07.12.2012 Views

BARLEY GENETICS NEWSLETTER - GrainGenes

BARLEY GENETICS NEWSLETTER - GrainGenes

BARLEY GENETICS NEWSLETTER - GrainGenes

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Barley Genetics<br />

Newsletter<br />

Volume 38<br />

Editorial Committee<br />

P. Bregitzer<br />

U. Lundqvist<br />

V. Carollo Blake<br />

From left to right, CIho 4196, Mutant G07-014, and Morex spike.<br />

From A vrs1 mutant in CIho 4196 to facilitate breeding of 6-rowed cultivars with<br />

Fusarium Head Blight resistance<br />


The Barley Genetics Newsletter is published electronically at<br />

http://wheat.pw.usda/gov/ggpages/bgn<br />

Contributions for publication in the Barley Genetics Newsletter should be sent to the<br />

Technical Editor, Dr. Phil Bregitzer (see Instructions to Authors on the following pages<br />

for details on submission). Reports on research activities (including ongoing projects,<br />

descriptions of new genetic and cytological techniques, and current linkage maps) are<br />

invited for the Research Notes section. Researchers are encouraged to submit descriptions<br />

of genetic stocks for the Barley Genetic Stocks section. Letters to the editors are welcome<br />

and will be published. Please inform the Technical Editor of any errors you notice in this<br />

volume or in previous volumes; corrections will be published in future volumes, and<br />

electronic copy will be appropriately corrected.<br />

Coordinators assigned at the International Barley Genetics Symposium should submit<br />

their reports by April 30, 2008 to:<br />

Dr. Udda Lundqvist<br />

Coordinator, Barley Genetics Newsletter<br />

Nordic Genetic Resource Center<br />

P.O. Box 41<br />

SE-230 53 Alnarp, Sweden<br />

Phone: +46 40 536640<br />

FAX: +46 40 536650<br />

Cell phone: +46 70 624 1502<br />

E-mail: udda@nordgen.org<br />

All correspondence and contributions to the Barley Genetics Newsletter should be in<br />

English. Please include your complete mailing address, including your country, and an email<br />

address (if you have one) with all correspondence and contributions.<br />

Acknowledgements<br />

The contributors of research reports and the diligence of the many Coordinators make<br />

this publication possible. Victoria Carollo Blake and the <strong>GrainGenes</strong> team at the USDA-<br />

ARS make possible the electronic version of BGN.


INSTRUCTIONS FOR CONTRIBUTORS<br />

TO VOLUME 38 (2008) OF THE <strong>BARLEY</strong> <strong>GENETICS</strong> <strong>NEWSLETTER</strong><br />

Submissions will be published via the internet (http://wheat.pw.usda.gov/ggpages/bgn/).<br />

Approximately quarterly, new submissions will be appended to existing submissions; the<br />

page numbers of existing submissions will not change and citation information will<br />

remain constant. BGN 37 will consist of all submissions received prior to the end of the<br />

calendar year of 2007, and will be compiled into a printable version that will be available<br />

via the Graingenes website. Send submissions to:<br />

Dr. Phil Bregitzer, BGN Technical Editor,<br />

USDA-ARS, 1691 S. 2700 W.,<br />

Aberdeen, ID, 83210, USA.<br />

Telephone: (voice) 208-397-4162 ext. 116; (fax) 208-397-4165<br />

e-mail: phil.bregitzer@ars.usda.gov<br />

Manuscripts should be written in English and be brief. Each paper should be prepared<br />

separately, with the title and the authors' names and addresses at the top of the first page.<br />

For each paper to be included in Barley Genetics Newsletter Volume 38, submit a file to<br />

the Technical Editor in one of the following ways (in order of preference):<br />

1. As an attachment to an e-mail message<br />

2. A 3.5" diskette or CD; include also one high quality printed copy<br />

3. High-quality paper copy (acceptable only in unusual circumstances)<br />

Instructions for file preparation<br />

Text and tables for each article can be in one file, but place each figure in a separate file.<br />

Name these files with your last name, a manuscript number, and "txt" or "fig" (in the case<br />

of separate files for text and figures), and a number for each figure (in the case of<br />

separate files). For example, the files for a manuscript plus two figures from Phil<br />

Bregitzer would be: bregitzer1txt.wpd, bregitzer1fig1.gif , and bregitzer1fig2.gif .<br />

File Formats for Text and Tables: Preferred: Word or WordPerfect or Word, PCcompatible<br />

formatting. Macintosh formats are not acceptable<br />

Please keep formatting simple and consistent with that of BGN 37. Use Times New<br />

Roman Font, 12 pt, with both right and left justification, except for the title and author<br />

information and tables, which should be centered. Please use only tabs and hard returns in<br />

the preparation of text files. Tables must be prepared using the table feature of your word<br />

processing program, and not prepared using tabs. Please do not add additional lines to<br />

your table except with the table formatting tools in your word processor. Please use<br />

center justification for tables, and not "full" justification (i.e. left and right justification,<br />

that is used for text). Figures can be submitted in any common format but avoid the<br />

necessity of color for interpretation, to enable printing and copying hardcopy in black and<br />

white without losing information contained in the figures.


The Barley Genetics Newsletter is published electronically at<br />

http://wheat.pw.usda/gov/ggpages/bgn<br />

Contributions for publication in the Barley Genetics Newsletter should be sent to the<br />

Technical Editor, Dr. Phil Bregitzer (see Instructions to Authors on the following pages<br />

for details on submission). Reports on research activities (including ongoing projects,<br />

descriptions of new genetic and cytological techniques, and current linkage maps) are<br />

invited for the Research Notes section. Researchers are encouraged to submit descriptions<br />

of genetic stocks for the Barley Genetic Stocks section. Letters to the editors are welcome<br />

and will be published. Please inform the Technical Editor of any errors you notice in this<br />

volume or in previous volumes; corrections will be published in future volumes, and<br />

electronic copy will be appropriately corrected.<br />

Coordinators assigned at the International Barley Genetics Symposium should submit<br />

their reports by April 30, 2008 to:<br />

Dr. Udda Lundqvist<br />

Coordinator, Barley Genetics Newsletter<br />

Nordic Genetic Resource Center<br />

P.O. Box 41<br />

SE-230 53 Alnarp, Sweden<br />

Phone: +46 40 536640<br />

FAX: +46 40 536650<br />

Cell phone: +46 70 624 1502<br />

E-mail: udda@nordgen.org<br />

All correspondence and contributions to the Barley Genetics Newsletter should be in<br />

English. Please include your complete mailing address, including your country, and an email<br />

address (if you have one) with all correspondence and contributions.<br />

Acknowledgements<br />

The contributors of research reports and the diligence of the many Coordinators make<br />

this publication possible. Victoria Carollo Blake and the <strong>GrainGenes</strong> team at the USDA-<br />

ARS make possible the electronic version of BGN.


INSTRUCTIONS FOR CONTRIBUTORS<br />

TO VOLUME 38 (2008) OF THE <strong>BARLEY</strong> <strong>GENETICS</strong> <strong>NEWSLETTER</strong><br />

Submissions will be published via the internet (http://wheat.pw.usda.gov/ggpages/bgn/).<br />

Approximately quarterly, new submissions will be appended to existing submissions; the<br />

page numbers of existing submissions will not change and citation information will<br />

remain constant. BGN 37 will consist of all submissions received prior to the end of the<br />

calendar year of 2007, and will be compiled into a printable version that will be available<br />

via the Graingenes website. Send submissions to:<br />

Dr. Phil Bregitzer, BGN Technical Editor,<br />

USDA-ARS, 1691 S. 2700 W.,<br />

Aberdeen, ID, 83210, USA.<br />

Telephone: (voice) 208-397-4162 ext. 116; (fax) 208-397-4165<br />

e-mail: phil.bregitzer@ars.usda.gov<br />

Manuscripts should be written in English and be brief. Each paper should be prepared<br />

separately, with the title and the authors' names and addresses at the top of the first page.<br />

For each paper to be included in Barley Genetics Newsletter Volume 38, submit a file to<br />

the Technical Editor in one of the following ways (in order of preference):<br />

1. As an attachment to an e-mail message<br />

2. A 3.5" diskette or CD; include also one high quality printed copy<br />

3. High-quality paper copy (acceptable only in unusual circumstances)<br />

Instructions for file preparation<br />

Text and tables for each article can be in one file, but place each figure in a separate file.<br />

Name these files with your last name, a manuscript number, and "txt" or "fig" (in the case<br />

of separate files for text and figures), and a number for each figure (in the case of<br />

separate files). For example, the files for a manuscript plus two figures from Phil<br />

Bregitzer would be: bregitzer1txt.wpd, bregitzer1fig1.gif , and bregitzer1fig2.gif .<br />

File Formats for Text and Tables: Preferred: Word or WordPerfect or Word, PCcompatible<br />

formatting. Macintosh formats are not acceptable<br />

Please keep formatting simple and consistent with that of BGN 37. Use Times New<br />

Roman Font, 12 pt, with both right and left justification, except for the title and author<br />

information and tables, which should be centered. Please use only tabs and hard returns in<br />

the preparation of text files. Tables must be prepared using the table feature of your word<br />

processing program, and not prepared using tabs. Please do not add additional lines to<br />

your table except with the table formatting tools in your word processor. Please use<br />

center justification for tables, and not "full" justification (i.e. left and right justification,<br />

that is used for text). Figures can be submitted in any common format but avoid the<br />

necessity of color for interpretation, to enable printing and copying hardcopy in black and<br />

white without losing information contained in the figures.


Jørgen Løhde: In Memoriam<br />

Barley breeder PhD Jørgen Juul Hansen Løhde passed away in Landskrona, Sweden on July 12, 2008.<br />

He is survived by his wife Anne Marie and daughters Christina and Maria, son-in-law Andreas, his two<br />

sisters, his brother and their families.<br />

Jørgen Løehde (JL) was born March 20, 1948 on the island of Fyn in Denmark.<br />

He became interested at an early age in farming and agricultural research. After internships at<br />

Trollsminde Research Farm and Idagård Farm in Slagelse, followed by education at Lyngby Agricultural<br />

School and military service at the Royal Guard in Copenhagen, JL studied at the Royal Veterinary &<br />

Agricultural University (RVAU), Denmark. He received his degree in agriculture in 1974, and<br />

continuing his studies obtained his PhD in 1977 with a dissertation on timothy. Through 1981, he worked


at RVAU as a lecturer, as well as co-researcher on the project, “Multi-line Varieties in Barley.” This<br />

involved cross-breeding of some 30 genes for mildew-resistance into the well-adapted variety Pallas,<br />

work which subsequently has been widely used within plant breeding research.<br />

In 1981, JL began his lifelong employment at Weibulls of Landskrona, Sweden. For the first two years,<br />

he headed up the company’s breeding station in Great Britain, where he among other things took over<br />

responsibility for a successful winter wheat program. The well-known wheat variety Sleipner got listed<br />

during these years in amongst other countries England and Denmark. JL carried out the demanding task<br />

of stock maintenance and seed multiplication for production in an exemplary manner.<br />

In 1983, Weibulls called JL back to Sweden, where he became the deputy breeder for the comprehensive<br />

barley breeding program, for which he took over full responsibility in 1986. Together with senior<br />

breeders Göran Ewertson and Per Lundin, he stood behind the development of internationally successful<br />

varieties such as Kinnan, Goldie, Maud, Mentor and Meltan.<br />

Among JL’s more recent developed varieties is Pongo, which in addition to Sweden has spread<br />

throughout Lithuania; and Cecilia and Gomera which have been marketed even in Spain. The varieties<br />

Tofta and Maaren were bred for the starch industry in Finland as well as Denmark. The jewel in the<br />

crown of JL’s many contributions to variety development is his breeding of the extremely high-producing<br />

variety Gustav, which today is the most cultivated feed barley variety in Sweden.<br />

JL also had great interest in improving the quality of malt barley for both the beer and whisky industries.<br />

Currently under propagation are two of JL’s unique malt whisky varieties, Makof and Catriona. JL’s<br />

strong leadership qualities were put to good use by the company when, from 1995 to 2006, he served as<br />

head of the Cereal Breeding Department at Svalöf Weibull.<br />

JL was respected and appreciated both in Sweden and internationally, in the plant breeding community as<br />

well as in the malt and brewery industries. He represented Sweden in the European Brewery<br />

Convention. He was active in the organizational committee for the International Barley Genetics<br />

Symposium held in Helsingborg in 1991 and several other professional meetings & congresses; and was<br />

also active within the Nordic Agricultural Research Association and Eucarpia.<br />

JL was very much a family man, even though barley breeding took much of his time during the growing<br />

season. He also gave much of his energy to his beloved hobbies of hunting and hunting dogs. No<br />

meeting, business trip or other activity could collide with the Swedish moose hunting season for JL. He<br />

was chair of Svalöf Weibulls’ hunting club, and his family bought a farm, his beloved Gustavslund, with<br />

hunting fields in the southern Swedish province of Småland.<br />

We who have had the privilege of working for many years with JL will remember him as a competent,<br />

loyal and thoughtful colleague, with warm humor and great professional and social competence. He was<br />

a skillful, respected and stimulating leader; and always, a trustworthy and thoughtful friend. We will<br />

deeply be missing Jørgen Løhde.<br />

Gunnar Svensson, Morten Rasmussen och Therese Christerson, Sweden


Table of Contents<br />

Barley Genetics Newsletter, Volume 38, 2008<br />

[Other volumes of the Barley Genetics Newsletter]<br />

Information about the Barley Genetics Newsletter, p. i<br />

Instructions for contributors, p. ii<br />

Memoriam for Jørgan Løhde, p. iii<br />

Research Notes<br />

Gamma-induced pericentric inversion in barley (Hordeum vulgare L. (.doc, .pdf) 1-3<br />

K.I. Gecheff<br />

Yield response to treatment with vesicular-arbuscular myccorrhiza (VAM) in a<br />

breeding population of barley (.doc, .pdf)<br />

M.C. Therrien<br />

A vrs1 mutant in CIho 4196 to facilitate breeding of 6-rowed cultivars with Fusarium<br />

Head Blight resistance (.doc, .pdf)<br />

C. Boyd, R. Horsley, A. Kleinhofs<br />

Worth of Genetic Parameters to Sort out New Elite Barley Lines over Heterogeneous<br />

Environments (.doc, .pdf)<br />

N. Chand, S.R. Vishwakarama, O.P. Verma, M. Kumar<br />

Phenotypic Stability of Elite Barley Lines over Heterogeneous Environments(.doc,<br />

.pdf)<br />

N. Chand, S.R. Vishwakarama, O.P. Verma, M. Kumar<br />

Coordinator's Reports<br />

Report of the Workshop on Barley Genetic Linkage Groups, Barley Genome, Genes<br />

and Genetic Stocks at the<br />

X. International Barley Genetics Symposium. Alexandria, Egypt, April 2008 (.doc,<br />

.pdf)<br />

U. Lundqvist and A.K. Brantestam<br />

4-6<br />

7-9<br />

10-13<br />

14-17<br />

100-102<br />

Overall Coordinator’s Report (.doc, .pdf) 103-133<br />

U. Lundqvist<br />

Table of Barley Genetic Stock Descriptions, Latest Version (.doc, .pdf) 134-164<br />

J.D. Franckowiak, U. Lundqvist<br />

Rules for Nomenclature and Gene Symbolization in Barley (.doc, .pdf) 165-170<br />

J.D. Franckowiak, U. Lundqvist


Barley Genetics Newsletter (2008) 38:1-3<br />

Gamma-induced pericentric inversion in barley (Hordeum vulgare L.)<br />

K. I. Gecheff, Institute of Genetics, Acad. D. Kostoff<br />

Bulgarian Academy of Sciences<br />

1113 Sofia, Bulgaria.<br />

The karyotype of barley has been subjected to an extensive experimental reconstruction with<br />

respect of both fundamental and applied aspects (for review see Taketa et al. 2003).<br />

Reciprocal translocations have been the basic type of structural rearrangements used in this<br />

species along these lines. To my knowledge, there are very few attempts to use pericentric<br />

inversions as morphological markers for identification of barley chromosomes. For a long<br />

time our efforts were aimed at induction by gamma-irradiation of pericentric inversions which<br />

affect asymmetrically the morphology of barley chromosomes. Three homozygous lines,<br />

namely, I-11, I-44 and I-39, containing such pericentric inversions in chromosomes 2H, 5H<br />

and 6H, respectively, were produced so far. The morphology of reconstructed chromosomes is<br />

described in this paper.<br />

Dry seeds of both standard two-rowed spring barley variety “Freya” and translocation line T-<br />

1586, originating from the same variety were used as experimental material. Doses between<br />

100 and 200 Gy of gamma-rays were applied in order to produce chromosomal<br />

rearrangements. Data concerning cytological and selection techniques are given in our<br />

previous papers (Gecheff 1989; 1996). The idiograms of chromosomes were constructed<br />

following the proposals of Marthe and Künzel (1994).<br />

Since pachytene analysis that might reveal a specific loop formation in plant heterozygous for<br />

inversions is practically inapplicable in barley, the examination of the morphology and<br />

Giemsa N-banding patterns of somatic metaphase chromosomes were the main approach for<br />

selection of plants of interest and identification of inversion breakpoints. Later on, the nature<br />

of the induced structural rearrangements were confirmed by examination of meiotic<br />

metaphase I of F1 hybrid plants in crosses of mutant forms with their parent lines.<br />

Pericentric inversion 2H<br />

The karyogram analysis of somatic metaphases of mutant line I-11 revealed an alteration in<br />

the morphology of chromosome 2H (an apparent increase in the long/short arm ratio) without<br />

any change in the morphology of the rest of chromosomes of the karyotype. A comparative<br />

analysis of Giemsa N-banded metaphase chromosomes showed an intrachromosomal transfer<br />

of the most distal band of the short arm to the long arm of this chromosome, that has evidently<br />

resulted from a pericentric inversion embracing a large segment with total length of 65 mGNs.<br />

The putative sites of the inversion breakpoints were found to be located within the segments<br />

that do not exceed 9 mGNs, as indicated by arrowheads in Fig. 1A.<br />

Pericentric inversion 5H<br />

This inversion was easily identified because it affects dramatically the standard morphology<br />

of chromosome 5H. The evident increase of the size of the satellite up to 36 mGNs was<br />

accompanied by corresponding reduction in the size of the long arm of this chromosome.<br />

Using the approach mentioned above, the inversion breakpoints are supposed to be localized<br />

within the segments that have the same length as the satellite (Fig. 1B).<br />

1


Barley Genetics Newsletter (2008) 38:1-3<br />

Pericentric inversion 6H<br />

Due to the transfer of the proximal band in the short (satellite) arm of chromosome 6H, it<br />

became possible to map the inversion breakpoints (indicated by arrowheads in Fig. 1C) with<br />

great precision. The size of the inverted segment which involves the centromere was found to<br />

run up to 58 mGNs in length.<br />

Fig. 1. Idiograms of Giemsa N-banded chromosomes in inversion lines: I-11 (A) – 2H i ; I-44<br />

(B) – 5H i ; I-39 (C) – 6H i . On the left side of each reconstructed chromosome, the constitution<br />

of the respective standard type (2H, 5H and 6H) is shown. The putative position of the<br />

inversion breakpoints are shown by arrowheads. The figures at the end of chromosome arms<br />

display their size in milliGeNomes (mGN), i. e., one thousandth of the genome length. NOR –<br />

nucleolus organizing region.<br />

2


Barley Genetics Newsletter (2008) 38:1-3<br />

References:<br />

Gecheff, K. I. 1989. Multiple reconstruction of barley karyotype resulting in complete<br />

cytological marking of the chromosome complement. Theor. Appl. Genet. 78:683-688.<br />

Gecheff, K. I. 1996. Production and identification of new structural chromosome mutations in<br />

barley (Hordeum vulgare L.). Theor. Appl. Genet. 92:777-781.<br />

Marthe, F. and G. Künzel. 1994. Localization of translocation breakpoints in somatic<br />

methaphase chromosomes of barley. Theor. Appl. Genet. 89:240-248.<br />

Taketa, S., I. Linde-Laursen, and G. Künzel. 2003. Cytogenetic diversity. In: R. von Bothmer,<br />

T. Hintum, H. Knüpff and K. Sato (eds) Diversity in barley (Hordeum vulgare L.), Elsevier,<br />

pp. 97-119.<br />

3


Barley Genetics Newsletter (2008) 38:4-6<br />

Yield response to treatment with vesicular-arbuscular myccorrhiza (VAM) in<br />

a breeding population of barley<br />

Mario C. Therrien<br />

Agriculture and Agri-Food Canada, Brandon Research Centre, Box 1000A, R.R.#3, Brandon,<br />

MB, Canada, R7A 5Y3, mtherrien@agr.gc.ca<br />

Abstract<br />

Vesicular-arbuscular myccorrhiza (VAM; Glomus spp.) are soil fungi that can colonize the roots<br />

of a number of commercially important crops, including barley, and are implicated in increasing<br />

the availability of nutrients to the host plant, particularly phosphorus (P). This has been shown to<br />

increase yields in the host crop. Barley has shown a differential response to increased yield after<br />

inoculation with VAM culture. Two barley cultivars with differential yield response to VAM<br />

treatment, Virden and CDC Earl, were crossed and 200 Recombinant Inbred Lines (RILs) were<br />

produced. Seeds of individual heads, from the parents and RILs, were treated with VAM or left<br />

untreated and planted as head rows in a Completely Randomized Design (CRD) in a soil low in<br />

nutrients and nearly devoid of native VAM. Grain and dry matter yield response indicated that<br />

VAM treatment produced a significant yield increase in CDC Earl and significant yield<br />

suppression in Virden. VAM-treated RILs demonstrated significant yield suppression, indicating<br />

that genetic improvement for this trait is unlikely in barley.<br />

Introduction<br />

Vesicular-arbuscular myccorrhiza (VAM; Glomus spp.) are fungi that can colonize the roots of a<br />

number of important crops, including barley (Hordeum vulgare L.) and provide benefits to the<br />

host plant by mobilizing nutrients from the soil, especially phosphorus (P; Jensen, 1982). The<br />

effectiveness of VAM has been demonstrated in the field for a number of crops (Jensen, 1984).<br />

This has led to the availability of commercial inoculants of VAM for field use (Bagyaraj, 1991).<br />

In barley, colonization by VAM appears to be at least partially dependent on genotype where<br />

some genotypes demonstrate enhanced biomass and grain yield while others do not (Boyetchko<br />

and Tewari, 1995). Developing new barley cultivars, with the ability to increase yield with VAM<br />

inoculation, would be advantageous to producers. This study utilizes a breeding population of<br />

barley, developed from two genotypes with positive and negative response to VAM inoculation,<br />

to determine the feasibility of breeding for improved VAM-mediated yield response in barley.<br />

Materials and Methods<br />

Using Virden (VAM-negative response) and CDC Earl (VAM-positive response) six-row barley<br />

cultivars, 300 manual crosses were made yielding 220 F1 seeds. Each F1 seed was then placed<br />

through four cycles of Single Seed Descent (SSD) producing a total of 220 Recombinant Inbred<br />

Lines (RILs). Remnant seed of the original parent material was also saved and multiplied along<br />

with the RILs. The 220 RILs were grown in single 3 m long rows, along with twenty four rows<br />

of each of the two parents. Three heads were selected, at random, from each row and<br />

individually manually threshed and stored in labelled envelopes. One half of the RILs and parent<br />

seed were treated with a commercial inoculum of vesicular-arbuscular micchoryza (VAM;<br />

Mikro-VAM®) according to manufacturer specifications (Mikro-Tek Inc., Timmons, ON,<br />

Canada). The remaining half were left untreated as served as the control group.<br />

4


Barley Genetics Newsletter (2008) 38:4-6<br />

Each package of seed was sown in individual head rows in a Completely Randomized Design<br />

(CRD) and each row labelled accordingly. Head rows were sown on a medium-textured clay<br />

loam soil that had been deliberately sown to canola in the three previous crop years to eliminate<br />

most of the native VAM and reduce nitrogen (N) and phosphorus (P) levels to 30 and 20 kg ha -1 ,<br />

respectively. Sixty kg ha -1 N, as urea, was added to the soil, prior to sowing, to allow for normal<br />

crop development. Potassium (K) was not limiting in this soil, being in excess of 300 kg ha -1 of<br />

native K. Levels of P were not augmented to allow for the expression of VAM activity in a low P<br />

soil.<br />

Head rows were allowed to mature completely prior to the entire plants above-ground being<br />

harvested by hand. Entire rows were individually weighed, to the nearest 0.5 g, to obtain dry<br />

matter yield per row. Each row was then threshed in a stationary plot combine and the<br />

subsequent seed collected and weighed to the nearest 0.5 g. to obtain grain yield per row. An<br />

Analysis of Variance (ANOVA) was performed for both grain and dry matter yield using the<br />

PROC GLM of SAS (SAS Institute, 1988).<br />

Results and Conclusions<br />

The parent cultivars, CDC Earl and Virden, were chosen because they demonstrated differential<br />

responses to VAM treatment (Boyetchko & Tewari, 1995), with CDC Earl demonstrating a<br />

positive response and Virden having no, or a negative, response. The parent cultivars, Virden and<br />

CDC Earl, gave yield responses to VAM treatment that were expected. CDC Earl showed an<br />

increase in both dry matter yield (Table 1) and grain yield (Table 2) after treatment with VAM,<br />

whereas Virden showed reduced dry matter yield (Table 1) and a slight reduction (nonsignificant)<br />

in grain yield (Table 2).<br />

The yield values for the RILs were intermediate to the parents (Tables 1 and 2), as would be<br />

expected for the quantitative traits of grain and dry matter yield. For dry matter yield, the RILs<br />

showed a response similar to Virden, which was a decrease in yield, albeit non-significant (Table<br />

1). For grain yield, the RILs showed only a slight (non-significant) increase in yield (Table 2),<br />

with values closer to Virden than to CDC Earl. The results suggest that there would be no genetic<br />

improvement from a cross between these VAM responsive and non-responsive genotypes.<br />

Further evaluation with multiple genotypes may provide genetic gain for yield from VAM<br />

inoculation via recombination from genetic backgrounds differing from those in the present<br />

study.<br />

5


Barley Genetics Newsletter (2008) 38:4-6<br />

Table 1. Average dry matter yield (g plot -1 ) of inoculated vs. uninoculated (control)<br />

Virden, CDC Earl and RILs treated with VAM.<br />

Source Control Inoculated Standard<br />

Error<br />

Significance Response<br />

CDC Earl 399.1 435.5 16.1 ** Increase<br />

Virden 516.5 469.4 27.3 * Decrease<br />

RILs 450.1 436.7 19.0 ns Decrease<br />

Average 455.2 447.2<br />

Std. Error 34.0 11.1<br />

CV 7.5 2.5<br />

Table 2. Average grain yield (g plot -1 ) of inoculated vs. uninoculated (control) Virden,<br />

CDC Earl and RILs treated with VAM.<br />

Source Control Inoculated Standard<br />

Error<br />

Significance Response<br />

CDC Earl 128.2 140.8 6.1 ** Increase<br />

Virden 97.8 97.6 8.5 ns No change<br />

RILs 117.4 119.6 4.3 ns Increase<br />

Average 114.5 119.3<br />

Std. Error 8.9 12.5<br />

CV 7.8 10.5<br />

Acknowledgements<br />

The author is grateful to Dr. R.B. Irvine for suggesting the topic and to Dr. R. Mohr for<br />

providing the plot land.<br />

References<br />

Bagyaraj, D.J. 1991. Ecology of vesicular-arbuscular mycchorizae. In: Handbook of Applied<br />

Mycology: Soil and Plants (Eds. D.K. Arola, R. Rai, K.G. Mukerjii and G.R. Knudsen) pp. 3-34.<br />

Marcel Dekker, New York, USA.<br />

Boyetchko, S.M. and J.P. Tewari. 1995. Susceptibility of barley cultivars to vesicular-arbuscular<br />

mycorrhizal fungi. Can. J. Plant Sci. 75(1): 269-275.<br />

Jensen, A. 1982. Influence of four vescicular-arbuscular micorrhyzal fungi on nutrient uptake<br />

and growth in barley. New Phytol. 90: 45-50.<br />

Jensen, A. 1984. Response of barley, pea and maize to inoculation with different vesiculararbuscular<br />

mycchorizal fungi in irradiated soil. Plant and Soil 78(3): 315-323.<br />

SAS Institute. 1988. SAS user’s guide: Statistics. Version 6.04 ed., SAS Inst., Cary, NC.<br />

6


Barley Genetics Newsletter (2008) 38:7-9<br />

A vrs1 mutant in CIho 4196 to facilitate breeding of 6-rowed cultivars with<br />

Fusarium Head Blight resistance.<br />

Christine Boyd 1 , Richard Horsley 2 , and Andris Kleinhofs 1<br />

1 Department of Crop and Soil Sciences, Washington State University, Pullman, WA 99164-6420<br />

2 Department of Plant Sciences, North Dakota State University, Fargo, ND 58105-5051<br />

Development of commercial 6-rowed Fusarium Head Blight (FHB) cultivars has been difficult<br />

due to the close linkage of the 2-rowed (Vrs1) trait to a major FHB resistance QTL on<br />

chromosome 2H bin10 (Horsley et al. 2006; Mesfin et al. 2003). We have initiated a mutation<br />

program with the FHB resistant 2-rowed line CIho4196 to convert it to a 6-rowed (vrs1)<br />

phenotype and to correct other undesirable traits such as tall stature and late ripening (Boyd et al.<br />

2007).<br />

We have now confirmed a vrs1 mutant in CIho 4196 background. This mutant should<br />

facilitate breeding for 6-rowed Fusarium Head Blight (FHB) resistant cultivars since it is closely<br />

linked with the chromosome 2H bin10 FHB resistance. The mutant designated G07-014 was<br />

isolated in a gamma irradiated CIho 4196 M2 population (proposed gene and allele designation<br />

vrs1.u). The mutant phenotype was confirmed in Pullman, WA summer 2008 and genotype<br />

confirmed sequencing. Sequence analysis revealed that the mutant vrs1 gene has a 9 nucleotide<br />

(nt) deletion compared with the wild-type CIho 4196 Vrs1 gene (Fig. 1).<br />

(750)<br />

g07-014 Vrs1 (287)<br />

CIho4196 Vrs1 (750)<br />

Consensus (750)<br />

750 760 770 780 790 800 810<br />

825<br />

ACCCCAAGAAGCGGCGGCTCACCGACGAG---------ATTCTGGAGCTGAGCTTCCGGGAGGACCGCAAGCTGGA<br />

ACCCCAAGAAGCGGCGGCTCACCGACGAGCAGGCCGAGATTCTGGAGCTGAGCTTCCGGGAGGACCGCAAGCTGGA<br />

ACCCCAAGAAGCGGCGGCTCACCGACGAG ATTCTGGAGCTGAGCTTCCGGGAGGACCGCAAGCTGGA<br />

Fig.1 Comparison of the CIho 4196 Vrs1 and gene sequence with the mutant G07-014 gene<br />

sequence.<br />

Since the 9 nt deletion does not result in a frameshift, we wondered why the protein is<br />

inactivated. It turned out that the deletion is at the beginning of the homeodomain of exon II, a<br />

critical region of the gene (Fig. 2).<br />

Hox 1<br />

Exon I Exon II<br />

Splicing product of Vrs1 CI 1-4 7<br />

669 bp<br />

Exon III<br />

Fig. 2. CIho 4196 Vrs1 cDNA structure. The approximate location of the 9 nt deletion is boxed.<br />

The homeodomain region is underlined.<br />

7


Barley Genetics Newsletter (2008) 38:7-9<br />

The mutant spike appears as a typical 6-rowed (Fig. 3) with fully fertile side florets, except that<br />

the side florets are a bit thin (Fig. 4). This is probably due to the presence of the 2-rowed Int-c<br />

allele in the mutant (Lundqvist and Lundqvist 1989).<br />

Fig. 3. From left to right, CIho 4196, Mutant G07-014, and Morex spike.<br />

Fig. 4. From left to right CIho 4196, Mutant G07-014 and Morex spikelet.<br />

8


Barley Genetics Newsletter (2008) 38:7-9<br />

The mutant was tested for FHB reaction in China winter '07-'08 by RH. The results showed that<br />

the mutant is essentially identical to CIho 4196 in FHB rating and plant height, at least in China<br />

(Table 1).<br />

Table 1. Fusarium head blight (FHB) score and plant height of CIho 4196 and G07-014 in the<br />

2007-2008 FHB nursery at Zhejiang University, Hangzhou, China.<br />

FHB score<br />

Entry 7 May 2008 9 May 2008 Average Standart Plant height<br />

deviation<br />

--------------------1-5 score†------------------ cm<br />

CIho 4196 2.0 2.0 2.0 0.00 140<br />

G07-014 1.0 2.0 1.5 0.71 141<br />

†Score of 1 = no disease and 5 = severe disease.<br />

Limited seed is available from AK.<br />

References:<br />

Boyd CN, Horsley R, Kleinhofs A (2007) Barley chromosome 2(2H) bin 10 Head Blight<br />

resistance QTL: mapping and development of isolines. In: Canty SM, Clark, A., Ellis, D.,<br />

van Sanford D. (ed) Proceedings of the 2007 National Fusarium Head Blight Forum 2007<br />

Dec 2-4. Kansas City, MO, East Lansing: Michigan State University pp 170-172<br />

Horsley RD, Schmierer D, Maier C, Kudrna D, Urrea CA, Steffenson BJ, Schwarz PB,<br />

Franckowiak JD, Green MJ, Zhang B, Kleinhofs A (2006) Identification of QTL<br />

associated with Fusarium Head Blight resistance in barley accession CIho 4196. Crop<br />

Science 46:145-156<br />

Lundqvist U, Lundqvist A (1989) The co-operation between intermedium genes and the six-row<br />

gene hex-v in a six-row variety of barley,. Hereditas 110:227-233<br />

Mesfin A, Smith KP, Dill-Macky R, Evans CK, Waugh R, Gustus CD, Muehlbauer GJ (2003)<br />

Quantitative trait loci for Fusarium head Blight resistance in barley detected in a tworowed<br />

by six-rowed population. Crop Sci 43:307-318<br />

9


Barley Genetics Newsletter (2008) 38:10-13<br />

Worth of Genetic Parameters to Sort out New Elite Barley Lines<br />

over Heterogeneous Environments<br />

Nanak Chand 1 , S.R. Vishwakarma 1, 2 , O.P. Verma 1† 1, 3<br />

and Manoj Kumar<br />

1<br />

Department of Genetics and Plant Breeding, N.D. University of Agriculture and<br />

Technology, Kumarganj, Faizabad- 224229 (U.P), INDIA<br />

2<br />

Correspondence address: Barley Breeder, Deptt. of Genetics and Plant Breeding, Narendra<br />

Deva University of Agriculture and Technology, Kumarganj, Faizabad, UP, India; emailvishwakarma_sr@rediffmail.com,<br />

3<br />

Present address: Research Scholar, PG 0614, Deptt. of Genetics and Plant Breeding, Institute<br />

of Agricultural Sciences, BHU, Varanasi 221005, email- manojsbhu07@gmail.com<br />

†<br />

Additional author Email: ompverma_2002@yahoo.co.in<br />

ABSTRACT<br />

Thirty diverse elite barely lines and six checks were grown in the three environments with<br />

two replications during Rabi 2006-2007 to study coefficient of variability, heritability and<br />

expected genetic advance for ten characters i.e., days to ear emergence, days to maturity, total<br />

tillers per plant, number of effective tillers per plant, plant height (cm), number of grains per<br />

spike, 1000-grain weight (g), biological yield per plant (g), harvest index (%) and grain yield<br />

per plant (g).The phenotypic coefficient of variability (PCV) was higher than genotypic<br />

coefficient of variability (GCV). Environmental coefficient of variability (ECV) was less than<br />

both the parameters except days to maturity in E2. Grain yield per plant has the highest<br />

coefficient of variability followed by number of grains per spike. High estimates of<br />

heritability in broad sense were recorded for 1000-grain weight and number of grains per<br />

spike followed by biological yield per plant and grain yield per plant. The characters which<br />

showed higher estimates of genetic advance coupled with higher estimates of heritability<br />

reflecting additive gene action, were grain yield per plant and number of grains per spike<br />

followed by biological yield per plant .Thus, selection of these characters should emphasized<br />

in barley improvement programme.<br />

Key words: Barley (Hordeum vulgare L.), GCV, PCV, genetic advance, heritability,<br />

heterogeneous environments.<br />

INTRODUCTION<br />

Barley constitutes the fourth agricultural commodity in India after wheat, rice and<br />

maize. It is the best known crop grown world wide under varying agro climatic situations for<br />

food, feed and forage. It has superior nutritional qualities due to presence of beta-glucan (an<br />

anticholesteral substance), acetylcholine carbohydrate substance which nourishes our nervous<br />

system and recover memory loss, easy digestibility due to low gluten content and high lysine,<br />

thiamin and riboflavin render cooling and soothering effect in the body. Its alternate uses in<br />

malt and beer industry and health tonics have proved that barley is an important crop of<br />

present era. In order to launch a sound breeding programme, it is essential to have an idea of<br />

the nature and magnitude of variability, heritability and genetic advance in respect of<br />

breeding material at hand. The concept of heritability explains whether differences observed<br />

among individuals arose as a result of differences in genetic makeup or due to environmental<br />

forces. Genetic advance gives an idea of possible improvement of new population through<br />

selections, when compared to the original population. The genetic gain depends upon the<br />

amount of genetic variability and magnitude of the masking effect of the environment.


Barley Genetics Newsletter (2008) 38:10-13<br />

Keeping these points in the view, present investigation was undertaken for study of<br />

variability, heritability and genetic advance in indigenous elite lines of barley.<br />

MATERIALS AND METHODS<br />

The materials used in this study included thirty diverse new advance elite genotypes<br />

of barely and six checks. These elite lines of barley were collected from N. D. U. A. & T.,<br />

Kumarganj, Faizabad; C. S. A. U. A. & T., Kanpur; P. A. U., Ludhiana; D. W. R., Karnal; C.<br />

C. S. H. A. U. Hissar; R. A. U. (Durgapura) and J. N. K. V. V., Rewa. These genotypes were<br />

evaluated in randomized block design with two replications during rabi 2006-2007 and<br />

evaluated under three environmental conditions viz; rainfed , low fertility situation (E1), and<br />

saline sodic and late sown condition (E2) at Genetics and Plant Breeding Farm, Kumarganj;<br />

and normal fertile soil, irrigated and timely sown condition (E3) at Crop Research Station,<br />

Masodha, Faizabad. Each genotype was grown in 3 rows of 3 m long bed with spacing of 25<br />

cm between the rows. An approximate distance of 10 cm was maintained between plant to<br />

plant by hand thinning. Five competitive random plants from the middle row of the<br />

experimental plots were taken for recording the observations on days to maturity, days to ear<br />

emergence, number of effective tillers per plant, total tillers per plant, plant height (cm),<br />

number of grains per spike, 1000-grain weight (g), biological yield per plant (g), harvest<br />

index (%) and grain yield per plant (g). Heritability in broad sense was calculated as ratio of<br />

the total genetic variance to the phenotypic variance. Expected genetic advance was<br />

calculated following Johanson et al. (1955).<br />

RESULTS AND DISCUSSION<br />

In the present investigation the phenotypic coefficient of variability (PCV) was higher<br />

than genotypic coefficient of variability (GCV) for all the characters studied (Table 1).<br />

Environmental coefficient of variability (ECV) was less than both the parameters except days<br />

to maturity in E1 and E2. A perusal of coefficient of variability indicates that PCV was quite<br />

higher for grain yield per plant and number of grains per spike. Day to maturity showed<br />

considerable low variability, which indicates little opportunity for improvement through<br />

selection. This observation is in agreement with the result of Andonov et al. (1979) and<br />

Sandeep et al. (2002). Genotypic coefficient of variability (GCV) for grain yield per plant<br />

and number of grains per spike was also high except in E3 environment where grain yield<br />

was recorded low. ECV were high for total tillers per plant in E1, plant height in E2 and<br />

number of grains per spike in E3. Considerable environmental influences were observed for<br />

grain yield per plant in E3, total tillers per plant and number of effective tillers per plant in<br />

E1, suggested that environmental manipulation may be effective for bringing about<br />

favourable change in expression of these characters. In general, high estimates of heritability<br />

were found for all the traits except plant height, total tillers per plant and number of effective<br />

tillers per plant in E1 and days to maturity in (E2). In present study, the highest heritability<br />

was recorded for 1000-grain weight followed by number of grains per spike in all the<br />

environments except number of grains per spike in E3. Lowest value of heritability was<br />

recorded for days to maturity in all the environments except in E3. Similar views were also<br />

reported by Delogu (1988) and Sinha et al. (1999). Barraiga (1976) reported in spring wheat<br />

that combination of high variability and high heritability is considered useful for success of<br />

selection. High amount of genetic variability among the population indicated an increased<br />

opportunity for the selection of desirable genotypes, as the variation is heritable one. Genetic<br />

advance expressed in percentage of mean showed a wide range of variations across the<br />

environments. High heritability estimates were associated with high genetic advance for<br />

11


Barley Genetics Newsletter (2008) 38:10-13<br />

number of grains per spike, biological yield per plant and grain yield per plant except in E3<br />

for grain yield per plant, reflected the involvement of additive gene action for the inheritance<br />

of these traits. Similar results have been reported by Aidun et al. (1990) and; Vimal and<br />

Vishwakarma (1998). Such estimates of genetic advance indicated that moderate gains could<br />

be achieved with strengthening the selection. These results are in close agreement with the<br />

findings of Lee (1987) also. However, the high estimates of heritability with low genetic<br />

advance were detected for days to ear emergence and 1000-grain weight except in E2<br />

environment for 1000-grain weight. The traits possessing low genetic advance with high<br />

heritability indicates the presence of non additive gene action, thus simple selection<br />

procedure in early segregating generations will not be effective for screening of the desirable<br />

traits.<br />

REFERENCES<br />

Aidun V.L. and Rossenagel B.G. 1990. Heritability and genetic advance of hull peeling in<br />

two rowed barley. Canadian Journal of Plant Science, 70: 481-485.<br />

Andonov K.L., Sariev B.S. and Zhundibaev L.P. 1979. Structure of phenotypic variability in<br />

traits of spring barley. Acta Agril. Shanghai, 22: 187-188.<br />

Barraiga B.P. 1976. Variability and heritability of some quantitative characters in spring<br />

wheat. Agro. Sur. Chile, 42: 71-75.<br />

Burton G.W. and de Vane E.H. 1953. Estimating heritability in tall fescue (Festua<br />

qrundinacea) from replicated clonal material. Agron. J., 45: 478-481.<br />

Delogu G.C., Larenoni Morocc A., Mortiniello P., Odoardi M and Stance A.M. 1988. A<br />

recurrent selection programme for grain yield in winter barley. Euphytica, 37: 105-<br />

110.<br />

Johanson H.W., Robinson H.F. and Comstock C.E. 1955. Estimates of genetic and<br />

environment variability in soybean. Agron. J., 47: 314-318.<br />

Lee D.M. 1987. Kernel number in barley; inheritance and role in yield component,<br />

Dissertation Abs. Int. B. (Sci and Engg), 7: 2682.<br />

Panse V.G and Sukhatme V.S. 1967. Statistical Methods for Agricultural Workers, I.C.A.R,<br />

New Delhi.<br />

Sinha B.C and Saha B.C. 1999. Genetic studies, heritability and genetic advance in Barley<br />

(Hordeum vulgare L). Journal of Applied Biology, 9(2): 108-116.<br />

Sundeep Kumar and Prasad L.C. 2002. Variability and correlation studies in barley<br />

(Hordeum vulgare L.). Research on Crops, 3(2): 432-436.<br />

Vimal S.C and Vishwakarma S.R 1998. Heritability and genetic advance in barley under<br />

partially reclaimed saline-sodic soil. Rachis, 17(1/2): 56.<br />

12


Barley Genetics Newsletter (2008) 38:10-13<br />

TABLE 1. Estimates of range, grand mean, PCV, GCV, ECV, heritability in broad sense (h 2 b) and<br />

genetic advance in per cent of mean (GA %) for 10 characters in barley under heterogeneous<br />

environments<br />

S.N. Character Environment Range<br />

1.<br />

2.<br />

3.<br />

4.<br />

5.<br />

6.<br />

7.<br />

8.<br />

9.<br />

10.<br />

Days to ear<br />

emergence<br />

Days to<br />

maturity<br />

Total tillers<br />

per plant<br />

No. of<br />

effective<br />

tillers per<br />

plant<br />

Plant height<br />

(cm)<br />

No. of grains<br />

per spike<br />

1000-grain<br />

weight (g)<br />

Biological<br />

yield per plant<br />

(g)<br />

Harvest index<br />

(%)<br />

Grain yield<br />

per plant (g)<br />

13<br />

Grand<br />

mean<br />

PCV<br />

(%)<br />

GCV<br />

(%)<br />

ECV<br />

(%)<br />

h 2<br />

(b)<br />

(%)<br />

GA<br />

% of<br />

mean<br />

E1 67.50-89.00 80.61 7.45 6.87 2.87 85.10 13.06<br />

E2 74.50-110.00 83.79 9.14 8.33 3.77 83.00 15.64<br />

E3 78.50-82.50 75.79 4.84 4.48 1.85 85.30 8.52<br />

E1 119.00-133.00 127.65 3.26 2.71 2.80 69.40 4.66<br />

E2 111.00-125.50 119.44 2.86 ±.98 2.07 47.90 2.83<br />

E3 111.50-134.50 11;.90 3.88 3.46 1.75 79.60 6.36<br />

E1 8.83-22.42 14.00 19.·1 16.56 10.69 70.60 28.67<br />

E2 9.16-15.00 11.60 13.91 12.73 5.61 83.70 23.98<br />

E3 11.30-22.94 16.23 19.55 17.73 8.17 82.50 33.16<br />

E1 8.66-19.83 13.16 18.97 16.15 9.93 72.60 28.35<br />

E2 8.34-14.17 10.84 14.72 13.00 6.89 78.10 23.67<br />

E3 10.93-22.50 15.58 20.95 19.35 8.04 85.30 36.80<br />

E1 70.00-106.40 84.64 10.98 8.42 7.05 58.80 13.31<br />

E2 42.67-80.20 60.11 14.49 11.40 8.15 68.40 20.42<br />

E3 57.70-127.00 103.51 11.31 11.04 2.48 95.20 22.19<br />

E1 20.67-68.50 51.15 26.23 25.88 4.26 97.40 52.60<br />

E2 16.33-53.83 32.72 27.28 26.93 4.38 97.40 54.75<br />

E3 22.83-67.83 50.80 29.28 27.88 8.95 90.70 54.68<br />

E1 37.78-53.50 46.12 9.45 9.45 0.28 99.90 19.46<br />

E2 31.37-48.51 41.93 10.88 10.87 0.41 99.90 22.38<br />

E3 38.11-53.74 46.44 9.37 9.37 0.24 99.90 19.30<br />

E1 35.83-79.17 53.61 21.07 20.59 4.48 95.50 41.45<br />

E2 21.76-58.49 33.00 25.91 25.64 3.67 98.00 52.29<br />

E3 43.00-107.33 62.19 23.71 22.00 8.83 86.10 42.06<br />

E1 21.00-52.20 42.20 16.28 15.07 6.15 85.70 28.75<br />

E2 14.42-59.30 37.71 17.28 16.94 3.38 96.20 34.23<br />

E3 29.62-65.93 42.44 18.01 17.56 3.99 95.10 35.28<br />

E1 14.00-45.01 23.67 28.15 27.57 5.69 95.90 55.63<br />

E2 7.00-22.33 12.30 27.42 26.87 5.48 96.00 54.23<br />

E3 16.83-37.67 25.87 20.41 19.02 7.40 86.90 36.52


Barley Genetics Newsletter (2008) 38:14-17<br />

Phenotypic Stability of Elite Barley Lines over Heterogeneous<br />

Environments<br />

Nanak Chand 1 , S.R. Vishwakarma 1, 2 , O.P. Verma 1† 1, 3<br />

and Manoj Kumar<br />

1<br />

Department of Genetics and Plant Breeding, N.D. University of Agriculture and<br />

Technology, Kumarganj, Faizabad- 224229 (U.P), INDIA<br />

2<br />

Correspondence address: Barley Breeder, Deptt. of Genetics and Plant Breeding, Narendra<br />

Deva University of Agriculture and Technology, Kumarganj, Faizabad, UP, India; emailvishwakarma_sr@rediffmail.com,<br />

3<br />

Present address: Research Scholar, PG 0614, Deptt. of Genetics and Plant Breeding, Institute<br />

of Agricultural Sciences, BHU, Varanasi 221005, email- manojsbhu07@gmail.com<br />

†<br />

Additional author Email: ompverma_2002@yahoo.co.in<br />

ABSTRACT<br />

It is perceived that barley cultivation has flourished since 9000 years ago. Due to<br />

versatile and hardy nature, barley is grown world wide for staple food, industrial and<br />

medicinal uses. Barley is used in in form of malt, beer, syrups, maltova, horlicks and<br />

delicious chocolates. Thirty diverse elite lines of barley along with six checks were assessed<br />

in three environments with two replications for three characters i.e. 1000-grain weight (g),<br />

harvest index (%) and grain yield per plant (g). The genotypes x environment (G x E)<br />

interactions were significant for all the traits studied. Among twenty three average yielding<br />

genotypes, only sixteen genotypes showed suitability for wide adaptation. Better phenotypic<br />

stability were observed in four genotypes viz., RD2634, RD2689, JB47 and RD2620 having<br />

high yield mean performance, bi=1 and S 2 di=0. These were found promising for wide<br />

adaptation over sites across environments. Twelve genotypes namely, JB42, NDB1401, Jyoti,<br />

BH657, JB40, NDB1280, NDB1289, NDB1281, RD2552, RD2677, RD2683 and Narendra<br />

Jau 3 had average mean performance with bi=1 and S 2 di=0 showing stability over wider<br />

range of environments. Only two genotypes viz., DWR51 and K792 associated with bi


Barley Genetics Newsletter (2008) 38:14-17<br />

some elite lines of barley collected from various coordinated units were sorted out for their<br />

stability.<br />

MATERIALS AND METHODS<br />

The material used in this study included thirty diverse new advance elite genotypes of<br />

barley with six checks. These elite lines of barley were drawn from N.D. University of<br />

Agriculture & Technology, Kumarganj (Faizabad), C.S.A. University of Agriculture &<br />

Technology (Kanpur), Panjab Agriculture University (Ludhiana), Directorate of Wheat<br />

Research (Karnal), C.C.S. Haryana Agriculture University (Hissar), Rajasthan Agriculture<br />

University (Durgapura), J.N. Krishi Vishwavidyalaya (Rewa). These genotypes, planted in<br />

randomized block design with two replications during rabi 2006-07, were evaluated under<br />

three environmental conditions viz., rainfed, low fertility situation (E1), and saline sodic and<br />

late sown condition (E2) at Genetics and Plant Breeding Farm, Kumarganj, Faizabad; and<br />

normal fertile soil, irrigated, timely sown condition (E3) at Crop Research Station, Masodha,<br />

Faizabad. Each genotype was grown in 3 rows of 3 m long plots with spacing of 25 cm<br />

between the rows. An approximate distance of 10 cm was maintained between plant to plant<br />

by hand thinning. Five competitive random plants from the middle row of the experimental<br />

plots were taken for recording the observations on 1000-grain weight (g), harvest index (%)<br />

and grain yield per plant (g). Stability analysis was worked out following Eberhart and Russel<br />

(1966).<br />

RESULTS AND DISCUSSION<br />

The phenotypic stability of each variety was expressed by two parameters: the slope<br />

of regression line and sum of squares of deviation from regression. A stable variety was<br />

defined as “one with unite regression (bi=1) and low deviation from linearity (S 2 di=0)”.<br />

Analysis of variance showed that the mean sum of squares due to genotypes (G) and<br />

environment (E) difference tested against the G x E interaction were significant for all the<br />

traits studied, indicating the presence of wide variability among the genotypes and<br />

environment. The significant estimates of G x E interaction indicated that the characters were<br />

unstable and may considerably fluctuate with change in environments. The G x E (linear)<br />

interaction was significant against pooled deviation suggesting the possibility of the variation<br />

for all characters (Table 1). These findings are in close agreement with those of Semin et al.<br />

(1986), Afiash et al. (1999) and Mohamadi et al. (2005). The result for grain yield per plant<br />

revealed that out of 36 genotypes, RD2634, RD2689, JB47 and RD2670 had higher mean<br />

yield, bi=1 and S 2 di=0 were promising for wide adaptation over sites across environments<br />

(Table 2). Twelve genotypes viz., JB42, NDB1401, Jyoti, BH657, JB40, NDB1280,<br />

NDB1289, NDB1281, RD2552, RD2677, RD2683 and Narendra Jau 3 had average mean<br />

performance associated with bi=1 and S 2 di=0 showing stability over wider range of<br />

environments. For harvest index six genotypes viz., DWR51, JB42, NDB1401, DWR54,<br />

NDB1289 and RD2677 with average mean, bi=1 and S 2 di=0 showing stability over wider<br />

range of environments. Only one genotype JB40 with higher mean, bi1 and S 2 di=0, indicating their stability for<br />

favourable environment. Five genotypes, viz., BH657, NDB1280, NDB1281, RD2552 and<br />

JB47 had average mean associated with bi >1 and S 2 di =0, indicating their stability for<br />

favourable environments. For 1000- grain weight, only one genotype RD2634 had average<br />

mean associated with bi=1 and S 2 di=0, identified for wider adaptation and stability over all<br />

sites across environments. These results are in conformity with the findings of Yadav and<br />

15


Barley Genetics Newsletter (2008) 38:14-17<br />

Rao (1985), Hadjichristodolon (1992), Shahmohamadi et al. (2005) and Verma (2007). Two<br />

genotypes viz., NDB1401 and RD2668, possessing higher mean, bi=1 and S 2 di=0 showed<br />

wider stability over all sites across environments. Three genotypes viz., RD2689, BH663 and<br />

NDB1276 had higher mean performance, bi


Barley Genetics Newsletter (2008) 38:14-17<br />

TABLE 2. Estimates of stability parameters for 1000-grain weight (g), harvest index (%) and<br />

grain yield per plant (g)<br />

S.No. Genotypes<br />

1000-grain weight (g)<br />

Xi bi S<br />

Harvest index (%) Grain yield per plant (g)<br />

2 di Xi bi S 2 di Xi bi S 2 di<br />

1 DWR 61 45.06 3.31** 0.43** 39.57 -0.57 -1.36 19.91 1.23 5.57*<br />

2 RD 2634 44.00 0.55* -0.01 49.85** 3.44 13.85** 23.11 1.12 1.49<br />

3 BH 855 44.64 1.95** 11.67** 42.61 1.80 83.39** 17.00 0.87 54.54**<br />

4 RD 2689 48.43** 0.35** 0.01 47.31** 2.81 0.42 22.94 0.62 -0.78<br />

5 NDB 1173 41.01 2.49** 0.15** 40.85 1.28 30.07** 17.22 0.97 16.64**<br />

6 BH 646 44.97 -1.66** 0.18** 37.20 1.62 27.58** 19.39 1.11 44.18**<br />

7 JB 42 41.36 -0.09** 0.37** 40.28 1.44 5.68 21.16 0.95 2.46<br />

8 NDB 1245 41.35 -0.28** 0.06* 31.81 5.63** 6.46 17.00 1.13 3.65<br />

9 Lakhan 44.79 1.55** 0.04* 39.59 -0.09 80.98** 21.50 1.34 117.35**<br />

10 K 792 42.79 -0.78** 0.11** 38.88 0.20 2.03 23.00 0.09* -0.87<br />

11 NDB 1401 46.99** 0.50* -0.01 39.29 0.63 -1.42 20.67 0.58 -0.98<br />

12 K 625 39.67 2.85** 0.28** 38.32 0.58 10.76* 16.78 0.57 0.29<br />

13 DWR 51 47.65** 1.52** 0.05* 42.74 0.05 2.83 20.11 0.39 0.13<br />

14 Jyoti 48.16** 0.98 0.06* 34.51 -0.83 24.20** 21.89 1.12 -0.84<br />

15 BH 657 41.36 0.74 0.04* 41.85 2.44 0.78 19.44 1.15 2.28<br />

16 RD 2696 48.00** 3.46** 0.43** 43.27 1.98 -0.63 18.17 0.67 -0.74<br />

17 DWR 52 48.20** 1.72** 0.16** 41.24 -0.43 25.71** 19.28 0.99 21.74**<br />

18 JB 40 42.40 1.27 0.03 47.16** -0.25 -1.83 19.77 0.50 -0.82<br />

19 NDB 1280 41.81 -1.82** 0.23** 39.73 3.10 -1.63 20.00 0.97 -0.84<br />

20 DWR 54 47.77** 2.17** 0.12** 40.84 1.35 -1.79 17.94 0.84 0.17<br />

21 Narendra Jau -1 47.67** -0.29** -0.01 39.88 -0.25 18.37** 18.33 0.36 28.08**<br />

22 NDB 1289 40.17 -1.52** 0.33** 39.41 1.41 -0.87 18.50 0.76 -0.99<br />

23 RD 2668 46.07** 1.08 -0.01 41.09 1.93 988.96** 27.78** 2.17** 192.69**<br />

24 NDB 1281 39.54 -0.73** 0.10** 40.01 1.75 0.13 20.39 0.81 -0.95<br />

25 RD 2683 43.65 0.82 0.09** 36.06 -0.05 -1.78 20.39 1.21 0.42<br />

26 RD 2552 41.17 1.09 0.01 41.55 1.59 -1.60 20.27 1.45 2.62<br />

27 RD 2677 49.94** 2.53** 0.15** 40.26 0.98 0.13 15.33 0.52 -0.98<br />

28 JB 47 47.49** 2.54** 0.29** 40.14 1.51 -1.87 25.05** 1.47 0.55<br />

29 BH 673 43.88 1.74** 0.05* 36.90 -2.01 0.91 15.33 0.26 6.89<br />

30 RD 2620 44.12 4.01** 0.53** 33.73 0.63 -1.87 16.05 1.07 1.43<br />

31 PL 762 47.65** 2.82** 0.36** 37.71 -1.09 -1.02 22.72 1.22 18.64**<br />

32 RD 2670 47.59** 2.70** 0.36** 42.39 2.25 -1.85 27.22** 2.26** 5.14*<br />

33 BH 663 50.26** 0.25 -0.01 47.69** 1.20 -1.62 25.94** 1.70 6.13*<br />

34 Narendra Jau-3 43.51 -0.67** 0.04* 48.10** 2.54 -1.74 25.44** 1.08 -0.02<br />

35 NDB1252 43.70 -1.38** 0.07** 39.87 -6.31 3.47 18.89 0.24 -0.65<br />

36 NDB1276 47.17** 0.27 -0.01 46.47** 3.73 -1.47 28.17** 2.22** 10.35**<br />

Mean 44.83 1.00 40.78 0.99 20.61 1.00<br />

SEm± 0.48 0.19 4.36 1.64 2.81 0.38<br />

17


Barley Genetics Newsletter (2008) 38:100-102<br />

Report of the Workshop on Barley Genetic Linkage Groups, Barley<br />

Genome, Genes and Genetic Stocks at the X. International Barley Genetics<br />

Symposium in Alexandria, Egypt, April 2008.<br />

Udda Lundqvist, Overall Coordinator<br />

e-mail: udda@nordgen.org<br />

and<br />

Agnese Kolodinska Brantestam<br />

e-mail: agnese.kolodinska@nordgen.org<br />

Box P.O. 41<br />

Nordic Genetic Resource Center<br />

SE-230 53 Alnarp, Sweden<br />

Agenda:<br />

The following topics were brought up for discussion during the workshop:<br />

1. The current coordination system of to-day and its function in the future.<br />

2. The whole genome coordination.<br />

3. Integration of molecular and morphological marker maps.<br />

4, Nomination of coordinators.<br />

5. Barley Genetics Newsletter.<br />

6, The International Database for Barley Genes and Barley Genetic Stocks and <strong>GrainGenes</strong>.<br />

7. Symbolization and nomenclature problems of barley genes.<br />

8. Maintenance of barley Genetic Stocks.<br />

9. International Overall Coordinator.<br />

1. COORDINATION SYSTEM.<br />

Discussions were focused on its activities of to-day and to-morrow. There are many possible<br />

technologies for identifying genes to-day and progress is made in integration of gene based<br />

maps especially made by the Scottish Crop Research Institute. Bill Thomas, Scotland,<br />

presented past activities how the coordination group was started with initiation on NIL, SNP<br />

and AFLP marker integration. When now working on Illumina SNPs marker high throughout<br />

genotyping, 15 000 markers, QTLs and other technologies can give us much more<br />

information about each chromosome. He also gave an overview of the progress that is done<br />

for integration of Gene based maps: (a) 4 500 Illumina SNP markers; (b) 1 000 genes on the<br />

IPK Gene Map; (c) 2 500 genes in the Japanese EST map; (d) 1 500 SFP markers; (e) 1 000<br />

Bowman lines mapped with BOPA1 and (f) 11 000 QTLs. It was suggested to have not each<br />

chromosome coordinated but store and coordinate all 7 chromosomes together.<br />

2. THE WHOLE GENOME COORDINATION.<br />

Several participants stressed that we also need the whole genome coordination. This should<br />

be a team task since the biology of mutants should be evaluated and this is a huge effort and a<br />

whole time work. For the time being, the time is not ready for one person to handle this.<br />

Therefore the workshop recommended to continue with to-days system. For publications of<br />

general QTL locations, the workshop recommended that the estimated Bin map position of<br />

the gene/QTL must be included.<br />

3. INTEGRATION OF MOLECULAR AND MORPHOLOGICAL MAPS.<br />

100


Barley Genetics Newsletter (2008) 38:100-102<br />

Andy Kleinhofs, USA, has been trying to integrate molecular and morphological maps for<br />

many years with large success. This is of great importance more than ever. There do exist<br />

many good maps that could be used as references e.g. SSR maps, DART maps etc. The<br />

quality of data of these maps is very high and linkage groups are easily detected. We need all<br />

the basic morphological genes with its information and have them in good shape. In the San<br />

Diego, USA, meetings, 2008, only very few groups were represented that are working on<br />

molecular genotyping. David Marshall, The Scottish Crop Research Institute, Dundee,<br />

Scotland, agreed to take over this responsibility.<br />

4. NOMINATION OF COORDINATORS.<br />

In the following, a list of the Chromosome/Linkage Groups and Genetic Stocks Collections is<br />

presented with the names of the individuals who agreed to be responsible.<br />

a. Overall Chairman and chromosomes:<br />

Overall chairman Udda Lundqvist, Sweden assisted by: Agnese Kolodinska Brantestam,<br />

Sweden<br />

Chromosome 1H (5) Gunter Backes, Denmark<br />

Chromosome 2H J.D. Franckowiak, Australia<br />

Chromosome 3H Luke Ramsey, UK.<br />

Chromosome 4H Arnis Druka, UK. (replaces Brian Forster who resigned)<br />

Chromosome 5H (7) George Fedak, Canada<br />

Chromosome 6H Victoria Blake, USA.<br />

Chromosome 7H (1) Lynn Dahleen. USA.<br />

b. Integration of molecular and morphological maps: David Marshall, UK, (replaces<br />

Andy Kleinhofs, USA, who wants to step down).<br />

c. Genetic Stocks and Collections:<br />

Barley Genetic Stock Center: Harold Bockelman, USA, (replaces An Hang who<br />

retired 2007)<br />

Trisomics and aneuploids: Harold Bockelman, USA, (replaces An Hang)<br />

Translocations and BTT: Andreas Houben, Germany<br />

Desynaptic Genes: Andreas Houben, Germany<br />

Autotetraploids: Wolfgang Friedt, Germany<br />

Disease and pest resistance genes: Mark Sutherland, Australia. (replaces Brian Steffenson,<br />

USA, who wants to step down)<br />

Eceriferum genes: Udda Lundqvist, Sweden<br />

Chloroplast genes: Mats Hanssom, Denmark<br />

Male sterile genes: Mario Therrien, Canada<br />

Spike morphology genes: Udda Lundqvist, Sweden and Michele Stanca, Italy<br />

Semi-dwarf genes: J. D. Franckowiak, Australia<br />

Early maturity genes: Udda Lundqvist, Sweden<br />

Barley-wheat genetic stocks: A.K.M.R. Islam, Australia<br />

Coordinators are expected to conduct current literature searches and such research in their<br />

area of responsibility. Updated information should be published in Barley Genetics<br />

Newsletter annually.<br />

101


Barley Genetics Newsletter (2008) 38:100-102<br />

5. <strong>BARLEY</strong> <strong>GENETICS</strong> <strong>NEWSLETTER</strong>.<br />

Barley Genetics Newsletter (BGN) has been established in 1970 after decisions made at the<br />

2nd International Barley Genetics Symposium (IBGS) in Pullman, USA, with its first volume<br />

1971. The original idea was to report short preliminary barley research notes, descriptions of<br />

barley genes and stocks, chromosome locations, barley maps and literature references. One of<br />

the initiators, Bob Nilan, USA, of the Newsletter and the IBGS was attending the workshop<br />

and became acknowledged. After some discussions and opinions the workshop decided<br />

strongly to continue the BGN in electronic format as it is the only forum for the barley<br />

community publishing updated revised gene descriptions and short notes. Phil Bregitzer,<br />

USA, is continuing to act as main editor. Its availability should be more announced and<br />

reminders for submissions will be send several times a year.<br />

6. INTERNATIONAL DATABASE FOR <strong>BARLEY</strong> GENES AND <strong>BARLEY</strong> GENETIC<br />

STOCKS AND GRAINGENES.<br />

Udda Lundqvist gave a short demonstration of this database with its own special address<br />

www.untamo.net.bgs. Most parts are linked to <strong>GrainGenes</strong>. Several participants in the<br />

workshop stressed that both databases are not easy and simple to use and rather time<br />

consuming. If you are familiar with barley nomenclature, genetics and Bin maps you get the<br />

information you need. Victoria Blake, USA, the coordinator for <strong>GrainGenes</strong>, promised when<br />

getting suggestions, to improve the use.<br />

7. SYMBOLIZATION AND NOMENCLATURE PROBLEMS OF <strong>BARLEY</strong> GENES.<br />

Udda Lundqvist informed of germplasm problems in connection with the Untamo database<br />

that Morten Huldén (the former head of the information department at the Nordic Genetic<br />

Resource Center and now responsible for this database) ran into when he was including<br />

revised descriptions.<br />

(a). Germplasm stocks should get assigned a GSHO number and seed samples should have<br />

been submitted to the Stock Center before descriptions are published.<br />

(b). References as ‘unpublished’ and ‘personal communication’ should be avoided.<br />

(c). No clear definitions of disease and pest resistance genes.<br />

(d). When revising a gene and moved from one locus to another, both descriptions should be<br />

revised and published.<br />

In the discussions several participants agreed that in many cases the rules for assigning genes,<br />

alleles and germplasm stock numbers have not been taken notice on. Especially the<br />

nomenclature rules for pest and resistance genes failed to follow, the former coordinator<br />

stressed that this nomenclature exists for a long time, nobody wants to do the allelic tests,<br />

people usually have not checked the literature and just assigned temporary names in order not<br />

to miss the allele. The new coordinator urgently asked that new resistant names, genes and<br />

symbols should first be accepted by the coordinator before publishing.<br />

The workshop also recommended strongly to publish the rules annually in Barley Genetics<br />

Newsletter.<br />

8. MAINTENANCE OF <strong>BARLEY</strong> GENETIC STOCKS.<br />

The workshop acknowledged the existence of different barley collections world-wide, its<br />

necessity to maintain and keep them in good shape and update all information continuously.<br />

9. INTERNATIONAL OVERALL COORDINATOR.<br />

The workshop recommended that the to-days chairman for the barley linkage groups and<br />

collections should continue.<br />

102


Barley Genetics Newsletter (2008) 38:103-133<br />

REPORTS OF THE COORDINATORS<br />

Overall coordinator’s report<br />

Udda Lundqvist<br />

Nordic Genetic Resource Center<br />

P.O. Box 41, SE-230 53 Alnarp<br />

e-mail: udda@nordgen.org<br />

Since the latest overall coordinator’s report in Barley Genetics Newsletter Volume 37 many<br />

of us met at the 10th International Barley Genetics Symposium in Alexandria, Egypt, during<br />

during 6 days in the beginning of April 2008. About 300 participants attended the meetings,<br />

16 different sessions and 5 workshops were arranged and a number of 100 posters were<br />

presented. We could get much information of many interesting papers with new and<br />

interesting results for the barley community.<br />

As Overall Coordinator I arranged a workshop on ‘Barley Genetic Linkage Groups, Barley<br />

Genome, Genes and Genetic Stocks’. Discussions were focused on the coordination system of<br />

to-day and the future and it was stressed if the whole genome should be coordinated by one<br />

person. After intensive discussions it was decided that for the time being it was not ready to<br />

do this for one person. Therefore it was recommended to continue with to-days system. Some<br />

changes of the coordinators have taken place. Victoria Carollo Blake, Bozeman, Montana<br />

State University, USA, offered herself to take care of chromosome 6H instead of Duane Falk<br />

who is not engaged in barley work any more. Andy Kleinhofs, USA, who has taken care of<br />

coordinating the integration of molecular and morphological barley maps wanted to step<br />

down and he got replaced by David Marshall from the Genetics Programme at the Scottish<br />

Crop Research Institute, Invergowrie, Dundee, United Kingdom. Also Brian Steffenson,<br />

USA, the coordinator for disease and pest resistant genes wanted to step down and got<br />

replaced by Mark Sutherland, Australia. I want to take the opportunity and thank the retired<br />

coordinators for their willingness to provide us with all important barley information and their<br />

coorporation. Regarding the Barley Genetics Newsletter the workshop decided after some<br />

discussions to continue in electronic format as it is the only forum for the barley community<br />

to publish gene descriptions and short research notes. A summarizing report of the workshop<br />

is published in this issue of Barley Genetics Newsletter.<br />

As recommended at the 10th International Barley Genetics Symposium the rules for<br />

Nomenclature and Gene Symbolization in Barley is published in this volume of BGN. Tables<br />

of Barley Genetic Stock descriptions by BGS numbers (Table 1) and by locus symbols in<br />

alphabetic order (Table 2) are again published in this volume. They are necessary for barley<br />

researchers to find important information in the AceDB database and <strong>GrainGenes</strong>.<br />

103


Barley Genetics Newsletter (2008) 38:103-133<br />

List of Barley Coordinators<br />

Chromoosome 1H (5): Gunter Backes, The University of Copenhagen, Faculty of Life<br />

Science, Department of Agricultural Sciences, Thorvaldsensvej 40, DK-1871 Fredriksberg C,<br />

Denmark. FAX: +45 3528 3468; e-mail: <br />

Chromosome 2H (2): Jerry. D. Franckowiak, Hermitage Research Station, Queensland<br />

Department of Primary Industries and Fisheries, Warwick, Queensland 4370, Australia, FAX:<br />

+61 7 4660 3600; e-mail: <br />

Chromosome 3H (3): Luke Ramsey, Genetics Programme, Scottish Crop Research Institute,<br />

Invergowrie, Dundee, DD2 5DA, United Kingdom. FAX: +44 1382 562426. E-mail:<br />

<br />

Chromosome 4H (4): Arnis Druka, Genetics Programme, Scottish Crop Research Institute,<br />

Invergowrie, Dundee, DD2 5DA, United Kingdom. FAX: +44 1382 562426. e-mail:<br />

<br />

Chromosome 5H (7): George Fedak, Eastern Cereal and Oilseed Research Centre,<br />

Agriculture and Agri-Food Canada, ECORC, Ottawa, ON, Canada K1A 0C6, FAX: +1 613<br />

759 6559; e-mail: <br />

Chromosome 6H (6): Victoria Carollo Blake, Plant Sciences and Plant Pathology, Montana<br />

State University, Bozeman, MT 59717, USA.e-mail: <br />

Chromosome 7H (1): Lynn Dahleen, USDA-ARS, State University Station, P.O. Box 5677,<br />

Fargo, ND 58105, USA. FAX: + 1 701 239 1369; e-mail:<br />

<br />

Integration of molecular and morphological marker maps: David Marshall, Genetics<br />

Programme, Scottish Crop Research Institute, Invergowrie, Dundee, DD2 5DA, United<br />

Kingdom. FAX: 44 1382 562426. e-mail: <br />

Barley Genetics Stock Center: Harold Bockelman, USDA-ARS, National Small Grains<br />

Germplasm Research Facility, 1691 S. 2700 W., Aberdeen, ID 83210, USA. FAX: +1 208<br />

397 4165; e-mail: <br />

Trisomic and aneuploid stocks: Harold Bockelman, USDA-ARS, National Small Grains<br />

Germplasm Research Facility, 1691 S. 2700 W., Aberdeen, ID 83210, USA. FAX: +1 208<br />

397 4165; e-mail: <br />

Translocations and balanced tertiary trisomics: Andreas Houben, Institute of Plant<br />

Genetics and Crop Plant Research, Corrensstrasse 3, DE-06466 Gatersleben, Germany. FAX:<br />

+49 39482 5137; e-mail: <br />

104


Barley Genetics Newsletter (2008) 38:103-133<br />

List of Barley Coordinators (continued)<br />

Desynaptic genes: Andreas Houben, Institute of Plant Genetics and Crop Plant Research,<br />

Corrensstrasse 3, DE-06466 Gatersleben, Germany. FAX: +49 39482 5137; e-mail:<br />

<br />

Autotetraploids: Wolfgang Friedt, Institute of Crop Science and Plant Breeding, Justus-<br />

Liebig-University, Heinrich-Buff-Ring 26-32, DE-35392 Giessen, Germany. FAX: +49 641<br />

9937429; e-mail: <br />

Disease and pest resistance genes: Mark Sutherland, Centre for Systems Biology, University<br />

of Southern Queensland, Toowoomba Q 4350, Australia. FAX: +61 7 4631 1530. e-mail:<br />

<br />

Eceriferum genes: Udda Lundqvist, Nordic Genetic Resource Center, P.O. Box 41, SE-230<br />

53 Alnarp, Sweden. FAX:.+46 40 536650; e-mail: < udda@nordgen.org><br />

Chloroplast genes: Mats Hansson, Carlsberg Research Center, Gamle Carlsberg vej 10, DK-<br />

2500 Valby, Copenhagen Denmark. e-mail: <br />

Genetic male sterile genes: Mario C. Therrien, Agriculture and Agri-Food Canada, P.O. Box<br />

1000A, R.R. #3, Brandon, MB, Canada R7A 5Y3, FAX: +1 204 728 3858; e-mail:<br />

<br />

Ear morphology genes: Udda Lundqvist, Nordic Genetic Resource Center, P.O. Box 41, SE-<br />

230 53 Alnarp, Sweden. FAX: +46 40 536650; e-mail: < udda@nordgen.org><br />

or<br />

Antonio Michele Stanca: Istituto Sperimentale per la Cerealicoltura, Sezione di Fiorenzuola<br />

d’Arda, Via Protaso 302, IT-29017 Fiorenzuola d’Arda (PC), Italy. FAX +39 0523 983750, email:<br />

40 536650<br />

Semi-dwarf genes: Jerry D. Franckowiak, Hermitage Research Station, Queensland<br />

Department of Primary Industries and Fisheries, Warwick, Queensland 4370, Australia, FAX:<br />

+61 7 4660 3600; e-mail: < Jerome.Franckowiak@dpi.qld.gpv.au ><br />

Early maturity genes: Udda Lundqvist, Nordic Genetic Resource Center, P.O. Box 41,<br />

SE-230 53 Alnarp, Sweden. FAX: +46 40 536650; e-mail: <br />

Barley-wheat genetic stocks: A.K.M.R. Islam, Department of Plant Science, Waite<br />

Agricultural Research Institute, The University of Adelaide, Glen Osmond, S.A. 5064,<br />

Australia. FAX: +61 8 8303 7109; e-mail: <br />

105


Barley Genetics Newsletter (2008) 38:103-133<br />

Coordinator’s Report: Barley Chromosome 1H (5)<br />

Gunter Backes<br />

The University of Copenhagen<br />

Faculty of Life Sciences<br />

Department of Agricultural Sciences<br />

Thorvaldsensvej 40<br />

DK-1871 Frederiksberg C, Denmark<br />

e-mail: guba@life.ku.dk<br />

Hearnden et al. (2007) developed a high-density genetic map using DArT markers and<br />

microsatellites in a population of 90 doubled haploid lines from a cross between the<br />

Australian feed barley variety ‘Barque-73’ and the H. vulgare ssp. spontaneum accession<br />

‘CPI 71284-48’. The map for 1H includes 90 DArT marker loci, 54 genomic and 25 ESTbased<br />

SSR marker loci as well as 2 InDel marker loci (171 marker loci in total).<br />

The high-density barley linkage map of Varshney et al. (2007) includes 328 marker loci for<br />

chromosome 1H (225 AFLP marker loci, 93 RFLP marker loci, 41 SSR marker loci, 7 gene<br />

loci, one CAP marker locus and one RAPD marker locus). In contrast to the map presented<br />

above, it is a consensus map based on 6 different mapping populations. It also shows the BIN<br />

structure as defined by Kleinhofs and Graner (2001), but subdivides 10 cM BINs in 2 sub-<br />

BINs of 5 cM each. The BINs given in this report relate to this map, if not mentioned<br />

otherwise. Further this map and the respective segregating populations were used to compare<br />

the distribution of QTLs for resistance against barley leaf rust caused by Puccinia hordei and<br />

to compare the detected QTL with defense gene homologs (Marcel et al., 2007). On<br />

chromosome 1H they found, using the results of green-house experiments in the<br />

Steptoe/Morex population, the QTL Rphq14 in the BINs 1.2 to 2.1 explaining 13% of the<br />

phenotypic variance.<br />

Using RNA from wheat-barley (‘Chinese spring’/‘Betzes’) ditelosomic addition lines on the<br />

Affimetrix Barley 1 GeneChip, Bilgic et al. (2007) localized 1257 barley genes to different<br />

chromosome arms. Of those, 24 transcripts were assigned to chromosome 1HS (23 singlecopy<br />

and one multi-copy transcript).<br />

A low phytic acid mutation (lpa3-1) causing a reduction of 75% of the phytic acid content in<br />

the sodium-acide induced mutant M635 compared to the wild-type ‘Harrington’ was localized<br />

to chromosome 1H BIN 12.2 (Roslinsky et al., 2007). The localization was carried out using<br />

first 20 F5 RIL lines of a cross CDC Freedom/M635 in a bulk segregant analysis, followed by<br />

the integration of the resulting partial map into the Harrington/Morex population from the<br />

North American Barley Genome Mapping Project (Hayes et al., 1997).<br />

Mutants related to root hair formation were used to localize the effected genes in F2-progenies<br />

from crosses of four different mutant lines with the varieties ‘Steptoe’ and ‘Morex’ (Janiak<br />

and Szarejko, 2007). On chromosome 1H, BIN 11.2 or 12.1, rph1 was localized, causing the<br />

development of root hairs to stop after primordia have been formed.<br />

FLOWERING LOCUS T-like (FT) genes play a central role in integrating flowering signals in<br />

Arabidopsis . Based on 13 rice FT gene sequences, barley homologs were searched in EST<br />

106


Barley Genetics Newsletter (2008) 38:103-133<br />

databases and five barley FT sequences were detected and localized (Faure et al., 2007). One<br />

of them, HvFT3 was localized on chromosome 1H, BIN 11 or 12 in a population of 95<br />

doubled haploid lines from the cross Igri/Triumph (Laurie et al., 1995).<br />

Lee and Neate (2007a) localized resistance genes against Septoria speckled leaf blotch caused<br />

by Septoria passerinii present in the barley accessions ‘Clho 1300’ (Rsp1), ‘Clho 4789’<br />

(Rsp2) and ‘Clho 10644’ (Rsp3). They crossed each of these accessions to the varieties<br />

‘Foster’ and ‘Robust’ and used the resulting F2-populations (103 to 125 lines) to greenhouse<br />

as well as field experiments and a subsequent linkage analysis. On 1HS two of the resistances<br />

genes were localized: Rsp2 to BIN 2.1 and Rsp3 to BIN 2.2. Because of the low number of<br />

common markers, the latter BIN-localization of Rsp3 is a rough estimate. The authors also<br />

published STS markers linked to those resistance genes (Lee and Neate, 2007b)<br />

Quantitatively acting resistance genes against the net form of net blotch, caused by<br />

Pyrenophora teres were localized by Lehmensieck et al. (2007). They used three different<br />

doubled haploid populations (111 to 153 lines) on field trials (2-3 years environments). In the<br />

Arapiled/Franklin population they detected a QTL on chromosome 1HS, BIN 2-3. It had a<br />

LOD of 2.9 to 3.3 and explained 9 to 12% of the phenotypic variation. Arapiles contributed<br />

the allele conferring resistance.<br />

Against the same disease, Manninen et al. (2006) detected one or several minor QTLs on 1H<br />

in a doubled haploid population (119 lines) from a cross between the Finnish variety ‘Rolfi’<br />

and the Ethiopian accession ‘CI 9819’. The region of the chromosome that associated with net<br />

blotch resistance covered BIN 4 to 11.<br />

Panozzo et al. (2007) localized QTLs for malting quality related traits in two different<br />

doubled haploid population, originating from the crosses ‘Arapiles’ x ’Franklin’ and ‘Alexis’<br />

x ‘Sloop’ and comprising 225 and 100 lines, respectively. In the Arapiles/Franklin population,<br />

2 QTL were detected on chromosome 1H, one in BIN 6.2 effecting hot water extract, diastatic<br />

power, α-amylase activity, wort β-glucan, wort viscosity and free α-amino acids and one in<br />

BIN 7.1 effecting β-glucanase activity and free α-amino acids. In the Alexis/Sloop population,<br />

caused by a lack of common markers with the populations used for binning, only rough<br />

estimates of the BINs can be given. One QTL was detected in BIN 7 for hot water extract, α -<br />

amylase activity, wort β-glucan, wort viscosity and free α-amino acids. A second QTL in BIN<br />

13 affected α-amylase activity, β-glucanase activity and free α-amino acids.<br />

In a population derived from a cross between a Spanish and a US variety (‘Beka’ x ‘Logan’)<br />

and after field experiment carried out both in Spain and Scotland, Molina-Cano et al. (2007)<br />

identified QTLs for β-glucan content. One of the QTLs, explaining 8 to 15% of the<br />

phenotypic variance, was detected on chromosome 1H, BIN 14.<br />

Seed dormancy QTLs were localized by Hori et al. (2007) by means of measuring the seed<br />

germination five and ten weeks after harvest in 7 different RI populations (93-94 lines).<br />

QTLs on 1H were found in three of these seven populations. In Harbin 2-row/Khanaqin 7, one<br />

QTL was detected in BIN 9, in Harbin 2 row/Turkey 45 one QTL was detected in BIN 6 and<br />

in Haruna Nijo/H602 one QTL was detected in BIN 5. The QTLs explained 4%, 12% and 4%<br />

of the phenotypic variance, respectively.<br />

An advanced backcross population (BC2F6) derived from a cross between ‘Harrington’ and<br />

the wild barley (H. v. ssp. spontaneum) accession OUH602 was used by Gyenis et al. (2007)<br />

107


Barley Genetics Newsletter (2008) 38:103-133<br />

to search for QTLs associated with morphological and agronomic traits measured in a field<br />

experiment on five environments. On chromosome 1H, 3 QTLs were found, one associated<br />

with the fragility of ear rachis in BIN 12, one QTL associated with plant height in BIN 12 and<br />

one QTL for kernel color in BIN 14 and 15. The QTLs explained 9-54%, 11% and 30% of the<br />

phenotypic variance, respectively. In this paper, the BINs were directly given by the authors.<br />

References:<br />

Bilgic, H., S. Cho, D.F. Garvin, and G.J. Muehlbauer, 2007. Mapping barley genes to<br />

chromosome arms by transcript profiling of wheat-barley ditelosomic chromosome<br />

addition lines. Genome 50: 898-906.<br />

Faure, S., J. Higgins, A. Turner and D.A. Laurie, 2007. The FLOWERING LOCUS T-like<br />

gene family in barley (Hordeum vulgare). Genetics 176: 599-609.<br />

Gyenis, L., S.J. Yun, K.P. Smith, B.J. Steffenson, E. Bossolini, M.C. Sanguineti, and G.J.<br />

Muehlbauer, 2007. Genetic architecture of quantitative trait loci associated with<br />

morphological and agronomic trait differences in a wild by cultivated barley cross.<br />

Genome 50: 714-723.<br />

Hayes, P.M., J. Cereno, H. Witsenjboer, M. Kuiper, M. Zabeau, K. Sato, A. Kleinhofs,<br />

D. Kudrna, M. Saghai Maroof, D. Hoffman, and N.A.B.G. Project (1997). Journal<br />

of Agricultural Genomics, Vol. 3.<br />

http://wheat.pw.usda.gov/jag/papers97/paper297/indexp297.html<br />

Hearnden, P.R., P.J. Eckermann, G.L. McMichael, M.J. Hayden, J.K. Eglinton, and<br />

K.J. Chalmers, 2007. A genetic map of 1,000 SSR and DArT markers in a wide<br />

barley cross. Theor. Appl. Genet. 115: 383-391.<br />

Hori, K., K. Sato, and K. Takeda, 2007. Detection of seed dormancy QTL in multiple<br />

mapping populations derived from crosses involving novel barley germplasm. Theor.<br />

Appl. Genet. 115: 869-876.<br />

Janiak, A. and I. Szarejko, 2007. Molecular mapping of genes involved in root hair<br />

formation in barley. Euphytica 157: 95-111.<br />

Kleinhofs, A. and A. Graner, 2001. An integrated map of the barley genome. In: R.L.<br />

Phillips & I.K. Vasil (Eds.), DNA marker in plants, pp. 187-199. Kluwer, Dordrecht.<br />

Laurie, D.A., N. Pratchett, J.H. Bezant, and J.W. Snape, 1995. RFLP mapping of 5 major<br />

genes and 8 quantitative trait loci controlling flowering time in a winter x spring<br />

barley (Hordeum vulgare L.) cross. Genome 38: 575-585.<br />

Lee, S.H. and S.M. Neate, 2007a. Molecular mapping of Rsp1, Rsp2, and Rsp3 genes<br />

conferring resistance to septoria speckled leaf blotch in barley. Phytopathology 97:<br />

155-161.<br />

108


Barley Genetics Newsletter (2008) 38:103-133<br />

Lee, S.H. and S.M. Neate, 2007b. Sequence tagged site markers to Rsp1, Rsp2, and Rsp3<br />

genes for resistance to septoria speckled leaf blotch in barley. Phytopathology 97: 162-<br />

169.<br />

Lehmensiek, A., G.J. Platz, E. Mace, D. Poulsen, and M.W. Sutherland, 2007. Mapping<br />

of adult plant resistance to net form of net blotch in three Australian barley<br />

populations. Aust. J. Agr. Res. 58: 1191-1197.<br />

Manninen, O.M., M. Jalli, R. Kalendar, A. Schulman, O. Afanasenko, and J. Robinson,<br />

2006. Mapping of major spot-type and net-type netblotch resistance genes in the<br />

Ethiopian barley line Cl 9819. Genome 49: 1564-1571.<br />

Marcel, T.C., R.K. Varshney, M. Barbieri, H. Jafary, M.J.D. de Kock, A. Graner, and<br />

R.E. Niks, 2007. A high-density consensus map of barley to compare the distribution<br />

of QTLs for partial resistance to Puccinia hordei and of defence gene homologues.<br />

Theor. Appl. Genet. 114: 487-500.<br />

Molina-Cano, J.L., M. Moralejo, M. Elia, P. Munoz, J.R. Russell, A.M. Perez-Vendrell,<br />

F. Ciudad, and J.S. Swanston, 2007. QTL analysis of a cross between European and<br />

North American malting barleys reveals a putative candidate gene for beta-glucan<br />

content on chromosome 1H. Mol. Breed. 19: 275-284.<br />

Panozzo, J.F., P.J. Eckermann, D.E. Mather, D.B. Moody, C.K. Black, H.M. Collins,<br />

A.R. Barr, P. Lim, and B.R. Cullis, 2007. QTL analysis of malting quality traits in<br />

two barley populations. Aust. J. Agr. Res. 58: 858-866.<br />

Roslinsky, V., P.E. Eckstein, V. Raboy, B.G. Rossnagel, and G.J. Scoles, 2007. Molecular<br />

marker development and linkage analysis in three low phytic acid barley (Hordeum<br />

vulgare) mutant lines. Mol. Breed. 20: 323-330.<br />

Varshney, R.K., T.C. Marcel, L. Ramsay, J. Russell, M.S. Roder, N. Stein, R. Waugh, P.<br />

Langridge, R.E. Niks, and A. Graner, 2007. A high density barley microsatellite<br />

consensus map with 775 SSR loci. Theor. Appl. Genet. 114: 1091-1103.<br />

109


Barley Genetics Newsletter (2008) 38:103-133<br />

Coordinator’s report: Chromosome 2H (2)<br />

J.D. Franckowiak<br />

Hermitage Research Station<br />

Queensland Department of Primary Industries and Fisheries<br />

Warwick, Queensland 4370, Australia<br />

e-mail: jerome.franckowiak@dpi.qld.gpv.au<br />

The flowering locus T (FT) gene was first identified in Arabidopsis as having a role in the<br />

photoperiod and vernalization responses. Members of this family of genes, characterized by a<br />

phosphatidylethanolamine-binding protein (PEBP) domain, were mapped in barley by Faure<br />

et al. (2007). The family contains five members in barley and the HvFT4 gene mapped to the<br />

centromeric region of chromosome 2H.<br />

Nduulu et al. (2007) examined a region of chromosome 2(2H) designated Qrgz-2H-8 in<br />

which coincident QTLs for Fusarium head blight (FHB) severity, deoxynivalenol (DON)<br />

concentration, and heading date (HD) have been mapped. It was unclear if FHB resistance at<br />

this locus is caused by a pleiotropic effect of delayed heading or tightly linked genes. Nduulu<br />

et al. (2007) identified a recombinant that showed reduced FHB severity and early heading<br />

and concluded that the relationship between FHB and HD at the Qrgz-2H-8 region is likely<br />

due to tight linkage rather than pleiotropy. This region of 2H is the same region where the<br />

HvFT4 gene was mapped and maturity factors early maturity 6 (Eam6) (Franckowiak 2007)<br />

and earliness per se QTL 2S (eps2S) Laurie et al. (1995) were located.<br />

Burton et al. (2008) have mapped four cellulose synthase-like CslF (HvCslF) genes to a<br />

single locus on barley chromosome 2H. This region corresponds to a major quantitative trait<br />

locus for grain (1,3;1,4)-β-D-glucan content. Only two of the seven CslF genes, HvCslF6<br />

(7H) and HvCslF9 (1H), are transcribed at high levels in developing grain and are of potential<br />

relevance for the future manipulation of grain (1,3;1,4)-β-D-glucan levels.<br />

Pourkheirandish and Komatsuda (2007) developed further the evolutionary implications in<br />

barley of their research on cloning of alleles at the vrs1 (six-rowed spike 1) locus (Komatsuda<br />

et al. 2007). Six-rowed barley arose three times as independent events from two-rowed<br />

barley, but the oldest group of six-rowed barleys is apparently older than existing two-rowed<br />

groups.<br />

Forster et al. (2007) extended the barley phytomer concept based on various morphological<br />

mutants observed in the Optic TILLING population and older collections of barley mutants.<br />

Phytomers are repeated building blocks that form various parts of the barley plant. The basic<br />

phytomer is composed of two half nodes separated by an internode with a side arm arising<br />

from the upper half node and root initials and a bud developing from the lower half node. An<br />

array of development patterns modified the basic phytomer to form various vegetative and<br />

reproductive organs. Some genes on chromosome 2H that affect the development of<br />

morphological structures include abr1 (accordion basal rachis 1), acr1 (accordion rachis 1),<br />

com2 (compositum 2), eog1 (elongated outer glume 1), ert-t (erectoides-t), lig1 (liguleless 1),<br />

Lks1 (awnless 1), mnd1 (many noded dwarf 1), sbk1 (subjacent hood 1), vrs1 (six-rowed spike<br />

1), and Zeo1 (zeocriton 1).<br />

110


Barley Genetics Newsletter (2008) 38:103-133<br />

Jafary et al. (2008) reported that barley germplasm contains partial resistance QTLs to several<br />

leaf rust , caused by Puccinia species, for which barley is not a host. Likewise, a population<br />

segregating for the Rph7 (resistance to Puccinia hordei 7) showed partial resistance in the<br />

susceptible portion of the population. Several of partial resistance QTLs for reaction leaf rust,<br />

including Rphq2 and Rphq6 for P. hordei reaction, were located on chromosome 2H.<br />

Sameri and Komatsuda (2007) associated a QTL for 100-kernel weight and several other<br />

QTLs for agronomic traits with chromosome 2H.<br />

References:<br />

Burton, R.A., S.A. Jobling, A.J. Harvey, N.J. Shirley, D.E. Mather, A. Bacic, and G.B.<br />

Fincher. 2008. The genetics and transcriptional profiles of the cellulose synthase-like<br />

HvCslF gene family in barley. Plant Physiology 146:1821-1833.<br />

Faure, S., J. Higgins, A. Turner, and D.A. Laurie. 2007. The FLOWERING LOCUS T-like<br />

gene family in barley (Hordeum vulgare). Genetics 176:599-609.<br />

Forster, B.P., J.D. Franckowiak, U. Lundqvist, J. Lyon, I. Pitkethly, W.T.B. Thomas.<br />

2007. The barley phytomer. Annals of Botany 100:725-733.<br />

Franckowiak, J.D. 2007. BGS 98, early maturity 6, Eam6, revised. Barley Genet. Newsl. 37:<br />

216−217.<br />

Jafary, H., G. Albertazzi, T.C. Marcel, and R.E. Niks. 2008. High diversity of genes for<br />

nonhost resistance of barley to heterologous rust fungi. Genetics 178(4):2327-2339.<br />

Komatsuda, T., M. Pourkheirandish, C. He, P. Azhaguvel, H. Kanamori, D. Perovic, N.<br />

Stein, A. Graner, T. Wicker, A. Tagiri, U. Lundqvist, T. Fujimura, M. Matsuoka,<br />

T. Matsumoto, and M. Yano. 2007. Six-rowed barley originated from a mutation in a<br />

homeodomain-leucine zipper I-class homeobox gene. PNAS 104:1424-1429.<br />

Laurie, D.A, Pratchett, N., Bezant, J.H., and Snape, J.W. 1995. RFLP mapping of five<br />

major genes and eight quantitative trait loci controlling flowering time in a<br />

winter/spring barley cross. Genome 38: 575−585.<br />

Nduulu, L.M., A. Mesfin, G.J. Muehlbauer, and K.P. Smith. 2007. Analysis of the<br />

chromosome 2(2H) region of barley associated with the correlated traits Fusarium<br />

head blight resistance and heading date. Theor Appl Genet 115:561–570.<br />

Pourkheirandish, M., and T. Komatsuda. 2007. The importance of barley genetics and<br />

domestication in a global perspective. Annals of Botany 100:999-1008.<br />

Sameri, M. and T. Komatsuda. 2007. Localization of quantitative trait loci for yield<br />

components in a cross oriental × occidental barley cultivar (Hordeum vulgare L.).<br />

JARQ 41:195-199.<br />

111


Barley Genetics Newsletter (2008) 38:103-133<br />

Coordinator’s Report: Barley Chromosome 3H<br />

L. Ramsay<br />

Genetics Programme<br />

Scottish Crop Research Institute<br />

Invergowrie, Dundee, DD2 5DA, Scotland, UK.<br />

e-mail: Luke.Ramsay@scri.ac.uk<br />

Over the last year there have been a number of publications reporting the mapping of genes<br />

and QTL on barley chromosome 3H. One highlight was the mapping of over 2000 Transcript<br />

Derived Markers (including 302 on 3H) in the Steptoe x Morex DH population using a<br />

genetical genomics approach (Potokina et al. 2008). Using the derived map this study found<br />

23,738 eQTL affecting the expression of 12,987 genes with both cis and trans effects in<br />

evidence.<br />

Hu and Wise (2008) reported the mapping of two Lrk/Tak kinase gene clusters 3HS near the<br />

telomere using the Steptoe x Morex minimapper set. Microarray analysis revealed cultivar<br />

specific transcript accumulation of some of the family members on 3H, which the authors<br />

interpreted as indicating subfunctionalization of Lrk/Tak members following tandem<br />

duplication. At the other end of the chromosome Tyrka et al. (2008) developed a new<br />

diagnostic SSR for the Hv-eIF4E gene underlying Rym4/Rym5 locus on 3HL. Lee and Neate<br />

(2007) mapped a single dominant gene denoted Rsp1 that confers resistance to Septoria<br />

spleckle leaf blotch at seedling and adult stages to 3HS using an F2:3 population derived from<br />

a Robust x CIho 14300 cross. Somewhat confusingly Yan and Chen (2007) mapped a<br />

recessive gene denoted rps1.a, for resistance to stripe rust to 3HL using RILs derived from<br />

BBA 2890 x Steptoe.<br />

Other genes mapped included a barley haze active protein (Robinson et al. 2007) on 3HS<br />

mapped using antisera screened by immunoblot on the Chebec x Harrington DH population.<br />

Suprunova et al. (2007) mapped Hsdr4 (Hordeum spontaneum dehydration-responsive 4) to<br />

3HL between the SSR markers EBmac541 and EBmag705, using the population MA10-30 x<br />

WQ23-38, to a region that previously had been shown to affect osmotic adaptation in barley.<br />

Several new reports of QTL on 3H were published during this reporting period including Fox<br />

et al. (2007) a grain hardness QTL on the distal end of 3HL using a population derived from a<br />

Patty x Tallon cross. Munoz-Amatriain et al. (2008) report a QTL for green plant percentage<br />

on anther culture that maps close to the SSR HVM60 in a cross between Igri and an albino<br />

producing line (DH46) selected from an Igri x Dobla cross. A major QTL for Russian Wheat<br />

aphid resistance major was mapped to 3H (in the region of EBmac541) using 191 F2 derived<br />

F3 families from the cross 'Morex'/STARS-9301B QTL Morex x STARS-9301B (Mittal et al.<br />

2008). Li et al. (2008) mapped a waterlogging tolerance QTL using two populations<br />

(TX9425 x Franklin and Yerong x Franklin) that showed consistent QTL for leaf chlorosis<br />

near the centromeric region of the genetic map of 3H. Ullrich et al. (2008) mapped coincident<br />

major preharvest sprouting and dormancy QTL in the Steptoe x Morex population<br />

including one in the centromeric region of 3H. The same region was the site of a minor QTL<br />

for dormancy in a Stirling x Harrington population (Bonnardeaeux et al. 2008).<br />

112


Barley Genetics Newsletter (2008) 38:103-133<br />

Using an association genetics approach Comadran et al. (2008) found consistent QTL for<br />

yield in droughted environments in bin 4 on 3H. A similar region was found associated with<br />

adaptation to Mediterranean dryland conditions by von Korff et al. (2008) using RILs derived<br />

from the ER/Apm x Tadmor cross. QTL on 3H were found for several traits including days to<br />

heading, plant height and grain yield (von Korff et al. 2008).<br />

References:<br />

Bonnardeaux, Y., C. Li, R. Lance, X.Q. Zhang, K. Sivasithamparam, and R. Appels,<br />

2008. Seed dormancy in barley: identifying superior genotypes through incorporating<br />

epistatic interactions. Australian Journal of Agricultural Research 59: 517-526.<br />

Comadran, J., J.R. Russell, F.A. van Eeuwijk, S. Ceccarelli, S. Grando, M. Baum, A.M.<br />

Stanca, N. Pecchioni, A.M. Mastrangelo, T. Akar, A. Al-Yassin, A. Benbelkacem,<br />

W. Choumane, H. Ouabbou, R. Dahan, J. Bort, J.L. Araus, A. Pswarayi, I.<br />

Romagosa, C.A. Hackett, and W.T.B. Thomas, 2008. Mapping adaptation of barley<br />

to droughted environments. Euphytica 161: 35-45.<br />

Fox, G.P., B. Osborne, J. Bowman, A. Kelly, M. Cakir, D. Poulsen, A. Inkerman, and R.<br />

Henry, 2007. Measurement of genetic and environmental variation in barley<br />

(Hordeum vulgare) grain hardness. Journal of Cereal Science 46: 82-92.<br />

Hu, P.S. and R.P. Wise, 2008. Diversification of Lrk/Tak kinase gene clusters is associated<br />

with subfunctionalization and cultivar-specific transcript accumulation in barley.<br />

Functional & Integrative Genomics 8: 199-209.<br />

Lee, S.H. and S.M. Neate, 2007. Molecular mapping of Rsp1, Rsp2, and Rsp3 genes<br />

conferring resistance to septoria speckled leaf blotch in barley. Phytopathology 97:<br />

155-161.<br />

Li, H., R. Vaillancourt, N. Mendham, and M. Zhou, 2008. Comparative mapping of<br />

quantitative trait loci associated with waterlogging tolerance in barley (Hordeum<br />

vulgare L.). BMC Genomics 9: 401.<br />

Mittal, S., L.S. Dahleen, and D. Mornhinweg, 2008. Locations of quantitative trait loci<br />

conferring Russian wheat aphid resistance in barley germplasm STARS-9301B. Crop<br />

Science 48: 1452-1458.<br />

Munoz-Amatriain, M., A.M. Castillo, X.W. Chen, L. Cistue, and M.P. Valles, 2008.<br />

Identification and validation of QTLs for green plant percentage in barley (Hordeum<br />

vulgare L.) anther culture. Molecular Breeding 22: 119-129.<br />

Potokina, E., A. Druka, Z.W. Luo, R. Wise, R. Waugh, and M. Kearsey, 2008. Gene<br />

expression quantitative trait locus analysis of 16,000 barley genes reveals a complex<br />

pattern of genome-wide transcriptional regulation. Plant Journal 53: 90-101.<br />

113


Barley Genetics Newsletter (2008) 38:103-133<br />

Robinson, L.H., P. Healy, D.C. Stewart, J.K. Eglinton, C.M. Ford, and D.E. Evans,<br />

2007. The identification of a barley haze active protein that influences beer haze<br />

stability: The genetic basis of a barley malt haze active protein. Journal of Cereal<br />

Science 45: 335-342.<br />

Suprunova, T., T. Krugman, A. Distelfeld, T. Fahima, E. Nevo, and A. Korol, 2007.<br />

Identification of a novel gene (Hsdr4) involved in water-stress tolerance in wild<br />

barley. Plant Molecular Biology 64: 17-34.<br />

Tyrka, M., D. Perovic, A. Wardynska, and F. Ordon, 2008. A new diagnostic SSR marker<br />

for selection of the Rym4/Rym5 locus in barley breeding. Journal of Applied Genetics<br />

49: 127-134.<br />

Ullrich, S.E., J.A. Clancy, I.A. del Blanco, H. Lee, V.A. Jitkov, F. Han, A. Kleinhofs, and<br />

K. Matsui, 2008. Genetic analysis of preharvest sprouting in a six-row barley cross.<br />

Molecular Breeding 21: 249-259.<br />

von Korff, M., S. Grando, A. Del Greco, D. This, M. Baum, and S. Ceccarelli, 2008.<br />

Quantitative trait loci associated with adaptation to Mediterranean dryland conditions<br />

in barley. Theoretical and Applied Genetics 117: 653-669.<br />

Yan, G.P. and X.M. Chen, 2007. Molecular mapping of the rps1.a recessive gene for<br />

resistance to stripe rust in BBA 2890 barley. Phytopathology 97 668-673.<br />

114


Barley Genetics Newsletter (2008) 38:103-133<br />

Coordinator’s Report: Chromosome 4H.<br />

Arnis Druka<br />

Genetics Programme<br />

Scottish Crop Research Institute<br />

Invergowrie, Dundee, DD2 5DA, Scotland, UK.<br />

e-mail: Arnis.Druka@scri.sari.ac.uk<br />

Several papers that mention genes and QTLs specifically on chromosome 4H have been<br />

published in 2007 - 2008.<br />

Schmalenbach et al., 2008 report development of a set of 59 spring barley introgression lines<br />

(ILs) from the advanced backcross population S42. The ILs were generated by three rounds of<br />

backcrossing, two to four subsequent selfings, and, in parallel, marker-assisted selection. Each<br />

line includes a single marker-defined chromosomal segment of the wild barley accession<br />

ISR42-8 (Hordeum vulgare ssp. spontaneum), whereas the remaining part of the genome is<br />

derived from the elite barley cultivar Scarlett (H. vulgare ssp. vulgare). Based on a map<br />

containing 98 SSR markers, the IL set covers so far 86.6% (1041.5 cM) of the donor genome.<br />

Each single line contains an average exotic introgression of 39.2 cM, representing 3.2% of the<br />

exotic genome. The set was used to map QTLs controlling resistance to powdery mildew<br />

(Blumeria graminis f. sp. hordei L.) and leaf rust (Puccinia hordei L.). The strongest favorable<br />

effects were mapped to regions 1H, 0-85 cM and 4H, 125-170 cM, where susceptibility to<br />

powdery mildew and leaf rust was decreased by 66.1 and 34.7%, respectively, compared to<br />

the recurrent parent.<br />

Grewal et al., 2007 described mapping of quantitative trait loci (QTL) associated with net<br />

blotch resistance in a doubled-haploid (DH) barley population using diversity arrays<br />

technology (DArT) markers. One hundred and fifty DH lines from the cross CDC Dolly<br />

(susceptible)/TR251 (resistant) were screened as seedlings in controlled environments with<br />

net-form net blotch (NFNB) isolates WRS858 and WRS1607 and spot-form net blotch<br />

(SFNB) isolate WRS857. The population was also screened at the adult-plant stage for NFNB<br />

resistance in the field in 2005 and 2006. A high-density genetic linkage map of 90 DH lines<br />

was constructed using 457 DArT and 11 SSR markers. A seedling resistance QTL (QRpts4)<br />

for the SFNB isolate WRS857 was detected on chromosome 4H. Three QTL (QRpt6, QRpts4,<br />

QRpt7) were associated with resistance to both net blotch forms and lines with one or more of<br />

these demonstrated improved resistance. Simple sequence repeat (SSR) markers tightly linked<br />

to QRpt6 and QRpts4 were identified and validated in an unrelated barley population.<br />

Bilgic et al., 2007 report use of the Affymetrix Barley1 GeneChip for comparative transcript<br />

analysis of the barley cultivar Betzes, the wheat cultivar Chinese Spring, and Chinese Spring -<br />

Betzes ditelosomic chromosome addition lines to physically map 1257 barley genes to their<br />

respective chromosome arm locations. The genes were validated through comparison with our<br />

previous chromosome-based physical mapping, comparative in silico mapping with rice and<br />

wheat, and single feature polymorphism (SFP) analysis. It was found to be consistent with<br />

previous physical mapping to whole chromosomes. In silico comparative mapping of barley<br />

genes assigned to chromosome arms revealed that the average genomic synteny to wheat and<br />

rice chromosome arms was 63.2% and 65.5%, respectively. In the 1257 mapped genes, 924<br />

SFPs were identified. A single small rearrangement event between rice chromosome 9 and<br />

115


Barley Genetics Newsletter (2008) 38:103-133<br />

barley chromosome 4H that accounts for the loss of synteny for several genes was also<br />

identified.<br />

References:<br />

Schmalenbach I., N. Körber, and K. Pillen. 2008. Selecting a set of wild barley<br />

introgression lines and verification of QTL effects for resistance to powdery mildew<br />

and leaf rust. Theor Appl Genet. 117(7):1093-106.<br />

Grewal T.S., B.G. Rossnagel, C.J. Pozniak, and G.J. Scoles. 2008. Mapping quantitative<br />

trait loci associated with barley net blotch resistance. Theor Appl Genet.<br />

Feb;116(4):529-39.<br />

Bilgic H., S. Cho, D.F. Garvin, and G.J. Muehlbauer. 2007. Mapping barley genes to<br />

chromosome arms by transcript profiling of wheat-barley ditelosomic chromosome<br />

addition lines. Genome. 50(10):898-906.<br />

Chromosome 5H (7)<br />

No report received.<br />

116


Barley Genetics Newsletter (2008) 38:103-133<br />

Coordinator’s Report: Chromosome 6H<br />

Victoria Carollo Blake<br />

Montana State University<br />

Bozeman, MT 59717 USA<br />

e-mail: vblake@montana.edu<br />

The last chromosome 6H report was submitted in 1999<br />

( http://wheat.pw.usda.gov/ggpages/bgn/29/c29-08.html). Since then several genes have been<br />

characterized and QTL placed on 6H. This report will survey the 6H genes from Andy<br />

Kleinhofs “Integrating Molecular and Morphological/Physiological Marker Maps” and<br />

attempt to report on any significant mapping progress made since 2000.<br />

Nar1 (NADH nitrate reductase) is included in 13 <strong>GrainGenes</strong> maps, with the RFLP<br />

MWG633/cMWG633 the closest molecular marker on ‘Barley, Consensus 2005, SNP’<br />

(<strong>GrainGenes</strong> Map_Data record name) (Rostoks et al., 2005) and ‘Barley, Consensus 2006,<br />

Marcel’ (<strong>GrainGenes</strong> Map_Data record name) (Marcel et al., 2007). Several studies have<br />

related this gene to nitrate assimilation and most recently, Sicher and Bunce (2008) found<br />

barley (cv. Steptoe) with a mutant nar1 gene (90% lower expression) showed an elimination<br />

of the increase of glutamine, aspartate and alanine during the latter half of a photoperiod.<br />

Rrs13, conferring resistance to Rhynchosporium secalis (leaf blotch, scald) is a member of a<br />

gene cluster on the short arm of 6H. A review by Zhan et al., 2008, explores gene-mediated<br />

resistance, disease epidemiology, describes sources of resistance in barley and places 10<br />

disease-resistance QTL onto 6HS. Grewel et al. (2008) describe a major QTL, designated<br />

QRpt6 on 6H for net blotch resistance. In a Rika x Kombar DH population Abu-Qamar et al.,<br />

2008 showed segregation for at least two major recessive resistance genes, differing in<br />

resistance to different pathotypes of Pyrenophora teres f. tere. The NTNB resistance loci,<br />

named rpt.r and rpt.k mapped 1.8 cM apart and were flanked by the CAP marker ABC02895<br />

and the locus detected by STS markers GBS0468 and ABC01797. In 2003 Le Gouis et al.<br />

characterized a gene for resistance to soil-borne barley mild mosaic virus (BaMMV) from the<br />

cultivar Chikurin Ibaraki, rym15, which mapped to 6H flanked by Bmag0173 and<br />

EBmac0874.<br />

sex1, the shrunken endosperm xenia1 gene conferring high lysine was mapped between<br />

microsatellite markers GBM5012 and GBM1063 in a 4.2 cM interval near the centromere by<br />

Röder et al., (2006). The authors found an orthologous site on the rice chromosome 2 where<br />

the interval between regions with homology to the barley markers spans 4.1 Mb.<br />

cul2, the uniculm2 mutation that causes plants to initiate vegetative axillary meristems but fail<br />

to develop tillers, and alters inflorescence morphology was genetically and morphologically<br />

characterized by Babb and Muehlbauer in 2003. They found that cul2 was epistatic to all<br />

other genes in this study that influence tillering. Linkage analysis placed cul2 between<br />

cMWG679/ABG458 (8.8 cM) and KFP128 (4.6 cM).<br />

Amy1, the gene for α-amylase in barley is included on 24 maps currently in <strong>GrainGenes</strong>, and<br />

is included in QTL for α-amylase activity in Chebec x Harrington and Harrington x TR306<br />

(Coventry et al., 2003). Suzuki et al., in 2005 showed that Gibberellin (GA) biosynthesis in<br />

117


Barley Genetics Newsletter (2008) 38:103-133<br />

the epithelium of germinating seeds is important for α-amylase expression and cloned<br />

HvGA3ox2, which encodes the key enzyme. Another region on 6H important for malt quality<br />

is a QTL for grain protein content (Qgpc6H). This was first described by See et al. in 2002<br />

who mapped the low protein gene contributed by the cultivar ‘Karl’ (CIho 15487) on the<br />

‘satellite’ of 6H near the anchor markers abg458, hvm74 and mwg2029. Work on this region<br />

by Distelfeld et al. in 2008 found colinearity between the barley grain protein content QTL<br />

and the wheat Gpc-B1 region and suggested that the barley NAC transcription factor is<br />

responsible for the protein content trait.<br />

Perovic et al. (2007) mapped nine members of a multigene family for nicotianamine synthase<br />

(NAS) in barley, three of which fell on 6H. Nicotianamine works as a chelator for iron and<br />

other heavy metals. Co-linearity with rice suggests that this gene went through at least one<br />

duplication event prior to the divergence of barley and rice.<br />

References:<br />

Abu Qamar, M., Z.H. Liu, J.D. Faris, S. Chao, M.C. Edwards, Z. Lai, J.D.<br />

Franckowiak, and T.L. Friesen. 2008. A region of the barley chromosome 6H<br />

harbors multiple major genes associated with net type net blotch resistance. Theor<br />

Appl Gen. In press.<br />

Babb, S. and G.J. Muehlbauer. 2003. Genetic and morphological characterization of the<br />

barley uniculm2 (cul2) mutant. Theor. Appl. Gen. 106:846-857.<br />

Coventry, S.J., H.M. Collins, A.M. Barr, S.P. Jefferies, K.J. Chalmers, S.J: Logue, and<br />

P. Langridge. 2003. Use of putative QTLs and structural genes in marker assisted<br />

selection for diastatic power in malting barley (Hordeum vulgare L.) Aust. J. Agr.<br />

Res. 54:1241-1250.<br />

Distelfeld, A., A. Korol, J. Dubcovsky, C. Uauy, T. Blake, and T. Fahima. 2008.<br />

Colinearity between the barley grain protein content (GPC) QTL on chromosome arm<br />

6HS and the wheat Gpc-B1 region. Mol. Breed. 22:25-38.<br />

Grewal, T.S., B.G. Rossnagel, C.J. Pozniak, and G.J. Scoles. 2007. Mapping quantitative<br />

trait loci associated with barley net blotch resistance. Theor Appl Gen 116: 529-539.<br />

Le Gouis, J., P. Devaux, K. Werner, D. Hariri, N. Bahrman, D. Béghin, and F. Ordon<br />

2004. rym15from the Japanese cultivar Chikurin Ibaraki 1 is a new barley mild mosaic<br />

virus (BaMMV) resistance gene mapped on chromosome 6H. Theor. Appl. Genet.<br />

108:1521-1525.<br />

Marcel, T.C., R.K. Varshney, M. Barbieri, H. Jafary, M.J.D. de Kock, A. Graner,<br />

and R.E. Niks. 2007. A high-density consensus map of barley to compare the<br />

distribution of QTLs for partial resistance to Puccinia hordei and of defence<br />

gene homologues. Theor. Appl. Genet. 114-487-500.<br />

Perovic, D., P. Tiffin, D. Douchkov, H. Bäumlein, and A. Graner. 2007. An integrated<br />

approach for the comparative analysis of a multigene family: The nicotianamine<br />

synthase genes of barley. Funct. Int. Gen. 7:169-179.<br />

118


Barley Genetics Newsletter (2008) 38:103-133<br />

Röder, M.S., C. Kaiser, and W. Weschke. 2006. Molecular mapping of the shrunken<br />

endosperm genes seg2 and sex1 in barley (Hordeum vulgare L.) Genome 49:1209-<br />

1214.<br />

Rostoks, N., S. Mudie, L. Cardle, J. Russell, L. Ramsay, A. Booth, J.T. Svensson, S.I.<br />

Wanamaker, H. Walia, E.M. Rodriguez, P.E. Hedley, H. Liu, J. Morris, T.J.<br />

Close, D.F. Marshall, and R.F. Waugh. 2005. Genome-wide SNP discovery and<br />

linkage analysis in barley based on genes responsive to abiotic stress. Mol Genet<br />

Genomics 274:515-527.<br />

See, D., V. Kanazin, K. Kephart, and T. Blake. 2002. Mapping genes controlling variation<br />

in barley grain protein concentration. Crop Sci.. 42:680-685.<br />

Sicher, R.C. and J.A. Bunce. 2008. Growth, photosynthesis, nitrogen partitioning and<br />

responses to CO2 enrichment in a barley mutant lacking NADH-dependent nitrate<br />

reductase activity. Physol. Plant. 134:31-40.<br />

Suzuki, H., K. Ishiyama, M. Kobayashi, and T. Ogawa. 2005. Specific expression of the<br />

gibberellin 3ß-hydroxylase gene, HvGA3ox2, in the epithelium is important for Amy1<br />

expression in germinating barley seeds. Plant Biotech 22:195-200.<br />

von Korff, M., H. Wang, J. Léon, and K. Pillen. 2008. AB-QTL analysis in spring barley:<br />

III. Identification of exotic alleles for the improvement of malting quality in spring<br />

barley (H. vulgare ssp. Spontaneum) Mol. Breed. 21:81-93.<br />

Werner, K., W. Friedt, and F. Ordon. 2007. Localisation and combination of resistance<br />

genes against soil-borne viruses of barley (BaMMV, BaYMV) using doubled haploids<br />

and molecular markers. Euphytica 158:323-329.<br />

Zhan, J., B.D.L. Fitt, H.O. Pinnschmidt, S.J.P. Oxley, and A.C. Newton. 2008.<br />

Resistance, epidemiology and sustainable management of Rhynchosporium secalis<br />

populations on barley. Plant Phys. 57:1-14.<br />

119


Barley Genetics Newsletter (2008) 38:103-133<br />

Coordinator’s Report: Chromosome 7H<br />

Lynn S. Dahleen<br />

USDA-Agricultural Research Service<br />

Fargo, ND 58105, USA<br />

e-mail: Lynn.dahleen@ars.usda.gov<br />

Research on mapping markers and genes continued at a rapid pace in 2007. Five high density<br />

marker maps were published along with detailed marker information. Varshney et al. (2007)<br />

developed a consensus simple sequence repeat (SSR) map using six mapping populations.<br />

The chromosome 7H map contained 127 markers in 157.1 cM for a marker density of 1.24.<br />

The supplementary information provided with the paper gives primer sequences and protocols<br />

for most of the markers on the map. Hearnden et al (2007) created a map from a cross<br />

between cultivated and wild barley (Hordeum vulgare ssp. spontaneum) using 1000 SSR and<br />

DArT markers. They mapped 164 markers to chromosome 7H including 82 SSRs. The two<br />

largest marker gaps also were on chromosome 7H. The third consensus map (Wenzl et al.<br />

2007) combined DArT, SSR, RFLP and STS markers and data from ten mapping populations.<br />

The map contained 501 markers on chromosome 7H, including 373 DArT markers. The map<br />

created by Stein et al. (2007) combined EST-based markers and anchor markers and data from<br />

three mapping populations. The integrated map contained 165 loci on chromosome 7H. The<br />

fifth high density map published in 2007 was created by Marcel et al. (2007) and included<br />

five mapping populations. Approximately 50 loci were located on chromosome 7H. This map<br />

was used to locate QTL for partial resistance to leaf rust. They show three Rph loci on this<br />

chromosome, two for seedling resistance and one for adult plant resistance.<br />

Adult plant resistance to the net form of net blotch was mapped by Lehmensiek et al. (2007)<br />

in three Australian barley populations. They found two QTL, one on each end of chromosome<br />

7H, that had rather small effects compared to loci on other chromosomes. Shtaya et al. (2007)<br />

examined leaf rust and powdery mildew resistance in 23 recombinant lines containing<br />

sections of H. bulbosum chromosomes. Seven of the lines contained H. bulbosum regions<br />

introgressed into chromosome 7H. Several of these lines showed resistance to races of one or<br />

both of the pathogens.<br />

Seed traits were examined in three studies. Hori et al. (2007) located QTL for seed dormancy<br />

in eight segregating populations. Two loci were located on chromosome 7H, one near the<br />

centromere and one on the long arm. In the second QTL, greater dormancy was contributed<br />

by the non-dormant parent. Ullrich et al. (2008) confirmed a QTL previously identified for<br />

dormancy and alpha-amylase activity on chromosome 7H that was also associated with<br />

preharvest sprouting. Fox et al. (2007) located regions associated with grain hardness using<br />

multiple methods. They found four loci on chromosome 7H, with all loci detected by at least<br />

two methods.<br />

Malting quality QTL were located in two populations by Panozzo et al. (2007) to identify<br />

linked markers for selection. They found QTL for hot water extract, diastatic power, alphaamylase,<br />

protein, viscosity, beta-glucans and free alpha-amino acid content on chromosome<br />

7H. von Korff et al. (2008) also looked a malting quality traits in an advanced backcross<br />

population from a cross between cultivated and wild barley. They located a QTL for fine-<br />

120


Barley Genetics Newsletter (2008) 38:103-133<br />

grind extract and for Hartong 45°C on chromosome 7H plus three QTL for friability. Some of<br />

the favorable alleles were from the H. spontaneum parent.<br />

The FLOWERING LOCUS T-line gene family was mapped in barley by Faure et al. (2007).<br />

This family consists of five genes, including one, HvFT1, which was located on the short arm<br />

of chromosome 7H. Four genes involved in root hair formation were mapped by Janiak and<br />

Szarejko (2007). The locus responsible for the lack of root hairs rhl1 was located on the short<br />

arm of chromosome 7H, proximal to the centromere.<br />

Bilgic et al. (2007) used the wheat-barley ditelosomic addition lines on the Affymetrix<br />

Barley1 GeneChip to physically map barley genes to chromosome arms. Out of the 1257<br />

genes located to chromosome arms, 119 were mapped to chromosome 7HS and 131 to 7HL.<br />

Of these, 60-63.8% showed synteny with wheat. Chromosome arm 7HS was syntenic to rice<br />

chromosomes 6S and 8L and the long arm was syntenic to rice chromosomes 6L and 8S.<br />

Single feature polymorphisms were detected in 65-79% of the chromosome 7H transcripts.<br />

References:<br />

Bilgic, H., S. Cho, D.F. Garvin, and G.J. Muehlbauer. 2007. Mapping barley genes to<br />

chromosome arms by transcript profiling of wheat-barley ditelosomic chromosome<br />

addition lines. Genome 50:898-906.<br />

Faure, S., J. Higgins, A. Turner, and D.A. Laurie. 2007. The FLOWERING LOCUS T-like<br />

gene family in barley (Hordeum vulgare). Genetics 176:599-609.<br />

Fox, G.P., B. Osborne, J. Bowman, A. Kelly, M. Cakir, D. Poulsen, A. Inkerman, and R.<br />

Henry. 2007. Measurement of genetic and environmental variation in barley<br />

(Hordeum vulgare) grain hardness. J. Cereal Sci. 46:82-92.<br />

Hearnden, P.R., P.J. Eckermann, G.L. McMichael, M.J. Hayden, J.K. Eglinton, and<br />

K.J. Chalmers. 2007. A genetic map of 1,000 SSR and DArT markers in a wide<br />

barley cross. Theor. Appl. Genet. 115:383-391.<br />

Hori, K., K. Sato, and K. Takeda. 2007. Detection of seed dormancy QTL in multiple<br />

mapping populations derived from crosses involving novel barley germplasm. Theor.<br />

Appl. Genet. 115:869-876.<br />

Janiak, A. and I. Szarejko. 2007. Molecular mapping of genes involved in root hair<br />

formation in barley. Euphytica 157:95-111.<br />

Korff, M. von, H. Wang, J. Leon, and K. Pillen. 2008. AB-QTL analysis in spring barley:<br />

III. Identification of exotic alleles for the improvement of malting quality in spring<br />

barley (H. vulgare ssp. spontaneum. Mol. Breeding 21:81-93.<br />

Lehmensiek, A., G.J. Platz, E. Mace, D. Poulsen, and M.W. Sutherland. 2007. Mapping<br />

of adult plant resistance to net form of net blotch in three Australian barley<br />

populations. Australian J. Agric. Res. 58:1191-1197.<br />

121


Barley Genetics Newsletter (2008) 38:103-133<br />

Marcel, T.C.. R.K. Varshney, M. Barbieri, H. Jafary, M.J.D. de Kock, A. Graner, and<br />

R.E. Niks. 2007. A high-density consensus map of barley to compare the distribution<br />

of QTLs for partial resistance to Puccinia hordei and of defence gene homologues.<br />

Theor. Appl. Genet. 114:487-500.<br />

Panozzo, J.F., P.J. Eckermann, D.E. Mather, D.B. Moody, C.K. Black, H.M. Collins,<br />

A.R. Barr, P. Lim, and B.R. Cullis. 2007. QTL analysis of malting quality traits in<br />

two barley populations. Australian J. Agric. Res. 58:858-866.<br />

Shtaya, M.J.Y., J.C. Sillero, K. Flath, R. Pickering, and D. Rubiales. 2007. The resistance<br />

to leaf rust and powdery mildew of recombinant lines of barley (Hordeum vulgare L.)<br />

derived from H. vulgare x H. bulbosum crosses. Plant Breeding 126:259-267.<br />

Stein, N., M. Prasad, U. Scholz, T. Theil, H. Zhang, M. Wolf, R. Kota, R.K. Varshney, D.<br />

Perovic, I. Grosse, and A. Graner. 2007. A 1,000-loci transcript map of the barley<br />

genome: new anchoring points for integrative grass genomics. Theor. Appl. Genet.<br />

114:823-839.<br />

Ullrich, S.E., J.A. Clancy, I.A. del Blanco, H. Lee, V.A. Jitkov, F. Han, A. Kleinhofs, and<br />

K. Matsui. 2008. Genetic analysis of preharvest sprouting in a six-row barley cross.<br />

Mol. Breeding 21:249-259.<br />

Varshney, R.K., T.C. Marcel, L. Ramsay, J. Russell, M.S. Röder, N. Stein, R. Waugh, P.<br />

Langridge, R.E. Niks, and A. Graner. 2007. A high density barley microsatellite<br />

consensus map with 775 SSR loci. Theor. Appl. Genet. 114:1091-1103.<br />

Wenzl, P., H. Li, J. Carling, M. Zhou, H. Raman, E. Paul, P. Hearnden, C. Maier, L.<br />

Xia, V. Caig, J. Ovesna, M. Cakir, D. Poulsen, J. Wang, R. Raman, K.P. Smith,<br />

G.J. Muehlbauer, K.J. Chalmers, A. Kleinhofs, E. Huttner, and A. Kilian. 2007.<br />

A high-density consensus map of barley linking DArT markers to SSR, RFLP and<br />

STS loci and agricultural traits. BMC Genomics 7:206. doi:10.1186/1471-2164-7-206.<br />

Integration of molecular and morphological marker maps.<br />

No report received.<br />

122


Barley Genetics Newsletter (2008) 38:103-133<br />

Barley Genetics Stock Center<br />

Harold Bockelman<br />

USDA-ARS<br />

National Small Grains Germplasm Research Facility<br />

1691 S, 2700 W.<br />

Aberdeen, ID 83210, USA<br />

e-mail: nsgchb@ars-grin.gov<br />

Recent Additions to the Barley Genetic Stock Collection in the USDA-ARS National Small<br />

Grains Collection.<br />

In the past year a total of 166 accessions were added to the collection with accession numbers<br />

GSHO 3435 to 3600, shown in Table 1. Descriptions of these accessions are available on the<br />

GRIN database: http://www.ars-grin.gov/npgs.<br />

Table 1. Barley Genetic Stock Collection Additions in 2007-2008.<br />

GSHO<br />

number<br />

Mutant type Country of<br />

origin<br />

123<br />

District of<br />

origin<br />

GSHO 3435 T1-6ai Germany Saxony-Anhalt<br />

GSHO 3436 T1-7ao Germany Saxony-Anhalt<br />

GSHO 3437 T2-5ah Germany Saxony-Anhalt<br />

GSHO 3438 T2-6aq Germany Saxony-Anhalt<br />

GSHO 3439 T2-7aj Germany Saxony-Anhalt<br />

GSHO 3440 T3-4ae Germany Saxony-Anhalt<br />

GSHO 3441 T3-7ax Germany Saxony-Anhalt<br />

GSHO 3442 T3-7aaa Germany Saxony-Anhalt<br />

GSHO 3443 T5-6af Germany Saxony-Anhalt<br />

GSHO 3444 Mla.1. Germany<br />

GSHO 3445 Mla.13. Germany<br />

GSHO 3446 Mlp. Germany<br />

GSHO 3447 mlo.5. Germany<br />

GSHO 3448 MlL.a Germany<br />

GSHO 3449 Mlh Germany<br />

GSHO 3450 Multiple dominant marker stock Canada Alberta<br />

GSHO 3451 Multiple recessive marker stock Canada Alberta<br />

GSHO 3452 T4-5q Sweden<br />

GSHO 3453 T4-5r Sweden<br />

GSHO 3454 T4-5s Sweden<br />

GSHO 3455 T4-5t Sweden<br />

GSHO 3456 T4-5u Sweden<br />

GSHO 3457 T4-5v Sweden<br />

GSHO 3458 T4-5w Sweden<br />

GSHO 3459 T4-5x Sweden<br />

GSHO 3460 T4-5y Sweden<br />

GSHO 3461 T4-5z Sweden<br />

GSHO 3462 T4-5aa Sweden<br />

GSHO 3463 T4-5ab Sweden<br />

GSHO 3464 T4-6a Sweden


Table 1. contin.<br />

GSHO<br />

number<br />

Barley Genetics Newsletter (2008) 38:103-133<br />

Mutant type Country of<br />

origin<br />

124<br />

District of<br />

origin<br />

GSHO 3465 T4-6b Sweden<br />

GSHO 3466 T4-6c Sweden<br />

GSHO 3467 T4-6d Sweden<br />

GSHO 3468 T4-6e Sweden<br />

GSHO 3469 T4-6f Sweden<br />

GSHO 3470 T4-6g Sweden<br />

GSHO 3471 T4-6h Sweden<br />

GSHO 3472 T4-6i United States Colorado<br />

GSHO 3473 T4-6j Germany Bavaria<br />

GSHO 3474 T4-6k Germany Bavaria<br />

GSHO 3475 T4-6l Sweden<br />

GSHO 3476 T4-6m Sweden<br />

GSHO 3477 T4-6n Sweden<br />

GSHO 3478 T4-6o Sweden<br />

GSHO 3479 T4-6p Sweden<br />

GSHO 3480 T4-6q Sweden<br />

GSHO 3481 T4-6r Sweden<br />

GSHO 3482 T4-6s Sweden<br />

GSHO 3483 T4-6t Sweden<br />

GSHO 3484 T4-6u Sweden<br />

GSHO 3485 T4-6v Sweden<br />

GSHO 3486 T4-7a Sweden<br />

GSHO 3487 T4-7b Sweden<br />

GSHO 3488 T4-7c United States Arizona<br />

GSHO 3489 T4-7d United States Arizona<br />

GSHO 3490 T4-7e United States Arizona<br />

GSHO 3491 T4-7f Sweden<br />

GSHO 3492 T4-7g Sweden<br />

GSHO 3493 T4-7h United States Arizona<br />

GSHO 3494 T4-7i Germany Bavaria<br />

GSHO 3495 T4-7j Sweden<br />

GSHO 3496 T4-7k Sweden<br />

GSHO 3497 T4-7l Sweden<br />

GSHO 3498 T4-7m Sweden<br />

GSHO 3499 T4-7n Sweden<br />

GSHO 3500 T4-7o Sweden<br />

GSHO 3501 T4-7p Sweden<br />

GSHO 3502 T4-7q Sweden<br />

GSHO 3503 T4-7r Sweden<br />

GSHO 3504 T4-7s Sweden<br />

GSHO 3505 T5-6a Sweden<br />

GSHO 3506 T5-6b Sweden<br />

GSHO 3507 T5-6c Sweden<br />

GSHO 3508 T5-6d United States Arizona<br />

GSHO 3509 T5-6e Sweden<br />

GSHO 3510 T5-6f Sweden<br />

GSHO 3511 T5-6g Sweden<br />

GSHO 3512 T5-6h Sweden<br />

GSHO 3513 T5-6i Germany Bavaria


Table 1. contin.<br />

GSHO<br />

number<br />

Barley Genetics Newsletter (2008) 38:103-133<br />

Mutant type Country of<br />

origin<br />

125<br />

District of<br />

origin<br />

GSHO 3514 T5-6j Sweden<br />

GSHO 3515 T5-6k Sweden<br />

GSHO 3516 T5-6l Sweden<br />

GSHO 3517 T5-6m Sweden<br />

GSHO 3518 T5-6n Sweden<br />

GSHO 3519 T5-6o Sweden<br />

GSHO 3520 T5-6p Sweden<br />

GSHO 3521 T5-6q Sweden<br />

GSHO 3522 T5-6r Sweden<br />

GSHO 3523 T5-6s Sweden<br />

GSHO 3524 T5-6t Sweden<br />

GSHO 3525 T5-6u Sweden<br />

GSHO 3526 T5-6v Sweden<br />

GSHO 3527 T5-7a United States Minnesota<br />

GSHO 3528 T5-7b Sweden<br />

GSHO 3529 T5-7c Canada Manitoba<br />

GSHO 3530 T5-7d Sweden<br />

GSHO 3531 T5-7e Sweden<br />

GSHO 3532 T5-7f Sweden<br />

GSHO 3533 T5-7g Sweden<br />

GSHO 3534 T5-7h Sweden<br />

GSHO 3535 T5-7i Sweden<br />

GSHO 3536 T5-7j Sweden<br />

GSHO 3537 T5-7k Germany Bavaria<br />

GSHO 3538 T5-7l Germany Bavaria<br />

GSHO 3539 T5-7m Sweden<br />

GSHO 3540 T5-7n Sweden<br />

GSHO 3541 T5-7o Sweden<br />

GSHO 3542 T5-7p Sweden<br />

GSHO 3543 T5-7q Sweden<br />

GSHO 3544 T5-7r Sweden<br />

GSHO 3545 T5-7s Sweden<br />

GSHO 3546 T5-7t Sweden<br />

GSHO 3547 T5-7u Sweden<br />

GSHO 3548 T5-7v Sweden<br />

GSHO 3549 T5-7w Sweden<br />

GSHO 3550 T5-7x Sweden<br />

GSHO 3551 T5-7y Sweden<br />

GSHO 3552 T5-7z Sweden<br />

GSHO 3553 T5-7aa Sweden<br />

GSHO 3554 T6-7a Sweden<br />

GSHO 3555 T6-7b Sweden<br />

GSHO 3556 T6-7c Sweden<br />

GSHO 3557 T6-7d Sweden<br />

GSHO 3558 T6-7e United States Arizona<br />

GSHO 3559 T6-7f United States Arizona<br />

GSHO 3560 T6-7g United States Arizona<br />

GSHO 3561 T6-7h Sweden<br />

GSHO 3562 T6-7i Sweden<br />

GSHO 3563 T6-7j Sweden


Table 1. contin.<br />

GSHO<br />

number<br />

Barley Genetics Newsletter (2008) 38:103-133<br />

Mutant type Country of<br />

origin<br />

126<br />

District of<br />

origin<br />

GSHO 3564 T6-7k Sweden<br />

GSHO 3565 T6-7l Sweden<br />

GSHO 3566 T6-7m Sweden<br />

GSHO 3567 T6-7n Sweden<br />

GSHO 3568 T6-7o United States Arizona<br />

GSHO 3569 T6-7p United States Arizona<br />

GSHO 3570 T6-7q United States Arizona<br />

GSHO 3571 T6-7r United States Arizona<br />

GSHO 3572 T6-7s United States Arizona<br />

GSHO 3573 T6-7t Germany Bavaria<br />

GSHO 3574 T6-7u Germany Bavaria<br />

GSHO 3575 T6-7v Sweden<br />

GSHO 3576 T6-7w Sweden<br />

GSHO 3577 T6-7x Sweden<br />

GSHO 3578 T6-7y Sweden<br />

GSHO 3579 T6-7z Sweden<br />

GSHO 3580 T6-7aa Sweden<br />

GSHO 3581 T6-7ab Sweden<br />

GSHO 3582 T6-7ac Sweden<br />

GSHO 3583 T6-7ad Sweden<br />

GSHO 3584 T6-7ae Sweden<br />

GSHO 3585 T6-7af Sweden<br />

GSHO 3586 T6-7ag Sweden<br />

GSHO 3587 T6-7ah Sweden<br />

GSHO 3588 T6-7ai Sweden<br />

GSHO 3589 T6-7aj Sweden<br />

GSHO 3590 T6-7ak Sweden<br />

GSHO 3591 T6-7al Sweden<br />

GSHO 3592 T6-7am Sweden<br />

GSHO 3593 T6-7an Sweden<br />

GSHO 3594 T6-7ao Sweden<br />

GSHO 3595 T6-7ap Sweden<br />

GSHO 3596 T6-7aq United States Arizona<br />

GSHO 3597 Mutant 1661 Sweden Uppsala<br />

GSHO 3598 Mutant 2721 Sweden Uppsala<br />

GSHO 3599 Mutant 3091 Sweden Uppsala<br />

GSHO 3600 Mutant 3550 Sweden Uppsala<br />

References:<br />

http://ace.untamo.net/bgs<br />

http://www.ars-grin.gov/npgs<br />

Wright, S.A.I., M. Azarang, and A.B. Falk. 2007. Four new barley mutants. Barley<br />

Genetics Newsletter 37:34-36.


Barley Genetics Newsletter (2008) 38:103-133<br />

Coordinator’s report: Translocations and<br />

balanced tertiary trisomics<br />

Andreas Houben<br />

Leibniz-Institute of Plant Genetics and Crop Plant Research<br />

DE-06466 Gatersleben, Germany<br />

email: houben@ipk-gatersleben.de<br />

Prof. M. Molnar-Lang and colleagues succeeded in developing translocation lines by inducing<br />

homologous chromosome pairing in a 4H(4D) wheat-barley substitution line previously<br />

developed in Martonvasar (Sepsi et al., 2006). It was hoped to incorporate various segments<br />

of the barley 4H chromosome from the 4H(4D) substitution into wheat. Observations were<br />

made on the frequency with which wheat-barley translocations appeared in the F-2 progeny<br />

grains from a cross between the line CO4-1, which carries the Ph suppressor gene from<br />

Aegilops speltoides and thus induces a high level of homologous chromosome pairing, and the<br />

4H(4D) wheat-barley substitution line, and on which chromosome segments were involved in<br />

the translocations. Of the 117 plants examined, three (2.4%) were found to contain<br />

translocations. A total of four translocations were observed, as one plant contained two<br />

different translocations. The translocations consisted of one centric fusion, two dicentric<br />

translocations and one acrocentric chromosome.<br />

Prof. K. Gecheff (Institute of Genetics, Sofia, Bulgaria) kindly donated 42 homozygous<br />

single translocation lines produced by gamma-irradiation of spring two-rowed barley variety<br />

‘Freya’. All lines are precisely characterized with respect to the chromosomal localization of<br />

the translocation break points (Gecheff, 1996).<br />

The collection is being maintained in cold storage. To the best knowledge of the coordinator,<br />

there are no new publications dealing with balanced tertiary trisomics in barley. Limited seed<br />

samples are available any time, and requests can be made to the coordinator.<br />

Reference:<br />

Gecheff, K. I., 1996. Production and identification of new structural chromosome mutations<br />

in barley (Hordeum vulgare L). Theoretical and Applied Genetics. 92:777-781<br />

Sepsi, A., K. Nemeth, I. Molnar, E. Szakacs, and M. Molnar-Lang. 2006. Induction of<br />

chromosome rearrangements in a 4H(4D) wheat-barley substitution using a wheat line<br />

containing a Ph suppressor gene. Cereal Research Communications 34: 1215-1222<br />

Trisomic and aneuploid stocks<br />

No report received<br />

127


Barley Genetics Newsletter (2008) 38:103-133<br />

Coordinator’s report: Autotetraploids<br />

Wolfgang Friedt, Institute of Crop Science and Plant Breeding I.<br />

Justus-Liebig-University, Heinrich-Buff-Ring 26-32<br />

DE-35392 Giessen, Germany<br />

e-mail: wolfgang.friedt@agrar.uni-giessen.de<br />

Fax: +49(0)641-9937429<br />

The collection of barley autotetraploids (exclusively spring types) described in former issues<br />

of BGN is maintained at the Giessen Field Experiment Station of our institute. The set of<br />

stocks, i.e. autotetraploids (4n) and corresponding diploid (2n) progenitors (if available) have<br />

last been grown in the field for seed multiplication in summer 2000. Limited seed samples of<br />

the stocks are available for distribution.<br />

Coordinator’s report: Eceriferum genes<br />

Udda Lundqvist<br />

Nordic Genetic Resource Center<br />

P.O. Box 41, SE-230 53 Alnarp, Sweden<br />

e-mail: udda@nordgen.org<br />

No research work on gene localization has been reported on the collections of Eceriferum and<br />

Glossy genes. All descriptions in Barley Genetics Newsletter (BGN) Volume 26 are valid and<br />

still up-to-date. Several ones are revised especially in BGN 37, All Swedish Eceriferum<br />

alleles can be found in the SESTO database information system of the Nordic Genetic<br />

Resource Center, Sweden. Descriptions, images and graphic chromosome map displays of<br />

these genes are available in the AceDB database for Barley Genes and Barley Genetic Stocks<br />

with its address found by: www.untamo.net/bgs . It gets updated continouosly and also<br />

searchable through the Triticeae database <strong>GrainGenes</strong>.<br />

Every research of interest in the field and literature references of these genes can be reported<br />

to the coordinator as well. Seed requests regarding the Swedish mutant alleles can be<br />

forwarded to the coordinator udda@nordgen.org or to the Nordic Genetic Resource Center,<br />

www.nordgen.org/ngb , all the others to the Small Grain Germplasm Research Facility<br />

(USDA-ARS), Aberdeen, ID 83210, USA, nsgchb@ars-grin.gov or to the coordinator at any<br />

time.<br />

128


Barley Genetics Newsletter (2008) 38:103-133<br />

Coordinator’s report: Nuclear genes affecting the chloroplast<br />

Mats Hansson<br />

Carlsberg Laboratory,<br />

Gamle Carlsberg Vej 10,<br />

DK-2500 Valby,<br />

Copenhagen, Denmark<br />

E-mail: mats@crc.dk<br />

Barley mutants deficient in chlorophyll biosynthesis and chloroplast development are easily<br />

distinguished from wild type plants by their deviant colour. Therefore, chlorophyll mutants<br />

have often been used to optimise and calibrate mutagenesis methods (Lundqvist 1992).<br />

Chlorophyll mutants have been named albina, xantha, viridis, chlorina, tigrina and striata<br />

depending on their colour and colour pattern. In the albina mutants the leaves are completely<br />

white due to lack of both chlorophyll and carotene pigments. The xantha mutants are yellow<br />

and produce carotene, but no chlorophyll. The chlorina and viridis mutants are both pale<br />

green, but differ in chlorina being viable. The tigrina and striata mutants are stripped<br />

transverse and along the leaves, respectively.<br />

Frigerio et al. (2007) utilized the viridis-zb.63 mutant to study the transcription and<br />

accumulation of light-harvesting complexes in barley. In viridis-zb.62 the photosystem I is<br />

depleted and the plastoquinone pool is constitutively reduced. They showed that that the<br />

mRNA level of all photosynthesis-related genes including genes encoding antenna proteins<br />

are almost unaffected in the mutant. In contrast, analysis of protein accumulation showed that<br />

the mutant undergoes strong reduction of its antenna size, with individual gene products<br />

having different levels of accumulation. They conclude that the plastoquinone redox state<br />

plays an important role in the long term regulation of chloroplast protein expression, but its<br />

modulation is active at the post-transcriptional rather than transcriptional level.<br />

Zakhrabekova et al. (2007) evaluated the possibility to clone genes deficient in barley mutants<br />

by a microarray approach. In their study barley mutants xantha-h.57 and xantha-f.27 were<br />

used in combination with the Affymetrix microarray platform. Both xantha-h.57 and xanthaf.27<br />

are deficient in the chlorophyll biosynthetic enzyme magnesium chelatase, but in<br />

different genes encoding two of the three subunits of this very complex enzyme. Mutant<br />

xantha-h.57 produces no Xantha-h mRNA whereas in xantha-f.27 the nonsense mutation in<br />

the last exon of the gene, results in nonsense-mediated decay of Xantha-f mRNA. Among the<br />

22,792 probe sets arrayed on the Affymetrix chip, the Xantha-h and Xantha-f genes were<br />

possible to highlight in a competitive analysis between xantha-h.57 and xantha-f.27. It was<br />

concluded that it should be possible to use the approach of combining the Affymetrix<br />

platform with phenotypically similar mutants in order to clone genes only known through<br />

their mutant phenotype.<br />

The stock list of barley mutants defective in chlorophyll biosynthesis and chloroplast<br />

development is found elsewhere in the issue of BGN 37 and at<br />

http://www.mps.lu.se/fileadmin/mps/People/Hansson/Barley_mutants_web.pdf<br />

129


Barley Genetics Newsletter (2008) 38:103-133<br />

Lundqvist, U. 1992. Mutation research in barley. PhD Thesis. The Swedish University of<br />

Agricultural Sciences. Svalöv. Available from<br />

http://www.mps.lu.se/fileadmin/mps/People/Hansson/Uddas_thesis.pdf<br />

New references:<br />

Frigerio, S., C. Campoli, S. Zorzan, L. I. Fantoni, C. Crosatti, F. Drepper, W. Haehnel,<br />

L. Cattivelli, T. Morosinotto and R. Bassi. 2007. Photosynthetic antenna size in<br />

higher plants is controlled by the plastoquinone redox state at the post-transcriptional<br />

rather than transcriptional level. J. Biol. Chem. 282: 29457-29469.<br />

Zakhrabekova, S., S. P. Gough, U. Lundqvist and M. Hansson. 2007. Comparing two<br />

microarray platforms for identifying mutated genes in barley (Hordeum vulgare L.).<br />

Plant Physiol. Biochem. 45: 617-622.<br />

Coordinator’s report: The Genetic Male<br />

Sterile Barley Collection<br />

M.C. Therrien<br />

Agriculture and Agri-Food Canada<br />

Brandon Research Centre<br />

Box 1000A, RR#3, Brandon, MB<br />

Canada R7A 5Y3<br />

E-mail: MTherrien@agr.gc.ca<br />

The GMSBC has been at Brandon since 1992. If there are any new sources of male-sterile<br />

genes that you are aware of, please advise me, as this would be a good time to add any new<br />

source to the collection. For a list of the entries in the collection, simply E-mail me at the<br />

above address. I can send the file (14Mb) in Excel format. We continue to store the collection<br />

at -20 o C and will have small (5 g) samples available for the asking. Since I have not received<br />

any reports or requests the last years, there is absolutely no summary in my report.<br />

130


Barley Genetics Newsletter (2008) 38:103-133<br />

Coordinator’s report: Early maturity and<br />

Praematurum genes<br />

Udda Lundqvist<br />

Nordic Genetic Resource Center<br />

P-O. Box 41<br />

SE-23 053 Alnarp, Sweden<br />

e-mail: udda@nordgen.org<br />

Not much new research on gene localization has been reported on the Early maturity or<br />

Praematurum genes since the latest reports in Barley Genetic Newsletter (BGN) or in the<br />

AceDB database for Barley Genes and Barley Genetic Stocks.<br />

All information and descriptions made in the Barley Genetics Newsletter are valid and still<br />

up-to-date. Some of them are revised especially in BGN 37. All the Swedish Praematurum<br />

genes with its alleles can be found in the SESTO database information system of the Nordic<br />

Genetic Resource Center, Sweden. Descriptions, images and graphic chromosome map<br />

displays of these early maturity or Praematurum genes are available in the AceDB database<br />

for Barley Genes and Barley Genetic Stocks with its address found by: www.untamo.net/bgs .<br />

It gets updated continuously and also searchable through the Triticeae database <strong>GrainGenes</strong>.<br />

Every research of interest in the field and literature references of these genes can be reported<br />

to the coordinator as well. Seed requests regarding the Swedish mutant alleles can be<br />

forwarded to the coordinator or directly to the Nordic Genetic Resource Center,<br />

www.nordgen.org/ngb, all others to the Small Grain Germplasm Research Facility (USDA-<br />

ARS), Aberdeen, ID 83210, USA, nsgchb@ars-grin.gov or to the coordinator at any time.<br />

131


Barley Genetics Newsletter (2008) 38:103-133<br />

Coordinator’s report: Ear morphology genes<br />

Udda Lundqvist<br />

Nordic Genetic Resource Center<br />

P.O. Box 41, SE-230 53 Alnarp, Sweden.<br />

e-mail: udda@nordgen.org<br />

Since the last report in Barley Genetics Newsletter several descriptions on morphological ear<br />

genes have been revised and updated and one new description on the Double seed 1 (dub1)<br />

gene has been performed (Dahleen et al. 2007). New developmental mutants as a guide to the<br />

barley phytomer were studied where several ear motphological genes were included (Forster<br />

et al. 2007, Franckowiak et al. 2008). All ear morphological genes are backcrossed to the<br />

cultivar ‘Bowman’ and are available with special GSHO numbers.<br />

All earlier descriptions in the Barley Genetics Newsletter (BGN) volumes 26, 28, 29, 32, 35<br />

and 37 are up-to-date and valid. They are also updated in the AceDB database for Barley<br />

Genes and Barley Genetic Stocks and searchable with its address found by:<br />

www.untamo.net/bgs<br />

Every research in the field and literature references of these genes can be reported to the<br />

coordinator as well. Seed requests regarding the Swedish mutant alleles can be forwarded to<br />

the coordinator udda@nordgen.org or to the Nordic Genetic Resource Center,<br />

www.nordgen.org/ngb , regarding all the others and the Bowman near isogenic lines to the<br />

Small Grain Germplasm Research Facility (USDA-ARS), Aberdeen, ID 83210, USA,<br />

nsgch@ars-grin.gov or to the coordinator at any time.<br />

References:<br />

Forster, B.P., J.D. Franckowiak, U. Lundqvist, J. Lyon, L. Pitkethly, and W.T.B.<br />

Thomas. 2007. The barley phytomer. Annals of Botany 100: 725-733.<br />

Franckowiak, J.D., B.P. Forster, U. Lundqvist, J. Lyon, I. Pitkethly, and W.T.B.<br />

Thomas. 2008. Developmental Mutants as a Guide to the Barley Phytomer. Proc. Xth<br />

Intern. Barley Genet. Symp. 5.-10. April 2008, Alexandria Egypt. (in press).<br />

Coordinator’s report : Wheat-barley genetic stocks<br />

A.K.M.R. Islam<br />

Faculty of Agriculture, Food & Wine,<br />

The University of Adelaide, Waite Campus,<br />

Glen Osmond, SA 5064, Australia<br />

e-mail: rislam@waite.adelaide.edu.au<br />

The production of five different disomic addition lines (1Hm, 2Hm, 4Hm, 5Hm and 7Hm) of<br />

Hordeum marinum chromosomes to Chinese Spring wheat has been reported earlier. It has<br />

now been possible to isolate a disomic addition for chromosome 6Hm. Amphiploids between<br />

H. marinum and commercial spring wheats have been reported earlier. Amphiploids of H.<br />

marinum with winter wheats have also been produced in the mean time. These amphiploids<br />

show better waterlogging and salt tolerance than wheat parents (Islam and Colmer,<br />

unpublished).<br />

132


Barley Genetics Newsletter (2008) 38:103-133<br />

Reference:<br />

Islam, A.K.M.R and T.D. Colmer. 2008. Attempts to transfer salt-and waterlogging<br />

tolerances from Sea barleygrass (Hordeum marinum Huds.) to wheat. Proc. 11th Int.<br />

Wheat Genet. Symposium, 24-29 August 2008, Brisbane, Australia (in Press).<br />

Coordinator’s report: Semidwarf genes<br />

J.D. Franckowiak<br />

Hermitage Research Station<br />

Queensland Department of Primary Industries and Fisheries<br />

Warwick, Queensland 4370, Australia<br />

e-mail: jerome.franckowiak@dpi.qld.gpv.au<br />

Using the DNA sequence of rice mutants at the gibberellin (GA) insensitive dwarf 1 (Gid1)<br />

locus, a GA receptor, Chandler et al. (2008) demonstrated that the putative orthologue from<br />

barley is the GA sensitivity 1 (gse1) locus. Of 35 gse1 mutants evaluated, 16 carried different<br />

unique nucleotide substitution in this sequence. Study of maximal daily elongation rate<br />

(LERmax) of the first leaf of germinated grains with different GA treatments revealed<br />

considerable variation in LERmax values, which related closely to the degree of dwarfing<br />

observed during plant growth. The gse1 mutants and their GA responses were previous<br />

described by Chandler and Robertson (1999). The gsela mutant was characterized by low<br />

alpha-amylase levels, but the mutant was re responsive to GA treatments (Chandler and<br />

Robertson, 1999). The study of individual gse1 mutants demonstrated some response<br />

differences among the gse1 mutants examined (Chandler et al., 2008).<br />

Willige et al. (2007) reported that the DELLA domain of GA insensitive of barley mutants at<br />

the slender 1 (sln1) locus suppress GA responses These mutant genes and similar mutants of<br />

maize and wheat mutants, when introduced into Arabidopsis, conferred GA insensitivity. The<br />

sln1 mutants in barley were previously described by Chandler et al. (2002).<br />

Chandler, P.M., C.A. Harding, A.R. Ashton, M.D. Mulcair, N.E. Dixon and L.N.<br />

Mander. 2008. Characterization of gibberellin receptor mutants of barley (Hordeum<br />

vulgare L.) Molecular Plant 1:285-294.<br />

Chandler, P.M., A. Marion-Poll, M. Ellis and F. Gubler. 2002. Mutants at the Slender1<br />

locus of barley cv. Himalaya. Molecular and physiological characterization. Plant<br />

Physiol. 129: 181-190.<br />

Chandler, PM, and M. Robertson. 1999. Gibberellin dose–response curves and the<br />

characterization of dwarf mutants of barley. Plant Physiol 120:623-632.<br />

Willige, B.C., S. Ghosh, C. Nill, M. Zourelidou, E.M.N. Dohmann, A. Maier and C.<br />

Schwechheimer. 2007. The DELLA domain of GA INSENSITIVE mediates the<br />

interaction with the GA INSENSITIVE DWARF1A gibberellin receptor of<br />

Arabidopsis. Plant Cell 19:1209-1220.<br />

133


Barley Genetics Newsletter (2008) 38: 134-164<br />

Tables of Barley Genetic Stock Descriptions.<br />

Latest version<br />

Jerome D. Franckowiak 1 and Udda Lundqvist 2<br />

1 Hermitage Research Station,<br />

Queensland Department of Primary Industries and Fisheries<br />

Warwick, Queensland 4370, Australia<br />

2 Nordic Genetic Resource Center<br />

P.O. Box 41, SE-230 53 Alnarp, Sweden<br />

Table 1. A listing of Barley Genetic Stock (BGS) descriptions in recent issues of the Barley<br />

Genetics Newsletter recommended locus symbols and names, and stock location<br />

information.<br />

Table 2. An alphabetic listing of recently published Barley Genetic Stock (BGS) descriptions<br />

for loci in barley (Hordeum vulgare), including information on chromosomal locations,<br />

recommended locus names, and original cultivars.<br />

134


Barley Genetics Newsletter (2008) 134-164<br />

Table 1. A listing of Barley Genetic Stock (BGS) descriptions in recent issues of the Barley<br />

Genetics Newsletter recommended locus symbols and names, and stock location<br />

information.<br />

BGS Locus symbol * Chr. Locus name or phenotype Descr. GSHO<br />

no. Rec. Prev. loc. † vol. p. no. ‡<br />

1 brh1 br, ari-i 7HS Brachytic 1 37:188 25<br />

2 fch12 fc, clo-fc 7HS Chlorina seedling 12 37:190 36<br />

3 yvs2 yc 7HS Virescent seedling 2 26: 46 41<br />

4 abo8 ac2, alb-m 7HS Albino seedling 8 26: 47 61<br />

5 fch8 f8 7HS Chlorina seedling 8 26: 48 40<br />

6 vrs1 v, Int-d 2HL Six-rowed spike 1 37:192 196<br />

7 nud1 n, h 7HL Naked caryopsis 1 37:195 115<br />

9 dsp1 l 7HS Dense spike 1 26: 53 1232<br />

10 lks2 lk2, lk4 7HL Short awn 2 37:197 566<br />

11 ubs4 u4, ari-d 7HL Unbranched style 4 26: 56 567<br />

12 des1 lc 7H Desynapsis 1 26: 57 592<br />

13 des4 des4 7H Desynapsis 4 26: 58 595<br />

14 des5 des5 7H Desynapsis 5 26: 59 596<br />

15 blx1 bl 4HL Non-blue aleurone xenia 1 26: 60 185<br />

16 wax1 wx, glx 7HS Waxy endosperm 1 26: 61 908<br />

17 fch4 f4, yv 7HL Chlorina seedling 4 26: 63 1214<br />

18 fch5 f5, yv2 7HS Chlorina seedling 5 26: 64 1215<br />

19 blx2 bl2 7HS Non-blue aleurone xenia 2 26: 65 209<br />

20 Rym2 Ym2 7HL Reaction to BaYMV 2 26: 66 984<br />

21 Run1 Un 7HS Reaction to Ustilago nuda 1 26: 67 1324<br />

22 Rsg1 Grb 7H Reaction to Schizaphis graminum 1 37:199 1317<br />

23 wnd1 wnd 7HS Winding dwarf 1 26: 69 2499<br />

24 fst3 fs3 7HS Fragile stem 3 26: 70 1746<br />

25 Xnt1 Xa 7HL Xantha seedling 1 26: 71 1606<br />

26 snb1 sb 7HS Subnodal bract 1 26: 72 1217<br />

27 lbi3 lb3 7HL Long basal rachis internode 3 26: 73 536<br />

28 ert-a ert-a 7HS Erectoides-a 26: 74 468<br />

29 ert-d ert-d 7HS Erectoides-d 26: 76 475<br />

30 ert-m ert-m 7HS Erectoides-m 26: 78 487<br />

31 sex6 sex6 7HS Shrunken endosperm xenia 6 26: 80 2476<br />

32 Rph9 Pa9 5HL Reaction to Puccinia hordei 9 37:201 1601<br />

33 ant1 rs, rub-a 7HS Anthocyanin-less 1 26: 82 1620<br />

34 msg50 msg,,hm 7HL Male sterile genetic 50 26: 83 2404<br />

35 rsm1 sm 7HS Reaction to BSMV 1 26: 84 2492<br />

36 xnt4 xc2 7HL Xantha seedling 4 26: 85 42<br />

37 xnt9 xan,,i 7HL Xantha seedling 9 26: 86 584<br />

38 smn1 smn 7HS Seminudoides 1 32: 78 1602<br />

39 mss2 mss2 7HS Midseason stripe 2<br />

135<br />

32: 79 2409


Barley Genetics Newsletter (2008) 38: 134-164<br />

Table 1 (continued)<br />

BGS Locus symbol * Chr. † Locus name or phenotype Descr. GSHO<br />

no. Rec. Prev. loc. vol. p. no. ‡<br />

40 prm1 prm 7HS Premature ripe 1 32: 80 2429<br />

41 brh7 brh.w 5HS Brachytic 7 37:203 1687<br />

42 Pyr1 Pyr1 7HS Pyramidatum 1 32: 82 1581<br />

43 mov1 mo5 7HL Multiovary 1 35:185<br />

44 brh16 brh.v 7HL Brachytic 16 37:204 1686<br />

51 rtt1 rt 2HS Rattail spike 1 26: 87 216<br />

52 fch15 or 2HS Chlorina seedling 15 26: 88 49<br />

53 abo2 a2 2HS Albino seedling 2 26: 89 70<br />

55 fch1 f, lg 2HS Chlorina seedling 1 26: 90 112<br />

56 wst4 wst4 2HL White streak 4 26: 91 568<br />

57 eog1 e, lep-e 2HL Elongated outer glume 1 26: 92 29<br />

58 vrs1 lr, v lr 2HL Six-rowed spike 1 26: 94 153<br />

59 gpa1 gp, gp2 2HL Grandpa 1 26: 95 1379<br />

60 lig1 li, aur-a 2HL Liguleless 1 37:205 6<br />

61 trp1 tr 2HL Triple awned lemma 1 26: 97 210<br />

62 sbk1 sk, cal-a 2HS Subjacent hood 1 32: 83 267<br />

63 yvs1 yx, alb-c2 2HS Virescent seedling 1 26: 99 68<br />

64 des7 des7 2H Desynapsis 7 26:100 598<br />

65 Eam1 Ea, Ppd-H1 2HS Early maturity 1 26:101 1316<br />

66 vrs1 V d 2HL Two-rowed spike 1 26:103 346<br />

67 vrs1 V t 2HL Deficiens 1 26:104 684<br />

68 Pvc 1 Pc 2HL Purple veined lemma 1 26:105 132<br />

69 Gth 1 G 2HL Toothed lemma 1 26:106 309<br />

70 Rph1 Pa 2H Reaction to Puccinia hordei 1 26:107 1313<br />

71 com2 bir2 2HS Compositum 2 26:108 1703<br />

72 glo-c glo-c 2H Globosum-c 26:109 1329<br />

73 fol-a fol-a 2HL Angustifolium-a 26:110 1744<br />

74 flo-c flo-c 2HS Extra floret-c 26:111 1743<br />

75 Lks1 Lk 2HL Awnless 1 26:112 44<br />

76 Pre2 Re2, P 2HL Red lemma and pericarp 2 26:113 234<br />

77 hcm1 h 2HL Short culm 1 26:115 2492<br />

78 mtt4 mt,,e, mt 2HL Mottled leaf 4 26:116 1231<br />

79 wst7 rb 2HL White streak 7 37:207 247<br />

80 ant2 pr, rub 2HL Anthocyanin-less 2 26:118 1632<br />

81 gsh7 gs7 Glossy sheath 7 26:119 1759<br />

82 Zeo1 Knd 2HL Zeocriton 1 37:209 1613<br />

83 sld2 sld2 2HS Slender dwarf 2 26:121 2491<br />

84 mss1 mss 2H Midseason stripe 1 26:122 1404<br />

85 yst4 yst4 2HL Yellow streak 4 37:210 2502<br />

86 fch13 f13 Chlorina seedling 13 26:124 16<br />

136


Barley Genetics Newsletter (2008) 134-164<br />

Table 1 (continued)<br />

BGS Locus symbol * Chr. † Locus name or phenotype Descr. GSHO<br />

no. Rec. Prev. loc. vol. p. no. ‡<br />

87 fch14 f14 2HL Chlorina seedling 14 37:211 1739<br />

88 Rph2 Pa2, A 5HS Reaction to Puccinia hordei 2 37:212 1593<br />

89 ari-g ari-g, lk10 Breviaristatum-g 26:128 1655<br />

90 ert-j ert-j 2H Erectoides-j 26:129 484<br />

91 ert-q ert-q 2H Erectoides-q 26:130 1562<br />

92 ert-u ert-u, br5 2H Erectoides-u 26:131 496<br />

93 ert-zd ert-zd, br7 2H Erectoides-zd 26:132 504<br />

94 abo4 a4 2H Albino seedling 4 26:133 167<br />

95 abo13 alb,,p 2HL Albino seedling 13 26:134 585<br />

96 Rph15 Rph16 2HS Reaction to Puccinia hordei 15 37:214 1586<br />

97 acr1 acr 2HL Accordion rachis 1 32: 85 1617<br />

98 Eam6 Ea6, Ea 2HS Early maturity 6 37:216<br />

99 lin1 s, rin 2HL Lesser internode number 1 32: 88 2492<br />

100 sld4 sld.d 7HS Slender dwarf 4 37:218 2479<br />

101 als1 als 3HL Absent lower laterals 1 37:219 1065<br />

102 uzu1 uz, u 3HL Uzu 1 or semi brachytic 1 37:220 1300<br />

104 yst1 yst, ys 3HS Yellow streak 1 26:138 1140<br />

105 xnt3 xc, vir-l 3HS Xantha seedling 3 26:139 66<br />

106 abo6 ac 3HS Albino seedling 6 26:140 30<br />

107 wst1 wst, wst3 3HL White streak 1 26:141 159<br />

108 alm1 al, ebu-a 3HS Albino lemma 1 37:222 270<br />

109 yst2 yst2 3HS Yellow streak 2 26:144 570<br />

111 dsp10 lc 3HS Dense spike 10 26:145 71<br />

112 abo9 an 3HS Albino seedling 9 26:146 348<br />

113 xnt6 xs 3HS Xantha seedling 6 26:147 117<br />

114 cur2 cu2 3HL Curly 2 26:148 274<br />

115 btr1 bt1 3HS Non-brittle rachis 1 26:149 1233<br />

116 btr2 bt2 3HS Non-brittle rachis 2 26:150 842<br />

117 fch2 f2, lg5 3HL Chlorina seedling 2 26:151 107<br />

118 lnt1 rnt, int-l 3HL Low number of tillers 1 26:153 833<br />

119 des2 ds 3H Desynapsis 2 26:154 593<br />

120 zeb1 zb 3HL Zebra stripe 1 26:155 1279<br />

121 Rph3 Pa3 7HL Reaction to Puccinia hordei 3 26:156 1316<br />

122 Rph5 Pa5, Pa6 3HS Reaction to Puccinia hordei 5 37:224 1597<br />

123 Ryd2 Yd2 3HL Reaction to BYDV 2 26:158 1315<br />

124 vrs4 mul, int-e 3HL Six-rowed spike 4 26:159 775<br />

125 lzd1 lzd, dw4 3HS Lazy dwarf 1 26:161 1787<br />

126 sld1 dw1 3HL Slender dwarf 1 26:162 2488<br />

127 Pub1 Pub 3HL Pubescent leaf blade 1 26:163 1576<br />

128 sca1 sca 3HS Short crooked awn 1 26:164 2439<br />

137


Barley Genetics Newsletter (2008) 38: 134-164<br />

Table 1 (continued)<br />

BGS Locus symbol * Chr. † Locus name or phenotype Descr. GSHO<br />

no. Rec. Prev. loc. vol. p. no. ‡<br />

129 wst6 wst,,j 3HL White streak 6 26:165 2500<br />

130 eam10 easp 3HL Early maturity 10 37:226 2504<br />

131 gra-a gran-a 3HL Granum-a 26:167 1757<br />

132 ari-a ari-a 3HS Breviaristatum-a 26:168 1648<br />

133 sdw2 sdw-b 3HL Semidwarf 2 26:169 2466<br />

134 ert-c ert-c 3HL Erectoides-c 26:170 471<br />

135 ert-ii ert-ii 3HL Erectoides-ii 26:172 483<br />

136 Rph7 Pa7, Pa5 3HS Reaction to Puccinia hordei 7 37:228 1318<br />

137 Rph10 Rph10 3HL Reaction to Puccinia hordei 10 26:174 1588<br />

138 nec4 nec4 3H Necrotic leaf spot 4 26:175<br />

139 nec5 nec5 3H Necrotic leaf spot 5 26:176<br />

140 xnt8 xan,,h 3HS Xantha seedling 8 26:177 582<br />

141 rym5 Ym 3HL Reaction to Barley yellow mosaic virus 5 32: 90<br />

142 brh8 brh.ad 3HS Brachytic 8 37:230 1671<br />

143 sex8 sex.j 3HS Shrunken endosperm 8 32: 93 2471<br />

144 sld5 sld5 3HS Slender dwarf 5 32: 94 2483<br />

146 cal-d cal-d 3H Calcaroides-d 32: 95 1697<br />

147 mov2 mo 3HS Multiovary 2 35:190<br />

148 brh14 brh.q 3HL Brachytic 14 37:231 1682<br />

149 Rpc1 3H Reaction to Puccinia coronata var. hordei 1 37:232 1601<br />

151 fch9 f9 4HS Chlorina seedling 9 26:178 571<br />

152 Kap1 K 4HS Hooded lemma 1 26:179 985<br />

155 glf1 gl, cer-zh 4HL Glossy leaf 1 37:233 98<br />

156 lbi2 lb2, ert-i 4HL Long basal rachis internode 2 26:183 572<br />

157 brh2 br2, ari-l 4HL Brachytic 2 37:235 573<br />

158 yhd1 yh 4HL Yellow head 1 26:185 574<br />

160 min2 en-min Enhancer of minute 1 26:186 266<br />

161 min1 min 4HL Semi-minute dwarf 1 26:187 987<br />

163 sgh1 sh1 4HL Spring growth habit 1 26:188 575<br />

164 Hln1 Hn 4HL Hairs on lemma nerves 1 26:189 576<br />

165 glf3 gl3, cer-j 4HL Glossy leaf 3 26:190 577<br />

166 msg25 msg,,r 4HL Male sterile genetic 25 26:192 744<br />

167 rym1 Ym 4HL Reaction to barley yellow mosaic virus 1 32: 96<br />

168 glo-a glo-a 4HS Globosum-a 26:194 1328<br />

170 lgn3 lg3 4HL Light green 3 26:195 171<br />

171 lgn4 lg4, lg9 4HL Light green 4 26:196 681<br />

172 lks5 lk5, ari-c 4HL Short awn 5 26:197 1297<br />

173 blx3 bl3 4HL Non-blue aleurone xenia 3 26:198 2506<br />

174 blx4 bl4 4HL Non-blue (pink) aleurone xenia 4 26:199 2507<br />

176 ovl1 ovl 4H Ovaryless 1 35:191<br />

138


Barley Genetics Newsletter (2008) 134-164<br />

Table 1 (continued)<br />

BGS Locus symbol * Chr. † Locus name or phenotype Descr. GSHO<br />

no. Rec. Prev. loc. vol. p. no. ‡<br />

178 int-c i, v5 4HS Intermedium spike-c 37:237 776<br />

179 Hsh1 Hs 4HL Hairy leaf sheath 1 37:240 986<br />

180 sid1 nls 4HL Single internode dwarf 1 26:203 2477<br />

181 eam9 ea,,c 4HL Early maturity 9 26:204 1732<br />

182 flo-a flo-a Extra floret-a 26:205 1741<br />

183 Ynd1 Yn 4HS Yellow node 1 32:98<br />

184 Zeo3 Zeo.h 4HL Zeocriton 3 32:99 1611<br />

185 brh5 brh.m 4HS Brachytic 5 37:242 1678<br />

186 sld3 ant17.567 4HS Slender dwarf 3 37:243 2480<br />

187 brh9 brh.k 4HS Brachytic 9 37:244 1676<br />

201 fch7 f7 1HL Chlorina seedling 7 26:206 4<br />

202 trd1 t, bra-c 1HL Third outer glume 1 26:207 227<br />

203 Blp1 B 1HL Black lemma and pericarp 1 37:245 988<br />

207 abo1 at 1HL Albino seedling 1 26:210 51<br />

208 fst2 fs2 1HL Fragile stem 2 26:211 578<br />

213 Sgh3 Sh3 1HL Spring growth habit 3 26:212 764<br />

214 eam8 eak, mat-a 1HL Early maturity 8 37:247 765<br />

215 des6 des6 1H Desynapsis 6 26:216 597<br />

218 Rph4 Pa4 1HS Reaction to Puccinia hordei 4 26:217 1314<br />

220 fch3 f3 1HS Chlorina seedling 3 26:218 851<br />

221 wst5 wst5 1HL White streak 5 26:219 591<br />

222 nec1 sp,,b 1HL Necrotic leaf spot 1 37:251 989<br />

223 zeb3 zb3, zbc 1HL Zebra stripe 3 26:221 1451<br />

224 ert-b ert-b 1HL Erectoides-b 26:222 470<br />

225 clh1 clh 1HL Curled leaf dwarf 1 26:223 1212<br />

226 rvl1 rvl 1HL Revoluted leaf 1 26:224 608<br />

227 sls1 sls 1HS Small lateral spikelet 1 26:225 2492<br />

228 Sil1 Sil 1HS Subcrown internode length 1 26:226 1604<br />

229 cud2 cud2 1HL Curly dwarf 2 26:227 1712<br />

230 glo-e glo-e 1HL Globosum-e 26:228 1755<br />

231 cur5 cu5 1HS Curly 5 26:229 1710<br />

232 Lys4 sex5 1HS High lysine 4 26:230 2475<br />

233 xnt7 xan,,g 1HL Xantha seedling 7 26:231 581<br />

234 mov3 mo-a 1H Multiovary 3 32:102<br />

235 lel1 lel 1HL Leafy lemma 1 32:103 1780<br />

251 mul2 mul2 6HL Multiflorus 2 26:232 1394<br />

252 eam7 ea7, ec 6HS Early maturity 7 26:233 579<br />

253 cul2 uc2 6HL Uniculm 2 37:253 531<br />

254 rob1 o, rob-o 6HS Orange lemma 1 37:255 707<br />

255 xnt5 xn 6HL Xantha seedling 5 26:237 43<br />

139


Barley Genetics Newsletter (2008) 38: 134-164<br />

Table 1 (continued)<br />

BGS Locus symbol * Chr. † Locus name or phenotype Descr. GSHO<br />

no. Rec. Prev. loc. vol. p. no. ‡<br />

257 raw5 r,,e 6HL Smooth awn 5 26:238 785<br />

258 dsp9 l9, ert-e 6HL Dense spike 9 26:239 1774<br />

260 fch11 f11 6HL Chlorina seedling 11 26:240 1738<br />

261 nec2 nec2 6HS Necrotic leaf spot 2 26:241 1224<br />

262 cur1 cu1 6HL Curly 1 26:242 1705<br />

263 cur3 cu3 6HL Curly 3 26:243 1707<br />

264 mtt5 mt,,f 6HL Mottled leaf 5 26:244 2410<br />

265 nec3 nec3 6HS Necrotic leaf spot 3 26:245 1330<br />

266 ert-e ert-e, dsp9 6HL Erectoides-e 37:257 477<br />

267 Rph11 Rph11 6HL Reaction to Puccinia hordei 11 26:247 1589<br />

268 lax-b lax-b 6HL Laxatum-b 26:248 1776<br />

269 lys6 lys6 6H High lysine 6 26:249 1786<br />

270 abo14 alb,,q 6HL Albino seedling 14 26:250 586<br />

271 abo15 alb,,t 6HS Albino seedling 15 26:251<br />

301 fst1 fs 5HL Fragile stem 1 26:252 629<br />

302 mtt2 mt2 5HL Mottled leaf 2 26:253 1398<br />

303 var3 va3 5HL Variegated 3 26:254 1277<br />

304 wst2 wst2 5HL White streak 2 26:255 766<br />

305 crm1 cm 5HL Cream seedling 1 26:256 20<br />

306 var1 va 5HL Variegated 1 37:259 1278<br />

308 lbi1 lb, rac-a 5HL Long basal rachis internode 1 26:258 580<br />

309 Sgh2 Sh2 5HL Spring growth habit 2 26:259 770<br />

311 dex1 sex2 5HS Defective endosperm xenia 1 26:260<br />

312 raw1 r 5HL Smooth awn 1 26:261 27<br />

313 fch6 f6, yv 5HL Chlorina seedling 6 26:262 1390<br />

314 vrs2 v2 5HL Six-rowed spike 2 26:263 773<br />

315 vrs3 v3, int-a 1HL Six-rowed spike 3 26:264 774<br />

317 ddt1 ddt 5HS Reaction to DDT 1 26:266 331<br />

319 rpg4 rpg4 5HL Reaction to Puccinia graminis 4 26:267 2438<br />

320 int-b int-b 5HL Intermedium spike-b 26:268 1764<br />

321 srh1 s, l 5HL Short rachilla hair 1 26:269 27<br />

322 dsk1 dsk 5HL Dusky 1 26:270 1714<br />

323 nld1 nld 5HL Narrow leafed dwarf 1 26:271 769<br />

324 cud1 cud 5HL Curly dwarf 1 26:272 1711<br />

325 crl1 crl, cl Curly lateral 1 26:273 1211<br />

326 blf1 bb 5HL Broad leaf 1 26:274 1393<br />

327 flo-b flo-b 5HL Extra floret-b 26:275 1742<br />

328 ari-e ari-e 5HL Breviaristatum-e 26:276 1653<br />

329 ari-h ari-h 5HL Breviaristatum-h 26:277 1656<br />

330 ert-g ert-g, br3 5HL Erectoides-g 26:278 479<br />

140


Barley Genetics Newsletter (2008) 134-164<br />

Table 1 (continued)<br />

BGS Locus symbol * Chr. † Locus name or phenotype Descr. GSHO<br />

no. Rec. Prev. loc. vol. p. no. ‡<br />

331 ert-n ert-n 5HL Erectoides-n 26:279 488<br />

332 Ert-r Ert-r Erectoides-r 26:280 492<br />

333 Rph12 Rph12 5HL Reaction to Puccinia hordei 12 26:281 1590<br />

334 raw6 r6 5HL Smooth awn 6 26:282 2437<br />

335 msg49 msg,,jw 5HL Male sterile genetic 49 26:283 2402<br />

336 glo-b glo-b 5HL Globosum-b 26:284 1326<br />

337 blf2 bb2, nlh 5HL Broad leaf 2 26:285 1667<br />

338 lys1 lys 5HL High lysine 1 26:286 1784<br />

339 lys3 sex3 5HL High lysine 3 26:287 1785<br />

340 raw2 r2 5HL Smooth awn 2 26:289 27<br />

341 abo12 alb,,o 5HS Albino seedling 12 26:290 583<br />

342 glo-f glo-e 5HL Globosum-f 26:291<br />

343 Lfb1 Lfb 5HL Leafy bract 1 28: 30 1577<br />

344 var2 va2 5HL Variegated 2 32:104 2496<br />

345 rym3 ym3 5HS Reaction to barley yellow mosaic virus 3 32:105<br />

346 yst5 yst5 5HL Yellow streak 5 32:107 2501<br />

347 mnd4 m4 5HL Many noded dwarf 4 32:108 1798<br />

348 Eam5 Ea5 5HL Early maturity 5 37:260<br />

349 brh4 brh.j 2HL Brachytic 4 37:262 1675<br />

350 brh6 brh.s 5HS Brachytic 6 37:263 1683<br />

351 gsh1 gs1, cer-q 2HS Glossy sheath 1 26:292 735<br />

352 gsh2 gs2, cer-b 3HL Glossy sheath 2 26:294 736<br />

353 gsh3 gs3, cer-a 7HS Glossy sheath 3 26:296 737<br />

354 gsh4 gs4, cer-x 6HL Glossy sheath 4 26:298 738<br />

355 gsh5 gs5, cer-s 2HL Glossy sheath 5 26:300 739<br />

356 gsh6 gs6, cer-c 2HS Glossy sheath 6 26:302 740<br />

357 msg1 ms1 1HL Male sterile genetic 1 26:304 1810<br />

358 msg2 ms2 2HL Male sterile genetic 2 26:306 2371<br />

359 msg3 ms3 2HS Male sterile genetic 3 26:307 1130<br />

360 msg4 ms4 1H Male sterile genetic 4 26:308 2392<br />

361 msg5 ms5 3HS Male sterile genetic 5 26:309 2403<br />

362 msg6 ms6 6HS Male sterile genetic 6 26:310 2405<br />

363 msg7 ms7 5HL Male sterile genetic 7 26:311 2406<br />

364 msg8 ms8 5HL Male sterile genetic 8 26:312 2407<br />

365 msg9 ms9 2HS Male sterile genetic 9 26:313 2408<br />

366 msg10 ms10 7HS Male sterile genetic 10 26:314 1811<br />

367 msg11 ms11 Male sterile genetic 11 26:315 1812<br />

368 msg13 ms13 Male sterile genetic 13 26:316 1813<br />

369 msg14 ms14 7HS Male sterile genetic 14 26:317 1814<br />

370 msg15 ms15 Male sterile genetic 15 26:318 1815<br />

141


Barley Genetics Newsletter (2008) 38: 134-164<br />

Table 1 (continued)<br />

BGS Locus symbol * Chr. † Locus name or phenotype Descr. GSHO<br />

no. Rec. Prev. loc. vol. p. no. ‡<br />

371 msg16 ms16 5HS Male sterile genetic 16 26:319 1816<br />

372 msg17 ms17 Male sterile genetic 17 26:320 1817<br />

373 msg18 ms18 5HL Male sterile genetic 18 26:321 1818<br />

374 msg19 ms19 5HS Male sterile genetic 19 26:322 1819<br />

375 msg20 ms20 1H Male sterile genetic 20 26:323 2372<br />

376 msg21 ms21 Male sterile genetic 21 26:324 2373<br />

377 seg1 se1 7HL Shrunken endosperm genetic 1 37:264 750<br />

378 seg2 se2 7HS Shrunken endosperm genetic 2 26:326 751<br />

379 seg3 se3 3H Shrunken endosperm genetic 3 37:265 752<br />

380 seg4 se4 7HL Shrunken endosperm genetic 4 37:267 753<br />

381 seg5 se5 7HS Shrunken endosperm genetic 5 26:329 754<br />

382 sex1 lys5 6HL Shrunken endosperm xenia 1 26:330 755<br />

383 msg22 ms22 7H Male sterile genetic 22 26:331 741<br />

384 msg23 ms23 7HL Male sterile genetic 23 26:332 2375<br />

385 msg24 ms24 4HL Male sterile genetic 24 26:333 2376<br />

386 des3 des3 Desynapsis 3 26:334 594<br />

387 des8 des8 Desynapsis 8 26:335 599<br />

388 des9 des9 Desynapsis 9 26:336 600<br />

389 des10 des10 Desynapsis 10 26:337 601<br />

390 des11 des11 Desynapsis 11 26:338 602<br />

391 des12 des12 Desynapsis 12 26:339 603<br />

392 des13 des13 Desynapsis 13 26:340 604<br />

393 des14 des14 Desynapsis 14 26:341 605<br />

394 des15 des15 Desynapsis 15 26:342 606<br />

395 msg26 msg,,u 7HS Male sterile genetic 26 26:343 745<br />

396 seg6 se6 3HL Shrunken endosperm genetic 6 37:268 2467<br />

397 seg7 se7 Shrunken endosperm genetic 7 37:269 2468<br />

399 cer-d cer-d Eceriferum-d 26:346 425<br />

400 cer-e cer-e 1HL Eceriferum-e 26:347 1518<br />

401 cer-f cer-f 7HS Eceriferum-f 26:348 427<br />

402 cer-g cer-g 2HL Eceriferum-g 26:349 428<br />

403 cer-h cer-h Eceriferum-h 26:351 429<br />

404 cer-i cer-i 5HL Eceriferum-i 26:352 430<br />

405 cer-k cer-k 7HS Eceriferum-k 26:354 432<br />

406 cer-l cer-l Eceriferum-l 26:355 433<br />

407 cer-m cer-m Eceriferum-m 26:356 434<br />

408 cer-n gs9 2HL Eceriferum-n 26:357 435<br />

409 cer-o cer-o Eceriferum-o 26:359 436<br />

410 cer-p cer-p Eceriferum-p 26:360 437<br />

411 cer-r cer-r 3HL Eceriferum-r 26:361 439<br />

142


Barley Genetics Newsletter (2008) 134-164<br />

Table 1 (continued)<br />

BGS Locus symbol * Chr. † Locus name or phenotype Descr. GSHO<br />

no. Rec. Prev. loc. vol. p. no. ‡<br />

412 cer-t cer-t 5HL Eceriferum-t 26:362 441<br />

413 gsh8 cer-u, gs8 2HS Glossy sheath 8 26:364 442<br />

414 cer-v cer-v 2HS Eceriferum-v 26:366 443<br />

415 cer-w cer-w 5HL Eceriferum-w 26:367 1519<br />

417 cer-y cer-y Eceriferum-y 26:368 446<br />

418 cer-z cer-z 7HS Eceriferum-z 26:369 447<br />

419 cer-za cer-za 5HL Eceriferum-za 26:370 1521<br />

420 cer-zb cer-zb Eceriferum-zb 26:371 1522<br />

421 cer-zc cer-zc Eceriferum-zc 26:372 450<br />

422 cer-zd cer-zd 3HL Eceriferum-zd 26:373 451<br />

423 cer-ze gl5 7HS Eceriferum-ze 26:374 452<br />

424 cer-zf cer-zf Eceriferum-zf 26:376 453<br />

425 cer-zg cer-zg 4HL Eceriferum-zg 26:377 454<br />

427 cer-zi cer-zi 1HL Eceriferum-zi 26:378 456<br />

428 cer-zj cer-zj 5HL Eceriferum-zj 26:379 457<br />

429 cer-zk cer-zk 2H Eceriferum-zk 26:381 458<br />

430 cer-zl cer-zl Eceriferum-zl 26:382 459<br />

431 cer-zn cer-zn 3HL Eceriferum-zn 26:383 1523<br />

432 cer-zo cer-zo Eceriferum-zo 26:384 462<br />

433 cer-zp cer-zp 5HL Eceriferum-zp 26:385 463<br />

434 cer-zq cer-zq Eceriferum-zq 26:386 1524<br />

435 cer-zr cer-zr Eceriferum-zr 26:387 1525<br />

436 cer-zs cer-zs Eceriferum-zs 26:388 1526<br />

437 cer-zt cer-zt 2HS Eceriferum-zt 37:270 1527<br />

438 cer-zu cer-zu Eceriferum-zu 26:390 1528<br />

439 cer-zv cer-zv Eceriferum-zv 26:391 1529<br />

440 cer-zw cer-zw Eceriferum-zw 26:392 1530<br />

441 cer-zx cer-zx Eceriferum-zx 26:393 1531<br />

442 cer-zy cer-zy Eceriferum-zy 26:394 1532<br />

443 cer-zz cer-zz Eceriferum-zz 26:395 1533<br />

444 cer-ya cer-ya 3HS Eceriferum-ya 26:396 1534<br />

445 cer-yb cer-yb 2HL Eceriferum-yb 26:397 1535<br />

446 cer-yc cer-yc Eceriferum-yc 26:398 1536<br />

447 cer-yd cer-yd 3HS Eceriferum-yd 26:399 1537<br />

448 cer-ye cer-ye 5HL Eceriferum-ye 26:400 1538<br />

449 cer-yf cer-yf Eceriferum-yf 37:271 1539<br />

450 cer-yg cer-yg 7HS Eceriferum-yg 26:402 1540<br />

451 cer-yh cer-yh 3HS Eceriferum-yh 26:403 1541<br />

454 blx5 bl5 7HL Non-blue aleurone xenia 5 26:404 2509<br />

455 seg8 seg8 7H Shrunken endosperm genetic 8 37:272 2469<br />

143


Barley Genetics Newsletter (2008) 38: 134-164<br />

Table 1 (continued)<br />

BGS Locus symbol * Chr. † Locus name or phenotype Descr. GSHO<br />

no. Rec. Prev. loc. vol. p. no. ‡<br />

460 cur4 cu4, glo-d 2HL Curly 4 26:406 1708<br />

461 zeb2 zb2, f10 4HL Zebra stripe 2 26:407 93<br />

462 yst3 yst,,c 3HS Yellow streak 3 26:409 48<br />

463 gig1 gig, sf 2H? Gigas 1 26:410 1650<br />

464 msg27 msg,,ae 2HL Male sterile genetic 27 26:411 2379<br />

465 msg28 msg,,as 6H Male sterile genetic 28 26:412 2380<br />

466 msg29 msg,,a 5HL Male sterile genetic 29 26:413 2381<br />

467 msg30 msg,,c 7HL Male sterile genetic 30 26:414 2382<br />

468 msg31 msg,,d 1HS Male sterile genetic 31 26:415 2383<br />

469 msg32 msg,,w 7H Male sterile genetic 32 26:416 2384<br />

470 msg33 msg,,x 2HS Male sterile genetic 33 26:417 2385<br />

471 msg34 msg,,av 6H Male sterile genetic 34 26:418 2386<br />

472 abr1 abr 2HL Accordion basal rachis internode 1 26:419 1563<br />

473 com1 bir1 5HL Compositum 1 26:420 1702<br />

474 lax-a lax-a 5HL Laxatum-a 37:273 1775<br />

475 lax-c lax-c 6HL Laxatum-c 26:423 1777<br />

498 msg35 msg,,dr 2HL Male sterile genetic 35 26:424 2387<br />

499 msg36 msg,,bk 6HS Male sterile genetic 36 26:425 2388<br />

500 msg37 msg,,hl Male sterile genetic 37 26:426 2389<br />

501 msg38 msg,,jl Male sterile genetic 38 26:427 2390<br />

502 msg39 msg,,dm 6H Male sterile genetic 39 26:428 2391<br />

503 msg40 msg,,ac 6H Male sterile genetic 40 26:429 2393<br />

504 msg41 msg,,aj Male sterile genetic 41 26:430 2394<br />

505 msg42 msg,,db 3H Male sterile genetic 42 26:431 2395<br />

506 msg43 msg,,br Male sterile genetic 43 26:432 2396<br />

507 msg44 msg,,cx Male sterile genetic 44 26:433 2397<br />

508 msg45 msg,,dp Male sterile genetic 45 26:434 2398<br />

509 msg46 msg,,ec Male sterile genetic 46 26:435 2399<br />

510 msg47 msg,,ep Male sterile genetic 47 26:436 2400<br />

511 Rpg1 T 7HS Reaction to Puccinia graminis 1 26:437 701<br />

512 Rpg2 T2 Reaction to Puccinia graminis 2 26:439 187<br />

513 xnt2 xb Xantha seedling 2 26:440 2<br />

515 Rsp1 Sep Reaction to Septoria passerinii 1 26:441 2510<br />

516 Rsp2 Sep2 Reaction to Septoria passerinii 2 37:275 2511<br />

517 Rsp3 Sep3 Reaction to Septoria passerinii 3 37:276 2512<br />

518 sdw1 denso 3HL Semidwarf 1 37:277 2513<br />

519 mnd1 m Many-noded dwarf 1 26:446 253<br />

520 msg48 msg,,jt 2H Male sterile genetic 48 26:447 2401<br />

521 mtt1 mt 1HS Mottled leaf 1 26:448 622<br />

522 cer-yi cer-yi Eceriferum-yi 26:449 1542<br />

144


Barley Genetics Newsletter (2008) 134-164<br />

Table 1 (continued)<br />

BGS Locus symbol * Chr. † Locus name or phenotype Descr. GSHO<br />

no. Rec. Prev. loc. vol. p. no. ‡<br />

523 cer-yj cer-yj Eceriferum-yj 26:450 1543<br />

524 cer-yk cer-yk Eceriferum-yk 26:451 1544<br />

525 cer-yl cer-yl Eceriferum-yl 26:452 1545<br />

526 cer-ym cer-ym Eceriferum-ym 26:453 1546<br />

527 cer-yn cer-yn Eceriferum-yn 26:454 1547<br />

528 cer-yo cer-yo Eceriferum-yo 26:455 1548<br />

529 cer-yp cer-yp Eceriferum-yp 26:456 1549<br />

530 cer-yq cer-yq Eceriferum-yq 26:457 1550<br />

531 cer-yr cer-yr Eceriferum-yr 26:458 1551<br />

532 cer-ys cer-ys Eceriferum-ys 26:459 1552<br />

533 cer-yt cer-yt Eceriferum-yt 26:460 1553<br />

534 cer-yu cer-yu Eceriferum-yu 26:461 1554<br />

535 cer-yx cer-yx Eceriferum-yx 26:462 1555<br />

536 Cer-yy Gle1 1HS Eceriferum-yy 26:463 1556<br />

537 cer-yz cer-yz Eceriferum-yz 26:464 1557<br />

538 cer-xa cer-xa Eceriferum-xa 26:465 1558<br />

539 cer-xb cer-xb Eceriferum-xb 26:466 1559<br />

540 cer-xc cer-xc Eceriferum-xc 26:467 1560<br />

541 cer-xd cer-xd Eceriferum-xd 26:468 1561<br />

542 Dwf2 Dwf2 Dominant dwarf 2 24:170<br />

543 int-f int-f Intermedium spike-f 26:469 1767<br />

544 int-h int-h Intermedium spike-h 26:470 1768<br />

545 int-i int-i Intermedium spike-i 26:471 1769<br />

546 int-k int-k 7H Intermedium spike-k 37:279 1770<br />

547 int-m int-m Intermedium spike-m 37:280 1772<br />

548 Fol-b Ang Angustifolium-b 26:474 17<br />

549 Lga1 Log Long glume awn 1 26:475 835<br />

550 ari-b ari-b Breviaristatum-b 26:476 1649<br />

551 ari-f ari-f Breviaristatum-f 26:477 1654<br />

552 ari-j ari-j Breviaristatum-j 26:478 1658<br />

553 ari-k ari-k Breviaristatum-k 26:479 1659<br />

554 ari-m ari-m Breviaristatum-m 26:480 1661<br />

555 ari-n ari-n Breviaristatum-n 26:481 1662<br />

556 ari-o ari-o Breviaristatum-o 26:482<br />

557 ari-p ari-p Breviaristatum-p 26:483 1664<br />

558 ari-q ari-q Breviaristatum-q 26:484 1665<br />

559 ari-r ari-r Breviaristatum-r 26:485 1666<br />

560 ert-f ert-f Erectoides-f 26:486 478<br />

561 ert-h ert-h Erectoides-h 26:487 481<br />

562 ert-k ert-k Erectoides-k 26:488 485<br />

145


Barley Genetics Newsletter (2008) 38: 134-164<br />

Table 1 (continued)<br />

BGS Locus symbol * Chr. † Locus name or phenotype Descr. GSHO<br />

no. Rec. Prev. loc. vol. p. no. ‡<br />

563 ert-l ert-l Erectoides-l 26:489 486<br />

564 ert-p ert-p Erectoides-p 26:490 490<br />

565 ert-s ert-s Erectoides-s 26:491 493<br />

566 ert-t ert-t, brh3 2HS Erectoides-t 37:281 494<br />

567 ert-v ert-v Erectoides-v 26:493 497<br />

568 ert-x ert-x Erectoides-x 26:494 498<br />

569 ert-y ert-y Erectoides-y 26:495 499<br />

570 ert-z ert-z Erectoides-z 26:496 500<br />

571 ert-za ert-za Erectoides-za 26:497 501<br />

572 ert-zb ert-zb Erectoides-zb 26:498 502<br />

573 ert-zc ert-zc Erectoides-zc 26:499 503<br />

574 ert-ze ert-ze Erectoides-ze 26:500 505<br />

575 Rph6 Pa6 Reaction to Puccinia hordei 6 26:501 1598<br />

576 Rph8 Pa8 Reaction to Puccinia hordei 8 26:502 1600<br />

577 Rsg2 Rsg2 Reaction to Schizaphis graminum 2 37:283 2513<br />

578 mat-b mat-b Praematurum-b 26:504 1788<br />

579 mat-c mat-c Praematurum-c 26:506 1789<br />

580 mat-d mat-d Praematurum-d 26:507 1790<br />

581 mat-e mat-e Praematurum-e 26:508 1791<br />

582 mat-f mat-f Praematurum-f 26:509 1792<br />

583 mat-g mat-g Praematurum-g 26:510 1793<br />

584 mat-h mat-h Praematurum-h 26:511 1794<br />

585 mat-i mat-i Praematurum-i 26:512 1795<br />

586 bra-d bra-d 1HL Bracteatum-d 37:284 1696<br />

587 abo3 a2, alb-za Albino seedling 3 26:514 165<br />

588 abo10 at2 Albino seedling 10 26:515 57<br />

589 abo11 at3, alb t Albino seedling 11 26:516 233<br />

590 Rph13 Rph13 Reaction to Puccinia hordei 13 28: 31 1591<br />

591 Rph14 Rph14 Reaction to Puccinia hordei 14 28: 32 1592<br />

592 yhd2 yh2 Yellow head 2 28: 33 757<br />

593 adp1 adp Awned palea 1 37:285 1618<br />

594 ant3 rub Anthocyanin-deficient 3 29: 82 1641<br />

595 ant4 ant4 Anthocyanin-deficient 4 29: 83 1642<br />

596 ant5 rs2 Anthocyanin-deficient 5 29: 84 1643<br />

597 ant6 ant6 Anthocyanin-deficient 6 29: 85 1644<br />

598 ant13 ant13 6HL Proanthocyanin-free 13 29: 86 1624<br />

599 ant17 ant17 3HS Proanthocyanin-free 17 37:286<br />

600 ant18 ant18 7HL Proanthocyanin-free 18 29: 90 1630<br />

601 ant19 ant19 Proanthocyanin-free 19 29: 92 1631<br />

602 ant20 ant20 Anthocyanin-rich 20 29: 93 1633<br />

146


Barley Genetics Newsletter (2008) 134-164<br />

Table 1 (continued)<br />

BGS Locus symbol * Chr. † Locus name or phenotype Descr. GSHO<br />

no. Rec. Prev. loc. vol. p. no. ‡<br />

603 ant21 ant21 6H Proanthocyanin-free 21 29: 94 1634<br />

604 ant22 ant22 7HL Proanthocyanin-free 22 29: 95 1635<br />

605 ant25 ant25 Proanthocyanin-free 25 29: 96 1638<br />

606 ant26 ant26 Proanthocyanin-free 26 29: 97 1639<br />

607 ant27 ant27 Proanthocyanin-free 27 29: 98 1640<br />

608 ant28 ant28 3HL Proanthocyanin-free 28 29: 99<br />

609 ant29 ant29 Proanthocyanin-free 29 29:100<br />

610 ant30 ant30 Proanthocyanin-free 30 29:101<br />

611 Nec6 Sp Necrotic leaf spot 6 32:112 2424<br />

612 gig2 gig2 Gigas 2 32:113 1750<br />

613 brc1 brc-5 2HS Branched 1 32:114<br />

614 Zeo2 Zeo2 Zeocriton 2 32:115 637<br />

615 wxs1 wxs1 Waxy spike 1 32:116<br />

616 cul3 cul3 Uniculme 3 32:117 2494<br />

617 cul4 uc-5 3HL Uniculme 4 37:289 2493<br />

618 mnd3 mn3, m3 3H Many noded dwarf 3 32:119 1797<br />

619 bra-a bra-a 7HS Bracteatum-a 32:120 1693<br />

620 cal-b cal-b 5H Calcaroides-b 32:121 1697<br />

621 Cal-c Cal-c 5HL Calcaroides-c 32:122 1567<br />

622 cal-e cal-23 5HS Calcaroides-e 32:123<br />

623 eli-a lig-a Eligulum-a 37:290<br />

624 ops1 op-3 Opposite spikelets 1 32:125 2427<br />

625 sci-a sci-3 Scirpoides 1 32:126<br />

626 scl-a scl-6 Scirpoides leaf-a 32:127<br />

627 viv-a viv-5 Viviparoides-a 32:128 2498<br />

628 sex7 sex.i 5HL Shrunken endosperm 7 32:129 2470<br />

629 mtt6 mtt6 Mottled leaf 6 32:130 2411<br />

630 Ari-s ari-265 Breviaristatum-s 32:131<br />

631 brh3 brh.g, ert-t Brachytic 3 32:132 1672<br />

632 mnd5 mnd5 Many noded dwarf 5 32:133<br />

633 mnd6 den-6 5HL Many noded dwarf 6 37:291 1713<br />

634 pmr2 nec-50 Premature ripe 2 32:135 2421<br />

635 nec7 nec-45 Necroticans 7 32:136 2420<br />

636 tst2 lin2 Tip sterile 2 37:292 1781<br />

637 nar1 nar1 6HS NADH nitrate reductase-deficient 1 35:194<br />

638 nar2 nar2 5HL NADH nitrate reductase-deficient 2 35:195<br />

639 nar3 nar3 7HS NADH nitrate reductase-deficient 3 35:196<br />

640 nar4 nar4 2HL NADH nitrate reductase-deficient 4 35:197<br />

641 nar5 nar5 5HL NADH nitrate reductase-deficient 5 35:198<br />

642 nar6 nar6 2HL NADH nitrate reductase-deficient 6 35:199<br />

147


Barley Genetics Newsletter (2008) 38: 134-164<br />

Table 1 (continued)<br />

BGS Locus symbol * Chr. † Locus name or phenotype Descr. GSHO<br />

no. Rec. Prev. loc. vol. p. no. ‡<br />

643 nar7 nar7 6HL NADH nitrate reductase-deficient 7 35:200<br />

644 nar8 nar8 6HS NADH nitrate reductase-deficient 8 35:201<br />

645 bsp1 bsp1 Bushy spike 1 35:202<br />

646 ovl2 ovl2 Ovaryless 2 35:204<br />

647 tst1 tst1 Tip sterile 1 35:205<br />

648 mov4 mo8 Multiovary 4 35:206<br />

649 asp1 asp1 Aborted spike 1 35:207<br />

650 sun1 sun1 Sensitivity to Ustilago nuda 1 35:208<br />

651 lam1 lam1 Late maturity 1 35:209<br />

652 ylf1 ylf1 Yellow leaf 1 35:210<br />

653 brh10 brh.l 2HS Brachytic 10 37:293 1677<br />

654 brh11 brh.n 5HS Brachytic 11 37:294 1679<br />

655 brh12 brh.o 5HS Brachytic 12 37:295 1680<br />

656 brh13 brh.p 5HS Brachytic 13 37:296 1681<br />

657 brh15 brh.u Brachytic 15 37:297 1685<br />

658 brh17 brh.ab 5HS Brachytic 17 37:298 1669<br />

659 brh18 brh.ac 5HS Brachytic 18 37:299 1670<br />

660 nld2 Narrow leafed dwarf 2 37:300<br />

661 dub1 5HL Double seed 1 37:301<br />

* Recommended locus symbols are based on utilization of a three-letter code for barley genes as<br />

approved at the business meeting of the Seventh International Barley Genetics Symposium at<br />

Saskatoon, Saskatchewan, Canada, on 05 August 5 1996.<br />

† Chromosome numbers and arm designations are based on a resolution passed at the business<br />

meeting of the Seventh International Barley Genetics Symposium at Saskatoon, Saskatchewan,<br />

Canada, on August 05 1996. The Burnham and Hagberg (1956) designations of barley<br />

chromosomes were 1 2 3 4 5 6 and 7 while new designations based on the Triticeae system are<br />

7H 2H 3H 4H 1H 6H and 5H, respectively.<br />

‡ The seed stock associated with each BGS number is held as a GSHO stock number in the<br />

Barley Genetics Stock Collection at the USDA-ARS National Small Grains Germplasm Research<br />

Facility, Aberdeen, Idaho, USA.<br />

148


Barley Genetics Newsletter (2008) 134-164<br />

Table 2. An alphabetic listing of recently published Barley Genetic Stock (BGS) descriptions for<br />

loci in barley (Hordeum vulgare), including information on chromosomal locations,<br />

recommended locus names, and original cultivars.<br />

Locus symbol* BGS Chr. Locus name or phenotype Descr. Parental cultivar<br />

Rec. Prev. no. loc. † vol. p.<br />

abo1 at 207 1HL Albino seedling 1 26:210 Trebi<br />

abo2 a2 53 2HS Albino seedling 2 26:89 Nilsson-Ehle No 2<br />

abo3 alb-za 587 Albino seedling 3 26:514 Unknown cultivar<br />

abo4 a4 94 2H Albino seedling 4 26:133 Unknown cultivar<br />

abo6 ac 106 3HS Albino seedling 6 26:140 Colsess<br />

abo8 ac2 4 7HS Albino seedling 8 26:47 Coast<br />

abo9 an 112 3HS Albino seedling 9 26:146 Nigrinudum<br />

abo10 at2 588 Albino seedling 10 26:515 Canadian Thorpe<br />

abo11 at3 589 Albino seedling 11 26:516 Trebi<br />

abo12 alb,,o 341 5HS Albino seedling 12 26:290 Titan<br />

abo13 alb,,p 95 2HL Albino seedling 13 26:134 Titan<br />

abo14 alb,,q 270 6HL Albino seedling 14 26:250 Shabet<br />

abo15 alb,,t 271 6HS Albino seedling 15 26:251 Betzes<br />

abr1 abr 472 2HL Accordion basal rachis<br />

internode 1<br />

26:419 Bonus<br />

acr1 acr 97 2HL Accordion rachis 1 32:85 Burma Girl<br />

adp1 adp 593 3HL Awned palea 1 37:285 Unknown cultivar<br />

alm1 al 108 3HS Albino lemma 1 37:222 Russia 82<br />

als1 als 101 3HL Absent lower laterals 1 37:219 Montcalm<br />

ant1 rs 33 7HS Anthocyanin-less 1 26:82 Bonus<br />

ant2 pr 80 2HL Anthocyanin-less 2 26:118 Foma<br />

ant3 594 Anthocyanin-deficient 3 29:82 Bonus<br />

ant4 595 Anthocyanin-deficient 4 29:83 Foma<br />

ant5 596 Anthocyanin-deficient 5 29:84 Bonus<br />

ant6 597 Anthocyanin-deficient 6 29:85 Foma<br />

ant13 598 6HL Proanthocyanidin-free 13 29:86 Foma<br />

ant17 599 3HS Proanthocyanidin-free 17 37:286 Nordal<br />

ant18 600 7HL Proanthocyanidin-free 18 29:90 Nordal<br />

ant19 601 Proanthocyanidin-free 19 29:92 Alf<br />

ant20 602 Anthocyanidin-rich 20 29:93 Foma<br />

ant21 603 6H Proanthocyanidin-free 21 29:94 Georgie<br />

ant22 604 7HS Proanthocyanidin-free 22 29:95 Hege 802<br />

ant25 605 Proanthocyanidin-free 25 29:96 Secobra 18193<br />

ant26 606 Proanthocyanidin-free 26 29.97 Grit<br />

ant27 607 Proanthocyanidin-free 27 29:98 Zebit<br />

ant28 608 3HL Proanthocyanidin-free 28 29:99 Grit<br />

ant29 609 Proanthocyanidin-free 29 29:100 Ca 708912<br />

ant30 610 Proanthocyanidin-free 30<br />

149<br />

29:101 Gunhild


Barley Genetics Newsletter (2008) 38: 134-164<br />

Table 2 (continued)<br />

Locus symbol* BGS Chr. Locus name or phenotype Descr. Parental cultivar<br />

Rec. Prev. no. loc. † vol. p.<br />

ari-a 132 3HS Breviaristatum-a 26:168 Bonus<br />

ari-b 550 Breviaristatum-b 26:476 Bonus<br />

ari-e 328 5HL Breviaristatum-e 26:276 Bonus<br />

ari-f 551 Breviaristatum-f 26:477 Bonus<br />

ari-g 89 Breviaristatum-g 26:128 Bonus<br />

ari-h 329 5HL Breviaristatum-h 26:277 Foma<br />

ari-j 552 Breviaristatum-j 26:478 Bonus<br />

ari-k 553 Breviaristatum-k 26:479 Bonus<br />

ari-m 554 Breviaristatum-m 26:480 Bonus<br />

ari-n 555 Breviaristatum-n 26:481 Bonus<br />

ari-o 556 Breviaristatum-o 26:482 Bonus<br />

ari-p 557 Breviaristatum-p 26:483 Foma<br />

ari-q 558 Breviaristatum-q 26:484 Kristina<br />

ari-r 559 Breviaristatum-r 26:485 Bonus<br />

Ari-s ari-265 630 Breviaristatum-s 32:131 Kristina<br />

asp1 649 Aborted spike 1 35:207 Steptoe<br />

blf1 bb 326 5HL Broad leaf 1 26:274 Bonus<br />

blf2 bb2 337 5HL Broad leaf 2 26:285 Hannchen<br />

Blp1 B 203 1HL Black lemma and pericarp 1 37:245 Nigrinudum<br />

blx1 bl 15 4HL Non-blue aleurone xenia 1 26:60 Goldfoil<br />

blx2 bl2 19 7HS Non-blue aleurone xenia 2 26:65 Nepal<br />

blx3 bl3 173 4HL Non-blue aleurone xenia 3 26:198 Blx<br />

blx4 bl4 174 4HL Non-blue (pink) aleurone 26:199 Ab 6<br />

xenia 4<br />

blx5 bl5 454 7HL Non-blue aleurone xenia 5 26:404 BGM 122<br />

bra-a 619 7HS Bracteatum-a 32:120 Bonus<br />

bra-d 586 1HS Bracteatum-d 37:284 Foma<br />

brc1 brc-5 613 2HS Branched 1 32:114<br />

brh1 br 1 7HS Brachytic 1 37:188 Himalaya<br />

brh2 br2 157 4HL Brachytic 2 37:235 Svanhals<br />

brh3 brh.g, ert-t 631 Brachytic 3 32:132 Birgitta<br />

brh4 brh.j 349 5HS Brachytic 4 37:262 Birgitta<br />

brh5 brh.m 185 4HS Brachytic 5 37:242 Birgitta<br />

brh6 brh.s 350 5HS Brachytic 6 37:263 Akashinriki<br />

brh7 brh.w 41 5HS Brachytic 7 37:203 Volla<br />

brh8 brh.ad 142 3HS Brachytic 8 37:230 Birgitta<br />

brh9 brh.k 187 4HS Brachytic 9 37:244 Birgitta<br />

brh10 brh.l 653 2HS Brachytic 10 37:293 Birgitta<br />

brh11 brh.n 654 5HS Brachytic 11 37:294 Birgitta<br />

brh12 brh.o 655 5HS Brachytic 12 37:295 Birgitta<br />

150


Barley Genetics Newsletter (2008) 134-164<br />

Table 2 (continued)<br />

Locus symbol* BGS Chr. Locus name or phenotype Descr. Parental cultivar<br />

Rec. Prev. no. loc. † vol. p.<br />

brh13 brh.p 656 5HS Brachytic 13 37:296 Birgitta<br />

brh14 brh.q 148 3HL Brachytic 14 37:231 Akashinriki<br />

brh15 brh.u 657 Brachytic 15 37:297 Julia<br />

brh16 brh.v 44 7HL Brachytic 16 37:204 Korál<br />

brh17 brh.ab 658 5HS Brachytic 17 37:298 Morex<br />

brh18 Brh.ac 659 5HS Brachytic 18 37:299 Triumph<br />

bsp1 645 Bushy spike 1 35:203 Morex<br />

btr1 bt 115 3HS Non-brittle rachis 1 26:149 A 222<br />

btr2 bt2 116 3HS Non-brittle rachis 2 26:150 Sakigoke<br />

cal-b 620 5H Calcaroides-b 32:121 Bonus<br />

Cal-c 621 5HL Calcaroides-c 32:122 Bonus<br />

cal-d 146 3H Calcaroides-d 32:95 Foma<br />

cal-e 622 5HS Calcaroides-e 32:123 Semira<br />

cer-d 399 Eceriferum-d + ++ ++ 26:346 Bonus<br />

cer-e 400 1HL Eceriferum-e -/+ ++ ++ 26:347 Bonus<br />

cer-f 401 7HS Eceriferum-f + + ++ 26:348 Bonus<br />

cer-g 402 2HL Eceriferum-g + + ++ 26:349 Bonus<br />

cer-h 403 Eceriferum-h - ++ ++ 26:351 Bonus<br />

cer-i 404 5HL Eceriferum-i - ++ ++ 26:352 Bonus<br />

cer-k 405 7HS Eceriferum-k + ++ ++ 26:354 Bonus<br />

cer-l 406 Eceriferum-l + ++ ++ 26:355 Bonus<br />

cer-m 407 Eceriferum-m +/++ + ++ 26:356 Bonus<br />

cer-n gs9 408 2HL Eceriferum-n - - ++ & 26:357 Bonus<br />

- +/- ++<br />

cer-o 409 Eceriferum-o -/+ ++ ++ 26:359 Bonus<br />

cer-p 410 Eceriferum-p ++ ++ + 26:360 Bonus<br />

cer-r 411 3HL Eceriferum-r +/- + ++ 26:361 Bonus<br />

cer-t 412 5HL Eceriferum-t +/- ++ ++ 26:362 Bonus<br />

cer-v 414 2HS Eceriferum-v +/- ++ ++ 26:366 Bonus<br />

cer-w 415 5HL Eceriferum-w +/- ++ ++ 26:367 Bonus<br />

cer-y 417 Eceriferum-y + +/++ ++ 26:368 Bonus<br />

cer-z 418 7HS Eceriferum-z - - ++ 26:369 Bonus<br />

cer-za 419 5HL Eceriferum-za ++ ++ - 26:370 Foma<br />

cer-zb 420 Eceriferum-zb - ++ ++ 26:371 Bonus<br />

cer-zc 421 Eceriferum-zc +/- ++ ++ 26:372 Bonus<br />

cer-zd 422 3HL Eceriferum-zd ++ ++ - 26:373 Bonus<br />

cer-ze gl5 423 7HS Eceriferum-ze ++ ++ - 26:374 Bonus<br />

cer-zf 424 Eceriferum-zf ++ ++ + 26:376 Bonus<br />

cer-zg 425 4HL Eceriferum-zg ++ ++ + 26:377 Foma<br />

cer-zi 427 1HL Eceriferum-zi + + ++ 26:378 Bonus<br />

151


Barley Genetics Newsletter (2008) 38: 134-164<br />

Table 2 (continued)<br />

Locus symbol* BGS Chr. Locus name or phenotype Descr. Parental cultivar<br />

Rec. Prev. no. loc. † vol. p.<br />

cer-zj 428 5HL Eceriferum-zj ++ ++ - 26:379 Bonus<br />

cer-zk 429 2H Eceriferum-zk + + +/- 26:381 Bonus<br />

cer-zl 430 Eceriferum-zl - - ++ 26:382 Bonus<br />

cer-zn 431 3HL Eceriferum-zn +/- ++ ++ 26:383 Foma<br />

cer-zo 432 Eceriferum-zo - ++ ++ 26:384 Foma<br />

cer-zp 433 5HL Eceriferum-zp ++ ++ - 26:385 Bonus<br />

cer-zq 434 Eceriferum-zq ++ ++ - 26:386 Foma<br />

cer-zr 435 Eceriferum-zr +/- ++ ++ 26:387 Foma<br />

cer-zs 436 Eceriferum-zs + ++ ++ 26:388 Foma<br />

cer-zt 437 2HS Eceriferum-zt + ++ ++ 37:270 Foma<br />

cer-zu 438 Eceriferum-zu - + ++ 26:390 Bonus<br />

cer-zv 439 Eceriferum-zv - - - 26:391 Foma<br />

cer-zw 440 Eceriferum-zw + + ++ 26:392 Foma<br />

cer-zx 441 Eceriferum-zx + + ++ 26:393 Bonus<br />

cer-zy 442 Eceriferum-zy ++ ++ + 26:394 Bonus<br />

cer-zz 443 Eceriferum-zz ++ ++ - 26:395 Bonus<br />

cer-ya 444 3HS Eceriferum-ya ++ ++ - 26:396 Bonus<br />

cer-yb 445 2HL Eceriferum-yb ++ ++ - 26:397 Bonus<br />

cer-yc 446 Eceriferum-yc - ++ ++ 26:398 Bonus<br />

cer-yd 447 3HS Eceriferum-yd - ++ ++ 26:399 Bonus<br />

cer-ye 448 5HL Eceriferum-ye ++ ++ - 26:400 Foma<br />

cer-yf 449 Eceriferum-yf ++ ++ + 37:271 Bonus<br />

cer-yg 450 7HS Eceriferum-yg - - - 26:402 Carlsberg II<br />

cer-yh 451 3HS Eceriferum-yh - ++ ++ 26:403 Bonus<br />

cer-yi 522 Eceriferum-yi ++ ++ - 26:449 Foma<br />

cer-yj 523 Eceriferum-yj ++ ++ - 26:450 Bonus<br />

cer-yk 524 Eceriferum-yk + + ++ 26:451 Bonus<br />

cer-yl 525 Eceriferum-yl - - ++ 26:452 Bonus<br />

cer-ym 526 Eceriferum-ym - - - 26:453 Bonus<br />

cer-yn 527 Eceriferum-yn + + ++ 26:454 Kristina<br />

cer-yo 528 Eceriferum-yo ++ ++ + 26:455 Bonus<br />

cer-yp 529 Eceriferum-yp ++ ++ + 26:456 Bonus<br />

cer-yq 530 Eceriferum-yq ++ ++ - 26:457 Kristina<br />

cer-yr 531 Eceriferum-yr -/+ + ++ 26:458 Foma<br />

cer-ys 532 Eceriferum-ys ++ ++ - 26:459 Bonus<br />

cer-yt 533 Eceriferum-yt - ++ ++ 26:460 Bonus<br />

cer-yu 534 Eceriferum-yu ++ ++ - 26:461 Bonus<br />

cer-yx 535 Eceriferum-yx + + ++ 26:462 Foma<br />

Cer-yy Gle1 536 1HS Eceriferum-yy - ++ ++ 26:463 Bonus<br />

cer-yz 537 Eceriferum-yz + + ++ 26:464 Bonus<br />

152


Barley Genetics Newsletter (2008) 134-164<br />

Table 2 (continued)<br />

Locus symbol* BGS Chr. Locus name or phenotype Descr. Parental cultivar<br />

Rec. Prev. no. loc. † vol. p.<br />

cer-xa 538 Eceriferum-xa ++ ++ - 26:465 Foma<br />

cer-xb 539 Eceriferum-xb - ++ ++ 26:466 Bonus<br />

cer-xc 540 Eceriferum-xc + + ++ 26:467 Bonus<br />

cer-xd 541 Eceriferum-xd + + ++ 26:468 Bonus<br />

clh1 clh 225 1HL Curled leaf dwarf 1 26:223 Hannchen<br />

com1 bir1 473 5HL Compositum 1 26:420 Foma<br />

com2 bir2 71 2HS Compositum 2 26:108 CIMMYT freak<br />

crl1 cl 325 Curly lateral 1 26:273 Montcalm<br />

crm1 cm 305 5HL Cream seedling 1 26:256 Black Hulless<br />

cud1 cud 324 5HL Curly dwarf 1 26:272 Akashinriki<br />

cud2 229 1HL Curly dwarf 2 26:227 Akashinriki<br />

cul2 uc2 253 6HL Uniculm 2 37:253 Kindred<br />

cul3 616 Uniculme 3 32:117 Donaria<br />

cul4 uc-5 617 3HL Uniculme 4 37:289 Bonus<br />

cur1 cu1 262 6HL Curly 1 26:242 48-cr cr-17<br />

cur2 cu2 114 3HL Curly 2 26:148 Choshiro<br />

cur3 cu3 263 6HL Curly 3 26:243 Akashinriki<br />

cur4 cu4 460 2HL Curly 4 26:406 Asahi 5<br />

cur5 cu5 231 1HS Curly 5 26:229 Glenn<br />

ddt1 ddt 317 5HS Reaction to DDT 1 26:266 Spartan<br />

des1 lc 12 7H Desynapsis 1 26:57 Mars<br />

des2 ds 119 3H Desynapsis 2 26:154 Husky<br />

des3 386 Desynapsis 3 26:334 Betzes<br />

des4 13 7H Desynapsis 4 26:58 Betzes<br />

des5 14 7H Desynapsis 5 26:59 Betzes<br />

des6 215 1H Desynapsis 6 26:216 Betzes<br />

des7 64 2H Desynapsis 7 26:100 Betzes<br />

des8 387 Desynapsis 8 26:335 Betzes<br />

des9 388 Desynapsis 9 26:336 Betzes<br />

des10 389 Desynapsis 10 26:337 Betzes<br />

des11 390 Desynapsis 11 26:338 Betzes<br />

des12 391 Desynapsis 12 26:339 Betzes<br />

des13 392 Desynapsis 13 26:340 Betzes<br />

des14 393 Desynapsis 14 26:341 Betzes<br />

des15 394 Desynapsis 15 26:342 Ingrid<br />

dex1 sex2 311 5HS Defective endosperm xenia 1 26:260 BTT 63-j-18-17<br />

dsk1 dsk 322 5HL Dusky 1 26:270 Chikurin-Ibaraki 1<br />

dsp1 l 9 7HS Dense spike 1 26:53 Honen 6<br />

dsp9 l9, ert-e 258 6HL Dense spike 9 26:239 Akashinriki<br />

153


Barley Genetics Newsletter (2008) 38: 134-164<br />

Table 2 (continued)<br />

Locus symbol* BGS Chr. Locus name or phenotype Descr. Parental cultivar<br />

Rec. Prev. no. loc. † vol. p.<br />

dsp10 lc 111 3HS Dense spike 10 26:145 Club Mariout<br />

dub1 661 6HL Double seed 1 37:301 Bonus<br />

Dwf2 542 Dominant dwarf 2 24:170 Klages/Mata<br />

Eam1 Ea 65 2HS Early maturity 1 26:101 Estate<br />

Eam5 Ea5 348 5HL Early maturity 5 37:260 Higuerilla*2/<br />

Gobernadora<br />

eam6 Ea6, Ea 98 2HS Early maturity 6 37:216 Morex<br />

eam7 ea7 252 6HS Early maturity 7 26:233 California Mariout<br />

eam8 eak, ert-o 214 1HL Early maturity 8 37:247 Kinai 5<br />

eam9 ea,,c 181 4HL Early maturity 9 26:204 Tayeh 8<br />

eam10 easp 130 3HL Early maturity 10 37:226 Super Precoz<br />

eli-a lig-a 623 Eligulum-a 37:290 Foma<br />

eog 1 e 57 2HL Elongated outer glume 1 26:92 Triple Bearded Club<br />

Mariout<br />

ert-a ert-6 28 7HS Erectoides-a 26:74 Gull<br />

ert-b ert-2 224 1HS Erectoides-b 26:222 Gull<br />

ert-c ert-1 134 3HL Erectoides-c 26:170 Gull<br />

ert-d ert-7 29 7HS Erectoides-d 26:76 Gull<br />

ert-e dsp9 266 6HL Erectoides-e 37:257 Bonus<br />

ert-f ert-18 560 Erectoides-f 26:486 Bonus<br />

ert-g ert-24 330 5HL Erectoides-g 26:278 Bonus<br />

ert-h ert-25 561 Erectoides-h 26:487 Bonus<br />

ert-ii ert-79 135 3HL Erectoides-ii 26:172 Bonus<br />

ert-j ert.31 90 2H Erectoides-j 26:129 Bonus<br />

ert-k ert-32 562 Erectoides-k 26:488 Bonus<br />

ert-l ert-12 563 Erectoides-l 26:489 Maja<br />

ert-m ert-34 30 7HS Erectoides-m 26:78 Bonus<br />

ert-n ert-51 331 5HL Erectoides-n 26:279 Bonus<br />

ert-p ert-44 564 Erectoides-p 26:490 Bonus<br />

ert-q ert-101 91 2H Erectoides-q 26:130 Bonus<br />

Ert-r Ert-52 332 Erectoides-r 26:280 Bonus<br />

ert-s ert-50 565 Erectoides-s 26:491 Bonus<br />

ert-t brh3 566 2HS Erectoides-t 37:281 Bonus<br />

ert-u ert-56 92 2H Erectoides-u 26:131 Bonus<br />

ert-v ert-57 567 Erectoides-v 26:493 Bonus<br />

ert-x ert-58 568 Erectoides-x 26:494 Bonus<br />

ert-y ert-69 569 Erectoides-y 26:495 Bonus<br />

ert-z ert-71 570 Erectoides-z 26:496 Bonus<br />

ert-za ert-102 571 Erectoides-za 26:497 Bonus<br />

ert-zb ert-132 572 Erectoides-zb 26:498 Bonus<br />

154


Barley Genetics Newsletter (2008) 134-164<br />

Table 2 (continued)<br />

Locus symbol* BGS Chr. Locus name or phenotype Descr. Parental cultivar<br />

Rec. Prev. no. loc. † vol. p.<br />

ert-zc ert-149 573 Erectoides-zc 26:499 Bonus<br />

ert-zd ert-159 93 2H Erectoides-zd 26:132 Bonus<br />

ert-ze ert-105 574 Erectoides-ze 26:500 Bonus<br />

fch1 f 55 2HS Chlorina seedling 1 26:90 Minn 84-7<br />

fch2 f2 117 3HL Chlorina seedling 2 26:151 28-3398<br />

fch3 f3 220 1HS Chlorina seedling 3 26:218 Minn 89-4<br />

fch4 f4 17 7HL Chlorina seedling 4 26:63 Montcalm<br />

fch5 f5 18 7HS Chlorina seedling 5 26:64 Gateway<br />

fch6 f6 313 5HL Chlorina seedling 6 26:262 Himalaya<br />

fch7 f7 201 1HL Chlorina seedling 7 26:206 Smyrna<br />

fch8 f8 5 7HS Chlorina seedling 8 26:48 Comfort<br />

fch9 f9 151 4HS Chlorina seedling 9 26:178 Ko A<br />

fch11 f11 260 6HL Chlorina seedling 11 26:240 Himalaya<br />

fch12 fc 2 7HS Chlorina seedling 12 37:190 Colsess<br />

fch13 f13 86 Chlorina seedling 13 26:124 Niggrinudum<br />

fch14 f14 87 2HL Chlorina seedling 14 37:211 Shyri<br />

fch15 or 52 2HS Chlorina seedling 15 26:88 Trebi IV<br />

flo-a 182 Extra floret-a 26:205 Foma<br />

flo-b 327 5HL Extra floret-b 26:275 Foma<br />

flo-c 74 2HS Extra floret-c 26:111 Foma<br />

fol-a 73 2HL Angustifolium-a 26:110 Proctor<br />

Fol-b Ang 548 Angustifolium-b 26:474 Unknown<br />

fst1 fs 301 5HL Fragile stem 1 26:252 Kamairazu<br />

fst2 fs2 208 1HL Fragile stem 2 26:211 Oshichi<br />

fst3 fs3 24 7HS Fragile stem 3 26:70 Kobinkatagi 4<br />

gig1 gig 463 2H? Gigas 1 26:410 Tochigi Golden<br />

Melon<br />

gig2 612 Gigas 2 32:113 ND12463<br />

glf1 gl 155 4HL Glossy leaf 1 ++ ++ - 37:233 Himalaya<br />

glf3 gl3 165 4HL Glossy leaf 3 ++ ++ - 26:190 Goseshikoku<br />

glo-a 168 4HS Globosum-a 26:194 Proctor<br />

glo-b 336 5HL Globosum-b 26:284 Villa<br />

glo-c 72 2H Globosum-c 26:109 Villa<br />

glo-e 230 1HL Globosum-e 26:228 Foma<br />

glo-f 342 5HL Globosum-f 26:291 Damazy<br />

gpa1 gp 59 2HL Grandpa 1 26:95 Lyallpur<br />

gra-a gran-a 131 3HL Granum-a 26:167 Donaria<br />

gsh1 gs1 351 2HS Glossy sheath 1 - - ++ 26:292 CIho 5818<br />

gsh2 gs2 352 3HL Glossy sheath 2 - - ++ 26:294 Atlas<br />

gsh3 gs3 353 7HS Glossy sheath 3 - - ++ 26:296 Mars<br />

155


Barley Genetics Newsletter (2008) 38: 134-164<br />

Table 2 (continued)<br />

Locus symbol* BGS Chr. Locus name or phenotype Descr. Parental cultivar<br />

Rec. Prev. no. loc. † vol. p.<br />

gsh4 gs4 354 6HL Glossy sheath 4 - - ++ 26:298 Gateway<br />

gsh5 gs5 355 2HL Glossy sheath 5 + - ++ 26:300 Jotun<br />

gsh6 gs6 356 2HS Glossy sheath 6 - - ++ 26:302 Betzes<br />

gsh7 gs7 81 Glossy sheath 7 - - ++ 26:119 Akashinriki<br />

gsh8 cer-u 413 2HS Glossy sheath 8 + + ++ 26:364 Bonus<br />

Gth1 G 69 2HL Toothed lemma 1 26:106 Machine (Wexelsen)<br />

hcm1 h 77 2HL Short culm 1 26:115 Morex<br />

Hln1 Hn 164 4HL Hairs on lemma nerves 1 26:189 Kogane-mugi<br />

Hsh1 Hs 179 4HL Hairy leaf sheath 1 37:240 Kimugi<br />

int-b 320 5HL Intermedium spike-b 26:268 Bonus<br />

int-c i 178 4HS Intermedium spike-c 37:237 Gamma 4<br />

int-f 543 Intermedium spike-f 26:469 Foma<br />

int-h 544 Intermedium spike-h 26:470 Kristina<br />

int-i 545 Intermedium spike-i 26:471 Kristina<br />

int-k 546 7H Intermedium spike-k 37:279 Kristina<br />

int-m 547 Intermedium spike-m 37:280 Bonus<br />

Kap1 K 152 4HS Hooded lemma 1 26:179 Colsess<br />

lam1 651 Late maturity 1 35:209 Steptoe<br />

lax-a 474 5HL Laxatum-a 37:273 Bonus<br />

lax-b 268 6HL Laxatum-b 26:248 Bonus<br />

lax-c 475 6HL Laxatum-c 26:423 Bonus<br />

lbi1 lb 308 5HL Long basal rachis internode 1 26:258 Wisconsin 38<br />

lbi2 lb2 156 4HL Long basal rachis internode 2 26:183 Montcalm<br />

lbi3 lb3 27 7HL Long basal rachis internode 3 26:73 Montcalm<br />

lel1 lel 235 1HL Leafy lemma 1 32:103 G7118<br />

Lfb1 Lfb 343 5HL Leafy bract 1 28:30 Montcalm<br />

Lga1 Log 549 Long glume awn 1 26:475 Guy Mayle<br />

lgn3 lg3 170 4HL Light green 3 26:195 No 154<br />

lgn4 lg4 171 4HL Light green 4 26:196 Himalaya /<br />

Ingrescens<br />

lig1 li 60 2HL Liguleless 1 37:205 Muyoji<br />

lin1 s, rin 99 2HL Lesser internode number 1 32:88 Natural occurence<br />

Lks1 Lk 75 2HL Awnless 1 26:112 Hordeum inerme<br />

lks2 lk2 10 7HL Short awn 2 37:197 Honen 6<br />

lks5 lk5 172 4HL Short awn 5 26:197 CIho 5641<br />

lnt1 lnt 118 3HL Low number of tillers 1 26:153 Mitake<br />

156


Barley Genetics Newsletter (2008) 134-164<br />

Table 2 (continued)<br />

Locus symbol* BGS Chr. Locus name or phenotype Descr. Parental cultivar<br />

Rec. Prev. no. loc. † vol. p.<br />

lys1 lys 338 5HL High lysine 1 26:286 Hiproly<br />

lys3 sex3 339 5HL High lysine 3 26:287 Bomi<br />

Lys4 sex5 232 1HS High lysine 4 26:230 Bomi<br />

lys6 269 6H High lysine 6 26:249 Bomi<br />

lzd1 lzd 125 3HS Lazy dwarf 1 26:161 Akashinriki<br />

mat-b 578 Praematurum-b 26:504 Bonus<br />

mat-c 579 Praematurum-c 26:506 Bonus<br />

mat-d 580 Praematurum-d 26:507 Bonus<br />

mat-e 581 Praematurum-e 26:508 Bonus<br />

mat-f 582 Praematurum-f 26:509 Bonus<br />

mat-g 583 Praematurum-g 26:510 Bonus<br />

mat-h 584 Praematurum-h 26:511 Bonus<br />

mat-i 585 Praematurum-i 26:512 Bonus<br />

min1 min 161 4HL Semi-minute dwarf 1 26:187 Taisho-mugi<br />

min2 en-min 160 Enhancer of minute 1 26:186 Kaiyo Bozu<br />

mnd1 m 519 Many-noded dwarf 1 26:446 Mesa<br />

mnd3 m3 618 3H Many noded dwarf 3 32:119 Montcalm<br />

mnd4 m4 347 5HL Many noded dwarf 4 32:108 Akashinriki<br />

mnd5 632 Many noded dwarf 5 32:133 C2-95-199<br />

mnd6 den-6 633 5HL Many noded dwarf 6 37:291 Bonus<br />

mov1 mo6b 43 7HL Multiovary 1 35:185 Steptoe<br />

mov2 mo7a 147 3HS Multiovary 2 35:190 Steptoe<br />

mov3 mo-a 234 1H Multiovary 3 32:102 Akashinriki<br />

mov4 648 Multiovary 4 35:206 Steptoe<br />

msg1 357 1HL Male sterile genetic 1 26:304 CIho 5368<br />

msg2 358 2HL Male sterile genetic 2 26:306 Manchuria<br />

msg3 359 2HS Male sterile genetic 3 26:307 Gateway<br />

msg4 360 1H Male sterile genetic 4 26:308 Freja<br />

msg5 361 3HS Male sterile genetic 5 26:309 Carlsberg II<br />

msg6 362 6HS Male sterile genetic 6 26:310 Hanna<br />

msg7 363 5HL Male sterile genetic 7 26:311 Dekap<br />

msg8 364 5HL Male sterile genetic 8 26:312 Betzes<br />

msg9 365 2HS Male sterile genetic 9 26:313 Vantage<br />

msg10 366 7HS Male sterile genetic 10 26:314 Compana<br />

msg11 367 Male sterile genetic 11 26:315 Gateway<br />

msg13 368 Male sterile genetic 13 26:316 Haisa II<br />

msg14 369 7HS Male sterile genetic 14 26:317 Unitan<br />

msg15 370 Male sterile genetic 15 26:318 Atlas/2*Kindred<br />

msg16 371 5HS Male sterile genetic 16 26:319 Betzes<br />

msg17 372 Male sterile genetic 17 26:320 Compana<br />

157


Barley Genetics Newsletter (2008) 38: 134-164<br />

Table 2 (continued)<br />

Locus symbol* BGS Chr. Locus name or phenotype Descr. Parental cultivar<br />

Rec. Prev. no. loc. † vol. p.<br />

msg18 373 5HL Male sterile genetic 18 26:321 Compana<br />

msg19 374 5HS Male sterile genetic 19 26:322 CIho 14393<br />

msg20 375 1H Male sterile genetic 20 26:323 Hannchen<br />

msg21 376 Male sterile genetic 21 26:324 Midwest Bulk<br />

msg22 383 7H Male sterile genetic 22 26:331 Glacier/Compana<br />

msg23 384 7HL Male sterile genetic 23 26:332 Betzes<br />

msg24 385 4HL Male sterile genetic 24 26:333 Betzes<br />

msg25 166 4HL Male sterile genetic 25 26:192 Betzes<br />

msg26 395 7HS Male sterile genetic 26 26:343 Unitan<br />

msg27 464 2HL Male sterile genetic 27 26:411 Firlbecks III<br />

msg28 465 6H Male sterile genetic 28 26:412 York<br />

msg29 466 5HL Male sterile genetic 29 26:413 Ackermans MGZ<br />

msg30 467 7HL Male sterile genetic 30 26:414 Compana<br />

msg31 468 1HS Male sterile genetic 31 26:415 51Ab4834<br />

msg32 469 7H Male sterile genetic 32 26:416 Betzes<br />

msg33 470 2HS Male sterile genetic 33 26:417 Betzes<br />

msg34 471 6H Male sterile genetic 34 26:418 Paragon<br />

msg35 498 2HL Male sterile genetic 35 26:424 Karl<br />

msg36 499 6HS Male sterile genetic 36 26:425 Betzes<br />

msg37 500 Male sterile genetic 37 26:426 Clermont<br />

msg38 501 Male sterile genetic 38 26:427 Ingrid<br />

msg39 502 6H Male sterile genetic 39 26:428 CIho 15836<br />

msg40 503 6H Male sterile genetic 40 26:429 Conquest<br />

msg41 504 Male sterile genetic 41 26:430 Betzes<br />

msg42 505 3H Male sterile genetic 42 26:431 Betzes<br />

msg43 506 Male sterile genetic 43 26:432 Betzes<br />

msg44 507 Male sterile genetic 44 26:433 HA6-33-02<br />

msg45 508 Male sterile genetic 45 26:434 RPB439-71<br />

msg46 509 Male sterile genetic 46 26:435 Hector<br />

msg47 510 Male sterile genetic 47 26:436 Sel 12384CO<br />

msg48 520 2H Male sterile genetic 48 26:447 Simba<br />

msg49 335 5HL Male sterile genetic 49 26:283 ND7369<br />

msg50 34 7HL Male sterile genetic 50 26:83 Berac<br />

mss1 mss 84 2H Midseason stripe 1 26:122 Montcalm<br />

mss2 39 7HS Midseason stripe 2 32:79 ND11258<br />

mtt1 mt 521 1HS Mottled leaf 1 26:448 Montcalm<br />

mtt2 mt2 302 5HL Mottled leaf 2 26:253 Montcalm<br />

mtt4 mt,,e 78 2HL Mottled leaf 4 26:116 Victorie<br />

mtt5 mt,,f 264 6HL Mottled leaf 5 26:244 Akashinriki<br />

mtt6 629 Mottled leaf 6 32:130 ND6809<br />

158


Barley Genetics Newsletter (2008) 134-164<br />

Table 2 (continued)<br />

Locus symbol* BGS Chr. Locus name or phenotype Descr. Parental cultivar<br />

Rec. Prev. no. loc. † vol. p.<br />

mul2 251 6HL Multiflorus 2 26:232 Montcalm<br />

nar1 637 6HS NADH ntrate reductasedeficient<br />

1<br />

35:194 Steptoe<br />

nar2 638 5HL NADH ntrate reductasedeficient<br />

2<br />

35:196 Steptoe<br />

nar3 639 7HS NADH ntrate reductasedeficient<br />

3<br />

35:197 Winer<br />

nar4 640 2HL NADH ntrate reductasedeficient<br />

4<br />

35:198 Steptoe<br />

nar5 641 5HL NADH ntrate reductasedeficient<br />

5<br />

35:199 Steptoe<br />

nar6 642 2HL NADH ntrate reductasedeficient<br />

6<br />

35:200 Steptoe<br />

nar7 643 6HL NADH ntrate reductasedeficient<br />

7<br />

35:201 Steptoe<br />

nar8 644 6HS NADH ntrate reductasedeficient<br />

8<br />

35:202 Steptoe<br />

nec1 222 1HL Necrotic leaf spot 1 37:251 Carlsberg II<br />

nec2 261 6HS Necrotic leaf spot 2 26:241 Carlsberg II<br />

nec3 265 6HS Necrotic leaf spot 3 26:245 Proctor<br />

nec4 138 3H Necrotic leaf spot 4 26:175 Proctor<br />

nec5 139 3H Necrotic leaf spot 5 26:176 Diamant<br />

Nec6 Sp 611 Necrotic leaf spot 6 32:112 Awnless Atlas<br />

nec7 nec-45 635 Necroticans 7 32:136 Kristina<br />

nld1 nld 323 5HL Narrow leafed dwarf 1 26:271 Nagaoka<br />

nld2 660 Narrow leafed dwarf 2 37:300 Steptoe<br />

nud1 n, nud 7 7HL Naked caryopsis 1 37:195 Himalaya<br />

ops1 op-3 624 Opposite spikelets 1 32:125 Bonus<br />

ovl1 176 4H Ovaryless 1 35:191 Kanto Bansei Gold<br />

ovl2 646 Ovaryless 2 35:204 Harrington<br />

pmr1 pmr 40 7HS Premature ripe 1 32:80 Glenn<br />

pmr2 nec-50 634 Premature ripe 2 32:135 Bonus<br />

Pre2 Re2 76 2HL Red lemma and pericarp 2 26:113 Buckley 3277<br />

Pub1 Pub 127 3HL Pubescent leaf blade 1 26:163 Multiple Dominant<br />

Pvc1 Pc 68 2HL Purple veined lemma 1 26:105 Buckley 2223-6<br />

Pyr1 42 7HS Pyramidatum 1 32:82 Pokko/Hja80001<br />

raw1 r 312 5HL Smooth awn 1 26:261 Lion<br />

raw2 r2 340 5HL Smooth awn 2 26:289 Lion<br />

raw5 r,,e 257 6HL Smooth awn 5 26:238 Akashinriki<br />

raw6 r6 334 5HL Smooth awn 6 26:282 Glenn<br />

159


Barley Genetics Newsletter (2008) 38: 134-164<br />

Table 2 (continued)<br />

Locus symbol* BGS Chr. Locus name or phenotype Descr. Parental cultivar<br />

Rec. Prev. no. loc. † vol. p.<br />

rob1 o 254 6HS Orange lemma 1 37:255 CIho 5649<br />

Rpc1 149 3H Reaction to Puccinia<br />

coronata var. hordei 1<br />

37:232 Hor 2596<br />

Rpg1 T 511 7HS Reaction to Puccinia<br />

graminis 1<br />

26:437 Chevron<br />

Rpg2 T2 512 Reaction to Puccinia<br />

graminis 2<br />

26:439 Hietpas 5<br />

rpg4 319 5HL Reaction to Puccinia<br />

graminis 4<br />

26:267 Q21861<br />

Rph1 Pa 70 2H Reaction to Puccinia hordei<br />

1<br />

26:107 Oderbrucker<br />

Rph2 Pa2 88 5HS Reaction to Puccinia hordei<br />

2<br />

37:212 Peruvian<br />

Rph3 Pa3 121 7HL Reaction to Puccinia hordei<br />

3<br />

26:156 Estate<br />

Rph4 Pa4 218 1HS Reaction to Puccinia hordei<br />

4<br />

26:217 Gull<br />

Rph5 Pa5 122 3HS Reaction to Puccinia hordei<br />

5<br />

37:224 Magnif 102<br />

Rph6 Pa6 575 3HS Reaction to Puccinia hordei<br />

6<br />

26:501 Bolivia<br />

Rph7 Pa7 136 3HS Reaction to Puccinia hordei<br />

7<br />

37:228 Cebada Capa<br />

Rph8 Pa8 576 Reaction to Puccinia hordei<br />

8<br />

26:502 Egypt 4<br />

Rph9 Pa9 32 5HL Reaction to Puccinia hordei<br />

9<br />

37:201 HOR 2596<br />

Rph10 137 3HL Reaction to Puccinia hordei<br />

10<br />

26:174 Clipper C8<br />

Rph11 267 6HL Reaction to Puccinia hordei<br />

11<br />

26:247 Clipper C67<br />

Rph12 333 5HL Reaction to Puccinia hordei<br />

12<br />

26:281 Triumph<br />

Rph13 590 Reaction to Puccinia hordei<br />

13<br />

28:31 PI 531849<br />

Rph14 591 Reaction to Puccinia hordei<br />

14<br />

28:32 PI 584760<br />

Rph15 Rph16 96 2HL Reaction to Puccinia hordei<br />

15<br />

37:214 PI 355447<br />

160


Barley Genetics Newsletter (2008) 134-164<br />

Table 2 (continued)<br />

Locus symbol* BGS Chr. Locus name or phenotype Descr. Parental cultivar<br />

Rec. Prev. no. loc. † vol. p.<br />

Rsg1 Grb 22 7H Reaction to Schizaphis<br />

graminum 1<br />

37:199 Omugi<br />

Rsg2 577 Reaction to Schizaphis<br />

graminum 2<br />

37:283 PI 426756<br />

rsm1 sm 35 7HS Reaction to BSMV 1 26:84 Modjo 1<br />

Rsp1 Sep 515 Reaction to Septoria<br />

passerinii 1<br />

26:441 CIho 14300<br />

Rsp2 Sep2 516 Reaction to Septoria<br />

passerinii 2<br />

37:275 PI 70837<br />

Rsp3 Sep3 517 Reaction to Septoria<br />

passerinii 3<br />

37:276 CIho 10644<br />

rtt1 rt 51 2HS Rattail spike 1 26:87 Goldfoil<br />

Run1 Un 21 7HS Reaction to Ustilago nuda 1 26:67 Trebi<br />

rvl1 rvl 226 1HL Revoluted leaf 1 26:224 Hakata 2<br />

Ryd2 Yd2 123 3HL Reaction to BYDV 2 26:158 CIho 2376<br />

Rym1 Ym 167 4HL Reaction to BaYMV 1 32:96 Mokusekko 3<br />

Rym2 Ym2 20 7HL Reaction to BaYMV 2 26:66 Mihori Hadaka 3<br />

rym3 ym3 345 5HS Reaction to BaYMV 3 32:105 Chikurin Ibaraki<br />

rym5 Ym 141 3HL Reaction to BaYMV 5 32:90 Mokusekko 3<br />

sbk1 sk, cal-a 62 2HS Subjacent hood 1 32:83 Tayeh 13<br />

sca1 sca 128 3HS Short crooked awn 1 26:164 Akashinriki<br />

sci-a sci-3 625 Scirpoides-a 32:126 Bonus<br />

scl-a scl-6 626 Scirpoides leaf-a 32:127 Foma<br />

sdw1 sdw 518 3HL Semidwarf 1 37:277 M21<br />

sdw2 sdw-b 133 3HL Semidwarf 2 26:169 Mg2170<br />

seg1 se1 377 7HL Shrunken endosperm genetic<br />

1<br />

37:264 Betzes<br />

seg2 se2 378 7HS Shrunken endosperm genetic<br />

2<br />

26:326 Betzes<br />

seg3 se3 379 3H Shrunken endosperm genetic<br />

3<br />

37:265 Compana<br />

seg4 se4 380 7HL Shrunken endosperm genetic<br />

4<br />

37:267 Compana<br />

seg5 se5 381 7HS Shrunken endosperm genetic<br />

5<br />

26:329 Sermo/7*Glacier<br />

seg6 se6 396 3HL Shrunken endosperm genetic<br />

6<br />

37:268 Ingrid<br />

seg7 se7 397 Shrunken endosperm genetic<br />

7<br />

37:269 Ingrid<br />

161


Barley Genetics Newsletter (2008) 38: 134-164<br />

Table 2 (continued)<br />

Locus symbol* BGS Chr. Locus name or phenotype Descr. Parental cultivar<br />

Rec. Prev. no. loc. † vol. p.<br />

seg8 455 7H Shrunken endosperm genetic<br />

8<br />

37:272 60Ab1810-53<br />

sex1 lys5 382 6HL Shrunken endosperm xenia 1 26:330 Compana<br />

sex6 31 7HS Shrunken endosperm xenia 6 26:80 K6827<br />

sex7 sex.i 628 5HL Shrunken endosperm xenia 7 32:129 I90-374<br />

sex8 sex.j 143 6HS Shrunken endosperm xenia 8 32:93 I89-633<br />

sgh1 sh1 163 4HL Spring growth habit 1 26:188 Iwate Mensury C<br />

Sgh2 Sh2 309 5HL Spring growth habit 2 26:259 Indian Barley<br />

Sgh3 Sh3 213 1HL Spring growth habit 3 26:212 Tammi/Hayakiso 2<br />

sid1 nls 180 4HL Single internode dwarf 1 26:203 Akashinriki<br />

Sil1 Sil 228 1HS Subcrown internode length 1 26:226 NE 62203<br />

sld1 dw-1 126 3HL Slender dwarf 1 26:162 Akashinriki<br />

sld2 83 2HS Slender dwarf 2 26:121 Akashinriki<br />

sld3 ant-567 186 4HS Slender dwarf 3 37:243 Manker<br />

sld4 100 7HS Slender dwarf 4 37:218 Glacier<br />

sld5 144 3HS Slender dwarf 5 32:94 Indian Dwarf<br />

sls1 sls 227 1HS Small lateral spikelet 1 26:225 Morex<br />

smn1 smn 38 7HS Seminudoides 1 32:225 Haisa<br />

snb1 sb 26 7HS Subnodal bract 1 26:72 L50-200<br />

srh1 s 321 5HL Short rachilla hair 1 26:269 Lion<br />

sun1 650 Sensitivity to Ustilago nuda 1 35:208 Steptoe<br />

trd1 trd 202 1HL Third outer glume 1 26:207 Valki<br />

trp1 tr 61 2HL Triple awned lemma 1 26:97 CIho 6630<br />

tst1 647 Tip sterile 1 35:205 Steptoe<br />

tst2 lin2 636 Tip sterile 2 37:292 Donaria<br />

ubs4 u4 11 7HL Unbranched style 4 26:56 Ao-Hadaka<br />

uzu1 uz 102 3HL Uzu 1 or semi brachytic 1 37:220 Baitori<br />

var1 va 306 5HL Variegated 1 37:259 Montcalm<br />

var2 va2 344 5HL Variegated 2 32:104 Montcalm<br />

var3 va3 303 5HL Variegated 3 26:254 Montcalm<br />

viv-a viv-5 627 Viviparoides-a 32:128 Foma<br />

vrs1 v 6 2HL Six-rowed spike 1 37:192 Trebi<br />

vrs1 lr 58 2HL Six-rowed spike 1 26:94 Nudihaxtoni<br />

vrs1 V d 66 2HL Two-rowed spike 1 26:103 Svanhals<br />

162


Barley Genetics Newsletter (2008) 134-164<br />

Table 2 (continued)<br />

Locus symbol* BGS Chr. Locus name or phenotype Descr. Parental cultivar<br />

Rec. Prev. no. loc. † vol. p.<br />

vrs1 V t 67 2HL Deficiens 1 26:104 White Deficiens<br />

vrs2 v2 314 5HL Six-rowed spike 2 26:263 Svanhals<br />

vrs3 v3 315 1HL Six-rowed spike 3 26:264 Hadata 2<br />

vrs4 v4 124 3HL Six-rowed spike 4 26:159 MFB 104<br />

wax1 wx 16 7HS Waxy endosperm 1 26:61 Oderbrucker<br />

wnd1 wnd 23 7HS Winding dwarf 1 26:69 Kogen-mugi<br />

wst1 wst 107 3HL White streak 1 26:141 CIho 11767<br />

wst2 304 5HL White streak 2 26:255 Manabe<br />

wst4 56 2HL White streak 4 26:91 Kanyo 7<br />

wst5 221 1HL White streak 5 26:219 Carlsberg II<br />

wst6 wst,,j 129 3HL White streak 6 26:165 Akashinriki<br />

wst7 rb 79 2HL White streak 7 37:207 GS397<br />

Xnt1 Xa 25 7HL Xantha seedling 1 26:71 Akanshinriki<br />

xnt2 xb 513 Xantha seedling 2 26:440 Black Hulless<br />

xnt3 xc 105 3HS Xantha seedling 3 26:139 Colsess<br />

xnt4 xc2 36 7HL Xantha seedling 4 26:85 Coast<br />

xnt5 xn 255 6HL Xantha seedling 5 26:237 Nepal<br />

xnt6 xs 113 3HS Xantha seedling 6 26:147 Smyrna<br />

xnt7 xan,,g 233 1HL Xantha seedling 7 26:231 Erbet<br />

xnt8 xan,,h 140 3HS Xantha seedling 8 26:177 Carlsberg II<br />

xnt9 xan,,i 37 7HL Xantha seedling 9 26:86 Erbet<br />

yhd1 yh 158 4HL Yellow head 1 26:185 Kimugi<br />

yhd2 yh2 592 Yellow head 2 28:34 Compana<br />

ylf1 652 Yellow leaf 1 35:210 Villa<br />

Ynd1 Yn 183 4HS Yellow node 1 32:98 Morex<br />

yst1 yst 104 3HS Yellow streak 1 26:138 Gateway<br />

yst2 109 3HS Yellow streak 2 26:144 Kuromugi 148/<br />

Mensury C<br />

yst3 yst,,c 462 3HS Yellow streak 3 26:409 Lion<br />

yst4 85 2HL Yellow streak 4 37:210 Glenn<br />

yst5 346 5HL Yellow streak 5 32:107 Bowman / ant10.30<br />

yvs1 yx 63 2HS Virescent seedling 1 26:99 Minn 71-8<br />

yvs2 yc 3 7HS Virescent seedling 2 26:46 Coast<br />

zeb1 zb 120 3HL Zebra stripe 1 26:155 Mars<br />

zeb2 zb2 461 4HL Zebra stripe 2 26:407 Unknown<br />

zeb3 zb3 223 1HL Zebra stripe 3 26:221 Utah 41<br />

Zeo1 Knd 82 2HL Zeocriton 1 37:209 Donaria<br />

Zeo2 614 Zeocriton 2 32:115 36Ab51<br />

Zeo3 Mo1 184 4HL Zeocriton 3 32:99 Morex<br />

163


Barley Genetics Newsletter (2008) 38: 134-164<br />

* Recommended locus symbols are based on utilization of a three-letter code for barley genes as<br />

approved at the business meeting of the Seventh International Barley Genetics Symposium at<br />

Saskatoon, Saskatchewan, Canada, on 05 August 1996.<br />

† Chromosome numbers and arm designations are based on the Triticeae system. Utilization of<br />

this system for naming of barley chromosomes was at the business meeting of the Seventh<br />

International Barley Genetics Symposium at Saskatoon, Saskatchewan, Canada, on 05 August<br />

1996. The Burnham and Hagberg (1956) designations of barley chromosomes were 1 2 3 4 5 6<br />

and 7 while new designations based on the Triticeae system are 7H 2H 3H 4H 1H 6H and 5H,<br />

respectively.<br />

164


Barley Genetics Newsletter (2008) 38: 165-170<br />

Rules for Nomenclature and Gene Symbolization in Barley<br />

Jerome D. Franckowiak 1 and Udda Lundqvist 2<br />

1 HermitageResearch Station<br />

Queensland Department of Primary Industries and Fisheries<br />

Warwick, Queensland 4370, Australia<br />

2 Nordic Genetic Resource Center<br />

P.O. Box 41, SE-230 53 Alnarp, Sweden<br />

In this volume of the Barley Genetics Newsletter the recommended rules for<br />

nomenclature and gene symbolization in barley as reported in BGN 2:11-14, BGN 11:1-<br />

16, BGN 21:11-14, BGN 26:4-8, BGN 31:76-79, BGN 34:132-136, BGN 35:114-149,<br />

and BGN 37:100-104 are again reprinted. Also, the current lists of new and revised BGS<br />

descriptions are presented by BGS number order (Table 1) and by locus symbol in<br />

alphabetic order (Table 2) in this issue.<br />

1. In naming hereditary factors, the use of languages of higher internationality should<br />

be given preference.<br />

2. Symbols of hereditary factors, derived from their original names, should be<br />

written in Roman letters of distinctive type, preferably in italics, and be as short as<br />

possible.<br />

AMENDMENT: The original name should be as descriptive as possible of the<br />

phenotype. All gene symbols should consist of three letters.<br />

COMMENTS: All new gene symbols should consist of three letters.<br />

Existing gene symbols of less than three letters should be converted to the<br />

three-letter system whenever symbols are revised. When appropriate, one<br />

or two letters should be added to existing symbols.<br />

For example, add the letters "ap" to "K" to produce the symbol "Kap" to<br />

replace "K" as the symbol for Kapuze (hooded). As another example, add<br />

the letters "ud" to "n" to produce the symbol "nud" to replace "n" as the<br />

symbol for naked seed. Similarly the letter "g" can be added to "ms" to<br />

produce the symbol "msg" for genetic male sterility and the letter "e" can<br />

be added to "ds" to produce the symbol "des" for desynapsis. When<br />

inappropriate or when conflicts arise, questions should be referred to the<br />

Committee on Genetic Marker Stocks, Nomenclature, and Symbolization<br />

of the International Barley Genetics Symposium for resolution.<br />

3. Whenever unambiguous, the name and symbol of a dominant begin with a capital<br />

letter and those of a recessive with a small letter.<br />

AMENDMENT: When ambiguous (co-dominance, incomplete dominance, etc.)<br />

all symbols should consist of a capital letter followed by two small letters that<br />

165


Barley Genetics Newsletter (2008) 38: 165-170<br />

designate the character, a number that represents a particular locus, and a letter or<br />

letters that represents a particular allele or mutational event at that particular locus.<br />

COMMENTS: As an example, the letters "Mdh" can be used to designate<br />

the character malate dehydrogenase, "Mdh1" would represent a particular<br />

locus for malate dehydrogenase and "Mdh1a", "Mdh1b", "Mdh1c", etc.<br />

would represent particular alleles or mutational events at the "Mdh1" locus.<br />

Row number can be used as an example of symbolizing factors showing<br />

incomplete dominance. At the present time, the symbol "v" is used to<br />

represent the row number in Hordeum vulgare, "V" is used to represent the<br />

row number in Hordeum distichum, and "V t " is used to represent the row<br />

number in Hordeum deficiens. According to the amendment to Rule 3, if<br />

row number were to be designated by the letters "Vul", the designation of<br />

the locus on chromosome 2 would then become "Vul1" and the alleles "v",<br />

"V", and "V t " would be designated "Vul1a", "Vul1b", and "Vul1c".<br />

SUPPLEMENTARY AMENDMENT: A period should be placed before the<br />

allele symbol in the complete gene symbol.<br />

COMMENTS: Since DNA sequences similar to those of the original locus<br />

may occur at several positions in the Hordeum vulgare genome, a threeletter<br />

symbol plus a number is inadequate to represent all potential loci.<br />

Also, both numbers and letters have been assigned to specific mutants and<br />

isozymes in Hordeum vulgare. The six-rowed spike locus is used as an<br />

example although the symbol Vul1 for row number in Hordeum vulgare is<br />

not recommended because the botanical classification of Hordeum spp has<br />

changed. The locus symbol vrs1 and the name six-rowed spike 1 are<br />

recommended for the v locus. Gene symbols recommended for common<br />

alleles at the vrs1 locus are vrs1.a, vrs1.b, vrs1.c, and vrs1.t for the "v",<br />

"V", "v lr ", and "V t " genes, respectively.<br />

4. Literal or numeral superscripts are used to represent the different members of an<br />

allelic series.<br />

AMENDMENT: All letters and numbers used in symbolization should be written<br />

on one line; no superscripts or subscripts should be used.<br />

5. Standard or wild type alleles are designated by the gene symbols with a + as a<br />

superscript or by a + with the gene symbol as a superscript. In formulae, the +<br />

alone may be used.<br />

AMENDMENT: This rule will not be used in barley symbolization.<br />

6. Two or more genes having phenotypically similar effects are designated by a<br />

common basic symbol. Non-allelic loci (mimics, polymeric genes, etc.) are<br />

distinguished by an additional letter or Arabic numeral either on the same line<br />

166


Barley Genetics Newsletter (2008) 38: 165-170<br />

after a hyphen or as a subscript. Alleles of independent mutational origin may be<br />

indicated by a superscript.<br />

AMENDMENT: Barley gene symbols should consist of three letters that<br />

designate the character, a number that represents a particular locus, and a letter or<br />

letters that represents a particular allele or mutational event at that particular locus.<br />

All letters and numbers should be written on the same line without hyphens or<br />

spaces. Alleles or mutational events that have not been assigned to a locus should<br />

be symbolized by three letters that designate the character followed by two<br />

commas used to reserve space for the locus number when determined, followed by<br />

a letter or letters representing the particular allele or mutational event. After<br />

appropriate allele testing, the correct locus number will be substituted for the<br />

commas. Where appropriate (when assigning new symbols or when revising<br />

existing symbols) letters representing alleles or mutational events should be<br />

assigned consecutively without regard to locus number or priority in discovery or<br />

publication.<br />

COMMENTS: The use of the proposed system of symbolization can be<br />

illustrated by the desynaptic mutants. Two loci are known: lc on<br />

chromosome 1 (7H) and ds on chromosome 3 (3H). These will be<br />

resymbolized as des1a and des2b. A large number of desynaptic mutants<br />

have been collected. They will be designated des,,c, des,,d, des,,e, etc. If<br />

allele tests show that des,,c is at a different locus than des1 and des2, des,,c<br />

will become des3c. If allele tests show that des,,d is at the same locus as<br />

des2, des,,d will become des2d. In practical use, the symbol des will be<br />

used when speaking of desynapsis in general or if only one locus was<br />

known for the character. The symbol des2 will be used when speaking of<br />

that particular locus, and the symbol des2b will be used only when<br />

speaking of that particular allele or mutational event. If additional<br />

designation is needed in particular symbolization, it can be obtained by<br />

adding numbers behind the allele letters, and, if still further designation is<br />

needed, letters can be added to the symbol behind the last number.<br />

Symbolization consisting of alternation of letters and numbers written on<br />

the same line without hyphens or spaces will allow for the expansion of the<br />

symbol as future needs arise. In any work with large numbers of polymeric<br />

gene mutants, every mutant has to be given a designation not shared by any<br />

other mutant of this polymeric group and this designation should become a<br />

part of the permanent symbol representing that particular allele or<br />

mutational event. This requirement can be met by assigning allele<br />

designations in consecutive order without regard to locus number.<br />

SUPPLEMENTARY AMENDMENT: A period should be used instead of two<br />

commas in gene symbols for mutants within a polymeric group that can not be<br />

assigned to a specific locus.<br />

COMMENTS: The des symbol should be used when referring to<br />

desynapsis in general; des1 and des2, for specific loci; des1.a and des2.b<br />

167


Barley Genetics Newsletter (2008) 38: 165-170<br />

for specific genes or alleles at their respective loci; and des.c, des.d, des.e<br />

etc., for desynaptic mutants not assigned to a specific locus.<br />

SUPPLEMENTARY AMENDMENT:<br />

Even if the locus in question is the only one known that affects a given phenotype,<br />

the three-letter basic symbol is followed by a serial number.<br />

7. Inhibitors, suppressors, and enhancers are designated by the symbols I, Su, and En,<br />

or by i, su, and en if they are recessive, followed by a hyphen and the symbol of<br />

the allele affected.<br />

AMENDMENT<br />

This rule is no longer appicable and will not be used in barley symbolization.<br />

8. Whenever convenient, lethals should be designated by the letter l or L and sterility<br />

and incompatibility genes by s or S.<br />

AMENDMENT: This rule will not be used in barley symbolization.<br />

COMMENTS: J.G. Moseman (BGN 2:145-147) proposed that the first of<br />

the three letters for designating genes for reaction to pests should be R. The<br />

second and third letters will be the genus and species names of the pest.<br />

SUPPLEMENTARY COMMENT: A motion was passed during the<br />

workshop on "Linkage Groups and Genetic Stock Collections" at the Fifth<br />

International Barley Genetics Symposium in 1986 (Barley Genetics<br />

V:1056-1058, BGN 17:1-4), that the International Committee for<br />

Nomenclature and Symbolization of Barley Genes should "recommend use<br />

of Ml as the designation of genes for resistance to powdery mildew.”<br />

9. Linkage groups and corresponding chromosomes are preferably designated by<br />

Arabic numerals.<br />

SUPPLEMENTARY AMENDMENT: The current wheat homoeologous group<br />

numbering scheme (the Triticeae system) is recommended for Hordeum vulgare<br />

chromosomes. Arabic numerals followed by an H will indicate specific barley<br />

chromosomes. The H. vulgare chromosomes should be 7H, 2H, 3H, 4H, 1H, 6H,<br />

and 5H instead of 1, 2, 3, 4, 5, 6, and 7, respectively.<br />

10. The letter X and Y are recommended to designate sex chromosomes.<br />

AMENDMENT: This rule will not be used in barley symbolization.<br />

11. Genic formulae are written as fractions with the maternal alleles given first or<br />

above. Each fraction corresponds to a single linkage group. Different linkage<br />

groups written in numerical sequence are separated by semicolons. Symbols of<br />

unlocated genes are placed within parenthesis at the end of the formula. In<br />

168


Barley Genetics Newsletter (2008) 38: 165-170<br />

euploids and aneuploids, the gene symbols are repeated as many times as there are<br />

homologous loci.<br />

12. Chromosomal aberrations should be indicated by abbreviations: Df for deficiency,<br />

Dp for duplication, In for inversion, T for translocation, Tp for transposition.<br />

13. The zygotic number of chromosomes is indicated by 2n, the gametic number by n,<br />

and basic number by x.<br />

14. Symbols of extra-chromosomal factors should be enclosed within brackets and<br />

precede the genic formula.<br />

The following recommendations made by the International Committee for Nomenclature<br />

and Symbolization of Barley Genes at the Fourth International Barley Genetics<br />

Symposium in 1981 (Barley Genetics IV:959-961) on gene and mutation designations<br />

were as follows.<br />

AMENDMENT:<br />

A. Present designations for genes and mutations. - Most of the present designations<br />

should be maintained. However, new designations may be given, when additional<br />

information indicates that new designations would aid in the identification of<br />

genes and mutations.<br />

B. New designations for genes and mutations. - New genes or mutations will be<br />

designated by characteristic, locus, allele, and then the order of identification or<br />

mutational event. Three letters will be used to identify new characteristics.<br />

Consecutive numbers will be used to identify the order of identification or<br />

mutational event. Loci will be designated by numbers and alleles by letters when<br />

they are identified. For example, des-6 indicates that this is the sixth gene or<br />

mutation identified for the characteristic des (desynaptic). des 1-6 and des 2-7<br />

indicate that gene or mutational events 6 and 7 for the desynaptic characteristic<br />

have been shown to be at different loci and those loci are then designated 1 and 2,<br />

respectively. des 1a6 and des 1b8, indicate that the gene or mutational events 6<br />

and 8 for the characteristic desynaptic have been shown to be at different alleles at<br />

locus 1 and those alleles are then designated a and b.<br />

SUPPLEMENTARY COMMENT:<br />

A motion was passed during the workshop of the "Nomenclature and Gene<br />

Symbolization Committee" at the Fifth International Barley Genetics Symposium<br />

in 1986 (Barley Genetics V:1056-1058) that "the recommended systems for<br />

Nomenclature and Gene Symbolization of the International Committee be<br />

published annually in the Barley Genetics Newsletter."<br />

SUPPLEMENTARY COMMENT 2:<br />

At the workshop for ”Recommendations of Barley Nomenclature” held at<br />

169


Barley Genetics Newsletter (2008) 38: 165-170<br />

Saskatoon, July 31, 1996 and adopted at the General Meeting of the Seventh<br />

International Barley Genetics Symposium, it was recommended that a period<br />

instead of a dash be used to designate the allele portion of the gene symbol.<br />

Consequently, the first gene symbol for the characteristic des (desynapsis) should<br />

be expressed as des1.a. The code des1 identifies a specific locus. The period<br />

indicates that the symbol a identifies a specific allele or mutational event that<br />

produces a desynaptic phenotype. (The allele symbol a will be always associated<br />

with this specific desynaptic mutant even if the locus symbol is changed based on<br />

subsequent research results.)<br />

170

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!