The Sahyādri Freshverer Boolversity Conservation

Photo: Keystone Foundation

The Sahyādri Freshwater Biodiversity

Conservation Teaching Guide

Written by B.A. Daniel, Sanjay Molur and Sally R. Walker

> Illustrations Samuel Raja Pandian

Technical support **Poornima V. and Marimuthu R.**

Publication assistance Pravin Kumar R. and Latha Ravikumar

These materials were developed through a generous grant from CEPF – Critical Ecosystem Partnership Fund

Produced by Zoo Outreach Organization, Coimbatore, India January 2013 Published by: Zoo Outreach Organization, Coimbatore, India.

Copyright: © Zoo Outreach Organization

This publication can be reproduced for educational and non-commercial purposes without prior permission from the copyright holder provided the source is fully acknowledged.

ISBN: 978-81-88722-35-8 (English)

Publication No: OP 42 The *Sahyādri* Freshwater Biodiversity Conservation Teaching Guide (2013).

Zoo Outreach Organization 96, Kumudham Nagar, Villankurichi Road, Coimbatore 641035, Tamil Nadu, India Ph: +91 422 2665298; Fax: +91 422 2665472 Email: zooreach@zooreach.org; Web: www.zooreach.org

The maps reproduced in this book are neither purported to be correct nor authentic.

Manual and other workshop components sponsored by Critical Ecosystem Partnership Fund CEPF.

Acknowledge

We greatly acknowledge all the contributors of the report "The Status and Distribution of Freshwater Biodiversity in the Western Ghats, India", published by IUCN Cambridge, UK and Gland, Switerland. http://data.iucn.org/dbtw-wpd/edocs/rl-540-001.pdf

Preface

So far as I know, this Manual may be the first in India to guide teachers in teaching about freshwater biodiversity. Although it has come into being very late, when so much of freshwater biodiversity is declining or even extinct.

Teachers have few problems engaging students' attention when they teach about the large mammals such as tigers, rhinos, elephants, etc. or vast tropical rainforests or deserts. It is much more difficult to generate interest in freshwater fish, water plants, dragonflies, slugs and snails, etc. This manual provides a means of making those freshwater critters and systems interesting to youngsters through games, competitions, drawing, live debates, etc. Also – with the right approach – they can catch the attention of any age group by relating the negative results of ignoring freshwater habitats and the fascinating species that live (or try to live) in them.

There is something for almost any age groups, e.g., drawing and colouring, packet items for activities, games, dramas for youngsters and, for older kids, young adults and adults themselves there is IUCN information, assessments, projects, protection, and other tools.

In addition to the contents there is a very relevant Teaching Guide for the Teaching Guide, to wit, the pithy pages of Teaching Guide... how best you can use this following the contents and appendix.

I look forward to hearing about the result of teachers and ngo's who utilize this excellent Manual. While it will take time to improve the current situation it is a given that a large number of youngsters will grow up to be people who (at the very least) don't harm our freshwater environment and may indeed opt to improve it significantly.

Sally R. Walker, Managing Trustee/Chief Executive Director Zoo Outreach Organization Trust

Critical Ecosystem Partnership Fund (CEPF)

Founded in 2000, Critical Ecosystem Partnership Fund (CEPF) is a global leader that encourages civil society to participate, conserve and thereby benefit from the conservation of some of the world's critical ecosystems. CEPF promotes protection of biodiversity hotspots through grants for non-governmental and private sector organizations ranging from small farming cooperatives and community associations to private sector partners and international organizations. CEPF supports civil society groups to conserve their environment, influence decisions that affect their lives, livelihoods and ultimately that of the global environment for the benefit of all. http://www.cepf.net/about_cepf/Pages/default.aspx

Wildlife Information Liaison Development (WILD)

Wildlife Information Liaison Development (WILD), as the name says is an organization established in 1999 to interface between the public and wildlife scenarios, conservation, research and education in India. Wildlife Information Liaison Development (WILD) Society is a sister organization of ZOO which was founded to support ZOO's increasing responsibilities and tasks in the area of field conservation. WILD and ZOO work together with other institutions and individuals throughout the world both *in situ* and *ex situ* for the purpose of promoting conservation education, conservation research, conservation (wildlife) welfare and conservation action.

Zoo Outreach Organization (Z00)

Zoo Outreach Organization (ZOO) is a Positive, Constructive, Practical, Scientific, Sensible and Sensitive Conservation, Education, Research and Animal Welfare Society. ZOO reaches out to zoo personnel to give them things they need to improve their animal management. ZOO does many other things besides work with Z005. The organization hosts and runs five networks of field biologists for invertebrates, amphibians, reptiles, bats and rodents, a full fledged IUCN SSC South Asian Invertebrate Specialist Group, as well as a regional branch of the IUCN SSC Conservation Breeding Specialist Group and a regional network of zoo educators of South Asia. ZOO's specialty is zoo and conservation education. Over the years the organization has conducted many training courses in different states, countries and even continents and brought out many publications of packets, books, posters and other educational materials. www.zooreach.org

CRITICAL ECOSYSTEM

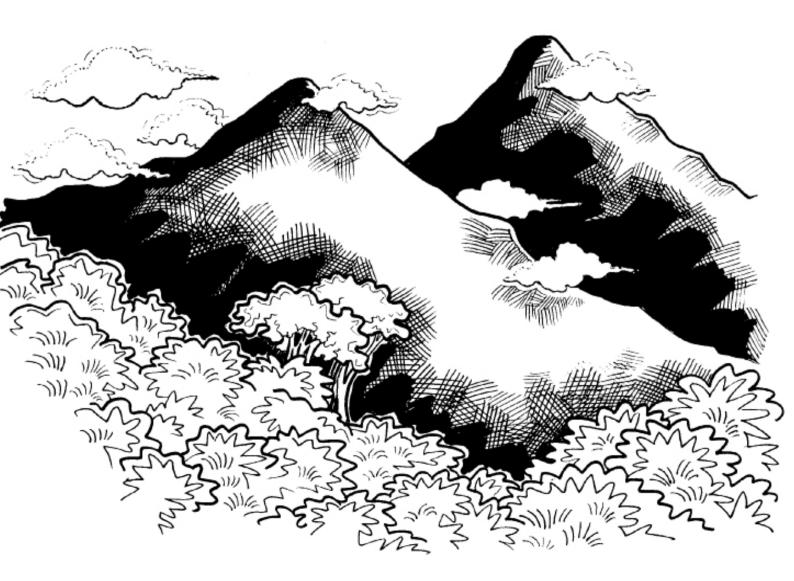
Contents

Unit 1: Assessment Tools for Educators

Unit 2: Understanding Western Ghats and Freshwater Biodiversity

Mini dramas	15
Facts about Western Ghats	23
Freshwater and freshwater types	26
Value of freshwater - Water footprint	32
Biodiversity: 5 kingdoms of life	36
Western Ghats: region delineation, habitats and Freshwater systems	44
Western Ghats river systems	55

Unit 3: Know your Species


Dragonflies and damselflies	61
Snails, slugs and mussels	65
Freshwater fish	68
Water plants	71
Illustrated history of <i>Sahyadri</i> and Freshwater Species	73

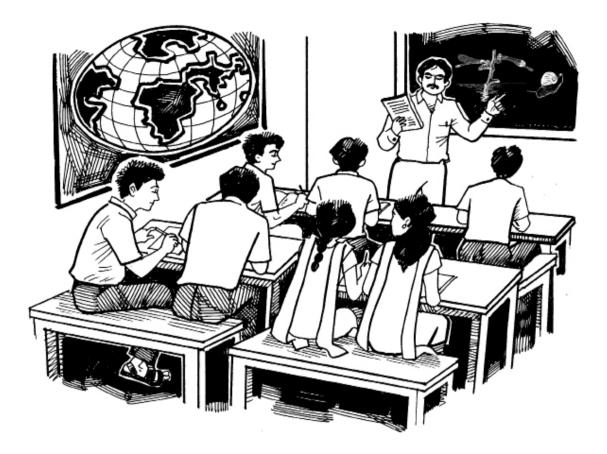
Unit 4: Species Problems and Solutions

Citizen Debate: Conserving freshwater habitats with community	
participation	89
Species status, patterns of richness, threats and conservation	97
Methodology: Species Status Assessment	101
Protect resources and save Freshwater Biodiversity	103
Conference: Protection and Management of Freshwater Species and	
Habitats	108
Tips for planning education programmes	112
How to use the packets	112

Appendix

IUCN datasheet on WG species	117
IUCN Red List Categories	119
Species list: Freshwater Biodiversity Assessments in	
the Western Ghats: Fishes, Molluscs, Odonates, Plants, and Reptiles	120
Major Rivers of Western Ghats	138
Some Wildlife and Water laws in India	142
Origami - Dragonfly, Snail and Fish	143
Energizer games	144
Pledge card	145
Certificate	146
Masks	147

Teaching guide - how best you can use this


The *Sahyādri* Freshwater Biodiversity Teaching Guide consists of four units featuring freshwater animals and plants, which can be used as a medium for conveying a wide range of active learning techniques for both experienced and casual educators. The *Sahyādri* Freshwater Biodiversity Teaching Guide also provides education about freshwater animals and plants in general and creates interest among students and other target groups to contribute at the individual level to help protect them and their habitats.

Included in the materials are basic facts about the four freshwater groups viz., fishes, dragonflies, molluscs and water plants. It also includes value of FW biodiversity, basic taxonomy of select groups, Western Ghats maps, species diversity, threats, status, freshwater biodiversity uses and values, assessment methodology, conservation status and recommendations for conservation.

Specifically about selected FW species we have distribution, biology, role in human culture, conservation projects in Western Ghats and people contributing to conserve FW biodiversity. The last unit exercises are provided to help participants commit themselves to contribute for the conservation of FW biodiversity.

The approach in this guide is to teach and to attract non-traditional as well as traditional educators to adopt new teaching techniques and activities, which are more effective in influencing comprehension, retention and behavioural changes. In addition to the teaching guide, educational packets featuring Freshwater Biodiversity are used during the programme. Thus the methodology involves a combination of tools, a teaching guide, educational packets with booklet, masks, stickers, placard, posters, etc., which are useful in teaching different target audiences. The activities will be indoors and outdoors, informative, interactive and fun. Only a few basic supplies (other than the FW Biodiversity packet) are needed to supplement this teaching guide. Some activities are designed as handouts that can be removed from the guide and duplicated. In case there is no capacity to take photocopies, alternative group exercises are available in the guide. There is no need for a projector or any other 'technology' to use this material although presentations using projector can be included if one is available. The teaching guide is designed in such a way that only minimum expenditure is involved to plan an education programme.

The overall objective is to impart knowledge about the status of the *Sahyādri* Freshwater Biodiversity and to bring about attitudinal change among students and other target groups towards conservation of the species. To assess the attitudinal change, evaluation or assessment methods are included in the teaching guide. These evaluation techniques are suitable to use with a wide range of audience of different age groups, literate and illiterate. Read the unit "Introduction" before you go through the activities so that it will be easy to relate one unit with another.

How to use this teaching guide

The aim of this manual is to translate scientific data from the report of 'The Status and Distribution of Freshwater Biodiversity in the Western Ghats, India' into stimulating concepts and messages that appeal to stakeholders and connect with their emotions and personal benefits.

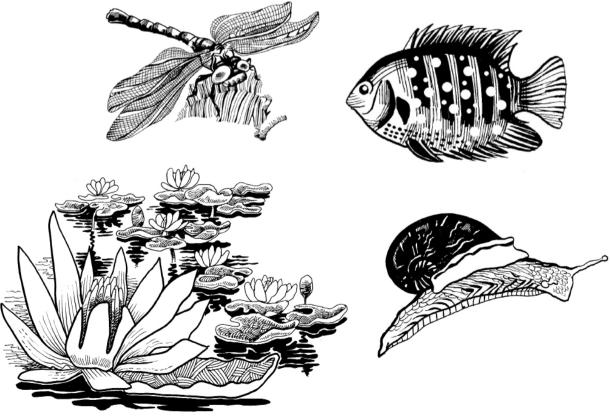
These materials can be used as a comprehensive Freshwater Biodiversity "course" or as separate activities from this manual and the provided packet. Whether you have a long time or a short time, this programme is designed to help you teach about the *Sahyādri* Freshwater flora and fauna and their conservation.

In the end, we hope that your audience has a better understanding and appreciation of Freshwater Biodiversity of the *Sahyādri*, and decides to take steps to protect them.

Unit 1

ASSESSMENT TOOLS FOR EDUCATORS

Assess Your Audience: What Do They Know and What Did They Learn? How To Find Out?


ASSESS YOUR AUDIENCE

What do they know and what did they learn? How to find out?

Introduction

Before conducting a programme it is necessary for the educator to evaluate the knowledge base of the students about the subject. It will help the educator to teach effectively. To achieve this, the educator should have a method of measuring the audience's knowledge and also comprehension, feelings and behaviour. This unit introduces two evaluation methods. These methods are specific which can be used with students, adults, literate and illiterate audiences. Before conducting a programme go through the evaluation methods and choose the appropriate method suitable for your audience or both can be tried.

Each time when the educator conducts a programme this exercise should be carried out before and after the programme. By comparing the difference in the knowledge level, behavioural change and feelings, the attitudinal change can be measured.

As educators, we need to know whether what we teach is effective or not. Depending on our goals, we should have a means of measuring not only acquisition of facts about the subject, but also attitudes, comprehension, feelings and impact on our behaviour.

Assessment tool 1: BRAIN MAPPING

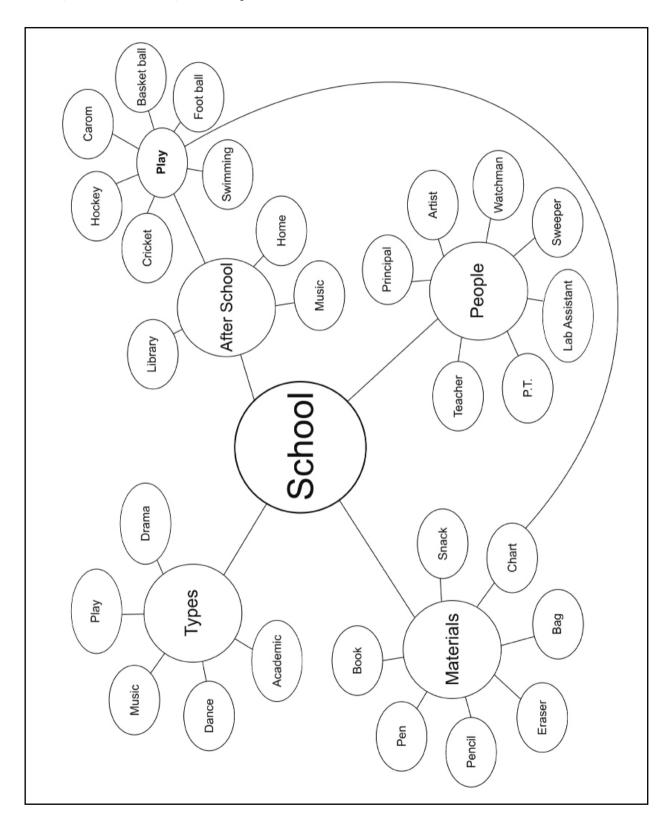
Can be used with

Literate and illiterate audiences of any age group.

Timing

About 20 minutes for each session, one preprogramme and one post-programme.

Methodology


Brain maps test the ability of the brain to relate different words and concepts to a central theme. Brain mapping is a very effective evaluation tool, with an exercise both before and after the teaching session or programme. Brain mapping is efficient because it is quick and easy to administer. Brain mapping is also effective

because it can be used with both literate and non-literate groups. Simply ask literate persons to use words and non-literate persons to use illustrations.

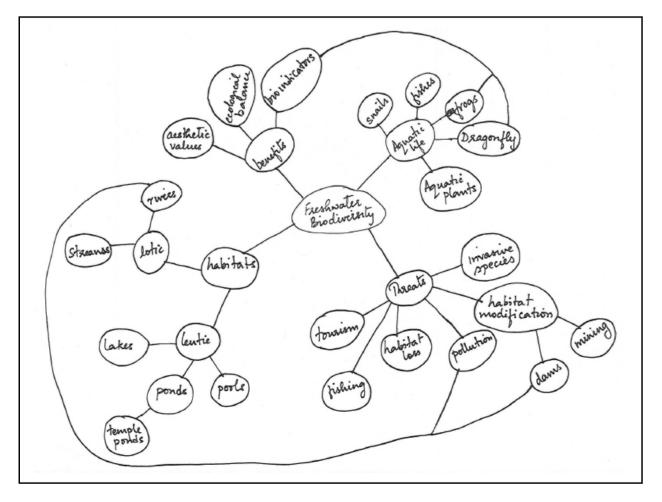
A brain map should demonstrate the associations people have with a specified theme (in this case Freshwater species) and the relationships between different associations. Although this is simple, it is not a familiar activity, so it is necessary to begin with a well-known and easy theme, such as "book" or "school" or "food". Demonstrate the activity by doing one as a group on the blackboard. If students do not respond immediately you can ask questions which elicit associated words for the demonstrator map.

If you are using 'School' as the theme, some questions that you can ask are ... What are some examples of schools? What kind of people do you find in a school? What items do people take to school? What do people do after they leave school?

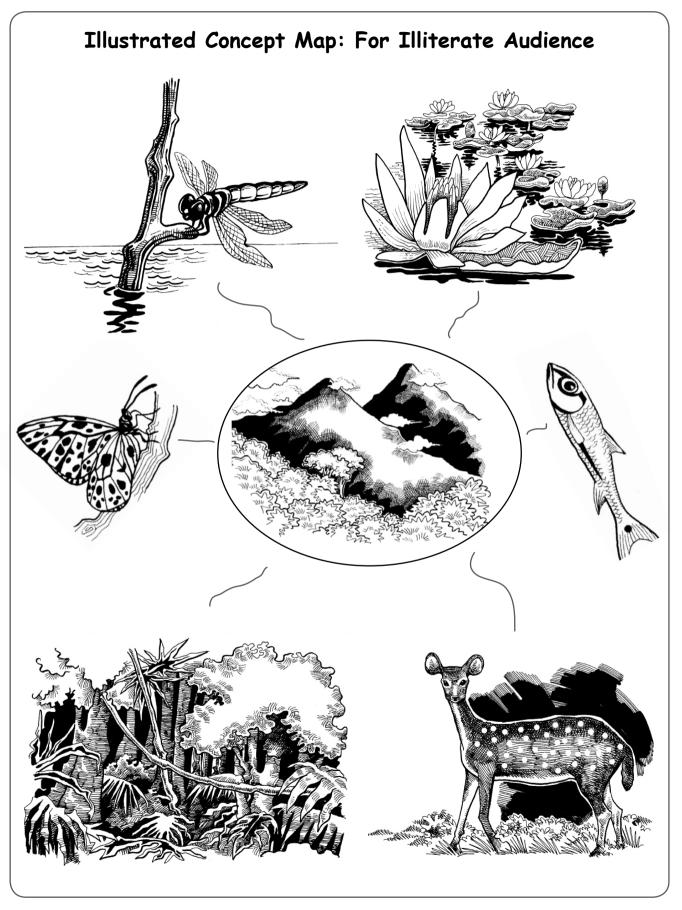
Sample brain map - subject: "School"

Most members of your audience will understand how to make the brain map after the demonstration so you can give them the task of making a Brain Map for the theme 'Freshwater Biodiversity'. If you determine that some persons do not quite understand, you can ask the group to break into pairs and try to guide the pairing so that one of them understands the exercise. Retain these "maps". Ensure that they write their name and date on the Brain Map they prepared.

Since you are using this exercise as an evaluation you must conduct it first at the beginning before any information has been passed on about Freshwater Biodiversity and second time after the learning activities are over... just before the closing session. You should ensure for the second exercise that the same two persons work together both times if you have had to pair them.



Sample Brain Map "Freshwater Biodiversity" - Before the session


After collecting the 2nd map, you can bring out the first one and show students the difference in how much they knew and how they felt before and after the course. The number and quality of items they listed and their associations distinctly illustrates that their knowledge base has expanded and their feelings have changed.

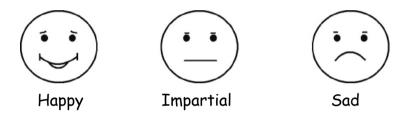
The participants will have the satisfaction of seeing how much they learned and you will have "evidence" that your teaching programme was a success. If you have Xerox or other copying facilities, you can give the participants a copy of their maps to take back to their place for personal or professional use.

Rating the Brain Map: You can assign marks in the following way and evaluate: give 1 point for each concept and 2 points each for sub-concepts. Further addition of concepts under each sub-concept will get 3 points each. Add the total and evaluate. Marks should be assigned only if the data or the information listed is correct or relevant to the subject.

Sample Brain Map "Freshwater Biodiversity" - after the session

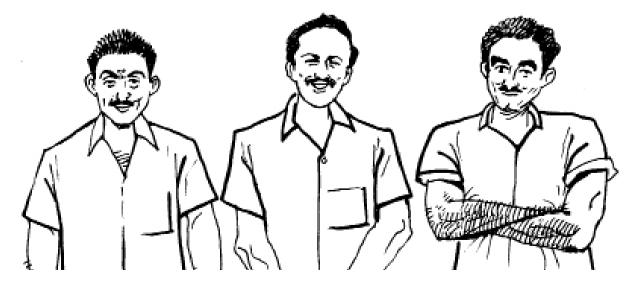
Assessment tool 2: ATTITUDE ASSESSMENT

Can be used with


Literate and illiterate audiences of any age group.

Timing

About 30 minutes. Should be done pre and post workshop.


Methodology

"Happy face" illustrations are used to represent emotions of joy, impartial and sadness. Audience members are presented with answer sheets with twelve rows of three faces: one happy, one impartial and one sad.

Ask your group to mark with a circle the face which reflects how they feel about each of the announcements which you read out. If they are glad to hear this news, they should circle the happy face. If they don't have any particular feeling, they can mark the impartial face which is the one with a straight line for a mouth. And if they are sad they should mark the sad face.

After the second session of this exercise, by comparing the two pre and post workshops questionnaires, you will have a good idea of how your workshop changed attitudes of people with quantifiable data.

Attitudinal Survey Statements

1. Close your eyes and visualize you are in the Western Ghats. You feel the cool breeze and hear the running water, how does it make you feel?

2. You learn from a book that a variety of plants and animals live in the freshwaters of Western Ghats. What do you feel about it?

3. You hear from a scientific report that the Freshwater diversity of Western Ghats region is facing high level of threat. How does it make you feel?

4. Western Ghats is one of the Hotspots in the world rich in species diversity. How does it make you feel?

5. You learn from a learned source that freshwater plants and animals is a source of living for thousands of people. How does it make you feel?

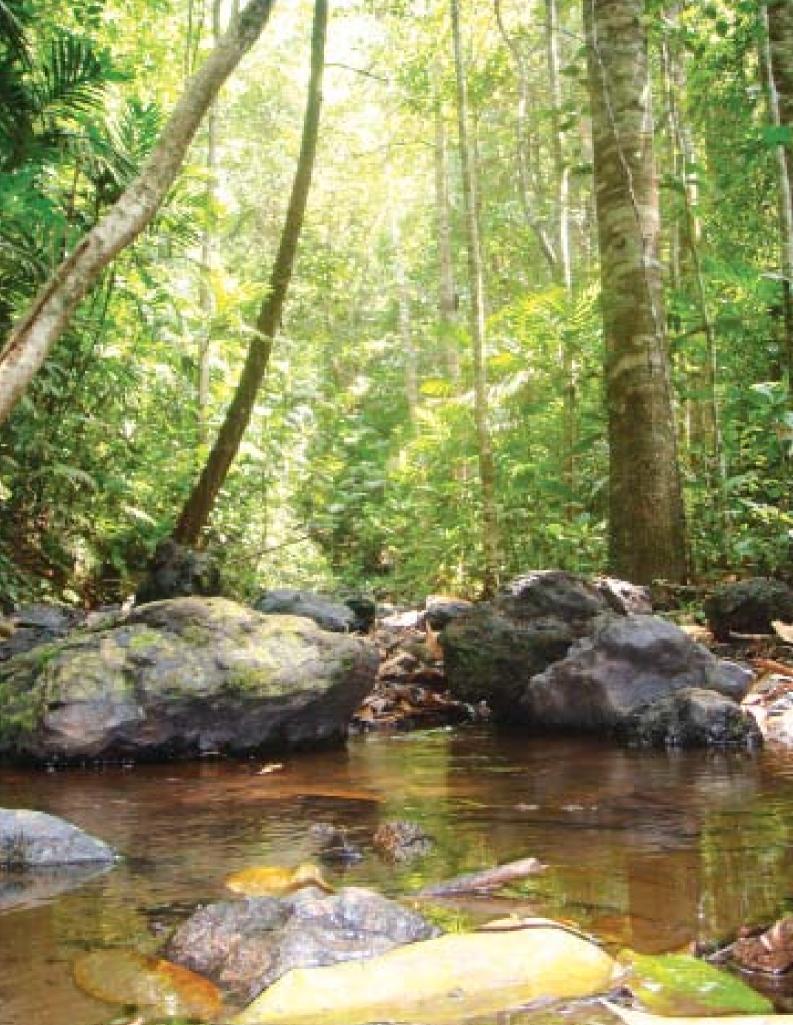
6. It is specifically reported that overall species richness and number of species in the Western Ghats are decreasing. How do you react to this?

7. Many communities are directly dependent upon the resources that wetlands provide in the Western Ghats region. How do you react to this?

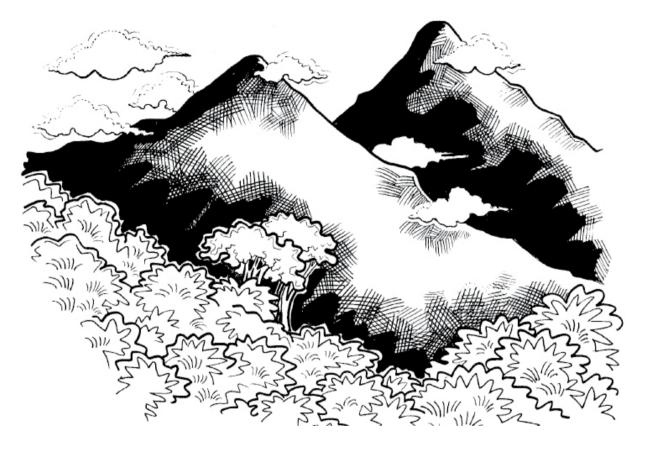
8. IUCN SSC Freshwater Biodiversity Unit and ZOO found that 183 species out of 1146 Western Ghats species assessed are threatened with extinction. How do you feel about this situation?

9. Freshwater Biodiversity provide value to human society by direct services such as fish for food or water purification for drinking and indirect services such as nutrient cycling, flood control and water filtration. What is your feeling about this?

10. Freshwater ecosystems support various orders of animals, plants and fungi, contributing to a quarter of vertebrate diversity and almost as much of the invertebrate diversity that has been described to date. How does it make you feel?



11. Some major threats to Freshwater Biodiversity of Western Ghats are overexploitation, water pollution, flow modification, habitat degradation and invasion by exotic species. How does it make you feel?


12. Assessing the status of species provides the means to monitor biodiversity trends and losses and helps in setting priorities for species conservation. How does it make you feel?

Unit 2

UNDERSTANDING WESTERN GHATS AND FRESHWATER BIODIVERSITY

Mini Drama Facts about Western Ghats Freshwater and Freshwater Types Value of Freshwater - Water Footprint Biodiversity: 5 Kingdoms of Life Western Ghats: Region Delineation, Habitats and Freshwater Systems Western Ghats: River Systems

MINI DRAMAS

Mini dramas are designed to introduce aspects of species biology and conservation issues in a way that is fun and memorable, and that allows the audience to know about plants and animals and the situations they face in the wild. These minidramas can be fun for all people from small children through adult, as long as the drama leader is able to motivate them to become involved. If you feel that the adults you are working with would not enjoy participating in these dramas, prepare a group of children to perform for the adult audience. Parents might get encouraged to participate if their children are involved.

The dramas are designed such that no special props or costumes are necessary. However, costumes and props will make the dramas more enjoyable and meaningful for the performers and their audience. You have been provided with education packets that has colourful masks. These masks can be reproduced and coloured so that many of the performers can wear them. Performers playing other roles can make their own masks.

Four drama scripts are included. Each drama should be performed by a minimum of six persons, so if you have 30 participants you may wish to use all four scripts. Break the group up into four smaller groups of equal size. Ask one person in each group to volunteer to be the director.

Explain that each group will rehearse its drama and must keep the subject a secret from the other groups and the audience. In each drama, all of the roles are in bold types the first time they are mentioned. For example, in the Habitat Loss drama participants will play the following parts: **trees**, **people**, **crops**, **freshwater**, etc. Depending on the number of people in the group, a performer may need to play more than one role. Make sure the participants understand that the dramas will be **performed without speaking**; only animal sounds, tools and natural sounds like wind are allowed. After the groups have rehearsed sufficiently, have each group perform for the audience. When each drama is finished, the audience must try to explain what event is being dramatized, and what roles are being played. After all the dramas have been performed the following activities can be done:

- Hold a discussion about the issues that have been presented.
- Ask participants and audience members to make a list of questions stimulated by the dramas. Use a flip chart or black board to list the questions.
- Ask them to propose other Freshwater Biodiversity issues that could be the subject of the dramas.
- If you will be working with participants over a sustained period of time, you may wish to ask participants to work together to write their own dramas.

Freshwater Biodiversity - Background information for drama

The Western Ghats is one of the world's most heavily populated Biodiversity Hotspots providing for and supporting 400 million people through water for drinking, transport, irrigation, and hydroelectric power, together with food and resources to sustain livelihoods. However, there is little appreciation for the value of freshwater ecosystems to the livelihoods of many highly dependent people, often the poorest in society. The Western Ghats region is experiencing high level of threat to freshwater species. Pollution, exploitation of biological resources, residential and commercial developments, dams and other natural system modifications, alien invasive species, agriculture and aquaculture, energy production and mining, etc., are some of the major threats to Western Ghats Biodiversity.

Freshwater resource (fish) and livelihood

NETHINNI JA

For many years, a community of fisher folk had been living off of the bounty of **fish** that the rivers provided them with. Over time, the value of their commodity dropped forcing them had to catch more fish than in the past to make ends meet. This over-fishing on a continuous basis resulted in the depletion of fish resources in the river and finding good catch started to become scarcer by the day. They realized the gravity of the problem and decided to find a solution in order to save their livelihood and traditional way of life. Upon communicating with experts in the field, they were told that it was due to over-harvesting that they had incurred this problem. They learnt that they had to fish on a regulated basis such that the fish get the time to spawn and repopulate themselves, esp. during their spawning season. Also they chose not to kill juvenile fishes as much as possible. After taking such a resolution and applying it stringently, over time, the fisher folk found that the fish population bounced back to the old levels, and such a method of sustainable fishing was then wisely maintained.

Habitat restoration

In 1900 a group of people left their homeland and settled in beautiful forest-land which they cleared of **trees** to make their home. They cleared more forest for farming in order to grow food. In 1925 they built new houses using old, large trees from the forest. They sold off more trees in nearby towns and began planting other crops like tea and coffee. In 1950 they laid roads and cleared more forest-land which provided more wood for sale. The people were happy and healthy those days. In 1975 they used modern tools and were able to clear even more forest. By 2000 there was nothing left in the forest. Where there was once clean, freshwater, the water was dirty, polluted. People began to suffer from diseases since much of the daily wastes were dumped in the forest. Water was not sufficient to water crops, so food had to be bought from outside and was very costly. Looking back over their history, people of the 21st century saw that the misuse of the forests and the water resources by their ancestors had spoiled the once bountiful land. They vowed to try and restore the forest and teach their children to care for it.

Threatened river

METHINNE JU

Two major cities in South India host a seasonal **river**, which has its peak flow during monsoon. Ignorance and indifference towards nature led to development activities resulting in the degradation of the river. The riverbed was filled with industrial wastes, acids and bleaching liquids. People of the region knew little about the different ecosystem services offered by the river. Apart from harbouring a variety of uniquely adapted **plants** and **animals**, the river helped maintain the groundwater levels. Water scarcity, which hitherto was unknown in the region started becoming a perennial problem making life difficult for the people by all means. There was acute scarcity of water for domestic use, drinking, as well as for agriculture purposes. Upon realization of the mistake made by the authorities and those involved in the developmental activities, the public held protests and asked for not only the restoration of the river but also the protection of other wetland areas around that region for the benefit of all. The governing bodies gave in to the requests and declared the wetlands as 'protected, no-development areas'. In due course water problem was solved.

Regulate water withdrawal

A beautiful rural countryside underwent rapid urbanization resulting in over extraction by industries leading to water scarcity along with inappropriate sanitation that led to a variety of problems ranging from degraded water quality, scarcity, spread of diseases and other health issues. The **people** of the region were made aware by an **NGO** about the situation and they were educated about the need to use resources in a proper manner and also develop in a sustainable way. Imbibing the ideas, the **locals** changed their lifestyle, reduced and regulated the process of their waste disposal as well as water usage among other eco-friendly practices. This mitigated the water-related issues to an extent thus ensuring that the resources are maintained at optimum health for prolonged use which also improved their living conditions.

Create your own Drama: Instructions

Using the guidelines below, work with your group to write and perform wildlife dramas.

Steps:

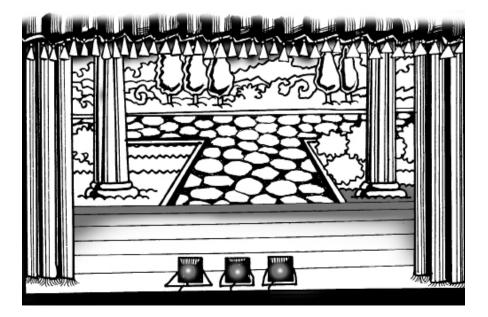
1. Choose a biodiversity/wildlife topic based on an issue that is important to your group. Try to pick a very specific issue, as you will have limited presentation time. What is your topic? (Facilitator may want to hold a brainstorming session first, and then write the chosen topics on a board).

2. Pick what events you want to act out - your story line - keeping it simple to be able to present within a five to ten minute time frame. What are the main events in your drama?

3. You do not need to write a script; rather think of the kinds of conversations your characters would have. What are the main topics of dialogue?

4. List the characters (people, plants, and animals) to be involved in this issue. Who are the characters in your drama?

5. Assign roles and rehearse. As you practice, keep in mind the message you are trying to convey.


6. What is the main message of your drama?

7. Decide where your drama will take place. What is the setting?

8. Make props and costumes - be creative! Using scrap materials and natural materials is a great idea. Make sure you have already practiced so that you do not take all the rehearsal time to make your props and costumes.

9. Present your drama! Define the stage area and audience area. Maintain the attention of your audience!

10. Discuss about the message with your audience.

FACTS ABOUT WESTERN GHATS

Length:	1490 km from Tapi Valley in Gujarat to Kanyakumari in south	
Total area:	Approximately 1,60,000 km² (leaving the Palghat gap)	
Palghat Gap:	A 30 km break in northern Kerala	
Width range:	48 km in Maharashtra to 210 km in Tamil Nadu	
States covered:	6 (Gujarat, Maharashtra, Goa, Karnataka, Kerala and Tamil Nadu)	
Annual precipitation:	2,000 to 8,000 mm	
Area under Protection:	13,595 km²	

Number of Protected Areas within Western Ghats:	58
Number of National Parks within Western Ghats:	14
Number of Sanctuaries within Western Ghats:	44

Freshwater systems

The freshwater ecosystem biodiversity within the Western Ghats region is highly diverse, unique and of immense importance to livelihoods and economies. Broadly, the freshwater rivers and streams in the Western Ghats fall under five main categories or eco-regions, viz.,

- 1. Narmada-Tapi
- 2. The Northern Deccan Plateau (Godavari River system)
- 3. The Southern Deccan Plateau (Krishna River system)
- 4. The Southern Eastern Ghats (Kaveri River system) and
- 5. The Western Ghats (west flowing rivers).

From the Western Ghats originate 46 east-flowing and 70 west-flowing major rivers. The west-flowing rivers originate in the Western Ghats and drain into the Arabian Sea while the east-flowing rivers merge into one of the three major river systems - Kaveri, Krishna or Godavari - before they drain into the Bay of Bengal.

Forest status:

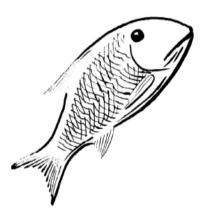
There are four major forest types in the Western Ghats. They are

Evergreen Semi-evergreen Moist deciduous & Dry deciduous.

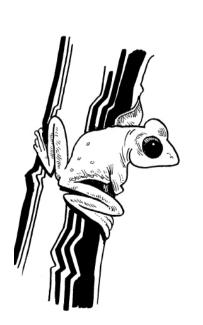
Among the four broad vegetation types, moist deciduous forests occupy the largest area followed by semi-evergreen, dry deciduous, and finally evergreen.

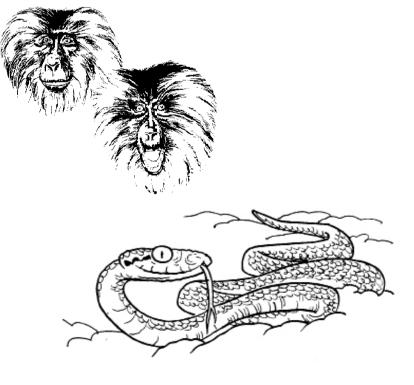
Other vegetation types that occur in the Western Ghats include: Scrub jungles, Savannahs, Peat bogs, *Myristica* swamps.

The majority of the area under moist


forest types falls within the southern states of Kerala and Karnataka. Together they account for 80 percent of the evergreen forests and 66 percent of the moist deciduous forests in the Western Ghats (IIRS 2002).

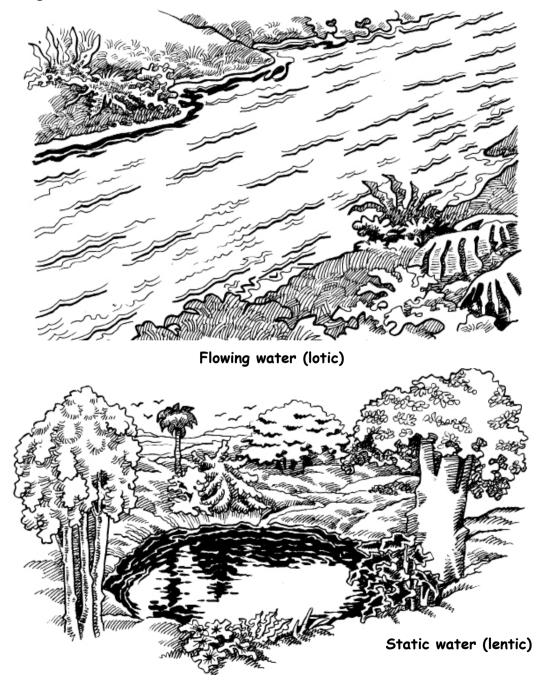
Western Ghats is home to diverse social, religious, and linguistic groups. Approximately 245 (WGEEP report 2011) million people live in the peninsular Indian states that receive most of their water supply from rivers originating in the Western Ghats.




The Western Ghats supports a diverse fauna.Among the vertebrates,Birds508 speciesFishes218 speciesReptiles157 speciesMammals137 species andAmphibians126 species

are reported from Western Ghats.

Like other hotspots, the Western Ghats has a high proportion of endemic faunal species. If an animal or plant species' natural home (habitat) is restricted to one particular area or space on the globe, it is known as an endemic species, example: Lion-tailed macaque, Malabar grey hornbill. The greatest number of endemics in the Western Ghats is found among the amphibians (78%). Among other animal groups 62% are reptiles, 53% are fish, 12% are mammals and 4% Birds.

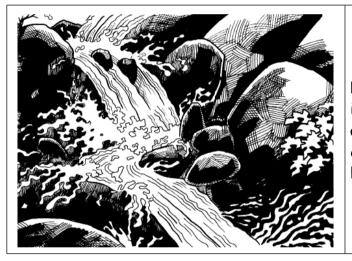


FRESHWATER AND FRESHWATER TYPES

What is freshwater?

Freshwater is defined as water having a very low salt concentration - usually less than one percent.

Essentially there are two main types of freshwater bodies: Static water (lentic) and Flowing water (lotic).



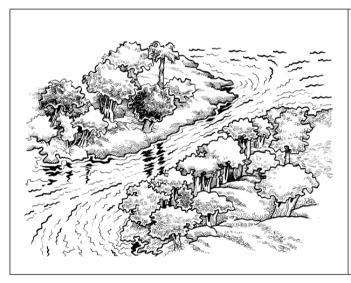
Types of water bodies

Stream

is shallow, narrow, natural body of flowing freshwater that can be safely crossed without the help of watercraft.

Brook

is a small, shallow stream with a more rapid current, often characterized by a rough or rocky bed.



Creek is a small, shallow stream of generally slow moving water.

River

is a large body of water continuously flowing downhill over considerable distance from smaller upstream sources to a larger downstream reservoir, lake, sea or ocean.

Strait

is a narrow, shallow body of swiftly flowing water connecting two larger, deeper water bodies.

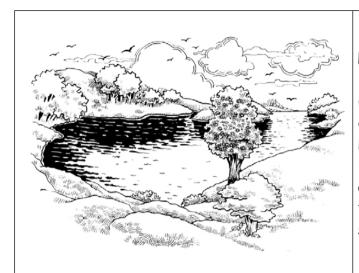
Marshes

are characterized by large periodic fluctuations of water-table or water level.

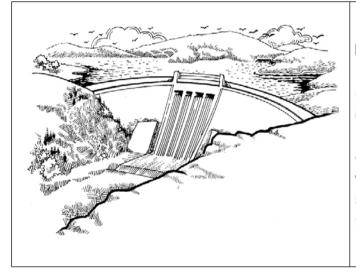


Swamps

are relatively high in nutrients supplied via surface runoff and groundwater from the surrounding land. The water table is usually above that of the ground surface, but there are large, seasonal fluctuations.

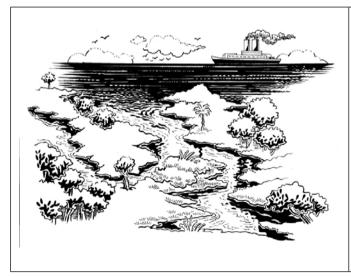


Peat Bogs: (Peat is partially decayed vegetable matter): are peat-accumulating systems fed only by rainwater and thus have very low nutrient levels. They are usually strongly acidic, and water flow is restricted. The water table is either at or just below the surface level and remains relatively constant.



Pond

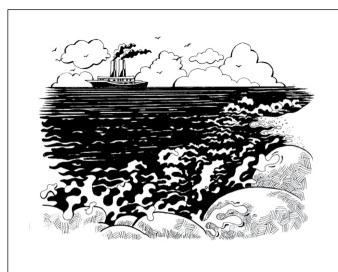
refers to a shallow basin of still water of less than ten surface acres. They may occur naturally, but are often man-made.



Lake is a large body of relatively still (usually fresh) water which is nearly or completely surrounded by land. Lakes are characterized by broad basins and may vary in size from approximately ten surface acres to several hundred square miles of surface area.

Reservoir

is similar to a lake, but is the result of human engineering. Reservoirs may consist of a natural basin flooded by the deliberate damming or redirection of natural waterways, or they may be entirely manufactured by mechanically pumping water into large lined basins.



Estuary

is an example of a brackish water body. It is a semi-enclosed coastal body of water formed where a river meets the sea.

Brackish water

is a mixture of freshwater and salt water resulting from mixing of seawater with freshwater (as in estuaries).

Sea

is smaller than ocean and are usually located where the land and ocean meet. Typically, seas are partially enclosed by land.

Ocean

is a vast body of salt water forming the interconnected waterway that surrounds the entire world.

VALUE OF FRESHWATER

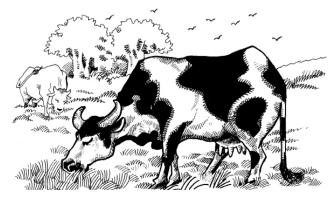
Water

Water is hidden in all that we see around us: food, paper, plastic, clothing and everything else that we use. Water sustains life itself and we use water in our daily life for a variety of purposes like cooking, bathing, cleaning, washing, etc. Water is essential to produce all kinds of products e.g. cultivation of crops such as rice, wheat, etc., production of meat as well as dairy products to mention a few among the innumerable other commercial and consumable merchandise.

Freshwater is a finite resource that needs to be conserved and used carefully for our own future well-being as a species as well as for the well-being of our planet. Water from the Western Ghats supports about 40 crore people (400 million) living in 10 States of South and Central India (Kerala, Tamil Nadu, Karnataka, Goa, Andhra Pradesh, Maharashtra, Madhya Pradesh, Chhattisgarh, Gujarat and Orissa). They are benefited from the water originating in the Western Ghats for all their needs of daily life and development like drinking, transport, irrigation, and hydroelectric power generation, food production and other resource utilization to sustain livelihoods. Over the last few years, we have become aware of the need to account for the various ecosystem services we have been enjoying free of cost. This has resulted in our calculation of carbon footprints and water footprints at various levels (individual, community, business and industry, national and global levels). Such an understanding of the value of these free services from nature in economic terms helps us to be more conscious in our utilization of finite resources.

What is water footprint?

The water footprint of an individual, community or business is defined as the total volume of freshwater used to produce the goods and services consumed by


the individual or community or produced by the business. Water use is measured in terms of water volumes consumed (evaporated or incorporated into a product) and/or polluted per unit of time (waterfootprint.org).

The indirect water footprint of a consumer or producer

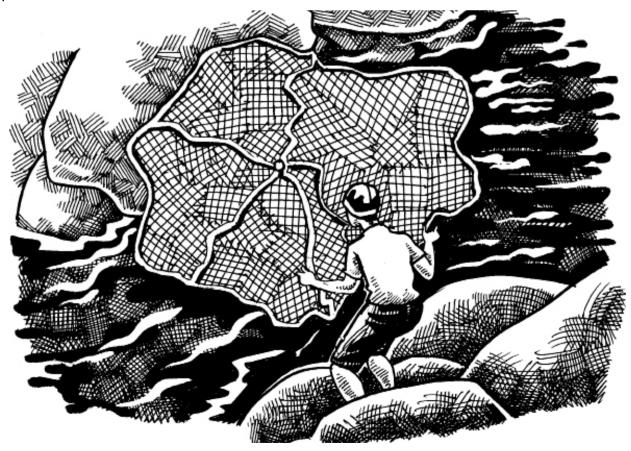
refers to the freshwater consumption and pollution 'behind' products being consumed or produced. The water footprint of a product (a commodity, good or service) is the total volume of freshwater used to produce the product, summed over the various steps of the production chain. The water footprint of a product refers not only to the total volume of water used; it also refers to where and when the water is used (waterfootprint.org).

For example, to produce One litre of milk, about 1000 litres of water is used, taking into consideration both direct usage and indirect use. A few more examples of everyday products and the amount of water that goes into their production are given below:

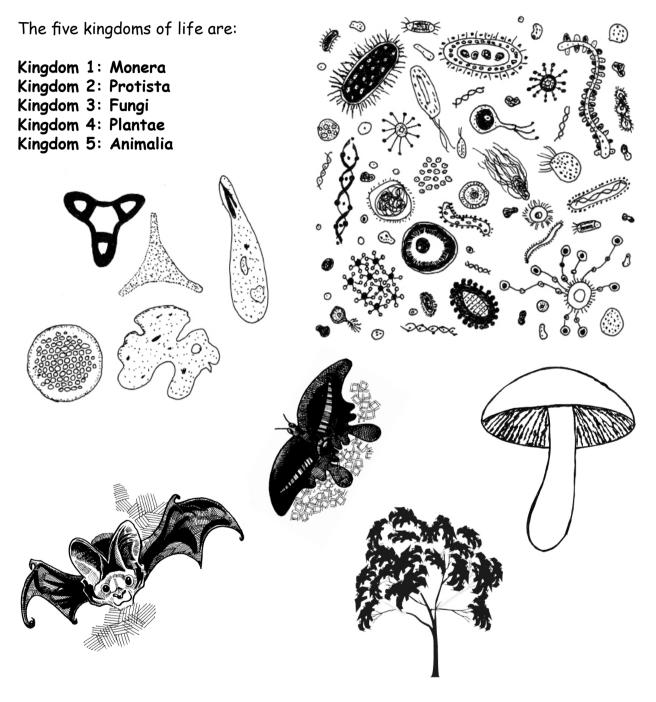
Product	Water used (litres)
Beef /300g	4650
Rice/kg	2497
Milk/litre	1000
Coffee/750ml	840
Banana/kg	790
Cane sugar/500g	750
Wheat /500g	650
Bread/500g	650
Potato/kg	287
Tea/750ml	90

The average water use by an individual in India is estimated to be 147 litres/ person/day (www.data360.org). The lowest estimated cost of ground water in India is 2 Paisa per litre. The following simple calculation explains the cost involved in the daily usage of water per day in each State in Peninsular India.

State	Human Population (crore)	Cost/day /Person (Rs.)*	Rs. (crore)
Tamil Nadu	7.21	2.94	21.19
Kerala	3.34	2.94	9.81
Goa	0.14	2.94	0.42
Karnataka	6.11	2.94	17.97
Andhra Pradesh	8.46	2.94	20.90
Maharashtra	11.23	2.94	33.03
Orissa	4.19	2.94	12.33
Chhattisgarh	2.55	2.94	7.49
Gujarat	6.03	2.94	17.75
Madhya Pradesh	7.25	2.94	21.34
Total	56.51		162.24


*147 x 0.02 = 2.94

The 56.5 crore people who live in all the above states use water worth of Rs. 162 crore everyday. Does that sound much to you? The above figure is just the average daily usage by the people. Now imagine the amount of water footprint (direct and indirect usage of water by the consumer and producer).

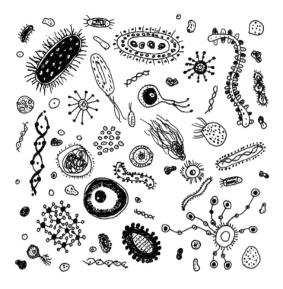

It has been estimated that daily water required for survival of an individual is 1000 lit/day. At global level, daily water usage ranges from 90-6500 lit/ day/ person. This varies depending on a number of factors present in different regions. According to a 2004 calculation, water footprint of India is about 2685 lit/person/day from various water sources, which means each of us uses about Rs. 54 (2685x0.02) worth of freshwater every day. India's population as of 2011 is 121 crore (1.21 bn) and now you can calculate the cost involved in freshwater usage in India.

Water efficiency at all levels - home, city, nation, and planet - is crucial to ensure the security of our water supply. By eliminating water wastage today we can make certain that we will have enough water for tomorrow, and we can make sure that there will be enough to go around to all, including the natural environment in which we live. Thus we have to optimise the use of our water through sustainable practices.

BIODIVERSITY: 5 KINGDOMS OF LIFE

Scientists have classified all life forms into groups of species with similar characters. There are five major groups which are called Kingdoms.

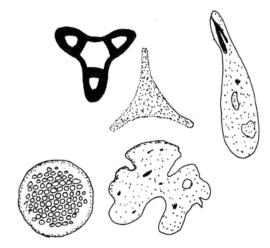
All living organisms are assigned to a particular Kingdom according to certain characteristics. All species in a Kingdom are similar to one another in some way.


So far scientists, field biologists, and naturalists have discovered about 19 lakh (18,97,000) species on earth. Scientists estimate that the number of species yet to be discovered may be at least 40 lakh species.

Kingdom 1: Monera

(e.g. Bacteria)

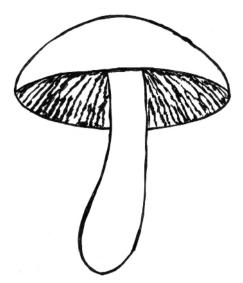
We wash our hands before eating. By doing so you wash the germs off your hands! Those germs are living things called Monerans. They are very, very tiny living things and there are many kinds. All these kinds are grouped under Kingdom Monera.


Monerans are single-celled organisms without even a membrane (sort of skin) around the nucleus (centre). Monerans cannot be seen with the naked eye because they are so small. More than a million of them can fit on the tip of your finger. They are in the air, on our

skin, on the surface of plants and roots, in the deepest parts of the ocean and even inside our body. Millions of these bacteria fill the intestines of humans and other animals. In short, Monera (bacteria) can live anywhere. Some of these bacteria do good things like help in digestion, or turn milk into curd. Some of them do bad things, like infect organisms with diseases. Many of them are harmless. So far 9,000 types of Monera are known to science.

Kingdom 2: Protista

(e.g. amoeba, diatom, euglena, paramecium, some unicellular algae). Protists are also single-celled organisms with a nucleus (centre) and a nuclear membrane (skin)



around it.

Some protists look like plants and others look like animals but they are all different. They live in moist and aquatic areas. There are about 70,000 kinds of protists reported so far. These are important in ecosystems as primary producers and primary consumers. Some protists are able to cause disease in humans and other animals but overall, protists are beneficial to the living world.

Kingdom 3: Fungi

(e.g. mushroom, mold, shelf fungus, yeast) Ask you audience if they have ever bought mushrooms from the market or collected under a bush a day or two after a heavy rain? If you leave bread on the shelf too long, then you can see fungi grown on it. Athlete's foot is a common fungus which feeds on a living host, you! Fungi occur in a wide variety of sizes and shapes. Amazingly, although fungi look like plants they are also closely related to animals. They get their food from other sources since they cannot convert the sun's rays into energy like plants do.

Edible mushrooms are well-known examples of fungi. We use fungi (yeasts) to make bread, in fermenting beverages and for producing medicines like penicillin. Fungi have long been used for production of antibiotics, vitamins, anti-cancer and cholesterol lowering drugs. So far 72,000 fungi are known to science.

Kingdom 4: Plantae

(e.g. trees, ferns)

A day for you and me will not pass without using plant or plant products. Plants include familiar organisms such as trees, herbs, bushes, grasses, climbers, ferns

etc. All food required for most of the life on earth are obtained through plants by a process called photosynthesis. Plants use the energy of the Sun to convert water and carbon dioxide into sugar and oxygen, without which we cannot live.

Plants are responsible for most of the photosynthesis process though some Protists and Monerans can also perform photosynthesis. Plant products such as wood are used for buildings, furniture, paper, cardboard, musical instruments and sports equipment. They also provide cloth, fuel, medicine, natural products such as fibers, cooking oils, drugs, etc. Kingdom Plantae includes about 2.7 lakh species.

Kingdom 5: Animalia

(e.g. bird, fish, insect, bat, man)

Animals are seen everywhere including our home. When you think of an animal you might think only of bigger animals like tigers, elephants and horses. Vertebrates such as mammals, birds, amphibians, reptiles and fish occupy only 2% of all animals reported so far. The rest are animals without backbones like insects, crabs, spiders, and millipedes. Animals are classified into vertebrates (animals with backbones) and invertebrates (animals without backbones).

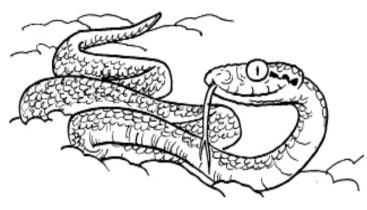
There are 29 major groups among invertebrates and 5 groups among vertebrates.

The vertebrate groups include fish, amphibians, reptiles, birds and mammals. Crabs, dragonflies,

butterflies, beetles, earthworms and spiders are some examples of invertebrates. So far, about 14,76,000 kinds of animals are known to science and man is just one species among all living things.

Classifying living things

The living things on our planet evolved and adapted themselves to live according to the environment. During the process of evolution different species appeared. All living things are interconnected with other species and non-living things and they function well to run the ecosystem.

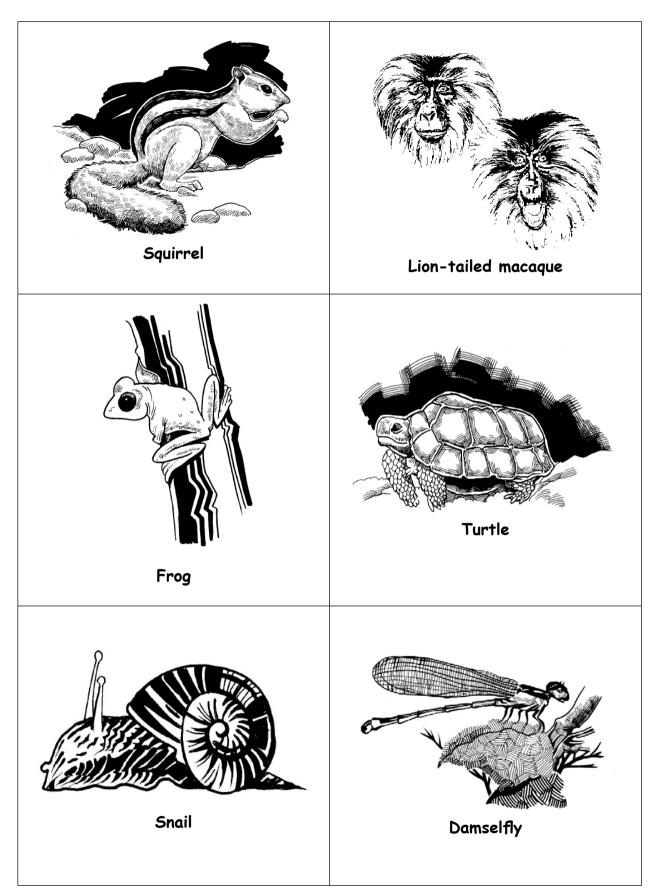

Scientists believed that there are about 5 million separate species living on the planet, but today, some scientists think there may be as many as 30 million species. We human are one of those millions of species. We are different from the rest of the species since we have the ability to change the planet in dramatic ways that affect many other living things.

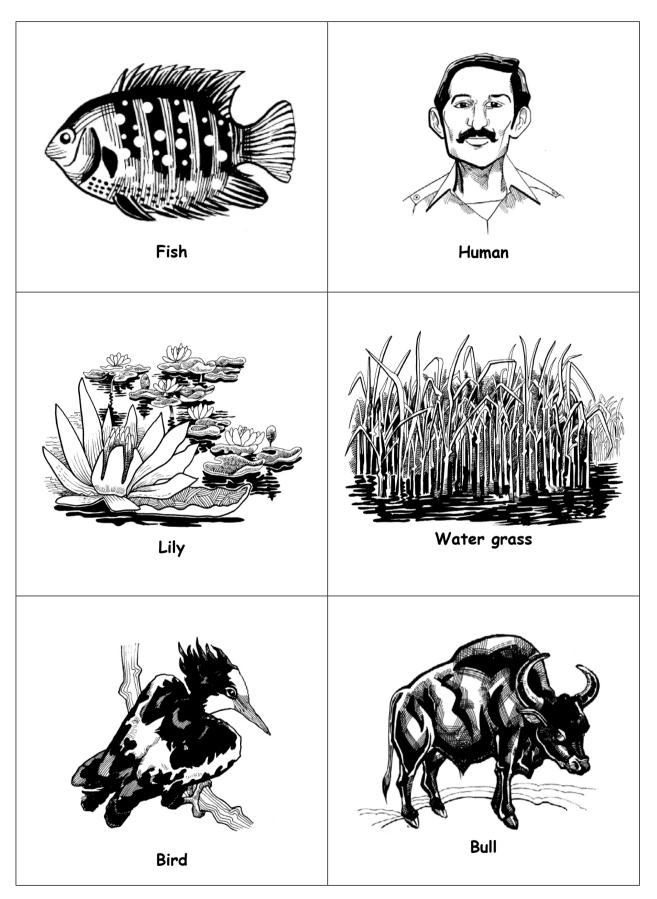
One may ask why we should understand how nature works and where we fit in? We need to know about nature in order to care for our world and we cannot do that without knowing about those other species and how they are linked with.

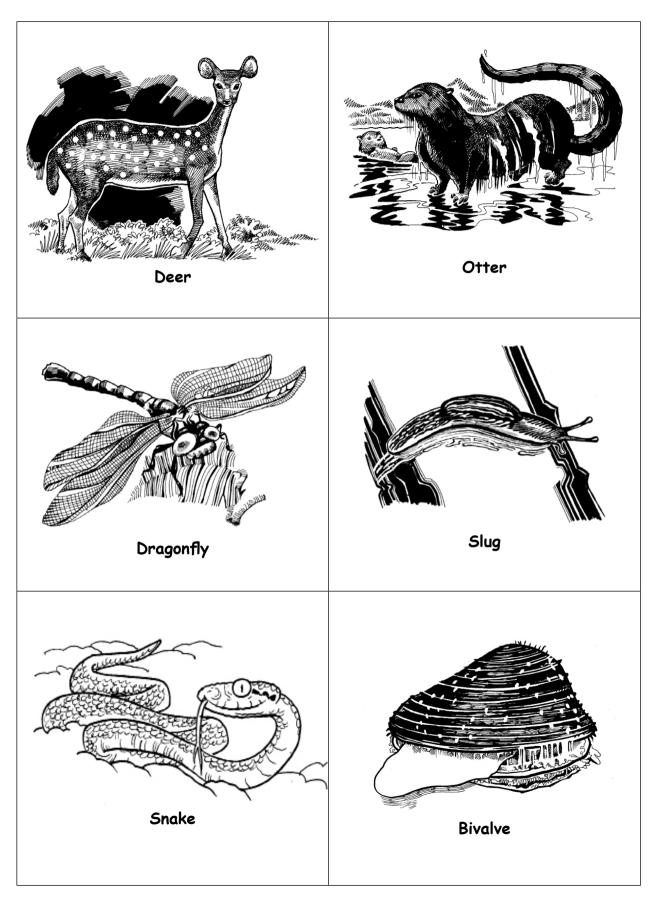
What is the need to classify living things and how?

Carl von Linne in 1758 established a system to organize (classify) living things into groups based on their relationships. This system of uniform organisation is called taxonomy: the classification of living things. Taxonomy is a critical part of our understanding of life on Earth. It reveals the order and the diversity in the teeming life around us. Under this system, every living thing is given a unique classification. At one point of time there was no such system. A scientist studying a snake in Northeastern India would have referred to a snake as 'Naga sarpa',

a scientist in Southern India would have referred to the same snake as a "Naagam" and a scientist in Bangladesh might have labeled it in a Bangla name. This type of confusion led to pressure to develop a universal language for scientists. Today, all scientists are using the universal system of giving a unique scientific name to each


species e.g., The Indian cobra is named Naja naja.


How do taxonomists, the scientists who study classification of living things go about their work? They group similar kinds of creatures together based on their evolutionary relationships. It may sound simple; but it is not. The similarities and differences between species can be very difficult to detect, and taxonomists often disagree.


Seven Major Levels of Classification

The seven major levels of classification from largest to smallest are: Kingdom, Phylum, Class, Order, Family, Genus, and Species. Each level can be divided into clusters of organisms that are most closely related. These clusters form the next level of classification. For example, each kingdom is divided into smaller phyla, each phylum into classes, each class into orders, and so on all the way to species.

Another way to describe the different classifications is in terms of shared genetic material. The creatures at each level share a greater proportion of genetic material than those at the level below them. It is for this reason that an understanding of species is so important: each species represents a unique and irreplaceable genetic resource. The concept of biodiversity cannot be properly understood without an appreciation of the species.

Western Ghats: region delineation, habitats and freshwater systems

The Western Ghats may be divided into three major regions.

Surat to Goa Goa to Nilgiri mountains South of Palghat Gap

The Western Ghats region between Surat to Goa touches the coast for almost 600 kms and hence the name 'Ghats', meaning 'steps of a stair case'. Its elevation generally ranges between 700 and 1,000 m. However, some of the semi-evergreen forests namely Kalsubai and Mahabaleshwar have higher peaks of 1,646 m and 1,438 m respectively. The coastal zone between this region is called Konkan coast. It is a narrow region 50-60 km wide and made up of a series of more or less high hills.

The mountain heights from Goa to Nilgiri becomes more irregular. From Kudremukh upto the Palghat Gap the edge of the plateau is very often higher than 1,000 m and the peaks become more numerous and higher reaching up to 2,339 m at Vulva Mala at the edge of the Wayanad Plateau. The Nilgiri mountains reach a maximum height of 2,637 m at Dodda Betta.

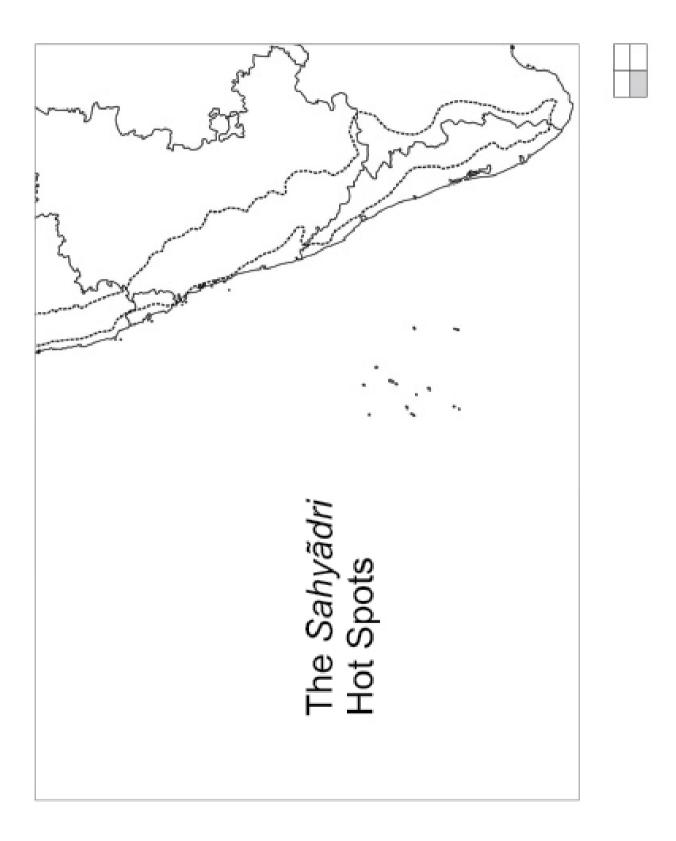
The Western Ghats are interrupted by the Palghat Gap which is about 30 km wide. Anaimudi peak is the highest peak in south India that reaches a height of 2,695 m. Another popular peak namely Agasthyamalai (1,869 m) lies between Shencottah Pass and Kanayakumari.

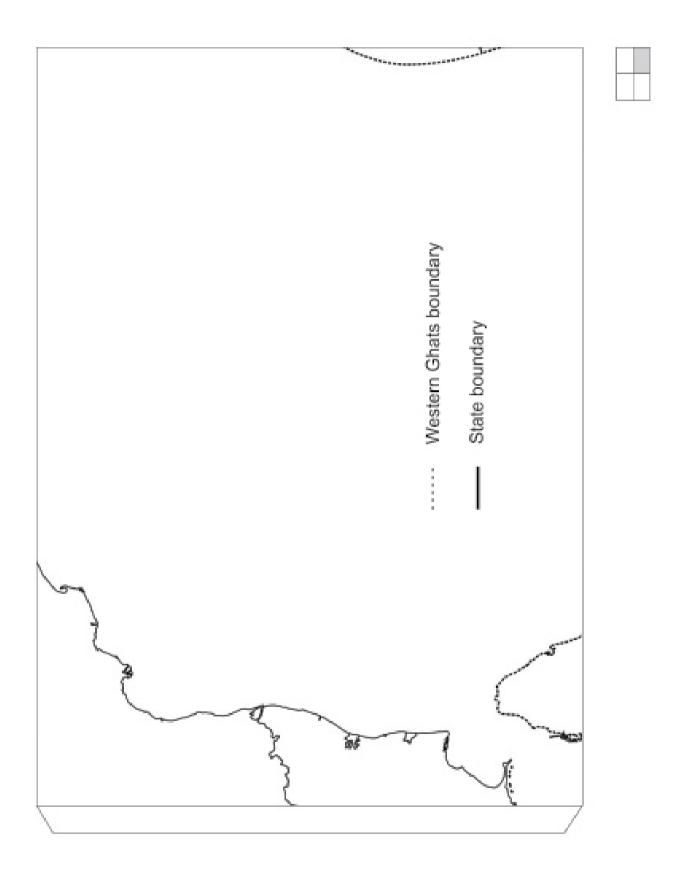
The Western Ghats, based on their species and habitat values, have been identified as a potential forest World Heritage site and very recently in May 2011, IUCN has nominated Western Ghats in the list of World Heritage sites.

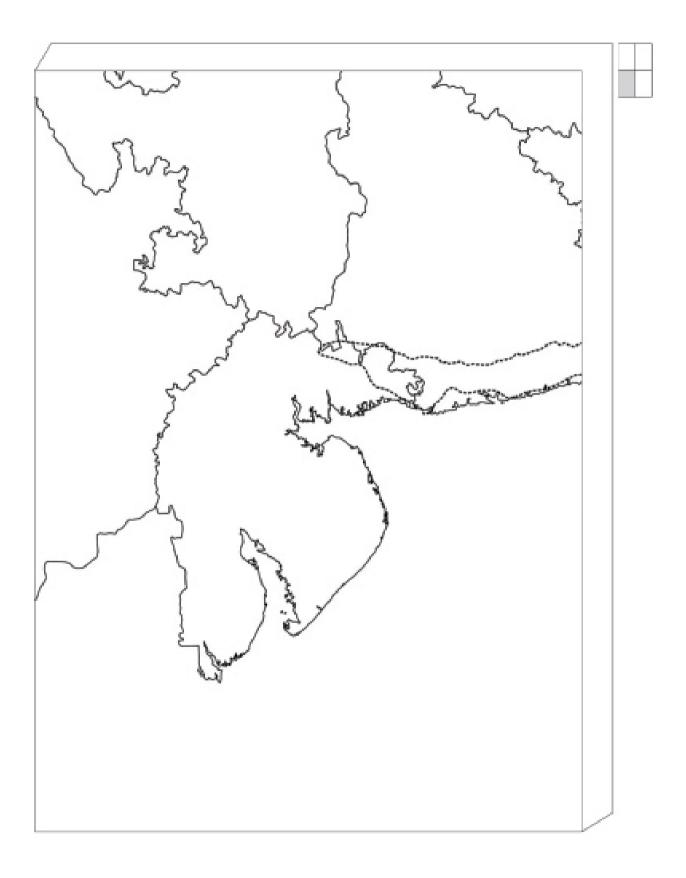
Instructions:

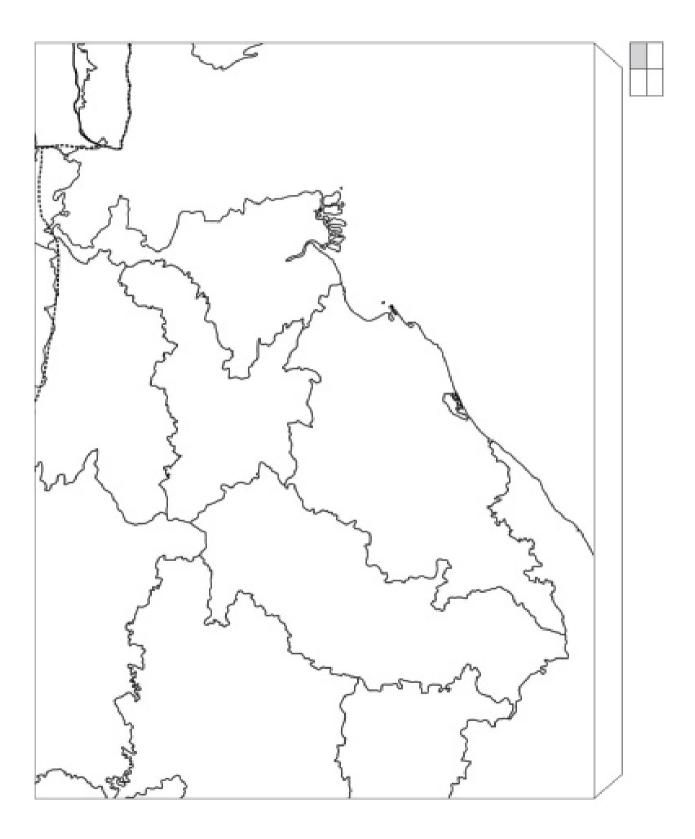
- 1. Take photocopies of the Western Ghats maps given on pages 51 to 58.
- 2. Take multiple copies as per the total number of groups formed.
- 3. Give the maps to be assembled of Western Ghats hotspots and Western Ghats river systems.
- 4. Give your audience ten minutes to read the map. Ask them to do the following in groups.

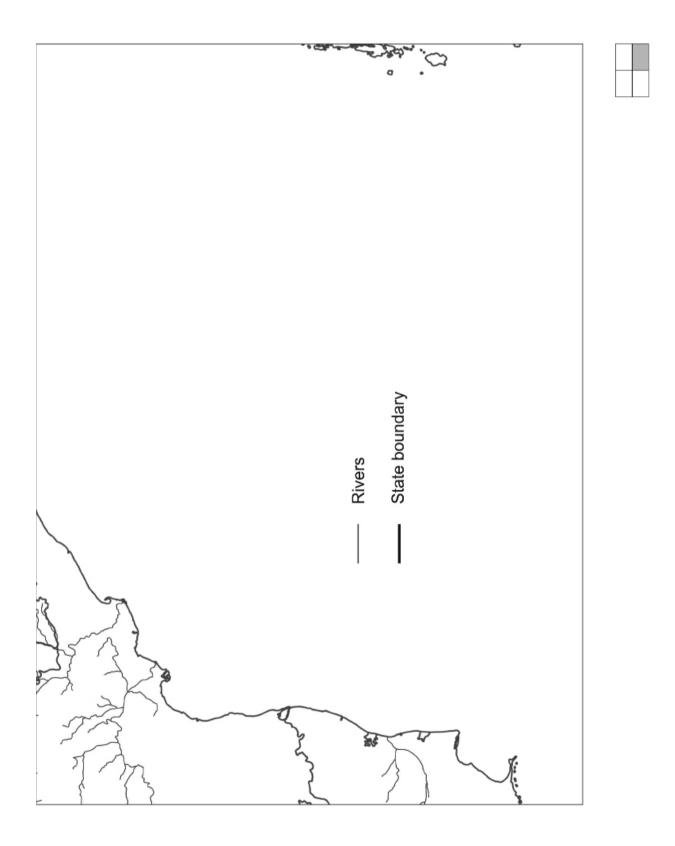
i) write down the list of States having Western Ghats hotspots.

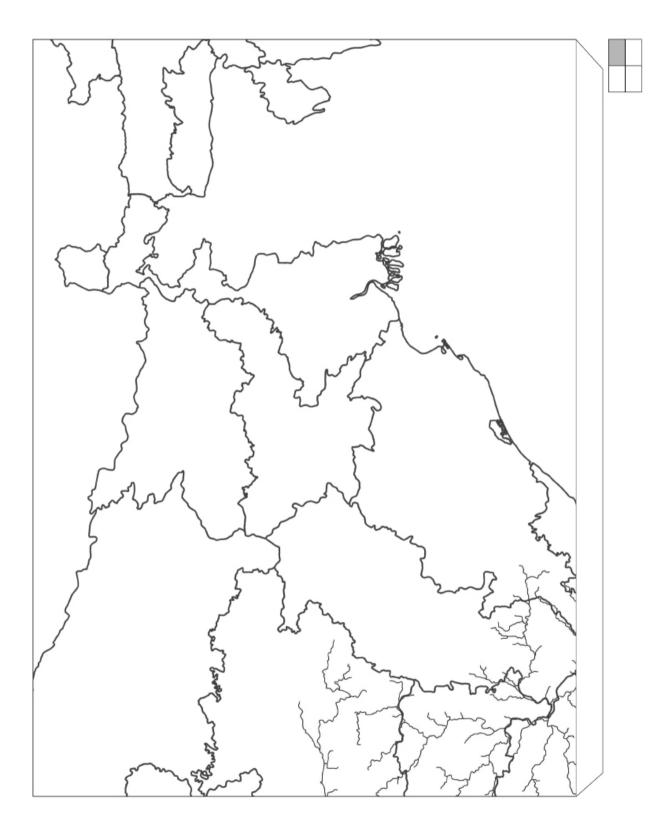

ii) list and identify the regions of Western Ghats (central, southern and northern region).

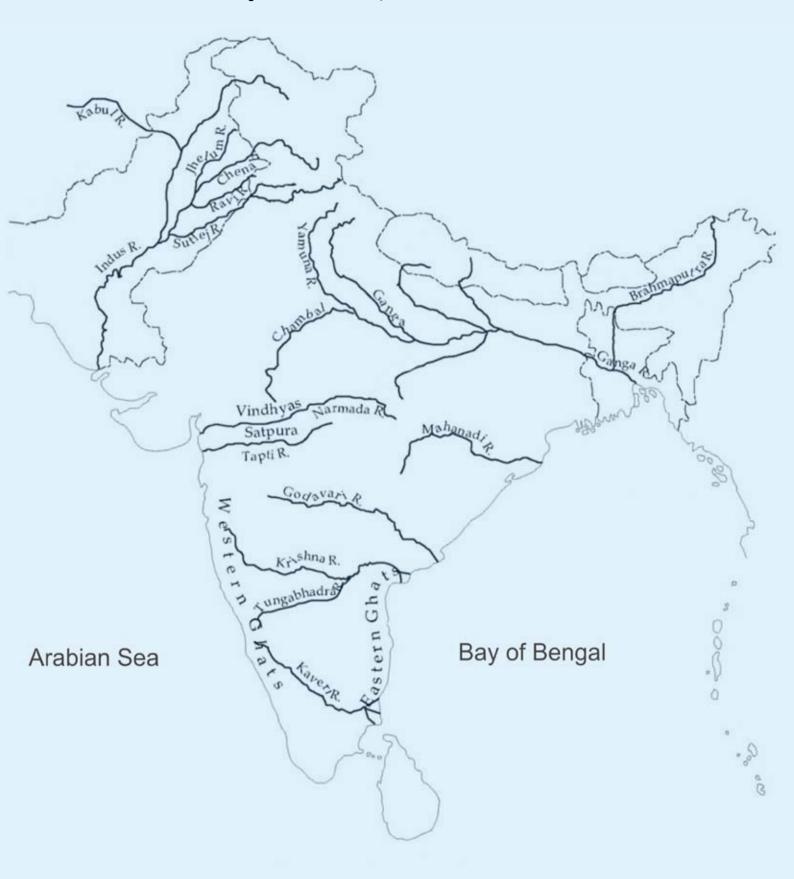

iii) estimate the total area of the Western Ghats.


iv) list State wise rivers of Western Ghats.


- 5. Lead a discussion with the group. Ask them to think of the threats for the species of WG particularly to freshwater species.
- 6. The Western Ghats region is still reported to be dwindling. Why?
- 7. It has been estimated that nearly 40% of the forest cover in the Western Ghats was lost between 1920 and 1990. Discuss with them the impact of habitat loss on species and extinction. What could be the cause for this?







Major River Systems of India

Indian Ocean

Western Ghats: river systems

We learned from the map activity that Western Ghats is the main source of water for Peninsular India. It is the place of origin of many rivers that together provide the bulk of utilizable surface water available in South India. Western Ghats is the place of origin for both east and west flowing rivers. These rivers traverse great distances in 10 Indian States.

East flowing rivers in Western Ghats

Three major rivers that originate in the Western Ghats and flow to the east are:

- 1. The Godavari
- 2. The Krishna
- 3. The Kaveri

The Godavari

The Godavari is second largest next to River Ganga in India and first largest in Southern India with a length of 1465 km. It starts in the Tryambak (Trimbak) plateau near Nasik, Maharashtra and flows eastwards through Andhra Pradesh before flowing into Bay of Bengal. River Godavari has many tributaries namely: Purna, Manjra, the Pranhita (Penganga - Wardha), Indravati, the Sabari, Darna, Kadwa, Mula, Karanji, Madhurnala, Devanala, Hebbala, etc. The entire river system has a drainage area of 312,812 sq. km. which is greater than the area of Madhya Pradesh or Germany.

The Krishna

The Krishna is the third largest river in India after Ganga and Godavari and second largest river in Southern India with a length of 1,400 km. It starts in Mahabaleshwar, Satara district, Maharashtra and flows eastwards through Karnataka and Andhra Pradesh before flowing into Bay of Bengal. River Krishna has many tributaries namely: Tungabhadra, Kudali, Veena, Koyna, Bhima, Malaprabha, Ghataprabha, Yerla, Warna, Dindi, Paleru, Musi, Urmodi, Tarli and Dudhganga river. The entire river system has a drainage area of 258,948 sq. km which is greater than that of Uttar Pradesh or United Kingdom.

The Kaveri

The Kaveri (Cauvery) is the third major river in Southern India with a length of 765 km. It starts near Talakaveri, Kodagu district in Karnataka and flows eastwards through Karnataka and Tamil Nadu before flowing into Bay of Bengal.

Kaveri has many tributaries namely: the Shimsha, Hemavathi, Arkavati, Honnuhole, Harangi, Kabini, Lakshmantirtha, Lokapavani, Noyyal, Moyar, Amaravathi and Bhavani. The entire river system has a drainage area of 81,155 sq. km. which includes four states (Karnataka, Tamil Nadu, Kerala and Pondicherry) which amounts to an area lesser than that of Arunachal Pradesh or UAE.

Other east flowing smaller streams that originate in the Western Ghats are Thamiraparani and Vaigai River.

The Thamiraparani (Tambraparni)

The Tambraparni River rises on the eastern slopes of the Western Ghats near Agasthyamalai in Tirunelveli district, Tamil Nadu and has a length of 125 km. River Tambraparani enters the Gulf of Mannar near Palayakayal. This river has many tributaries which are: Peyar, Ullar, Karaiar, Pambar, Servalar, Manimuthar, Gadana, Pachaiyar and Chittar.

The Vaigai

The Vaigai River arises in the Varushanad Hills of the Western Ghats and initially flows north-east and then flows eastward then again it bends south east, passing Madurai town and empties into Bay of Bengal. It has a total length of 190 km.

The West-flowing rivers in Western Ghats

From Gujarat to Kerala a number of rivers arise and flow to the western side of the *Sahyādri* and they are either perennial or non-perennial and torrential rivers. These swift west-flowing rivers flow into the Arabian Sea.

These rivers form estuaries, unlike the east flowing rivers which form deltas. Estuary is a channel where the freshwater of the rivers mix with the tidal seawaters. Delta is a triangular tract of sediment deposited at the mouth of a river, typically where it diverges into several outlets.

There are many west flowing rivers in the *Sahyādri*. Kerala alone has 41 west flowing and 3 east flowing streams (See appendix).

The main west-flowing rivers in the WG are listed here.

Gujarat: Auranga, Par, Purna

Maharashtra: Surya, Vaitarna, Damanganga, Ulhas, Savitri, Vashisthi, Gad, Kajavi, Kodavali

Goa: Mandovi (Mahadayi), Zuari, Tiracol, Chapora, Talpona

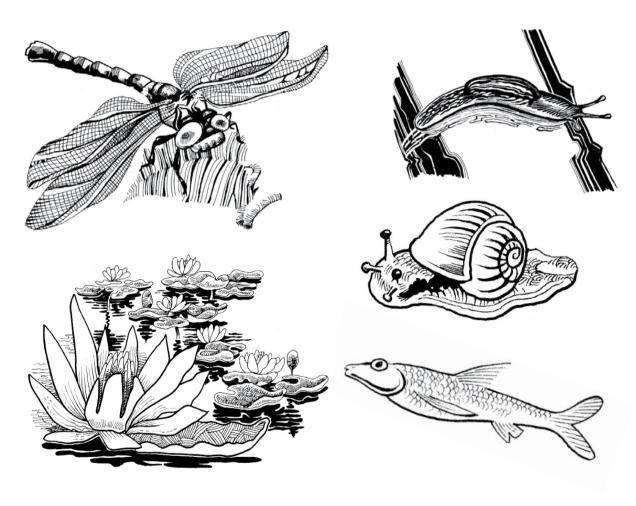
Karnataka: Kali, Gangavali (Bedthi), Aganashini, Sharavathy, Kollur-Chakra-Gangoli, Sita, Mulki, Gurupur, Netravathi **Kerala:** Chaliar, Bharatpuzha, Periyar, Pamba.

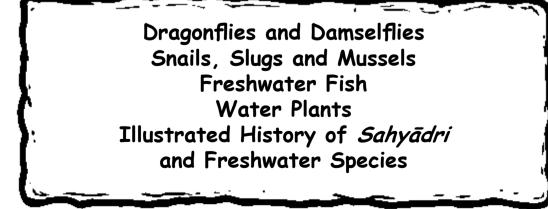
Two other major rivers namely Tapti and Narmadha runs from east to west touching Madhya Pradesh, Maharashtra and south Gujarat emptying into the Arabian Sea.

The Tapti (Tapi)

The Western Ghats range originates from south of river Tapti in a place bordering Gujarat and Maharashtra. Tapti is one of the major rivers in Peninsular India passing through Maharashtra and south of Gujarat with a length of about 724 km.

The Narmada (Rewa)


River Narmada forms the traditional boundary between northern and southern India. It originates from Amarkantak hill, in the Annupur district of Madhya Pradesh. This is the third longest river in peninsular India with a length of 1,312 km. The river system has a drainage area of 98,800 sq km. covering large areas in the states of Madhya Pradesh, Gujarat and Maharashtra.



Unit 3

KNOW YOUR SPECIES

Dragonflies and Damselflies

Dragonflies and Damselflies are common insects seen around us flying over water bodies, forests and fields. Both the groups together are termed Odonates. The life history of Dragonflies and Damselflies are closely linked to freshwater habitats and the welfare of odonates is very important since they form an important link in freshwater ecosystems. To help them survive, it is essential that we learn more about them.

How they are locally called?

Gujarati:	Paniwalo bhamro
Kannada:	Tumbi, tumbe, dumbi
Konkani:	-
Malayalam:	Thumbi
Marathi:	Chathur, sui
Tamil:	Thumbi, thataan, oosithattan
English:	Dragonflies and Damselflies

How to differentiate Dragonflies from Damselflies?

Dragonflies

Adult:

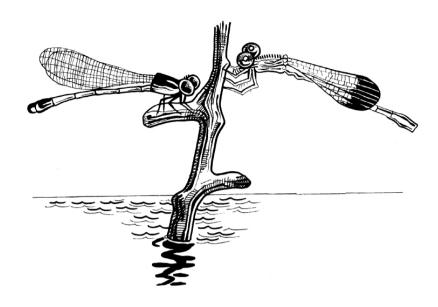
- Body long and stout
- Wings spread out at rest
- Fore wings and hind wings unequal in size
- Hind wing broad at base
- Strong fliers
- Eyes are large and usually touch each other

Nymphs (Aquatic larvae)

- Stout, robust body
- Respiratory gills not visible externally

Damselflies

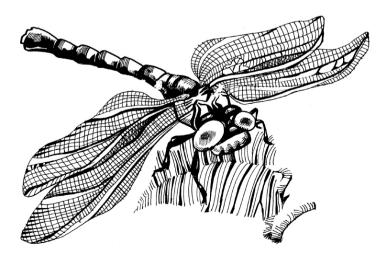
Adult:


- Body long, slender and delicate
- Wings usually held together over abdomen
- Fore wings and hind wings approximately of the same size and shape
- Wings narrow at the base
- Weak fliers
- Eyes are smaller and separated, never touching

Nymphs (Aquatic larvae)

- Slender, fragile body
- 3 gills visible externally (at the end of the abdomen)

Odonate facts:


Globally there are about 5740 species of Odonates. (Dragonflies: 2941; Damselflies: 2739; Anisozygoptera: 2). In India about 500 species have been reported so far (Dragonflies: 267; Damselflies: 195; Anisozygoptera: 1). In Western Ghats there are 174 Odonates of which 69 are endemic.

Prehistoric dragonflies were much larger and the largest documented dragonfly had a wingspan of about 70-75 cm. The size of the present day odonates ranges from 2 cm to 20 cm.

Dragonflies are among the fastest flying insects in the world reaching speeds of over 48 km per hour. Their four wings allow them to move sideways, backwards and to hover in one place. And they can do all of these movements quickly and accurately, which makes them well suited to eat other insects right out of the air. Their flight abilities are the inspiration behind inventions such as the helicopter.

To aid their aerial lifestyle, odonates have large, compound eyes made up of thousands (up to 30,000) of smaller eyes (facets/lenses) that allow them to see in all directions.

Dragonflies and damselflies inhabit freshwater habitats like ponds, streams, marshes, swamps and wetlands. Adults are aerial predators while the young ones (nymphs) are predators in water. Males spend significant amounts of time defending their egg laying sites near ponds or streams. The eggs are laid in water or near water as the nymphs are aquatic in habit.

Depending on the species the longevity of nymphs may last from a few weeks to a year. Adults survive for a few weeks.

Groups of dragonflies are called swarms and they are known to migrate.

Watching dragonflies, similar to bird watching, is called 'oding' (from the order classification Odonata).

They form an extremely important link in the ecosystem with their roles as predators and prey. As predators they feed on small flying insects and help in controlling pest insects such as mosquitoes and midges; as prey they form an important prey base to other animals such as fish, birds and spiders. Being very sensitive to changes in the environment, they are valuable as biological indicators, helping us monitor the health of our freshwater bodies.

Threats:

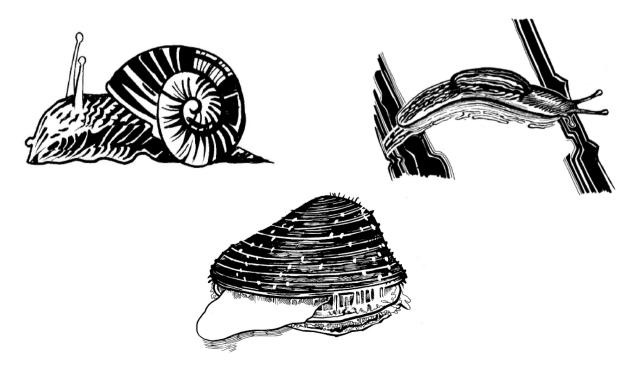
Construction of dams, pollution, soil erosion, deforestation, sand mining are among the major threats to the survival of dragonflies and damselflies as they are highly sensitive to changes in their environment.

Photo Coulds: Antick Tiple, "Francy Kath

Snails, Slugs and Mussels

Molluscs are a group of organisms that have soft bodies. They are found in a variety of habitats from terrestrial mountaintops to deep sea. The group includes snails, slugs, mussels, octopuses, squid, clams, scallops, oysters, and chitons. Two major groups of Mollusca are Gastropoda (snails, slugs) and Bivalvia (mussels, clams, scallops). A hard shell covers the bodies of most molluscs. Snails and slugs have distinct "head" and "foot" regions. Here our focus of interest is on freshwater snails, slugs and mussels.

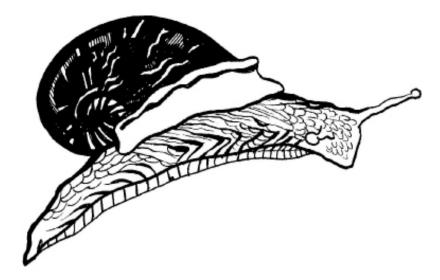
How they are locally called?

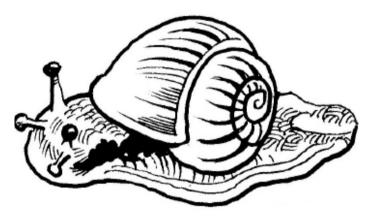

Gujarati	Gokalgoi
Kannada:	Basavana Hulu, Shankada hulu, Shambuka
Konkani:	Kongo
Malayalam:	<i>Ochu</i> (Snail)
Marathi:	Gogalgaay
Tamil:	<i>Nathaai</i> (Snail), <i>Nanneer matti</i> (Mussel)
English:	Snails, slugs, oysters, mussels, scallops

Gastropoda

Bivalvia

- One shell, spiraled (snail)
- Shell-less, soft slimy body (slug)
- Grazers, browsers


- Two shelled
- Filter feeders


Mollusc facts

Globally there are about 5000 species of freshwater molluscs. In India about 214 species have been reported so far. In Western Ghats there are about 60 freshwater molluscs.

Freshwater molluscs are seen in ponds, lakes, streams and rivers,

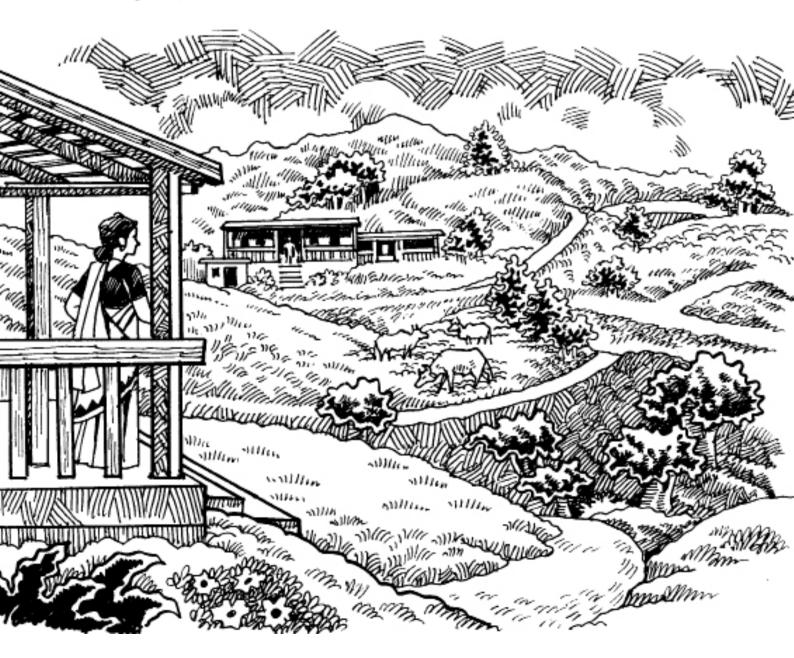
wetlands and marshes. Molluscs are important as prey source for higher animal taxa, thus forming an important link in the ecosystem. They offer significant service by cleaning harmful bacteria and parasites from water.

Snails and slugs may be grazers, browsers, suspension feeders, scavengers, detritivores or carnivores. Mussels are filter feeders - they feed on bacteria, algae, phytoplankton, and suspended organic matter in water.

Snails have a single, often coiled shell (absent in slugs), while snails, slugs and mussels possess a large muscular foot for locomotion.

Threats:

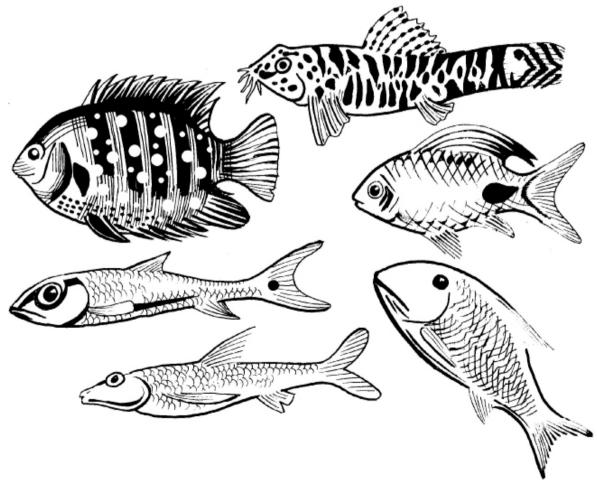
Pollution of freshwater habitats: Being filter feeders, mussels are at high risk from pollution.


Flow modifications: Dams produce changes in the habitat - turning lotic habitat to lentic; shallow water to deep waters; increasing amount of siltation; forming barriers preventing fish migration which in turn, prevents dispersal of mussels.

Increased siltation: Siltation of water bodies due to agriculture practices.

Exploitation for food - harvesting

Invasive species.


Mining in aquatic habitats.

Freshwater Fish

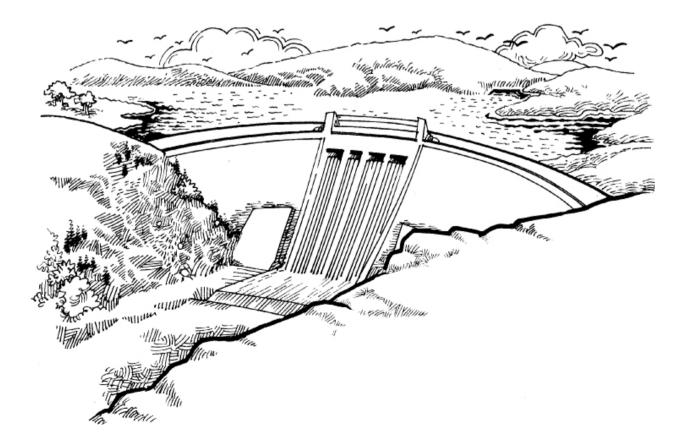
Fish is a very familiar animal to most of us. They come in a variety of shapes, sizes and colours. Fish form a big share of the food consumed by man and also offer aesthetic pleasure as aquarium pets. Fish species have evolved differently for life adapted to different aquatic habitats ranging from marine to brackish to freshwater ecosystems and form a critical link in the food chain of these ecosystems.

How they are locally called?

Fish facts

Globally, about 15,000 freshwater fish species are recorded (including brackish water species). In India there are about 760 freshwater fish species of which 73 are in cold freshwaters, 544 are in warm freshwaters and 143 in brackish waters. Western Ghats harbours 290 fish species of which 189 are endemic.

They all live in a variety of habitats such as rivers, streams, ponds, lakes, wetlands, swamps and marshes.


Threats

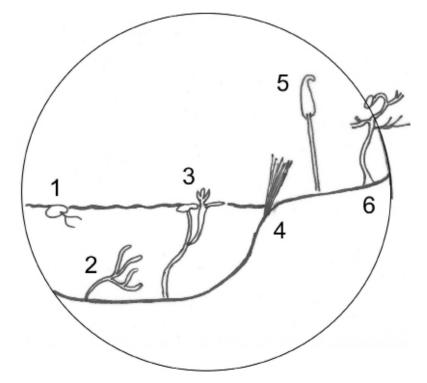
Some major threats for freshwater fishes are: Pollution of freshwater habitats

Construction of dams and other structures alter the natural flow of the water body, thereby restricting migration of fishes (anadromous and catadromous fish migrations) for the purpose of breeding.

Over-exploitation for food.

Invasive species.

Freshwater Fish


Water Plants

Water plants are referred to as Hydrophytes (Hydro = water; Phyte = plant). They grow in water or in soil that is permanently saturated with water. Water plants spend their entire life or at least a critical part of their lifecycle in water, either totally submerged or immersed or floating.

These plants, adapted to live in aquatic environments, are commonly found in wetlands. Water plants play a major role in providing aquatic fauna like fish a safe and nutrient rich habitat. Although various factors control the distribution of water plants, the principal factor is the depth and duration of flooding. Nutrients, disturbance from waves, and salinity are some other controlling factors. Most of the water plants reproduce by setting seeds but can also reproduce asexually by means of rhizomes and fragments.

Water plants can be classified into

- 1. Free floating
- 2. Totally submerged
- 3. Bottom rooted and floating
- 4. Emergent and rooted
- 5. Totally emergent
- 6. Stream bank and wet area plants.

Water plants have special adaptations to survive in a wet environment. These include modifications in the leaf characteristics, reproduction strategies, etc.

Water plants readily respond to changes in water quality parameters like salinity, nutrient levels (either resulting in loss of water plant diversity or unusual increase in the same), pollution (metals, pesticides, herbicides) and

therefore play a crucial role as bio-indicators in assessing the environment or habitat quality.

Threats:

- The major threats to freshwater water plants include runoff from agricultural and urban/industrial areas, the invasion of exotic species, the creation of dams and water diversion.
- Over exploitation and pollution.
- Land reclamation that threatens groundwater supplies.
- Grazing.

Illustrated History of the Sahyādri and Freshwater Species

Western Ghats has a very long history. About 400 million people in Peninsular India depend on the resources from the Western Ghats directly or indirectly. The relationship that human beings have had with Western Ghats habitats and its species since time immemorial and the status of the species now gives us a message that it is the responsibility of human beings to help ensure the survival of plants, animals and their habitats in the long term. Mankind has utilized the resources extensively. Even then they are closely associated with human cultural, religious and social activities. Scientists have reported that the fauna and flora of Western Ghats, particularly the freshwater species, are in danger and now the onus is on us to safeguard the future of the freshwater species.

If we want to safeguard the Western Ghats and the freshwater species, it is important to know the historical events related to them. Depicting history in words and pictures is a great way to learn also.

Here is an activity where your audience can trace the history of the Western Ghats and Freshwater Species. It provides portrayals of important historical events of the Hotspot. This can also serve as an art skills activity. This exercise has to be done in an orderly manner and so before you begin, take a photocopy of the event and dates given below and cut them according to date. You can then paste each event with dates on a piece of cardboard.

Depending on the size of your audience, hand out one or more of the provided Western Ghats history cards to each participant. Make sure you select dates starting from an early date back in time and go into the future, e.g. 2050. The history card can be given to an individual or to a pair of participants. Give the participants a blank piece of paper (preferably A3; otherwise A4) and also drawing or painting materials. Ask participants to illustrate the events in the history of Western Ghats and to write captions explaining how they feel about the events illustrated.

At the end of this exercise your audience will have created a fun and attractive exhibit on the history of the Western Ghats and freshwater species. Ask your participants to arrange their illustrations on the wall in chronological order. If you run this exercise in a classroom, it could stay up on the wall for a while or even be put in the hall or exhibited elsewhere for others to see. Give them a chance to explain their illustration to the group before putting it up on the wall.

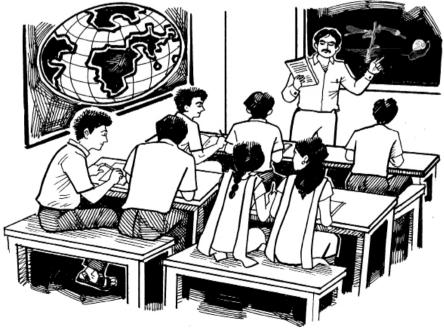
To personalize the historical timeline and put them in perspective you can also add:

- The date of your education programme about freshwater species
- The date of birth of the illustrator
- Any incidence related to Western Ghats and Freshwater Species that happened in and around the place where you conduct the education programme
- Date of creation and name of a protected area in the State or Province where you run the education programme
- Local newspaper incidents related to freshwater species and the Western Ghats

Discussion

After all the students or participants have put up their picture, take a break and let them go up and examine the illustrated history as a whole. This will help them to get the bigger picture of the history behind the topic discussed and participate more meaningfully in a discussion. You can ask them the following questions.

What happened during the history, which affected the Western Ghats/habitats/ species? What were they?


What are the causes of decline of pristine habitats in the Western Ghats?

Do the events in the history indicate any change in the way humans should perceive them?

What lessons do we learn from our mistakes across time with regard to our use of the services offered by the Western Ghats?

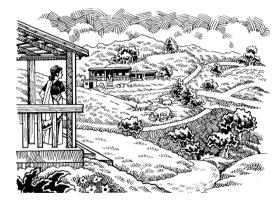
Do you have hope that threatened Freshwater Species can survive into the 21st Century? Why?

What are the major threats for the Freshwater Species of Western Ghats?

Illustrated history of the Sahyādri

150 - 45 million years ago (m.y.a)

Peninsular India split from Gondwanaland about 150 m.y.a. and started moving north. The northward drift which lasted about 100 million years, finally ended with the peninsula colliding with mainland Asia 45 m.y.a.



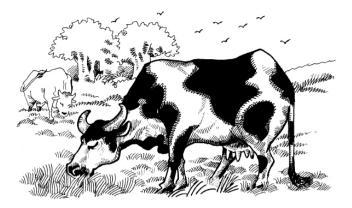
12,000 years before present (ybp)

The Western Ghats first came under human influences during the palaeolithic or old-stone age some 12,000 years ago. Stone tools used by palaeolithic people have been excavated in the river valleys of Palakkad, Malapuram and Dakshina Kannada districts of the Western Ghats. Elsewhere, palaeolithic artifacts have been found in and around Mysore, Chickmangalur and Shimoga districts of western Karnataka.

12,000-5000 years before present (ybp)

Mesolithic (denoting the middle part of stone age) sites (12,000-5000 ybp) have been discovered around the river Mandovi in Goa.

12,000-5000 years before present (ybp) Extended arid periods and human


interference starting 12,000 years before present, leading to slow but extensive transformation of habitats in and around the Western Ghats. Unique landscape elements such as the Myristica swamps gave way to cultivation of rice.

5000 years before present (ybp)

Charcoal of 5000 years before present, got from trenches in Thenmalai (southern Western Ghats), indicates that the people could have burned forest.

5000-3000 years before present (ybp)

During the new stone-age (5000-3000 ybp), there were domesticated cattle, sheep and goats in and around the Western Ghats. About 4300 years ago animals were domesticated in Lodekal, Karnataka.

3000 - 2300 years before present (300 BC)

In Western Ghats, agricultural communities in river valleys formed. River valley land diverted to agriculture.

2000 ybp

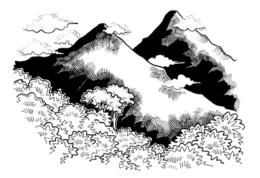
Todas settled in Nilgiri Plateau of Southern India.

2000 ybp

References to rice and millet cultivation in the South Indian hills are found in the 2013 year old Sangam Tamil literary works.

300 BC to 300 AD

Early chiefdoms engaged in overseas trade. Vigorous trade in pepper, cardamom and other natural forest produce.



300 AD to 1500 AD

Gathering of spices in Western Ghats continued; spice gardens developed in narrow river valleys in Western Ghats.

1500 AD to 1800 AD

Influence of European colonial powers begin to be felt. Vigorous trade in spices; demand on timber for ship building.

1700 AD

It was recorded in the history that Western Ghats is the origin of several big and small rivers—Godavari, Krishna, and Kaveri. All rivers provide 60% of utilizable surface water available in South India, and nearly 30% of the utilizable surface water in India.

1700 AD

The forests in India during the pre-colonial period were managed on a sustainable basis primarily because the ownership rested with the community.

1799-1810 AD

The British colonists spread over most of the Western Ghats in the late seventeen hundreds and early eighteen hundreds. They introduced commercially important plants and there have been invasions by a number of aggressive alien plant species.

1800-1820 AD

The British took control of the Western Ghats after annexing the territory of Tipu-Sultan and Marathas.

1800 - 1860 AD

Unregulated exploitation of natural teak, catechu, etc., happened in Western Ghats during this period. Sacred groves and sacred species, and traditions of restrained resource use continue to be maintained, but many destroyed.

1806 AD

All teak in the Malabar was reserved for commercial use by the British. This was the first show of interest in commercial forestry by the British.

1813 AD

In the Western Ghats, the Nilgiris were colonized by British only in 1813 almost 2000 years after the Todas did.

1830-1880 AD

Massive deforestation by the British for ship building and for railway construction and operation.

1840 AD

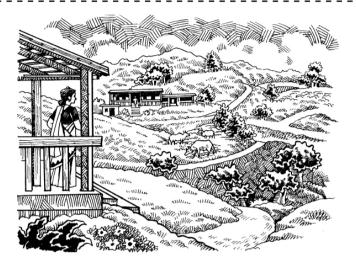
Teak was first raised as monocultures in 1840. The first teak plantation in Kerala was established in Nilambur in 1844.

1865 AD

To reduce community control and to regulate the extraction of timber in India, forest laws were enacted in 1865 and revised in 1878, under which community rights were reduced to privileges, and free access to forests was replaced with restricted access.

1868 AD

Casuarina plantations first appeared in Uttara Kannada district between 1868 and 1869. Till then the forest plantations were of native species. Over the years, eucalyptus, cinchona, wattle, rubber, clove, etc., have displaced extensive patches of natural forests throughout the Western Ghats.



1860 AD to 1947 AD

Continuance of British rule in India; landlords and bureaucrats dominate. Shifting cultivation banned in many tracts; State takeover of forestlands; large-scale teak plantations were begun in Western Ghats.

1878 AD

In spite of public opposition, the colonial rulers continued to take over forests and categorize them as reserve forests, protected forests and unclosed forests. State-controlled forests were classified legally in 1878 to derive benefits such as timber from these forests.

1900 AD

In British India in 1900, out of the total area of 202 million ha, 43% was under cultivation, 44% was kept for community use, and only 13% of the area (26 million ha) was notified as forest area. The notified area included reserved forest of 17 million ha (65%) and protected forest of 9 million ha (35%).

1904 AD

As early as 1904, Hooker had drawn attention to the distinct flora of the Western Ghats, which he called the "Malabar" floristic region.

1917-1918 AD

First World War. 228,076 tons of timber (excluding railway sleepers) were supplied by the specially created "Timber Branch" to help Allied military operations in Egypt and Iraq. Approximately 1.7 million cubic feet of timber (mostly teak) were exported annually during the war.

1929 AD

Silent Valley identified by the British as a dam site.

1940 AD

Second World War. Timber Directorate set up in Delhi to channel supplies of forest produce from the provinces. Impact of the war on Indian forests was severe, especially in the Himalayas and Western Ghats.

1940 AD

Apart from the community and industrial demand, two world wars put additional stress on Indian forests. Demand for wood for cantonment and ship building activities during the Second World War, as well as post-war demands were met from forest working circles, resulting in the degradation of large forest areas.

1947 AD

After independence, forests were subjected to greater pressure as a result of several policy decisions, which included the "Grow More Food" campaign, industrialization, and developmental activities such as irrigation projects and hydroelectric projects. For meeting these requirements, forests were cleared and forestland was diverted for other purposes.

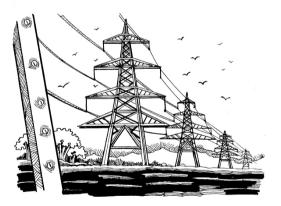
1947 AD to 1960 AD

Traditional social hierarchy breaks down in independent India; commerce and industry dominant. Diversion of land for agriculture and river valley projects; rapid rise of forest-based industry. Wildlife Sanctuaries and National Parks begin to be established.

1952 AD

India's new National Forest Policy was formed this year. The policy emphasizes - to prevent cutting of trees in hilly areas - to replace destroyed forest by plantations - to prevent soil erosion by planting trees

- to decrease pressure on forest by developing grazing land


- to grow economically important plants in forest

- to increase government revenue from forest.

1960 AD

The Western Ghats of Kerala region is thickly populated and famous for exotic food crops, spices, herbs and medicinal plants. Heavy migration took place to Western Ghats region from the plains of Kerala since 1960s and the forest flora and fauna are under severe threat of extinction.

1960 AD to 1980 AD

Pace of forest-based industrial development slows down. Beginning of shortages of forest produce; large-scale eucalyptus plantations; large- scale river valley projects. Many sacred groves felled to meet industrial requirements; many more Wildlife Sanctuaries and National Parks established.

1970 AD

During 1970-1980, there was an acute shortage of fuel wood and fodder for the rural poor, who depended on the forest to a great extent. This led to the over-exploitations of forests in rural India .

1980 AD

The Forest Conservation Act of 1980 was passed, which banned forest clearing, forest conversion pressures were reduced.

1987-88 AD

Save the Western Ghats March of 1987-88 is a unique event that created history. It marked the beginning of involving the civil society to work for the cause of sustainable development. For the first time, it tried to bring about landscape level thinking across the political boundaries. It started mainstreaming Western Ghats. **1987-1998 AD**

Tea plantations in south India increased by 17.7% from 74,765 ha to 87,993 ha. In addition to this, large areas of Eucalyptus plantations also occurred along with tea, which was used as fuel wood.

1988 AD

Dr. Norman Myers introduced the concept of global priority settings into the

international biodiversity conservation arena; Western Ghats and Sri Lanka was listed as a hotspot for biodiversity.

1990-1991 AD

Western Ghats of southern India had coffee plantations over an area of 270,821

ha. grown under the shadow of native forest trees. 1990 AD

Western Ghats contains more than 30 percent of all plant, fish, reptile, amphibian,

bird, and mammal species found in India – and over 5,000 flowering plants.

1990 AD

The WG provides INR 5.5 Lakhs/hectare/year worth of ecosystem services—soil formation, recreation, nutrient recycling, water regulation and

supply, climate regulation, flood and storm protection, food and raw materials, genetic resources, atmospheric gas balance, pollination, etc., (i.e) over a trillion US\$ per year, whereas India's GDP is about US\$ 500 billion.

1999 AD

The National Forest Policy of India (1952) stipulated that India as a whole should aim at maintaining one-third of its total land area under forest for securing eco-

logical stability, but forest cover at present is 63.7 million ha, or only 19.4% of the land area (Forest Survey of India 1999).

1999-2000 AD

The US\$ 447 million Indian coffee industry had plantations of about 340,346 ha. in the Western Ghats region of southern India.

2000 AD

According to Myers, among global biodiversity hotspots, Western Ghats and Sri Lanka rank third in terms of the number of endemic vertebrates /area ratio

(species/100Km^{2).}

2001 AD

India has 2.5% of the world's land area and 1.8% of the global forest area, but supports 15.6% of the world's human population and 14% of the world's livestock

population. This large population depends on forests for meeting diverse biomass needs.

THE REAL

2

NA

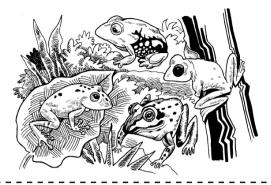
The WD is have to easy over apoces that here influence out here observed on have elements of the option of more designant. For exemple, a new feedy, 3 proves and 10 easy provide of lengt here recently have described and regaring.

TO B

MANOL CORME

R.

£


22 M WV 1965

SANGEETHA

It was recorded in the history that Western Ghats is the erigin of several big and small ristra-liadoveri, Kristen, and Keveri, All ristra provide 60% of stillastic surface water available in Seath India, and nearly 30% of the stillastic surface water in Dalle.

2009 AD

The WG is home to many rare species that have hitherto not been observed or been observed after a gap of many decades. For example, a new family, 3 genera and 25 new species of frogs have recently been described and reported.

2011 AD

Approximately 50 million people live in Western Ghats. High population density of 260 people/km² exert huge pressure on land and forests for agriculture, plantations and as well as forms of development, industrialization, mining and tourism.

2050 AD

What could be the status of Western Ghats, habitats and Freshwater Biodiversity?

Unit 4

SPECIES PROBLEMS AND SOLUTIONS

Citizen Debate: Conserving Freshwater Habitats with Community Participation Species Status, Patterns of Richness, Threats, Conservation Methodology: Species Status Assessment Protect Resources and Save Freshwater Biodiversity Conference: Protection and management of Freshwater Species and Habitats Tips for Planning Education Programmes How to use the Packets

CITIZEN DEBATE: CONSERVING FRESHWATER HABITATS WITH COMMUNITY PARTICIPATION

Case study: The Athirapally Project Project Background

The Kerala State Electricity Board (KSEB) proposed a 163 megawatt Athirapally Hydroelectric Project in 1994. The proposed project plan was to construct a dam (75 ft high and 1,020 ft wide) on the Chalakudy River in the Vazhachal Forest Division about 5 km upstream of Athirapally Falls and 1,312 ft upstream of Vazhachal Falls. However, environmental groups and people opposed the project. They claimed that it would damage the environment, violate on human rights, and threaten tourism. Critics also noted that if the entire course of the river were diverted to make electricity, the Athirapally-Vazhachal waterfalls could dry up. To avoid damaging the waterfalls, the KSEB proposed adjusting the water releases to maintain the waterflow.

In the mean time Ministry of Environment and Forests, Government of India, gave forest clearances in 1997 and environmental clearance in 1998 to carry out this project. Based on 3 Public Interest Litigations (PIL), the High Court of Kerala directed the central government to withdraw the sanction and conduct a public hearing and also asked the Electricity Board to re-examine the procedure. In 2002 Kerala State Pollution Control Board conducted a public hearing. The gathering questioned the reliability of the Environment Impact Assessment (EIA) and technical feasibility of the project based on the actual water availability. The Public Hearing Panel asked for a second EIA. The second EIA was guestioned by the Chalakudy Puzha Samrakshna Samithi on various grounds. However, the electricity board went ahead and obtained the clearance from the MoEF in 2005. Following this, the Athirapally Gram Panchayat and the Kadar tribals-the actual potential sufferers of the proposed dam filed another PIL. In 2006 the High Court of Kerala guashed the Environmental clearance given by the MoEF and ordered for another Public Hearing. A Second Public Hearing on the proposed Athirapilly hydroelectric dam was conducted in June 2006 in which no one spoke in favour of the project. A five member MoEF Environmental Appraisal Committee visited the site and assessed the situation. Based on the committee report, clearance was given on 2007. Representatives of Kadar tribe and environment friendly engineers filed a PIL again. Later the Kerala State Biodiversity Board analyzed and gave a report to the Kerala High Court. The Kerala High Court heard the case twice, in 2008 and in 2009, by two Division Benches. The judgment is awaited.

Instructions for the activity

Share the project background with your audience. Divide your participants into equal groups as per the roles given below:

- Ecology Expert Panel (three members)
- Kadar Tribes / Villagers represented by both men and women
- Forest department officials and managers
- Officials from Kerala State Electricity Board
- Human rights activist
- Wildlife Conservation NGO's
- State Biodiversity Board Research team

The Ecology Expert Panel (EEP) must be made up of an odd number of people of three representing an ecologist, a forest official and an NGO representative. The other participants should be divided into equal numbers and assigned characters.

The objective of this activity is to meet as groups and find out some alternate solution to the existing project situation. The process will help to find a possible solution for the proposal.

Once you have assigned roles and divided them into groups, introduce the following proposal:

Give each group the appropriate information given in the following pages. Each group must only have information relevant to the assigned role. They are not supposed to see the instructions of other groups.

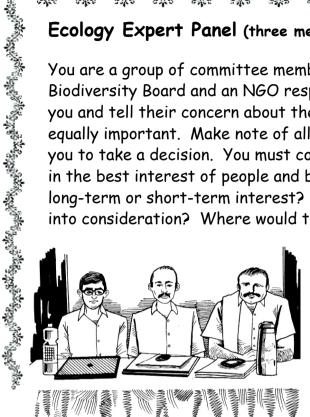
> Allow the groups about 15-20 minutes to read the information. Make sure that the groups understand they have to present their viewpoints to the EEP based on the given proposal and highlight the needs associated with their roles.

> > Once all the groups are ready, have each group come up and present their case to the EEP. Explain to the group that it is important for each group to be as persuasive as possible. Once all the presentations have been made,

the EEP will put all the points together and come up with a conclusion to submit to the deciding authority.

After the activity you can ask one of the participants to act as a media person and interview randomly about the role-play and the conclusion drawn.

- 1. Was the EEP's decisions sound practical and good?
- 2. Do you think the decision will help to solve the issue and protect the habitat and the species it supports?
- 3. Was the participation from all sectors equal?

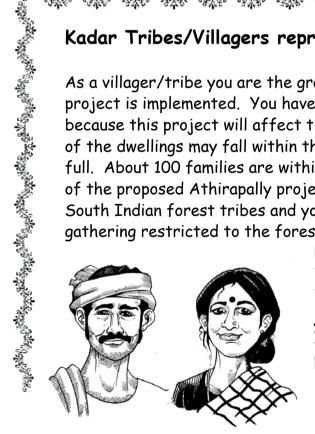


Proposal

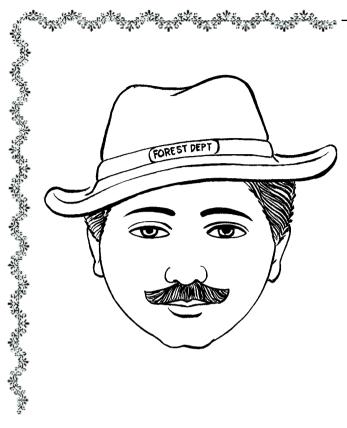
envisaged to be 23 m in height and 311 m in length. The water-spread provided to the power house with an installed capacity of 2 x 80 MW 4.69 km tunnel of 6.4 m diameter to the main power house situated north-west of the dam site and above Kannankuzhithodu into which 163 MW of power to meet the deficit. The concrete gravity dam is Kannankuzhithodu will join the Chalakudy River at a distance of 1.5 across the Chalakudy River in Trichur district, Kerala, to generate km. Two penstocks each of 3.4 m diameter and 50 m length will be the tail race water will be emptied. These discharges through the would be 341 acre. Water from the dam will be brought through a The Kerala State Electricity Board proposes a hydroelectric dam along with two dam-toe generators with which a total of 163 MW area would be 257 acre, whereas the total forest area required electricity can be generated to meet the peak hour demand. ݖݸݒݒݬݪ^{ݥݱ}ݸݷݕݬݑ^ݱݞݸݒݕݸݑ^ݑݞݸݒݒݸݑݪݞݸݒݒݸݞݪݞݸݒݕݸݞݪݣݸݒݒݷݸݲݪݣݸݒݒݷݸݲݪݣݸݒݕݕ

Ecology Expert Panel (three member)

You are a group of committee members representing the MoEF, State Biodiversity Board and an NGO respectively. Other groups will meet you and tell their concern about the proposal. Listen carefully as all are equally important. Make note of all the important points that will help you to take a decision. You must consider several issues such as: Is this in the best interest of people and biodiversity? Is the suggestion of long-term or short-term interest? Are the needs of the people taken into consideration? Where would the funds come from? Who would look


ڬٷۼؿڔؽ؇؇ؾ_{ڰۿؿ}ۅ؇ڶۼڮؿڔؿ؇ڬٷؿؿٷۼڵٷؿؿٷۼڵٷڲؾۿؚڮڴڴۅٛؿؾڹ

after this project? After each group presents their case ask questions to find the weak or strong points of each argument. Once all presentations are made, you must hold a discussion within your group and announce your conclusion that will be submitted to the deciding authority.

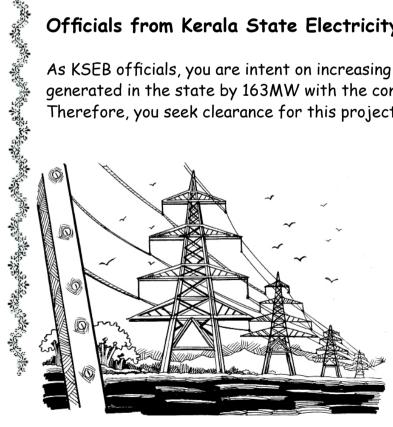

૾૾ૻૻઌૻૺૢૢૢૢૢૢૢૢૢૢૢૢૢૢઌૢૢૡૻૻૻ૽ૼૻ૽ૢૢૢૢૢૢૢૢૢૢૢૢૡૢૡૻ૿ૻ૽ૺૡ૽ૢૼૢૢૢૢૢૢૢૢૢૢૢૡૢૡૻૺ૽૿ૻ૽ૼૡ૽ૢૼૢૢૢૢૢૢૢૢૢૢૡ૽ૢૡ૽ૺ

Kadar Tribes/Villagers represented by both men and women

As a villager/tribe you are the group who is directly affected if the project is implemented. You have almost lost your peace of mind because this project will affect the tribal dwelling habitats and some of the dwellings may fall within the submergence area when the dam is full. About 100 families are within the reach of the high impact area of the proposed Athirapally project. You are the most primitive of the South Indian forest tribes and your main occupation is hunting and food gathering restricted to the forests and hill tracts of Chalakudy river

basin. Your population is fewer than 1500. The Tribal Cooperative Society and Tribal Residential School are all within just 400 m downstream of the dam site. If you are forced to move out of this place you don't know what will happen.

Forest department officials and managers

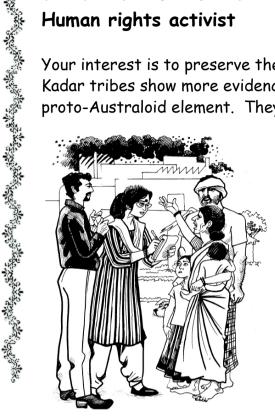

Your prime responsibility is to take care of the forest and the wildlife. While trying to fulfill this responsibility, your life is at high risk and to add to this you are poorly paid. We have the most powerful laws in the world but law enforcement is not possible due to lack of funds for conservation. You need enough staff and facilities to protect the species and its habitats.

ىرىپىيەن ئىلىرى ئارانىيى ئىلىغى ئىلىغى ئىلىغى ئىلىغى ئىلىدۇنىيىنى ئىلىغى ئىلىغى ئىلىغى ئىلىغى ئىلىغى ئىلىدى ئى

ويونها والموالية المناوية والمناوية والمناوية المناوية والمناوية والمناوية والمناوية والمناوية والمناوية والمراوية

Officials from Kerala State Electricity Board

As KSEB officials, you are intent on increasing the amount of power generated in the state by 163MW with the construction of this dam. Therefore, you seek clearance for this project citing the need for more



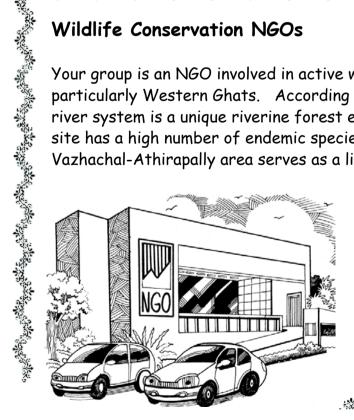
power to meet the everincreasing demands. Unlike the scientists, you don't look at things from a long term perspective and thus feel that losing a patch of forest is not going to harm the biodiversity of the region and also that the tribes can start their lives afresh elsewhere.

Human rights activist

ݔݕݚݱݲݲݸݒݕݚݸݪݞݸݒݕݸݺݲݞݸݒݘݸݲݲݸݷ<u>ݚ</u>ݸݠݪݩݸݷݒݸݤݪݙݸݒݕݸݿݪݸݸݕݕݸ

Your interest is to preserve the rights and well being of the Kadar tribes. Kadar tribes show more evidence of a Negrito ancestry with a predominant proto-Australoid element. They have been living for generations in this

region although at present their population is very small at around 1500 members. They had been subjected to various resettlements on account of construction of various dams above the proposed dam in Athirapally. Your group claims that the proposal is not practical. You feel that your role is to make sure that the Kadar tribe gets the right to live in the forest where they have been living for generations.


؞ۑؿڮۯۺؖڎٳؿۑۑۯ؇؇؆ڐٳڛۅۯ؇ڴٷڲۺٷۑؿۑۯڸۺڎٳڛۑۯ؇ڴ؇؆ۑۑۑڕؽڴڣۅۑۑٷڰۺٷۑۑۑۏڲۺٷۑۑۑڕۯڴ؇ڔ؇ۑ؇ۑ؇؇ۮ

؆؆؆ڔڛۣٳڰڂڔڛۑٳڰڂڔؠڕؽڰڴۼۑۑٷ؆ڰٵڔڛۣٳڰڂڔؠۑؽڰڂڔۑۑؽڰڂڔۑۑۏڴڴۼۑۑٷڴڴڒۑۑڕڲڴڴڔۑۑ

Wildlife Conservation NGOs

ڟٷ_{ڮؠڗڋ}ؿ؇؞_{ٚڮؠڗ}ڋؿڵڎڣؠڔۅؿڵڎڣؠۑٷؿڴڂڣؠڔڣڰڴڣڮؠڔڣڰڴۮڲؽۑؿڰ

Your group is an NGO involved in active wildlife conservation in the region, particularly Western Ghats. According to your observations, Chalakudy river system is a unique riverine forest ecosystem. The proposed dam site has a high number of endemic species. The riparian vegetation of the Vazhachal-Athirapally area serves as a link between the varied habitats

at lower and higher elevations. The proposed site is classified as High Value Biodiversity Area and in a single study, out of the 99 species of fish recorded in the Chalakudy River, 68 were from the project area.

had the set of the set

State Biodiversity Board Research team

As members of the SBB, you are more concerned about the long-term impacts of this project on the biodiversity of the region than the immediate benefits it may provide to the populace. You understand that the region is home to a number of endemic species found nowhere else in the world and construction of the dam would result in the submergence of this unique patch of riverine forest habitat and with it, all the unique plants and animals may be lost forever. You feel that loss of Biodiversity is too high a cost to pay for generating power when other possible alternative sources can be utilized for this purpose.

Note:

The Ecology Expert Panel WGEEP suggests that environmental clearance should not be given to any large-scale storage dams in Ecological Sensitive Zones in Western Ghats. The location of Athirapally dam falls within Ecological Sensitive Zones in Western Ghats of Kerala. Hence it has been recommended by the experts that the Ministry of Environment and Forests refuse Environmental Clearance to this project.

SPECIES STATUS, PATTERNS OF RICHNESS, THREATS AND CONSERVATION

The Western Ghats is one of 34 biodiversity hotspots in the world. It supports about 400 million people mainly by its supply of water for drinking, transportation, irrigation, hydroelectric power, together with food and resources to sustain livelihoods apart from other direct as well as indirect services. Indian economy is growing very fast due to industrialization and urbanization. At the same time the conservation needs of its rich biodiversity areas are not being given the required attention and consideration. Also people who are dependent on the resources of the Western Ghats are ignorant and therefore do not have an appreciation for the benefits that they get such as freshwater and/or livelihood resources.

Globally many species are under threat and the status of the species that live in the Western Ghats was not known. In order to understand the species' status, an assessment of freshwater biodiversity of Western Ghats was conducted by the IUCN Global Species Programme's Freshwater Biodiversity Unit and Zoo Outreach Organization. It reviewed the conservation status and distributions of 1146 freshwater species belonging to four taxonomic groups.

Freshwater Group	Total species assessed
Fish	290
Snail, slug and mussel	77
Dragonfly and Damselfly	171
Water plants	608
Total	1146

Freshwater groups and number of species assessed

Why status assessment?

One of the major outputs of the conservation assessment workshops is recommendation for species conservation. Conservation recommendations are proposed to act in time and thus reduce the risk of future declines in species diversity. Survival of the species is important for the regular functioning of the ecosystem, which will benefit both the species as well as the people living across the Western Ghats region.

Area covered for status assessment

The status assessment was done covering all water boundaries of the Western Ghats region. Freshwater species native to the Western Ghats states of Gujarat, Maharashtra, Goa, Karnataka, Kerala and Tamil Nadu were assessed. The states of Andhra Pradesh, western and southern portions of Madhya Pradesh, Odisha and Chhattisgarh were also included as the drainage of the rivers originating in the Western Ghats flow through these states. Species introduced to the region prior to 1500 AD were assessed, whilst species introduced after that date are considered non-native to the region and were not assessed. IUCN Red List Criteria, the world's most widely accepted system for measuring relative extinction risk, were employed to assess the status of all species.

Status report

Close to 16% of the 1,146 freshwater taxa assessed are threatened with extinction, with a further 1.9% assessed as Near Threatened. No taxa were assessed as Extinct or Extinct in the Wild. Approximately one-tenth of species were assessed as Data Deficient (10.5%), with the two invertebrate groups contributing more to data deficiency (25.8% on average).

The main threats impacting freshwater biodiversity in the Western Ghats include:

a) **pollution**, with approximately 50% of fish, 20% of molluscs, and 21% of odonates threatened by it, and with urban and domestic pollution ranking as the worst threats followed by agricultural and industrial sources of pollution;

b) **biological resource use** with 38% of fishes, 17% of molluscs, and 7% of odonates threatened by commercial fisheries and the aquarium trade;

c) **residential and commercial development** with 14% of fishes, 11% odonates and aquatic plants, and 8% of molluscs threatened;

d) dams and other natural system modifications, with 13% of fishes, 8% of molluscs, 4% of odonates and 3% of plants impacted;

e) alien invasive species which, as understood currently, impact 22% of fishes;

f) agriculture and aquaculture which impact 7% of odonates and 4% of plants; and

g) **energy production and mining** which impact 6% of fishes, 5% of molluscs and 4% of plants overall.

Freshwater *Fish* species of Western Ghats and IUCN Red List category.

Global Red List Category		Number of fish spe	uber of fish species		
	Endemic	Non-endemic	Total		
Extinct (EX)	0	0	0		
Extinct in the Wild (EW)	0	0	0		
Critically Endangered (CR)	12	0	12		
Endangered (EN)	53	1	54		
Vulnerable (VU)	31	0	31		
Near Threatened (NT)	3	3	6		
Least concern (LC)	66	95	161		
Data Deficient (DD)	24	2	26		
Total species	189	101	290		

Freshwater *Mollusc* species of Western Ghats and IUCN Red List category.

Global Red List Category	Number of mollusc species
Extinct (EX)	0
Extinct in the Wild (EW)	0
Critically Endangered (CR)	0
Endangered (EN)	4
Vulnerable (VU)	3
Near Threatened (NT)	0
Least concern (LC)	51
Data Deficient (DD)	19
Total species	77

Odonata species of Western Ghats and IUCN Red List category.

Number of Odonata species
0
0
0
4
4
6
115
46
171

Freshwater *Plant* species of Western Ghats and IUCN Red List category.

Global Red List Category	Number of Freshwater plant species
Extinct (EX)	0
Extinct in the Wild (EW)	0
Critically Endangered (CR)	12
Endangered (EN)	21
Vulnerable (VU)	21
Near Threatened (NT)	8
Least concern (LC)	517
Data Deficient (DD)	29
Total species	608

Aquatic plants and fishes are the most heavily utilized freshwater groups in the Western Ghats. Twenty-eight percent of aquatic plants are harvested for medicinal purposes, and 14% and 13%, as food for people and animals, respectively. More than half (56%) of the fish species are harvested for human consumption, and a growing percentage (37%) of species are captured for the aquarium trade. Eighteen percent of mollusc species are used as food for humans.

The northern Western Ghats region within Maharashtra has a lower documented freshwater diversity than the southern region. Although this trend supports the expected relationship between species richness and rainfall, the lower diversity is probably due to inadequate surveys in the freshwater ecosystems of the west flowing rivers of the northern Western Ghats.

METHODOLOGY: SPECIES STATUS ASSESSMENT

In this section, participants will become acquainted freshwater experts, field biologists, wildlife managers, conservation biologists and representatives of academic institutes working on freshwater species conservation. Tell participants that the methodology for this assessment is based on the collation and analysis of existing information, and application of IUCN Red List Categories and Criteria, and species mapping using GIS software. Tell them that the assemblage of experts in different freshwater groups is to provide the most current information about group in order to assign species to IUCN Red List Categories of Threat (See appendix for structure of Categories), formulate broad-based management recommendations and develop more comprehensive management and recovery programmes.

Introduction to assessment process:

In an assessment workshop participants will be divided into groups depending on the delegates, State or country representation (Example: Tamil Nadu, Kerala, Maharashtra, Goa, Karnataka) or their academic expertise (Example: odonates, fishes, molluscs, aquatic plants). Each group will work and develop the list of species (check-list) to be assessed. The group members will be trained in Species Information Service (SIS), an online centralized data storage programme fully compatible with IUCN Red List.

IUCN status is deduced using species information available that is entered in SIS and by applying IUCN criteria. The rationale behind recommendations, of the criteria used for deriving a status for a species, as well as details of other information pertinent to the species will also derived. After determining the status and using other information available in SIS database and participants' experience, the data will be analyzed to make recommendations. A report is compiled about what actions need to be taken to conserve the species (here, freshwater biodiversity).

After explaining the status assessment process, give them 10 minutes time to read the example species given in the appendix. Plan a discussion to make them understand how the status of a species is assessed.

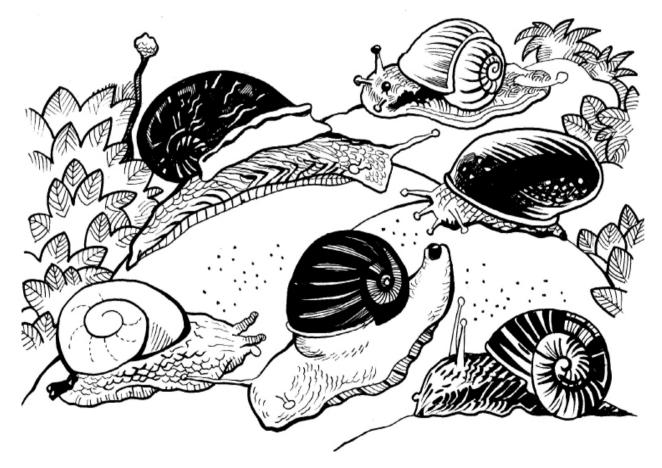
Discussion

What information about the species might tell us if the species is in trouble? (Look at the information under Red List Status. If the population of the species is decreasing due to harvesting, and other threats like reduction in habitat quality and increased pollution, this is a sign of trouble. The species living area is disappearing... that's trouble.)

How an international pet trade can be a threat?

(Harvest is unregulated and collection of individuals yet to be mature (Juveniles) as well as brooders are major threats for the survival of the species.)

What about other threats? Read the threats and discuss with your group if they think these threats are serious and why?


What about population trends? Do you think a population declining by more than 70% in important collection site is a good indication? This is another topic you can discuss with your group.

Read the assessment rationale for the status of Miss Kerala after you have discussed all these things. Now you can begin to understand how conservation biologists figure out these things. Although it is a high level subject, common sense also goes a long way in understanding species extinction.

Encourage your group to visit www.iucnredlist.org and search for the species of their interest. Refer appendix to see the list of Freshwater species assessed.

PROTECT RESOURCES AND SAVE FRESHWATER BIODIVERSITY

Western Ghats is one of the Biodiversity Hotspots and is home to an unimaginable numbers of unique plants and animals, big and small. Western Ghats is the origin of numerous rivers, which are the providers of life-giving waters to the millions living in Peninsular India. These waters, apart from supporting us, are also the lifelines for the many organisms, flora and fauna. These organisms, termed freshwater biodiversity, include water plants, dragonflies, damselfies, snails, and fish to name a few. But throughout history till date, the richness of the Western Ghats forests and rivers have been increasingly exploited mainly due to the explosion of human population in the region resulting in growing competition for resources between man and wildlife (here focus is on freshwater biodiversity).

The object of this game, is for individuals representing freshwater flora and fauna to avoid becoming Threatened, Endangered or Extinct. Remind the audience about the three major resources all wild animals need in their habitat for survival: food, water and space. These are the resources that need to be protected in order to

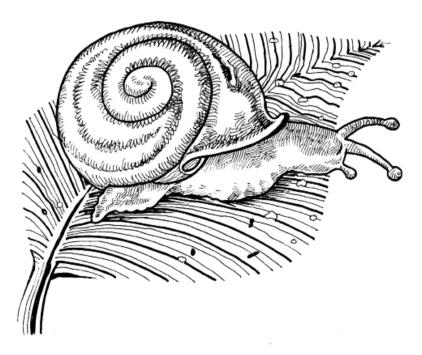
protect them. Depending on its ecology and desirability to man, each group may need other sorts of protection also. For instance, a group such as freshwater fish, captured for food and also aquarium pet trade, need protection from poaching and over-fishing.

How to play:

A piece of blank paper is distributed to each member of your audience. Divide your audience into 4 equal groups by each counting out in sequence: 1, 2, 3, 4, 1, 2, 3, 4 and so on, thus forming 4 groups. Each group has to write a resource on their paper: group 1 write "FOOD", group 2 write "SPACE", group 3 write "WATER" and group 4 write "FW SPECIES". Let the audience take sometime to understand the concept of the game before being played.

Once all placards are prepared, bring the 4 groups together in an area with enough and clear floor space. Collect the placards and place them on the floors in a random manner. Now divide the group into 5 new teams of equal size. Teams 1-4 should

represent human population of Peninsular India, where each team will symbolically denote millions of people. Team 5 will represent the freshwater flora and fauna. Members of team 5 can be assigned to the following groups: water plants, dragonflies and damselflies. snails and slugs, fish. Each person is given a nametag designating the kind of animal or plant group he/ she is and ask them to wear the nametag for easy identification.


Explain the rules of the game to the group. Each member of the team representing freshwater biodiversity should pick up one food placard, one water placard and one space placard to successfully complete round one. In addition to these three resources, FW GROUPS should also pick up one FW SPECIES placard. The flora/ fauna will move from one resource to another and picking up that resource signifies that it has obtained the resource written on it. Each animal/plant (freshwater biodiversity) should remain in the place of the last resource it picks up. Placards

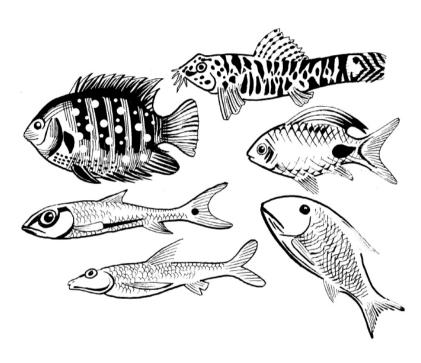
cannot be shared. Explain to the participants that they may not always be able to find all the resources they need. If they cannot find all three, they will be given a mark on the chart designating them as threatened, and as the game continues more designations will be given marking them as endangered and finally as extinct.

Round 1

Explain that you are starting the game in year 1900. Ask members of team to step forward. Each of these individuals should find a resource placard, stand on it and call out what resource it is.

Ask the group why are people representing humans standing on the animals' resource cards? Help participants understand that man competes with all living things for all three natural resources. Man may compete for food, water and space directly or indirectly through activities like destroying habitats, polluting rivers and other water bodies, constructing dams over rivers, etc. In this regard, we can explain how we not only destroy habitats for plants and animals but also hunt and over-exploit them (e.g. Fish) for our food supply as well as for aesthetic purposes like the aquarium pet trade. Explain that teams 2-4 will enter the game in the later rounds representing the increase in human population growth over time.

Continue playing round one. Team 1 should occupy their resource placards and the animals/plants (freshwater biodiversity) should find and pick up three resource placards (as explained earlier) in order to survive. Participants who are FW GROUPS will need four placards: three resources as well as the one saying "FW SPECIES". Remind the plants/animals to freeze in place of the last resource they obtain. In


this round, all individuals should have been able to find all the necessary resources they needed. Now have all the animals/plants put back the resource placards on the ground in a random fashion.

Round 2

Tell the group that it is now year 1950. Explain that the population of peninsular India has grown by many millions. Send members of team 2 into the game to represent the growing population. Each individual should find a vacant placard, stand on it and call out its name. Have the animals/plants repeat the procedure from round 1 where they try to pick up the necessary resources for their survival. Ask each plant/animal if it was able to obtain every resource it needed. If an animal/plant was not able to obtain all three resources it becomes a threatened group (taxon). If this occurs, put an "X" mark on the chalkboard in the box named THREATENED next to the animal/plant's name. Then have all the animals/plants put the resource placards back on the floor.

Round 3

Now tell your audience that it is now year 2000. Send in team 3 to represent greater population growth. Once all members of teams 3 have occupied vacant placards, send in the freshwater biodiversity individuals (team 1) again to find their resource cards. In this round more animals may become threatened, some that were already threatened may become endangered depending on whether they were able to

collect the necessary resources or not. Again place "X"s in the appropriate boxes on the chart. Have the animals return their resources to the floor.

Round 4

Explain to your audience that it is now year 2025. Send in team 4 to represent another burst in population growth. Then have the animals again try to find and pick up resources for survival. On the chart, mark another "X" in the boxes for those animals/plants (freshwater biodiversity) that did not obtain all necessary resources. If an animal/plant has an "X" in all three boxes, it becomes extinct.

Table

Freshwater species	VU / EN	CR	EX
Fishes			
Molluscs			
Odonates			
Aquatic plants			

VU - Vulnerable; EN - Endangered; CR- Critically Endangered; Ex - Extinct

Conclusion

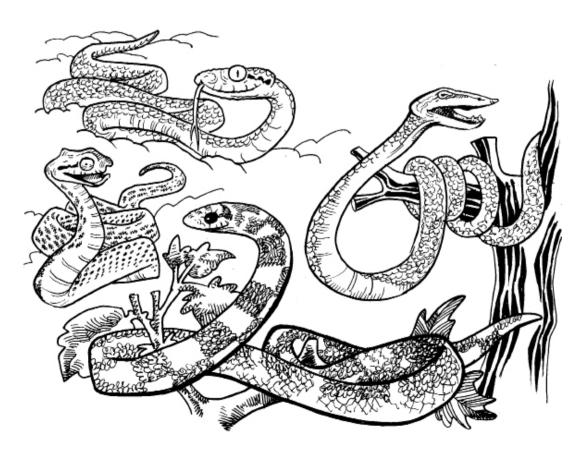
Direct your participants' attention to the chart and note the status of each group of animal/plant. Discuss with them the meaning/objective of the game in terms of what is happening today around the world and here especially, in relation to freshwater biodiversity of the Western Ghats. Ask participants if they can remember animals/plants or habitats near their homes and in their regions that were once upon a time common and which they don't find today. Discuss with them if human population growth and accompanying activities of development were the reasons for the disappearances mentioned. Ask participants to speculate on the effects of humans on the freshwater biodiversity in the Western Ghats. Make sure the following topics are discussed: habitat destruction, pollution of rivers and other water bodies from industrial as well as agricultural run-off, construction of dams and flow-modifications in rivers, over-fishing for food and pet trade,

etc., Ask people what alternative strategies or measures could be taken up for the various threats mentioned above so as to reduce the pressure on the freshwater biodiversity over the long run and thus ensure their survival.

CONFERENCE: PROTECTION AND MANAGEMENT OF FRESHWATER SPECIES AND HABITATS

Ask your participants to assemble in groups. Give each group the following recommendations, or write in poster size in advance and place it in a place where the entire group can easily examine it.

Tell the groups that their job is to consider which of the eight actions are most important to give protection and to manage properly the habitats and biodiversity in the Western Ghats areas. Each group has 100 points and it must assign its points between the eight actions, to whatever extent it sees fit.


Depending on time and the level of your audience, you may wish to have them assign points only to the major actions, or divide points among all the secondary actions listed under the eight major ones. It is important to explain that one group may decide that all eight actions are important and therefore to assign an equal number of points to each. Alternatively, a group may decide that three actions are so important that sixty of the 100 points should be divided among those three. Stress that the goal is to consider the actions in accord with the information on the

existing conservation issues (here, Western Ghats Freshwater Biodiversity) and to make well-reasoned decisions about priorities. This sort of decision-making activity models how an action is prioritized in a conference with regard to protecting and managing biodiversity areas.

Pool all points and develop a National level plan based on the decisions made by the groups' choice about what efforts are needed to protect freshwater biodiversity. Have each group make a presentation in which it explains how its points were allocated. Keep a class tally on a black board as the groups make their presentations. After the last presentation, assess the number of points received by each action. Ask the group to assess the total points and discuss whether they feel those totals reflect the true priorities to freshwater biodiversity conservation. Make it clear to the audience that an action which may be very important in one location may get least priority in another location depending on the circumstances and factor involved. If any actions did not receive points, ask whether they should be dropped from the list.

The following are the recommendation outcomes reached at the Freshwater Biodiversity assessment workshop. The workshop recommendations suggest measures to protect the Freshwater Biodiversity of Western Ghats.

Recommendations of the Freshwater Biodiversity Assessment of Western Ghats

1. Conduct taxonomic studies (classification), survey and monitoring

- 1.1. Promote studies on freshwater plants and animals of the Western Ghats
- 1.2. Understand their life history, ecology and populations
- 1.3. Revise taxonomy of Freshwater Biodiversity
- 1.4. Monitor all freshwater species of Western Ghats
- 1.5. Improve knowledge of subterranean (underground dwelling) species

2. Carry out habitat restoration

Endemic species, under threat of extinction, are narrowly distributed. These endemics can be saved by

- 2.1. Protecting their essential habitats like streams and rivers
- 2.2. Preventing man-made changes to the natural flow of streams and rivers
- 2.3. Protecting unique/special ecosystems such as Myristica swamps, high altitude peat bogs and laterite plateaus
- 2.4. Reducing the use of pesticides and other agrochemicals and their release into rivers and streams upstream
- 2.5. Controlling tourism in special habitats

3. Control Pollution

Pollution - a key threat to freshwater biodiversity can be controlled by

- 3.1. Implementing existing laws
- 3.2. Effective treatment of waste from industries located within river basins
- 3.3. Better management practices for crop and cattle production
- 3.4. Encouraging organic cultivation and proper solid waste disposal practices

4. Manage invasive alien species

- 4.1. Study invasive fish and plants in the Western Ghats
- 4.2. Understand their spread and harmful effects on the native species
- 4.3. Prevent releases of alien species into the natural environment through co-operation from stakeholders
- 4.4. Develop and implement national policy for the introduction and management of exotic species

5. Conduct environmental impact assessment of development activities Conduct independent environment impact evaluation for all development activities

5.1. Dams

- 5.2. Road construction
- 5.3. Urban and industrial expansion
- 5.4. In situations of undesirable impacts to the environment, measures should be taken to reduce such impacts

6. Raise awareness and do education outreach

Conduct education and awareness programmes to achieve the following:

- 6.1. Change public attitude towards wetlands
- 6.2. Instill the urgent need to sustainably use, conserve and manage wetlands and rivers
- 6.3. Support and encourage participation of local communities in FW BD conservation
- 6.4. Effective conservation education for the public, especially children
- 6.5. Give easy access to Freshwater Biodiversity information to politicians, legislators and other stakeholders

7. Improve law enforcement

- 7.1. Implement and enforce existing laws
- 7.2. Develop and implement laws to curb illegal trade
- 7.3. Avoid constructing large dams where unacceptable impacts to freshwater species are predicted
- 7.4. Mining and quarrying should be regulated with strict laws

7.5. Include threatened and endemic species in the Wildlife (Protection) Act7.6. Develop policies for the conservation of lesser-known

invertebrate

groups such as molluscs, dragonflies, damselflies, crustaceans and others

8. Improve collaboration

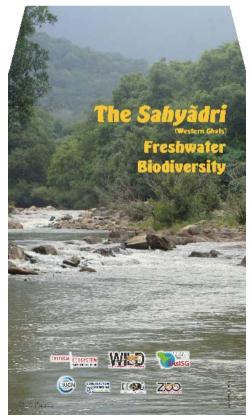
8.1. Support and encourage local and regional stakeholder participation in identifying Freshwater Key Biodiversity Areas (KBAs).

8.2. Management plans can then be put forth to benefit both the people and the biodiversity of the area.

TIPS FOR PLANNING EDUCATION PROGRAMMES

After the educators skills training programme you can plan education programmes at your place for your community and students. Combining the activities that you learned in the training programme with the 'Western Ghats' education packets that has stickers, masks, placard, rakhi and a booklet you can plan a half day, full day or three days education programme for groups of any age.

Western Ghats education packets are not effective if they are simply given out as souvenirs. It should be used as part of a systematically organized educational programme, featuring a variety of activities such as drama, debate, mime, games and any other activity that you learned during the training, focused on the drama theme. Used in such a way, the knowledge imparted will be more effective.

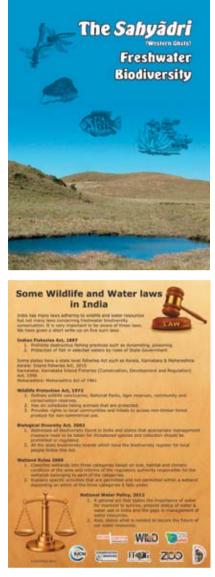

A full-fledged programme will be better organized if there is an educator or person with experience in facilitating an event with your audience, and a few other helpers. There are many things to do even in a simple programme.

You may need volunteers to help you prepare a short presentation from the information given in the kits and packets, and to help announce and coordinate the

activities which are possible with the packet. All these activities are designed for maximum fun along with emotional and intellectual impact.

HOW TO USE THE PACKET

- Rakhi-tying ceremony with participants using the rakhi enclosed in their packet (the rakhi can be a symbol of the participants committing themselves to conservation)
- A marching demonstration and/or standing still chant where participants put on their masks and hold up their small placards in a public area (this is also a good photo opportunity which will please the press and also be more interesting for readers than a set of dignitaries on a dais or other photos typical of such events)
- Quiz programme to quiz participants on the information contained in the booklet


- At least one or two games from the Western Ghats Freshwater Biodiversity teaching guide to be played with the participants
- A pledge card included in the Western Ghats Freshwater Biodiversity teaching guide; they should be given an opportunity to sign the pledge card and state their pledge
- If a painting or drawing competition is conducted or a debate, one or more of the themes should be concerned with Freshwater Biodiversity themes

Upon conducting your own education programme,

- After successful completion of the programme make a brief report to send to Zoo Outreach Organization either an email or hard copy.
- Photographs of the event are important in our programmes and are intended for publication and display on our website.
- Sometimes in our theme-based programmes sponsored by an international organization, these photos end up not only in our magazines and newsletters but also on many other websites with many hits or a yearly report.
- Photos of participants in action, which can be identified as part of the programme and associated with the theme, are preferable to the usual group photographs. Best is when participants are wearing their masks or carrying their placards or tying rakhi.
- Credits: be sure the host, organizers and sponsors, both local (ZOO) and international (CEPF) are included in your acknowledgements and in press.

Services provided by Freshwater ecosystem are very expensive to replace. The Freshwater, ecosystems provide services to human such as water, food there readiling, climate regulation, and their regulation and while participation and

Appendix

Appendix 1

Datasheet on Fish Puntius denisonii (Day, 1865)

Scientific name: *Puntius denisonii* Species Authority: (Day, 1865) Common names: English - Denison Barb, Miss Kerala, Red Line Torpedo Barb

Taxonomy: ANIMALIA – CHORDATA – ACTINOPTERYGII – CYPRINIFORMES – CYPRINIDAE – *Puntius denisonii*

Assessment Information

Red List Category and Criteria: Endangered A2acde+3cde; B2ab(iii) Year Assessed: 2011 Assessor(s): Ali, A., Raghavan, R. & Dahanukar, N. Reviewer(s): Gopalakrishnan, A., Rema Devi, K.R., Shaji, C.P., Arunachalam, M., Johnson, J.A., Vidyadhar, A., Rahul, K., Krishna , K.K. & Molur, S. Contributor(s): Molur, S., Bogutskaya, N. & Rema Devi, K.R.

Justification: *Puntius denisonii* has been assessed as Endangered as populations have declined by more than 50% in the recent past due to indiscriminate exploitation for the international aquarium pet trade. These declines are expected to continue in the foreseeable future unless local management plans, as well as national and international legislations are created and implemented. The species also has a restricted range with an area of occupancy of less than 300 km² with continuing decline in quality of key habitats.

History: 2009 – Vulnerable; 2007 – Vulnerable (IUCN 2009.2)

Geographic Range: Countries: Native: India (Karnataka, Kerala)

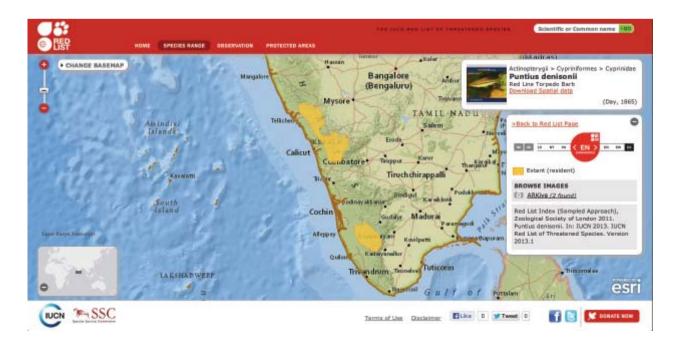
Population: The total population of *P. denisonii* is unknown. However the species is considered to be rare (Radhakrishnan and Kurup 2006, Kurup and Radhakrishnan 2006). Studies conducted at Cochin University of Science and Technology have indicated that populations of *P. denisonii* has declined at a rate of 70% at key collection sites (Kurup and Radhakrishnan 2006). A recent ongoing study by the Conservation Research Group, St. Albert's College, Kochi has observed that the species is overfished in Valapatanam River (exploitation rate E = 0.596) in Kerala (Raghavan 2010). In another completed study by MPEDA, based on the secondary data collected from the collectors, the catch by the collectors increased from 2003 to 2007 in Valapattanam, Kuttiyadi, Chalayar and Chandragiri rivers (Mercy and Malika 2010).

Population Trend: Decreasing

Habitat and Ecology: *P. denisonii* is a stream dwelling fish with an affinity towards rocky pools, edges with thick overhanging vegetation along its banks (Radhakrishnan 2006; Raghavan *et al.* 2009). However they have also been observed from a wide variety of riverine habitats including run, glide and riffles with sand, gravel, cobbles and boulders as substrates (Biju 2005). They are gregarious and often appear in shoals. The species is known to spawn during the North East Monsoon in the months of November-January (Manoj *et al.* 2010; R. Raghavan and A. Ali pers. obs.).

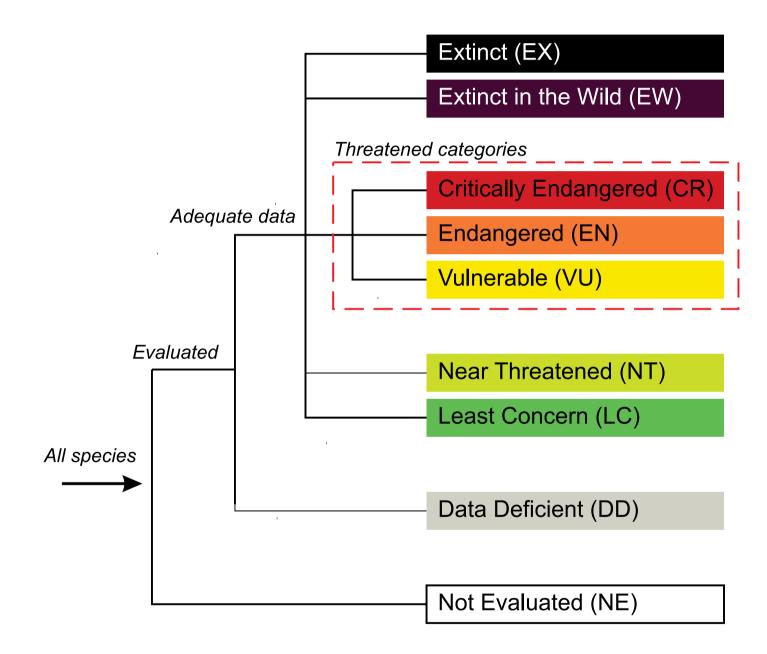
Systems: Freshwater

Threats: Collection for the international aquarium pet trade is the single major threat to *P. denisonii* (Mittal 2009, Prasad *et al.* 2007). Harvest of 'yet to be mature' juveniles as well as brooders is a major concern as the fishery is unregulated and 'open access'. In addition, there is an on-going decline in habitat quality at prime habitats of *P. denisonii* due to pollution from plantations as well as domestic sources. Destructive fishing for larger food fish using dynamites and plant poisons also affect *P. denisonii* as they share habitats with the larger cyprinids.


Conservation Actions: To regulate the harvest and trade of this cyprinid, the Government of Kerala (India) has initiated management plans including fixing total allowable catch (TAC), restrictions on gear size, closed seasons. There are also plans to demarcate certain key *P. denisonii* habitats as sanctuaries and no take zones (Mittal 2009). Although the captive breeding technology for this species has been developed by both researchers and hobbyists (Manoj et al. 2010; Mathew 2008; Mercy et al. 2010), commercial scale operations have not started. There are reports that *P. denisonii* is being captive bred in Indonesia and Singapore and exported (Mittal 2009), but the impacts of such operations on the collection and exports from India is yet to be understood.

Life history studies on the species have been conducted by Radhakrishnan and Kurup (2008) and Harikrishnan et al. (2008) studied the population dynamics in \the rivers of Kerala. Distinct genetic stocks identified in Chandragiri, Valapattanam and Chaliyar rivers (Lijo unpublished PhD thesis, NBFGR).

A species specific conservation plan requires urgent attention.


Citation: Ali, A., Raghavan, R. & Dahanukar, N. 2011. *Puntius denisonii*. In: IUCN 2012. IUCN Red List of Threatened Species. Version 2012.2. <www.iucnredlist.org>. Downloaded on **18** February 2013.

Distribution map of Puntius denisonii (Day, 1865)

Appendix 2

IUCN Red List Categories

Appendix 3

Species List: Freshwater Biodiversity Assessments in the Western Ghats: Fish, Molluscs, Odonates, Plants, and Reptiles

*Endemic to the Western Ghats assessment region

Red List Categories: EX -Extinct; EW -Extinct in the Wild; CR -Critically Endangered; EN -Endangered; VU -Vulnerable; NT Near Threatened; LC -Least Concern; DD -Data Deficient; (PE): Possibly Extinct (draft) -Indicates a draft Red List assessment that still needs to be peer reviewed

FRESHWATER FISH

Order Anguilliformes		
Family Anguillidae		
Anguilla bengalensis	LC	
Anguilla bicolor	LC	
Family Ophichthidae		
Pisodonophis boro	LC	
Order Beloniformes		
Family Adrianichthyidae		
Oryzias carnaticus	LC	
Oryzias dancena	LC	
Oryzias melastigma	LC	
Oryzias setnai *	LC	
Family Hemiramphidae		
Hyporhamphus limbatus	LC	
Hyporhamphus xanthopterus *	VU - D2	
Zenarchopterus dispar	DD	
Zenarchopterus striga	LC (draft)	
Family Belonidae		
Xenentodon cancila	LC	
Order Clupeiformes		
Family Clupeidae	1	
Dayella malabarica *	LC	
Tenualosa ilisha	LC (draft)	
Order Cypriniformes		
Family Balitoridae	1	
Acanthocobitis botia	LC	
Balitora mysorensis *	VU - B2ab(iii)	
Bhavania australis *	LC	
Homaloptera menoni *	LC	
Homaloptera montana *	EN - B1ab(i,ii,iii)	
	+2ab(i,ii,iii)	
Homaloptera pillaii *	LC	
Homaloptera santhamparaiensis *	EN - B1ab(iii) +2ab(iii)	
Indoreonectes evezardi *	LC	
Longischistura striatus *	EN - B2ab(iii)	
Mesonoemacheilus herrei *	CR - B1ab(iii) +2ab(iii)	

Mesonoemacheilus pambarensis*	VU - D2
Mesonoemacheilus remadevii *	LC
Nemacheilus anguilla *	LC
Nemacheilus denisoni	LC
Nemacheilus guentheri *	LC
Nemacheilus keralensis *	VU - B1ab(iii) +2ab(iii)
Nemacheilus kodaguensis *	VU - D2
Nemacheilus menoni *	VU - D2
Nemacheilus monilis *	LC
Nemacheilus mooreh *	LC
Nemacheilus nilgiriensis *	LC
Nemacheilus periyarensis *	VU - D2
Nemacheilus petrubanarescui *	EN - B2ab(iii)
Nemacheilus pulchellus *	EN - B1ab(iii)
Nemacheilus rueppelli *	LC
Nemacheilus semiarmatus *	LC
Nemacheilus stigmofasciatus *	DD
Nemacheilus triangularis *	LC
Nemachilichthys shimogensis *	EN - B1ab(iii) +2ab(iii)
Schistura dayi	LC
Schistura nagodiensis *	EN - B1ab(iii) +2ab(iii)
Schistura sharavathiensis *	VU - D2
Travancoria elongata *	EN - B1ab(iii,v)
	+2ab(iii,v)
Travancoria jonesi *	EN - B1ab(iii) +2ab(iii)
Family Cobitidae	
Botia striata *	EN - B2ab(iii)
Lepidocephalus coromandelen- sis*	LC
Lepidocephalus thermalis	LC
Pangio goaensis *	LC
Family Cyprinidae	
Amblypharyngodon melettinus	LC
Amblypharyngodon microlepis	LC
Amblypharyngodon mola	LC
Aspidoparia morar	LC
·	•

Bangana ariza	LC
Barbodes bovanicus *	CR (PE) - D
Barbodes carnaticus *	LC
Barbodes wynaadensis *	CR - A2ace
Barilius bakeri *	LC
Barilius barna	LC
Barilius bendelisis	LC
Barilius canarensis *	EN - B1ab(iii) +2ab(iii)
Barilius evezardi *	DD
Barilius gatensis *	LC
Betadevario ramachandrani *	DD
Chela cachius	LC
Cirrhinus cirrhosus *	VU - D2
Cirrhinus fulungee *	LC
Cirrhinus reba	LC
Crossocheilus latius	LC
Crossocheilus periyarensis *	EN - B2ab(iii)
Danio rerio	LC
Devario aequipinnatus	LC
Devario devario	LC
Devario fraseri *	VU - B1ab(iii)
Devario malabaricus	LC
Devario neilgherriensis *	EN - B1ab(ii,iii,v)
Esomus barbatus *	LC
Esomus danrica	LC
Esomus thermoicos	LC
Garra bicornuta *	NT
Garra hughi *	EN - B2ab(iii)
Garra kalakadensis *	EN - A2a;B1ab(ii,iii,v)
	+2ab(ii,iii,v)
Garra mcclellandi *	LC
Garra menoni *	VU - D2
Garra mullya	LC
Garra periyarensis *	VU - D2
Garra stenorhynchus *	LC
Garra surendranathanii *	EN - B2ab(iii)
Horadandia atukorali	LC
Horalabiosa arunachalami *	CR - A2ac;B1ab(iii,v)
	+2ab(iii,v)
Horalabiosa joshuai *	EN - B1ab(i,ii,iii,iv,v)
	+2ab(i,ii,iii,iv,v)
Horalabiosa palaniensis *	VU - D2
Hypselobarbus curmuca *	
	EN - A2acd
Hypselobarbus dobsoni *	EN - A2acd DD
Hypselobarbus dobsoni * Hypselobarbus dubius *	
	DD

	1
Hypselobarbus lithopidos *	DD
Hypselobarbus micropogon *	EN - A3cde; B1ab(ii,iii) +2ab(ii,iii)
Hypselobarbus mussullah *	EN - B2ab(iii,v)
Hypselobarbus periyarensis *	EN - B2ab(iii)
Hypselobarbus pulchellus *	CR (PE) - B1ab(iii) +2ab(iii)
Hypselobarbus thomassi *	CR - B2ab(iii)
Labeo bata	LC
Labeo boga	LC
Labeo boggut	LC
Labeo dussumieri	LC
Labeo fimbriatus	LC
Labeo kawrus *	LC
Labeo kontius *	LC
Labeo porcellus *	LC
Labeo potail *	EN - A2acde +3cde +4acde
Laubuca dadiburjori *	LC
Laubuca fasciata *	VU - B2ab(iii)
Laubuca laubuca	LC
Lepidopygopsis typus *	EN - B1ab(iii) +2ab(iii)
Oreichthys cosuatis	LC
Osteobrama bakeri *	LC
Osteobrama bhimensis *	EN - B1ab(iii) +2ab(iii)
Osteobrama cotio	LC
Osteobrama cotio peninsularis *	DD
, Osteobrama neilli *	LC
Osteobrama vigorsii	LC
Osteochilichthys brevidorsalis *	LC
Osteochilus longidorsalis *	EN - B1ab(iii) +2ab(iii)
Osteochilus nashii *	LC
Parapsilorhynchus discophorus *	VU - B1ab(iii)
Parapsilorhynchus elongatus *	EN - B1ab(iii)
Parapsilorhynchus prateri *	CR (PE) -
	B2ab(i,ii,iii,iv,v)
Parapsilorhynchus tentaculatus *	LC
Puntius ambassis *	DD
Puntius amphibius *	DD
Puntius arenatus *	VU - B1ab(iii)
Puntius arulius *	EN - B2ab(iii)
Puntius assimilis *	VU - D2
Puntius bimaculatus	LC
Puntius cauveriensis *	EN - B1ab(iii) +2ab(iii)
Puntius chalakkudiensis *	EN - A2acde +4acde
T unitus chalakkuulensis	1
Puntius chola	LC

Puntius crescentus *	EN - B1ab(iii)
Puntius deccanensis *	CR (PE) - B2ab(iii);D
Puntius denisonii *	EN - A2acde +3cde;B2ab(iii)
Puntius dorsalis	LC
Puntius exclamatio *	EN - B1ab(ii,iii) +2ab(ii,iii)
Puntius fasciatus *	LC
Puntius filamentosus *	LC
Puntius fraseri *	EN - B1ab(iii)
Puntius jerdoni *	LC
Puntius kannikattiensis *	LC
Puntius mahecola *	DD
Puntius melanampyx *	DD
Puntius mudumalaiensis *	VU - B1ab(iii)
Puntius muvattupuzhaensis *	DD
Puntius narayani *	LC
Puntius ophicephalus *	EN - B1ab(iii) +2ab(iii)
Puntius parrah *	
Puntius pookodensis *	CR - B1ab(iii) +2ab(iii)
Puntius punctatus *	
Puntius rohani *	VU - D2
Puntius sahyadriensis *	LC
Puntius sarana	LC
Puntius sarana subnasutus *	LC
Puntius setnai *	VU - B2ab(iii)
Puntius sharmai *	EN - B1ab(iii)
Puntius sophore	
Puntius tambraparniei *	EN - B1ab(iii) +2ab(iii)
Puntius thomassi *	
Puntius ticto	LC
Puntius vittatus	LC
Rasbora caverii *	LC
Rasbora daniconius	LC
Rasbora labiosa *	LC
Rohtee ogilbii *	LC
Salmophasia acinaces *	LC
Salmophasia bacaila	LC
Salmophasia balookee	LC
Salmophasia belachi *	VU - D2
Salmophasia boopis *	
Salmophasia horai *	VU - D2
Salmophasia novacula *	
Salmophasia phulo	LC
Salmophasia untrahi	LC

Thurseighthur conducted *	
Thynnichthys sandkhol *	EN - A2acde +3cde +4acde
Tor khudree	EN - A2acde
Tor kulkarnii *	EN - B1ab(iii) +2ab(iii)
Tor malabaricus *	EN - A2acde +3cde
F amily Deilarburghides	+4acde
Family Psilorhynchidae	
Psilorhynchus tenura *	CR - B2ab(iii)
Order Cyprinodontiformes	
Family Aplocheilidae	10
Aplocheilus blockii	LC
Aplocheilus lineatus	LC
Order Osteoglossiformes	
Family Notopteridae	
Notopterus notopterus	LC
Order Perciformes	
Family Ambassidae	
Ambassis ambassis	LC
Ambassis dussumieri	LC
Ambassis gymnocephalus	LC
Ambassis interrupta	LC
Ambassis nalua	LC
Chanda nama	LC
Parambassis dayi *	LC
Parambassis thomassi *	LC
Pseudambassis baculis	LC
Pseudambassis ranga	LC
Family Anabantidae	L
Anabas testudineus	DD
Family Channidae	
Channa diplogramme *	VU - B1ab(iii) +2ab(iii)
Channa gachua	LC
Channa marulius	LC
Channa punctata	LC
Channa striata	
Family Cichlidae	
-	EN - B1ab(iii) +2ab(iii)
Etroplus canarensis *	
Etroplus maculatus	LC
Etroplus suratensis	LC
Family Eleotridae	
Bunaka gyrinoides	LC
Eleotris fusca	LC
Family Gobiidae	
Awaous grammepomus	LC
Bathygobius fuscus	LC
Glossogobius giuris	LC (draft)
Clobbogobius giuna	

Family Nandidae	
Nandus nandus	LC
Pristolepis fasciata	LC
Pristolepis marginata *	LC
Family Osphronemidae	
Pseudosphromenus cupanus	LC
Pseudosphromenus dayi *	VU - B1ab(iii)
Family Terapontidae	
Terapon jarbua	LC
Order Siluriformes	
Family Bagridae	
Batasio sharavatiensis *	EN - B1ab(iii) +2ab(iii)
Batasio travancoria *	VU - B1ab(iii) +2ab(iii)
Hemibagrus maydelli *	LC
Hemibagrus punctatus *	CR (PE) - A2ac
Horabagrus brachysoma *	VU - A2bd
Horabagrus nigricollaris *	EN - B1ab(ii,iii,v)
	+2ab(ii,iii,v)
Mystus armatus *	LC
Mystus cavasius	LC
Mystus gulio	LC
Mystus keletius *	LC
Mystus malabaricus *	NT
Mystus montanus *	LC
Mystus oculatus *	LC
Mystus seengtee *	LC
Mystus vittatus	LC
Rita gogra *	LC
Rita kuturnee *	LC
Sperata aor	LC
Sperata seenghala	LC
Family Clariidae	
Clarias dussumieri *	NT
Horaglanis alikunhii *	DD
Horaglanis krishnai *	DD
Family Erethistidae	
Pseudolaguvia austrina *	DD
Family Heteropneustidae	
Heteropneustes fossilis	LC
Heteropneustes longipectoralis *	DD
Family Pangasiidae	
Pangasius pangasius	LC
Family Schilbeidae	
Clupisoma bastari *	DD
Eutropiichthys goongwaree *	DD

Neotropius atherinoides	LC	
Neotropius khavalchor *	DD	
Proeutropiichthys taakree *	LC	
Pseudeutropius mitchelli *	EN - B1ab(iii) +2ab(iii)	
Silonia childreni *	EN - A2ade +3de +4ade	
Family Siluridae		
Ompok bimaculatus	NT	
Ompok goae *	DD	
Ompok malabaricus *	LC	
Pterocryptis wynaadensis *	EN - A2ce	
Wallago attu	NT	
Family Sisoridae		
Bagarius yarrelli	NT	
Gagata itchkeea *	VU - B2ab(iii)	
Glyptothorax anamalaiensis *	EN - B1ab(iii) +2ab(iii)	
Glyptothorax annandalei	LC	
Glyptothorax davissinghi *	EN - B1ab(iii) +2ab(iii)	
Glyptothorax housei *	EN - B1ab(iii) +2ab(iii)	
Glyptothorax kudremukhensis *	CR - B2ab(iii)	
Glyptothorax lonah *	LC	
Glyptothorax madraspatanus *	EN - B2ab(iii)	
Glyptothorax malabarensis *	DD	
Glyptothorax poonaensis *	EN - B2ab(i,ii,iii,iv)	
Glyptothorax trewavasae *	VU - B2ab(iii)	
Order Synbranchiformes		
Family Mastacembelidae		
Macrognathus aral	LC	
Macrognathus guentheri *	LC	
Mastacembelus armatus	LC	
Family Synbranchidae		
Monopterus digressus *	DD	
Monopterus eapeni *	DD	
Monopterus fossorius *	EN - B2ab(iii)	
Monopterus indicus *	VU - B2ab(iii)	
Monopterus roseni *	DD	
Ophisternon bengalense	LC	
Order Syngnathiformes	1	
Family Syngnathidae		
Hippichthys penicillus	LC	
Ichthyocampus carce	LC	
Microphis cuncalus	LC	
Order Tetraodontiformes		
Family Tetraodontidae		
Carinotetraodon imitator *	DD	
Carinotetraodon travancoricus *	VU - A2de +3de +4de	

FRESHWATER MOLLUSCS

Order Arcoida		
Family Arcidae		
Scaphula celox	LC	
Scaphula nagarjunai *	VU - D2	
Order Unionoida		
Family Etheriidae		
Pseudomulleria dalyi *	EN (draft) - B1ab(iii,v)	
	+2ab(iii,v)	
Family Unionidae		
Arcidopsis footei *	EN (draft) - B2ab(iii,iv,v)	
Lamellidens consobrinus	LC	
Lamellidens corrianus	LC	
Lamellidens lamellatus	LC	
Lamellidens marginalis	LC	
Parreysia caerulea	LC	
Parreysia corrugata	LC	
Parreysia cylindrica *	DD (draft)	
Parreysia favidens	LC	
Parreysia khadakvaslaensis *	VU (draft)	
Parreysia occata	LC	
Parreysia rajahensis	LC	
Parreysia shurtleffiana	LC	
Order Veneroida		
Family Corbiculidae		
Corbicula annadalei *	DD	
Corbicula krishnaea *	DD	
Corbicula peninsularis *	DD (draft)	
Corbicula regularis	LC	
Corbicula striatella	LC	
Villorita corbiculoides *	DD	
Villorita cornucopia *	LC	
Villorita cyprinoides *	LC	
Family Sphaeriidae		
Pisidium clarkeanum	LC	

Gastropods	
Order Allogastropoda	
Family Bullinidae	
Indoplanorbis exustus	LC
Order Architaenioglossa	
Family Ampullariidae	
Pila globosa	LC
Pila nevilliana *	DD
Pila saxea *	DD
Pila globosa Pila nevilliana *	DD

Pila virens	LC
Family Viviparidae	20
Bellamya bengalensis	LC
Bellamya crassa	LC
Bellamya dissimilis	LC
Order Cycloneritimorpha	20
Family Neritidae	
Neritina pulligera	LC (draft)
Neritina violacea	LC
Septaria lineata	LC
Order Hygrophila	I
Family Lymnaeidae	
Lymnaea acuminata	LC
Lymnaea biacuminata	DD
Lymnaea luteola	LC
Stagnicola tungabhadraensis *	DD
Family Planorbidae	I
Ferrissia baconi	LC
Ferrissia tenuis *	LC (draft)
Ferrissia verruca	LC
Gyraulus convexiusculus	LC
Gyraulus labiatus	LC
Gyraulus rotula	LC
Segmentina trochoidea	LC
Order Littorinimorpha	
Family Bithyniidae	
Bithynia pulchella	LC
Digoniostoma cerameopoma	LC
Gabbia orcula	LC
Gabbia stenothyroides	LC
Gabbia travancorica *	LC
Mysorella costigera	LC (draft)
Sataria everzardi *	DD
Family Hydrobiidae	
Stenothyra blanfordiana	LC
Stenothyra minima	LC
Family Iravadiidae	
Iravadia annadalei *	DD
Iravadia funerea *	DD
Iravadia ornata	LC
Family Littorinidae	
Cremnochonchus carinatus *	EN - B1ab(iii) +2ab(iii)
Cremnochonchus conicus *	VU - D2
Cremnochonchus syhadrensis *	EN - B1ab(i,ii,iii,iv)
	+2ab(i,ii,iii,iv)

Order Sorbeoconcha		
Family Pachychilidae		
Paracrostoma martini *	DD	
Paracrostoma tigrinus *	DD	
Sulcospira huegeli	LC	
Family Thiaridae		
Melanoides pyramis	LC	
Paludomus annandalei *	DD	
Paludomus inflatus	DD (draft)	

Paludomus obesus *	LC
Paludomus rotunda *	DD
Paludomus stomatodon *	DD
Paludomus sulcatus	DD
Thiara granifera	LC
Thiara lineata	LC
Thiara riqueti	LC
Thiara rudis	LC
Thiara scabra	LC

ODONATES

Order Odonata	
Family Aeshnidae	
Anaciaeschna donaldi	LC
Anaciaeschna jaspidea	LC
Anax ephippiger	LC
Anax guttatus	LC
Anax immaculifrons	LC
Anax parthenope	LC (draft)
Gynacantha bayadera	LC
Gynacantha dravida	DD
Family Calopterygidae	
Neurobasis chinensis	LC
Vestalis apicalis	LC
Vestalis gracilis	LC
Family Chlorocyphidae	
Calocypha laidlawi	DD
Libellago lineata	LC
Rhinocypha bisignata	LC
Family Chlorogomphidae	
Chlorogomphus campioni *	DD
Chlorogomphus xanthoptera *	VU - D2
Family Coenagrionidae	
Aciagrion hisopa	LC
Aciagrion occidentale	LC
Aciagrion pallidum	LC
Agriocnemis keralensis *	LC
Agriocnemis lacteola	LC
Agriocnemis pieris	LC
Agriocnemis pygmaea	LC
Agriocnemis splendissima	LC
Amphiallagma parvum	LC
Archibasis oscillans	LC
Ceriagrion cerinorubellum	LC
Ceriagrion coromandelianum	LC

Ceriagrion olivaceum L Ceriagrion rubiae *	DD (draft)
	LC
Ischnura senegalensis	LC
Mortonagrion varralli	DD
Onychargia atrocyana I	LC
Paracercion calamorum	LC
Pseudagrion decorum	LC
Pseudagrion hypermelas	LC
Pseudagrion indicum	DD
Pseudagrion malabaricum	LC
Pseudagrion microcephalum	LC
Pseudagrion rubriceps I	LC
Family Cordulidae	
Hemicordulia asiatica	LC
Idionyx corona *	DD
Idionyx galeata *	NT
Idionyx minima	DD
Idionyx nadganiensis *	DD
Idionyx nilgiriensis *	DD
Idionyx periyashola *	DD
Idionyx rhinoceroides *	LC
Idionyx saffronata	DD
Idionyx travancorensis	DD
Macromidia donaldi *	LC
Family Euphaeidae	
Dysphaea ethela	DD
Euphaea cardinalis I	LC
Euphaea dispar *	LC
Euphaea fraseri *	LC
Family Gomphidae	
Acrogomphus fraseri *	DD
Asiagomphus nilgiricus *	DD
Burmagomphus cauvericus *	DD

DD
LC (draft)
DD
LC
DD
NT
LC
DD
DD
NT
DD
DD
LC
DD
DD
DD
LC
DD
LC
·
LC
DD
LC
LC (draft)
NE
NE
LC
LC
LC
i
LC
LC LC

Indothemis carnatica	NT
Indothemis limbata	LC
Lathrecista asiatica	LC
Macrodiplax cora	LC
Neurothemis fulvia	LC
Neurothemis intermedia	LC
Neurothemis tullia	LC
	LC
Onychothemis testacea	LC
Orthetrum chrysis	
Orthetrum glaucum Orthetrum luzonicum	LC
	LC
Orthetrum pruinosum	LC
Orthetrum sabina	
Orthetrum testaceum	
Orthetrum triangulare	LC
Palpopleura sexmaculata	LC
Pantala flavescens	LC
Potamarcha congener	LC
Rhodothemis rufa	LC
Rhyothemis triangularis	LC
Rhyothemis variegata	LC
Sympetrum fonscolombii	LC
Tetrathemis platyptera	LC
Tholymis tillarga	LC
Tramea basilaris	LC
Tramea eurybia *	NE
Tramea limbata	LC
Tramea virginia	LC
Trithemis aurora	LC
Trithemis festiva	LC
Trithemis kirbyi	LC
Trithemis pallidinervis	LC
Urothemis signata	LC
Zygonyx iris	LC
Zygonyx torridus	LC (draft)
Zyxomma petiolatum	LC
Family Macromiidae	
Macromia annaimallaiensis *	LC
Macromia bellicosa *	LC
Macromia cingulata *	LC
Macromia ellisoni *	LC
Macromia ida *	LC
Macromia indica *	DD
Macromia irata *	LC
Epophthalmia frontalis	LC
Epophthalmia vittata	LC

Macromia flavicincta	DD
Macromia flavocolorata	LC
Family Platycnemididae	
Copera marginipes	LC
Copera vittata	LC
Family Platystictidae	
Platysticta deccanensis *	VU - B2ab(iii)
Protosticta antelopoides *	DD
Protosticta davenporti *	LC
Protosticta gravelyi *	LC
Protosticta hearseyi *	DD
Protosticta rufostigma *	LC
Protosticta sanguinostigma *	VU - B2ab(iii)
Family Protoneuridae	
Caconeura gomphoides *	DD

Caconeura ramburi	DD
Caconeura risi	DD
Caconeura t-coerulea *	DD
Disparoneura apicalis *	VU - D2
Disparoneura quadrimaculata	LC
Elattoneura nigerrima *	DD
Elattoneura souteri *	DD
Elattoneura tetrica *	LC
Esme cyaneovittata *	DD
Esme longistyla *	LC
Esme mudiensis *	DD
Melanoneura bilineata *	NT
Phylloneura westermanni *	NT
Prodasineura verticalis	LC

PLANTS

Algae	
Order Charales	
Family Characeae	
Chara braunii	LC (draft)
Chara corallina	LC (draft)
Chara hydropitys	LC
Chara nuda	DD
Chara setosa	DD
Chara zeylanica	LC (draft)
Nitella acuminata	LC (draft)
Nitella annamalaiensis *	DD
Nitella flexilis	LC
Nitella hyalina	LC (draft)
Nitella mucronata	LC
Nitella myriotricha	LC
Nitella oligospira	LC
Nitella pseudoflabellata	LC
Nitella tenuissima *	LC
Nitella terrestris *	LC

Quillworts	
Order Isoetales	
Family Isoetaceae	
Isoetes coromandelina	LC
Isoetes divyadarshanii *	DD
Isoetes indica *	DD (draft)
Isoetes panchganiensis *	EN -B1ab(iii) +2ab(iii)
Isoetes udupiensis *	DD

Ferns	
Order Blechnales	
Family Lomariopsidaceae	
Bolbitis appendiculata	LC
Bolbitis aspleniifolia	DD
Bolbitis presiliana *	LC
Bolbitis semicordata *	LC
Bolbitis subcrenata	LC
Elaphoglossum angulatum	DD
Elaphoglossum beddomei *	LC
Elaphoglossum nilgiricum *	LC
Elaphoglossum stelligerum	LC
Order Marsileales	
Family Marsileaceae	
Marsilea minuta	LC
Marsilea quadrifolia	LC
Order Pteridales	
Family Pteridaceae	
Acrostichum aureum	DD
Order Salviniales	
Family Azollaceae	
Azolla pinnata	LC

Flowering Plants – Monocotyledons	
Order Alismatales	
Family Alismataceae	
Alisma plantago-aquatica	LC
Caldesia oligococca	LC

[
Caldesia parnassifolia	LC
Limnophyton obtusifolium	LC
Sagittaria guayanensis	LC
Sagittaria sagittifolia	LC
Sagittaria trifolia	LC
Wiesneria triandra *	LC
Order Arales	
Family Araceae	
Alocasia fornicate	LC
Colocasia esculenta	LC
Cryptocoryne ciliata	LC
Cryptocoryne cognata *	EN -B2ab(ii,iii)
Cryptocoryne consobrina *	NT
Cryptocoryne retrospiralis	LC
Cryptocoryne spiralis	LC (draft)
Lagenandra meeboldii *	LC (draft)
Lagenandra ovata	LC
Lagenandra toxicaria *	LC
Lasia spinosa	LC
Pistia stratiotes	LC
Family Lemnaceae	
Landoltia punctata	LC
Lemna aequinoctialis	LC
Lemna gibba	LC
Lemna minor	LC
Spirodela polyrhiza	LC
Wolffia arrhiza	LC
Wolffia globosa	LC
Wolffia microscopica	DD (draft)
Order Commelinales	
Family Commelinaceae	
Commelina benghalensis	LC
Commelina caroliniana	LC
Commelina clavata	LC
Commelina diffusa	LC
Commelina erecta	LC
Commelina imberbis	LC
Commelina subulata	LC
Cyanotis arcotensis *	LC
Cyanotis axillaris	LC (draft)
Cyanotis cristata	LC
Cyanotis cucullata	LC
Cyanotis fasciculata	LC
Cyanotis papilionacea *	LC
Floscopa scandens	LC
Murdannia esculenta	LC

Murdannia lanceolata *	VU -D2
Murdannia nudiflora	LC (draft)
Murdannia pauciflora	LC
Murdannia semiteres	LC
Murdannia spirata	LC
Murdannia vaginata	LC
Order Cyperales	
Family Cyperaceae	
Actinoscirpus grossus	LC
Bulbostylis densa	LC
Carex baccans	LC
Carex filicina	LC
Carex hebecarpa	LC
Carex lindleyana	LC
Carex longipes	LC
Carex maculata	LC
Carex myosurus	LC
Carex phacota	LC
Cyperus alopecuroides	LC (draft)
Cyperus alulatus	LC
Cyperus amabilis	LC
Cyperus arenarius	LC
Cyperus articulatus	LC (draft)
Cyperus castaneus	LC
Cyperus cephalotes	LC
Cyperus clarkei	LC
Cyperus compactus	LC
Cyperus compressus	LC (draft)
Cyperus corymbosus	LC (draft)
Cyperus cyperoides	LC
Cyperus difformis	LC
Cyperus diffusus	LC
Cyperus digitatus	LC
Cyperus distans	LC
Cyperus dubius	LC
Cyperus elatus	LC
Cyperus esculentus	LC
Cyperus exaltatus	LC (draft)
Cyperus haspan	LC (draft)
Cyperus imbricatus	LC
Cyperus iria	LC (draft)
Cyperus laevigatus	LC (draft)
Cyperus longus	LC
Cyperus maderaspatanus	LC
Cyperus malaccensis	LC (draft)
Cyperus meeboldii	LC

Cyperus michelianus	LC
Cyperus mitis	LC
Cyperus nutans	LC
Cyperus pangorei	LC
Cyperus paniceus	LC
Cyperus papyrus	LC
Cyperus pilosus	LC
Cyperus platyphyllus	LC
Cyperus platystylis	LC (draft)
Cyperus procerus	LC
Cyperus pulchellus	LC
Cyperus rotundus	LC
Cyperus rubicundus	LC
Cyperus squarrosus	LC
Cyperus stoloniferus	LC
Cyperus tenuiculmis	LC
Cyperus tenuispica	LC
Cyperus tuberosus	LC
Cyperus zollingeri	LC
Diplacrum caricinum	LC
Eleocharis acutangula	LC (draft)
Eleocharis atropurpurea	LC
Eleocharis congesta	LC
Eleocharis dulcis	LC (draft)
Eleocharis geniculata	LC
Eleocharis lankana	LC
Eleocharis ochrostachys	LC
Eleocharis retroflexa	LC
Eleocharis spiralis	LC
Eleocharis swamyi *	DD
Eleocharis tetraquetra	LC (draft)
Eleocharis wadoodii *	DD
Fimbristylis acuminata	LC
Fimbristylis aestivalis	LC (draft)
Fimbristylis alboviridis	LC
Fimbristylis aphylla	LC
Fimbristylis argentea	LC
Fimbristylis bisumbellata	LC
Fimbristylis cinnamometorum	LC
Fimbristylis complanata	LC
Fimbristylis consanguinea	LC
Fimbristylis crystallina *	EN -B2ab(iii)
Fimbristylis dauciformis *	EN -B2ab(i,ii,iii)
Fimbristylis dichotoma	LC (draft)
Fimbristylis dipsacea	LC
Fimbristylis ferruginea	LC

Fimbristylis hirsutifolia *	CR (PE) -B1ab(i,ii,iii)
	+2ab(i,ii,iii)
Pycreus polystachyos	LC
Pycreus pumilus	LC (draft)
Pycreus puncticulatus	LC
Pycreus sanguinolentus	LC
Pycreus stramineus	LC
Pycreus unioloides	LC (draft)
Queenslandiella hyalina	LC
Rhynchospora corymbosa	LC
Rhynchospora rugosa	LC (draft)
Schoenoplectiella articulata	LC (draft)
Schoenoplectiella juncoides	LC (draft)
Schoenoplectiella lateriflora	LC
Schoenoplectiella roylei	LC
Schoenoplectiella senegalensis	LC
Schoenoplectiella supina	DD (draft)
Schoenoplectus corymbosus	LC
Schoenoplectus litoralis	LC
Schoenoplectus mucronatus	LC (draft)
Scirpus naikianus *	DD
Scleria foliosa	LC
Scleria mikawana	LC
Scleria poklei *	DD
Scleria terrestris	LC
Trichophorum subcapitatum	LC
Family Gramineae	
Anthoxanthum borii *	NT
Arthraxon hispidus	LC (draft)
Arundo donax	LC (draft)
Bothriochloa pseudischaemum	LC
Brachiaria eruciformis	LC
Brachiaria mutica	LC (draft)
Brachiaria ramosa	LC
Brachiaria reptans	LC (draft)
Chionachne gigantea	LC
Coelachne minuta *	LC
Coelachne perpusilla	LC
Coelachne simpliciuscula	LC (draft)
Coix aquatica	LC (draft)
Coix lacryma-jobi	LC (draft)
Dactyloctenium aegyptium	LC (draft)
Dimeria hohenackeri *	EN -B2ab(ii,iii,iv,v)
Dimeria ornithopoda *	LC
Echinochloa colona	LC (draft)
Echinochloa crusgalli	LC (draft)

Echinochloa frumentacea	LC
Echinochloa oryzoides	LC (draft)
Echinochloa picta	LC
Eleusine indica	LC
Elytrophorus spicatus	LC
Eragrostis japonica	LC
Eragrostis subsecunda	LC
Eragrostis unioloides	LC
Eriochloa procera	LC
Glyceria spicata	DD
Hemarthria compressa	LC
Hubbardia heptaneuron *	VU -D2
Hygroryza aristata	LC (draft)
Hymenachne amplexicaulis	LC (draft)
Imperata cylindrica	LC (draft)
Isachne albens	LC
Isachne bicolor *	VU -B1ab(ii,iii) +2ab(ii,iii)
Isachne globosa	LC (draft)
Isachne meeboldii *	CR -B2ab(i,ii,iii)
Isachne pulchella	LC
Isachne swaminathanii *	EN -B2ab(i,ii,iii)
Isachne veldkampii *	CR -B1ab(i,ii,iii)
	+2ab(i,ii,iii)
lschaemum jayachandranii *	CR (PE) -B1ab(ii,iii)
	+2ab(ii,iii)
Ischaemum molle	LC
Ischaemum muticum	LC
Ischaemum rugosum	LC (draft)
Ischaemum travancorense *	LC
Ischaemum vembanadense *	EN -B1ab(iii) +2ab(iii)
Leersia hexandra	LC (draft)
Leptochloa chinensis	LC (draft)
Leptochloa fusca	LC
Leptochloa neesii	LC
Leptochloa obtusiflora	LC
Leptochloa panicea	LC
Limnopoa meeboldii *	EN -B2ab(iii)
Oryza officinalis	LC
Oryza rufipogon	LC
Panicum paludosum	LC (draft)
Panicum repens *	LC
Panicum sumatrense	LC
Paspalidium flavidum	LC (draft)
Paspalidium geminatum	LC (draft)
Paspalidium punctatum	LC
Paspalum canarae *	LC

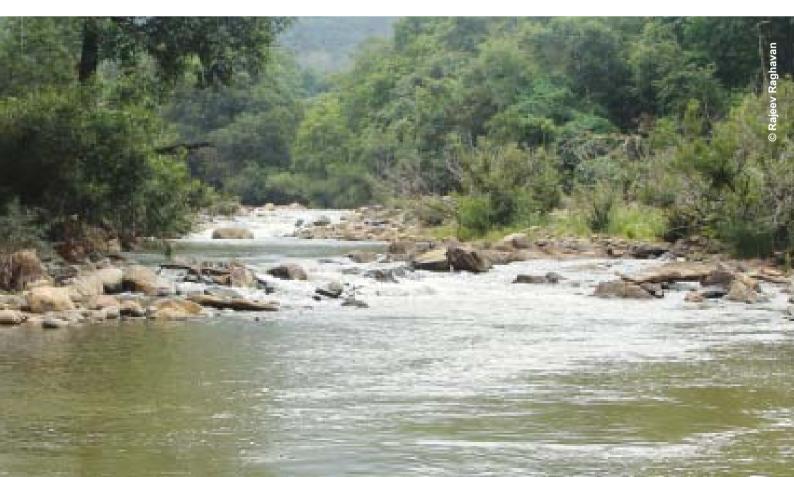
Paspalum conjugatum	LC
Paspalum distichum	LC (draft)
Paspalum longifolium	LC
Paspalum scrobiculatum	LC (draft)
Phragmites vallatorius	LC
Pogonatherum paniceum	LC
Polypogon fugax	LC (draft)
Polypogon monspeliensis	LC (draft)
Polypogon nilgiricus *	LC
Polytrias indica	LC
Pseudoraphis brunoniana	LC (draft)
Pseudoraphis spinescens	LC (draft)
Saccharum spontaneum	LC
Sacciolepis curvata	LC
Sacciolepis indica	LC (draft)
Sacciolepis interrupta	LC (draft)
Sacciolepis myosuroides	LC
Urochloa panicoides	LC
Order Eriocaulales	·
Family Eriocaulaceae	
Eriocaulon achiton	LC
Eriocaulon anshiense *	EN -B1ab(iii) +2ab(iii)
Eriocaulon apetalum *	LC
Eriocaulon balakrishnanii *	LC
Eriocaulon baramaticum *	DD
Eriocaulon barbeyanum *	NT
Eriocaulon bolei *	CR (PE) -B1ab(i,iii)
	+2ab(i,iii)
Eriocaulon breviscapum *	LC
Eriocaulon brownianum	LC
Eriocaulon cinereum	LC (draft)
Eriocaulon conicum *	LC
Eriocaulon cookei *	LC
Eriocaulon cuspidatum *	LC
Eriocaulon dalzellii *	EN -B1ab(ii,iii) +2ab(ii,iii)
Eriocaulon duthiei *	LC
Eriocaulon elenorae *	LC
Eriocaulon eurypeplon *	LC
Eriocaulon fluviatile	LC
Eriocaulon fysonii *	LC
Eriocaulon hamiltonianum	DD (draft)
Eriocaulon heterolepis *	LC
Eriocaulon hookerianum	LC
Eriocaulon kanarense *	LC
Eriocaulon karnatakense *	VU -D2
Eriocaulon kolhapurense *	VU -D2
	1

Eriocaulon konkanense *	VU -D2
Eriocaulon koynense *	DD
Eriocaulon koynense Eriocaulon lanceolatum *	LC
Eriocaulon lanceolatum Eriocaulon leucomelas *	LC
Eriocaulon longicuspe	LC
Eriocaulon nongicuspe	VU -D2
Eriocaulon margaretae *	LC
Eriocaulon margaretae Eriocaulon minimum	LC
Eriocaulon minutum *	LC
Eriocaulon nepalense	LC
Eriocaulon nepalense	LC
Eriocaulon parviflorum *	LC
Eriocaulon pectinatum *	VU -B1ab(iii) +2ab(iii)
Eriocaulon peninsulare *	
Eriocaulon quinquangulare	LC (draft)
Eriocaulon ratnagiricum *	CR -B1ab(ii,iii,v)
	+2ab(ii,iii,v)
Eriocaulon richardianum *	EN -B2ab(ii,iii)
Eriocaulon ritchieanum *	LC
Eriocaulon robustobrownianum *	LC
Eriocaulon robustum *	LC
Eriocaulon rouxianum *	CR (PE) -B1ab(ii,iii)
	+2ab(ii,iii)
Eriocaulon sahyadricum *	LC
Eriocaulon santapaui *	CR (PE) -B1ab(iii)
	+2ab(iii)
Eriocaulon sedgwickii *	LC
Eriocaulon setaceum	LC (draft)
Eriocaulon sexangulare	LC (draft)
Eriocaulon sharmae *	CR -B1ab(iii) +2ab(iii)
Eriocaulon sivarajanii *	CR -B1ab(iii) +2ab(iii)
Eriocaulon sollyanum	LC (draft)
Eriocaulon stellulatum *	LC
Eriocaulon talbotii *	LC
Eriocaulon thwaitesii	LC
Eriocaulon truncatum	LC
Eriocaulon tuberiferum *	VU -B1ab(ii,iii)
	+2ab(ii,iii);D2
Eriocaulon wightianum	LC
Eriocaulon xeranthemum	LC
Order Hydrocharitales	
Family Hydrocharitaceae	
Blyxa aubertii	LC
Blyxa japonica	LC
Blyxa octandra	LC
Hydrilla verticillata	LC
Najas graminea	LC

Najas indica	LC	
Najas malesiana	LC	
Najas marina	LC	
Najas minor	LC	
Nechamandra alternifolia	LC	
Ottelia alismoides	LC	
Vallisneria natans	LC	
Vallisneria spiralis	LC	
Order Juncales		
Family Juncaceae	1	
Juncus bufonius	LC	
Juncus effusus	LC	
Juncus inflexus	LC	
Juncus prismatocarpus	LC	
Order Liliales		
Family Amaryllidaceae	1	
Crinum Iorifolium	LC	
Crinum viviparum	LC	
Family Pontederiaceae		
Monochoria hastata	LC	
Monochoria vaginalis	LC	
Order Najadales		
Family Aponogetonaceae	1	
Aponogeton appendiculatus *	DD	
Aponogeton bruggenii *	VU -D2	
Aponogeton crispus	LC	
Aponogeton natans	LC	
Aponogeton satarensis *	EN -B1ab(ii,iii) +2ab(ii,iii)	
Aponogeton undulatus	LC	
Family Potamogetonaceae		
Potamogeton crispus	LC	
Potamogeton nodosus	LC	
Potamogeton octandrus	LC	
Potamogeton perfoliatus	LC (draft)	
Potamogeton pusillus	LC	
Stuckenia pectinata	LC	
Order Typhales	1	
Family Typhaceae		
Typha angustifolia	LC	
Typha domingensis	LC	
Typha elephantina	LC	

Flowering Plants – Dicotyledons		
Order Apiales		
Family Umbelliferae		
Centella asiatica	LC (draft)	
Hydrocotyle conferta *	EN -B2ab(ii,iii)	

Hudroactula invanian	
Hydrocotyle javanica	LC
Hydrocotyle sibthorpioides	LC
Order Asterales Family Compositae	
Acmella paniculata	LC
Anaphalis beddomei *	VU -B1ab(ii,iii)
Anaphalis leptophylla *	VU -B2ab(ii,iii)
Anaphalis wightiana *	VU -B2ab(ii,iii)
Caesulia axillaris	LC (draft)
Centipeda minima	
Cyathocline lutea *	LC
Cyathocline purpurea	LC
Emilia zeylanica	LC
Enydra fluctuans	LC (draft)
Epaltes divaricata	
Grangea maderaspatana	LC (draft)
Gynura travancorica *	NT
Moonia heterophylla	NT
Notonia shevaroyensis *	VU -B1ab(iii);D2
Senecio wightii	
Sphaeranthus africanus	LC
Sphaeranthus amaranthoides	LC
Sphaeranthus indicus	LC
Wedelia chinensis	LC (draft)
Order Campanulales	
Family Campanulaceae	
Lobelia alsinoides	LC
Lobelia zeylanica	LC
Sphenoclea zeylanica	LC
Order Capparales	·
Family Cruciferae	
Nasturtium officinale	LC (draft)
Rorippa indica	LC (draft)
Order Caryophyllales	
Family Amaranthaceae	
Alternanthera sessilis	LC
Order Euphorbiales	
Family Euphorbiaceae Homonoia retusa *	LC
Homonoia riparia Order Fabales	LC
Family Leguminosae	
Aeschynomene aspera	LC (draft)
Aeschynomene indica	LC (draft)
Crotalaria quinquefolia	-
Geissaspis cristata	LC
Geissaspis tenella *	LC


Neptunia oleracea	LC (draft)	
Neptunia plena	LC	
Parochetus communis	LC	
Sesbania bispinosa	LC	
Sesbania javanica	LC (draft)	
Sesbania procumbens *	DD (draft)	
Smithia blanda	LC	
Smithia hirsuta *	LC	
Smithia sensitiva	LC	
Order Lamiales		
Family Labiatae		
Clinopodium capitellatum *	LC	
Pogostemon salicifolius *	LC	
Pogostemon stellatus	LC	
Pogostemon wightii *	LC	
Scutellaria barbata	LC (draft)	
Order Myrtales		
Family Lythraceae		
Ammannia auriculata	LC	
Ammannia baccifera	LC	
Ammannia multiflora	LC	
Ammannia nagpurensis *	EN -B1ab(ii,iii) +2ab(ii,iii)	
Ammannia octandra	LC	
Ammannia senegalensis	LC	
Nesaea brevipes	LC	
Nesaea prostrata	LC	
Rotala cookii *	EN -B1ab(i,iii) +2ab(i,iii)	
Rotala densiflora	LC	
Rotala fimbriata *	LC	
Rotala floribunda *	VU -B1ab(iii) +2ab(iii)	
Rotala illecebroides *	LC	
Rotala indica	LC	
Rotala macrandra *	LC	
Rotala malabarica *	CR -B1ab(i,ii,iii)	
	+2ab(i,ii,iii)	
Rotala malampuzhensis *	LC	
Rotala mexicana	LC	
Rotala occultiflora	LC	
Rotala ritchiei *	EN -B1ab(ii,iii) +2ab(ii,iii)	
Rotala rosea	LC	
Rotala rotundifolia	LC	
Rotala serpyllifolia	LC	
Rotala verticillaris	LC	
Family Onagraceae		
Ludwigia adscendens	LC (draft)	
Ludwigia hyssopifolia	LC	
Ludwigia octovalvis	LC (draft)	

Ludwigio poroppio	LC
Ludwigia perennis	-
Ludwigia prostrata Family Trapaceae	LC (draft)
Trapa natans	LC
Order Nepenthales	
Family Droseraceae	
Drosera burmanni	LC
Drosera indica	LC
Drosera peltata	
Order Nymphaeales	20
Family Ceratophyllaceae	
Ceratophyllum demersum	LC (draft)
Ceratophyllum muricatum	LC (draft)
Family Nymphaeaceae	
Nymphaea nouchali	LC
Nymphaea pubescens	
2 1 1	
Nymphaea rubra	
Order Podostemales Family Podostemaceae	
Cladopus hookeriana *	LC
Dalzellia zeylanica	
Dicraeia dichotoma *	NT
Farmeria indica *	EN -B1ab(i,ii,iii)
T annena mulca	+2ab(i,ii,iii)
Farmeria metzgerioides	VU -B2ab(iii,v)
Hydrobryopsis sessilis *	
Indotristicha ramosissima *	LC
Indotristicha tirunelveliana *	NT
Podostemum munnarense *	EN -B1ab(iii) +2ab(iii)
Polypleurum dichotomum *	
Polypleurum filifolium *	VU -B1ab(iii,v) +2b(i,iii,v)
Polypleurum stylosum	
Polypleurum wallichii	LC
Willisia selaginoides *	VU -B1ab(i,ii,iii)
Zeylanidium barberi *	LC
Zeylanidium lichenoides	
Zeylanidium olivaceum	
Zeylanidium subulatum	
Order Polygonales	
Family Polygonaceae	
Persicaria attenuata *	LC
Persicaria barbatum	LC (draft)
Persicaria dichotoma	LC
Persicaria glabrum	LC (draft)
Persicaria hydropiper	LC (draft)
	LC (draft)
Persicaria lapathifolia	(C(draff)

Persicaria strigosa	LC
Polygonum plebeium	LC
Polygonum pubescens	
Order Ranunculales	
Family Ranunculaceae	
Ranunculus sceleratus	LC (draft)
Order Scrophulariales	
Family Acanthaceae	
Acanthus ilicifolius	LC
Hygrophila balsamica	LC
Hygrophila difformis	LC
Hygrophila heinei *	LC
Hygrophila madurensis *	CR -B1ab(ii,iii)
, , , , , , , , , , , , , , , , , , ,	+2ab(ii,iii);D
Hygrophila pinnatifida	LC
Hygrophila polysperma	LC
Hygrophila quadrivalvis	LC
Hygrophila salicifolia	LC
Hygrophila schulli	LC
Hygrophila serpyllum *	DD (draft)
Justicia quinqueangularis	LC
Family Lentibulariaceae	
Utricularia albocaerulea *	VU -B1ab(i,ii,iii)
	+2ab(i,ii,iii)
Utricularia aurea	LC
Utricularia australis	LC
Utricularia bifida	LC
Utricularia caerulea	LC (draft)
Utricularia cecilii *	EN -B1ab(i,ii,iii)
	+2ab(i,ii,iii)
Utricularia exoleta	LC (draft)
Utricularia foveolata	LC
Utricularia gibba	LC
Utricularia graminifolia	DD
Utricularia hirta	LC (draft)
Utricularia lazulina *	LC
Utricularia minutissima	LC (draft)
Utricularia polygaloides	LC (draft)
Utricularia praeterita *	NT
Utricularia reticulata	LC
Utricularia scandens	LC (draft)
Utricularia smithiana *	LC
Utricularia stellaris	LC (draft)
Utricularia striatula	LC (draft)
Utricularia uliginosa	LC (draft)
-	

Family Scrophulariaceae	
Bacopa floribunda	LC
Bacopa hamiltoniana	LC
Bacopa monnieri	LC
Bonnayodes limnophiloides *	DD
Centranthera indica	LC
Centranthera tranquebarica	LC
Dopatrium junceum	LC (draft)
Dopatrium lobelioides *	DD (draft)
Dopatrium nudicaule	LC
Glossostigma diandrum	LC
llysanthes rotundifolia	LC
Limnophila aromatica	LC (draft)
Limnophila chinensis	LC
Limnophila connata	LC
Limnophila glandulifera *	DD
Limnophila heterophylla	LC (draft)
Limnophila indica	LC (draft)
Limnophila polystachya	LC
Limnophila repens	LC
Limnophila rugosa	LC (draft)
Limnophila sessiliflora	LC (draft)
Lindernia anagallis	LC
Lindernia antipoda	LC (draft)
Lindernia ciliata	LC
Lindernia crustacea	LC (draft)

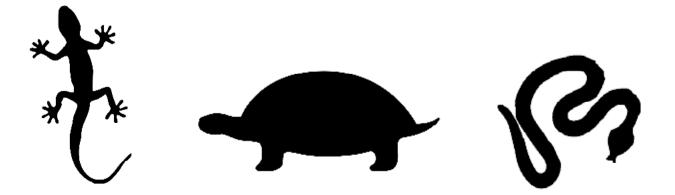
LC		
LC		
EN -B1ab(ii,iii)		
LC (draft)		
EN -B1ab(ii,iii,v)		
+2ab(ii,iii,v)		
LC		
LC (draft)		
LC		
LC (draft)		
LC		
LC (draft)		
LC		
LC (draft)		
LC		
LC		
Family Hydrophyllaceae		
LC		

Reptiles

Reptiles are cold-blooded animals. They lay eggs and their skin is covered with hard, dry scales. Reptiles do not burn as much energy keeping their body worm and as a result they do not eat nearly as much food as a similar sized mammal or other warm-blooded animal.

Snakes, lizards, crocodiles, and turtles are some of the major examples of reptiles.

Snakes are legless, elongated, carnivorous reptiles. They lack eyelids and external ears. Only small percentage of these animals are poisonous. Snakes, if they eat large prey, can go weeks with out needing to eat again.


Lizards are another example of reptile. They are most closely related to snakes, but like snakes, lizards have movable eyelids. Lizards have a small head, short neck, and long body and tail. are similar to snakes but with legs. Some Examples of lizards are Calotes, chameleons, geckos, monitor lizards and skinks.

Crocodiles are semi-aquatic reptiles. Gharial is another example of the same group. These reptiles are carnivores. They are very strong with bodies built for predation including powerful tapering jaws. They are good at hearing and they communicate with a wide range of vocalizations such as grunts, coughs and barks. They bask to regulate their internal temperatures. These are active during night. They look slow but can move very quickly when attacking its prey.

Turtles and tortoises are another group of reptiles. Turtle lives in the water and a tortoise lives on land but both lay eggs on the ground. A tortoise has a dome shaped shell with short and sturdy feet. It's legs are bent, instead of being straight and directly under the body. A turtle has a flat streamlined shell with webbed feet with long claws. Turtle is estimated to live between 20-30 years while tortoises live more about 100 years and some individuals are known to have lived longer than 150 years.

About 265 species of reptiles have now been recorded from the Western Ghats of India with 66% of these species being completely restricted to this distinct mountain range.

The status of endemic reptiles of Western Ghats are listed here:

Reptiles of Western Ghats (Endemics)

Family: Agamidae	
Calotes aurantolabium	DD
Calotes ellioti	LC
Calotes grandisquamis	LC
Calotes nemoricola	LC
Calotes rouxii	LC
Draco dussumieri	LC
Otocryptis beddomii	EN B1ab(iii)
Psammophilus blanfordianus	LC
Psammophilus dorsalis	LC
Salea anamallayana	LC
Salea horsfeldi	LC
Family: EUBLEPHARIDAE	
Eublepharis fuscus	LC
Family: GEKKONIDAE	
Calodactylodes aureus	LC
Cnemaspis australis	DD
Cnemaspis beddomei	DD
Cnemaspis goaensis	EN B1ab(iii)
Cnemaspis gracilis	LC
Cnemaspis heteropholis	NT
Cnemaspis indica	VU B1ab(iii)
Cnemaspis indraneildasi	VU B1ab(iii)
Cnemaspis jerdonii	VU B1ab(iii)
Cnemaspis kolhapurensis	DD
Cnemaspis littoralis	DD
Cnemaspis monticola	DD
Cnemaspis mysoriensis	LC
Cnemaspis nairi	NT
Cnemaspis nilagrica	DD
Cnemaspis ornata	NT
Cnemaspis otai	VU D2
Cnemaspis sisparensis	NT
Cnemaspis wynadensis	EN B1ab(iii)
Cnemaspis yercaudensis	LC
Cyrtodactylus nebulosus	LC
Geckoella albofasciatus	LC
Geckoella collegalensis	LC
Geckoella deccanensis	LC
Geckoella jeyporensis	CR B1ab(iii)
Hemidactylus aaronbaueri	LC
Hemidactylus albofasciatus	VU B1ab(iii)
Hemidactylus anamallensis	NT
Hemidactylus giganteus	LC

Hemidactylus gracilis	LC
	LC
Hemidactylus graniticolus	
Hemidactylus gujuratensis	VU D2
Hemidactylus maculatus	LC
Hemidactylus porbadarenensis	DD
Hemidactylus prashadi	LC
Hemidactylus reticulatus	LC
Hemidactylus satarensis	VU D2
Hemidactylus treutleri	LC
Hemiphyllodactylus aurantiacus	LC
Family: LACERTIDAE	1
Ophisops microlepis	LC
Family: SCINCIDAE	
Barkudia insularis	DD
Barkudia melanosticta	DD
Chalcides pentadactylus	DD
Eurylepis poonaensis	EN B1ab(iii)
Eutropis allapallensis	LC
Eutropis bibronii	DD
Eutropis gansi	DD
Eutropis innotata	DD
Eutropis nagarjuni	NT
Eutropis trivittata	LC
Kaestlea beddomei	LC
Kaestlea bilineata	LC
Kaestlea laterimaculata	VU B1ab(iii)
Kaestlea palnica	DD
Lygosoma ashwamedhi	VU B1ab(iii)
Lygosoma goaensis	DD
Lygosoma guentheri	LC
Lygosoma lineata	LC
Lygosoma pruthi	DD
Lygosoma vosmaeri	DD
Ristella beddomii	LC
Ristella guentheri	DD
Ristella rurkii	DD
Ristella travancorica	DD
Family: COLUBRIDAE	
Ahaetulla dispar	NT
Ahaetulla perroteti	EN B1ab(iii)
Boiga dightoni	DD
Coluber bholanathi	DD
Coluber gracilis	DD
Coronella brachyura	LC

Den des la schiel e schield	
Dendrelaphis ashoki	LC
Dendrelaphis chairecacos	DD
Dendrelaphis girii	LC
Dendrelaphis grandoculis	LC
Dryocalamus gracilis	DD
Elachistodon westermanni	LC
Lycodon flavomaculatus	LC
Lycodon travancoricus	LC
Oligodon affinis	LC
Oligodon brevicauda	VU B1ab(iii)
Oligodon nikhili	DD
Oligodon travancoricus	DD
Oligodon venustus	LC
Rhabdops olivaceus	LC
Family: ELAPIDAE	
Bungarus fasciatus	LC
Calliophis beddomei	DD
Calliophis nigriscens	LC
Family: GERRHOPILIDAE	
Gerrhopilus beddomii	DD
Gerrhopilus tindali	DD
Family: NATRICIDAE	
Amphiesma beddomei	LC
Amphiesma monticola	LC
Family: PSAMMOPHIIDAE	
Psammophis longifrons	LC
Family: TYPHLOPIDAE	
Grypotyphlops acutus	LC
Typhlops exiguus	DD
Typhlops pammeces	LC
Typhlops thurstonii	DD
Family: UROPELTIDAE	
Brachyophidium rhodogaster	LC
Melanophidium bilineatum	VU B1ab(iii)
Melanophidium punctatum	LC
Melanophidium wynaudense	LC
Platyplectrurus madurensis	EN B1ab(iii)+2ab(iii)
Platyplectrurus trilineatus	DD
Plectrurus aureus	DD
Plectrurus canaricus	DD
Plectrurus guentheri	DD
Plectrurus perroteti	LC
Rhinophis fergusonianus	DD
Rhinophis sanguineus	LC
Rhinophis travancoricus	EN B1ab(iii)+2ab(iii)
Teretrurus sanguineus	LC

Uropeltis arcticeps	LC
Uropeltis beddomii	DD
Uropeltis bicatenata	NT
Uropeltis broughami	DD
Uropeltis ceylanicus	LC
Uropeltis dindigalensis	DD
Uropeltis ellioti	LC
Uropeltis liura	DD
Uropeltis macrolepis	LC
Uropeltis macrorhynchus	DD
Uropeltis maculatus	DD
Uropeltis myhendrae	DD
Uropeltis nitidus	DD
Uropeltis ocellatus	LC
Uropeltis petersi	DD
Uropeltis phipsonii	VU B1ab(iii)
Uropeltis pulneyensis	LC
Uropeltis rubrolineatus	LC
Uropeltis rubromaculatus	LC
Uropeltis smithi	NT
Uropeltis woodmasoni	LC
Family: VIPERIDAE	
Peltopelor macrolepis	NT
Trimeresurus gramineus	LC
Trimeresurus gramineus Trimeresurus malabaricus	LC LC
·	
Trimeresurus malabaricus	LC
Trimeresurus malabaricus Trimeresurus strigatus	LC
Trimeresurus malabaricus Trimeresurus strigatus Family: XENODERMATIDAE	LC LC
Trimeresurus malabaricus Trimeresurus strigatus Family: XENODERMATIDAE Xylophis captaini	LC LC LC

Appendix 4

Major Rivers of Western Ghats

No.	Name of the river	Districts/ States in which river basin is located	Length (km)
1	Manjeswaram	Kasargod	15
2	Uppala	Kasargod	50
3	Shiriya	Kasargod	67
4	Mogral	Kasargod	34
5	Chandragiri	Kasargod	105
6	Chittari	Kasargod	25
7	Nileswaram	Kasargod, Kannur	46
8	Kariangode	Kasargod, Kannur	64
9	Kavvayi	Kasargod, Kannur	31
10	Peruvamba	Kasargod, Kannur	51
11	Ramapuram	Kasargod, Kannur	19
12	Kuppam	Kannur	82
13	Valapattanam	Kannur	110
14	Anjarakandy	Kannur	40
15	Thalasseri	Kannur	28
16	Mahe	Kannur, Kozhikode	54
17	Kuttiyadi	Kozhikode	74
18	Korapuzha	Kozhikode	40
19	Kallayi	Kozhikode	40
20	Chaliyar	Kozhikode, Malappuram, Wayanad	169
21	Kadalundi	Malappuram, Palakkad	130
22	Tirur	Malappuram	48
23	Bharathapuzha	Palakkad, Malappuram, Thrissur	209
24	Keecheri	Thrissur	51
25	Puzhakkal	Thrissur	29
26	Karuvannur	Thrissur	40
27	Chalakkudy	Thrissur, Palakkad, Ernakulam	130
28	Periyar	Idukki, Ernakulam	244
29	Muvattupuzha	Ernakulam, Kottayam	121
30	Meenachil	Kottayam	78
31	Manimala	Kottayam, Pathanamthitta	90
32	Pamba	Pathanamthitta, Idukki, Alappuzha	176
33	Achenkoil	Pathanamthitta, Idukki, Alappuzha	128
34	Pallikal	Kollam, Pathanamthitta, Trivandrum	42

Rivers of Kerala

35	Kallada	Kollam, Pathanamthitta, Trivandrum	121
36	Ithikkara	Kollam, Trivandrum	56
37	Ayroor	Kollam, Trivandrum	17
38	Vamanapuram	Kollam, Trivandrum	88
39	Mamom	Kollam, Trivandrum	27
40	Karamana	Trivandrum	68
41	Neyyar	Trivandrum	56
	East Flowing Rive	rs	
42	Kabani	Kerala, Karnataka, Tamil Nadu	230
43	Bhavani	Kerala, Tamil Nadu	217
44	Pambar	Kerala, Tamil Nadu	-

Rivers of Tamil Nadu

No.	Name of the river	Districts/States in which river flows	Length (km)
1	Tamiraparani	Tirunelveli	125
2	Pachaiyar	Tirunelveli	32
3	Korayar	Tirunelveli	-
4	Chittar	Tirunelveli	80
5	Aluthakanniar	Tirunelveli	10
6	Aintharuviar	Tirunelveli	-
7	Jambunathi	Tirunelveli	-
8	Ramanathi	Tirunelveli	14
9	Gadananathi or Karunaiyar	Tirunelveli	18*
10	Hanumanathi	Tirunelveli	10*
11	Karuppanathi	Tirunelveli	27*
12	Gundar	Virudhunagar, Tirunelveli	28*
13	Mottaiyar	Tirunelveli	-
14	Manimuthar	Tirunelveli	9
15	Nambiyar	Tirunelveli	45
16	Karunaiyar or Karuvenniraiyar	Tirunelveli	30
17	Vadamalaiyaru	Tirunelveli	-
18	Kottamalaiyaru	Tirunelveli	-
19	Vaigai	Madurai, Ramanathapuram	190
20	Kaveri	Karnataka, Tamil Nadu	765
21	Paiaru (EG)	Thiruvannamalai, Vellore, Chengelpet	368
22	Thenpannai (EG)	Salem, Cuddalore, Villupuram	400
23	Vellaru (EG)	Salem, Trichy	215
24	Palar (348 km)	Karnataka, Andhra Pradesh, Tamil Nadu	222
25	Noyyal	Coimbatore, Tiruppur	180

* To ascertain the exact length of the river

No.	Name of the river	State(s) in which the river flows	Length (km)
	East Flowing Rivers		
1	Kaveri (765 km)	Karnataka, Tamil Nadu, Puducherry	320
2	Krishna (1400 km)	Maharashtra, Karnataka, Andhra Pradesh	704
3	Tungabhadra	Karnataka	293
4	Hemavati	Karnataka	245
5	Palar (348 km)	Karnataka, Andhra Pradesh, Tamil Nadu	93
6	Ghataprabha	Maharashtra, Karnataka	283
7	Pennar	Karnataka, Andhra Pradesh	597
8	Malaprabha	Karnataka	304
9	Shimsha	Karnataka	221
10	Kabani	Kerala, Karnataka	230
11	Honnuhole	Karnataka	-
12	Manjira	Maharashtra, Karnataka, Andhra Pradesh	724
13	Bhima	Maharashtra, Karnataka, Andhra Pradesh	861
	West Flowing Rivers	5	-
14	Netravati	Karnataka	103
15	Sharavathi	Karnataka	128
16	Kali	Karnataka	184
17	Kubja	Karnataka	-
18	Chakra	Karnataka	52
19	Varahi	Karnataka	66
20	Kumaradhara	Karnataka	-

Rivers of Karnataka

Rivers of Goa

No.	Name of the river	State(s) in which river flows	Length (km)
1	Baga	Goa	10
2	Chapora	Maharashtra, Goa	32
3	Galgibag	Goa	14
4	Mandovi	Goa, Karnataka	77
5	Sal	Goa	40
6	Talpona	Goa	32
7	Terekhol	Maharashtra, Goa	26
8	Zuari	Goa	145
9	Saleri	Goa	-

No.	Name of the river	State(s) in which river flows	Length (km)
	East-flowing Rivers		
1	Godavari (1465 km)	Maharashtra, Andhra Pradesh	545
2	Wainganga (Satpura range)	Madhya Pradesh, Maharashtra	609
3	Wardha (Satpura range)	Madhya Pradesh, Maharashtra	528*
4	Penganga	Maharashtra and border of Andhra Pradesh	676
5	Manjira	Maharashtra, Karnataka, Andhra Pradesh	724
6	Bhima	Maharashtra, Karnataka, Andhra Pradesh	861*
7	Nira	Maharashtra	203*
8	Sina	Maharashtra	313*
9	Krishna (1400 km)	Maharashtra, Karnataka, Andhra Pradesh	232
10	Koyna	Maharashtra	130*
11	Panchganga	Maharashtra	81*
12	Dudhganga	Maharashtra	103
	West-flowing Rivers		
13	Tapi (Satpura range) (724 km)	Madhya Pradesh, Maharashtra, Gujarat	239
14	Purna (Satpura range) (334 km)	Madhya Pradesh, Maharashtra	142
15	Girna	Maharashtra	260
16	Vaitarna	Maharashtra	171
17	Ulhas	Maharashtra	145
18	Savitri	Maharashtra	99
19	Sastri	Maharashtra	90
20	Vashishthi	Maharashtra	48
21	Patalganga	Maharashtra	72*
22	Pili	Maharashtra	-
23	Nag	Maharashtra	-
24	Kundalika	Maharashtra	-
25	Daman Ganga	Maharashtra, Gujarat	-
26	Surya	Maharashtra	-
27	Karli	Maharashtra	-
28	Narmada (Satpura and Vind- hya ranges) (1312 km)	Madhya Pradesh, Maharashtra, Gujarat	-

Rivers of Maharashtra

* To ascertain the exact length of the river

Appendix 5

Some Wildlife and Water laws in India

India has many laws adhering to wildlife and water resources but not many laws concerning freshwater biodiversity conservation. It is very important to be aware of these laws. We have given a short write-up on five such laws.

Indian Fisheries Act, 1897

1. Prohibits destructive fishing practices such as dynamiting, poisoning.

2. Protection of fish in selected waters by rules of State Government.

Some states have a state level fisheries Act such as Kerala, Karnataka & Maharashtra. Kerala: Inland fisheries Act, 2010

Karnataka: Karnataka Inland Fisheries (Conservation, Development and Regulation) Act, 1996

Maharashtra: Maharashtra Act of 1961

Wildlife Protection Act, 1972

1. Defines wildlife sanctuaries, National Parks, tiger reserves, community and conservation reserves.

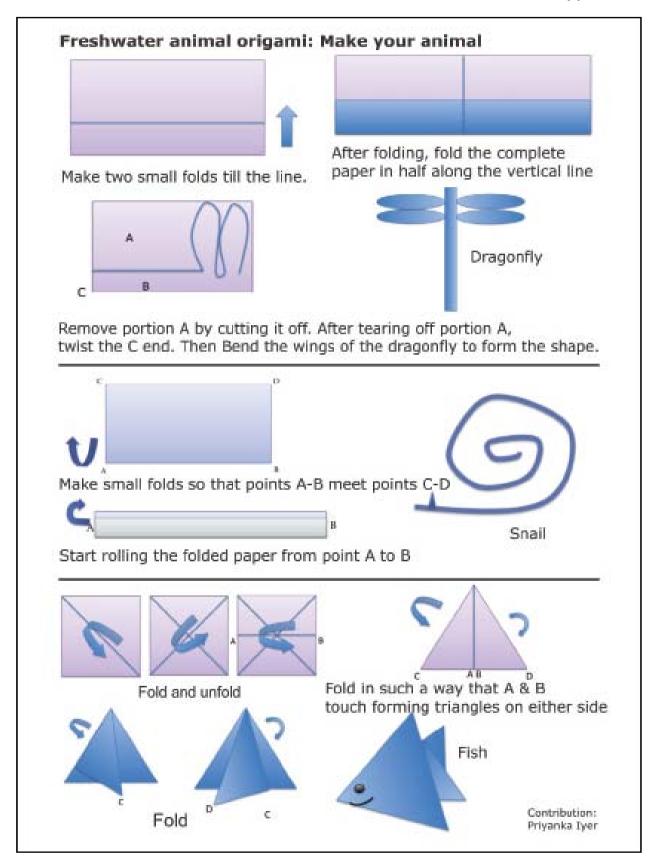
2. Has six schedules listing animals that are protected.

3. Provides rights to local communities and tribals to access non-timber forest produce for non-commercial use.

Biological Diversity Act, 2002

1. Addresses all biodiversity found in India and states that appropriate management measure need to be taken for threatened species and collection should be prohibited or regulated.

2. All the state biodiversity boards which have the biodiversity register for local people follow this Act.


Wetland Rules 2009

1. Classifies wetlands into three categories based on size, habitat and climatic condition of the area and informs of the regulatory authority responsible for the wetlands belonging to each of the categories.

2. Explains specific activities that are permitted and not permitted within a wetland depending on which of the three categories it falls under.

National Water Policy, 2012

 A general act that states the importance of water for mankind to survive, present status of water & water use in India and the gaps in management of water resources.
 Also, states what is needed to secure the future of our water resources.

Appendix 7

Energizer games

Body writing

Ask participants to write their name in the air with a part of their body. They may choose to use Index finger, for example, or toe. Continue in this way, until everyone has written his or her name with several body parts.

Threat Wink

Before the game starts, ask someone to be the 'the threat' and ask them to keep their identity a secret. Explain that one person among the group is the 'threat' or 'killer' and they can kill people (species) by winking at them. Everyone then walks around the room in different directions, keeping eye contact with everyone they pass. If the killer winks at you, you have to play dead. Everyone has to try and guess who the 'killer' (threat) is.

Lentic (static) and Lotic (Flowing)

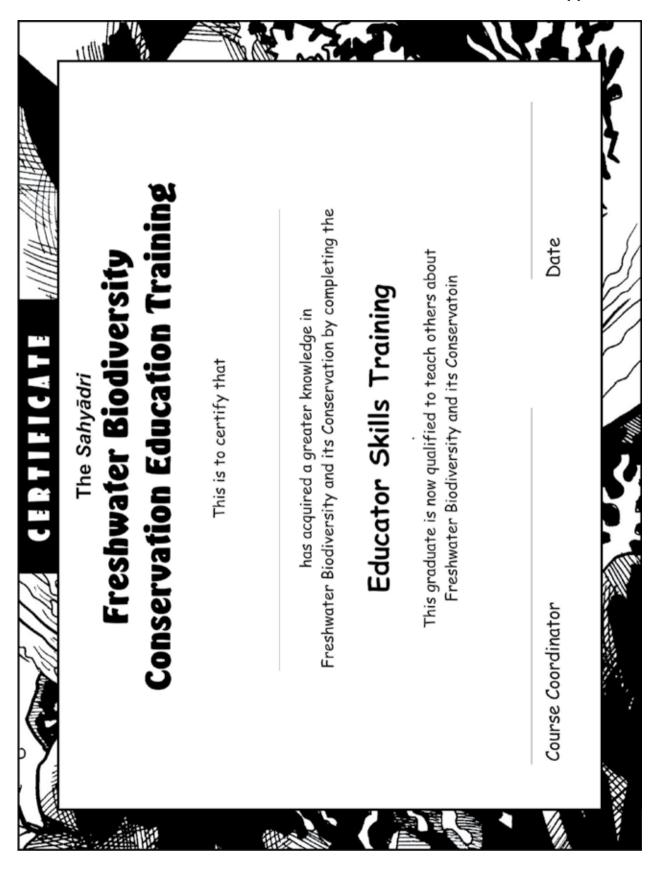
Introduce the word Lentic and Lotic and explain the meaning. When you shout out the word 'Lotic' the group should move around the room, loosely swinging their arms and gently relaxing their heads and necks. After a short while, when you shout out the word 'Lentic', the group must stand still as a statue. All the participants have to instantly adopt, without talking, poses that show what 'Lentic' means. Repeat the exercise several times.

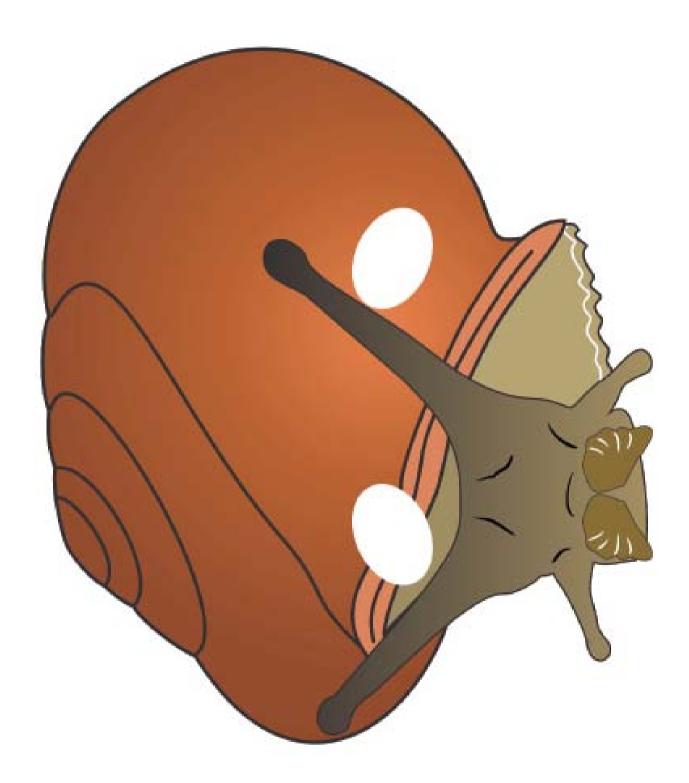
Draaa and dukuto

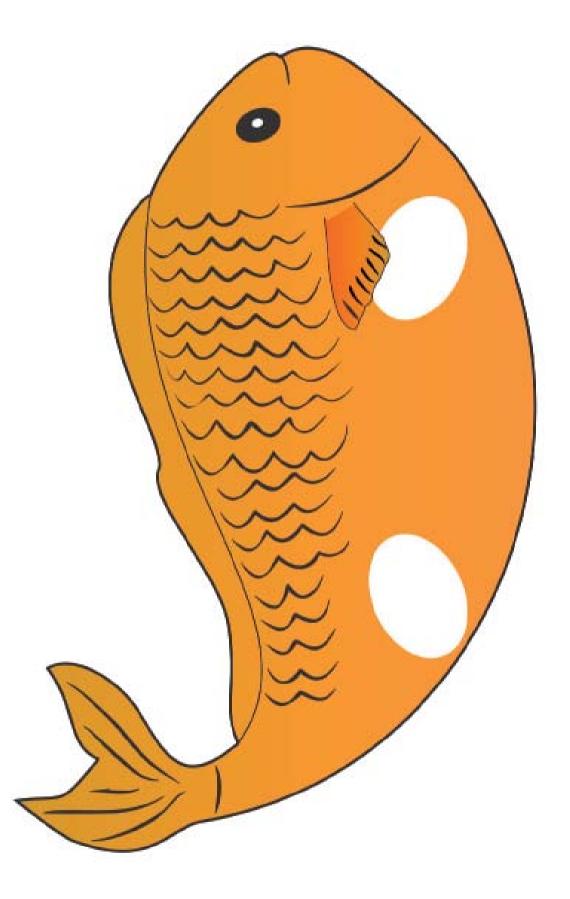
Ask everyone to imagine two dragonflies (freshwater animal). One calls '*draaa*' and the other calls '*dukutu*'. If you call out '*draaa*', all the participants need to stand on their toes and move their elbows out sideways, as if they were a dragonfly flying. If you call out '*dukutu*', everyone has to stay still and not move their wings.

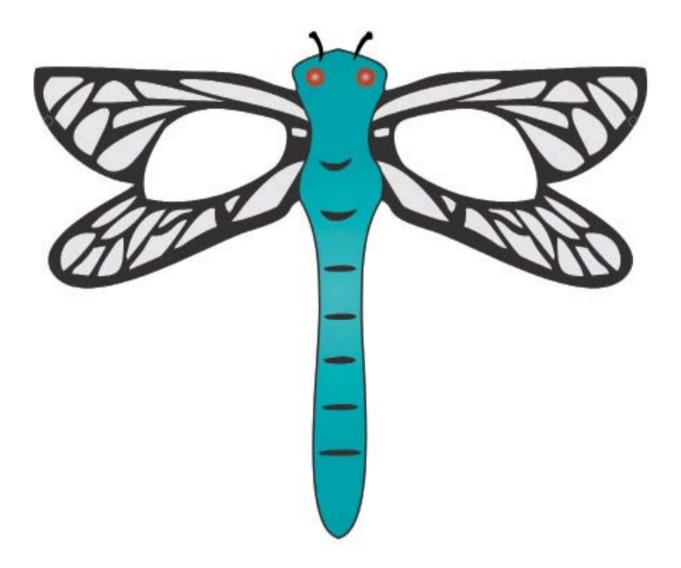
Water and Land

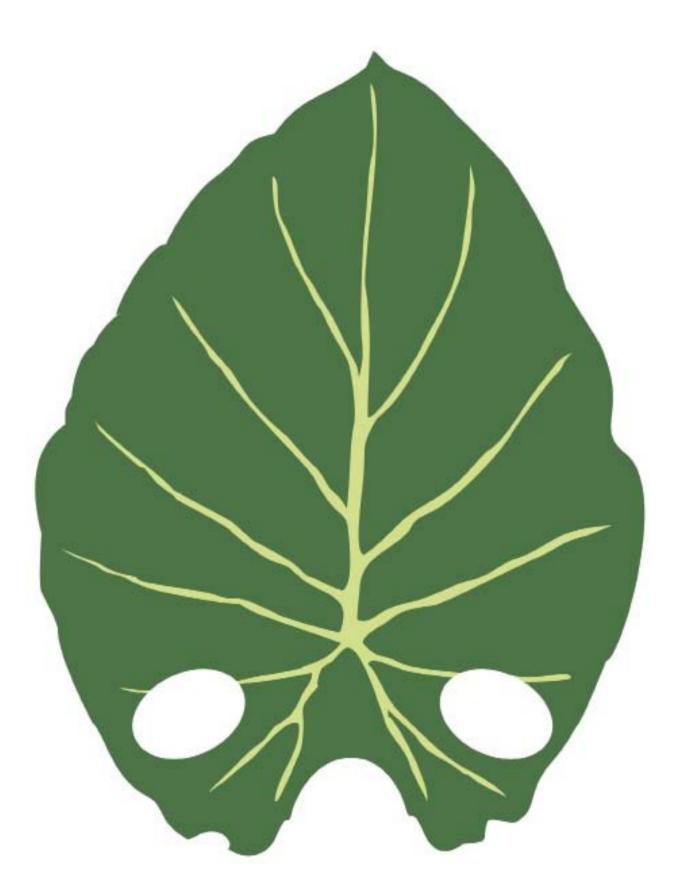
Draw a line representing a waterbody and ask participants to stand behind the line. When you shout "water!", everyone jumps forwards over the line. When you shout "land", everyone jumps backwards from the line. If you shout "land" twice in a row, participants who move have to drop out of the game.

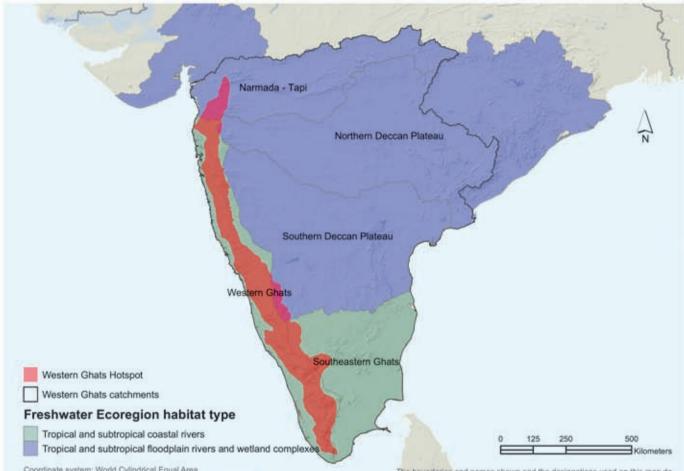

What has changed? (observation skill)


Participants break into pairs. Partners observe one another and try to memorize the appearance of each other. Then one turns their back while the other makes three changes to his/her appearance; for example, putting their watch on the other wrist, removing their glasses, and rolling up their sleeves. The other player then turns around and tries to spot the three changes. The players then switch roles.


Dancing bear


Participants form pairs and are given a sheet of newspaper (double sheet) each. They spread the sheet of newspaper and as music/claps or any other kind of start-stop mechanism is being played, the partners dance on the newspaper without stepping out of the newspaper. Whoever steps out of the paper during the dance is out of the game. When the music stops, the partners must fold the newspaper once and stand on it again. They should dance to the music or claps again when intimated. This should continue such that at every interval between the music/claps, the newspaper should be folded once. The game continues until only one pair of bears is left dancing on the smallest sheet of folded newspaper. Continue playing until they too step out of the paper. This will be an interactive fun-filled game to play.


CRITICAL ECOSYSTEM PARTNERSHIP FUND
PLEDGE CARD
The Sahyadri Freshwater Biodiversity Conservation
I, pledge to practice what I
learned in this training by committing myself to do the following two actions:
1
2
Date My Signature
Name of witness Signature of witness



Notes

Coordinate system: World Cylindrical Equal Area Source: IUCN Western Ghats Freshwater Biodiversity Assessment The boundaries and names shown and the designations used on this map do not imply any official endorsement, acceptance or opinion by IUCN.

