
User Manual
v1.80.2

By Chris Burton

Table of Contents

Introduction 8

Chapter I: The Basics 10

1. Setting up 11

1.1. Installation 12

1.2. Running the demo games 14

1.3. The New Game Wizard 15

1.3.1. Templates 16

1.4. The Game Editor window 18

1.4.1. The Scene Manager 19

1.4.2. The Settings Manager 26

1.4.3. The Actions Manager 28

1.4.4. The Variables Manager 29

1.4.5. The Inventory Manager 30

1.4.6. The Speech Manager 32

1.4.7. The Cursor Manager 33

1.4.8. The Menu Manager 34

1.5. Preparing a 3D scene 35

1.5.1. Adding a PlayerStart 36

1.5.2. Adding visuals 37

1.5.3. Adding colliders and/or a NavMesh 38

1.5.4. Adding cameras 39

1.5.5. Adding interactivity 40

1.6. Preparing a 2D scene 41

1.6.1. Adding a 2D PlayerStart 43

1.6.2. Adding visuals 44

1.6.3. Adding a 2D NavMesh 45

1.6.4. Adding a Sorting Map 46

1.6.5. Adding 2D cameras 49

1.6.6. Adding interactivity 50

1.7. Preparing a 2.5D scene 51

1.7.1. Adding a PlayerStart 52

1.7.2. Adding backgrounds and cameras 53

1.7.3. Adding colliders and/or a NavMesh 55

1.7.4. Adding scene sprites 57

1.7.5. Adding interactivity 58

1.8. Updating Adventure Creator 59

1.9. Project settings 60

2. Input and navigation 61

2.1. Input and navigation overview 62

�2

2.2. Movement methods 63

2.2.1. Point-and-click movement 64

2.2.2. Direct movement 65

2.2.3. First-person movement 66

2.2.4. Drag movement 68

2.2.5. Straight-to-cursor movement 69

2.3. Input methods 70

2.3.1. Mouse and keyboard input 71

2.3.2. Keyboard or controller input 72

2.3.3. Touch-screen input 73

2.4. Pathfinding methods 75

2.4.1. Unity Navigation pathfinding 76

2.4.2. Mesh Collider pathfinding 77

2.4.3. Polygon Collider pathfinding 79

2.4.4. A* 2D pathfinding 82

2.4.5. Custom pathfinding 85

2.5. Cursor locking 86

2.6. Active inputs 87

2.7. Input descriptions 89

2.8. Remapping inputs 93

3. Characters 95

3.1. Creating characters 96

3.1.1. The Character wizard 100

3.1.2. Players 101

3.1.3. Player switching 102

3.1.4. NPCs 103

3.2. Character tracking 104

3.3. Character movement 105

3.3.1. Retro movement 107

3.3.2. Precision movement 108

3.3.3. Custom motion controllers 109

3.4. Character animation 111

3.4.1. Character animation (Mecanim) 112

3.4.2. Character animation (Sprites Unity) 116

3.4.3. Character animation (Sprites Unity Complex) 118

3.4.4. Character animation (Legacy) 121

3.4.5. Custom animation engines 123

3.5. Head animation 124

3.6. Footstep sounds 126

3.7. Character scripting 127

4. Camera perspectives 129

4.1. Cameras overview 130

4.2. Camera types 131

�3

4.2.1. GameCamera 132

4.2.2. GameCamera Animated 134

4.2.3. GameCamera Third-person 135

4.2.4. SimpleCamera 136

4.2.5. GameCamera 2.5D 137

4.2.6. GameCamera 2D 139

4.2.7. GameCamera 2D Drag 141

4.3. Adding custom cameras 142

4.4. Working with VR 143

4.5. Working with Cinemachine 144

4.6. Overriding perspective 146

4.7. Camera effects 147

4.8. Disabling the MainCamera 149

4.9. Camera scripting 150

5. Interactions 151

5.1. Interaction methods 152

5.1.1. Context sensitive mode 154

5.1.2. Choose Interaction Then Hotspot 156

5.1.3. Choose Hotspot Then Interaction 159

5.1.4. Custom interaction systems 163

5.2. Actions and ActionLists 167

5.2.1. Standard Actions 170

5.2.2. Custom Actions 201

5.2.3. The ActionList Editor 203

5.2.4. Generating ActionLists through script 206

5.3. Hotspots 208

5.4. Hotspot detection 211

5.4.1. Mouse-over detection 212

5.4.2. Player-vicinity detection 213

5.5. Cutscenes 214

5.6. Skipping cutscenes 216

5.7. Background logic 218

5.8. Triggers 219

5.9. Conversations 221

5.10. ActionList assets 224

5.11. Arrow prompts 227

5.12. Sounds 228

5.13. Music 230

5.14. Ambience tracks 231

5.15. Containers 232

5.16. ActionList parameters 233

5.17. Draggable objects 236

5.17.1.Drag tracks 238

5.18. PickUp objects 241

5.19. Custom cursors 243

�4

5.19.1.Unity UI Cursor rendering 245

5.20. Quick-time events 246

5.21. Interaction scripting 247

6. Inventory 250

6.1. Inventory items overview 251

6.2. Inventory interactions 254

6.3. Managing inventory at runtime 258

6.4. Crafting 259

6.5. Inventory properties 260

6.6. Scene items 262

6.7. Exporting inventory data 263

6.8. Documents 265

6.9. Objectives 267

6.9.1. Sub-objectives 269

6.10. Inventory scripting 271

7. Variables 274

7.1. Variables overview 275

7.2. Managing variables at runtime 278

7.3. Variable linking 279

7.3.1. Linking with Playmaker Variables 280

7.3.2. Linking with custom scripts 281

7.4. Variable presets 282

7.5. Timers 283

7.6. Exporting variables 284

7.7. Scene attributes 285

7.8. Variable scripting 286

8. Miscellaneous components 287

8.1. Highlight 288

8.2. Shapeable 290

8.3. Moveable 291

8.4. Parallax 2D 292

8.5. Limit Visibility 293

8.6. Align To Camera 294

8.7. Particle Switch 295

8.8. Light Switch 296

8.9. Sprite Fader 297

8.10. Tint maps 298

8.11. ActionList Starter 299

8.12. Set Interaction Parameters 300

8.13. Set Inventory Interaction Parameters 301

8.14. Set Trigger Parameters 302

8.15. Set Drag Parameters 303

�5

8.16. Auto Correct UI Dimensions 304

8.17. Link Variable To Animator 305

8.18. Survive Scene Changes 306

Chapter II: Advanced Features 307

9. Saving and loading 308

9.1. Saving and loading overview 309

9.1.1. Saving scene objects 312

9.1.2. Saving asset references 317

9.1.3. Saving example: The 3D Demo 319

9.2. Autosaving 320

9.3. Options data 321

9.4. Loading screens 322

9.5. Importing saves from other games 323

9.6. Save profiles 324

9.7. Custom save labels 326

9.8. Custom save data 327

9.9. Custom save formats and handling 328

9.10. Save-game file management 330

9.11. Save scripting 331

10. Speech and text 334

10.1. Gathering game text 335

10.2. Speech audio 337

10.3. Displaying subtitles 341

10.4. Script sheets 342

10.5. Translations 344

10.5.1.Custom translatables 347

10.5.2.Localization integration 348

10.6. Text tokens 349

10.6.1.Speech event tokens 352

10.6.2.Text event tokens 354

10.7. Lip syncing 356

10.8. Facial expressions 361

10.9. External dialogue tools 362

10.10. Speech scripting 363

11. Menus 365

11.1. Menus overview 366

11.1.1.Adventure Creator menus 371

11.1.2.Unity UI menus 374

11.2. Menu elements 378

11.3. The default interface 403

11.4. Navigating menus directly 419

11.5. Menu scripting 420

�6

12. Working with Timeline 422

12.1. Timeline integration overview 423

12.2. Timeline playback 424

12.3. AC Timeline tracks 425

12.3.1.Main Camera tracks 426

12.3.2.Camera Fade tracks 427

12.3.3.Speech tracks 428

12.3.4.Character Animation 2D tracks 430

12.3.5.Character Animation 3D tracks 431

12.3.6.Head Turn tracks 432

12.3.7.Shapeable tracks 433

12.4. Timeline scripting 434

Chapter III: Extending functionality 435

13. Integrating new code 436

13.1. Integrations 437

13.2. Custom scripting 440

13.3. Custom events 442

13.4. Integrating other gameplay 444

14. Further considerations 446

14.1. Game debugging 447

14.2. Performance and optimisation 448

14.3. Version control and collaboration 452

�7

Introduction

Adventure Creator, or “AC”, is a toolkit for Unity that can be used to make 2D, 2.5D and

3D adventure games. Navigation, inventory, characters, conversations, cutscenes, saving

and loading and more are all possible - and without coding.

AC also caters to those who are more comfortable writing code, as well as those just

looking to extend the base functionality with some add-on scripts. The full API is

available in the online scripting guide, and user-made scripts are shared on the wiki.

If you're new to Unity, you should get to grips with the basics of the Unity interface first,

since Adventure Creator is tightly integrated into it. Tutorials that teach Unity’s interface

can be found on the official site, while more can be found at unity3d.com/learn.

AC has three demo games available for you to try out: the 2D Demo, the 3D Demo and

the Physics Demo. The source files for the 2D and 3D games come included with AC

itself, while those for Physics game can be downloaded. To run the demo games from

within the Unity Editor, see Running the demo games.

AC has two types of tutorials:

• Text tutorials, which focus on individual aspects and features, and are the quickest way

to get up and running.

• Video tutorials, which focus on the main aspects using practical examples, and are

best for getting a good overview of how AC works.

The video tutorials available are described below:

Making a 2D game

This covers the steps in making a simple point-and-click 2D

game. Since many of the topics are applicable to all games, it

is recommended for all those are getting started.

Recreating Unity's adventure game

Unity made their own adventure game available as a Sample

Project. Here, we take those assets and remake the game

using AC, so this is a good choice if you already know Unity.

Making a 3D game

Here we make a more complex 3D game with direct-control,

Mecanim-driven animation, close-ups and cutscenes. Assets

required to follow along are available on the Downloads page.

�8

http://adventurecreator.org/tutorials/making-3d-game
http://adventurecreator.org/downloads
http://unity3d.com/
http://adventurecreator.org/scripting-guide/
http://adventure-creator.wikia.com/wiki/Adventure_Creator_Wikia
https://unity3d.com/learn/tutorials/topics/interface-essentials/interface-overview
https://unity3d.com/learn
http://adventurecreator.org/games/2d-demo
http://adventurecreator.org/games/3d-demo
http://adventurecreator.org/games/physics-demo
http://adventurecreator.org/files/AdventureCreatorPhysicsDemo.unitypackage
https://www.adventurecreator.org/tutorials/introduction
https://www.adventurecreator.org/tutorials/how-videos
https://adventurecreator.org/tutorials/recreating-unitys-adventure-game
https://assetstore.unity.com/packages/essentials/tutorial-projects/adventure-sample-game-76216
http://adventurecreator.org/tutorials/making-2d-game

Making a 2.5D game

A guide to creating 2.5D games with pre-made backgrounds.

While this tutorial is more focused on a particular game style,

it also covers translations, UI and Navigation.

First-person primer

Here we cover the essentials when it comes to a first-person

puzzle game. This tutorial covers Timeline cutscenes,

interaction logic, scene-switching, and the physics system.

�9

http://adventurecreator.org/tutorials/making-first-person-game
http://adventurecreator.org/tutorials/making-25d-game

Chapter I: The Basics  

�10

1. Setting up  

�11

1.1. Installation

Once purchased, Adventure Creator is installed by importing it from its page on the Unity

Asset Store.

The full package includes both the 2D and 3D Demos. If you prefer to have a “blank”

project without these demos, you can uncheck the Demo and 2D Demo folders when the

Import dialog appears inside Unity.

Once imported, AC will check for the presence of a few inputs and layers that must be

defined in order for it to work. It will then prompt you to auto-create these:

If you would prefer to do this manually, the following Layers must be defined in Unity’s

“Tags and Layers” settings:

• NavMesh

• BackgroundImage

• DistantHotspot

The following Input must also be defined in Unity’s Input settings:

• Menu

�12

https://www.assetstore.unity3d.com/en/#!/content/11896
https://www.assetstore.unity3d.com/en/#!/content/11896

Once installed, you should see Adventure Creator appear as a menu item in the top

toolbar:

If it does not, check the Console window for compilation errors, which may occur if not all

scripts are imported, or if another asset is creating a conflict.

A successful install will also show the About window. This will open when Unity is

launched, but this behaviour can be disabled.

With AC installed, you are now ready to run the demo games, go through tutorial videos,

or open the Game Editor window to start working.

PROTIP: Depending on your chosen play-style, more inputs may need defining. AC

will inform you of any missing inputs that it needs while the game is running in the

Console window, and a list of available inputs can be found in the Settings Manager.
�

NOTE: Be sure to also read the guide to Updating Adventure Creator.
�

PROTIP: By default, AC will be imported into a directory inside the project's Assets

folder named AdventureCreator. It can be moved elsewhere (e.g. to a Package), so

long as its location is updated in the Adventure Creator section of Unity's Project

settings.

�

�13

http://adventurecreator.org/tutorials

1.2. Running the demo games

AC comes included with two demo games – a 3D game and a 2D game – that show off the

basic workflow involved.

To run either of them, choose Adventure Creator → Getting started from the top

toolbar, and then choose the game you wish you run:

Each game made with AC requires its own set of Managers, which are explained in the

next section. While a demo scene is opened, its Managers are temporarily loaded into the

AC Game Editor window. Closing the scene will cause your own Managers to be reappear.

Both demos are played with point-and-click movement, but the 3D Demo is equipped to

also work with Direct and First-person movement. You can pick them apart and modify

them to see how they’re made, and also use the characters to test with in your own game.

You can’t, however, use them in anything you publicly release.  

�14

1.3. The New Game Wizard

The first step of any new project is to create your own set of Managers. This can be done

using the New Game Wizard, found in the top toolbar:

In the window that then appears, click Begin and then New game to get started. You will

then be presented with a series of choices - such as camera perspective and movement

style - that will be used to configure your starting assets.

Based on your choices, the wizard may then present you with a series of optional

Templates to install as well.

On the last page, you will be given a chance to review these details before creation:

Click Create, and your game’s files will be created in a new subfolder in your Project

window. If you opted to also install a sample scene, that will be opened as well.

To begin creating your game, open a new scene and use the Scene Manager to initialise it.  

PROTIP: The choices made in the wizard are mainly there to help you get started: your

Managers can be edited further as needed afterwards.
�

�15

1.3.1. Templates

To help get you up and running more quickly, AC includes a number of Templates that

can extend your game with additional features or behaviour. These can be accessed from

the New Game Wizard, and are filtered based on your earlier choices:

The following Templates are available:

2D sample Player

A sample Player character for 2D games. This uses the Sprites Unity animation engine,

and are equipped with a Hotspot Detector for optional Player-vicinity detection. When

installed, they will be assigned as the default Player in your Settings Manager.

3D sample Player

A sample Player character for 3D games. This uses the Mecanim animation engine, and

are equipped with a Hotspot Detector for optional Player-vicinity detection. When

installed, they will be assigned as the default Player in your Settings Manager.

First-person Player

A sample Player character for First-person games. This uses a custom animation set for

camera motion, and also includes a crouching ability that can be invoked with the Crouch

input button. When installed, they will be assigned as the default Player in your Settings

Manager.

PROTIP: After creating your Managers, you can return to the New Game Wizard and

choose Modify existing to access all Templates without filtering.
�

�16

2D sample scene

A small sample 2D scene, that demonstrates Cutscenes, Polygon Collider pathfinding,

Sorting Maps, 2D GameCameras, Hotspots, Triggers, Conversations and Variables. These

features are commented on in the Console as you play - keep the window open to learn

more about them. When installed, this scene will be opened automatically.

3D sample scene

A small sample 3D scene, that demonstrates Cutscenes, Unity Navigation pathfinding,

GameCameras, Hotspots, Triggers, Conversations and Variables. These features are

commented on in the Console as you play - keep the window open to learn more about

them. When installed, this scene will be opened automatically.

Nine Verbs interface

Replaces part of the default menus to provide a classic 'Nine verbs' interface, in the style

of LucasArts adventure games in the 90s. Because of the extra space needed at the

bottom of the screen, you may wish to lower your GameCamera's vertical offset to better

see the Player.

Graphic options

Provides a 'Graphic options' menu, that can be used to configure the game's resolution,

quality preset and more. Optionally, it can also provide a button to access this inside

your existing Options menu.

Mobile joystick

Provides an on-screen joystick that can be used to control the Player and camera on

mobile devices. Its appearance can be tweaked, and additional buttons added, by editing

the JoystickUI prefab it generates.

TextMesh Pro menus

Converts all Unity UI-based Menus currently in the Menu Manager to use TextMesh Pro

instead. This involves replacing Text components with their TextMesh Pro - Text (UI)

counterpart. TextMesh Pro will need to already be imported into the project via Unity's

Package Manager.

�17

https://docs.unity3d.com/Manual/com.unity.textmeshpro.html
https://docs.unity3d.com/Manual/upm-ui.html

1.4. The Game Editor window

All games made with AC have eight “Managers” - asset files that each control a different

aspect of the project. For example, the Inventory Manager holds all inventory items the

player can pick up:

• Scene Manager

• Settings Manager

• Actions Manager

• Variables Manager

• Inventory Manager

• Speech Manager

• Cursor Manager

• Menu Manager

These Managers are modified via AC’s Game Editor window, which can be accessed from

the top toolbar under Adventure Creator → Editors → Game editor:

At the top of this window are eight tabs - one for each Manager. The currently-selected

Manager, as well as its associated asset file, is listed beneath these tabs:

If you keep this window open when loading either of the demo games, you’ll see that

each demo has its own set of Managers. You can create your own using the New Game

Wizard.  

�18

1.4.1. The Scene Manager

The Scene Manager exposes settings unique to the open scene, and allows for the

handling and creation of AC objects in your Hierarchy. It is this Manager that is used to

convert a “regular” Unity scene into an “AC” one.

A Unity scene is considered to be an “AC” one by the presence of an AC GameEngine in

the Hierarchy. If there is none, the Scene Manager will invite you to organise your scene

objects. This can be done either with a set of folders (empty GameObjects to aid

structure) or without:

Once either is chosen, a GameEngine will be added and the rest of the Scene Manager will

be revealed in the form of five sub-sections:

Scene settings

This is where the scene’s pathfinding method is chosen, as well as where the default

objects such as your starting camera and starting player position are assigned. The

Create button to the right of these fields can be clicked to automatically create and

assign a new prefab.

Scene cutscenes

These are where the scene’s three “automatic” cutscenes are defined. On start will run

whenever the scene begins through natural gameplay, On load will run whenever the

scene is switched to after loading a save game or player-switching, and On variable

�19

change will run whenever a variable is changed using the Variable: Set Action. For more

on Actions, see Actions and ActionLists.

Scene attributes

Scene attributes allow you to create a list of properties about your scenes, and give each

scene different values of those properties. For more, see Scene attributes.

Visibility

A typical scene will consist of Triggers, Hotspots, Markers and other AC objects. This

panel allows you to control their visibility within the Scene window, provided Gizmos are

enabled.

Scene prefabs

This provides a list of objects that you can add to your scene, including cameras,

cutscenes and Hotspots. When an object type is selected, existing objects of that type are

listed above together with a description of what that type does. Double-clicking an icon

creates a new object in the scene.

PROTIP: ActionLists can also be started when a scene begins or loads with the

ActionList Starter component.
�

PROTIP: Each sub-section within a Manager is collapsable by clicking its header. This

is useful when you want to focus only on certain parts.
�

PROTIP: If the Unity Editor is currently in “Prefab Mode”, objects will be added to the

prefab's hierarchy, not the scene.
�

�20

Exactly which prefabs are listed will depending on what Camera perspective your game

uses. The following is a brief run-down of what each prefab type is for:

Camera

GameCamera

The standard camera type for 3D games, which can track a moving target.

GameCamera Animated

A camera that either plays an animation when made active, or positions itself

along a timeline as a target moves along a path.

GameCamera Third-person

A camera that follows a target by keeping the same distance from it at all times,

with the ability to rotate.

SimpleCamera

A camera that has no controls and doesn't move by itself, but can be attached to

a custom camera script to make it compatible with AC.

GameCamera 2D

The standard camera type for 2D games, which can track a moving target. A

“grid-snapping” option causes the camera to move only in discrete steps, which

can be useful when making pixel-art games.

GameCamera 2D Drag

A camera that can be dragged around using the mouse.

TintMap

A texture that covers the scene which is used to tint sprites as they move around.

GameCamera 2.5D

The standard camera type for 2.5D games, which allows for background images

to be placed behind 3D objects.

Background Image

A texture used as a background by 2.5D cameras.

Scene sprite

A sprite used to mask 3D objects in 2.5D games.  

�21

Logic

Arrow prompt

A set of on-screen arrows that the user can interact with to trigger Cutscenes.

Conversation

A selection of dialogue options that the player can make when talking to an NPC.

Container

A collection of inventory items that the player can take from and place into.

Cutscenes

A series of Actions that form a cutscene or logic process.

Dialogue Option

A series of Actions that run when a Conversation’s dialogue option is chosen.

Hotspot

A volume of the screen that the player can interact with in 3D or 2.5D games.

Hotspot 2D

An area of the screen that the player can interact with in 2D games.

Interaction

A series of Actions that run when a Hotspot is interacted with.

Interactive boundary

If assigned to a Hotspot, Draggable or PickUp, a volume in the scene that the

Player must be inside for the Hotspot to be interactive. The Player must have a

Rigidbody and Collider.

Sound

A source of sound effects linked to AC’s sound system.

Trigger

A volume of a 2.5D or 3D scene that runs a series of Actions when some object

passes through it.

Trigger 2D

An area of a 2D screen that runs a series of Actions when some object passes

through it.

Variables

A collection of Variables, which can be used to keep track of logic and progress.

�22

Moveable

Draggable

A 3D physics object that can be dragged around by the cursor either freely or

locked to a track.

PickUp

A 3D physics object that can be picked up, rotated and thrown by the cursor.

Straight Track

A track that locks Draggables to move only along straight lines.

Curved Track

A track that locks Draggables to move only in arcs.

Hinge Track

A track that locks Draggables to only rotate along one axis.

�23

Navigation

Collision Cube

A cube that blocks 3D physics objects or raycasts from passing through it.

Collision Cylinder

A cylinder that blocks 3D physics objects or raycasts from passing through it.

Collision Cube 2D

A box that blocks 2D physics objects or raycasts from passing through it.

Marker

An arrow used to reference a position that a 3D character should have.

Marker 2D

An arrow used to reference a position that a 2D character should have.

PlayerStart

An arrow used to reference the Player’s starting position in 3D games.

PlayerStart 2D

An arrow used to reference the Player’s starting position in 2D games.

Random Marker

A Marker that describes a volume - using either a Box or Sphere Collider - of

which a point will be chosen at random when referenced by the Character: Move

to point Action.

Random Marker 2D

A Marker that describes an area - using either a Box 2D or Polygon Collider - of

which a point will be chosen at random when referenced by the Character: Move

to point Action.

SortingMap

A way of controlling the scale and ordering of sprites as they move around a

scene.

Path

A pre-determined path that character can move along.

NavMesh

A custom mesh that defines the area that character can use when pathfinding in

3D scenes.

�24

NavMesh 2D

A polygon that defines the area that characters can use when pathfinding in 2D

scenes.  

�25

1.4.2. The Settings Manager

The Settings Manager is where the bulk of your game’s project-wide settings are defined

- for example, whether it is 2D or 3D, and how is controlled.

The fields within are interdependent - some may only show if some other combination of

settings are made. This means that only the settings you see are the ones relevant to

your game. Settings can be changed at any time - even during gameplay.

The Settings Manager consists of 15 sub-sections:

Save game settings

Relates to the number and naming of save game files, as well as the ability to

automatically add save components to your scene objects.

Cutscene settings

Allows you define an ActionList asset that runs when the game begins. This is useful if

you want to initialise Variables or some other data regardless of the starting scene.

Character settings

Allows you to define one or more Player prefabs that can be controlled. If Player

switching is allowed, then the Player prefab can be changed during gameplay. This can

be left empty if you don’t need a Player to be visible on-screen.

Interface settings

Relates to how the game is controlled, including the Input method, Movement method

and Interaction method.

Inventory settings

Relates to how inventory items are handled. To define which inventory items can be used

in your game, use the Inventory Manager.

Available inputs

Lists any inputs that your game can make use of, depending on the settings chosen.

Checking Assume inputs are defined? will boost performance, but errors will occur if

any inputs listed are not defined in Unity’s Input settings.

PROTIP: Any Manager field can be changed at runtime through custom scripting. To

modify a field, right-click on the field’s label and choose Copy script variable - you

will then be able to paste a link to the field in your own script or custom Action.
�

�26

Movement settings

Relates to pathfinding and - in the case of point-and-click movement - NavMesh

searching.

Touch-screen settings

If the Input method is set to Touch Screen, then this section will show a number of

options related to how the game plays on a mobile device. For more, see Touch-screen

input.

Camera settings

Allows you to set the game’s perspective, and enforce an aspect ratio. For more, see

Cameras.

Hotspot settings

Relates to the way in which Hotspots are selected and displayed - also see Hotspot

detection.

Audio settings

Allows you to choose whether your game plays audio via standard Audio Sources, or

makes use of Audio Mixer Groups. For more, see Sounds.

Raycast settings

Allows you to define which layers objects are placed on when made active and inactive, as

well as the lengths of Raycasts used to detect Hotspots and other interactive objects.

Scene loading

Relates to the way in which scenes are loaded, and whether or not to use a loading screen

between them. For more, see Loading screens.

Options data

Allows you to set the values of options, such as speech volume and the current language,

without going to the Options Menu in-game - see Options data.

Debug settings

Provides a number of tools for debugging, including the ability to list all active ActionLists

in the Game window, as well as output Action comments to the Console.

�27

1.4.3. The Actions Manager

Actions are the building blocks of AC’s visual scripting system. Each Action performs a

different task, and complex cutscenes and logic can be formed when Actions are chained

together.

The Actions Manager lists all Actions that are available to your project. This includes the

default set that come included with AC, as well as any custom Actions you may have

installed.

It consists of five sub-sections:

ActionList editing settings

This provides a number of control options when working with the ActionList Editor.

Custom Action scripts

This allows you to point to a directory where any custom Actions you may have are

installed. When set, any such Actions found are automatically installed.

Action categories

Lists all available Actions, by category. Clicking on a category reveals all Actions within

that category via the Category sub-section that then appears:

Category

Lists all Actions available in the category selected above. Clicking on an Action displays

the final sub-section with more details about that Action.

Action

Displays information and options about the selected Action. Here, you can set the node

colour of all Actions of this type within the ActionList Editor, disable it, make it the default

(either globally, or for that category), find instances of this Action type in your project.

For a description of each Action included with AC, see Actions and ActionLists.  

PROTIP: Disabling an Action type will prevent it from being available in the selector

field at the top of all Actions, but will not remove existing instances of that type. If a

disabled Action type is found within an ActionList, it will run as normal but cannot be

changed to another.

�

�28

1.4.4. The Variables Manager

Variables are used to implement logic in a game, by allowing you to keep track of

progress or choices made by the player. A game can have two sets of Variables:

• Global, which exist outside of any scene and can be accessed at any time

• Local, which exist in a single scene and cannot be accessed outside of it

For more, see Variables.

The Variables Manager is used to define such Variables and keep track of them during

gameplay. The top of it allows you to choose between viewing Global and Local Variables,

and the following sub-sections appear beneath:

Editor settings

Allows you to see the realtime values of listed Variables during gameplay, as well as filter

lists by name.

Preset configurations

Allows you to manage presets, which allow you to bulk-assign Variable values. For more,

see Variable presets.

Global/Local variables

Shows a list of existing Variables, and allows you create more. Clicking a Variable shows

its properties below.

Global/Local variable properties

Shows the selected Variable’s properties, including label, type and initial value. If preset

configurations exist, preset values can be set here.  

�29

1.4.5. The Inventory Manager

Inventory items are items that can be picked up by the player, and used either on each

other or Hotspots in the scene. For more, see Inventory items.

The Inventory Manager is used to create items, as well as define categories, crafting

recipe and properties. It consists of four tabs:

Items

The Items tab is where the Inventory items are defined, and may be the only tab needed if

your game doesn’t have a complex inventory system. It has three sub-sections:

Global unhandled events

Unhandled events are “fallback” interactions that will run if there is no defined response

when an item is used on something. Each item can have their own set of unhandled

events, but these ones can be used for all items. For more, see Inventory interactions.

Inventory items

Shows a list of existing items, and allows you to create more. When an item is clicked, its

properties are shown below:

Inventory item settings

When an item is selected above, its properties are listed here. Here you can name an

item, choose its graphic, as well as define interactions that run when it is manipulated.

Categories

This tab allows you to create categories, which are a way of grouping Inventory items,

Documents, or Objectives together. Once two or more categories exist, each item can be

assigned one via its properties box.

Crafting

Simple interactions between two items can be defined in the Items tab. However, more

complex interactions can be made in the form of crafting - where multiple items can be

combined on a grid to create another. This tab allows you to manage all recipes that a

Crafting Menu will accept. For more, see Crafting.

�30

Properties

This tab allows you to define properties, which can then be applied to items in the Items

tab. For more, see Inventory properties.

Documents

This tab allows you to define Documents, which are multi-page text blocks that the Player

can read and collect. For more, see Documents.  

�31

1.4.6. The Speech Manager

The Speech Manager is used to control how speech is displayed and heard, as well as

manage translations and script sheets. It consists of five sub-sections:

Subtitles

Relates to how subtitles behave when displayed on-screen. They can be made to scroll,

respond to user clicks, and play audio. The Display time factor field is an important

one: if text does not scroll, it will be used to determine the total display duration of the

subtitle. If text scrolls, or the speech has audio associated with it, then it is used to

determine the display duration after the scrolling/audio.

Speech audio

Relates to the playback of speech files and the way in which they are matches with their

associated speech line. For more, see Audio files.

Lip syncing

Provides a number of options related to automated lip-syncing. For more, see Lip

syncing.

Languages

Allows you to manage the translations that players can choose from while playing. Each

translation can be imported from, and exported to, CSV files for editing. For more, see

Managing translations.

Game text

Lists all of text in your game which can be translated, as well as speech lines that can

make use of speech audio or lip-sync files. The Gather text button is used to search

your project for relevant text - see Gathering game text.  

�32

1.4.7. The Cursor Manager

The Cursor Manager is used to define what graphics the cursor can have, as well as which

icons are available when interacting with Hotspots, NPCs and inventory items. It consists

of seven sub-sections:

Global cursor settings

This provides you with the option to switch between cursor rendering modes, as well as

game-wide cursor behaviour.

Main cursor settings

This is where you choose when a cursor is shown, and what the default cursor looks like.

Walk cursor

This is where you can provide an optional cursor shown when the Player is in “walk

mode”.

Hotspot cursor

This is where you can provide an optional cursor shown when hovering over Hotspots.

This can be overridden by using inventory icons, so that the cursor changes depending on

what interactions are available for a given Hotspot.

Inventory cursor

This provides you with options related to how the cursor changes when dealing with

inventory items.

Interaction icons

This is where interaction icons are defined. An interaction icon can be used as a cursor -

but also placed in Interaction Menus and made to form a Hotspot label (e.g. the “Pick up”

in “Pick up stick”). This works by associating each Hotspot interaction with a given

interaction icon. For more, see Hotspots.

Cutscene cursor

This is where you can provide an optional cursor shown when a cutscene is playing, to

indicate that the player cannot interact with the scene.

�33

1.4.8. The Menu Manager

The Menu Manager is where your game’s user-interface is constructed. The interface

consists of a series of Menus, which can be rendered using either AC’s own system, or

with Unity UI. The default interface, as created by the New Game Wizard, provides you

with a series of Menus that can handle inventory, conversations, options, as well as saving

and loading.

For more on creating your own interface, see Menus. The Menu Manager has five sub-

sections:

Global menu settings

Here you can set global settings such as an Event system prefab (if using Unity UI to

render) and the ability to preview the selected Menu in the Game window (if using AC to

render).

Menus

Lists all Menus used by the game. Here you can select Menus to edit them, and create

new ones.

Menu properties

Shows the properties of the currently-selected Menu. Here you can choose the conditions

for when it is shown, change its appearance, and define ActionLists that run whenever it

is turned on or off.

Menu elements

Lists all Elements present in the currently-selected Menu. Here you can select Elements

to edit them, and create new ones.

Menu element properties

Shows the properties of the currently-selected Element Here you can can change its

appearance and behaviour when the Player interacts with it.

  

PROTIP: Each of the default Menus created by the New Game Wizard work with both

Adventure Creator and Unity UI drawing modes, and you can switch back and forth at

will. It’s recommended that you use AC for prototyping, and then UI for refinement.
�

�34

1.5. Preparing a 3D scene

After creating your Managers with the New Game Wizard, you are ready to begin creating

your scenes. The Game Editor window is best docked in a tall vertical pane when

working.

To begin working in 3D, make sure that your Camera perspective is set to 3D in the

Settings Manager:

You can now change to the Scene Manager, from where you can create the GameObjects

needed for an adventure game.

Creating a scene for a 3D game typically consists of five steps:

• Adding a PlayerStart

• Adding visuals

• Adding colliders and/or a NavMesh

• Adding cameras

• Adding interactivity

The sections below cover each step. For a practical guide to follow along with, see the

Making a 3D game video tutorial.

�35

http://adventurecreator.org/tutorials/making-3d-game

1.5.1. Adding a PlayerStart

With a new scene, the top of the Scene Manager will have two Organise scene objects

buttons: With folders and Without folders:

Both of these buttons will set up your scene to be useable by Adventure Creator – the only

difference is whether or not “helper” folders (empty GameObjects) will also be created to

help keep things organised. As you use the Scene Manager to create Hotspots,

Conversations and other prefabs, it will place them into the relevant folders automatically.

AC makes use of its own MainCamera object for rendering - see Cameras. If it detects

that another camera is present, then it will ask you if you would like to replace it

completely, or convert it into a camera that AC can use.

Once the scene is converted, a blue arrow will be placed at the centre of the scene:

This is a PlayerStart, which is used to give the player a starting position and rotation

when the scene begins. You can see that the Scene Manager has automatically assigned

this as the Default PlayerStart within its Scene Settings panel:

PROTIP: A scene can have multiple PlayerStarts, with each one setting the Player’s

starting position when entering from another scene. The difference with the Default

PlayerStart is that this will be used if the game begins from this scene, or if no more

suitable PlayerStart is found.

�

�36

1.5.2. Adding visuals

We can now dress the scene with geometry and lights, and move the PlayerStart into an

appropriate spot. If you are using scene folders, the _SetGeometry folder is provided for

your scene’s visuals.

You can do this before the previous step, if you prefer.

NOTE: Be careful when placing your geometry’s colliders on the Default layer, as this is

the layer used by interactive objects that the cursor “discovers” by hovering over them.

If another collider on this layer is in between the camera and a Hotspot, it will block

the Raycast - though this can be useful if you want walls to hide interactive objects.

�

�37

1.5.3. Adding colliders and/or a NavMesh

We can now work on allowing our characters to move around. We’ll start with the floor,

which all 3D characters require (unless unaffected by gravity). We can make one either by

using Unity’s own colliders, or the CollisionCube prefab that is listed in the Scene

Manager:

Double-click this prefab type, and a blue cube will be created in the scene. Manipulate its

transforms so that the top face covers the whole ground. This cube won’t be visible

during gameplay - it’s used purely as a “barrier” to prevent characters from falling.

If the Player character uses anything other than point-and-click control to move during

gameplay, colliders will also need to be created for the walls to prevent him from clipping

through the set.

Now we will want a Navigation Mesh, or NavMesh, which marks the area in a scene over

which our characters can move around through pathfinding. In 3D scenes, we can use

either provide a custom mesh or bake one with Unity's own navigation tools. If you

choose to use a custom mesh, be sure to assign it as the Default NavMesh in the Scene

settings.  

PROTIP: The 3D Demo game has wall colliders even though it uses point-and-click

movement. This is so that you can experiment with different movement types in the

scene to see which one suits your own game.
�

�38

1.5.4. Adding cameras

Next come cameras. We can have as many cameras as we choose, but only one default -

which we can automatically create and assign under Scene settings in the Scene

Manager. The standard camera type for 3D games is the GameCamera, which has

controls for moving and turning as it follows a target - which by default is the Player. 3D

games can make use of four camera types, as listed in the prefabs panel:

A description of what each prefab type is can be found in The Scene Manager.

To switch camera at runtime, use the Camera: Switch Action (see Actions and ActionLists).

If multiple PlayerStarts are in a scene, each can be associated with a specific camera from

their Inspector.  

NOTE: A scene can have multiple GameCameras, but only one MainCamera. All

rendering is done through the MainCamera, while the GameCameras are used only for

reference: a MainCamera will copy the transform and camera values of whatever

GameCamera is currently “active”.

�

�39

1.5.5. Adding interactivity

We can create an opening cutscene by assigning an On Start cutscene, under Scene

cutscenes in the Scene Manager. A cutscene is a collection of Actions that chain together

to form a sequence of events. For more, see Actions and ActionLists.

To make the scene interactive, you can populate it with logic objects, such as Hotspots

and Triggers, listed under the “Logic” pane of the Scene prefabs in the Scene Manager:

For more on Hotspots and other types of interactivity available, see Interactions.

We can now give the scene some life by adding characters, including our Player. This is

covered in Creating characters.

PROTIP: OnStart cutscenes will play whenever a scene opens through gameplay (i.e. if

the game begins from this scene, or the player enters it from another scene). OnLoad

cutscenes will play whenever a scene opens due to loading a save game or switching

Player character. If you want to run a set of Actions regardless of why the scene is

opened, place them in a separate Cutscene and have it shared by both OnStart and

OnLoad.

�

PROTIP: The 3D Demo’s player prefab, Tin Pot, is designed to work with a variety of

play styles and is useful when testing a scene if you don’t yet have a Player of your

own. Just drop him into the scene and run it - he’ll override whatever prefab you have

assigned in your Settings Manager.

�

�40

1.6. Preparing a 2D scene

After creating your Managers with the New Game Wizard, you are ready to begin creating

your scenes. The Game Editor window is best docked in a tall vertical pane when

working.

You may encounter problems if your NavMesh's scale is too small, which may be the case

if you are using a low-resolution (e.g. 320x240) art style. You can tell if your scale is

wrong by looking at the white squares that break up a Character's path when pathfinding

– they should be tiny (but visible) dots in the Scene window compared with the rest of the

scene.

To begin working in 2D, make sure that your Camera perspective is set to 2D in the

Settings Manager:

The Moving and turning field beneath it is an important one, as it will affect the way

your entire game is created. It determines how the cameras, sprites, Hotspots and

Navigation Meshes relate to one another. It is recommended that you use the default

value of Unity 2D, but the three available options are described below:

Unity 2D

The game is played in Unity's own “2D” view. Characters move purely in the X/Y plane,

and are scaled to create a depth effect. The game use 2D components, and Polygon

Collider pathfinding.

Top Down

This mode is now deprecated.

World Space

The game is played with perspective cameras, with the main “background sprite” behind

all Characters. Characters move in 3D space and rely on 3D collider and physics

components, with no need for “cheating” a depth effect.

NOTE: An important consideration when making a 2D game with pathfinding is that of

your sprite scales, which you can adjust by modifying the Pixels Per Unit setting in

your sprite Inspectors. The game's scale should have 1 unit roughly equal 1 metre.

The 2D Demo's graphics are built to an appropriate scale - you can compare your own

sprites with those in the 2D Demo/Graphics/Sprites folder to see if they need

adjusting.

�

�41

Screen Space

The game is played with perspective cameras, with the main “background sprite” behind

all Characters. Characters move in 3D space and rely on 3D collider and physics

components, with no need for “cheating” a depth effect. Unlike World Space, however,

characters move and turn according to perceived object positioning, rather than true

positioning. For example, if a Hotspot appears above the Player, then it will be

considered behind them instead. This is a convenience as it means that interactive

objects can still be placed on the 2D plane - only the NavMesh need be in 3D.

You can now change to the Scene Manager, from where you can create the GameObjects

needed for an adventure game.

Creating a scene for a 2D game typically consists of six steps:

• Adding a 2D PlayerStart

• Adding visuals

• Adding a 2D NavMesh

• Adding a Sorting Map

• Adding 2D cameras

• Adding interactivity

The sections below cover each step. For a practical guide to follow along with, see the

Making a 2D game video tutorial.

PROTIP: Not sure which option to pick? Just go with Unity 2D - the others were made

before Unity’s 2D tools were introduced.
�

NOTE: Looking to have 3D characters in your 2D scene? The 2.5D option allows for

that, but it involves working in 3D space. If you want to work completely in 2D space,

you can still use 3D characters in a 2D scene, provided that:

1) They have no collider or Rigidbody components.

2) They have custom shaders that allow them to render correctly alongside sprites,

when their "sorting order" values are changed by a Follow Sorting Map.

Alternatively, they are each rendered by separate camera (see this wiki page).

�

�42

https://adventure-creator.wikia.com/wiki/Sorting_3D_characters_in_2D_scenes
http://adventurecreator.org/tutorials/making-2d-game

1.6.1. Adding a 2D PlayerStart

With a new scene, the top of the Scene Manager will have two Organise scene objects

buttons: With folders and Without folders:

Both of these buttons will set up your scene to be useable by Adventure Creator – the only

difference is whether or not “helper” folders (empty GameObjects) will also be created to

help keep things organised. As you use the Scene Manager to create Hotspots,

Conversations and other AC prefabs, it will place them into the relevant folders

automatically.

AC makes use of its own MainCamera object for rendering - see Cameras. If it detects

that another camera is present, then it will ask you if you would like to replace it

completely, or convert it into a camera that AC can use. Once complete, a blue arrow will

be placed at the centre of the scene:

This is a PlayerStart, which is used to give the player a starting position and rotation

when the scene begins. You can see that the Scene Manager has automatically assigned

this as the Default PlayerStart within its Scene Settings panel:

PROTIP: A scene can have multiple PlayerStarts, with each one setting the Player’s

starting position when entering from a different scene. The difference with the Default

PlayerStart is that this will be used if the game begins from this scene, or if a no more

suitable PlayerStart is found.

�

�43

1.6.2. Adding visuals

We can now dress the scene with set sprites, and move the PlayerStart into an appropriate

spot. If you are using scene folders, the _SetGeometry folder is provided for your scene’s

visuals.

When importing your scene's graphics into Unity, be sure to set their Texture type to

Sprite, so that they can be placed in the scene.

Special attention should be paid to sprites that characters will be able to walk behind and

in front of: Sorting Maps work by altering the sorting order of character sprites, you will

need to separate your scene sprites’ Order in Layer far apart enough for values in-

between to exist.

PROTIP: Aren’t sure what Order in Layer values to give your set sprites? You can

normally get by with just spacing them 5 units apart, e.g.:

• Background: -10

• Ground: -5

• Mid-foreground: 5

• Foreground: 10

See that this allows for sprites with an order zero (such as characters by default) to be

above the ground.

�

�44

1.6.3. Adding a 2D NavMesh

Now we will want a 2D Navigation Mesh, or NavMesh 2D, which marks the area in a scene

over which our characters can move around through pathfinding. In 2D scenes, we can

make use of Unity's Polygon Collider 2D to “draw" this NavMesh in our scene - see

Polygon Collider pathfinding for more.

Once you’ve made a 2D NavMesh, be sure to set it as the Default NavMesh in the Scene

settings.

�45

1.6.4. Adding a Sorting Map

Because Unity 2D games are built on a 2D plane, characters will all have the same

distance from the camera as they move around. To get around this, we use a Sorting

Map. A Sorting Map can scale characters and optionally affect their sprite orders as they

move around, faking a depth effect. We can auto-create a Default Sorting Map in the

Scene settings, and its Inspector looks like this:

The Sorting Map works vertically, so position it at the top-most point of the scene's

walkable region, and and click Add area in its Inspector. This will create a new mark

beneath - position this one at the bottom-most point:

We can use this Sorting Map to affect a character’s scale as they move down it - click

Affect Character scale?. This will expose Scale % fields that we can use to set character

scales at each end-point. The scales in between will be set automatically, and changing

these values will update its appearance in the Scene window:  

�46

In order for a character to be affected by a Sorting Map, its sprite must have the Follow

Sorting Map component attached. This is added automatically when using the Character

wizard. Note that this should not be on the root of the character, i.e. the one with the

NPC or Player component.

We can also use a Sorting Map to change a character sprite's Order in Layer value when

inside each area - this allows them to be rendered on top of scene objects when “in front"

of them, and underneath when “behind”.

In this case, we have a tree placed on the ground. We will need an area above it, and an

area beneath it. Click Add area to create a new area, and re-adjust their positions

accordingly.

PROTIP: Scaling by use of areas is linear. For more natural scaling, change the

Character scaling mode to Animation Curve. This allows you to more precisely

control scaling using a curve.
�

�47

To automatically recalculate the scale values of all areas in between the top and bottom,

click Interpolate in-between scales.

Now we must set correct Order values. You can see these in the centre of each area when

the Sorting Map is selected:

These are the Order in Layer values that character sprites will have when inside each

area. They can be adjusted in the Inspector, and should account for the orders of your

background sprites. For example, if your ground is -5, and the tree is 5, then the top and

bottom areas could have values of 0 and 10 respectively.

Since 2D games involve faking perspective, you may wish for your characters to move

vertically more slowly than horizontally. You can adjust the Vertical movement factor

slider to do just this, either globally in the Settings Manager, or per-scene in the Scene

Manager.

PROTIP: The Follow Sorting Map can either affect Sprite Renderer's Order In Layer

value directly, or - if attached to the character - a Sorting Group component instead.

The latter is more useful if a character is made up of multiple sprites.

�

PROTIP: A Sorting Map does not necessarily need to affect sprite sorting. If Affect

Character sorting? is unchecked, then sorting will be based on the Transparency

Sort Axis defined the Graphics section of Unity's Project Settings.
�

NOTE: If two or more Follow Sorting Map components occupy the same Sorting Map

region, their relative positions along the Y-axis will adjusted slightly to ensure they are

rendered in the correct order. The amount by which they are adjusted can be set on

the GameEngine object, via the Scene Settings component's Shared Layer Separation

Distance value. If such sprites do not render in the correct order, try increasing this

value until they do.

�

�48

1.6.5. Adding 2D cameras

Next come cameras. We can have as many cameras as we choose, but only one default -

which we can automatically create and assign under Scene settings in the Scene

Manager. The standard camera type for 2D games is the GameCamera 2D, which has

controls for moving and turning as it follows a target - which by default is the Player. 2D

games can make use of two camera types, as listed in the prefabs panel:

A description of what each prefab type is can be found in The Scene Manager.

To switch camera during gameplay, use the Camera: Switch Action (see Actions and

ActionLists). If we have multiple PlayerStarts in our scene, we can associate each one with

a specific camera from their Inspectors.  

NOTE: A scene can have multiple GameCameras, but only one MainCamera. All

rendering is done through the MainCamera, while the GameCameras are used only for

reference: a MainCamera will copy the transform and camera values of whatever

GameCamera is currently “active”.

�

�49

1.6.6. Adding interactivity

We can create an opening cutscene by assigning an On Start cutscene, under Scene

cutscenes in the Scene Manager. A cutscene is a collection of Actions that chain together

to form a sequence of events. For more, see Actions and ActionLists.

To make the scene interactive, you can populate it with logic objects, such as Hotspots

and Triggers, listed under the “Logic” pane of the Scene prefabs in the Scene Manager:

For more on Hotspots and other types of interactivity available, see Interactions.

We can now give the scene some life by adding characters, including our Player. This is

covered in Creating characters.

PROTIP: OnStart cutscenes will play whenever a scene opens through gameplay (i.e. if

the game begins from this scene, or the player enters it from another scene). OnLoad

cutscenes will play whenever a scene opens due to loading a save game or switching

Player character. If you want to run a set of Actions regardless of how the scene is

opened, place them in a separate Cutscene and have it shared by both OnStart and

OnLoad.

�

PROTIP: The 2D Demo’s player prefab, Brain2D, is designed to work with a variety of

play styles and is useful when testing a scene if you don’t yet have a Player of your

own. Just drop him into the scene and run it - he’ll override whatever prefab you have

assigned in your Settings Manager.

�

�50

1.7. Preparing a 2.5D scene

After creating your Managers with the New Game Wizard, you are ready to begin creating

your scenes. The Game Editor window is best docked in a tall vertical pane when

working.

AC’s 2.5D mode is used for games that make use of 3D characters and pre-rendered) or

photographic) backgrounds. To begin working in this mode, make sure that your

Camera perspective is set to 2.5D in the Settings Manager:

If your game makes use of pre-rendered backgrounds, it is also recommended to set

Aspect ratio to Fixed.

You can now change to the Scene Manager, from where you can create the GameObjects

needed for an adventure game.

Creating a scene for a 2.5D game typically consists of five steps:

• Adding a PlayerStart

• Adding backgrounds and cameras

• Adding colliders and/or a NavMesh

• Adding scene sprites

• Adding interactivity

The sections below cover each step. For a practical guide to follow along with, see the

Making a 2.5D game video tutorial.

NOTE: This implementation involves placing characters in 3D space, so that

perspective is correct. The alternative approach is to place characters in 2D space, and

use sprites for backgrounds - see Preparing a 2D scene.
�

NOTE: Using URP? Unity’s Universal Render Pipeline uses its own technique to overlay

cameras, so you'll need this wiki script to have it work with AC’s 2.5D cameras.
�

�51

http://adventurecreator.org/tutorials/making-25d-game
https://adventure-creator.fandom.com/wiki/2.5D_games_with_URP

1.7.1. Adding a PlayerStart

With a new scene, the top of the Scene Manager will have two Organise scene objects

buttons: With folders and Without folders:

Both of these buttons will set up your scene to be useable by Adventure Creator – the only

difference is whether or not “helper” folders (empty GameObjects) will also be created to

help keep things organised. As you use the Scene Manager to create Hotspots,

Conversations and other prefabs, it will place them into the relevant folders automatically.

Adventure Creator makes use of its own MainCamera object for rendering - see Cameras.

If it detects that another camera is present, then it will ask you if you would like to

replace it completely, or convert it into a camera that Adventure Creator can use.

Once the scene is converted, a blue arrow will be placed at the centre of the scene:

This is a PlayerStart, which is used to give the player a starting position and rotation

when the scene begins. You can see that the Scene Manager has automatically assigned

this as the Default PlayerStart within its Scene Settings panel:

PROTIP: A scene can have multiple PlayerStarts, with each one setting the Player’s

starting position when entering from another scene. The difference with the Default

PlayerStart is that this will be used if the game begins from this scene, or if no more

suitable PlayerStart is found.

�

�52

1.7.2. Adding backgrounds and cameras

2.5D games typically involve pre-rendered backgrounds and static cameras, with each

camera used for a specific background.

AC makes the development of 2.5D scenes easier by having the background graphics

drawn only at runtime, so that you don’t have to spend time placing graphics in the scene

and getting them to line up properly.

We can have as many cameras as we choose, but only one default - which we can

automatically create and assign under Scene settings in the Scene Manager. The

standard camera type for 2.5D games is the GameCamera 2.5D, which can’t move but

allows you to assign a Background Image to it. Both these prefab types are listed in the

prefabs panel:

A description of what each prefab type is can be found in The Scene Manager.

In your new camera’s Inspector, you’ll see a field for the Background image prefab:

Click Create to automatically create and assign a new BackgroundImage object. This is

where the background image texture is assigned - see GameCamera 2.5D.

We can see this image in the Game window while editing by going back to the camera’s

Inspector and clicking Set as active. When a camera is active, its background will be

drawn underneath any visible objects in its view:

We must now adjust the camera so that it matches the position and rotation of the

image’s perspective. A Perspective offset can also be applied via the GameCamera’s

Inspector. This may take some trial-and-error, and is often easier to do in conjunction

with creating a NavMesh.

NOTE: Working with Unity’s URP? A script to overlay the scene and background

together can be found on the AC wiki here.
�

�53

https://adventure-creator.fandom.com/wiki/2.5D_games_with_URP

To switch camera during gameplay, use the Camera: Switch Action (see Actions and

ActionLists). If we have multiple PlayerStarts in our scene, we can associate each one with

a specific camera from their Inspectors.

NOTE: If your background is pre-rendered in a 3D modelling package, you can usually

extract the camera data used to render it and transfer it into Unity. Take a note of its

position, rotation and field of view, and copy these values into your Unity camera’s

Inspector - though sometimes the axes ordering may be different. If you are instead

using photographic backgrounds, take plenty of measurements when shooting!

�

PROTIP: A tutorial on adding shadows to 2.5D scenes can be found here.
�

PROTIP: Though the 2.5D camera can’t move, you can still have scrolling cameras in

your 2.5D scene. That camera type is really just for convenience, and you can just

drop in a GameCamera2D prefab if you want to have a moving one instead. For more

on scrolling in 2.5D games, see this tutorial.

�

�54

https://www.adventurecreator.org/tutorials/scrolling-backgrounds-25d-games
https://adventurecreator.org/tutorials/adding-shadows-25d-scenes

1.7.3. Adding colliders and/or a NavMesh

We can now work on allowing our characters to move around. We’ll start with the floor,

which all 3D characters require (unless unaffected by gravity). We can make one either by

using Unity’s own colliders, or the CollisionCube prefab that is listed in the Scene

Manager:

Double-click this prefab type, and a blue cube will be created in the scene. Manipulate its

transforms so that the top face covers the whole ground. This cube won’t be visible

during gameplay - it’s used purely as a “barrier” to prevent characters from falling.

Be sure to check how this looks with the background (see Adding backgrounds and

cameras) - the orientation of the background camera should match the scene objects:

�55

If the Player character uses anything other than point-and-click control to move during

gameplay, colliders will also need to be created for the walls to prevent him from clipping

through the set.

Now we will want a Navigation Mesh, or NavMesh, which marks the area in a scene over

which our characters can move around through pathfinding. In 3D scenes, we can use

either provide a custom mesh or bake one with Unity's own navigation tools. If you

choose to use a custom mesh, be sure to assign it as the Default NavMesh in the Scene

settings.  

PROTIP: The 3D Demo game has wall colliders even though it uses point-and-click

movement. This is so that you can experiment with different movement types in the

scene to see which one suits your own game.
�

�56

1.7.4. Adding scene sprites

Scene sprites can be used whenever we want to overlay some of the background over our

characters (when behind a wall, for example), or when we want to animate a portion of

the screen.

Any such sprites in our scene will differ from normal 2D images because they need to be

aligned to the camera, and only visible when a given camera is active. AC’s Scene sprite

prefab allows us to make these easily:

This prefab type contains a standard Sprite Renderer, and the Align To Camera and Limit

Visibility components, which we can use to meet the requirements above.  

�57

1.7.5. Adding interactivity

We can create an opening cutscene by assigning an On Start cutscene, under Scene

cutscenes in the Scene Manager. A cutscene is a collection of Actions that chain together

to form a sequence of events. For more, see Actions and ActionLists.

To make the scene interactive, you can populate it with logic objects, such as Hotspots

and Triggers, listed under the “Logic” pane of the Scene prefabs in the Scene Manager:

For more on Hotspots and other types of interactivity available, see Interactions.

We can now give the scene some life by adding characters, including our Player. This is

covered in Creating characters.

PROTIP: OnStart cutscenes will play whenever a scene opens through gameplay (i.e. if

the game begins from this scene, or the player enters it from another scene). OnLoad

cutscenes will play whenever a scene opens due to loading a save game or switching

Player character. If you want to run a set of Actions regardless of how the scene is

opened, place them in a separate Cutscene and have it shared by both OnStart and

OnLoad.

�

PROTIP: The 3D Demo’s player prefab, Tin Pot, is designed to work with a variety of

play styles and is useful when testing a scene if you don’t yet have a Player of your

own. Just drop him into the scene and run it - he’ll override whatever prefab you have

assigned in your Settings Manager.

�

�58

1.8. Updating Adventure Creator

Adventure Creator is frequently updated with new features, and it's a good idea to

download the latest update when it becomes available.

AC can detect updates for you by choosing Adventure Creator → Check for updates in

the top toolbar.

You can update Adventure Creator from your Unity Asset Store account. Choose

Windows → Package Manager from the top toolbar, then opt to view “My Assets” from

the top left.

The contents of each update are listed within the changelog file within the root

AdventureCreator asset folder. At the top of each version's release notes is the Upgrade

notes section, which describes any change made that may affect your game or you need

to be aware of. You should read these notes thoroughly after updating.

NOTE: Please read the “Upgrade notes” section after updating - this details any

changes made to AC that you may need to be aware of to retain your game’s earlier

behaviour.

�

�59

1.9. Project settings

When using Unity 2019.2 or later, AC has its own entry in Unity’s Project settings

window. This can be accessed by choosing Edit -> Project Settings… from the top

toolbar.

Here, it is possible to fine-tune some of the Editor settings such as gizmo colours, and

Hierarchy icon placement.  

�60

2. Input and navigation 

�61

2.1. Input and navigation overview

Choosing how an AC game plays generally comes down to three key areas:

Movement

How the Player (if there is one) is moved around during gameplay

Input

The input device used to play the game

Interaction

How Hotspots, NPCs and Inventory items are used

Each of these can be changed at any time within the Settings Manager, under Interface

settings:

Some settings will lead to more options becoming available - the Settings Manager will

only show fields that are relevant to your game’s play style. You make need to define

additional inputs, too - you can see a list of what inputs your game can make use of

under the Available inputs section of the Settings Manager.

The various interaction modes are discussed later - see Interactions. The rest of this

section is dedicated to input and navigation.

PROTIP: What you choose for these options will affect not only the way your game

plays, but also the way it is built. Playing around with the demo games is a good way

to experiment: you can change the values and see what effect they have instantly.
�

�62

2.2. Movement methods

A game's movement method refers to how Player characters are controlled during

gameplay. It has the following options:

Point-and-click

The Player is controlled by clicking where you want him to go via pathfinding.

Direct

The Player is controlled by moving him directly with keyboard keys / gamepad buttons.

First person

The Player moves and looks in first-person.

Drag

The Player is controlled by dragging the cursor in the direction you want him to move.

Straight-to-cursor

The Player will move directly to the cursor whenever a click is held.

None

The Player will not move unless instructed through ActionLists.

The Movement method is chosen in the Settings Manager, under Interface settings:

NOTE: This setting can be changed at any time with the Engine: Manage systems

Action. However, as this affects the asset file itself, changes made to it will not be

reverted when the game ends. If you do this, be sure to set the default value as part of

your game's ActionList on start game, as set in the Settings Manager.

�

�63

2.2.1. Point-and-click movement

Point-and-click control is the most common way of moving in adventure games, with

titles such as Monkey Island and The Longest Journey controlled in this way. If you left-

click your cursor in the scene but not over an interactive object, the Player will make their

way there. The effect of double-clicking can be modified in the Settings Manager, but is

set to make the player run by default. On mobiles, this equates to single- and double-

tapping.

You can also map control to the InteractionA input button, which is necessary if your

game is played with a gamepad. If you wish to remove the default mouse behaviour,

uncheck Left and right mouse clicks have default functionality? in the Settings

Manager.

As this style makes heavy use of pathfinding to move the player around the scene, you

will need to define a NavMesh for every scene – see Pathfinding methods.

If you are making a 3D game that involves gravity, you will also need to create at least

one collider in every scene to act as a floor - see Adding colliders.

There are several options under Movement settings in the Settings Manager that relate

to how the player's destination is determined. The NavMesh search % setting allows you

to choose how far from the cursor the game will search for a NavMesh, if one was not

clicked on directly. If this is greater than zero, you can use the NavMesh search

direction to determine if the search is conducted radially outward from the cursor, or

straight down.

The Destination accuracy slider determines "how close is close enough” when checking

if the Player has reached their target. This may need to be reduced if your characters

have a small scale.

If you have NPCs moving around as well, or some other dynamic element, you will need to

set a non-zero Pathfinding update time, so that pathfinding can be recalculated mid-

movement.

You can optionally supply a Click marker prefab, which appears in the scene when you

click, at the player character's intended destination. A sample click marker can be found

in Assets/AdventureCreator/Prefabs/Navigation/ClickMarker.

PROTIP: The NavMesh object to click on must be on the NavMesh layer, but objects on

other layers (except Ignore Raycast) will block clicks by default to prevent clicking

through e.g. walls to inaccessible rooms. The layers involved in the process can be

configured with the LayerMask field in the GameEngine object’s PlayerMovement

component.

�

�64

2.2.2. Direct movement

Direct movement allows you to control the player's movement directly, with either the

keyboard, a controller, or on-screen buttons. Telltale's The Walking Dead series employs

this movement method.

When used on a touch-screen, this mode behaves like Drag movement. Otherwise,

Horizontal and Vertical input axes are required. Run, ToggleRun and Jump are also

valid, though Jump is only available for 3D Characters. For a description of these axes,

see Input descriptions.

If you want the intensity of the Horizontal and Vertical axes to affect the player's speed,

check the Input magnitude affects speed? setting under Movement settings in the

Settings Manager. Checking Account for player's position on screen? will cause

pressing “down” (for example) to result in the player walking towards the camera, rather

than just away from the camera's point of view.

If the camera cuts to a different angle, his will continue his direction until the user

changes the input – this prevents the player moving in an unintended direction if the

angle changes sharply. Note that the ActionList that performs this camera cut must be a

background process. The angle threshold used by this process is set by the Max camera

lock angle slide.

When input is released, the Player will continue moving towards the direction that the

input was last indicating. This effect can be disabled by checking the Stop turning when

release input? option.

The Direct-movement type setting allows you to instead enable Tank controls, in which

the Horizontal axis rotates the Player on the spot.

NOTE: When under Direct control, the Player’s movement is blocked by Colliders. In

2D scenes, you can optionally check the Player’s Auto stick to NavMesh? option to

have them be constrained to the confines of the NavMesh. In 3D scenes, such

constraint requires a NavMesh Agent component - see Unity Navigation pathfinding.

�

�65

2.2.3. First-person movement

First-Person control lets you navigate your game from the player character's point of

view, with the ability to look around freely.

When used on a touch-screen, it works by dragging one or two fingers (based on options

chosen). Otherwise, Horizontal and Vertical axes are required for movement, and

CursorHorizontal and CursorVertical axes are required for aiming.

To aim with the mouse, map those last two axes to the X and Y axes respectively.

Run, ToggleRun and Jump are also valid. For a description of these axes, see Input

descriptions.

To control a Player prefab in first-person, you must update the prefab by giving him a

new child GameObject and attaching both the Camera and First Person Camera

components. The Camera component itself should be disabled:

Position this GameObject such that the camera appears where the Player’s head should

be. The 3D Demo game’s Player prefab, is equipped with such a camera:

PROTIP: A pre-made first-person Player prefab is available online.
�

�66

https://adventurecreator.org/downloads

The First Person Camera component provides various free-aiming options, while aiming

smoothness and the maximum free-aim speed being controlled under Movement

settings in the Settings Manager.

To be able to free-aim during gameplay, the cursor must be locked (see Cursor locking).

You can also use the Player: Constrain Action to enforce free-aiming at all times.

During normal gameplay, the first-person camera will automatically be used regardless of

the Default camera field in the Scene Manager. You can still switch camera during

cutscenes with Actions. To allow for camera-switching during Conversations, uncheck

Run Conversations in first-person?, also under Interface settings.

PROTIP: A first-person Player prefab doesn’t need any graphics attached - you can get

by with just a Player base object with a First-person child camera.
�

NOTE: Is your first-person Player only moving forward? Make sure their Animator’s

Apply root motion option is unchecked, as this can cause movement issues.
�

PROTIP: You can also switch to another movement method at any time by using the

Engine: Manage systems Action. This is useful if you want to have “close-up”

sequences where you want to be able to interact with certain objects from a fixed

perspective camera. Just be sure to use this Action in your game’s ActionList on start

game (defined in the Settings Manager) so that it begins with the correct value.

�

�67

2.2.4. Drag movement

In this mode, the player can navigate a scene by clicking and dragging the left mouse

button, or by pressing an input button named InteractionA. The Settings Manager

provides options for how the "drag distance" is visualised on-screen.

NOTE: Similar to Direct movement, the Player does not take notice of the NavMesh -

they are instead blocked by Colliders, which act as invisible walls to prevent them from

clipping through the set.
�

PROTIP: The drag direction is shown as a simple line by default, but this can be

disabled in favour of your own UI through custom events. An example script that

displays an on-screen joystick (as common with mobile games) can be found in the AC

wiki here: adventure-creator.wikia.com/wiki/Mobile_joystick_example

�

�68

http://adventure-creator.wikia.com/wiki/Mobile_joystick_example

2.2.5. Straight-to-cursor movement

Straight-to-cursor control causes the Player to move towards the cursor whenever the

mouse button (or tap, for Touch Screens) is held down. The InteractionA input button

can be used as well.

If a non-zero Pathfinding update time is set in the Settings Manager, then the player will

pathfind to the cursor by this frequency. Otherwise, no pathfinding will occur, and the

player will move directly towards the cursor every frame.

The Run threshold determines how far away the Player must be to start running, and how

closely the Player will follow the cursor - use higher values if the Player starts circling the

cursor continuously.

With the Single-clicking also moves Player? option, you can also determine whether or

not a single-click will cause the Player to move – much like regular Point-and-click

movement. The Click/hold separation slider determines how long a click must be held

before it is recognised as a “hold” and the Player will stop moving when released.

If your Player does not move via pathfinding, they will only ever move in a straight line.

Therefore, unless you want pathfinding in Cutscenes or for NPCs, you do not need to set

up a Pathfinding method for your scenes. You simply need a Collider that is able to

"receive" the cursor clicks on the floor. A Box Collider or Collision Cube, that marks out

the floor and placed on the Default layer, will suffice.  

�69

2.3. Input methods

Adventure Creator provides three methods of input:

Mouse and keyboard

Which allows for mouse control, with optional keyboard control for movement.

Keyboard or controller

Which allows for strict keyboard or gamepad control, with no mouse.

Touch-screen

Which allows for control on mobile devices.

The Input method is chosen in the Settings Manager, under Interface settings:

A list of available inputs can also be found in the Settings Manager. For details on what

each input is used for, see Input descriptions.

It is not generally necessary to change this value during gameplay, but - like any Manager

field - it can be changed through code - see Custom scripting.

NOTE: Inputs don’t necessarily need to be mapped to Unity’s Input Manager - they can

also be simulated via Menu Button clicks, and through script. Scripting can also be

used to remap inputs at any time - see Remapping inputs.

�

�70

2.3.1. Mouse and keyboard input

This is the most common input type for traditional adventure games on PC.

A game with this input can be completely mouse-driven, or share input duties with the

keyboard. For example, a Direct movement game can rely on the mouse for interacting,

and the keyboard for movement.

With this type, interaction is automatically mapped to the mouse buttons - with the left

mouse button used to interact with Hotspots and Inventory items, begin point-and-click

movement, and click Menu buttons. When using Context sensitive interactions, the right

mouse button is used to examine.

Double-clicking can be used to run to Hotspots or instantly run their interactions. To

tweak the speed that clicks register, locate the scene’s GameEngine object and adjust the

PlayerInput component's Click Delay and Double Click Delay values:

Click behaviour can also be achieved by invoking Input buttons named InteractionA and

InteractionB respectively. You can rely on this instead of the default mouse behaviour by

unchecking Mouse clicks have default functionality? in the Settings Manager.  

�71

2.3.2. Keyboard or controller input

This input type is necessary if you want to do without a mouse, and rely solely on either a

keyboard or a gamepad for input.

With this type, interaction is handled via Input buttons named InteractionA and

InteractionB. InteractionA is used to interact with Hotspots and Inventory items, begin

point-and-click movement, and click Menu buttons. When using Context sensitive

interactions, InteractionB is used to examine.

Just because this input type does not use the mouse, you can still control a simulated

cursor (provided that it is unlocked, see Cursor locking). To move the cursor, use Input

axes named CursorHorizontal and CursorVertical. The speed of the cursor can be

adjusted by the Settings Manager’s Simulated cursor speed field.

Options are provided at the top of the Menu Manager to let you dictate how Menus are

navigated when the game is paused or a Conversation is active. By default, they are

navigated with the Horizontal and Vertical inputs, as opposed to the cursor:

If you wish to navigate Menus directly during normal gameplay, use the Engine: Manage

systems Action to unlock this ability - otherwise, a cursor will be necessary. For more,

see Navigating menus directly.

NOTE: Enabling direct Menu navigation during gameplay doesn’t disable Player

movement automatically. This should generally be done in conjunction with the Player:

Constrain Action so that you only control either Menus or the Player at any one time.

�

�72

2.3.3. Touch-screen input

This input method is used to enable AC-made games to work on iOS and Android.

Choosing touch-screen input will adapt your game’s Movement method if necessary.

Direct movement will now work by dragging a finger across the screen. First Person

movement can work a number of ways – for example, one touch moves while two touches

turns. If one is required, a drag line can be drawn to indicate the direction and size of the

drag, using the fields in Movement settings in the Settings Manager:

Further touch-screen-related options can be found under the Touch Screen settings:

In Context sensitive mode, objects are examined by placing a second finger down on the

screen while the first finger is still touching. You can simulate this effect in the Unity

Editor by right-clicking on a Hotspot while the left mouse button is held down.

In Choose Hotspot Then Interaction mode, a game can make use of an Interaction menu

that appears once a Hotspot is selected, which contains a list of Interaction icons. By

default, selecting a Hotspot and then an Interaction icon requires two separate taps, but

this can be reduced to a tap, hold, and release by checking Trigger interactions by

releasing tap?.

The Moving touch drags cursor? option causes cursor to be dragged, as opposed to

being at the position of the touch at all times.

PROTIP: A ready-made mobile joystick template can be found in the “UI Template:

Mobile Joystick” package on the Downloads page.
�

NOTE: By default, Hotspots are activated with two taps - one to highlight them, and

another to interact. This is so that the player doesn’t use a Hotspot by mistake. You

can change this behaviour to have Hotspots react to a touch-down, or a touch-up, via

the Hotspot input mode field.

�

�73

https://adventurecreator.org/downloads

If your game is in First Person, an additional First-person movement field will show -

allowing you to choose how movement on a touch-screen is conducted. If set to Custom

Input, then movement will be controlled by overriding (or simulating) the Horizontal and

Vertical axes, and free-aiming by overriding the FreeAimDelegate. For more, see

Remapping inputs.

Similarly, if your game uses Direct movement, an additional Direct movement field will

show. By default, this is set to Drag Based, which means the Player is moved by dragging

across the screen. However, if set to Custom Input, then movement will be controlled by

overriding (or simulating) the Horizontal and Vertical axes. For more, see Remapping

inputs.

PROTIP: By default, AC will limit its display area to the mobile device's "safe area".

This prevents UI or gameplay elements from being obscured by e.g. a phone's notches,

if present. This can be disabled, however, by unchecking Limit display to 'safe area'?

in the Settings Manager.

�

�74

2.4. Pathfinding methods

Point-and-click movement relies on pathfinding to navigate the Player. Pathfinding is

also used whenever a character - NPC or Player - is instructed to move during a cutscene.

Adventure Creator provides three methods of pathfinding:

Unity Navigation

Which uses Unity’s NavMesh baking tools. This is the default for 3D games.

Mesh Collider

Which relies on a custom mesh collider for the NavMesh’s shape.

Polygon Collider

Which uses Unity's Polygon Collider 2D component, and is used for 2D games.

A* 2D

An implementation of the A* algorithm, and is also used for 2D games.

Additionally, a custom pathfinding algorithm can be implemented through scripting - see

Custom pathfinding.

The pathfinding method is set on a per-scene basis within the Scene Manager:

Be mindful of your game’s scale - the default settings work best when using a scale of 1

Unity unit = 1 meter. If your scale is very different, you may have to adjust the

Destination accuracy slider in the Settings Manager. Larger art should have a lower

value, and smaller art should have a higher one. More more on accurate pathfinding, see

Precision movement.

By default, characters will make one path calculation before moving to a set point in the

scene. However, the Settings Manager's Pathfinding update time (s) value can be used

to enforce regular recalculations as they move. This may necessary if your game features

NPCs moving around, so that the Player can avoid them dynamically.  

�75

2.4.1. Unity Navigation pathfinding

Unity Navigation-based pathfinding relies on Unity's built-in Navigation tools. It requires

that you bake a NavMesh using Unity’s provided tools.

Once a NavMesh is baked, characters will rely on it when pathfinding. However, Point-

and-click movement requires an additional step: the floor collider must be on the

NavMesh layer.

NOTE: The workflow for baking a NavMesh varies with Unity version. If you’re using

2022.2 or later, you’ll need Unity’s AI Navigation package from the Package Manager,

and adding a NavMesh Surface component to the scene. Otherwise, it's a case of

using the AI -> Navigation window in the top toolbar. A tutorial that covers both of

these methods can be found here.

�

PROTIP: Characters have their own motion system, but you can use NavMeshAgent

components if you prefer. To do this, simply add the component together with the

Nav Mesh Agent Integration script. This script can be duplicated and amended to

suit your own needs. When using these components, a Player’s position is bound to

the NavMesh even when using Direct movement.

�

�76

https://docs.unity3d.com/Manual/nav-BuildingNavMesh.html
https://docs.unity3d.com/Packages/com.unity.ai.navigation@1.1/manual/index.html
https://www.adventurecreator.org/tutorials/unity-navigation-pathfinding

2.4.2. Mesh Collider pathfinding

Mesh Collider-based pathfinding is the default pathfinding method, and involves creating

custom 3D meshes to mark out the area over which characters can walk. Such a mesh

can be created in an external modelling tool such as Blender:

Because of the need for mesh creation, it can take more time to set up than Unity

Navigation, but is dynamic – different NavMeshes can be swapped out when the layout of

the scene changes.

Once the Pathfinding method field in the Scene Manager has been set to Mesh Collider,

the Navigation panel will allow you to create a NavMesh prefab:

This prefab type features a Mesh Collider component. Assign your custom mesh as this

component’s Mesh field:

The mesh will now show up in green in the scene. Position the object so that it marks out

the floor, and assign it in the Scene Manager’s Default NavMesh field. This places the

NavMesh on the correct layer during gameplay.  

�77

https://www.blender.org/

You can use the Scene: Change setting Action to change the active NavMesh at runtime.

The 3D Demo game does this when the barrel is tipped over. Click on each object, with

the Mesh Collider component open, to see the difference between the two.

Navigation Meshes can be made visible when not selected via the Scene Manager's

Visibility panel. Provided your scene has an active NavMesh with a Mesh Renderer

component, it can be shown and hidden using the On and Off buttons.  

NOTE: This method does not allow for other objects to dynamically affect pathfinding.

If the NavMesh connects two rooms, but the door between them is closed, characters

will attempt to walk through the door. You can get around this by swapping your

NavMesh for another when your scene layout changes.

�

�78

2.4.3. Polygon Collider pathfinding

Polygon Collider-based pathfinding is only a valid option when making a 2D game. It

involves using the shape of Unity's Polygon Collider component as a NavMesh, and can be

modified during gameplay.

Once the Pathfinding method field in the Scene Manager has been set to Polygon

Collider, the Navigation panel will allow you to create a NavMesh2D prefab:

It will appear in your scene as a pentagon. You can use its Polygon Collider component to

reshape it to fit the scene’s walkable area:

One adjusted, assign it in the Scene Manager’s Default NavMesh field. This places it on

the correct layer during gameplay.

Holes in your NavMesh can be created with other Polygon Colliders. Attach a Polygon

Collider 2D to an empty GameObject, shape it as a hole, and then add it to the

Navigation Mesh component after increasing the Number of holes value by 1. When the

game begins, the hole will be incorporated into the NavMesh:

NOTE: Keep the number of points to its bare minimum, as the speed of the algorithm

is dependent on how complex the shape is.
�

�79

https://docs.unity3d.com/Manual/class-PolygonCollider2D.html
https://docs.unity3d.com/Manual/class-PolygonCollider2D.html

This method can also be used to add walkable areas together – if the “hole” Polygon

Collider overlaps the boundary of the original NavMesh, then it will be added onto the

NavMesh instead – rather than being subtracted.

The active NavMesh, and the number of holes it has, can be changed during gameplay

with the Scene: Change setting Action. This can be used to e.g. allow the player to walk

where a removed object was once placed in the scene.

You can also add additional Polygon Collider 2D components onto the same NavMesh

GameObject to create separate regions that cannot be accessed directly. This is useful if

you want to have NPCs walking around, without the player being able to move to them:

These additional colliders must have Is Trigger checked, and be kept separate from one

another. Note that character evasion and NavMesh hole features will only apply to the

first collider on the NavMesh.  

PROTIP: To improve scene startup time, NavMesh holes can be “baked” into the

NavMesh. Just click “Bake" in the NavMesh’s Inspector, then disable the hole objects.
�

NOTE: This method does not allow for other objects to dynamically affect pathfinding.

If the NavMesh connects two rooms, but the door between them is closed, characters

will attempt to walk through the door. You can get around this by changing the

NavMesh when your scene layout changes.

�

�80

Be aware that you may encounter problems if your NavMesh's scale is too small, which

may be the case if you are using a low-resolution (e.g. 320x240) art style. You can tell if

your scale is wrong by either comparing your graphics to that of the included 2D Demo,

or by looking at the white squares that break up a Character's path when pathfinding –

they should be tiny dots in the Scene window compared with the rest of the scene:

If they are overly large, your scene is likely too small and you will have to scale up your

geometry. You can scale up your scene sprites by reducing the Pixels Per Unit value in

sprites’ Texture import settings.

The Navigation Mesh component features a number of options related to character-

evasion. For performance reasons, this defaults to Only Stationary Characters - but can

be made to affect all characters if desired. In order for a character be evaded, they must

have a Circle Collider 2D component at their feet on their root object

NOTE: For completely dynamic pathfinding around moving characters, be sure to set a

non-zero Pathfind update time value in the Settings Manager. This will force a

recalculation of a character’s path while on the the move, so that they can account for

any changes in the scene.

�

PROTIP: For a performance boost, you can lower the Accuracy slider. The optimal

value of this slider will depend on your game's scale, NavMesh size, and target

platform, but should generally only be set below 1 if you experience slowdown when

pathfinding. For more performance tricks, see Performance and optimisation.

�

�81

2.4.4. A* 2D pathfinding

A* 2D pathfinding is an alternative to the Polygon Collider option when navigating a 2D

scene. It too involves using the shape of Unity's Polygon Collider component as a

NavMesh, and can be modified during gameplay.

Once the Pathfinding method field in the Scene Manager has been set to A Star 2D, the

Navigation panel will allow you to create a NavMesh2D prefab:

It will appear in your scene as a pentagon. You can use its Polygon Collider component to

reshape it to fit the scene’s walkable area:

The A* algorithm works by dividing this NavMesh into a grid - you can adjust the

accuracy by increasing the Cell size Inspector field - try to keep it the largest value it can

be while still accurately describing the shape of the collider.

One adjusted, assign it in the Scene Manager’s Default NavMesh field. This places it on

the correct layer during gameplay.

Holes in your NavMesh can be created with other Polygon Colliders. Attach a Polygon

Collider 2D to an empty GameObject, shape it as a hole, and then add it to the

Navigation Mesh component after increasing the Number of holes value by 1. When the

game begins, the hole will be incorporated into the NavMesh:

PROTIP: Which is best for a 2D game? Polygon Collider can sometimes give slightly

more natural movement when complex paths are involved, but A* is considerably

faster. If your NavMesh is large, go with A*.
�

PROTIP: You’re not limited to using a Polygon Collider - this mode can make use of

any 2D Collider - including a Tilemap Collider.
�

�82

https://docs.unity3d.com/Manual/class-PolygonCollider2D.html
https://docs.unity3d.com/Manual/class-PolygonCollider2D.html

This method can also be used to add walkable areas together – if the “hole” Polygon

Collider overlaps the boundary of the original NavMesh, then it will be added onto the

NavMesh instead – rather than being subtracted.

The active NavMesh, and the number of holes it has, can be changed during gameplay

with the Scene: Change setting Action. This can be used to e.g. allow the player to walk

where a removed object was once placed in the scene.

You can also add additional Polygon Collider 2D components onto the same NavMesh

GameObject to create separate regions that cannot be accessed directly. This is useful if

you want to have NPCs walking around, without the player being able to move to them:

These additional colliders must have Is Trigger checked, and be kept separate from one

another. Note that character evasion and NavMesh hole features will only apply to the

first collider on the NavMesh.  

�83

Be aware that you may encounter problems if your NavMesh's scale is too small, which

may be the case if you are using a low-resolution (e.g. 320x240) art style. You can tell if

your scale is wrong by either comparing your graphics to that of the included 2D Demo,

or by looking at the white squares that break up a Character's path when pathfinding –

they should be tiny dots in the Scene window compared with the rest of the scene:

If they are overly large, your scene is likely too small and you will have to scale up your

geometry. You can scale up your scene sprites by reducing the Pixels Per Unit value in

sprites’ Texture import settings.

The Navigation Mesh component features a number of options related to character-

evasion. For performance reasons, this defaults to Only Stationary Characters - but can

be made to affect all characters if desired. In order for a character be evaded, they must

have a Circle Collider 2D component at their feet on their root object

NOTE: For completely dynamic pathfinding around moving characters, be sure to set a

non-zero Pathfind update time value in the Settings Manager. This will force a

recalculation of a character’s path while on the the move, so that they can account for

any changes in the scene.

�

�84

2.4.5. Custom pathfinding

Each pathfinding method is written in a separate script, which are all subclasses of the

NavigationEngine ScriptableObject class. Which script is used in a scene is determined by

the Pathfinding method option in the Scene Manager.

To integrate a new pathfinding script, set the Pathfinding method to Custom, and then

enter the name of your NavigationEngine subclass into the box that appears beneath:

Writing a new pathfinding method involves overriding the functions within

NavigationEngine with your own.

The only essential function is GetPointsArray, which takes two Vector3s as inputs and

returns a Vector3 array that describes the path. Other functions, such as SetVisibility

and SceneSettingsGUI can be used to better integrate the method into your workflow,

but are not necessary.

For the script to be useable when working with Unity's 2D view (i.e. make use of

Physics2D raycasts), the is2D boolean must be set to True. This can be done within the

OnReset function, which is called when the scene begins.  

�85

http://adventurecreator.org/scripting-guide/class_a_c_1_1_navigation_engine.html
http://adventurecreator.org/scripting-guide/class_a_c_1_1_navigation_engine.html

2.5. Cursor locking

While most games rely on a cursor (mouse-driven or otherwise), you can prevent it from

moving by locking it. Locking the cursor allows you to give total input control to e.g. a

gamepad, and is necessary for aiming in first-person movement.

The default locked state of the cursor can be set under Interface settings in the Settings

Manager, with Lock cursor in screen's centre when game begins?. You can optionally

choose to hide the cursor and prevent interactions when it is locked.

The player can unlock the cursor at any time by invoking an input button named

ToggleCursor. This allows you to create two distinct gameplay modes - one for

movement, and another for interactivity.

Alternatively, the state of the cursor can be enforced using the Player: Constrain Action.

If mouse and keyboard input is enabled, the cursor is automatically unlocked when a

Menu pauses the game. If you wish to rely on a completely cursor-free input, switch to

Keyboard Or Controller input instead. Disabling free-aiming while in first-person will

also unlock the cursor.

PROTIP: A practical example of how cursor locking can be used is given when creating

a custom inventory interface in the Making a first-person game video tutorial.
�

PROTIP: It is also possible to limit the software cursor’s range of movement to the

boundary of a Menu. This can be done by setting the PlayerCursor script's

LimitCursorToMenu property through script.

�

�86

http://adventurecreator.org/tutorials/making-first-person-game

2.6. Active inputs

Active Inputs are a series of pre-defined Input buttons that trigger ActionList assets when

pressed. Typical examples of their use include:

• Opening either a “title” or a “pause” Menu, depending on the current scene

• Backing out of a close-up of a set of interactive objects

To access the Active Inputs Editor window, choose Adventure Creator -> Editors ->

Active Inputs from the top toolbar:

Each Active Input requires an Input button or axis name, an ActionList asset to run, and

the conditions that it runs under. These conditions can be any of four values:

Normal

The state during normal gameplay

Cutscene

The state while the game is in a gameplay-blocking cutscene

Paused

The state while the game is paused

DialogOptions

The state while a Conversation is active, and dialogue options are displayed on-screen

If an active input references an axis, then an Axis threshold value must be set. If this is

positive, then the ActionList will run only when the input exceeds this value. If negative,

then the same will be true but in the negative direction.

If you wish for an Active Input to work during multiple game states (i.e. during both

gameplay and cutscenes) you must define two separate Inputs - one for each state.

Multiple Active Inputs can share the same ActionList asset, however.

Active Inputs can be enabled and disabled at runtime using the Input: Toggle active

Action.

NOTE: The Input button field must match the name of the input as listed in Unity’s

Input Manager, not the button itself.
�

�87

https://docs.unity3d.com/Manual/class-InputManager.html

NOTE: Active Inputs are stored within the Settings Manager asset. If you change your

Settings Manager, any Active Inputs previously defined will no longer be present.
�

�88

2.7. Input descriptions

Adventure Creator makes use of a number of different inputs that need to be defined in

Unity's Input Manager (Edit -> Project settings -> Input). What inputs will be used,

however, depends on how your game is played, and what settings you've chosen.

A full list of inputs available to your game can use can be found within the Settings

Manager. The following is a list of each possible input, and what it is used for:

Horizontal (Axis)

Moves the player when using Direct or First-person movement, as well as navigate menus

with a keyboard/controller.

Vertical (Axis)

Moves the player when using Direct or First-person movement, as well as navigate menus

with a keyboard/controller.

InteractionA (Button)

Acts in the same way as a left-click. It is used to interact with on Hotspots, Menus and

NavMeshes.

InteractionB (Button)

Acts in the same way as a right-click. It is used to examine Hotspots when in Context

sensitive mode.

CursorHorizontal (Axis)

Moves the cursor along the screen's X-axis when using First-person movement or

Keyboard or controller input.

CursorVertical (Axis)

Moves the cursor along the screen's Y-axis when using First-person movement or

Keyboard or controller input.

ToggleCursor (Button)

Toggles the cursor's "locked" state on and off during gameplay. When the cursor is

locked, it is placed in the centre of the screen and cannot be moved. When used in a

First-person game, locking the cursor allows the player to free-aim. For more, see

Cursor locking.

Run (Button/Axis)

When held down during Direct or First-person movement, causes the player to run when

moving.

�89

ToggleRun (Button)

When pressed during Direct or First-person movement, toggles the player’s ability to run.

Jump (Button)

Causes a 3D Player to jump, if used with Direct or First-person movement. The Player

must have either a Rigidbody or Character Controller attached.

Mouse ScrollWheel (Axis)

Zooms a First-person camera in and out.

CycleHotspots (Axis)

Cycles the highlighted Hotspot when the Hotspot detection method is set to Player

Vicinity.

CycleHotspotsLeft (Button)

Cycles the highlighted Hotspot left when the Hotspot detection method is set to Player

Vicinity.

CycleHotspotsRight (Button)

Cycles the highlighted Hotspot right when the Hotspot detection method is set to Player

Vicinity.

CycleInteractions (Axis)

Cycles the highlighted Interaction when the Interaction method is Choose Hotspot Then

Interaction.

CycleInteractionsLeft (Button)

Cycles the highlighted Interaction left when the Interaction method is Choose Hotspot

Then Interaction.

CycleInteractionsRight (Button)

Cycles the highlighted Interaction right when the Interaction method is Choose Hotspot

Then Interaction.

CycleCursors (Button)

Cycles through the next available cursor type when the game allows for it. This is either

when the Interaction method is Choose Interaction Then Hotspot, or when it's Choose

Hotspot Then Interaction and Select interactions by is set to Cycling Cursor And

Clicking Hotspot.

CycleCursorsBack (Button)

�90

Cycles through the previous available cursor type when the Interaction method is

Choose Interaction Then Hotspot, or when it’s Choose Hotspot Then Interaction and

Select interactions by is set to Cycling Cursor And Clicking Hotspot.

DefaultInteraction

If the Interaction method is Choose Interaction Then Hotspot, invokes the active Hotspot

or Inventory item’s first-enabled interaction. Note that either Set first ‘Use’ Hotspot

interaction as default? or Set first ‘Standard’ Inventory integration as default? must

be checked in the Settings Manager - the latter of which is only displayed if Inventory

interactions is set to Multiple.

FlashHotspots (Button)

Briefly flashes all Hotspots in the scene, provided that they have a Highlight component

correctly assigned. This can be used to make the player aware of all interactive objects in

a scene.

SkipSpeech (Button)

Skips the current speech or subtitle. Depending on the choices made in the Speech

Manager, this can instead advance a scrolling-subtitle to the end first.

EndCutscene (Button)

Skips the current set of gameplay-blocking ActionLists - see Skipping cutscenes.

EndConversation (Button)

Ends the current Conversation. Note that this will not result in any "exiting" sequence,

such as the player saying goodbye.

DialogueOption[1-9] (Button)

Chooses a dialogue option, when a Conversation is active. Each option is mapped to a

separate input: DialogueOption1, DialogueOption2, etc.

ThrowMoveable (Button)

Throws the current PickUp object, if it allows for it. Holding down this button will

increase the throwing force when released.

RotateMoveable (Button)

Rotates the current PickUp object, if it allows for it. Rotation will be possible while this

button is held down.

RotateMoveableToggle (Button)

Rotates the current PickUp object, if it allows for it. This button will toggle the ability to

rotate on and off.

�91

ZoomMoveable (Axis)

Zooms the current PickUp object towards or away from the camera, if it allows for it.

The list of available inputs will also include any Active inputs, and inputs mapped to

Menus with an Appear type of On Input Key.

NOTE: Inputs don’t necessarily need to be mapped to Unity’s Input Manager - they can

also be simulated via Menu Button clicks, and through script. Scripting can also be

used to remap inputs at any time - see Remapping inputs.

�

�92

2.8. Remapping inputs

The GameEngine’s PlayerInput script uses custom functions to detect input, which are

called throughout AC in place of Unity's standard functions, such as

Input.GetButtonDown.

These functions can also be overridden using delegates, meaning your game's control

scheme can be changed on the fly, or integrated with a third-party input manager asset.

The following table shows the available functions that can be overridden using delegates:

PROTIP: A tutorial on using these delegates in practice can be found online. The

World Space Cursor Example component uses them to override the cursor position.
�

Unity function PlayerInput function Delegate override

bool Input.GetButtonDown

(string name)

bool InputGetButtonDown

(string name)

bool

InputGetButtonDownDelegate

(string name)

bool Input.GetButtonUp

(string name)

bool InputGetButtonUp

(string name)

bool

InputGetButtonUpDelegate

(string name)

bool Input.GetButton (string

name)

bool InputGetButton (string

name)

bool InputGetButtonDelegate

(string name)

float Input.GetAxis (string

name)

float InputGetAxis (string

name)

float InputGetAxisDelegate

(string name)

Vector2 Input.mousePosition Vector2 InputMousePosition

(bool cursorIsLocked)

Vector2

InputMousePositionDelegate

(bool cursorIsLocked)

Vector2 Input.GetTouch (int

index).position

Vector2 InputTouchPosition

(int index)

Vector2

InputTouchPositionDelegate

(int index)

Vector2 Input.GetTouch (int

index).deltaPosition

Vector2

InputTouchDeltaPosition (int

index)

Vector2

InputTouchDeltaPositionDeleg

ate (int index)

TouchPhase Input.GetTouch

(int index).phase

TouchPhase InputTouchPhase

(int index)

TouchPhase

InputGetTouchPhaseDelegate

(int index)

bool

Input.GetMouseButtonDown

(int button)

bool InputGetMouseButtonDown

(int button)

bool

InputGetMouseButtonDownDeleg

ate (int button)

bool Input.GetMouseButton

(int button)

bool InputGetMouseButton

(int button)

bool InputGetMouseButton

(int button)

Vector2 (Input.GetAxis

("CursorHorizontal"),

Input.GetAxis

(“CursorVertical"))

Vector2 InputGetFreeAim

(bool cursorIsLocked)

Vector2

InputGetFreeAimDelegate

(bool cursorIsLocked)

�93

http://adventurecreator.org/tutorials/remapping-controls-game
http://www.adventurecreator.org/scripting-guide/class_a_c_1_1_player_input.html
https://docs.unity3d.com/ScriptReference/Input.GetButtonDown.html

When moving in First person, the free-aim vector is normally calculated by combining

both the CursorHorizontal and CursorVertical axis values into a 2D vector. However, this

too can be overridden with the InputGetFreeAimDelegate override.

Delegates are mapped to function within your own script to override them. For example,

the cursor position can be overridden with:

void Start ()

{

AC.KickStarter.playerInput.InputMousePositionDelegate =

CustomMousePosition;

}

Vector2 CustomMousePosition (bool cursorIsLocked)

{

return Input.mousePosition;

}

NOTE: Delegates are assigned per-scene. Such code must be run in each scene you

wish to override input in. The OnAfterChangeScene custom event can be used for this.
�

�94

3. Characters 

�95

3.1. Creating characters

A game can feature two types of characters: Players and NPCs.

The steps involved to create either type is largely similar, and the differences are detailed

in the sections linked above. This section will cover the elements that all characters have.

The quickest way to get characters into your game is to use the Character wizard, which

adds the necessary scripts and components onto a model or sprite.

NPCs require the NPC script, while Players require the Player script - each attached to its

root GameObject.

The inspectors for both the Player and NPC scripts are identical, and have fields grouped

into sub-panels:

Animation settings

The first field you should set for any new character is its Animation engine. The Motion

control setting allows you to disable AC's own movement code in favour of a custom

motion controller. The Animation engine chosen will determine the contents of the

panel beneath. For more information about this panel, refer to the section on your

chosen engine.

PROTIP: A character’s type cannot be changed at runtime, but can be converted

between an NPC and Player while in Edit mode via the Inspector’s cog menu.
�

NOTE: In the case of 2D characters, the main sprite must be a child in their hierarchy,

with the Player/NPC component on the root object. The sprite must then be assigned

as the Sprite child inside this component. This is automatic when using the wizard.

�

�96

Movement settings

This panel stores motion options and speed values.

Physics settings

This panel stores physics and Rigidbody options, provided one is attached. The Move

with Rigidbody? option allows you to decide if a character is moved by applying forces to

their Rigidbody, or have their transform set directly. If a character is found to be sliding

on slopes, the Freeze Rigidbody when Idle? checkbox can help prevent this.

PROTIP: If you are making a low-resolution 2D game and want pixel-perfect

pathfinding, consider Retro movement.
�

NOTE: If a character relies on a Rigidbody (3D or 2D) for movement, their rotation will

automatically frozen at all times. If Freeze Rigidbody when Idle? is checked, then

their position will also be frozen when standing still. Otherwise, you are free to freeze

individual position axes - though this is not recommended for characters who rely on

pathfinding.

�

NOTE: Characters can still move without a Rigidbody, which can be processor-

intensive if your game features many of them. Consider removing them from NPCs,

and Players that do not need to pass through Triggers, or move vertically in the scene.

You can also use a Character Controller in place of a Rigidbody and Capsule Collider,

giving you the ability to limit a Player's slope limit, for example.

2D characters in 2D games work with a Rigidbody2D component instead - but this too

is optional depending on your requirements. If your character relies on Point and click

control, best performance is achieved by setting the Body Type field to Kinematic. If

instead you are using Direct control, unchecking Turn root object in 3D? will reduce

jittering.

�

�97

https://docs.unity3d.com/Manual/class-CharacterController.html

Audio clips

This panel allows you to quickly assign walk and run sounds the character, provided that

they have an SFX Sound child (just a child GameObject with the Sound component). If no

Speech AudioSource is defined, the AudioSource on the root object will be used for

speech.

PROTIP: For greater control over a character’s movement sounds, unset the Walk

sound / Run sound fields and make use of the Footstep sounds component instead.
�

�98

Dialogue settings

This panel allows you to configure the appearance of Subtitle Menus, provided that they

are set up to make use of them - for example, a Portrait graphic will only be shown if

the Subtitles Menu has a Graphic element that's set to display character portraits.

In addition to the Player/NPC components, characters also require:

Audio Source

For speech audio. No audio clip is required, as this is added dynamically

Collider

A Capsule Collider works best for 3D, and a Circle Collider 2D for 2D. The Circle Collider

2D should be placed at the character’s feet, with Is Trigger? checked.

Rigidbody / Rigidbody 2D

For enabling collisions and, in the case of 3D characters, gravity effects. If Move with

Rigidbody? is set, Interpolation should be enabled for smooth movement.

Paths

For pathfinding. If not present, it will be added automatically at runtime.  

�99

3.1.1. The Character wizard

The Character wizard is used to automatically assign the key components to a model or

sprite to allow it to become a character. It can be opened from the top toolbar, under

Adventure Creator → Editors → Character wizard.

The first page asks you if you are making a Player or an NPC, and to supply a base

GameObject. This should be your character’s model if working in 3D, or sprite if working

in 2D. This object must be in the scene’s Hierarchy to be accepted.

You will then need to decide on an animation engine to rely on - see Character animation.

Once complete, the wizard will add the necessary scripts and components onto your

supplied GameObject, and tag it if required.

PROTIP: Graphics are not strictly required to be on the supplied base GameObject - an

empty one will still work, which may be all you need if making a first-person game.
�

NOTE: The added components will still require tweaking - for example, the size of the

collider, or the position of a first-person camera. The Character wizard is more

focused on preparing your character with the correct components over fine-tuning.

�

�100

3.1.2. Players

A Player is necessary if you want your game to have an on-screen avatar. If you don’t

need one, you can set your Movement method to None and skip this step.

To create a Player, either use the Character wizard or add the Player component to a

GameObject and follow the steps outlined in Creating characters.

A Player can be used in a scene by one of two ways:

1. By assigning his prefab under Character settings in the Settings Manager, so that

he is automatically added to the scene at runtime. This is the usual method.

2. By having him saved within the scene file itself. This can be useful if you need to

attach scripts that refer to local objects.

If you have a Player saved in the scene, and a prefab assigned in the Settings Manager,

then the one in the scene will override the prefab for that scene only.

A game can have one Player, or make use of multiple - see Player switching.

3D Players that move under Direct or First-person control can also jump when the Jump

input button is pressed - see Input descriptions. Jumping requires that a Player has a

Rigidbody and Collider, or a Character Controller. If using a Collider, ensure that this is

not placed on the same layer as the Ground-check layer(s) defined in the Player

Inspector.  

PROTIP: Players are normally non-interactive, in that you can't click on them directly.

You can add interactivity, however, by adding a Hotspot component and trigger-

Collider onto him, and placing it on the Default layer, as you can with an NPC. If your

Player is a prefab added at runtime, be sure to set the Hotspot’s Actions source field

to Asset File, so that his interactions can run in any scene.

�

�101

3.1.3. Player switching

Though AC only supports single-player games, you can switch between multiple Players

at any time. This can be enabled in the Settings Manager by setting the Player switching

field to Allow:

You can then assign as many Player character prefabs as you like. To choose which Player

is the game's default, click the cog icon beside them and choose Set as default.

To set the starting position of your non-default Players, choose Edit start data… from

this same icon. This will bring up the Player start data window, from where you can

define that character’s starting scene and position.

To switch Player at runtime, use the Player: Switch Action. The previously-active Player

will remain in the scene - all inactive Players are saved and loaded in by AC automatically.

Inactive Players will behave like NPCs, meaning they can be made to move, talk, or follow

other characters. To teleport an inactive Player to a new scene, use the Player: Teleport

inactive Action. Other Actions that have Is Player? fields in them will also be updated to

let you choose specifically which Player it effects.

NOTE: The use of local Players (i.e. those saved in the scene file) are disallowed when

player-switching is enabled. If you need to rely on different Player objects throughout

your game, use one one method or the other.

�

PROTIP: If your Player prefab has a Hotspot component in their Hierarchy, the Auto-

sync Hotspot state? option can be used to enable it only when the Player is inactive -

preventing the Player from being clickable while being controlled.

�

�102

3.1.4. NPCs

NPCs are characters that are only controlled by issuing commands to them via Actions or

scripting, and can be interacted with by the player. They can move, speak, and animate

just as a Player can.

To create an NPC, either use the Character wizard or add the NPC component to a

GameObject and follow the steps outlined in Creating characters.

It is a good idea to make your NPC a prefab, so that it can be re-used in other scenes.

If you intend to make them interactive, you'll need to add the Hotspot component, as well

as a Collider component.

For more on Hotspot and interactions, see Hotspots.

You can use Actions to give the NPCs instructions during gameplay. To have your NPC

perform a task when the scene begins, place such Actions in your OnStart cutscene - see

The Scene Manager.

When a scene features NPCs – particularly ones that move around – the player may

occasionally find themselves stuck because an NPC is in their way. To prevent this, NPCs

can be made to keep away from the player if they get too close. In the NPC inspector,

check Keep out of Player's way?, and set the minimum distance that they should keep

between themselves and the player. If you are using Polygon Collider pathfinding, you

can also make use of character-evasion.  

NOTE: If your NPC is sprite-based, these components should be placed on the sprite

itself and check Is Trigger on the collider. If your NPC is a 3D model, they should

instead be placed on the root object. In both cases, it is necessary to place the

Hotspot object onto the Default layer.

�

�103

3.2. Character tracking

AC features a robust Player-switching system, in which any Player character defined in the

Settings Manager has their position and scene tracked as they move around a game. Such

characters are automatically spawned into, and removed from a scene as necessary.

However, because inactive Players behave like NPCs, this system can also be used to keep

track of characters that are never actually controlled by the Player. So long as a character

has a Player - not an NPC - component, they can be listed in the Settings Manager and

have their position data automatically saved.

This is particularly useful if you have characters - playable or not - that appear in

different scenes throughout the course of the game. To move an inactive character to a

different scene, use the Player: Teleport inactive Action.

PROTIP: Such characters do not require a Remember NPC component in order to be

saved - such data is handled automatically.
�

�104

3.3. Character movement

Actions can be used to move a character, and in the case of the Player - restrict

movement.

Characters can both walk and run. The Minimum run distance on a Player / NPC

Inspector controls the minimum distance between the character and its target required

for running to be possible.

Characters can move in two ways:

1. By dynamically pathfinding their way between two points

2. By following a pre-determined route designed in the Scene view.

For pathfinding to work, a scene must contain an active NavMesh - see Pathfinding

methods. A character can then be made to pathfind (i.e. move dynamically to a location)

with the Character: Move to point Action. If a character wants to pathfind but no

NavMesh is set, they will simply move in a straight line directly to their destination.

To make a character move along a pre-set path, you first need to create that path as a

separate object. From the Scene Manager, click Path under the Navigation prefabs panel.

You should see a blue circle appear, which represents the starting point of your path.

The Paths Inspector can be used to create path nodes, which can be repositioned in the

Scene window:

Note that the the elevation of a path's nodes are unimportant unless you check the

Override gravity? box in the Inspector. Doing so will cause the character to move to

each node's point on the Y-axis, as well as the X and Z. This is useful if you want a

character to fly, for example.

You can also make the character walking along this path wait for a time at each node, by

supplying a Wait time (s). For greater control, you can also run a Cutscene or ActionList

�105

asset when a character reaches each node. The character involved can be sent as a

parameter to this ActionList if it contains a GameObject parameter - see ActionList

parameters. Once you have set up your pre-determined path, you can use the Character:

Move along path Action to move a character along it.

Because object scaling varies from game to game, you may need to adjust the

Destination accuracy slider in the Settings Manager. This slider determines how “close

is close enough” when it comes to determining if a Character has reached their

destination. This is visualised as a yellow sphere gizmo by the Character's feet in the

Scene window.

PROTIP: Pre-determined paths can also be used to restrict player movement during

gameplay. You can use the Player: Constrain Action to assign a Paths object to the

Player, which will mean they can only move along that path. Note that this feature only

works with the Direct and First-person movement.

�

PROTIP: If you are making a low-resolution 2D game and want pixel-perfect

pathfinding, consider using Retro movement.
�

�106

3.3.1. Retro movement

"Retro movement" is a special mode that emulates the pixel-perfect character motion of

classic 2D adventure games such as Monkey Island and Thimbleweed Park. It works best

when making low-resolution 2D games, but will also work for 3D games. Note that this

movement only changes pathfinding motion - not when a Player character is under e.g.

Direct control.

The mode is enabled by checking Retro-style movement? under a character's

Movement settings:

When enabled, characters will then move by the following rules:

• Deceleration values are ignored, they will move at a constant speed and will reach

their intended destination precisely.

• Rigidbodies are not used, but 2D NavMesh evasion settings are still accounted for.

• Turning while walking is instantaneous.

• They will turn before walking, and will turn to face the camera when turning more

than 180 degrees (Unity 2D only).

For a further retro-effect with 2D characters, there is also the Only move when sprite

changes? option.  

�107

3.3.2. Precision movement

When characters in Adventure Creator move along a path, they'll determine whether their

destination is reached or not according to their distance from it. If they are within a pre-

set threshold, then they'll be considered "close enough" and will stop moving. This is

typical of 3D game engines, where it is often impossible to attain an “absolute zero”

difference between the character and their intended destination.

You can amend this threshold via the Destination accuracy slider in the Settings

Manager, under Movement settings. Lower values will allow characters to stop farther

from their targets, and higher values will require them to be closer. The larger your

game's scale is (compared to Unity's base scale), the lower you'll generally want this value

to be. You may need to experiment a little to get the right value, but the default of 0.8 is

generally fine if 1 Unity unit is close to 1 metre.

If you require more precise in your movement, you will need to raise this value. Be aware,

however, that this may bring about "overshooting" if this is too high - especially if your

character's deceleration value is too low (meaning they take too long to slow down).

If you ramp this value all the way up to 1, however, you can enable the Attempt to be

super-accurate? setting. This will force characters to land on the exact point they are

supposed to, but will come with a "sliding" effect that may be obvious under certain

circumstances. The list below outlines some steps you can try to reduce this effect and

attain more natural, precise movement:

• If you are using Root Motion, then use a Blend Tree to scale movement speed with

animation speed. This will allow the character to slow down more naturally as they

approach their target.

• If a character overshoots when running, increase their Minimum run distance value.

If a character is running this far from their target, they'll slow to a walk.

• The Deceleration value affects at what point a character begins to slow down -

lower values will cause them to slow down sooner. If you find that the character

slows down so prematurely that they can't reach their destination, try raising this

value. A value of zero will cause it to copy the Acceleration value.

• Enabling a character's Retro-style movement? option will make characters reach

their targets precisely, but this option is best suited to 2D - see Retro movement.  

�108

https://docs.unity3d.com/Manual/RootMotion.html
https://docs.unity3d.com/Manual/class-BlendTree.html

3.3.3. Custom motion controllers

By default, a character's motion is handled automatically. However, you can also set their

Motion control field to Just Turning or Manual:

When set to either, AC will leave the character’s positioning to a separate motion

controller. When set to Just Turning, the character will be rotated by AC when idle. In

either case, Adventure Creator will still calculate what the character’s position and

rotation “should” be - which custom animation controllers can make use of.

The intended position and rotation of a character can then be read at any time by

accessing the public functions and methods in the Player or NPC component:

bool isRunning

bool isTalking

Vector3 GetTargetPosition ()

Quaternion GetTargetRotation ()

float GetTargetSpeed ()

Additionally, the messages OnTeleport and OnSnapRotate are called on the character’s

GameObject when AC moves a character instantly - this is useful when initialising a

character after e.g. a scene change or loading a save game file.

This feature is made use of by the included NavMeshAgent Integration script, which is

an example of how an AC character can move using a NavMeshAgent component instead.

A tutorial on writing a “bridge script” to another motion control system can be found

online. An example script that links AC with Unity’s Third Person Controller can also be

found in the AC wiki.

When it comes to using custom controllers (e.g. a dedicated platform controller) with

Player characters, it is generally much easier to have control duties shared by AC and the

custom script depending on the game's current state. For example, a custom controller

can control the player's motion during gameplay, while AC can control it during

cutscenes.

This can be achieved by manipulating the Motion control field through script, based on

the value of the StateHandler script's IsInGameplay() method, i.e.:

PROTIP: A full list of the variables and functions available in NPC and Player scripts can

also be found online.
�

�109

http://www.adventurecreator.org/tutorials/adding-custom-motion-controller
https://assetstore.unity.com/packages/essentials/asset-packs/standard-assets-32351
http://adventure-creator.wikia.com/wiki/Unity_Third_Person_Controller_integration
http://www.adventurecreator.org/scripting-guide/class_a_c_1_1_char.html

if (AC.KickStarter.stateHandler.IsInGameplay ())

{

AC.KickStarter.player.motionControl = AC.MotionControl.Manual;

// Also allow custom script to take control

}

else

{

 AC.KickStarter.player.motionControl = AC.MotionControl.Automatic;

 // Also prevent custom script from taking control

}

Such a check should be made every frame in an Update method. Alternatively, the

OnEnterGameState custom event can be used to make necessary changes only when the

state of the game is changed - see Interaction scripting.  

�110

3.4. Character animation

Characters have the following animation engine options:

Mecanim

Unity’s standard animation engine, and the one recommended for 3D characters.

Sprites Unity

A simplified engine for 2D characters that plays animations automatically.

Sprites Unity Complex

A more complex engine for 2D characters that need layered animation.

Legacy

Unity’s old animation system for 3D characters.

Sprites 2D Toolkit

An engine that integrates with 2D Toolkit.

Custom

Allows for other systems to be integrated through script.

A character's animation engine is chosen at the top of their Player/NPC Inspector:

Characters are not limited by the game's perspective - 3D games can feature 2D Sprites

Unity characters, for example.  

�111

https://www.assetstore.unity3d.com/en/%23!/content/908

3.4.1. Character animation (Mecanim)

The Mecanim engine is intended for designers who wish for greater control over their

animation than that which Legacy provides. While Legacy animation allows designers to

simply assign animations to a list of fields and have them play automatically, Mecanim

leaves the handling of animations up to the designer, while giving up control over certain

parameters in the Controller.

Mecanim is required if you want more refined animation, such as turning while walking,

use of Root Motion, and multiple layers.

Characters that use this engine must have an Animator component. This should

generally be placed on the root GameObject, but it can be assigned to a child object if

necessary. When selected, two new panels will appear in their Inspectors:

Mecanim parameters

This panel is where you define the names of your Animation parameters that AC can

control. AC will control any named parameters at all times:

Move speed float

The current horizontal speed. Will become the Walk speed scale when walking, and the

Run speed scale when running.

Turn float

This is set to -1 when turning left, 0 when not turning, and +1 when turning right

Talk bool

This is set to True when talking

Phoneme integer

The current phoneme index, when using with Lip syncing.

PROTIP: The 3D Demo’s player prefab, Tin Pot, uses this engine - so you can refer to

him as a practical example. He can be found in AdventureCreator/Demo/Resources.
�

�112

https://docs.unity3d.com/Manual/RootMotion.html
https://docs.unity3d.com/Manual/AnimationParameters.html

Normalised phoneme float

The current phoneme index, as a factor of the total number of phonemes, when using

with Lip syncing.

Head yaw float

The yaw angle of the head, when looking around

Head pitch float

The pitch angle of the head, when looking around

Vertical movement float

The current vertical speed, allowing for falling and landing animations.

Jump bool

Set to True in the one frame that a jump is initiated (Players only)

‘Is grounded’ bool

Set to True if the character is currently touching the ground.

It is up to you to decide how these parameters should be used by your Controller - you

could make use of Blend Trees, for example, or have simple Transitions between various

states.

Mecanim settings

This panel is where the Animator component is assigned (if not on the root GameObject),

and where other Mecanim-related options are set. Head and mouth layers can be

provided if you choose to play facial animations by name with the Dialogue: Play speech

Action. If your character is a Humanoid, IK head-turning? will automatically rely on IK

when head-turning instead of supplying angle parameters.

NOTE: For IK head-turning to work, two additional steps are necessary:

1. The Animator's Base layer must have IK Pass enabled in its properties.

2. The character must have a Neck bone assigned in their Inspector, or a Capsule

Collider must be placed on their root.

�

�113

https://docs.unity3d.com/Manual/class-AnimatorController.html
https://docs.unity3d.com/Manual/class-BlendTree.html
https://docs.unity3d.com/Manual/class-Transition.html
https://unity3d.com/learn/tutorials/topics/animation/humanoid-avatars

For added realism when moving, Slow movement near walls? will have the character

slow down as they approach a scene's walls. This is most suited for Direct-controlled

Players.

PROTIP: AC will auto-detect the state of your Animator's Apply Root Motion field.

When set, AC will no longer move the character - which will then be dependent on the

animation itself to move. You can choose how much control AC has over turning:

when the Root motion turning slider is set to one, then all turning will be expected to

be performed by the controller.

�

�114

Bone transforms

This panel is where bones are assigned so that they can head-turn and hold things with

the Character: Hold object Action.

During gameplay, the Character: Animate Action can be used by such characters to

change the value of any parameter in their Controller. It can also be used to change

expected parameter names, making it possible to “redirect” the Controller to play

different “standard” animations, such as Walking and Talking.

This engine also supports numerous methods for facial animation - see Lip syncing.  

�115

3.4.2. Character animation (Sprites Unity)

The Sprites Unity engine is a convenient way of working with 2D characters because it

plays animations according to a naming convention, as opposed to transitions or

parameters. If you have a character that can animate in all eight directions, this can be

very time-consuming.

When selected, a new panel will appear in the Inspector:

Standard 2D animations

You will first need to ensure that the character’s sprite is a child in their Hierarchy (with

their NPC/Player component on their root), and that this is assigned as the Sprite child.

An Animator is also required, which should be placed on either the sprite or the root.

The standard animations (idle, walk, run and talk) are all played automatically, based on

the animation type followed by a directional suffix. For example, the character above will

play Walk_D when walking downward, and Idle_R when idle while facing right. The

following suffixes are understood:

• _R → Right

• _L → Left

• _U → Up

• _D → Down

• _UR → Up-right

• _UL → Up-left

• _DR → Down-right

• _DL → Down-left

PROTIP: The 2D Demo’s player prefab, Brain2D, uses this engine - so you can refer to

him as a practical example. He can be found in AdventureCreator/2D Demo/

Resources.
�

�116

If Head on separate layer? is checked, then an additional Head layer index field will

appear and head animations (idle and talk) can be moved to a separate layer in the

Animator component. The head sprite must also be separated from the body as a child

component, but this allows for a character to talk while moving, and look at objects

without turning their body. For more, see Head turning.

Characters will face up to eight directions, depending on the Facing directions field. If

set to Four, then the character can face up, down, left and right. If set to Eight, they can

also face diagonally. If set to Custom, you can select exactly which directions they can

face. If set to None, the directional suffix will be ignored completely. Clicking List

expected animations will reveal a list of all the animations that a character’s Animator is

expected to have.

These animations need to be placed in the character's Animator Controller. As AC refers

to these by state name, you do not need to incorporate transitions between them.

If your left- and right-facing sprites are merely mirror images of each other, you only

need supply one or the other. Set the Frame flipping value to Left Mirrors Right to only

rely on right-facing animations, or Right Mirrors Left for the opposite. By default, this

option will only affect standard animations, such as Idle, Walk and Run – to make it affect

custom animations as well, check Flip custom animations?.

If your animation clips rely on sprite transforms, rather than swapping out frames, you

can use the Crossfade animations? checkbox to smooth transitions.

If you are going for a retro effect, you can use the Only move when sprite changes?

checkbox so that the character's movement is less smooth – which can be useful when

working with low-resolution sprites. This is equivalent to Adventure Game Studio's “Anti-

glide mode”. Note that this feature ignores collisions - so should not be used for

Players under Direct control.

The Character: Animation Action can be used to change standard animation names, or

play custom clips temporarily. Note that when playing non-standard animations, you

may need to add Transitions to your Controller to control how the animation finishes

playing.

The Dialogue: Play speech Action is given additional animation options, allowing playback

of animations on varying layers.

To handle collision, add a Circle Collider 2D at the base of the character's root object

(covering the feet), and unchecking Is Trigger. If you are making an interactive NPC, add

a second collider, a Box Collider 2D, onto the sprite child, as well as the Hotspot script.  

NOTE: A 2D character's animations should all pivot around their feet.
�

�117

https://docs.unity3d.com/Manual/class-AnimatorController.html
http://adventuregamestudio.co.uk/
https://docs.unity3d.com/Manual/class-Transition.html

3.4.3. Character animation (Sprites Unity Complex)

The Sprites Unity Complex engine allows for more control over how 2D animations are

played back than Sprites Unity. While it can take more effort to fine-tune, it allows for

smooth transitions between animations – such as Broken Sword-style animated

transitions while changing direction while walking.

Rather than requiring the names of animation clips for Adventure Creator to automatically

call upon, Sprites Unity Complex works by giving AC control over certain parameters in

the character’s Animator Controller – this allows the designer to make use of them

however they like.

When selected, a new panel will appear in the Inspector:

Mecanim parameters

You will first need to ensure that the character’s sprite is a child in their Hierarchy (with

their NPC/Player component on their root), and that this is assigned as the Sprite child.

An Animator is also required, which should be placed on either the sprite or the root.

This panel is where you define the names of your Animation parameters that AC can

control. AC will control any named parameters at all times:

Move speed float

The current speed. Will become the Walk speed scale when walking, and the Run speed

scale when running.  

PROTIP: A variant of the 2D Demo’s player, Brain2D_SpritesUnityComplex, uses this

engine - so you can refer to him as a practical example. He can be found in

AdventureCreator/2D Demo/Resources.
�

�118

https://docs.unity3d.com/Manual/AnimationParameters.html

Turn float

Set to -1 when turning left, +1 when turning right, and 0 when not turning or moving.

Direction integer

The current facing direction, as a whole number. Note that diagonal directions are only

used if Diagonal sprites? is checked:

 0 –> Down

 1 –> Left

 2 -> Right

 3 –> Up

 4 –> Down-left

 5 –> Down-right

 6 –> Up-left

 7 –> Up-right

Body angle float

The current facing direction, as an angle in degrees. This is zero when the character

faces down, and increases to 360 (non-inclusive) as the Character rotates clockwise.

Head angle float

The head’s facing direction, as an angle in degrees. This uses the same angle system as

Body angle float, above. See Head turning.

Angle snapping

This field allows you to snap the Body angle float and Head angle float parameters to

the nearest 45 or 90 degrees. This is useful if using these parameters in Blend Trees, and

you wish to remove interpolated blend effects.

Talk bool

Set to True when talking

Phoneme integer

The current phoneme index, when using talking with Lip syncing.

Vertical movement float

The current vertical speed, allowing for falling and landing animations.

It is up to you to decide how these parameters should be used by your Controller - you

could make use of Blend Trees, for example, or have simple Transitions between various

states.

�119

https://docs.unity3d.com/Manual/class-BlendTree.html
https://docs.unity3d.com/Manual/class-AnimatorController.html
https://docs.unity3d.com/Manual/class-BlendTree.html
https://docs.unity3d.com/Manual/class-Transition.html

For added realism when moving, Slow movement near walls? will have the character

slow down as they approach a scene's walls. This is most suited for Direct-controlled

Players.

If you are going for a retro effect, you can use the Only move when sprite changes?

checkbox so that the character's movement is less smooth – which can be useful when

working with low-resolution sprites. This is equivalent to Adventure Game Studio's “Anti-

glide mode”.  

NOTE: This engine does not have a Frame-flipping option like Sprites Unity. If you

want to flip the sprite so that left-facing animations can be recycled for right (or vice-

versa), you can make use of a simple script. A sample is provided in the AC wiki.

�

NOTE: A 2D character's animations should all pivot around their feet.
�

�120

http://adventure-creator.wikia.com/wiki/Frame-flipping_for_Sprites_Unity_Complex_characters
http://adventuregamestudio.co.uk/

3.4.4. Character animation (Legacy)

The Legacy engine is a much more simple way of animating 3D characters than Mecanim,

as it involves supplying the required animations directly within the Inspector, so that AC

can play them automatically. It is referred to as Legacy because it uses Unity’s old

animation tools that pre-date the Mecanim / Animator tools.

Characters that use this engine must have an Animation component on the root

GameObject, but it can be assigned to a child object if necessary.

When selected, two new panels will appear in the character's Inspector:

Standard 3D animations

This panel is where standard animations such as walking and talking are assigned. These

will be played automatically when appropriate - they do not need to be assigned in the

Animation component.

When Talk animation style is set to Custom Face, facial animation clips are assigned

directly within each Dialogue: Play speech Action as opposed to a singular talking

animation.

PROTIP: The 3D Demo’s NPC character, Brain, uses this engine - so you can refer to

him as a practical example. He can be found in AdventureCreator/Demo/NPCs.
�

NOTE: In order to play back an animation, make sure it is marked as Legacy in its

import Inspector.
�

�121

Bone transforms

This panel is where a few of the character’s rig bones are assigned. This is necessary so

that AC knows which bones to isolate when e.g. animating the head while the character is

looking around.

Custom animations can be played in-game with the Character: Animate Action. When

doing so, you define an animation layer for it to be played on, from the Base layer at the

bottom, to the Mouth layer at the top. By keeping your animations on separate layers,

you can mix them together to create new animations.

The demo provides a good example of this when Brain talks to the player while in his

chair. He is playing his idle animation on the Base layer, turning his head left on the Neck

layer, bobbing his head on the Head layer, changing his expression on the Face layer, and

moving his lips on the Mouth layer. It's generally a good idea to only play one animation

per layer at any one time.

You can also choose if that animation is blended with or added on top of existing

animations. If you are having trouble getting an additive animation to play properly,

make sure that all keyframed bones in that animation start from their rest position.

The Character: Animate Action can also stop animations, change the standard animations,

and reset a character to idle.

The Dialogue: Play speech Action also allows for two more animations: Head and Mouth.

These fields act as shortcuts to play custom animations in the correct way. The Head

animation is used to vary a character's head motion as they say a line, for example a nod

if they are agreeing with something. This is an Additive animation played once on the

Head layer. The Mouth animation is used to let the character animate their lips as they

talk. You can either supply a generic “talking” animation, or a line-specific lip-sync

animation. This is a Blend animation played once on the Mouth layer.

Adventure Creator also features a number of ways to animate your lip-syncing, including

making use of FaceFX.

To animate expressions on characters by using blend shapes, attach a Shapeable

component to your Skinned Mesh Renderer and use it to define your expression shapes.

You can then use either the Object: Blend shape Action to control which shape is active,

or define Expressions in the character Inspector so that the [expression:name] tag can be

used - see Text tokens.

�122

3.4.5. Custom animation engines

Each of the provided animation engines are self-contained scripts in the

AdventureCreator/Scripts/Animation folder.

To implement a custom animation engine, create a C# subclass of the AnimEngine

ScriptableObject. Then within your character's Inspector, set the Animation engine field

to Custom, and supply the name of your new C# script as the Script name:

Animation engines work by overriding functions within the AnimEngine class whenever a

character must be animated. For example, when a character walks, the script’s PlayWalk

function is called every frame.

The functions below can be overridden in a custom animation script. Its character

variable can be used to access the character’s NPC/Player script properties.

The following are called every frame, depending on what the character is doing:

PlayIdle ()

PlayWalk ()

PlayRun ()

PlayTalk ()

PlayJump ()

PlayTurnLeft ()

PlayTurnRight ()

The following can also be overridden:

CharSettingsGUI ()

Used to display any additional GUI settings the character’s Inspector may require

ActionCharAnimGUI (ActionCharAnim action)

Used to display the “Character: Animate” Action’s GUI

ActionCharAnimRun (ActionCharAnim action)

Called when the “Character: Animate” Action is run

ActionCharAnimSkip (ActionCharAnim action)

Called when the “Character: Animate” Action is skipped

PROTIP: A full list of the variables and functions available in NPC and Player scripts can

be found online.
�

�123

http://www.adventurecreator.org/scripting-guide/class_a_c_1_1_char.html
http://adventurecreator.org/scripting-guide/class_a_c_1_1_anim_engine.html
http://adventurecreator.org/scripting-guide/class_a_c_1_1_anim_engine.html

3.5. Head animation

With a little configuration, characters can turn their heads to specific objects - rather than

turning their entire bodies. Sprite-based characters can also separate their head and

body animations, so that they can talk while moving without the need for full-body

“talking and walking” animations.

A character can face an object by using the Character: Face object Action, and setting

Face with to Head. A character will continue to face the object until the Action is run

again with Stop looking? checked.

The Player can also be made to face the active Hotspot - from the Settings Manager,

check Player turns head to active? underneath Hotspot settings. This can be disabled

mid-game using the Player: Constrain Action. The Player will face the Hotpot’s centre,

unless a Centre point (override) is assigned for it.

The method of configuring a character to allow for this depends on their animation

engine:

Mecanim

If a character has a Humanoid rig, then you can make use of automatic IK head turning –

just check IK head-turning? within the character's Inspector. If the character has a

Capsule Collider or Character Controller, it will be used to estimate their height - but

you can set this explicitly by defining a Neck bone transform.

Otherwise, you will need to supply four animation clips for full rotation - one each for

looking up, down, left, and right. You can update your Animator Controller with two float

parameters that determine the head's yaw (left-and-right) and pitch (up-and-down).

Enter these parameter names into the character’s Inspector, and their values will update

during gameplay. Ideally, these are used to control a 2D Blend Tree.

PROTIP: Example prefabs that demonstrate sprite-based characters with independent

head animation are available on AC's Downloads page.
�

PROTIP: The 3D Demo’s Player prefab, Tin Pot, can turn his head this way. If you want

to see how he works, find him in /Assets/AdventureCreator/Demo/Resources.

Example Player prefabs for 2D games can be downloaded from the AC website.

�

�124

http://www.adventurecreator.org/downloads
https://unity3d.com/learn/tutorials/topics/animation/humanoid-avatars
https://docs.unity3d.com/Manual/class-CharacterController.html
https://adventurecreator.org/downloads

Legacy

Head-turning animation clips can be assigned directly in the character's Inspector. They

should all only animate the head, start in the base position and finish in the extreme

position. A Neck bone should also be supplied.

Sprites Unity Complex

A 2D character can only move their head sideways - not up and down.

If defined, the Head angle float parameter will take the angle of the direction that the

head should be facing. When the head is not facing an object, this will be the same value

as the Body angle float parameter. This parameter will be affected by the Angle

snapping value.

Head animations that rely on this parameter will need to be placed in a sub-layer so that

they can be controlled independently of those placed on the Base layer.

Sprites Unity

A 2D character can only move their head sideways - not up and down.

Head turning with this engine is only available if Head on separate layer? is checked in

their Inspector. When checked, a separate Head layer field is then exposed, and

additional animation names will appear in the List expected animations? foldout. This

lists expected animation names, as well as the layer index they must appear on.

This method works by playing idle and talk animations on the head, isolated from the

body. Therefore, the character's head should be both a separate sprite, and a separate

GameObject - a child of the main body sprite GameObject. The head animations will

need to be placed in a sub-layer so that they can be controlled independently of those

placed on the Base layer.

An additional "HiddenHead" animation is also listed - this should be a single-frame

animation in which the head is removed from view, typically by replacing it with an

invisible sprite. This is a convenient way of returning to a single-sprite system when a

special full-body animation is required, and will be played automatically when using the

Character: Animate Action and Hide head? is checked.

NOTE: When head-turning in 2D games, the object a character faces is assumed to be

on the ground, i.e. at the same level as the characters feet. If a character faces a

Hotspot that is tall, you may need to define a Look-at override for that Hotspot, and

place the override on the ground to get the intended effect.

�

�125

3.6. Footstep sounds

Character footstep sounds can be played by one of two ways:

Inspector audio clips

This is the quickest method to set up but has no controls. Clips are assigned underneath

Audio Clips in the Player/NPC Inspector, under Audio clips.

To change these sounds during gameplay, use the Character: Animate Action and set the

Method to Set Standard.

Footstep Sounds component

This is a special component used to play sounds more accurately. It is added, together

with a Sound component, on a child object of the character.

Multiple walk and run sounds can be assigned within the Inspector, and one will be

played at random each time.

You can choose if they are played via Animation Events, or Automatically according to

user-defined separation times. If using Animation Events, you must call the component’s

PlayFootstep function to trigger the audio.

To change these sounds during gameplay, use the Sound: Change footsteps Action.

NOTE: To save changes to movement sounds using this method, place all audio clips

(including the originals) in a Resources folder and give them unique filenames.
�

NOTE: To save changes to movement sounds using this method, attach the Remember

Footstep Sounds component, and place all audio clips (including the originals) in a

Resources folder and give them unique filenames.

�

�126

https://docs.unity3d.com/Manual/animeditor-AnimationEvents.html

3.7. Character scripting

Characters make use of either the Player or NPC script components. Both are subclasses

of the Char script.

The current Player can be retrieved with:

KickStarter.player;

The available Players in a game that allows Player-switching can be retrieved with:

KickStarter.settingsManager.players;

A character can be made to move or turn with:

myCharacter.MoveToPoint (Vector3 destination);

myCharacter.SetLookDirection (Vector2 lookDirection, bool isInstant);

myCharacter.EndPath ();

myCharacter.Halt ();

Character scripts output their intended destination, rotation, and other parameters.

These are useful when building custom motion controllers:

myCharacter.GetTargetSpeed ();

myCharacter.GetTargetNode ();

myCharacter.GetTargetDistance ();

myCharacter.GetTargetPosition ();

myCharacter.GetTargetRotation ();

myCharacter.GetAngleDifference ();

myCharacter.IsTurning ();

myCharacter.IsMovingAlongPath ();

The character system has the following events:

OnSetPlayer (Player player)

OnPlayerSpawn (Player player)

OnPlayerRemove (Player player)

OnPlayerJump (Player player)

OnSetHeadTurnTarget (Char character, Transform headTurnTarget, Vector3

targetOffset, bool isInstant)

OnClearHeadTurnTarget (Char character, bool isInstant)

OnCharacterSetPath (Char character, Paths path)

OnCharacterEndPath (Char character, Paths path)

OnCharacterReachNode (Char character, Paths path, int nodeIndex)

OnCharacterSetExpression (Char character, Expression expression)

OnSetLookDirection (Char character, Vector3 direction, bool isInstant)

OnOccupyPlayerStart (Player player, PlayerStart playerStart)

OnCharacterTeleport (Char character, Vector3 position, Quaternion

rotation)

OnPlayFootstepSound (Char character, FootstepSounds footstepSounds,

AudioSource audioSource, AudioClip audioClip)

�127

http://adventurecreator.org/scripting-guide/class_a_c_1_1_player.html
http://adventurecreator.org/scripting-guide/class_a_c_1_1_n_p_c.html
http://adventurecreator.org/scripting-guide/class_a_c_1_1_char.html

OnCharacterRecalculatePathfind (Char character, ref Vector3

destination)

OnCharacterHoldObject (Char character, GameObject object, Hand hand);

OnCharacterDropObject (Char character, GameObject object, Hand hand);  

�128

4. Camera perspectives 

�129

4.1. Cameras overview

As you create your game, you will place many cameras in your scene. Most of these will

be GameCameras, which are never used directly to view your game from, but rather are

used as “reference points” for the MainCamera. The MainCamera attaches itself to

whichever GameCamera is currently active, and copies its position, rotation, field of view,

orthographic type and other camera properties.

The active camera can be changed in-game by using the Camera: Switch, Camera:

Crossfade and Camera: Split-screen Actions. In the Editor, you can also switch camera via

the component’s cog menu during runtime.

You can add new GameCameras to your scene from the Camera prefabs section of the

Scene Manager. What camera types are available based on your Settings Manager's

Camera perspective setting.

You can still use any type of GameCamera in your game, regardless of the perspective

setting you've chosen – just drag them manually from AdventureCreator → Prefabs →

Cameras into your scene hierarchy.

AC also provides widescreen and letterboxing support. The Aspect ratio setting allows

you to enforce either a fixed or an enforced minimum/maximum aspect ratio, regardless

of the resolution.

NOTE: Since GameCameras are merely used for the MainCamera's reference, and do no

rendering themselves, any image effect scripts you want to make use of must be

added to the MainCamera GameObject in your scene. For more, see Camera effects.

�

PROTIP: The Camera perspective setting will be the default setting for your game, but

this can be overridden on a per-scene basis - see Overriding perspective.
�

�130

4.2. Camera types

The following camera types are listed in the Scene Manager, depending on the Camera

perspective setting:

3D

GameCamera

The standard camera type for 3D games, which can track a moving target.

GameCamera Animated

A camera that either plays an animation when made active, or positions itself

along a timeline as a target moves along a path.

GameCamera Third-person

A camera that follows a target by keeping the same distance from it at all times,

with the ability to rotate.

SimpleCamera

A camera that has no controls and doesn't move by itself, but can be attached to

a custom camera script to make it compatible with AC.

2.5D

GameCamera 2.5D

The standard camera type for 2.5D games, which allows for background images

to be placed behind 3D objects.

2D

GameCamera 2D

The standard camera type for 2D games, which can track a moving target.

GameCamera 2D Drag

A camera that can be dragged around using the mouse.

�131

4.2.1. GameCamera

The GameGamera is the default camera type when working in 3D. Position, spin, pitch

and field of view can all be controlled independently by unchecking the Lock? toggle

beside each:

When at least one axis is unlocked, a panel to affect the camera's target appears. By

default, this is the Player, but other GameObjects can be used instead if the Target is

player? checkbox is unchecked. The speed at which the camera follows its target can

also be controlled.

When an axis becomes unlocked, the method by which that axis is affected can be set.

For example, the X-axis movement can be based on the target's X-axis position, Z-axis

position, position across the viewport or position away from it. The way in which this

“input” results in the axis' final position depends on the Influence and Offset values, and

limits can be set using the Constrain panel.

The Side Scrolling option allows the camera to behave like a more traditional 2D

adventure game camera, in which the camera only moves when the player nears the edge

of the screen.

�132

The Spin rotation panel has an additional option: Look At Target, which is a simple way

of ensuring the camera is always centred on the target:

The Cursor influence panel allows the camera to appear to subtly “follow” the cursor as it

moves around the screen.

To determine the best values for a GameCamera’s Inspector, it is often easier to tweak

them while the game is running, copy their values (via the cog icon to the top-right of the

inspector), and paste them back in once the game has been stopped:

Though their default projection is Perspective, GameCameras can also be set to

Orthographic. It is important, however, that the scene's Navigation Mesh is always

visible to the camera if you are making a point-and-click game – if you are making one

with Orthographic camera, be sure to rotate them downward so that the NavMesh is in

view.

GameCameras have a Depth of field setting that you can call upon in such post-

processing scripts. The focal distance can either be set manually, or tied to the camera's

target object. When the MainCamera is attached to a GameCamera, it can return the

current focal distance with this command:

AC.Kickstarter.mainCamera.GetFocalDistance ();  

�133

http://www.adventurecreator.org/scripting-guide/class_a_c_1_1_main_camera.html#a5a02376c746269fe25f17a58a35b0831

4.2.2. GameCamera Animated

The GameCamera Animated prefab can play back a Unity-made animation when made

active. This allows for more dynamic and interesting camerawork during Cutscenes, for

example. As this works with the Animation component, any animations involved must be

marked as Legacy.

However, the real use of this camera type is that it be made to play a fixed frame from an

animation based on its target's point along a Path, which is possible when the Animated

camera type is set to Sync With Target Movement:

A Path is a prefab that describes a series of nodes - see Character movement. When the

camera's target is at the start of the assigned Path, the camera will play the first frame of

the animation. When the target is at the end of the Path, the Camera will play the last

frame. In-between frames will be interpolated. This allows for more controlled

camerawork as the Player moves along a specific section of the scene.

Do be aware, however, that such Paths must be kept to one side of the target at all times,

and the nodes must be positioned such that the reflex angles (> 180 degrees) between

them must face the Target. If the Path were to be used for a corner, for example, the

bird's eye view should look like this:

�134

4.2.3. GameCamera Third-person

The GameCamera Third-person camera type allows for more traditional, over-the-

shoulder, behaviour when following the player.

This camera type can be rotated horizontally (Spin) and vertically (Pitch), with each axis

having independent settings and limits. When pitch rotation is enabled, the camera's

position can be defined by Top, Middle and Bottom regions. Each region has Distance

and Height offset values, allowing you to adjust the camera's position as the Player

controls the pitch angle.

It is also possible to have the camera adjust its rotation and distance according to the

movement of its Target (by default, the Player). This makes it possible to have the

camera smoothly follow a Player in all directions without having the user having to control

it directly.

Because the camera can be moved freely, enabling Do collisions? is often necessary as

this prevents the camera from being able to travel through colliders placed on a specified

layer.

Zooming can also be enabled: either with an input button controlling FOV when pressed,

or with an input axis controlling distance to the target.

The Initial direction field determines how the camera's orientation is first set. If Set

initial direction when active? is checked, then this direction will be set whenever the

camera is made active (e.g. via the Camera: Switch) Action.

You can also set the rotation by using the Camera: Rotate third-person Action. This

allows you to turn the camera manually as part of a cutscene, it you want to focus the

player's attention on something.

Like GameCameras, this type has a Depth of field setting that you can call upon in such

post-processing scripts. The focal distance can either be set manually, or tied to the

camera's target object. When the MainCamera is attached this camera type, it can return

the current focal distance with this command:

AC.Kickstarter.mainCamera.GetFocalDistance ();  

PROTIP: This camera type can be found in the 3D Demo, though it is not activated by

default. To activate it, load the 3D Demo game and go into the Variables Manager. In

the list of Local variables, set the value of Third person camera to True.

�

PROTIP: Getting jittery movement when the Player moves? Try adjusting the camera's

Update mode field.
�

�135

http://www.adventurecreator.org/scripting-guide/class_a_c_1_1_main_camera.html#a5a02376c746269fe25f17a58a35b0831

4.2.4. SimpleCamera

A SimpleCamera is the least processor-intensive of all camera types. It cannot be moved

in-game, but if you use it purely for still shots, then it will save more memory than the

regular GameCamera type.  

�136

4.2.5. GameCamera 2.5D

The GameCamera 25D camera type facilitates the development of games that use a

mixture of pre-rendered (or photographic) backgrounds and 3D characters.

This camera type cannot move, but this limitation allows each one to be associated with a

particular background image. This background image is displayed underneath the rest of

the scene's geometry, and is not a physical object in the scene itself. This means that a

scene can have many cameras and backgrounds without it becoming unmanageable.

Each background image must be stored within its own Background Image prefab. This

can be created from the Scene Manager, or from the camera itself:

A BackgroundCamera prefab must also be present in the scene - but this will be added

automatically when creating a 2.5D scene. This prefab's Culling Mask needs to be set to

the BackgroundImage layer, and the MainCamera's Culling Mask needs to omit this - but

this should be automatic.

The BackgroundImage is where the background image Texture is assigned:

The assigned texture can either be a single Texture, or a VideoClip asset file, which will

play on a loop when the background is made active. When the Background type is set to

Video Clip, both Texture and VideoClip fields will be made available. The assigned

NOTE: If you require scrolling, you can still use the GameCamera 2D camera type in

combination with sprite-based backgrounds. The GameCamera2D prefab can be

found in /AdventureCreator/Prefabs/Camera. A tutorial can be found online.

�

NOTE: Using URP? Unity’s Universal Render Pipeline uses its own technique to overlay

cameras, so you'll need this wiki script to have it work with AC’s 2.5D cameras.
�

�137

https://adventure-creator.fandom.com/wiki/2.5D_games_with_URP
https://adventurecreator.org/tutorials/scrolling-backgrounds-25d-games
https://docs.unity3d.com/Manual/class-VideoClip.html

Texture is treated as a placeholder while the VideoClip is loaded into memory, or when

previewing its associated camera in the Editor.

Once a GameCamera25D has been assigned a BackgroundImage prefab, a button labelled

Set as active appears in its inspector. Clicking this allows you to preview its view, plus

the background image, in the Game Window when the scene is not running:

For more on 2.5D games, see Preparing a 2.5D scene.  

PROTIP: It is strongly recommended to set the Aspect ratio option in the Settings

Manager to Fixed when working with background images, as this will ensure that they

are proportionally correct. Also be sure to have your Game Window's perspective set

to match your chosen aspect ratio.

�

�138

4.2.6. GameCamera 2D

This camera type emulates the behaviour of traditional 2D adventure game cameras, and

can move horizontally and vertically as it follows a target. While this camera type only

moves along the X and Y axes, it can still be used in 3D scenes provided that it looks

down the Z axis.

A GameCamera 2D can move horizontally and vertically, or be locked in either direction.

When at least one axis is unlocked, options to control the camera's target will appear:

The Track freedom variable determines how far, in Unity co-ordinates, the target must

move from the camera's screen-centre before the camera begins to follow. A freedom of

zero will keep the target in the centre of the screen at all times.

The Target direction factor allows you to influence the camera’s position based on the

target’s facing direction - so that if the target faces left, the camera pans further left.

The Cursor influence panel allows the camera to appear to subtly “follow” the cursor as it

moves around the screen.

NOTE: GameCamera 2Ds do not physically move, but instead just change their

projection matrices to give a scrolling effect. This is also the case when the camera's

Projection is set to Perspective - meaning you'll get a Ken Burns effect even in 3D.

�

�139

https://en.wikipedia.org/wiki/Ken_Burns_effect

As with the GameCamera, the movement in either direction can be constrained and offset.

To determine the best values for a GameCamera 2D’s Inspector, it is often easier to tweak

them while the game is running, copy their values (via the cog icon to the top-right of the

inspector), and paste them back in once the game has been stopped:

It is possible to make other objects scroll as the camera does - though at different speeds

- to achieve a depth effect. To do this, attach a Parallax2D script to any other

GameObject you want to scroll. For more, see Parallax 2D.

PROTIP: A cursor graphic to make use of while dragging this camera type can be

assigned in the Cursor Manager.
�

�140

4.2.7. GameCamera 2D Drag

This 2D camera has no “target”, but is instead panned horizontally or vertically by

dragging with a mouse (or finger on a touch-screen). Movement in the X and Y directions

can be controlled independently:

As clicks will still be used to initiate player movement, this camera type is recommended

for games that do not make use of point-and-click movement.

�141

4.3. Adding custom cameras

Although a variety of camera types are provided, it may be that you require or prefer to

use other types - whether it be another camera asset from Unity’s Asset Store, or your

own script.

To make such a camera visible to AC’s camera system, simply add the Adventure Creator

-> Cameras -> Basic Camera component from the Inspector’s Add Component menu:

Adding this component will mean that it can be used in AC’s various Camera Actions and

be made the Default camera in the Scene Manager.

If the camera is for a 2D game, check the box in its Inspector:

Like GameCameras, this type has a Depth of field setting that you can call upon in such

post-processing scripts. The focal distance can either be set manually, or tied to the

camera's target object. When the MainCamera is attached this camera type, it can return

the current focal distance with this command:

AC.Kickstarter.mainCamera.GetFocalDistance ();

NOTE: As explained in Cameras overview, the only active Camera in your scene should

be the MainCamera – and this is true even when custom cameras are involved. Be sure

to disable your custom camera's Camera component – Adventure Creator will still read

its values, but there won't be a conflict in rendering.

�

�142

http://www.adventurecreator.org/scripting-guide/class_a_c_1_1_main_camera.html#a5a02376c746269fe25f17a58a35b0831

4.4. Working with VR

While Adventure Creator isn't geared towards VR experiences, its still possible to allow a

scene to be viewed in VR.

Replace the scene's MainCamera with the MainCameraVR prefab found in

AdventureCreator/Prefabs/Camera. This will allow for VR movement while also being

able to use AC's camera system.

When Virtual Reality Supported is enabled in Unity’s Player Settings, the Main Camera

Inspector will display an option to restore its Transform when loading save games.

Leaving this as unchecked may help compatibility when working with VR projects.

It is common for VR games to incorporate a 3D cursor into your game, as opposed to an

icon-based one. You can do this by overriding the mouse position with an

InputMousePositionDelegate - see Remapping inputs.

If you wish to make a VR game that can be played completely with the camera (i.e. with no

cursor clicks), you can use custom events to detect when the mouse is over Hotspots and

Menus, and interact with them through script if it remains over them for a set time.

PROTIP: Certain operations in AC, such as Direct-controlling the Player relative to the

camera, rely on knowing which direction the camera is facing. This is typically the

same direction as that of the MainCamera - but in the case of the MainCameraVR

prefab, these two components are on separate GameObjects. The MainCamera

Inspector’s Facing direction field can be set to either have such operations refer to

the MainCamera, or the Camera.

�

PROTIP: An example 3D cursor script is already included – add a mesh GameObject to

the scene, and add the World Space Cursor Example component. It is fully

documented and can be modified to suit the needs of your own game.

�

PROTIP: Such a script is also included – add a new GameObject to the scene, and add

the Click By Hovering Cursor Example component. This can be used in conjunction

with the World Space Cursor Example mentioned above.

�

NOTE: When loading a save-game file in VR, you may wish for the MainCamera to not

restore its position depending on how you've set your game up. If Virtual Reality

Supported is checked in Unity's Player Settings, this is made optional within the

MainCamera Inspector.

�

�143

https://docs.unity3d.com/Manual/class-PlayerSettings.html

4.5. Working with Cinemachine

Cinemachine is a free Unity asset that allows for dynamic camera movement and

cinematic shot composition. It can be downloaded from the Unity Asset Store.

Adventure Creator and Cinemachine both share the concept of using multiple cameras as

references, with only one main camera that performs the rendering. AC's MainCamera

and GameCamera are comparable to Cinemachine's CinemachineBrain and

VirtualCamera.

Cinemachine can be integrated with AC in two ways, depending on whether or not you

want to also make use of AC GameCameras.

Using Cinemachine exclusively

If you want to rely solely on Cinemachine, attach the Cinemachine Brain component to

AC's existing MainCamera, and rely on Cinemachine VirtualCameras instead of AC

GameCameras. The integration package mentioned above includes a Camera:

Cinemachine Action that can be used to control the active VirtualCamera, as well as a

Remember Cinemachine Virtual Camera component that can be used to save its data.

Mixing AC and Cinemachine cameras

If you instead wish to be able to switch between Cinemachine VirtualCameras and AC

GameCameras, keep AC's Main Camera and Cinemachine's Cinemachine Brain

components on separate GameObjects - each with their own Camera component. On the

Cinemachine Brain object, remove the AudioSource and attach AC's Basic Camera

component (see Adding custom cameras):

PROTIP: An integration package, containing helper scripts and example scenes to link

Cinemachine with AC can be found on the AC website’s Downloads page.
�

�144

https://adventurecreator.org/downloads
https://www.assetstore.unity3d.com/en/#!/content/79898

The Cinemachine Brain will then be available when assigning the Scene Manager's Default

Camera field, as well as the various Camera Actions. When the MainCamera is attached

to the Cinemachine Brain, you can then switch VirtualCamera as you would in any other

Cinemachine project - as well as continue to use AC’s own cameras when desired.

NOTE: Since the above technique requires the MainCamera to copy the

CinemachineBrain's camera values each frames, AC will need to update after

Cinemachine. To do this, set AC’s StateHandler script’s Execution Order to a value

larger than the CinemachineBrain script.

�

�145

https://docs.unity3d.com/Manual/class-MonoManager.html

4.6. Overriding perspective

While the game's regular Camera perspective is defined in the Settings Manager (see

Cameras overview), scenes can be made to override this on a per-scene basis. This is

useful if you want isolated sections of your game to make use of different gameplay - for

example, a 2D map screen in an otherwise 3D game.

Before a scene's objects have been organised, you have the option to Override the

default camera perspective?.

Checking this box brings up further options to choose what kind of camera perspective

the scene will have. Once the Organise scene objects process has run, these options will

disappear.

If the scene overrides the default camera perspective, then you must ensure that your

Player is equipped to work in it. Both 2D and 3D players are able to work in 2D and 3D

scenes if they have no Collider or Rigidbody components, but this is not always ideal. In

most cases, it is recommended to rely on player-switching (see Players) so that scenes

that override the camera perspective rely on their own Players.

NOTE: This feature is not available for First Person games.
�

NOTE: A few components and Actions (such as Player: Constrain) vary slightly based

on the current camera perspective. If a scene that overrides the global setting is open,

such fields will update to reflect the overriding scene. Therefore, you should only have

such scenes open when you are specifically working on them, and not unrelated

objects.

�

�146

4.7. Camera effects

As explained in Cameras overview, only the MainCamera is normally rendered at runtime

- other cameras are used merely as reference points for the MainCamera to make use of.

Because of this, special considerations must be made with it comes to camera effects, as

they will only work when placed on the MainCamera object.

While most effects are necessary to be shown at all times, some effects may only need

showing when particular cameras are active. For example, a "VHS video" effect may be

necessary when switching to a POV shot of a security camera.

We can achieve this by enabling the effect only when the MainCamera is attached to the

security camera. To do this, we can use the OnSwitchCamera event, which is called

whenever the MainCamera attaches itself to a new camera, and includes information

about the change.

The following code registers its own OnSwitchCamera function to the EventManager and

changes the state of an example "CustomEffect" script on the MainCamera according to

the name of the new camera.

private void OnEnable ()

{

EventManager.OnSwitchCamera += SwitchCamera;

}

private void OnDisable ()

{

EventManager.OnSwitchCamera -= SwitchCamera;

}

private void SwitchCamera (_Camera oldCam, _Camera newCam, float time)

{

bool isSecurityCam = (newCam.gameObject.name == “SecurityCamera");

Camera.main.GetComponent <CustomEffect>().enabled = isSecurityCam;

}

The event function also includes a transition time, if the camera switch is not instant and

the effect needs to be changed over time.

NOTE: Custom events are a powerful way of injecting custom code into common AC

functions. For more information, see Custom events.
�

�147

http://adventurecreator.org/scripting-guide/class_a_c_1_1_event_manager.html%23abaccefb93b37a698158558b8439eb677

A common camera effect is one that provides a Depth of field effect. Such an effect often

requires a Focal length value to work. AC's GameCamera and GameCamera Third-person

camera types can set this value from within their Inspectors:

A custom script can read the focal length at any time with:

KickStarter.mainCamera.GetFocalDistance ();

This can be incorporated into a custom event, or called in an Update function, and sent to

the Depth of field effect's script component.

PROTIP: A script that synchronises Unity’s Post Processing Stack depth-of-field with

AC’s camera values can be found in the AC wiki.
�

�148

https://www.assetstore.unity3d.com/en/#!/content/83912
http://adventure-creator.wikia.com/wiki/Category:Integrations

4.8. Disabling the MainCamera

As explained in Camera overview, AC's MainCamera is the only one that does any

rendering in a typical AC scene - while GameCameras are used only for reference.

Also, Custom cameras covers how to make use of custom camera scripts in conjunction

with AC.

This will cover you for most cases of camera customisation. However, it may be

necessary to temporarily disable the MainCamera while some other asset or script runs.

For example, while playing a Director Timeline, or using a third-party transition effect

script.

In these cases, the MainCamera can be disabled with the following code:

AC.KickStarter.mainCamera.Disable ();

And subsequently re-enabled with:

AC.KickStarter.mainCamera.Enable ();

NOTE: The MainCamera should never be disabled during gameplay - only as part of a

cutscene - because AC relies on the MainCamera for things like interaction and

movement raycasting. The state of the MainCamera will also not be stored in save

game files, so you should always make sure that the MainCamera is re-enabled

whenever the player can save.

�

�149

4.9. Camera scripting

The MainCamera can be retrieved with:

KickStarter.mainCamera;

And the camera that the MainCamera is attached to can be retrieved with:

KickStarter.mainCamera.attachedCamera;

The current focal distance, based on the settings of the attached camera, can be read

with:

KickStarter.mainCamera.GetFocalDistance ();

To disable, and then re-enable, the MainCamera at runtime, use:

KickStarter.mainCamera.Disable ();

KickStarter.mainCamera.Enable ();

If the MainCamera component’s Draw fade? option is unchecked, then it is down to a

custom script to render any full-screen fade effects. The intensity and texture that the

MainCamera would otherwise use can be read with:

KickStarter.mainCamera.GetFadeAlpha ();

KickStarter.mainCamera.GetFadeTexture ();

The camera system has the following events:

OnSwitchCamera (_Camera fromCamera, _Camera toCamera, float

transitionTime);

OnShakeCamera (float intensity, float duration);

OnCameraSplitScreenStart (_Camera camera, CameraSplitOrientation

splitOrientation, float splitAmountMain, float splitAmountOther,

bool isTopLeftSplit);

OnCameraSplitScreenStop (_Camera camera);

�150

5. Interactions 

�151

5.1. Interaction methods

At their core, adventure games are played by clicking on interactive objects and getting

responses back. Interactive objects in AC are called Hotspots, and can apply to both

objects and NPCs in the scene. The response that a Hotspot can have is called an

Interaction.

A Hotspot can have many Interactions, and how which Interaction is decided when

clicking a Hotspot is dependent on the game's Interaction method. The Interaction

method is a critical setting of the game, as it affects not only how the game is played, but

also how it is built.

The Interaction method is set within the Settings Manager's Interface settings:

It can have one of four values:

Context Sensitive

Allows the player to run simple "use" and "examine" interactions with a single mouse

clicks.

Choose Interaction Then Hotspot

Allows the player to select from a range of interaction icons, and then click on a Hotspot.

Choose Hotspot Then Interaction

Allows the player to click on a Hotspot, and then select from a range of interaction icons.

Custom Script

Allows the designer to create their own interaction system with custom scripting.

Changing this value will alter the Inspectors of Hotspots, and may require you to build an

Interaction Menu. Therefore, you should choose a value early in your game's

development rather than decide later on.

�152

PROTIP: The 3D Demo uses Context Sensitive mode, while the 2D Demo uses Choose

Hotspot Then Interaction. For an example of Choose Interaction Then Hotspot, see the

Nine verbs UI template available on the website's Downloads page.

�

�153

http://adventurecreator.org/downloads

5.1.1. Context sensitive mode

In this mode, each Hotspot has a single "Use" interaction, and (optionally) a single

"Examine" interaction.

• When using Mouse And Keyboard input, "Use" is mapped to the left mouse button

and the InteractionA input button, while "Examine" is mapped to the right mouse

button and the InteractionB input button.

• When using Keyboard Or Controller input, "Use" is mapped to the InteractionA input

button, while "Examine" is mapped to the InteractionB input button.

• When using Touch Screen input, "Use" is mapped to single-finger touches, while

"Examine" is mapped to two-finger touches.

Interactions are defined in a Hotspot's Inspector:

Hotspots can have multiple "Use" interactions defined, but only the first enabled one can

be triggered. The Hotspot: Change interaction Action can be used to disable and enable

interactions during gameplay.

For more on Hotspots and interactions, see Hotspots.

Each "Use" interaction is assigned an icon defined in the Cursor Manager, which can be

used to inform the player of the type of interaction clicking a Hotspot will perform. For

example, hovering the mouse over an NPC might reveal the words "Talk to" along with a

speech bubble icon. How the UI reacts when hovering over a Hotspot is set within the

Cursor Manager, in the Interaction icons panel:

PROTIP: The 3D Demo uses this interaction method - see Running the demo games.
�

�154

All Hotspot "Examine" interactions share the same icon, which set at the bottom of the

Interaction icons panel:

This panel is also used to decide the behaviour of the UI when a Hotspot features both a

"Use" and "Examine" interaction.

Each icon has a name and a texture. The texture can be a simple graphic, or animated if

it consists of multiple frames.

Inventory items are handled in a similar way - the Inventory Manager will allow you to

define a single “Use” and ”Examine” ActionList asset for each item. An item's "Use"

ActionList asset will override the default behaviour of selecting the item when clicked -

though you can still incorporate that with the Inventory: Select Action.

When an inventory item is selected, it can be used on other items or on Hotspots by

clicking on them.  

PROTIP: Take care to not get confused between “Look at”, and “Examine”. “Look at” is

one of the default cursor icons, and can be mapped to any “Use” interaction in the

Hotspot. To create an interaction that responds to right-clicks, define an “Examine"

interaction underneath instead,

�

�155

5.1.2. Choose Interaction Then Hotspot

This mode allows for classic adventure-game interfaces used by the old LucasArts and

Sierra games, in which the cursor icon (or "verb") is chosen by the player before choosing

a Hotspot to interact with:

In this mode, a Hotspot can have as many "Use" interactions as you wish:

Each interaction is associated with a different icon defined in the Cursor Manager's

Interaction icons section. While Context Sensitive mode leaves this association as purely

visual, here an icon is used to determine which interaction will run. For example, a

Hotspot's "Look at" interaction will only be run if it is clicked while the "Look at" icon is

selected.

The Hotspot: Change interaction Action can be used to disable and enable interactions

during gameplay.

PROTIP: If Set first ‘Use’ Hotspot interaction as default? is checked in the Settings

Manager, invoking the DefaultInteraction input will cause the active Hotspot’s first-

enabled "Use" interaction to be run regardless of the active icon. This allows for the

“right-click secondary mode” seen in the classic SCUMM games. The same feature is

also available for inventory items via the Set first ‘Standard’ Inventory interaction as

default? option.

�

�156

Icons can be selected in three ways:

• By pressing either the right-mouse button or an input button named CycleCursors

to cycle through the available icons. (The last-selected Inventory item can also

optionally be included). Backward-cycling can be performed by pressing an input

button named CycleCursorsBack.

• By pressing an input button mapped to the icon directly, provided that Set

Interaction with specific inputs? is checked in the Cursor Manager. Each icon’s

associated input will then be listed beneath.

• By clicking on an Interaction menu element associated with that icon.

The first and third methods combined allow for the same interface used by Kings Quest V

and Sam & Max Hit The Road, while the second and third allow for the same interface

used by Monkey Island 1 and 2 (classic editions).

You can enable the right-mouse button cycling of cursor icons in the Cursor Manager:

The Leave out of Cursor cycle? option for each icon allows you to have individual icons

ignored when cycling.

To represent a “Walk to” cursor inside Interaction elements and menus, a separate

Interaction icon can be defined and referenced via the Sync with interaction? field.

Additionally, each icon has an associated Input button name that, when clicked, will

cause it to be selected:

PROTIP: This mode can be demonstrated within the 2D Demo by changing the

Interaction method to Choose Interaction Then Hotspot. A classic "nine-verb"

interface example is available on AC's Downloads page.

�

�157

http://adventurecreator.org/downloads

To associate an icon with an Interaction menu element, change the element's Cursor field

in its list of properties:

Because it is possible to select icons that a Hotspot does not have an associated

interaction for, this mode introduces Unhandled interactions, which are "fallback"

interactions that run when no other more specific one can be found. Each icon has its

own unhandled interaction slot, which again is defined in the Cursor Manager:

You can choose if Inventory items are used the same way as Hotspots via the Inventory

interactions field in the Settings Manager's Inventory settings panel:

Choosing Multiple will allow you to create multiple interactions for items as well, while

Single will cause them to have "one-click behaviour" as seen in Context Sensitive mode.

For more on this option, see Inventory interactions.

NOTE: You can revert back to Context Sensitive mode on a per-Hotspot basis with a

Hotspot's Single 'Use' interaction? checkbox. When checked, that Hotspot will behave

like all do in Context Sensitive mode, causing it to run the same interaction regardless

of the current cursor mode. This is useful if you want to create "room exit" Hotspots

that only ever need to be used in a single way.

�

�158

5.1.3. Choose Hotspot Then Interaction

This mode is the most complex of the three, but has the most room for customisation. In

this mode, a Hotspot can have as many "Use" interactions, however the interaction that

gets run is chosen after the Hotspot. The advantage is that the player only has to see a

list of interactions that are relevant to each Hotspot - those that don't make sense can be

omitted.

A Hotspot can have as many "Use" interactions as you like:

Each interaction is associated with a different icon defined in the Cursor Manager's

Interaction icons section. While Context Sensitive mode leaves this association as purely

visual, here an icon is used to determine which interaction will run.

The Hotspot: Change interaction Action can be used to disable and enable interactions

during gameplay.

PROTIP: The 2D Demo uses this interaction method - see Running the demo games.
�

�159

The Select Interactions by field under Interface settings in the Settings Manager

determines how the interaction to run is chosen once a Hotspot is clicked:

It has the following options:

Clicking Menu

Which involves clicking an icon from a Menu that pops up

Cycling Menu And Clicking Hotspot

Which involves using input buttons to cycle through icons in a Menu that pops up

Cycling Cursor And Clicking Hotspot

Which involves using input buttons to change the cursor's icon

Clicking Menu

In this mode, an Interaction Menu appears when a Hotspot is clicked on - and the user

clicks on an icon inside it. An Interaction Menu is one with an Appear type of On

Interaction, and contains a selection of Interaction menu elements - each one associated

with a particular Cursor icon:

Further options in the Settings Manager allow you to choose when this Menu is turned on

and off, as well include inventory items in it:

For inventory items to show, the Interaction Menu must also have an InventoryBox

element with an Inventory box type of Hotspot Based.

�160

Cycling Menu And Clicking Hotspot

This mode is similar to the previous, only the player presses Input buttons to select and

trigger an icon inside an Interaction Menu.

The buttons CycleInteractionsLeft and CycleInteractionRight (or an axis named

CycleInteractions), are used to change the selected icon, while the left-mouse /

InteractionA button is used to run the interaction.

Cycling Cursor And Clicking Hotspot

This option removes the need for a Menu, and simply changes the cursor icon to

represent the selected interaction. The right-mouse-button, or CycleCursors input

button, can be used to cycle through the various interactions (and CycleCursorsBack will

cycle in reverse). Optionally, the cursor can be cycled automatically once an Interaction is

run. The interaction itself is run be pressing either the left-mouse button or a button

named InteractionA.

You can choose if Inventory items are used the same way as Hotspots via the Inventory

interactions field in the Settings Manager's Inventory settings panel:

Choosing Multiple will allow you to create multiple interactions for items as well, while

Single will cause them to have "one-click behaviour" as seen in Context Sensitive mode.

For more on this option, see Inventory interactions.

PROTIP: The default interface provided by the New Game Wizard, as well as the demo

game's Menu Managers, include an Interaction Menu that's already set to work with the

default cursor icons "Use", "Look at" and "Talk to".
�

NOTE: As the interaction icons are not clicked directly in the Menu, the Menu should

be set to Ignore cursor clicks? to avoid conflict.
�

PROTIP: If interactions are displayed in an Interaction Menu, only those that are

relevant to the active Hotspot will be shown by default. This can be amended by

unchecking Auto-hide Interaction icons based on Hotspot? in the Settings Manager.

If unchecked, “Unhandled” interactions for each cursor icon can then be set in the

Cursor Manager - similar Choose Interaction Then Hotspot mode.

�

�161

NOTE: You can revert back to Context Sensitive mode on a per-Hotspot basis with a

Hotspot's Single 'Use' interaction? checkbox. When checked, that Hotspot will behave

like all do in Context Sensitive mode, causing it to run the same interaction regardless

of the current cursor mode. This is useful if you want to create "room exit" Hotspots

that only ever need to be used in a single way.

�

�162

5.1.4. Custom interaction systems

While Adventure Creator has a range of options that can be used to recreate many

popular adventure game interfaces, it's possible to create a completely custom one

through scripting. If your Settings Manager's Interaction method is set to Custom

Script, then Hotspots will only be selectable by calling script functions.

The Hotspot script component contains the following functions, that can be used to

trigger its various interactions:

RunUseInteraction (int iconID = -1)

Runs the Hotspot's 'Use' interaction. If no icon ID is supplied (as defined in the Cursor

Manager), then the first-available use interaction will be run.

RunExamineInteraction ()

Runs the Hotspot's 'Examine' interaction.

RunInventoryInteraction (InvItem invItem = null)

Runs the Hotspot's 'Use with inventory' interaction. If no inventory item is supplied, then

the currently-selected inventory item will be run.

RunInteraction (Button button)

Runs the interaction associated with the supplied Button - see below.

ShowInteractionMenus ()

Shows any Interaction menus (i.e. with an Appear type of On Interaction), connected to

the Hotspot.

ShowInteractionMenu (Menu menu, bool includeInventoryItems)

Shows a specific Interaction menus, connected to the Hotspot. This menu need not have

an Appear type of On Interaction.

It also contains functions to retrieve a use and inventory interaction based on the

interaction’s ID and inventory item ID respectively. They both return a Button class, which

contains the interaction data:

GetUseButton (int iconID)

GetInvButton (int invID)

The currently-active Hotspot can be read with:

AC.KickStarter.playerInteraction.GetActiveHotspot ();

PROTIP: Included with AC is the Custom Interaction System Example script, which

demonstrates how Hotspots and inventory items can be selected and interacted with

from a GUI, bypassing AC's internal interface.
�

�163

http://adventurecreator.org/scripting-guide/class_a_c_1_1_hotspot.html
https://adventurecreator.org/scripting-guide/class_a_c_1_1_button.html
https://adventurecreator.org/scripting-guide/class_a_c_1_1_button.html

Even with a custom interaction system, Hotspots are still detected according to the

Hotspot detection method. Therefore, if you wish to control how Hotspots are first

selected, this must be set to Custom Script as well. You can then select any Hotspot

(updating the "Hotspot label" and highlighting it in the scene) with:

AC.KickStarter.playerInteraction.SetActiveHotspot (Hotspot hotspot);

Note that a Hotspot does not need to be selected or highlighted in order to have its

interactions triggered through script.

When it comes to inventory interactions, the above settings do not affect the way

InventoryBox elements behave - you can still use, select and combine items as normal. In

order to change the way an InventoryBox menu element works, you can set its Inventory

box type setting to Custom Script to disable regular behaviour, and then use the

OnMenuElementClick custom event to run your own code as appropriate.

A typical event reads as:

private void MyElementClick (Menu _menu, MenuElement _element, int

_slot, int _buttonPressed)

{

 Debug.Log ("Menu: " + _menu.title + ", Element: " + _element +

 ", Slot: " + _slot + ", MouseState: " + _buttonPressed);

}

For more, see Custom events.

Either by using custom events or otherwise, Inventory items (InvItem class) can have their

interactions triggered in a manner similar to that of Hotspots:

RunUseInteraction (int iconID = -1)

Runs the Inventory item's 'Use' interaction. An icon ID (as defined in the Cursor Manager)

can be supplied if the Settings Manager's Inventory interactions field is set to Multiple.

RunExamineInteraction ()

Runs the Inventory item's 'Examine' interaction, if the Settings Manager's Inventory

interactions field is set to Single.

CombineWithItem (InvItem otherInvItem)

Combines the Inventory item with another

Select ()

Selects the inventory item, but does not use it

ShowInteractionMenus ()

Shows any Interaction menus (i.e. with an Appear type of On Interaction), connected to

the item.

�164

http://adventurecreator.org/scripting-guide/class_a_c_1_1_inv_item.html

ShowInteractionMenu (Menu menu, bool includeInventoryItems)

Shows a specific Interaction menus, connected to the item. This menu need not have an

Appear type of On Interaction.

A List of all inventory items defined by your game can be found with:

AC.KickStarter.inventoryManager.items

A List of all inventory items carried by the player can be found with:

AC.KickStarter.runtimeInventory.localItems  

�165

The currently-selected inventory item can be read with:

AC.KickStarter.runtimeInventory.SelectedItem;

And can be deselected with:

AC.KickStarter.runtimeInventory.SetNull ();

Finally, if your interaction system involves mouse-clicks on the screen, you may need to

“reset” the mouse click afterwards in order to prevent any of AC's other systems (such as

point-and-click pathfinding) from making use of it. Do to that, just call:

AC.KickStarter.playerInput.ResetMouseClick ();  

NOTE: Entries in this List can be null - therefore you should always do a null check

when reading entries in this List.
�

�166

5.2. Actions and ActionLists

At the core of AC's visual-scripting system is the Action. An Action is a code block that

performs a specific task. Actions come in two types:

An instruction

For example, adding an item to the player's Inventory.

A query

For example, checking the value of a Variable.

Actions are chained together to form ActionLists, which can be used to create cutscenes,

process logic, and more. There are five types of ActionList:

Cutscene

A component, run when the scene begins or when called by another ActionList.

Interaction

A component, run when the player clicks on a Hotspot. See Interaction methods.

Trigger

A component, run when the player or some other object passes through a volume in the

scene.

DialogOption

A component, run when the player chooses an option from a Conversation.

ActionList asset

An asset file, and run whenever something scene-independent is needed - for example,

when examining an inventory item.

ActionLists can be run from logic objects (such as Hotspots), when a scene starts via the

Scene Manager, when the game begins via the Settings Manager’s ActionList on start

game field. They can also be run from custom scripts, by invoking their Interact()

method - this is true for both scene-based lists and asset files.

PROTIP: Custom Actions are a powerful way of extending functionality, as they allow

you to run your own code within any ActionList. A series of tutorials on writing them

can be found online.
�

NOTE: Actions cannot exist in prefabs. If you want an ActionList to exist outside of a

scene, use an ActionList asset.
�

�167

http://adventurecreator.org/tutorials/writing-custom-action

Each ActionList type has its own set of properties, which can be viewed and set at the top

of their Inspector:

An ActionList's Actions are shown beneath its properties:

“Instruction” Actions have an After running field. With this, you can choose what

happens after an Action has been performed. You can stop the ActionList, skip to

another Action within that ActionList, or run a different Cutscene. “Query" Actions allow

you to perform a different task depending on its outcome - allowing you to create

branching gameplay and puzzle logic.

NOTE: If the Actions source field is changed to Asset File, then the Actions will be

pulled from an ActionList asset. This is useful when collaborating in team projects, so

that Actions can be modified outside of scene files. It is also recommended to do this

when working with prefabs, since Actions themselves cannot exist in prefabs.

�

PROTIP: To have an ActionList call another and wait until it has finished running, use

the ActionList: Run Action. To run multiple Actions and ActionLists in parallel, use the

ActionList: Run in parallel Action.
�

�168

To aid testing, ActionLists can be run at any time while the game is running – just click

Run now at the top of the Inspector. Actions can also be set to pause the Unity Editor

just before they are run – allowing you to debug any problems more easily. This is done

via the Toggle breakpoint option in an Action's context menu:

Actions can be created and modified in the Inspector. However, as ActionLists can quickly

become complex, it is recommended to instead use on the ActionList Editor.  

�169

5.2.1. Standard Actions

AC comes included with over 100 Actions, and more can be added by writing custom

Actions or downloading them from the AC wiki.

Actions are sorted into the following categories:

• ActionList

• Camera

• Character

• Container

• Dialogue

• Document

• Engine

• Hotspot

• Input

• Inventory

• Menu

• Moveable

• Object

• Objective

• Physics

• Player

• Save

• Scene

• Sound

• ThirdParty

• Variable

All Actions available to use are listed in the Actions Manager. The following are present

in all AC games:  

�170

http://adventure-creator.wikia.com/wiki/Adventure_Creator_Wikia

ActionList

These Actions deal with the playback and management of ActionLists.

Check running

Queries whether or not a supplied ActionList is currently running. By looping the If

condition is not met field back onto itself, this will effectively “wait” until the supplied

ActionList has completed before continuing. Can also query if the ActionList this is

placed in is currently being skipped - see Skipping cutscenes.

Check parameter

Queries the value of a parameter sent to either the parent ActionList, or a supplied one,

by the ActionList: Run and ActionList: Set parameter Actions. For more, see ActionList

parameters.

Comment

Stores text for editor display only, which is useful for keeping track of complex lists. The

comment text can optionally be sent to the Console window when the Action is run, either

as a log, warning, or error message.

Kill

Instantly stops a scene or asset-based ActionList from running.

Pause or resume

Pauses or resumes an ActionList. When instructed to pause, any currently-running

Actions will first be completed.

PROTIP: Any Action can be assigned a comment when using the ActionList Editor

window - and printed in the Console via the Settings Manager's Print Action

comments in Console? option.
�

NOTE: Killing an ActionList will stop Actions from running, but will not stop the effects

that Actions have already made on them. For example, if a character is mid-speech

due to the Dialogue: Play speech Action, killing the list will not stop them from

speaking. This must be done separately with e.g. the Dialogue: Stop speech Action.

�

PROTIP: The triggering of Actions is what pauses - not the Actions themselves.

Actions that are running mid at the time of the call to pause will first be completed.

However these Actions can optionally be re-run when the ActionList is resumed.

�

NOTE: To save the pause-state of a scene-based ActionList, you must add a Constant

ID component - see Saving scene objects. To save the pause-state of an ActionList

asset, you must give it a unique name and place it in a Resources folder - see Saving

asset references.

�

�171

Run

Runs any ActionList, either from the beginning or from a particular Action. If the new

ActionList to be run has parameters (see ActionList parameters), then their values can be

set within this Action - and without actually running the ActionList, if desired.

Run in parallel

Runs up to ten subsequent Actions (whether in the same list or in a new one)

simultaneously. This is useful when making complex cutscenes that require timing to be

exact.

Set parameter

Sets the value of a single parameter of an ActionList. The new value can be set manually,

copy from another parameter, or by copying the value of a Global Variable. Integer,

boolean, and float parameters can also be given random values. To set the value of all

parameters at once, use the ActionList: Run Action. For more, see ActionList parameters.

Wait for preceding

Triggers its After running command only when all Actions that can run it have done so.

This allows for multiple chains of Actions created by the ActionList: Run in parallel

Action to wait for one another before continuing - and is useful if the duration of each

chain is dynamic or unknown.  

PROTIP: By setting a parameter's value, and running Actions that use it, multiple times

in a sequence, it can behave similar to an array of values.
�

PROTIP: This Action can be used to set an Inventory Item parameter's value from a

Global Integer variable that references its ID, or a Global String variable that references

its name.

�

�172

Camera

These Actions deal with the camera system - see Cameras overview for more.

Check active

Use to determine if a specific camera is currently active.

Crossfade

Crossfades to a new camera, over a specified time.

Fade

Fades the camera in or out. The fade speed can be adjusted, as can the overlay texture.

Rotate third-person

Rotates the GameCamera Third Person to a fixed angle – either in World Space or relative

to its target.

Shake

Causes the camera to shake, giving an earthquake screen effect. The camera can

translate, rotate, or both.

Split-screen

Displays two cameras on the screen at once, arranged either horizontally, vertically, or

with one overlaid on top of the other. When arranged side by side, you can choose which

camera responds to mouse clicks. When one is overlaid atop the other, only the former

will respond to clicks.

Switch

Switches to a specified camera - either instantly or over time.  

�173

Character

These Actions deal with modifying or instructing Players and NPCs.

Animate

Can play or stop a custom animation, change a standard animation (idle, walk, run or

talk), change a footstep sound, or revert the character to idle. The exact functionality of

this Action depends on the character's Animation engine.

Change rendering

Overrides a character's scale, sorting order, sprite direction, or Sorting Map. It can also

be used to redefine which directions a character can face. This is primarily intended for

2D games.

Face direction

Makes a character turn, either instantly or over time, to face a direction relative to either

the camera or themselves – i.e. up, down, left or right.

Face object

Makes a character turn, either instantly or over time, to another object or copy an object's

rotation. A character can turn with their body, or look with their head - see Head turning.

If a First-person Player is being affected, the camera can optionally be tilted as well.

Hold object

Places an object in a character's hand - either by parenting the object to the character’s

hand transform (as set in their Inspector), or by using IK to move the character’s hand

itself. If the GameObject is a prefab, and not present in the scene at runtime, it will first

be instantiated. This Action also allows a held object to be dropped - with the option to

remove it from the scene. The dropped object can be assigned to a GameObject

parameter if one is defined - see ActionList parameters.

Move along path

Moves the character along a pre-determined Path - see Character movement. Will adhere

to the speed setting selected in the relevant Paths object. Can also be used to stop a

character from moving, or resume moving along a path if it was previously stopped.  

NOTE: In order to record a change in a character's footstep sounds, you must instead

rely on the Sound: Change footsteps Action.
�

NOTE: If the object is a Scene Item, you can record the holding of objects on the Player

character by attaching the Remember Scene Item component.
�

�174

Move to point

Moves a character to a given Marker - Pathfinding methods. If Wait until finish is

checked, then a time limit can be applied. If the time taken to move exceeds this limit,

then the character can be made to either teleport or stop moving.

NPC follow

Makes an NPC follow another NPC or the Player. If they exceed a maximum distance from

their target, they will run towards them. Optionally, they can be made to move to random

points around the character they are following, as opposed to simply getting close. If the

NPC is an inactive Player (see Player switching), they have the option of following the

active Player across scenes.

Rename

Changes the display name of a character when subtitles are used.

Switch portrait

Changes the “speaking” graphic used by characters. To display this graphic in a Menu,

place a Graphic element of type Dialogue Portrait in a Menu with an Appear type of

When Speech Plays.

PROTIP: If the walk-to point is set by a GameObject parameter, and the GameObject is

a Hotspot, then the character will move to that Hotspot's Walk-to Marker.
�

NOTE: Making an NPC move with another Action will stop them from following anyone.
�

NOTE: To save a character’s change in portrait graphic, you must attach the

Remember Portrait component - available on the AC wiki.
�

�175

https://adventure-creator.fandom.com/wiki/Category:General

Container

These Actions deal with reading and changing the contents of Containers.

Add or remove

Adds or removes inventory items from a Container, and optionally transferring it to the

Player’s Inventory or another Container.

Check

Checks if a container is carrying a given inventory item, or if it is carrying a given number

of items.

Open

Opens a Container, causing any Menu with an Appear type of On Container to open. To

close the Container, close the Menu with the Menu: Change state Action.

Alternatively, a Container can be mapped to a specific InventoryBox element inside a

Menu, allowing multiple Containers to be open simultaneously.  

�176

Dialogue

These Actions deal with the playback of character speech and Conversations.

Play speech

Makes a character speak. If no character is specified, the speech line will be considered

to be narration. A “thinking” effect can be produced by opting to not play any animation.

For speech to be shown, an appropriate Subtitles Menu with an Appear type of When

Speech Plays must be present in the Menu Manager. If Run in background? is checked,

the Action will not wait for the line to finish and the ActionList will continue instantly. If

the Wait time offset is greater than zero, then the ActionList will wait for that amount of

time once the speech has finished. To insert dynamic elements in speech text, see Text

tokens. Text can also make use of Unity’s Rich Text tags.

Rename option

Renames a conversation's dialogue option label.

Start conversation

Runs a conversation, and displays its available dialogue options via a Conversation Menu.

This will be automatic for any Menu with an Appear Type of During Conversation and a

DialogList element. Alternatively, it can be set to display in a specific Menu.

Stop speech

Ends any currently-playing speech instantly, whether it be background, blocking, or both.

Can be limited to stop speech spoken by specific characters, as well as narration.

Wait for speech

Waits until a particular character has finished speaking. This is most useful when the line

in question has been set to play in the background.

PROTIP: Even with a Subtitles Menu, speech will only be shown if the Subtitles option

is enabled. To set the default state of the Subtitles option, click Reset Options data in

the Setting Manager and check/uncheck the Show subtitles? box.

�

NOTE: If the ActionList that runs this Action has a When running value of Run In

Background, then the speech line will be considered background regardless of its own

Run in background? setting. Background and blocking speech can be displayed in

separate Subtitle menus by altering the Menu’s For speech of type field.

�

NOTE: By default, this Action ceases its ActionList and a conversation's DialogOptions

run when an option is chosen. Checking Override options?, however, allows you to

keep the resulting Actions all within the same ActionList. For an example of this, see

the PlayIntroConv Cutscene in the 3D Demo scene, “Basement”.

�

�177

https://docs.unity3d.com/Manual/StyledText.html

Toggle option

Sets the display of a Conversation’s dialogue option. If an option is locked, it cannot be

shown again until it is unlocked.  

�178

Document

These Actions deal with the manipulation of Documents.

Add or remove

Adds, removes, or clears all Documents held by the Player. A list of all held Documents

can be displayed with an InventoryBox element.

Check

Queries whether or not a particular Document is being held by the Player.

Open

Activates a Document for viewing via a Menu with an Appear type of On View

Document. When such a Menu is closed, the Document is considered closed.  

�179

Engine

These Actions deal with game-wide and scene-independent behaviours.

Change timescale

Changes the playback speed of gameplay to a value between 0 and 1. This allows for

slow-motion effects. Unity’s “Time.fixedTimeScale” can also be optionally adjusted, in

case the physics system needs to work in slow motion as well.

Check platform

Queries the platform that the game is running on or being built for, which is useful when

creating platform-specific content.

Control Timeline

Controls the playback of Timelines used by Playable Director components, by allowing the

user to play and stop them at runtime. The Timeline asset can be changed, and the track

bindings can also be modified to allow different GameObjects each each track.

The MainCamera can be optionally disabled while it runs, to allow the Timeline to have

camera control. Note that this is only for Unity 2017 or later.

End game

Ends the current game, either by loading an autosave, resetting the scene, resetting all

data, restarting the game, or quitting the game executable. If restarting, a new scene to

switch to must be specified.

Manage systems

Enables and disables individual systems within Adventure Creator, such as Interactions.

Disabling systems allows other assets to take over control. Can also be used to change

the Movement method, as set in the Settings Manager., but note that this change will not

be recorded in save games.

Wait

Waits a set time before continuing. If a negative time, the Action will wait for one frame.

NOTE: To record the playback state of a Playable Director in save games, attach the

Remember Timeline script to it.
�

NOTE: If the Movement method is changed, the Settings Manager asset file will by

modified - so you should set the game's default value in your Settings Manager's

ActionList on start game. This change will not be stored in save game data either,

and you should use Variables to keep track instead.

�

�180

Play movie clip

Controls playback of a Video Player component. The loaded video clip asset can

optionally be changed. On WebGL, this is done by supplying a url to download the video

from.

PROTIP: If the ActionList's When running field is set to Run In Background, this will

act as a background timer - otherwise, it will pause the game.
�

NOTE: To record the playback state of a a Video Player component in save games,

attach the Remember Video Player script to it.
�

�181

Hotspot

These Actions deal with the reading and modification of Hotspots.

Change interaction

Enables and disables specific Interactions on a Hotspot.

Check interaction enabled

Checks if a specific Interaction on a Hotspot is currently enabled.

Check selected

Checks if a specific Hotspots is currently selected. If a GameObject parameter is defined,

it can optionally be set to the active Hotspot.

Enable or disable

Turns a Hotspot on or off.

Rename

Renames a Hotspot, or an NPC with a Hotspot component.

Run interaction

Runs a given Hotspot Interaction manually, without requiring input from the player. The

Interaction’s “Player action” field can optionally be ignored.  

NOTE: To record the enabled state of a Hotspot in save games, attach the Remember

Hotspot script to it.
�

�182

Input

These Actions deal with the reading of inputs.

Check

Checks to see if the player is pressing a mouse key, touching the screen, or pushing a

button/axis as defined in Unity's Input Manager at the time it is run.

QTE

Initiates a Quick-time event for a set duration. The QTE type can either be a single key-

press, holding a button down, or button-mashing. The Input button must be defined in

Unity's Input Manager.

Simulate

Simulates the pressing of an input button or axis. The input name must be one

recognized by AC in order to take effect - see Input descriptions for a list of available

inputs. Note that the input’s recognition is still dependent on the game’s current state -

so gameplay inputs (e.g. FlashHotspots) will need to be simulated from background logic

in order to take effect.

Toggle active

Enables or disables an Active Input.  

NOTE: If you need to check continuously for an input, use Active inputs instead of

looping this on itself.
�

PROTIP: When relying on Touch-screen input, leaving the Input button name field will

allow touches anywhere on the screen to be valid.
�

�183

Inventory

These Actions deal with the reading and manipulation of the player's Inventory items.

Add or remove

Adds or removes an item from the player's inventory. Items are defined in the Inventory

Manager. If the player can carry multiple amounts of the item, the exact number added

or removed can be set. If the game supports player-switching, the inventory of inactive

players can also be modified.

Change interaction

Enables and disables specific Interactions on an Inventory item. If Multiple Inventory

interactions are enabled, this includes Standard as well as Combine Interactions.

Otherwise, only Combine Interactions can be affected.

Check

Queries whether or not the player is carrying an item, or how many items in total they

currently hold. If categories are defined, the query can also be limited to a specific

category.

Check selected

Queries whether or not the chosen item, or no item, is currently selected. Note that when

used in a gameplay-blocking ActionList, the active item is automatically deselected.

Therefore, this Action also allows you to query the last-selected item. If Inventory

categories are defined, this Action can also be used to query which category the

currently-selected item is in.

Crafting

Either clears the current arrangement of crafting ingredients, or evaluates them to create

an appropriate result (if this is not done automatically by the recipe itself). The effects

can either be applied to all Crafting elements, or a specific one. See Crafting.

Property to Variable

Converts an item’s property value to a Variable, or vice-versa. The item in question can

either be a specific one, or the one currently selected by the Player. If converting a

property to a Variable, you have the option to read the “live” values of the item if the

Player is carrying it - as opposed to the default values supplied in the Inventory Manager.

This is because the property values of items held by the Player can be modified through

script.

NOTE: Interactions can only be changed for items that are currently held by the Player.

If the Player is carrying multiple instances of the specified item, all will be affected.
�

�184

Scene item

Transfers an Inventory item into the scene, or vice-versa, by referencing its Linked

prefab. See Scene items. If the ActionList has a GameObject parameter defined, that

parameter's value can optionally be set to the spawned object.

Select

Selects a chosen inventory item, as though the player clicked on it in the Inventory menu.

Will optionally add the specified item to the inventory if it is not currently held.  

�185

Menu

These Actions deal with the reading and manipulation of Menus.

Change state

Provides various options to show and hide both menus and menu elements. Menus can

also be locked, which will prevent them from opening even if their Appear type matches

the current conditions. Can also add or remove a Journal element's pages.

Check num slots

Queries the number of slots that a given menu element has. This can be used on an

InventoryBox element, for example, to determine how many Inventory items the player is

carrying.

Check state

Queries the visibility of menu elements, and the enabled or locked state of menus.

Update content

Alters the an element’s label text, the background graphic of Adventure Creator

elements, or the texture shown by Graphic elements. The new content can be overridden

with an Inventory item or Document parameter.

Select element

Selects either a supplied element, or the first-available, within a given menu. Note that

this only works if the menu can be directly-controlled - see Navigating menus directly.

This works best when placed as the first Action in the menu’s ActionList when turn on

asset.

Regardless of the menu’s control style, this Action can also be used to simulate the

clicking of the specified element.

Set Journal page

Changes a Journal’s selected page to a specific index.  

PROTIP: Some elements have multiple slots - for example, the DialogList element has

a different slot for each displayed Conversation option. Individual slots cannot be

hidden, since they are controlled by the system they are linked to. To show or hide

individual slots, instead manipulate the linked data. For example, Conversation

options are shown and hidden using the Dialogue: Toggle option Action.

�

NOTE: To record new pages added to a Journal in save games, they must be added to

the Speech Manager - see Gathering game text.
�

�186

Moveable

These Actions deal with the reading and manipulation of Draggable and PickUp objects.

Check held by player

Queries whether or not a Draggable or PickUp object is currently being manipulated.

Check track position

Queries how far a Draggable object is along its track.

Set track position

Moves a Draggable object along its track automatically to a specific point, provided that

its Drag Mode is set to Lock To Track. The effect will be disabled once the object

reaches the intended point, or the Action is run again with the speed value set as a

negative number. It is also possible to use this Action to change which track it is

attached to.

Toggle Track region

A Drag track can be assigned regions, that mark areas along it that can be detected or

snapped towards. This Action disables and enables them.  

�187

Object

These Actions deal with scene objects and miscellaneous scripts.

Add or remove

Instantiates or deletes GameObjects within the current scene. If the ActionList has a

GameObject parameter defined, that parameter's value can optionally be set to the

instantiated object.

Animate

Causes a GameObject to play or stop an animation, or modify a Blend Shape. The

available options will differ depending on the chosen animation engine.

Blend shape

Animates a Skinned Mesh Renderer's blend shape by a chosen amount. If the Shapeable

component attached to the renderer has grouped multiple shapes into a group, all other

shapes in that group will be deactivated.

Call event

Invokes a public function present on another GameObject.

Change material

Changes the material on any scene-based mesh object.

Change Tint map

Changes which Tint map a Follow Tint Map component uses, and the intensity of the

effect. For more, see Tint maps.

Check presence

PROTIP: If the project uses Addressables, you can optionally reference the object to

spawn by their Addressable name.
�

NOTE: To record the state of added GameObjects in save games, follow the steps

outlined in Saving asset references.
�

NOTE: This Action cannot pass parameters to its target function. To pass an integer

parameter, use the Object: Send message Action.
�

NOTE: To record modified materials in save games, place both the new and the

original materials in a Resources asset folder, and give the affected GameObject the

Remember Material component - see Saving asset references.

�

�188

Use to determine if a particular GameObject or prefab is present in the current scene.

Check tag

Use to determine if a GameObject or prefab has a particular tag.

Check visibility

Use to determine if a particular Renderer is visible, either at all in the current scene, or

within the view of the currently-active camera. If the GameObject has a Sprite Fader

component attached, then this will also be accounted for. UI Canvas Group components

can also be checked.

Fade sprite

Fades a sprite in out out over a set time. The sprite in question must have the Sprite

Fader component attached to it.

Highlight

Gives a glow or continuous pulse effect to any mesh object with a Highlight component.

Can also be used to make Inventory items glow, making it useful for tutorial sections.

Record transform

Allows the position, rotation, or scale of a GameObject to be recorded in a Vector3

Variable, both in World and Local space.

Send message

Sends a given message to a GameObject. Can be either a message commonly-used by

Adventure Creator (Interact, TurnOn, etc) or a custom one, with an integer argument.

Set parent

Parent one GameObject to another. Can also set the child's local position and rotation.

NOTE: If the visibility within the view of the camera is being checked, the condition will

be met if it is also visible with the Scene window.
�

NOTE: To record the state of a sprite's fade in save games, attach the Remember

Visibility component.
�

PROTIP: Many of AC’s logic components respond to the common messages provided.

A Trigger can be disabled, for example, by passing the Turn Off message.
�

�189

Teleport

Moves a GameObject to a Marker instantly. Can also copy the Marker's rotation. The final

position can optionally be made relative to the active camera, the player, a Vector3, or

any GameObject in the scene. For example, if the Marker's position is (0, 0, 1) and

Position relative to is set to Relative To Active Camera, then the object will be

teleported in front of the camera.

If no Marker is set, but a relative Vector3 value is supplied, the GameObject will move by

that amount instead.

Transform

Moves, rotates or scales a GameObject over time, or copies the Transform of a Marker in

the scene. The GameObject must have a Moveable component attached. Position and

rotation changes can be made in either local or world space.

Visibility

Hides or shows a GameObject. Can optionally affect the GameObject's children. Can also

be used to enable or disable UI Canvas and Canvas Group components.

NOTE: To record an object's parentage in save games, attach the Remember

Transform component and check Save change in Parent? - see Saving asset

references. All possible parent objects must also have a Constant ID component.

�

NOTE: To record an object's position in save games, attach the Remember Transform

component.
�

PROTIP: For finer control over the way an object moves, it is often better to attach an

Animator, create animations, and play them with the Object: Animate Action.
�

NOTE: To record an object's visibility in save games, attach the Remember Visibility

component.
�

�190

Objective

These Actions deal with the querying and manipulation of Objectives.

Set state

Updates an Objective's current state. The updated Objective can optionally be "selected"

for display by Label and Graphic elements.

Check state

Queries an Objective's current state.

Check state type

Queries whether an Objective's current state is Active, Completed, or Failed.  

�191

Physics

These Actions make use of Unity’s provided physics system.

Raycast

Fires a Raycast (or a SphereCast if the radius is non-zero), either in a given direction, or

between two points. Two outputs are provided - the top being used if the ray hit an

object in the supplied LayerMask. If the ActionList has GameObject and Vector3

parameters defined, they can optionally be mapped to the hit GameObject and hit

position respectively.  

�192

Player

These Actions deal with reading and manipulating the current Player.

Check

Queries which Player prefab is currently being controlled. This only applies to games for

which Player switching has been set to Allow in the Settings Manager.

Constrain

Locks and unlocks various aspects of Player control, such as what direction he can move

in, or his ability to run.

Lock to Path

When using Direct or First-person movement, this can be used to restrict the Player’s

motion to a specific Path during gameplay. This is useful for controlled gameplay

sequences where you only want the Player to move in a certain direction. Additional

options allow you to choose which node along the Path to start at, and whether or not the

Player can move in both directions along the Path.

Switch

Swaps out the Player prefab mid-game - see Player switching. If the new Player is in a

different scene, that scene will be loaded automatically - and its OnLoad cutscene will be

triggered, if defined.

Teleport inactive

When multiple Players are defined - see Player switching - this Action can be used to

teleport one of the currently-unused Players to a new scene. They can be set to appear at

a specific PlayerStart, the scene’s default, or a PlayerStart based on which scene they were

previously in.  

�193

Save

These Actions relate to the reading and manipulation of save game files - see Saving and

loading overview.

Check

Queries whether or not saving is currently possible (to aid in the display of a “Save” Menu

Button, for example), whether or not a particular save slot is filled, whether a particular

Save profile exists (by name or index), or how many profiles or save game files have been

created (to aid in the display of a “Continue game” Button, for example).

Manage profiles

Creates, renames, deletes and switches Save profiles, if enabled. If the ActionList that

contains this Action has an Integer parameter, then it can be set when called from a

Button or ProfilesList menu element.

Manage saves

Renames and deletes save game files, as referenced by the slot index number of a

SavesList menu element. If the ActionList that contains this Action has an Integer

parameter, then it can be set when called from a Button or SavesList menu element.

Save or load

Allows you to load, continue the last-recorded, or save a save-game file. Note that

saving will not be permitted if any gameplay-blocking ActionList other than the one that

contains this Action is running, or if a Conversation is active. The Save: Check Action can

be used to determine if a save will succeed beforehand. This Action can also be used to

optionally load a game selectively, i.e. only certain elements, such as inventory or

variables.

Set Option

Allows you to set the state of any default Options data, i.e.: the active language, subtitle

display, and audio volumes. These values are normally changed by the user in the default

Options menu, but with this you can set them directly. To set the value of Options-linked

Variables, use the Variable: Set Action.  

�194

Scene

These Actions deal with manipulating the currently-open scene(s).

Add or remove

Adds or removes a scene without affecting any other currently-open scenes. If a scene is

added, it will be added as a sub-scene and the “active” scene will be unchanged. This is

designed to provide the possibility of open-world adventures, and thus the new scene's

PlayerStarts will be ignored when it is loaded. If this Action is used to remove the “active”

scene, then the first-available sub-scene will become the new active scene.

Any scene added in this way should be configured using the Scene Manager. If not, you

will need to attach a SubScene component to an object in it, and configure its Inspector.

This will ensure that such changes are recorded in save-game files.

Change setting

Changes any of the following scene parameters: NavMesh, Default PlayerStart, Sorting

Map, Tint Map, Cutscene On Load, Cutscene On Start, or Cutscene On Variable Change.

When the NavMesh is a Polygon Collider, this Action can also be used to add or remove

holes from it.

Check

Queries either the current scene, or the last one visited. This is useful if you want to run

a cutscene that is a continuation of one in a previous scene. If Player switching is

enabled, you can query the scene visited by a specific Player.

Check attribute

Queries the value of any of the pre-defined attributes in the main scene that's open. See

Scene attributes.

Switch

Switches to a new scene, bringing the active Player along with it. The scene must be

listed in Unity's Build Settings. If asynchronous loading is enabled (see Loading screens),

this Action can also be used to preload a scene only, so that loading time is reduced when

it is next opened.

NOTE: This Action is not compatible with scenes that use local Players (i.e. Player

objects that are stored within the scene file), nor those that override default camera

perspective - see Overriding perspective.

�

NOTE: When saving, the active Camera can only be recorded if it is in the “active” (or

main) scene. To save a Camera within a sub-scene, the active scene must be removed

so that the sub-scene becomes the new active one.

�

�195

Switch previous

Switches (or preloads) to the previous scene. If Player switching is enabled, you can

choose between the Player’s previous scene, or whichever was last loaded.  

PROTIP: A crossfade transition between scenes can be achieved by checking Overlay

current scene during switch? and fading in with the Camera: Fade Action in the new

scene's OnStart cutscene.

�

�196

Sound

These Actions deal with the playback of Sounds and Music.

Change footsteps

Changes the AudioClips used by a character's Footstep Sounds component.

Change volume

Alters the 'relative volume' of any Sound object. Be sure to add the RememberSound

component to any Sound object whose volume changes you wish to be saved.

Play

Triggers a Sound object to start playing. Can be used to fade sounds in or out.

Play ambience

Handles the playback of an ambience track listed in the Ambience Storage window. See

Ambience tracks.

Play music

Handles the playback of a music track listed in the Music Storage window. See Music.

Play one-shot

Plays an AudioClip once, and without the need for a Sound object or AudioSource

component. The sound will be treated as SFX. Sounds triggered with this Action will not

be able to fade or be interrupted.

Set Mixer snapshot

Transitions to a single or multiple Audio Mixer snapshots.  

NOTE: To record modified footstep sounds in save games, attach the Remember

Footstep Sounds component, give both the new and the original sounds unique

names, and place them in a Resources asset folder - see Saving asset references.

�

NOTE: To record changes to a Sound component in save games, attach the Remember

Sound component.
�

�197

ThirdParty

These Actions deal with integrations with third-party assets.

PlayMaker

Calls a specified Event within a Playmaker FSM. Note that PlayMaker is a separate Unity

Asset, and the PlayMakerIsPresent preprocessor must be defined for this to work.

NOTE: Due to the way Playmaker behaves, the call will be ignored if the FSM in

question is already in mid-execution at the time that the Action is run.
�

�198

https://www.assetstore.unity3d.com/en/%23!/content/368

Variable

These Actions deal with the reading and manipulation of Variables.

Assign preset

Bulk-assigns all Global or Local Variables to pre-determined values - see Variable

presets. Optionally, Variables linked to Options Data can be ignored.

Check

Queries the value of both Global and Local Variables declared in the Variables Manager.

Variables can be compared with a fixed value, or with the values of other Variables.

Check random number

Picks a number at random between zero and a specified integer – the value of which

determines which subsequent Action is run next. Optionally, the last-picked number can

be prevented from being chosen - but in order to store this in save games, the Action

must be linked to a Global or Local integer Variable.

Copy

Copies the value of one Variable to another. This can be between Global and Local

Variables, and AC will attempt to convert the value in question if the two Variables are of

different types (e.g. Integer to a Float).

Pop Up switch

Uses the value of a Pop Up Variable to determine which Action is run next. An option for

each possible value the Variable can take will be displayed, allowing for different

subsequent Actions to run.

Run sequence

Runs a different subsequent Action each time it is run. In order to save the current order

in the sequence, it must be linked to a Global or Local integer Variable - however this is

not a requirement.

Set

Sets the value of both Global and Local Variables. Integers can be set to absolute,

incremented or assigned a random value. Strings can also be set to the value of an Input

menu element, while Integers, Booleans and Floats can also be set to the value of a

Mecanim (Animator) parameter. When setting Integers and Floats, you can also opt to

type in a formula (e.g. 2 + 3 *4), which can also include tokens of the form [var:ID] and

[localVar:ID] to denote the value of a Variable - see Speech tokens.

PROTIP: This Action is useful when giving the Player different responses each time he

examines a Hotspot.
�

�199

Set Timer

Starts, stops or resumes a Timer. When resuming, the Timer's ticker can optionally be

reset.  

�200

5.2.2. Custom Actions

As well as the Standard Actions included with AC, it is possible to write custom ones and

include them in ActionLists.

Each Action is a self-contained script file. They are added to via the Custom Action

scripts panel in the Actions Manager. Once a folder is pointed to via the folder icon, a

new field will appear - allowing for multiple folders to be chosen:

Each Action is a subclass of the Action base class, and is a self-contained script that

contains both its UI and its functionality.

To be properly visible inside the Actions Manager, a new Action must have overrides set

for its Title text property and Category enum property. The number of output sockets an

Action has is set by its NumSockets integer property.

To display its own UI, it requires an override of the ShowGUI function. Public variables

declared in the script can be exposed here using Unity's standard EditorGUILayout

functions so that they can be edited by the user.

For an Action to run, it requires an override of the Run function. This function returns a

float which - if positive - is the time that its parent ActionList will wait before running it

again. An Action will only be considered complete when:

• Its internal isRunning boolean is set to False

• Its Run function returns zero

If an ActionList is skipped (see Skipping cutscenes), then each Action within that list will

have its Skip function (if overridden) invoked. This should command the Action to

perform its task instantly - or do nothing at all, if the function is overridden but left

blank.

If no such function is used, then Run will be called instead. By default, this will only be

called once, so that the skipping process occurs over a single frame. If this Action must

be run over multiple frames even when skipping, set the Action’s RunNormallyWhenSkip

property to True.

NOTE: Each selected folder is assumed to only contain Action scripts. No other script

or asset type should be contained in them.
�

�201

http://adventurecreator.org/scripting-guide/class_a_c_1_1_action.html
https://docs.unity3d.com/ScriptReference/EditorGUILayout.html

To assist in the creation of new Actions, annotated "blank" Action script are provided:

ActionTemplate.cs, ActionCheckTemplate.cs, and ActionCheckMultipleTemplate.cs.

ActionCheckTemplate demonstrates how "check" Actions (i.e. those that have two output

sockets) can be created, while ActionCheckMultipleTemplate allows for any number of

output sockets.

These scripts can be found in Assets → AdventureCreator → Scripts → ActionList.

PROTIP: A series of step-by-step tutorial on writing custom Actions can be found

online.
�

�202

http://adventurecreator.org/tutorials/writing-custom-action

5.2.3. The ActionList Editor

The ActionList Editor is a node-based editing tool that visualises the flow of Actions in a

much more natural way than the Inspector.

It can be opened in any of the following ways:

• By clicking the ActionList Editor Button from an ActionList's Inspector

• By clicking the node icon next to a scene-based ActionList in the Hierarchy

• By double-clicking an ActionList asset file

• From the top toolbar, under Adventure Creator → Editors → ActionList Editor

This window is designed to help make ActionLists easier to follow: Actions appear as

nodes, which you can re-arrange and re-connect to one another by dragging “wires” from

output sockets on the right:

Actions can be collapsed and expanded by clicking their top-left icon:

You can move around the canvas either by panning, using the scrollbars, or by pressing

the Page Up / Page Down keys. The Home key will reset the view back to the first Action.  

�203

You can marquee-select multiple Actions at a time by dragging a box around them.

Holding the Shift key while doing so retains the previous selection. Selected Actions can

be manipulated in bulk by right-clicking an empty space to bring up a context menu:

The Auto-arrange and Align options allow you to arrange Actions more neatly:

Individual Actions can also be assigned a colour, to help differentiate them.  

�204

Clicking an Action's cog icon brings up its own context menu, from where you can toggle

breakpoints and comments. Comments will be visible even if the Action itself is

collapsed, allowing you to get an overview of what an ActionList does even if all the

Actions are collapsed:

Comment boxes support both variable and parameter tokens - see Speech tokens.

Actions can also be favourited via this menu. Up to 10 Actions can be marked as a

favourite via the cog icon menu, and then pasted at any time by right-clicking in empty

space.

The top of the Actions Manager features a number of editing options when using the

ActionList Editor, including the ability to open multiple instances:

The ActionList Editor also can be locked to a particular ActionList. Click the yellow

padlock icon to the lower-left of the window, and it will lock itself to the ActionList it is

currently viewing:

In the lower-right corner of the window are three further buttons:

View all / Reset view

Toggles between viewing all Actions and resetting the viewport.

Ping object

Pings the ActionList being edited in the Hierarchy or Project window, depending on

whether it is an asset file or not.

Show properties

Toggles the properties of the ActionList, which are also displayed at the top of its

Inspector.  

�205

5.2.4. Generating ActionLists through script

ActionLists are the core of AC's interaction and cutscene system, and are used to trigger

dialogue, make characters move, make changes to the inventory, and more.

While any command that an Action performs can be done so in a separate script, one

major benefit of them is that they can be queued up and only run when those before it

have finished. For example, an ActionList can command an NPC to move to a Marker, and

say something once they've reached it.

As well as using the Inspector or ActionList Editor, ActionLists can also be created

through script. Some of the benefits of doing this include:

• Pre-populate an ActionList with a standard set of Actions to further work on

• Dynamically generate ActionLists at runtime

• Reduce filesizes and memory usage, since runtime-created ActionLists are not

saved in a project

In order to create Actions, we first need to reference an ActionList component in which to

store them, i.e.:

ActionList actionList = gameObject.GetComponent <ActionList>();

if (actionList == null)

{

actionList = gameObject.AddComponent <ActionList>();

}

The above code, placed in a MonoBehaviour script, will add such a component to the

GameObject (if not already present) and create a reference to it.

To create a new instance of an Action, we need to know the name of its class. This can be

done by looking it up in the Actions Manager. Looking up the Dialogue: Play speech

Action, for example, reveals that its filename is ActionSpeech.cs:

The class name is just the filename without the '.cs' at the end.

�206

To create a new instance of the Action, invoke its CreateNew static function. This

function's parameters are used to set up the data within it, and it returns an instance of

the class. For example:

ActionSpeech myNewSpeechAction = ActionSpeech.CreateNew (myCharacter,

"My speech text”);

What parameters are available will depend on the Action. Some Actions which serve

multiple purposes have different CreateNew functions - but each is documented in the

source code.

The returned Action class can then be placed within the ActionList's actions List:

actionList.actions = new List<Action> { myNewSpeechAction };

Actions can also be created and placed in a single command:

actionList.actions = new List<Action>

{

ActionSpeech.CreateNew (myCharacter, "My speech text");

ActionPause.CreateNew (1f);

ActionCharPathFind.CreateNew (myCharacter, myMarker),

}

The above will make a character (stored in the “myCharacter" Char variable, speak, wait

for 1s second, and then walk to a marker (stored in the “myMarker” Marker variable).

Once populated with Actions, an ActionList can be run by simply calling:

actionList.Interact ();

NOTE: Only AC's Standard Actions have CreateNew functions - Custom Actions need

their own written.
�

PROTIP: If an Action's CreateNew function includes a GameObject or component

parameter, and a prefab is assigned, then the Action will rely on the instance of the

prefab in the scene - provided it has an associated Constant ID component.

�

PROTIP: The Scripted Action List Example component demonstrates two sample lists

generated at runtime. The script itself is commented with instructions and

explanations.

�

�207

https://adventurecreator.org/scripting-guide/class_a_c_1_1_action.html
https://adventurecreator.org/scripting-guide/class_a_c_1_1_action_list.html

5.3. Hotspots

Hotspots are used to create ways for the player to interact with the scene. They are

placed over geometry and NPCs, and assigned Interactions run when clicked on.

To create a Hotspot, open the Scene Manager and click Hotspot under the Logic panel,

followed by Add new. A yellow cube will appear at the scene origin, marking the region

that the mouse cursor must hover over in order to select it. Reposition it over an object

you want to make interactive.

If a scene mesh or sprite is selected when creating a new Hotspot, the option Position

over selected mesh? will appear in the Prefabs panel.

The name of the Hotspot is what will appear as the label when selected, but you can

override this with the Label (if not name) field in the Hotspot inspector:

NOTE: A Hotspot is 'on' when on the Default layer, and 'off' when on Ignore Raycast

layer. These can be changed in the Settings Manager's Raycast settings.
�

PROTIP: The Hotspot prefab is just a convenience tool - any object can be made

interactive by attaching the Hotspot component and a collider.
�

�208

You can make an object glow when the Hotspot is selected by adding a Highlight

component to it, and then referring to it from the Hotspot's Object to highlight field in

its Inspector.

The bottom half of the Hotspot's inspector is where you define its associated interactions.

Which interaction types are available will be based on your chosen Interaction method.

Click the + icon to create a new interaction slot:

Inside each slot, the Interaction field is a reference to the Interaction ActionList that will

run when the player triggers it through gameplay. You can create an Interaction object

from the Scene Manager, but it is easier to click Auto-create to the right of the

Interaction field. Doing so will create, rename, and link a new Interaction object within

the scene, which you can then select and modify to define what happens when the

Interaction runs - see The ActionList Editor.

When creating Use interactions, the Cursor / Icon field lets you associate the interaction

with an interaction icon:

Interaction icons are defined in the Cursor Manager. How this icon is used will be

dependent on your game's Interaction method.

The Player action field dictates what the Player character does before the interaction is

run. They can do nothing, turn to face the Hotspot, or move towards it. They can also be

made to move towards a Marker, provided a Walk-to Marker has been assigned at the

top of the Inspector.

If in Context-sensitive mode, you can also define an Examine interaction, which runs

when the player right-clicks. You can also have multiple Inventory interactions, with each

Inventory interaction handling the use of one type of item on the object:

�209

For more, see Inventory interactions.

If you want to create a default response (i.e. “I can't use that there!”) to using an inventory

item on a hotspot without creating the same interaction multiple times, you can define an

Unhandled Use on Hotspot event in the Inventory Manager.

Hotspots can be turned on and off using the Hotspot: Enable or disable Action, and

individual interactions with Hotspot: Change interaction.

You can limit a Hotspot's interactivity by assigning a GameCamera in the Inspector's Limit

to camera field. When assigned, the Hotspot will only be active if the chosen camera is

also active.

If you are creating a game of very large scale, you may find that you need to increase the

size of the Hotspot ray length, which you can adjust inside the Settings Manager.

By default, scene-based Interaction prefabs are used to handle what happens when a

Hotspot is clicked on, but there are alternatives. Setting the Hotspot's Interaction source

to Asset File allows you to call ActionList assets instead. This is useful for building game

logic when you don't have access to the scene, for example when building a game as part

of a team.

This can also be set to Custom Script, to allow you to send a message to a GameObject

of your choice. This is useful if you wish to hard-code your interactions instead of relying

on Actions.

If the Interaction’s ActionList makes use of a GameObject parameter, then that parameter

can automatically be set to the Hotspot when run. For control over all of an Interaction's

parameter values, use the Set Interaction Parameters component.  

PROTIP: To set the Hotspot's starting state, attach the Remember Hotspot component

and set the Hotspot state on start to Off. This component also records changes

made to it in save games.

�

PROTIP: If an Inventory interaction calls a script function that has a single integer

parameter, that parameter will be set to the item’s ID number. This is also the case for

Unhandled inventory interactions.

�

�210

5.4. Hotspot detection

The way in which Hotspots are detected can be modified via the Hotspot detection

method, under Hotspot settings in the Settings Manager:

This field has three options:

Mouse Over

In which Hotspots are selected by the cursor pointing at them.

Player Vicinity

In which Hotspots are selected according to how close they are to the Player.

Custom Script

In which Hotspots are selected by only calling custom script functions.

Hotspots can also be assigned an Interactive boundary within their Inspectors. This

represents an optional bounding volume that the Player must be within before the

Hotspot becomes interactive. This volume is marked by a Box Collider by default, but this

can be replaced with any collider component.

NOTE: Since the Interactive boundary makes use of Collider triggers, the Player must

have both a Rigidbody and a Collider of their own.
�

�211

5.4.1. Mouse-over detection

Mouse-over detection causes Hotspots to become selected when the cursor points at

them - with only one being selectable at a time. It is the most common option when

using mouse and keyboard input. It is simple to set up because it involves no other

settings or additions to the Player prefab.

When using keyboard or controller input, the cursor is not controlled by the mouse - but

instead with input axes named CursorHorizontal and CursorVertical. These can be

mapped to either mouse axes, keyboard buttons, or joystick axes in Unity's Input

Manager.

When using touch screen input, the cursor is normally wherever the user presses on the

touch-screen. However, the Moving touch drags cursor? option allows you to drag the

cursor without it needing to be in the same place.

NOTE: When two Hotspots share the same screen-space, the cursor will - by default -

detect the one closest to the camera. In 2D, you can optionally elect to instead select

the GameObject with the lower Y-position by checking Detect lowest overlapping

Hotspot?.

�

�212

5.4.2. Player-vicinity detection

Player-vicinity detection causes Hotspots to be highlighted when they enter a Trigger

volume attached to the Player. With this mode, it is possible to make a game with similar

controls to Grim Fandango.

When used with Direct or First-person movement, an additional field named Hotspots in

vicinity will also be available:

When this is set to Cycle Multiple, the player can press input buttons mapped to

CycleHotspotsLeft and CycleHotspotsRight (or alternatively an axis mapped to

CycleHotspots) to cycle through available Hotspots near to the Player.

For a Player prefab to be able to detect Hotspots, they must be equipped with a Hotspot

Detector. To make one, add an empty GameObject to your Player prefab as a child object

(and also a child of the sprite if in 2D). Leave it untagged and move it to the Ignore

Raycast layer.

Then add a collider (in 3D games, this will usually be a Sphere Collider; in 2D games,

this will be a Circle Collider 2D), with Is Trigger? checked. Then add a Detect Hotspot

component, and position it such that its centre is slightly in front of the player, with the

radius extending a few feet outward.

 Finally go back to your Player's Inspector and assign this new GameObject as the

Hotspot detector child.

NOTE: If your Player does not have a Rigidbody or Rigidbody 2D component on their

base, you will need to add one to the Hotspot Detector.
�

NOTE: If your game has this detection mode enabled, Players created with the

Character wizard will automatically be assigned a Hotspot Detector. The 3D Demo

game's Player, Tin Pot, is equipped with one - and can be dropped in your own game

to experiment with. He can be found in AdventureCreator/Demo/Resources.

�

�213

5.5. Cutscenes

A Cutscene is an ActionList that can be run automatically when a scene begins, as well as

by any other Action or ActionList.

Cutscenes are created in the Scene Manager. They can either by created by clicking

Create beside each of the three Scene cutscene types:

Or by double-clicking the Cutscene prefab button under the Logic panel:

Cutscene objects are invisible and cannot be interacted with directly by the player – their

position is unimportant.

The top of the Cutscene's Inspector features the following properties:

The Actions Source field allows you to use the Actions from an ActionList asset, which is

useful when collaborating as it keeps the Actions out of the scene file.

PROTIP: Don't let the name confuse you: a Cutscene can be used to create background

processes, process logic and more - not just gameplay-blocking sequences.
�

NOTE: On start vs On load? On start refers to the scene beginning through natural

gameplay - whether it be due to the player entering it from another, or it being the

first scene in the game. On load refers to a scene beginning due to a save game file

being loaded.

�

�214

The When running field allows you to choose if it blocks gameplay, or runs in the

background - see Background logic.

The Is skippable? checkbox allows you to make it skip to the end instantly when the

player presses the EndCutscene button - see Skipping cutscenes.

A non-zero Start delay causes the Cutscene to wait for a set time before running. If a

Kill command is sent to it during this time (using the Object: Send message Action), it will

not run afterwards. This can be a useful way of creating timed sequences, as a delayed

Cutscene can play the "fail state" which gets cancelled if the player succeeds in time.

The Auto-save after? checkbox will record an autosave once it has completed, provided

that no other gameplay-blocking ActionLists are running. For more, see Autosaving.

The Use parameters? checkbox allows you to dynamically alter its Actions fields at

runtime - see ActionList parameters.

Cutscenes can be converted to ActionList assets, and vice-versa, via the cog icon to the

top-right of the Inspector.  

�215

5.6. Skipping cutscenes

If an ActionList type has an Is skippable? checkbox available in the properties, then

checking it means it can be skipped by the player while it is running:

To skip an ActionList, the player invokes the EndCutscene input button - this can either

be an input listed in Unity's Input Manager, or a Button menu element that simulates it.

Skipping an ActionList still causes it to end instantly, with all Actions within it completed

in one go - regardless of the point at which it is skipped. All game logic within it will

execute: Variables will still be changed, Inventory items will still be added or removed,

and objects will still be moved to their expected “end” position.

Animation Actions, however, may require additional work for the effect to be complete.

Because some animations may be intended to continue playing once the Action finishes –

or continue to another FSM state in Mecanim, they must still be played when an ActionList

is skipped.

Therefore, it is necessary to end your ActionList with Actions that place your objects

and characters in their correct animation state.

For instance, if the Player waves their hand during a cutscene, you should end your

ActionList with an additional Character: Animate Action that specifically returns the Player

to their Idle animation, even if this happens naturally when the ActionList plays normally.

Additionally, if your ActionList invokes Mecanim Trigger parameters, Unity may run them

inadvertently afterwards. Therefore, this is made optional when skipping the Character:

Animate and Object: Animate Actions.

If you ever want to bypass certain Actions when skipping an ActionList, the ActionList:

Check running Action has the ability to check if the ActionList it is placed in is currently

skipping.

PROTIP: The 2D Demo's Park scene contains examples of this necessity: the Intro2

Cutscene ends by playing the BirdHide animation on the Bird NPC, even though this

animation is played by the FSM when the Cutscene plays uninterrupted. Further

explanation is given in the Skipping Cutscenes chapter of the Making a 3D game

tutorial.

�

�216

http://adventurecreator.org/tutorials/making-3d-game

NOTE: When skipping the ActionList: Run in parallel Action, each chain that stems

from it will be skipped in order, with each chain run to completion before the next.

Therefore, you should take this into account when ordering your chains.

�

�217

5.7. Background logic

By default, an ActionList will prevent regular gameplay while it runs - allowing you to

build complex cutscenes and interaction responses.

However, any ActionList can instead run alongside gameplay by setting its When running

property to Run In Background:

PROTIP: When placed in a "background" ActionList, the Engine: Wait Action will act as a

simple timer, allowing you to time exactly when background processes occur.
�

NOTE: Running an ActionList in the background will not enforce gameplay: if another

ActionList set to Block Gameplay is running at the same time, gameplay will still be

blocked.

�

�218

5.8. Triggers

A Trigger is an ActionList that runs when an object passes through it. It can be set to

react to the player, or some other object. It is invisible to the player, but can cause events

to run as they move around the scene.

To create one, open the Scene Manager and click Trigger under the Logic panel, followed

by Add new. A red cube will appear at the scene origin, marking the region that an

object must enter for it to react. Reposition it to the area you want to make interactive.

The top of the Trigger's Inspector features the following properties:

The Actions source field allows you to use the Actions from an ActionList asset, which is

useful when collaborating as it keeps the Actions out of the scene file.

NOTE: If a Trigger’s Detection method is set to Rigidbody Collision, then the object

it is set to detect must have a Rigidbody component (or Rigidbody 2D, for 2D

games).

�

PROTIP: The Trigger prefab is just a convenience tool - any object can be made into

one by attaching the AC_Trigger component and a Collider with Is Trigger checked.
�

�219

The When running field allows you to choose if it blocks gameplay, or runs in the

background.

The Is skippable? checkbox allows you to make it skip to the end instantly when the

player presses the EndCutscene button - see Skipping cutscenes.

The Trigger type field allows you to choose if the trigger runs when an object enters it,

leaves it, or continuously while inside it. Note that the Continuous option is the most

processor-intensive of the three.

The Reacts field allows you to choose when the Trigger reacts. You will normally want to

leave this on the default setting of Only During Gameplay, so that it does not interfere

with cutscenes.

The Cancels interactions? checkbox allows you to interrupt an interaction, if the Player

moves through it as the result of moving towards a clicked Hotspot.

The Set collider as parameter? checkbox allows you to dynamically insert the detected

object as a GameObject parameter into the Trigger's Actions. This is useful if you want to

manipulate the detected object in some way, but don't know what the object will be. For

more, see ActionList parameters.

The Detection method field allows you to choose how incoming objects are detected.

When set to Rigidbody Collision, then it will react when an object’s Collider touches its

own Collider. When set to Transform Position, then it will react according to the object’s

actual position relative to the Trigger’s Collider. This latter option is more useful for 2D

games, where precision is needed.

Triggers can be turned on and off using the Object: Send message Action. A Trigger is

considered off if its Collider component is disabled.

Triggers can be converted to ActionList assets via the cog icon to the top-right of the

Inspector.  

PROTIP: A Trigger can have multiple AC_Trigger components attached, with each

given a different Trigger type field. The 3D Demo scene uses this trick to have the

camera change when both entering and leaving the SwitchNavCam Trigger.

�

PROTIP: If the Detection method is set to Transform Position, then objects it is set

to detect do not require Rigidbody or Collider components for the Trigger to detect

them.

�

PROTIP: To set the Triggers's starting state, attach the Remember Trigger component

and set the Trigger state on start to Off. This component also records changes made

to it in save games.

�

�220

5.9. Conversations

A Conversation is a way of presenting an array of options on-screen for the player to

choose from. They are typically used for allowing the player to choose what to say to an

NPC, but can really be used for any situation that requires the player to make a choice.

A Conversation is begun by running the Dialogue: Start conversation Action.

To create one, open the Scene Manager and click Conversation under the Logic panel,

followed by Add new. A Conversation object is never physically seen by the player, so its

position in 3D space is irrelevant.

The Conversation's Inspector provides you with the tools necessary to create and manage

its dialogue options:

Each option can be assigned a label and a texture, but bear in mind that your

Conversation Menu is what determines how they are displayed.

The Only show if carrying a specific item? checkbox allows you to limit an option's

display according to whether or not the player has something in their inventory. This is

useful if you want to create options for "asking about X item”. If the DialogList element

used to display the Conversation has icons, this icon will automatically set to the item.

NOTE: A Conversation is shown on screen through the DialogList element, in a Menu

with an Appear type of During Conversation. The default interface provides you with

a Conversation menu.

�

�221

When it comes to the Actions that get run when an option is chosen, there are two

methods:

1) By running separate a DialogOption ActionList (each option's Interaction field). This

is the default method, and takes into account the option's When finished field to

determine whether or not the options should be shown again when the Actions are

complete.

2) By checking Override defaults? within the Dialogue: Start conversation Action used

to initiate it. When checked, its various options will appear as outputs within the

Action, allowing you to run subsequent Actions for each response within the same

ActionList. To re-show the Conversation after the response, you must re-route back

to the original Action:

The top of the Conversation Inspector features the following properties:

The Interactions source field allows you to call ActionList assets instead of in-scene

DialogOptions, which is useful when collaborating as it keeps the Actions out of the scene

file.

The Auto-play lone option? checkbox allows you to have a lone option run

automatically, as opposed to having the player make an arbitrary click.

The Is timed? checkbox allows you to have the Conversation active only for a set duration

- a behaviour common to titles by TellTale Games. When checked, one of the options can

be marked as the Default to have it run when the timer expires - via the cog menu to the

right. If End if timer runs out? is checked, then the Conversation will simply end

instead.

PROTIP: The 3D Demo scene demonstrates both of these methods: BrainConv makes

use of DialogOption ActionLists, while IntroConv makes use of overrides in the

PlayIntroConv Cutscene.

�

�222

Dialogue options can be enabled and disabled using the Dialogue: Toggle option Action,

and renamed with Dialogue: Rename option. If an option is locked, it will ignore

subsequent calls to turn on.

Particularly if your game is keyboard-controlled, you can make it easier for your player to

select options by linking them to numeric keys on your keyboard. Just check Dialogue

options can be selected with number keys? in the Settings Manager. This option also

allows you to trigger options with inputs mapped to DialogueOptionX, where 'X' is the

index number of the option to trigger - see the Settings Manager's list of available inputs.

Conversations are normally ended by choosing an option that doesn't return to the

Conversation after running. However, you can also end a Conversation manually by

pressing an input button names EndConversation.

PROTIP: The ability to re-colour already-chosen options is available in the DialogList

menu element - not in the Conversation Inspector.
�

NOTE: Conversations normally prevent regular player movement and interactions from

occurring, so that they can focus on the choice to make. However, this can be

changed by checking Allow regular gameplay during Conversations? in the Settings

Manager. Be mindful that this may create gameplay conflicts (such as allowing a

scene-switch to occur mid-Conversation), so it's recommended to use this option with

care. To allow only movement and not interactions during this time, use the Engine:

Manage systems Action when the Conversation menu is turned on.

�

�223

5.10. ActionList assets

It is often necessary to run a common set of Actions no matter which scene is currently

loaded - for example, when examining an Inventory item or handling a Menu's behaviour.

When working as a team on a large game, you may also want to be able to create

ActionLists for a scene without interfering with anyone else's work.

ActionList assets are able to live as physical files in your Assets folder, outside of scenes.

They are created by right-clicking inside the Project window, and choosing Create →

Adventure Creator → ActionList:

Double-clicking this asset will open it within the ActionList Editor.

ActionList assets can also manipulate scene objects by referring to them with Constant

ID numbers. A Constant ID number is a unique identifier held by a scene object, so that it

can be found again by the ActionList when the scene is re-opened. Assigning a scene-

based GameObject to an ActionList asset's field will cause a Constant ID number to be

automatically generated:

PROTIP: ActionList assets are mainly used for Inventory interactions, Menu functions,

and common tasks that can occur in any scene. For example, the default Pause menu

runs the DeselectInventory ActionList when it turns on. This de-selects any active

Inventory item, making sure the main cursor is always displayed when navigating the

Pause menu.

�

�224

This number is stored inside the Constant ID component attached to the GameObject - be

sure to save the scene after it has been added. If the scene that holds an object

referenced by the ActionList is not open, the connection is not broken - what matters is

the Constant ID field beneath it. Clicking Search scenes will search all scenes in your

game's Build settings for the referenced object.

For more on Constant IDs, see Saving scene objects.

The top of an ActionList assets's Inspector features the following properties:

When running

Allows you to choose if it blocks gameplay, or runs in the background.

Is skippable?

Allows you to make it skip to the end instantly when the player presses the EndCutscene

button - see Skipping cutscenes.

Unfreezes 'pause' Menus?

Allows it to revert the timescale back to non-zero if it is run while the game is paused

due to a Menu being on. This is generally only necessary if the ActionList needs to run a

scene animation while the game is otherwise paused.

Can run multiple instances?

Allows it to be run multiple times simultaneously. If unchecked, calls to run it while

already running will result in the first instance being interrupted.

Can survive scene changes?

Prevents it from being ended once a scene change occurs through natural gameplay. This

option is only available if Is skippable? is unchecked.

PROTIP: A bonus of this workflow is that an asset-based Action can refer to different

objects in different scenes provided that they share the same Constant ID number.

Constant IDs can also be manually assigned from within their Inspectors.

�

NOTE: All ActionLists will be ended upon the loading of a save game file. Therefore,

care should be taken to account for this when dealing with an ActionList that spans

multiple scenes.

�

�225

Use parameters?

Allows you to dynamically alter its Actions fields at runtime - see ActionList parameters.

The Settings Manager has an ActionList on start game field that you can assign to have

an asset that runs before anything else. The ActionList: Run Action can also be used to

run an ActionList asset file at any time.

ActionList assets can be converted to a Cutscenes, and vice-versa, via the cog icon to the

top-right of the Inspector. As scene-based ActionLists cannot be stored as assets

directly, if you want to transfer one to another scene, then it is recommended to convert

it to an ActionList asset, and then convert it back to a scene-based ActionList in the new

scene.  

�226

5.11. Arrow prompts

An Arrow Prompt is an on-screen indicator that the player can perform an action by

pushing a directional key. This is similar to the quick-time events that are employed in

Telltale's The Walking Dead series:

Arrow Prompts can be clicked on directly, or activated by pressing the Horizontal and

Vertical inputs in the corresponding direction. When relying on touch-screen input, you

can activate them by swiping in the given direction.

Arrow Prompts are created by clicking Arrow Prompt under the Scene Manager's Logic

panel, followed by Add new. Arrow Prompt objects are invisible and their transforms are

unimportant.

You can use the Arrow Prompt inspector to provide any combination of up, down, left and

right arrows. You can modify the icon of each arrow, and supply a Cutscene that will run

when a direction is invoked. The arrows will be disabled automatically once this happens.

While a set of Arrow Prompts are on-screen, the player's regular movement control is

disabled. To make a set of Arrow Prompts appear, its TurnOn function must be triggered

- which is most easily done using the Object: Send message Action.  

PROTIP: Arrow Prompts are used in the 3D Demo when the player uses the barrel - left

and right arrows are used to indicate the choices of pushing the barrel and leaving it

along respectively.

�

�227

5.12. Sounds

A Sound object provides AC with the ability to control the volume and playback of Audio

Sources. The Sound: Play Action relies on the Sound component to work.

Sound objects are created by clicking the Sound button under the Scene Manger's Logic

panel followed by Add new. You can set up your sound using the Audio Source

component as normal, but the Volume field will be overridden. Instead, you can use the

Relative volume field in the Sound inspector to adjust its sound level. This way, you can

adjust the volume relative to other sounds of the same type (e.g. music or SFX).

The Sound type pop-up lets you designate which category of sound the object will play:

This will affect its overall volume, since the game allows the player to choose the volume

of Music, SFX and Speech audio from the Options menu. Choosing Other will make the

Options menu ignore the volume for this object, making it independent from the rest of

the game. As speech audio is automatically set to the correct volume without the need

for a Sound object, the “Speech” option in the pop-up is only necessary for playing other

sounds at the same volume.

The Scene Manager has a Default Sound field, which is used by Menus to play UI sounds:

Sound objects can connect to Unity's Audio Mixer Groups. Mixer Groups can be set

within the Settings Manager, under Audio Settings:

PROTIP: To easily play an audio clip without the need for a Sound component, use the

Sound: Play one-shot Action.
�

�228

Volume (or attenuation) parameters for each sound type will also need to entered, and

created in the Mixer Group - refer to Unity's own documentation for more on creating

these parameters. If an AudioSource has no Audio Mixer Group assigned in its Output

field, then it will be assigned automatically based on the Sound type in the Sound

component. This is also true for the AudioSource components used by characters.

The Sound: Play Action can control Sound objects by playing, stopping and fading audio.

You can also change the sound clip that is being played, but this is not recommended for

audio that will likely be looping when the game is saved, since any change in a Sound

object's Audio Clip will not be stored in the save data.

By default, sounds do not carry over when changing scene, but you may wish to have e.g.

ambient sounds continue playing as you navigate the game. To have a Sound object

survive a scene change, check the Play across scenes? checkbox, and move the prefab

into the root of your scene's hierarchy - it cannot survive a scene load if it has a parent.

Though the Sound object can be used to play music, it is recommended to use the

dedicated Music system for music playback.  

�229

https://unity3d.com/learn/tutorials/modules/beginner/5-pre-order-beta/audiomixer-and-audiomixer-groups

5.13. Music

Whereas sound effects and speech audio are generally tied to specific GameObjects in a

scene, music tracks can played independently.

By using the Sound: Play music Action, music tracks can be played, queued, looped and

stopped at any time. The state of the music, and the queued playlist, is saved

automatically.

In order to play music using this Action, a music track must first be listed in the Music

Storage window, which is accessed within the Action itself, or via the top toolbar in

Adventure Creator -> Editors -> Soundtrack -> Music storage:

This window is used to assign AudioClips to tracks, and adjust their relative volumes -

while they’ll be globally affected by the Music volume option. Music can optionally be

made to play while the game is paused. Only tracks listed in this window will be available

to use in the Action.

PROTIP: If Audio Mixer Groups are enabled (see Sounds), each track can optionally be

set their own Mixer Group to play from.
�

NOTE: When music tracks are assigned in this window, the associated data is stored in

the Settings Manager. Therefore, be aware that if you change your Settings Manager

asset file, you will also have to update the Music Storage window with your tracks.

�

�230

5.14. Ambience tracks

Ambience tracks are similar to Music, in that they are played independently of scenes and

GameObjects, and their playback states are saved automatically.

By using the Sound: Play ambience Action, ambience tracks can be played, queued,

looped and stopped at any time.

In order to play ambience using this Action, an ambience track must first be listed in the

Ambience Storage window, which is accessed within the Action itself, or via the top

toolbar in Adventure Creator -> Editors -> Soundtrack -> Ambience storage:

This window is used to assign AudioClips to tracks, and adjust their relative volumes -

while they’ll be globally affected by the SFX volume option. Only tracks listed in this

window will be available to use in the Action.

PROTIP: If Audio Mixer Groups are enabled (see Sounds), each track can optionally be

set their own Mixer Group to play from.
�

NOTE: When ambience tracks are assigned in this window, the associated data is

stored in the Settings Manager. Therefore, be aware that if you change your Settings

Manager asset file, you will also have to update the Ambience Storage window.

�

�231

5.15. Containers

A Container is a scene-based list of Inventory items which the player can interact with,

separate to their own inventory. This allows for gameplay such as treasure chests that

the player can loot from, and boxes that the player can store items in for later use:

Containers are created by clicking Container under the Scene Manager's Logic panel,

followed by Add new. Container objects are invisible and their transforms are

unimportant - any graphics associated with them will be related to the Hotspot that is

used to access them.

In a Container’s Inspector, a list of items it holds by default can be defined. If Can re-

order Items in menus? is checked in the Settings Manager, then empty slots can be

inserted as well.

During gameplay, a Container's items can be changed either through Actions or through

Menus. To “open” a Container, use the Container: Open Action. To add or remove

specific items manually, use the Container: Add or remove Action.

To view a Container's contents, the Menu Manager must include a Menu with an Appear

type of On Container, with an InventoryBox element of type Container. The default

interface includes a Container menu for you to re-style. Using such a Menu, the player

can transfer items between the Container and their own inventory.

PROTIP: Custom events are available when manipulating Containers - see Inventory

scripting.
�

NOTE: If a Container has an item that the player is already carrying, and that item's

Can carry multiple? property is unchecked, the item will not be clickable and the

OnContainerRemoveFail event will be invoked.

�

�232

5.16. ActionList parameters

In a typical game, there'll be times we want to perform the same task multiple times on

different objects. For example, whenever the player picks up an item, we'd want its

associated Hotspot to be disabled, its scene graphic to be made invisible, and the item to

be added to the inventory.

ActionList parameters allow us to alter an Action's fields at runtime - effectively letting us

recycle ActionLists to perform the same task in varying ways.

In the example above, parameters could be used to create a single ActionList that

disables a Hotspot, hides a GameObject, and adds an item to the inventory. Whenever

the player picks up an item, this ActionList would then be called with each of those

objects set there and then.

As the name suggests, ActionList parameters behave like function parameters.

Cutscenes, DialogueOptions, Interactions and ActionList assets have a Use parameters?

checkbox in their list of properties. Enabling this allows you to define what parameters

the ActionList can use:

Each parameter has a name, a type, and a default value. The type is important, as it

dictates which of an Action's fields it can override. The available types are:

• Float

• String

• Integer

• Boolean

• Inventory Item

• Global Variable

• Local Variable (scene-based ActionLists only)

• Game Object (e.g. Camera, NPC)

• Unity Object (e.g. Material / AudioClip assets)

• Vector3

• PopUp

• Document

• Objective  

�233

If an Action contains a field that matches a define parameter's type, you can override it

with that parameter by clicking the P icon beside it:

When the Action runs, it will then use the value of that parameter in place of that field.

Parameter values are normally set by one of the following ways:

• By using the ActionList: Run Action to run an ActionList with parameters to set the

values of all parameters at once

• By using the ActionList: Set parameter Action to set an individual parameter's value

• By using the ActionList Starter component to run an ActionList that uses parameters

• By using the Set Interaction Parameters component to set all of a Hotspot

Interaction's parameters at once

• By using the Set Inventory Interaction Parameters component to set all of an

Inventory Item Interaction’s parameters at once

• By using the Set Trigger Parameters component to set all of a Trigger’s parameters

at once

• By using Events to run an ActionList automatically based on some condition

Parameter values can be read with the ActionList: Check parameter Action, and their

values at runtime are displayed in the Inspectors of ActionLists that use them.

The [param:X] and [paramlabel:X] tokens can also be used in Action text fields - see

Text tokens for more.

Values can also be read and written to with scripting: an ActionList's parameters are

stored in its parameters List, which can be modified in a script.

Parameters can be set automatically, in special cases:

• A Hotspot can set itself as the GameObject parameter of any Interaction

PROTIP: When the game is running, an ActionList’s parameter values are listed in its

Inspector.
�

NOTE: When an ActionList's parameter values are changed, these changes will persist

until the game ends. In the case of ActionList assets, however, this is optional - values

can be reverted back to their defaults each time the asset is run.

�

�234

https://adventurecreator.org/scripting-guide/class_a_c_1_1_action_list.html

• A Hotspot can set the item as the Inventory parameter of an Inventory Interaction

• A Trigger can set the detected object as its own GameObject parameter

• A Button menu element can the Integer parameter of an ActionList asset to a user-

set value

• A SavesList menu element can set the Integer parameter of an ActionList asset to

the clicked save-slot

• A ProfilesList menu element can set the Integer parameter of an ActionList asset to

the clicked profile-slot

When a Cutscene sources its Actions from an ActionList asset which uses parameters, the

Cutscene will also make use of those parameters. You can choose to either use the

parameter values from the asset file (Sync parameter values?), or the scene object (Set

local parameter values?).

NOTE: Sometimes the function of Actions change based on their field settings. For

example, the Variable: Check Action checks for True or False when querying a

boolean, but a number when querying an integer. When a parameter is assigned to

such an Action, it will assume the same UI and functionality that it had before the

parameter was set.

�

PROTIP: A practical example of parameters is given in the Action parameters chapter

of the Making a 3D game tutorial, and a text-based tutorial is available online.
�

�235

http://adventurecreator.org/tutorials/making-3d-game
http://www.adventurecreator.org/tutorials/introduction-parameters

5.17. Draggable objects

Draggable objects are physics objects that can be manipulated by the player in a pre-

determined way: for example, a door that turns around a hinge, or a drawer that moves

along a rail. As such, they allow for gameplay with a greater sense of immersion than

simply clicking Hotspots.

To create one, open the Scene Manager and click Draggable under the Moveable panel,

followed by Add new. Attach your mesh to it as a child object and adjust the collider - it

is a Sphere Collider by default but can be replaced with any collider you wish.

Draggables react to both mouse clicks and touch-screen touches - how close to the

screen they must be is determined by the Moveable ray length field under Raycast

settings in the Settings Manager.

As set in its Inspector, a Draggable object has three Drag modes:

Move Along Plane

In which it can only move along the axes of a plane, or aligned to the camera.

Rotate Only

In which it can only be rotated and zoomed to and from the camera. This is similar to the

PickUp object, only it cannot be moved freely. If Allow zooming? is checked, the zoom

factor is controlled by an input axis named ZoomMoveable. In this mode, the Rigidbody

is optional.

PROTIP: The Physics Demo features cupboards, drawers and tumbler Draggables. A

practical guide to creating such a Draggable from scratch can be found in the Making a

first-person game tutorial.

�

�236

http://adventurecreator.org/games/physics-demo
http://adventurecreator.org/tutorials/making-first-person-game

Lock To Track

In which it can only move along a pre-determined path known as a Track. In this mode,

the Rigidbody is optional.  

�237

5.17.1.Drag tracks

Tracks are pre-defined paths that Draggable objects can be made to move along. They

can also be connected together to form more complex paths - see Track regions, below.

There are three types of track, available in the Scene Manager's Moveable panel:

Straight Track

A Straight Track is used to constrain a Draggable object along a straight line. Rotation

effects can also be added, to make the object roll as it moves, or turn in a screw-like

motion. Typical use-cases for this type include drawers and threaded nuts.

Curved Track

A Curved Track is used to constrain a Draggable object along a circular line. If the line is

looped to form a circle, the number of possible revolutions can also be set.

Hinge Track

A Hinge Track is used to pivot a Draggable object about its centre. Its position is locked,

and can only be rotated in a circular motion. Like the Curved Track, it can also be looped.

Typical use-cases for this type include doors and levers.

NOTE: Both Straight and Curved tracks can generate colliders at their ends so that a

Draggable’s behaviour when reaching them can be set with Physics Materials. If end-

colliders are enabled, a Sphere Collider must be placed on the Draggable's root to

correctly position them - but it can be disabled if desired.

�

NOTE: When a Draggable object becomes attached to a track, it adopts that track's

transform - its rotation may become flipped depending on the track's orientation, for

example. This is a necessary requirement of the drag/track system, but can be

countered by checking Maintain original child transforms? in its Inspector. This will

cause any children (which is where models should be placed) of the Draggable to

retain their position and rotation after attachment.

�

�238

When locked to a Track, ActionLists can be assigned that run when the object is moved or

let go under the player’s control. These ActionLists can be scene-based Interactions or

asset-files, and a GameObject parameter can be optionally assigned to the moved object.

When locked to a track, a Draggable can be moved either automatically via the Moveable:

Set position Action, or manually through player input. The input style, set by a track’s

Movement input property, has two modes:

Drag Vector

In which the Draggable moves in the direction of cursor movement, provided that this

movement is aligned to the Draggable's current position along the track. This mode is

best used when tracks are viewed at an angle to the camera (i.e. with perspective).

Cursor Position

In which the Draggable will move as close as it can to the cursor position, while remaining

fixed to the track. This mode is best used when tracks are viewed head-on, so that they

take up as much screen-space as possible.

If a Draggable has a Rigidbody attached, then its settings will be relied on for speed and

acceleration. Objects with a higher Mass value, for example, will move more slowly.

Objects with a higher Drag value will take longer to accelerate and decelerate. To change

these values while the player is holding them via a custom script, hook into the

OnGrabMoveable and OnDropMoveable custom events.

Track regions

Straight and Curved tracks can also have regions defined, which can be used to enable

snapping (i.e. have the Draggable automatically move towards their centre when close

enough), or to connect a Track to other Tracks that Draggables can move between. When

a connection is made, the connecting Track must also have regions defined - and the

connection will be made automatically to the nearest region.

The Moveable: Check position Action to determine how far along a Draggable is along its

Track, or which snap region it is currently in.

Draggables can be turned on and off by using the Object: Send message Action on them.

They start the scene enabled, but this can be changed with the Remember Moveable

script, which is attached to the prefab by default.

PROTIP: As Draggables rely on Unity's Physics system, they are bound by the same

settings as any other physics object. Modifying Unity's Fixed Timestep and Solver

Iteration Count variables will affect the accuracy of this system.

�

�239

https://docs.unity3d.com/Manual/class-TimeManager.html
https://docs.unity3d.com/Manual/class-PhysicsManager.html

Draggable objects can also be assigned an Interactive boundary within their Inspectors.

This represents an optional bounding volume that the Player must be within before the

object becomes interactive. This volume is marked by a Box Collider by default, but this

can be replaced with any collider component.

NOTE: Since the Interactive boundary makes use of Collider triggers, the Player must

have both a Rigidbody and a Collider of their own.
�

�240

5.18. PickUp objects

PickUp objects are physics objects that can be picked up and moved freely by dragging

the cursor. They are not "picked up" in the Inventory sense - instead they are held in 3D

space so that the player can examine, move, and throw them from all angles.

To create one, open the Scene Manager and click PickUp under the Moveable panel,

followed by Add new. Attach your mesh to it as a child object and adjust the collider - it

has a Sphere Collider by default but can be replaced with any collider you wish.

PickUps react to both mouse clicks and touch-screen touches - how close to the screen

they must be is determined by the Moveable ray length field under Raycast settings in

the Settings Manager.

The PickUp Inspector allows it to be rotated, zoomed to/from the camera, and thrown.

These are performed with the Inputs that must be named as follows:

RotateMovable (Button)

Used to rotate the PickUp while held

RotateMoveableToggle (Button)

Used to toggle between rotate and move modes

ZoomMoveable (Axis)

Used to move the PickUp towards and away from the camera

ThrowMoveable (Button)

Used to "charge up" a throw which occurs when released

PROTIP: The Physics Demo features a rock that can be picked up in this way. A

practical guide to creating such a PickUp from scratch can be found in the Making a

first-person game tutorial.

�

�241

http://adventurecreator.org/games/physics-demo
http://adventurecreator.org/tutorials/making-first-person-game

The Inspector also allows you to reduce the player's movement when it is being

manipulated, which is helpful when creating first-person games.

Key to the way a PickUp behaves is its Rigidbody settings. The Drag and Angular Drag

values are locked to 20 when it is held, so altering the Mass value will affects how quickly

it can move. A Mass of 1 gives a 1:1 relationship between the movement of the mouse or

touch and the movement of the object. Higher values will require more movement from

the player to move the object, which lower values will require less.

Triggers can be placed in the scene to determine if a PickUp object has been placed in the

correct position. A Trigger can be set to detect the PickUp object in question, or all

PickUp objects, so that a sequence of Actions will run when the object enters it.

PickUps can be turned on and off by using the Object: Send message Action on them.

They start the scene enabled, but this can be changed with the Remember Moveable

script, which is attached to the prefab.

PickUps can also be assigned an Interactive boundary within their Inspectors. This

represents an optional bounding volume that the Player must be within before the object

becomes interactive. This volume is marked by a Box Collider by default, but this can be

replaced with any collider component.

PROTIP: As PickUps rely on Unity's Physics system, they are bound by the same

settings as any other physics object. Modifying Unity's Fixed Timestep and Solver

Iteration Count variables will affect the accuracy of this system.

�

NOTE: Since the Interactive boundary makes use of Collider triggers, the Player must

have both a Rigidbody and a Collider of their own.
�

�242

https://docs.unity3d.com/Manual/class-TimeManager.html
https://docs.unity3d.com/Manual/class-PhysicsManager.html

5.19. Custom cursors

The Cursor Manager is used to define the Interactions available in your game. You can

add, remove and set textures, animate them, as well as define the rules for which cursors

appear – such as the ability to display a dedicated “walk” cursor when hovering over a

Navigation Mesh.

The Cursor Manager can also be used to determine if cursors are rendered in Software,

Hardware or Unity UI mode. Software mode, the default, hides the system cursor and

displays the correct cursor as a texture. While it can be slower on older systems, it enjoys

wider support on more platforms.

Hardware mode, on the other hand, replaces the system's hardware cursor completely,

and can often be faster.

Unity UI mode hides the system cursor and relies on a Unity UI prefab that uses its own

script to handle the cursor’s position - see Unity UI Cursor rendering. A default script

and CursorUI prefab is provided as part of the default interface, allowing for more control

over animations - but this can be replaced if desired.

The “click offset” can also be set for each cursor. In Software mode, this offset represents

how far the click point is from the cursor's centre, as a decimal of its size. In Hardware

mode, the offset represents how far the click point is from the cursor's top-left, in exact

pixels.

Cursors defined under the Interaction icons panel can also be referenced both by

Interaction elements (see also: Choose Hotspot Then Interaction mode), as well as

Hotspots.

To have a cursor be animated, the supplied graphic must include all of the animation

frames, arranged in a grid:

PROTIP: Interaction icons also accept Render Textures, allowing you to create an

interface with 3D effects.
�

NOTE: If Hardware rendering is used to draw cursors, the cursor graphic assets must

have their Texture type fields set to Cursor in order to correctly display.
�

�243

https://docs.unity3d.com/Manual/class-RenderTexture.html

When Animate? is checked in the Cursor Manager, further fields will then appear -

allowing you to enter in the number of frames, rows and columns that the image has, as

well as the speed of the animation:

NOTE: So that the image can be separated into individual frames, the Read/Write

Enabled setting must be checked in the image’s Inspector, under Advanced.
�

�244

5.19.1.Unity UI Cursor rendering

The Cursor Manager's Unity UI rendering option delegates cursor display to a Unity UI

Canvas prefab. This allows for easier control over its size and appearance, as well as

animated effects.

The default Unity UI cursor prefab, CursorUI, can be found in Assets/

AdventureCreator/UI.

The prefab's behaviour can be set from its Unity UI cursor component. The cursor's

appearance can be controlled by direct manipulation of a RawImage component, through

Animation, or both.

If the RawImage to control field is assigned, then that Image's texture will be set to the

appropriate textures defined in the Cursor Manager, similar to other cursor rendering

modes.

If the RectTransform to position field is assigned, then that RectTransform's position

will be set to the cursor's intended on-screen position.

If the optional Animator field is assigned, then an additional list of parameter fields will

then be displayed. These allow the UI's appearance to be controlled through animation

transitions, based on the current cursor ID, selected item ID, cursor visibility and click

state. Not all of these paramaeter fields need to be set, but those that are will need to

have a matching parameter defined in the assigned Animator.

NOTE: This option should only be used alongside Unity UI menus. Adventure Creator

menus will always be drawn on top of this cursor, as they use Unity’s OnGUI system.
�

�245

5.20. Quick-time events

Quick-time events, also known as QTEs, are isolated moments of gameplay that require

the player to press a key, or a combination of keys, within a time limit. The event is

considered "won" if the keys are pressed correctly, and "lost" otherwise. Such events can

be created with the Input: QTE Action. When this Action is run, regular gameplay is

disabled, and the Action waits until the player has either won or lost.

QTEs can have several "win" requirements: a single button-press, an axis movement, a

button held down for a set time, a thumbstick rotated, or a button pressed repeatedly (i.e.

"button mashing"). The button name defined in the Action must correspond to an Input

button defined in Unity's Input Manager. What happens when the player wins or loses is

dictated by the Action's If condition is met and If conditions is not met fields

respectively.

A Menu name can also be supplied to the Action. So long as this Menu's Appear type is

set to Manual, then it will be displayed automatically for the duration of the QTE -

making it suitable to act as a "button prompt" to tell the player what to do. Timer menu

elements are useful here: the Timer type can be set to either Quick Time Event

Remaining (how long longer the QTE will last) or Quick Time Event Progress (how much

progress the player has made). If such a Timer is visible when a QTE is active, then it will

represent that QTE.

If the Menu is linked to Unity UI, then it can also be animated when the player wins, loses,

or presses a correct button. To prepare a Unity UI-linked Menu for animating, attach an

Animator component to the base Canvas component. Adventure Creator requires that

three animation states be present:

• Win

• Lose

• Hold or Hit (the Action will describe which states it requires).

If not all animations are required (e.g. Win but not Lose), then empty states of the same

name can be used instead.

A series of QTE tutorials can be found online.  

PROTIP: When relying on Touch-screen input, leaving the Input button name field will

allow touches anywhere on the screen to be valid.
�

NOTE: If you wish to use these values in your own scripts, you can read them with:

AC.KickStarter.playerQTE.GetProgress ();

AC.KickStarter.playerQTE.GetRemainingTimeFactor ();

�

�246

https://www.adventurecreator.org/tutorials/quick-time-events-1

5.21. Interaction scripting

When an ActionList whose When running field is set to Block Gameplay is run, it will be

considered a non-interactive sequence and gameplay cannot occur for that time.

To place the game in and out of Cutscene and Pause modes through script, use:

KickStarter.stateHandler.EnforceCutsceneMode

KickStarter.stateHandler.EnforcePauseMode

Scene-based ActionLists and ActionList assets can be run with:

myActionList.Interact ();

myActionList.RunFromIndex (int index);

myActionListAsset.Interact ();

myActionListAsset.RunFromIndex (int index);

And ended with:

myActionList.Kill ();

myActionListAsset.KillAllInstances ();

If an ActionList uses Parameters (each an instance of the ActionParameter class), then can

be retrieved with:

myActionList.GetParameter (int parameterID);

myActionList.GetParameter (string parameterLabel);

myActionList.GetParameters ();

Parameters can then be modified without the need to use the ActionList: Run or

ActionList: Set parameter Actions.

Gameplay-blocking ActionLists can be skipped with:

AC.KickStarter.actionListManager.EndCutscene ();

Conversations can be triggered with:

myConversation.Interact ();

And ended with:

KickStarter.playerInput.EndConversation ();

The currently-selected Hotspot can be retrieved with:

KickStarter.playerInteraction.GetActiveHotspot ();

�247

Interactions involves the following events:

OnEnterGameState (GameState gameState);

OnExitGameState (GameState gameState);

OnHotspotSelect (Hotspot hotspot);

OnHotspotDeselect (Hotspot hotspot);

OnHotspotInteract (Hotspot hotspot, AC.Button button);

OnDoubleClickHotspot (Hotspot hotspot, AC.Button button);

OnHotspotReach (Hotspot hotspot, AC.Button button);

OnHotspotTurnOn (Hotspot hotspot);

OnHotspotTurnOff (Hotspot hotspot);

OnHotspotStopMovingTo (Hotspot hotspot);

OnHotspotSetInteractionState (Hotspot hotspot, AC.Button button, bool

state);

OnHotspotsFlash ();

OnRunTrigger (AC_Trigger trigger, GameObject collidingObject);

OnEnableInteractionMenus (Hotspot hotspot, InvItem invItem);

OnPointAndClick (ref Vector3[] pointArray, bool run);

OnBeginActionList (ActionList actionList, ActionListAsset

actionListAsset, int startingIndex, bool isSkipping);

OnEndActionList (ActionList actionList, ActionListAsset

actionListAsset, bool isSkipping);

OnPauseActionList (ActionList actionList);

OnResumeActionList (ActionList actionList);

OnSkipCutscene ();

OnGrabMoveable (DragBase moveable);

OnDropMoveable (DragBase moveable);

OnDraggableSnap (DragBase moveable, DragTrack track, int snapID);

OnPickUpThrow (PickUp pickUp);

OnStartConversation (Conversation conversation);

OnClickConversation (Conversation conversation, optionID);

OnPlayMusic (int trackID, bool loop, float fadeTime, int

startingSample);

OnPlayAmbience (int trackID, bool loop, float fadeTime, int

startingSample);

OnStopMusic (float fadeTime);

OnStopAmbience (float fadeTime);

OnPlaySound (Sound sound, AudioSource audioSource, AudioClip

audioClip, float fadeTime);

OnStopSound (Sound sound, AudioSource audioSource, AudioClip

audioClip, float fadeTime);

OnModifyHotspotDetectorCollection (DetectHotspot hotspotDetector,

List<Hotspot> hotspots);

OnBeforeChangeScene (string nextSceneName);

OnDelaySceneChange (SceneInfo sceneInfo, System.Action callback);

OnAfterChangeScene (LoadingGame loadingGame);

�248

OnCompleteScenePreload (int preloadSceneName);

OnStartScene ();

OnChangeCursorMode (int cursorID);

OnSetHardwareCursor (Texture2D texture, Vector2 clickOffset);

OnCursorLock (bool isLocked);

OnQTEBegin (QTEType qteType, string inputName, float duration);

OnQTEWin (QTEType qteType);

OnQTELose (QTEType qteType);

OnActiveInputFire (ActiveInput activeInput);  

�249

6. Inventory  

�250

6.1. Inventory items overview

The inventory is a staple of many adventure games, and refers to a collection of items

that the player character can carry around with them as they explore the game world.

These items can be examined, interacted with, and combined with other items or

Hotspots. This is the foundation for many puzzles and gameplay mechanics.

What the player is carrying can be modified at runtime - see Managing inventory in-

game.

A game's inventory is defined in the Items tab of the Inventory Manager. Here, items can

be created and modified to be used throughout the game.

When an item is selected in the Editor, further properties will be displayed:

Name

The item's internal label, and display label if Label (if not name) is left blank.

PROTIP: Inventory items don't need to be "items" in the physical sense - they can also

refer to things like spells or abilities that the player can possess.
�

�251

Label (if not name)

The item's display label, if it should not be the the same as Name field above.

Name is pronoun?

If unchecked, the first letter of the item’s display name will be lower-cased if placed in

the middle of a sentence.

Category

Which category the item appears in, if any are defined in the Categories tab.

Carry on start?

If checked, the item will be present in the player's inventory when the game begins.

Can carry multiple?

If checked, multiple instances of the item can be carried. This is good for consumables,

e.g. currency.

Slot capacity

Appears only if Can carry multiple? is enabled. This sets the maximum number of items

that can be placed in a single slot.

Selection mode

Appears only if Can carry multiple? is enabled and Slot capacity is greater than one.

This sets the behaviour when selecting an item that has multiple instances in a single slot

- you can select all, select only one, or stack the selection with each click.

Override 'Use' syntax

When any item is selected and hovering over another item or Hotspot, the Hotspot menu

label will take the form "Use (item) on (Hotspot)" - the exact words are defined in the

Cursor Manager. Checking this box allows you to override this syntax for this particular

item - which allows for item-dependent labels such as "Spray (paint) on (Hotspot)".

Linked prefab

This field allows you to associate a prefab object with the item, which can be used to

represent the item in the scene. For details on its usage, see Scene items.

Main graphic

The item's default texture, which can either be a 2D texture or a Render Texture. This is

used when the item is displayed in the inventory but not being interacted with.

Active graphic

The item's "active" texture, which can either be a 2D texture or a Render Texture. This is

used when the cursor hovers over the item, or the item is selected.

�252

https://docs.unity3d.com/Manual/class-RenderTexture.html
https://docs.unity3d.com/Manual/class-RenderTexture.html

Selected graphic

The item's "selected" texture, which can either be a 2D texture or a Render Texture. This

is used when the item is selected, provided that the Settings Manager's Selected item's

display option is set to Show Selected Graphic.

Cursor

The graphic that is used by the cursor when the item is selected. The supplied graphic

should be imported as a Cursor type in Unity's Texture import settings. If one is not

supplied, the Main graphic will be used instead.

Properties

If Inventory properties are used, then their per-item values can be set here.

Additionally, each item can be assigned a number of Interactions that run when it is used,

examine, or combined. Which interactions are available will be based on your chosen

Interaction method - see Inventory interactions.

The maximum number of Inventory items the Player can hold can be set at the very top.

PROTIP: A list of all Inventory items being carried by the active Player can be found in

their Inspector while the game is running.
�

�253

https://docs.unity3d.com/Manual/class-RenderTexture.html

6.2. Inventory interactions

How items are interacted with depends on your game's Inventory interactions field,

which appears under the Inventory settings panel of the Settings Manager:

This field has two options: Single and Multiple.

Single

In this mode, items are selected by left-clicking on them in an InventoryBox element, and

examined by right-clicking them.

Each item's Standard interactions panel in the Inventory Manager allows you to define a

“Use” and an “Examine” ActionList asset:

If an item has a “Use” interaction, then left-clicking the item will run that instead of

selecting it. If you wish to select the item as part of the ActionList, you can use the

Inventory: Select Action.

Multiple

In this mode, items behave like Hotspots - which in turn behave differently according to

your game's Interaction method. Items are interacted by clicking them in an InventoryBox

element.

Each items's Standard interactions panel in the Inventory Manager allows you to define

multiple “Use” ActionList asset - with each one associated with a different Interaction

icon defined in the Cursor Manager:

NOTE: When in Context sensitive mode, this field is hidden and set to Single - see

below.
�

NOTE: When using Touch-screen input, this is done by single-finger and two-finger

tapping. When using Keyboard or controller input, this is done by pressing buttons

mapped to InteractionA and InteractionB.

�

�254

The checkbox to the left of each line allows you to disable an Interaction by default.

The Select item if Interaction is unhandled? option in the Settings Manager allows you

to have an item become selected when a particular icon is used on it, provided that no

matching interaction is defined.

Regardless of option: once an item is selected, the interface can be changed according to

the Cursor Manager's When inventory selected option:

A selected item can then be used on other items, or Hotspots. Interactions between items

are defined in the Combine interactions section of an item's properties in the Inventory

Manager:

NOTE: If you wish to instead signify an item's selection via a static icon, you can create

an InventoryBox element of the type Display Selected. This technique is covered in

the Custom inventory interface section of the First-person tutorial.

�

PROTIP: Clicking or tapping again will cause the item to become de-selected.

However, this can be changed to releasing the initial click or tap by checking Drag and

drop Inventory interface?, under Inventory settings in the Settings Manager.

�

�255

http://adventurecreator.org/tutorials/making-first-person-game

Interactions with Hotspots are defined in the Hotspot Inspector:

Items can also have “Unhandled” interactions - which are fallback interactions that are

run if no more suitable interaction is defined. These are available per-Hotspot, per-item,

and globally at the top of the Inventory Manager.

One special case arises if your interaction system relies on Interaction menus (see Choose

Hotspot Then Interaction mode), and Include Inventory items in Hotspot Interaction

menus? is checked in the Settings Manager. This allows you to run inventory interactions

without selecting them - as they instead appear in a Hotspot / item's Interaction menu

along with the interaction icons:

In order for them to show, the Interaction menu must include an InventoryBox element of

type Hotspot Based - though this is true of the default.

PROTIP: To avoid having to create two sets of interactions for each item (i.e. "Use A on

B" and "Use B on A"), just check Combine interactions work in reverse? in the

Settings Manager.

�

NOTE: If you are using Choose Hotspot Then Interaction or Choose Interaction Then

Hotspot mode, and items can be selected normally, above), you can distinguish

between "using" an item on an NPC and "giving" it. If the Hotspot has an NPC

component attached, an additional field will appear for each inventory interaction.

�

PROTIP: The 3D Demo's Prop sword item uses an unhandled interaction so that the

Player character can say "I can't cut that" when attempting to use it on Hotspots that

don't have an interaction for it.

�

PROTIP: The 2D Demo makes use of this feature. The worm item cannot be selected

by clicking it in the top inventory bar - instead it is used on Hotspots by clicking it in

the game’s Interaction Menu.

�

�256

PROTIP: If your chosen Interaction method is set to either Choose Hotspot Then

Interaction or Choose Interaction Then Hotspot, Inventory interactions can be marked

as "Give" when interacting with NPCs. In a NPC's Hotspot Inspector, a Use/Give popup

box will appear beside Inventory interactions. By default, items are selected in "Use"

mode, but this can be changed with the Inventory: Select Action or through script.

�

�257

6.3. Managing inventory at runtime

During gameplay, the Player's Inventory items are shown inside the InventoryBox menu

element. The default interface includes an Inventory menu that appears when the mouse

hovers over the top of the screen - see the default Inventory menu.

If items are categorised (see Inventory items overview), then InventoryBox elements can

also be used to limit what kind of items are shown. For example, a "regular" inventory

could be shown for items, while another could be shown for spells.

Items can be added to and removed from the Player's Inventory by using the Inventory:

Add or remove Action. If multiple units of the same item can be carried, then this Action

will also allow you to affect the number of units that the player is carrying. For example,

a "gold currency" item could be reduced by 50 when the player buys something from a

shop.

The Inventory: Check Action is used to perform different Actions based on what the player

is carrying. Again, if multiple units of the same item can be carried, this Action will allow

you to make a specific query about how many units of that item the player is carrying.

Returning to our shop example, we can use this Action to determine if the player has

enough gold to buy an item, and issue a response accordingly.

PROTIP: The cog icon to the right of an item’s label in the Inventory Manager can be

used to find all references made to that item in the project.
�

NOTE: If you wish to access the inventory through script, you can do so with:

AC.KickStarter.runtimeInventory.localItems;
�

�258

6.4. Crafting

Combining items together typically involves using one item on another. However, AC also

allows for "recipes", in which many items can be combined at once to create a new item.

This mechanic is known as crafting, as made popular by games such as Minecraft.

To perform crafting in game, an InventoryBox and a Crafting element must be made

available to the player so that they can transfer items between them. Such a Menu is

already provided in the default interface - see the default Crafting Menu.

Recipes are managed in the Crafting tab of the Inventory Manager:

Each recipe requires a number of "ingredient" items, and a resulting item that is produced

when the ingredients are combined.

If an ingredient's Item has Can carry multiple? checked, you can also determine the

number of instances of this item required. For example, a recipe to create a working

flashlight may require one empty flashlight and two batteries.

The Crafting element has two types: Ingredients and Output. When the correct

arrangement of items are placed in a Crafting box of the Ingredient type, the resulting

item can be selected from a Crafting element of the Output type. Whether the resealing

item is displayed automatically or not depends on the Crafting element.

PROTIP: Recipes can optionally be made to require a specific crafting pattern – that is,

each ingredient must be placed in a specific position within the Crafting element.
�

NOTE: The default Crafting Menu has an Appear type of Manual, meaning it will not

open unless it is told to with the Menu: Change state Action.
�

�259

6.5. Inventory properties

Inventory properties are a way of giving Inventory items "stats", such as weight or value.

They are similar to Variables, only they are attached to Inventory items - with each item

having its own value.

They can be managed within the Properties tab of the Inventory Manager:

A property can be one of five types:

Boolean

A simple True/False flag

Integer

A whole number

String

A piece of text

Float

A number with a decimal point

Pop Up

One of a set of pre-defined labels

Vector 3

A group of three numbers that can represent a position, scale, rotation or direction

Game Object

In the case of Global variables, this is a prefab. For Local and Component variables, this

can either be a prefab or an object in the scene.

�260

Unity Object

A Unity asset or prefab available in the Project window.

Properties can also be limited to items of a specific category, should any be defined in the

Categories tab.

Property values can then be assigned to each item at the bottom of that item's Settings

panel, in the Items tab:

They can also be assigned to Documents and Objectives, provided they are both in the

same Category.

Property values can be displayed in a Label element, and can be converted to Variables via

the Inventory: Property to Variable Action.

Through scripting, the InvItem class's GetProperty function can be used to retrieve or

modify a property, allowing you to display them in custom UI elements or perform

different code depending on it.

PROTIP: To get an API reference to an item's property, right-click on the property's

label and click Copy script variable. This is true for all Manager fields.
�

�261

http://adventurecreator.org/scripting-guide/class_a_c_1_1_inv_item.html

6.6. Scene items

The Scene Item component allows an Inventory item to be represented by a GameObject

in the scene. This is useful for mechanics such as:

• Inspecting items from the Inventory with a "close up" mechanic

• Equipping items in the Player's hand, for interacting with the environment

• Dropping items from the Inventory into the scene, while allowing them to be picked

up again later

To establish a link between a GameObject and an Inventory item, attach the Scene Item

component, make it a prefab, and assign it in the item's Linked prefab property field. If

the object is going to be present in the scene before it is moved to the Inventory, add the

Remember Scene Item component as well, and set its Default Inventory item field to

match the intended item.

Once an item has a Linked prefab assigned, the Inventory: Scene item Action can be used

to transfer it from the Inventory to the scene, and vice-versa. If this Action is used to

spawn in a linked prefab that has no Scene Item component, one will be added

automatically.

When transferring to the scene, the Remove original? option can be used to take the

item out of the Inventory - as though it were being dropped in the scene. Unchecked, the

item will remain in place, but the Scene Item will still represent it.

If the parent ActionList has a GameObject parameter defined, then the resulting Scene

Item can be mapped to this parameter's value. This means that Actions that follow can

further manipulate the spawned object - for example, by parenting it to the Player's hand

with the Character: Hold object Action.

To save the presence of a spawned Scene Item held by the Player, attach the Remember

Scene Item component.

The advantage of using this technique, over the Object: Add or remove Action, is that the

link between Inventory item and GameObject is retained. If changes are made (through

scripting) to the Item's properties, for example, then those changes can be accessed from

the Scene Item component. The Remember Scene Item component will also update the

item with the contents of any any other Remember component attached to it - allowing a

change made to the Scene Item to be restored upon removing it from, and then re-adding

it to, the scene.

To save the position and presence of a Scene Item in the scene, attach the Remember

Transform component.  

�262

6.7. Exporting inventory data

It is possible to export a game's inventory item data as a CSV file, so that you and other

team members can keep track of them outside of the Editor.

To export them, go to the Inventory Manager's Items tab, click on the cog icon to the

right of the Create new item button and choose Export items...:

This will bring up the Inventory item export wizard, which you can use to choose what

data is exported:

�263

It is also possible to import data from the same cog icon - clicking Import items... will

bring up the Inventory item import wizard:

Only certain data can be imported, and the wizard is used to match each column with the

data to import. Note that the first column must be a list of ID numbers, with each ID

number associated with a specific item.

NOTE: The existing inventory data won't be cleared by this process, but data for items

that have matching ID numbers will be overwritten. Therefore, you should back up

your project before attempting this process.

�

�264

6.8. Documents

Documents allow the Player to read signs, notes and diary pages that they find as they

explore the game world, and can also be collected by the Player as they would their

regular Inventory items.

A Document consists of a title, multiple pages of text, and a graphic - and can be viewed

in a Menu with an Appear type of On View Document. Such a Menu is included in the

Default interface - see The default Document Menu.

Documents can be defined in the Inventory Manager, under the Documents tab:

Here, they can be given a title and a texture, as well as a series of pages that each have

their own text and texture. A category can also be assigned, if created in the Categories

tab.

A Document can optionally be carried by the Player when the game begins, and the last

page that was previously open can be remembered next time. To read and manipulate

Documents, use the Document: Open and Document: Add or remove Actions respectively.

A list of collected Documents can be viewed via an InventoryBox element with an

Inventory box type value of Collected Documents. If inventory categories exist, then

this list can be filtered by category.

To view a Document when using the Document: Open Action, you must rely on a Menu

with an Appear type value of On View Document. To view the Document in full, the

following Elements within that Menu must be present:

• A Label element with a Label type of Document Title

• A Journal element with a Journal type of Display Active Document

• A Graphic element with a Graphic type of Document Texture

• A Graphic element with a Graphic type of Page Texture (if pages have textures)

�265

If a Document consists of multiple pages, you can create Buttons with Click type values

of Offset Journal to allow the Player to flick between pages.  

�266

6.9. Objectives

Particularly in long or multi-branching games, Objectives are a way of reminding the

player on their current tasks and puzzles. These can be broken up into multiple steps -

or states. For example, the Objective "Slay the dragon" may have the states "Get the

sword", "Find the lair", and "Defeat the dragon". As the player's progresses in this task,

the Objective's state is updated accordingly.

Objectives can be defined in the Inventory Manager, under the Objectives tab:

An Objective can be given a name, description, an associated texture, and a number of

"states". As a minimum, an Objective must have both a "Started" and "Completed" state.

Additional states, including "Fail" states, can be defined in the Editor.

For each state, an ActionList asset can be assigned that runs when the state is entered.

A category can also be assigned, if created in the Categories tab. An InventoryBox

elements that display Objectives can be filtered by category - allowing for the separation

of e.g. “main” and “optional” Objectives.

When the game begins, all Objectives are considered to be inactive. The Objective

Actions allow you to set and query the current state. If Player-switching is enabled, an

Objective's current state can either be unique to each Player, or shared by all.

NOTE: Objectives are purely a way of conveying a task's status to the player, and do

not have any "logic" associated with them.
�

�267

InventoryBox menu elements can be used to display a list of Objectives, while Label and

Graphic elements can be used to display more information about the selected Objective.

The use of these elements are demonstrated in the default Objectives menu.  

�268

6.9.1. Sub-objectives

If an Objective has states that include multiple steps, or has different ways it can be

completed, it can help to break it down into sub-Objectives - such that completing the

sub-Objective(s) automatically affects the “parent” Objective.

This is useful when the player must complete multiple Objectives to complete a task - or

alternatively, complete only one from a list of Objectives.

For example, let’s say we have an Objective named “Gather intel”, which involves asking

Tom, Dick and Harry for information. We could break these down into individual sub-

Objectives (“Talk to Tom”, “Talk to Dick” etc), and then link them to "Gather intel”. We

could then have the “Gather intel” Objective auto-complete either when we talk to all

three, or only one.

Sub-Objectives are defined by grouping them into Objective categories. In our example

above: we would go to the Inventory Manager's Categories tab, and then create a new

Category - with Available to Objectives? checked - named “Talk to townspeople”. Once

an Objective category has been defined, it can be assigned in an Objective state’s Sub-

Objectives category dropdown:

Once assigned, the automatic behaviour of these Objectives can then be set:

Auto-start sub-Objectives when enter? will cause all Objectives in the sub-Objectives

category to become active when the “parent” Objective state is entered.

Beneath that, the “parent” Objective can be made to switch its own state automatically

when the sub-Objectives meet a given condition:

• All are completed

• Any is completed

• All are failed

• Any are failed

PROTIP: A tutorial covering this topic can be found online.
�

�269

https://adventurecreator.org/node/279

To display sub-Objectives to the player, an InventoryBox element can be used to list the

selected Objective's sub-Objectives. Alternatively, sub-Objectives can be accessed

through scripting.  

�270

6.10. Inventory scripting

Inventory item data is stored in the InvItem class. At runtime, items are referenced by

InvInstance classes, which can be generated from an InvItem, its name, or its ID:

InvInstance invInstance = new InvInstance (invItem);

InvInstance invInstance = new InvInstance (itemName);

InvInstance invInstance = new InvInstance (itemID);

If you have an InvInstance class, you can get its associated item with:

invInstance.InvItem;

Items can be interacted with using functions within InvInstance:

invInstance.Select ();

invInstance.Deselect ();

invInstance.Use ();

invInstance.Use (int iconID);

invInstance.Examine ();

invInstance.Combine (InvInstance otherInvInstance);

Item textures can be accessed and modified at runtime with:

invInstance.Tex

invInstance.ActiveTex

invInstance.SelectedTex

Inventory properties can be modified per-instance at runtime, and can be accessed with:

invInstance.GetProperty (int propertyID)

If your chosen Interaction method supports it, you can access an instance’s selection

mode with:

invInstance.SelectItemMode

Properties are stored in the InvVar class.

InvInstances are stored as Lists in InvCollection classes.

The player's collection of items can be retrieved with:

KickStarter.runtimeInventory.PlayerInvCollection;

Items in a collection can be modified and accessed with:

invCollection.Add (InvInstance invInstance);

invCollection.Insert (InvInstance invInstance, int index);

invCollection.Delete (InvInstance invInstance);

invCollection.Delete (int itemID, int amount);

�271

http://www.adventurecreator.org/scripting-guide/class_a_c_1_1_inv_item.html
http://www.adventurecreator.org/scripting-guide/class_a_c_1_1_inv_instance.html
http://www.adventurecreator.org/scripting-guide/class_a_c_1_1_inv_var.html
http://www.adventurecreator.org/scripting-guide/class_a_c_1_1_inv_collection.html

invCollection.DeleteAll ();

invCollection.DeleteAllInCategory (int categoryID);

The currently-selected item can be retrieved with:

KickStarter.runtimeInventory.SelectedItem;

And de-selected with:

KickStarter.runtimeInventory.SetNull ();

The unselected item underneath the cursor can be retrieved with:

KickStarter.runtimeInventory.HoverItem;

Numerous functions related to currently-held Documents and active Objectives can be

found within the RuntimeDocuments and RuntimeObjectives classes, which can be

accessed with:

KickStarter.runtimeDocuments

KickStarter.runtimeObjectives

The Inventory system involves the following events:

OnInventoryAdd (InvItem invItem, int value);

OnInventoryAdd_Alt (InvCollection invCollection, InvInstance

invInstance, int amount);

OnInventoryRemove (InvItem invItem, int value);

OnInventoryRemove_Alt (InvCollection invCollection, InvInstance

invInstance, int amount);

OnInventorySelect (InvItem invItem);

OnInventorySelect_Alt (InvCollection invCollection, InvInstance

invInstance);

OnInventortHover (InvCollection invCollection, InvInstance

invInstance);

OnInventoryDeselect (InvItem invItem);

OnInventoryDeselect_Alt (InvCollection invCollection, InvInstance

invInstance);

OnInventoryInteract (InvItem invItem, int iconID);

OnInventoryInteract_Alt (InvInstance invInstance, int iconID);

OnInventoryCombine (InvItem invItem1, InvItem invItem2);

OnInventoryCombine_Alt (InvInstance invInstance1, InvInstance

invInstance2;

OnInventoryHighlight (InvItem invItem, HighlightType highlightType);

OnInventoryHighlight_Alt (InvInstance invInstance, HighlightType

highlightType);

OnRequestInventoryCountText (InvInstance invInstance, bool

isSelectedCursor);

OnContainerOpen (Container container);

OnContainerClose (Container container);

OnContainerAdd (Container container, InvInstance invInstance);

OnContainerRemove (Container container, InvInstance invInstance);

�272

https://adventurecreator.org/scripting-guide/class_a_c_1_1_runtime_documents.html
https://adventurecreator.org/scripting-guide/class_a_c_1_1_runtime_objectives.html

OnContainerRemoveFail (Container container, ContainerItem

containerItem);

OnCraftingSucceed (Recipe recipe, InvInstance invInstance);

OnDocumentOpen (DocumentInstance documentInstance);

OnDocumentClose (DocumentInstance documentInstance);

OnDocumentAdd (DocumentInstance documentInstance);

OnDocumentRemove (DocumentInstance documentInstance);

OnObjectiveUpdate (Objective objective, ObjectiveState state);

OnObjectiveSelect (Objective objective, ObjectiveState state);  

�273

7. Variables 

�274

7.1. Variables overview

Variables are essential when implementing puzzle logic, as they allow you to keep track

of various states and decisions in your game. For example, they can be used to record a

choice made by the player, or how many times a particular interaction has been

attempted.

Variables can be defined in three places:

Global

Meaning they are scene-independent and can be accessed anywhere at any time,

including ActionList assets.

Local

Meaning they are saved as part of a scene and cannot be accessed outside of that scene.

Component

Meaning they are saved as part of a GameObject, and can be accessed anywhere - so long

as that GameObject is active within a scene.

Global and Local variables are managed in the Variables Manager. You can switch

between the two at the top:

Component variables are managed after adding a Variables component to a GameObject

- either via the Scene Manager's “Logic” panel, or via the Add component menu in a

GameObject's Inspector.

PROTIP: Global, Local or Component? To avoid clutter, a variable should be placed

according to where it need to be accessed. If it must be accessed across multiple

scenes, it should be Global. If it is only accessed within a single scene, it's best off as

Local. Component variables are best relied on when they are associated with the

GameObject or Prefab they are attached to - for example, an "Is locked?" variable

placed on a treasure chest.

�

�275

It is possible to convert a variable's location between Global and Local by clicking the cog

icon to the right of it. You should backup your project beforehand, however, as AC will

then go through your project and amend any Actions and Manager fields that refer to it.

Each Variable has a number of fields:

Label

The variable's internal name, used by Actions to reference it.

Type

The variable type, which can be one of five values:

Boolean

A simple True/False flag

Integer

A whole number

String

A piece of text

Float

A number with a decimal point

Pop Up

One of a set of pre-defined labels. These labels can either be unique to the

variable, or shared amongst several by creating a Preset.

Vector 3

A group of three numbers that can represent a position, scale, rotation or direction

Game Object

In the case of Global variables, this is a prefab. For Local and Component

variables, this can either be a prefab or an object in the scene.

NOTE: When converting a variable from Global to Local, be mindful that ActionList

assets cannot reference Local variables. If AC detects that an Action refers to this

variable, it will not amend it - but instead display a warning message in the Console.

�

�276

Unity Object

A Unity asset or prefab available in the Project window.

Replacement token

This is a unique piece of text that, when used as dialogue speech or places in a Label

element, will be replaced at runtime by the variable's current value. This is useful when

you want to display the variable's value on-screen. For more, see Text tokens.

Initial value

The variable's value when the game begins.

Link to (Global and Component only)

In the case of a Global variable, this allows you to synchronise its value to Options data, a

Playmaker global variable, or a custom script. In the case of a Component variable, this

also you to synchronise its value to a Playmaker local variable, or a custom script. For

more, see Variable linking.

Internal description

An Editor-only description to aid designers on its use.

Once defined, Variables can be read and manipulated using the Variable Actions.

As variable values can be set by the user, they can also aid in testing. For example, a

"Skip opening cutscene" boolean could be used in your OnStart cutscene to bypass an

opening cinematic when set to True by the user.

PROTIP: Placing forward-slashes in a variable's name will cause the slash to turn into a

divider when listed in Actions. For example, the label "Options/IsFullScreen" will place

it in an "Options" hierarchy. This makes it much easier when referencing them.

�

NOTE: Using the Variables Manager to change a variable's value while the game is

running will not affect the game's current instance of those variables. For debugging,

the realtime values of Variables can be seen during gameplay by checking Show

runtime values? at the top of the Manager. Checking this option also allows you to

modify Variable values directly in the Editor at runtime.

�

�277

7.2. Managing variables at runtime

Variables are primarily read and modified at runtime with the various Variable Actions. It

is recommended that you do so inside the ActionList Editor so that the logic flow is more

easily readable.

Variable values can also be used in dialogue speech - see Text tokens.

Variable values can also be both read and written to through scripting - see Variable

scripting. They can also be automatically synced with other values or assets - see

Variable linking.  

PROTIP: The Variable: Copy Action can be used to transfer a Variable's value between a

Local one and a Global one.
�

PROTIP: The cog icon to the right of an variable’s label in the Variables Manager can

be used to find all references made to that variable in the project.
�

�278

7.3. Variable linking

Variables are normally independent, with their values stored in save game files and

updated when a save file is loaded.

However, both Global and Component variables can be linked to other sources, so that

their values becomes synchronised with another value. This allows for AC variables to

integrate more easily with third-party assets and custom options data.

To do so, select the Variable you wish to link, and amend its Link to field:

It can be set to the following values:

None

The variable is not linked to anything and its value is independent with the rest of the

project

Playmaker Variable

This variable is linked to a Playmaker variable, allowing Playmaker variable values to be

saved.

Options Data

The variable’s value is stored in PlayerPrefs as “options data”, and is independent of save

games. This setting is only valid for Global variables.

Custom Script

The variable is synchronised with a separate script or third-party asset by hooking into

custom events.  

�279

7.3.1. Linking with Playmaker Variables

If you have the popular Playmaker asset, which is a separate Unity asset to Adventure

Creator, you can synchronise AC's variables with Playmaker's.

Upon setting a variable's Link to value to Playmaker Variable, you will be prompted to

add the PlayMakerIsPresent scripting define symbol to your game's Player Settings. You

can find this field from Edit → Project Settings → Player.

You can then enter the name of the Playmaker Variable you wish to link to. AC Global

variables can only link to Playmaker global variables, and AC Component variables can

only link to Playmaker variables defined within a GameObject FSM. Bear in mind that the

two variables must match type: if you are linking a Playmaker float, you must do so with

an Adventure Creator float as well.

You can also choose whether or not Playmaker determines the initial value of the AC

variable. Generally, the link should be kept one-way - that is, one asset affects it, while

the other reads it. When a Playmaker variable is changed, its value is “downloaded” to AC

when it requested – i.e. when the Variable: Check Action is used to determine its value.

Using this method, you can save the value of Playmaker Variables automatically.

NOTE: An AC PopUp variable should be linked with a PM Integer variable.
�

NOTE: By default, Playmaker takes control over the mouse cursor via the

PlayMakerGUI object's Control Mouse Cursor option. This can create a conflict with

AC, since both assets are trying to control the cursor. To solve this, just uncheck this

field.

�

�280

https://www.assetstore.unity3d.com/en/content/368
https://docs.unity3d.com/Manual/PlatformDependentCompilation.html

7.3.2. Linking with custom scripts

By using custom events, AC global variables can be connected to other variables present

in your own scripts or third-party assets.

Upon setting a variable's Link to value to Custom Script, events will be called whenever it

is read or modified:

OnVariableUpload (GVar variable)

This event will be triggered after AC amends the variable’s value. Therefore, a custom

event can use this to update the custom script’s variable accordingly.

OnVariableDownload (GVar variable)

This event will be triggered before AC reads the variable’s value, when requested through

e.g. the Variable: Check Action. Therefore, a custom event can use this to transfer the

value of the custom script’s variable to AC.

Reading and modifying a variable involves accessing the GVar class. The provided

Variable Linking Example script demonstrates how an custom integer can be

synchronised with an AC global variable. Its usage is described within the comments of

the file.  

�281

http://www.adventurecreator.org/scripting-guide/class_a_c_1_1_g_var.html

7.4. Variable presets

Variable presets allow you to assign the values all Global or Local variables at once. This

is particularly useful when testing, since you can use them to quickly assign your

variables to states appropriate to specific points in your game.

Presets are listed and defined in the Preset configurations panel of the Variables

Manager:

You can assign each Variable's preset values, or prevent it from being included, within the

its Properties panel:

When the game is running, a preset can be assigned by selecting it in the Variables

Manager and clicking Bulk-assign. Presets can also be assigned by using the Variable:

Assign preset Action, which can be useful if you need to ensure all players have the exact

same variable values at some point during gameplay.  

�282

7.5. Timers

Timers are special variables that automatically change by a fixed amount over time. They

can be used to keep track of timed sequences, or aid with mechanics such as an oxygen

meter if the Player is underwater.

Timers are defined in the Timers Editor, which can be accessed from Adventure Creator

-> Editors -> Timers Editor in the top toolbar.

Each Timer has its own properties related to its minimum and maximum values, how

frequently it updates, and more. ActionLists can optionally be assigned when it is

updated, or reaches its limit. Timers can also be linked to Integer, Float and PopUp

Global variables.

To control a Timer, use the Variable: Set Timer Action, which can start, stop and resume

Timers. A Timer's state is saved automatically in save-game files.

A Timer's value can be presented in Timer elements.

�283

7.6. Exporting variables

It is possible to export all of a game's variables as a CSV file, so that you and other team

members can keep track of them outside of the Editor.

To export them, navigate to the type of Variables you want to export (e.g. Global), click

on the cog icon to the right of the "Create new" button and choose Export variables…:

This will bring up the Variable export wizard, which you can use to specify what data is

exported:

When you click Export CSV and choose a save location, AC will then go through all scenes

added to your Build settings and extract any local variables you've defined. Therefore,

you should save the current scene before attempting this process.

PROTIP: Forward slashes (/) in a Variable's Label can be used to organise them into

categories. To aid with importing data into third-party script-writing software, these

characters can optionally be replaced with a full-stop (.) instead.

�

�284

7.7. Scene attributes

Scene attributes are a special set of variables that exist in all scenes, but can't be written

to. They allow you to set properties about a scene that can later be read using the Scene:

Check attribute Action.

An ActionList asset that's called when a scene begins, for example, can be used to

initialise a scene or run some common task depending on the attributes of that scene.

Scene attributes are created within the Scene Manager, under the Scene attributes

header:

Attributes are created by clicking Manage attributes, and using the window that opens to

define the attributes available to your game:

The values for each scene's set of attributes can then be set back in the Scene Manager:  

�285

7.8. Variable scripting

Variables can be referenced both by name, or by ID number. This number is displayed to

the left of it when listed in the Variables Manager, or the Variables component.

A Global Variable can be retrieved with:

GVar myVar = GlobalVariables.GetVariable (int id);

GVar myVar = GlobalVariables.GetVariable (string name);

Similarly, a Local Variable can be retrieved with:

GVar myVar = LocalVariables.GetVariable (int id);

GVar myVar = LocalVariables.GetVariable (string name);

To access Component Variables, a reference to the Variables class is needed:

GVar myVar = myVariables.GetVariable (int variableID);

GVar myVar = myVariables.GetVariable (string variableName);

Each Variable is an instance of the GVar class. Its value can be read and set by script:

myVar.IntegerValue = 2;

myVar.BooleanValue = true;

myVar.FloatValue = 3.5f;

myVar.TextValue = "Hello";

myVar.Vector3Value = new Vector3 (1f, 2f, 3f);

You can also get the Variable’s display value in a string-format:

myVar.GetValue ();

The variable system has the following events:

OnVariableChange (GVar variable)

OnDownloadVariable (GVar variable, Variables variables)

OnUploadVariable (GVar variable, Variables variables)  

�286

http://www.adventurecreator.org/scripting-guide/class_a_c_1_1_g_var.html

8. Miscellaneous components 

�287

8.1. Highlight

The Highlight component is used to control visual effects for Hotspots. A Hotspot can be

associated with a Highlight component via its Object to highlight field:

The Highlight component can be used to brighten a Hotspot's associated MeshRenderer

when selected by the player, when the FlashHotspots input button is invoked, or by using

the Object: Highlight Action. However, it can also be used to assist with custom visual

effects.

It has the following Inspector fields:

Enable when associated Hotspot is selected?

When checked, the Highlight effect will be enabled when its associated Hotspot is

selected. This can be disabled in favour of manually invoking its HighlightOn() and

HighlightOff() methods through script.

Auto-brighten materials when enabled?

When checked, the component will brighten any attached Renderer component when the

effect is enabled. Note that this works by shifting the "_Color" property of the Renderer's

materials - so it may not have any effect if certain shaders are used. In this case, or if a

different effect is desired, either events (below) or the reading of the component's

GetHighlightIntensity() method through script can be used to manually alter the

Renderer.

Also affect child Renderer components?

When checked, then child Renderer components will be affected as well as any on the

same GameObject.

PROTIP: This component is also necessary if you want Hotspots to have icons show

when a Hotspot is selected, which can be enabled via the Settings Manager's Display

Hotspot icons field.

�

NOTE: The default brightening effect is performed by modifying a Material's “_Color”

property, which is available when using Unity's Standard shader, or “_BaseColor”

property if present. The property to affect can be overridden via the Highlight

material override field - either per-component or globally in the Settings Manager.

�

�288

Intensity curve

An animation curve that defines the intensity of the effect over time, where a y-axis value

of 1 means “default brightness”. This does not affect the transition time of the effect -

for that, use the field below.

Transition time (s)

A slider to control how long it takes for the highlight effect to become fully enabled.

Flash hold time (s)

A slider to control how long the highlight effect is enabled when the FlashHotspots input

button is invoked.

Call custom events

When checked, event boxes will allow events to be called whenever the highlight effect is

enabled or disabled. Note that these events will be called regardless of whether or not

Auto-brighten materials when enabled? is checked, allowing for custom effects.

�289

8.2. Shapeable

If a Skinned Mesh Renderer references a model that has blendshapes, their weights can

be controlled independently at runtime.

However, it is often the case that some shapes won't be used together - and as one set is

made active, another must be made inactive. This is often the case when using

blendshapes for expressions or mouth phonemes.

The Shapeable component allows you to group blendshapes together so that their

weights can be controlled in bulk, by only allowing for one key within a group to be the

"active" at a time.

Attach the Shapeable component to a Skinned Mesh Renderer, and you will be able to

define as many shape groups as you like. A group can contain any number of shape keys,

which each correspond to a different set blendshapes:

Once configured, it can then be manipulated with the Object: Blend shape Action. This

Action can be used to make one key in a group the “active” one – all others will be

disabled. This can be performed over time, however, for smooth transitions.

This component is also when animating the mouths of 3D characters - see Lip syncing.  

PROTIP: The 3D Demo game's Brain NPC uses this technique to group his

ExpressionHappy and ExpressionSad blendshapes together.
�

�290

https://docs.unity3d.com/Manual/class-SkinnedMeshRenderer.html

8.3. Moveable

In order to manipulate a GameObject's Transform component with the Object: Transform

Action, the Moveable component must be attached. Simply attach it to the GameObject,

and its Transform can be manipulated.

If the Moveable has a Rigidbody component, it can optionally be used to predict if

movement commands given to it will result in a collision - and cancel the command if so.

NOTE: In order to save a GameObject’s Transform, attach the Remember Transform

component - see Saving scene objects.
�

�291

8.4. Parallax 2D

When running 2D scenes, the camera does not physically move. When the view pans

across the scene, the perspective remains fixed - regardless of the camera's Projection

setting.

As this happens, all objects in the scene will move across the game window at the same

rate, regardless of their distance from the camera.

To combat this, the Parallax 2D component is be used to achieve a depth affect by

causing objects to move relative to the camera's panning. It can also be made to react to

the mouse cursor’s position instead.

Attach the Parallax 2D component to a background sprite, choose whether it Reacts to

the Camera (recommended), the Cursor, or a specific Transform. Then assign a Depth

value, and enable a scrolling direction:

The more positive the Depth, the further the sprite will appear to be relative to the

"regular" graphics. The more negative, the closer it will appear to be. The value should

stay within -1 to +1 in general.

For more advanced effects, it is also possible to limit the parallax movement to within

pre-set boundaries in both the X and Y directions. Just check Constrain? within each

directional box to set upper and lower bounds.

PROTIP: This technique is used in the 2D Demo scene to give a 3D effect. The

component is attached to the ParkForeground1, ParkBackground and ParkCloud

GameObjects.

�

NOTE: Do not attach this to the parts of your scene that the player can navigate or

interact with - it is not intended to work with gameplay elements, and should be used

for background effects only.

�

�292

8.5. Limit Visibility

Particularly in 2.5D scenes, you may wish for an object to be visible only when a particular

camera is the active one. Attach the Limit Visibility to camera script, and you can limit

its visibility to certain cameras – and optionally its children, too.

The effect can also be negated - so that it is not visible to certain cameras.

PROTIP: This component also works with Video Player components, and works by

setting the Alpha value of the video to either 1 or 0, based on the active camera.
�

�293

8.6. Align To Camera

The Align to Camera component is used to assist the placement of sprites when building

2.5D games.

When working in 2.5D, scene sprites are used for interactive graphics and to mask

characters behind the background when moving behind certain areas - and should be

facing the camera at all times. As 2.5D cameras are positioned in 3D space and rarely

aligned down the Z-axis, the sprites too must be rotated to face them.

By attaching the Align to Camera component, you can have a sprite automatically face a

given camera. Once aligned, its distance from this camera can be controlled with the

Depth property.

Optionally, you can lock the sprite's perceived scale when the Depth is adjusted: this will

cause the sprite to get larger as it moves further away, causing it to appear the same size

when viewed through the camera.

�294

8.7. Particle Switch

When you create a Unity Particle System, you may wish to turn it on at some point during

gameplay, rather than play it continually. For example, a fireplace would only need to

produce smoke when it's lit.

The Particle Switch component is used to turn the Particle System on and off easily with

the Object: Send message Action. When attached to a Particle System, the Turn On and

Turn Off messages will perform as expected, and the Interact message will cause it to

emit all of its particles once.  

�295

8.8. Light Switch

When you create a Unity Light, you may wish to turn it on at some point during gameplay,

rather than play it continually. For example, a lamp would only emit light if the player has

plugged it into a wall socket.

The Light Switch component is used to turn the Light on and off easily with the Object:

Send message Action. When attached to a Light, the Turn On and Turn Off messages

will perform as expected.

NOTE: To save the on/off state of a Light, follow the steps outlined in the online

Saving custom scene data tutorial.
�

PROTIP: The intensity of a Light can also be animated, and controlled with the Object:

Animate Action.
�

�296

http://adventurecreator.org/tutorials/saving-custom-scene-data

8.9. Sprite Fader

In order to manipulate a Sprite's transparency with the Object: Fade sprite Action, the

Sprite Fader component must be attached to it. This component can also optionally the

transparency of its children in the Hierarchy.

NOTE: In order to save a Sprite’s transparency, attach the Remember Visibility

component - see Saving scene objects.
�

PROTIP: Sprite transparency can also be animated, and controlled with the Object:

Animate Action.
�

�297

8.10. Tint maps

Tint maps are a way of faking lighting effects in 2D scenes. They work by altering the

colour of sprites based on their position. This allows you to easily create dynamic

lighting effects, such as having your Player get darker when they enter a shaded portion

of the background.

When making a 2D game, tint maps can be found under the Camera section of the Scene

Manager’s list of prefabs:

The active Tint map must be assigned as the Default Tint map, under the Scene settings

panel.

When created, it will appear 10 units in the Z-axis, but its Z-position is not actually

important, as it can be hidden when the game begins. What is important is its scale in

the X and Y directions - after creating it, stretch it out so that it covers the same area as

your background graphic.

You can then supply a "tint" texture to its Inspector. This texture will tint any sprites that

"follow" it - but pure white will not have an effect. Such sprites will be tinted according to

their position over the Tint map. A colour modifier can also be applied to the final effect,

and this can be controlled through animation for dynamic lighting effects.

To make a sprite follow a Tint map, simply add the Follow Tint Map component to it.

This component will normally follow the scene's Default Tint map, but you can also

supply a separate Tint map if you prefer.

You can also adjust the intensity of the tinting effect. These values can also be changed

mid-game by using the Object: Change Tint map Action - allowing you to change the Tint

effect dynamically, e.g. when the player turns on on a light switch.

NOTE: The texture you supply must be readable by Unity. This is a simple but crucial

step: within its properties Inspector, check Read/Write Enabled. If you are using

older versions of Unity, you may also have to set its Texture Type to Advance.

�

PROTIP: A tutorial on working with Tint maps can be found online.
�

�298

http://www.adventurecreator.org/tutorials/working-tint-maps

8.11. ActionList Starter

This component allows you to run ActionLists when the scene starts through natural

gameplay, or is opened as the result of loading a save game file.

Though the same can be achieved in the Scene Manager, which provides Cutscene on

start and Cutscene on load fields, this method allows you to store such functionality in a

prefab. This is useful if multiple instances of the same prefab, which each have their own

“starting logic”, need to run their own ActionList when the scene begins.

If Player-switching is enabled, you can also use this to run an ActionList when the scene

is loaded due to a change in Player character.

The linked ActionList can optionally be made to run instantly, as opposed to naturally

over time. This is similar to Cutscene skipping, when all Actions are run at once over a

single frame.

If the ActionList it runs makes use of parameters, then its parameter values can be set

within this component’s Inspector. If the ActionList is an asset file that has Can run

multiple instances? checked, then multiple instances of the ActionList can be run

simultaneously - each with its own set of parameter values.  

PROTIP: The linked ActionList can also be run by invoking this component's

RunActionList() method.
�

�299

8.12. Set Interaction Parameters

The Set Interaction Parameters component allows you to set values for all parameters

defined on a Hotspot's Interaction.

If an Interaction has a GameObject parameter defined, then the Hotspot component

optionally allows you to set that parameter to itself when run. However, this component

allows you to set the values for all parameters when the Interaction is triggered.  

�300

8.13. Set Inventory Interaction Parameters

The Set Inventory Interaction Parameters component allows you to set values for all

parameters defined in an Inventory item's Interaction ActionList asset file.  

�301

8.14. Set Trigger Parameters

The Set Trigger Parameters component allows you to set values for all parameters

defined in an Trigger's asset file, provided that the Trigger's Actions source field is set to

Asset File.

PROTIP: If this is attached to a GameObject with multiple Triggers, then this will refer

to the first one. However, all Triggers that share the same number of parameters will

be affected as well.

�

�302

8.15. Set Drag Parameters

The Set Drag Parameters component allows you to set values for all parameters defined

in a Drag or Pickup's Interaction on drop and Interaction on move asset files, provided

that the Actions source field is set to Asset File.  

�303

8.16. Auto Correct UI Dimensions

The Auto Correct UI Dimensions component is used to re-position and re-size a Unity

UI-based Menu, if the "playable" area is not the same as game screen. This can be the

case if an aspect ratio is enforced, or if running on a mobile device with notched features.

Each of the default UI prefabs make use of this component to ensure they look correct

with different playable areas.

To use it, attach it to the UI prefab’s root, and assign the Transform to control to the

RectTransform that it should reposition. Typically this should be the Menu’s Rect

transform boundary, an immediate child of the Canvas that describes the boundary of all

other UI components - so that manipulating it affects the whole UI's display.

In it's Inspector, you then set the minimum and maximum anchor points as decimals

relative to the screen. For example, the default values of (0.5, 0.5) for each will place the

UI in the centre of the screen.  

�304

8.17. Link Variable To Animator

This component can synchronise a Global or Component variable's value to that of an

Animator parameter, provided that both share the same type and name. This is useful

when you want an object's appearance to reflect an associated variable - for example, an

"Is Locked" bool used for a door. Rather than having to update both the variable and the

Animator parameter, you can use this component to only update the variable.

To use it, have either a Global Variables, or a Variables component (with either a Bool, Int,

PopUp or Float variable defined), as well as an Animator component with a parameter of

the same type and name defined. Then attach the Link Variable To Animator

component, and fill in the fields in its Inspector.

A two-way link can be established by then selecting the Variable, and setting its Link to

field to Custom Script.

If instead left as None, then the link will be one-way only - changing the Variable’s value

will affect the Animator parameter, but not the other way around.

This script relies on the technique covered in Linking with custom scripts chapter.  

�305

8.18. Survive Scene Changes

Attaching this component to a GameObject will cause it to be moved to the

DontDestroyOnLoad section of the Hierarchy while in Play mode, preventing it from not

being destroyed when the active scene is changed.

This is useful for creating objects and logic that should be persistent or accessible at all

times, but which cannot be kept outside of the scene as an asset or prefab. For example,

a series of Containers that holds separate equipment items.

To avoid duplicates of such objects being created when re-entering their original scene,

the Settings Manager’s ActionList when start game asset can be used to run an Object:

Add or remove Action that spawns in objects that should be persistent.

Remember components attached to such objects will work, but will be saved as “global

data”, independent of any scene data.

�306

Chapter II: Advanced Features

�307

9. Saving and loading 

�308

9.1. Saving and loading overview

AC provides a robust save system that can be used with minimal effort on the developer's

part. However, as it is not completely automatic, it is important to understand how it

works before it can be used effectively.

Save game files can be read and written to in one of three ways:

Menus

The SavesList element displays all existing save files and, when clicked, can be made to

either overwrite or restore them. The default interfaces provide both Save and Load

Menus accessible from the Pause Menu.

Actions

The included Save Actions can be used to save and load files from ActionLists.

Scripting

The SaveSystem class includes numerous static functions that can be used to save and

load files from code.

When recording a save file, AC stores three types of data:

Main data

This includes the values of Variables, the Inventory, the current scene, the music, which

Menus are open, and the Player’s position. Basically, anything that AC knows must always

be saved - and as such, is automatic.

Scene data

This includes anything in a particular scene that has been flagged up for being saved.

This is done simply by attaching appropriate components to it - see Saving scene objects.

NOTE: Loading can occur at any time after a scene has initialised, but saving is only

possible under the following conditions:

1. No Conversation is currently active (unless regular gameplay is allowed, and its

options are not overridden in the Dialogue: Start conversation Action).

2. No gameplay-blocking ActionList (both scene-based and asset-based) is running

other than the one that contains the Save: Save or load Action (if being used to save).

3. The Engine: Manage systems Action is not currently locking the save system off.

The Save: Check Action can be used to determine if saving is currently possible.

�

�309

http://adventurecreator.org/scripting-guide/class_a_c_1_1_save_system.html

Asset reference data

This includes any changes made to asset references by a scene object or the Player. For

example, a character's walk sounds, or an object's material - see Saving asset references.

When a save file is recorded or read, it's location is shown in the Console window. A set

of game-wide options regarding the recording of save-game files can be found in the

Settings Manager:

Save filename

The name to assign save files when either recording to disk, or as PlayerPrefs keys.

Use '_Editor' prefix for Editor save files?

If checked, then saves recorded while testing in the Unity Editor will rely on a different set

of files to those used in builds.

Enable save game profiles?

If checked, allows multiple profiles to be made use of, each with their own Options and

save files. For more, see Save profiles.

Save screenshots

Allows screenshots to be recorded at the moment the game is saved.

Save using separate thread?

If checked, the saving process will be handled by a separate CPU thread, which is useful

when autosaving as it allows regular gameplay to continue alongside the process.

Save asset references with Addressables?

If checked, then assets referenced by save game files will be based on their Addressable

name, as opposed to being in a Resources folder. For more, see Saving asset references.

Reference scenes by

Allows you to choose whether - inside save files - scenes are referred to by filename or

build index number. If scenes are added to the game dynamically via Addressables or

Asset Bundles, set this to Name - as such scenes do not have valid index values.

NOTE: For screenshots to display, a SavesList element's Display type field must be set

to allow for them. An example package can be found online.
�

�310

http://adventurecreator.org/downloads

Auto-add Save components to GameObjects

Automatically searches the project and attempts to attach save components as

appropriate. For more, see Saving scene objects.

Manage save-game files

Brings up the Save File Manager, in which you can view all stored save game files and

Options data currently found on disk.

When reading a save file, AC reads this data and returns the player to the correct scene

automatically. When switching scene through gameplay, scene data will also be loaded

automatically.

Sometimes, however, more work is necessary to ready a scene after loading. For

example, we may need to return a character to their "Idle" animation if they were in the

middle of a complex tree of animations beforehand. For this, we can use the On load

Cutscene, as defined in the Scene Manager's Scene cutscenes panel:

This Cutscene is run after a save file is opened and the game continues from this scene.

Actions inside it will run only once all save data has been successfully loaded.

NOTE: In order for scene data to correctly save and load when switching scenes, you

must use either the Scene: Switch Action or by calling the following method

beforehand:

AC.KickStarter.sceneChanger.PrepareSceneForExit ();

�

PROTIP: It is possible to save custom global data by storing them in Global Variables.

A tutorial for doing so can be found online.
�

�311

http://adventurecreator.org/tutorials/saving-custom-global-data

9.1.1. Saving scene objects

A typical scene will feature GameObjects that require saving beyond the Player, who is

saved automatically. This might be a sprite's visibility, a Conversation’s enabled options,

or which camera is currently active.

In AC, this is done by adding components to these GameObjects that inform the save

system about what kind of data needs saving.

These components can be added automatically to your scenes from the Save game

settings section of the Settings Manager:

When a GameObject has such a component, a disk icon appears beside it in the Hierarchy

window:

The most basic save component is Constant ID, which is used to generate a unique

number for any GameObject it is attached to:

This number is used as an identifier, and is necessary whenever we want to save a

reference to a particular object, rather than anything about it. The most common

example for this is the scene's active camera: AC needs to know which camera is currently

active, but doesn't need to know anything about the camera itself.

NOTE: You should back up your project before running this operation, but this will

work for most games that don't rely on custom save data. However, you should still be

aware of the procedure to prepare objects manually should your game have particular

save requirements.

�

�312

http://adventurecreator.org/tutorials/saving-custom-scene-data

Constant IDs are also used by ActionList assets to reference scene objects.

The other save components are the Remember scripts, which each save a particular set of

data about the GameObject they are attached to. For example, the Remember

Transform script instructs the save system to record its position, rotation, and scale.

The following Remember scripts are available:

Remember ActionList Parameters

When attached to a scene-based ActionList, it will save its current parameter values. The

parameter values of ActionList assets cannot be saved directly, but instances of them can

be by setting a Cutscene’s Actions source field to Asset File, referencing the asset,

unchecking Sync parameter values?, and checking Sync local parameter values?.

Remember Animator

When attached to an Animator, it will save its current-playing animation, parameter

values and layer weights. If an animation is in mid-transition when saving occurs, only

the “transition-to” animation will be saved.

The active Animator Controller can also be optionally saved (though changing the

Controller at runtime requires a custom script). To restore a change in the Controller, it

must be placed in a Resources subfolder and given a unique name (see Saving asset

references).

It is also possible to set the Animator Controller’s default parameter values - which is

useful if a Controller is shared by more than one Animator, since the default parameter

values are set per-Animator.

Remember Collider

When attached to a Collider, it will save its enabled state. It also allows you to have the

Collider disabled by default.

Remember Container

When attached to a Container, it will save the items stored within. This is included on the

Container prefab by default.

PROTIP: Pay attention to the Console window when saving - it will inform you of any

object that does not have the required Constant ID component.
�

PROTIP: It is possible to have the Console list how a GameObject is used in ActionLists

by choosing Find local / global references from the save component's "cog" menu.
�

�313

Remember Conversation

When attached to a Conversation, it will save the state of each of its options. This is

included on the Conversation prefab by default.

Remember Footstep Sounds

When attached to a Footstep Sounds component, it will save the sound clips it references.

Such sounds can be changed with the Sound: Change footsteps Action. Note that the

AudioClip assets involved must be stored properly - see Saving asset references.

Remember GameCamera 2D Drag

Saves the position of a GameCamera 2D Drag camera type.

Remember Hotspot

When attached to a Hotspot, it will save its enabled state, changes made to its name, and

the enabled states of each of its Interactions. It also allows you to have the Hotspot

disabled by default.

Remember Material

When attached to a Renderer, it will save the Materials that it uses. Note that the Material

assets involved must be stored properly - see Saving asset references.

Remember Moveable

When attached to a Draggable or PickUp object, it will record its position and rotation. It

also allows you to have the object disabled by default. To save a change in a Draggable

object’s track, all associated tracks will need a Constant ID.

Remember Name

When attached to a GameObject, it will save its name.

Remember NavMesh2D

When attached to a Polygon Collider NavMesh, it will record any changes made to its hole

structure using the Scene: Change setting Action.

Remember NPC

When attached to an NPC, it will save its name, various movement and graphical variables

as well as the enabled state of any attached Hotspot component - which can be disabled

by default. Note that in order to also save their position along a Path object, the Path

must have a Constant ID. Changes in portrait graphic, and walk and run sounds (if set

within the NPC component) can also be saved - but the Texture and AudioClip assets

involved must be stored properly - see Saving asset references.

Remember Particle System

When attached to a Particle System, it will save its playback state.

�314

Remember Scene Item

Saves the state of a Scene Item component. A default Inventory item to be associated

with must be defined. This component will save the object's presence in the scene - a

task normally reserved for the Remember Transform component. However, the latter

component should still be used to record the object's position and parentage.

Remember Shapable

When attached to a Shapeable, it will save the active blendshape and its weight.

Remember Sound

When attached to a Sound, it will save its playback state and optionally the change in

audio clip. To do so, the AudioClip assets involved must be stored properly - see Saving

asset references.

Remember Transform

When attached to a GameObject, its position, rotation and scale will be recorded. It can

optionally save its parentage, but its direct parents must have a Constant ID.

The Relative load order can be used to set the order in which it is loaded, relative to

other Remember Transforms. This is useful if you have many such components parented

to one another, and you need to restore data in order of their Hierarchy.

It can also save the object's presence in the scene, as changed with the Object: Add or

remove Action, provided that it is a prefab asset that is stored properly - see Saving asset

references. If multiple instances of the object are spawned at runtime, assign its own

Constant ID number as the Linked prefab ConstantID.

Remember Timeline

When attached to a Playable Director, the playback state of its linked Timeline will be

recorded. In order to save track bindings, each track’s bound GameObject requires a

Constant ID component. In order to save the Timeline asset, both the original and any

new assets must be stored properly - see Saving asset references. If the Timeline was not

playing when it was saved, the frame it was stopped at can optionally be evaluated - so

that the effects of it are then felt.

Remember Track

When attached to a Drag track, saves the enabled state of its defined regions.

Remember Trigger

When attached to a Trigger, it will save its enabled state. It also allows you to have the

Trigger disabled by default.

�315

Remember Variables

When attached to a Variables component, the states of its defined Variables will be saved.

This is attached by default to the Variables prefab type in the Scene Manager.

Remember Video Player

When attached to a Video Player, it will save its playback state. The Video Player is only

available in Unity 5.6 or later. The loaded video clip asset can optionally be saved, but

both the original and any new assets must be stored properly - see Saving asset

references.

Remember Visibility

When attached to a Renderer (Sprite or Mesh), Sprite Fader or Follow Tint Map

component, it will save its visibility - and optionally its children as well. It also allows you

to have the Renderer invisible by default. It can also save the enabled state of a Canvas.

An object can have multiple save scripts, and Remember scripts also generate Constant

IDs. If set automatically, all save components on a single GameObject will share the same

ID number.

Scene data is stored and retrieved automatically - both when traversing them through

natural gameplay, or when loading save files. Scene data is also limited to the scene that

they are in - so if multiple scenes are open (through use of the Scene: Add or remove

Action), then each one's data is handled independently.

If Remember components are placed on scene-surviving objects (i.e. those that are

flagged with DontDestroyOnLoad), then those too are saved. However, their data is only

retrieved when loading a save file - not when changing scene through gameplay. In this

way, “global” elements can be added to the game - for example, a Conversation flagged

with DontDestroyOnLoad can be updated and accessed from any scene.  

PROTIP: It is possible to save custom data about scene objects by writing your own

Remember script. A tutorial for doing so can be found online.
�

NOTE: Save file sizes are proportional to the number of such components present in

your game - so it's generally best to only add them when necessary.
�

�316

http://adventurecreator.org/tutorials/saving-custom-scene-data
https://docs.unity3d.com/ScriptReference/Object.DontDestroyOnLoad.html

9.1.2. Saving asset references

Certain Actions can be used to change which assets are referenced by the scene. For

example, the Object: Change material Action changes which Material asset a Renderer

uses, the Sound: Change footsteps Action changes which AudioClip assets a character

plays when walking, and the Object: Add or remove Action can spawn a Prefab at runtime.

Remember components are used to record such changes. However, in order to

successfully restore these changes when loading a save-game file, these assets need to

be identifiable.

There are two ways of doing this:

1. Resources folders

This is the default method, and is easiest to set up - though is the less performant of the

two.

To make an asset identifiable, it must be stored in the following way:

• Given a filename unique to the project

• Placed in an Assets subfolder named Resources

2. Addressable name

This method is a little more involved, but more performant than the use of Resources.

This method makes use of Unity's Addressables Asset System, which is an optional

package that provides a way to reference assets by “address". Refer to Unity's own

documentation for more on this system.

To enable this method, go to the "Save game settings" panel in the Settings Manager, and

check Save asset references with Addressables?.

To make an asset identifiable, it must then be stored in the following way:

• Given a filename unique to the project

NOTE: This must be done for both the original asset and the new one.
�

PROTIP: Searching Resources folder(s) for asset files can be an intensive process. If

you have many such files, it is recommended to rely on SaveableData subfolders - see

Performance and optimisation for more.

�

�317

https://docs.unity3d.com/Packages/com.unity.addressables@0.4/manual/index.html

• Given an Addressable name that matches its filename

• Placed outside of any Assets subfolder names Resources

NOTE: This must be done for both the original asset and the new one.
�

�318

9.1.3. Saving example: The 3D Demo

The 3D demo game, while simple, demonstrates a fully-functioning save and load

system.

The first step to creating such a system is to be aware of the conditions under which

saving is possible. While loading is possible at any time, a game can only be saved during

normal gameplay (that is, not during cutscenes or conversations). For that reason, the

player cannot save progress in the demo until the introduction cinematic has played, and

we can use this knowledge to make assumptions about the state of the scene when the

game loads.

We know that during normal gameplay, the NPC Brain will be sat in the chair, and the

canvas will be tipped over. Therefore, the Scene Manager's On load Cutscene sets the

correct Idle state for Brain. This is necessary because Brain uses the Legacy animation

engine, which cannot be saved with the Remember Animator component.

The rest of the save system is set up by careful placement of ConstantID and Remember

scripts:

• ConstantID placed on the NavCam1 and NavCam2 GameCameras ensures the

reference to the active camera is stored. Only these cameras require this script,

since the game can only be saved during normal gameplay.

• RememberNPC placed on Brain ensures his transformation is stored

• RememberAnimator placed on the Barrel, Canvas and Chair SetGeometry objects,

as well as the Player prefab, Tin Pot (since these objects use Animators for their

animation playback).

• RememberConversation placed on the Conversation BrainConv ensures the

enabled state of each option is stored

• RememberHotspot placed on the Sword Hotspot saves its enabled state, as it is

turned off as the player picks it up.

• RememberTransform placed on the Sword mesh (inside the _SetGeometry folder)

ensures its transformation is stored. Since it’s parentage changes when the Player

holds it in the Sword: Take Interaction, its original parent Transform, _SetGeometry,

also has a ConstantID.

Additionally, the demo game makes use of a Local Variable called Played intro, which is

read by the On start Cutscene to either play the opening cutscene or skip it. This is

purely a debug Variable - as is useful when testing the scene during development.  

�319

9.2. Autosaving

Autosaving is a way of saving the player's progress for them automatically.

Save slot "0" is reserved for Autosaves, and appear in Save and Load menus with the label

"Autosave". Only one Autosave file can exist per profile - subsequent Autosaves will

overwrite the previous.

Autosaving can be achieved by three ways:

1) The Save: Save or load Action

This Action allows you to save or load the game without the use of Menus.

2) Completing Cutscenes

At the top of a Cutscene's inspector, tick the Autosave after running? box to save the

game automatically once the Cutscene has run. Be aware that this will only occur if the

Cutscene does not “branch off” onto another Cutscene object: gameplay must be set to

resume once the Cutscene has finished.

3) Custom scripting

The following code will save and load the Autosave file respectively:

AC.SaveSystem.SaveAutoSave ();

AC.SaveSystem.LoadAutoSave ();

NOTE: As with regular saving, Autosaving is only possible under the following

conditions:

1. No Conversation is currently active.

2. No gameplay-blocking ActionList (both scene-based and asset-based) is running

other than the one that contains the Save: Save or load Action (if being used to save).

3. The Engine: Manage systems Action is not currently locking the save system off.

�

�320

http://adventurecreator.org/scripting-guide/class_a_c_1_1_save_system.html%23af16fe6fe4a98ca54a0014003f8ac7540
http://adventurecreator.org/scripting-guide/class_a_c_1_1_save_system.html%23ab9c3ea8cf7e60883e801dfa99f98d49a

9.3. Options data

Options data is independent from save data, allowing option values to “survive” the

loading of a save file. They are stored in Unity's PlayerPrefs, under a key that is based on

your game's name. If you make use of Profiles, then each profile has its own set of

Options data.

Options data is loaded when the game begins, and saved whenever a change is made to

any of them.

All Adventure Creator games have five options by default:

• Whether or not subtitles are on

• The game's active language

• The volume levels of music, speech, and sound effects

At runtime, these can be changed by the player in the default Options Menu. Their

default values are set in the “Default Options” section of the Settings Manager:

It is possible to create custom options in your game by way of Variables. The Link to

property of a Global Variable, as listed in the Variables Manager, can be set to Options

Data:

When this is done, the Variable's value will be stored with the other Options data, and not

in save game files. This is useful for creating your own options, such as graphics

settings. Just as with regular Variables, you can use the Variable: Set Action, or Cycle,

Toggle and Slider elements to affect its value.

PROTIP: A tutorial on creating custom options can be found online.
�

�321

http://adventurecreator.org/tutorials/adding-screen-resolution-option

9.4. Loading screens

If your game features complex scenes, or it is played on older hardware, it may take a few

seconds to transition between scenes. In this case, you may wish to create a loading

screen, that appears during this pause to alert the player that the game is loading.

You can do this by creating a dedicated "loading" scene, which is displayed during

transitions. This does not need to be an Adventure Creator scene (i.e. one with a

GameEngine prefab) - it can merely be a camera with a sprite texture in front of it.

Create a scene you wish to act at the loading screen, and add it to your game's list of

Scenes in build from the Build Settings. Then, check the Use loading screen? box in

the Settings Manager, and supply the scene's build index number or name:

You can also opt to make use of asynchronous loading. This feature allows you to load

scenes in the background, allowing animation to continue for a short time while the next

scene loads. By checking Load scenes asynchronously?, you can then provide a delay

time before and after the load process – which is useful if you want some nice loading

effects.

A tutorial on creating a Loading menu, complete with progress bar, can be found online.

With asynchronous loading, it is also possible to delay the switching to a newly-loaded

scene until a script function is called. This is useful if, for example, you want to prompt

the user to “press a key to continue”. To do this, check Scene loading requires manual

activation?. Once a scene has loaded, it will then wait until a script calls the following:

AC.KickStarter.sceneChanger.ActivateLoadedScene ();

A “Complete Loading Example" script that demonstrates this can be found on the AC wiki.

It is also possible to delay the process of loading a scene until a callback is invoked, so

that e.g. any necessary files can be downloaded beforehand. This can be achieved by

hooking a custom script into the OnDelayChangeScene custom event.  

PROTIP: When using asynchronous loading, you can use the Scene: Switch Action to

preload scenes in advance so that they can be switched to more quickly when needed.
�

�322

http://www.adventurecreator.org/tutorials/creating-loading-bar
https://adventure-creator.fandom.com/wiki/Category:General

9.5. Importing saves from other games

If you are making an episodic game that spans multiple projects, you can have the player

import save game files from one to another so that their progress is transferred. This

works by transferring the Global Variable values, and ignoring all other data.

This is done by adding a SavesList menu element that is set to import files instead of load

them. When importing, only the file's Global Variables (and thus the player's choices) into

the current game.

When a SavesList's List type field is set to Import, you must supply an Import product

name (as set in the other project's Player Settings window), and Import save filename (as

set in the other project's Settings Manager):

NOTE: This feature has three requirements:

• The other project's Company name (as set in the Player Settings window) must be

identical to the current project.

• The two projects must share exactly the same Global Variables – it is recommended to

copy the VariablesManager asset and use it in both projects.

• Due to Unity’s security measures, this feature only works on standalone platforms (PC,

Mac and Linux).

�

PROTIP: It is possible to limit the available files to those in which a particular boolean

Variable has been set to true. This is useful if you only want players to be able to

import a save if they have reached the end of the previous game.

�

�323

9.6. Save profiles

Profiles allow you to separate save game files and options settings by the player who

created them. This is useful because it means that one player cannot accidentally

overwrite another player's save files, and also allows options such as the language to be

unique to the person playing.

Profiles can be enabled under Save game settings in the Settings Manager:

You can now use the ProfilesList element to list all profiles created by your game's players

- and when one is clicked, it will be selected. To display the current profile non-

interactively, a Label can be created with a Label type of Active Save Profile.

Profiles are not created in the same way as save games - they are instead created

exclusively through the Save: Manage profiles Action, which can create, delete, load and

rename profiles.

When a new profile is created or renamed, its name can be set by the value of a String

Global Variable. You can have the player enter a name of their choice by using an Input

menu element, and using the Variable: Set Action to store the Input box's contents in the

String Global Variable. When a profile is deleted, any associated save game files will also

be deleted, so you may want to have a confirmation box appear before performing this.

To provide the ability to rename or delete profiles in the form of Button Menu Elements

beside your list of profiles, it is recommended to make use of ActionList parameters to

condense the number of ActionLists you need to make. If a Button Menu Element is set to

run an ActionList that has an Integer parameter, then the parameter can be set within the

Button's properties. If you set this parameter to match the slot index number of the

profile list beside it (indices start from zero), you can use just one Save: Manage profiles

Action to handle the deletion of any profile.

PROTIP: All profiles found on the system can be viewed in the Save-game Manager.
�

PROTIP: A tutorial that uses this technique to create custom save game labels can be

found online.
�

�324

http://adventurecreator.org/tutorials/custom-save-game-labels

A basic Profiles menu is included in default interface. To make use of it, select the

default Pause menu, and un-hide the ProfilesButton from its list of elements.  

�325

9.7. Custom save labels

Custom save labels, and more refined saving interfaces, can be created by using the Save:

Save or load Action together with a SavesList element.

By default, the SavesList element works by instantly saving and loading upon the player

clicking a slot. When saving, a label is automatically generated based on the Time

display field in the Settings Manager.

This default functionality can be overridden by unchecking a SavesList's Save when click

on? field in it's properties:

Doing to will disable the automatic saving or loading and will instead allow you to run an

ActionList asset when a slot is clicked. If this ActionList has an Integer parameter, that

parameter's value can be set to the slot index that was clicked, and you can use this to

set the save label dynamically.

The basic workflow is:

• The player clicks on a save slot to save into

• The slot index is passed to an ActionList as an Integer parameter

• This parameter is stored in a Global Variable

• A new Menu appears that allows the player to enter in their own label

• Actions then save the slot with a custom label

PROTIP: A tutorial that covers these steps in detail is available online. The principles

can also be used to name Save profiles.
�

�326

http://adventurecreator.org/tutorials/custom-save-game-labels

9.8. Custom save data

It is possible to write scripts that extend the save system by saving both custom scene

and global data.

Saving scene data is possible by writing custom Remember scripts. Create a new C#

subclass of Remember, overriding the SaveData and LoadData functions.

To save global data, use the OnBeforeSaving and OnAfterLoading custom events to

synchronise data with Global Variables, which are are recorded automatically in save files.

If a script that uses these events is attached to the PersistentEngine prefab, it will persist

throughout the game.

PROTIP: A tutorial on writing custom Remember scripts can be found online.
�

PROTIP: A tutorial on saving custom global data can be found online.
�

�327

http://www.adventurecreator.org/tutorials/saving-custom-scene-data
http://www.adventurecreator.org/node/176
http://www.adventurecreator.org/scripting-guide/class_a_c_1_1_remember.html

9.9. Custom save formats and handling

AC makes changes to the way that saved data is both serialized and stored based on the

project's platform. For example, desktop games rely on binary serialization, while iPhone

games use XML. Most platforms store save data in the persistentDataPath, while the

WebPlayer platform stores it in PlayerPrefs.

It is possible, however, to override the default behaviour. This makes it possible, for

example, to allow saving on platforms that AC does not officially support, such as the

Playstation Vita.

To override the default file format, you use the following:

SaveSystem.FileFormatHandler = new MyClassName ();

Where MyClassName is a C# class that implements the iFileFormatHandler interface.

The following classes are already provided:

FileFormatHandler_Binary

Saves data in binary

FileFormatHandler_Xml

Saves data in XML

FileFormatHandler_Json

Saves data in Json (only available for Unity 5.3 and newer)

You can save in custom formats by writing a new implementation of the

iFileFormatHandler interface and assigning it as above. The included format classes can

be used as examples.

Options data, by default, will share the same file format as save game data. You can

override this with the following:

SaveSystem.OptionsFileFormatHandler = new MyClassName ();  

NOTE: In order to have the override take effect before any data is loaded, assign it in

an Awake function on a component attached to the PersistentEngine prefab. This

can be found in /Assets/AdventureCreator/Resources.

�

�328

https://docs.unity3d.com/ScriptReference/Application-persistentDataPath.html
https://docs.unity3d.com/ScriptReference/PlayerPrefs.html

Overriding the location of save files is done in a similar way:

SaveSystem.SaveFileHandler = new MyClassName ();

Where MyClassName is a C# class that implements the iSaveFileHandler interface. The

following classes are already provided:

SaveFileHandler_SystemFile

Saves data to the persistentDataPath folder

SaveFileHandler_PlayerPrefs

Saves data to Unity's PlayerPrefs

You can save data to custom locations by writing a new implementation of the

iSaveFileHandler interface and assigning it as above. The included format classes can be

used as examples.

Options data, by default, is always stored in Unity's PlayerPrefs - but this, too can be

overridden:

Options.OptionsFileHandler = new MyClassName ();

Where MyClassName is a C# class that implements the iOptionsFileHandler interface.

The following classes are already provided:

OptionsFileHandler_PlayerPrefs

Saves options data to Unity's PlayerPrefs. This is the default.

OptionsFileHandler_SystemFile

Saves options data to the persistentDataPath folder - one file per profile.

You can save options data to custom locations by writing a new implementation of the

iOptionsFileHandler interface and assigning it as above.  

�329

https://docs.unity3d.com/ScriptReference/Application-persistentDataPath.html
https://docs.unity3d.com/ScriptReference/PlayerPrefs.html
https://docs.unity3d.com/ScriptReference/Application-persistentDataPath.html

9.10. Save-game file management

Each save-game file is associated with the currently-active Save profile. It is possible to

view and manage all profiles, and their associated save files, that are currently stored on

the system. This information is accessed from within the Settings Manager, by clicking

Save-game file management in the "Manage save-game files" section:

This brings up the Save-game Manager, which has the following sections:

File and format handlers

This displays the active save and option file and format handlers, which determine the

location and format of save files. Each supported platform has its own default handlers,

but these can be altered through script - see Custom save formats and handling.

Profiles

If Save profiles are enabled, this displays all found profiles. Selecting one will display its

properties, and associated save-game files, beneath.

Profile properties

This displays the selected profile's name and Options data (including linked Variables). It

can be deleted, or - if Save profiles are enabled - made active.

Save game files

This displays all save-game files associated with the selected profile. Selecting one will

display its properties and data beneath. New saves and can be made at runtime -

provided that saving is currently possible.

Save game properties

This displays information bout the selected save-game file - including name, file location,

and timestamp. It can be deleted, and - at runtime, overwritten or loaded.

Save game data

This displays all data associated with the save-game file - including the state of variables,

each Player, and each scene's Remember scripts. This is mainly intended to aid

debugging.  

�330

9.11. Save scripting

The scripting guide has entries for the SaveSystem and Options classes online.

To save, load or delete the game with a specific ID, use:

SaveSystem.SaveGame (int saveID);

SaveSystem.LoadGame (int saveID);

SaveSystem.DeleteGame (int saveID);

Saves displayed in SavesList elements must have an ID value of zero or greater. However,

saves with negatives IDs can be saved and loaded using the above functions, without

having them appear in menus.

To save and load the Autosave file, use:

SaveSystem.SaveAutoSave ();

SaveSystem.LoadAutoSave ();

To manage Save profiles, use:

Options.SwitchProfileID (int profileID)

KickStarter.options.CreateProfile (string profileName);

KickStarter.options.RenameProfileID (string newProfileName, int

profileID);

To set the current profile's Options data, use:

Options.SetLanguage (int index);

Options.SetSubtitles (bool value);

Options.SetSFXVolume (float volume);

Options.SetMusicVolume (float volume);

Options.SetSpeechVolume (float volume);

To read the current profile's Options data, use:

Options.GetLanguageName ();

Options.GetLanguage ();

Options.AreSubtitlesOn ();

NOTE: As saving-handling is a background process, the "OnFinish" events below must

be used to handle what happens afterwards.
�

PROTIP: Be careful when saving manually - gameplay-blocking cutscenes will not be

saved, so it is always best to save only when in normal gameplay.
�

�331

http://adventurecreator.org/scripting-guide/class_a_c_1_1_save_system.html
http://adventurecreator.org/scripting-guide/class_a_c_1_1_options.html

Options.GetSFXVolume ();

Options.GetMusicVolume ();

Options.GetSpeechVolume ();

To read the value of an Options-linked variable associated with an inactive Profile, use:

GVar variable = Options.GetProfileVariable (int profileID, int

variableID;  

�332

You can also modify another profiles OptionsData class with:

Options.LoadPrefsFromID (int profileID);

Options.SavePrefsToID (int profileID, OptionsData optionsData);

A save file’s Global Variables data can be read with:

SaveFile saveFile = KickStarter.saveSystem.GetSaveFile (fileID);

SaveSystem.ExtractSaveFileVariables (saveFile,

System.Action<List<GVar>> callback);

The saving of individual Remember components can be disabled with:

GetComponent <Remember>().SavePrevented = true;

To restart the game and clear all temporary data (such as collected inventory items):

KickStarter.RestartGame (bool rebuildMenus, int newSceneIndex);

Saving, loading, and options involve the following events:

OnBeforeSaving (int saveID);

OnFinishSaving (SaveFile saveFile);

OnFailSaving (int saveID);

OnBeforeLoading (SaveFile saveFile);

OnFinishLoading (int saveID);

OnFailLoading (int saveID);

OnBeforeImporting ();

OnFinishImporting ();

OnFailImporting ();

OnSwitchProfile (int profileID);

OnRestartGame ();

OnChangeLanguage (int language);

OnChangeVolume (SoundType soundType, float volume);

OnChangeSubtitles (bool showSubtitles);  

�333

http://adventurecreator.org/scripting-guide/class_a_c_1_1_options_data.html

10. Speech and text  

�334

10.1. Gathering game text

AC is able to gather up all text in your game and store them in the Speech Manager. This

is necessary if you want to:

• Manage translations

• Play speech audio in time with a character's dialogue line

• Export script sheets for voice actors to use

This is by clicking Gather text in the Game text panel of the Speech Manager:

When clicked, you will be prompted to back up your game as AC will then go through all

of your scenes and modify them by assigning unique ID numbers to any text it finds.

This text is then listed at the bottom of the Speech Manager, which can be filtered down

by various options:

PROTIP: By default, all display text is translated - including subtitles, Hotspot names,

and Menu labels. The Translatable text types field, however, lets you choose exactly

what gets included in this process.

�

NOTE: Only scenes added to Unity's Build Settings will be searched by this process.
�

�335

https://docs.unity3d.com/Manual/BuildSettings.html

Clicking on a text entry will reveal more information about it:

Each line of text is assigned a unique ID number. ID numbers will not be overwritten - if

you re-gather text after making changes, existing IDs will be retained.

NOTE: By default: once an ID number is assigned, it is never used by anything else -

even if the text that it is assigned to is later removed from the game. This behaviour

can be amended via the ID number recycling field.

�

NOTE: The record of game text is not "live", so if you make a change to e.g. a speech

line, it will not be reflected in the Game text panel until you re-gather it.
�

�336

10.2. Speech audio

Once your game's text has been gathered, it can be used to playback speech audio when

characters speak.

For a speech audio file to play, it must be linked to its associated Dialogue: Play speech

Action or Speech Timeline track. This can be done in one of three ways:

1) Automatically, based on naming convention in a Resources folder

2) Automatically, based on naming convention in an Asset Bundle

3) Manually, by assigning an AudioClip file in the Speech Manager

Which method is used is based on the Speech Manager's References speech files setting:

By Naming Convention

In this mode, speech AudioClip assets must be placed in a Resources/Speech folder, and

given a specific name. This filename is - by default - based on the character's name, the

line's ID number, and is displayed in a line's entry in the Game text panel along with the

folder it should be in:

PROTIP: If using Translations, you can have different audio for each language by

checking Speech audio can be translated?. By default, the game's current language

will be used for both speech audio and display text, but these can be separated by

checking the Speech audio and display text can be different languages? field that

appears beneath.

�

�337

The Set custom button can be used to assign a custom filename, and this can also be set

by importing a CSV file via the Import text.. button.

The Place audio files in speaker subfolders? setting allows you to divide AudioClip

assets into further folders based on character name. The name of the “Speech” subfolder

can also be changed if desired, and the full filepath can be overridden completely via the

SpeechManager script’s GetAutoAssetPathAndNameOverride delegate override

function.

By Asset Bundle

This mode is similar to By Naming Convention in that files are loaded in automatically

based on their expected name. However, rather than placing them in a Resources

subfolder, they are instead placed in an Asset Bundle.

Each language relies on its own Asset Bundle, and these are defined in the Languages

panel:

AssetBundle(s) will need rebuilding if you want to add more speech lines or audio.

Therefore, it is recommended to perform this step towards the end of your game's

development, as relying on By Naming Convention (i.e. in Resources folders) is more

convenient for testing.

NOTE: If speech audio has Translations, each translation has the same filename but is

placed in a different sub-folder as shown.
�

NOTE: The supplied AssetBundle must be in a subfolder named StreamingAssets

within your Assets folder.
�

PROTIP: A tutorial on using AssetBundles for voice files can be found online.
�

NOTE: AssetBundles are loaded in asynchronously - meaning the game will begin

while they're still being prepared. As this operation can take a few seconds, you cans

hook into the OnLoadSpeechAssetBundle custom event so that you can determine

when these assets are ready.

�

�338

https://www.adventurecreator.org/tutorials/playing-voice-files-assetbundles
https://docs.unity3d.com/Manual/AssetBundlesIntro.html

By Direct Reference

In this mode, speech AudioClip assets must be manually assigned to each speech line's

entry in the Game text panel:

AC also supports “audio ducking”: when speech audio plays, all other audio can be made

to quieten slightly so that the speech can be more easily heard. The amount by which SFX

and Music volumes are reduced are set in the Speech audio panel:

To animate characters' mouths when speaking in time with their audio, see Lip syncing.

NOTE: If a speech line has no associated character, it is considered a narration. A

Sound prefab to use for narration audio can be assigned in the GameEngine object’s

Dialog component, but if none is assigned then one will be automatically generated.

�

PROTIP: If your game makes use of multiple Players, then each Player can be assigned

their own audio and lipsync files for shared speech lines - i.e. ones where the

Dialogue: Play speech Action has Player line? checked. To allow this, check 'Player'

lines have separate audio for each player?. Note that this feature is only available if

both Auto-name speech audio files? and Use Player prefab name in filenames? are

also enabled.

�

�339

By Addressable

This mode is similar to By Naming Convention in that files are loaded in automatically

based on their expected name. However, rather than placing them in a Resources

subfolder, they are instead referenced by their Addressable name. The Addressable

system is available as a separate package using Unity’s Package Manager.

This filename is - by default - based on the character's name, the line's ID number, and is

displayed in a line's entry in the Game text panel:

The Set custom button can be used to assign a custom filename, and this can also be set

by importing a CSV file via the Import text.. button.

NOTE: Due to the way the Addressable system is designed, an error will be thrown if a

speech is played without its associated files listed as an Addressable.
�

�340

https://docs.unity3d.com/Packages/com.unity.addressables@0.4/manual/index.html
https://docs.unity3d.com/Packages/com.unity.addressables@0.4/manual/index.html

10.3. Displaying subtitles

Speech lines are defined and played via either the Dialogue: Play speech Action, or the

Speech Timeline track.

For speech text to show, a menu equipped to display it must be defined in your Menu

Manager. This involves creating a menu with an Appear type set to When Speech Plays,

and creating within it a Label element with a Label type of Dialogue Speech.

Such a menu is included as part of the default interface - see The default Subtitles menu.

All menus can be restyled, but this menu type features a number of unique properties

that control how and when it is displayed:

For speakers of type

This allows you to define exactly characters the menu will show (or not show) for.

For speech of type

This allows you to limit the menu's display to blocking or background speech only. The

Dialogue: Play speech Action triggers "background speech" if the ActionList that contains

it has its When running field set to Run In Background.

Duplicate for each line?

This will cause a new instance of the menu to be created for each line that it displays for,

as opposed to re-purposing the same one each time. This is useful if two characters

speak simultaneously, since this allows both character's speech text to show together.

Limit by speaker proximity

This causes the menu to only show if the speaking character is within a set distance to

either the Player or the camera. This is useful if you don’t want subtitles to show if the

speaking character is too far away. Note that this option is only available if Duplicate for

each line? is also checked.  

NOTE: If a speech line has associated audio, then the Show subtitles? option must

also be enabled (see Options data), or the menu must have Ignore 'Subitles' option?

checked.

�

�341

10.4. Script sheets

Once your game's text has been gathered, speech lines can be exported as an HTML

script sheet to hand out to voice actors.

In the Speech Manager's Game text panel, click Create script sheet... to bring up the

Script sheet export window:

All speech lines listed in the Speech Manager can be exported as an HTML file. This will

display each line's text, character, audio filename(s) and description. If the game features

translations, a language can be selected.

Optionally, you can limit lines by character name, language, or by speech tag. Speech

tags are labels that you can assign ActionLists that contain Dialogue: Play speech Actions,

and are useful if your voice actors to only record lines for a specific cutscene or sequence.

They can be created by clicking Edit speech tags under the Speech Manager's Subtitles

panel:

Once tags are enabled and defined, any ActionList that contains a Dialogue: Play speech

Action can be assigned to one within its list of properties:

�342

Further options allow you to remove Text tokens, and include descriptions. Descriptions

can be written either directly in the Speech Manager, or imported using the Import text

wizard - see Translations.

You can also opt to only output lines that already have an associated audio file. This is

useful when conducting multiple recording sessions, as you can set script sheets to only

show those lines that have yet to be recorded.  

NOTE: You will need to re-gather your game's text for the changes to be reflected in

the Speech Manager.
�

�343

10.5. Translations

Once your game's text has been gathered, it can be used to handle translations.

The Speech Manager’s Gather text button collects all display text, specifically:

• Speech lines

• Hotspots and Dialogue Option labels

• NPC names (if set to something other than their GameObject's name)

• Menu text

• Journal entries

• Inventory Item names

• Pop-up and String Variables

• Cursor names and prefixes

• Custom translatables

A game's translations can be managed from the Languages panel:

Arabic or Hebrew can make use of the Reads right-to-left? option. If checked, then

Hotspot and inventory labels (e.g. “Use sword on barrel”) will be reversed (e.g. “barrel on

sword Use”) as will Input menu elements. Speech scrolling, enabled in the Subtitles

panel, will also be reversed.

When a new language is created, each entry in the Game text panel will be updated with

an associated field:

PROTIP: The 3D Demo game includes an example French translation.
�

�344

New languages have no default text - instead, a Fallback language can be assigned. If

no text is found for a given language, the fallback’s equivalent will be used instead.

Each entry's translation can be modified directly in the Editor, but it is recommended to

export them so that they can be edited using a spreadsheet. To do so, click the cog icon

beside a language's name and choose Export:

This will open up the Text export wizard, which you can use to select which text is

exported and in what order:

Text is then exported either as a CSV file, which can be opened with a spreadsheet

application such as Excel or OpenOffice, or an XML file in the SpreadsheetML format that

can be read by Excel.

Once changes have been made, you can import the CSV file back into the Speech Manager

by choosing Import from the same location. After selecting the CSV file, you will then be

presented with the Text import wizard, in which you can choose which columns get

imported as what translation. The game’s original text can also be updated this way.

�345

The file's line ordering does not matter. The importer will identify text by the ID number

in the first column – not by the row in which they appear.

Translations can also be modified at runtime - see Speech scripting.  

PROTIP: It is also possible to rely only on translations, and ignore any text entered in

Actions and Editors, by checking Don't use at runtime? in the Speech Manager’s

"Original language” panel.

�

�346

10.5.1.Custom translatables

The Speech Manager can gather up all text used within Managers, Actions, and logic

objects so that it can be translated. However, it can also gather up custom text that it

finds, by placing it in scripts that implement the ITranslatable interface.

The ITranslatable interface has functions to retrieve and assign a unique ID number for

each piece of translatable text, as well as functions to determine if such text is

appropriate for translation. When gathering text, the Speech Manager will automatically

detect the presence of any MonoBehaviour script, or custom Action, that implements

ITranslatable. This includes prefabs referenced by the Object: Add or remove Action.

For a description of the ITranslatable interface, see the Scripting guide.

Once an implementation has been written, and translatable text has been gathered, it can

be displayed along with the rest of your game's text in the Speech Manager. This then

means it can be exported for external translation, or have translations written directly

within the manager.

Once translations have been provided, you can retrieve the translatable text in the game's

current language with:

AC.KickStarter.runtimeLanguages.GetTranslatableText (ITranslatable

translatable)

AC.KickStarter.runtimeLanguages.GetTranslation (int lineID)

When it comes to searching ActionList assets, AC will search the Managers and scenes for

references made to them. In scenes, this works by searching for components that

implement iActionListAssetReferencer. If you have ActionList assets that are only

referenced through script, you will can implement this interface in your MonoBehaviour to

create a link that AC can use to include the assets in the Speech Manager.  

PROTIP: A sample script that demonstrates translatable text can be found in the form

of the Custom Translatable Example component.
�

�347

https://adventurecreator.org/scripting-guide/interface_a_c_1_1_i_translatable.html
https://www.adventurecreator.org/scripting-guide/interface_a_c_1_1_i_translatable.html
https://adventurecreator.org/scripting-guide/interface_a_c_1_1_i_action_list_asset_referencer.html

10.5.2.Localization integration

Unity's Localization package allows for translations through the use of database tables

that can be updated externally with e.g. Google Sheets. Text gathered through the

Speech Manager (see Gathering game text) can optionally be synchronised with

Localization table entries.

To make use of this feature, the number and order of languages defined in AC's Speech

Manager (including the original) must match that of the Locales defined in your

Localization settings. For example, if your AC game's default language is in English, and

has French and German translations, then your Localization settings must have English,

French and German locales defined - in that order.

Once added, a new option named Auto-sync Locale with Language? will appear in the

Speech Manager. This allows AC to synchronise the active Localization Locale with AC’s

active language.

For any line of text you wish to link to Localization, select it at the bottom of the Speech

Manager and check Rely on Localization?. This then enables a Localized string field,

that can be used to create or connect an entry in your Localization tables. The text in this

table will be used, including when using the game's original language.

Additional assets associated with the line, such as speech audio or lipsync data, are still

linked to the AC line as normal.  

�348

https://docs.unity3d.com/Packages/com.unity.localization@1.0/manual/index.html

10.6. Text tokens

Tokens are snippets of text that, when inserted into game text (normally a character's line

of dialogue), are replaced or have a dynamic effect. The following tokens are recognised:

[var:ID]

Replaces the token with the value of a Global Variable, where “ID” is the ID number of the

referenced Variable. The replacement token of any Variable is listed in its properties in

the Variables Manager. This token also works in Label elements, Journal elements, and

Conversation options.

[localvar:ID]

Replaces the token with the value of a Local Variable, where “ID” is the ID number of the

referenced Variable. The replacement token of any Variable is listed in its properties in

the Variables Manager. This token also works in Label elements, Journal elements, and

Conversation options.

[compvar:CID:VID]

Replaces the token with the value of a Component Variable, where “CID” is the Constant

ID number associated with the Variables component, and “VID” is the ID number of the

referenced Variable. The replacement token of any Variable is listed in its properties in

the Variables Inspector, provided that a Remember or Constant ID component is attached.

This token also works in Label elements, Journal elements, and Conversation options.

[continue]

If the dialogue this is placed in is not running in the background, then from this point

onward it will be. This is useful if you want to cut the camera on a particular word, mid-

sentence.

[hold]

Like [continue] above, the ActionList will continue when this token is displayed on

screen. However, the speech itself will remain on the screen indefinitely, until the

Dialogue: Stop speech Action is used to end it. This is useful if you want a character's

last-spoken line to remain on the screen when the player is presented with a

Conversation option.

[expression:Name]

Changes the speaking character's expression to the one named “Name”. See Facial

expressions.

NOTE: A tutorial on using this token in Menus can be found online.
�

�349

http://adventurecreator.org/tutorials/displaying-game-score

[wait]

Removes the token, and only displays the speech text up to the point at which it was

placed. The character will not continue speaking until the player clicks/taps. Note that

Subtitles can be skipped? must be enabled in the Speech Manager.

[wait:X]

Removes the token, and only displays the speech text up to the point at which it was

placed. The character will wait X seconds before continuing to speak. The value of X can

be either an integer or a decimal.

[param:X]

Replaces the token with the value of an ActionList parameter. For this to work, a

parameter with an ID of X must be present in the ActionList from which this Dialogue:

Play speech Action is called. This token also works with Action comments.

[paramlabel:X]

Similar to the [param:X] token above, only it displays a label if the parameter is a

GameObject, Inventory Item, Global Variable or Local Variable. For example, if set to a

Global Variable, the token will display the variable’s label as opposed to value. if the

GameObject has a Hotspot component, then the Hotspot’s label will be displayed.

Similarly if there is a Player or NPC component. If no such component is found, the

GameObject’s name will be shown. All other parameter types will show the same value as

the [param:X] token.

[paramval:X]

Similar to the [param:X] token above, only - if the parameter is linked to a Variable, then

it instead displays that Variable’s value, as opposed to that Variable’s ID number. All

other parameter types will show the same value as the [param:X] token.

[speaker]

Replaces the token with the display name of the character associated with the line of

dialogue.

[line:ID]

Replaces the token with text gathered in the Speech Manager, set to the game’s current

language. This is useful if you want, for example, to display a Conversation’s dialogue

option label as the speech text that the player says when chosen.

[token:ID]

Replaces the token with a string assigned by calling the SetCustomToken function inside

the RuntimeVariables script, where “ID” is the ID number of the custom token. A tutorial

PROTIP: The [param:X] token is processed before all others, so that you can use it in

place of other token values, for example [var:[param:X]] will use a parameter value in

place of the variable token’s ID number.

�

�350

https://adventurecreator.org/scripting-guide/class_a_c_1_1_runtime_variables.html

on using this token can be found online. This token also works in Label elements, Journal

elements, and Conversation options.

PROTIP: A list of all tokens available to use in Character speech lines can be found at

the bottom of each Character's Inspector.
�

�351

https://adventurecreator.org/tutorials/creating-custom-tokens

10.6.1.Speech event tokens

Speech event tokens are a special kind of token that can be used in speech lines. Rather

than being used to place text dynamically, they are instead used to trigger custom events.

This allows you to run additional code directly from your speech text. For example, the

token [anim:wave] could be used to make a character wave, or [look:John] could tell the

speaking character to look at an NPC named John.

Speech event tokens take the form:

[key:value]

Where both key and value are both strings. In order for a key to be recognised, it must

first be added to the Dialog script's internal array of accepted keys. This is done by

writing to:

KickStarter.dialog.SpeechEventTokenKeys

For example, to allow the keys "anim" and" "look" to be recognised, we can write the

following code:

KickStarter.dialog.SpeechEventTokenKeys = new string[2] { "anim",

"look" };

When tokens of the form [anim:X] and [look:Y] are placed in speech text, they will then

trigger the OnSpeechToken custom event - allowing you to run whatever code is

necessary. The following code will define the above token keys, and run an event when

read:

private void OnEnable ()

{

KickStarter.dialog.SpeechEventTokenKeys = new string[2] { "anim",

"test" };

EventManager.OnSpeechToken += OnSpeechToken;

}

private void OnDisable ()

{

EventManager.OnSpeechToken -= OnSpeechToken;

}

private void OnSpeechToken (AC.Char speakingCharacter, int lineID,

string tokenKey, string tokenValue)

{

Debug.Log (speakingCharacter + " said token [" + tokenKey + ":" +

tokenValue + "]");

}  

�352

A speech token will be automatically removed when the text is displayed on-screen.

However, with the OnRequestSpeechTokenReplacement event, it is also possible to use

events to dynamically replace the token with something else. This is useful for inserting

procedural text, for example. The following code will replace the token [random:animal]

with the name a random animal every time it is used in speech text:

private void OnEnable ()

{

KickStarter.dialog.SpeechEventTokenKeys = new string[1]

{ "random" };

EventManager.OnRequestSpeechTokenReplacement +=

OnRequestSpeechTokenReplacement;

}

private void OnDisable ()

{

EventManager.OnRequestSpeechTokenReplacement -=

OnRequestSpeechTokenReplacement;

}

private string OnRequestSpeechTokenReplacement (Speech speech, string

tokenKey, string tokenValue)

{

if (tokenKey == "random" && tokenValue == "animal")

{

string[] animals = new string[5] { "Cat", "Dog", "Parrot", "Bear",

"Monkey" };

int i = Random.Range (0, animals.Length);

return animals[i];

}

return string.Empty;

}  

�353

10.6.2.Text event tokens

Text event tokens are similar to Speech event tokens in that they rely on custom events to

replace text dynamically at runtime. Text tokens are used more widely than speech

tokens, and are typically valid in any text field found in Actions.

Text event tokens take the form:

[key:value]

Where both key and value are both strings. In order for a key to be recognised, it must

first be added to the RuntimeVariables script's internal array of accepted keys. This is

done by writing to:

KickStarter.runtimeVariables.TextEventTokenKeys

For example, to allow the keys "anim" and" "look" to be recognised, we can write the

following code:

KickStarter.runtimeVariables.TextEventTokenKeys = new string[2]

{ "anim", "look" };

When tokens of the form [anim:X] and [look:Y] are placed in text, they will then trigger

the OnRequestTextTokenReplacement custom event - allowing you to replace the entire

token dynamically through script. The following code will replace the token

[favourite:colour] with a random colour every time it is used in speech text:

private void Start ()

{

KickStarter.runtimeVariables.TextEventTokenKeys = new string[1]

{ "favourite" };

}

private void OnEnable ()

{

EventManager.OnRequestTextTokenReplacement +=

OnRequestTextTokenReplacement;

}

private void OnDisable ()

{

EventManager.OnRequestTextTokenReplacement -=

OnRequestTextTokenReplacement;

}

private string OnRequestTextTokenReplacement (string tokenKey, string

tokenValue)

{

if (tokenKey == "favourite" && tokenValue == "colour")

{

�354

string[] colours = new string[4] { "Red", "Blue", "Yellow", "Green"

};

int i = Random.Range (0, colours.Length);

return colours[i];

}

return string.Empty;

}  

�355

10.7. Lip syncing

Animating characters convincingly makes a big difference to a game's quality, and there

are a number of methods available. The Mecanim and Legacy animation engines, for

example, allow you define a facial animation clip within each Dialogue: Play speech

Action.

However, it's often unfeasible to keyframe an animation for every line of dialogue - so AC

provides several ways to animate lips automatically. This is known as lip syncing.

Lip syncing involves two processes:

1) Extracting a list of phonemes (lip shapes) from a speech line

2) Using those phonemes to construct an animation 

�356

Extracting phonemes

The method by which phonemes are extracted is determined by the Lip syncing option in

the Speech Manager:

It can take the following values:

From Speech Text

Phonemes are generated automatically based on the speech text. It won't always be a

totally accurate approximation, but it will give the character's animation some noticeable

variety. If a line has accompanying audio, the timing of the generated phonemes will be

scaled to the length of the audio clip.

Read Pamela File

Phonemes are generated by a Pamela file. Pamela is a free Windows application that can

generate phonemes, and can be used to fine-tune an animation.

Read Sapi File

Phonemes are generated by a SAPI file. SAPI is another free Windows application, and can

be used to generate bulk files automatically.

Read Papagayo File

Phonemes are generated by a Papagayo file. Papagayo is a free, cross-platform lip-sync

tool that's easy to use.

Face FX

See FaceFX integration.

Salsa 2D

This option will make use of the 2D lip-syncing features of SALSA With RandomEyes,

which is a separate Unity asset.

While the Salsa 3D script component can be used on 3D characters independently of

Adventure Creator, Salsa 2D cannot – because 2D characters can face multiple directions,

and therefore need different sets of “talking” frames. To get around this problem, simply

choose this option, and add the Salsa 2D to your character's base object (which should

also have an AudioSource), and ignore its sprite fields. AC will instead make use of the

PROTIP: The Physics demo makes use of this option.

�

�357

http://adventurecreator.org/games/physics-demo
http://users.monash.edu.au/~myless/catnap/pamela3/
http://www.annosoft.com/sapi_lipsync/docs/index.html
http://www.lostmarble.com/papagayo/
http://crazyminnowstudio.com/projects/salsa-with-randomeyes-lipsync

sprite animations you provided in the NPC / Player components, and use Salsa 2D to

perform the lip-syncing processing.

You will also need to add SalsaIsPresent as a scripting define symbol – see Supported

third-party assets.

Pamela, SAPI, Rogo Digital LipSync, and Papagayo files are detected by Adventure Creator

in the same way that Speech audio files are.

If they are connected to speech automatically, they must be placed in a Resources/

Lipsync folder, and be of the same filename as they're relevant audio file, only with a .txt

extension (or .asset for Rogo Digital LipSync). For example, if an audio file is “Resources/

Speech/Player2.mp3”, its accompanying phoneme file would be “Resources/Lipsync/

Player2.txt”.

Lip sync files can also work with Translations.  

�358

https://docs.unity3d.com/Manual/PlatformDependentCompilation.html

Constructing animations

Generated phonemes must be mapped to animation frames in order to be played back at

runtime. We can do this from the Phonemes Editor, which is available in the Lip syncing

panel of the Speech Manager:

Here, you can define how many animation frames you want, and which phonemes make

use of them. Multiple phonemes can be mapped to the same frame by separating them

with a slash “/”. The Revert to defaults button will map appropriate phonemes to your

chosen Lip-sync method, but it will likely require further tweaking.

Once mapped, you can now use them to animate your characters. The Perform lipsync

on setting chooses how: Portrait will animate a Character's portrait graphic (assuming it's

an animated texture), Portrait And Game Object will also animate the Character's

GameObject, and Game Object Texture will animate a texture on a Character's Skinned

Mesh Renderer.

The method by which Portrait And Game Object affects the character’s GameObject is

based on their chosen animation engine:

• With Sprites Unity, each lip-sync frame will correspond to a frame in the character's

talking animation. This animation is assumed to be of the same number of frames as

have been declared in the Phonemes Editor.

• With Sprites Unity Complex, the current lip-sync frame can be output to the

Animator controller by declaring a Phoneme integer parameter in the character's

Inspector.

• With Legacy and Mecanim, lip-syncing works by manipulating blend shapes. Each

lip-sync frame will be mapped to a particular blend shape, as declared by the Shapeable

script. All blend shapes used to animate the mouth must be placed in the same group

(see the Shapeable component), and the group to affect is then declared in the character's

inspector.

�359

To use Game Object Texture mode, a Lip Sync Texture component must be attached to

the Character's root GameObject. Once attached, it will provide texture replacement

fields that correspond to each phoneme frame.

PROTIP: The Lip Sync Texture component works by updating a Material's texture

according to the current phoneme. This is normally done in an Update call, but this

can optionally be done in LateUpdate instead. This may be necessary if conflicts arise

due to controlling the same texture via an Animator.

�

NOTE: A series of lip sync tutorials can be found online.
�

�360

http://adventurecreator.org/tutorials/speech-and-language

10.8. Facial expressions

If a character uses Mecanim or Sprites Unity Complex for their animation, or makes use of

Portrait graphics, then their expression can be changed mid-speech by using the

[expression:Name] token within their speech text.

The "Name" part of this token refers to the label given to an expression defined in the

Player or NPC Inspector, underneath Dialogue settings, once Use expressions? is

checked:

Here, multiple expressions can be created and managed - each with their own portrait

graphic and ID number.

The ID number is fixed, and displayed just above the expression's "Name" field. If your

character uses Mecanim animation, then your chosen Expression ID integer parameter

(as set under the Mecanim parameters panel) will be set to this value when the

expression is triggered.

Another option is to use blendshapes. If your character uses Mecanim or Legacy

animation, an additional Map to Shapeable? option will appear. Checking this will allow

you to link the expressions to a Shapeable group, provided one is attached to the

character’s Skinned Mesh Renderer. Note that the expression names listed in the

character Inspector must match the key labels defined in the linked Shapeable groupe.

PROTIP: The text token [expression:None] will clear the active expression.

�

PROTIP: A tutorial on working with character expressions can be found online.
�

�361

http://www.adventurecreator.org/tutorials/changing-expressions-when-characters-speak

10.9. External dialogue tools

There are a number of external tools for writing dialogue, including Chat Mapper and

articy:draft, which you may prefer to work with over AC's built-in tools - particularly

when working in team projects.

Dialogue System, which is a Unity asset dedicated to this aspect of game development, is

able to link such tools with Adventure Creator. It can import both Chat Mapper and

articy:draft projects, and has a number of Actions and features when working with

Adventure Creator.

Further integration can be added through custom events. The AC wiki includes a sample

script that demonstrates how an articy:draft FlowPlayer can be used to trigger speech and

Conversations in AC.  

�362

http://www.chatmapper.com/
https://www.nevigo.com/en/articydraft/overview/
https://www.assetstore.unity3d.com/en/%23!/content/11672
http://adventure-creator.wikia.com/wiki/Adventure_Creator_Wikia

10.10. Speech scripting

Characters can be made to speak through custom scripts with either:

KickStarter.dialog.StartDialog (AC.Char speakingCharacter, string

speechText);

KickStarter.dialog.StartDialog (AC.Char speakingCharacter, int

lineID);

Where lineID refers to a speech line gathered in the Speech Manager.

These functions return a Speech class instance, which can be used to end the speech

prematurely:

KickStarter.dialog.KillDialog (mySpeech);

Or even modify the speech text at runtime:

mySpeech.ReplaceDisplayText ("My new speech text");

A log of all speech spoken since the last file load can be retrieved with:

KickStarter.runtimeVariables.GetSpeechLog ();

This returns an array of the SpeechLog class.

Translations can be modified or created at runtime by using:

KickStarter.runtimeLanguages.ImportRuntimeTranslation (TextAsset

textAsset, string languageName, int newTextColumn);

KickStarter.runtimeLanguages.UpdateRuntimeTranslation (int lineID, int

languageIndex, string translationText);

Where textAsset is a CSV file of the form used by the Speech Manager to amend

translations, languageName is the name of the language to modify, and newTextColumn

is the index number of the column that contains the new translation text.

If your game relies on AssetBundles for its voice files, you can manually enforce the

loaded AssetBundle for both audio and lipsyncing:

KickStarter.runtimeLanguages.CurrentAudioAssetBundle = value;

KickStarter.runtimeLanguages.CurrentLipsyncAssetBundle = value;

PROTIP: The above function can be used to support new languages for a game after its

release. However, you must still cater for this within your game’s initial build: whether

it by using Unity AssetBundles, or by reading a file online, your game must still be able

to “look out” for future languages even if they do not exist at the time of release.

�

�363

https://docs.unity3d.com/Manual/AssetBundlesIntro.html
http://adventurecreator.org/scripting-guide/class_a_c_1_1_speech.html
http://adventurecreator.org/scripting-guide/struct_a_c_1_1_speech_log.html

The speech system has the following events:

OnStartSpeech (AC.Char speaker, string speechText, int lineID);

OnStartSpeech_Alt (Speech speech);

OnStopSpeech (AC.Char speaker);

OnStopSpeech_Alt (Speech speech);

OnStopSpeech (Speech speech, bool justCompletingScroll);

OnStartSpeechScroll (AC.Char speaker, string speechText, int lineID);

OnStartSpeechScroll_Alt (Speech speech);

OnEndSpeechScroll (AC.Char speaker, string speechText, int lineID);

OnEndSpeechScroll_Alt (Speech speech);

OnCompleteSpeechScroll (AC.Char speaker, string speechText, int

lineID);

OnCompleteSpeechScroll_Alt (Speech speech);

OnSpeechToken (AC.Char speaker, int lineID, string tokenKey, string

tokenValue);

OnSpeechToken_Alt (Speech speech, string tokenKey, string tokenValue);

string OnRequestSpeechTokenReplacement (Speech speech, string

tokenKey, string tokenValue);

string OnRequestTextTokenReplacement (string tokenKey, string

tokenValue);

OnLoadSpeechAssetBundle (int language);  

�364

11. Menus 

�365

11.1. Menus overview

An AC game's entire interface - save for the cursor - is built using menus.

A menu is a collection of Menu elements that make it interactive. An inventory menu, for

example, could feature an InventoryBox grid to show the player's items, and two Buttons

to scroll through them.

When using the New Game Wizard, you can opt to begin with a Default set of menus that

form a fully-functioning UI for an adventure game. These can then be modified to suit,

which is easier than starting from scratch. This UI is also used by the 3D Demo game.

Menus are listed in the Menu Manager:

Selecting a menu allows you to view its properties, as well as a list of its elements:

�366

Selecting an element allows you to view properties of its own.

Menus can be drawn by one of two modes:

Adventure Creator

Which uses OnGUI calls to render a menu without need for any other assets.

Unity UI

Which links the menu to a Unity UI Canvas prefab to give the user full stylistic control.

Which render method a menu uses is set from its Source field:

The next most important property of a menu is its Appear type:

This property determines the rule for when it is shown. It can take the following values:

Manual

The menu is never shown or hidden automatically - only by using the Menu: Change state

Action.

Mouse Over

The menu is shown when the cursor hovers over its boundary.

PROTIP: AC or Unity UI? Since AC-based menus are easier to set up quickly, but Unity

UI offers more style options, it is recommended to first prototype your UI using AC

menus, and then switch to Unity UI once happy with the functionality.

�

NOTE: Draw ordering between menus can only be set for those that use the same

drawing mode. AC menus are drawn in order of their listing in the Menu Manager,

while Unity UI menus rely on the Sort Order values in their Canvas components.

AC menus will always appear above Unity UI ones.

�

�367

During Conversation

The menu is shown when a Conversation is active.

During Cutscene

The menu is shown whenever gameplay is blocked due to an ActionList. This can be used

to add black borders on the screen during a cutscene, or add a Skip cinematic button.

The Clickable in cutscenes? option must be set for a Menu to be interactive at this time.

On Container

The menu is shown when a Container has been opened using the Container: Open Action.

On Input Key

The menu is shown when a particular input button has been pressed by the player. If

pressed while open, the menu will close. The supplied Toggle key input's name must

match that of an axis in Unity’s Input Manager.

On Interaction

The menu is shown when the player must choose a Hotspot’s interactions from a menu -

see Choose Hotspot Then Interaction mode. The Settings Manager's Close interactions

with field determines how the menu is closed again.

On Hotspot

The menu is shown when a Hotspot is selected before an interaction is run - or when over

an Inventory item in a Menu. This menu can optionally be duplicated for each Hotspot or

Menu element it is displayed for.

When Speech Plays

The menu is shown when a character is speaking and subtitles are enabled - see Options

data. Further settings with this mode allow the menu to be duplicated for each line, and

for it to be limited to only show for lines that meet certain criteria: for example, those

spoken by a specific character, or those played in the background. It can also account for

proximity, so that it only shows when the speaking character is close enough.

During Gameplay

The menu is shown during normal gameplay.

While Inventory Selected

The menu is shown while an Inventory item is selected, ready to be used on another item

or Hotspot.

Except When Paused

The menu is shown during normal gameplay and cutscenes, but hidden whenever the

game is paused.  

�368

During Gameplay And Conversations

The menu is shown during normal gameplay, and when a Conversation is active.

Other properties common to all menus include:

Name

The internal name of the menu, used to reference it in Menu Actions and scripts.

Start game locked off?

If checked, the menu will be locked by default and must be unlocked using the Menu:

Change state Action before it will be displayed.

Ignore cursor clicks?

If checked, then it will not react to the cursor, and any interactive elements or objects

behind it will register. This should be used for Hotspot menus, and Interaction menus

that rely on Choose Hotspot Then Interaction mode's Cycling Cursor And Clicking

Hotspot option.

ActionList when turn on/off

ActionList assets that can be run whenever the menu is shown or hidden. These can be

used to initialise the menu correctly or disable certain systems using the Engine: Manage

systems Action. Such ActionLists should generally have their When running field set to

Run In Background so that they do not interfere with gameplay.

Enabled on start? (Manual only)

If checked, then the menu will be shown by default.

Pause game when enabled?

If checked, then the menu will pause the game when it is shown. This option is only

available for certain Appear types.

Clickable in cutscenes?

If checked, then the menu will be interactive while gameplay-blocking cutscenes are

running. This option is only available for certain Appear types.

PROTIP: When a menu is locked, it won't be shown even if the current conditions

match its Appear type. A menu's locked state can be controlled with the Menu:

Change state Action.

�

PROTIP: The Default Pause menu makes use of this to deselect the active Inventory

item when it turns on.
�

�369

Hide in save screenshots?

If checked, then the menu will be momentarily hidden from view while taking a save-

game screenshot. For this option to be visible, Save screenshots must be enabled in the

Settings Manager.

Further options are available depending on the Source field.  

�370

11.1.1.Adventure Creator menus

Adventure Creator menus are simple to set up as they can be made completely within the

Menu Manager - without the for any other assets or scene objects.

They can be previewed while editing by checking Preview in Game window? at the top of

the Menu Manager:

To draw a menu using AC, set the Source property is set to Adventure Creator - this is

the default setting:

This menu type is styled by tweaking its properties:

Position

How the menu's position is chosen. It has the following options:

 Centred

 Places the menu in the centre of the screen.

 Aligned

 Aligns the menu to a corner of edge of the screen.

 Manual

 Allows you to position the menu exactly.

PROTIP: Elements can be quickly selected for editing by clicking on them in the Game

window.
�

PROTIP: Both demo games rely on AC menus for their interfaces.
�

�371

 Follow Cursor

 Moves the menu with the cursor, offset by some determine amount.

 Appear At Cursor Then Freeze

 Positions itself over the cursor when turned on, and then made stationary.

 On Hotspot

 Positions itself over the selected Hotspot, offset by some determine amount.

 Above Speaking Character

Positions itself over the currently-speaking character. If the Appear type is When

Speech Plays and One menu per speech? is checked, the Menu can optionally

remain stationary once it appears regardless of the character’s motion.

 Above Player

 Positions itself above the Player.

Size

How the menu's size is chosen. It can be set manually, or automatically based on the

Elements it contains.

Resize every frame?

If checked, then the menu's size will be updated every frame. As this is an expensive

operation, it should be left unchecked for menus that are not expected to change size.

Background texture

A texture that can be drawn across the menu. Its Elements will be drawn above it.

Element spacing

The spacing amount between Elements that have a Position type of Aligned.

Element orientation

The orientation of Elements that have a Position type of Aligned.

Transition type

The effect by which the menu turns on and off. Available options are the ability to zoom,

pan, and fade.

PROTIP: When a Menu is set to appear above a character, AC will attempt to

determine where that character's head is. However, you can specify exactly

where to place the Menu by defining a Speech menu placement child for that

character.

�

�372

Transition time (s)

The duration of the transition effect when turning on and off, if it has one.

Transition animation

How the transition effect changes over time, when turning on and off. An animation

curve can optionally be supplied.

Update when fading out?

If checked, then changes to the menu and Elements within will be seen even when

transitioning out.

Similar styling properties are also available for each Elements an Adventure Creator menu

contains.  

PROTIP: When two AC menus overlap, their drawing order is based on their order in

the Menu Manager: the bottom-most menu in the list will be drawn above all others.
�

�373

11.1.2.Unity UI menus

Unity UI menus allow you to make use of Unity’s UI system and styling options while

letting AC handle clicks and visibility.

The link works by assigning a UI canvas to the menu, and a UI component to each of the

menu's Elements. AC will then override click functionality, labels, etc with the properties

in the Menu Manager.

To have an AC menu connect to Unity UI, change its Source field to either Unity Ui Prefab

or Unity Ui In Scene:

Unity Ui Prefab

Links the menu to a Unity UI canvas prefab, which is instantiated by AC automatically

when the game begins.

Unity Ui In Scene

Links the menu to a Unity UI canvas in the scene, if one exists.

The steps to connect a menu to a UI canvas are as follows:

1) Create the menu in the Menu Manager along with any Elements it needs.

2) Set the menu's Source field to either Unity Ui Prefab or Unity Ui In Scene

3) Separately create your Unity UI canvas

4) Assign the UI canvas into the menu's Linked Canvas field. This should either be a

prefab or a scene object, depending on the Source type.

PROTIP: Each of the menus in The default Interface can be switched to Unity Ui

Prefab, as can those in the 3D Demo game.
�

PROTIP: Prefab or in-scene? Unity Ui Prefab is the standard option, with Unity Ui In

Scene being best for 3D menus that need to be in a specific position in a specific

scene. Note that in order to control an “In Scene” menu, the Canvas must be manually

placed in each scene.

�

NOTE: All UI canvases linked to the Menu Manager should be independent of one

another in the Hierarchy. AC turns off such menus by disabling them - so having

one Canvas the child of another can cause it to be inadvertently turned off.

�

�374

5) Assign the UI's "bounding box" into the menu's RectTransform boundary field.

This can be an invisible RectTransform object if need be. This is so that AC can

reposition it (if necessary) and determine it the cursor is over it.

6) Place the UI canvas in the scene (if a prefab) and assign each UI component (Text,

Button, etc) into its associated menu Element's Linked UI field. Elements with

multiple slots (such as InventoryBoxes) will need one object per slot. The canvas

must be in the scene because Unity does not allow for expanded hierarchies in the

Project window.

7) Update the prefab (if appropriate) by clicking Apply at the top of its Inspector. This

is because linking UI components to Elements generates Constant ID components.

8) Remove the UI canvas from the scene (if a prefab).

Unity UI-linked menus have the following properties:

Position type

How the menu's position is chosen, provided a RectTransform boundary has been

assigned. It has the following options:

 Above Player

 Positions itself above the Player.

 Above Speaking Character

 Positions itself over the currently-speaking character.

 Appear At Cursor Then Freeze

 Positions itself over the cursor when turned on, and then made stationary.

 Follow Cursor

 Moves the menu with the cursor, offset by some determine amount.

NOTE: Do not assign the Canvas itself as the RectTransform boundary. A child

RectTransform must instead be assigned.
�

PROTIP: A tutorial on linking the default Inventory menu to Unity UI can be found

online.
�

PROTIP: When a Menu is set to appear above a character, AC will attempt to

determine where that character's head is. However, you can specify exactly

where to place the Menu by defining a Speech menu placement child for that

character.

�

�375

http://adventurecreator.org/tutorials/creating-inventory-bar-unity-ui

 Manual

 Does not move by AC, and can only be moved with custom scripting.

 On Hotspot

 Positions itself over the selected Hotspot, offset by some determine amount.

Always fit within screen?

If True, then the menu will be kept within the screen's border, if Aspect ratio is set in the

Settings Manager's Camera settings panel.

Transition type

The effect by which the menu turns on and off. The available options are:

 Canvas Group Fade

 The menu will fade by affecting the Alpha value of the Canvas Group component

that must be attached to the UI's root GameObject.

 Custom Animation States

 The menu will play animations from the UI's root Animator component. Four states

must be present on the Animator: On, Off, OnInstant and OffInstant - though

they can be empty if not necessary. Note that to ensure it works correctly when

pausing is involved, set the Animator’s Update Mode to Unscaled Time.

Custom Animation Blend

 The menu will control the Animator component on the UI’s root. The Animator

must have an OnAmount float parameter defined - this will be set to the amount

by which the Menu is “on”, with 0 being fully off, and 1 being fully on. Note that to

ensure it works correctly when pausing is involved, set the Animator’s Update

Mode to Unscaled Time.

 None

 The menu will be turned on and off instantly.

Update when fading out?

If checked, then changes to the menu and Elements within will be seen even when

transitioning out.

Use TMPro components?

If TextMesh Pro is present, this causes Elements to rely on TMPro components instead of

regular Text components - if found. For details, see Integrations.

PROTIP: To position a Manual menu relative to the screen’s playable area, attach

the Auto Correct UI Dimensions component to the RectTransform boundary.
�

�376

Linked Canvas

The UI canvas that is linked to the menu. This should either be a prefab, or a scene-

based GameObject, depending on the chosen Source.

RectTransform boundary

A RectTransform child of the UI canvas that marks the menu's boundary. This is

necessary for AC to know where the menu lies, and how to re-position it if necessary.

Auto-select first visible Element?

If checked, then the first visible element listed in the Menu Manager will be automatically

highlighted when the menu is turned on. This is useful if the menu is keyboard-

controlled, but which elements will be active is unknown.

First selected Element

The name of the element to automatically highlight when the menu is turned on. This is

useful if the menu is keyboard-controlled, as an element must be selected before it can

be controlled with a keyboard or gamepad.

Because Unity UI canvases requires an Event System to work, AC will automatically

generate one if a scene has none. You can have it spawn your own one, however, by

making it a prefab and assigning it at the top of the Menu Manager.

NOTE: When using Keyboard or controller input, options appear at the top of the Menu

Manager regarding when menus can be controlled without using a cursor.

For gamepad/keyboard control during gameplay, you must enable it using the Engine:

Manage systems Action to enable it BEFORE the Menu is turned on, or in the menu's

ActionList when turn on asset.

Also be aware that the game must be in normal gameplay at the time that the menu is

turned on: if an ActionList is used to turn it on, set its When running field to Run In

Background.

�

PROTIP: By default, Menus will rely on Unity UI Text components for text display.

However, you can alternatively opt to rely on on Text Mesh Pro - see Supported third-

party assets.

�

�377

https://docs.unity3d.com/Manual/EventSystem.html
https://www.assetstore.unity3d.com/en/#!/content/17662

11.2. Menu elements

A menu's elements are what make it interactive. When a menu is selected in the Menu

Manager, its elements are listed beneath:

New elements can be created by choosing a type and clicking Add new. The following

types are available:

Label

A simple text box.

Button

A button that can be clicked.

DialogList

Displays the options of the active Conversation.

Interaction

Displays Icons defined in the Cursor Manager.

InventoryBox

Displays Inventory items carried by the player.

Crafting

Provides a grid for placing down crafting ingredients - see Recipes.

SavesList

Displays save files to load or overwrite - see Saving and loading.

ProfilesList

Displays user profiles to switch to - see Save profiles.

Journal

A multi-page document.

�378

Input

A text box that the user can edit.

Toggle

A button that toggles between On and Off states.

Cycle

A button that cycles through an array of labels when clicked.

Slider

A slider that represents a numerical value.

Timer

A timer that represents a timed numerical value.

Drag

An area that can be mouse-dragged within a boundary.

Graphic

A static or animated image.

Each element type has its own unique properties, but the following are available for all

types:

Element name

The internal name of the element, used to reference it in Menu Actions and scripts.

Is visible?

If checked, the element will be shown by default. Elements can be shown and hidden at

runtime by using the Menu: Change state Action.

Hover / click sound

AudioClips that play when the element is hovered over by the cursor, or clicked. To play,

a Default Sound must be defined in the Scene Manager's Scene Settings.

Element-specific properties are listed in the next section.  

�379

Label elements

Labels are used to display text non-interactively. They are primarily used for headings,

subtitles, and interaction display. They have the following properties:

Label type

What type of text is shown. The available options are:

 Normal

 Shows the contents of the Label text box. Can make use of variable tokens - see

Text tokens.

 Hotspot

 Shows the name of the currently-selected Hotpot or Inventory item, together with

the active Interaction if enabled in the Cursor Manager.

 Dialogue Line

Shows the speech text being currently spoken by a character. If Text Mesh Pro is

being used (see Supported third-party assets), and subtitle scrolling is enabled, an

additional option to make use of TMPro’s Typewriter effect will be made available.

 Dialogue Speaker

 Shows the name of the currently-speaking character.

 Global Variable

 Shows the value of a Global Variable. This is deprecated by the Normal type's

ability to use tokens.

 Active Save Profile

 Shows the name of the active Save profile.

 Inventory Property

 Shows the value of a Inventory property.

 Document Title

 Shows the title of the active Document.

Selected Objective

Shows text related to the currently-selected Objective - it’s Title, Description, State

Description, State Label, or State Type.

Label text

If the Label type is Normal, the actual contents of the label.

�380

https://docs.unity3d.com/Manual/com.unity.textmeshpro.html

Additional properties for styling will be shown if used in an Adventure Creator menu.

PROTIP: When using Unity UI, they can be linked to UI Text components.
�

�381

Button elements

Buttons are the most common form of UI interactivity.

They are used primarily for accessing other menus and running ActionLists. They have

the following properties:

Click type

What happens when it is clicked. The available options are:

 Turn Off Menu

 Turns off its parent menu.

 Crossfade

 Simultaneously turns off its parent menu and turns on another.

 Offset Element Slot

 Shifts the slots of an element that relies on multiple slots - InventoryBox,

DialogList, SavesList, ProfilesList - by some amount. This can be used to create,

for example, scrolling inventories.

 Run Action List

 Runs an ActionList asset. It the asset has an Integer parameter, then its value can

optionally be set here.

 Custom Script

 Does nothing by itself, but the OnMenuElementClick custom event can be used to

run code when clicked.

 Offset Journal

 Shifts the pages of a Journal element.

 Simulate Input

 Simulates the invoking on an input listed in Unity's Input Manager. This can be

used to create, for example, an on-screen joystick or a "Skip cutscene" button -

see Input descriptions.

Button text

The display text. If it features textures, can be left blank.

Hotspot label override

If text is entered, then the Hotspot menu will display this text when the mouse hovers

over it.

�382

Alternative input button

When given the name of an input defined in the Input Manager, pressing that input will be

the equivalent of clicking the element.

Change when cursor over?

If checked, the cursor can have its icon changed when over it to one defined in the Cursor

Manager.

Additional properties for styling will be shown if used in an Adventure Creator menu.

PROTIP: When using Unity UI, they can be linked to UI Button components.
�

�383

DialogList elements

DialogLists display a Conversation's options.

When clicked, the associated option will be triggered. They have the following properties:

Map to

How to map a Conversation’s dialogue options to the element. List allows all options to

be displayed, as a list, in the one element. Fixed Slot Index will show only one option -

determined by the index of available options, so that the “nth” option always appears in

the same place. Fixed Option ID will only show one option - determined by that option's

ID number, so that it always shows the same option.

Maximum number of slots

The maximum number of slots, if Fixed option number? is unchecked. If there are more

options than slots, they can be shifted using a Button with a Click type of Offset Element

Slot.

Display type

Whether options are represented by text, icons, or both.

Mark options already used?

If checked, then options already triggered once can be tinted differently.

Prefix with index numbers?

If checked, then option labels will begin with their order in the list.

Change when cursor over?

If checked, the cursor can have its icon changed when over it to one defined in the Cursor

Manager.

Additional properties for styling will be shown if used in an Adventure Creator menu.

PROTIP: When using Unity UI, they can be linked to UI Button components.
�

�384

Interaction elements

Interaction elements displays Interaction icons defined in the Cursor Manager.

They are used by Choose Hotspot Then Interaction and Choose Interaction Then Hotspot

modes to select an interaction. They have the following properties:

For fixed icon?

If checked, then this element will be used to represent a single icon - so that clicking it

will always result in the same interaction type. If unchecked, then this element will

represent multiple icons using as many slots as you define. If there are more icons than

can be shown, the element can be scrolled through using a Button element with a Button

type set to Offset Element Slot.

Display type

Whether icons are represented by text, image, or both. Note that For fixed icon? is

checked, Unity UI-based Interaction elements do not rely on the icons set within the

Cursor Manager. Instead, the graphics are assigned manually within the UI Image

component.

Cursor

The Interaction icon, defined in the Cursor Manager, it is mapped to. Only available

when For fixed icon? is checked.

Override icon texture?

If checked, an alternative graphic can be used in place of the icon's default. Only

available when For fixed icon? is checked.

Alternative input button

When given the name of an input defined in the Input Manager, pressing that input will be

the equivalent of clicking the element. Only available when For fixed icon? is checked.

Additional properties for styling will be shown if used in an Adventure Creator menu.

PROTIP: When using Unity UI, they can be linked to UI Button components. Icon

graphics can work with both Image and Raw Image components on the Button.
�

�385

InventoryBox elements

InventoryBoxes are used to list Inventory items.

They are mainly used to show the player's current inventory, but can also be used to show

items in a Container, or those available to the selected Hotspot. They have the following

properties:

Inventory box type

What items are shown, and how they behave. The available options are:

 Default

 Shows the player's full inventory, and items react to clicks as normal.

 Hotspot Based

 Shows the items associated with a given Hotspot. This is only used when building

Interaction Menus for Choose Hotspot Then Interaction mode, and Include

Inventory items in Interaction Menus? is enabled in the Settings Manager.

 Custom Script

 Shows the player's full inventory. Does nothing by itself, but the

OnMenuElementClick custom event can be used to run code when clicked.

 Display Selected

 Shows the currently-selected item for visual purposes only.

 Display Last Selected

 Shows the previously-selected item, allowing it to be re-selected by the player.

 Container

 Shows the active Container's items. Clicking them places them in the player's

inventory.

Objectives

Shows a list of Objectives.

PROTIP: The element can be connected to a specific Container by writing to its

OverrideContainer variable through script:

(AC.PlayerMenus.GetElementWithName ("MyMenu",

"MyInventoryBox") as

AC.MenuInventoryBox).OverrideContainer

Note that the Menu’s Appear type should not be set to On Container, as this will

interfere with the active Container.

�

�386

Sub Objectives

Shows a list of sub-Objectives. By default, this will display sub-Objectives for the

“selected Objective”, which is set by clicking inside an “Objectives” InventoryBox.

However, this can be overridden with the element’s OverrideMainObjective

property through scripting.

Display type

Whether items are represented by text, icons, or both.

Maximum number of slots

The maximum number of slots, if Fixed option number? is unchecked. If there are more

items than slots, they can be shifted using a Button with a Click type of Offset Element

Slot.

Prevent interactions?

Prevents the running of Inventory interactions, and display of Interaction menus - so that

interactivity is limited to the selection and re-arrangement of items only. This is useful

when working with Container or Crafting menus.

Prevent selection?

Prevents the selection of Inventory items. Used in conjunction with the

OnMenuElementClick event, this is useful when creating custom inventory behaviour.

Additional properties for styling will be shown if used in an Adventure Creator menu.

PROTIP: The element can be connected to a specific “main" Objective by writing

to its OverrideMainObjective variable through script:

(AC.PlayerMenus.GetElementWithName ("MyMenu",

"MySubObjectivesList") as

AC.MenuInventoryBox).OverrideMainObjective

�

PROTIP: When using Unity UI, they can be linked to UI Button components. Item

graphics can work with both Image and Raw Image components on the Button.
�

�387

Crafting elements

Crafting elements allow for items to be crafted from others - see Recipes. They have the

following properties:

Crafting element type

What kind of items are shown, and how they behave. The available options are:

 Ingredients

 Shows the items used as ingredients in the current recipe. The player can move

items to and from their own inventory - see InventoryBox elements.

 Output

 Shows the item that results from a successful recipe.

Result is automatic?

For Output types only. If checked, then resulting Recipe items will appear automatically

when the correct ingredients have been placed. Otherwise, the Inventory: Crafting Action

must run to create the recipe.

Display type

Whether items are represented by text, icons, or both.

Number of slots

How many items can be shown at once, if the Crafting element type is Ingredients. If

there are more items than slots, they can be shifted using a Button with a Click type of

Offset Element Slot.

Additional properties for styling will be shown if used in an Adventure Creator menu.

PROTIP: When using Unity UI, they can be linked to UI Button components.
�

�388

SavesList elements

SavesLists display save game files.

They are used for saving and loading the game - see Saving and loading. They have the

following properties:

List type

What kind of save files are listed, and how they react when clicked. The available options

are:

 Save

 Shows the game's save files, which can be overwritten when clicked.

 Load

 Shows the game's save files, which can be loaded when clicked.

 Import

 Shows another game's save files, which can be imported - see Importing saves

from other games.

Display type

Whether save files are represented by text, screenshot, or both. Save screenshots can be

enabled in the Settings Manager.

Fixed Save ID only?

If checked, then only one save file will be shown. This is useful if you want to arrange

your files non-linearly.

Maximum number of slots?

The maximum number of slots, if Fixed Save ID? is unchecked. If there are more saves

than slots, they can be shifted using a Button with a Click type of Offset Element Slot.

Allow empty slots?

If checked, then save slots will be visible even when empty. For example, if slots 1 and 3

are filled, an empty slot 2 will be available.

Show 'New save' option?

If the List type is Save, checking this provides an option to create a new save. Otherwise,

new saves can be made with the Save: Save or load Action.

Save/load when click on?

If checked, then saving and loading will be handled automatically.

�389

ActionList after saving/loading

The ActionList asset that can be run after a successful save or load, if Save/load when

click on? is checked. This can be used to update the UI as required.

ActionList when click

The ActionList asset that can be run when clicked, if Save/load when click on? is

unchecked. This can be used in conjunction with the Save: Save or load Action to create

more dynamic save menus - see Custom save labels. If the asset has an Integer

parameter, it can optionally be set to the save that was clicked on.

Additional properties for styling will be shown if used in an Adventure Creator menu.

PROTIP: When using Unity UI, they can be linked to UI Button components.
�

�390

ProfilesList elements

Profiles display a list of Save profiles.

They can be used to select a profile for switching, deleting, or renaming. They have the

following properties:

Fixed Profile ID only?

If checked, then only one profile will be shown. This is useful if you want to arrange your

files non-linearly.

Include active?

If unchecked, the active profile will not be displayed. The name of the active profile can

also be displayed in Label elements.

Maximum number of slots?

The maximum number of slots, if Fixed Profile ID? is unchecked. If there are more

profiles than slots, they can be shifted using a Button with a Click type of Offset Element

Slot.

Switch profile when click on?

If checked, then clicking a profile will result in it being made active.

ActionList when click

The ActionList asset that can be run after a switch, if Switch profile when click on? is

checked. This can be used to update the UI as required.

ActionList after selecting

The ActionList asset that can be run when clicked, if Switch profile when click on? is

unchecked. This can be used in conjunction with the Save: Manage profiles Action to

rename and delete profiles. If the asset has an Integer parameter, it can optionally be set

to the profile that was clicked on.

Additional properties for styling will be shown if used in an Adventure Creator menu.

PROTIP: When using Unity UI, they can be linked to UI Button components.
�

�391

Journal elements

Journals display text from a number of pages. Such text can either be tied to the

element, or managed separately in Documents.

The open page can be changed by using a Button element with a Click type set to Offset

Journal, or with the Menu: Set journal page Action. Pages can be added or removed with

the Menu: change state Action.

Journal elements have the following properties:

Journal type

Where pages are sourced from. The available options are:

 New Journal

 It is a new journal and has its own pages.

 Display Existing Journal

 It shares pages with another Journal element on the same Menu. Since a Journal

element can only display one page at a time, this allows you to show two side-by-

side by having a second one share pages from the first.

 Display Active Document

It shows the page text of the currently-active Document, which is defined

separately in the Inventory Manager and opened using the Document: Open Action.

Page text

When Journal type is New Journal, this is where pages are created.

Page offset #

When Journal type is Display Existing Journal, this allows you to offset the open page

compared with the journal it shares with.

Additional properties for styling will be shown if used in an Adventure Creator menu.

PROTIP: A tutorial on using Journals to create a diary system can be found online.
�

PROTIP: When using Unity UI, they can be linked to UI Text components.
�

NOTE: In order for any in-game changes made to a journal to be recorded in save

game files, all pages must be listed in the Speech Manager - see Gathering game text.
�

�392

http://adventurecreator.org/tutorials/creating-diary-system

Input elements

Input elements provide a text box that the player can write into.

They can be used for things like password puzzles and name-entry. Their values can be

converted to Global string Variables by using the Variable: Set Action.

When using Adventure Creator menus, they have the following properties:

Default text

The box's text when the menu is turned on.

Input type

What type of input is allowed. It has the following options:

 Alpha Numeric

 Only letters and numbers can be entered.

 Numeric Only

 Only numbers can be entered.

 Allow Special Characters

 Any character type can be entered.

Character limit

The maximum number of characters that can be entered.

'Enter' key's linked Button

When given the name of a Button element in the same menu, pressed Enter/Return inside

the Input will have the same effect as clicking the Button.

PROTIP: When using Unity UI, they can be linked to UI InputField components.
�

�393

Toggle elements

Toggles are a special type of button that can be toggled between On and Off states.

They can be used to toggle subtitles, or a Global boolean Variables. They have the

following properties:

Label text

The label that is shown at all times.

Append state to label?

If checked, the state of the Toggle will be added to the label, e.g. "Subtitles: On".

Toggle type

What the toggle state is linked to. The available options are:

 Custom Script

 Toggles between on and off and nothing else. The OnMenuElementClick custom

event can be used to run code when clicked.

 Subtitles

 Toggles the visibility of subtitles - see Options data.

 Variable

 Represents the state of a Global boolean Variables.

Global boolean var

If the Toggle type is Variable, the ID of the Global boolean Variables to link to.

ActionList on click

If the Toggle type is either Custom Script or Variable, the ActionList asset to run when it

is clicked. This asset's When running field should be set to Run In Background to avoid

interference.

Alternative input button

When given the name of an input defined in the Input Manager, pressing that input will be

the equivalent of clicking the element.

Change when cursor over?

If checked, the cursor can have its icon changed when over it to one defined in the Cursor

Manager.

Additional properties for styling will be shown if used in an Adventure Creator menu.

�394

PROTIP: When using Unity UI, they can be linked to UI Toggle components.
�

�395

Cycle elements

Cycles are a special type of button that cycle their label through a set of texts when

clicked. They can be used to change the language, or a Global Variable. They have the

following properties:

Cycle type

What texts are cycled through when clicked, and what this affects. The available options

are:

 Language

Cycles through the game's available languages - see Translations. The game's

active language is linked to the element. If voice audio and display text languages

are separated, you can choose which language type this affects.

 Custom Script

Cycles through user-defined texts and nothing else. The OnMenuElementClick

custom event can be used to run code when clicked.

 Variable

Links the current label's index to a Global Integer or Popup Variable. If linked to a

a Popup, then labels will match those defined by the variable.

Choices

If the Cycle type is either Custom Script or Variable, the available texts that can be

cycled through are defined here.

Global Variable ID

If the Cycle type is Variable, the ID of the Global integer Variable to link to.

ActionList on click

If the Cycle type is either Custom Script or Variable, the ActionList asset to run when it

is clicked. This asset's When running field should be set to Run In Background to avoid

interference.

Alternative input button

When given the name of an input defined in the Input Manager, pressing that input will be

the equivalent of clicking the element.

Change when cursor over?

If checked, the cursor can have its icon changed when over it to one defined in the Cursor

Manager.

Additional properties for styling will be shown if used in an Adventure Creator menu.

�396

PROTIP: When using Unity UI, they can be linked to both UI Button and Dropdown

components.
�

�397

Slider elements

Sliders are bars whose length represents a value. They can be used to change volumes,

or a Global float variable. They have the following properties:

Slider affects

What information the slider is linked to, and what it affects. The available options are:

 Custom Script

 Changes its own value and nothing else. The OnMenuElementClick custom event

can be used to run code when clicked.

 Float Variable

 Links to the value of a Global float variable.

 Music

 Links to the current music volume - see Options data.

 SFX

 Links to the current SFX volume - see Options data.

 Speech

 Links to the current speech volume - see Options data.

Global Float var

If the Slider affects is Float Variable, the Global float variable to link to.

Min/max value

If the Slider affects is Custom Script or Float Variable, the minimum and maximum

values it can take.

ActionList on click

If the Slider effects is Custom Script or Float Variable, the ActionList asset to run when

its value is changed. This asset's When running field should be set to Run In

Background to avoid interference.

User can change value

If checked, the user can control the slider by interacting with it. Otherwise, it is read-only

- this is useful if you want to represent player stats like health as a metered bar.

Change when cursor over?

If checked, the cursor can have its icon changed when over it to one defined in the Cursor

Manager.

�398

Additional properties for styling will be shown if used in an Adventure Creator menu.

PROTIP: When using Unity UI, they can be linked to UI Slider components.
�

�399

Timer elements

Timers are a special type of slider that automatically animates their value when linked to

gameplay.

They can be used to represent the time left in a Conversation, Quick-time event, or in a

scene load. They have the following properties:

Timer type

What kind of value the timer represents. The available options are:

 Conversation

 Shows the time left of a timed Conversation. The Conversation must have Is

timed? checked in its own Inspector.

 Loading Progress

 Shows the time left of a current scene-load. Load scenes asynchronously? must

be checked in the Settings Manager - see Loading screens.

 Quick Time Event Progress

 Shows the progress the player has made in the current Quick-time event.

 Quick Time Event Remaining

 Shows how much time remains in the current Quick-time event.

Timer

Shows the current value of a Timer, relative to its minimum and maximum values.

Invert value?

If checked, the appeared value will be the inversion of the true value - that is, it will go

upward when the time goes down.

Value smoothing

If non-zero, enables smoothing. Higher values will result in more smoothing, so the

timer will react more slowly to value changes.

Additional properties for styling will be shown if used in an Adventure Creator menu.

PROTIP: When using Unity UI, they can be linked to UI Slider components.
�

�400

Drag elements

Drag elements allow for drag effects in a menu.

They can be used to drag entire menu or a single element within a pre-defined boundary.

This also works on elements that are larger than the menu they're contained in, making it

useful for displaying documents that are larger than the screen. They have the following

properties:

Label

The label to display.

Drag type

What effect dragging has. The available options are:

 Entire Menu

 The parent menu can be dragged.

 Single Element

 A single element can be dragged.

Element name

If the Drag type is Single Element, the name of the element to drag.

Drag boundary

The boundary limits in which dragging can occur.

Change when cursor over?

If checked, the cursor can have its icon changed when over it to one defined in the Cursor

Manager.

PROTIP: This Element type is not necessary in Unity UI menus, as it can be recreated

using ScrollBar and ScrollRect components. A tutorial on using this for Adventure

Creator menus can be found online.

�

�401

https://adventurecreator.org/tutorials/scrolling-through-documents/

Graphic elements

Graphic elements allow for textures to be drawn.

They can be used to either display a texture, or a character's portrait graphic. They have

the following properties:

Graphic type

What kind of graphic to draw. The available options are:

 Dialogue Portrait

 Shows the currently-speaking character's portrait graphic, as defined in the Player

or NPC Inspector.

 Normal

 Shows a specific texture.

 Document Texture

 Shows the associated texture of the currently-active Document.

 Page Texture

 Shows the associated texture of the currently-active Document page.

Objective Texture

Shows the associated texture of the currently-selected Objective.

Texture

The texture to draw. This can optionally be animated if it consists of an animation

sequence.

Additional properties for styling will be shown if used in an Adventure Creator menu.

PROTIP: When using Unity UI, they can be linked to both UI Image and Raw Image

components.
�

�402

11.3. The default interface

The default interface is created when using the New Game Wizard to create your

Managers. While you can choose to use Unity UI or Adventure Creator as the basis, you

can switch back and forth between these drawing modes via each menu's Source field at

any time.

The default set of menus are designed to provide you with the key menus needed to

create an adventure game, and is accessible directly via the Default_MenuManager Menu

Manager asset file. They include:

• Pause

• Options

• Save

• Load

• Profiles

• Inventory

• InGame

• Conversation

• Interaction

• Subtitles

• Container

• Crafting

• Document

• Objectives

• Hotspot 

�403

The default Pause menu

The Pause menu pauses the game and allows access to the Options, Save and Load

menus:

It is turned on when the player presses an input key named "Menu" (which is the Escape

key by default), or clicks on the InGame menu.

If Save profiles are enabled, you can allow access to the Profiles menu by un-hiding the

ProfilesButton element.

The Save button is automatically hidden

NOTE: The Save button is automatically hidden when the menu is opened while in a

gameplay-blocking cutscene, since saving is prevented at this time. If you open this

menu with the Menu: Change state Action, be sure to set the ActionList's When

running field to Run In Background so that gameplay is not interrupted.

�

�404

The default Options menu

The Options menu allows the changing of language, audio levels and subtitles:

These components are all linked to Options data. It is accessed via the OptionsButton

element in the Pause menu.  

�405

The default Save menu

The Save menu allows the saving of save-game files:

It is accessed via the SaveButton element in the Pause menu.

PROTIP: A tutorial on extending this menu to accept custom save labels can be found

online.
�

�406

http://adventurecreator.org/tutorials/custom-save-game-labels

The default Load menu

The Load menu allows the loading of save-game files:

It is accessed via the LoadButton element in the Pause menu.  

�407

The default Profiles menu

The Profiles menu displays all Save profiles present:

Here you can switch between profiles, create new ones, and delete the active. It is

accessed via the ProfilesButton element in the Pause menu, though this element is

hidden by default.  

�408

The default Inventory menu

The Inventory menu displays all Inventory items currently held by the player:

It is accessed by hovering the mouse over the top of the screen during normal gameplay.

If the player is carrying more items than can fit in the InventoryBox, the ShiftLeft and

ShiftRight Buttons allow you to scroll through them.  

�409

The default InGame menu

The InGame menu shows a single button to open the Pause menu:

This allows the Pause menu to be opened without the need for invoking the "Menu" input

axis, and is useful when playing on mobile devices. It is visible in the lower-left corner of

the screen during gameplay.

PROTIP: See this menu flashing at runtime? As this menu's Appear type is set to

During Gameplay, it will be turned off anytime gameplay is blocked - even if only for

a split-second. To prevent a momentary ActionList from interrupting gameplay, set its

When running field to Run In Background.

�

�410

The default Conversation menu

The Conversation menu shows the active Conversation's dialogue options:

It also includes a Timer that shows how the duration left if the Conversation is timed. It is

only visible when a Conversation is active.

PROTIP: When rendered Unity UI, the available options can be scrolled through using

the mouse-wheel. This is made possible by the Mousewheel Scroll UI component

attached to its Canvas root. This component can be attached elsewhere to support

scrolling through other element types.

�

�411

The default Interaction menu

The Interaction menu shows the available interactions when in Choose Hotspot Then

Interaction mode:

This is a special-case menu in that it is used only when using this particular interface

type. If Include Inventory items in Interaction menus? is checked in the Settings

Manager, then it will also include Inventory items that can be used on the clicked

Hotspot/item.

The Unity UI counterpart of this menu embeds the icon graphics directly within its Image

components - they are not pulled from the Cursor Manager icon graphics.

PROTIP: When creating new Interaction icons in the Cursor Manager, this menu must

be updated with new Interaction elements in order for them to show. Normally, icons

that are not appropriate for the active Hotspot will not be shown - but this can be

changed by unchecking Auto-hide Interaction icons based on Hotspot? in the

Settings Manager.

�

�412

The default Subtitles menu

Shows the most recently-said line of dialogue, as well as who is speaking:

It will appear whenever dialogue is spoken, provided that subtitles are enabled - see

Options data.  

�413

The default Container menu

Shows the Inventory items in the currently-opened Container:

Items can be transferred between the Container and the player's own inventory. The

menu opens automatically when using the Container: Open Action.  

�414

The default Crafting menu

Allows for recipes to be crafted - see Crafting:

Items can be placed into the crafting grid on the left, and combined to create a new item

on the right. This menu can only be turned on using the Menu: Change state Action.  

�415

The default Document menu

Allows for the viewing of the active Document.

If the Document consists of multiple pages, the active page can be changed via the arrow

buttons at the bottom. This Menu can only be opened via the Document: Open Action.  

�416

The default Objectives menu

Displays a list of all active, completed and failed Objectives.

Clicking an Objective from the list reveals more details about it. To turn on this Menu,

use the Menu: Change state Action.  

�417

The default Hotspot menu

Displays the name of the active Hotspot or Inventory item:

The text also includes the current Interaction name if set within the Cursor Manager. It is

only visible during normal gameplay.

Some menu element types also have a Hotspot label override property that can be used

to set the Hotspot text. This can also be set dynamically by hooking into the

OnRequestMenuElementHotspotLabel custom event.

PROTIP: This menu is at the bottom of the menu stack because it depends on the ones

above it for its display. When hovering over the Inventory menu, for example, the label

will show the names of Inventory items. As menus are updated in the order in which

they are listed, those that depend on others must be placed further down.

�

�418

11.4. Navigating menus directly

Menus can be navigated with the mouse (by hovering over each element with the pointer),

or directly (by using a keyboard or controller to move between elements in turn). Options

are available at the top of the Menu Manager to allow for direct-navigation:

These options can be used to directly-navigate menus when the game is paused, or when

a Conversation is active. To allow for this behaviour during gameplay, the Engine:

Manage systems Action must be used to allow it. Note that enabling this will not

automatically disable player movement, which can be done using the Player: Constrain

Action.

Menus can then be navigated with the Horizontal and Vertical input axes. For Adventure

Creator menus, elements can then be selected with the InteractionA input button. For

Unity UI menus, they can be selected with the Submit input button.

Unity UI menus can only be directly-controlled if an element is designated to become

selected when the menu is turned on. This can be done either with the Menu: Select

element Action, or at the bottom of the menu’s properties:

The selected element can be manually-set using the Menu: Select element Action.  

NOTE: When a gameplay Menu is set to be directly-controlled, it is important that the

game is not in a cutscene when it is turned on. If the Menu is turned on using the

Menu: Change state Action, ensure that its ActionList's When running field is set to

Run In Background, so that it does not interrupt gameplay at this moment.

�

NOTE: The order of Menus as they appear in the Menu Manager determines their

selection priority. If two or more Menus are enabled at the same time, then the one

furthest down the list will be made direct-controllable.

�

�419

11.5. Menu scripting

The scripting guide has entries for the Menu and MenuElement classes online.

To retrieve a List of all Menus at runtime, use:

PlayerMenus.GetMenus ();

To get a specific Menu or MenuElement by name, use:

PlayerMenus.GetMenuWithName (string menuName);

PlayerMenus.GetElementWithName (string menuName, string

menuElementName);

A Menu can be turned on and off through script with:

myMenu.TurnOn ();

myMenu.TurnOff ();

Note that if it’s Appear type condition will still control the Menu’s visibility. If it is set to

e.g. During Gameplay, it can be prevented from showing by locking it:

myMenu.isLocked = true;

To reposition a Menu with an Appear type of Manual, use:

myMenu.SetCentre (Vector2 newPosition);

All element types are subclasses of the MenuElement class. To get the true class instance

from a MenuElement variable, simply cast it:

MenuButton myButton = PlayerMenus.GetElementWithName ("MyMenuName",

“MyButtonName") as MenuButton;

MenuElements can also be used to retrieve information about Unity UI linked to them, for

example:

MenuInventoryBox myInventoryBox = PlayerMenus.GetElementWithName

("MyMenuName", “MyInventoryBoxName”) as MenuInventoryBox;

UnityEngine.UI.Button uiButton = myInventoryBox.GetUIButtonWithItem

(inventoryItemID);

To simulate the clicking of a MenuElement, use:

PlayerMenus.SimulateClick (string menuName, string menuElementName,

int slot);  

�420

http://adventurecreator.org/scripting-guide/class_a_c_1_1_menu.html
http://adventurecreator.org/scripting-guide/class_a_c_1_1_menu_element.html

If you have modified a Menu's appearance, you may need to recalculate it in order to

update its display. To do this call:

KickStarter.playerMenus.RecalculateAll ();

You can also rebuild the runtime interface by referencing another Menu Manager:

KickStarter.playerMenus.RebuildMenus (MenuManager menuManager);

Additional instances of Menus can also be created by creating a new instance and copying

its data:

Menu myMenu = ScriptableObject.CreateInstance <Menu>();

myMenu.CreateDuplicate (menuToCopy);

It can then be registered with the PlayerMenus component to have it’s display and

interaction handling updated automatically:

KickStarter.playerMenus.RegisterCustomMenu (myMenu);

And unregistered with:

KickStarter.playerMenus.UnregisterCustomMenu (myMenu);

If a Menu drawn using Unity UI, then AC will generate an EventSystem to control it (unless

one is manually assigned in the Menu Manager). This EventSystem can be read with:

KickStarter.playerMenus.EventSystem;

Menus have the following custom events:

OnGenerateMenus ();

OnMenuTurnOn (Menu menu, bool isInstant);

OnMenuTurnOff (Menu menu, bool isInstant);

OnMouseOverMenu (Menu menu, MenuElement menuElement, int slot)

OnMenuElementClick (Menu menu, MenuElement menuElement, int slot, int

buttonPressed);

OnMenuElementShow (MenuElement menuElement);

OnMenuElementHide (MenuElement menuElement);

OnHideSelectedElement (Menu menu, MenuElement menuElement, int slot);

OnMenuElementShift (MenuElement menuElement, AC_ShiftInventory

shiftType);

string OnRequestMenuElementHotspotLabel (Menu menu, MenuElement, int

slot, int language);  

�421

https://docs.unity3d.com/Manual/EventSystem.html

12. Working with Timeline  

�422

12.1. Timeline integration overview

Adventure Creator has a number of ways in which it integrates with Unity's Timeline

feature:

• The Engine: Control Timeline Action, which can be used to control the playback of

Directors.

• The Remember Timeline Action, which stores the current playback state of a Timeline

in save game files.

• The following custom tracks:

• Main Camera, which allows for the editing of MainCamera shots on a Timeline

• Camera Fade, which allows for camera fading in and out

• Speech, which allows for the triggering of speech on a Timeline

• Character Animation 2D, which animates 2D characters based on their motion

• Head Turn, which controls a 3D character’s head direction

PROTIP: From Unity 2018.3 and onward, the 3D Demo relies on Timeline for its

opening and closing cutscenes.
�

NOTE: If Timeline is removed using Unity's Package Manager, then ACIgnoreTimeline

must be defined as a Scripting Define Symbol in order for AC to compile.
�

�423

https://docs.unity3d.com/Manual/TimelineSection.html
https://docs.unity3d.com/Manual/PlatformDependentCompilation.html

12.2. Timeline playback

The Engine: Control Timeline Action can be used to play, pause, resume and stop Playable

Director components:

If you wish for your Timeline to be dynamic, or if the objects it animates are spawned in

at runtime (like the Player), you can re-bind GameObjects to the various tracks. Checking

Remap bindings? will bring up a selector field for each of the tracks found, allowing you

to re-assign fields as necessary. These fields support ActionList parameters.

NOTE: Particularly If you are using a custom motion controller to move your character,

you may find that it is necessary to disable certain components, or alter their state,

while they are affected by a Timeline. This can be done by hooking into custom

events.

�

�424

12.3. AC Timeline tracks

AC provides the following custom tracks:

• Main Camera, which allows for the editing of MainCamera shots on a Timeline

• Camera Fade, which allows for camera fading in and out

• Speech, which allows for the triggering of speech on a Timeline

• Character Animation 2D, which animates 2D characters based on their motion

• Character Animation 3D, which animates 3D characters based on their motion

• Head Turn, which controls a 3D character’s head direction

• Shapeable, which controls a Shapeable component

�425

12.3.1.Main Camera tracks

The Main Camera track allows you to edit the MainCamera's position when a Timeline is

running. It is available under AC -> Main Camera Track when creating a new track:

The MainCamera works by snapping itself to the various camera types you define in your

scene - usually with the Camera: Switch Action. With this track, you can override this

default behaviour and have it snap to cameras in the Timeline. Both snap-cutting and

transitioning are supported.

When a clip is created in the track, you can assign which camera the MainCamera attaches

itself to via the Game Camera field in its Inspector:

Alternatively, you can create a clip already mapped to a camera by right-clicking in the

track and choosing Add From Camera from the context menu.

The clip’s Inspector also allows you to set an optional Shake intensity, which will shake

the MainCamera during that clip. This effect will only run at runtime - not in Edit mode.

When the Timeline ends, or when there is no shot at the current point in time, the

MainCamera will revert back to its usual behaviour - unless Sets camera after running?

is checked in one of the track Inspectors.

NOTE: Only one track of this type should exist in a given Timeline, and only one track

of this type should run at any one time.
�

PROTIP: Set in the track's Inspector, this track type can optionally call the

OnSwitchCamera custom event.
�

�426

12.3.2.Camera Fade tracks

The Main Camera track allows you to fade the camera in and out when a Timeline is

running. It is available under AC -> Camera Fade Track when creating a new track in

the Timeline window:

Each clip on this track requires an Overlay texture - this should be a pure black texture

for a black fade. The texture is assigned in the clip’s Inspector:

This texture will be overlaid on top of the game view when the clip is active. To create

the fade in effect, set the clip’s Ease In Duration value:

Similarly, to fade out, set the clip’s Ease Out Duration value.  

�427

12.3.3.Speech tracks

The Speech track allows you to trigger character (and narrator) dialogue when a Timeline

is running. It is available under AC -> Speech Track when creating a new track in the

Timeline window:

All clips within a single track will be spoken by the same character. The character that

speaks its lines is set within the track's Inspector:

Unless the speaking character is the default Player, you must assign them as a prefab into

the Speaker prefab field. This allows the Timeline be run from any scene without having

to rebind it - since the speaking character will rely on the prefab's Constant ID value

identify them in the current scene. For more on Constant IDs, see Saving scene objects.

When a clip is created in the track, you can enter in the speech line's text in its Inspector:

This text will be included for translation when gathering game text, so long as it is

referenced by a Playable Director or Engine: Control Timeline Action. Speech audio will

also play automatically.

�428

The Speech track has two playback modes, set in the track's Inspector:

Natural

In this mode, speech lines will last for as long as they would if played via the Dialogue:

Play speech Action. Clip length will have no bearing on playback - only the clip start

point will. Subtitle scrolling and display options in the Speech Manager will affect its

duration.

Clip Duration

In this mode, speech lines will last for the duration of their associated clip. This gives you

precise control over when a line is displayed in relation to other elements in the Timeline.

Speech tracks can be previewed in the Game window when the game is not running. To

do this, you must first make sure that a Menu that can display subtitles exists in your

Menu Manager. The default Subtitles Menu is one such Menu.

Next, enter the name of this Menu into the Speech Manager's Subtitle preview menu

field:

This menu will then be used to preview speech tracks while in Edit mode.

NOTE: Only one track per character should be defined in any given Timeline.
�

NOTE: Speech skipping is prevented when played from a Timeline.
�

PROTIP: Only Adventure Creator menus can preview speech tracks. If the supplied

preview menu uses Unity UI, it will temporarily switch Source to Adventure Creator.
�

�429

12.3.4.Character Animation 2D tracks

When controlling 3D characters in Timeline, Unity's Root Motion feature allows their

positions to be updated automatically based on their animation. For example, when

playing a walking animation, they'll automatically move forward.

Since Root Motion is not available for 2D, however, this is not an option for sprite-based

characters. As an alternative, the Character Animation 2D track offers the opposite

approach: when characters move, their animations will update to match their changing

position.

It is available under AC -> Character Animation 2D Track when creating a new track in

the Timeline window:

Assign the character by binding them to the track:

While a clip from this track is active, it will cause the character's walk or run animation to

play as they move around the scene. By default, they will turn to face the direction of the

motion, but this can be overridden by the Face fixed direction? option. This option can

also be used to turn stationary characters.

NOTE: For this to be able to control a character, they must have Turn root object in

3D? unchecked in their Inspector. Also note that if the character is moved using an

Animation track, the character’s root object must be moved - not the sprite child.

�

NOTE: This track type does not support previewing.

�

�430

12.3.5.Character Animation 3D tracks

When controlling 3D characters in Timeline, Unity's Root Motion feature allows their

positions to be updated automatically based on their animation. For example, when

playing a walking animation, they'll automatically move forward.

If a character does not use Root Motion for their animations, however, this track can be

used to play back their idle, walking and turning animations automatically based on their

position changes.

It is available under AC -> Character Animation 3D Track when creating a new track in

the Timeline window:

Assign the character by binding them to the track:

While a clip from this track is active, it will cause the character's walk, run or turn

animation to play as they move around the scene. This should typically be used in

conjunction with an Animation track that is used to control that character's root position

and rotation at the same time.

NOTE: This track type does not support previewing.

�

�431

12.3.6.Head Turn tracks

This track type allows you to assign a Transform that a 3D character faces turns their

head towards. The character must be animated with Mecanim and support IK head-

turning. A offset vector, in the Transform’s co-ordinate space, can optionally be applied

as well.

To support IK head-turning, the character needs to have Use IK for head-turning?

checked in their Inspector, and have IK Pass enabled in their Animator’s base layer.

This track is assigned per-character, and each clip requires a Transform to be assigned.

When the clip is played, the character’s head will turn to that Transform with an influence

equal to that clip’s weight.

NOTE: This track type does not support previewing.

�

�432

https://docs.unity3d.com/Manual/InverseKinematics.html

12.3.7.Shapeable tracks

This track type allows you to control the value of a Blendshape in a Skinned Mesh

Renderer, by setting the active key of a Shapeable component.

Shapeable components allow the grouping of a model’s Blendshapes, so that changing

the value of a particular shape will inversely affect others in the same group. This is

particularly useful when using Blendshapes to animate a character’s expressions, since

other expression shapes can be disabled automatically when one is animated.

This track type is bound to a Shapeable component. In each track’s Inspector, you can

define the Group and Key you wish to affect, as well as its intensity. Multiple tracks can

be blended together, provided they affect the same Shape Group.

NOTE: This track type does not support previewing.

�

�433

12.4. Timeline scripting

Timeline features the following custom events:

OnCharacterEnterTimeline (Char character, PlayableDirector director,

int trackIndex);

OnCharacterExitTimeline (Char character, PlayableDirector director,

int trackIndex);  

�434

Chapter III: Extending functionality

�435

13. Integrating new code

�436

13.1. Integrations

AC works with a number of third-party assets. They are available in a few places, so their

installation process will vary.

Built-in, AC has integrations for the following:

• Addressables

• Localization

• Playmaker

• SALSA With RandomEyes

• TextMesh Pro

Details of these integrations can be found below.

Online, AC’s Downloads page has official integrations for:

• AI Tree

• Articy:draft

• Cinemachine

• Kinematic Character Controller

• Input System

• UCC

The AC Wiki also has a number of unofficial integrations, including:

• A* Pathfinding Project

• Anima 2D

• Animal Controller

• Bolt

• Cinema Director

• Easy Performant Outline

• Face FX

• Final IK

• Motion Matching

• Rewired

• Simple Touch Controller

• SLATE

• Spine

• Third Person Motion Controller

• Unity First Person Controller

• Unity Third Person Controller

�437

https://adventurecreator.org/downloads
https://adventure-creator.fandom.com/wiki/Category:Integrations

Addressables

AC supports Unity’s Addressables package in a number of areas. Addressables can be

used to reference speech files, scene files, Player prefabs, Menu prefabs and save data.

By default, relevant options are exposed automatically when Addressables is imported

into a project. If you have removed the included AC.asmdef file, you can manually

expose these options by defining the AddressableIsPresent scripting define symbol.

Localization

Unity’s Localization package can be used in tandem with AC’s Speech Manager for

translation data. See Localization integration for details.

By default, relevant options are exposed automatically when Localization is imported into

a project. If you have removed the included AC.asmdef file, you can manually expose

these options by defining the LocalizationIsPresent scripting define symbol.

Playmaker

Playmaker is a popular visual scripting system for Unity. Adventure Creator can call

Playmaker Events with the ThirdParty: PlayMaker Action. Global Variables can also be

linked to Playmaker's Variables – see Linking with Playmaker Variables.

To expose relevant options and Actions, define PlayMakerIsPresent as a scripting define

symbol.

SALSA With RandomEyes

SALSA With RandomEyes is a 2D and 3D lip-syncing Unity asset. While 3D characters

made in Adventure Creator can make use of Salsa's 3D component without conflict, 2D

characters require special set up – see Lip syncing.

To enable this integration, define SalsaIsPresent as a scripting define symbol.

Text Mesh Pro

Description

AC support’s Unity’s TextMesh Pro package for crisper text rendering. To have a Menu

rely on TextMeshProUGUI component instead of the standard Text component, check Use

TMPro components? in its Properties panel. If such components are not found, the Menu

will default back to Text.

�438

https://docs.unity3d.com/Manual/com.unity.addressables.html
https://docs.unity3d.com/Packages/com.unity.localization@1.0/manual/index.html
https://docs.unity3d.com/Manual/CustomScriptingSymbols.html
https://docs.unity3d.com/Manual/CustomScriptingSymbols.html
https://docs.unity3d.com/Manual/CustomScriptingSymbols.html
http://crazyminnowstudio.com/projects/salsa-with-randomeyes-lipsync/
https://docs.unity3d.com/Manual/CustomScriptingSymbols.html
http://By%20default,%20relevant%20options%20are%20exposed%20automatically%20when%20Localization%20is%20imported%20into%20a%20project.%20%20If%20you%20have%20removed%20the%20included%20AC.asmdef%20file,%20you%20can%20manually%20expose%20these%20options%20by%20defining%20the%20LocalizationIsPresent%20scripting%20define%20symbol.

By default, this option is exposed automatically when Text Mesh Pro is imported into a

project. If you have removed the included AC.asmdef file, you can manually expose

these options by defining the TextMeshProIsPresent scripting define symbol.  

�439

13.2. Custom scripting

Custom scripting in AC games can either involve calling non-AC scripts from within AC,

or by calling AC functions and variables from non-AC scripts.

To call non-AC scripts from within AC, you can use the Object: Send message and Object:

Call event Actions. Both of these Actions can be used to invoke functions in scene

scripts. Note that function parameters cannot be set when using the Object: Call event

Action - this is a limitation of Unity's Editor tools.

You can also write your own Actions that plug into the ActionList system - see Custom

Actions.

Custom code can also be called when AC performs common tasks - see Custom events.

All of AC's scripts use the AC namespace. To reference them, you will need to include

this in your script. This can be done by beginning your script with:

using AC;

A reference for AC's entire API is available in the online Scripting Guide. This guide gives

descriptions for all classes, and public functions and variables.

GameEngine and PersistentEngine components can be accessed via static variables in

KickStarter. For example:

KickStarter.playerInput

KickStarter.stateHandler

Similar variables also exist for the MainCamera and Player objects:

KickStarter.mainCamera

KickStarter.player

And also for Managers:

KickStarter.settingsManager

KickStarter.variablesManager

PROTIP: A community-led scripting resource for AC can be found at the AC wiki.
�

PROTIP: The reference page for each component can be easily accessed by clicking the

"Help" icon in the upper-right corner of its Inspector.
�

PROTIP: An API reference to any Manager field can be shown by right-clicking the

field's label.
�

�440

http://adventure-creator.wikia.com/wiki/Adventure_Creator_Wikia
http://adventurecreator.org/scripting-guide/
http://adventurecreator.org/scripting-guide/class_a_c_1_1_kick_starter.html

To determine if the game is in regular gameplay, cutscene, or paused, read:

KickStarter.stateHandler.IsInGameplay ();

KickStarter.stateHandler.IsInCutscene ();

KickStarter.stateHandler.IsPaused ();

AC’s startup processes include the following events:

OnInitialiseScene ();

OnAddSubScene (SubScene subScene);

OnManuallyTurnOnAC ();

OnManuallyTurnOffAC ();

When a log is made to the Console, it can be read or modified with the event:

object OnDebugLog (object message, DebugLogType debugLogType, Object

context, bool isDisplayed);

System-specific coding help is given at the end of each section:

• Character scripting

• Camera scripting

• Interaction scripting

• Inventory scripting

• Variable scripting

• Save scripting

• Speech scripting

• Menu scripting 

NOTE: As Managers are asset files, changes to them through code will survive game

restarts. Therefore, separate code that runs when the game begins to set any such

fields to their default values.

�

NOTE: To force the game into Cutscene or Pause mode, Interaction scripting.

�

�441

13.3. Custom events

AC has a number of events that will run when common tasks are performed - for

example, whenever a character speaks, or the mouse hovers over a Menu element.

Such events can be listened out for, so that additional logic can be run at the same time.

For example, a sound can be played whenever a "Score" variable's value is increased.

AC provides two ways to subscribe to events:

1. By defining them in the Events Editor or Event Runner component

2. By accessing them through custom script

Events Editor / Event Runner component

Using AC's Editor tools, it is possible to listen out for a number of events, and run

ActionList asset files when they are fired.

Such events can be declared either globally, or per-object. To declare global events,

choose Adventure Creator -> Editors -> Events Editor from the top toolbar. Here, you

can create new events based on an initial condition, assign a label, and an ActionList to

run.

Some events can be given additional conditions. For example, the Menu / Turn on event

can optionally be set to only run when a specific Menu is turned on - as opposed to all.

Once an ActionList asset is assigned, the event's parameters can optionally be assigned to

it. Such parameters are dynamic, and will depend on the event. For example, the

Inventory / Add event can pass the added item to an ActionList's Inventory Item

parameter. If the ActionList is automatically created and assigned (by clicking the ‘+’

icon beside it), such parameters will be automatically generated and assigned.

Global events will be fired at any time during runtime. To create events that only fire at

specific times, the Event Runner component can be used.

When attached to a GameObject in the scene, the Event Runner allows events to be

declared much in the same way as global events. However, they will only be fired while

the component is present and enabled in the scene.

Some events also benefit from additional conditions when run from an Event Runner. For

example, the Hotspot / Interact event can optionally be set to only run when a specific

Hotspot is interacted with.

�442

Custom script events

Custom scripts offer more event types than the Editor, and are more flexible when it

comes to the number of parameters passed to them.

Custom scripts can access AC's events from the EventManager class. These events are

static, and should be subscribed to in OnEnable, and unsubscribed in OnDisable. For

example, this code properly subscribes to the OnEnterGameState event, which is called

whenever the "game state" (i.e. normal gameplay, cutscene mode, etc) is changed:

void OnEnable () { EventManager.OnEnterGameState +=

My_OnEnterGameState; }

void OnDisable () { EventManager.OnEnterGameState -=

My_OnEnterGameState; }

void My_OnEnterGameState (GameState newGameState)

{

      Debug.Log ("The new gamestate is " + newGameState);

}

Each event has its own set of parameters that must be declared in the listener. A list of

relevant events is provided at the end of each of the following chapters:

• Character scripting

• Camera scripting

• Interaction scripting

• Inventory scripting

• Variable scripting

• Save scripting

• Speech scripting

• Menu scripting

• Timeline scripting

All events, together with descriptions, can also be found in the Scripting guide.

PROTIP: A tutorial on working with custom events can be found online, and another

example can be found in Camera effects.
�

�443

http://www.adventurecreator.org/tutorials/calling-custom-events
https://adventurecreator.org/scripting-guide/class_a_c_1_1_event_manager.html
https://adventurecreator.org/scripting-guide/class_a_c_1_1_event_manager.html

13.3. Integrating other gameplay

While Adventure Creator is intended primarily for traditional adventure games, other

gameplay mechanics (such as combat, driving, etc) can be added on through careful

integration of other assets or custom scripts. However, as each such game is unique, the

procedure to do so is also unique - so it is important to understand how AC is designed

before doing so.

First, it is strongly recommended to have a solid understanding of how AC works when

used by itself. The multi-hour tutorial videos can provide this, and watching all of them

will give you a good all-round knowledge of AC's workflow regardless of the perspective

or gameplay your game will ultimately have.

AC will only operate in any Unity scene that contains an instance of its GameEngine

prefab - which keeps track of settings about the scene. This is generated automatically

when you use the Scene Manager.

When the first such scene is run, the GameEngine will spawn an instance of AC's

PersistentEngine prefab - which keeps track of your player's progress and any game-

wide settings. If you then switch to a "non-AC" scene (i.e. one without a GameEngine) the

PersistentEngine will go to sleep, and will only reawaken when you enter an AC scene

again.

Therefore, if you want to keep your adventure game elements and non-adventure (e.g.

combat) elements in separate scenes, then it is generally quite simple to make a game

that shares the two.

It is also possible to send AC to sleep at any point - even in an AC scene - by calling the

KickStarter script’s static TurnOffAC function:

AC.KickStarter.TurnOffAC ();

This will cause all of AC's Update, LateUpdate, OnGUI and FixedUpdate calls to cease until

the script's TurnOnAC function is called:

AC.KickStarter.TurnOnAC ();

This approach would be suitable if you wanted to disable AC entirely midway through a

scene, and re-enable it later on.

If, however, you want a more closely-merged integration - for example, replace AC

gameplay with combat but retain AC's Menu system - you can use the Engine: Manage

systems Action to selectively disable any of AC's systems. To prevent movement and

interactions, for example, you would use this Action to disable the Movement and

Interaction systems, and re-enable them at a later time.

�444

http://adventurecreator.org/tutorials

Disabling individual systems will prevent them from being updated - so if a character is

in the middle of walking, for example, then will only stop if you command them to with

the Character: Move along path Action. The same goes for ActionList, which can be

halted at anytime using the ActionList: Kill Action.

PROTIP: AC's scene-loading and data-restoration operations are called from Start

functions. If you have custom code that depends on this in a Start function as well,

you'll need to give its script's Script Execution Order a negative value to ensure that it

runs first. Alternatively, you can hook into the OnInitialiseScene custom event.

�

�445

https://docs.unity3d.com/Manual/ExecutionOrder.html

14. Further considerations 

�446

14.1. Game debugging

Adventure Creator has a few features that aid in debugging:

A status box that displays the current Player, camera, running ActionLists and game state

can be made to appear in the Game window. This can be enabled via the Show ‘AC

Status’ box field under Debug settings in the Settings Manager.

Actions can be marked as breakpoints, causing the Unity Editor to pause just before they

are run – allowing the user to check the state of a scene at that point in time. Actions can

be toggled as breakpoints via their context menu to the top-right of their node - see The

ActionList Editor.

Actions can also be commented from within the ActionList Editor window, by clicking the

cog in their top-right corner. These comments can be printed in the Unity Console via

the Action comment logging option, also in the Settings Manager.

When dealing with general gameplay and player issues, a good first step is to temporarily

rely on assets from one the two provided demo games (depending on your game's chosen

perspective). For example, the following sequence of tests can help determine the source

of an issue with a player character:

• Try dropping the demo game's player prefab into your scene file and run it. If they

run correctly, then the issue is likely with your character, and you can compare this

prefab with your own to find the key difference.

• If not, try loading the demo game, drop your own player prefab into the demo

scene, and run it. If it then runs correctly (missing cutscene animations

notwithstanding), then the issue is likely with your scene.

• If not, Manager asset files can be swapped with demo counterparts in the Game

Editor window. These can be changed individually (the main being the Settings

Manager) or all at once. This may help to identify an issue with one of your

Managers.

When dealing with issues with save-game files, it’s possible to read all data associated

with a given file - see Save-game file management.  

NOTE: Always be sure to re-assign your game's own Managers after testing. They can

be re-assigned in bulk by double-clicking the ManagerPackage asset file that the New

Game Wizard creates in your game's subfolder.

�

�447

14.2. Performance and optimisation

AC is designed with performance in mind. Depending on your game type, however, there

are some tricks you can employ to further boost performance:

Stream music and ambience tracks

Music and ambience tracks are loaded when an AC game begins, so the amount of such

data present will have a big impact on initial loading time. For all such such tracks, it is

therefore recommended to check Load In Background and enable Streaming in their

AudioClip Inspectors.

Speech audio AssetBundles

If your game relies on speech audio, it is recommended to rely on AssetBundles to store

audio and lipsync files. For more, see Speech audio in AssetBundles.

Scene asset bundles

If you make use of Unity's Asset Bundles feature, AC can open scenes that have been

loaded from an Asset Bundle rather than added to Unity's Build Settings. Provided that

you have a means to load your Asset Bundles before AC requires them, this feature allows

you to pack chunks of your game into bundles, so that they do not contribute to the

game's initial loading times. To allow for this, set the Settings Manager's Reference

scenes by field to Name, and then refer to your scenes in Actions and PlayerStarts by

scene filename, rather than build index number.

If necessary, you can delay the loading of a scene until the correct bundle is loaded by

writing a custom script that hooks into the OnDelaySceneChange custom event.

Scene addressables

As an alternative to placing scenes in Asset Bundles (above), scenes can also be opened

directly if they are marked as Addressable. This, too, allows scenes to be omitted from

Unity's Build Settings. To allow for this, set the Settings Manager's Reference scenes by

field to Name, check Load scenes asynchronously?, and then check Load scenes from

Addressables?. Once Unity's Addressables package is installed via Unity's Package

Manager, you can then refer to a scene by its Addressable name in Actions and

PlayerStarts.

Use SimpleCamera types

When creating cameras in 3D games, the SimpleCamera offers the best performance. Use

this type whenever a camera does not need to move.

Auto-create the PersistentEngine

The PersistentEngine is a scene-independent object that is required for an AC game to

run. By default, this is generated by spawning an instance of the PersistentEngine

prefab - which is located in Adventure Creator's Resources directory. If you have no

�448

need to attach your own scripts to this prefab, you can have AC instead generate this

object from scratch, removing the need to search Resources upon startup. To do this,

uncheck Spawn PersistentEngine prefab from Resources? in the Settings Manager.

Cache Camera.main

Unity’s Camera.main property is called often with AC, but is an expensive operation if a

scene has many cameras. If Cache ‘Camera.main’? is checked in the Settings Manager,

this property will be cached. However, this cache may need updating if the main camera

is not AC’s, and/or it is changed at runtime. This can be done by setting the value of:

AC.KickStarter.CameraMain

Define all Input axes

The Settings Manager will list your game's available Input Axes based on the settings

chosen. By default, AC will perform try/catch statements to avoid errors if these inputs

are not define. If the Assume inputs are defined? option beneath this list is checked,

these statements will be ignored. The Inputs will be need to be present in Unity's Input

Manager, but performance to the game will be increased.

Use Addressables for asset references

When loading save game files, AC will - by default - search your game's Resources folder

for asset files that may be referenced by your save data. However, it is more performant

to rely on Unity’s Addressables system instead – see Saving asset references.

Use Addressables for menus

Unity UI prefab Menus can also be loaded in via Unity’s Addressable system. Checking

Use Addressables for UI prefab references? at the top of the Menu Manager will replace

all Linked Canvas prefab fields with Canvas asset key fields, where the name of the

prefab’s Addressable key should be entered.

Use Addressables for Players

Player prefabs assigned in the Settings Manager can referenced by Addressable.

Checking Reference Player prefabs with Addressables? will replace all Player prefab

fields with Asset References. For this option to be available, Unity’s Addressables

package will need to be installed via Unity's Package Manager.

Use Resources subfolders

If you are not using Addressables for asset references (see above), then assets must be

instead placed in Resources folders. Normally, this is performed by searching for all

such assets with a Resources.LoadAll() function call. This is an intensive operation, and

can be an issue particularly on mobiles, if you have many such assets in a Resources

folder.

To get around this, you can place such assets in specially-named subfolders within your

Resources folder. If such subfolders are found, then AC will only search them – which can

�449

lower the memory usage considerably if you have many files to search. This can be done

by placing your Resources assets in the following folders:

• SaveableData/Textures – for Texture2D assets

• SaveableData/Audio – for AudioClip assets (this excludes speech audio)

• SaveableData/Animations – for AnimationClip assets

• SaveableData/Animators – for AnimatorController assets

• SaveableData/Materials – for Material assets

• SaveableData/ActionLists – for ActionList assets

• SaveableData/Prefabs – for GameObject prefabs (asset with a Transform component)

• SaveableData/VideoClips - for Video Clip assets (Unity 5.6 and later)

• SaveableData/Timelines - for Timeline assets (Unity 2017.1 and later)

For full optimisation, you should create subfolders with these names even if you have no

relevant assets to place in them, and place a “dummy” asset inside of each – for example,

a single AudioClip inside “SaveableData/Audio”. Note that once these subfolders exist,

however, all such assets must be placed in them correctly for AC to be able to find them.

Disable auto-unloading of assets

Unless Addressables are used for asset references (see above), AC will call Unity’s

Resources.UnloadUnusedAssets function automatically after scene changes and loading

save-game files, in order to free up memory. This automation can be prevented, in

favour of being called manually, by unchecking Auto-call

Resources.UnloadUnusedAssets? in the Settings Manager.

Disable OnGUI

Menus that have their Source property set to Adventure Creator are drawn with Unity's

OnGUI calls. If your game relies on Unity UI-sourced Menus, or no Menus at all, then

removing the OnGUI call can give a performance boost - particularly on mobile. The

OnGUI call can be removed by entering ACIgnoreOnGUI as a Scripting Define Symbol.

Be aware, however, that OnGUI is also used by AC for drawing camera effects and

Software cursors - though the latter can be corrected by changing your Cursor rendering

to Hardware in the Cursor Manager. If the OnGUI code required only some of the time, it

can be run manually by calling the StateHandler script's _OnGUI() function:

AC.KickStarter.stateHandler._OnGUI ();

Disable Character evasion

If your game is in 2D, then the Navigation Mesh Inspector, which is used by 2D

NavMeshes, has a number of options that can aid performance. Setting Character

evasion to None will reduce the number of pathfinding calls, and the Accuracy slider can

be reduced. As the latter will affect the accuracy of pathfinding, it is best to experiment

while the game is running to find the optimum value.

�450

https://docs.unity3d.com/ScriptReference/Resources.UnloadUnusedAssets.html
https://docs.unity3d.com/Manual/PlatformDependentCompilation.html

Disable Console logs

AC will output log messages to the Console when necessary – this may be frequent if

there is something wrong with your game. Such messages can impact performance.

While you should always check the Console for AC's messages, these logs can be disabled

completely by switching Show logs in Console? to Never in the Settings Manager.

Use Timeline for cutscene animation

Rely on Unity’s own Timeline feature to handle character animation during cutscenes

when possible, particularly if your characters rely on the Sprites Unity animation engine.

Animator controllers that hold many animations can increase load times, so removing

“one off” animations that play at controlled moments and playing them via Timeline

assets can boost performance. Timeline tracks can be played via the Engine: Control

Timeline Action.

Remove the border camera

If Aspect ratio is enabled in the Settings Manager, then a second “Border camera” will be

used to render letterboxing/pillarboxing bars. This can lower framerates - particularly

when using HDRP - but is there to safeguard against glitch artefacts. This may not

always be necessary, however, and can be disabled by unchecking Render border

camera? further down.

Initialise in Update’s first frame

By default, AC’s startup processes (e.g. running a scene’s OnStart/OnLoad cutscenes)

occur in Unity’s Start function. This is considered the “last 10%” of Unity’s scene-loading

process - therefore, if these processes involve e.g. the instant spawning of prefabs, it

may impact the scene’s loading time. On a per-scene basis, it is possible to defer this

process to the first loop of Unity’s Update function - via the Multi Scene Checker

component of the scene’s GameEngine object.  

�451

https://docs.unity3d.com/Manual/TimelineSection.html

14.3. Version control and collaboration

When collaborating, rely on ActionList assets over scene-based ActionLists (such as

Cutscenes) whenever possible. Hotspots, Conversations and other components that

reference Actions each have an Actions source field. Setting this to Asset File allows

you to make use of an ActionList asset instead of a scene-based Action.

Also, be mindful when merging branches that each modify collections of items, menus,

variables and other entities within the Inventory and Variables Managers. Such entities

rely on unique ID numbers to reference them within a project. If two branches both

define a new Inventory item with an ID of 6, for example, then one must be modified -

causing references made to that item to be broken.

AC makes it possible to modify the ID numbers for Inventory items, Documents,

Objectives and Global Variables via the “cog” menu beside them and choosing Change ID

from the menu. This operation will search a project for existing references and update

them to reflect the updated ID - and should be done before merging branches that

feature separate entities that share the same ID.

�452

	Introduction
	Chapter I: The Basics
	Setting up
	Installation
	Running the demo games
	The New Game Wizard
	Templates
	The Game Editor window
	The Scene Manager
	The Settings Manager
	The Actions Manager
	The Variables Manager
	The Inventory Manager
	The Speech Manager
	The Cursor Manager
	The Menu Manager
	Preparing a 3D scene
	Adding a PlayerStart
	Adding visuals
	Adding colliders and/or a NavMesh
	Adding cameras
	Adding interactivity
	Preparing a 2D scene
	Adding a 2D PlayerStart
	Adding visuals
	Adding a 2D NavMesh
	Adding a Sorting Map
	Adding 2D cameras
	Adding interactivity
	Preparing a 2.5D scene
	Adding a PlayerStart
	Adding backgrounds and cameras
	Adding colliders and/or a NavMesh
	Adding scene sprites
	Adding interactivity
	Updating Adventure Creator
	Project settings
	Input and navigation
	Input and navigation overview
	Movement methods
	Point-and-click movement
	Direct movement
	First-person movement
	Drag movement
	Straight-to-cursor movement
	Input methods
	Mouse and keyboard input
	Keyboard or controller input
	Touch-screen input
	Pathfinding methods
	Unity Navigation pathfinding
	Mesh Collider pathfinding
	Polygon Collider pathfinding
	A* 2D pathfinding
	Custom pathfinding
	Cursor locking
	Active inputs
	Input descriptions
	Remapping inputs
	Characters
	Creating characters
	The Character wizard
	Players
	Player switching
	NPCs
	Character tracking
	Character movement
	Retro movement
	Precision movement
	Custom motion controllers
	Character animation
	Character animation (Mecanim)
	Character animation (Sprites Unity)
	Character animation (Sprites Unity Complex)
	Character animation (Legacy)
	Custom animation engines
	Head animation
	Footstep sounds
	Character scripting
	Camera perspectives
	Cameras overview
	Camera types
	GameCamera
	GameCamera Animated
	GameCamera Third-person
	SimpleCamera
	GameCamera 2.5D
	GameCamera 2D
	GameCamera 2D Drag
	Adding custom cameras
	Working with VR
	Working with Cinemachine
	Overriding perspective
	Camera effects
	Disabling the MainCamera
	Camera scripting
	Interactions
	Interaction methods
	Context sensitive mode
	Choose Interaction Then Hotspot
	Choose Hotspot Then Interaction
	Custom interaction systems
	Actions and ActionLists
	Standard Actions
	Custom Actions
	The ActionList Editor
	Generating ActionLists through script
	Hotspots
	Hotspot detection
	Mouse-over detection
	Player-vicinity detection
	Cutscenes
	Skipping cutscenes
	Background logic
	Triggers
	Conversations
	ActionList assets
	Arrow prompts
	Sounds
	Music
	Ambience tracks
	Containers
	ActionList parameters
	Draggable objects
	Drag tracks
	PickUp objects
	Custom cursors
	Unity UI Cursor rendering
	Quick-time events
	Interaction scripting
	Inventory
	Inventory items overview
	Inventory interactions
	Managing inventory at runtime
	Crafting
	Inventory properties
	Scene items
	Exporting inventory data
	Documents
	Objectives
	Sub-objectives
	Inventory scripting
	Variables
	Variables overview
	Managing variables at runtime
	Variable linking
	Linking with Playmaker Variables
	Linking with custom scripts
	Variable presets
	Timers
	Exporting variables
	Scene attributes
	Variable scripting
	Miscellaneous components
	Highlight
	Shapeable
	Moveable
	Parallax 2D
	Limit Visibility
	Align To Camera
	Particle Switch
	Light Switch
	Sprite Fader
	Tint maps
	ActionList Starter
	Set Interaction Parameters
	Set Inventory Interaction Parameters
	Set Trigger Parameters
	Set Drag Parameters
	Auto Correct UI Dimensions
	Link Variable To Animator
	Survive Scene Changes
	Chapter II: Advanced Features
	Saving and loading
	Saving and loading overview
	Saving scene objects
	Saving asset references
	Saving example: The 3D Demo
	Autosaving
	Options data
	Loading screens
	Importing saves from other games
	Save profiles
	Custom save labels
	Custom save data
	Custom save formats and handling
	Save-game file management
	Save scripting
	Speech and text
	Gathering game text
	Speech audio
	Displaying subtitles
	Script sheets
	Translations
	Custom translatables
	Localization integration
	Text tokens
	Speech event tokens
	Text event tokens
	Lip syncing
	Facial expressions
	External dialogue tools
	Speech scripting
	Menus
	Menus overview
	Adventure Creator menus
	Unity UI menus
	Menu elements
	The default interface
	Navigating menus directly
	Menu scripting
	Working with Timeline
	Timeline integration overview
	Timeline playback
	AC Timeline tracks
	Main Camera tracks
	Camera Fade tracks
	Speech tracks
	Character Animation 2D tracks
	Character Animation 3D tracks
	Head Turn tracks
	Shapeable tracks
	Timeline scripting
	Chapter III: Extending functionality
	Integrating new code
	Integrations
	Custom scripting
	Custom events
	Integrating other gameplay
	Further considerations
	Game debugging
	Performance and optimisation
	Version control and collaboration

