in barley. VII. Location of six new mutant genes on chromosome<br />

3. Ber. Ohara Inst. landw. Biol., Okayama Univ. 18:251-264.<br />

6. Lundqvist, U. (Unpublished).<br />

7. Moriya, I., and R. Takahashi. 1980. Linkage studies of three barley mutants.<br />

Barley Genet. Newsl. 10:47-51.<br />

8. Nonaka, S. 1973. A new type of cultivar, Mitake, with very few in number, but<br />

222


Barley Genetics Newsletter (2007) 37: 188-301<br />

thick and stiff culms. Barley Genet. Newsl. 3:45-47.<br />

9. Takahashi, R., and J. Hayashi. 1959. Linkage study of albino lemma character<br />

in barley. Ber. Ohara Inst. landw. Biol., Okayama Univ. 11:132-140.<br />

10. Tsuchiya, T. 1973. Allelism testing between established marker stocks and<br />

Swedish mutants. Barley Genet. Newsl. 3:67-68.<br />

Prepared:<br />

T. Tsuchiya and T.E. Haus. 1971. BGN 1:130.<br />

Revised:<br />

T. Tsuchiya. 1980. BGN 10:111.<br />

J.D. Franckowiak and U. Lundqvist. 1997. BGN 26:143.<br />

J.D. Franckowiak and U. Lundqvist. 2007. BGN 37:222-223.<br />

223


Barley Genetics Newsletter (2007) 37: 188-301<br />

BGS 122, Reaction to Puccinia hordei 5, Rph5<br />

Stock number: BGS 122<br />

Locus name: Reaction to Puccinia hordei 5 (barley leaf rust)<br />

Locus symbol: Rph5<br />

Previous nomenclature and gene symbolization:<br />

Resistance to Puccinia hordei Otth 5 = Pa5 (6, 7).<br />

Resistance to Puccinia hordei B = B (5).<br />

Resistance to Puccinia hordei Otth = X (5, 6).<br />

Resistance to Puccinia hordei Otth = Pax (6).<br />

Resistance to Puccinia hordei 6 = Rph6.f (11).<br />

Inheritance:<br />

Monofactorial incomplete dominant (3, 5, 6).<br />

Located in chromosome 3HS (4, 11); about 7.0 cM distal from Rph7 (11), about<br />

0.5 cM proximal from RFLP marker CDO549 (11), about 2.5 cM distal from RFLP<br />

marker MWG2021 (4).<br />

Description:<br />

Rph5.e in Magnif 102 showed a seedling infection type of 0 - 0; c with race 4<br />

culture 57-19, and Rph6.f from Bolivia had a 0; n - 1 c seedling infection type with<br />

race 4 culture 57-19. (3). Heterozygotes frequently show an intermediate<br />

response (type 2 or 3 reaction) to inoculation with pathogenic races, and<br />

incomplete dominance is observed in segregating progenies (3, 5, 6). Zhong et<br />

al. (11) demonstrated that Rph5.e is allelic to the Rph6.f gene extracted from<br />

Bolivia (PI 36360). Rph6.f was identified as a monofactorial dominant, but an<br />

allele at the Rph2 (reaction to Puccinia hordei 2) locus is present in the original<br />

cultivar Bolivia (PI 36360) (5, 6, 8).<br />

Origin of mutant:<br />

Natural occurrence in Quinn (PI 39401) (6, 10); natural occurrence in Bolivia (PI<br />

36360) (2, 5).<br />

Mutational events:<br />

Rph5.e in Magnif 102 (PI 337140) (10), Rph5.f (formerly Rph6.f) in Bolivia (11),<br />

Rph5.ai in Quinn along with Rph2.q (5, 6).<br />

Mutant used for description and seed stocks:<br />

Rph5.e in Malteria Heda*4/Quinn (Magnif 102, GSHO 1597) (10); Rph5.e in<br />

Bowman (PI 483237)*8 (GSHO 1865); Rph5.f in Bowman*8 (GSHO 2323);<br />

Rph6.f in Bolivia (GSHO 1598); Rph6.f (without an Rph2 allele) in Bowman (PI<br />

483237)*4 (GSHO 2323) (1).<br />

References:<br />

1. Chicaiza, O., J.D. Franckowiak, and B.J. Steffenson. 1996. Backcross-derived<br />

lines of barley differing for leaf rust resistance genes. pp. 198-200. In G.H.J.<br />

Kema, R.E. Niks, and R.A. Daamen (eds.) Proc. 9th Eur. & Medit. Cereal Rusts<br />

& Mildews Conf. Drukkerij Ponsen en Looijen B.V., Wageningen.<br />

2. Henderson, M.T. 1945. Studies of the sources of resistance and inheritance of<br />

reaction to leaf rust, Puccinia anomala Rostr., in barley. Ph.D. Thesis. Univ. of<br />

Minnesota, St. Paul.<br />

3. Jin, Y., G.H. Cui, B.J. Steffenson, and J.D. Franckowiak. 1996. New leaf rust<br />

resistance genes in barley and their allelic and linkage relationships with other<br />

Rph genes. Phytopathology 86:887-890.<br />

4. Mammadov, J.A., J.C. Zwonitzer, R.M. Biyashev, C.A. Griffey, Y. Jin, B.J.<br />

Steffenson, and M.A. Saghai Maroof. 2003. Molecular mapping of leaf rust<br />

224


Barley Genetics Newsletter (2007) 37: 188-301<br />

resistance gene Rph5 in barley. Crop Sci. 43:388-393.<br />

5. Roane, C.W. 1962. Inheritance of reaction to Puccinia hordei in barley. I.<br />

Genes for resistance among North American race differentiating varieties.<br />

Phytopathology 52:1288-1295.<br />

6. Roane, C.W., and T.M. Starling. 1967. Inheritance of reaction to Puccinia<br />

hordei in barley. II. Gene symbols for loci in differential cultivars. Phytopathology<br />

57:66-68.<br />

7. Roane, C.W., and T.M. Starling. 1970. Inheritance of reaction to Puccinia<br />

hordei in barley. III. Genes in the cultivars Cebada Capa and Franger.<br />

Phytopathology 60:788-790.<br />

8. Starling, T.M. 1955. Sources, inheritance, and linkage relationships of<br />

resistance to race 4 of leaf rust (Puccinia hordei Otth), race 9 of powdery mildew<br />

(Erysiphe graminis hordei El. Marchal), and certain agronomic characters in<br />

barley. Iowa State Coll. J. Sci. 30:438-439.<br />

9. Starling, T.M. 1956. Sources, inheritance, and linkage relationships of<br />

resistance to race 4 of leaf rust (Puccinia hordei Otth), race 9 of powdery mildew<br />

(Erysiphe graminis hordei El. Marchal), and certain agronomic characters in<br />

barley. Iowa State Coll. J. Sci. 30:438-439.<br />

10. Yahyaoui, A.H., and E.L. Sharp. 1987. Virulence spectrum of Puccinia hordei<br />

in North Africa and the Middle East. Plant Dis. 71:597-598.<br />

11. Zhong, S., R.J. Effertz, Y. Jin, J.D. Franckowiak, and B.J. Steffenson. 2003.<br />

Molecular mapping of the leaf rust resistance gene Rph6 in barley and its linkage<br />

relationships with Rph5 and Rph7. Phytopathology 93:604-609.<br />

Prepared:<br />

C.W. Roane. 1976. BGN 6:122.<br />

J.D. Franckowiak and Y. Jin. 1997. BGN 26:501, as BGS 575, Reaction to<br />

Puccinia hordei 6, Rph6.<br />

Revised:<br />

J.D. Franckowiak and Y. Jin. 1997. BGN 26:157.<br />

J.D. Franckowiak and B.J. Steffenson. 2005. BGN 35:188.<br />

J.D. Franckowiak. 2007. BGN 37:224-225.<br />

225


Barley Genetics Newsletter (2007) 37: 188-301<br />

Stock number: BGS 130<br />

Locus name: Early maturity 10<br />

Locus symbol: eam10<br />

BGS 130, Early maturity 10, eam10<br />

Previous nomenclature and gene symbolization:<br />

Early maturity sp = easp (8).<br />

Inheritance:<br />

Monofactorial recessive (8).<br />

Located in chromosome 3HL (8); about 2.0 ± 5.8 cM from the Est1-Est4<br />

(esterase 1, esterase 4) locus (8); about 5.8 cM distal from RFLP marker<br />

Xmwg546 (1).<br />

Description:<br />

In winter nurseries at Cuidad Obregón, Sonora, Mexico and Davis, California,<br />

<strong>US</strong>A, plants of Super Precoz 2H head about 11 days earlier than lines with the<br />

genes eam7.g or eam8.k for photoperiod insensitivity from Atsel and Sv Mari,<br />

respectively (8). The eam10.m gene appears to suppress expression of the<br />

eam7.g and eam8.k genes (8). Plants expressing eam10.m become chlorotic<br />

(yellow green) under photothermal stress. Zeaxanthin increases at the expense<br />

of chlorophyll and other pigments (7). The chlorotic appearance is similar to that<br />

observed in plants homozygous for other recessive genes for early maturity<br />

(eam7, eam8, and eam9) (2, 5, 7). Plants in the Bowman eam10.m line head two<br />

days earlier than Bowman under long days and are slightly shorter (5).<br />

Origin of mutant:<br />

Present in Super Precoz 2H (PI 527381) from Russia (7), but originating probably<br />

as an induced mutant in MC20 (3, 4, 7).<br />

Mutational events:<br />

eam10.m in Super Precoz 2H plus a dominant maturity enhancer ( 4, 5, 7);<br />

eam10.m in Amber Nude without the enhancer (4).<br />

Mutant used for description and seed stocks:<br />

eam10.m in Super Precoz 2H (GSHO 2504); eam10.m in Amber Nude (GSHO<br />

2505); eam10.m from Super Precoz in Bowman (PI 483237)*5.<br />

References:<br />

1. Börner, A., G.H. Buck-Sorlin, P.M. Hayes, S. Malyshev, and V. Korzun. 2002.<br />

Molecular mapping of major genes and quantitative trait loci determining<br />

flowering time in response to photoperiod in barley. Plant Breed. 121:129-132.<br />

2. Dormling, I., and Å. Gustafsson. 1969. Phytotron cultivation of early barley<br />

mutants. Theor. Appl. Genet. 39:51-61.<br />

3. Favret, E.A. 1972. El mejoramiento de las plantas por induccíon de<br />

mutaciones en latinoamerica. p. 49-59. In Induced Mutations and Plant<br />

Improvement. Int. Atomic Energy Agency, Vienna.<br />

4. Favret, E.A., and G.S. Ryan. 1966. New useful mutants in plant breeding. p.<br />

49-61. In Mutations in Plant Breeding. Int. Atomic Energy Agency, Vienna.<br />

5. Franckowiak, J.D. (Unpublished).<br />

6. Gallagher, L.W. (Unpublished).<br />

7. Gallagher, L.W., A.A. Hafez, S.S. Goyal, and D.W. Rains. 1994. Nuclear<br />

mutations affecting chloroplastic pigments of photoperiod-insensitive barley.<br />

Plant Breed. 113:65-70.<br />

8. Gallagher, L.W., K.M. Soliman, and H. Vivar. 1991. Interactions among loci<br />

conferring photoperiod insensitivity for heading time in spring barley. Crop Sci.<br />

226


Barley Genetics Newsletter (2007) 37: 188-301<br />

31:256-261.<br />

Prepared:<br />

L.W. Gallagher and J.D. Franckowiak. 1997. BGN 26:166.<br />

Revised:<br />

J.D. Franckowiak. 2007. BGN 37:226-227.<br />

227


Barley Genetics Newsletter (2007) 37: 188-301<br />

BGS 136, Reaction to Puccinia hordei 7, Rph7<br />

Stock number: BGS 136<br />

Locus name: Reaction to Puccinia hordei 7 (barley leaf rust)<br />

Locus symbol: Rph7<br />

Previous nomenclature and gene symbolization:<br />

Resistance to Puccinia hordei Otth y = Pay (7).<br />

Resistance to Puccinia hordei Otth 5 = Pa5 (10).<br />

Resistance to Puccinia hordei Otth 7 = Pa7 (8).<br />

Inheritance:<br />

Monofactorial dominant (7, 10).<br />

Located in chromosome 3HS (14, 15), linkage to markers in the centromeric<br />

region was reported (11), about 24.0 cM from the ant17 (proanthocyanidin-free<br />

17) locus (5), in bin 3H-01 about 1.3 cM distal from RFLP marker cMWG691 (6),<br />

about 3.2 cM from receptor-like kinase gene Hv3Lrk (2), about 7.0 cM proximal<br />

from Rph5 locus (16).<br />

Description:<br />

The seedling reaction type is 0; n - 1 c (4, 11). Temperature studies show that<br />

resistance conferred by the Rph7.g gene is not expressed well above 20ºC (4,<br />

15). Cebada Capa is indistinguishable from the cultivar Forrajera Klein (possibly<br />

identical to PI 331904) (1). The Rph7 regions from Morex (rph7) and Cebada<br />

Capa (Rph7) were sequenced and compared to similar regions from 39 other<br />

cultivars. The data suggest that a large amount of haplotype variability exists in<br />

the cultivated barley gene pool and indicate rapid and recent divergence at this<br />

locus (12).<br />

Origin of mutant:<br />

Natural occurrence in Cebada Capa (PI 53911) (7, 8, 10).<br />

Mutational events:<br />

Rph7.g in Cebada Capa (7, 8, 10); Rph7.g in France 7 and France 21 (7);<br />

Rph7.g in Dabat, Gondar (PI 199964), and La Estanzuela (9, 13, 16); Rph7.ac in<br />

Tu17a, a Bowman backcross-derived line from Tunisia 17 (3).<br />

Mutant used for description and seed stocks:<br />

Rph7.g in Cebada Capa (GSHO 1318); Rph7.g in Bowman (PI 483237)*8<br />

(GSHO 1994).<br />

References:<br />

1. Arias, G. (Personal communications).<br />

2. Brunner, S., B. Keller, and C. Feuillet. 2000. Molecular mapping of the Rph7.g<br />

leaf rust resistance gene in barley (Hordeum vulgare L.). Theor. Appl. Genet.<br />

101:783-788.<br />

3. Chicaiza, O., J.D. Franckowiak, and B.J. Steffenson. 1996. New sources of<br />

resistance to leaf rust in barley. p. 706-708. In A.E. Slinkard, G.J. Scoles, and<br />

B.G. Rossnagel (eds.) Proc. Fifth Int. Oat Conf. & Seventh Int. Barley Genet.<br />

Symp., Saskatoon. Univ. of Saskatchewan, Saskatoon.<br />

4. Clifford, B.C., and H. W. Roderick. 1981. Detection of cryptic resistance of<br />

barley to Puccinia hordei. Trans. Br. Mycol. Soc. 76:17-24.<br />

5. Falk, D.E. 1985. Genetic studies with proanthocyanidin-free barley. Barley<br />

Genet. Newsl. 15:27-30.<br />

6. Graner, A., S. Streng, A. Drescher, Y. Jin, I. Borovkova, and B.J Steffenson.<br />

2000. Molecular mapping of the leaf rust resistance gene Rph7 in barley. Plant<br />

Breed. 119:389-392.<br />

228


Barley Genetics Newsletter (2007) 37: 188-301<br />

7. Johnson, R. 1968. The genetics of resistance of some barley varieties to<br />

Puccinia hordei. p. 160-162. In Proc. Eur. Medit. Cereal Rust Conf., Oeiras,<br />

Portugal.<br />

8. Nover, I., and C.O. Lehmann. 1974. Resistenzeigenschaften im Gersten- und<br />

Weizensortiment Gatersleben. 18. Prüfung von Sommergersten auf ihr Verhalten<br />

gegen Zwergrost (Puccinia hordei Otth). Kulturpflanze 22:25-43.<br />

9. Parlevliet, J.E. 1976. The genetics of seedling resistance to leaf rust, Puccinia<br />

hordei Otth, in some spring barley cultivars. Euphytica 25:249-254.<br />

10. Roane, C.W., and T.M. Starling. 1970. Inheritance of reaction to Puccinia<br />

hordei in barley. III. Genes in the cultivars Cebada Capa and Franger.<br />

Phytopathology 60:788-790.<br />

11. Roane, C.W., and T.M. Starling. 1989. Linkage studies with genes<br />

conditioning leaf rust reaction in barley. Barley Newsl. 33:190-192.<br />

12. Scherrer, B., E. Isidore, P. Klein, J-S. Kim, A. Bellec, B. Chalhoub, B. Keller,<br />

and C. Feuillet. 2005. Large intraspecific haplotype variability at the Rph7 locus<br />

results from rapid and recent divergence in the barley genome. Plant Cell<br />

17:361-374.<br />

13. Tan, B.H. 1978. Verifying the genetic relationships between three leaf rust<br />

resistance genes in barley. Euphytica 27:317-323.<br />

14. Tuleen. N.A., and M.E. McDonald. 1971. Location of genes Pa and Pa5.<br />

Barley Newsl. 15:106-107.<br />

15. Udeogalanya, A.C.C., and B.C. Clifford. 1976. Genetical, physiological and<br />

pathological relationships of resistance to Puccinia hordei and P. striiformis in<br />

Hordeum vulgare. Trans. Br. Mycol. Soc. 71:279-287.<br />

16. Zhong, S., R.J. Effertz, Y. Jin, J.D. Franckowiak, and B.J. Steffenson. 2003.<br />

Molecular mapping of the leaf rust resistance gene Rph6 in barley and its linkage<br />

relationships with Rph5 and Rph7. Phytopathology 93:604-609.<br />

Prepared:<br />

J.D. Franckowiak and Y. Jin. 1997. BGN 26:173.<br />

Revised:<br />

J.D. Franckowiak. 2007. BGN 37:228-229.<br />

229


Barley Genetics Newsletter (2007) 37: 188-301<br />

Stock number: BGS 142<br />

Locus name: Brachytic 8<br />

Locus symbol: brh8<br />

BGS 142, Brachytic 8, brh8<br />

Previous nomenclature and gene symbolization:<br />

Brachytic-ad = brh.ad (3).<br />

Inheritance:<br />

Monofactorial recessive (3, 5, 6).<br />

Located in chromosome 3HS (4), near the btr1 (non-brittle rachis 1) locus based<br />

on linkage drag (4), about 26.3 cM proximal from SSR marker HVM60 in bin 3H-<br />

08 (1).<br />

Description:<br />

In the Bowman backcross-derived line, brh8 plants are 3/4 to 5/6 of normal<br />

height and awns are 2/3 to 3/4 of normal length. The peduncle is 3/4 normal<br />

length. The seedling leaf of brh8 plants is shorter and wider than those of normal<br />

sibs and the leaf blades are slightly wider. Kernels of brh8 plants are shorter than<br />

that of normal sibs and their weights are nearly15% lower. Heading dates are 2<br />

or 3 days later, spikes have 3 to 4 more kernels, and rachis internodes are about<br />

20% shorter. Grain yield is nearly normal (1, 2).<br />

Origin of mutant:<br />

Probably a sodium azide induced mutant in Birgitta (NSGC 1870, NGB 1494,<br />

NGB 14667) (6).<br />

Mutational events:<br />

brh8.ad in Birgitta (17:16:1, DWS1008) (5, 6).<br />

Mutant used for description and seed stocks:<br />

brh8.ad in Birgitta (GSHO 1671); brh8.ad in Bowman (PI 483237)*8 (GSHO<br />

1944).<br />

References:<br />

1. Dahleen, L.S., L.J. Vander Wal, and J.D. Franckowiak. 2005. Characterization<br />

and molecular mapping of genes determining semidwarfism in barley. J. Hered.<br />

96:654-662.<br />

2. Franckowiak, J.D. (Unpublished).<br />

3. Franckowiak, J.D. 1995. The brachytic class of semidwarf mutants in barley.<br />

Barley Genet. Newsl. 24:56-59.<br />

4. Franckowiak, J.D. 1995. Notes on linkage drag in Bowman backcross derived<br />

lines of spring barley. Barley Genet. Newsl. 24:63-70.<br />

5. Franckowiak, J.D., and A. Pecio. 1992. Coordinator’s report: Semidwarf<br />

genes. A listing of genetic stocks. Barley Genet. Newsl. 21:116-127.<br />

6. Lehmann, L.C. 1985. (Personal communications).<br />

Prepared:<br />

J.D. Franckowiak. 2002. BGN 32:92.<br />

Revised:<br />

J.D. Franckowiak and L.S. Dahleen. 2007. BGN 37:230.<br />

230


Barley Genetics Newsletter (2007) 37: 188-301<br />

Stock number: BGS 148<br />

Locus name: Brachytic 14<br />

Locus symbol: brh14<br />

BGS 148, Brachytic 14, brh14<br />

Previous nomenclature and gene symbolization:<br />

Brachytic-q = brh.q (4).<br />

Inheritance:<br />

Monofactorial recessive (4, 5).<br />

Located in chromosome 3HL (2), approximately 24.9 cM proximal from SSR<br />

marker Bmac0029 in bin 3H-15 (2).<br />

Description:<br />

Plants are about 2/3 normal height and awns, peduncles are about 2/3 normal<br />

length, and rachis internodes are about 7/8 normal length (2, 6, 7). Seedling<br />

leaves of brh14.q plants are relatively short, but they do respond to gibberellic<br />

acid treatment (1). Leaf blades are about 3/4 normal length. The kernels of brh14<br />

plants are slightly shorter and smaller than those of normal sibs, but there are<br />

slightly more kernels per spike. However, the grain yields of the brh14 line to<br />

average 1/3 to 1/4 of those for Bowman reduced because tillering was reduced.<br />

Plants show an erect growth habit (2, 3). Failure of the internode below the<br />

peduncle to elongate was observed in double dwarfs involving brh14.q in the<br />

Akashinriki genetic background (7).<br />

Origin of mutant:<br />

An ethyl methanesulfonate induced mutant in Akashinriki (OUJ659, PI 467400)<br />

(6, 7).<br />

Mutational events:<br />

brh14.q in Akashinriki (OUM131, dw-d, DWS1035, GSHO 1682) (4, 5, 6, 7).<br />

Mutant used for description and seed stocks:<br />

brh14.q in Akashinriki (GSHO 1682); brh14.q in Bowman (PI 483237)*6 (GSHO<br />

2175).<br />

References:<br />

1. Börner, A. 1996. GA response in semidwarf barley. Barley Genet. Newsl.<br />

25:24-26.<br />

2. Dahleen, L.S., L.J. Vander Wal, and J.D. Franckowiak. 2005. Characterization<br />

and molecular mapping of genes determining semidwarfism in barley. J. Hered.<br />

96:654-662.<br />

3. Franckowiak, J.D. (Unpublished).<br />

4. Franckowiak, J.D. 1995. The brachytic class of semidwarf mutants in barley.<br />

Barley Genet. Newsl. 24:56-59.<br />

5. Franckowiak, J.D., and A. Pecio. 1992. Coordinator’s report: Semidwarf<br />

genes. A listing of genetic stocks. Barley Genet. Newsl. 21:116-127.<br />

6. Konishi, T. 1976. The nature and characteristics of EMS-induced dwarf<br />

mutants in barley. p. 181-189. In H. Gaul (ed.). Barley Genetics III. Proc. Third<br />

Int. Barley Genet. Symp., Garching, 1975. Verlag Karl Thiemig, München.<br />

7. Konishi, T. 1977. Effects of induced dwarf genes on agronomic characters in<br />

barley. p. 21-38. In Use of dwarf mutations. Gamma-Field Symposium No. 16.<br />

Prepared:<br />

J.D. Franckowiak and L.S. Dahleen. 2007. BGN 37:231.<br />

231


Barley Genetics Newsletter (2007) 37: 188-301<br />

BGS 149, Reaction to Puccinia coronata var. hordei 1, Rpc1<br />

Stock number: BGS 149<br />

Locus name: Reaction to Puccinia coronata var. hordei 1<br />

Locus symbol: Rpc1<br />

Previous nomenclature and gene symbolization:<br />

None.<br />

Inheritance:<br />

Monofactorial dominant (3).<br />

Located in chromosome 3H centromeric region (1), approximately 2.5 cM from<br />

RAPD marker OPO08-700 (1).<br />

Description:<br />

Crown rust of barley was identified as a new disease of barley in North America<br />

(2). In seedling tests, resistant cultivars exhibited necrotic or chlorotic flecks (0; to<br />

; infection types) at infection sites and no sporulation (3). Adult plant reactions of<br />

Hor2596 were resistant to moderately resistant (3). Hor 2596 is one of the<br />

differential lines for barley leaf rust (caused by Puccinia hordei), see BGS 032,<br />

Rph9.i (reaction to Puccinia hordei 9). The F1 plants from the Bowman/Hor2596<br />

cross exhibited slightly higher infection types (1,2 reaction) than the resistant<br />

parent (3).<br />

Origin of mutant:<br />

Natural occurrence in Abyssinian (Hor 2596, CIho 1234) (3).<br />

Mutational events:<br />

Rpc1.a in Hor 2596 (3).<br />

Mutant used for description and seed stocks:<br />

Rpc1.a in Hor 2596 (GSHO 1601) (3).<br />

References:<br />

1. Agrama, H.A., L. Dahleen, M. Wentz, Y, Jin, and B. Steffenson. 2004.<br />

Molecular mapping of the crown rust resistance gene Rpc1 in barley.<br />

Phytopathology 94:858-861.<br />

2. Jin, Y., and B. Steffenson. 1999. Puccinia coronata var. hordei nov.:<br />

morphology and pathogenicity. Mycologia 91:877-884.<br />

3. Jin, Y., and B. Steffenson. 2002. Sources and genetics of crown rust<br />

resistance in barley. Phytopathology 92:1064-1067.<br />

Prepared:<br />

Y. Jin and J.D. Franckowiak. 2007. BGS 37:232.<br />

232


Barley Genetics Newsletter (2007) 37: 188-301<br />

Stock number: BGS 155<br />

Locus name: Glossy leaf 1<br />

Locus symbol: glf1<br />

BGS 155, Glossy leaf 1, glf1<br />

Previous nomenclature and gene symbolization:<br />

Waxless bloom on leaves = w1 (11).<br />

Glossy = gl (9).<br />

Glossy leaves = gl (16).<br />

Glossy leaf = gl (15).<br />

Glossy seedling 2 = gl2 (3, 9).<br />

Eceriferum-zh = cer-zh (4).<br />

Inheritance:<br />

Monofactorial recessive (9).<br />

Located in chromosome 4HL (3, 9, 12, 14), about 7.5 cM distal from the lbi2 (long<br />

basal rachis internode 2) locus (1), and about 4.8 cM distal from the Mlg (Reg2,<br />

reaction to Erysiphe graminis 2) locus (1).<br />

Description:<br />

Surface wax coating on the leaf blade appears absent from the seedling stage to<br />

near maturity, and leaves have a shiny appearance (wax code ++ ++ -) (4).<br />

Plants are semidwarf, relatively weak, and late in heading. The stock in the<br />

Bonus is highly sterile (4), but the Bowman backcross-derived line has nearly<br />

complete fertility. The lack of surface waxes reduces the ability of growing germ<br />

tube of certain fungi to find the stomata openings (10).<br />

Origin of mutant:<br />

A radiation induced mutant in Himalaya (CIho 1312) (9, 13), an X-ray induced<br />

mutant in Bonus (PI 189763) (4).<br />

Mutational events:<br />

glf1.a, glf1.b (gl2, GSHO 22) in Himalaya (13); glf1.f in 34-119-1, glf1.g in II-34-<br />

199-7-2 (GSHO 89) (2); cer-zh.54 (NGB 110938) in Bonus (4, 5); cer-zh.266<br />

(NGB 111153), -zh.308 (NGB 111195), -zh.357 (NGB 111244, NGB 117254), -<br />

zh.366 (NGB 111253), -zh.432 (NGB 111320), -zh.433 (NGB 111321, NGB<br />

117256) in Foma (CIho 11333) (5, 8); cer-zh.325 (NGB 111212) in Foma (5); cerzh.373<br />

(NGB 111260) in Foma (6); cer-zh.865 (NGB 111753) in Bonus (7).<br />

Mutant used for description and seed stocks:<br />

glf1.a in Himalaya (GSHO 98); cer-zh.54 in Bonus (GSHO 455) is used for<br />

allelism tests; glf1.a in Bowman (PI 483237)*8 (GSHO 2015).<br />

References:<br />

1. Forster, B.P. 1993. Coordinator's report: Chromosome 4. Barley Genet. Newsl.<br />

22:75-77.<br />

2. Haus, T.E., and T. Tsuchiya. 1972. Allelic relationships among glossy seedling<br />

mutants. Barley Genet. Newsl. 2:79-80.<br />

3. Immer, F.R., and M.T. Henderson. 1943. Linkage studies in barley. Genetics<br />

28:419-440.<br />

4. Lundqvist, U., and D. von Wettstein. 1962. Induction of eceriferum mutants in<br />

barley by ionizing radiations and chemical mutagens. Hereditas 48:342-362.<br />

5. Lundqvist, U., and D. von Wettstein. 1971. Stock list for the eceriferum<br />

mutants. Barley Genet. Newsl. 1:97-102.<br />

6. Lundqvist, U., and D. von Wettstein. 1973. Stock list for the eceriferum<br />

mutants II. Barley Genet. Newsl. 3:110-112.<br />

233


Barley Genetics Newsletter (2007) 37: 188-301<br />

7. Lundqvist, U., and D. von Wettstein. 1977. Stock list for the eceriferum<br />

mutants IV. Barley Genet. Newsl. 5:92-96.<br />

8. Lundqvist, U., P. von Wettstein-Knowles, and D. von Wettstein. 1968.<br />

Induction of eceriferum mutants in barley by ionizing radiations and chemical<br />

mutagens. II. Hereditas 59:473-504.<br />

9. Robertson, D.W., and O.H. Coleman. 1942. Location of glossy and yellow leaf<br />

seedlings in two linkage groups. J. Am. Soc. Agron. 34:1028-1034.<br />

10. Rubiales, D., M.C. Ramirez, T.L.W. Carver, and R.E. Niks. 2001. Abnormal<br />

germling development by brown rust and powdery mildew on cer barley mutants.<br />

Hereditas 135:271-276.<br />

11. Smith, L., 1951. Cytology and genetics of barley. Bot. Rev. 17:1-355.<br />

12. Tsuchiya, T. 1981. Revised linkage maps of barley. 1981. Barley Genet.<br />

Newsl. 11:96-98.<br />

13. Tsuchiya, T., and T.E. Haus. 1973. Allelism testing in barley. I. Analysis of<br />

ten mapped genes. J. Hered. 64:282-284.<br />

14. Tsuchiya, T., and R.J. Singh. 1982. Chromosome mapping in barley by<br />

means of telotrisomic analysis. Theor. Appl. Genet. 61:201-208.<br />

15. Walker, G.W.R., J. Dietrich, R. Miller, and K. Kasha. 1963. Recent barley<br />

mutants and their linkages II. Genetic data for further mutants. Can. J. Genet.<br />

Cytol. 5:200-219.<br />

16. Woodward, R.W. 1957. Linkages in barley. Agron. J. 49:28-32.<br />

Prepared:<br />

T.E. Haus and T. Tsuchiya. 1971. BGN 1:141 as BGS 155, Glossy seedling, gl;<br />

and BGN 1:145 as BGS 159, Glossy seedling 2, gl2.<br />

U. Lundqvist. 1975. BGN 5:144 as BGS 426, Eceriferum-zh, cer-zh.<br />

Revised:<br />

T. Tsuchiya. 1980. BGN 10:114 as BGS 155, Glossy seedling, gl; and BGN<br />

10:116 as BGS 159, Glossy seedling 2, gl2.<br />

U. Lundqvist and J.D. Franckowiak. 1997. BGN 26:181-182.<br />

U. Lundqvist and J.D. Franckowiak. 2007. BGN 37:233-234.<br />

234


Barley Genetics Newsletter (2007) 37: 188-301<br />

Stock number: BGS 157<br />

Locus name: Brachytic 2<br />

Locus symbol: brh2<br />

BGS 157, Brachytic 2, brh2<br />

Previous nomenclature and gene symbolization:<br />

Brachytic 2 = br2 (9).<br />

Breviaristatum-l = ari-l (4, 5).<br />

Inheritance:<br />

Monofactorial recessive (8).<br />

Located in chromosome 4HL (8), about 1.5 cM proximal from the glf3 (glossy leaf<br />

3) locus (3, 8), over 22.8 cM proximal from the Kap1 (hooded lemma 1) locus (8),<br />

near AFLP marker E4140-7 in subgroup 38-40 of the Proctor/Nudinka map (7),<br />

and about 15.9 cM distal from SSR marker Bmag0353 near the boundary<br />

between bins 4H-06 and 4H-07 (2).<br />

Description:<br />

Plant height and vigor are reduced to about 2/3 normal; the awn is less than 1/4<br />

normal length; the spike is semi-compact; and the leaf, kernel, glume and glume<br />

awn, rachilla, and coleoptile are shorter than in the original cultivar. Auricles are<br />

well developed and larger than those of the original cultivar (9). In the Bowman<br />

backcross-derived lines, the peduncle is about 1/2 normal length, kernel weights<br />

are slightly over 2/3 normal, yield is about 1/2 normal; however, rachis internode<br />

lengths are normal (2). The ari-l.3 allele at the brh2 locus is sensitive to<br />

gibberellic acid treatment (1).<br />

Origin of mutant:<br />

An X-ray induced mutant in Svanhals (PI 5474) (9).<br />

Mutational events:<br />

brh2.b in Svanhals (Kmut 28, OUM283) (8); ari-l.3 (NGB 115848) in Bonus (PI<br />

189763) (5); ari-l.132 (NGB 115942) in Foma (CIho 11333) (6); ari-l.135 (NGB<br />

115945), -l.145 (NGB 115956), -l.214 (NGB 116023), -l.237 (NGB 116047) in<br />

Foma, -l.257 (NGB 116066) in Kristina (NGB 1500) (5).<br />

Mutant used for description and seed stocks:<br />

brh2.b in Svanhals (GSHO 573); ari-l.3 in Bonus (GSHO 1660); brh2.b in<br />

Bowman (PI 483237)*7 (GSHO 2016); ari-l.3 in Bowman*7 (GSHO 2017).<br />

References:<br />

1. Börner, A. 1996. GA response in semidwarf barley. Barley Genet. Newsl.<br />

25:24-26.<br />

2. Dahleen, L.S., L.J. Vander Wal, and J.D. Franckowiak. 2005. Characterization<br />

and molecular mapping of genes determining semidwarfism in barley. J. Hered.<br />

96:654-662.<br />

3. Forster, B.P. 1993. Coordinator's report: Chromosome 4. BGN 22:75-77.<br />

4. Franckowiak, J.D. 1995. The brachytic class of semidwarf mutants in barley.<br />

Barley Genet. Newsl. 24:56-59.<br />

5. Kucera, J., U. Lundqvist, and Å. Gustafsson. 1975. Inheritance of<br />

breviaristatum mutants in barley. Hereditas 80:263-278.<br />

6. Lundqvist, U. (Unpublished).<br />

7. Pozzi, C., D. di Pietro, G. Halas, C. Roig, and F. Salamini. 2003. Integration of<br />

a barley (Hordeum vulgare) molecular linkage map with the position of genetic<br />

loci hosting 29 developmental mutants. Heredity 90:390-396.<br />

8. Takahashi, R., J. Hayashi, and I. Moriya. 1971. Linkage studies in barley.<br />

235


Barley Genetics Newsletter (2007) 37: 188-301<br />

Barley Genet. Newsl. 1:51-58.<br />

9. Tsuchiya, T. 1962. Radiation breeding in two-rowed barley. Seiken Ziho 14:21-<br />

34.<br />

Prepared:<br />

T.E. Haus and T. Tsuchiya. 1971. BGN 1:143.<br />

Revised:<br />

T. Tsuchiya. 1980. BGN 10:115.<br />

J.D. Franckowiak and U. Lundqvist. 1997. BGN 26:184.<br />

J.D. Franckowiak and L. S. Dahleen. 2007. BGN 37:235-236.<br />

236


Barley Genetics Newsletter (2007) 37: 188-301<br />

Stock number: BGS 178<br />

Locus name: Intermedium spike-c<br />

Locus symbol: int-c<br />

BGS 178, Intermedium spike-c, int-c<br />

Previous nomenclature and gene symbolization:<br />

Intensifer for Z = W (22).<br />

Infertile intermedium = i (12, 20, 21).<br />

Allelic series I h , I, i (12, 23).<br />

Intermedium spike-c = int-c (6, 7, 17, 18).<br />

Six-rowed spike 5 = v5 (24).<br />

Inheritance:<br />

Monofactorial recessive (4, 5, 21, 24).<br />

Located in chromosome 4HS (3, 5, 18, 21, 24), about 13.1 cM proximal from the<br />

fch9 (chlorina seedling 9) locus, about 14.5 cM distal from the Kap1 (hooded<br />

lemma 1) locus (2, 3, 4, 5, 11), and about 3.5 cM from AFLP marker E4143-5 in<br />

subgroup 8 of the Proctor/Nudinka map (19).<br />

Description:<br />

Alleles at the int-c (v5) locus alter the size of lateral spikelets. The lemma apex of<br />

lateral kernels is rounded or weakly pointed, awnless or short-awned (1, 9, 16).<br />

Lower lateral spikelets may develop poorly in some int-c mutants (4), while seed<br />

development may occur in all lateral spikelets of others (6, 15). Variability in<br />

lateral spikelet development exists among the int-c mutants and environmental<br />

conditions can alter expressivity. The Int-c.a (formerly I) allele in six-rowed barley<br />

increases the size of lateral spikelets, while the int-c.b (formerly i) allele in tworowed<br />

barley prevents anther development in lateral spikelets (9, 22). The int-c.5<br />

mutant in Bonus produces fertile stamens in lateral spikelets (9). In the presence<br />

of the Int-c.h (formerly I h ) allele of Mortoni, lateral spikelets are male fertile and<br />

may occasionally set seed (8, 12). Spikes of vrs5.n (v5) plants appear similar to<br />

those of six-rowed barley, but lateral spikelets are smaller (less than half the size<br />

of the central spikelets) and broader (3, 4).<br />

Origin of mutant:<br />

Natural occurrence in many two-rowed barley cultivars; an X-ray induced mutant<br />

in Gamma 4 (3, 5).<br />

Mutational events:<br />

int-c.b (i) in two-rowed barley (23); Int-c.h (I h ) in Mortoni (CIho 2210, GSHO 72)<br />

(8, 12); vrs5.n (v5) in Gamma 4 (38X-197, OUM338) (3, 5, 14); int-c.5 (NGB<br />

115423) in Bonus (PI 189763) (15, 18); int-c.7 (NGB 115425), -c.62 (NGB<br />

116835), -c.63 (NGB 115481) in Bonus, -c.13 (NGB 115431), -c.15 (NGB<br />

115433), -c.16 (NGB 115434), -c.18 (NGB 115436), -c.25 (NGB 115443), -c.29<br />

(NGB 115447) in Foma (CIho 11333), -c.33 (NGB 115451), -c.38 (NGB 115456),<br />

-c.45 (NGB 115463), -c.48 (NGB 115466), -c.49 (NGB 115467), -c.53 (NGB<br />

115471), -c.56 (NGB 115474), -c.60 (NGB 115478) in Kristina (NGB 1500) (15);<br />

int-c.70 (NGB 115488), -c.76 (NGB 115494), -c.78 (NGB 115496), -c.84 (NGB<br />

115502) in Bonus, -c.95 (NGB 115513) in Hege (NGB 13692) (13).<br />

Mutant used for description and seed stocks:<br />

vrs5.n in Gamma 4 (GSHO 776); int-c.b in Hordeum distichon var. nigrinudum<br />

(GSHO 988); int-c.5 in Bonus (GSHO 1765); int-c.b from Compana (CIho 5438)<br />

in Bonneville (CIho 7248)*6 (CIho 16176) (10); vrs5.n in Bowman (PI 483237)*6<br />

(GSHO 2002); int-c.5 in Bowman*6 (GSHO 2003).<br />

237


Barley Genetics Newsletter (2007) 37: 188-301<br />

References:<br />

1. Åberg, E., and G.A. Wiebe. 1945. Irregular barley, Hordeum irregulare sp. nov.<br />

J. Washington Acad. Sci. 35:161-164.<br />

2. Forster, B.P. 1993. Coordinator's report: Chromosome 4. Barley Genet. Newsl.<br />

22:75-77.<br />

3. Fukuyama, T. 1982. Locating a six-rowed gene v5 on chromosome 4 in barley.<br />

Barley Genet. Newsl. 12:29-31.<br />

4. Fukuyama, T., J. Hayashi, and R. Takahashi. 1975. Genetic and linkage<br />

studies of the five types of induced 'six-row' mutants. Barley Genet. Newsl. 5:12-<br />

13.<br />

5. Fukuyama, T., R. Takahashi, and J. Hayashi. 1982. Genetic studies on the<br />

induced six-rowed mutants in barley. Ber. Ohara Inst. landw. Biol., Okayama<br />

Univ. 18:99-113.<br />

6. Gustafsson, Å., and U. Lundqvist. 1980. Hexastichon and intermedium<br />

mutants in barley. Hereditas 92:229-236.<br />

7. Gustafsson, Å., A. Hagberg, U. Lundqvist, and G. Persson. 1969. A proposed<br />

system of symbols for the collection of barley mutants at Svalöv. Hereditas<br />

62:409-414.<br />

8. Gymer, P.T. 1977. Probable allelism of Ii and int-c genes. Barley Genet.<br />

Newsl. 7:34-35.<br />

9. Gymer, P.T. 1978. The genetics of the six-row/two row character. Barley<br />

Genet. Newsl. 8:44-46.<br />

10. Hockett, E.A. 1985. Registration of two- and six-rowed isogenic Bonneville<br />

barley germplasm. Crop Sci. 25:201.<br />

11. Jensen, J. 1987. Linkage map of barley chromosome 4. p. 189-199. In S.<br />

Yasuda and T. Konishi (eds.) Barley Genetics V. Proc. Fifth Int. Barley Genet.<br />

Symp., Okayama. 1986. Sanyo Press Co., Okayama.<br />

12. Leonard, W.H. 1942. Inheritance of fertility in the lateral spikelets of barley.<br />

Genetics 27:299-316.<br />

13. Lundqvist, U. (Unpublished).<br />

14. Lundqvist, U. 1991. Coordinator's report: Ear morphology genes. Barley<br />

Genet. Newsl. 20:85-86.<br />

15. Lundqvist, U., and A. Lundqvist. 1988. Induced intermedium mutants in<br />

barley: origin, morphology and inheritance. Hereditas 108:13-26.<br />

16. Nötzel, H. 1952. Genetische Untersuchungen an röntgeninduzierten<br />

Gerstenmutanten. Kühn-Archiv 66:72-132.<br />

17. Nybom, N. 1954. Mutation types in barley. Acta Agric. Scand. 4:430-456.<br />

18. Persson, G. 1969. An attempt to find suitable genetic markers for dense ear<br />

loci in barley I. Hereditas 62:25-96.<br />

19. Pozzi, C., D. di Pietro, G. Halas, C. Roig, and F. Salamini. 2003. Integration<br />

of a barley (Hordeum vulgare) molecular linkage map with the position of genetic<br />

loci hosting 29 developmental mutants. Heredity 90:390-396.<br />

20. Robertson, D.W. 1929. Linkage studies in barley. Genetics 14:1-36.<br />

21. Robertson, D.W. 1933. Inheritance in barley. Genetics 18:148-158.<br />

22. Ubisch, G. von. 1916. Beitrag zu einer Faktorenanalyse von Gerste. Z.<br />

Indukt. Abstammungs. Vererbungsl. 17:120-152.<br />

23. Woodward, R.W. 1947. The I h , I, i allels in Hordeum deficiens genotypes of<br />

barley. J. Am. Soc. Agron. 39:474-482.<br />

24. Woodward, R.W. 1957. Linkages in barley. Agron. J. 49:28-32.<br />

Prepared:<br />

U. Lundqvist and J.D. Franckowiak. 1997. BGN 26:200-201.<br />

238


Barley Genetics Newsletter (2007) 37: 188-301<br />

Revised:<br />

U. Lundqvist and J.D. Franckowiak. 2007. BGN 37:237-239.<br />

239


Barley Genetics Newsletter (2007) 37: 188-301<br />

Stock number: BGS 179<br />

Locus name: Hairy leaf sheath 1<br />

Locus symbol: Hsh1<br />

BGS 179, Hairy leaf sheath 1, Hsh1<br />

Previous nomenclature and gene symbolization:<br />

Hairy leaf sheath = Hs (7).<br />

Inheritance:<br />

Monofactorial dominant (4, 5, 6).<br />

Located in chromosome 4HL (6), over 8.7 cM proximal from the yhd1 (yellow<br />

head 1) locus, and over 22.5 cM distal from the mlo (reaction to Erysiphe<br />

graminis hordei-o) locus (3, 5), in bin 4H-12 about 1.1 cM proximal from RFLP<br />

marker HVM067 (2).<br />

Description:<br />

Short hairs (1 to 3 mm) are scattered or in rows on leaf sheaths of the basal part<br />

of the plant. The density of hairs varies considerably among cultivars and with<br />

changes in growing conditions. With few exceptions, no hairs are observed on<br />

the sheath of upper leaves (4, 5). Heterozygotes and smooth awned cultivars<br />

seem to have fewer hairs.<br />

Origin of mutant:<br />

Natural occurrence in a few cultivars and in some accessions of Hordeum<br />

vulgare subsp spontaneum (1, 5, 6).<br />

Mutational events:<br />

Hsh1.a introduced into cultivated barley from its wild progenitor (5).<br />

Mutant used for description and seed stocks:<br />

Hsh1.a in Kimugi (OUL012, GSHO 986) (5, 6); Hsh1.a from R.I. Wolfe's Multiple<br />

Dominant Marker Stock in Bowman (PI 483237)*10 (GSHO 2026).<br />

References:<br />

1. Cauderon, A. 1951. Étude de I'hérédité de trois couples de caractères<br />

morphologiques chez l'orge cultivée. Ann. Amélior. Plant. 1:9-19.<br />

2. Costa, J.M., A. Corey, M. Hayes, C. Jobet, A. Kleinhofs, A. Kopisch-Obusch,<br />

S.F. Kramer, D. Kudrna, M. Li, O. Piera-Lizaragu, K. Sato, P. Szues, T. Toojinda,<br />

M.I. Vales, and R.I. Wolfe. 2001. Molecular mapping of the Oregon Wolfe<br />

Barleys: a phenotypically polymorphic doubled-haploid population. Theor. Appl.<br />

Genet. 103:415-424.<br />

3. Hayashi, J., and R. Takahashi. 1986. Location of hs for hairy sheath and yh for<br />

yellow head character on barley chromosome 4. Barley Genet. Newsl. 16:24-27.<br />

4. Patterson, F.L., and R.G. Shands. 1957. Independent inheritance of four<br />

characters in barley. Agron. J. 49:218-219.<br />

5. Takahashi, R., and J. Hayashi. 1966. Inheritance and linkage studies in barley.<br />

II. Assignment of several new mutant genes to their respective linkage groups by<br />

the trisomic method of analysis. Ber. Ohara Inst. landw. Biol., Okayama Univ.<br />

13:185-198.<br />

6. Takahashi, R., J. Hayashi, and S. Yasuda. 1957. [Four genes in linkage in<br />

barley, which are inherited independently of the markers in the known seven<br />

linkage groups in barley.] Nogaku Kenkyu 45:1-10. [In Japanese.]<br />

7. Takahashi, R., S. Yasuda, J. Yamamoto, and I. Shiojiri. 1953. [Physiology and<br />

genetics of ear emergence in barley and wheat. II. Genic analysis of growth-habit<br />

in two spring barleys.] Nogaku Kenkyu 40:157-168. [In Japanese.]<br />

Prepared:<br />

240


Barley Genetics Newsletter (2007) 37: 188-301<br />

R. Takahashi. 1972. BGN 2:184 as BGS 158.<br />

Revised:<br />

J.D. Franckowiak and T. Konishi. 1997. BGN 26:202.<br />

J.D. Franckowiak. 2007. BGN 37:240-241.<br />

241


Barley Genetics Newsletter (2007) 37: 188-301<br />

Stock number: BGS 185<br />

Locus name: Brachytic 5<br />

Locus symbol: brh5<br />

BGS 185, Brachytic 5, brh5<br />

Previous nomenclature and gene symbolization:<br />

Brachytic-m = brh.m (3).<br />

Inheritance:<br />

Monofactorial recessive (3, 5).<br />

Located in chromosome 4HS (4), near the int-c (intermedium spike-c) locus (4),<br />

about 13.0 cM proximal from SSR marker Bmac0310 near the boundary between<br />

bins 4H-06 and 4H-07 (1).<br />

Description:<br />

Plants are about 3/4 normal height and awns are about 3/4 of normal length.<br />

Peduncles are less than 2/3 normal length. Seedling leaves of brh5 plants are<br />

relatively short. The kernels of brh5 plants are shorter than those of normal sibs<br />

and weigh about 30% less. Plants lodge easily and the grain yield is about 1/2<br />

normal (1, 2).<br />

Origin of mutant:<br />

A sodium azide induced mutant in Birgitta (NSGC 1870, NGB 1494, NGB 14667)<br />

(6).<br />

Mutational events:<br />

brh5.m in Birgitta (17:18:2, DWS1010) (5, 6).<br />

Mutant used for description and seed stocks:<br />

brh5.m in Birgitta (GSHO 1678); brh5.m in Bowman (PI 483237)*7 (GSHO 2001).<br />

References:<br />

1. Dahleen, L.S., L.J. Vander Wal, and J.D. Franckowiak. 2005. Characterization<br />

and molecular mapping of genes determining semidwarfism in barley. J. Hered.<br />

96:654-662.<br />

2. Franckowiak, J.D. (Unpublished).<br />

3. Franckowiak, J.D. 1995. The brachytic class of semidwarf mutants in barley.<br />

Barley Genet. Newsl. 24:56-59.<br />

4. Franckowiak, J.D. 1995. Notes on linkage drag in Bowman backcross derived<br />

lines of spring barley. Barley Genet. Newsl. 24:63-70.<br />

5. Franckowiak, J.D., and A. Pecio. 1992. Coordinator’s report: Semidwarf<br />

genes. A listing of genetic stocks. Barley Genet. Newsl. 21:116-127.<br />

6. Lehmann, L.C. 1985. (Personal communications).<br />

Prepared:<br />

J.D. Franckowiak. 2002. BGN 32:100.<br />

Revised:<br />

J.D. Franckowiak and L.S. Dahleen. 2007. BGN 37:242.<br />

242


Barley Genetics Newsletter (2007) 37: 188-301<br />

Stock number: BGS 186<br />

Locus name: Slender dwarf 3<br />

Locus symbol: sld3<br />

BGS 186, Slender dwarf 3, sld3<br />

Previous nomenclature and gene symbolization:<br />

Anthocyanin-free = ant-567 (5).<br />

Proanthocyanidin-free 17.567 = ant17.567 (4).<br />

Slender dwarf e = sld.e (3).<br />

Inheritance:<br />

Monofactorial recessive (1).<br />

Located in chromosome 4HS, based on linkage drag with the int-c (intermedium<br />

spike-c) locus (2).<br />

Description:<br />

Plants show reduced vigor and are about 3/4 normal height. The number of<br />

spikelets per spike is about 3/4 that of normal sibs and kernels are slightly<br />

smaller. Rachis internodes can be slightly longer and grain yields are about 3/4<br />

normal (1). The mutant gene sld3.e was isolated as a second mutant in the stock<br />

ant17.567 (proanthocyanidin-free 17) (1). The Bowman backcross-derived line<br />

for sld3.e does not show a reduction in anthocyanin pigmentation or the large<br />

reduction in kernel size (1).<br />

Origin of mutant:<br />

A sodium azide induced mutant isolated with ant-567 in Manker (CIho 15549) (5).<br />

Mutational events:<br />

sld3.e in ant17.567 (DWS1050) (1).<br />

Mutant used for description and seed stocks:<br />

sld3.e in Bowman/ant17.567 (GSHO 2480); sld3.e in Bowman (PI 483237)*7<br />

(GSHO 1998).<br />

References:<br />

1. Franckowiak, J.D. (Unpublished).<br />

2. Franckowiak, J.D. 1995. Notes on linkage drag in Bowman backcross derived<br />

lines of spring barley. Barley Genet. Newsl. 24:63-70.<br />

3. Franckowiak, J.D. 1999. Coordinator’s report: Semidwarf genes. Barley Genet.<br />

Newsl. 29:74-79.<br />

4. Jende-Strid, B. 1988. Coordinator's report: Anthocyanin genes. Stock list of ant<br />

mutants kept at the Carlsberg Laboratory. Barley Genet. Newsl. 18:74-79.<br />

5. Ullrich, S.E. 1983. (Personal communications).<br />

Prepared:<br />

J.D. Franckowiak. 2002. BGN 32:101.<br />

Revised:<br />

J.D. Franckowiak. 2007. BGN 37:243.<br />

243


Barley Genetics Newsletter (2007) 37: 188-301<br />

Stock number: BGS 187<br />

Locus name: Brachytic 9<br />

Locus symbol: brh9<br />

BGS 187, Brachytic 9, brh9<br />

Previous nomenclature and gene symbolization:<br />

Brachytic-k = brh.k (3).<br />

Inheritance:<br />

Monofactorial recessive (3, 4).<br />

Located in chromosome 4HS (1), about 11.7 cM distal from SRR marker<br />

Bmac0310 in bin 4H-06 (1).<br />

Description:<br />

Culms and peduncles are about 3/4 normal length and awns are 3/4 to 5/6 of<br />

normal length. Rachis internodes are slightly shorter than those of normal sibs.<br />

Seedling leaves of brh9 plants are relatively short. The kernels of brh9 plants are<br />

shorter and kernel weight are about 20% lower than those of normal sibs. Grain<br />

yields averaged less than 1/2 normal (1, 2); however, plants appeared nearly<br />

normal when grown in Dundee, Scotland (2). The brh9.k gene was found to nonallelic<br />

at brh5 locus, which is located in the same region of 4HS (1).<br />

Origin of mutant:<br />

A sodium azide induced mutant in Birgitta (NSGC 1870, NGB 1494, NGB 14667)<br />

(5).<br />

Mutational events:<br />

brh9.k in Birgitta (17:14:4, DWS1006) (4, 5).<br />

Mutant used for description and seed stocks:<br />

brh9.k in Birgitta (GSHO 1676); brh9.k in Bowman (PI 483237)*6 (GSHO 2170).<br />

References:<br />

1. Dahleen, L.S., L.J. Vander Wal, and J.D. Franckowiak. 2005. Characterization<br />

and molecular mapping of genes determining semidwarfism in barley. J. Hered.<br />

96:654-662.<br />

2. Franckowiak, J.D. (Unpublished).<br />

3. Franckowiak, J.D. 1995. The brachytic class of semidwarf mutants in barley.<br />

Barley Genet. Newsl. 24:56-59.<br />

4. Franckowiak, J.D., and A. Pecio. 1992. Coordinator’s report: Semidwarf<br />

genes. A listing of genetic stocks. Barley Genet. Newsl. 21:116-127.<br />

5. Lehmann, L.C. 1985. (Personal communications).<br />

Prepared:<br />

J.D. Franckowiak and L.S. Dahleen. 2007. BGN 37:244.<br />

244


Barley Genetics Newsletter (2007) 37: 188-301<br />

BGS 203, Black lemma and pericarp 1, Blp1<br />

Stock number: BGS 203<br />

Locus name: Black lemma and pericarp 1<br />

Locus symbol: Blp1<br />

Previous nomenclature and gene symbolization:<br />

Black lemma and caryopsis = B (6).<br />

Black pericarp = Bk (1).<br />

Black lemma and pericarp = B (7).<br />

Inheritance:<br />

Monofactorial dominant (1, 4, 6).<br />

Located in chromosome 1HL [5L] (3, 5), about 16.0 cM proximal from the trd1<br />

(third outer glume 1) locus (3), in bin 1H-13 about 8.8 cM proximal from RFLP<br />

marker ABC261 (2).<br />

Description:<br />

Black pigmentation of the lemma and pericarp develops slightly before<br />

maturation of the spike. Pigmented organs may include all parts of the spike,<br />

awns, the upper portion of the stem, and upper leaves. The intensity of<br />

pigmentation associated with each of the dominant alleles at the Blp1 locus is<br />

characteristic of that allele, and is relatively stable over environments (7). Black<br />

seed is produced by melanin-like pigment in the pericarp (1). Woodward (7)<br />

reports that the dominance ranking of alleles at the Blp1 locus is related to the<br />

intensity of black pigmentation they confer, with the Blp1.b (B) allele conferring<br />

extreme black pigmentation. The Blp1.mb (B mb ) allele is associated with medium<br />

black and a reduced distribution pattern; and the Blp1.g (B g ) allele is associated<br />

with light black or gray coloration (7, 8).<br />

Origin of mutant:<br />

Natural occurrence in several cultivars (6, 7).<br />

Mutational events:<br />

Blp1.b (B) in Hordeum distichon var nigrinudum No 1 (7); Blp1.mb (B mb ) in CIho<br />

2970 (GSHO 226) (7); Blp1.g (B g ) in Blackhull (CIho 878, GSHO 199) and Black<br />

Smyrna (CIho 191, GSHO 222) (7).<br />

Mutant used for description and seed stocks:<br />

Blp1.b in Hordeum distichon var nigrinudum No 1 (GSHO 988); Blp1.b from R.I.<br />

Wolfe's Multiple Dominant Marker Stock (GSHO 1580) in Bowman (PI 483237)*8<br />

(GSHO 2054).<br />

References:<br />

1. Buckley, G.F.H. 1930. Inheritance in barley with special reference to the color<br />

of the caryopsis and lemma. Sci. Agric. 10:460-492.<br />

2. Costa, J.M., A. Corey, M. Hayes, C. Jobet, A. Kleinhofs, A. Kopisch-Obusch,<br />

S.F. Kramer, D. Kudrna, M. Li, O. Piera-Lizaragu, K. Sato, P. Szues, T. Toojinda,<br />

M.I. Vales, and R.I. Wolfe. 2001. Molecular mapping of the Oregon Wolfe<br />

Barleys: a phenotypically polymorphic doubled-haploid population. Theor. Appl.<br />

Genet. 103:415-424.<br />

3. Ivanova, K.V. 1937. A new character in barley "third outer glume" — Its<br />

inheritance and linkage with color of the flowering glumes. Bull. Appl. Bot.,<br />

Genet., & Pl. Breed. II. 7:339-353.<br />

4. Robertson, D.W. 1929. Linkage studies in barley. Genetics 14:1-36.<br />

5. Robertson, D.W., G.A. Wiebe, R.G. Shands, and A. Hagberg. 1965. A<br />

summary of linkage studies in cultivated barley, Hordeum species: Supplement<br />

245


Barley Genetics Newsletter (2007) 37: 188-301<br />

III, 1954-1963. Crop Sci. 5:33-43.<br />

6. Tschermak, E. von. 1901. Über Züchtung neuer Getreiderassen mittelst<br />

künstlicher Kreuzung. Kritisch-historische Betrachtungen. Zeitschrift für das<br />

landwirtschaftliche Versuchswesen Oesterreich 4:1029-1060.<br />

7. Woodward, R.W. 1941. Inheritance of melanin-like pigment in the glumes and<br />

caryopses of barley. J. Agric. Res. 63:21-28.<br />

8. Woodward, R.W. 1942. Linkage relationships between the allelomorphic<br />

series, B, B mb , B g , and Atat factors in barley. J. Amer. Soc. Agron. 34:659-661.<br />

Prepared:<br />

T.E. Haus and T. Tsuchiya. 1971. BGN 1:148.<br />

Revised:<br />

J.D. Franckowiak and U. Lundqvist. 1997. BGN 26:209.<br />

J.D. Franckowiak. 2007: BGN 37:245-246.<br />

246


Barley Genetics Newsletter (2007) 37: 188-301<br />

Stock number: BGS 214<br />

Locus name: Early maturity 8<br />

Locus symbol: eam8<br />

BGS 214, Early maturity 8, eam8<br />

Previous nomenclature and gene symbolization:<br />

Early heading k = eak (26).<br />

Early maturity-a = ea-a (8, 21).<br />

Praematurum-a = mat-a (3, 8, 13, 14, 26).<br />

Erectoides-o = ert-o (8, 18).<br />

Inheritance:<br />

Monofactorial recessive (3, 7).<br />

Located in chromosome 1HL [5L] (21), about 11.4 cM distal from the trd1 (third<br />

outer glume 1) locus and 20.9 cM distal from the Blp1 (black lemma and pericarp<br />

1) locus (21, 24).<br />

Description:<br />

Early heading is associated with decreased culm length, spike length, kernels per<br />

spike, and grain yield (16, 24, 26). When grown in the fall at Kurashiki, Japan,<br />

plants head about 20 days earlier than the standard mid-season cultivar,<br />

Akashinriki, because they are day-length neutral or photoperiod insensitive (26).<br />

Day-length neutrality is observed in early heading mutants isolated from spring<br />

barley in Sweden (2, 9). Under controlled environmental conditions, number of<br />

days to heading does not change as photoperiod is altered (2, 10). All mat-a<br />

induced mutants are characterized by yellowish-green seedlings at an early<br />

stage of development under controlled environmental conditions (1). Other eam8<br />

mutants show a similar response by becoming yellow green under specific<br />

growing conditions, 8 to 12 hours of illumination at low temperatures (below<br />

10°C) plus high temperature (20°C or higher) during the dark period (5, 21, 24).<br />

The color change is caused by photothermal stress, which increases the<br />

zeaxanthin content at the expense of chlorophyll and other pigments (5, 19, 24).<br />

The mutant stock mat-a.8 was released as the cultivar Mari (9, 11). When grown<br />

under 12 h days, the levels of phytochrome B (phyB) decreases in light-grown<br />

BMDR-1 plants, containing an allele at the eam8 locus, compared to normal<br />

plants (12). The instability of phyB content was reported to be responsible for<br />

photoperiod insensitivity of eam8 mutants (12). Under continuous light and with<br />

far-red light treatment for seven days, most differences in heading date between<br />

BMDR-1 and BMDR-8 (Shabet) are eliminated (19).<br />

Origin of mutant:<br />

An X-ray induced mutant in Maja (PI 184884, NGB 8815) (6, 7, 10); natural<br />

occurrence in Kinai 5 (OUJ493) and Kagoshima Gold (OUJ219) (21, 25).<br />

Mutational events:<br />

ert-o.16 (NGB 112618) in Maja (6); eam8.k in Kagoshima Gold, Kinai 5 (CIho<br />

11560), and Kindoku (OUU332) (21, 22, 25); mat-a.8 (NGB 1491, NGB 4694,<br />

NGB 14656, NGB 110008), -a.11 (NGB 110011), -a.12 (NGB 110012) in Bonus<br />

(PI 189763) (7, 14); mat-a.27 (NGB 110027), -a.45 (NGB 110045), -a.46 (NGB<br />

110046), -a.48 (NGB 110048), -a.62 (NGB 110062) in Bonus, -a.110 (NGB<br />

110110), -a.130 (NGB 110130), -a.153 (NGB 110153), -a.221 (NGB 110221), -<br />

a.238 (NGB 110238), -a.255 (NGB 110255), -a.272 (NGB 110272), -a.274 (NGB<br />

110274), -a.287 (NGB 110287), -a.289(NGB 110289), -a.294 (NGB 110294), -<br />

a.325 (NGB 110325), -a.338 (NGB 110338), -a.370 (NGB 110370), -a.384 (NGB<br />

247


Barley Genetics Newsletter (2007) 37: 188-301<br />

110384), -a.390 (NGB 110390),-a.404 (NGB 110404), -a.406 (NGB 110406), -<br />

a.407 (NGB 110407) in Foma (CIho 11333), -a.509 (NGB 110509), -a.641 (NGB<br />

110641), -a.703 (NGB 110703), -a.733 (NGB 110733),in Kristina (NGB 1500), -<br />

a.753 (NGB 110753), -a.796 (NGB 110796), -a.797 (NGB 110797), -a.813 (NGB<br />

110813), -a.832 (NGB 110832), -a.903 (NGB 116858), -a.909 (NGB 117440), -<br />

a.921 (NGB 117452) in Bonus, -a.961 (NGB 117492), -a.970 (NGB 117501), -<br />

a.976 (NGB 117507), -a.984 (NGB 117515), -a.1011 (NGB 117542), in Sv<br />

79353, -a.1032 (NGB 117563), -a.1033 (NGB 117564), -a.1034 (NGB 117565), -<br />

a.1035 (NGB 117566), -a.1036 (NGB 117567), -a.1037 (NGB 117568), -a.1039<br />

(NGB 117570), -a.1040 (NGB 117571), -a.1041 (NGB 117572), -a.1042 (NGB<br />

117573), -a.1043 (NGB 117574), -a.1044 (NGB 117575), -a.1045 (NGB 117576),<br />

-a.1046 (NGB 117577), -a.1047 (NGB 117578), -a.1048 (NGB 117579), -a.1049<br />

(NGB 117580) in Sv Vg74233 (13); mat-a.1050 (NGB 117581), -a.1051 (NGB<br />

117582), -a.1052 (NGB 117583), -a.1053 (NGB 117584), -a.1054 (NGB 117585),<br />

-a.1055 (NGB 117586), -a.1056 (NGB 117587), -a.1057 (NGB 117588), -a.1058<br />

(NGB 117589), -a.1059 (NGB 117590), -a.1060 (NGB 117591), -a.1061 (NGB<br />

117592), -a.1062 (NGB 117593), -a.1063 (NGB 117594), -a.1064 (NGB 117595),<br />

-a.1065 (NGB 117596), -a.1067 (NGB 117598), -a.1069 (NGB 117600), -a.1070<br />

(NGB 117601), -a.1071 (NGB 117602), -a.1072 (NGB 117603), -a.1073 (NGB<br />

117604), -a.1074 (NGB 117605) in Sv Vg74233 (15); eam8.q (Ea8), eam8.r<br />

(Ea9), eam8.s (Ea10), eam8.t (Ea16) in Chikurin Ibaraki 1 (OUJ069, CIho 7370,<br />

GSHO 783) (23); eam8.u (Mut 2571) in Donaria (PI 161974) (5, 17); eam8.v in<br />

Munsing (CIho 6009, GSHO 636) (4, 19, 20); eam8.w in Early Russian (CIho<br />

13839) (4), BMDR-1 (eam8.y) from the original mutant in a dwarf line<br />

backcrossed to Shabet (CIho 13827) (19).<br />

Mutant used for description and seed stocks:<br />

eam8.k in Kinai 5 (OUJ439, GSHO 765); ert-o.16 in Maja (GSHO 489); eam8.k in<br />

Bonus*5 (25); mat-a.8 in Tochigi Golden*5 (25); eam8.u in Munsing/7*Titan<br />

(CIho 16526) (20); eam8.k in Bowman (PI 483237)*7 (GSHO 2063); ert-o.16 in<br />

Bowman*7 (GSHO 2064).<br />

References:<br />

1. Dormling, I., and Å. Gustafsson. 1969. Phytotron cultivation of early barley<br />

mutants. Theor. Appl. Genet. 39:51-61.<br />

2. Dormling, I., Å. Gustafsson, H.R. Jung, and D. von Wettstein. 1966. Phytotron<br />

cultivation of Svalöf's Bonus barley and its mutant Svalöf's Mari. Hereditas<br />

56:221-237.<br />

3. Favret, E.A., and J.H. Frecha. 1967. Allelism test of genes for earliness. Barley<br />

Newsl. 10:121.<br />

4. Gallagher, L.W. (Unpublished).<br />

5. Gallagher, L.W., A.A. Hafez, S.S. Goyal, and D.W. Rains. 1994. Nuclear<br />

mutations affecting chloroplastic pigments of photoperiod-insensitive barley.<br />

Plant Breed. 113:65-70.<br />

6. Gustafsson, Å. 1947. Mutations in agricultural plants. Hereditas 33:1-100.<br />

7. Gustafsson, Å., A. Hagberg, and U. Lundqvist. 1960. The induction of early<br />

mutants in Bonus barley. Hereditas 46:675-699.<br />

8. Gustafsson, Å., A. Hagberg, U. Lundqvist, and G. Persson. 1969. A proposed<br />

system of symbols for the collection of barley mutants at Svalöv. Hereditas<br />

62:409-414.<br />

9. Gustafsson, Å., A. Hagberg, G. Persson and K. Wiklund. 1971. Induced<br />

mutations and barley improvement. Theor. Appl. Genet. 41:239-248.<br />

10. Gustafsson, Å., and U. Lundqvist. 1976. Controlled environment and short-<br />

248


Barley Genetics Newsletter (2007) 37: 188-301<br />

day tolerance in barley mutants. p. 45-53. In Induced Mutants in Cross-breeding.<br />

Proc. Advisory Group, Vienna. 1975. Int. Atomic Energy Agency, Vienna.<br />

11. Hagberg, A. 1961. [Svalöfs original Mari barley.] Aktuellt från Svalöf.<br />

Allmänna Svenska Utsädesaktiebolaget. p. 13-16. [In Swedish.]<br />

12. Hanumappa, M., L.H. Pratt, M.-M. Cordonnier-Pratt, and G.F. Deitzer. . 1999.<br />

A photoperiod-insensitive barley line contains a light-labile phytochrome B. Plant<br />

Physiol. 119:1033-1040.<br />

13. Lundqvist, U. 1991. Swedish mutation research in barley with plant breeding<br />

aspects. A historical review. p. 135-148. In Plant Mutation Breeding for Crop<br />

Improvement. Proc. Int. Symp. Vienna, 1990. Int. Atomic Energy Agency, Vienna.<br />

14. Lundqvist, U. 1992. Coordinator's report: Earliness genes. Barley Genet.<br />

Newsl. 21:127-129.<br />

15. Lundqvist, U. (Unpublished).<br />

16. Mellish, D.R., B.L. Harvey, and B.G. Rossnagel. 1978. The effect of a gene<br />

for earliness in 2-row barley. Barley Newsl. 22:76.<br />

17. Mettin, D. 1961. Mutationsversuche an Kulturpflanzen. XII. Über das<br />

genetische Verhalten von frühreifen Gerstenmutanten. Züchter 31:83-89.<br />

18. Persson, G., and A. Hagberg. 1969. Induced variation in a quantitative<br />

character in barley. Morphology and cytogenetics of erectoides mutants.<br />

Hereditas 61:115-178.<br />

19. Principe, J.M., W.R. Hruschka, B. Thomas, and G.F. Deitzer. 1992. Protein<br />

differences between two isogenic cultivars of barley (Hordeum vulgare L.) that<br />

differ in sensitivity to photoperiod and far-red light. Plant Physiol. 98:1444-1450.<br />

20. Smail, V.W., R.F. Eslick, and E.A. Hockett. 1986. Isogenic heading date<br />

effects on yield component development in 'Titan' barley. Crop Sci. 26:1023-<br />

1029.<br />

21. Takahashi, R., and S. Yasuda. 1971. Genetics of earliness and growth habit<br />

in barley. p. 388-408. In R.A. Nilan (ed.) Barley Genetics II. Proc. Second Int.<br />

Barley Genet. Symp., Pullman, WA, 1969. Washington State Univ. Press,<br />

Pullman.<br />

22. Takahashi, R., S. Yasuda, J. Hayashi, T. Fukuyama, I. Moriya, and T.<br />

Konishi. 1983. Catalogue of barley germplasm preserved in Okayama University.<br />

Inst. Agric. Biol. Sci., Okayama Univ., Kurashiki, Japan. 217 p.<br />

23. Ukai, Y., and A. Yamashita. 1981. Early mutants of barley induced by ionizing<br />

radiation and chemicals. p. 846-854. In M.J.C. Asher, R.P. Ellis, A.M. Hayter, and<br />

R.N.H. Whitehouse (eds.) Barley Genetics IV. Proc. Fourth Int. Barley Genet.<br />

Symp., Edinburgh. Edinburgh Univ. Press, Edinburgh.<br />

24. Yasuda, S. 1977. Linkage of the earliness gene eak and its pleiotropic effects<br />

under different growth conditions. Ber. Ohara Inst. landw. Biol., Okayama Univ.<br />

17:15-28.<br />

25. Yasuda, S. 1978. Effects of the very early gene, eak, on yield and its<br />

components in barley. BGN 8:125-127.<br />

26. Yasuda, S., T. Konishi, and H. Shimoyama. 1965. [Varietal difference in<br />

yellowing of barleys under a certain controlled condition of temperature and<br />

photoperiod, and its mode of inheritance.] Nogaku Kenkyu 51:53-65. [In<br />

Japanese.]<br />

Prepared:<br />

S. Yasuda. 1972. BGN 2:198.<br />

Revised:<br />

J.D. Franckowiak, U. Lundqvist, T. Konishi, and L.W. Gallagher. 1997. BGN<br />

26:213-215.<br />

249


Barley Genetics Newsletter (2007) 37: 188-301<br />

J.D. Franckowiak and U. Lundqvist. 2007. BGN 37:247-250.<br />

250


Barley Genetics Newsletter (2007) 37: 188-301<br />

Stock number: BGS 222<br />

Locus name: Necrotic leaf spot 1<br />

Locus symbol: nec1<br />

BGS 222, Necrotic leaf spot 1, nec1<br />

Previous nomenclature and gene symbolization:<br />

Mutant no. 10 (2).<br />

Parkland spot = sp,,b (1).<br />

Inheritance:<br />

Monofactorial recessive (2, 4).<br />

Located in chromosome 1HL [5L] (1, 2, 4), near the centromere (1), about 34.5<br />

cM proximal from the wst5 (white streak 5) locus (3, 5), about 10.0 cM distal from<br />

the msg1 (male sterile genetic 1) locus (4, 6), in bin 5H-09 near EST marker<br />

BF630384 (7).<br />

Description:<br />

Small black-brown spots develop on all light-exposed parts of the plant starting<br />

near the leaf tip at the three-leaf stage (1, 2). The spots are oval (the longest<br />

dimension is parallel to the leaf veins) and generally less than 1 to 2 mm in size.<br />

The spots are concentrated in awn and the most distal parts of the leaf blade, but<br />

may occur on all plant parts (2, 4). The nec1 locus is an orthologue of<br />

Arabidopsis necrotic mutant HLM1 that encodes the cyclic nucleotide-gated ion<br />

channel 4 (7).<br />

Origin of mutant:<br />

A mutant induced by combined treatment with gamma-rays and diethyl sulfate of<br />

Carlsberg II (CIho 10114, NGB 5085) (2).<br />

Mutational events:<br />

nec1.a in Carlsberg II (Mutant no 10) (2, 3); sp,,b (GSHO 1284) in Parkland<br />

(CIho 10001) (1, 4); a mutant in Morex (CIho 15773) (6); FN085 and FN370 in<br />

Steptoe (CIho 15229) (7); FN338 in Morex (CIho 15773) (7).<br />

Mutant used for description and seed stocks:<br />

nec1.a in Carlsberg II (GSHO 989); nec1.a from R.I. Wolfe's Chromosome 5<br />

Marker Stock in Bowman (PI 483237)*7 (GSHO 2052).<br />

References:<br />

1. Fedak, G., T. Tsuchiya, and S.B. Helgason. 1972. Use of monotelotrisomics<br />

for linkage mapping in barley. Can. J. Genet. Cytol. 14:949-957.<br />

2. Jensen, J. 1971. Mapping of 10 mutant genes for necrotic spotting in barley by<br />

means of translocation. p. 213-219. In R.A. Nilan (ed.) Barley Genetics II. Proc.<br />

Second Int. Barley Genet. Symp., Pullman, WA, 1969. Washington State Univ.<br />

Press, Pullman.<br />

3. Jensen, J. 1992. Coordinator's report: Chromosome 5. Barley Genet. Newsl.<br />

21:89-92.<br />

4. Jensen, J., and J.H. Jørgensen. 1973. Locating some genes on barley<br />

chromosome 5. Barley Genet. Newsl. 3:25-27.<br />

5. Nielsen, G., H. Johansen, and J. Jensen. 1983. Localization on barley<br />

chromosome 5 of the locus Pgd2 coding for phosphogluconate dehydrogenase.<br />

Barley Genet. Newsl. 13:57-59.<br />

6. Ramage, T., and J.L.A. Eckhoff. 1985. Assignment of mutants in Morex to<br />

chromosomes. Barley Genet. Newsl. 15:22-25.<br />

7. Rostoks, N., D. Schmierer, S. Mudie, T. Drader, R. Brueggeman, D. Caldwell,<br />

R. Waugh, and A. Kleinhofs. 2006. Barley necrotic locus nec1 encodes the cyclic<br />

251


Barley Genetics Newsletter (2007) 37: 188-301<br />

nucleotide-gated ion channel 4 homologous to the Arabidopsis Hlm1. Mol. Gen.<br />

Genomics 275:159-168.<br />

Prepared:<br />

J. Jensen. 1981. BGN 11:101.<br />

Revised:<br />

J.D. Franckowiak. 1997. BGN 26:220.<br />

J.D. Franckowiak. 2007. BGN 37:251-252.<br />

252


Barley Genetics Newsletter (2007) 37: 188-301<br />

Stock number: BGS 253<br />

Locus name: Uniculm 2<br />

Locus symbol: cul2<br />

BGS 253, Uniculm 2, cul2<br />

Previous nomenclature and gene symbolization:<br />

Uniculm 2 = uc2 (8).<br />

Inheritance:<br />

Monofactorial recessive (8).<br />

Located in chromosome 6HL (4, 6), about 1.3 cM distal from the gsh4 (glossy<br />

sheath 4) locus (3, 5), about 11.4 cM from the msg36 (male sterile genetic 36)<br />

locus (3, 5), about 2.2 cM proximal from the rob1 (orange lemma 1) locus (3, 4,<br />

5), about 8.8 cM from RFLP markers cMWG679 and ABG458 (1), and about 6.2<br />

cM from AFLP marker E4343-10 in subgroup 54 of the Proctor/Nudinka map (7).<br />

Description:<br />

The cul2 plants have a single elongated culm (stem), the stem is much greater in<br />

diameter than normal, and plants are usually earlier than normal (8). The cul2<br />

plants initiate vegetative axillary meristems, but tillers fail to develop (1). Irregular<br />

placement of some spikelets and male fertility in lateral spikelets occur in the<br />

original stock (5) and in the Bowman backcross-derived line (1). Yield of uniculm<br />

plants is not restored when grown under high plant populations (2). Double<br />

mutant combinations with most other mutants that affect tiller number resulted in<br />

a uniculm vegetative phenotype (1).<br />

Origin of mutant:<br />

A thermal neutron induced mutant in Kindred (CIho 6969) (8).<br />

Mutational events:<br />

cul2.b in Kindred (GBC379) (5), cul2.k (unc k ) in an unknown cultivar from the<br />

Max-Planck-Institut für Züchtungsforschung (7).<br />

Mutant used for description and seed stocks:<br />

cul2.b in Kindred (GSHO 531, CIho 115530); cul2.b in Bowman (PI 483237)*4<br />

(GSHO 2074); cul2.b plus rob1.a from sel 79Cal in Bowman*8 (GSHO 2075).<br />

References:<br />

1. Babb, S., and G.J. Muehlbauer. 2003. Genetic and morphological<br />

characterization of the barley uniculm2 (cul2) mutant. Theor. Appl. Genet.<br />

106:846–857.<br />

2. Dofing, S.M. 1996. Near-isogenic analysis of uniculm and conventional-tillering<br />

barley lines. p. 617-619. In A.E. Slinkard, G.J. Scoles, and B.G. Rossnagel (eds.)<br />

Proc. Fifth Int. Oat Conf. & Seventh Int. Barley Genet. Symp., Saskatoon. Univ.<br />

of Saskatchewan, Saskatoon.<br />

3. Falk, D.E., M.J. Swartz, and K.J. Kasha. 1980. Linkage data with genes near<br />

the centromere of barley chromosome 6. Barley Genet. Newsl. 10:13-16.<br />

4. Hayashi, J., T. Konishi, I. Moriya, and R. Takahashi. 1984. Inheritance and<br />

linkage studies in barley. VI. Ten mutant genes located on chromosomes 1 to 7,<br />

except 3. Ber. Ohara Inst. landw. Biol., Okayama Univ. 18:227-250.<br />

5. Kasha, K.G., D.E. Falk, and A. Ho-Tsai. 1978. Linkage data with genes on<br />

chromosome 6. Barley Genet. Newsl. 8:61-65.<br />

6. Kirby, E.J. 1973. Effect of temperature on ear abnormalities in uniculm barley.<br />

J. Exp. Bot. 24:935-947.<br />

7. Pozzi, C., D. di Pietro, G. Halas, C. Roig, and F. Salamini. 2003. Integration of<br />

a barley (Hordeum vulgare) molecular linkage map with the position of genetic<br />

253


Barley Genetics Newsletter (2007) 37: 188-301<br />

loci hosting 29 developmental mutants. Heredity 90:390-396.<br />

8. Shands, R.G. 1963. Inheritance and linkage of orange lemma and uniculm<br />

characters. Barley Newsl. 6:35-36.<br />

Prepared:<br />

C.R. Burnham. 1971. BGN 1:156.<br />

Revised:<br />

J.D. Franckowiak. 1997. BGN 26:234.<br />

J.D. Franckowiak. 2007. BGN 37:253-254.<br />

254


Barley Genetics Newsletter (2007) 37: 188-301<br />

Stock number: BGS 254<br />

Locus name: Orange lemma 1<br />

Locus symbol: rob1<br />

BGS 254, Orange lemma 1, rob1<br />

Previous nomenclature and gene symbolization:<br />

Orange lemma = pl (14).<br />

Orange lemma = br (1, 2).<br />

Orange lemma = o (15).<br />

Robiginosum-o = rob-o (6).<br />

Inheritance:<br />

Monofactorial recessive (1, 2, 14, 15).<br />

Located in chromosome 6HS (4, 5, 17, 18), about 10.8 cM proximal from the<br />

msg36 (male sterile genetic 36) locus (5, 9), and about 2.2 cM distal from the<br />

cul2 (uniculm 2) locus (5, 7, 9), in bin 6H-06 near RFLP marker HVM031 (3).<br />

Description:<br />

The lemma, palea, and rachis have an orange pigmentation that is present in<br />

immature spikes, can be observed at heading, and is retained in mature grain<br />

and spikes (2, 15). The orange pigmentation is visible at the base of sheath of<br />

seedlings and in exposed nodes after jointing. Internodes have a layer of orange<br />

tissue and stems have an orange color as the straw dries. The mutant stock for<br />

rob1.f (OUM189) has a lighter orange lemma color than that in other mutants at<br />

the rob1 locus (10). The Bowman backcross-derived line with the rob1 gene had<br />

slightly lower acid-detergent lignin (ADL) content than Bowman (13), but it was<br />

also more susceptible to common root rot, caused by Bipolaris sorokiniana (11).<br />

Origin of mutant:<br />

A spontaneous mutant in CIho 5649 (15).<br />

Mutational events:<br />

rob1.a in CIho 5649 (GBC340, GSHO 707) (8, 15); rob1.b (OUM185), rob1.c<br />

(OUM186), rob1.d (OUM187), rob1.e (OUM188), rob1.f (OUM189) in Akashinriki<br />

(OUJ659, PI 467400) (10); rob1.1 (NGB 115071, NGB 119367), rob1.2 (NGB<br />

115072, NGB 119368) in Bonus (PI 189763), rob1.3 (NGB 115073, NGB<br />

119369), rob1.4 (NGB 115074, NGB 119370), rob1.5 (NGB 115075, NGB<br />

119371), rob1.6 (NGB 115076, 119372) in Foma (CIho 11333), rob1.7 (NGB<br />

115077, NGB 119373) in Kristina (NGB 1500) (12); rob1.g (200A12/8/2) from<br />

Emir (CIho 11790) isolated following a cross to Hordeum bulbosum (16).<br />

Mutant used for description and seed stocks:<br />

rob1.a in CIho 5649 (GSHO 707); rob1.a in Bowman (PI 483237)*8 (GSHO<br />

2069).<br />

References:<br />

1. Bauman, A. 1926. Barley with orange lemmas. Bull. Appl. Bot. & Pl. Breed.<br />

16:181-186.<br />

2. Buckley, G.F.H. 1930. Inheritance in barley with special reference to the color<br />

of caryopsis and lemma. Sci. Agric. 10:460-492.<br />

3. Costa, J.M., A. Corey, M. Hayes, C. Jobet, A. Kleinhofs, A. Kopisch-Obusch,<br />

S.F. Kramer, D. Kudrna, M. Li, O. Piera-Lizaragu, K. Sato, P. Szues, T. Toojinda,<br />

M.I. Vales, and R.I. Wolfe. 2001. Molecular mapping of the Oregon Wolfe<br />

Barleys: a phenotypically polymorphic doubled-haploid population. Theor. Appl.<br />

Genet. 103:415-424.<br />

4. Falk, D.E. 1994. Creation of a marked telo 6S trisomic for chromosome 6.<br />

255


Barley Genetics Newsletter (2007) 37: 188-301<br />

Barley Genet. Newsl. 23:32.<br />

5. Falk, D.E., M.J. Swartz, and K.J. Kasha. 1980. Linkage data with genes near<br />

the centromere of barley chromosome 6. Barley Genet. Newsl. 10:13-16.<br />

6. Gustafsson, Å., A. Hagberg, U. Lundqvist, and G. Persson. 1969. A proposed<br />

system of symbols for the collection of barley mutants at Svalöv. Hereditas<br />

62:409-414.<br />

7. Hayashi, J., T. Konishi, I. Moriya, and R. Takahashi. 1984. Inheritance and<br />

linkage studies in barley. VI. Ten mutant genes located on chromosomes 1 to 7,<br />

except 3. Ber. Ohara Inst. landw. Biol., Okayama Univ. 18:227-250.<br />

8. Ivanova, K.V. 1937. A new character in barley "third outer glume" — Its<br />

inheritance and linkage with color of the flowering glumes. Bull. Appl. Bot.,<br />

Genet. & Pl. Breed. II. 7:339-353.<br />

9. Kasha, K.G., D.E. Falk, and A. Ho-Tsai. 1978. Linkage data with genes on<br />

chromosome 6. Barley Genet. Newsl. 8:61-65.<br />

10. Konishi, T. (Unpublished).<br />

11. Kutcher, H.R., K.L. Bailey, B.G. Rossnagel, and J.D. Franckowiak. 1996.<br />

Linked morphological and molecular markers associated with common root rot<br />

reaction in barley. Can. J. Plant Sci. 76:879-883.<br />

12. Lundqvist. U. (Unpublished).<br />

13. Meyer, D.W., J.D. Franckowiak, and R.D. Nudell. 2006. Forage quality of<br />

barley hay. Agronomy Abstracts 2006.<br />

14. Miyake, K., and Y. Imai. 1922. [Genetic studies in barley. 1.] Bot. Mag.,<br />

Tokyo 36:25-38. [In Japanese.]<br />

15. Myler, J.L., and E.H. Stanford. 1942. Color inheritance in barley. J. Am. Soc.<br />

Agron. 34:427-436.<br />

16. Pickering, R.A. 2003. (Personal communications).<br />

17. Ramage, R.T., C.R. Burnham, and A. Hagberg. 1961. A summary of<br />

translocation studies in barley. Crop Sci. 1:277-279.<br />

18. Shahla, A., J.W. Shim, and T. Tsuchiya. 1983. Association of the gene o for<br />

orange lemma with the short arm of chromosome 6 (6S) in barley. BGN 13:83-<br />

84.<br />

Prepared:<br />

C.R. Burnham. 1971. BGN 1:157.<br />

Revised:<br />

J.D. Franckowiak, T. Konishi, and U. Lundqvist. 1997. BGN 26:235-236.<br />

J.D. Franckowiak and U. Lundqvist. 2007. BGN 37:255-256.<br />

256


Barley Genetics Newsletter (2007) 37: 188-301<br />

Stock number: BGS 266<br />

Locus name: Erectoides-e<br />

Locus symbol: ert-e<br />

BGS 266, Erectoides-e, ert-e<br />

Previous nomenclature and gene symbolization:<br />

Erectoides-17 = ert-17 (2).<br />

Dense spike = la (4).<br />

Dense spike 9 = l9 (4).<br />

Inheritance:<br />

Monofactorial recessive (2, 4, 8).<br />

Located in chromosome 6HL (3, 7, 8), about 27.2 cM distal from the xnt5 (xantha<br />

seedling 5) locus (5), over 26.9 cM distal from the Aat2 (aspartate<br />

aminotransferase 2) locus (11).<br />

Description:<br />

Spikes are very compact with rachis internode length values from 1.2 to 1.5 mm.<br />

Plants are about 2/3 normal height. Partial fertility and reduced vigor are noted<br />

among ert-e mutants. The peduncle is very short and spikes often emerge from<br />

the side of the flag sheath (7, 9). A large deficiency of mutant plants is frequently<br />

noted in segregating populations (7). Spike density decreases greatly when<br />

plants are treated with GA3 as the flag leaf emerges (10). The mutant ert-e.17 is<br />

allelic to mutant dsp9.i (dense spike 9, see BGS 258) (1).<br />

Origin of mutant:<br />

An X-ray induced mutant in Bonus (PI 189763) (2).<br />

Mutational events:<br />

ert-e.17 (NGB 112619 ), -e.65 (NGB 112664) in Bonus (2); ert-e.94 (NGB<br />

112693), -e.143 (NGB 112742) in Bonus, -e.331 (NGB 112846), -e.396 (NGB<br />

114150) in Foma (CIho 11333) (9); dsp9.i (OUM113) in Akashinriki (4); dsp9.j<br />

(OUM106), dsp9.k (OUM107), dsp9.l (OUM115), dsp9.m (OUM118) in<br />

Akashinriki (6).<br />

Mutant used for description and seed stocks:<br />

ert-e.17 in Bonus (GSHO 477); ert-e.17 in Bowman (PI 483237)*6 (GSHO 2091);<br />

dsp9.i in Akashinriki (GSHO 1774); dsp9.i in Bowman (PI 483237)*7 (GSHO<br />

2090).<br />

References:<br />

1. Franckowiak, J.D. (Unpublished).<br />

2. Hagberg, A., Å. Gustafsson, and L. Ehrenberg. 1958. Sparsely contra densely<br />

ionizing radiations and the origin of erectoid mutants in barley. Hereditas 44:523-<br />

530.<br />

3. Hagberg, A., G. Persson, and A. Wiberg. 1963. Induced mutations in the<br />

improvement of self-pollinated crops. p. 105-124. In E. Åkerberg and A. Hagberg<br />

(eds.) Recent Plant Breeding Research. Svalöf 1946-1961. Almqvist & Wiksell,<br />

Stockholm.<br />

4. Konishi, T. 1973. Genetic analyses of EMS-induced mutants in barley. Barley<br />

Genet. Newsl. 3:28-31.<br />

5. Konishi, T. 1978. New linkage data on chromosome 6 of barley. Barley Genet.<br />

Newsl. 8:71-72.<br />

6. Konishi, T. (Unpublished).<br />

7. Persson, G. 1969. An attempt to find suitable genetic markers for the dense<br />

ear loci in barley I. Hereditas 62:25-96.<br />

257


Barley Genetics Newsletter (2007) 37: 188-301<br />

8. Persson, G., and A. Hagberg. 1962. Linkage studies with the erectoides loci.<br />

Barley Newsl. 5:46-47.<br />

9. Persson, G., and A. Hagberg. 1969. Induced variation in a quantitative<br />

character in barley. Morphology and cytogenetics of erectoides mutants.<br />

Hereditas 61:115-178.<br />

10. Stoy, V., and A. Hagberg. 1967. Effects of growth regulators on ear density<br />

mutants in barley. Hereditas 58:359-384.<br />

11. Yoshimi, R., and T. Konishi. 1995. Linkage analysis of several isozyme loci in<br />

barley. Barley Genet. Newsl. 24:35-37.<br />

Prepared:<br />

U. Lundqvist and J.D. Franckowiak. 1997. BGN 26:246.<br />

Revised as BGS 258:<br />

T. Konishi and J.D. Franckowiak. 1997. BGS 258, Dense spike 9, dsp9. BGN<br />

26:239.<br />

Revised:<br />

J.D. Franckowiak and U. Lundqvist. 2007. BGN 37:257-258.<br />

258


Barley Genetics Newsletter (2007) 37: 188-301<br />

Stock number: BGS 306<br />

Locus name: Variegated 1<br />

Locus symbol: var1<br />

BGS 306, Variegated 1, var1<br />

Previous nomenclature and gene symbolization:<br />

Variegated = va (4).<br />

Inheritance:<br />

Monofactorial recessive (4).<br />

Located in chromosome 5HL [7L] (4), about 4.6 cM proximal from the raw1<br />

(smooth awn 1) locus (3. 4), in bin 5H-09 about 29.2 cM proximal from the Rph9<br />

(reaction to Puccinia hordei 9) locus (1).<br />

Description:<br />

Narrow white stripes develop on young leaves, but they are not as well defined<br />

than those of white streak 7 (wst7). White stripes are visible on the foliage and<br />

stems of older plants (3). When sown in plots, selections homozygous for the<br />

var1.a gene have a whitish cast until heading (2). The Bowman backcrossderived<br />

line for var1 shows slightly delayed heading and may be slightly shorter<br />

(2).<br />

Origin of mutant:<br />

A gamma-ray induced mutant in Montcalm (CIho 7149) (4).<br />

Mutational events:<br />

var1.a in Montcalm (Alb Acc 311) (4).<br />

Mutant used for description and seed stocks:<br />

var1.a in Montcalm (GSHO 1278); var1.a in Bowman (PI 483237)*7 (GSHO<br />

2121).<br />

References:<br />

1. Borovkova, I.G., Y. Jin, and B.J. Steffenson. 1998. Chromosomal location and<br />

genetic relationship of leaf rust resistance genes Rph9 and Rph12 in barley.<br />

Phytopathology 88:76-80.<br />

2. Franckowiak, J.D. (Unpublished).<br />

3. Jensen, J. 1981. Construction of a barley chromosome 7 linkage map. p. 927-<br />

939. In M.J.C. Asher, R.P. Ellis, A.M. Hayter, and R.N.H. Whitehouse (eds.)<br />

Barley Genetics IV. Proc. Fourth Int. Barley Genet. Symp., Edinburgh. Edinburgh<br />

Univ. Press, Edinburgh.<br />

4. Walker, G.W.R., J. Dietrich, R. Miller, and K. Kasha. 1963. Recent barley<br />

mutants and their linkages II. Genetic data for further mutants. Can. J. Genet.<br />

Cytol. 5:200-219.<br />

Prepared:<br />

T.E. Haus and T. Tsuchiya. 1971. BGN 1:165.<br />

Revised:<br />

J.D. Franckowiak. 1997. BGN 26:257.<br />

J.D. Franckowiak. 2007. BGN 37:259.<br />

259


Barley Genetics Newsletter (2007) 37: 188-301<br />

Stock number: BGS 348<br />

Locus name: Early maturity 5<br />

Locus symbol: Eam5<br />

BGS 348, Early maturity 5, Eam5<br />

Previous nomenclature and gene symbolization:<br />

Early maturity = Ea (5, 8).<br />

Early maturity 3 = Ea3 (2, 3).<br />

Early maturity 5 = Ea5 (4).<br />

Early maturity 8 = Ea8 (6).<br />

Inheritance:<br />

Monofactorial dominant (9).<br />

Located in chromosome 5HL [7L] (2), very close to the raw1 (smooth awn 1)<br />

locus (1, 8, 9).<br />

Description:<br />

Plants with the Eam5 gene head 3 to 10 days earlier than normal sibs under<br />

short-day conditions (1, 5). Early heading is commonly associated a shorter<br />

stature compared to normal sibs. The slight reduction in height is also observed<br />

under long-day conditions. Peduncles and rachis internodes are slightly<br />

shortened (1). The Eam5 gene appears to be the common early maturity gene<br />

present in winter sown spring barley cultivars used in China and Japan; and it is<br />

present in the ICARDA/CIMMYT barley lines developed in Mexico. Complex<br />

interactions with other genes conditioning photoperiod response have been<br />

observed (1, 9). Takahashi and Yasuda (7) classified plants that were about 10<br />

days earlier than normal spring barley as having the Sgh2.II (spring growth of<br />

habit 2, grade 2) gene, but an earliness factor closely linked to the rough awn<br />

gene was earlier identified in spring barley (8).<br />

Origin of mutant:<br />

Natural occurrence in Indian cultivars (2, 3) and isolated from ICARDA/CIMMYT<br />

selection CMB85-533-H-1Y-1B-0Y-5B (Higuerilla*2/Gobernadora) (1).<br />

Mutational events:<br />

Eam5.x in CMB85-533 (1), Eam5.x in a number of Chinese cultivars planted in<br />

the fall (9).<br />

Mutant used for description and seed stocks:<br />

Eam5.x in CMB85-533; Eam5.x in Bowman (PI 483237)*6 (GSHO 3424).<br />

References:<br />

1. Franckowiak, J.D. (Unpublished).<br />

2. Jain, K.B.L. 1961. Genetic studies in barley. III. Linkage relations of some<br />

plant characters. Indian J. Genet. Plant Breed. 21:23-33.<br />

3. Murty, G.S., and K.B.L. Jain. 1960. Genetic studies in barley. II. Inheritance of<br />

fertility of lateral florets and certain other characters. J. Indian Botan. Soc.<br />

39:281-308.<br />

4. Nilan, R.A. 1964. The cytology and genetics of barley, 1951-1962. Monogr.<br />

Suppl. 3, Res. Stud. Vol. 32, No. 1. Washington State Univ. Press, Pullman.<br />

5. Robertson, D.W., G.A. Wiebe, and F.R. Immer. 1941. A summary of linkage<br />

studies in barley. J. Am. Soc. Agron. 33:47-64.<br />

6. Robertson, D.W., G.A. Wiebe, R.G. Shands, and A. Hagberg. 1965. A<br />

summary of linkage studies in cultivated barley, Hordeum species: Supplement<br />

III, 1954-1963. Crop Sci. 5:33-43.<br />

260


Barley Genetics Newsletter (2007) 37: 188-301<br />

7. Takahashi, R., and S. Yasuda. 1971. Genetics of earliness and growth habit in<br />

barley. p. 388-408. In R.A. Nilan (ed.) Barley Genetics II. Proc. Second Int.<br />

Barley Genet. Symp., Pullman, WA, 1969. Washington State Univ. Press,<br />

Pullman.<br />

8. Wexelsen, H. 1934. Quantitative inheritance and linkage in barley. Hereditas<br />

18:307-348.<br />

9. Yu, G. 2006. Development of early maturing two-rowed malting barley with<br />

Fusarium head blight resistance. Ph.D. Thesis. North Dakota State University,<br />

Fargo.<br />

Prepared:<br />

J.D. Franckowiak. 2002. BGN 32:109.<br />

Revised:<br />

J.D. Franckowiak and G. Yu. 2007. BGN 37:260-261.<br />

261


Barley Genetics Newsletter (2007) 37: 188-301<br />

Stock number: BGS 349<br />

Locus name: Brachytic 4<br />

Locus symbol: brh4<br />

BGS 349, Brachytic 4, brh4<br />

Previous nomenclature and gene symbolization:<br />

Brachytic-j = brh.j 4, 5).<br />

Inheritance:<br />

Monofactorial recessive (4, 5).<br />

Located in chromosome 2HL (3), about 14.1 cM distal from SSR marker<br />

EBmac0850 in bin 2H-08 (1).<br />

Description:<br />

Seedling leaves of brh4 plants are short and wide compared to those of<br />

Bowman. Plants are 3/4 to 5/6 normal height and awns are about 3/4 of normal<br />

length. Plants have a rather erect growth habit. Peduncle length is about 3/4<br />

normal and rachis internodes are slightly shortened. Heading is delayed by about<br />

2 days and the fertile spikelet number is increased by over 3, but these effects<br />

could be caused by pleiotropism or linkage drag with the Eam6 (early maturity 6)<br />

locus. The kernels of brh4 plants are slightly shorter (8.3 vs. 9.4 mm), more<br />

globose shaped, and slightly smaller (46 vs. 56 mg) than those of Bowman. The<br />

yield reduction was non-significant in comparisons between the brh4.j Bowman<br />

line and Bowman (1, 2).<br />

Origin of mutant:<br />

A sodium azide induced mutant in Birgitta (NSGC 1870, NGB 1494, NGB 14667)<br />

(6).<br />

Mutational events:<br />

brh4.j in Birgitta (17:13:6, DWS1005) (5, 6).<br />

Mutant used for description and seed stocks:<br />

brh4.j in Birgitta (GSHO 1675); brh4.j in Bowman (PI 483237)*7 (GSHO 2130).<br />

References:<br />

1. Dahleen, L.S., L.J. Vander Wal, and J.D. Franckowiak. 2005. Characterization<br />

and molecular mapping of genes determining semidwarfism in barley. J. Hered.<br />

96:654-662.<br />

2. Franckowiak, J.D. (Unpublished).<br />

3. Franckowiak, J.D. 1995. Notes on linkage drag in Bowman backcross derived<br />

lines of spring barley. Barley Genet. Newsl. 24:63-70.<br />

4. Franckowiak, J.D. 1995. The brachytic class of semidwarf mutants in barley.<br />

Barley Genet. Newsl. 24:56-59.<br />

5. Franckowiak, J.D., and A. Pecio. 1992. Coordinator’s report: Semidwarf<br />

genes. A listing of genetic stocks. Barley Genet. Newsl. 21:116-127.<br />

6. Lehmann, L.C. 1985. (Personal communications).<br />

Prepared:<br />

J.D. Franckowiak. 2002. BGN 32:110.<br />

Revised:<br />

J.D. Franckowiak and L.S. Dahleen. 2007. BGN 37:262.<br />

262


Barley Genetics Newsletter (2007) 37: 188-301<br />

Stock number: BGS 350<br />

Locus name: Brachytic 6<br />

Locus symbol: brh6<br />

BGS 350, Brachytic 6, brh6<br />

Previous nomenclature and gene symbolization:<br />

Brachytic-r = brh.r (3).<br />

Brachytic-s = brh.s (3).<br />

Inheritance:<br />

Monofactorial recessive (4, 5).<br />

Located in chromosome 5HS [7S] (4), about 12.0 cM distal from SSR marker<br />

Bmag0394 in bin 5H-03 (1).<br />

Description:<br />

Plants of the Bowman backcross-derived line are 2/3 to 3/4 normal height and<br />

awns are 1/2 to 2/3 normal length. The seedling leaf of brh6 plants is shorter than<br />

that of normal sibs (1, 2). Peduncles and leaf blades are 2/3 normal length and<br />

the grain is nearly normal (1). However, kernels are nearly 20% lighter than those<br />

of Bowman with both decreased length and width (1, 2). Although grain yield of<br />

the near-isogenic line for brh6 was lower than those of tall Akashinriki, the brh6<br />

line was considered a high yielding dwarf (7).<br />

Origin of mutant:<br />

An ethyl methanesulfonate induced mutant in Akashinriki (OUJ659, PI 467400)<br />

(6, 7).<br />

Mutational events:<br />

brh6.r in Akashinriki (OUM133, dw-h, DWS1036, GSHO 1683), brh6.s in<br />

Akashinriki (OUM135, DWS1037, GSHO 1684) (3, 5, 6).<br />

Mutant used for description and seed stocks:<br />

brh6.r in Akashinriki (GSHO 1683); brh6.r in Bowman (PI 483237)*7 (GSHO<br />

2132).<br />

References:<br />

1. Dahleen, L.S., L.J. Vander Wal, and J.D. Franckowiak. 2005. Characterization<br />

and molecular mapping of genes determining semidwarfism in barley. J. Hered.<br />

96:654-662.<br />

2. Franckowiak, J.D. (Unpublished).<br />

3. Franckowiak, J.D. 1995. The brachytic class of semidwarf mutants in barley.<br />

Barley Genet. Newsl. 24:56-59.<br />

4. Franckowiak, J.D. 1995. Notes on linkage drag in Bowman backcross derived<br />

lines of spring barley. Barley Genet. Newsl. 24:63-70.<br />

5. Franckowiak, J.D., and A. Pecio. 1992. Coordinator’s report: Semidwarf<br />

genes. A listing of genetic stocks. Barley Genet. Newsl. 21:116-127.<br />

6. Konishi, T. 1976. The nature and characteristics of EMS-induced dwarf<br />

mutants in barley. p. 181-189. In H. Gaul (ed.). Barley Genetics III. Proc. Third<br />

Int. Barley Genet. Symp., Garching, 1975. Verlag Karl Thiemig, München.<br />

7. Konishi, T. 1977. Effects of induced dwarf genes on agronomic characters in<br />

barley. p. 21-38. In Use of dwarf mutations. Gamma-Field Symposium No. 16.<br />

Prepared:<br />

J.D. Franckowiak and T. Konishi. 2002. BGN 32:111.<br />

Revised:<br />

J.D. Franckowiak and L.S. Dahleen. 2007. BGN 37:263.<br />

263


Barley Genetics Newsletter (2007) 37: 188-301<br />

BGS 377, Shrunken endosperm genetic 1, seg1<br />

Stock number: BGS 377<br />

Locus name: Shrunken endosperm genetic 1<br />

Locus symbol: seg1<br />

Previous nomenclature and gene symbolization:<br />

Shrunken endosperm = se1 (4).<br />

Inheritance:<br />

Monofactorial recessive (3).<br />

Located in chromosome 7HL [1L] (3), linked to the msg23 (male sterile genetic<br />

23) locus (5).<br />

Description:<br />

Seed is long and thin and the 100-kernel weight is about 33% of normal. Good<br />

stands can be established in the field if optimum environmental conditions prevail<br />

during germination and emergence (3, 5). This mutant is associated with an<br />

increase in percentage lysine in the protein (5). Tannins are not deposited in<br />

seg1 chalazal cell central vacuoles, but rather appeared to cause cytoplasmic<br />

disorganization and cell death (1). Light microscopy revealed that seg1 mutants<br />

exhibited premature termination of grain filling because of the necrosis and<br />

crushing of the chalazal and nucellar projection of the pericarp early during grain<br />

filling (2).<br />

Origin of mutant:<br />

A spontaneous mutant in Betzes (PI 129430) (3).<br />

Mutational events:<br />

seg1.a in Betzes (3, 4).<br />

Mutant used for description and seed stocks:<br />

seg1.a in Betzes (GSHO 750); seg1.a in Bowman (PI 483237)*7 (GSHO 1852).<br />

References:<br />

1. Felker, F.C., D.M. Peterson, and O.E. Nelson. 1984. Development of tannin<br />

vacuoles in chalazal and seed coat of barley in relation to early chalazal necrosis<br />

in the seg1 mutant. Planta 161:540-549.<br />

2. Felker, F.C., D.M. Peterson, and O.E. Nelson. 1985. Anatomy of immature<br />

grains of eight material effect shrunken endosperm barley mutants. Amer. J. Bot.<br />

72:248-256.<br />

3. Jarvi, A.J. 1970. Shrunken endosperm mutants in barley, Hordeum vulgare.<br />

Ph.D. Thesis. Montana State Univ., Bozeman.<br />

4. Jarvi, A.J., and R.F. Eslick. 1971. BGS 377, Normal vs. shrunken endosperm,<br />

se1. Barley Genet. Newsl. 1:190.<br />

5. Jarvi, A.J., and R.F. Eslick. 1975. Shrunken endosperm mutants in barley.<br />

Crop Sci. 15:363-366.<br />

Prepared:<br />

A.J. Jarvi and R.F. Eslick. 1971. BGN 1:190.<br />

Revised:<br />

R.F. Eslick. 1976. BGN 6:135.<br />

T. Tsuchiya. 1980. BGN 10:124.<br />

J.D. Franckowiak. 1997. BGN 26:325.<br />

J.D. Franckowiak. 2007. BGN 37:264.<br />

264


Barley Genetics Newsletter (2007) 37: 188-301<br />

BGS 379, Shrunken endosperm genetic 3, seg3<br />

Stock number: BGS 379<br />

Locus name: Shrunken endosperm genetic 3<br />

Locus symbol: seg3<br />

Previous nomenclature and gene symbolization:<br />

Shrunken endosperm = se3 (5).<br />

Proanthocyanidin-free 17 = ant17 (3).<br />

Inheritance:<br />

Monofactorial recessive (3).<br />

Located in chromosome 3HS (1, 6), over 30.8 cM from the centromere (6).<br />

Description:<br />

Seed size is reduced to about 33% of normal when grown under field conditions.<br />

Seeds are long and thin similar to those from seg1 plants; seeds are viable and<br />

good stand establishment is possible (6). Light microscopy revealed that seg3<br />

mutants exhibited premature termination of grain filling because of the necrosis<br />

and crushing of the chalazal and nucellar projection of the pericarp early during<br />

grain filling (2). The mutant ant17.148 is an allele at the seg3 locus (3); thus, all<br />

mutants at the proanthocyanidin-free 17 (ant17) locus might be alleles at the<br />

shrunken endosperm genetic 3 locus. Alleles at the seg3 locus that have been<br />

examined in the Bowman genetic background showed a variable reduction in<br />

kernel weight: ant17.148 and seg3.c about 1/3 normal and ant17.567 about 3/4<br />

normal (3). The seg3 locus was named before the ant17 locus, but many more<br />

mutants were identified at the ant17 locus. Therefore, see BGS 599 for a<br />

complete listing of ant17 mutants.<br />

Origin of mutant:<br />

A spontaneous mutant in Compana (PI 539111) (4).<br />

Mutational events:<br />

seg3.c in Compana (4, 5), ant17.148 (Galant, NGB 13698) in Triumph (PI<br />

268180, NGB 13678) (3).<br />

Mutant used for description and seed stocks:<br />

seg3.c in Compana (GSHO 752); seg3.c in Bowman (PI 483237)*7 (GSHO<br />

1957), ant17.148 in Bowman*4 (GSHO 1973).<br />

References:<br />

1. Boyd, P.W., and D. E. Falk. 1990. (Personal communications).<br />

2. Felker, F.C., D.M. Peterson, and O.E. Nelson. 1985. Anatomy of immature<br />

grains of eight material effect shrunken endosperm barley mutants. Amer. J. Bot.<br />

72:248-256.<br />

3. Franckowiak, J.D. (Personal communications).<br />

4. Jarvi, A.J. 1970. Shrunken endosperm mutants in barley, Hordeum vulgare.<br />

Ph.D. Thesis. Montana State Univ., Bozeman.<br />

5. Jarvi, A.J., and R.F. Eslick. 1971. BGS 379, Normal vs. shrunken endosperm,<br />

se3. Barley Genet. Newsl. 1:191.<br />

6. Jarvi, A.J., and R.F. Eslick. 1975. Shrunken endosperm mutants in barley.<br />

Crop Sci. 15:363-366.<br />

Prepared:<br />

A.J. Jarvi and R.F. Eslick. 1971. BGN 1:191.<br />

B. Jende-Strid. 1999. BGN 29:88-89, as BGS 599, proanthocyanidin-free 17,<br />

ant17.<br />

Revised:<br />

265


Barley Genetics Newsletter (2007) 37: 188-301<br />

R.F. Eslick. 1976. BGN 6:137.<br />

T. Tsuchiya. 1980. BGN 10:126.<br />

J.D. Franckowiak. 1997. BGN 26:327.<br />

J.D. Franckowiak and U. Lundqvist. 2007. BGN 37:265-266.<br />

266


Barley Genetics Newsletter (2007) 37: 188-301<br />

BGS 380, Shrunken endosperm genetic 4, seg4<br />

Stock number: BGS 380<br />

Locus name: Shrunken endosperm genetic 4<br />

Locus symbol: seg4<br />

Previous nomenclature and gene symbolization:<br />

Shrunken endosperm = se4 (3).<br />

Inheritance:<br />

Monofactorial recessive (2).<br />

Located in chromosome 7HL [1L] (2), over 34.0 cM from the centromere (4).<br />

Description:<br />

Under field conditions in the original mutant, seed size is reduced to about 38%<br />

of normal and seed set is about 50% of normal. Stand establishment is poor<br />

under field conditions (2, 4). Endosperms of seg4 were characterized by<br />

progressively distorted, disorganized growth, but the quantity of endosperm<br />

tissue at maturity varied from severely reduced to near normal (1). The stock<br />

described in the 1997 revision was incorrect and was in fact a mixture with<br />

GSHO 755 (BGS 382, shrunken endosperm xenia 1, sex1), which was identified<br />

by Dr. Marion Röder, IPK, Gatersleben.<br />

Origin of mutant:<br />

A spontaneous mutant in Compana (PI 539111) (2).<br />

Mutational events:<br />

seg4.d in Compana (2, 3).<br />

Mutant used for description and seed stocks:<br />

seg4.d in Compana (GSHO 753).<br />

References:<br />

1. Felker, F.C., D.M. Peterson, and O.E. Nelson. 1985. Anatomy of immature<br />

grains of eight material effect shrunken endosperm barley mutants. Amer. J. Bot.<br />

72:248-256.<br />

2. Jarvi, A.J. 1970. Shrunken endosperm mutants in barley, Hordeum vulgare.<br />

Ph.D. Thesis. Montana State Univ., Bozeman.<br />

3. Jarvi, A.J., and R.F. Eslick. 1971. BGS 380, Normal vs. shrunken endosperm,<br />

se4. Barley Genet. Newsl. 1:192.<br />

4. Jarvi, A.J., and R.F. Eslick. 1975. Shrunken endosperm mutants in barley.<br />

Crop Sci. 15:363-366.<br />

Prepared:<br />

A.J. Jarvi and R.F. Eslick. 1971. BGN 1:192.<br />

Revised:<br />

R.F. Eslick. 1976. BGN 6:138.<br />

T. Tsuchiya. 1980. BGN 10:127.<br />

J.D. Franckowiak. 1997. BGN 26:328.<br />

J.D. Franckowiak. 2007. BGN 37:267.<br />

267


Barley Genetics Newsletter (2007) 37: 188-301<br />

BGS 396, Shrunken endosperm genetic 6, seg6<br />

Stock number: BGS 396<br />

Locus name: Shrunken endosperm genetic 6<br />

Locus symbol: seg6<br />

Previous nomenclature and gene symbolization:<br />

Shrunken endosperm = se6 (3).<br />

Inheritance:<br />

Monofactorial recessive (2).<br />

Located in chromosome 3HL (4).<br />

Description:<br />

Seed size is reduced, but the degree reduction is affected by environment. Seed<br />

weights of 25, 50, and 75% of normal are reported for plants grown in the field in<br />

Arizona, in the field in Montana, and in the greenhouse in Arizona, <strong>US</strong>A,<br />

respectively (4). Pollen mother cell meiosis and pollen fertility are normal. Seed<br />

from seg6.g plants can be used to establish stands under field conditions (4).<br />

Light microscopy revealed that seg6 mutants exhibited premature termination of<br />

grain filling because of the necrosis and crushing of the chalazal and nucellar<br />

projection of the pericarp early during grain filling (1).<br />

Origin of mutant:<br />

A spontaneous mutant in Ingrid (CIho 10083) (3).<br />

Mutational events:<br />

seg6.f in an unknown hybrid, seg6.g in Ingrid (3).<br />

Mutant used for description and seed stocks:<br />

seg6.g in Ingrid (GSHO 2467); seg6.g in Bowman (PI 483237)*4 (GSHO 1975).<br />

References:<br />

1. Felker, F.C., D.M. Peterson, and O.E. Nelson. 1985. Anatomy of immature<br />

grains of eight material effect shrunken endosperm barley mutants. Amer. J. Bot.<br />

72:248-256.<br />

2. Ramage, R.T. 1983. Chromosome location of shrunken endosperm mutants<br />

seg6g and seg8k. Barley Genet. Newsl. 13:64-65.<br />

3. Ramage, R.T., and R.F. Eslick. 1975. BGS 396, Shrunken endosperm, xenia,<br />

se6. Barley Genet. Newsl. 5:114.<br />

4. Ramage, R.T., and J.F. Scheuring. 1976. Shrunken endosperm mutants seg6<br />

and seg7. Barley Genet. Newsl. 6:59-60.<br />

Prepared:<br />

R.T. Ramage and R.F. Eslick. 1975. BGN 5:114.<br />

Revised:<br />

R.T. Ramage and R.F. Eslick. 1976. BGN 6:141.<br />

T. Tsuchiya. 1980. BGN 10:130.<br />

R.T. Ramage. 1983. BGN 13:115.<br />

J.D. Franckowiak. 1997. BGN 26:344.<br />

J.D. Franckowiak. 2007. BGN 37:268.<br />

268


Barley Genetics Newsletter (2007) 37: 188-301<br />

BGS 397, Shrunken endosperm genetic 7, seg7<br />

Stock number: BGS 397<br />

Locus name: Shrunken endosperm genetic 7<br />

Locus symbol: seg7<br />

Previous nomenclature and gene symbolization:<br />

Shrunken endosperm = se7 (4).<br />

Inheritance:<br />

Monofactorial recessive (3).<br />

Location is unknown.<br />

Description:<br />

Seed size is reduced less than other seg mutants, but the degree reduction is<br />

affected by environment. Seed weights of 40, 75, and 90% of normal are<br />

reported for plants grown in the field in Arizona, in the field in Montana, and in the<br />

greenhouse in Arizona, <strong>US</strong>A, respectively (4). Pollen mother cell meiosis and<br />

pollen fertility are normal. Seed from seg7.h plants can be used to establish<br />

stands under field conditions (4). The shrunken endosperm trait was very difficult<br />

to detect in the crosses to Bowman (2). Light microscopy revealed that seg7<br />

mutants exhibited premature termination of grain filling because of the necrosis<br />

and crushing of the chalazal and nucellar projection of the pericarp early during<br />

grain filling (1).<br />

Origin of mutant:<br />

A spontaneous mutant in Ingrid (CIho 10083) (3).<br />

Mutational events:<br />

seg7.h in Ingrid (4).<br />

Mutant used for description and seed stocks:<br />

seg7.h in Ingrid (GSHO 2468); seg7.h in Bowman (PI 483237)*3 (GSHO 2352).<br />

References:<br />

1. Felker, F.C., D.M. Peterson, and O.E. Nelson. 1985. Anatomy of immature<br />

grains of eight material effect shrunken endosperm barley mutants. Amer. J. Bot.<br />

72:248-256.<br />

2. Franckowiak, J.D. (Unpublished).<br />

3. Ramage, R.T., and R.F. Eslick. 1975. BGS 397, Shrunken endosperm, xenia,<br />

se7. Barley Genet. Newsl. 5:115.<br />

4. Ramage, R.T., and J.F. Scheuring. 1976. Shrunken endosperm mutants seg6<br />

and seg7. Barley Genet. Newsl. 6:59-60.<br />

Prepared:<br />

R.T. Ramage and R.F. Eslick. 1975. BGN 5:115.<br />

Revised:<br />

R.T. Ramage and R.F. Eslick. 1976. BGN 6:142.<br />

T. Tsuchiya. 1980. BGN 10:131.<br />

J.D. Franckowiak. 1997. BGN 26:345.<br />

J.D. Franckowiak. 2007. BGN 37:269.<br />

269


Barley Genetics Newsletter (2007) 37: 188-301<br />

Stock number: BGS 437<br />

Locus name: Eceriferum-zt<br />

Locus symbol: cer-zt<br />

BGS 437, Eceriferum-zt, cer-zt<br />

Previous nomenclature and gene symbolization:<br />

None.<br />

Inheritance:<br />

Monofactorial recessive (3).<br />

Location in chromosome 2HS (1), in bin 2H-01 about 16.8 distal from SSR<br />

marker Bmac0134 (1).<br />

Description:<br />

Surface wax coating on the spike appears slightly reduced (wax code + ++ ++)<br />

(3). The reduction in the surface wax seemed greater in plants selected from the<br />

backcrosses to Bowman (wax code +/- ++ ++).<br />

Origin of mutant:<br />

An ethyl methanesulfonate and neutron induced mutant in Foma (CIho 11333)<br />

(2).<br />

Mutational events:<br />

cer-zt.389 (NGB 111276), -zt.479 (NGB 111367) in Foma (2).<br />

Mutant used for description and seed stocks:<br />

cer-zt.389 in Foma (GSHO 1527); cer-zt.389 in Bowman (PI 483237)*2 (GSHO<br />

2205).<br />

References:<br />

1. Dahleen, L.S., and J.D. Franckowiak. 2006. SSR linkages to eight additional<br />

morphological marker traits. Barley Genet. Newsl. 36:12-16.<br />

2. Lundqvist, U. (Unpublished).<br />

3. Lundqvist, U., and D. von Wettstein. 1971. Stock list for the eceriferum<br />

mutants. Barley Genet. Newsl. 1:97-102.<br />

Prepared:<br />

U. Lundqvist. 1975. BGN 5:155.<br />

Revised:<br />

U. Lundqvist and J.D. Franckowiak. 1997. BGN 26:389.<br />

U. Lundqvist and J.D. Franckowiak. 2007. BGN 37:270.<br />

270


Barley Genetics Newsletter (2007) 37: 188-301<br />

Stock number: BGS 449<br />

Locus name: Eceriferum-yf<br />

Locus symbol: cer-yf<br />

BGS 449, Eceriferum-yf, cer-yf<br />

Previous nomenclature and gene symbolization:<br />

None.<br />

Inheritance:<br />

Monofactorial recessive (3).<br />

Location is unknown.<br />

Description:<br />

Surface wax coating on the leaf blade is reduced (wax code ++ ++ +) (3). In the<br />

Bowman backcross-derived line, mutant plants have pale green leaves, heading<br />

is delayed by several days, and plants are slightly shorter (1).<br />

Origin of mutant:<br />

A neutron induced mutant in Bonus (PI 189763) (2).<br />

Mutational events:<br />

cer-yf.652 (NGB 111540), -yf.804 (NGB 111692) in Bonus (3).<br />

Mutant used for description and seed stocks:<br />

cer-yf.652 in Bonus (GSHO 1539); cer-yf.652 in Bowman (PI 483237)*3 (GSHO<br />

2212).<br />

References:<br />

1. Franckowiak, J.D. (Unpublished).<br />

2. Lundqvist, U. (Unpublished).<br />

3. Lundqvist, U., and D. von Wettstein. 1973. Stock list for the eceriferum<br />

mutants II. Barley Genet. Newsl. 3:110-112.<br />

Prepared.<br />

U. Lundqvist. 1975. BGN 5:167.<br />

Revised:<br />

U. Lundqvist and J.D. Franckowiak. 1997. BGN 26:401.<br />

Revised:<br />

U. Lundqvist. 2007. BGN 37:271.<br />

271


Barley Genetics Newsletter (2007) 37: 188-301<br />

BGS 455, Shrunken endosperm genetic 8, seg8<br />

Stock number: BGS 455<br />

Locus name: Shrunken endosperm genetic 8<br />

Locus symbol: seg8<br />

Previous nomenclature and gene symbolization:<br />

None.<br />

Inheritance:<br />

Monofactorial recessive (2).<br />

Located in chromosome 7H [1] (4).<br />

Description:<br />

Seed size is reduced and maturity is delayed. Seed weights of 24, 23, and 27%<br />

of normal are reported for plants grown in the field in Arizona, in the field in<br />

Montana, and in the greenhouse in Arizona, <strong>US</strong>A, respectively (4). Pollen mother<br />

cell meiosis and pollen fertility are normal. Seed from seg8.k plants can be used<br />

to establish stands under field conditions (4). Endosperms of seg8 developed as<br />

two-filled lateral lobes with no central endosperm lobe, resulting in a distinct<br />

dorsal crease (1).<br />

Origin of mutant:<br />

A spontaneous mutant in 60Ab1810-53 (CIho 15686) (3).<br />

Mutational events:<br />

seg8.k in 60Ab1810-53 (3, 4).<br />

Mutant used for description and seed stocks:<br />

seg8.k in 60Ab1810-53 (GSHO 2469); seg8.k in Bowman (PI 483237)*5 (GSHO<br />

1854).<br />

References:<br />

1. Felker, F.C., D.M. Peterson, and O.E. Nelson. 1985. Anatomy of immature<br />

grains of eight material effect shrunken endosperm barley mutants. Amer. J. Bot.<br />

72:248-256.<br />

2. Ramage, R.T. 1983. Chromosome location of shrunken endosperm mutants<br />

seg6g and seg8k. Barley Genet. Newsl. 13:64-65.<br />

3. Ramage, R.T., and C.L. Crandall. 1981. BGS 453, Shrunken endosperm,<br />

seg8. Barley Genet. Newsl. 11:103.<br />

4. Ramage, R.T., and C.L. Crandall. 1981. Shrunken endosperm mutant seg8.<br />

Barley Genet. Newsl. 11:34.<br />

Prepared:<br />

R.T. Ramage and C.L. Crandall. 1981. BGN 11:103 as BGS 453.<br />

Revised:<br />

R.T. Ramage. 1983. BGN 13:116 as BGS 453.<br />

T. Tsuchiya. 1983. BGN 13:117. BGS number changed to BGS 455.<br />

J.D. Franckowiak. 1997. BGN 26:405.<br />

J.D. Franckowiak. 2007. BGN 37:272.<br />

272


Barley Genetics Newsletter (2007) 37: 188-301<br />

Stock number: BGS 474<br />

Locus name: Laxatum-a<br />

Locus symbol: lax-a<br />

BGS 474, Laxatum-a, lax-a<br />

Previous nomenclature and gene symbolization:<br />

Laxatum-01 = lax-01 (3, 6, 11).<br />

Laxatum-a = lax-a 01 (12).<br />

Inheritance:<br />

Monofactorial recessive (7, 11).<br />

Located in chromosome 5HL [7L] (7, 10), about 2.4 cM proximal from the ari-e<br />

(breviaristatum-e) locus (5, 14), and about 3.1 cM from the ert-g (erectoides-g)<br />

locus (5, 12, 13).<br />

Description:<br />

Florets have five anthers with two developing from transformed lodicules (3, 15);<br />

however, the extra anthers are deficient in having two rather than four<br />

microsporangia (1). The grain is thin and angular and caryopses are exposed<br />

between the lemma and palea. The awn has a very wide base, without a distinct<br />

notch in the lemma attachment region. Rachis internodes are 13% longer than<br />

normal. Tillers arise at oblique angles giving isolated plants an appearance of a<br />

tufty growth habit (6). Treatment of leaves after tillering with GA3 increases rachis<br />

internode length (15).<br />

Origin of mutant:<br />

A gamma-ray induced mutant in Bonus (PI 189763) (2, 6, 9).<br />

Mutational events:<br />

lax-a.01 (NGB 116334), -a.4 (NGB 116338), -a.8 (NGB 116342), -a.20 (NGB<br />

116354), -a.37 (NGB 116372), -a.39 (NGB 116374), -a.54 (NGB 116388) in<br />

Bonus (6, 9); lax-a.92 (NGB 116425, NGB 116426) in Bonus (9); lax-a.208 (NGB<br />

116435, NGB 116436), -a.218 (NGB 116446), -a.222 (NGB 116450), -a.229<br />

(NGB 116457, NGB 116458), -a.249, -a.256 (NGB 116483), -a.278 (NGB<br />

116503), -a.286 (NGB 116510) in Foma (CIho 11333) (6, 8); -a.353 (NGB<br />

116559, NGB 116560), -a.369 (NGB 116578, 116579), -a.373 (NGB 116583), -<br />

a.398 (NGB 116608), -a.405 (NGB 116613), -a.406 (NGB 116614) in Kristina<br />

(NGB 14661) (7); -a.413 (NGB 116621, NGB 116622), -a.434 (NGB 116647), -<br />

a.437 (NGB 116650), -a.444 (NGB 116658, NGB 116659), -a.448 (NGB<br />

116664), -a.450 (NGB 116667, NGB 116668), -a.455 (NGB 116674, NGB<br />

116675), -a.472 (NGB 116695) in Bonus (8); a lax-a mutant (Mut 2100/61) in<br />

Proctor (PI 280420) (4).<br />

Mutant used for description and seed stocks:<br />

lax-a.8 in Bonus (GSHO 1775); lax-a.8 in Bowman (PI 483237)*7 (GSHO 2103).<br />

References:<br />

1. Bossinger, G., W. Rohde W, U. Lundqvist U, and F. Salamini F. 1992.<br />

Genetics of barley development: mutant phenotypes and molecular aspects. p.<br />

231-264. In P.R. Shewry (ed.) Barley: Genetics, Biochemistry, Molecular Biology<br />

and Biotechnology. CAB International, Oxford.<br />

2. Ehrenberg, L., Å. Gustafsson, and U. Lundqvist. 1961. Viable mutants induced<br />

in barley by ionizing radiations and chemical mutagens. Hereditas 47:257-278.<br />

3. Gustafsson, Å., A. Hagberg, U. Lundqvist, and G. Persson. 1969. A proposed<br />

system of symbols for the collection of barley mutants at Svalöv. Hereditas<br />

62:409-414.<br />

273


Barley Genetics Newsletter (2007) 37: 188-301<br />

4. Häuser, H., and G. Fischbeck. 1972. Translocations and genetic analysis of<br />

other mutants. BGN 2:28-29.<br />

5. Jensen, J. 1981. Construction of a barley chromosome 7 linkage map. p. 927-<br />

939. In M.J.C. Asher, R.P. Ellis, A.M. Hayter, and R.N.H. Whitehouse (eds.)<br />

Barley Genetics IV. Proc. Fourth Int. Barley Genet. Symp., Edinburgh. Edinburgh<br />

Univ. Press, Edinburgh.<br />

6. Larsson, H.E.B. 1985. Morphological analysis of laxatum barley mutants.<br />

Hereditas 103:239-253.<br />

7. Larsson, H.E.B. 1985. Linkage studies with genetic markers and some<br />

laxatum barley mutants. Hereditas 103:269-279.<br />

8. Lundqvist, U. (Unpublished).<br />

9. Persson, G. 1969. An attempt to find suitable genetic markers for the dense<br />

ear loci in barley II. Hereditas 63:1-28.<br />

10. Persson, G., and A. Hagberg. 1965. Localization of nine induced mutations in<br />

the barley chromosomes. Barley Newsl. 8:52-54.<br />

11. Persson, G., and A. Hagberg. 1969. Induced variation in a quantitative<br />

character in barley. Morphology and cytogenetics of erectoides mutants.<br />

Hereditas 61:115-178.<br />

12. Søgaard, B. 1974. Three-point tests on chromosome 1 and 7. BGN 4:70-73.<br />

13. Søgaard, B. 1977. The localization of eceriferum loci in barley. IV. Three<br />

point tests of genes on chromosome 7 in barley. Carlsberg Res. Commun. 42:35-<br />

43.<br />

14. Stoy, V., and A. Hagberg. 1967. Effects of growth regulators on ear density<br />

mutants in barley. Hereditas 58:359-384.<br />

15. Wettstein, D. von, Å. Gustafsson, and L. Ehrenberg. 1959.<br />

Mutationsforschung und Züchtung. p. 7-50. In Arbeitsgemeinschaft für Forschung<br />

des Landes Nordrhein-Westfalen, Heft 73. Westdeutscher Verlag Köln und<br />

Opladen.<br />

Prepared:<br />

H.E.B. Larsson and U. Lundqvist. 1986. BGN 16:57.<br />

Revised:<br />

U. Lundqvist and J.D. Franckowiak. 1997. BGN 26:421-422.<br />

Revised:<br />

U. Lundqvist and J.D. Franckowiak. 2007. BGN 37:273-274.<br />

274


Barley Genetics Newsletter (2007) 37: 188-301<br />

BGS 516, Reaction to Septoria passerinii 2, Rsp2<br />

Stock number: BGS 516<br />

Locus name: Reaction to Septoria passerinii 2<br />

Locus symbol: Rsp2<br />

Previous nomenclature and gene symbolization:<br />

Resistance to Septoria passerinii Sacc = Sep2 (1, 2).<br />

Inheritance:<br />

Monofactorial incomplete dominant (2).<br />

Location in chromosome 1HS [5S] (3), about 3.9 cM from the Rsp3 (reaction to<br />

Septoria passerinii 3) locus (2), cosegregation with SCAR marker E-ACT/M-CAA-<br />

170a and close to the Rsp3 locus (3), about 17.6 cM proximal from marker RFLP<br />

Act8 (3).<br />

Description:<br />

The Rsp2.b gene conditions a high level of resistance to a single spore culture of<br />

Septoria passerinii isolated in Minnesota, <strong>US</strong>A. Pycnidia are observed in some,<br />

but not all lesions, on all F1 plants (2).<br />

Origin of mutant:<br />

Natural occurrence in accession CIho 4780 (PI 70837) (2).<br />

Mutational events:<br />

Rsp2.b in PI 70837.<br />

Mutant used for description and seed stocks:<br />

Rsp2.b in PI 70837 (GSHO 2511).<br />

References:<br />

1. Moseman, J.G. 1972. Report on genes for resistance to pests. Barley Genet.<br />

Newsl. 2:145-147.<br />

2. Rasmusson, D.C., and W.E. Rogers. 1963. Inheritance of resistance to<br />

septoria in barley. Crop Sci. 3:161-163.<br />

3. Zhong, S., H. Toubia-Rahme, B.J. Steffenson, and K.P. Smith. 2006.<br />

Molecular mapping and marker-assisted selection of genes for septoria speckled<br />

leaf blotch resistance in barley. Phytopathology 96:993-999.<br />

Prepared:<br />

D.C. Rasmusson. 1988. BGN 18:85 as BGS 466.<br />

Revised:<br />

J.D. Franckowiak. 1997. BGN 26:442.<br />

J.D. Franckowiak. 2007. BGN 37:275.<br />

275


Barley Genetics Newsletter (2007) 37: 188-301<br />

BGS 517, Reaction to Septoria passerinii 3, Rsp3<br />

Stock number: BGS 517<br />

Locus name: Reaction to Septoria passerinii 3<br />

Locus symbol: Rsp3<br />

Previous nomenclature and gene symbolization:<br />

Resistance to Septoria passerinii Sacc = Sep3 (1, 2).<br />

Inheritance:<br />

Monofactorial incomplete dominant (2).<br />

Location in chromosome 1HS [5S] (3), about 3.9 cM from the Rsp2 (reaction to<br />

Septoria passerinii 2) locus (2), cosegregation with SCAR marker E-ACT/M-CAA-<br />

170a and close to the Rsp2 locus (3), about 17.6 cM proximal from marker RFLP<br />

Act8 (3).<br />

Description:<br />

The Rsp3.c gene conditions a high level of resistance to a single spore culture of<br />

Septoria passerinii isolated in Minnesota, <strong>US</strong>A. Infection occurs on F1 seedlings,<br />

but is limited to a few lesions (2).<br />

Origin of mutant:<br />

Natural occurrence in selection II-51-43 from a Feebar/Kindred cross (CIho<br />

10644) (2).<br />

Mutational events:<br />

Rsp3.c in CIho 10644.<br />

Mutant used for description and seed stocks:<br />

Rsp3.c in CIho 10644 (GSHO 2512).<br />

References:<br />

1. Moseman, J.G. 1972. Report on genes for resistance to pests. Barley Genet.<br />

Newsl. 2:145-147.<br />

2. Rasmusson, D.C., and W.E. Rogers. 1963. Inheritance of resistance to<br />

septoria in barley. Crop Sci. 3:161-163.<br />

3. Zhong, S., H. Toubia-Rahme, B.J. Steffenson, and K.P. Smith. 2006.<br />

Molecular mapping and marker-assisted selection of genes for septoria speckled<br />

leaf blotch resistance in barley. Phytopathology 96:993-999.<br />

Prepared:<br />

D.C. Rasmusson. 1988. BGN 18:86 as BGS 467.<br />

Revised:<br />

J.D. Franckowiak. 1997. BGN 26:443.<br />

J.D. Franckowiak. 2007. BGN 37:276.<br />

276


Barley Genetics Newsletter (2007) 37: 188-301<br />

Stock number: BGS 518<br />

Locus name: Semidwarf 1<br />

Locus symbol: sdw1<br />

BGS 518, Semidwarf 1, sdw1<br />

Previous nomenclature and gene symbolization:<br />

Denso dwarf = denso (5, 12).<br />

Inheritance:<br />

Monofactorial recessive (5, 13), although some F1's tend to be intermediate in<br />

height compared to their parents (1, 8).<br />

Location in chromosome 3HL (2, 9), probably proximal from the gsh2 (glossy<br />

sheath 2) locus, near RFLP marker PSR170 (9), in bin 3H-11 (7), near RFLP<br />

marker R1545 (16).<br />

Description:<br />

Plants homozygous for the sdw1.a gene range from 10 to 30 cm shorter than<br />

normal sibs, with expression partial dependent on environment (1, 12, 14). Spike<br />

length is variable, but fully as long as normal barley. The stock used for<br />

description of the sdw1.a gene, M21, has the short straw and long spike of the<br />

original 'Jotun Mutant' as well as a large culm diameter from its parent 'Vantage'<br />

(1, 14). The semidwarf mutants, 'Diamant' and ‘Abed Denso’, are alleles at the<br />

sdw1 locus (5, 10). Alleles at the sdw1 locus are associated with semiprostrate<br />

juvenile growth (5, 12), delayed maturity (4, 6, 12, 15), and reduced malt quality<br />

(4, 6, 12). The sdw1 mutants are GA sensitive (3, 16), and they are very likely<br />

mutants in an orthologue of the rice sd1 gene (16), which encodes a GA-oxidase<br />

that produces lower levels of GA and therefore causes the dwarf phenotype (11).<br />

The original cultivar ‘Trumpf’ was also marketed in the United Kingdom as<br />

‘Triumph’.<br />

Origin of mutant:<br />

An X-ray induced mutant in the Norwegian cultivar Jotun (PI 467357) isolated as<br />

Jotun 22 by Knut Mikaelsen (1, 8).<br />

Mutational events:<br />

sdw1.a in Jotun (66/86, GSHO 1414) (14); sdw1.c (denso) in Abed Denso (PI<br />

361639) (5); sdw1.d (Diamant) in Valticky (5); sdw1.e (Risø 9265) in Bomi (PI<br />

43371) (5).<br />

Mutant used for description and seed stocks:<br />

sdw1.a in M21 (CIho 15481, GSHO 2513) from the cross Jotun Mutant/Kindred//<br />

Vantage (13); sdw1.d in Trumpf (Triumph, PI 548762, GSHO 2465); sdw1.a from<br />

a Jotun derivative in Bowman (PI 483237)*7 (GSHO 1978); sdw1.d from Trumpf<br />

in Bowman*4 (GSHO 1979).<br />

References:<br />

1. Ali, M.A.M., O. Okiror, and D.C. Rasmusson. 1978. Performance of semidwarf<br />

barley. Crop Sci. 18:418-422.<br />

2. Barau, U.M., K.J. Chambers, W.T.B. Thomas, C.A. Hackett, V. Lea, P. Jack,<br />

B.P. Forster, R. Waugh, and W. Powell. 1993. Molecular mapping of genes<br />

determining height, time to heading, and growth habit in barley (Hordeum<br />

vulgare). Genome 36:1080-1087.<br />

3. Boulger, M.C., R.G. Sears, and W.E. Kronstad. 1982. An investigation of the<br />

association between dwarfing sources and gibberellic acid response in barley. p.<br />

550-553. In M.J.C. Asher, R.P. Ellis, A.M. Hayter, and R.N.H. Whitehouse (eds.)<br />

277


Barley Genetics Newsletter (2007) 37: 188-301<br />

Barley Genetics IV. Proc. Fourth Int. Barley Genet. Symp., Edinburgh. Edinburgh<br />

Univ. Press, Edinburgh.<br />

4. Foster, A.E., and A.P. Thompson. 1987. Effects of a semidwarf gene from<br />

Jotun on agronomic and quality traits of barley. p. 979-982. In S. Yasuda and T.<br />

Konishi (eds.) Barley Genetics V., Proc. Fifth Int. Barley Genet. Symp.,<br />

Okayama, 1986. Sanyo Press Co., Okayama.<br />

5. Haahr, V., and D. von Wettstein. 1976. Studies of an induced, high-yielding<br />

dwarf-mutant of spring barley. p. 215-218. In H. Gaul (ed.) Barley Genetics III.,<br />

Proc. Third Int. Barley Genet. Symp., Garching, 1975. Verlag Karl Thiemig,<br />

München.<br />

6. Hellewell, K.B., D.C. Rasmusson, M. Gallo-Meagher. 2000. Enhancing yield of<br />

semidwarf barley. Crop Sci. 40:352-358.<br />

7. Kleinhofs, A. 2006. Integrating molecular and morphological/physiological<br />

marker maps. Barley Genet. Newsl. 36:66-82.<br />

8. Lambert, J.W., and M. Shafi. 1959. Inheritance and heritability of height in<br />

three barley crosses. Barley Newsl. 3:7-8. (Abstr.)<br />

9. Laurie, D.A., N. Pratchett, C. Romero, E. Simpson, and J.W. Snape. 1993.<br />

Assignment of the denso dwarfing gene to the long arm of chromosome 3 (3H) of<br />

barley by use of RFLP markers. Plant Breed. 111:198-203.<br />

10. Mickelson, H.R., and D.C. Rasmusson. 1994. Genes for short stature in<br />

barley. Crop Sci. 34:1180-1183.<br />

11. Murai, M., T. Komazaki, and S. Sato. 2004. Effects of sd1 and Ur1 (Undulate<br />

rachis – 1) on lodging resistance and related traits in rice. Breed. Science 54:<br />

333-340.<br />

12. Powell, W., P.D.J. Caligari, W.T.B. Thomas, and J.L. Jinks. 1985. The effects<br />

of major genes on quantitatively varying characters in barley. 2. The denso and<br />

day length response loci. Heredity 54:349-352.<br />

13. Powell, W., P.D.J. Caligari, W.T.B. Thomas, and J.L. Jinks. 1991. The effects<br />

of major genes on quantitatively varying characters in barley. 4. The GPert and<br />

denso loci and quality characters. Heredity 66:381-389.<br />

14. Rasmusson, D.C., E.E. Banttari, and J.W. Lambert. 1973. Registration of<br />

M21 and M22 semidwarf barley. Crop Sci. 13:777.<br />

15. Yin, X., P.C. Struik, F.A. van Eeuwijk, P. Stam, and J. Tang. 2005. QTL<br />

analysis and QTL-based prediction of flowering phenology in recombinant inbred<br />

lines of barley. J. Exp. Bot. 56 (413):967-976.<br />

16. Zhang, J., X. Yang, P. Moolhuijzen, C. Li, M. Bellgard, R. Lance, and R.<br />

Appels. 2005. Towards isolation of the barley green revolution gene.<br />

Proceedings of Australian Barley Technical Symposium 2005.<br />

http://www.cdesign.com.au/proceedings_abts2005/posters%20(pdf)/poster_li.pdf.<br />

Prepared:<br />

D.C. Rasmusson. 1988. BGN 18:87 as BGS 468.<br />

Revised:<br />

J.D. Franckowiak. 1997. BGN 26:444-445.<br />

J.D. Franckowiak. 2007. BGN 37:277-278.<br />

278


Barley Genetics Newsletter (2007) 37: 188-301<br />

Stock number: BGS 546<br />

Locus name: Intermedium spike-k<br />

Locus symbol: int-k<br />

BGS 546, Intermedium spike-k, int-k<br />

Previous nomenclature and gene symbolization:<br />

None.<br />

Inheritance:<br />

Monofactorial recessive (3).<br />

Located in chromosome 7H [1] (2) in the centromeric region closely linked to<br />

markers Bmag0217 and Bmac0162 in bins 6 to 7 (2).<br />

Description:<br />

The spike is short and dense in the original mutant. Lateral spikelets are<br />

enlarged and the apex is pointed, and they occasionally have a short awn. Seed<br />

set does not occur in lateral spikelets and the central spikelets are semi-sterile<br />

(3). Plants of the original stock have a dense coating of surface waxes. In the<br />

Bowman backcross-derived line, plants are small and weak (about 1/2 normal<br />

height) and have short spikes (1/2 normal), reduced awn length (3/4 normal), and<br />

very poor seed set. Awns of plants in the derived line are semi-rough, but F1<br />

hybrids with Bowman have semismooth awns (1).<br />

Origin of mutant:<br />

An ethyl methanesulfonate induced mutant in Kristina (NGB 1500) (3).<br />

Mutational events:<br />

int-k.47 in Kristina (3).<br />

Mutant used for description and seed stocks:<br />

in-k.47 in Kristina (GSHO 1770, NGB 115465); int-k.47 in Bowman (PI<br />

483237)*6.<br />

References:<br />

1. Franckowiak, J.D. (Unpublished).<br />

2. Dahleen, L.S., and J.D. Franckowiak. 2006. SSR Linkages to Eight Additional<br />

Morphological Marker Traits. Barley Genet. Newsl. 36:12-16.<br />

3. Lundqvist, U., and A. Lundqvist. 1988. Induced intermedium mutants in barley:<br />

origin, morphology and inheritance. Hereditas 108:13-26.<br />

Prepared:<br />

U. Lundqvist and J.D. Franckowiak. 1997. BGN 26:472.<br />

Revised:<br />

U. Lundqvist and J.D. Franckowiak. 2007. BGN 37:279.<br />

279


Barley Genetics Newsletter (2007) 37: 188-301<br />

Stock number: BGS 547<br />

Locus name: Intermedium spike-m<br />

Locus symbol: int-m<br />

BGS 547, Intermedium spike-m, int-m<br />

Previous nomenclature and gene symbolization:<br />

None.<br />

Inheritance:<br />

Monofactorial recessive (4).<br />

Location is unknown.<br />

Description:<br />

The spike is very short and has irregular rachis internode lengths. Lateral<br />

spikelets are enlarged and pointed, but they do not set seed. Spikelet density at<br />

the base of the spike is increased. Rachis internodes at the tip of the spike are<br />

very short, and the spike appears to have two or three fused or fasciated terminal<br />

spikelets. Tillering of int-m plants is increased (1, 4) and heading is slightly earlier<br />

(4).<br />

Origin of mutant:<br />

A sodium azide induced mutant in Bonus (PI 189763) (3).<br />

Mutational events:<br />

int-m.85 (NGB 115503) in Bonus (3); int-m.la (GSHO 1773) in Lamont (PI<br />

512036) (2).<br />

Mutant used for description and seed stocks:<br />

int-m.85 in Bonus (GSHO 1772); int-m.85 in Bowman (PI 483237)*7 (GSHO<br />

2273); int-m.la in Bowman (PI 483237)*5 (GSHO 2274).<br />

References:<br />

1. Babb, S., and G.J. Muehlbauer. 2003. Genetic and morphological<br />

characterization of the barley uniculm 2 (cul2) mutant. Theor. Appl. Genet.<br />

106:846-857.<br />

2. Franckowiak, J.D. (Unpublished).<br />

3. Lundqvist, U. (Unpublished).<br />

4. Lundqvist, U., and A. Lundqvist. 1988. Induced intermedium mutants in barley:<br />

origin, morphology and inheritance. Hereditas 108:13-26.<br />

Prepared:<br />

U. Lundqvist and J.D. Franckowiak. 1997. BGN 26:473.<br />

Revised:<br />

U. Lundqvist and J.D. Franckowiak. 2007. BGN 37:280.<br />

280


Barley Genetics Newsletter (2007) 37: 188-301<br />

Stock number: BGS 566<br />

Locus name: Erectoides-t<br />

Locus symbol: ert-t<br />

BGS 566, Erectoides-t, ert-t<br />

Previous nomenclature and gene symbolization:<br />

Erectoides-55 = ert-55 (7).<br />

Brachytic 4 = br4 (10).<br />

Brachytic-g = brh.g (3).<br />

Brachytic 3 = brh3 (4).<br />

Brachytic-i = brh.i (3).<br />

Brachytic-y = brh.y (3).<br />

Inheritance:<br />

Monofactorial recessive (3, 5, 7, 9).<br />

Located in chromosome 2HS (2), approximately 11.4 cM distal from SSR marker<br />

Bmac0134 (2), near the boundary between bins 2H-01 and 2H-02 (2).<br />

Description:<br />

Spikes are semicompact, rachis internode length is about 2.7 mm in the original<br />

mutant, and culm length is about 2/3 of normal. These phenotypic traits plus<br />

short awns are inherited together (9). Based on general appearance of the<br />

plants, ert-t can be placed in the brachytic class of semidwarf mutants (3, 10).<br />

Awns are about 2/3 normal length and curled or coiled near their tips. The ertt.55<br />

mutant has a short seedling leaves and is sensitive to gibberellic acid<br />

treatment (1). In the Bowman backcross-derived lines, peduncles are about 2/3<br />

normal, rachis internodes are slightly short, and lodging is reduced. Kernels are<br />

slightly lighter and yields are about 1/2 normal (2).<br />

Origin of mutant:<br />

An X-ray induced mutant in Bonus (PI 189763) (7).<br />

Mutational events:<br />

ert-t.55 in Bonus (NGB 112654) (7); brh3.g (17:10:1, DWS1002), brh3.h (17:11:3,<br />

DWS1003), brh3.i (17:12:1, DWS1004) in Birgitta (NGB 1494, NGB 14667) (2, 3,<br />

4, 8); brh3.y (10001, DWS1230, GSHO 1688) in Bido (PI 399485) (2, 3, 6).<br />

Mutant used for description and seed stocks:<br />

ert-t.55 in Bonus (GSHO 494); ert-t.55 in Bowman (PI 483237)*7 (GSHO 2257);<br />

brh3.g in Birgitta (GSHO 1672); brh3.g in Bowman*7 (GSHO 2167); brh3.y in<br />

Bowman*6 (GSHO 2178).<br />

References:<br />

1. Börner, A. 1996. GA response in semidwarf barley. Barley Genet. Newsl.<br />

25:24-26.<br />

2. Dahleen, L.S., L.J. Vander Wal, and J.D. Franckowiak. 2005. Characterization<br />

and molecular mapping of genes determining semidwarfism in barley. J. Hered.<br />

96:654-662.<br />

3. Franckowiak, J.D. 1995. The brachytic class of semidwarf mutants in barley.<br />

BGN 24:56-59.<br />

4. Franckowiak. 2002. BGS 631, Brachytic 3, brh3. BGN 32:132.<br />

5. Franckowiak, J.D., and A. Pecio. 1992. Coordinator’s report: Semidwarf<br />

genes. A listing of genetic stocks. Barley Genet. Newsl. 21:116-127.<br />

6. Gaul, H. 1986. (Personal communications).<br />

7. Hagberg, A., Å. Gustafsson, and L. Ehrenberg. 1958. Sparsely contra densely<br />

ionizing radiations and the origin of erectoid mutants in barley. Hereditas 44:523-<br />

281


Barley Genetics Newsletter (2007) 37: 188-301<br />

530.<br />

8. Lehmann, L.C. 1985. (Personal communications).<br />

9. Persson, G., and A. Hagberg. 1969. Induced variation in a quantitative<br />

character in barley. Morphology and cytogenetics of erectoides mutants.<br />

Hereditas 61:115-178.<br />

10. Tsuchiya, T. 1976. Allelism testing of genes between brachytic and<br />

erectoides mutants. Barley Genet. Newsl. 6:79-81.<br />

Prepared:<br />

U. Lundqvist and J.D. Franckowiak. 1997. BGN 26:492.<br />

J.D. Franckowiak. 2002. BGS 631, Brachytic 3, brh3. BGN 32:132.<br />

Revised:<br />

J.D. Franckowiak and L.S. Dahleen. 2007. BGN 37:281-282.<br />

282


Barley Genetics Newsletter (2007) 37: 188-301<br />

BGS 577, Reaction to Schizaphis graminum 2, Rsg2<br />

Stock number: BGS 577<br />

Locus name: Reaction to Schizaphis graminum 2 (greenbug)<br />

Locus symbol: Rsg2<br />

Previous nomenclature and gene symbolization:<br />

None.<br />

Inheritance:<br />

Monofactorial dominant (1).<br />

Location is unknown.<br />

Description:<br />

Resistant seedlings infested with greenbugs (aphids) are not killed or severely<br />

stunted by a buildup of the greenbug population, but susceptible seedlings are<br />

killed or severely stunted (1, 4). The resistance provided by PI 426756 (4 to 5<br />

readings on a 1 to 9 scale) to most S. graminum biotypes was less effective than<br />

that provided the Rsg1.a gene in Post 90 (PI 549081) (2 to 3 readings) (3). PI<br />

426756 was confirmed to provide resistance (2 to 3 readings) to the TX1 isolate<br />

of S. graminum, which produces a susceptible reaction (9 reading) on Post 90<br />

(2).<br />

Origin of mutant:<br />

Natural occurrence in Joa (PI 426756) (1, 4).<br />

Mutational events:<br />

Rsg2.b in PI 426756 (1).<br />

Mutant used for description and seed stocks:<br />

Rsg2.b in PI 426756 (GSHO 2513).<br />

References:<br />

1. Merkle, O.G., J.A. Webster, and G.H. Mogen. 1987. Inheritance of a second<br />

source of greenbug resistance in barley. Crop Sci. 27:241-243.<br />

2. Porter, D.R., J.D. Burd, and D.W. Mornhinweg. 2007. Differentiating greenbug<br />

resistance genes in barley. Euphytica 153:11-14.<br />

3. Porter, D.R., and D.W. Mornhinweg. 2004. Characterization of greenbug<br />

resistance in barley. Plant Breed. 123:493-494.<br />

4. Webster, J.A., and K.J. Starks. 1984. Sources of resistance in barley to two<br />

biotypes of greenbug Schizaphis graminum (Rondani), Homoptera: Aphididae.<br />

Protect. Ecol. 6:51-55.<br />

Prepared:<br />

J.D. Franckowiak. 1997. BGN 26:503.<br />

Revised:<br />

J.D. Franckowiak. 2007. BGN 37:283.<br />

283


Barley Genetics Newsletter (2007) 37: 188-301<br />

Stock number: BGS 586<br />

Locus name: Bracteatum-d<br />

Locus symbol: bra-d<br />

BGS 586, Bracteatum-d, bra-d<br />

Previous nomenclature and gene symbolization:<br />

None.<br />

Inheritance:<br />

Monofactorial recessive (1).<br />

Located in chromosome 1HL [5L] (5), about 4.1 cM from AFLP marker E3634-7<br />

(5), probably in bin 1H-14 based on the association with trd1 (third outer glume 1)<br />

(2, 5).<br />

Description:<br />

The characteristic trait of this mutant is the presence of a bract (third outer<br />

glume) outside the two empty glumes of the central spikelet. The bract<br />

subtending the lowest spikelet is always the largest, embracing in some cases<br />

about one-half the spike. Bracts become progressively smaller toward the tip of<br />

the spike. Mutants have elongated basal rachis internodes (3, 4). Pozzi et al. (5)<br />

suggested that bra-d.7 is allelic to trd1 (third outer glume 1) or near the trd1<br />

locus. Allelism studies demonstrated that bra-d.7 is not an allele at the trd1 locus<br />

(3).<br />

Origin of mutant:<br />

An ethylene imine induced mutant in Foma (CIho 11333) (3).<br />

Mutational events:<br />

bra-d.7 (NGB 114310) in Foma (3).<br />

Mutant used for description and seed stocks:<br />

bra-d.7 in Foma (GSHO 1696); bra-d.7 in Bowman (PI 483237)*3 (GSHO 2185).<br />

References:<br />

1. Gustafsson, Å., A. Hagberg, U. Lundqvist, and G. Persson. 1969. A proposed<br />

system of symbols for the collection of barley mutants at Svalöv. Hereditas<br />

62:409-414.<br />

2. Kleinhofs, A. 2006. Integrating molecular and morphological/physiological<br />

marker maps. Barley Genet. Newsl. 36:66-82.<br />

3. Lundqvist, U. (Unpublished).<br />

4. Nybom, N. 1954. Mutation types in barley. Acta Agric. Scand. 4:430-456.<br />

5. Pozzi, C., D. di Pietro, G. Halas, C. Roig, and F. Salamini. 2003. Integration of<br />

a barley (Hordeum vulgare) molecular linkage map with the position of genetic<br />

loci hosting 29 developmental mutants. Heredity 90:390-396.<br />

Prepared:<br />

U. Lundqvist and J.D. Franckowiak. 1997. BGN 26:513.<br />

Revised:<br />

U. Lundqvist and J.D. Franckowiak. 2007. BGN 37:284.<br />

284


Barley Genetics Newsletter (2007) 37: 188-301<br />

Stock number: BGS 593<br />

Locus name: Awned palea 1<br />

Locus symbol: adp1<br />

BGS 593, Awned palea 1, adp1<br />

Previous nomenclature and gene symbolization:<br />

Awned palea = adp (1).<br />

Inheritance:<br />

Monofactorial recessive (1, 2).<br />

Located in chromosome 3HL (2), about 5.8 cM distal from AFLP marker E3634-8<br />

in subgroup 27 of the Proctor/Nudinka map (2).<br />

Description:<br />

This mutant was isolated as a partially female sterile plant with abnormal spikes.<br />

The palea is elongated to form two awns (2), which are derived from two fused<br />

bracts that form the palea (3). Pistils are often transformed into leafy buds and<br />

result in low female fertility and greatly reduced seed set. Two of the anthers<br />

appear normal and the third is deformed to some extent (1). Pollen fertility is<br />

good (1).<br />

Origin of mutant:<br />

A spontaneous mutant in an inbred line (1).<br />

Mutational events:<br />

adp1.a in an unknown inbred line (1).<br />

Mutant used for description and seed stocks:<br />

adp1.a in a selection, with the eog1.a (elongated outer glume 1) gene from<br />

Svalöfs Guldkorn 91 [AHOR 226, a mutant of Gull (CIho 1145, GSHO 466)] (1),<br />

crossed to the unknown line (GSHO 1618); adp1.a in Bowman*5 (GSHO 1950).<br />

References:<br />

1. Ahokas, H. 1977. A mutant of barley: Awned palea. Barley Genet. Newsl. 7:8-<br />

10.<br />

2. Pozzi, C., D. di Pietro, G. Halas, C. Roig, and F. Salamini. 2003. Integration of<br />

a barley (Hordeum vulgare) molecular linkage map with the position of genetic<br />

loci hosting 29 developmental mutants. Heredity 90:390-396.<br />

3. Williams, R.F. 1975. The Shoot Apex and Leaf Growth. Cambridge University<br />

Press, Cambridge.<br />

Prepared:<br />

J.D. Franckowiak. 1998. BGN 28:34.<br />

Revised:<br />

J.D. Franckowiak. 2007. BGN 37:285.<br />

285


Barley Genetics Newsletter (2007) 37: 188-301<br />

BGS 599, Proanthocyanidin-free 17, ant17<br />

Stock number: BGS 599<br />

Locus name: Proanthocyanidin-free 17<br />

Locus symbol: ant17<br />

Previous nomenclature and symbolization:<br />

None.<br />

Inheritance:<br />

Monofactorial recessive (4, 5).<br />

Located in chromosome 3HS (1), it has been shown that ant17.148 is an allele at<br />

the seg3 (shrunken endosperm genetic 3, see BGS 379) locus (2).<br />

Description:<br />

Under normal growing conditions no anthocyanin pigmentation is observed in the<br />

mutant plants. The testa layers of the grain of the ant17 mutants lack<br />

proanthocyanidins and catechins, but accumulate homoeriodictyol and<br />

chrysoeriol (7, 10). A full length cDNA clone from barley, coding for a protein<br />

consisting of 377 amino acids (42 kDa), has been isolated. It shows a homology<br />

of 71% to the flavanone-3-hydroxylase enzyme protein from Antirrhinum majus<br />

(12). It is likely that the ant17 gene codes for one subunit and the ant22 gene for<br />

the other subunit of the dimeric flavanone 3-hydroxylase enzyme, which<br />

catalyzes the conversion of flavanones into dihydroflavanols (7, 12). The mutant<br />

stock ant17.148 was released as cultivar Galant (11). Alleles at the ant17 locus<br />

that have been examined in the Bowman genetic background showed a variable<br />

reduction in kernel weight: ant17.148 and seg3.c about 1/3 normal and ant17.567<br />

about 3/4 normal (2).<br />

Origin of mutant:<br />

A sodium azide induced mutant in Nordal (NGB 13680) (3).<br />

Mutational events:<br />

ant17.103, 17.104, 17.105, 17.139, 17.140, 17.142, 17.143, 17.145 in Nordal (4);<br />

ant17.107 in Alf (NGB13682) (4); ant17.147, 17.148 (Galant) (NGB 13698),<br />

17.150, 17.151, 17.153, 17.154, 17.180, 17.185 in Triumph (PI 268180, NGB<br />

13678) (4); ant17.352 in Triumph (5); ant17.160 in Gula Abed (NGB 13681) (4);<br />

ant17.165, 17.167, 17.169, 17.171, 17.174, 17.182 in Ark Royal (PI 447006) (4);<br />

ant17.192, 17.193 in Georgie (PI 447012, NGB 13683) (4); ant17.199 in Secobra<br />

4681 (4); ant17.200 in Secobra 4681 (5); ant17.208 in Hege 876 (4); ant17.210,<br />

17.211, 17.217 in Hege 802 (4); ant 17.216 in Hege 802 (5); ant17.220, 17.221,<br />

17.224, in Secobra 4743 (NGB 13679) (4); ant17.227 in Ca 59995 (5); ant17.231<br />

in Tron (4); ant17.237, 17.239, 17.241, 17.242, 17.247, 17.249 in Gunhild (PI<br />

464655, NGB 13690) (4); ant17.243, 17.246 in Gunhild (5); ant17.250, 17.251,<br />

17.252, 17.253, 17.255 in Tokak (PI 264251) (4); ant17.267, 17.268, 17.269 in<br />

Secobra 18193 (NGB 13684) (4); ant17.270 in Secobra 18193 (5); ant17.280 in<br />

Hege 550/75 (NGB 13692) (9); ant17.288, 17.289, 17.290 in Hege 550/75 (4);<br />

ant17.293, 17.294, 17.295, 17.296 in Bonus (PI 189763) (4); ant17.297, 17.298,<br />

17.300, 17.301, 17.307 in Ca 41507 (4); ant17.306, 17.340 in Ca 41507 (5);<br />

ant17.316 in Ca 33787 (NGB 13693) (5); ant17.318, 17.321, 17.326 in Harry (PI<br />

491575) (5); ant17.331 in Hege A2/A4 (5); ant17.335, 17.336, 17.338 in<br />

Ackermann 724/5/7 (5); ant17.359 in Hege15/74-1A (5); ant17.370 in Ackermann<br />

72/440 (5); ant17.372, 17.413, 17.414, 17.417, 17.418, 17.419, 17.444 in Kaya<br />

(5); ant17.375 in Fanette (6); ant17.379, 17.382, 17.383, 17.386, 17.387, 17.388,<br />

17.389, 17.390, 17.391, 17.464, 17.465 in Irene (5); ant17.405 in Odin (6);<br />

286


Barley Genetics Newsletter (2007) 37: 188-301<br />

ant17.408 in KMJ 326 (5); ant17.410, 17.447 in Catrin (5); ant17.421 in VBS<br />

18707 (5); ant17.422, 17.423, 17.424, 17.426 in NZ 3789 (5); ant17.432 in NZ<br />

1836-3 (5); ant17.438, 17.439 in NZ 732.01 (5); ant17.440 in Nordal (5);<br />

ant17.450 in Ca 601427 (5); ant17.453, 17.455, 17.457, 17.458 in Ackermann<br />

1734/5 (5); ant17.462 in Pamela (5); ant17.469, 17.470 in Grit (PI 548764, NGB<br />

13685) (5); ant17.475 in Zenit (PI 564447, NGB 13686) (5); ant17.476 in Zenit<br />

(6); ant17.480 in Secobra 9709 (5); ant17.501 in Advance (CIho 15804) (4);<br />

ant17.504 in Karla (CIho 15860) (4); ant17.506, 17.507, 17.508, 17.509 in OR<br />

9114 (4); ant17.515, 17.516, 17.518 in WA9037-75 (4); ant17.520 in WA9044-75<br />

(4); ant17.530 in Morex (CIho15773) (4); ant17.537, 17.595, 17.619, 17.620 in<br />

Advance (5); ant17.560, 17.561, 17.563, 17.565, 17.567 in Manker (CIho 15549)<br />

(5); ant17.597 in Morex (6); ant17.598 in Morex (5); ant17.600 in S 80351 (5);<br />

ant17.601 in Moravian 111 (CIho 15812) (5); ant17.604 in Harrington (6);<br />

ant17.612 in Andre‚ (PI 469107) (5); ant17.624 in Klages (CIho 15478) (5);<br />

ant17.625 in Robust (M36, PI 476976) (5); ant17.630 in Azure (CIho 15865) (13);<br />

ant17.636, 17.658 in Cougbar (PI 496400) (13); ant17.637 in 8892-78 (13);<br />

ant17.661 in Crest (PI 561409) (13); ant17.1502, 17.1505, 17.1519 in Amagi-Nijo<br />

(4); ant17.1510, 17.1511 in Haruna- Nijo (4); ant17.1515 in Nirakei 61 (4);<br />

ant17.1537 in Nirakei 62 (5); ant17.1544 in Nirakei 63 (5); ant17.1534 in<br />

Nirasaki-Nijo 14 (5); ant17.2022, 17.2067 in Natasha (PI 592171) (6); ant17.2084<br />

in Hege 694/82 (9); ant17.2106 in Ca 708912 (8); ant17.5019 in Sonja (PI<br />

302047) (9); ant17.5024 in Ackermann 72/27/4 (6); ant17.5028 in Trigger (PI<br />

473541) (9); ant17.5034 in Kaskade (9); ant17.5035, 17.5036, 17.5037 in Video<br />

(6); ant17.5038, 17.5039, 17.5040, 17.5042 in Sonja (6); ant17.5044 in<br />

Ackermann 27/220/8 (6).<br />

Mutant used for description and seed stock:<br />

ant17.139 in Nordal (NGB 13697); ant17.148 (Galant) in Triumph (NGB 13698,<br />

GSHO 1628); ant17.148 in Bowman (PI 483237)*4 (GSHO 1973); ant17.567 in<br />

Manker (GSHO 1629); ant17.567 in Bowman*5 (GSHO 1974), seg3.c in<br />

Bowman (PI 483237)*7 (GSHO 1957).<br />

References:<br />

1. Boyd, P.W., and D. E. Falk. 1990. (Personal communications).<br />

2. Franckowiak, J.D. (Personal communications).<br />

3. Jende-Strid, B. 1978. Mutation frequencies obtained after sodium azide<br />

treatments in different barley varieties. Barley Genet. Newsl. 8:55-57.<br />

4. Jende-Strid, B. 1984. Coordinator's report: Anthocyanin genes. Barley Genet.<br />

Newsl. 14:76-79.<br />

5. Jende-Strid, B. 1988. Coordinator's report: Anthocyanin genes. Stock list of ant<br />

mutants kept at the Carlsberg Laboratory. Barley Genet. Newsl. 18:74-79.<br />

6. Jende-Strid, B. 1991. Coordinator's report: Anthocyanin genes. Barley Genet.<br />

Newsl. 20:87-88.<br />

7. Jende-Strid, B. 1993. Genetic control of flavonoid biosynthesis in barley.<br />

Hereditas 119:187-204.<br />

8. Jende-Strid, B. 1993. Coordinator's report: Anthocyanin genes. Barley Genet.<br />

Newsl. 22:136-137.<br />

9. Jende-Strid, B. 1995. Coordinator's report: Anthocyanin genes Barley Genet.<br />

Newsl. 24:162-165.<br />

10. Jende-Strid, B., and K.N. Kristiansen. 1987. Genetics of flavonoid<br />

biosynthesis in barley. p. 445-453. In: S. Yasuda and T. Konishi (eds.) Barley<br />

Genetics V. Proc. Fifth Int. Barley Genet. Symp., Okayama 1986. Sanyo Press<br />

Co., Okayama.<br />

287


Barley Genetics Newsletter (2007) 37: 188-301<br />

11. Larsen, J., S. Ullrich, J. Ingversen, A. E. Nielsen, J.S. Gochan, and J. Clanay.<br />

1987. Breeding and malting behaviour of two different proanthocyanidin-free<br />

barley gene sources. p. 767-772. In S. Yasuda and T. Konishi (eds.) Barley<br />

Genetics V. Proc. Fifth Int. Barley Genet. Symp., Okayama. 1986. Sanyo Press<br />

Co., Okayama.<br />

12. Meldgaard, M. 1992. Expression of chalcone synthase, dihydroflavonol<br />

reductase, and flavanone 3-hydroxylase in mutants in barley deficient in<br />

anthocyanin and proanthocyanidin biosynthesis. Theor. Appl. Genet. 83:695-706.<br />

13. Ullrich, S., and J. Cochran. 1998. (Personal communications).<br />

Prepared:<br />

B. Jende-Strid. 1999. BGN 29:88-89.<br />

Revised:<br />

B. Jende-Strid and U. Lundqvist. 2007. BGN 37:286-288.<br />

288


Barley Genetics Newsletter (2007) 37: 188-301<br />

Stock number: BGS 617<br />

Locus name: Uniculme 4<br />

Locus symbol: cul4<br />

BGS 617, Uniculme 4, cul4<br />

Previous nomenclature and gene symbolization:<br />

Uniculme-5 = uc-5 (3).<br />

Inheritance:<br />

Monofactorial recessive (3).<br />

Located in chromosome 3HL (5), near AFLP marker E4143-4 in subgroup 32 of<br />

the Proctor/Nudinka map (5).<br />

Description:<br />

Plants produce 1 to 4 tillers that are twisted and have slightly bowed culm<br />

internodes. All secondary tillers are shorter than the primary tiller and have a<br />

curly appearance. Often secondary tillers are trapped at the base of the primary<br />

tiller (2, 4). Compared to normal sibs, cul4 plants have peduncles that are slightly<br />

to 50% longer. Rachis internodes are slightly elongated, and kernels are slightly<br />

longer. Plant height varies from 2/3 normal to slightly taller than Bowman. The<br />

mutant cul4.15 exhibits the most variation in height over environments (2). Under<br />

greenhouse conditions, Bowman line for cul4.5 developed only two axillary tillers,<br />

and it was uniculm when combined with the cul2.b (uniculm 2) gene (1).<br />

Origin of mutant:<br />

An ethylene oxide induced mutant in Bonus (PI 189763) (4).<br />

Mutational events:<br />

cul4.3 in Bonus (GSHO 2495, NGB 115062), cul4.5 in Bonus (NGB 115063),<br />

cul4.15 (NGB 115064) in Foma (CIho 11333), cul4.16 in Bonus (NGB 115065)<br />

(4).<br />

Mutant used for description and seed stocks:<br />

cul4.5 in Bonus (GSHO 2493, NGB 115063); cul4.5 in Bowman (PI 483237)*7<br />

(GSHO 2361).<br />

References:<br />

1. Babb, S., and G.J. Muehlbauer. 2003. Genetic and morphological<br />

characterization of the barley uniculm2 (cul2) mutant. Theor. Appl. Genet.<br />

106:846–857.<br />

2. Franckowiak, J.D. (Unpublished).<br />

3. Gustafsson, Å., A. Hagberg, U. Lundqvist, and G. Persson. 1969. A proposed<br />

system of symbols for the collection of barley mutants at Svalöv. Hereditas<br />

62:409-414.<br />

4. Lundqvist, U. (Unpublished).<br />

5. Pozzi, C., D. di Pietro, G. Halas, C. Roig, and F. Salamini. 2003. Integration of<br />

a barley (Hordeum vulgare) molecular linkage map with the position of genetic<br />

loci hosting 29 developmental mutants. Heredity 90:390-396.<br />

Prepared:<br />

J.D. Franckowiak and U. Lundqvist. 2002. BGN 32:118.<br />

Revised:<br />

J.D. Franckowiak and U. Lundqvist. 2007. BGN 37:289.<br />

289


Barley Genetics Newsletter (2007) 37: 188-301<br />

Stock number: BGS 623<br />

Locus name: Eligulum-a<br />

Locus symbol: eli-a<br />

BGS623, Eligulum-a, eli-a<br />

Previous nomenclature and gene symbolization:<br />

Eligulum-a = lig-a (2).<br />

Eligulum-3 = eli-3 (4).<br />

Inheritance:<br />

Monofactorial recessive (2).<br />

Location is unknown.<br />

Description:<br />

Plants do not have ligules in the junction between the sheath and leaf blade,<br />

auricles are rudimentary and asymetrically displaced. Plants are about 2/3 of<br />

normal height and have very wide leaves (3, 4). The peduncle is short and spike<br />

emergence from the sheath of the flag leaf is poor. Spikes have a compact<br />

arrangement of spikelets and are extremely compacted near the tip (1, 3). The<br />

culm breaks very easily just below the nodes. The Bowman backcross-derived<br />

lines have glume awns that are nearly twice as long as those of Bowman, but the<br />

lemma awns are about 2/3 of normal (1).<br />

Origin of mutant:<br />

An ethylene imine induced mutant in Foma (CIho 11333) (2, 3).<br />

Mutational events:<br />

eli-a.2 (NGB 115389), eli-a.3 (NGB 115390), -a.7 (NGB 115392), -a.9 (NGB<br />

115393), -a.10 (NGB 115394) in Foma (3); eli-a.11 (NGB 115395), -a.14 (NGB<br />

115397) in Kristina (NGB 1500); eli-a.15 (NGB 115398), -a.16 (NGB 151399) in<br />

Bonus (PI 189763 (4), -a.216 (FN216) in Steptoe (CIho 15229) (1, 3).<br />

Mutant used for description and seed stocks:<br />

eli-a.3 in Foma (NGB 115390); eli-a.3 in Bowman (PI 483237)*3.<br />

References:<br />

1. Franckowiak, J.D. (Unpublished).<br />

2. Gustafsson, Å., A. Hagberg, U. Lundqvist, and G. Persson. 1969. A proposed<br />

system of symbols for the collection of barley mutants at Svalöv. Hereditas<br />

62:409-414.<br />

3. Kleinhofs, A. (Unpublished).<br />

4. Lundqvist, U. (Unpublished).<br />

Prepared:<br />

U. Lundqvist and J.D. Franckowiak. 2002. BGN 32:126.<br />

Revised:<br />

J.D. Franckowiak and A. Kleinhofs. 2005. BGN 35:192.<br />

Revised:<br />

U. Lundqvist and J.D. Franckowiak. 2007. BGN 37:290.<br />

290


Barley Genetics Newsletter (2007) 37: 188-301<br />

Stock number: BGS 633<br />

Locus name: Many noded dwarf 6<br />

Locus symbol: mnd6<br />

BGS 633, Many noded dwarf 6, mnd6<br />

Previous nomenclature and gene symbolization:<br />

Densinodosum-6 = den-6 (3, 4).<br />

Inheritance:<br />

Monofactorial recessive (4).<br />

Located in chromosome 5HL [7L] (5), near AFLP marker E3743-3 in subgroup 65<br />

of the Proctor/Nudinka map (5).<br />

Description:<br />

Plants with the mnd6.6 gene are about 2/3 normal height and have many<br />

elongated internodes in each culm (1, 4). The number of elongated internodes<br />

can be up to 20 in the original stock when grown in Sweden. Kernels are thin and<br />

small (4). The number of tillers per plant is increased compared to normal sibs.<br />

Peduncles are very short, about 1/3 normal length, and awns are about 1/2<br />

normal length. Spikes are shorter with slightly over half the kernel number of<br />

Bowman. The Bowman backcross-derived line has 9 to 10 elongated internodes<br />

per tiller. Kernels of the Bowman mnd6 line are thinner and about 2/3 of normal<br />

weight (2). The grain yields of the mnd6 line are about 3/4 normal (2).<br />

Origin of mutant:<br />

An ethylene imine induced mutant in Bonus (PI 189763) (4).<br />

Mutational events:<br />

mnd6.6 in Bonus (NGB 114514) (4); mnd6.8 in Bonus (NGB 114516) (4, 5).<br />

Mutant used for description and seed stocks:<br />

mnd6.6 in Bonus (GSHO 1713), mnd6.6 in Bowman (PI 483237)*7 (GSHO<br />

2235).<br />

References:<br />

1. Bossinger, G., U. Lundqvist, W. Rohde, and F. Salamini. 1992. Genetics of<br />

plant developm ent in barley. p. 989-1017. In L. Munck, K. Kirkegaard, and B.<br />

Jensen (eds.). Barley Genetics VI. Proc. Sixth Int. Barley Genet. Symp.,<br />

Helsingborg, 1991. Munksgaard Int. Publ., Copenhagen.<br />

2. Franckowiak, J.D. (Unpublished).<br />

3. Gustafsson, Å., A. Hagberg, U. Lundqvist, and G. Persson. 1969. A proposed<br />

system of symbols for the collection of barley mutants at Svalöv. Hereditas<br />

62:409-414.<br />

4. Lundqvist, U. (Unpublished).<br />

5. Pozzi, C., D. di Pietro, G. Halas, C. Roig, and F. Salamini. 2003. Integration of<br />

a barley (Hordeum vulgare) molecular linkage map with the position of genetic<br />

loci hosting 29 developmental mutants. Heredity 90:390-396.<br />

Prepared:<br />

U. Lundqvist and J. D. Franckowiak. 2002. BGN 32:134.<br />

Revised:<br />

U. Lundqvist and J. D. Franckowiak. 2007. BGN 37:291.<br />

291


Barley Genetics Newsletter (2007) 37: 188-301<br />

Stock number: BGS 636<br />

Locus name: Tip sterile 2<br />

Locus symbol: tst2<br />

BGS 636, Tip sterile 2, tst2<br />

Previous nomenclature and gene symbolization:<br />

None.<br />

Inheritance:<br />

Monofactorial recessive (4).<br />

Location is unknown.<br />

Description:<br />

Spikes of tst2.b plants are 1/4 to 1/2 of normal length because seed set fails in<br />

the upper portion of the spike. Slow or poor development of the spike reduces<br />

both the number of rachis internodes and number of fertile spikelets (1, 4). Most<br />

spikes of the Bowman backcross-derived line set less than 10 seeds. Plants are<br />

shorter than are normal sibs because peduncles fail to elongate normally. Both<br />

rachis internode length and awn length are reduced in tst2 plants (1).<br />

Origin of mutant:<br />

An X-ray induced mutant in Donaria (PI 161974) (3, 4).<br />

Mutational events:<br />

tst2.b in Donaria (Mut. 2249, DWS1337) (2, 3).<br />

Mutant used for description and seed stocks:<br />

tst2.b in Donaria (GSHO 1781); tst2.b in Bowman (PI 483237)*5 (GSHO 2280).<br />

References:<br />

1. Franckowiak, J.D. (Unpublished).<br />

2. Franckowiak, J.D., and A. Pecio. 1992. Coordinator’s report: Semidwarf<br />

genes. A listing of genetic stocks. Barley Genet. Newsl. 21:116-127.<br />

3. Scholz, F. 1956. Mutationsversuche an Kulturpflanzen. V. Die Vererbung<br />

zweier sich variabel manifestierender Übergangsmerkmale von bespelzter zu<br />

nackter Gerste bei röntgeninduzierten Mutanten. Kulturpflanze 4:228-246.<br />

4. Scholz, F., and O. Lehmann. 1958. Die Gaterslebener Mutanten der<br />

Saatgerste in Beziehung zur Formenmannigfaltigkeit der Art Hordeum vulgare<br />

L.s.l.I. Kulturpflanze 6:123-166.<br />

Prepared:<br />

J.D. Franckowiak and U. Lundqvist. 2002. BGN 32:137.<br />

Revised:<br />

J.D. Franckowiak. 2005. BGN 35:193. (Locus symbol was changed from lin2.)<br />

J.D. Franckowiak. 2007. BGN 37:292.<br />

292


Barley Genetics Newsletter (2007) 37: 188-301<br />

Stock number: BGS 653<br />

Locus name: Brachytic 10<br />

Locus symbol: brh10<br />

BGS 653, Brachytic 10, brh10<br />

Previous nomenclature and gene symbolization:<br />

Brachytic-l = brh.l (3).<br />

Inheritance:<br />

Monofactorial recessive (3, 4).<br />

Located in chromosome 2HS (1), approximately 12.9 cM distal from SSR marker<br />

Bmac0850 in bin 2H-08 (1).<br />

Description:<br />

Plants are about 3/4 normal height and peduncles are over 3/4 normal length.<br />

Awns are about 3/4 of normal length. Rachis internodes are slightly shorter than<br />

those of normal sibs, but the number of fertile rachis nodes is increased by over<br />

2. Seedling leaves of brh10 plants are relatively short. Kernels of the Bowman<br />

brh10 line are shorter (7.3 vs. 9.6 mm) and about 20% lighter than those of<br />

Bowman. Plants have and erect growth habit and grain yields averaged 20% less<br />

than those of Bowman (1, 2).<br />

Origin of mutant:<br />

A sodium azide induced mutant in Birgitta (NSGC 1870, NGB 1494, NGB 14667)<br />

(5).<br />

Mutational events:<br />

brh10.l in Birgitta (17:15:2, DWS1007) (4, 5).<br />

Mutant used for description and seed stocks:<br />

brh10.l in Birgitta (GSHO 1677); brh10.l in Bowman (PI 483237)*7 (GSHO 2171).<br />

References:<br />

1. Dahleen, L.S., L.J. Vander Wal, and J.D. Franckowiak. 2005. Characterization<br />

and molecular mapping of genes determining semidwarfism in barley. J. Hered.<br />

96:654-662.<br />

2. Franckowiak, J.D. (Unpublished).<br />

3. Franckowiak, J.D. 1995. The brachytic class of semidwarf mutants in barley.<br />

Barley Genet. Newsl. 24:56-59.<br />

4. Franckowiak, J.D., and A. Pecio. 1992. Coordinator’s report: Semidwarf<br />

genes. A listing of genetic stocks. Barley Genet. Newsl. 21:116-127.<br />

5. Lehmann, L.C. 1985. (Personal communications).<br />

Prepared:<br />

J.D. Franckowiak and L.S. Dahleen. 2007. BGN 37:293.<br />

293


Barley Genetics Newsletter (2007) 37: 188-301<br />

Stock number: BGS 654<br />

Locus name: Brachytic 11<br />

Locus symbol: brh11<br />

BGS 654, Brachytic 11, brh11<br />

Previous nomenclature and gene symbolization:<br />

Brachytic-n = brh.n (3).<br />

Inheritance:<br />

Monofactorial recessive (3, 4).<br />

Located in chromosome 5HS [7S] (1), about 6.7 cM proximal from SSR marker<br />

Bmac0113 in bin 5H-04 (1).<br />

Description:<br />

Plants are 2/3 to 3/4 normal height and peduncles are 3/4 to 5/6 normal length.<br />

The length of the rachis internodes is about 3/4 as long as those of normal sibs.<br />

Seedling leaves of brh11 plants are relatively short. Kernels of the Bowman<br />

brh11 line are shorter (7.2 vs. 9.6 mm) and about 25% lighter than those of<br />

Bowman. Plants have an erect growth habit and grain yields of the brh11 line<br />

averaged less than 1/2 of those for Bowman (1, 2).<br />

Origin of mutant:<br />

A sodium azide induced mutant in Birgitta (NSGC 1870, NGB 1494, NGB 14667)<br />

(5).<br />

Mutational events:<br />

brh11.n in Birgitta (17:19:2, DWS1011) (4, 5).<br />

Mutant used for description and seed stocks:<br />

brh11.n in Birgitta (GSHO 1679); brh11.n in Bowman (PI 483237)*6 (GSHO<br />

2172).<br />

References:<br />

1. Dahleen, L.S., L.J. Vander Wal, and J.D. Franckowiak. 2005. Characterization<br />

and molecular mapping of genes determining semidwarfism in barley. J. Hered.<br />

96:654-662.<br />

2. Franckowiak, J.D. (Unpublished).<br />

3. Franckowiak, J.D. 1995. The brachytic class of semidwarf mutants in barley.<br />

Barley Genet. Newsl. 24:56-59.<br />

4. Franckowiak, J.D., and A. Pecio. 1992. Coordinator’s report: Semidwarf<br />

genes. A listing of genetic stocks. Barley Genet. Newsl. 21:116-127.<br />

5. Lehmann, L.C. 1985. (Personal communications).<br />

Prepared:<br />

J.D. Franckowiak and L.S. Dahleen. 2007. BGN 37:294.<br />

294


Barley Genetics Newsletter (2007) 37: 188-301<br />

Stock number: BGS 655<br />

Locus name: Brachytic 12<br />

Locus symbol: brh12<br />

BGS 655, Brachytic 12, brh12<br />

Previous nomenclature and gene symbolization:<br />

Brachytic-o = brh.o (3).<br />

Inheritance:<br />

Monofactorial recessive (3, 4).<br />

Located in chromosome 5HS [7S] (1), approximately 13.5 cM distal from SSR<br />

marker Bmag0387 in bin 5H-03 (1).<br />

Description:<br />

Plants are 2/3 to 3/4 of normal height. Awns and peduncles are about 3/4 normal<br />

length. The length of the rachis internodes is about 3/4 of normal sibs. Seedling<br />

leaves of brh12 plants are relatively short. Kernels of the Bowman brh12 line are<br />

shorter (7.9 vs. 9.6 mm) and about 20% lighter than those of Bowman. Grain<br />

yields of the brh12 line averaged slightly more than 1/2 of those for Bowman (1,<br />

2).<br />

Origin of mutant:<br />

A sodium azide induced mutant in Birgitta (NSGC 1870, NGB 1494, NGB 14667)<br />

(5).<br />

Mutational events:<br />

brh12.o in Birgitta (17:20:2, DWS1012) (4, 5).<br />

Mutant used for description and seed stocks:<br />

brh12.o in Birgitta (GSHO 1680); brh12.o in Bowman (PI 483237)*7 (GSHO<br />

2173).<br />

References:<br />

1. Dahleen, L.S., L.J. Vander Wal, and J.D. Franckowiak. 2005. Characterization<br />

and molecular mapping of genes determining semidwarfism in barley. J. Hered.<br />

96:654-662.<br />

2. Franckowiak, J.D. (Unpublished).<br />

3. Franckowiak, J.D. 1995. The brachytic class of semidwarf mutants in barley.<br />

Barley Genet. Newsl. 24:56-59.<br />

4. Franckowiak, J.D., and A. Pecio. 1992. Coordinator’s report: Semidwarf<br />

genes. A listing of genetic stocks. Barley Genet. Newsl. 21:116-127.<br />

5. Lehmann, L.C. 1985. (Personal communications).<br />

Prepared:<br />

J.D. Franckowiak and L.S. Dahleen. 2007. BGN 37:295.<br />

295


Barley Genetics Newsletter (2007) 37: 188-301<br />

Stock number: BGS 656<br />

Locus name: Brachytic 13<br />

Locus symbol: brh13<br />

BGS 656, Brachytic 13, brh13<br />

Previous nomenclature and gene symbolization:<br />

Brachytic-p = brh.p (3).<br />

Inheritance:<br />

Monofactorial recessive (3, 4).<br />

Located in chromosome 5HS [7S] (1), approximately 8.7 cM distal from SSR<br />

marker Bmag0387 in bin 5H-03 (1).<br />

Description:<br />

Plants are about 2/3 normal height and awns are about 1/2 normal length.<br />

Peduncles and leaf blades are about 2/3 and 3/4 normal length, respectively. The<br />

length of the rachis internodes is about 3/4 of that of Bowman. The spikelets at<br />

the tip of the spike are close together giving a fascinated appearance. Seedling<br />

leaves of brh13 plants are relatively short. Plants lodge relatively easily. Kernels<br />

of the Bowman brh13 line are about the same size as those of Bowman, but<br />

kernel weights are about 20% less. The brh13 plants have and erect growth habit<br />

and their grain yields are about 1/2 of those Bowman (1, 2).<br />

Origin of mutant:<br />

A sodium azide induced mutant in Birgitta (NSGC 1870, NGB 1494, NGB 14667)<br />

(5).<br />

Mutational events:<br />

brh13.p in Birgitta (18:02:4, DWS1013) (4, 5).<br />

Mutant used for description and seed stocks:<br />

brh13.p in Birgitta (GSHO 1681); brh13.p in Bowman (PI 483237)*6 (GSHO<br />

2174).<br />

References:<br />

1. Dahleen, L.S., L.J. Vander Wal, and J.D. Franckowiak. 2005. Characterization<br />

and molecular mapping of genes determining semidwarfism in barley. J. Hered.<br />

96:654-662.<br />

2. Franckowiak, J.D. (Unpublished).<br />

3. Franckowiak, J.D. 1995. The brachytic class of semidwarf mutants in barley.<br />

Barley Genet. Newsl. 24:56-59.<br />

4. Franckowiak, J.D., and A. Pecio. 1992. Coordinator’s report: Semidwarf<br />

genes. A listing of genetic stocks. Barley Genet. Newsl. 21:116-127.<br />

5. Lehmann, L.C. 1985. (Personal communications).<br />

Prepared:<br />

J.D. Franckowiak and L.S. Dahleen. 2007. BGN 37:296.<br />

296


Barley Genetics Newsletter (2007) 37: 188-301<br />

Stock number: BGS 657<br />

Locus name: Brachytic 15<br />

Locus symbol: brh15<br />

BGS 657, Brachytic 15, brh15<br />

Previous nomenclature and gene symbolization:<br />

Brachytic-u = brh.u (3).<br />

Inheritance:<br />

Monofactorial recessive (2, 3).<br />

Location is unknown (1).<br />

Description:<br />

Plants have numerous tillers with small leaves, spikes, and kernels. Prior to<br />

heading plants appear to be grassy culms similar to those produced by the sld2<br />

(slender dwarf 2) and sld4 (slender dwarf 4) mutants, but heading is not<br />

drastically delayed. Culms and peduncles are about 1/2 normal length. Awns and<br />

rachis internodes are slightly shorter than those of normal sibs. Leaf blades are<br />

narrow and about 1/2 normal length. Mutant plants headed 2 to 3 days later than<br />

normal sibs. No lodging was observed. Spikes of brh15 plants had nearly 4 fewer<br />

kernels than those of Bowman. Kernels of the Bowman brh15 line are slightly<br />

shorter (8.6 vs. 9.6 mm), thinner (3.4 vs. 3.8 mm), and about 30% lighter than<br />

those of Bowman. The grain yield of the brh15 line averaged about 2/3 of that<br />

recorded for Bowman (1, 2).<br />

Origin of mutant:<br />

A N-methyl-N-nitrosourea induced mutant in Julia (PI 339811) (5, 6).<br />

Mutational events:<br />

brh15.u in Julia (409 JK, DWS1156) (4, 6).<br />

Mutant used for description and seed stocks:<br />

brh15.u in 409 JK/Bowman (GSHO 1685); brh15.u in Bowman (PI 483237)*5<br />

(GSHO 2176).<br />

References:<br />

1. Dahleen, L.S., L.J. Vander Wal, and J.D. Franckowiak. 2005. Characterization<br />

and molecular mapping of genes determining semidwarfism in barley. J. Hered.<br />

96:654-662.<br />

2. Franckowiak, J.D. (Unpublished).<br />

3. Franckowiak, J.D. 1995. The brachytic class of semidwarf mutants in barley.<br />

Barley Genet. Newsl. 24:56-59.<br />

4. Franckowiak, J.D., and A. Pecio. 1992. Coordinator’s report: Semidwarf<br />

genes. A listing of genetic stocks. Barley Genet. Newsl. 21:116-127.<br />

5. Micke, A. and M. Maluszynski, M. 1984. List of semi-dwarf cereal stocks. In<br />

Semi-dwarf Cereal Mutants and Their Use in Cross-breeding II. IAEA-TECDOC-<br />

307. IAEA, Vienna.<br />

6. Szarejko I., M. Maluszynski, M. Nawrot, and B. Skawinska-Zydron, 1988.<br />

Semi-dwarf mutants and heterosis in barley. II. Interaction between several<br />

mutant genes responsible for dwarfism in barley. p. 241-246. In Semi-dwarf<br />

Cereal Mutants and their Use in Cross-breeding III. IAEA- TECDOC-455, IAEA,<br />

Vienna.<br />

Prepared:<br />

J.D. Franckowiak and L.S. Dahleen. 2007. BGN 37:297.<br />

297


Barley Genetics Newsletter (2007) 37: 188-301<br />

Stock number: BGS 658<br />

Locus name: Brachytic 17<br />

Locus symbol: brh17<br />

BGS 658, Brachytic 17, brh17<br />

Previous nomenclature and gene symbolization:<br />

Semidwarf mutant = Mo4 (5).<br />

Brachytic-ab = brh.ab (3).<br />

Inheritance:<br />

Monofactorial recessive (3, 4).<br />

Located in chromosome 5HS [7L] (1), approximately 11.6 cM proximal from SSR<br />

marker Bmag0387 in bin 5H-03 (1).<br />

Description:<br />

Plants are about 3/4 normal height and awns are 5/6 of normal length. Peduncles<br />

are slightly shortened. Rachis internodes are about 20% shorter than those of<br />

normal sibs. Seedling leaves of brh17 plants are relatively short. Kernels of the<br />

Bowman brh17 line are shorter (7.7 vs. 9.6 mm) and about 20% lighter than<br />

those of Bowman. Lodging is reduced in the backcross-derived line and grain<br />

yields averaged slightly less than those of Bowman (1, 2).<br />

Origin of mutant:<br />

A sodium azide induced mutant in Morex (CIho 15773) (6).<br />

Mutational events:<br />

brh17.ab in Morex (Wa14355-83, Mo4, DWS1260) (4, 5).<br />

Mutant used for description and seed stocks:<br />

brh17.ab in Morex (GSHO 1669); brh17.ab in Bowman (PI 483237)*6 (GSHO<br />

2181).<br />

References:<br />

1. Dahleen, L.S., L.J. Vander Wal, and J.D. Franckowiak. 2005. Characterization<br />

and molecular mapping of genes determining semidwarfism in barley. J. Hered.<br />

96:654-662.<br />

2. Franckowiak, J.D. (Unpublished).<br />

3. Franckowiak, J.D. 1995. The brachytic class of semidwarf mutants in barley.<br />

Barley Genet. Newsl. 24:56-59.<br />

4. Franckowiak, J.D., and A. Pecio. 1992. Coordinator’s report: Semidwarf<br />

genes. A listing of genetic stocks. Barley Genet. Newsl. 21:116-127.<br />

5. Nedel, J.L., S.E. Ullrich, J.A. Clancy, and W.L. Pan. 1993. Barley semidwarf<br />

and standard isotype yield and malting quality response to nitrogen. Crop Sci.<br />

33:258-263.<br />

6. Ullrich, S.E., and Aydin, A. 1988. Mutation breeding for semi-dwarfism in<br />

barley. p. 135-144. In Semi-dwarf Cereal Mutants and Their Use in Crossbreeding<br />

III. IAEA-TECDOC-455. IAEA, Vienna.<br />

Prepared:<br />

J.D. Franckowiak and L.S. Dahleen. 2007. BGN 37:298.<br />

298


Barley Genetics Newsletter (2007) 37: 188-301<br />

Stock number: BGS 659<br />

Locus name: Brachytic 18<br />

Locus symbol: brh18<br />

BGS 659, Brachytic 18, brh18<br />

Previous nomenclature and gene symbolization:<br />

Brachytic-ac = brh.ac (3).<br />

Inheritance:<br />

Monofactorial recessive (3, 4).<br />

Located in chromosome 5HS [7L] (1), approximately 9.2 cM distal from SSR<br />

marker Bmac0163 in bin 5H-01(1).<br />

Description:<br />

Plants are about 2/3 normal height and awns are less than 2/3 of normal length.<br />

Peduncles are slightly coiled and about 5/6 the length of those of normal sibs.<br />

Rachis internodes are about 20% shorter than those of Bowman. Seedling<br />

leaves of brh18 plants are relatively short. Kernels of brh18 plants are similar in<br />

weight to those of Bowman, but slightly shorter. Lodging is reduced, but grain<br />

yields averaged slight more than 1/2 of those for Bowman (1, 2).<br />

Origin of mutant:<br />

An induced mutant backcrossed into Triumph (CIho 11612, GSHO 2465) (5).<br />

Mutational events:<br />

brh18.ac in mo6/4*Triumph (402B, DWS1277) (4, 5).<br />

Mutant used for description and seed stocks:<br />

brh18.ac in Mo6/4*Triumph (GSHO 1670); brh18.ac in Bowman (PI 483237)*6<br />

(GSHO 2182).<br />

References:<br />

1. Dahleen, L.S., L.J. Vander Wal, and J.D. Franckowiak. 2005. Characterization<br />

and molecular mapping of genes determining semidwarfism in barley. J. Hered.<br />

96:654-662.<br />

2. Franckowiak, J.D. (Unpublished).<br />

3. Franckowiak, J.D. 1995. The brachytic class of semidwarf mutants in barley.<br />

Barley Genet. Newsl. 24:56-59.<br />

4. Franckowiak, J.D., and A. Pecio. 1992. Coordinator’s report: Semidwarf<br />

genes. A listing of genetic stocks. Barley Genet. Newsl. 21:116-127.<br />

5. Falk, D. 1985. (Personal communications).<br />

Prepared:<br />

J.D. Franckowiak and L.S. Dahleen. 2007. BGN 37:299.<br />

299


Barley Genetics Newsletter (2007) 37: 188-301<br />

BGS 660, Narrow leafed dwarf 2, nld2<br />

Stock number: BGS 660<br />

Locus name: Narrow leafed dwarf 2<br />

Locus symbol: nld2<br />

Previous nomenclature and gene symbolization:<br />

None.<br />

Inheritance:<br />

Monofactorial recessive (1, 2).<br />

Location is unknown.<br />

Description:<br />

Mutant plants have narrow, dark green leaves, which are erect with welldeveloped<br />

midribs. Auricles degenerate to tiny projections, but ligules are<br />

normal. Stem internodes are short, and the upper ones are curved. Spikelets are<br />

relatively narrow and small, and seed set may be low. Kernels of the Bowman<br />

nld2 line are thinner (3.2 vs. 3.8 mm) and about 35% lighter than those of<br />

Bowman (1). Plants are 1/2 to 1/3 of normal height, the spike commonly emerges<br />

from the side of the sheath before anthesis. Awns of the nld2.b line are similar in<br />

length to those of Bowman. The nld2.b Bowman line is more vigorous than nld1.a<br />

in Christchurch, New Zealand and in North Dakota greenhouse nurseries, but<br />

nld1.a was more vigor in the Dundee, Scotland nursery. Seed yields are<br />

generally less than 20% of those of Bowman (1).<br />

Origin of mutant:<br />

A fast neutron induced mutant in Steptoe (CIho 15229) (2).<br />

Mutational events:<br />

nld2.b in Steptoe (2).<br />

Mutant used for description and seed stocks:<br />

nld2.b in Steptoe; nld2.b in Bowman (PI 483237)*6.<br />

References:<br />

1. Franckowiak, J.D. (Unpublished).<br />

2. Kleinhofs, A. (Unpublished).<br />

Prepared:<br />

J.D. Franckowiak and A. Kleinhofs. 2007. BGN 37:300.<br />

300


Barley Genetics Newsletter (2007) 37: 188-301<br />

Stock number: BGS 661<br />

Locus name: Double seed 1<br />

Locus symbol: dub1<br />

BGS 661, Double seed 1, dub1<br />

Previous nomenclature and gene symbolization:<br />

None.<br />

Inheritance:<br />

Monofactorial recessive (2).<br />

Located in chromosome 5HL [7L] (2), near AFLP marker E4038-4 in subgroups<br />

66 to 67 of the Proctor/Nudinka map (2).<br />

Description:<br />

The modification of the top of spike is distinctive and occurs on all tillers. The tip<br />

of the spike is compacted and a few spikelets form two and three fertile florets<br />

adjacent to each other. The double spikelets have fused lemmas and paleas<br />

often enclose the part of two, occasionally more, flowers: six anthers and two<br />

ovaries (1). The tip of the spike appears phenotypically similar to those of int-m<br />

(intermedium spike-m) mutants (1).<br />

Origin of mutant:<br />

An X-ray and ferrisulfate induced mutant in Bonus (PI 189763) (1).<br />

Mutational events:<br />

dub1.1 (NGB 114331), dub1.2 (NGB 114332) in Bonus (1); dub1.3 (NGB<br />

114333), dub1.7 (NGB 114337), dub1.8 (NGB 114338), dub1.9 (NGB 114339),<br />

dub1.10 (NGB114340), dub1.11 (NGB 114341), dub1.12 (NGB 114342) in Foma<br />

(CIho 11333) (1); dub1.18a (NGB 114345), dub1.18b (NGB 114346, 114347) in<br />

Kristina (NGB 1500) (1); dub1.19 (NGB 114348), dub1.20 (NGB 114349,<br />

114350) in Bonus (1).<br />

Mutant used for description and seed stocks:<br />

dub1.1 (NGB 114331) in Bonus (2).<br />

References:<br />

1. Lundqvist, U. (Unpublished).<br />

2. Pozzi, C., D. di Pietro, G. Halas, C. Roig, and F. Salamini. 2003. Integration of<br />

a barley (Hordeum vulgare) molecular linkage map with the position of genetic<br />

loci hosting 29 developmental mutants. Heredity 90:390-396.<br />

Prepared:<br />

U. Lundqvist and J.D. Franckowiak. 2007. BGN 37:301.<br />

301

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!