10.01.2013 Views

The biology of Canadian weeds. 117. Taraxacum officinale G. H. ...

The biology of Canadian weeds. 117. Taraxacum officinale G. H. ...

The biology of Canadian weeds. 117. Taraxacum officinale G. H. ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>The</strong> <strong>biology</strong> <strong>of</strong> <strong>Canadian</strong> <strong>weeds</strong>. <strong>117.</strong> <strong>Taraxacum</strong> <strong>of</strong>ficinale<br />

G. H. Weber ex Wiggers<br />

S. M. Stewart-Wade 1,3 , S. Neumann 1,4 , L. L. Collins 2 , and G. J. Boland 1<br />

1 Department <strong>of</strong> Environmental Biology, University <strong>of</strong> Guelph, Guelph, Ontario, Canada N1G 2W1;<br />

2 Department <strong>of</strong> Plant Sciences, University <strong>of</strong> Western Ontario, London, Ontario, Canada N6A 5B7.<br />

Received 23 January 2001, accepted 18 June 2002.<br />

Stewart-Wade, S. M., Neumann, S., Collins, L. L. and Boland, G. J. 2002. <strong>The</strong> <strong>biology</strong> <strong>of</strong> <strong>Canadian</strong> <strong>weeds</strong>. <strong>117.</strong> <strong>Taraxacum</strong><br />

<strong>of</strong>ficinale G. H. Weber ex Wiggers. Can. J. Plant Sci. 82: 825–853. <strong>Taraxacum</strong> <strong>of</strong>ficinale G. H. Weber ex Wiggers (dandelion,<br />

pissenlit <strong>of</strong>ficinal) is a perennial weed occurring in parks, gardens, pastures, orchards, roadsides, vegetable gardens, agricultural<br />

crops and horticultural crops. A common weed worldwide, it was originally introduced from Eurasia and now occurs in every<br />

province <strong>of</strong> Canada. It is an aesthetic problem during flowering and seed production, interrupting turfgrass uniformity and density;<br />

it reduces yields <strong>of</strong> agricultural crops; it causes slower drying <strong>of</strong> hay; its pollen is allergenic; and it acts as an alternative host<br />

for several pests and diseases. A number <strong>of</strong> herbicides are available for its control. Mechanical removal <strong>of</strong> T. <strong>of</strong>ficinale plants has<br />

limited success, due to the regenerative capacity <strong>of</strong> the long taproot. Insects, fungi, sheep and geese have been considered as biological<br />

control agents for dandelion.<br />

Key words: <strong>Taraxacum</strong> <strong>of</strong>ficinale, dandelion, weed <strong>biology</strong>, Canada.<br />

Stewart-Wade, S. M., Neumann, S., Collins, L. L. et Boland, G. J. 2002. Biologie des mauvaises herbes au Canada. <strong>117.</strong><br />

<strong>Taraxacum</strong> <strong>of</strong>ficinale G. H. Weber ex Wiggers. Can. J. Plant Sci. 82: 825–853. <strong>Taraxacum</strong> <strong>of</strong>ficinale G. H. Weber ex Wiggers<br />

(pissenlit <strong>of</strong>ficinal, dandelion) est une adventice vivace qui peuple les parcs, les jardins, les champs, les vergers, le bord des routes,<br />

les potagers, les grandes cultures et les cultures horticoles. Cette mauvaise herbe, qu’on retrouve partout sur la planète, nous vient<br />

d’Eurasie et a désormais colonisé toutes les provinces du Canada. Elle pose un problème d’esthétisme lors de la floraison et de la<br />

production des graines, jetant une note de discordance dans le vert des pelouses et diminuant la densité des peuplements. Cette<br />

adventice réduit le rendement des cultures et ralentit le fanage du foin. Son pollen est allergène et la plante sert d’hôte de rechange<br />

à plusieurs ravageurs et maladies. Il existe divers herbicides pour la combattre. L’extraction des plants de T. <strong>of</strong>ficinale à la machine<br />

n’a qu’une efficacité restreinte à cause de la capacité de regénération de la longue racine pivotante. Les insectes, les champignons,<br />

les ovins et les oies figurent parmi les agents de lutte biologique contre le pissenlit.<br />

Mots clés: <strong>Taraxacum</strong> <strong>of</strong>ficinale, pissenlit <strong>of</strong>ficinal, biologie des mauvaises herbes, Canada<br />

1. Names<br />

<strong>Taraxacum</strong> <strong>of</strong>ficinale G. H. Weber ex Wiggers — dandelion;<br />

pissenlit <strong>of</strong>ficinal (Darbyshire et al. 2000), dandelion<br />

<strong>of</strong>ficinal, dent-de-lion, dent-de-lion commun, florion d’or,<br />

pissenlit dent-de-lion, pissenlit (Ferron and Cayouette<br />

1975); blowball, faceclock, dumble-dor (in Newfoundland),<br />

lion’s tooth, yellow gown, priest’s crown, pee-a-bed, wet-abed<br />

(Jackson 1982). Asteraceae, composite (daisy) family,<br />

tribe Cichoriae.<br />

<strong>The</strong> first scientific classification <strong>of</strong> T. <strong>of</strong>ficinale was by<br />

Linnaeus in 1753 as Leontodon taraxacum (Jaeger 1955).<br />

Wiggers (1746–1811) described the genus <strong>Taraxacum</strong>, and<br />

Georg Heinrich Weber created the current classification in<br />

3 Current address: School <strong>of</strong> Agriculture and Food Systems,<br />

Institute <strong>of</strong> Land and Food Resources, <strong>The</strong> University <strong>of</strong><br />

Melbourne, Victoria, 3010, Australia.<br />

4 Current address: School <strong>of</strong> Bioscience, Division <strong>of</strong><br />

Agricultural Sciences, Sutton Bonington Campus,<br />

University <strong>of</strong> Nottingham, Loughborough, Leicestershire,<br />

LE12 5RD, UK.<br />

825<br />

1780 (Britton and Brown 1970). <strong>The</strong> origin <strong>of</strong> the name<br />

<strong>Taraxacum</strong> is uncertain but Holm et al. (1997), Jenniskens<br />

(1984) and Mitich (1989) have reviewed possible sources.<br />

<strong>Taraxacum</strong> is thought to originate from the Arabic name for<br />

the dandelion “tarachakum” (meaning wild cherry),<br />

“tarakhshaqun” (meaning wild chicory), “tharachschakuh”,<br />

“talkh chakok” or “tarashqun” meaning “bitter herb”<br />

(Dwyer 1977; Jenniskens 1984; Mitich 1989). In another<br />

explanation, the name was derived from the Greek words<br />

“taraxis”, an eye disease, “tarassen” or “tarasos” meaning<br />

disorder, “trogimon” meaning edible and “akeomai” or<br />

“akos” meaning to cure or remedy (Powell 1972; Jenniskens<br />

1984; Mitich 1989). Officinale means medicinal or capable<br />

<strong>of</strong> producing medicine (Schmidt 1979), or “<strong>of</strong> the shops”,<br />

meaning it was sold as a remedy for man’s illnesses (Dwyer<br />

1977; Holm et al. 1997).<br />

<strong>The</strong> common name for dandelion is an alteration <strong>of</strong> “dent<br />

de lion”, a phrase thought to be based on the Welsh “Dant y<br />

Llew” <strong>of</strong> the thirteenth century (Hedrick 1972), meaning<br />

“tooth <strong>of</strong> the lion”. This name may have evolved because <strong>of</strong><br />

the shape <strong>of</strong> the immature seeds (Lovell and Rowan 1991),


826 CANADIAN JOURNAL OF PLANT SCIENCE<br />

the jagged shape <strong>of</strong> the leaves (Jackson 1982), the appearance<br />

<strong>of</strong> the yellow florets <strong>of</strong> the inflorescence (Angier<br />

1980), or the strong white taproot (pulling it from a lawn is<br />

like trying to extract a lion’s tooth) (Dwyer 1977). <strong>The</strong><br />

French name, pissenlit, is attributed to the diuretic activity<br />

<strong>of</strong> the plant parts (Lovell and Rowan 1991).<br />

2. Description and Account <strong>of</strong> Variation<br />

(a) Description. <strong>Taraxacum</strong> <strong>of</strong>ficinale is an almost stemless,<br />

lactiferous, perennial herb. <strong>The</strong> stems are acaulescent, only<br />

1–2.5 cm in length, with extremely short internodes at or<br />

below the soil surface (Gier and Burress 1942; Holm et al.<br />

1997). <strong>The</strong> leaves form a basal, radial rosette in which every<br />

sixth leaf overlaps (Holm et al. 1997). <strong>The</strong> leaves are highly<br />

variable in shape, ranging from lobeless to toothed edges<br />

to highly incised and, when lobed, the lobes point to the leaf<br />

base. <strong>The</strong> runcinate-pinnatifid or lobed oblanceolate leaves<br />

have glabrous to sparsely pubescent lower surfaces, are generally<br />

5–40 cm in length and 0.7–15 cm in width, and taper<br />

to a winged, petiolar base (Gleason 1963; Holm et al. 1997).<br />

<strong>The</strong> prominent midrib <strong>of</strong> the leaves ranges in colour from<br />

pale yellow-green to deep red-brown (L. L. Collins, unpublished<br />

data, University <strong>of</strong> Western Ontario, London, ON).<br />

<strong>The</strong> thick, branched taproot can be up to 2–3 cm in diameter<br />

and grow up to 1–2 m in length (von H<strong>of</strong>sten 1954;<br />

Solbrig 1971). <strong>The</strong> lateral roots are arranged in two rows<br />

that wind clockwise downward in a loose spiral around the<br />

root and are distributed more or less regularly along its<br />

length (Gier and Burress 1942).<br />

<strong>The</strong> basal rosette gives rise to one to numerous glabrous,<br />

hollow, cylindrical scapes (peduncles), 5–50 cm tall,<br />

decreasing in diameter along their length from base to tip.<br />

Each scape bears a terminal capitulum (inflorescence) <strong>of</strong> 2–5<br />

cm diameter (Gier and Burress 1942; Gleason 1963; Holm et<br />

al. 1997). Each capitulum is subtended by an oval-cylindrical<br />

involucre with lanceolate-obtuse, green to brownish,<br />

herbaceous bracts, in two rows <strong>of</strong> phyllaries, with the outer<br />

phyllaries shorter and wider than the inner phyllaries (Holm<br />

et al. 1997). <strong>The</strong> inner phyllaries are <strong>of</strong> uniform length and<br />

one-serrate, while the outer ones are unequal, one-third to<br />

one-half as long as the inner bracts and many-serrate. All<br />

bracts are reflexed at maturity, with a convex, minutely pitted<br />

receptacle, without paleae (Holm et al. 1997).<br />

<strong>The</strong> capitulum is composed <strong>of</strong> up to 250 ligulate, perfect,<br />

yellow florets (Holm et al. 1997). Each floret has a corolla<br />

<strong>of</strong> five united petals with one side prolonged, strap-shaped,<br />

and five-notched at the tip. Each floret contains five stamens<br />

fused into a tube with a sagittate base, filiform basal lobes<br />

and an obtuse apex (Holm et al. 1997). <strong>The</strong> warty spherical<br />

pollen grains are 30 µm in diameter (Gier and Burress 1942).<br />

In each floret, the inferior ovary contains one basal, inverted<br />

ovule with a single integument. A single style branches<br />

into two stigmatic arms, which are 1–1.5 mm in length and<br />

0.06 mm in diameter, and covered with fine hairs (Gier and<br />

Burress 1942; Sood and Sood 1992; Holm et al. 1997). Each<br />

ovule gives rise to a pale grey-brown to olive-brown, narrowly<br />

obovoid-oblong, rough-surfaced cypsela (seed), 3–4<br />

mm in length and 1 mm width. Each cypsela is 5–8 ribbed<br />

on each side with upwardly pointed teeth at the beaked apex<br />

and with a white pappus composed <strong>of</strong> numerous hairs, 3–4<br />

mm in length, mostly white, persistent and fused at the base<br />

(Gleason 1963; Holm et al. 1997). In the remainder <strong>of</strong> this<br />

review, for the sake <strong>of</strong> simplicity, the following terms will<br />

be used: scape to describe a peduncle, inflorescence to<br />

describe a capitulum and seed to describe a cypsela.<br />

<strong>Taraxacum</strong> <strong>of</strong>ficinale ranges in ploidy level from diploid<br />

to hexaploid (x = 8), possessing 16 to 48 individual chromosomes<br />

(Richards 1973). North American individuals <strong>of</strong><br />

this species are generally triploid (x = 8, 3x = 24), and sexual<br />

reproduction is rare or may even be absent (Solbrig and<br />

Simpson 1974; Lyman and Ellstrand 1984). Of the 2000<br />

reported micro-species in Europe, approximately 90% are<br />

polyploids that reproduce asexually by obligate agamospermy.<br />

<strong>The</strong> majority <strong>of</strong> the remaining 10% are diploid<br />

species that reproduce sexually and are obligate outcrossers.<br />

However, a small number <strong>of</strong> more primitive forms are capable<br />

<strong>of</strong> self-fertilization (Hughes and Richards 1985).<br />

(b) Morphological characters. <strong>Taraxacum</strong> <strong>of</strong>ficinale has<br />

similarities with other <strong>Taraxacum</strong> and related species. <strong>The</strong><br />

red-seeded dandelion, <strong>Taraxacum</strong> laevigatum (Willd.) DC.,<br />

reported throughout southern Canada, is similar to T. <strong>of</strong>ficinale,<br />

however, it is more slender, and its leaves are very<br />

deeply incised for their whole length (Gleason 1963). Leaf<br />

lobes <strong>of</strong> T. laevigatum are generally narrower than those <strong>of</strong><br />

T. <strong>of</strong>ficinale and, unlike T. <strong>of</strong>ficinale, the terminal leaf lobe is<br />

seldom larger than lateral leaf lobes. Unlike seeds <strong>of</strong> T. <strong>of</strong>ficinale,<br />

seeds <strong>of</strong> this species become bright red to reddish purple<br />

at maturity (Gleason 1963). <strong>Taraxacum</strong> <strong>of</strong>ficinale is more<br />

difficult to distinguish from T. ceratophorum (Ledeb.) DC.,<br />

which is found in northern mountainous regions <strong>of</strong> Canada<br />

(Gleason 1963). T. ceratophorum is generally less robust,<br />

has more broadly lobed petioles, leaves with fewer lobes, and<br />

smaller inflorescences than T. <strong>of</strong>ficinale (Gleason 1963).<br />

<strong>The</strong> marsh dandelion, <strong>Taraxacum</strong> palustre, found in<br />

southern and eastern Ontario and western Québec, is very<br />

similar to T. <strong>of</strong>ficinale. Originally reported as T. turfosum<br />

(Brunton 1989), it has since been placed in the well-defined<br />

species, T. palustre (Oldham et al. 1992). T. palustre can be<br />

distinguished by its erect, narrow, remotely serrate leaves<br />

and very dark, broad, and strongly appressed exterior<br />

involucral bracts (Brunton 1989; Oldham et al. 1992).<br />

<strong>The</strong>re are also many native species <strong>of</strong> <strong>Taraxacum</strong> in<br />

North America, which mostly occur in the Arctic and eastern<br />

Canada. For example, T. lyratum (Ledeb.) DC. occurs<br />

throughout much <strong>of</strong> the Yukon territory as well as in<br />

Labrador and Newfoundland (Cody 2000). Other rare native<br />

species, such as T. latilobum and T. laurentianum, are found<br />

in eastern Québec, Newfoundland and Labrador, and these<br />

could be confused with T. <strong>of</strong>ficinale (J. Cayouette, personal<br />

communication, Agriculture and Agri-Food, Canada,<br />

Ottawa, ON).<br />

<strong>Taraxacum</strong> <strong>of</strong>ficinale is also morphologically similar to<br />

other members <strong>of</strong> the Asteraceae. Chondrilla juncea L.,<br />

skeleton-weed, overlaps in range with T. <strong>of</strong>ficinale in the<br />

interior <strong>of</strong> British Columbia (R. S. Cranston, personal communication,<br />

BC Ministry <strong>of</strong> Agriculture, Fisheries and<br />

Food, Abbotsford, BC). While the basal rosette <strong>of</strong> C. juncea


is similar to that <strong>of</strong> T. <strong>of</strong>ficinale, C. juncea produces<br />

branched stems bearing linear cauline leaves, and subsessile<br />

inflorescences containing 11 florets each (Gleason 1963).<br />

Members <strong>of</strong> the genus Crepis L., hawk’s beard, have inflorescences<br />

bearing florets that are yellow, ligulate, and perfect.<br />

However, the inflorescences occur in small to large<br />

groups in an open, corymbiform or paniculiform arrangement.<br />

Basal leaves <strong>of</strong> Crepis species are also less lobed than<br />

those <strong>of</strong> T. <strong>of</strong>ficinale (Gleason 1963). Members <strong>of</strong> the genus<br />

Prenanthes L., white lettuce, have basal leaves that could be<br />

mistaken for the leaves <strong>of</strong> T. <strong>of</strong>ficinale. However,<br />

Prenanthes species also exhibit cauline leaves, scaled<br />

scapes and corymbiform, paniculiform, thyrsoid, or subracemiform<br />

inflorescences with ligulate and tubular florets,<br />

which are absent in T. <strong>of</strong>ficinale (Gleason 1963). <strong>The</strong> inflorescence<br />

<strong>of</strong> Tussilago farfara L., coltsfoot, is very similar to<br />

that <strong>of</strong> T. <strong>of</strong>ficinale, but flowering in this species occurs<br />

prior to the development <strong>of</strong> the leaves in the spring, while T.<br />

<strong>of</strong>ficinale produces inflorescences well after the establishment<br />

<strong>of</strong> leaves (Gleason 1963). <strong>Taraxacum</strong> <strong>of</strong>ficinale may<br />

also be confused with members <strong>of</strong> the genus Hypochoeris<br />

L., cat’s-ear, as well as with Leontodon autumnalis L., fall<br />

dandelion, due to the similarities <strong>of</strong> the bright yellow inflorescences<br />

<strong>of</strong> these species. Aarssen (1981) provided a key to<br />

distinguish these species.<br />

(c) Intraspecific variation. <strong>The</strong> taxonomy <strong>of</strong> T. <strong>of</strong>ficinale is<br />

complex and requires more extensive study (Small and<br />

Catling 1999). As <strong>Taraxacum</strong> species exhibit extremely<br />

variable <strong>biology</strong> and morphology, the genus is treated as<br />

many micro-species in Europe; however, it is treated as one<br />

species exhibiting considerable phenotypic plasticity in<br />

North America (Richards 1973). This extensive variation<br />

may be somewhat unexpected since North American populations<br />

are generally considered to be apomictic and so do<br />

not exchange genes (Solbrig and Simpson 1974; Taylor<br />

1987). <strong>The</strong>re are differences <strong>of</strong> opinion regarding the extent<br />

to which the observed variation is due to phenotypic plasticity<br />

versus genotypic differentiation arising from multiple<br />

introductions <strong>of</strong> European microspecies (Taylor 1987).<br />

Janzen (1977) suggested that there is very little genetic variation<br />

among populations, while Abbott (1979) argued that<br />

this assumption is premature. Taylor (1987) stated that intrapopulational<br />

morphological variation was as great as or<br />

greater than inter-populational variation and, therefore, morphological<br />

variation was largely due to phenotypic plasticity.<br />

However, Kennison (1978) found that in populations<br />

from Washington State, variation among populations was<br />

consistently greater than variation within populations.<br />

Ford (1981a) observed that agamospecies growing in particular<br />

habitats differed from site to site in characters such as<br />

population flux, survivorship and fecundity. Furthermore,<br />

agamospecies represent ecologically highly specialized population<br />

units, relevant to a fine scale <strong>of</strong> heterogeneity <strong>of</strong><br />

habitat, and two or more agamospecies can coexist in a<br />

broad habitat (Ford 1981b, 1985). Small and Catling (1999)<br />

provide an excellent summary <strong>of</strong> variation in this species in<br />

Canada. King (1993) used restriction enzyme analysis <strong>of</strong><br />

ribosomal DNA and chloroplast DNA to assess the relative<br />

STEWART-WADE ET AL — TARAXACUM OFFICINALE G. H. WEBER EX WIGGERS 827<br />

contribution <strong>of</strong> hybridization and mutation as sources <strong>of</strong><br />

genotypic variation in dandelions <strong>of</strong> North America. She<br />

found that multiple hybridization events in populations<br />

(prior to their introduction to North America) were a more<br />

important source <strong>of</strong> genotypic variation than mutation in<br />

populations.<br />

(d) Illustrations. <strong>The</strong> morphology <strong>of</strong> a seedling at the threeleaf<br />

stage and a mature T. <strong>of</strong>ficinale plant are shown in<br />

Fig. 1. Details <strong>of</strong> one floret and one cypsela (seed) are<br />

shown in Fig. 2. A number <strong>of</strong> internet sites exist which contain<br />

photos or illustrations <strong>of</strong> T. <strong>of</strong>ficinale including<br />

http://www.rce.rutgers.edu/<strong>weeds</strong>/weed.asp?pname=<br />

dandelion<br />

http://www.biologie.uni-hamburg.de/b_online/thome/<br />

band4/tafel_146.html<br />

http://clay.agr.okstate.edu/alfalfa/images/<strong>weeds</strong>/<br />

composite/non-thistle.htm<br />

http://www.agry.purdue.edu/turf/<strong>weeds</strong>/dandelion/<br />

dandelion.htm<br />

http://elib.cs.berkeley.edu/cgi/img-query?wheregenre=plants&where-taxon=<strong>Taraxacum</strong>+<strong>of</strong>ficinale<br />

3. Economic Importance<br />

(a) Detrimental. <strong>Taraxacum</strong> <strong>of</strong>ficinale infests terrestrial<br />

habitats worldwide and is especially adapted to pastures,<br />

lawns, orchards, hay fields, roadsides and other areas <strong>of</strong><br />

occasionally disturbed vegetation (Holm et al. 1997). It has<br />

become a problem weed in golf courses, municipal parks,<br />

home gardens, athletic fields, agricultural crops, vegetable<br />

gardens and horticultural crops such as strawberries (Witty<br />

and Bing 1985; Riddle et al. 1991; Holm et al. 1997). T.<br />

<strong>of</strong>ficinale plants are an aesthetic problem during flowering<br />

and seed production periods, interrupting turfgrass uniformity<br />

and density (Riddle et al. 1991). It is an increasing<br />

problem in annual cereal and oilseed crops in western<br />

Canada (Derksen and Thomas 1997), and was ranked the<br />

sixth most important weed occurring in corn, soybean and<br />

winter wheat fields in southwestern Ontario, being found in<br />

more than 25% <strong>of</strong> 593 fields examined (Frick and Thomas<br />

1992). It was the sixth most abundant weed species in<br />

reduced and no tillage fields and the tenth most abundant<br />

species in conventionally tilled fields (Frick and Thomas<br />

1992). <strong>Taraxacum</strong> <strong>of</strong>ficinale may have been more common<br />

in fields with reduced or no tillage because its control was<br />

facilitated by intensive tillage or because the increased crop<br />

residue in these fields aided in trapping wind-borne seeds<br />

(Frick and Thomas 1992). <strong>The</strong> brilliantly coloured inflorescences<br />

give fields a weedier appearance than is really the<br />

case (Holm et al. 1997).<br />

In the USA, corn yields were drastically reduced by<br />

T. <strong>of</strong>ficinale, especially when the previous crop was corn<br />

rather than soybeans (Hartwig 1990). It has also been reported<br />

as one <strong>of</strong> the most dominant weed species in wheat fields<br />

in Pakistan (Ahmad 1993). When present in dense populations,<br />

T. <strong>of</strong>ficinale can cause slower drying <strong>of</strong> hay because<br />

<strong>of</strong> its high water content, and can be a potential seed source<br />

for other parts <strong>of</strong> the farm (Tardif 1997). Doll (1984) found<br />

that forage from an alfalfa crop with a T. <strong>of</strong>ficinale infesta-


828 CANADIAN JOURNAL OF PLANT SCIENCE<br />

tion <strong>of</strong> 13–31% dry weight required an additional day to dry<br />

to the same level as forage free <strong>of</strong> T. <strong>of</strong>ficinale. Leaves <strong>of</strong> T.<br />

<strong>of</strong>ficinale dried faster than stems or ribs and this can cause a<br />

loss in dry matter yield during mechanical haymaking<br />

(Isselstein and Ridder 1993).<br />

Fig. 1. (A) seedling at three-leaf stage (×<br />

1/2 ); (B) mature plant (× 1/2 ).<br />

<strong>Taraxacum</strong> <strong>of</strong>ficinale also occurs as a weed in national<br />

parks (Tyser and Worley 1992) and in peppermint fields in<br />

the USA (Carda et al. 1992). It may also act as an alternative<br />

host for boll weevils (Haynes and Smith 1992), cabbage<br />

looper, yellow-striped armyworm (Dussourd and Denno


1994), green peach aphid (Kaakeh and Hogmire 1991),<br />

Pseudomonas viridiflava, which causes bacterial streak and<br />

bulb rot <strong>of</strong> onion (Gitaitis et al. 1998), and numerous viruses<br />

(Brcák 1979; Mountain et al. 1983).<br />

STEWART-WADE ET AL — TARAXACUM OFFICINALE G. H. WEBER EX WIGGERS 829<br />

Fig. 2. (A) floret (× 4); (B) cypsela (seed) (× 7).<br />

<strong>Taraxacum</strong> <strong>of</strong>ficinale is used as a medicinal plant (see<br />

section 3b), however, overindulgence may render the liver<br />

inactive and cause various unpleasant symptoms (Jackson<br />

1982). <strong>The</strong> pollen <strong>of</strong> T. <strong>of</strong>ficinale has been identified as an


830 CANADIAN JOURNAL OF PLANT SCIENCE<br />

allergen in honey (Helbling and Wuethrich 1987) and can<br />

cause allergic contact and photoallergic contact dermatitis<br />

(Mark et al. 1999). <strong>Taraxacum</strong> <strong>of</strong>ficinale inflorescences in<br />

orchards are perceived as a serious competitor to flowering<br />

apple and pear trees for honeybee visits, and much time and<br />

expense is spent mowing to remove them. However, a study<br />

in Ontario showed that apple pollen accounted for >90% <strong>of</strong><br />

the pollen collected, even when the ratio <strong>of</strong> dandelion to<br />

apple inflorescences was 28:1; and mowing had no effect on<br />

the percentage <strong>of</strong> pollen collected (Laverty and Hiemstra<br />

1998). Similarly, a study in Hungary found that T. <strong>of</strong>ficinale<br />

inflorescences were scarcely visited by honeybees compared<br />

to flowering pear trees (Benedek et al. 1998).<br />

(b) Beneficial. <strong>Taraxacum</strong> <strong>of</strong>ficinale has been used for medicinal<br />

purposes for centuries to treat a myriad <strong>of</strong> conditions<br />

(Culpeper 1826; Powell 1972), including to improve liver<br />

function, lower cholesterol, lower blood pressure (Mattern<br />

1994), decrease body weight in obese patients, treat gall<br />

bladder ailments (Dalby 1999) and as a diuretic (Rácz-<br />

Kotilla et al. 1974). Matol Botanical International Ltd. produces<br />

and distributes a health tonic sold under the brand<br />

name MATOL in Canada (Km in the USA) that contains 14<br />

medicinal-plant extracts, including an extract from roots <strong>of</strong><br />

T. <strong>of</strong>ficinale (Michaud et al. 1993). Leaves <strong>of</strong> T. <strong>of</strong>ficinale,<br />

mixed with other plant material, have been used therapeutically<br />

for liver, kidney, skin and even cancerous diseases<br />

(Neamtu et al. 1992). Dandelion infusion has a beneficial<br />

effect on urolithiasis (kidney stones) that can be attributed to<br />

some disinfectant action, and tentatively, to the presence <strong>of</strong><br />

saponins (Grases et al. 1994).<br />

<strong>The</strong> feed value <strong>of</strong> T. <strong>of</strong>ficinale is high, with only trace<br />

amounts <strong>of</strong> essential oils and a low amount <strong>of</strong> tannin that<br />

might affect quality or palatability (Falkowski et al. 1990).<br />

<strong>The</strong> plant can contain as much protein as white clover<br />

(Bockholt et al. 1995) and is a valuable feed, based on its fat<br />

and carbohydrate content (Spatz and Baumgartner 1990).<br />

Bergen et al. (1990) found that T. <strong>of</strong>ficinale had protein and<br />

mineral contents high enough to exceed the established<br />

requirements for cattle, and that cattle consumed dandelion as<br />

readily as, or sometimes in preference to, grass pasture.<br />

However, Falkowski et al. (1990) reported that it was not eaten<br />

readily by most domestic animals because <strong>of</strong> its bitterness.<br />

<strong>Taraxacum</strong> <strong>of</strong>ficinale has been tested as a soil amendment<br />

for organically grown herbs, but it was not as useful as some<br />

other <strong>weeds</strong> (Li 1996). It also possesses allelopathic properties<br />

and can suppress some fungal pathogens, such as<br />

Fusarium oxysporum f. sp. radicis-lycopersici Jarvis &<br />

Shoemaker, and nematodes (Jarvis 1989; Falkowski et al.<br />

1990; Alvarez et al. 1998). Fresh aboveground material <strong>of</strong> T.<br />

<strong>of</strong>ficinale lowered population densities <strong>of</strong> infective, secondstage<br />

juveniles <strong>of</strong> the nematode Meloidogyne hapla<br />

Chitwood and, therefore, increased carrot yield in the greenhouse<br />

(Alvarez et al. 1998).<br />

<strong>Taraxacum</strong> <strong>of</strong>ficinale is commonly used as a salad green.<br />

In Toronto alone, 155 tonnes <strong>of</strong> leaves (valued at<br />

Can$595 000.00) were marketed in 1988 and 1989<br />

(Letchamo and Gosselin 1995). Recently, a program was<br />

initiated in Québec to introduce organic production <strong>of</strong> T.<br />

<strong>of</strong>ficinale for commercial processing <strong>of</strong> the roots (Letchamo<br />

and Gosselin 1995). Extracts from T. <strong>of</strong>ficinale have been<br />

used in cheese preparation, due to its milk clotting and proteolytic<br />

properties (Akuzawa and Yokoyama 1988).<br />

<strong>Taraxacum</strong> <strong>of</strong>ficinale plant parts are used in soups, main<br />

courses, desserts and beverages, including tea, wine, beer<br />

and a c<strong>of</strong>fee substitute (using dried roots that have been<br />

roasted and ground) (Gail 1994; Dalby 1999; Khan 2001).<br />

<strong>The</strong> inflorescences are also an excellent source <strong>of</strong> nectar for<br />

honey; however, the nectar is more commonly used by beekeepers<br />

in the brood nest for spring colony build-up (Gail<br />

1994; Dalby 1999).<br />

<strong>Taraxacum</strong> <strong>of</strong>ficinale is a good indicator <strong>of</strong> environmental<br />

pollution and is <strong>of</strong>ten used as a biomonitor because it is<br />

an abundant, widely distributed plant, and the leaves and<br />

roots accumulate metals, including As, Br, Cd, Co, Cu, Cr,<br />

Hg, Mn, Pb, Sb, Se and Zn (Kuleff and Djingova 1984;<br />

Djingova et al. 1986; Simon et al. 1996). Recently it was<br />

used to evaluate trace metal bioavailability in abandoned<br />

industrial sites, community gardens and parks in urban<br />

Montréal, QC (Marr et al. 1999). With increasing levels <strong>of</strong><br />

pollution, traits such as the length and weight <strong>of</strong> seeds<br />

decrease, but the number <strong>of</strong> seeds increases, as an adaptation<br />

to survive unfavourable conditions (Savinov 1998).<br />

<strong>Taraxacum</strong> <strong>of</strong>ficinale is also useful as an experimental<br />

subject in classroom practical work. As it is very common,<br />

easily recognizable and perennial, it is easy to obtain and is<br />

ideal for studying germination, gravitropism, auxin effects,<br />

water potential measurement, polarity <strong>of</strong> root sections, morphological<br />

variation and plant cell structure (Oxlade and<br />

Clifford 1999) (See also Section 7c).<br />

(c) Legislation. <strong>Taraxacum</strong> <strong>of</strong>ficinale is listed as a noxious<br />

weed in Saskatchewan (Anonymous 1984) and in Québec,<br />

where it is considered noxious when it is found growing on<br />

roadside verges, along railways and electrical energy transmission<br />

lines, in ditches and fields, and in unoccupied lots<br />

(Anonymous 1977). <strong>Taraxacum</strong> <strong>of</strong>ficinale is designated as a<br />

nuisance weed in Alberta (Anonymous 1991) and is in the<br />

schedule <strong>of</strong> <strong>weeds</strong> that may be declared noxious by the<br />

Lieutenant Governor in Council in Manitoba (Anonymous<br />

1981). <strong>Taraxacum</strong> <strong>of</strong>ficinale is not listed in any other<br />

provincial weed control acts.<br />

4. Geographical Distribution<br />

More than 1000 herbarium samples and records were examined<br />

to determine the distribution <strong>of</strong> T. <strong>of</strong>ficinale in Canada<br />

and ca. 900 records were included in the final distribution<br />

map (Fig. 3). <strong>The</strong> availability <strong>of</strong> samples and records <strong>of</strong>ten<br />

did not reflect the prevalence <strong>of</strong> the species within a particular<br />

area but this is <strong>of</strong>ten the case with common species. <strong>The</strong><br />

correct identity <strong>of</strong> the samples and records was not verified,<br />

primarily due to the taxonomic uncertainty <strong>of</strong> many species<br />

within this genus. Only samples and records that were determined<br />

as T. <strong>of</strong>ficinale were included in the distribution map<br />

and analysis.<br />

<strong>The</strong> geographical distribution <strong>of</strong> T. <strong>of</strong>ficinale in Canada is<br />

summarized in Fig. 3. <strong>Taraxacum</strong> <strong>of</strong>ficinale has been reported<br />

from all provinces and territories <strong>of</strong> Canada, including


the Northwest, Yukon and Nunavut Territories (Rousseau<br />

1968; Scoggan 1979). This species is widely distributed<br />

within Canada and records were also found from almost all<br />

isolated regions, including Sable Island, Anticosti Island,<br />

Vancouver Island, Queen Charlotte Islands, and Akimiski<br />

Island (James Bay).<br />

<strong>Taraxacum</strong> <strong>of</strong>ficinale is distributed within Canada from<br />

41°42´N (Ontario) to 64°48´N (Yukon Territory) latitude,<br />

and from 49°37´W (Newfoundland) to 139°50´W (Yukon<br />

Territory) longitude. In Alaska, records were found as far<br />

north as 67°06´N latitude, and as far west as 176°45´W longitude.<br />

<strong>Taraxacum</strong> <strong>of</strong>ficinale is also found in over 60 countries<br />

worldwide (Holm et al. 1997).<br />

5. Habitat<br />

(a) Climatic requirements. <strong>Taraxacum</strong> <strong>of</strong>ficinale can tolerate<br />

a broad range <strong>of</strong> climatic conditions (Simon et al. 1996)<br />

STEWART-WADE ET AL — TARAXACUM OFFICINALE G. H. WEBER EX WIGGERS 831<br />

Fig. 3. <strong>Canadian</strong> distribution <strong>of</strong> <strong>Taraxacum</strong> <strong>of</strong>ficinale. Information was gathered from specimens and records in the following herbaria:<br />

ACAD, ALA, APM, CAFB, CAN, DAL, DAO, DAS, LRS, MALA, NFLD, NFO, NSAC, NSPM, OAC, OLDS, PMAE, QFA, QK, QSA,<br />

SASK, SCFQ, SCS, SSMF, TRT, TRTE, TUP, UBC, UNB, UQTR, WAT, WIN, WINDM, and WLU [herbarium abbreviations as in<br />

Holmgren et al. (1990), as presented in http://www.nybg.org/bsci/ih/ih.html].<br />

and is distributed in almost every temperate and subtropical<br />

region <strong>of</strong> the world (Holm et al. 1997). Established T. <strong>of</strong>ficinale<br />

plants are very resistant to drought, while young plants<br />

are very sensitive and have a limited chance <strong>of</strong> invading<br />

coarse-textured or rapidly drying soils (von H<strong>of</strong>sten 1954).<br />

<strong>Taraxacum</strong> <strong>of</strong>ficinale shows a wide range <strong>of</strong> adaptability to<br />

light, being able to grow vigorously in full sunlight, or in<br />

diffused light in the shade <strong>of</strong> trees or buildings (when leaves<br />

are usually thinner and more tender) (Longyear 1918). It<br />

may grow at sea level or up to an elevation <strong>of</strong> 3350 m,<br />

where it can be found associating with one or more subalpine<br />

or alpine native species (Longyear 1918).<br />

(b) Substratum. <strong>Taraxacum</strong> <strong>of</strong>ficinale can grow in a wide<br />

range <strong>of</strong> soils (Simon et al. 1996) but it flourishes best in<br />

moist, good-quality loam (Jackson 1982). Soil moisture<br />

determines its local distribution, with well-watered areas <strong>of</strong>


832 CANADIAN JOURNAL OF PLANT SCIENCE<br />

lawns being especially favourable for its growth (Longyear<br />

1918). However, it has been recorded pushing up through<br />

concrete, hanging from eaves troughs <strong>of</strong> houses, and growing<br />

from cracks in old stone walls (Jackson 1982). It grows<br />

in soils ranging in pH from 4.8 to more than 7.6, but does<br />

not thrive on shallow and drought-sensitive soil (von<br />

H<strong>of</strong>sten 1954, P. B. Cavers, personal communication,<br />

University <strong>of</strong> Western Ontario, London, ON). In hilly terrain,<br />

T. <strong>of</strong>ficinale occurs more <strong>of</strong>ten on ridges than in hollows<br />

but this may be due to differential herbivory (e.g.,<br />

slugs, rodents, grasshoppers) on the gradient, rather than differential<br />

effects <strong>of</strong> competition (Reader 1992).<br />

(c) Communities in which the species occurs. <strong>Taraxacum</strong><br />

<strong>of</strong>ficinale occurs in lawns, gardens, waste ground, roadsides,<br />

fields (forage fields such as alfalfa) and their margins, and notill<br />

crop production systems in agricultural crops (Lovell and<br />

Rowan 1991; Hamill 1997). Interestingly, it is one <strong>of</strong> the predominant<br />

species in black-tailed prairie dog towns in North<br />

Dakota (Stockrahm et al. 1993) and is the favourite food <strong>of</strong><br />

pocket gophers in Utah, USA (Ellison and Aldous 1952).<br />

<strong>Taraxacum</strong> <strong>of</strong>ficinale occurs in grassland communities<br />

and, after renovation, meadows and pastures are <strong>of</strong>ten invaded<br />

rapidly (Haugland 1993). Nitrogen levels had limited<br />

effects on competition patterns between grass swards and T.<br />

<strong>of</strong>ficinale, but competition among roots affected shoot dry<br />

weight much more than competition among shoots<br />

(Haugland 1993). Shading increased leaf length and specific<br />

leaf area, which made T. <strong>of</strong>ficinale less susceptible to competition<br />

for light (Haugland 1993). Shoot competition reduced<br />

root dry weight and increased the shoot:root ratio, which, in<br />

turn, may have reduced plant survival (Haugland 1993).<br />

Establishment and performance <strong>of</strong> T. <strong>of</strong>ficinale in grass<br />

vegetation is dependent on the height and cutting frequency<br />

<strong>of</strong> the grass (Molgaard 1977). This Danish study found that<br />

with increasing grass height, the density <strong>of</strong> T. <strong>of</strong>ficinale<br />

decreased, at least partly due to shading (Molgaard 1977).<br />

Also, the reproductive morphology <strong>of</strong> T. <strong>of</strong>ficinale in alfalfa<br />

fields was different, facilitating colonization <strong>of</strong> open areas,<br />

compared to the reproductive morphology on undisturbed<br />

sites with a high density <strong>of</strong> grass (Welham and Setter 1998).<br />

6. History<br />

Many botanists believe that T. <strong>of</strong>ficinale originated in<br />

Greece, or perhaps the Northern Himalayas, and spread<br />

across temperate areas to Europe and Asia Minor (Richards<br />

1973; Schmidt 1979; Gail 1994). <strong>Taraxacum</strong> <strong>of</strong>ficinale has<br />

a fossil record that goes back to glacial and interglacial<br />

times in Europe (Godwin 1956) and it is thought to have colonized<br />

the Americas post-Pleistocene via Beringia<br />

(Richards 1973). Later introductions <strong>of</strong> T. <strong>of</strong>ficinale to<br />

North America are obscured in conflicting claims (Gail<br />

1994). <strong>The</strong> earliest claim is that it arrived on the east coast<br />

with the Vikings about 1000 AD; others say it first came on<br />

the Mayflower; while others claim the introduction was by<br />

later settlers who brought it as a garden plant or a pot herb<br />

for medicinal purposes (Schmidt 1979; Jackson 1982; Gail<br />

1994). <strong>The</strong> earliest recorded observation <strong>of</strong> T. <strong>of</strong>ficinale in<br />

North America was in the New England area in 1672<br />

(Rousseau 1968). <strong>The</strong> Cree, Digger, Apache and Mohican<br />

Indians soon became aware <strong>of</strong> its virtues and used it as a<br />

medicinal herb (Jackson 1982; Dalby 1999). It is likely that<br />

there have been multiple introductions from many sources<br />

(Gail 1994). <strong>The</strong> plant is thought to have spread to the west<br />

coast with loggers and settlers (Schmidt 1979). <strong>The</strong> first<br />

<strong>Canadian</strong> collection <strong>of</strong> T. <strong>of</strong>ficinale was made in Montréal,<br />

QC, in 1821, where it was observed as a common species<br />

(Rousseau 1968).<br />

7. Growth and Development<br />

(a) Morphology. Phenotypic variability in T. <strong>of</strong>ficinale<br />

increases its ability to colonize a wide range <strong>of</strong> habitats. In<br />

cool or dry weather, or in closely mown lawns, the leaves<br />

usually spread flat against the surface <strong>of</strong> the ground to form<br />

an almost prostrate rosette (Longyear 1918; Lovell and<br />

Rowan 1991). In warmer weather or in areas where it is<br />

crowded by taller vegetation, the leaves stand in more or<br />

less erect tufts (Longyear 1918). <strong>The</strong> rosette enables it to<br />

survive mowing, grazing and competition with grasses<br />

(Baker 1974). <strong>The</strong> possession <strong>of</strong> toothed leaves, which<br />

resemble those <strong>of</strong> thistles, and the bitter white latex, are<br />

thought to be adaptations to deter grazing animals<br />

(Richardson 1985).<br />

<strong>Taraxacum</strong> <strong>of</strong>ficinale displays a wide range <strong>of</strong> leaf<br />

shapes, from a smooth rounded (juvenile) form to a deeply<br />

incised runcinate (adult) form (Sánchez 1971). <strong>The</strong><br />

length:breadth ratio decreases as the leaf number increases<br />

(Sánchez 1971) and the ratio and depth <strong>of</strong> incisions in the<br />

runcinate form are influenced by light, mediated by the phytochrome<br />

system (Wassink 1965; Sánchez 1967). <strong>The</strong>refore,<br />

leaf shape can be regulated by light intensity and quality,<br />

with rounded blades developing at low light energy values<br />

and runcinate blades developing at high light energy values<br />

(Sánchez 1967; Slabnik 1981). An increase in light intensity<br />

increases the degree <strong>of</strong> lobing and decreases the<br />

length:breadth ratio (Slabnik 1981).<br />

<strong>The</strong> species possesses a deep tap root that can extend<br />

below the level <strong>of</strong> competing grass roots (Loomis 1938),<br />

and make it difficult to remove plants manually (Lovell and<br />

Rowan 1991). <strong>The</strong> root system can be widely branched and<br />

surmounted by a crown, which can divide to form numerous<br />

(up to 22) crown branches, depending on the degree <strong>of</strong><br />

crowding by other plants and plant age (Roberts 1936). <strong>The</strong><br />

roots are also highly regenerative, capable <strong>of</strong> producing<br />

shoots and roots within 1–2 wk from very small segments<br />

(Longyear 1918; Warmke and Warmke 1950; Mann and<br />

Cavers 1979). When cut <strong>of</strong>f below the crown, the root usually<br />

produces several new shoots so that a cluster <strong>of</strong> new<br />

plants is formed (Longyear 1918). At the end <strong>of</strong> the growing<br />

season, the root shortens and draws the crown slightly<br />

into the soil, where it is better protected from adverse<br />

conditions (Longyear 1918). <strong>The</strong> ease <strong>of</strong> regeneration is<br />

reportedly related to the ability <strong>of</strong> the parenchymatous cells<br />

<strong>of</strong> the secondary phloem and xylem in the root to readily<br />

dedifferentiate and develop into new shoots and roots<br />

(Higashimura 1986).<br />

During the development <strong>of</strong> the inflorescence, the growth<br />

rate and georesponse <strong>of</strong> the scape varies (Clifford and


Oxlade 1989). <strong>The</strong> scape elongates to bloom, then bends<br />

down close to the ground while the seeds mature, where it<br />

can escape injury from lawnmowers or grazers (Longyear<br />

1918; Richardson 1985). When seeds are nearly mature, the<br />

scape elongates again up to 75 cm, maximizing its height for<br />

effective dispersal <strong>of</strong> the wind-blown seeds (Longyear<br />

1918; Jackson 1982; Richardson 1985). <strong>The</strong>refore, the scape<br />

grows upright (negatively orthogeotropic) when extension<br />

growth is rapid, as it is prior to flowering and during formation<br />

<strong>of</strong> the inflorescence (Oxlade and Clifford 1981).<br />

However, between these stages, when extension growth is<br />

minimal and the inflorescence is closed, the scape can grow<br />

parallel to the ground (diageotropic) for some or most <strong>of</strong> its<br />

length (Oxlade and Clifford 1981). <strong>The</strong> outer tissue layers <strong>of</strong><br />

T. <strong>of</strong>ficinale scapes are held in a state <strong>of</strong> longitudinal tension<br />

by internal stem tissues, which are held in a reciprocal state<br />

<strong>of</strong> compression (Niklas and Paolillo 1998).<br />

Fasciation has been recorded in T. <strong>of</strong>ficinale in two forms,<br />

confined to the reproductive tissues <strong>of</strong> the plant (Dekker<br />

and Dekker 1987). In plants with multiple scapes, the<br />

central scapes can be fused together to form one broad<br />

(1–2 cm) scape; or inflorescences (2–4) can be fused at their<br />

base to form a longitudinal floral structure (Dekker and<br />

Dekker 1987).<br />

(b) Perennation. <strong>Taraxacum</strong> <strong>of</strong>ficinale overwinters as seed<br />

or it retains a reduced basal rosette under snow cover (Cyr<br />

et al. 1990).<br />

(c) Physiological data. <strong>Taraxacum</strong> <strong>of</strong>ficinale leaves are rich<br />

in fibre, potassium, iron, calcium, magnesium, phosphorus,<br />

vitamins A and C, the B vitamins thiamine and rib<strong>of</strong>lavin,<br />

and protein (Schmidt 1979; Jackson 1982; Gail 1994). Gail<br />

(1994) reported that they are also nature’s richest vegetable<br />

source <strong>of</strong> β-carotene at 0.84 mg g –1 tissue compared to carrots<br />

(Daucus carota L.) at 0.61 mg g –1 tissue. <strong>The</strong>y rank<br />

above broccoli (Brassica oleracea L.) and spinach<br />

(Spinacia oleracea L.) in overall nutritional value<br />

(Haytowitz and Matthews 1984), and Minnich (1983)<br />

ranked them out <strong>of</strong> all vegetables (including grains, seeds<br />

and greens) as tied for ninth best, higher than lettuce<br />

(Lactuca sativa L.). Also, the roots <strong>of</strong> T. <strong>of</strong>ficinale are rich<br />

in iron, copper and other trace elements (Dwyer 1977). <strong>The</strong><br />

most prominent therapeutic property <strong>of</strong> T. <strong>of</strong>ficinale is the<br />

diuretic activity, which is based on the high potassium content<br />

<strong>of</strong> the plant (Hook et al. 1993). It is superior to other<br />

diuretics because it reduces the likelihood <strong>of</strong> hypokalaemia,<br />

a common side-effect <strong>of</strong> many diuretics (Houghton 1995).<br />

<strong>The</strong> major and trace element content <strong>of</strong> T. <strong>of</strong>ficinale alters<br />

with growth stage (Müller and Kirchgessner 1972). In a<br />

Finnish study, the vitamin C content was lowest, while dry<br />

matter, soluble solids and mineral content were highest in<br />

late summer (Kuusi et al. 1982). Dandelion mineral content<br />

was investigated by van der Kley (1956) to assess the suitability<br />

<strong>of</strong> this species as feed for livestock. <strong>The</strong> high<br />

amounts <strong>of</strong> protein and β-carotene, favourable mineral composition,<br />

and low nitrate content throughout the growing<br />

season in Poland provided a high value feed (Falkowski<br />

et al. 1990). In UK studies, the availability <strong>of</strong> these elements<br />

STEWART-WADE ET AL — TARAXACUM OFFICINALE G. H. WEBER EX WIGGERS 833<br />

was equivalent to that in perennial ryegrass (Lolium perenne<br />

L.), a popular forage species (Wilman and Derrick 1994).<br />

<strong>Taraxacum</strong> <strong>of</strong>ficinale also had a lower proportion <strong>of</strong> cell<br />

walls in dry matter than perennial ryegrass (Derrick et al.<br />

1993). <strong>The</strong> true dry matter digestibility was as high as that<br />

<strong>of</strong> ryegrass, but the in vivo digestibility was lower (Derrick<br />

et al. 1993).<br />

<strong>The</strong> qualitative and quantitative distribution <strong>of</strong><br />

carotenoids in T. <strong>of</strong>ficinale inflorescences did not change,<br />

regardless <strong>of</strong> the year, season or location <strong>of</strong> sampling (Tóth<br />

and Szabolcs 1970). Pollen <strong>of</strong> T. <strong>of</strong>ficinale contained<br />

carotenoids, leucoanthocyanidins, flavonols and ascorbic,<br />

chlorogenic, triterpene, palmitic, stearic, linoleic and<br />

linolenic acids (Bandyukova et al. 1983). Bandyukova et al.<br />

(1989) found the amino acid composition <strong>of</strong> pollen to be<br />

similar to that <strong>of</strong> pollen <strong>of</strong> other plants. <strong>The</strong> pollen contained<br />

a low concentration <strong>of</strong> ct-ABA (cis trans abscisic acid) and<br />

a high concentration <strong>of</strong> proline, which serves several functions<br />

including drought and cold resistance (Lipp 1991).<br />

Callus development, and leaf and root formation,<br />

occurred in tissue cultures isolated from secondary thickened<br />

roots <strong>of</strong> T. <strong>of</strong>ficinale (Bowes 1970). Tissue cultures<br />

produced the same spectrum <strong>of</strong> compounds as intact plants<br />

and, in actively growing suspension cultures, volatile<br />

metabolites with an apple-like odour (Hook et al. 1991;<br />

Hook 1994). <strong>The</strong> application <strong>of</strong> nitrogen (as potassium<br />

nitrate) promoted the growth <strong>of</strong> roots and shoots (Khan<br />

1975). Auxins and cytokinins are also likely to be involved<br />

in the hormonal control <strong>of</strong> regeneration and are necessary<br />

for growth and organogenesis (Booth and<br />

Satchuthananthavale 1974a, b). In a British laboratory<br />

study, the addition <strong>of</strong> gibberellin to T. <strong>of</strong>ficinale leaf discs<br />

retarded their senescence and delayed the decline in levels<br />

<strong>of</strong> chlorophyll, protein and RNA (Fletcher and Osborne<br />

1966). <strong>The</strong> level <strong>of</strong> endogenous gibberellins in leaf tissue<br />

was high during leaf growth and expansion but declined<br />

progressively during senescence (Fletcher et al. 1969).<br />

Aging <strong>of</strong> leaves was associated with a deficiency <strong>of</strong> endogenous<br />

gibberellins (Fletcher et al. 1969).<br />

Undifferentiated cultured cells <strong>of</strong> T. <strong>of</strong>ficinale produced<br />

oleanolic and ursolic acids as major triterpenoids, in addition<br />

to triterpenols composed mainly <strong>of</strong> α- and β-amyrins<br />

(Akashi et al. 1994). Regenerated and wild plants contained<br />

additional triterpenols, including taraxasterol and lupeol, but<br />

negligible quantities <strong>of</strong> triterpene acids (Akashi et al. 1994).<br />

High squalene synthase activity was detected at the late logarithmic<br />

growth stage <strong>of</strong> suspension-cultured cells that produced<br />

triterpenoids, since squalene is an intermediate in<br />

sterol and cyclic triterpene biosynthesis (Komine et al.<br />

1996). <strong>Taraxacum</strong> <strong>of</strong>ficinale accumulated the serine proteinase<br />

taraxalisin in latex but this latex did not contain cardenolides,<br />

which are cardioactive compounds found in the<br />

latex <strong>of</strong> some other <strong>weeds</strong> (Sady and Seiber 1991;<br />

Rudenskaya et al. 1998).<br />

<strong>Taraxacum</strong> <strong>of</strong>ficinale is a C 3 species (Kemp et al. 1977).<br />

In US studies, plants from different altitudes showed no significant<br />

differences in enzyme activity, net photosynthesis,<br />

dark respiration, photorespiration, transpiration rates or temperature<br />

responses <strong>of</strong> gas exchange (Kemp et al. 1977;


834 CANADIAN JOURNAL OF PLANT SCIENCE<br />

Oulton et al. 1979). This is in disagreement with earlier US<br />

reports, which indicated that there were differences in the<br />

photosynthetic Hill reaction and enzyme activity among the<br />

same altitudinally diverse populations (May and Villarreal<br />

1974; May 1976). Activity <strong>of</strong> the enzyme invertase, which<br />

was only present in the petiole and central midrib <strong>of</strong> the<br />

developing leaf, was correlated with leaf growth rate and its<br />

level was controlled by light (Slabnik 1981).<br />

Various chemicals and cellular structures play roles in the<br />

geotropic behaviour <strong>of</strong> T. <strong>of</strong>ficinale. UK studies showed that<br />

elevated levels <strong>of</strong> endogenous ethylene were associated with<br />

the diageotropic behaviour and reduced extension growth<br />

after flowering (Clifford and Oxlade 1989). <strong>The</strong>re were significant<br />

differences in indol-3yl-acetic acid (IAA) levels<br />

across the scape after geostimulation, indicating a role for<br />

auxin in geotropism (Clifford et al. 1985). In an earlier<br />

British study, Clifford and Barclay (1980) showed that amyloplasts<br />

(colourless plastids that form starch granules) in<br />

the cells <strong>of</strong> scapes sediment much faster than previously<br />

reported and were involved in the initiation <strong>of</strong> geotropism in<br />

T. <strong>of</strong>ficinale.<br />

In other <strong>Canadian</strong> studies, it was found that amino acids<br />

accumulated in the roots as fall senescence progressed in the<br />

aerial parts <strong>of</strong> the plant, and declined in spring when<br />

regrowth occurred, with large fluctuations in the amides<br />

asparagine and glutamine (Cyr and Bewley 1990a). An<br />

18 kDa protein increased in T. <strong>of</strong>ficinale roots during the fall<br />

months, suggesting that it has a role as a storage compound<br />

(Cyr and Bewley 1990b). <strong>The</strong> same protein was also found in<br />

inflorescences, the stem and seeds (Cyr and Bewley 1990b).<br />

Plants exposed to elevated levels <strong>of</strong> CO 2 grew faster,<br />

exhibited more deeply incised leaf margins and had relatively<br />

more slender leaf laminae than those exposed to<br />

ambient levels (Thomas and Bazzaz 1996; Staddon et al.<br />

1999). <strong>The</strong>se effects were most pronounced when T. <strong>of</strong>ficinale<br />

plants were grown individually, but detectable differences<br />

were also found in plants grown at high density<br />

(Thomas and Bazzaz 1996). This supports the hypothesis<br />

that leaf carbohydrate levels play an important role in regulating<br />

heteroblastic leaf development, although elevated<br />

CO 2 may also affect leaf development through direct hormonal<br />

interactions or increased leaf water potential<br />

(Thomas and Bazzaz 1996).<br />

A US study showed that the leaf size <strong>of</strong> T. <strong>of</strong>ficinale<br />

plants decreased linearly with increasing elevation and a<br />

corresponding decline in nocturnal infrared irradiation from<br />

the sky (Jordan and Smith 1995). Differences in plant leaf<br />

structure and physiology traditionally associated with daytime<br />

sun exposure may also be influenced by nighttime sky<br />

exposure and susceptibility to frost (Jordan and Smith 1995).<br />

Red light and far-red light influenced the water exchange <strong>of</strong><br />

epidermal cells <strong>of</strong> T. <strong>of</strong>ficinale and phytochrome appeared to<br />

be involved (Carceller and Sánchez 1972).<br />

Environmental factors, such as temperature, photoperiod<br />

and rainfall, were studied in Finland for their effect on the<br />

bitterness <strong>of</strong> T. <strong>of</strong>ficinale (Kuusi and Autio 1985). It was<br />

found that increasing temperature and photoperiod and<br />

decreasing rainfall were correlated with an increase in bitterness.<br />

However, morphological characters such as leaf<br />

shape, main nerve breadth and colour <strong>of</strong> petiole base were<br />

not correlated with bitterness (Kuusi and Autio 1985).<br />

Growth phase and season had a strong influence on bitterness,<br />

with plants being less bitter in spring before flowering<br />

than in late summer (Kuusi and Autio 1985). Bitterness in<br />

leaves was caused by sesquiterpene lactones, such as taraxinic<br />

acid and its glucoside, as well as triterpenoids, such as<br />

cycloartenol (Houghton 1995). Kuusi et al. (1985) identified<br />

four bitter compounds: p-hydroxyphenylacetic acid, β-sitosterol,<br />

11,13-dihydrotaraxine acid 1’-O-β-D-glucopyranoside<br />

and taraxine acid 1’-O-β-D-glucopyranoside [also<br />

identified as an allergen (von Hausen 1982)]. <strong>The</strong> following<br />

triterpene alcohols have been isolated from roots <strong>of</strong> T. <strong>of</strong>ficinale:<br />

taraxol, taraxerol, ψ-taraxasterol, taraxasterol, βamyrin,<br />

stigmasterol and β-sitosterol; along with phenolic<br />

acids related to caffeic acid and β-fruct<strong>of</strong>uranosidases<br />

(Burrowes and Simpson 1938; Rutherford and Deacon<br />

1972; Houghton 1995). Caffeoyltartaric acids, cinnamic<br />

acids, coumarins and flavonoids have also been isolated<br />

from T. <strong>of</strong>ficinale tissues, including leaves (Williams et al.<br />

1996; Budzianowski 1997).<br />

A UK study showed that sterol levels in leaves <strong>of</strong> T. <strong>of</strong>ficinale<br />

fluctuated with season, probably due to temperature<br />

(Westerman and Roddick 1981). Free 4-demethyl sterols<br />

were maximal during the winter months and levels were<br />

correlated negatively with sunshine and temperature<br />

(Westerman and Roddick 1981). Sitosterol ester and<br />

cycloartenol ester showed the opposite response, with levels<br />

correlating positively with sunshine and temperature<br />

(Westerman and Roddick 1981). <strong>The</strong> scapes contained predominantly<br />

β-sitosterol and β-amyrin (Aexel et al. 1967).<br />

<strong>Taraxacum</strong> <strong>of</strong>ficinale possesses allelopathic properties<br />

that can reduce germination <strong>of</strong> other plant species<br />

(Falkowski et al. 1990). In addition, phenolic compounds<br />

produced by T. <strong>of</strong>ficinale are considered responsible for<br />

allelopathic biological control <strong>of</strong> Fusarium oxysporum f. sp.<br />

radicis-lycopersici in greenhouse tomato plantings in<br />

<strong>Canadian</strong> experiments (Kasenberg and Traquair 1988).<br />

Satisfactory control <strong>of</strong> this pathogen was achieved when<br />

residues <strong>of</strong> T. <strong>of</strong>ficinale were incorporated into sterilized<br />

greenhouse soil. <strong>The</strong> mode <strong>of</strong> action is unknown but it may<br />

act directly by secretion <strong>of</strong> allelochemicals or promotion <strong>of</strong><br />

antagonistic micr<strong>of</strong>lora (Jarvis 1989).<br />

An anti-fungal toxin was inducibly produced by T. <strong>of</strong>ficinale<br />

leaves treated with cupric chloride but production was<br />

depressed under oxygen deficient conditions (Mizutani<br />

1989). This compound was identical to lettucenin A, which<br />

has been isolated from lettuce infected with Pseudomonas<br />

cichorii (Takasugi et al. 1985). Lettucenin A is a stressinduced<br />

antifungal sesquiterpenoid that was present in sufficient<br />

quantity to suppress invasion <strong>of</strong> a pathogen in vivo<br />

(Hanawa et al. 1995). It was found that lettucenin A production<br />

started at an early stage <strong>of</strong> fungal infection, before<br />

the appearance <strong>of</strong> symptoms, and ended soon after the death<br />

<strong>of</strong> the pathogen (Hanawa et al. 1995).<br />

Carbohydrate and nitrogen reserves in the roots <strong>of</strong> T.<br />

<strong>of</strong>ficinale fluctuate with the season (Loomis 1938). <strong>The</strong><br />

roots remained viable during the winter and acted as a<br />

source <strong>of</strong> nutrients to facilitate the resumption <strong>of</strong> growth in


early spring (Cyr et al. 1990). Fructans, storage carbohydrates<br />

such as inulin and inulo-n-ose, were synthesized in<br />

roots by the enzyme fructan-fructan fructosyl transferase<br />

(Lüscher et al. 1993; Ernst et al. 1996). This synthesis <strong>of</strong><br />

inulin was practically unaffected by the height <strong>of</strong> competing<br />

grass vegetation (Molgaard 1977). High inulin content in<br />

roots resulted in high nitrogenase activity (Vlassek and Jain<br />

1976), which could enrich the soil with nitrogen through<br />

asymbiotic nitrogen fixers such as Azotobacter and<br />

Clostridium species (Vlassek and Jain 1978). Fructan<br />

hydrolysis occurred during late autumn and provided simple<br />

sugars as a readily accessible carbon pool (Cyr et al. 1990).<br />

Nitrates, free amino acids and soluble proteins were important<br />

vehicles for nitrogen storage (Cyr et al. 1990). Storage<br />

reserves remained at peak levels throughout winter and<br />

declined prior to the resumption <strong>of</strong> growth in spring, when<br />

inulin was metabolized to provide a high content <strong>of</strong> mobile<br />

fructose and sucrose to enable extensive vegetative growth<br />

and flowering (Molgaard 1977; Cyr et al. 1990). At the time<br />

<strong>of</strong> fruiting, nitrogen reserves were at their lowest concentration<br />

(Loomis 1938). Toward the end <strong>of</strong> summer, these<br />

reserves were restored and the cycle began again<br />

(Rutherford and Deacon 1974).<br />

<strong>Taraxacum</strong> <strong>of</strong>ficinale was identified as a valuable source<br />

<strong>of</strong> the essential linolenic acid, apigenin-7-glucoside,<br />

lecithin, and cholin (Houghton 1995; Letchamo and<br />

Gosselin 1995). Unsaturated hydroxy fatty acids such as<br />

linolenic acid are important in the chilling-resistant properties<br />

<strong>of</strong> T. <strong>of</strong>ficinale (Imai et al. 1995).<br />

(d) Phenology. Generally, during the first season <strong>of</strong> growth,<br />

T. <strong>of</strong>ficinale seedlings produce only leaves, usually in<br />

rosettes (Longyear 1918). In the spring <strong>of</strong> the second season,<br />

and each season thereafter, inflorescences are produced<br />

(Longyear 1918). However, under favourable conditions,<br />

some seedlings can bloom in their first year (von H<strong>of</strong>sten<br />

1954; Listowski and Jackowska 1965). <strong>The</strong> first bud may<br />

appear at various times and cannot be correlated to leaf<br />

index, although the plant has to have formed at least 20<br />

leaves and enlarged its tap root to store the required energy<br />

(Listowski and Jackowska 1965; Solbrig 1971). <strong>The</strong> time <strong>of</strong><br />

first flowering is partly dependent on the surrounding plant<br />

community and, in undisturbed communities, a plant may<br />

not flower until its fourth season (Gorchakovskii and<br />

Abramchuk 1996).<br />

In T. <strong>of</strong>ficinale, flowering occurs over a wide range <strong>of</strong><br />

photoperiods and light intensities. Studies on seasonal variation<br />

in flowering <strong>of</strong> T. <strong>of</strong>ficinale in Kentucky, showed that<br />

plants flowered throughout the year, with most plants flowering<br />

in April when the average daily air temperature was<br />

16°C and day length was about 13 h. A secondary peak<br />

occurred in September and October, with an average <strong>of</strong><br />

21°C and 12–13 h day length (Gray et al. 1973). <strong>The</strong>refore,<br />

T. <strong>of</strong>ficinale can be classified as a day-neutral plant<br />

(Listowski and Jackowska 1965; Gray et al. 1973), although<br />

Solbrig (1971) classified it as a short-day plant due to limited<br />

flowering during long summer days. Individual plants<br />

that bloom in spring may also bloom again in fall (Listowski<br />

and Jackowska 1965). Bud formation in these plants occurs<br />

STEWART-WADE ET AL — TARAXACUM OFFICINALE G. H. WEBER EX WIGGERS 835<br />

during a period <strong>of</strong> decreasing daylight, when the differentiation<br />

<strong>of</strong> new leaves is limited and existing leaves show<br />

symptoms <strong>of</strong> premature aging (Listowski and Jackowska<br />

1965). <strong>The</strong> time course <strong>of</strong> the main spring flowering period<br />

may vary in different years, partly due to differences in<br />

microclimate, such as the amount <strong>of</strong> sunshine and soil temperature<br />

(von H<strong>of</strong>sten 1954; Sterk and Luteijn 1984). <strong>The</strong><br />

number <strong>of</strong> times the inflorescences open and close, the<br />

length <strong>of</strong> time that the inflorescences remain open each day,<br />

and the length <strong>of</strong> time that the inflorescences remain closed<br />

before opening into mature heads, vary with time <strong>of</strong> year<br />

(Gray et al. 1973).<br />

<strong>The</strong> development <strong>of</strong> buds requires approximately 1 wk<br />

(Solbrig 1971). A scape is formed between the base <strong>of</strong><br />

the bud and the tip <strong>of</strong> the shoot in about 48 h (Solbrig 1971).<br />

On average, inflorescences open during 2 or 3 successive<br />

days, after which they remain closed until the seeds mature<br />

(Longyear 1918; Gray et al. 1973). <strong>The</strong> scape and the<br />

inflorescence flatten to the ground and, after a couple <strong>of</strong><br />

days, the scape straightens and the involucral bracts surrounding<br />

the closed inflorescence open to reveal seeds<br />

(Solbrig 1971). <strong>The</strong> time required from the first day <strong>of</strong><br />

blooming until the seeds ripen and the bracts open to release<br />

them, is about 9–12 d (Longyear 1918; Beach 1939; Gray<br />

et al. 1973).<br />

A study in Japan showed that at low temperatures, inflorescences<br />

opened in response to increasing temperature<br />

(thermonasty), whereas at higher temperatures, they opened<br />

in response to light (photonasty) (Tanaka et al. 1988). <strong>The</strong><br />

minimum temperature for photonastic opening was 13°C<br />

and inflorescences remained open for 13–14 h (Tanaka et al.<br />

1988). At temperatures <strong>of</strong> 13–18°C, plants were in full<br />

bloom and this was most favourable for nectar secretion,<br />

pollen production and bee activity (Kremer 1950). In<br />

Michigan, USA, inflorescences were reported to close when<br />

the temperature was over 21°C or during adverse weather,<br />

and could remain closed for several days and then re-open<br />

when climatic conditions were favourable (Kremer 1950).<br />

Once closed, however, they did not open again on the same<br />

day (Kremer 1950).<br />

Seeds produced in the spring during the peak flowering<br />

period mostly emerged that same spring or did not emerge<br />

at all (Collins 2000). However, seeds produced at other<br />

times during the year produced seedlings throughout the<br />

year. Seedlings produced in the fall produced seeds in the<br />

spring <strong>of</strong> the following year. Chepil (1946) found that<br />

seedlings emerged in most months <strong>of</strong> the year in Canada and<br />

for up to 4 yr after sowing. Collins (2000) collected ripe,<br />

viable seeds from a single population on the University <strong>of</strong><br />

Western Ontario campus, London, ON, on the following<br />

dates in 1999: 1, 17, 27 May; 10 June; 20 August; 14, 21<br />

September; 4, 20 October; 5, 22 November; and 13<br />

December. At least 58% <strong>of</strong> the seeds collected on each date<br />

germinated. P. Cavers (personal communication, University<br />

<strong>of</strong> Western Ontario, London, ON) has collected ripe seeds in<br />

every month <strong>of</strong> the year, but not every month in a single<br />

year. He concluded that if there is a January or February<br />

thaw that lasts for at least a week, then flowering and seed<br />

production can occur.


836 CANADIAN JOURNAL OF PLANT SCIENCE<br />

<strong>The</strong> survival and regeneration <strong>of</strong> root fragments vary seasonally<br />

(Mann and Cavers 1979). Minimum survival <strong>of</strong><br />

fragments occurred at the time <strong>of</strong> maximum flowering <strong>of</strong> the<br />

source plants and maximum survival <strong>of</strong> fragments occurred<br />

in the second growing season (Mann and Cavers 1979).<br />

(e) Mycorrhiza. <strong>Taraxacum</strong> <strong>of</strong>ficinale forms mycorrhizal<br />

associations (Truszkowska 1951; Hawker et al. 1957). Two<br />

vesicular-arbuscular mycorrhizal fungi, Glomus mosseae<br />

(Nicol. & Gerd.) (Gange et al. 1994) and Pythium ultimum<br />

Trow. (Hawker et al. 1957), have been reported on T. <strong>of</strong>ficinale.<br />

Infection by G. mosseae conferred some degree <strong>of</strong><br />

resistance in T. <strong>of</strong>ficinale roots to larvae <strong>of</strong> the black vine<br />

weevil Otiorhynchus sulcatus (Fab.) (Gange et al 1994).<br />

<strong>The</strong>re have been some recent studies on the mycorrhizal<br />

interactions <strong>of</strong> T. <strong>of</strong>ficinale, including the effect <strong>of</strong> elevated<br />

CO 2 levels on mycorrhizal function (Staddon et al. 1999);<br />

the effect <strong>of</strong> non-host and host plants on mycorrhizal colonization<br />

(Fontenla et al. 1999); and the effect <strong>of</strong> T. <strong>of</strong>ficinale<br />

on mycorrhiza inoculum potential, soil aggregation and<br />

yield <strong>of</strong> maize (Kabir and Koide 2000).<br />

8. Reproduction<br />

(a) Floral <strong>biology</strong>. As T. <strong>of</strong>ficinale is an apomict (the embryo<br />

develops without fertilization) and a triploid <strong>of</strong> hybrid origin,<br />

most pollen grains are abortive and sterile, and cannot form<br />

pollen tubes (Solbrig 1971; Jenniskens 1984). Generally, in<br />

the Asteraceae, ligulate or ray-florets are sterile, and tubular<br />

or disc-florets are fertile. However, in T. <strong>of</strong>ficinale, there is<br />

no distinction between ray- and disc-florets, either in appearance<br />

or function, with all florets being ligulate and equally<br />

fertile (Roberts 1936). <strong>The</strong> ligulate florets are surrounded by<br />

inner and outer involucral bracts that close at night, in overcast<br />

weather, when the relative humidity is above 97% or<br />

when the temperature is less than 9.4°C. Opening <strong>of</strong> the<br />

inflorescences is inhibited by rain and accelerated by high<br />

light intensity (Percival 1955; Jenniskens et al. 1984).<br />

In the Peace River region <strong>of</strong> Alberta, Szabo (1984) found<br />

an average daily production <strong>of</strong> 59.2 inflorescences m –2 ,<br />

which is equivalent to 592 700 inflorescences ha –1 d –1 and,<br />

over a 25-d blooming period, represented a potential production<br />

<strong>of</strong> 14 792 500 inflorescences ha –1 . On a sunny day,<br />

inflorescences opened between 0800 and 0900, reached a<br />

peak at 1100 to 1200 and closed gradually from 1500 to<br />

2100; but the whole period was shorter on dull days since<br />

high light intensity accelerates inflorescence opening<br />

(Percival 1955, Szabo 1984). A UK study found that T.<br />

<strong>of</strong>ficinale presented its pollen from 0900 to 1500, with the<br />

peak period from 1000 to 1100 (Percival 1955). Most inflorescences<br />

(89%) opened for 2 consecutive days, some (7%)<br />

for 1 d and some (4%) for 3 d (Szabo 1984). Quantity and<br />

concentration <strong>of</strong> nectar were significantly higher in inflorescences<br />

2 d old than in those 1 d old (Szabo 1984). Larger<br />

inflorescences produced more nectar, and the nectar-sugar<br />

concentration and sugar value increased with increasing<br />

temperature (Szabo 1984). High nectar-foraging activity by<br />

honeybees coincided with peak nectar-sugar production<br />

(Szabo 1984), and anthers dehisced over a period <strong>of</strong> 1–7 d<br />

(Percival 1955).<br />

(b) Seed production and dispersal. Although stamens<br />

and pistils are present and pollen is produced regularly,<br />

the seed <strong>of</strong> T. <strong>of</strong>ficinale develops without fertilization<br />

(Roberts 1936). Originally, it was thought that<br />

seeds were primarily produced by allogamy, and insects<br />

such as honeybees and flies were pollinators (Longyear<br />

1918). However, it has been suggested by UK investigators<br />

that insect visitors, attracted by the bright yellow<br />

inflorescences, may be needed to trigger seed set (Williams<br />

et al. 1996). In a heavily infested area in Canada, the<br />

average number <strong>of</strong> seeds produced by T. <strong>of</strong>ficinale was<br />

60 000 m –2 , equivalent to about 600 000 000 seeds ha –1<br />

(Roberts 1936). Under near optimal conditions, the number<br />

<strong>of</strong> inflorescences/plant ranged from 48 to 146, with an<br />

average <strong>of</strong> 93, while the number <strong>of</strong> seeds/inflorescence<br />

ranged from 130 to 412, with an average <strong>of</strong> 252 (Roberts<br />

1936). This provides an average <strong>of</strong> 23 436 seeds/plant<br />

(Roberts 1936).<br />

In UK studies on the reproductive success <strong>of</strong> T. <strong>of</strong>ficinale,<br />

Bostock and Benton (1979) found that <strong>of</strong> 185.5 ovules<br />

produced/inflorescence, 181.7 seeds were produced, and<br />

178.1 were dispersed. As well, an average <strong>of</strong> 12.2 inflorescences/plant<br />

were observed, resulting in approximately<br />

2170 seeds/plant being produced during the growing<br />

season. Ford (1981b) found that the number <strong>of</strong> inflorescences/plant,<br />

number <strong>of</strong> seeds/inflorescence and, therefore,<br />

the number <strong>of</strong> seeds/plant varied with the habitat in which<br />

<strong>Taraxacum</strong> agamospecies were found. <strong>The</strong> number <strong>of</strong> inflorescences/plant<br />

was 7.7 for plants on denuded roadsides, 1.7<br />

for plants on non-denuded roadsides, and only 0.6 for plants<br />

in upland sites. Similarly, the number <strong>of</strong> seeds/inflorescence<br />

was 151 for plants growing in denuded roadside sites, as<br />

compared to 119 in non-denuded roadside sites, and only 62<br />

in upland sites. Similarly, a US study found that the number<br />

<strong>of</strong> inflorescences/plant and florets/inflorescence depended<br />

on the size and vigour <strong>of</strong> the plant (Longyear 1918). Small<br />

stunted plants growing in dry soil may produce only a single<br />

inflorescence with 30 florets/inflorescence; while large<br />

clumps <strong>of</strong> plants along roadsides may produce 50 or more<br />

inflorescences at once with more than 200 florets/inflorescence<br />

(Longyear 1918).<br />

After flowering, T. <strong>of</strong>ficinale scapes elongate significantly,<br />

allowing enhanced wind dispersal <strong>of</strong> seeds (Radosevich<br />

and Holt 1984). <strong>The</strong> seeds have pappi that further aid in dispersal<br />

by wind (Lovell and Rowan 1991). <strong>The</strong> seed settling<br />

velocity may be a useful surrogate for the measurement <strong>of</strong><br />

dispersal ability (Andersen 1992) and the average settling<br />

velocity <strong>of</strong> seed-pappus units <strong>of</strong> T. <strong>of</strong>ficinale is 2.37 km h –1<br />

(Andersen 1993). Sheldon and Burrows (1973) found that<br />

the distance travelled by seed-pappus units <strong>of</strong> T. <strong>of</strong>ficinale<br />

increased with increasing wind speed. Wind speeds <strong>of</strong> 5.47,<br />

10.94, and 16.41 km h –1 resulted in distances travelled <strong>of</strong><br />

0.76, 1.52, and 2.27 m, respectively. Von H<strong>of</strong>sten (1954)<br />

estimated the dissemination distance <strong>of</strong> seeds was 200–500<br />

m. Seeds are also dispersed in the excreta <strong>of</strong> animals such as<br />

cattle, horses and birds (Salisbury 1961), and by water,<br />

especially via irrigation ditches (Salisbury 1961;<br />

Radosevich and Holt 1984). Seeds can survive in water for<br />

up to 9 months (Comes et al. 1978).


Collins (2000) found that the mean mass (mg) per seed in<br />

the UWO collection ranged from 0.33 mg in an August collection<br />

to 0.68 mg in a late October collection. At the peak<br />

<strong>of</strong> flowering in May, it ranged between 0.43 and 0.49 mg.<br />

<strong>The</strong> seeds produced in late October and early November<br />

were significantly (P = 0.05) heavier than those produced at<br />

other times <strong>of</strong> the year. UK reports <strong>of</strong> seed weights vary,<br />

with Salisbury (1961) stating an average weight <strong>of</strong> 0.8 mg,<br />

Bostock (1978) reporting an average seed weight <strong>of</strong> 0.583<br />

mg, while Sheldon (1974) reported the average seed<br />

weighed 0.0549 mg; one-tenth as much as in any other<br />

report. Also, the average seed was reported as 10.25 mm in<br />

length, with a pappus diameter is 6.94 mm (Sheldon 1974).<br />

(c) Seed banks, seed viability and germination. Very large populations<br />

<strong>of</strong> T. <strong>of</strong>ficinale seeds can be found in soil. For example,<br />

in the UK, Champness and Morris (1948) found 1 575 000<br />

seeds ha –1 in the top 13 cm <strong>of</strong> soil in a grassland area, and<br />

2 350 000 seeds ha –1 in the top 18 cm <strong>of</strong> an arable field.<br />

At least 7 d must elapse after the opening <strong>of</strong> the inflorescence<br />

before most seeds <strong>of</strong> T. <strong>of</strong>ficinale are mature enough<br />

to germinate (Longyear 1918). <strong>The</strong>refore, if all inflorescences,<br />

including those that have closed to ripen the seeds,<br />

are removed from the plant (e.g., by mowing), the germination<br />

<strong>of</strong> seeds from the dried inflorescences that have ripened<br />

after cutting is only 13% (Longyear 1918; Roberts 1936).<br />

Fully mature seeds <strong>of</strong> T. <strong>of</strong>ficinale lack primary dormancy<br />

and are able to germinate almost as soon as they leave the<br />

plant (Longyear 1918; Martinková and Honĕk 1997).<br />

However, the proximity <strong>of</strong> the seeds to each other influences<br />

germination. In a US study, seeds placed singly or in groups<br />

<strong>of</strong> 5, 10 or 25 had germination percentages <strong>of</strong> 68, 64, 54 and<br />

41%, respectively. This significant decrease in germination<br />

with increasing density may be a population-regulating<br />

mechanism (Linhart 1976).<br />

<strong>The</strong> germination capacity <strong>of</strong> T. <strong>of</strong>ficinale seeds is generally<br />

80–90% (Falkowski et al. 1989), and Martinková and<br />

Honĕk (1997) reported 94% germination on moist filter<br />

paper, 28 d after collection. Most seeds germinate within<br />

1.5 mo after dispersal (Ogawa 1978). However, von H<strong>of</strong>sten<br />

[quoted by King (1966)] estimated that, <strong>of</strong> 10 000–20 000<br />

seeds m –2 dispersed into a meadow, only 50–125 would<br />

establish successfully. Germination is impaired after passage<br />

through the digestive tracts <strong>of</strong> cattle, with germination<br />

<strong>of</strong> 52%, 31% and 22% after retention in faeces for 5 h, 24 h<br />

and 48 h, respectively (Falkowski et al. 1989, 1990).<br />

Germination is also influenced by individual seed weight<br />

(Tweney and Mogie 1999). <strong>The</strong>re is variation in the weight<br />

<strong>of</strong> seeds produced in a single inflorescence and the heavier<br />

seeds have a greater probability <strong>of</strong> germination (Tweney<br />

and Mogie 1999).<br />

Seeds <strong>of</strong> T. <strong>of</strong>ficinale germinate over a wide range <strong>of</strong> temperatures,<br />

from 5–35°C (Mezynski and Cole 1974;<br />

Washitani 1984), with less germination at higher temperatures<br />

(Martinková and Honĕk 1997). Most reports indicate<br />

that seeds <strong>of</strong> T. <strong>of</strong>ficinale germinate best under alternating<br />

temperatures and light. Collins (2000) found 85–94% <strong>of</strong><br />

seeds, from two populations from London, ON, germinated<br />

under the following regimes: 15°C/5°C with 9 h light,<br />

STEWART-WADE ET AL — TARAXACUM OFFICINALE G. H. WEBER EX WIGGERS 837<br />

25°C/10°C with 14 h light, 35°C/20°C with 15 h light and<br />

25°C/10°C in total darkness. However, other temperature<br />

regimes in total darkness led to reduced germination, with<br />

only 75% at 35°C/20°C and 43% at 15°C/5°C. Cross (1931)<br />

found 75–76% <strong>of</strong> seeds, collected from Ottawa, ON, germinated<br />

in alternating temperatures <strong>of</strong> 30°C/20°C, while only<br />

60–65% germinated at a constant temperature <strong>of</strong> 18–20°C.<br />

Mezynski and Cole (1974) reported maximum germination<br />

<strong>of</strong> fresh seeds, collected from Maryland, USA, at an alternating<br />

temperature <strong>of</strong> 20°C for 16 h and 10°C for 8 h (while<br />

seeds stored for 30 d germinated best at 20°C/15°C).<br />

Maguire and Overland (1959) found that 92% <strong>of</strong> seeds, collected<br />

from Washington State, USA, germinated at alternating<br />

temperatures (30°C/20°C) in alternating light and<br />

darkness, but when kept in darkness, there was only 72%<br />

germination. Also, at a constant temperature <strong>of</strong> 15°C in<br />

dark, only 4% germination was recorded, but when alternating<br />

light and dark was added to the same constant temperature,<br />

96% germination was observed. Two British studies<br />

(Thompson 1989; Williams 1983) reported similar results.<br />

Seed germination was greater, faster and more uniform in<br />

light than in dark (Isselstein 1992; Letchamo and Gosselin<br />

1996). In a Swedish study, Noronha et al. (1997) used cold,<br />

dark stratification to show that seeds <strong>of</strong> T. <strong>of</strong>ficinale have an<br />

inducible light requirement for germination. Ecologically,<br />

this inducible light requirement is important for preventing<br />

the germination <strong>of</strong> buried seeds in conditions unfavourable<br />

to seedling development (Noronha et al. 1997).<br />

<strong>The</strong>re are varying reports <strong>of</strong> the viability <strong>of</strong> seeds <strong>of</strong> T.<br />

<strong>of</strong>ficinale after storage. Following burial <strong>of</strong> T. <strong>of</strong>ficinale<br />

seeds for varying time periods, a small number <strong>of</strong> seeds<br />

(1%) were still viable for up to 9 yr after burial (Burnside<br />

et al. 1996). Typically, 1–6% <strong>of</strong> T. <strong>of</strong>ficinale seeds remained<br />

viable 4 yr after burial in soil, and soil storage for 5 yr or<br />

longer resulted in little detectable viability (Chepil 1946;<br />

Roberts and Neilson 1981). Seeds remained viable longer in<br />

the soil (up to 20–30 yr) than when dry-stored indoors (von<br />

H<strong>of</strong>sten 1954). Depth <strong>of</strong> seed burial was negatively correlated<br />

to establishment success (Bostock and Benton 1983).<br />

Storage <strong>of</strong> seeds at room temperature decreased seed viability,<br />

compared to storage at 4°C (Letchamo and Gosselin<br />

1996). Mezynski and Cole (1974) reported that percentage<br />

germination decreased during 30 d storage <strong>of</strong> seeds at –15°C<br />

or 22°C, compared to fresh seeds. Al-Hially (1991) found<br />

that the rate <strong>of</strong> germination increased after 90 d storage.<br />

<strong>The</strong> position <strong>of</strong> T. <strong>of</strong>ficinale seeds affects germination,<br />

with greatest germination occurring when there is good contact<br />

between the substrate and the scar <strong>of</strong> attachment <strong>of</strong> the<br />

seed, allowing water uptake (Sheldon 1974). <strong>The</strong> hygroscopic<br />

pappus can move to alter the seed position as humidity<br />

changes and, in high humidity, the pappus closes<br />

hygroscopically (Sheldon 1974). <strong>The</strong> backward-pointing<br />

hairs and teeth <strong>of</strong> the seed may play a role in firmly anchoring<br />

it during seedling establishment (Sheldon 1974).<br />

Increasing soil compaction decreases seed germination,<br />

radicle penetration and seedling establishment, partly due to<br />

removal <strong>of</strong> microsites (Sheldon 1974).<br />

<strong>The</strong> endosperm <strong>of</strong> T. <strong>of</strong>ficinale is cellular and the uninucleate<br />

cells have meagre cytoplasm. At the globular stage <strong>of</strong>


838 CANADIAN JOURNAL OF PLANT SCIENCE<br />

the embryo, the endosperm shows endospermous haustoria<br />

at its middle and chalazal portions, which perhaps act to<br />

draw nourishment from the adjoining tissue to cope with the<br />

increasing nutritional need <strong>of</strong> the growing embryo, leading<br />

to increased seed set (Sood and Sood 1992).<br />

(d) Vegetative reproduction. <strong>The</strong> regenerative capacity <strong>of</strong> T.<br />

<strong>of</strong>ficinale roots has been examined by Naylor (1941) and<br />

Khan (1973). Vegetative propagule weight was positively<br />

correlated to establishment success (Bostock and Benton<br />

1983). Root segments that were 1.25 mm in diameter had to<br />

be at least 6–10 mm in length to regenerate, and segments as<br />

short as 2 mm could regenerate only if they were more than<br />

4 mm in diameter (Warmke and Warmke 1950). <strong>The</strong> minimum<br />

length for shoot regeneration was 1.5 mm and for root<br />

regeneration 2 mm (Khan 1969). More shoots and roots<br />

regenerated from longer root segments than from shorter<br />

ones (Khan 1969). Regenerative capacity decreased as fragment<br />

volume decreased (down the length <strong>of</strong> the root) (Mann<br />

and Cavers 1979). Planting cuttings in an inverted or horizontal<br />

plane, rather than the normal planting orientation<br />

resulted in a decline in regeneration and survival, and an<br />

increase in regeneration time (Mann and Cavers 1979).<br />

Planting depth did not consistently influence regenerative<br />

capacity or timing (Mann and Cavers 1979). Root fragments<br />

were highly vigorous and capable <strong>of</strong> producing new plants<br />

even when covered by 5–10 cm <strong>of</strong> soil (Falkowski et al.<br />

1989, 1990). This may be due to their high sugar content<br />

(~11% <strong>of</strong> dry matter) (Falkowski et al. 1990).<br />

9. Hybrids<br />

Although sexual reproduction is rare or absent in North<br />

America (Solbrig and Simpson 1974), natural hybrids have<br />

been reported to occur between T. <strong>of</strong>ficinale and T. platycarpum<br />

in Japan (Watanabe et al. 1997). More than 90% <strong>of</strong><br />

the plants classified as T. <strong>of</strong>ficinale had alleles introduced<br />

from T. platycarpum and were morphologically intermediate<br />

between the two species with respect to the number <strong>of</strong><br />

marginal hairs in the outer involucral bract, the length <strong>of</strong><br />

corniculate appendages on the outer involucral bract, and<br />

the size <strong>of</strong> the seed (Watanabe et al. 1997).<br />

10. Population Dynamics<br />

In a study in West Virginia, the finite rate <strong>of</strong> increase for an<br />

entire population was largest in fall and declined throughout<br />

the rest <strong>of</strong> the year (Vavrek et al. 1997). <strong>The</strong> age <strong>of</strong> T. <strong>of</strong>ficinale<br />

plants can be determined by counting the annual<br />

growth-rings in the principal roots and plants that are 10–13<br />

yr old are common (Roberts 1936; von H<strong>of</strong>sten 1954).<br />

Reader (1991a) found that a significantly greater number <strong>of</strong><br />

seedlings emerged on ridges than in hollows in vegetated<br />

plots, but the experimental removal <strong>of</strong> ground cover<br />

increased seedling emergence more in hollows than on<br />

ridges. Genetically variable individuals <strong>of</strong> T. <strong>of</strong>ficinale,<br />

known as biotypes, have been identified by their polymorphic<br />

isozyme patterns. Some biotypes <strong>of</strong> T. <strong>of</strong>ficinale are<br />

able to outcompete others under certain conditions (Solbrig<br />

and Simpson 1977). For example, two biotypes grown in<br />

garden plots were left undisturbed, or subjected to artificial<br />

disturbance by defoliation or removal <strong>of</strong> the entire plant by<br />

tilling (Solbrig and Simpson 1977). In undisturbed plots,<br />

biotype D accounted for 85% <strong>of</strong> the plants whereas in disturbed<br />

plots, biotype D only accounted for 7–9% <strong>of</strong> the<br />

plants (Solbrig and Simpson 1977). <strong>The</strong>se population differences<br />

were a direct response to differences in disturbance<br />

(Solbrig and Simpson 1974).<br />

<strong>The</strong> strong competitive ability <strong>of</strong> T. <strong>of</strong>ficinale is due to<br />

several properties, including the tap root, which penetrates<br />

more deeply to reach moisture and nutrients than roots <strong>of</strong><br />

most other plants (Jackson 1982). In addition, plants release<br />

ethylene, which can inhibit the growth <strong>of</strong> other plants nearby<br />

(Dwyer 1977; Jackson 1982). <strong>The</strong> variable growth habit<br />

<strong>of</strong> T. <strong>of</strong>ficinale, from thick, wide-spreading rosettes <strong>of</strong><br />

leaves that suppress plants, to erect elongated leaves among<br />

denser growth, is <strong>of</strong> competitive advantage (Jackson 1982).<br />

Developing seed heads droop towards the ground where<br />

they are protected and seeds are formed without the need for<br />

fertilization (Jackson 1982). Finally, each inflorescence<br />

releases hundreds <strong>of</strong> seeds, which are effectively wind-dispersed<br />

due to the pappi (Jackson 1982). Seed burial experiments<br />

established that seedlings <strong>of</strong> T. <strong>of</strong>ficinale emerge<br />

nearly year-round, peaking in May and again in September,<br />

with this pattern continuing for up to 3 yr after planting<br />

(Chepil 1946; Roberts and Neilson 1981).<br />

<strong>The</strong> effect <strong>of</strong> asexual reproduction is to produce <strong>of</strong>fspring<br />

that are genetically identical to the parent plant (Solbrig<br />

1971). <strong>The</strong> ability <strong>of</strong> dandelion to adapt to different ecological<br />

niches suggests that T. <strong>of</strong>ficinale has a general-purpose<br />

genotype as well as phenotypic plasticity, with a wide environmental<br />

tolerance and some adaptation to a wide range <strong>of</strong><br />

biotic and abiotic factors (Solbrig 1971; Baker 1991).<br />

<strong>Taraxacum</strong> <strong>of</strong>ficinale can be successful as a colonizer and as<br />

an inhabitant <strong>of</strong> closed grassland (Baker 1991). Solbrig<br />

(1971) described genotypes favouring the colonizing phase<br />

as “r-selected”, emphasizing seed production, and genotypes<br />

favouring the inhabiting phase as “K-selected”,<br />

emphasizing competitive ability under different environmental<br />

conditions. <strong>Taraxacum</strong> <strong>of</strong>ficinale plants are basically<br />

r-strategists (Gadgil and Solbrig 1972). However, Ford<br />

(1981b) suggested that the measures <strong>of</strong> r and K characteristics<br />

are dependent upon the sites in which these characteristics<br />

are measured.<br />

11. Response to Herbicides and Other Chemicals<br />

Phenoxyacetic acid herbicides, such as 2,4-D and mecoprop,<br />

or the benzoic acid dicamba, or combination products<br />

<strong>of</strong> all three such as “Killex”, are used for chemical control<br />

<strong>of</strong> T. <strong>of</strong>ficinale in turf (Anonymous 1997). As early as 1944,<br />

experiments showed that 2,4-D killed T. <strong>of</strong>ficinale in lawns<br />

within 3 wk <strong>of</strong> application, leaving the grass unharmed<br />

(Peterson 1967). In Ontario, optimum control was obtained<br />

with 2,4-D applications in spring in combination with spudding<br />

(root cutting and shoot removal) (Mann 1981).<br />

<strong>Taraxacum</strong> <strong>of</strong>ficinale has been classified as intermediate in<br />

susceptibility to 2,4-D, due to tolerance by older or established<br />

plants, but it is susceptible in the seedling stage,<br />

based on the sorption capacity <strong>of</strong> the cuticle membrane<br />

(Baker and Bukovac 1971). <strong>The</strong> growth-regulating proper-


ties <strong>of</strong> 2,4-D are thought to cause the major herbicidal<br />

effects, including cell elongation, epinasty and hypertrophy,<br />

but the precise mode <strong>of</strong> action <strong>of</strong> 2,4-D is still unknown<br />

(Sterling and Hall 1997). <strong>The</strong> selectivity <strong>of</strong> 2,4-D toward<br />

dicotyledonous plants is based on differences in plant morphology,<br />

and the rate <strong>of</strong> herbicide translocation and metabolism<br />

between mono- and dicotyledonous plants (Hagin<br />

et al. 1970; Devine et al. 1993).<br />

In creeping red fescue grown for seed in Alberta, various<br />

mixtures <strong>of</strong> herbicides were used to control T. <strong>of</strong>ficinale<br />

(Darwent and Lefkovitch 1995). In 94–100% <strong>of</strong> trials,<br />

greater than 80% control (percent reduction in biomass) <strong>of</strong><br />

T. <strong>of</strong>ficinale was achieved by applying metsulfuron at 4.5 g<br />

ha –1 , either alone or in combination with each <strong>of</strong> the<br />

graminicides sethoxydim (at 500 g ha –1 ) or fluazifop-P<br />

(at 250 g ha –1 ). A combination treatment <strong>of</strong> dicamba (at<br />

280 g ha –1 ) and 2,4-D (at 560 g ha –1 ) provided greater than<br />

80% control <strong>of</strong> T. <strong>of</strong>ficinale in only 25% <strong>of</strong> trials. However,<br />

tank-mixing sethoxydim (at 500 g ha –1 ) or fluazifop-P (at<br />

250 g ha –1 ) improved the efficacy <strong>of</strong> the dicamba/2,4-D<br />

combination, resulting in greater than 80% control <strong>of</strong> T.<br />

<strong>of</strong>ficinale in 62% and 71% <strong>of</strong> trials, respectively (Darwent<br />

and Lefkovitch 1995). <strong>The</strong> enhanced control from the addition<br />

<strong>of</strong> the graminicides to the dicamba plus 2,4-D combination<br />

is probably due to the effect <strong>of</strong> surfactants that were<br />

added to the tank-mix.<br />

Several herbicides are effective at controlling T. <strong>of</strong>ficinale<br />

in alfalfa or other forage legumes, yet they are not<br />

registered or recommended in Canada. Moyer et al.<br />

(1990) reported that annual applications <strong>of</strong> hexazinone<br />

(1.0 kg ha –1 ) and chlorsulfuron (0.01 kg ha –1 ) maintained<br />

almost complete control <strong>of</strong> T. <strong>of</strong>ficinale in alfalfa (Medicago<br />

sativa L.) and sainfoin (Onobrychis viciaefolia Scop.)<br />

in Alberta, where control was measured as the reduction<br />

in dry matter yield. In a study in Saskatchewan<br />

by Waddington (1980), the herbicides dichlobenil, terbacil,<br />

and simazine were each applied annually over 3 or 4 yr<br />

for control <strong>of</strong> T. <strong>of</strong>ficinale. Dichlobenil applied at<br />

2.2 kg ha –1 resulted in 100% reduction in the T. <strong>of</strong>ficinale<br />

population by spring <strong>of</strong> the fifth growing season. Similarly,<br />

terbacil applied at 1.1 kg ha –1 resulted in 96% reduction<br />

in the T. <strong>of</strong>ficinale population by the spring <strong>of</strong> the fifth<br />

year. However, simazine was less effective when applied<br />

at 0.8 kg ha –1 and 1.7 kg ha –1 and resulted in only 37 and<br />

71% reduction <strong>of</strong> T. <strong>of</strong>ficinale, respectively. A US study<br />

investigated the efficacy <strong>of</strong> buthidazole, metribuzin,<br />

simazine and 2,4-DB at various rates for the control <strong>of</strong> T.<br />

<strong>of</strong>ficinale (Sheaffer and Wyse 1982). Most herbicides temporarily<br />

reduced T. <strong>of</strong>ficinale populations, but only buthidazole<br />

continued to reduce populations in the year following<br />

application. However, control <strong>of</strong> T. <strong>of</strong>ficinale did not consistently<br />

increase alfalfa yield, and so the use <strong>of</strong> herbicides<br />

to control T. <strong>of</strong>ficinale in alfalfa cannot be recommended<br />

(Sheaffer and Wyse 1982).<br />

In other <strong>Canadian</strong> studies, T. <strong>of</strong>ficinale plants were tolerant<br />

to ethalfluralin applied at 1.1 kg a.i. ha –1 and incorporated<br />

into the soil prior to planting T. <strong>of</strong>ficinale as a crop for<br />

salad use in Québec (Michaud et al. 1993). Paraquat did not<br />

control T. <strong>of</strong>ficinale during fallow in the southern <strong>Canadian</strong><br />

STEWART-WADE ET AL — TARAXACUM OFFICINALE G. H. WEBER EX WIGGERS 839<br />

prairies because it has only contact action and will not affect<br />

the root (Blackshaw and Lindwall 1995).<br />

Maleic hydrazide has been used to control T. <strong>of</strong>ficinale in<br />

apple orchards in the USA. Plant numbers were reduced<br />

from 5.1–10.1 individuals m –2 in control plots to 2.6 individuals<br />

m –2 when maleic hydrazide was applied at a rate <strong>of</strong><br />

6.7 kg ha –1 . Similar results were found for both spring and<br />

fall applications <strong>of</strong> the herbicide (Miller and Eldridge 1989).<br />

Mowing just before treatment with maleic hydrazide may<br />

have decreased T. <strong>of</strong>ficinale control (Miller and Eldridge<br />

1989). In another US study, <strong>Taraxacum</strong> <strong>of</strong>ficinale was controlled<br />

by quinclorac at 0.84 kg ha –1 and by a combination<br />

<strong>of</strong> clopyralid plus triclopyr at 0.16 kg ha –1 plus 0.47 kg ha –1<br />

respectively (Neal 1990).<br />

In a study in Virginia, USA, Chandran et al. (1998) found<br />

that a spring application <strong>of</strong> isoxaben at a rate <strong>of</strong> 0.56 kg ha –1<br />

in turfgrass caused 100% control <strong>of</strong> T. <strong>of</strong>ficinale 1 mo after<br />

application, where control was measured as emergence<br />

compared to untreated plots. However, control <strong>of</strong> T. <strong>of</strong>ficinale<br />

dropped to 62%, 1 yr after application. A fall application<br />

<strong>of</strong> isoxaben at 0.56 kg ha –1 resulted in 83% control <strong>of</strong><br />

T. <strong>of</strong>ficinale after 1 yr. Results were similar for isoxaben<br />

applied at 0.84 kg ha –1 or 1.12 kg ha –1 . Control <strong>of</strong> T. <strong>of</strong>ficinale<br />

in plots that received both spring and fall applications<br />

<strong>of</strong> isoxaben was similar to control <strong>of</strong> T. <strong>of</strong>ficinale in plots<br />

receiving only fall applications. A spring application <strong>of</strong> oxadiazon<br />

at 3.36 kg ha –1 resulted in 100% control <strong>of</strong> T. <strong>of</strong>ficinale<br />

1 mo later, but after 1 yr, T. <strong>of</strong>ficinale abundance was<br />

greater in these treated plots than in untreated plots. <strong>The</strong><br />

findings for fall applications <strong>of</strong> oxadizaon at this rate were<br />

similar, revealing that oxadiazon only provides short-term<br />

control <strong>of</strong> T. <strong>of</strong>ficinale (Chandran et al. 1998).<br />

Other chemicals have also been tested for their herbicidal<br />

efficacy on T. <strong>of</strong>ficinale. In laboratory experiments in the<br />

USA, allelopathic saponins from the roots <strong>of</strong> alfalfa had little<br />

effect on the germination <strong>of</strong> seeds or the growth <strong>of</strong><br />

seedlings <strong>of</strong> T. <strong>of</strong>ficinale (Waller et al. 1993). <strong>The</strong> herbicidal<br />

efficacy <strong>of</strong> corn gluten meal, a waste product from corn<br />

milling, has been tested on T. <strong>of</strong>ficinale and other <strong>weeds</strong><br />

(Quarles 1999). When applied at 324 g m –2 in greenhouse<br />

pot tests, corn gluten meal reduced survival <strong>of</strong> T. <strong>of</strong>ficinale<br />

by more than 75% by inhibiting root formation during germination.<br />

Under field conditions, corn gluten meal reduced<br />

the T. <strong>of</strong>ficinale population by about 90%, which was probably<br />

due to the combination <strong>of</strong> root inhibition and competition<br />

from Kentucky bluegrass (Quarles 1999).<br />

12. Response to Other Human Manipulations<br />

Integrated pest management strategies for T. <strong>of</strong>ficinale in<br />

turf include the selection <strong>of</strong> competitive turfgrass species,<br />

application <strong>of</strong> increased quantities <strong>of</strong> fertilizers, and<br />

mechanical control by mowing or removal. For example,<br />

studies in Ontario showed that Kentucky bluegrass was the<br />

least competitive <strong>of</strong> six turf species, perennial ryegrass was<br />

the most competitive and increased amounts <strong>of</strong> nitrogen fertilizer<br />

suppressed T. <strong>of</strong>ficinale in all turfgrass swards (Hall<br />

et al. 1992; Tripp 1997). Grass competition under frequent<br />

close mowing did not prevent T. <strong>of</strong>ficinale from surviving<br />

and spreading (Timmons 1950). Of four grasses tested,


840 CANADIAN JOURNAL OF PLANT SCIENCE<br />

native buffalograss was the most competitive with T. <strong>of</strong>ficinale<br />

(Timmons 1950). <strong>The</strong> size and average density <strong>of</strong> T.<br />

<strong>of</strong>ficinale plants can be reduced by decreasing the row spacing<br />

<strong>of</strong> grass crops (Darwent and Elliott 1979).<br />

Encroachment <strong>of</strong> T. <strong>of</strong>ficinale into turfgrass was greater<br />

in turf receiving limestone applications and tended to<br />

decrease with increasing phosphorus rates (Turner et al.<br />

1979). However, encroachment appeared to be more related<br />

to competition than the nutritional requirements <strong>of</strong> <strong>weeds</strong><br />

since encroachment tended to decrease as the yield <strong>of</strong> turfgrass<br />

clippings increased (Turner et al. 1979). Phosphorus<br />

levels had a greater impact on growth <strong>of</strong> T. <strong>of</strong>ficinale than<br />

pH, with an application <strong>of</strong> 84 kg superphosphate ha –1<br />

increasing the yield <strong>of</strong> T. <strong>of</strong>ficinale tenfold compared to no<br />

added superphosphate, while added nitrogen had no effect<br />

(Zaprzalka and Peters 1982). Root growth was more responsive<br />

to differences in phosphorus and pH than top growth<br />

(Zaprzalka and Peters 1982). Tilman et al. (1999) showed<br />

that interspecific competition can be modified by changes in<br />

resource supply rates. For example, T. <strong>of</strong>ficinale had a higher<br />

requirement for potassium and its biomass was more limited<br />

by potassium than any <strong>of</strong> five common grass species<br />

tested, suggesting that it is a poorer competitor for potassium<br />

than these grasses. Also, T. <strong>of</strong>ficinale density and abundance<br />

were positively correlated with potassium levels in its<br />

tissues (Tilman et al. 1999).<br />

<strong>Taraxacum</strong> <strong>of</strong>ficinale control was greater in plots<br />

<strong>of</strong> Kentucky bluegrass treated with 600 kg N ha –1 than<br />

when treated with 300 kg N ha –1 , even though both levels<br />

are very high (Johnson and Bowyer 1982). This supported<br />

the findings <strong>of</strong> Zahnley and Duley (1934) who found that<br />

after they had fertilized and produced a dense growth <strong>of</strong><br />

grass, T. <strong>of</strong>ficinale seedlings did not become established<br />

readily and growth was repressed by competition from the<br />

grass. Competition was further increased by cutting the<br />

grass at a greater height, which tended to shade the ground<br />

and retard the development <strong>of</strong> T. <strong>of</strong>ficinale (Zahnley and<br />

Duley 1934).<br />

Mechanical removal <strong>of</strong> T. <strong>of</strong>ficinale plants has been <strong>of</strong><br />

limited value, as the long taproot must be entirely removed.<br />

Even small pieces <strong>of</strong> root can propagate new plants<br />

(Warmke and Warmke 1950; Mann and Cavers 1979). In<br />

addition, debudding or defoliation <strong>of</strong> the plant can result in<br />

a shift <strong>of</strong> the shoot-root ratio, favouring root growth and<br />

exacerbating the problem (Letchamo and Gosselin 1995).<br />

Struik (1967) studied the reaction <strong>of</strong> T. <strong>of</strong>ficinale to different<br />

grassland management regimes; mown, heavily grazed,<br />

lightly grazed, and uncut. As the degree <strong>of</strong> defoliation<br />

increased, plant radius decreased, length <strong>of</strong> the longest leaf<br />

decreased, root length decreased, leaf number increased and<br />

plant form changed from upright to slanting and appressed.<br />

Percent cover with T. <strong>of</strong>ficinale was significantly higher in<br />

a long-term grazed treatment (Popolizio et al. 1994).<br />

<strong>Taraxacum</strong> <strong>of</strong>ficinale is able to rapidly replace a large quantity<br />

<strong>of</strong> leaves relative to other organs during short periods<br />

(every 30–50 d) between mowing (Sawada et al. 1982),<br />

partly due to increased light availability (von H<strong>of</strong>sten 1954).<br />

Cutting the scapes <strong>of</strong> T. <strong>of</strong>ficinale in bud or in flower resulted<br />

in the production <strong>of</strong> seeds that were non-viable, while<br />

cutting the scapes after the seeds had ripened resulted in<br />

91% seed germination (Gill 1938).<br />

Significantly higher chlorophyll content, and root and<br />

shoot growth were found under hydroponic culture <strong>of</strong> T.<br />

<strong>of</strong>ficinale (Letchamo and Gosselin 1995). Debudding the<br />

plants under hydroponic medium increased root yield by<br />

131% compared with the control (Letchamo and Gosselin<br />

1995).<br />

Occurrence <strong>of</strong> T. <strong>of</strong>ficinale is greater in crop rotation systems<br />

with a high frequency <strong>of</strong> broadleaf crops (four rotations<br />

with broadleaf crops in 3 <strong>of</strong> 4 yr) compared to a low<br />

broadleaf frequency <strong>of</strong> broadleaf crops (three rotations with<br />

broadleaf crops in 2 <strong>of</strong> 4 yr) (Stevenson and Johnston 1999).<br />

On the semi-arid <strong>Canadian</strong> prairies, T. <strong>of</strong>ficinale was present<br />

in all crop rotations examined; continuous winter wheat,<br />

winter wheat-fallow, winter wheat-spring canola, winter<br />

wheat-lentil or flax (Blackshaw et al. 1994). Densities were<br />

higher in minimum and zero-till treatments than in conventional<br />

till (Légère et al. 1993; Blackshaw et al. 1994).<br />

Tillage frequency has been shown to have an impact on<br />

germination and establishment <strong>of</strong> T. <strong>of</strong>ficinale. In spring<br />

wheat in clay soil in northern Alberta, higher densities <strong>of</strong> T.<br />

<strong>of</strong>ficinale were found under zero tillage systems than under<br />

other systems (Arshad et al. 1994). In eastern Canada, density<br />

was higher in alfalfa that had been seeded directly into<br />

grain stubble, as compared to conventionally-seeded alfalfa<br />

(Rioux 1994). In sweet corn, T. <strong>of</strong>ficinale emergence was<br />

not affected by tillage, probably because <strong>of</strong> the short time<br />

between seed dispersal and germination (Mohler and<br />

Calloway 1992). <strong>The</strong> presence <strong>of</strong> crown vetch as a living<br />

mulch reduced T. <strong>of</strong>ficinale numbers by 74% in no-tillage<br />

corn (Hartwig 1989). In the UK, the occurrence <strong>of</strong> T. <strong>of</strong>ficinale<br />

in plots sown with spring barley was inversely proportional<br />

to cultivation frequency. Plots that were never<br />

cultivated had a total <strong>of</strong> 196 T. <strong>of</strong>ficinale plants m –2 . Yearly<br />

cultivation resulted in 72 plants m –2 , quarterly cultivation<br />

resulted in 54 plants m –2 , and monthly cultivation resulted<br />

in 33 plants m –2 (Chancellor 1964).<br />

<strong>Taraxacum</strong> <strong>of</strong>ficinale can survive after tillage with a<br />

plough or disc, because <strong>of</strong> its ability to regenerate from root<br />

sections (von H<strong>of</strong>sten 1954). However, Falkowski et al.<br />

(1990) reported ploughing to be an effective method <strong>of</strong><br />

eliminating T. <strong>of</strong>ficinale because the lower parts <strong>of</strong> roots<br />

were less viable than the upper parts, which were buried by<br />

ploughing. Flame weeding in pear and apple orchards<br />

favours the growth <strong>of</strong> T. <strong>of</strong>ficinale (Ferrero et al. 1994).<br />

<strong>The</strong> timing and frequency <strong>of</strong> harvesting also influences<br />

the degree <strong>of</strong> dandelion infestation. Moyer et al. (1999)<br />

found that the growth-stage-based harvest times <strong>of</strong> alfalfa<br />

affected encroachment by T. <strong>of</strong>ficinale and the resultant<br />

alfalfa quality. For example, when alfalfa was harvested at<br />

the vegetative or prebud stage, it contained 25% T. <strong>of</strong>ficinale<br />

by weight, but when it was harvested at any other stage<br />

such as flowering, it contained


ther radiation, and a change in the rate <strong>of</strong> growth and development<br />

(Pozolotina 1996). <strong>The</strong> potential use <strong>of</strong> electromagnetic<br />

radiation in the form <strong>of</strong> microwaves has been studied<br />

for T. <strong>of</strong>ficinale control on railway tracks in Europe<br />

(Kunisch et al. 1992). Plants were killed by microwave<br />

treatment for 16 s, which increased the soil temperature by<br />

more than 40°C in controlled environments (Kunisch et al.<br />

1992).<br />

13. Response to Herbivory, Disease and Higher<br />

Plant Parasites<br />

Herbivory<br />

(a) Mammals, including both domestic and wild animals.<br />

Mammals, including rabbits, cats, chipmunks, ground squirrels,<br />

groundhogs (woodchucks), prairie dogs, pocket<br />

gophers, deer, moose, elk, black bears and grizzly bears, eat<br />

the leaves <strong>of</strong> T. <strong>of</strong>ficinale (Ellison and Aldous 1952; Powell<br />

1972; Angier 1980; Jackson 1982; Swihart 1990).<br />

Dandelion is an excellent pasture feed for dairy cattle,<br />

improving milk flow and quality (Jackson 1982). However,<br />

manure from cattle can contain viable seeds and, when<br />

applied to cropland, may serve as a source <strong>of</strong> introduction<br />

and dispersal (Mt. Pleasant and Schlather 1994). Domestic<br />

animals, such as goats and pigs, eat the seeds (Powell 1972),<br />

and sheep and geese have been used for biological control <strong>of</strong><br />

T. <strong>of</strong>ficinale, with sheep being more effective than geese in<br />

controlling the weed in Christmas tree plantations in North<br />

Carolina, USA. (Müller et al. 1999).<br />

(b) Birds and/or other vertebrates. <strong>Taraxacum</strong> <strong>of</strong>ficinale<br />

seeds are eaten by at least 12 songbirds native to Canada<br />

(Jackson 1982). Birds such as siskins, common house finches,<br />

goldfinches and sparrows eat the seeds (Longyear 1918;<br />

Angier 1980). Leaves, inflorescences and seed heads are<br />

eaten by chickens, ducks, geese, Canada geese, grouse, partridges,<br />

pheasants, prairie chickens, quail, ruffed grouse and<br />

sage grouse (Eckert et al. 1973; Angier 1980; Jackson<br />

1982). Seed predation by birds, ants and rodents reduced<br />

seed number and seedling emergence <strong>of</strong> T. <strong>of</strong>ficinale more<br />

where ground cover was dense (in hollows) than in less<br />

dense communities (on ridges) (Reader and Beisner 1991).<br />

Thus, ground cover can restrict seedling emergence by providing<br />

a habitat for seed predators (Reader 1991b).<br />

(c) Insects and Arachnids. Due to its early flowering and<br />

rich supply <strong>of</strong> nectar, T. <strong>of</strong>ficinale is a food source for many<br />

insects, including butterflies, bee flies, hawk moths and<br />

bumblebees in Canada (Jackson 1982). Judd (1971) collected<br />

152 species <strong>of</strong> insects in the Orders Collembola,<br />

Thysanoptera, Hemiptera, Homoptera, Coleoptera, Diptera<br />

and Hymenoptera from the inflorescences <strong>of</strong> T. <strong>of</strong>ficinale in<br />

Ontario.<br />

<strong>The</strong> cynipid wasp, Phanacis taraxaci (Ashmead), forms<br />

galls on the abaxial surfaces <strong>of</strong> maturing T. <strong>of</strong>ficinale leaves<br />

in Canada and the USA. <strong>The</strong>se galls influence the partitioning<br />

<strong>of</strong> photoassimilates by actively redirecting carbon<br />

resources from unattacked leaves (Paquette et al. 1993;<br />

Bagatto et al. 1996). <strong>The</strong> first record <strong>of</strong> European dandelion<br />

leaf-gall midge, Cystiphora taraxaci Kieffer, in north-cen-<br />

STEWART-WADE ET AL — TARAXACUM OFFICINALE G. H. WEBER EX WIGGERS 841<br />

tral Saskatchewan was by Peschken et al. (1993). This<br />

midge induces purple-red pustule galls on the upper surfaces<br />

<strong>of</strong> leaves (Neuer-Markmann and Beiderbeck 1990). T. <strong>of</strong>ficinale<br />

is also a host for the braconid Pholetesor ornigis<br />

(Weed), a parasitoid that attacks larvae <strong>of</strong> the leaf miner<br />

Phyllonorycter blancardella (Fabr.), which is a pest <strong>of</strong> apple<br />

in Canada (Hagley and Barber 1992).<br />

<strong>Taraxacum</strong> <strong>of</strong>ficinale also acts as a host for several aphid<br />

species. In Canada, Aphis knowltoni Hottes & Frison has<br />

been collected from roots <strong>of</strong> T. <strong>of</strong>ficinale (Wood-Baker<br />

1980), and Aphis taraxacicola (Börner) has been recorded<br />

on T. <strong>of</strong>ficinale in Japan (Sugimoto and Takahashi 1996). In<br />

the USA, T. <strong>of</strong>ficinale is a favourite secondary weed host <strong>of</strong><br />

the green peach aphid (Myzus persicae Sulzer) during the<br />

summer (Kaakeh and Hogmire 1991). In the UK, it is a natural<br />

host <strong>of</strong> the lettuce root aphid, Pemphigus bursarius (L.)<br />

(Gange and Brown 1991).<br />

In the USA, the weevil, Ceutorhynchus punctiger<br />

Gyllenhall, attacks T. <strong>of</strong>ficinale inflorescence buds, seeds<br />

and leaves (McAvoy et al. 1983). McAvoy et al. (1983) suggested<br />

that C. punctiger could be used as a biocontrol to<br />

reduce the viable seed population <strong>of</strong> T. <strong>of</strong>ficinale but host<br />

specificity and key mortality factors <strong>of</strong> the weevil must first<br />

be studied. Another weevil, Barypeithes pellucidus<br />

(Boheman), feeds lightly on T. <strong>of</strong>ficinale leaves but moderately<br />

on the epidermis <strong>of</strong> the scapes (Galford 1987). In laboratory<br />

experiments, the boll weevil, Anthonomus grandis<br />

Boheman, a pest <strong>of</strong> cotton, feeds and survives on T. <strong>of</strong>ficinale<br />

cuttings for 8–10 d by eating pollen and seed heads.<br />

<strong>The</strong>refore, feral boll weevils, emerging prior to cotton flowering,<br />

may initially survive on T. <strong>of</strong>ficinale plants and subsequently<br />

infest cotton crops in the USA (Haynes and Smith<br />

1992). <strong>The</strong> black vine weevil, Otiorhynchus sulcatus (Fab.),<br />

also feeds on T. <strong>of</strong>ficinale in Japan and the UK; although<br />

some resistance is conferred by mycorrhizal associations<br />

(Masaki et al. 1984; Gange et al. 1994).<br />

<strong>Taraxacum</strong> <strong>of</strong>ficinale is a host for many other insects in<br />

the USA. <strong>The</strong>se include several caterpillars, such as those <strong>of</strong><br />

the cabbage looper (Trichoplusia ni Hübner), the yellowstriped<br />

armyworm (Spodoptera ornithogalli) (Dussourd and<br />

Denno 1994), and the tiger moth (Diacrisia virginica Fabr.),<br />

which prefers to feed on T. <strong>of</strong>ficinale over grasses (Dethier<br />

1993). It is also a host for the small milkweed bug, Lygaeus<br />

kalmii Stal. (Fox and Caldwell 1994), but significantly<br />

fewer <strong>of</strong> these bugs survived on T. <strong>of</strong>ficinale than on milkweed<br />

species. Nymphs <strong>of</strong> the potato leafhopper, Empoasca<br />

fabae (Harris), develop and adults survive and reproduce on<br />

T. <strong>of</strong>ficinale (Lamp et al. 1984). It was suggested that the<br />

leafhopper may have a role as a biological weed control<br />

agent. Crickets [Allonemobius allardi (Alexander &<br />

Thomas)] have also been recorded feeding on leaves <strong>of</strong> T.<br />

<strong>of</strong>ficinale (Jacobs et al. 1992). Root feeding larvae <strong>of</strong> the<br />

Japanese beetle (Popillia japonica Newman) and the southern<br />

masked chafer (Cyclocephala lurida Bland), commonly<br />

called white grubs, feed upon and reduce root biomass <strong>of</strong> T.<br />

<strong>of</strong>ficinale (Crutchfield and Potter 1995).<br />

In Japan, the coccinellid Coccinula crotchi (Lewis) survives<br />

on inflorescences <strong>of</strong> various species, including T.<br />

<strong>of</strong>ficinale (Hoshikawa 1995). Also, adult scarab beetles,


842 CANADIAN JOURNAL OF PLANT SCIENCE<br />

Anomala octiescostata Burmeister, are attracted to and<br />

voraciously feed on its inflorescences (Leal et al. 1994).<br />

This attraction is mediated by the chemical kairomone (Leal<br />

et al. 1994).<br />

In Germany and Switzerland, T. <strong>of</strong>ficinale is the most<br />

important food plant for larvae <strong>of</strong> cockchafers, also called<br />

May or June beetles (Melolontha melolontha L.) and, for<br />

egg-laying, the females preferred soil under T. <strong>of</strong>ficinale<br />

more than soil under other dicotyledons and grasses<br />

(Schütte and Hauss 1985; Keller 1986; Schütte 1996). Von<br />

H<strong>of</strong>sten (1954) reported the following insects on T. <strong>of</strong>ficinale<br />

in Sweden: Paroxyna tessellata Loew., Dolycoris baccarum<br />

L., Corizus hyoscyami L., Stictopleurus crassicornis<br />

L., Carpocoris pudicus Poda., Polomena pracina L. and<br />

Hepiolus humili L.. Kuusi et al. (1984) recorded turnip root<br />

fly (Delia floralis Wied.), cabbage moth (Mamestra brassicae<br />

L.) and pollen beetle (Meligethes aeneus F.) on T. <strong>of</strong>ficinale<br />

in Finland.<br />

<strong>The</strong> mite, Epitrimerus taraxaci Liro, inhabits the leaves <strong>of</strong><br />

T. <strong>of</strong>ficinale causing discolouration and russeting in<br />

Yugoslavia (Petanovic 1990). This mite has a narrow host<br />

range but it includes several cultivated plants as well as <strong>weeds</strong>.<br />

(d) Nematodes and/or other non-vertebrates. In the USA, T.<br />

<strong>of</strong>ficinale acts as a host to two dagger nematodes,<br />

Xiphinema americanum Cobb and X. rivesi Dalmasoo,<br />

which can transmit plant viruses (Georgi 1988a,b).<br />

Members <strong>of</strong> the Meloidogyne sp. Goeldi have also been<br />

found on T. <strong>of</strong>ficinale in Canada and the USA, as well as<br />

Meloidogyne incognita (K<strong>of</strong>oid & White) Chitwood,<br />

Ditylenchus destructor Thorne and Pratylenchus penetrans<br />

(Cobb) Chitwood & Oteifa in the USA (Anonymous 1960;<br />

Conners 1967).<br />

Other non-vertebrates such as slugs, snails and earthworms,<br />

also use T. <strong>of</strong>ficinale as a host. In UK studies, slugs<br />

<strong>of</strong> the genus Deroceras found T. <strong>of</strong>ficinale highly palatable<br />

in a number <strong>of</strong> feeding trials (Duval 1971; Dirzo 1980;<br />

Cook et al. 1996; Hanley et al. 1996) and younger seedlings<br />

were grazed more severely by the reticulated slug<br />

Deroceras reticulatum (Müller) (Hanley et al. 1995). D.<br />

reticulatum and another slug, Arion lusitanicus (Mabille),<br />

damage oilseed rape and other arable crops in Europe. In<br />

food choice trials, T. <strong>of</strong>ficinale was very attractive to A. lusitanicus<br />

and rape was not significantly more defoliated than<br />

T. <strong>of</strong>ficinale (Frank and Friedli 1999). <strong>The</strong> authors even recommended<br />

sowing T. <strong>of</strong>ficinale (and other <strong>weeds</strong>) in high<br />

quantities into fields <strong>of</strong> rape to prevent severe slug damage.<br />

In other European studies, the land snail (Helix aspersa<br />

Müller) and juvenile earthworms (Lumbricus terrestis L.)<br />

also found T. <strong>of</strong>ficinale highly palatable (Daniel 1991;<br />

Desbuquois and Daguzan 1995).<br />

Diseases. Microorganisms reported from T. <strong>of</strong>ficinale worldwide<br />

are listed in Table 1 and those recorded in Canada have<br />

been reviewed by Conners (1967) and Ginns (1986).<br />

(a) Fungi. Numerous fungi have been reported on T. <strong>of</strong>ficinale<br />

in Canada and some <strong>of</strong> the more important examples<br />

are discussed here. Puccinia taraxaci Plowr., a rust fungus,<br />

forms numerous, minute, dark brown pustules on leaves<br />

(Longyear 1918; Conners 1967). Another fungus<br />

Synchytrium taraxaci de Bary & Woronin, causes tiny<br />

swellings or galls on leaves that can lead to partial stunting<br />

(Longyear 1918; Ginns 1986). <strong>The</strong> powdery mildew fungi<br />

Sphaerotheca fuliginea (Schlect. Ex Fr.) Poll., S. humili var.<br />

fuliginea (Schlect.) Salm. and S. macularis (Wallr.:Fr.) have<br />

been recorded (Conners 1967; Ginns 1986). In cultivated T.<br />

<strong>of</strong>ficinale in Germany and Finland, powdery mildew<br />

reduces yields and requires control with fungicides (Kuusi<br />

et al. 1984; von Hinrichs 1988). but Longyear (1918)<br />

observed only slight damage in the USA.<br />

Phoma exigua (Desm.) and P. herbarum (Westend.) have<br />

been isolated from T. <strong>of</strong>ficinale in Ontario and considered as<br />

potential biocontrol agents (Neumann Brebaum 1998;<br />

Neumann Brebaum and Boland 1999). P. taraxaci H<strong>of</strong>sten<br />

was considered as a biocontrol agent for T. <strong>of</strong>ficinale in<br />

Sweden (von H<strong>of</strong>sten 1954). P. taraxaci spread by pycnospores<br />

and infected seeds, however, it was extremely<br />

variable with respect to its pathogenicity on T. <strong>of</strong>ficinale and<br />

its viability in soil. Von H<strong>of</strong>sten (1954) also mentioned an<br />

unnamed “ring-forming fungus” which released a substance<br />

that was highly toxic to T. <strong>of</strong>ficinale and other plants.<br />

Sclerotinia species have also been tested as biological<br />

control agents for T. <strong>of</strong>ficinale in Canada (Riddle et al.<br />

1991). Sclerotinia sclerotiorum (Lib.) de Bary and S. minor<br />

Jagger were evaluated in a controlled environment and in<br />

turfgrass swards for their virulence on T. <strong>of</strong>ficinale. Isolates<br />

<strong>of</strong> both species reduced the dry weight <strong>of</strong> plants in a controlled<br />

environment and reduced the number <strong>of</strong> plants in turfgrass<br />

swards. Heat-killed seeds <strong>of</strong> perennial ryegrass were<br />

suitable as both a growth substrate for Sclerotinia spp. and<br />

a delivery system to T. <strong>of</strong>ficinale (Riddle et al. 1991).<br />

Sclerotinia sclerotiorum caused localized infection on the<br />

leaf laminas <strong>of</strong> T. <strong>of</strong>ficinale when artificially inoculated as a<br />

mycelium-on-wheat preparation (Waipara et al. 1993).<br />

Also, S. sclerotiorum created basal necroses <strong>of</strong> 1–2 cm in<br />

length on tap roots. <strong>The</strong>se necroses inhibited leaf regrowth<br />

from the root after defoliation (Burpee 1992). Sclerotinia<br />

minor, produced in a granular sodium alginate formulation<br />

or on autoclaved barley grains, is also considered a potentially<br />

effective biological control agent against T. <strong>of</strong>ficinale<br />

(Ciotola et al. 1991; Brière et al. 1992).<br />

(b) Bacteria. <strong>The</strong> bacterium, Pseudomonas syringae pv.<br />

tagetis Hellmers, has been isolated from T. <strong>of</strong>ficinale in the<br />

USA where it caused apical chlorosis and necrotic leaf spots<br />

(Rhodehamel and Durbin 1985). Sterk et al. (1987) reported<br />

that Agrobacterium tumefaciens (Smith and Townsend)<br />

Conn is found on <strong>Taraxacum</strong> species in the Netherlands,<br />

causing galls on the roots and, sometimes, the leaves.<br />

(c) Viruses. More than twenty viruses can infect T. <strong>of</strong>ficinale,<br />

with some causing severe mottling and leaf malformation<br />

symptoms. Dandelion yellow mosaic virus (DYMV)<br />

causes a yellow mottle (chlorotic rings and spots) on T.<br />

<strong>of</strong>ficinale and also infects lettuce (Kassanis 1947; Bos et al.<br />

1983). <strong>The</strong> virus can be transmitted by aphids (Kassanis<br />

1947; Bos et al. 1983) and is similar to parsnip yellow fleck


Table 1. Microorganisms reported from T. <strong>of</strong>ficinale worldwide<br />

STEWART-WADE ET AL — TARAXACUM OFFICINALE G. H. WEBER EX WIGGERS 843<br />

Organism Reference Geographical region<br />

Agrobacterium tumefaciens (Smith and Townsend) Conn Sterk et al. (1987) Netherlands<br />

Alfalfa mosaic virus Brcák (1979) Czechoslovakia, Scandinavia<br />

Arabis mosaic virus (Arabis mosaic nepovirus) Brcák (1979), Brunt et al. (1996) Czechoslovakia, Scandinavia<br />

Argentine plantago virus Gracia et al. (1983) Argentina<br />

Aster Yellows (phytoplasma) Wang and Hiruki (2001) Canada<br />

Ascochyta doronici Allesch. Farr et al. (1989) USA<br />

Beet pseudo yellows virus Duffus (1965), Duffus and Johnstone Australia, Spain<br />

(Beet pseudo–yellows closterovirus) (1981), Soria et al. (1991), Brunt et al. (1996) USA<br />

Botrytis cinerea Pers. ex Fr. Anonymous (1960), Kuusi et al. (1984), Farr et al. (1989) Finland, USA<br />

Canola Yellows (phytoplasma) Wang and Hiruki (2001) Canada<br />

Centrospora acerina (R. Hartig) A. G. Newhall Tompkins and Hansen (1950) USA<br />

Ceratobasidium anceps (Bres.&Syd.) Conners (1967) Canada<br />

Cherry rasp leaf virus (Cherry rasp leaf nepovirus) Brcák (1979), Brunt et al. (1996) Czechoslovakia, Scandinavia<br />

Chrysanthemum latent virus` Brcák (1979) Czechoslovakia, Scandinavia<br />

Colletotrichum dematium (Fr.) Grove Conners (1967) Canada<br />

Colorado red-node virus Thomas (1949) USA<br />

Cucumber mosaic virus Brcák (1979) Czechoslovakia, Scandinavia<br />

Dandelion carlavirus Dijkstra et al. (1985), Brunt et al. (1996) Netherlands<br />

Dandelion latent carlavirus Johns (1982), Brunt et al. (1996) Canada<br />

Dandelion necrotic blotch Brcák (1979) Czechoslovakia, Scandinavia<br />

Dandelion necrotic ringspot virus (Dandelion mosaic virus) Cech and Branisová (1973) Czechoslovakia<br />

Dandelion yellow mosaic virus (Dandelion yellow Moore (1946), Kassanis (1947), Brcák (1979), Czechoslovakia, Netherlands,<br />

mosiac sequivirus, Yellow mosaic lettuce virus,<br />

Lettuce necrosis virus)<br />

Bos et al. (1983), Brunt et al. (1996) Scandinavia, UK<br />

Ditylenchus dipsaci (Kuehn) Filip. Anonymous (1960) USA<br />

Erisiphe cichoracearum DC. Ubrizsy (1946), Anonymous (1960), Farr et al. (1989),<br />

von Hinrichs (1989)<br />

Germany, Hungary, USA<br />

European yellows virus Blattny et al. (1954) Czechoslovakia<br />

Grapevine yellows (MLO) Arzone et al. (1995) Italy<br />

Italian clover phyllody Firrao et al. (1996) Italy<br />

Kok-Sagyyz virus Ryjk<strong>of</strong>f (1943) USSR<br />

Lettuce big-vein virus Campbell (1969), Brcák (1979), Demírcí et al. (1995) Czechoslovakia, Scandinavia,<br />

Turkey, USA<br />

Lettuce mosaic virus Brcák (1979) Czechoslovakia, Scandinavia<br />

Lettuce virus Anonymous (1948) Switzerland<br />

Longidorus euonymus (Nematoda: Dorylaimida) Romanenko and Korchinsky (1994) Russia<br />

Olpidium brassicae (Woronin) P. A. Dang Ginns (1986) Canada<br />

Peach rosette moasic virus (Peach rosette mosaic nepovirus) Ramsdell and Myers (1978), Brunt et al. (1996) USA<br />

Petunia asteroid mosaic virus Fuchs et al. (1994) Germany<br />

Phoma exigua (Desm.) Neumann Brebaum and Boland (1999) Canada<br />

Phoma herbarum (Westend.) Neumann Brebaum and Boland (1999) Canada<br />

Phoma taraxaci H<strong>of</strong>sten von H<strong>of</strong>sten (1954) Sweden<br />

Phyllactinia corylea Pers. ex Karst. Anonymous (1960) USA<br />

Phyllactinia guttata (Wallr.:Fr.) Lév Shaw (1973), Farr et al. (1989) USA (Pacific Northwest)<br />

Phynatotrichopsis omnivora (Duggar) Hennebert Anonymous (1960), Farr et al. (1989) USA<br />

Physarum cinereum (Batsch) P. Farr et al. (1989) USA<br />

Plasmopara halstedii (Farl.) Berl. & De Toni in Sacc. Anonymous (1957) Canada (Québec)<br />

Potato y virus Lytaeva (1971), Brcák (1979) Czechoslovakia, Scandinavia,<br />

USSR<br />

Potato parastolbur virus Valenta et al. (1961) Slovakia<br />

Protomyces pachydermus Thümen Seymour (1929), Anonymous (1960),<br />

Farr et al. (1989), Ellis and Ellis (1997)<br />

USA<br />

Pseudomonas syringae pv. tagetis Hellmers Rhodehamel and Durbin (1985) USA<br />

Pseudomonas tabaci (Wolf & Foster) Stapp Anonymous (1960) USA<br />

Pseudomonas viridiflava (Burkholder) Dowson Gitaitis et al. (1998) USA<br />

Puccinia hieracii (Röhling) Mart. Seymour (1929), Anonymous (1960), Conners (1967),<br />

Shaw (1973), Alfieri et al. (1984), Ellis and Ellis (1997)<br />

Ginns (1986), Farr et al. (1989)<br />

Canada, USA (Pacific Northwest)<br />

Puccinia taraxaci Plowr. Anonymous (1960), Conners (1967),<br />

Stojanovic et al. (1993)<br />

Canada, USA, Yugoslavia<br />

Puccinia variabilis Grev. Seymour (1929), Anonymous (1960), Conners, (1967),<br />

Alfieri et al. (1984), Ellis and Ellis (1997),<br />

Farr et al. (1989)<br />

Canada, USA<br />

Ramularia lineola Pk. Anonymous (1960), Farr et al. (1989) USA<br />

Ramularia taraxaci Karsten Seymour (1929), Anonymous (1960), Conners (1967),<br />

Shaw (1973), Kuusi et al. (1984), Ellis and Ellis (1997),<br />

Ginns (1986), Farr et al. (1989)<br />

Canada, USA (Pacific Northwest)


844 CANADIAN JOURNAL OF PLANT SCIENCE<br />

Table 1. Continued<br />

Rhizoctonia solani Kühn Chesters and Assawah (1956), Anonymous (1960), Canada, USA<br />

Conners (1967), Farr et al. (1989)<br />

Sclerotinia minor Jagger Ciotola et al. (1991), Riddle et al. (1991), North America<br />

Brière et al. (1992)<br />

Sclerotinia sclerotiorum (Lib.) de Bary Anonymous (1960), Shaw (1973), Alfieri et al. (1984), North America<br />

Farr et al. (1989), Riddle et al. (1991)<br />

Sclerotinia trifoliorum Eriks. Pape (1954) Germany<br />

Sclerotium rolfsii Sacc. Alfieri et al. (1984), Farr et al. (1989) USA<br />

Septoria britannica Trott Farr et al. (1989) USA<br />

Septoria unicolor Wint. Anonymous (1960), Shaw (1973), Farr et al. (1989) USA<br />

Sphaerotheca erigerontis–canadensis (Lév.) L. Junnell Seymour (1929), Ellis and Ellis (1997) North America<br />

Sphaerotheca fuliginea (Schlecht. ex Fr.) Poll. Anonymous (1960), Conners (1967), Kuusi et al. (1984), Canada, USA<br />

Ginns (1986), Farr et al. (1989)<br />

Sphaerotheca humili var. fuliginea (Schlecht.) Salm Anonymous (1960), Conners (1967), Ginns (1986) Canada, USA<br />

Sphaerotheca macularis (Wallr. ex Fr.) Conners (1967), Shaw (1973), Ginns (1986), Canada, USA<br />

Farr et al. (1989)<br />

Stolbur phytoplasma ˇ Skoric et al. (1998), Viczián et al. (1998) Croatia, Hungary<br />

Strawberry green petal virus Misiga et al. (1960) Czechoslovakia<br />

Strawberry latent ringspot nepovirus Brunt et al. (1996) Germany<br />

Synchytrium sp. de Bary & Woronin Longyear (1918) USA<br />

Synchytrium taraxaci de Bary & Woronin Seymour (1929), Anonymous (1960), Shaw (1973), Canada, Germany, USA<br />

Ginns (1986), Farr et al. (1989), Triebel and<br />

Rambold (1990), Ellis and Ellis (1997)<br />

Tobacco rattle virus Brcák (1979) Czechoslovakia, Scandinavia<br />

Tobacco ringspot virus Tuite (1960), Brcák (1979) Czechoslovakia, Scandinavia,<br />

USA<br />

Tomato black ring virus Brcák (1979) Czechoslovakia, Scandinavia<br />

Tomato ringspot virus Brcák (1979), Mountain et al. (1983), Barrat et al. (1984) Czechoslovakia, Scandinavia<br />

Powell et al. (1984), Powell et al. (1992), USA<br />

Ramsdell et al (1993)<br />

Vermicularia dematium (P) ex Fr, var. minor Sacc. Farr et al. (1989) USA<br />

Verticillium albo-atrum Rfe. et Beth. Müller (1969) Germany<br />

Xylella fastidosa Leite et al. (1997) Brazil<br />

Yellows (MLO) Dale (1972) USA<br />

Yellows-virus (Chlorogenus callistephi Holmes, Anonymous (1960) USA<br />

Calistephus virus 1 K.M.Sm)<br />

virus (PYFV) (Murant 1988). Tomato ringspot virus<br />

(TmRSV) reduces the top weight and inflorescence production<br />

<strong>of</strong> T. <strong>of</strong>ficinale under field conditions (Powell et al.<br />

1992). TmRSV affects plants that are mowed regularly more<br />

adversely than those not mowed (Powell et al. 1992).<br />

Infected plants may serve as donor plants for TmRSV transmission<br />

by Xiphinema rivesi, a dagger nematode, and can<br />

transmit TmRSV to progeny via seeds (Mountain et al.<br />

1983). <strong>The</strong> density <strong>of</strong> <strong>Taraxacum</strong> <strong>of</strong>ficinale had a weak positive<br />

correlation with percentage <strong>of</strong> TmRSV-infected prune<br />

trees in a commercial orchard (Ramsdell et al. 1993).<br />

In the Okanagan Valley, BC, a carlavirus with the proposed<br />

name <strong>of</strong> dandelion latent virus (DLV), was isolated<br />

from naturally infected T. <strong>of</strong>ficinale exhibiting no visible<br />

symptoms (Johns 1982). Another carlavirus was isolated<br />

from T. <strong>of</strong>ficinale plants that displayed slight mottling and<br />

leaf malformation (Dijkstra et al. 1985). This latter virus<br />

was not seed transmitted and the name dandelion carlavirus<br />

has been proposed. In Argentina, a potexvirus caused severe<br />

mosaic and leaf malformations on T. <strong>of</strong>ficinale plants and<br />

was provisionally named Argentine plantago virus (AplaV)<br />

(Gracia et al. 1983). <strong>Taraxacum</strong> <strong>of</strong>ficinale is also a host for<br />

a yellowing disease caused by beet pseudo yellows virus<br />

(BPYV) (Duffus 1965; Soria et al. 1991). Older leaves <strong>of</strong><br />

infected plants display reddening and chlorosis <strong>of</strong> interveinal<br />

areas and the agent is transmitted by greenhouse<br />

whitefly (Trialeurodes vaporariorum Westwood). None <strong>of</strong><br />

the viruses described (Table 1) has been considered as a biological<br />

control agent for T. <strong>of</strong>ficinale.<br />

In Alberta, plants <strong>of</strong> T. <strong>of</strong>ficinale displaying yellows symptoms<br />

were examined using molecular techniques and two different<br />

phytoplasmas were detected (Wang and Hiruki 2001).<br />

One was identified as a member <strong>of</strong> the canola yellows subgroup<br />

16SrI-A, while the other was classified as a member <strong>of</strong><br />

a distinct subgroup in the aster yellows group (Wang and<br />

Hiruki 2001). Plants <strong>of</strong> T. <strong>of</strong>ficinale exhibiting typical symptoms<br />

<strong>of</strong> mycoplasma-like organism (MLO) infection were<br />

reported in Italy (Terlizzi et al. 1994) and MLO-like bodies<br />

were observed using electron microscopy. In a separate<br />

study, Firrao et al. (1996) characterized an MLO from T.<br />

<strong>of</strong>ficinale called Italian Clover Phyllody (ICPh) phytoplasma,<br />

which caused yellowing/reddening, virescence and phyllody.<br />

ACKNOWLEDGEMENTS<br />

<strong>The</strong> authors would like to thank Aaron Goldwater and<br />

Melody Melzer (<strong>The</strong> University <strong>of</strong> Guelph), for technical<br />

assistance. <strong>The</strong> authors also thank herbaria staff from across<br />

Canada for information and specimen loans, William Cody<br />

(DAO Herbarium, Ottawa) for assistance with distribution<br />

records, and Rob Bowman and Rob Guthrie (<strong>The</strong> University<br />

<strong>of</strong> Guelph) for assistance with compiling the distribution<br />

map. <strong>The</strong> assistance and advice <strong>of</strong> Jacques Cayouette<br />

(AAFC, Ottawa) and the two anonymous reviewers is gratefully<br />

acknowledged.


Aarssen, L. W. 1981. <strong>The</strong> <strong>biology</strong> <strong>of</strong> <strong>Canadian</strong> <strong>weeds</strong>. 50.<br />

Hypochoeris radicata L. Can. J. Plant Sci. 61: 365–381.<br />

Abbott, R. J. 1979. Janzen’s dandelions: a criticism. Am. Nat.<br />

114: 152–156.<br />

Aexel, R., Evans, S., Kelley, M. and Nicholas, H. J. 1967.<br />

Observations on the biosynthesis and metabolism <strong>of</strong> β-sitosterol,<br />

β-amyrin and related methyl sterols. Phytochemistry 6: 511–524.<br />

Ahmad, S. 1993. Quantitative studies on the <strong>weeds</strong> <strong>of</strong> wheat fields<br />

<strong>of</strong> Riwat area, Islamabad. Pak. J. Sci. Ind. Res. 36: 31–34.<br />

Akashi, T., Furuno, T., Takahashi, T. and Ayabe, S. 1994.<br />

Biosynthesis <strong>of</strong> triterpenoids in cultured cells, and regenerated and<br />

wild plant organs <strong>of</strong> <strong>Taraxacum</strong> <strong>of</strong>ficinale. Phytochemistry 36:<br />

303–308.<br />

Akuzawa, R. and Yokoyama, K. 1988. Trial cheese prepared<br />

with dandelion (<strong>Taraxacum</strong> <strong>of</strong>ficinale) extract. Jpn. J. Dairy Food<br />

Sci. 37: A39–A44.<br />

Alfieri, S. A., Jr., Langdon, K. R., Wehlburg, C. and<br />

Kimbrough, J. W. 1984. Index <strong>of</strong> plant diseases in Florida.<br />

Florida Dept. <strong>of</strong> Agriculture and Consumer Services, Division <strong>of</strong><br />

Plant Industry Bulletin 11. 389 pp.<br />

Al-Hially, T. A. K. 1991. Studies on the <strong>biology</strong> and control <strong>of</strong><br />

perennial <strong>weeds</strong> with special reference to dandelion (<strong>Taraxacum</strong><br />

<strong>of</strong>ficinale Weber). Ph. D thesis, University <strong>of</strong> Wales, Bangor, UK.<br />

147 pp.<br />

Alvarez, C. G., Torres, E. and de Vis, R. 1998. Effect <strong>of</strong> the<br />

incorporation <strong>of</strong> antagonistic plants on the parasitic activity <strong>of</strong> the<br />

root-knot nematode Meloidogyne hapla in a greenhouse carrot<br />

crop. Agronomia Colombiana 15(2–3): 137–142. [in Spanish,<br />

English abstract.]<br />

Andersen, M. C. 1992. An analysis <strong>of</strong> variability in seed settling<br />

velocities <strong>of</strong> several wind-dispersed Asteraceae. Am. J. Bot. 79:<br />

1087–1091.<br />

Andersen, M. C. 1993. Diaspore morphology and seed diserpsal<br />

in several wind-dispersed Asteraceae. Am. J. Bot. 80: 487–492.<br />

Angier, B. 1980. Field guide to edible plants. Stackpole Books,<br />

Harrisburg, PA. 255 pp.<br />

Anonymous. 1948. Report for 1947 on the work <strong>of</strong> the Federal<br />

Viticultural, Aboricultural and Agricultural Chemistry Stations at<br />

Lausanne and Pully. Annu. Agric. Suisse 49: 555–660.<br />

Anonymous. 1957. Report <strong>of</strong> the Minister <strong>of</strong> Agriculture for<br />

Canada for the year ended March 3, 1955. Agriculture and Agri<br />

Food Canada, Queens Printer, Ottawa, ON. 166 pp.<br />

Anonymous. 1960. Plant pests <strong>of</strong> importance to North American<br />

agriculture — Index <strong>of</strong> plant diseases in the United States. USDA<br />

Agriculture Handbook 165. Crops Res. Div., Agricultural<br />

Research Service, United States Dept. <strong>of</strong> Agriculture. 200 pp.<br />

Anonymous. 1977. Agricultural Abuses Act. Division IV,<br />

Noxious Weeds, Québec. Queen’s Printer, Québec, QC. 5 pp.<br />

Anonymous. 1981. Revised Regulation N110–R1, <strong>The</strong> Noxious<br />

Weeds Act, Manitoba. Queen’s Printer, Winnipeg, MB. 20 pp.<br />

Anonymous. 1984. An Act Respecting Noxious Weeds,<br />

Saskatchewan. Saskatchewan Agriculture and Food, Regina, SK.<br />

21 pp.<br />

Anonymous. 1991. Revised Statutes <strong>of</strong> Alberta 1980, Chapter<br />

W–6 with amendments in force as <strong>of</strong> November 9, 1990, Weed<br />

Control Act, Alberta. Queen’s Printer, Edmonton, AB. 45 pp.<br />

Anonymous. 1997. Guide to weed control. Ontario Ministry <strong>of</strong><br />

Agriculture, Food and Rural Affairs, ON. Publication 75, 243 pp.<br />

Arshad, M. A., Gill, K. S. and Coy, G. R. 1994. Wheat yield and<br />

weed population as influenced by three tillage systems on a clay<br />

soil in temperate continental climate. Soil Till. Res. 28: 227–238.<br />

Arzone, A., Alma, A., Bosco, D. and Patetta, A. 1995. MLOinfected<br />

<strong>weeds</strong> in the vineyards <strong>of</strong> North-western Italy. J.<br />

Phytopathol. 143: 257–260.<br />

STEWART-WADE ET AL — TARAXACUM OFFICINALE G. H. WEBER EX WIGGERS 845<br />

Bagatto, G., Paquette, L. C. and Shorthouse, J. D. 1996.<br />

Influence <strong>of</strong> galls <strong>of</strong> Phanacis taraxaci on carbon partitioning<br />

within common dandelion, <strong>Taraxacum</strong> <strong>of</strong>ficinale. Entomol. Exp.<br />

Appl. 79: 111–<strong>117.</strong><br />

Baker, H. G. 1974. <strong>The</strong> evolution <strong>of</strong> <strong>weeds</strong>. Annu. Rev. Ecol.<br />

Syst. 6: 1–24.<br />

Baker, H. G. 1991. <strong>The</strong> continuing evolution <strong>of</strong> <strong>weeds</strong>. Econ. Bot.<br />

45: 445–449.<br />

Baker, E. A. and Bukovac, M. J. 1971. Characterization <strong>of</strong> the<br />

components <strong>of</strong> plant cuticles in relation to the penetration <strong>of</strong> 2,4-<br />

D. Ann. Appl. Biol. 67: 243–253.<br />

Bandyukova, V. A., Deineko, G. I. and Shapiro, D. K. 1983.<br />

Fatty acid composition <strong>of</strong> the lipids <strong>of</strong> pollen (pollen pellets) <strong>of</strong><br />

some herbaceous plants. III. Chem. Nat. Compd. 19: 97–98.<br />

Bandyukova, V. A., Machekas, A. Yu., Shvirmitskas, G. S. and<br />

Kadzyauskane, K. V. 1989. Amino acid composition <strong>of</strong> pollens <strong>of</strong><br />

some honey-yielding plants. II. Chem. Nat. Compd. 24: 524–525.<br />

Barrat, J. G., Scorza, R. and Otto, B. E. 1984. Detection <strong>of</strong><br />

tomato ringspot virus in peach orchards. Plant Dis. 68: 198–200.<br />

Beach, F. 1939. Dandelions. Am. Bee J. 79: 238–239.<br />

Benedek, P., Béres, I. and Nyéki, J. 1998. Competition between<br />

pear flowers, flowering <strong>weeds</strong> and other fruit trees for honeybee<br />

pollination. Proc. VII I. S. Pear Growing. Acta Hortic. 475:<br />

417–426.<br />

Bergen, P., Moyer, J. R. and Kozub, G. C. 1990. Dandelion<br />

(<strong>Taraxacum</strong> <strong>of</strong>ficinale) use by cattle grazing on irrigated pasture.<br />

Weed Technol. 4: 258–263.<br />

Blackshaw, R. E. and Lindwall, C. W. 1995. Management systems<br />

for conservation fallow on the southern <strong>Canadian</strong> prairies.<br />

Can. J. Soil Sci. 75: 93–99.<br />

Blackshaw, R. E., Larney, F. O., Lindwall, C. W. and Kozub,<br />

G. C. 1994. Crop rotation and tillage effects on weed populations<br />

on the semi-arid <strong>Canadian</strong> prairies. Weed Technol. 8: 231–237.<br />

Blattny, C., Brčák, J., Pozděna, J., Limberk, J. and Bojňansky,<br />

V. 1954. <strong>The</strong> transmission <strong>of</strong> stolbur virus in tobacco and tomato<br />

and its virogeographical relationships. Phytopathol. Z. 22:<br />

381–416. [in German.]<br />

Bockholt, R., Schnittke, C. and Friedel, K. 1995. Naehr- und<br />

Mineralst<strong>of</strong>fgehalt von Kraeutern des Niedermoorgruenlandes.<br />

VDLUFA-Schriftenreihe 40: 529–532. [in German.]<br />

Booth, A. and Satchuthananthavale, R. 1974a. Regeneration in<br />

root cuttings <strong>of</strong> <strong>Taraxacum</strong> <strong>of</strong>ficinale. I. <strong>The</strong> nature and levels <strong>of</strong><br />

endogenous hormones. New Phytol. 73: 445–452.<br />

Booth, A. and Satchuthananthavale, R. 1974b. Regeneration in<br />

root cuttings <strong>of</strong> <strong>Taraxacum</strong> <strong>of</strong>ficinale. II. <strong>The</strong> effects <strong>of</strong> exogenous<br />

hormones on root segments and root callus cultures. New Phytol.<br />

73: 453–460.<br />

Bos, L., Huijberts, N., Huttinga, H. and Maat, D. Z. 1983.<br />

Further characterization <strong>of</strong> dandelion yellow mosaic virus from lettuce<br />

and dandelion. Neth. J. Plant Pathol. 89: 207–222.<br />

Bostock, S. J. 1978. Seed germination strategies <strong>of</strong> five perennial<br />

<strong>weeds</strong>. Oecologia 36: 113–126.<br />

Bostock, S. J. and Benton, R. A. 1979. <strong>The</strong> reproductive strategies<br />

<strong>of</strong> five perennial Compositae. J. Ecol. 67: 91–107.<br />

Bostock, S. J. and Benton, R. A. 1983. Dry weight costs and establishment<br />

<strong>of</strong> seeds and vegetative propagules. Acta Æcol. 4: 61–69.<br />

Bowes, B. G. 1970. Preliminary observations on organogenesis in<br />

<strong>Taraxacum</strong> <strong>of</strong>ficinale tissue cultures. Protoplasma 71: 197–202.<br />

Brcák, J. 1979. Czech and Scandanavian isolates resembling dandelion<br />

yellow mosaic virus. Biol. Plantarum (Praha) 21: 298–301.<br />

Brière, S. C., Watson, A. K. and Paulitz, T. C. 1992. Evaluation<br />

<strong>of</strong> granular sodium alginate formulations <strong>of</strong> Sclerotinia minor as<br />

potential biological control agent <strong>of</strong> turf grass weed species.<br />

Phytopathology 82: 1081.


846 CANADIAN JOURNAL OF PLANT SCIENCE<br />

Britton, N. and Brown, A. 1970. An illustrated flora <strong>of</strong> the northern<br />

United States and Canada from Newfoundland to the parallel<br />

<strong>of</strong> the southern boundary <strong>of</strong> Virginia, and from the Atlantic Ocean<br />

westward to the 102D meridian. Volume 3. Dover Publications,<br />

Inc., New York, NY. 735 pp.<br />

Brunt, A. A., Crabtree, K., Dallwitz, M. J., Gibbs, A. J.,<br />

Watson, L. and Zurcher, E. J. (eds.) 1996. Plant viruses online:<br />

Descriptions and lists from the VIDE Database. [Online]<br />

Available: http://image.fs.uidaho.edu/vide/famly044.htm#<strong>Taraxacum</strong>%20<strong>of</strong>ficinale<br />

[21 January 2002].<br />

Brunton, D. F. 1989. <strong>The</strong> marsh dandelion (<strong>Taraxacum</strong> section<br />

Palustria; Asteraceae) in Canada and the adjacent United States.<br />

Rhodora 91: 213-219.<br />

Budzianowski, J. 1997. Coumarins, caffeoyltartaric acids and<br />

their artifactual methyl esters from <strong>Taraxacum</strong> <strong>of</strong>ficinale leaves.<br />

Planta Med. 63: 288.<br />

Burnside, O. C., Wilson, R. G., Weisberg, S. and Hubbard, K.<br />

G. 1996. Seed longevity <strong>of</strong> 41 weed species buried 17 years in<br />

eastern and western Nebraska. Weed Sci. 44: 74–86.<br />

Burpee, L. L. 1992. A method for assessing the efficacy <strong>of</strong> a biocontrol<br />

agent on dandelion (<strong>Taraxacum</strong> <strong>of</strong>ficinale). Weed Technol.<br />

6: 401–403.<br />

Burrowes, S. and Simpson, J. C. E. 1938. <strong>The</strong> triterpene group.<br />

Part IV. <strong>The</strong> triterpene alcohols <strong>of</strong> <strong>Taraxacum</strong> root. J. Chem. Soc.<br />

part 2: 2042–2047.<br />

Campbell, R. N. 1969. Weeds as reservoir hosts <strong>of</strong> lettuce bigvein<br />

virus. Can. J. Bot. 43: 1141–1149.<br />

Carceller, M. S. and Sánchez, R. A. 1972. <strong>The</strong> influence <strong>of</strong> phytochrome<br />

in the water exchange <strong>of</strong> epidermal cells <strong>of</strong> <strong>Taraxacum</strong><br />

<strong>of</strong>ficinale. Experientia 28: 364.<br />

Carda, K., Fay, P., Stougaard, R. N. and Keener, T. K. 1992.<br />

Weed survey <strong>of</strong> peppermint fields in the Flathead Valley,<br />

Montana. Proc. West. Soc. Weed Sci. 45: 47–52.<br />

Cech, M. and Branisová, H. 1973. Some problems with the isolation<br />

<strong>of</strong> the <strong>Taraxacum</strong> mosaic virus. Pages 263–266 in Plant<br />

virology: Proceedings <strong>of</strong> the 7th Conference <strong>of</strong> the Czechoslovak<br />

Plant Virologists, High Tatras, 1971. Publishing House <strong>of</strong> the<br />

Slovak Academy <strong>of</strong> Sciences, Bratislava, Czechoslovakia. [in<br />

Czech.]<br />

Champness, S. and Morris, K. 1948. <strong>The</strong> population <strong>of</strong> buried<br />

viable seeds in relation to contrasting pasture and soil types. J.<br />

Ecol. 36: 149–173.<br />

Chancellor, R. J. 1964. Emergence <strong>of</strong> weed seedlings in the field<br />

and the effects <strong>of</strong> different frequencies <strong>of</strong> cultivation. Proceedings<br />

<strong>of</strong> the Seventh British Weed Control Conference, Brighton UK. pp.<br />

599–606.<br />

Chandran, R. S., Derr, J. F. and S. W. Bingham. 1998. Effect <strong>of</strong><br />

isoxaben application rate and timing on residual broadleaf weed<br />

control in turf. Weed Technol. 12: 569–574.<br />

Chepil, W. S. 1946. Germination <strong>of</strong> weed seeds. I. Longevity,<br />

periodicity <strong>of</strong> germination, and vitality <strong>of</strong> seeds in cultivated soil.<br />

Sci. Agric. 26: 307–346.<br />

Chesters, C. G. C. and Assawah, M. W. 1956. Koch’s postulates<br />

applied to the microecology <strong>of</strong> fungi inhabitating root surfaces.<br />

Nature 178: 1062–1063.<br />

Ciotola, M., Wymore, L. A. and Watson, A. K. 1991.<br />

Sclerotinia, a potential mycoherbicide for lawns. Weed Sci. Soc.<br />

Am. Abst.: 81.<br />

Clifford, P. E. and Barclay, G. F. 1980. <strong>The</strong> sedimentation <strong>of</strong><br />

amyloplasts in living statocytes <strong>of</strong> the dandelion flower stalk. Plant<br />

Cell Environ. 3: 381–386.<br />

Clifford, P. E. and Oxlade, E. L. 1989. Ethylene production, georesponse,<br />

and extension growth in dandelion peduncles. Can. J.<br />

Bot. 67: 1927–1929.<br />

Clifford, P. E., Mousdale, D. M. A., Lynd, S. J. and Oxlade, E.<br />

L. 1985. Differences in auxin level detected across geostimulated<br />

dandelion peduncles: evidence supporting a role for auxin in geotropism.<br />

Ann. Bot. 55: 293–296.<br />

Cody, W. J. 2000. Flora <strong>of</strong> the Yukon Territory. 2nd ed. NRC<br />

Research Press, Ottawa, ON. 669 pp.<br />

Collins, L. L. 2000. <strong>The</strong> effects <strong>of</strong> date <strong>of</strong> seed maturation and<br />

seed size on seed germination and seedling emergence <strong>of</strong> the dandelion,<br />

<strong>Taraxacum</strong> <strong>of</strong>ficinale Weber. M.Sc. <strong>The</strong>sis, University <strong>of</strong><br />

Western Ontario, London, ON. 96 pp.<br />

Comes, R., Bruns, V. and Kelly, A. 1978. Longevity <strong>of</strong> certain<br />

weed and crop seeds in fresh water. Weed Sci. 26: 336–344.<br />

Cook, R. T., Bailey, S. E. R. and McCrohan, C. R. 1996. Slug<br />

preferences for winter wheat cultivars and common agricultural<br />

<strong>weeds</strong>. J. Appl. Ecol. 33: 866–872.<br />

Conners, I. L. 1967. An annotated index <strong>of</strong> plant diseases in<br />

Canada. Research Branch, Canada Department <strong>of</strong> Agriculture,<br />

Ottawa, ON. Publ.1251, 381 pp.<br />

Cross, H. 1931. Laboratory germination <strong>of</strong> weed seeds. Proc.<br />

Assoc. Offic. Seed Anal. 24: 125–128.<br />

Crutchfield, B. A. and Potter, D. A. 1995. Feeding by Japanese<br />

beetle and southern masked chafer grubs on lawn <strong>weeds</strong>. Crop Sci.<br />

35: 1681–1684.<br />

Culpeper, N. 1826. Culpeper’s complete herbal and English<br />

physician. J. Gleave and Son, Deansgate, UK. 240 pp.<br />

Cyr, D. R. and Bewley, J. D. 1990a. Annual rhythmicity <strong>of</strong> nitrogen<br />

reserves in the roots <strong>of</strong> pernicious perennial <strong>weeds</strong>. British<br />

Society for Plant Growth Regulation, Monograph 21: 353–368.<br />

Cyr, D. R. and Bewley, J. D. 1990b. Proteins in the roots <strong>of</strong> the<br />

perennial <strong>weeds</strong> chicory (Cichorium intybus L.) and dandelion<br />

(<strong>Taraxacum</strong> <strong>of</strong>ficinale Weber) are associated with overwintering.<br />

Planta 182: 370–374.<br />

Cyr, D. R., Bewley, J. D. and Dumbr<strong>of</strong>f, E. B. 1990. Seasonal<br />

dynamics <strong>of</strong> carbohydrate and nitrogenous components in the roots<br />

<strong>of</strong> perennial <strong>weeds</strong>. Plant Cell Environ. 13: 359–365.<br />

Dalby, R. 1999. <strong>The</strong> delightful dandelion. Am. Bee J. 139 (4):<br />

300–301.<br />

Dale, J. K. 1972. Yellows in dandelion. Plant. Dis. Rep. 56: 270–271.<br />

Daniel, O. 1991. Leaf-litter consumption and assimilation by juveniles<br />

<strong>of</strong> Lumbricus terrestris L. (Oligochaeta, Lumbricidae) under<br />

different environmental conditions. Biol. Fert. Soils 12: 202–208.<br />

Darbyshire, S. J., Favreau, M. and Murray, M. 2000. Common<br />

and scientific names <strong>of</strong> <strong>weeds</strong> in Canada. Publication 1397/B.<br />

Research Branch, Agriculture and Agri-Food Canada, Ottawa, ON.<br />

132 pp.<br />

Darwent, A. L. and Elliott, C. R. 1979. Effect <strong>of</strong> grass species<br />

and row spacing on dandelion establishment and growth. Can. J.<br />

Plant Sci. 59: 1031–1036.<br />

Darwent, A. L. and Lefkovitch, L. P. 1995. Control <strong>of</strong> several<br />

perennial <strong>weeds</strong> in creeping red fescue (Festuca rubra) grown for<br />

seed. Weed Technol. 9: 294–300.<br />

Dekker, J. and Dekker, R. G. 1987. Mutant <strong>weeds</strong> <strong>of</strong> Iowa: fasciation<br />

in <strong>Taraxacum</strong> <strong>of</strong>ficinale. Phytologia 63: 155–156.<br />

Demírcí, E., Açikgöz, S. and Döken, M. T. 1995. Relations <strong>of</strong><br />

some weed species with lettuce big-vein virus in Erzurum Turkey.<br />

J. Turk. Phytopathol. 24: 135–137.<br />

Derksen, D. A. and Thomas, A. G. 1997. Dandelion control in<br />

cereal and oilseed crops. Pages 63–69 in Expert Committee on<br />

Weeds. Proceedings <strong>of</strong> the 1996 National Meeting, Victoria, BC.<br />

Government <strong>of</strong> Canada.<br />

Derrick, R. W., Moseley, G. and Wilman, D. 1993. Intake, by<br />

sheep, and digestibility <strong>of</strong> chickweed, dandelion, dock, ribwort and<br />

spurrey, compared with perennial ryegrass. J. Agric. Sci. (Camb.)<br />

120: 51–61.


Desbuquois, C. and Daguzan, J. 1995. <strong>The</strong> influence <strong>of</strong> ingestive<br />

conditioning on food choices in the land snail Helix aspersa Müller<br />

(Gastropoda: Pulmonata: Stylommatophora). J. Molluscan Stud.<br />

61: 353–360.<br />

Dethier, V. G. 1993. Food-finding by polyphagous arctid caterpillars<br />

lacking antennal and maxillary chemoreceptors. Can.<br />

Entomol. 125: 85–92.<br />

Devine, M. D., Duke, S. O. and Fedtke, C. 1993. Physiology <strong>of</strong><br />

herbicide action. Prentice Hall, Inc., New Jersey, NJ. 441 pp.<br />

Dijkstra, J., Clement, Y. and Lohuis, H. 1985. Characterization<br />

<strong>of</strong> a carlavirus from dandelion (<strong>Taraxacum</strong> <strong>of</strong>ficinale). Neth. J.<br />

Plant Pathol. 91: 77–92.<br />

Dirzo, R. 1980. Experimental studies on slug-plant interactions. I.<br />

<strong>The</strong> acceptability <strong>of</strong> thirty plant species to the slug Agriolimax<br />

caruanae. J. Ecol. 68: 981–998.<br />

Djingova, R., Kuleff, I., Penev, I. and Sansoni, B. 1986.<br />

Bromine, copper, manganese and lead content <strong>of</strong> the leaves <strong>of</strong><br />

<strong>Taraxacum</strong> <strong>of</strong>ficinale (dandelion). Sci. Total Environ. 50: 197–208.<br />

Doll, J. D. 1984. Effects <strong>of</strong> common dandelion on alfalfa drying<br />

times and yield. Proc. North Cent. Weed Control Conf. 39:<br />

113–114.<br />

Duffus, J. E. 1965. Beet pseudo-yellows virus, transmitted<br />

by the greenhouse whitefly (Trialeurodes vaporariorum).<br />

Phytopathology 55: 450–453.<br />

Duffus, J. E. and Johnstone, G. R. 1981. Beet pseudo yellows<br />

virus in Tasmania — the first report <strong>of</strong> a white fly transmitted virus<br />

in Australasia. Australas. Plant Pathol. 10: 68–69.<br />

Dussourd, D. E. and Denno, R. F. 1994. Host range <strong>of</strong> generalist<br />

caterpillars: trenching permits feeding on plants with secretory<br />

canals. Ecology 75: 69–78.<br />

Duval, D. M. 1971. A note on the acceptability <strong>of</strong> various <strong>weeds</strong> as<br />

food for Agriolimax reticulatus (Müller). J. Conchol. 27: 249–251.<br />

Dwyer, J. E. 1977. What’s in a name: dandelion. Garden New<br />

York 1: 10–11.<br />

Eckert Jr., R. E., Bruner, A. D., Klomp, G. D. and Peterson, F.<br />

F. 1973. Control <strong>of</strong> rocky mountain iris and vegetation response on<br />

mountain meadows. J. Range Manage. 26: 352–355.<br />

Ellis, M. B. and Ellis, J. P. 1997. Micr<strong>of</strong>ungi on land plants:<br />

an identification handbook. Richmond Publishing, Slough, UK.<br />

868 pp.<br />

Ellison, L. and Aldous, C. M. 1952. Influence <strong>of</strong> pocket gophers<br />

on vegetation <strong>of</strong> subalpine grassland in central Utah. Ecology 33:<br />

177–186.<br />

Ernst, M., Chatterton, N. J. and Harrison, P. A. 1996.<br />

Purification and characterization <strong>of</strong> a new fructan series from<br />

species <strong>of</strong> Asteraceae. New Phytol. 132: 63–66.<br />

Falkowski, M., Kukulka, I. and Kozlowski, S. 1989.<br />

Characterization <strong>of</strong> biological properties and fodder value <strong>of</strong> dandelion,<br />

<strong>Taraxacum</strong> <strong>of</strong>ficinale Web. Pages 775–776 in Proceedings<br />

<strong>of</strong> the XVI International Grassland Congress, 1989, Nice, France.<br />

Falkowski, M., Kukulka, I. and Kozlowski, S. 1990. Biological<br />

properties and fodder value <strong>of</strong> dandelion. Pages 208–211 in N.<br />

Gaborcik, V. Krajcovik, and M. Zimkova, eds. Soil-grassland-animal<br />

relationships: Proceedings <strong>of</strong> the 13th General Meeting <strong>of</strong> the<br />

European Grassland Federation, 1990. Vol. 2. Banska Bystrica,<br />

Czechoslovakia.<br />

Farr, D. F., Bills, G. F., Chamuris, G. P. and Rossman, A. Y.<br />

1989. Fungi on plants and plant products in the United States. APS<br />

Press, St. Paul, MN. 1252 pp.<br />

Ferrero, A., Balsari, P. and Airoldi, G. 1994. Preliminary results<br />

<strong>of</strong> flame weeding in orchards. Pages 389–394 in Maîtrise des<br />

adventices par voie non chimique. Communications de la<br />

Quatrième Conférence Internationale IFOAM, 1993, Dijon,<br />

France.<br />

STEWART-WADE ET AL — TARAXACUM OFFICINALE G. H. WEBER EX WIGGERS 847<br />

Ferron, M. and Cayouette, R. 1975. Noms des mauvaises herbes<br />

du Québec. 3rd . ed. Agriculture Québec, Publication QA38 R4–4.<br />

113 pp. [in French.]<br />

Firrao, G., Carraro, L., Gobbi, E. and Locci, R. 1996.<br />

Molecular characterization <strong>of</strong> a phytoplasma causing phyllody in<br />

clover and other herbaceous hosts in Northern Italy. Eur. J. Plant<br />

Pathol. 102: 817–822.<br />

Fletcher, R. A. and Osborne, D. J. 1966. Gibberellin, as a regulator<br />

<strong>of</strong> protein and ribonucleic acid synthesis during senescence in<br />

leaf cells <strong>of</strong> <strong>Taraxacum</strong> <strong>of</strong>ficinale. Can. J. Bot. 44: 739–745.<br />

Fletcher, R. A., Oegema, T. and Horton, R. F. 1969.<br />

Endogenous gibberellin levels and senescence in <strong>Taraxacum</strong> <strong>of</strong>ficinale.<br />

Planta (Berlin) 86: 98–102.<br />

Fontenla, S., Garcia-Romera, I. and Ocampo, J. A. 1999.<br />

Negative influence <strong>of</strong> non-host plants on the colonization <strong>of</strong> Pisum<br />

sativum by the arbuscular mycorrhizal fungus Glomus mosseae.<br />

Soil Biol. Biochem. 31: 1591–1597.<br />

Ford, H. 1981a. <strong>The</strong> demography <strong>of</strong> three populations <strong>of</strong> dandelion.<br />

Biol. J. Linn. Soc. 15: 1–11.<br />

Ford, H. 1981b. Competitive relationships amongst apomictic<br />

dandelions. Biol. J. Linn. Soc. 15: 355–368.<br />

Ford, H. 1985. Life history strategies in two coexisting agamospecies<br />

<strong>of</strong> dandelion. Biol. J. Linn. Soc. 25: 169–186.<br />

Fox, C. W. and Caldwell, R. L. 1994. Host-associated fitness<br />

trade-<strong>of</strong>fs do not limit the evolution <strong>of</strong> diet breadth in the small<br />

milkweed bug Lygaeus kalmii (Hemiptera: Lygaeidae). Oecologia<br />

97: 382–389.<br />

Frank, T. and Friedli, J. 1999. Laboratory food choice trials to<br />

explore the potential <strong>of</strong> common <strong>weeds</strong> to reduce slug feeding on<br />

oilseed rape. Biol. Agric. Hortic. 17 (1): 19–29.<br />

Frick, B. and Thomas, A. G. 1992. Weed surveys in different<br />

tillage systems in southwestern Ontario field crops. Can. J. Plant<br />

Sci. 72: 1337–1347.<br />

Fuchs, E., Grüntzig, M., Auerbach, I., Einecke, I., Müller, C.<br />

and Krägenow, M. 1994. On the occurrence <strong>of</strong> plant pathogenic<br />

viruses in waters in the region <strong>of</strong> Halle/Saale (German Federal<br />

State <strong>of</strong> Saxony-Anhalt). Arch. Phytopathol. Pflanzenschutz 29:<br />

133–141.<br />

Gadgil, M. and Solbrig, O. T. 1972. <strong>The</strong> concept <strong>of</strong> r- and Kselection:<br />

evidence from wild flowers and some theoretical considerations.<br />

Am. Nat. 106: 14–31.<br />

Gail, P. A. 1994. <strong>The</strong> dandelion celebration: a guide to unexpected<br />

cuisine. Goosefoot Acres Press, Cleveland, OH. 155 pp.<br />

Galford, J. R. 1987. Feeding habits <strong>of</strong> the weevil Barypeithes<br />

pellucidus (Coleoptera: Curculionidae). Entomol. News 98:<br />

163–164.<br />

Gange, A. C. and Brown, V. K. 1991. Culturing root aphids using<br />

hydroponics. Entomol. Gaz. 42: 165–169.<br />

Gange, A. C., Brown, V. K. and Sinclair, G. S. 1994. Reduction<br />

in black vine weevil larval growth by vesicular-arbuscular mycorrhizal<br />

infection. Entomol. Exp. Appl. 70: 115–119.<br />

Georgi, L. L. 1988a. Transmission <strong>of</strong> tomato ringspot virus by<br />

Xiphinema americanum and X. rivesi from New York orchards. J.<br />

Nematol. 20: 304–308.<br />

Georgi, L. L. 1988b. Effect <strong>of</strong> three plant species on population<br />

densities <strong>of</strong> Xiphinema americanum and X. rivesi. J. Nematol. 20:<br />

474–477.<br />

Gier, L. J. and Burress, R. M. 1942. Anatomy <strong>of</strong> <strong>Taraxacum</strong><br />

<strong>of</strong>ficinale ‘Weber’. Trans. Kansas Acad. Sci. 45: 94–97.<br />

Gill, N. T. 1938. <strong>The</strong> viability <strong>of</strong> weed seeds at various stages <strong>of</strong><br />

maturity. Ann. Appl. Biol. 25: 447–456.<br />

Ginns, J. H. 1986. Compendium <strong>of</strong> plant disease and decay fungi<br />

in Canada 1960–1980. Research Branch, Canada Dept. Agric.<br />

Publ.1813. 416 pp.


848 CANADIAN JOURNAL OF PLANT SCIENCE<br />

Gitaitis, R., MacDonald, G., Torrance, R., Hartley, R.,<br />

Sumner, D. R., Gay, G. D. and Johnson, W. C., III. 1998.<br />

Bacterial streak and bulb rot <strong>of</strong> sweet onion: II. Epiphytic survival<br />

<strong>of</strong> Pseudomonas viridiflava in association with multiple weed<br />

hosts. Plant Dis. 82: 935–938.<br />

Gleason, H. A. 1963. <strong>The</strong> new Britton and Brown illustrated flora<br />

<strong>of</strong> the Northeastern United States and adjacent Canada. Vol. 3.<br />

Hafner Publishing Company, Inc., New York, NY. 595 pp.<br />

Godwin, H. 1956. <strong>The</strong> history <strong>of</strong> the British flora. Cambridge<br />

University, Cambridge UK. 384 pp.<br />

Gorchakovskii, P. L. and Abramchuk, A. V. 1996. Grazing tolerance<br />

<strong>of</strong> the vegetation <strong>of</strong> dry meadows. Russ. J. Ecol. 27:<br />

321–325.<br />

Gracia, O., Koenig, R. and Lesemann, D.-E. 1983. Properties<br />

and classification <strong>of</strong> a potexvirus isolated from three plant species<br />

in Argentina. Phytopathology 73: 1488–1492.<br />

Grases, F., Melero, G., Costa-Bauza, A., Prieto, R and March,<br />

J. G. 1994. Urolithiasis and phytotherapy. Int. Urol. Nephrol.<br />

26(5): 507–511.<br />

Gray, E., McGehee, E. M. and Carlisle, D. F. 1973. Seasonal<br />

variation in flowering <strong>of</strong> common dandelion. Weed Sci. 21:<br />

230–232.<br />

Hagin, R. D., Linscott, D. L. and Dawson, J. E. 1970. 2,4-D<br />

metabolism in resistant grasses. J. Agric. Food Chem. 18:<br />

848–880.<br />

Hagley, E. A. C. and Barber, D. R. 1992. Effect <strong>of</strong> food sources<br />

on the longevity and fecundity <strong>of</strong> Pholetesor ornigis (Weed)<br />

(Hymenoptera: Braconidae). Can. Entomol. 124: 341–346.<br />

Hall, J. C., Eggens, J. L., Sagan, K. and Carey, K. 1992. Nonchemical<br />

weed control. First choice <strong>of</strong> species/cultivar and nitrogen<br />

fertility. Pages 63–65 in Guelph Turfgrass Institute 1992<br />

Research Report. Guelph Turfgrass Institute Research and<br />

Information Centre, Guelph, ON.<br />

Hamill, A. S. 1997. Dandelion control in corn and soybean. Pages<br />

70–76 in Expert Committee on Weeds. Proceedings <strong>of</strong> the 1996<br />

National Meeting, Victoria BC. Government <strong>of</strong> Canada.<br />

Hanawa, F., Kanauchi, M., Tahara, S. and Mizutani, J. 1995.<br />

Lettucenin A as a phytoalexin <strong>of</strong> dandelion and its elicitation in<br />

dandelion cell cultures. J. Fac. Agric. Hokkaido Univ. 66. pt. 2:<br />

151–162.<br />

Hanley, M. E., Fenner, M. and Edwards, P. J. 1995. <strong>The</strong> effect<br />

<strong>of</strong> seedling age on the likelihood <strong>of</strong> herbivory by the slug<br />

Deroceras reticulatum. Funct. Ecol. 9: 754–759.<br />

Hanley, M. E., Fenner, M. and Edwards, P. J. 1996. Mollusc<br />

grazing and seedling survivorship <strong>of</strong> four common grassland plant<br />

species: the role <strong>of</strong> gap size, species and season. Acta Æcol. 17:<br />

331–341.<br />

Hartwig, N. L. 1989. Influence <strong>of</strong> a crownvetch living mulch on<br />

dandelion invasion in corn. Proc. Northeast. Weed Sci. Soc. 43:<br />

25–28.<br />

Hartwig, N. L. 1990. Influence <strong>of</strong> a crownvetch living mulch and<br />

previous crop on corn yields in a dry year. Proc. Northeast. Weed<br />

Sci. Soc. 44: 89–92.<br />

Haugland, E. 1993. Competition between an established grass<br />

sward and seedlings <strong>of</strong> Rumex longifolius DC. and <strong>Taraxacum</strong><br />

<strong>of</strong>ficinale (Web.) Marss. Norw. J. Agric. Sci. 7: 409–420.<br />

Hawker, L. E., Harrison, R. W., Nicholls, V. O. and Ham, A.<br />

M. 1957. Studies on the vesicular-arbuscular endophytes. I. A<br />

strain <strong>of</strong> Pythium ultimum Trow. in roots <strong>of</strong> Allium ursinum L. and<br />

other plants. Trans. Br. Myc. Soc. 40: 375–390.<br />

Haynes, J. W. and Smith, J. W. 1992. Longevity <strong>of</strong> laboratoryreared<br />

boll weevils (Coleoptera: Curculionidae) <strong>of</strong>fered honey beecollected<br />

pollen and plants unrelated to cotton. J. Entomol. Sci. 27:<br />

366–374.<br />

Haytowitz, D. B. and Matthews, R. 1984. Composition <strong>of</strong> foods:<br />

vegetables and vegetable products. US Department <strong>of</strong> Agriculture<br />

Human Nutrition Information Service. Agricultural Handbook No.<br />

8–11.<br />

Hedrick, U. P. 1972. Sturtevant’s edible plants <strong>of</strong> the world.<br />

Dover Publ. Inc., New York, NY. 696 pp.<br />

Helbling, A. and Wuethrich, B. 1987. Ein ungewoehnlicher Fall<br />

von Honigallergie. Allerlogie 10: 252–255. [in German.]<br />

Higashimura, T. 1986. Formation <strong>of</strong> adventitious buds in excised<br />

root segments <strong>of</strong> dandelion. Bull. Nara Univ. Ed. Natur. Sci. 35:<br />

85–93.<br />

Holm, L., Doll, J., Holm, E., Pancho, J. and Herberger, J. 1997.<br />

World <strong>weeds</strong>: natural histories and distribution. John Wiley and<br />

Sons, New York, NY. 1129 pp.<br />

Holmgren, P.K., Holmgren, N.H. and Barnett, L.C. 1990.<br />

Index Herbariorum. Part I. <strong>The</strong> herbaria <strong>of</strong> the world. ed. 8.<br />

(Regnum Veg. 120) New York Botanical Garden, New York, NY.<br />

693 pp.<br />

Hook, I. L. I. 1994. XXIV <strong>Taraxacum</strong> <strong>of</strong>ficinale Weber (dandelion):<br />

in vitro culture, micropropagation, and the production <strong>of</strong><br />

volatile metabolites. Pages 356–369 in Y. P. S. Bajaj, ed.<br />

Biotechnology in agriculture and forestry. Vol. 26. Medicinal and<br />

aromatic plants VI. Springer Verlag, Berlin, Germany.<br />

Hook, I., McGee, A. and Henman, M. 1993. Evaluation <strong>of</strong> dandelion<br />

for diuretic activity and variation in potassium content. Int.<br />

J. Pharmacogn. 31: 29–34.<br />

Hook, I. L. I., Sheridan, H. and Wilson, G. 1991. Volatile<br />

metabolites from suspension cultures <strong>of</strong> <strong>Taraxacum</strong> <strong>of</strong>ficinale.<br />

Phytochemistry 30: 3977–3979.<br />

Hoshikawa, K. 1995. Bionomics <strong>of</strong> Coccinula crotchi in<br />

Hokkaido (Coccinellidae: Coleoptera). Jpn. J. Entomol. 63:<br />

419–424.<br />

Houghton, P. 1995. Herbal products. 9. Bearberry, dandelion and<br />

celery. Pharm. J. 255: 272–273.<br />

Hughes, J. and Richards, A. J. 1985. Isozyme inheritance in<br />

diploid <strong>Taraxacum</strong> hybrids. Heredity 54: 245–249.<br />

Imai, H., Ohnishi, M., Kinoshita, M., Kojima, M. and Ito, S.<br />

1995. Structure and distribution <strong>of</strong> cerebroside containing unsaturated<br />

hydroxy fatty acids in plant leaves. Biosci. Biotechnol.<br />

Biochem. 59: 1309–1313.<br />

Isselstein, J. 1992. Studies on the variability <strong>of</strong> germination <strong>of</strong><br />

<strong>Taraxacum</strong> <strong>of</strong>ficinale Web. Z. Pflanzenk. Pflanzen. 13: 119–125.<br />

Isselstein, J. and Ridder, P. 1993. Untersuchungen zum<br />

Trocknungsverlauf ausgewaehlter Gruenlandkraeuter unter<br />

kontrollierten Bedingungen. Z. Wirt. Futter 39: 136–145. [in<br />

German.]<br />

Jackson, B. S. 1982. <strong>The</strong> lowly dandelion deserves more respect.<br />

Can. Geogr. 102: 54–59.<br />

Jacobs, S. B., Byers, R. A. and Anderson, S. G. 1992. Habitat<br />

and food preferences <strong>of</strong> Allonemobius allardi (Orthoptera:<br />

Gryllidae) and potential damage to alfalfa in conservation-tillage<br />

systems. J. Econ. Entomol. 85: 1933–1939.<br />

Jaeger, E. C. 1955. A source-book <strong>of</strong> biological names and terms.<br />

3rd ed. Charles C. Thomas, Springfield, IL. 323 pp.<br />

Janzen, D. H. 1977. What are dandelions and aphids? Am. Nat.<br />

111: 586–589.<br />

Jarvis, W. R. 1989. Allelopathic control <strong>of</strong> Fusarium oxysporum<br />

f. sp. radicis-lycopersici. Pages 479–486 in E. C. Tjamos and C.<br />

Beckman, eds. NATO ASI Series, Vol. H28. Vascular wilt diseases<br />

<strong>of</strong> plants. Springer Verlag, Berlin, Germany.<br />

Jenniskens, M. J. P. J. 1984. General introduction. Pages 13–19<br />

in M. J. P. J. Jenniskens, ed. Aspects <strong>of</strong> the biosystematics <strong>of</strong><br />

<strong>Taraxacum</strong> section <strong>Taraxacum</strong>. Academic Press, Amsterdam, <strong>The</strong><br />

Netherlands.


Jenniskens, M. J. P. J., Wetzels, P. and Sterk, A. A. 1984.<br />

Aspects <strong>of</strong> the flowering ecology <strong>of</strong> taxa <strong>of</strong> <strong>Taraxacum</strong> section<br />

<strong>Taraxacum</strong>. Pages 23–65 in M. J. P. J. Jenniskens, ed. Aspects <strong>of</strong><br />

the biosystematics <strong>of</strong> <strong>Taraxacum</strong> section <strong>Taraxacum</strong>. Academic<br />

Press, Amsterdam, <strong>The</strong> Netherlands.<br />

Johns, L. J. 1982. Purification and partial characterization <strong>of</strong> a<br />

carlavirus from <strong>Taraxacum</strong> <strong>of</strong>ficinale. Phytopathology 72:<br />

1239–1242.<br />

Johnson, B. J. and Bowyer, T. H. 1982. Management <strong>of</strong> herbicide<br />

and fertility levels on <strong>weeds</strong> and Kentucky Bluegrass turf.<br />

Agron. J. 74: 845–850.<br />

Jordan, D. N. and Smith, W. K. 1995. Radiation frost susceptibility<br />

and the association between sky exposure and leaf size.<br />

Oecologia 103: 43–48.<br />

Judd, W. W. 1971. Studies on the Byron Bog in southwestern<br />

Ontario. XLV. Insects associated with flowering dandelion,<br />

<strong>Taraxacum</strong> <strong>of</strong>ficinale Weber. Entomol. Soc. Ont. Proc. 101:<br />

59–62.<br />

Kaakeh, W. and Hogmire, H. W. 1991. Biology and control <strong>of</strong><br />

green peach aphid, Myzus persicae (Sulzer), on peach in West<br />

Virginia, USA. Arab J. Plant Prot. 9: 124–128.<br />

Kabir, Z. and Koide, R. T. 2000. <strong>The</strong> effect <strong>of</strong> dandelion or a<br />

cover crop on mycorrhiza inoculum potential, soil aggregation and<br />

yield <strong>of</strong> maize. Agric. Ecosyst. Environ. 78: 167–174.<br />

Kasenberg, T. R. and Traquair, J. A. 1988. Effects <strong>of</strong> phenolics<br />

on growth <strong>of</strong> Fusarium oxysporum f. sp. radicis-lycopersici in<br />

vitro. Can. J. Bot. 66: 1174–1177.<br />

Kassanis, B. 1947. Studies on dandelion yellow mosaic and other<br />

virus diseases <strong>of</strong> lettuce. Ann. Appl. Biol. 34: 412–421.<br />

Keller, S. 1986. Quantitative ecological evaluation <strong>of</strong> the may beetle<br />

pathogen, Beauveria brongniartii, and its practical application.<br />

Pages 178–181 in R. A. Samson, J. M. Vlak, and D. Peters, eds.<br />

Fundamental and applied aspects <strong>of</strong> invertebrate pathology.<br />

Foundation <strong>of</strong> the Fourth International Colloquium <strong>of</strong> Invertebrate<br />

Pathology, Wageningen, <strong>The</strong> Netherlands.<br />

Kemp, P. R., Williams, G. J., III and May, D. S. 1977.<br />

Temperature relations <strong>of</strong> gas exchange in altitudinal populations <strong>of</strong><br />

<strong>Taraxacum</strong> <strong>of</strong>ficinale. Can. J. Bot. 55: 2496–2502.<br />

Kennison, J. A. 1978. Inter- and intrapopulational variability <strong>of</strong><br />

the common dandelion (<strong>Taraxacum</strong> <strong>of</strong>ficinale Web.) in<br />

Washington. M.Sc. <strong>The</strong>sis, Western Washington University,<br />

Bellingham WA. 41 pp.<br />

Khan, J. 2001. <strong>The</strong> raw ingredients. Seasons (Federation <strong>of</strong><br />

Ontario Naturalists) 41 (2): 36.<br />

Khan, M. I. 1969. Regeneration in relation to root size in<br />

<strong>Taraxacum</strong> <strong>of</strong>ficinale. Pak. J. Sci. Ind. Res. 12: 310–311.<br />

Khan, M. I. 1973. Anatomy <strong>of</strong> regenerating root segments <strong>of</strong><br />

<strong>Taraxacum</strong> <strong>of</strong>ficinale Web. Pak. J. Bot. 5: 71–77.<br />

Khan, M. I. 1975. Regeneration <strong>of</strong> <strong>Taraxacum</strong> roots in relation to<br />

carbon and nitrogen supply. Pak. J. Bot. 7: 161–167.<br />

King, L. J. 1966. Weeds <strong>of</strong> the world; <strong>biology</strong> and control.<br />

Interscience Publishers Inc., New York, NY. 526 pp.<br />

King, L. M. 1993. Origins <strong>of</strong> genotypic variation in North<br />

American dandelions inferred from ribosomal DNA and chloroplast<br />

DNA restriction enzyme analysis. Evolution 47(1): 136–151.<br />

Komine, H., Takahashi, T. and Ayabe, S. 1996. Properties and<br />

patial purification <strong>of</strong> squalene synthase from cultured cells <strong>of</strong> dandelion.<br />

Phytochemistry 42: 405–409.<br />

Kremer, J. C. 1950. <strong>The</strong> dandelion and its influence on bee behaviour<br />

during the fruit blossoming period. Proc. Am. Soc. Hortic. Sci.<br />

55: 140–146.<br />

Kuleff, I. and Djingova, R. 1984. <strong>The</strong> dandelion (<strong>Taraxacum</strong><br />

<strong>of</strong>ficinale) — a monitor for environmental pollution? Water Air<br />

Soil Pollut. 21: 77–85.<br />

STEWART-WADE ET AL — TARAXACUM OFFICINALE G. H. WEBER EX WIGGERS 849<br />

Kunisch, M., H<strong>of</strong>fmann, P., Seefried, G., Arians, T. and Koch,<br />

W. 1992. Potential use <strong>of</strong> electromagnetic radiation for weed control<br />

on railway tracks. Z. Pflanzenk. Pflanzen. 13: 513–522.<br />

Kuusi, T. and Autio, K. 1985. <strong>The</strong> bitterness properties <strong>of</strong> dandelion.<br />

I. Sensory investigations. Lebensm. Wiss. Technol. 18: 339–346.<br />

Kuusi, T., Hardh, K. and Kanon, H. 1982. <strong>The</strong> nutritive value <strong>of</strong><br />

dandelion leaves. Alternative/Appropriate Technologies in<br />

Agriculture 3: 53–60.<br />

Kuusi, T., Hardh, K. and Kanon, H. 1984. Experiments on the<br />

cultivation <strong>of</strong> dandelion for salad use. I. Study <strong>of</strong> cultivation methods<br />

and their influence on yield and sensory quality. J. Agric. Sci.<br />

Finl. 56: 9–22.<br />

Kuusi, T., Pyysalo, H. and Autio, K. 1985. <strong>The</strong> bitterness properties<br />

<strong>of</strong> dandelion. II. Chemical investigations. Lebensm. Wiss.<br />

Technol. 18: 347–349.<br />

Lamp, W. O., Morris, M. J. and Armbrust, E. J. 1984.<br />

Suitability <strong>of</strong> common weed species as host plants for the<br />

potato leafhopper, Empoasca fabae. Entomol. Exp. Appl. 36:<br />

125–131.<br />

Laverty, T. and Hiemstra, H. 1998. Effect <strong>of</strong> flowering dandelion<br />

as a competitor to flowers <strong>of</strong> fruit trees for pollen-collecting<br />

honey bees in Ontario. Entomol. Soc. Ont. Proc. 129: 3–8.<br />

Leal, W. S., Ono, M., Hasegawa, M. and Sawada, M. 1994.<br />

Kairomone from dandelion, <strong>Taraxacum</strong> <strong>of</strong>ficinale, attractant for<br />

scarab beetle Anomala octiescostata. J. Chem. Ecol. 20:<br />

1697–1704.<br />

Légère, A., Samson, N. and Rioux, R. 1993. Perennial <strong>weeds</strong> in<br />

conservation tillage systems: more <strong>of</strong> an issue than in conventional<br />

tillage systems? Proc. Brighton Crop Prot. Conf. Weeds 6C–1:<br />

747–752.<br />

Leite, R. M. V. B. C., Leite, R. P., Jr. and Ceresini, P. C. 1997.<br />

Alternative hosts <strong>of</strong> Xylella fastidiosa in plum orchards with the<br />

leaf scald disease. Fitopatol. Bras. 22(1): 54–57. [in Spanish,<br />

English abstract.]<br />

Letchamo, W. and Gosselin, A. 1995. Root and shoot growth and<br />

chlorophyll content <strong>of</strong> <strong>Taraxacum</strong> <strong>of</strong>ficinale provenances as affected<br />

by defoliation and debudding under organic and hydroponic<br />

cultivation. J. Hortic. Sci. 70: 279–285.<br />

Letchamo, W. and Gosselin, A. 1996. Light, temperature and<br />

duration <strong>of</strong> storage govern the germination and emergence <strong>of</strong><br />

<strong>Taraxacum</strong> <strong>of</strong>ficinale seed. J. Hortic. Sci. 71: 373–377.<br />

Li, T. S. C. 1996. Nutrient <strong>weeds</strong> as soil amendments for organically<br />

grown herbs. J. Herbs Spices Medicinal Plants 4: 3–8.<br />

Linhart, Y. B. 1976. Density dependent seed germination strategies<br />

in colonizing versus non-colonizing plant species. J. Ecol. 64:<br />

375–380.<br />

Lipp, J. 1991. Detection <strong>of</strong> ABA and proline in pollen. Biochem.<br />

Physiol. Pfl. 187: 211–216.<br />

Listowski, A. and Jackowska, I. 1965. Observations on plant<br />

development. XI. On the rhythm <strong>of</strong> flowering <strong>of</strong> <strong>Taraxacum</strong> <strong>of</strong>ficinale.<br />

Acta Soc. Bot. Pol. 34: 549–561.<br />

Longyear, B. O. 1918. <strong>The</strong> dandelion in Colorado. Agric. Exp.<br />

Sta. Agric. Coll. Colorado Bull. 236: 1–35.<br />

Loomis, W. E. 1938. <strong>The</strong> control <strong>of</strong> dandelions in lawn. J. Agric.<br />

Res. 56: 855–868.<br />

Lovell, C. R. and Rowan, M. 1991. Dandelion dermatitis. Contact<br />

Dermatitis 25: 185–188.<br />

Lüscher, M., Frehner, M. and Nösberger, J. 1993. Purification<br />

and some properties <strong>of</strong> fructan:fructan fructosyl transferase from<br />

dandelion (<strong>Taraxacum</strong> <strong>of</strong>ficinale Weber). New Phytol. 123:<br />

437–442.<br />

Lyman, J. C. and Ellstrand, N. C. 1984. Clonal diversity in<br />

<strong>Taraxacum</strong> <strong>of</strong>ficinale (Compositae), an apomict. Heredity 53:<br />

1–10.


850 CANADIAN JOURNAL OF PLANT SCIENCE<br />

Lytaeva, G. K. 1971. Plants — reservoirs <strong>of</strong> potato virus Y. J.<br />

Byull.vses nauchno-issled. Inst. Zashch. Rast. 20: 42–44<br />

Maguire, J. D. and Overland, A. 1959. Laboratory germination<br />

<strong>of</strong> seeds <strong>of</strong> weedy and native plants. Washington Agric. Exp. Sta.<br />

Circ. 349. 15 pp.<br />

Mann, H. 1981. Common dandelion (<strong>Taraxacum</strong> <strong>of</strong>ficinale) control<br />

with 2,4-D and mechanical treatments. Weed Sci. 29: 704–708.<br />

Mann, H. and Cavers, P. B. 1979. <strong>The</strong> regenerative capacity <strong>of</strong><br />

root cuttings <strong>of</strong> <strong>Taraxacum</strong> <strong>of</strong>ficinale under natural conditions.<br />

Can. J. Bot. 57: 1783–1791.<br />

Mark, K. A., Brancaccio, R. R., Soter, N. A. and Cohen, D. E.<br />

1999. Allergic contact and photoallergic contact dermatitis to plant<br />

and pesticide allergens. Arch. Dermatol. 135: 67–70.<br />

Marr, K., Fyles, H. and Hendershot, W. 1999. Trace metals in<br />

Montréal urban soils and the leaves <strong>of</strong> <strong>Taraxacum</strong> <strong>of</strong>ficinale. Can.<br />

J. Soil Sci. 79: 385–387.<br />

Martinková, Z. and Honĕk, A. 1997. Germination and seed viability<br />

in a dandelion, <strong>Taraxacum</strong> <strong>of</strong>ficinale Agg. Ochr. Rostl. 33:<br />

125–133.<br />

Masaki, M., Ohmura, K. and Ichinohe, F. 1984. Host range<br />

studies <strong>of</strong> the black vine weevil, Otiorhynchus sulcatus (Fabricius)<br />

(Coleoptera: Curculionidae). Appl. Entomol. Zool. 19: 95–106.<br />

Mattern, V. 1994. Don’t weed ‘em, eat ‘em. Organic Gard. 41:<br />

70–72, 74.<br />

May, D. S. 1976. Temperature response <strong>of</strong> succinate dehyrogenase<br />

in altitudinally diverse populations <strong>of</strong> <strong>Taraxacum</strong> <strong>of</strong>ficinale. Am.<br />

Midl. Nat. 95: 204–208.<br />

May, D. S. and Villarreal, H. M. 1974. Altitudinal differentiation<br />

<strong>of</strong> the Hill reaction in populations <strong>of</strong> <strong>Taraxacum</strong> <strong>of</strong>ficinale in<br />

Colorado. Photosynthetica 8: 73–77.<br />

McAvoy, T. J., Kok, L. T. and Trumble, J. T. 1983. Biological<br />

studies <strong>of</strong> Ceutorhynchus punctiger (Coleoptera: Curculionidae)<br />

on dandelion in Virginia. Ann. Entomol. Soc. Am. 76: 671–674.<br />

Mezynski, P. R. and Cole, D. F. 1974. Germination <strong>of</strong> dandelion<br />

seed on a thermogradient plate. Weed Sci. 22: 506–507.<br />

Michaud, M. H., Gosselin, A., Tremblay, N., Benoit, D. L.,<br />

Bélanger, A. and Desroches, B. 1993. Effect <strong>of</strong> a herbicide and<br />

two plant densities on the yield <strong>of</strong> medicinal plants grown in<br />

Québec (Canada). Acta Hortic. 331: 311–318.<br />

Miller, S. S. and Eldridge, B. J. 1989. Plant growth regulators<br />

suppress established orchard sod and dandelion (<strong>Taraxacum</strong> <strong>of</strong>ficinale)<br />

population. Weed Technol. 3: 317–321.<br />

Minnich, J. 1983. Gardening for maximum nutrition. Rodale<br />

Press, Emmaus, PA. 220 pp.<br />

Misiga, S., Musil, M. and Valenta, V. 1960. Niektore hostitel’ske<br />

rastliny virusur zelenokvetoski Dateliny. (Some host plants <strong>of</strong><br />

strawberry green petal virus). Biologia, Bratislava 15: 538–542. [in<br />

Czech.]<br />

Mitich, L. W. 1989. Common dandelion — the lion’s tooth. Weed<br />

Technol. 3: 537–539.<br />

Mizutani, J. 1989. Plant allelochemicals and their roles.<br />

Phytochemical Ecology: allelochemicals, mycotoxins and insect<br />

pheromones and allomones. Inst. Bot. Acad. Sin. Monogr. Ser. no.<br />

9: 155–165.<br />

Mohler, C. L. and Calloway, M. B. 1992. Effects <strong>of</strong> tillage and<br />

mulch on the emergence and survival <strong>of</strong> <strong>weeds</strong> in sweet corn. J.<br />

Appl. Ecol. 29: 21–34.<br />

Molgaard, P. 1977. Competitive effect <strong>of</strong> grass on establishment<br />

and performance <strong>of</strong> <strong>Taraxacum</strong> <strong>of</strong>ficinale. Oikos 29: 376–382.<br />

Moore, W. C. 1946. New and interesting plant diseases. Trans. Br.<br />

Mycol. Soc. 29 (4): 250–258.<br />

Mountain, W. L., Powell, C. A., Forer, L. B. and Stouffer, R. F.<br />

1983. Transmission <strong>of</strong> tomato ringspot virus from dandelion via<br />

seed and dagger nematodes. Plant Dis. 67: 867–868.<br />

Moyer, J. R., Fraser, J., Rode, L. M. and Topinka, A. K. 1999.<br />

Effects <strong>of</strong> growth-stage-based alfalfa harvest on weed encroachment<br />

and resultant quality. Can. J. Plant Sci. 79: 243–247.<br />

Moyer, J. R., Hironaka, R., Kozub, G. C. and Bergen, P. 1990.<br />

Effect <strong>of</strong> herbicide treatments on dandelion, alfalfa and sainfoin<br />

yields and quality. Can. J. Plant Sci. 70: 1105–1113.<br />

Mt. Pleasant, J. and Schlather, K. J. 1994. Incidence <strong>of</strong> weed<br />

seed in cow (Bos sp.) manure and its importance as a weed source<br />

for cropland. Weed Technol. 8: 304–310.<br />

Mueller, J. P., Poore, M. H. and Skroch, W. A. 1999. Damage<br />

assessment in Christmas tree plantations following vegetation control<br />

with sheep and geese. South. J. Appl. For. 23(1): 11–15.<br />

Müller, H. L. 1969. Ergänzende Untersuchungen über die<br />

Luzernevertiziliose (Verticillium albo-atrum Rke.et Beth.), insbesondere<br />

die Möglichkeit einer systematischen Auslese resistenter<br />

Luzernepflanzen. Phytopathol. Z. 69: 69–97. [In German.]<br />

Müller, H. L. and Kirchgessner, M. 1972. Mengen- und<br />

Spurenelementgehalte des Löwenzahns und ihre Abhängigkeit<br />

vom Wachstumsstadium. Wirt. Futter 18: 213–221. [In German.]<br />

Murant, A. F. 1988. Parsnip yellow fleck virus, type member <strong>of</strong> a<br />

proposed new plant virus group, and a possible second member,<br />

dandelion yellow mosaic virus. Pages 273–288 in R. Koenig ed.<br />

<strong>The</strong> plant viruses. Vol. 3. Polyhedral virions with monpartite RNA<br />

genomes. Plenum Press, New York, NY.<br />

Naylor, E. 1941. <strong>The</strong> proliferation <strong>of</strong> dandelion from roots. Bull.<br />

Torrey Bot. Club 68: 351–358.<br />

Neal, J. C. 1990. Non-phenoxy herbicides for perennial broadleaf<br />

weed control in cool-season turf. Weed Technol. 4: 555–559.<br />

Neamtu, G., Tabacaru, C. and Socaciu, C. 1992. Phytochemical<br />

research on higher plants. V. <strong>The</strong> content <strong>of</strong> carotenoids, chlorophylls,<br />

substances used as food and mineral elements in<br />

<strong>Taraxacum</strong> <strong>of</strong>ficinale L. (dandelion). Buletinul Universitatii de<br />

Stiinte Cluj Napoca Seria Agricultura si Horticultura 46: 93–99. [in<br />

Romanian, English abstract.]<br />

Neuer-Markmann, B. and Beiderbeck, R. 1990. Biology and<br />

host range <strong>of</strong> the gall midge species Cystiphora taraxaci under<br />

growth chamber conditions (Diptera: Cecidomyiidae). Entomol.<br />

Gen. 15: 209–216.<br />

Neumann Brebaum, S. 1998. Development <strong>of</strong> an inundative biological<br />

weed control strategy for <strong>Taraxacum</strong> <strong>of</strong>ficinale Weber in<br />

turf. Ph. D. <strong>The</strong>sis, University <strong>of</strong> Guelph, Guelph, ON. 222 pp.<br />

Neumann Brebaum, S. and Boland, G. J. 1999. First report <strong>of</strong><br />

Phoma herbarum and Phoma exigua as pathogens <strong>of</strong> dandelion in<br />

southern Ontario. Plant Dis. 83: 200.<br />

Niklas, K. J. and Paolillo, D. J., Jr. 1998. Preferential states <strong>of</strong><br />

longitudinal tension in the outer tissues <strong>of</strong> <strong>Taraxacum</strong> <strong>of</strong>ficinale<br />

(Asteraceae) peduncles. Am. J. Bot. 85(8): 1068–1081.<br />

Noronha, A., Andersson, L. and Milberg, P. 1997. Rate <strong>of</strong><br />

change in dormancy level and light requirement in weed seeds during<br />

stratification. Ann. Bot. 80: 795–801.<br />

Ogawa, K. 1978. <strong>The</strong> germination pattern <strong>of</strong> a native dandelion<br />

(<strong>Taraxacum</strong> platycarpum) as compared with introduced dandelions.<br />

Jpn. J. Ecol. 28: 9–15.<br />

Oldham, M. J., Brunton, D. F., Sutherland, D. A. and McLeod,<br />

D. 1992. Noteworthy collection; Ontario. <strong>The</strong> Michigan Botanist<br />

31: 41–42.<br />

Oulton, K., Williams, G. J., III and May, D. S. 1979. Ribulose-<br />

1,5-bisphosphate carboxylase from altitudinal populations <strong>of</strong><br />

<strong>Taraxacum</strong> <strong>of</strong>ficinale. Photosynthetica 13: 15–20.<br />

Oxlade, E. L. and Clifford, P. E. 1981. Experiments in geotropism.<br />

J. Biol. Educ. 15: 137–142 .<br />

Oxlade, E. L. and Clifford, P. E. 1999. <strong>The</strong> versatile dandelion.<br />

J. Biol. Educ. 33: 125–129.


Pape, H. 1954. Bestehen Möglichkeiten zur Bekämpfung des<br />

Kleekrebses. [Do possibilities exist for the control <strong>of</strong> clover<br />

canker?] Neue Mitt. Landw. 69: 101-102. [in German.]<br />

Paquette, L. C., Bagatto, G. and Shorthouse, J. D. 1993.<br />

Distribution <strong>of</strong> mineral nutrients within the leaves <strong>of</strong> common dandelion<br />

(<strong>Taraxacum</strong> <strong>of</strong>ficinale) galled by Phanacis taraxaci<br />

(Hymenoptera: Cynipidae). Can. J. Bot. 71: 1026–1031.<br />

Percival, M. S. 1955. <strong>The</strong> presentation <strong>of</strong> pollen in certain<br />

angiosperms and its collection by Apis mellifera. New Phytol. 54:<br />

353–368.<br />

Peschken, D. P., Gagne, R. J. and Sawchyn, K. C. 1993. First<br />

record <strong>of</strong> the dandelion leaf-gall midge, Cystiphora taraxaci<br />

(Kieffer, 1888) (Diptera: Cecidomyiidae), in North America. Can.<br />

Entomol. 125: 913–918.<br />

Petanovic, R. U. 1990. Host specificity and morphological variation<br />

in Epitrimerus taraxaci Liro (Acarida: Eriophyoidea). Zastita<br />

Bilja 41 (4): 387–394.<br />

Peterson, G. E. 1967. <strong>The</strong> discovery and development <strong>of</strong> 2,4-D.<br />

Agric. History 41: 244–253.<br />

Popolizio, C. A., Goetz, H. and Chapman, P. 1994. Short-term<br />

response <strong>of</strong> riparian vegetation to 4 grazing treatments. J. Range<br />

Manage. 47: 48–53.<br />

Powell, E. F. W. 1972. About dandelions: the golden wonder herb.<br />

Thorsons Publisher Ltd, London, UK. 61 pp.<br />

Powell, C. A., Mountain, W. L. and Derr, M. A. 1992. Tomato<br />

ringspot virus reduces dandelion top weight and flower production<br />

under field conditions. HortScience 27: 273.<br />

Powell, C. A., Mountain, W. L., Dick, T., Forer, L. B., Derr, M.<br />

A., Lathrop, L. D. and Stouffer, R. F. 1984. Distribution <strong>of</strong> tomato<br />

ringspot virus in dandelion in Pennsylvania. Plant Dis. 68: 796–798.<br />

Pozolotina, V. N. 1996. Adaptation processes <strong>of</strong> plants under the<br />

influence <strong>of</strong> radiation. Russ. J. Ecol. 27: 107–112.<br />

Quarles, W. 1999. Corn gluten meal: a least-toxic herbicide. IPM<br />

Practitioner 21(5/6): 1–7.<br />

Rácz-Kotilla, E., Rácz, G. and Solomon, A. 1974. <strong>The</strong> action <strong>of</strong><br />

<strong>Taraxacum</strong> <strong>of</strong>ficinale extracts on the body weight and diuresis <strong>of</strong><br />

laboratory animals. Planta Med. 26: 212–217.<br />

Radosevich, S. R. and Holt, J. S. 1984. Weed ecology: implications<br />

for vegetation management. Wiley, New York, NY. 265 pp.<br />

Ramsdell, D. C. and Myers, R. L. 1978. Epidemiology <strong>of</strong> peach<br />

rosette mosaic virus in a Concord grape vineyard. Phytopathology<br />

68: 447–450.<br />

Ramsdell, D. C., Adler, V. A. and Kesner, C. R. 1993. Prune<br />

brown line disease occurrence in declining “Stanley” plum<br />

orchards in Michigan and factors related to its incidence.<br />

HortTechnology 3: 325–329.<br />

Reader, R. J. 1991a. Relationship between seedling emergence<br />

and species frequency on a gradient <strong>of</strong> ground cover density in an<br />

abandoned pasture. Can. J. Bot. 69: 1397–1401.<br />

Reader, R. J. 1991b. Control <strong>of</strong> seedling emergence by ground<br />

cover: a potential mechanism involving seed predation. Can. J.<br />

Bot. 69: 2084–2087.<br />

Reader, R. J. 1992. Herbivory, competition, plant mortality and<br />

reproduction on a topographic gradient in an abandoned pasture.<br />

Oikos 65: 414–418.<br />

Reader, R. J. and Beisner, B. E. 1991. Species-dependent effects<br />

on seed predation and ground cover on seedling emergence <strong>of</strong> oldfield<br />

forbs. Am. Midl. Nat. 126: 279–286.<br />

Rhodehamel, N. H. and Durbin, R. D. 1985. Host range <strong>of</strong> strains<br />

<strong>of</strong> Pseudomonas syringae pv. tagetis. Plant Dis. 69: 589–591.<br />

Richards, A. J. 1973. <strong>The</strong> origin <strong>of</strong> <strong>Taraxacum</strong> agamospecies.<br />

Bot. J. Linn. Soc. 66: 189–211.<br />

Richardson, J. 1985. In praise <strong>of</strong> the archenemy. Audubon 87:<br />

36–39.<br />

STEWART-WADE ET AL — TARAXACUM OFFICINALE G. H. WEBER EX WIGGERS 851<br />

Riddle, G. E., Burpee, L. L. and Boland, G. J. 1991. Virulence<br />

<strong>of</strong> Sclerotinia sclerotiorum and S. minor on dandelion (<strong>Taraxacum</strong><br />

<strong>of</strong>ficinale). Weed Sci. 39: 109–118.<br />

Rioux, R. 1994. Direct seeding <strong>of</strong> alfalfa in grain stubble and<br />

bromegrass sod. Can. J. Plant Sci. 74: 773–778.<br />

Roberts, H. F. 1936. Seed reproduction in the dandelion. Sci.<br />

Agric. 17: 235–242.<br />

Roberts, H. A. and Neilson, J. E. 1981. Seed survival and periodicity<br />

<strong>of</strong> seedling emergence in twelve weedy species <strong>of</strong><br />

Compositae. Ann. Appl. Biol. 97: 325–334.<br />

Romanenko, N. D. and Korchinsky, A. U. 1996. <strong>The</strong> first record<br />

<strong>of</strong> Longidorus euonymus (Nematoda: Dorylaimida) from Russia.<br />

[Online] Available: http://www.scri.sari.ac.uk/rjn/roma3.htm [21<br />

January 2002].<br />

Rousseau, C. 1968. Histoire, habitat et distribution de 220 plantes<br />

introduites au Québec. Naturaliste Can. 95: 49–169. [in French,<br />

English abstract.]<br />

Rudenskaya, G. N., Bogacheva, A. M., Preusser, A.,<br />

Kuznetsova, A. V., Dunaevsky, Ya. E., Golovkin, B. N. and<br />

Stepanov, V. M. 1998. Taraxalisin – a serine proteinase from dandelion<br />

<strong>Taraxacum</strong> <strong>of</strong>ficinale Webb s.l. FEBS Lett. 437: 237–240.<br />

Rutherford, P. P. and Deacon, A. C. 1972. β-fruct<strong>of</strong>uranosidases<br />

from roots <strong>of</strong> dandelion (<strong>Taraxacum</strong> <strong>of</strong>ficinale Weber).<br />

Biochem. J. 126: 569–573.<br />

Rutherford, P. P. and Deacon, A. C. 1974. Seasonal variation in<br />

dandelion roots <strong>of</strong> fructosan composition, metabolism, and<br />

response to treatment with 2,4-dichlorophenoxyacetic acid. Ann.<br />

Bot. 38: 251–260.<br />

Ryjk<strong>of</strong>f, V. L. 1943. Kok-Sagyyz-yellows. C. R. Acad. Sci.<br />

U.R.S.S. NS, XII(2): 94–96.<br />

Sady, M. B. and Seiber, J. N. 1991. Field test for screening milkweed<br />

latex for cardenolides. J. Nat. Prod. 54: 1105–1107.<br />

Salisbury, E. 1961. Weeds and aliens. Collins, London, UK. 384<br />

pp.<br />

Sánchez, R. A. 1967. Some observations about the effect <strong>of</strong> light<br />

on the leaf shape in <strong>Taraxacum</strong> <strong>of</strong>ficinale L. Meded.<br />

Landbhogesch. Wageningen 67: 1–11.<br />

Sánchez, R. 1971. Phytochrome involvement in the control <strong>of</strong> leaf<br />

shape <strong>of</strong> <strong>Taraxacum</strong> <strong>of</strong>ficinale L. Experientia 27: 1234–1237.<br />

Savinov A. B. 1998. <strong>The</strong> analysis <strong>of</strong> phenotypic variation in common<br />

dandelion (<strong>Taraxacum</strong> <strong>of</strong>ficinale Wigg.) from biotopes with<br />

different levels <strong>of</strong> technogenic pollution. Russ. J. Ecol. 29(5):<br />

318–321.<br />

Sawada, S., Takahashi, M. and Kasaishi, Y. 1982. Population<br />

dynamics and production processes <strong>of</strong> indigenous and naturalized<br />

dandelions subjected to artificial disturbance by mowings. Jpn. J.<br />

Ecol. 32: 143–150.<br />

Schmidt, M. 1979. <strong>The</strong> delightful dandelion. Organic Gard. 26:<br />

112–<strong>117.</strong><br />

Schütte, F. 1996. On the occurrence <strong>of</strong> the cockchafer (Melolontha<br />

melolontha (L.)) dependent on the presence <strong>of</strong> dandelion<br />

(<strong>Taraxacum</strong> <strong>of</strong>ficinale Wiggers). Bulletin OILB SROP 19: 27–33.<br />

Schütte, F. and Hauss, R. 1985. Investigations on the population<br />

<strong>biology</strong> <strong>of</strong> the cockchafer (Melolontha melolontha [L.]).<br />

Mitteilungen der Deutschen Gesellschaft für Allgemeine und<br />

Angewandte Entomologie 4: 230–232.<br />

Scoggan, H. J. 1979. <strong>The</strong> flora <strong>of</strong> Canada, part 4: Dicotyledoneae<br />

(Loascaceae to Compositae). National Museum <strong>of</strong> Natural<br />

Sciences, Publications in Botany No. 7 (4). National Museums <strong>of</strong><br />

Canada, Ottawa, ON. 200 pp.<br />

Seymour, A. B. 1929. Host index <strong>of</strong> the fungi in North America.<br />

Harvard University Press, Cambridge, MA. 732 pp.<br />

Shaw, C. G. 1973. Host fungus index for the Pacific Northwest –<br />

I. Hosts. Wash. State Agric. Exp. Sta. Bull. 765:1-121.


852 CANADIAN JOURNAL OF PLANT SCIENCE<br />

Sheaffer, C. C. and Wyse D. L. 1982. Common dandelion<br />

(<strong>Taraxacum</strong> <strong>of</strong>ficinale) control in alfalfa (Medicago sativa). Weed<br />

Sci. 30: 216–220.<br />

Sheldon, J. C. 1974. <strong>The</strong> behaviour <strong>of</strong> seeds in soil. III. <strong>The</strong> influence<br />

<strong>of</strong> seed morphology and the behaviour <strong>of</strong> seedlings on the<br />

establishment <strong>of</strong> plants from surface-lying seeds. J. Ecol. 62:<br />

47–66.<br />

Sheldon, J. C. and Burrows, F. M. 1973. <strong>The</strong> dispersal effectiveness<br />

<strong>of</strong> the achene-pappus units <strong>of</strong> selected Compositae in steady<br />

winds with convection. New Phytol. 72: 665–675.<br />

Simon, L., Martin, H. W. and Adriano, D. C. 1996. Chicory<br />

(Cichorium intybus L.) and dandelion (<strong>Taraxacum</strong> <strong>of</strong>ficinale<br />

Web.) as phytoindicators <strong>of</strong> cadmium contamination. Water Air<br />

Soil Pollut. 91: 351–362.<br />

ˇSkoric, D., ˇSaric, A., Vibio, M., Murari, E., Krajacic, M. and<br />

Bertaccini, A. 1998. Molecular identification and seasonal monitoring<br />

<strong>of</strong> phytoplasmas infecting Croatian grapevines. Vitis 37(4):<br />

171–175.<br />

Slabnik, E. 1981. Influence <strong>of</strong> light conditions on the leaf-invertase<br />

activity <strong>of</strong> <strong>Taraxacum</strong> <strong>of</strong>ficinale L. plants. Phyton 41: 17–25.<br />

Small, E. and Catling, P. M. 1999. <strong>Canadian</strong> medicinal crops.<br />

National Research Council <strong>of</strong> Canada. Ottawa, ON. 240 pp.<br />

Solbrig, O. T. 1971. <strong>The</strong> population <strong>biology</strong> <strong>of</strong> dandelions. Am.<br />

Sci. 59: 686–694.<br />

Solbrig, O. T. and Simpson, B. B. 1974. Components <strong>of</strong> regulation<br />

<strong>of</strong> a population <strong>of</strong> dandelions in Michigan. J. Ecol. 62: 473–486.<br />

Solbrig, O. T. and Simpson, B. B. 1977. A garden experiment on<br />

competition between biotypes <strong>of</strong> the common dandelion<br />

(<strong>Taraxacum</strong> <strong>of</strong>ficinale). J. Ecol. 65: 427–430.<br />

Sood, S. K. and Sood, K. C. 1992. Endosperm and endospermous<br />

haustoria in <strong>Taraxacum</strong> <strong>of</strong>ficinale Wigg. Acta Bot. Indica 20 (1):<br />

159–161.<br />

Soria, C., Gomez-Guillamon, M. L. and Duffus, J. E. 1991.<br />

Transmission <strong>of</strong> the agent causing a melon yellowing disease by<br />

the greenhouse whitefly Trialeurodes vaporariorum in southeast<br />

Spain. Neth. J. Plant Pathol. 97: 289–296.<br />

Spatz, G. and Baumgartner, A. 1990. Zur Bewertung der<br />

Gruenlandkraeuter als Futterpflanzen. Wirtschaftseigene Futter.<br />

36: 79–91. [in German.]<br />

Staddon, P. L., Graves, J. D. and Fitter, A. H. 1999. Effect <strong>of</strong><br />

enhanced atmospheric CO 2 on mycorrhizal colonization and phosphorus<br />

inflow in 10 herbaceous species <strong>of</strong> contrasting growth<br />

strategies. Funct. Ecol. 13: 190–199.<br />

Sterk, A. A. and Luteijn, M. M. 1984. A study <strong>of</strong> the flowering<br />

phenology <strong>of</strong> <strong>Taraxacum</strong> microspecies in some biotypes in the<br />

Netherlands as observed during three successive years. Acta Bot.<br />

Neerl. 33: 39–59.<br />

Sterk, A. A., Hommels, C. H., Jenniskens, M. J. P. J.,<br />

Neuteboom, J. H., den Nijs, J. C. M., Oosterveld, P. and Segal,<br />

S. 1987. Paardebloemen: planten zonder vader: variatie, evolutie<br />

en toepassingen van het geslacht paardebloem (<strong>Taraxacum</strong>).<br />

Koninklijke Nederlandse Natuurhistorische Vereniging, Utrecht,<br />

<strong>The</strong> Netherlands. 348 pp. [in Dutch.]<br />

Sterling, T. M. and Hall, J. C. 1997. Mechanism <strong>of</strong> action <strong>of</strong> natural<br />

auxins and the auxinic herbicides. Pages 111–141 in R. M.<br />

Roe, J. D. Burton, and R. J. Kuhr, eds. Herbicide activity: toxicology,<br />

biochemistry and molecular <strong>biology</strong>. IOS Press, Amsterdam,<br />

Netherlands.<br />

Stevenson, F. C. and Johnston, A. M. 1999. Annual broadleaf<br />

crop frequency and residual weed populations in Saskatchewan<br />

parkland. Weed Sci. 47: 208–214.<br />

Stockrahm, D. M. B., Olson, T. E. and Harper, E. K. 1993.<br />

Plant species in black-tailed prairie dog towns in Billings County,<br />

North Dakota. Prairie Nat. 25: 173–183.<br />

Stojanovic, S., Stojanovic, D., Manojlovic, B. and Gravran, M.<br />

1993. Glijve iz roda Puccinia na korovima u Srbiji. (Fungi <strong>of</strong> the<br />

genus 6, C., Br. Puccinia on weed plants in Serbia). Zasta Bilja 44:<br />

103–111. [in Serbian, English abstract.]<br />

Struik, G. J. 1967. Growth habits <strong>of</strong> dandelion, daisy, catsear and<br />

hawkbit in some New Zealand grasslands. N. Z. J. Agric. Res. 10:<br />

331–344.<br />

Sugimoto, S. and Takahashi, S. 1996. New record <strong>of</strong> Aphis<br />

taraxacicola (Börner) (Homoptera: Aphididae) from Japan. Jpn. J.<br />

Entomol. 64: 288.<br />

Swihart, R. K. 1990. Common components <strong>of</strong> orchard ground<br />

cover selected as food by captive woodchucks. J. Wildl. Manage.<br />

54(3): 412–417.<br />

Szabo, T. I. 1984. Nectar secretion in dandelion. J. Apicult. Res.<br />

23: 204–208.<br />

Takasugi, M., Okinaka, S., Katsui, N., Masamune, T., Shirata,<br />

A. and Ohuchi, M. 1985. Isolation and structure <strong>of</strong> lettucenin A,<br />

a novel guaianolide phytoalexin from Lactuca sativa var. capitata<br />

(Compositae). J. Chem. Soc. Chem. Commun. 10: 621–622.<br />

Tanaka, O., Tanaka, Y. and Wada, H. 1988. Photonastic<br />

and thermonastic opening <strong>of</strong> capitulum in dandelion, <strong>Taraxacum</strong><br />

<strong>of</strong>ficinale and <strong>Taraxacum</strong> japonicum. Bot. Mag. Tokyo 101:<br />

103–110.<br />

Tardif, F. J. 1997. Dandelion control in forages. Pages 59–62 in<br />

Expert Committee on Weeds. Proceedings <strong>of</strong> the 1996 National<br />

Meeting, Victoria BC. Government <strong>of</strong> Canada.<br />

Taylor, R. J. 1987. Populational variation and biosystematic interpretations<br />

in weedy dandelions. Bull. Torrey Bot. Club 114:<br />

109–120.<br />

Terlizzi, B. D., Castellano, M. A., Alma, A. and Savino, V.<br />

1994. Present status <strong>of</strong> grapevine yellows in Apulia. Phytopathol.<br />

Medit. 33: 125–131.<br />

Thomas, W. D. 1949. Studies on the host-range <strong>of</strong> the Colorado<br />

red-node virus. J. Colo. Wyo. Acad. Sci. 4: 40 (Abstr.).<br />

Thomas, S. C. and Bazzaz, F. A. 1996. Elevated CO 2 and leaf<br />

shape: are dandelions getting toothier? Am. J. Bot. 83: 106–111.<br />

Thompson, K. 1989. A comparative study <strong>of</strong> germination responses<br />

to high irradiance light. Ann. Bot. 63: 159–162.<br />

Tilman, E. A., Tilman, D., Crawley, M. J. and Johnston, A. E.<br />

1999. Biological weed control via nutrient competition: potassium<br />

limitation <strong>of</strong> dandelions. Ecol. Appl. 9(1): 103–111.<br />

Timmons, F. L. 1950. Competitive relationships <strong>of</strong> four different<br />

lawn grasses with field bindweed and dandelion under frequent<br />

close clipping. Ecology 31: 1–5.<br />

Tompkins, C. M. and Hansen, H. N. 1950. Pansy leafspot,<br />

caused by Centrospora acerina, host range and control. Hilgardia<br />

19: 383–389.<br />

Tóth, G. and Szabolcs, J. 1970. Distribution <strong>of</strong> carotenoids in<br />

flowers <strong>of</strong> Helianthus annuus, Impatiens noli tangere, Ranunculus<br />

acer, <strong>Taraxacum</strong> <strong>of</strong>ficinale, and in ripe hips <strong>of</strong> Rosa canina and<br />

Rosa rubiginosa; an attempt to isolate taraxanthin. Acta Chimica<br />

64: 393–406.<br />

Triebel, D. and Rambold, G. 1990. Synchytrium taraxaci de Bary<br />

& Woronin (Chytridiales). [Online] Available: http://www.<br />

botanik.biologie.uni-muenchen.de/botsamml/arnoldia/mifufco2.<br />

html [29 September 2002].<br />

Tripp, T. W. 1997. Cultural control <strong>of</strong> broadleaf <strong>weeds</strong> in<br />

turfgrass swards. M.Sc. <strong>The</strong>sis, University <strong>of</strong> Guelph, Guelph, ON.<br />

88 pp.<br />

Truszkowska, W. 1951. Badania nad mykotr<strong>of</strong>izmem nizinnego<br />

zespolu lakowego na Psim Polu pod Wroclawiem. Acta Soc. Bot.<br />

Pol. 21: 195–216. [in Polish.]<br />

Tuite, J. 1960. <strong>The</strong> natural occurrence <strong>of</strong> tobacco ringspot virus.<br />

Phytopathology 50: 296–298.


Turner, T. R., Waddington, D. V. and Watschke, T. L. 1979.<br />

<strong>The</strong> effect <strong>of</strong> soil fertility levels on dandelion and crabgrass<br />

encroachment <strong>of</strong> Merion Kentucky Bluegrass. Proc. Northeast.<br />

Weed Sci. Soc. 33: 280–286.<br />

Tweney, J. and Mogie, M. 1999. <strong>The</strong> relationship between achene<br />

weight, embryo weight and germination in <strong>Taraxacum</strong> apomicts.<br />

Ann. Bot. 83: 45–50.<br />

Tyser, R. W. and Worley, C. A. 1992. Alien flora in grasslands<br />

adjacent to road and trial corridors in Glacier National Park,<br />

Montana (USA). Conserv. Biol. 6: 253–262.<br />

Ubrizsy. C. 1946. Contributions to the knowledge <strong>of</strong> the<br />

Erysiphaceae <strong>of</strong> Nyirseg. Acta Mycol. Hung. 3(1–4): 28–33.<br />

Valenta, V., Misiga, S. and Musil, M. 1961. Rozsirenie para stolburu<br />

n slovensku. (Distribution <strong>of</strong> potato parastolbur virus in<br />

Slovakia). Biologia (Bratislava) 16: 178–248. [in Slovak.]<br />

van der Kley, F. K. 1956. On the variations in contents and interrelations<br />

<strong>of</strong> minerals in dandelion (<strong>Taraxacum</strong> <strong>of</strong>ficinale Weber)<br />

and pasture grass. Neth. J. Agric. Sci. 4: 314–332.<br />

Vavrek, C. M., McGraw, J. B. and Yang, H. S. 1997. Withinpopulation<br />

variation in demography <strong>of</strong> <strong>Taraxacum</strong> <strong>of</strong>ficinale: season-<br />

and size-dependent survival, growth and reproduction. J.<br />

Ecol. 85: 277–287.<br />

Viczián, O., Süle, S. and Gáborjányi, R. 1998. Detection and<br />

identification <strong>of</strong> stolbur phytoplasma in Hungary by PCR and<br />

RFLP methods. Acta Phytopathol. Entomol. Hungarica 33(3-4):<br />

255–260.<br />

Vlassek, K. and Jain, M. K. 1976. Biological nitrogen fixation<br />

studies in the rhizosphere <strong>of</strong> Cichorium intybus and <strong>Taraxacum</strong><br />

<strong>of</strong>ficinale. Rev. Ecol. Biol. Sol 13: 411–418.<br />

Vlassek, K. and Jain, M. K. 1978. Nitrogenase(C 2 H 2 )-activity in<br />

the rhizosphere <strong>of</strong> some inulin–containing plants. Ecol. Bull. 26:<br />

319–324.<br />

von Hausen, B. M. 1982. Taraxinsäure-1′-O-β-D-glucopyranosid,<br />

das Kontaktallergen des Löwenzahns (<strong>Taraxacum</strong> <strong>of</strong>ficinale<br />

Wiggers). Derm. Beruf Umwelt 30: 51–53. [in German, English<br />

abstract.]<br />

von Hinrichs, G. 1988. Control <strong>of</strong> powdery mildew on cultivated<br />

dandelion (<strong>Taraxacum</strong> <strong>of</strong>ficinale). Nachrichtenbl. Dtsch<br />

Pflanzenschutzdienst. (Braunsw.) 40(S): 116–120.<br />

von Hinrichs, G. 1989. Bekämpfung des echten Mehltaus an<br />

Kulturlöwenzahn. GB+GW 89(31): 1487–1490. [in German.]<br />

von H<strong>of</strong>sten, C. G. 1954. Studies on the genus <strong>Taraxacum</strong> with<br />

special reference to the group Vulgaria DT in Scandinavia. LTs<br />

Förlag, Stockholm, Sweden. 431 pp. [in Swedish, English abstract.]<br />

Waddington, J. 1980. Chemical control <strong>of</strong> dandelion (T. <strong>of</strong>ficinale)<br />

and perennial sowthistle (Sonchus arvensis) in alfalfa<br />

(Medicago sativa) grown for seed. Weed Sci. 28: 164–167.<br />

Waipara, N. W., Harvey, I. C. and Bourdôt, G. W. 1993.<br />

Pathogenicity <strong>of</strong> Sclerotinia sclerotiorum on common thistle<br />

species and other pasture <strong>weeds</strong>. Pages 261–264 in Proceedings <strong>of</strong><br />

the Forty-sixth New Zealand Plant Protection Conference, 1993,<br />

Christchurch, New Zealand. New Zealand Plant Protection<br />

Society, Rotorua, New Zealand.<br />

STEWART-WADE ET AL — TARAXACUM OFFICINALE G. H. WEBER EX WIGGERS 853<br />

Waller, G. R., Jurzysta, M. and Thorne, R. L. Z. 1993.<br />

Allelopathic activity <strong>of</strong> root saponins from alfalfa (Medicago sativa<br />

L.) on <strong>weeds</strong> and wheat. Bot. Bull. Acad. Sinica 34: 1–11.<br />

Wang, K. and Hiruki, C. 2001. Molecular characterization and<br />

classification <strong>of</strong> phytoplasmas associated with canola yellows and<br />

a new phytoplasma strain associated with dandelions. Plant Dis.<br />

85: 76–79.<br />

Warmke, H. E. and Warmke, G. L. 1950. <strong>The</strong> role <strong>of</strong> auxin in<br />

the differentiation <strong>of</strong> root and shoot primordia from root cuttings <strong>of</strong><br />

<strong>Taraxacum</strong> <strong>of</strong>ficinale and Cichorium. Am. J. Bot. 37: 272–280.<br />

Washitani, I. 1984. Germination responses <strong>of</strong> a seed population <strong>of</strong><br />

<strong>Taraxacum</strong> <strong>of</strong>ficinale Weber to constant temperatures including<br />

the supra-optimal range. Plant Cell Environ. 7: 655–659.<br />

Wassink, E. C. 1965. Some introductory notes on <strong>Taraxacum</strong><br />

<strong>of</strong>ficinale L. as an experimental plant for morphogenetic and production<br />

research. Meded. Landbhogesch. Wageningen 65: 1–15.<br />

Watanabe, M., Maruyama, Y. and Serizawa, S. 1997.<br />

Hybridization between native and alien dandelions in the western<br />

Tokai district. I. Frequency and morphological characters <strong>of</strong> the<br />

hybrid between <strong>Taraxacum</strong> platycarpum and T. <strong>of</strong>ficinale. J. Jpn.<br />

Bot. 72: 51–57. [in Japanese, English abstract.]<br />

Welham, C. V. J. and Setter, R. A. 1998. Comparison <strong>of</strong> a sizedependent<br />

reproductive effort in two dandelion populations. Can.<br />

J. Bot. 76: 166–173.<br />

Westerman, L. and Roddick, J. G. 1981. Annual variation in<br />

sterol levels in leaves <strong>of</strong> <strong>Taraxacum</strong> <strong>of</strong>ficinale Weber. Plant<br />

Physiol. 68: 872–875.<br />

Williams, E. D. 1983. Effects <strong>of</strong> temperature, light, nitrate and<br />

pre-chilling on seed germination <strong>of</strong> grassland plants. Ann. Appl.<br />

Biol. 103: 161–172.<br />

Williams, C. A., Goldstone, F. and Greenham, J. 1996.<br />

Flavonoids, cinnamic acids and coumarins from the different tissues<br />

and medicinal preparations <strong>of</strong> <strong>Taraxacum</strong> <strong>of</strong>ficinale.<br />

Phytochemistry 42: 121–127.<br />

Wilman, D. and Derrick, R. W. 1994. Concentration and availability<br />

to sheep <strong>of</strong> N, P, K, Ca, Mg and Na in chickweed, dandelion,<br />

dock, ribwort and spurrey, compared with perennial ryegrass.<br />

J. Agric. Sci. (Camb.) 122: 217–223.<br />

Witty G, and Bing A. 1985. Know your <strong>weeds</strong>. Long Isl. Hortic.<br />

News (March), 3–4.<br />

Wood–Baker, C. S. 1980. A comparison <strong>of</strong> Aphis armoraciae<br />

Cowen 1895 and A. knowltoni Hottes & Frison 1931 (Homoptera,<br />

Aphididae). Entomol. Mon. Mag. 115: 17–19.<br />

Zahnley, J. W. and Duley, F. L. 1934. <strong>The</strong> effect <strong>of</strong> nitrogenous<br />

fertilizers on the growth <strong>of</strong> lawn grasses. J. Am. Soc. Agron. 26:<br />

231–234.<br />

Zaprzalka, J. R. and Peters, R. A. 1982. Growth <strong>of</strong> dandelion as<br />

influenced by lime and fertility levels. Proc. Northeast. Weed Sci.<br />

Soc. 36: 29–32.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!