Europe PMC

This website requires cookies, and the limited processing of your personal data in order to function. By using the site you are agreeing to this as outlined in our privacy notice and cookie policy.

Abstract 


Article 59.1, of the International Code of Nomenclature for Algae, Fungi, and Plants (ICN; Melbourne Code), which addresses the nomenclature of pleomorphic fungi, became effective from 30 July 2011. Since that date, each fungal species can have one nomenclaturally correct name in a particular classification. All other previously used names for this species will be considered as synonyms. The older generic epithet takes priority over the younger name. Any widely used younger names proposed for use, must comply with Art. 57.2 and their usage should be approved by the Nomenclature Committee for Fungi (NCF). In this paper, we list all genera currently accepted by us in Dothideomycetes (belonging to 23 orders and 110 families), including pleomorphic and nonpleomorphic genera. In the case of pleomorphic genera, we follow the rulings of the current ICN and propose single generic names for future usage. The taxonomic placements of 1261 genera are listed as an outline. Protected names and suppressed names for 34 pleomorphic genera are listed separately. Notes and justifications are provided for possible proposed names after the list of genera. Notes are also provided on recent advances in our understanding of asexual and sexual morph linkages in Dothideomycetes. A phylogenetic tree based on four gene analyses supported 23 orders and 75 families, while 35 families still lack molecular data.

Free full text 


Logo of wtpaEurope PMCEurope PMC Funders GroupSubmit a Manuscript
Fungal Divers. Author manuscript; available in PMC 2016 Jun 7.
Published in final edited form as:
PMCID: PMC4896388
EMSID: EMS68170
PMID: 27284275

Naming and outline of Dothideomycetes–2014 including proposals for the protection or suppression of generic names

Abstract

Article 59.1, of the International Code of Nomenclature for Algae, Fungi, and Plants (ICN; Melbourne Code), which addresses the nomenclature of pleomorphic fungi, became effective from 30 July 2011. Since that date, each fungal species can have one nomenclaturally correct name in a particular classification. All other previously used names for this species will be considered as synonyms. The older generic epithet takes priority over the younger name. Any widely used younger names proposed for use, must comply with Art. 57.2 and their usage should be approved by the Nomenclature Committee for Fungi (NCF). In this paper, we list all genera currently accepted by us in Dothideomycetes (belonging to 23 orders and 110 families), including pleomorphic and nonpleomorphic genera. In the case of pleomorphic genera, we follow the rulings of the current ICN and propose single generic names for future usage. The taxonomic placements of 1261 genera are listed as an outline. Protected names and suppressed names for 34 pleomorphic genera are listed separately. Notes and justifications are provided for possible proposed names after the list of genera. Notes are also provided on recent advances in our understanding of asexual and sexual morph linkages in Dothideomycetes. A phylogenetic tree based on four gene analyses supported 23 orders and 75 families, while 35 families still lack molecular data.

Keywords: Article 59.1, Ascomycota, One name, Phylogeny, Pleomorphism

Introduction

Dothideomycetes is one of the largest and most significant classes within Ascomycota (Kirk et al. 2008; Schoch et al. 2009; Hyde et al. 2013). Thousands of species that are important either as plant pathogens in agriculture and forestry (Cortinas et al. 2006; Crous et al. 2007; Wikee et al. 2011, 2013a, b; Manamgoda et al. 2012), or medical (Siu and Lzumi 2004; da Cunha et al. 2012, 2013) or biotechnological industries (Verkley et al. 2004; Damm et al. 2008; de Wit et al. 2012; Ohm et al. 2012; Stergiopoulos et al. 2012; Hyde et al. 2014) are included in the Dothideomycetes. A large number of Dothideomycetes show pleomorphism, that is, they occur as sexual and asexual states through their life history, but may be separated in time and space (Kendrick 1979). As a result dual names have been applied to the same genus and this has resulted in a great deal of confusion among scientists interested in Dothideomycetes (Cannon and Kirk 2000; Wingfield et al. 2012). Furthermore, the dual names have a direct influence on many allied disciplines, such as plant quarantine and trade in food and fibre, human health, industrial mycology, and plant breeding. Saccardo (1904) promulgated the dual system of fungal nomenclature (i.e. asexual and sexual morphs with different names) as a solution to the confused situation of asexual and sexual morphs faced by taxonomists at the time. This was accepted by the International Botanical Congress (IBC) in Vienna, Austria (Briquet et al. 1906), and captured in what became Article 59 in more recent editions of the International Code of Botanical Nomenclature (ICBN) (Taylor 2011).

The concept of the ‘holomorph’ (i.e. the whole life cycle with sexual and asexual morphs) was first demonstrated by the Tulasne brothers and Berkeley (1857). Kendrick (1979) and Sivanesan (1984) are classic mycologists who attempted to integrate asexual and sexual morphs. Sutton (1980) also summarized established links between coelomycetous asexual states and their sexual states, while Seifert et al. (2011) did the same for hyphomycetous genera. Most of these established links were based on co-occurrence of both morphs on the same substrate (Walker and Sutton 1974) or culture-based methods, particularly the development of asexual morphs from single ascospore isolates (Leonard and Suggs 1974; Hyde et al. 1996). However, utilization of PCR and DNA sequencing in the fungi since the late-1990s (Nilsson et al. 2014), have established and confirmed many sexual and asexual links (e.g. Alternaria-Lewia, Bipolaris-Cochliobolus, Botryosphaeria-Fusicoccum, Cladosporium-Davidiella, Mycosphaerella-Ramularia, Teratosphaeria-Kirramyces fide Crous et al. 2009; Bensch et al. 2012; Manamgoda et al. 2012; Phillips et al. 2013; Hyde et al. 2014), while many other links have been rejected (e.g. Cercospora-Mycosphaerella, Paraconiothyrium-Paraphaeosphaeria, Plenodomus-Leptosphaeria, Pseudocercospora-Mycosphaerella, Stagonospora-Phaeosphaeria fide Crous et al. 2012; de Gruyter et al. 2013; Groenewald et al. 2013; Quaedvlieg et al. 2013, 2014; Verkley et al. 2014).

There has been considerable research interest in the molecular phylogeny of the Dothideomycetes in the last four years with studies based on single and multi-gene rDNA sequence data (Hyde et al. 2013). These phylogenetic advances have helped taxonomists to link species or generic names, enabling us to now propose or select one name for a single species, or genus. Decisions taken at the XVIIIth International Botanical Congress, in Melbourne, Australia in 2011 (Hawksworth 2012) ruled that separate nomenclatural status for naming of asexual and sexual names morphs of the same species was no longer permitted; this became effective from 30 July 2011 (Hawksworth 2012; Wingfield et al. 2012). Based on this ruling, mycologists now have the task to clear up the historical confusion that has resulted from the practice of dual nomenclature, and in this paper we deal with the largest group of ascomycetes, Dothideomycetes. We therefore propose a single name for pleomorphic dothideomycete genera to be added to the list of “accepted/protected names”, while other names (sexual/asexual) will be included in a list of “suppressed names” (Table 1). At the same time, we incorporate all asexual genera into natural classification system where molecular data are available. Currently Dothideomycetes comprises of 23 orders, 110 families and 1261 genera. However, 23 orders and 76 families are supported by molecular data, while 36 families lack molecular data.

Table 1

Index to adopted names of pleomorphic genera

Protected namesSuppressed names
Alternaria NeesLewia M.E. Barr & E.G. Simmons
Antennulariella Woron.Antennariella Bat. & Cif., Capnodendron S. Hughes
Anthracostroma Petr.Camarosporula Petr.
Bipolaris ShoemakerCochliobolus Drechsler
Blasdalea Sacc. & P. Syd.Chrysogloeum Petr.
Botryohypoxylon Samuels & J.D. RogersIledon Samuels & J.D. Rogers
Botryosphaeria Ces. & De Not.Fusicoccum Corda
Brooksia Hansf.Hiospira R.T. Moore
Capnodium Mont.Polychaeton (Pers.) Lév.
Cladosporium LinkDavidiella> Crous & U. Braun
Comminutispora A.W. RamaleyHyphospora A.W. Ramaley
Curvularia BoedijnPseudocochliobolus Tsuda et al.
Cyclopeltis Petr.Cyclopeltella Petr.
Elsinoë Racib.Sphaceloma de Bary
Excipulariopsis P.M. Kirk & SpoonerKentingia Sivan. & W.H. Hsieh
Exosporiella P. Karst.Anomalemma Sivan.
Exserohilum K.J. Leonard & SuggsSetosphaeria K.J. Leonard & Suggs
Farlowiella Sacc.Acrogenospora M.B. Ellis.
Kellermania Ellis & Everh.Planistromella A.W. Ramaley
Kirschsteiniothelia D. Hawksw.Dendryphiopsis S. Hughes
Lecanosticta Syd.Eruptio M.E. Barr
Macrodiplodiopsis Petr.Misturatosphaeria Mugambi & Huhndorf,
Floricola Kohlm. & Volkm.-Kohlm.
Phaeosphaeria I. MiyakePhaeoseptoria Speg.
Phragmocapnias Theiss. & Syd.Conidiocarpus Woron.
Phyllosticta Pers.Guignardia Viala & Ravaz
Polythrincium KunzeCymadothea F.A. Wolf
Prillieuxina G. ArnaudLeprieurina G. Arnaud
Prosthemium KunzePleomassaria Speg.
Pseudodidymella C.Z. Wei et al.Pycnopleiospora C.Z. Wei et al.
Pyrenophora Fr.Drechslera S. Ito
Ramularia UngerMycosphaerella Johanson
Sphaeropsis Sacc.Phaeobotryosphaeria Speg.
Stemphylium WallrPleospora Rabenh. ex Ces. & De Not.
Teratosphaeria Syd. & P. Syd.Colletogloeopsis Crous & M.J. Wingf., Kirramyces J. Walker et al.
Tetraploa Berk. & BroomeTetraplosphaeria Kaz. Tanaka & K. Hiray.

The draft of this manuscript with 71 initial authors from all disciplines interested in Dothideomycetes was first prepared and placed online on the International Commission on the Taxonomy of Fungi (ICTF) webpage (http://www.fungaltaxonomy.org/) on 20 February 2014. Comments were then invited from interested parties who were also invited to co-author the paper. A draft version was discussed at the “Genomes and Genera” symposium in Amsterdam on the 24–25 April 2014 and some of the more contentious cases in the Nomenclature Sessions during the 10th International Mycological Congress (IMC10) in Bangkok, Thailand, on 3–8 August 2014.

Materials and methods

The proposed names are based on Kirk et al. (2008, 2013), Lumbsch and Huhndorf (2010) and Hyde et al. (2013). The links between asexual and sexual morphs take into account the important publications of Kendrick (1979), Sivanesan (1984), Sutton (1980), Seifert et al. (2011), Hyde et al. (2011), Wijayawardene et al. (2012) and other recent research based on culture and molecular phylogeny (e.g. Crous et al. 2009, 2013; de Gruyter et al. 2013; Boonmee et al. 2012, 2014b; Chomnunti et al. 2011; Liu et al. 2011; Manamgoda et al. 2012; Phillips et al. 2013; Wijayawardene et al. 2014a, b, c).

Proposed names are selected depending on the following criteria:

  1. The evidence for established links

    1. Culture-based (e.g. single-spore) methods

    2. Molecular methods

  2. Number of epithets in Index Fungorum and MycoBank

  3. The oldest generic name

  4. Other significant aspects, such as pathogenic importance and industrial applications

  5. Usage of the name in literature and databases

The oldest name is accepted where it conforms best with current practice, while usage of a widely used name is proposed when this is more significant. Proposed names (protected names) are listed in the first column (Table 1) of the table and second column comprises suppressed names. The suppressed name could be a sexual, asexual or a synasexual morph. Asterisk marks (*) are added for genera which we provide notes on recent changes and naming. Genera marked with (#) refer to changes made via articles in the same journal volume and annotated under the family or order (i.e. Ariyawansa et al. 2014c; Boonmee et al. 2014b; Hongsanan et al. 2014c; Thambugala et al. 2014c; Phookamsak et al. 2014). In the present outline, we have added (C) = coelomycetous and (H) = hyphomycetous asexual genera against entries where known.

In giving preference here to the earliest validly published generic name regardless of the morph represented by the type specimen of the type species of the genus, we are aware that Art. 57.2 of the current Code (McNeill et al. 2012) requires that in cases where a well-established asexually typified name is preferred, there should first be a formal proposal made to the Nomenclature Committee for Fungi (NCF). We regard this is an unnecessarily time-consuming process, and proposals to delete this provision were strongly supported in the Nomenclature Sessions at IMC10 and will be made to the next International Botanical Congress in 2017. Inclusion in Lists of Accepted Names which are approved in due course by the NCF is a preferable way to handle such cases, and for Dothideomycetes, this article will be the basis of the eventual list for this class.

Phylogenetic analyses

Sequences (Table 1) were obtained from GenBank following Hyde et al. (2013) and other recent publications (eg. Crous et al. 2013; Phillips et al. 2013; Quaedvlieg et al. 2013, 2014; Slippers et al. 2013; Wijayawardene et al. 2013, 2014a, b, c; Pérez-Ortega et al. 2014). DNA sequences for each gene region (small subunits ribosomal RNA (SSU), large subunits ribosomal RNA (LSU), the translation elongation factor-1 alpha (TEF1) and the second largest subunit of RNA polymerase II (RPB2) were initially aligned using Bioedit (Hall 2004) and ClustalW v. 1.6 (Thompson et al. 1997). Alignments were manually checked and optimized wherever necessary. The dataset was refined visually in BioEdit v. 7.0.1 (Hall 2004). All absent genes were coded as missing data.

The phylogenetic analyses of the combined LSU, SSU, TEF1 and RPB2 data were performed using maximum likelihood, Bayesian and maximum parsimony algorithms.

Maximum likelihood (ML) analysis was performed at the RAxML 7.2.8 as part of the “RAxML-HPC2 on TG” tool (Stamatakis 2006) implemented in raxmlGUI v.0.9b2 (Silvestro and Michalak 2010). A general time reversible model (GTR) was applied with a discrete gamma distribution and four rate classes. Hundred thorough maximum likelihood (ML) tree searches were done in RAxML v. 7.2.7 under the same model. Maximum likelihood bootstrap values (MLBP) equal or greater than 50 % are given above each node (Fig. 1).

An external file that holds a picture, illustration, etc.
Object name is emss-68170-f001.jpg
An external file that holds a picture, illustration, etc.
Object name is emss-68170-f002.jpg
An external file that holds a picture, illustration, etc.
Object name is emss-68170-f003.jpg
An external file that holds a picture, illustration, etc.
Object name is emss-68170-f004.jpg
An external file that holds a picture, illustration, etc.
Object name is emss-68170-f005.jpg

The best scoring RAxML Dothideomycetes tree from 415 taxa based on a combined dataset of LSU, SSU, TEF1 and RPB2 sequences with all lineages collapsed to family level where possible. The tree is the same as Fig. 1. Bootstrap support values for maximum likelihood (ML, red) and maximum parsimony (MP, black) greater than 50% are given above the nodes; Bayesian posterior probabilities (BYPP, green) above 0.90 are given below the nodes. The original strain numbers are given after the species names. Type and ex-type strains are emphasized in bold. The tree was rooted with Schismatomma dirinellum (S-F206034) and S. decolorans (DUKE 47570)

Maximum-parsimony analyses were performed by PAUP v. 4.0b10 (Swofford 2002) using the heuristic search option with 1,000 random taxa addition and tree bisection and reconnection (TBR) as the branch swapping algorithm. All characters were unordered and of equal weight and gaps were treated as missing data. The Tree Length (TL), Consistency Indices (CI), Retention Indices (RI), Rescaled Consistency Indices (RC) and Homoplasy Index (HI) were calculated for each tree generated. Maxtrees were unlimited, branches of zero length were collapsed and all multiple, equally parsimonious trees were saved. Clade stability was assessed using a bootstrap (BT) analysis with 1,000 replicates, each with 10 replicates of random stepwise addition of taxa (Hillis and Bull 1993). Maximum parsimony bootstrap values (MPBP) equal or greater than 50% are given above each node (Fig. 1).

The model of evolution was estimated by using MrModeltest 2.2 (Nylander 2004). Independent Bayesian phylogenetic analyses were performed in MrBayes v. 3.1.2 (Huelsenbeck and Ronquist 2001) using a uniform [GTR+I+G] model, lsetnst=6 rates=invgamma; prsetstatefreqpr =dirichlet (1,1,1,1). Posterior probabilities (PP) (Rannala and Yang 1996; Zhaxybayeva and Gogarten 2002) were determined by Markov Chain Monte Carlo sampling (BMCMC) in MrBayes v. 3.0b4 (Huelsenbeck and Ronquist 2001). Six simultaneous Markov chains were run for 10,000,000 generations and trees were sampled every 100th generation (resulting in 10,000 total trees).

Phylogenetic trees were visualized with Treeview v. 1.6.6 (Page 1996) and MEGA 5 (Tamura et al. 2011).

Results

Phylogenetic analyses

The combined LSU, SSU, TEF1 and RPB2 data set consists of 415 taxa, with Schismatomma dirinellum (S-F206034) and S. decolorans (DUKE 47570) which representing the outgroup taxa. The dataset consists of 4,302 characters after alignment, 1,496 characters are conserved, and 2,228 characters are parsimony informative, while 2,767 are variable characters. A heuristic search with random addition of taxa (1,000 replicates) and treating gaps as missing characters generated six equally parsimonious trees. The best scoring RAxML trees are shown in Fig. 1. Bootstrap support (BS) values of MP and ML (equal to or above 50 %) and Bayesian Posterior Probabilities (BYPP) with those equal or greater than 0.90 given below each node are shown on the upper branches.

Twenty-three orders (Abrothallales, Acrospermales, Asterinales, Botryosphaeriales, Dothideales, Dyfrolomycetales, Capnodiales, Hysteriales, Jahnulales, Lichenoconiales, Lichenotheliales, Microthyriales, Monoblastiales, Mytilinidiales, Myriangiales, Natipusillales, Patellariales, Phaeotrichales, Pleosporales, Strigulales, Trypetheliales, Tubeufiales and Venturiales) are recognized. This agrees with Hyde et al. (2013) and Pérez-Ortega et al. (2014), the latter who introduced Abrothallales. In their analyses, Pérez-Ortega et al. (2014) showed Abrothallales grouped with Patellariales however, in our analyses Abrothallales groups with Asterinales and Lichenoconiales. Recently introduced families by Slippers et al. (2013) viz. Aplosporellaceae Slippers et al., Melanopsaceae Phillips et al. and Saccharataceae Slippers et al. clustered within Botryosphaeriales with high bootstrap values. Aureobasidiaceae Thambugala & K.D. Hyde grouped as a distinct clade in Dothideales (Thambugala et al. 2014a). New clades appeared for Camarosporium sensu stricto (Camarosporiaceae fide Wijayawardene et al. in prep.) and Homortomyces with low and high bootstrap values respectively. Wiesneriomycetaceae grouped as a sister clade to Tubeufiaceae and this agrees with Suetrong et al. (2014). Extremaceae and Neodevriesiaceae appeared as new distinct clades in Capnodiales as shown by Quaedvlieg et al. (2014). However, Teratosphaeriaceae separated into two distinct clades (Fig. 1) which does not agree with Quaedvlieg et al. (2014).

Outline of the Dothideomycetes

Class Dothideomycetes sensu O.E. Erikss. & Winka

Subclass Dothideomycetidae P.M. Kirk et al. ex C.L. Schoch et al.

Asterinales M.E. Barr ex D. Hawksw. & O.E. Erikss.*

Asterinaceae Hansf. (=Lembosiaceae Hosag.)*

  • Asterina Lév.*

  • Asterinella Theiss.#

  • Asterotexis Arx#

  • Batistinula Arx#

  • Cirsosia G. Arnaud#

  • Echidnodella Theiss. & Syd.#

  • Halbania Racib.#

  • Lembosia Lév.*

  • Meliolaster Höhn.#

  • Parasterinopsis Bat.#

  • Platypeltella Petr.*

  • Prillieuxina G. Arnaud* (see in Table 1)

  • Schenckiella Henn.*

  • Trichasterina G. Arnaud#

  • Trichopeltospora Bat. & Cif.*

  • Uleothyrium Petr.#

  • Vizellopsis Bat. et al.*

  • #for notes see under Asterinaceae

Capnodiales Woron.

Antennulariellaceae Woron.

  • Achaetobotrys Bat. & Cif.*

  • Antennulariella Woron.* (see Table 1)

  • Capnofrasera S. Hughes

Capnodiaceae (Sacc.) Höhn. ex Theiss.

  • Capnodium Mont.* (see in Table 1)

  • Leptoxyphium Speg.

  • Phragmocapnias Theiss. & Syd.* (see in Table 1)

  • ?Plurispermiopsis Pereira-Carv. et al.*

  • Scoriadopsis J.M. Mend.

  • Scorias Fr.

Cladosporiaceae Nann.

  • Acroconidiella J.C. Lindq. & Alippi (H)

  • Cladosporium Link (H)* (see in Table 1)

  • Graphiopsis Trail (H)

  • Hoornsmania Crous (H)

  • Rachicladosporium Crous et al. (H)

  • Toxicocladosporium Crous & U. Braun (H)

  • Verrucocladosporium K. Schub. et al. (H)

Dissoconiaceae Crous & de Hoog*

  • Dissoconium de Hoog et al. (H)

  • Pseudoveronaea Crous & Batzer*

  • Ramichloridium Stahel (H)*

  • Uwebraunia Crous & M.J. Wingf. (H)*

Metacapnodiaceae S. Hughes & Corlett

  • Capnobotrys S. Hughes (H)

  • Capnophialophora S. Hughes (H)

  • Hyphosoma Syd.

  • Metacapnodium Speg.*

Extremaceae Quaedvlieg & Crous*

  • Extremus Quaedvlieg & Crous (H)*

  • Petrophila de Hoog & Quaedvlieg (H)*

  • Pseudoramichloridium Cheewangkoon & Crous (H)*

  • Staninwardia B. Sutton (C)*

  • Vermiconia Egidi & Onofri (H)*

Mycosphaerellaceae Lindau

  • Acervuloseptoria Crous & Jol. Roux (C)*

  • Achorodothis Syd.

  • Amycosphaerella Quaedvlieg & Crous*

  • Annellosympodiella Crous & Assefa*

  • Asperisporium Maubl. (H)

  • Brunneosphaerella Crous

  • Bryopelta Döbbeler & Poelt*

  • Caryophylloseptoria Verkley et al. (C)*

  • Cercospora Fresen. (H)*

  • Cercosporella Sacc. (H)

  • Colletogloeum Petr. (C)*

  • Distocercospora N. Pons & B. Sutton (H)

  • Dothistroma Hulbary (C)

  • Euryachora Fuckel

  • Gillotia Sacc. & Trotter

  • Lecanosticta Syd. (C)* (see in Table 1)

  • Lembosiopsis Theiss.*

  • Lophiosphaerella Hara*

  • Melanodothis R.H. Arnold

  • Microcyclosporella J. Frank et al. (H)

  • Mycoporis Clem.*

  • Neoceratosperma Crous & Cheew. (H)*

  • Neomycosphaerella Crous*

  • Neopenidiella Quaedvlieg & Crous (H)*

  • Neopseudocercospora Crous (H)*

  • Neoseptoria Quaedvlieg et al. (C)*

  • Pallidocercospora Crous (H)

  • Paracercospora Deighton (H)*

  • Paramycosphaerella Crous & Jol. Roux*

  • Passalora Fr. (H)

  • Periconiella Sacc. (H)

  • Phaeocercospora Crous (H)

  • Phaeophleospora Rangel (C)*

  • Phloeospora Wallr. (C)*

  • Placocrea Syd.

  • Polyphialoseptoria Quaedvlieg et al. (C)*

  • Polysporella Woron.

  • Polythrincium Kunze (H)* (see in Table 1)

  • Pseudocercospora Speg. (H)*

  • Pseudocercosporella Deighton (H)

  • Pseudostigmidium Etayo

  • Ramularia Unger (H)* (see in Table 1)

  • Ramulispora Miura (H)

  • Ruptoseptoria Quaedvlieg et al. (C)*

  • Scolecostigmina U. Braun

  • Septoria Sacc. (C)*

  • Sonderhenia H.J. Swart & J. Walker (C)

  • Sphaerellothecium Zopf

  • Sphaerulina Sacc.*

  • Stigmidium Trevis.

  • Stromatoseptoria Quaedvlieg et al. (C)*

  • Trochophora R.T. Moore (H)

  • ?Wernerella Nav.-Ros. et al.

  • Xenomycosphaerella Quaedvlieg & Crous*

  • Zasmidium Fr. (H)*

  • Zymoseptoria Quaedvlieg & Crous (C)*

Neodevriesiaceae Quaedvlieg & Crous*

  • Neodevriesia Quaedvlieg & Crous (H)*

Piedraiaceae Viégas ex Cif. et al.

  • Piedraia Fonseca & Leão

Teratosphaeriaceae Crous & U. Braun

  • Acidomyces B.J. Baker et al. (H)

  • Apenidiella Quaedvlieg & Crous (H)*

  • Aulographina Arx & E. Müll.*

  • Austroafricana Quaedvlieg & Crous*

  • Batcheloromyces Marasas et al. (H)

  • Baudoinia J.A. Scott & Unter. (H)

  • Capnobotryella Sugiy. (H)

  • Catenulostroma Crous & U. Braun (H)

  • Constantinomyces Egidi & Onofri (H)*

  • Devriesia Seifert & N.L. Nick. (H)

  • Elasticomyces Zucconi & Selbmann (H)

  • Eupenidiella Quaedvlieg & Crous (H)*

  • Euteratosphaeria Quaedvlieg & Crous*

  • Friedmanniomyces Onofri (H)

  • Hispidoconidioma Tsuneda & Davey (H)

  • Hortaea Nishim. & Miyaji (H)

  • Incertomyces Egidi & Zucconi (H)*

  • Lapidomyces de Hoog & Stielow (H)*

  • Meristemomyces Isola & Onofri (H)*

  • Microcyclospora J. Frank et al. (H)

  • Monticola Selbmann & Egidi (H)*

  • Mycophycias Kohlm. & Volkm.-Kohlm

  • Myrtapenidiella Quaedvlieg & Crous (H)*

  • Neocatenulostroma Quaedvlieg & Crous (H)*

  • Neophaeothecoidea Quaedvlieg & Crous (H)*

  • Neotrimmatostroma Quaedvlieg & Crous*

  • Oleoguttula Selbmann & de Hoog (H)*

  • Pachysacca Syd.*

  • Parapenidiella Crous & Summerell (H)

  • Parateratosphaeria Quaedvlieg & Crous*

  • Penidiella Crous & U. Braun (H)

  • Phacellium Bonord. (H)

  • Phaeothecoidea Crous (H)

  • Pseudotaeniolina J.L. Crane & Schokn. (H)

  • Pseudoteratosphaeria Quaedvlieg & Crous*

  • Queenslandipenidiella Quaedvlieg & Crous (H)*

  • Ramopenidiella Crous & R.G. Shivas (H)*

  • Readeriella Syd. & P. Syd. (C)*

  • Recurvomyces Selbmann & de Hoog (H)

  • Stenella Syd. (H)

  • Suberoteratosphaeria Quaedvlieg & Crous*

  • Teratosphaeria Syd. & P. Syd.* (see in Table 1)

  • Teratosphaericola Quaedvlieg & Crous*

    Teratosphaeriopsis Quaedvlieg & Crous*

  • Xenoconiothyrium Crous & Marinc. (C)

  • Xenopenidiella Quaedvlieg & Crous (H)*

  • Xenoteratosphaeria Quaedvlieg & Crous*

Capnodiales, genera incertae sedis

  • Arthrocatena Egidi & Selbmann*

  • Catenulomyces Egidi & de Hoog (H)*

  • Cystocoleus Thwaites*

  • ?Eriosporella Höhn. (C)*

  • Hyphoconis Egidi & Quaedvlieg (H)*

  • Mucomycosphaerella Quaedvlieg & Crous*

  • Neohortaea Quaedvlieg & Crous (H)*

  • Perusta Egidi & Stielow*

  • Ramimonilia Stielow & Quaedvlieg (H)*

Dothideales Lindau*

Aureobasidiaceae K.M. Thambugala & K.D. Hyde*

  • Aureobasidium Viala & G. Boyer (H)#

  • Columnosphaeria Munk#

  • Kabatiella Bubák (H)#

  • Pseudoseptoria Speg.#

  • Pseudosydowia K.M. Thambugala & K.D. Hyde*

  • Saccothecium Fr.#

  • Selenophoma Maire (C)*

  • # for notes see under Aureobasidiaceae

Dothideaceae Chevall.*

  • Coleophoma Höhn. (C)#

  • Cylindroseptoria Quaedvlieg et al. (C)#

  • Delphinella (Sacc.) Kuntze#

  • Dictyodothis Theiss. & Syd.#

  • Dothidea Fr.#

  • Dothiora Fr.#

  • Endoconidioma Tsuneda et al.#

  • Endodothiora Petr.#

  • Hormonema Lagerb. & Melin (H)*

  • Kabatina R. Schneid. & Arx (H)#

  • Neocylindroseptoria K.M. Thambugala & K.D. Hyde*

  • Phaeocryptopus Naumov#

  • Plowrightia Sacc.#

  • ?Pringsheimia Schulzer*

  • Stylodothis Arx & E. Müll.#

  • ?Sydowia Bres.*

  • # for notes see under Dothideaceae

Dothideales, genera incertae sedis

  • Celosporium Tsuneda & M.L. Davey*

Lichenoconiales Diederich et al.

Lichenoconiaceae Diederich & Lawrey

  • Lichenoconium Petr. & Syd. (C)

Lichenotheliales K. Knudsen et al.

Lichenotheliaceae Henssen

  • Karschia Körb.*

  • Lichenostigma Hafellner

  • Lichenothelia D. Hawksw.

Myriangiales Starbäck

Elsinoaceae Höhn. ex Sacc. & Trotter*

  • Elsinoë Racib.* (see in Table 1)

  • Molleriella G. Winter*

Myriangiaceae Nyl.*

  • Anhellia Racib.*

  • Ascostratum Syd. & P. Syd.*

  • Butleria Sacc.*

  • Dictyocyclus Sivan. et al.*

  • Diplotheca C.C. Gordon & C.G. Shaw*

  • Eurytheca De Seynes*

  • Hemimyriangium J. Reid & Piroz*

  • Micularia Boedijn*

  • Myriangium Mont. & Berk.*

  • Zukaliopsis Henn.*

Subclass Pleosporomycetidae C.L. Schoch et al.

Pleosporales Luttrell ex M.E. Barr

Aigialaceae Suetrong et al.

  • Aigialus S. Schatz & Kohlm.

  • Ascocratera Kohlm.

  • Fissuroma J.K. Liu et al.

  • Neoastrosphaeriella J.K. Liu et al.

  • Rimora Kohlm. et al.

Amniculicolaceae Yin. Zhang et al.

  • ?Amniculicola Y. Zhang & K.D. Hyde*

  • ?Anguillospora Ingold (H)*

  • Murispora Y. Zhang bis et al.

  • Neomassariosphaeria Y. Zhang bis et al.

Anteagloniaceae K.D. Hyde et al.

  • Anteaglonium Mugambi & Huhndorf

Bambusicolaceae D.Q. Dai & K.D. Hyde

  • Bambusicola D.Q. Dai & K.D. Hyde

Biatriosporaceae K.D. Hyde

  • Biatriospora K.D. Hyde & Borse

Coniothyriaceae W.B. Cooke

  • Coniothyrium Corda (C)*

Camarosporaceae Wijayawardene & K.D. Hyde*

  • Camarosporium Schulzer (C)*

Corynesporascaceae Sivan.

  • Corynespora Güssow (H)*

  • Corynesporasca Sivan.

Cucurbitariaceae G. Winter

  • Cucurbidothis Petr.*

  • Cucurbitaria Gray*

  • Curreya Sacc.

  • Pyrenochaeta De Not. (C)*

  • Pyrenochaetopsis Gruyter et al. (C)

  • Rhytidiella Zalasky

  • Syncarpella Theiss. & Syd.*

Delitschiaceae M.E. Barr

  • Delitschia Auersw.

  • Ohleriella Earle

  • Semidelitschia Cain & LuckAllen

Diademaceae Shoemaker & C.E. Babc.

  • Comoclathris Clem.

  • Diadema Shoemaker & C.E. Babc.

  • Diademosa Shoemaker & C.E. Babc.

Didymellaceae Gruyter et al.

  • Ascochyta Lib. (C)*

  • Boeremia Aveskamp et al. (C)

  • Chaetasbolisia Speg. (C)

  • Dactuliochaeta G.L. Hartm. & J.B. Sinclair (C)

  • Didymella Sacc.*

  • Epicoccum Link (H)

  • Leptosphaerulina McAlpine*

  • Macroventuria Aa

  • Microsphaeropsis Höhn. (C)

  • Mixtura O.E. Erikss. & J.Z. Yue*

  • Monascostroma Höhn.

  • Phoma Sacc. (C)*

  • Piggotia Berk. & Broome (C)

  • Pithomyces Berk. & Broome (H)*

Didymosphaeriaceae Munk (=Montagnulaceae)*

  • Alloconiothyrium Verkley & Stielow (C)#

  • Barria Z.Q. Yuan*

  • Bimuria D. Hawksw. et al.#

  • Deniquelata Ariyawansa & K.D. Hyde#

  • Didymocrea Kowalski#

  • Didymosphaeria Fuckel#

  • Julella Fabre*

  • Kalmusia Niessl#

  • Karstenula Speg.#

  • Letendraea Sacc.*

  • Montagnula Berl.#

  • Neokalmusia Kaz. Tanaka et al.*

  • Paracamarosporium Wijayawardene & K.D. Hyde (C)*

  • Paraconiothyrium Verkley (C)*

  • Paraphaeosphaeria O.E. Erikss.*

  • Phaeodothis Syd. & P. Syd.#

  • Pseudocamarosporium Wijayawardene & K.D. Hyde (C)*

  • Pseudotrichia Kirschst.*

  • Tremateia Kohlm. et al.#

  • # for notes see under Didymosphaeriaceae

Dothidotthiaceae Crous & A.J.L. Phillips

  • Dothidotthia Höhn.

  • Muellerites L. Holm*

  • Thyrostroma Höhn. (H)*

Halojulellaceae Suetrong et al.

  • Halojulella Suetrong et al.

Halotthiaceae Ying Zhang et al.

  • Halotthia Kohlm.

  • Mauritiana Poonyth et al.

  • Phaeoseptum Ying Zhang et al.

  • Pontoporeia Kohlm.

Hypsostromataceae Huhndorf

  • Hypsostroma Huhndorf

Lentitheciaceae Y. Zhang ter et al.

  • Katumotoa Kaz. Tanaka & Y. Harada

  • Lentithecium K.D. Hyde et al.

  • Setoseptoria Quaedvlieg et al. (C)

  • Tingoldiago K. Hiray. & Kaz. Tanaka

Leptosphaeriaceae M.E. Barr

  • Acicuseptoria W. Quaedvlieg et al. (C)*

  • Alternariaster E.G. Simmons*

  • Chaetoplea (Sacc.) Clem.*

  • Heterospora (Boerema et al.) Gruyter et al.*

  • Leptosphaeria Ces. & De Not.*

  • Neophaeosphaeria M.P.S. Câmara

  • Paraleptosphaeria Gruyter et al.

  • Plenodomus Preuss (C)*

  • Subplenodomus Gruyter et al. (C)*

Lindgomycetaceae K. Hiray. et al.

  • Clohesyomyces K.D. Hyde

  • Hongkongmyces Tsang et al.*

  • Lindgomyces K. Hiray. et al.

  • Lolia Abdel-Aziz & Abdel-Whab (C)

Lophiostomataceae Sacc.

  • Dimorphiopsis Crous (C)*

  • Lophiostoma Ces. & De Not.

  • Macrodiplodiopsis Petr.* (see in Table 1)

  • Tumularia Descals & Marvanová (H)

Lophiotremataceae K. Hiray. & Kaz.

  • Lophiotrema Sacc.

Massariaceae Nitschke

  • Massaria De Not.

Massarinaceae Munk

  • Massarina Sacc.

  • Stagonospora (Sacc.) Sacc. (C)*

Melanommataceae G. Winter

  • Aposphaeria Sacc. (C)*

  • Asymmetricospora J. Fröhl. & K.D. Hyde

  • Bertiella (Sacc.) Sacc. & P. Syd.

  • Beverwykella Tubaki (H)

  • Bicrouania Kohlm. & Volkm.-Kohlm.

  • Byssosphaeria Cooke

  • Calyptronectria Speg.

  • Caryosporella Kohlm.

  • Exosporiella P. Karst. (H)* (see in Table 1)

  • Herpotrichia Fuckel

  • Mamillisphaeria K.D. Hyde et al.

  • Melanomma Nitschke ex Fuckel

  • Mycopappus Redhead & G.P. White (H)*

  • Navicella Fabre*

  • Nigrolentilocus R.F. Castañeda & Heredia

  • Ohleria Fuckel

  • Sporidesmiella P.M. Kirk (H)

  • Xenostigmina Crous (H)*

Morosphaeriaceae Suetrong et al.

  • Helicascus Kohlm.

  • Morosphaeria Suetrong et al.

Phaeosphaeriaceae M.E. Barr*

  • Amarenographium O.E. Erikss. (C)#

  • Amarenomyces O.E. Erikss.#

  • Ampelomyces Ces. ex Schltdl. (C)#

  • Bricookea M.E. Barr#

  • Chaetosphaeronema Moesz (C)#

  • Dematiopleospora Wanasinghe et al.*

  • Dothideopsella Höhn.*

  • Entodesmium Riess#

  • Eudarluca Speg.#

  • Loratospora Kohlm. & Volkm.-Kohlm.#

  • Neosetophoma Gruyter et al. (C)#

  • Neostagonospora Quaedvlieg et al. (C)#

  • Nodulosphaeria Rabenh#

  • Ophiobolus Riess#

  • Ophiosphaerella Speg.*

  • Paraphoma Morgan-Jones & J.F. White (C)#

  • Parastagonospora Quaedvlieg et al. (C)#

  • Phaeosphaeria I. Miyake* (see in Table 1)

  • Phaeosphaeriopsis M.P.S. Câmara et al.#

  • Phaeostagonospora A.W. Ramaley (C)#

  • Sclerostagonospora Höhn. (C)#

  • Scolecosporiella Petr. (C)#

  • ?Scolicosporium Lib. ex Roum. (C)*

  • ?Septoriella Oudem. (C)#

  • Setomelanomma M. Morelet#

  • Setophoma Gruyter et al. (C)#

  • Tiarospora Sacc. & Marchal (C)#

  • Vrystaatia Quaedvlieg et al. (C)#

  • Wojnowicia Sacc. (C)*

  • Xenoseptoria Quaedvlieg et al. (C)#

  • # for notes see under Pahaeosphaeriaceae

Platystomaceae J. Schröt.

  • Ostropella (Sacc.) Höhn.

  • Platystomum Trevis.

  • Xenolophium Syd.

Pleomassariaceae M.E. Barr

  • Lichenopyrenis Calat. et al.

  • Peridiothelia D. Hawksw.

  • Prosthemium Kunze (C)* (see in Table 1)

  • Splanchnonema Corda

Pleosporaceae Nitschke

  • Alternaria Nees (H)* (see in Table 1)

  • Bipolaris Shoemaker (H)* (see in Table 1)

  • Clathrospora Rabenh.

  • Curvularia Boedijn (H)* (see in Table 1)

  • Decorospora Inderb. et al.

  • Dendryphion Wallr. (H)

  • Edenia M.C. González et al. (H)

  • Exserohilum K.J. Leonard & Suggs (H)* (see in Table 1)

  • Extrawettsteinina M.E. Barr

  • Marielliottia Shoemaker (H)

  • Neocamarosporium Crous & M.J. Wingf. (C)*

  • Paradendryphiella Woudenberg & Crous (H)*

  • Pleoseptum A.W. Ramaley & M.E. Barr*

  • Platysporoides (Wehm.) Shoemaker & C.E. Babc.

  • Pseudoyuconia Lar. N. Vassiljeva

  • Pyrenophora Fr.* (see in Table 1)

  • Stemphylium Wallr. (H)* (see in Table 1)

Salsugineaceae K.D. Hyde & S. Tibpromma

  • Acrocordiopsis Borse & K.D. Hyde

  • Salsuginea K.D. Hyde

Shiraiaceae Y.X. Liu et al.

  • Grandigallia M.E. Barr et al.*

  • Shiraia Henn.

Sporormiaceae Munk

  • Chaetopreussia Locq.-Lin.

  • Pleophragmia Fuckel

  • Preussia Fuckel

  • Sporormia De Not.

  • Westerdykella Stolk

Teichosporaceae M.E. Barr

  • Chaetomastia (Sacc.) Berl

  • Loculohypoxylon M.E. Barr

  • Sinodidymella J.Z. Yue & O.E. Erikss.

  • Teichospora Fuckel

Testudinaceae Arx

Tetraplosphaeriaceae Kaz. Tanaka & K. Hiray.

  • Polyplosphaeria Kaz. et al.

  • Pseudotetraploa Kaz. et al. (H)

  • Quadricrura Kaz. et al. (H)

  • Tetraploa Berk. & Broome (H)* (see in Table 1)

  • Triplosphaeria Kaz. et al.

Thyridariaceae Q. Tian & K.D. Hyde

  • Thyridaria Sacc.*

Trematosphaeriaceae K.D. Hyde et al.

  • Bryosphaeria Döbbeler*

  • Falciformispora K.D. Hyde

  • Hadrospora Boise*

  • Halomassarina Suetrong et al.

  • Medicopsis Gruyter et al. (C)*

  • Trematosphaeria Fuckel

Zopfiaceae G. Arnaud ex D. Hawksw.

  • Caryospora De Not.

  • Coronopapilla Kohlm. & Volkm.-Kohlm.

  • Rechingeriella Petr.

  • Richonia Boud.

  • Zopfia Rabenh.

  • Zopfiofoveola D. Hawksw.

Pleosporales, genera incertae sedis

  • Acrocalymma Alcorn & J.A.G. Irwin (C)*

  • Ascorhombispora L. Cai & K.D. Hyde

  • Aquasubmersa K.D. Hyde & Huang Zhang

  • Ascoronospora Matsush.*

  • Atradidymella M.L. Davey & Currah

  • Bahusandhika Subram.

  • Bellojisia Réblová

  • Berkleasmium Zobel (H)

  • Briansuttonia R.F. Castañeda et al. (H)

  • Cerebella Ces. (H)

  • Cheiromoniliophora Tzean & J.L. Chen (H)

  • Cyclothyrium Petr. (C)*

  • Dangeardiella Sacc. & P. Syd.

  • Dendryphiella Bubák & Ranoj.(H)

  • Dictyosporium Corda (H)

  • Didymosphaerella Cooke

  • Digitodesmium P.M. Kirk (H)

  • Diplococcium Grove (H)

  • Ellisembia Subram. (H)

  • Eremodothis Arx

  • Faurelina Locq.-Lin.

  • Fusculina Crous & Summerell (C)

  • Glaxoa P.F. Cannon*

  • Gordonomyces Crous & Marinc. (C)

  • Margaretbarromyces Mindell et al.

  • Massariosphaeria (E. Müll.) Crivelli

  • Mycocentrospora Deighton (H)

  • Neopeckia Sacc.

  • Nigrograna Gruyter et al. (C)*

  • Noosia Crous et al. (H)

  • Ochrocladosporium Crous & U. Braun (H)

  • Periconia Tode (H)

  • Phaeomycocentrospora Crous et al.

  • Pleosphaerellula Naumov & Czerepan.

  • Polyschema H.P. Upadhyay (H)

  • Pseudochaetosphaeronema Punith. (C)

  • Pseudopassalora Crous (H)

  • Pseudopyrenidium Nav.-Ros. et al.

  • Rebentischia P. Karst.*

  • Repetophragma Subram. (H)

  • ?Scleroramularia Batzer & Crous (H)

  • Setophaeosphaeria Crous & Y. Zhang ter*

  • Sirodesmium De Not. (C)

  • Spiroplana Voglmayr et al. (H)

  • Trinosporium Crous & Decock

  • Versicolorisporium Sat. Hatak. et al. (C)

  • Wicklowia Raja et al.

  • Xenobotryosphaeria Quaedvlieg et al.*

Dothideomycetes, orders incertae sedis

Abrothallales Pérez-Ortega & Suija*

Abrothallaceae Pérez-Ortega & Suija*

  • Abrothallus De Not.*

Botryosphaeriales C.L. Schoch et al.

Aplosporellaceae Slippers et al.*

  • Aplosporella Speg. (C)*

  • Bagnisiella Speg.*

Botryosphaeriaceae Theiss. & Syd.

  • Alanphillipsia Crous & M.J. Wingf.*

  • Auerswaldia Sacc.

  • Auerswaldiella Theiss. & Syd.

  • Barriopsis A.J.L. Phillips et al. (C)

  • Botryobambusa Phook. et al.

  • Botryosphaeria Ces. & De Not.* (see in Table 1)

  • Coccostromella Petr.*

  • Cophinforma Doilom et al.

  • Dichomera Cooke (C)

  • Diplodia Fr. (C)*

  • Dothiorella Sacc. (C)

  • Endomelanconiopsis E.I. Rojas & Samuels

  • Lasiodiplodia Ellis & Everh. (C)

  • Macrophomina Petr. (C)

  • Macrovalsaria Petr.

  • Metameris Theiss. & Syd.*

  • Microdiplodia Allesch. (C)

  • Neodeightonia C. Booth

  • Neofusicoccum Crous et al. (C)

  • Neoscytalidium Crous & Slippers (H)

  • Phaeobotryon Theiss. & Syd.

  • Phyllachorella Syd.

  • Pyrenostigme Syd.

  • Septorioides Quaedvlieg et al.*

  • Sivanesania W.H. Hsieh & Chi Y. Chen

  • Sphaeropsis Sacc. (C)* (see in Table 1)

  • Spencermartinsia A.J.L. Phillips et al.

  • Tiarosporella Höhn.

  • Vestergrenia Rehm

Melanopsaceae Phillips et al.*

  • Melanops Nitschke ex Fuckel

Phyllostictaceae Fr.

  • Leptoguignardia E. Müll.

  • Phyllosticta Pers. (C)* (see in Table 1)

  • Pseudofusicoccum Mohali et al. (C)*

Planistromellaceae M.E. Barr

  • Kellermania Ellis & Everh. (C)* (see in Table 1)

  • Mycosphaerellopsis Höhn.

  • Planistroma A.W. Ramaley*

Saccharataceae Slippers et al. *

  • Saccharata Denman & Crous

Botryosphaeriales, genera incertae sedis

  • Hendersonula Speg. (C)

Acrospermales Minter et al.

Acrospermaceae Fuckel

  • Acrospermum Tode*

  • Gonatophragmium Deighton (H)

  • Oomyces Berk. & Broome

Dyfrolomycetales K.L. Pang et al.

Dyfrolomycetaceae K.D. Hyde et al.

  • Dyfrolomyces K.D. Hyde et al.

Hysteriales Lindau

Hysteriaceae Chevall.

  • Actidiographium Lar. N. Vassiljeva

  • Coniosporium Link (H)

  • Gloniella Sacc.

  • Gloniopsis De Not.

  • Hysterium Pers.

  • Hysterobrevium E. Boehm & C.L. Schoch (C)

  • Hysterocarina H. Zogg

  • Hysteropycnis Hilitzer

  • Oedohysterium E. Boehm & C.L. Schoch*

  • Ostreichnion Duby

  • Psiloglonium Höhn.

  • Rhytidhysteron Speg.

  • Sphaeronaema Fr.

Jahnulales Pang et al.

Aliquandostipitaceae Inderbitzin

  • Aliquandostipite Inderb.

  • Brachiosphaera Nawawi (H)

  • Jahnula Kirschst.*

  • Megalohypha A. Ferrer & Shearer

  • Speiropsis Tubaki

  • Xylomyces Goos et al.

Manglicolaceae Suetrong & E.B.G. Jones

  • Manglicola Kohlm. & E. Kohlm.

Microthyriales G. Arnaud

Micropeltidaceae Clem. & Shear

  • Anariste Syd.*

  • Caudella Syd. & P. Syd.

  • Chaetothyrina Theiss.

  • Dictyopeltella Bat. & I.H. Lima

  • Haplopeltheca Bat. et al.

  • Heliocephala V. Rao et al.

  • Holubovaniella R.F. Castañeda (H)

  • Micropeltis Mont.

  • Scolecopeltidium F. Stevens & Manter

  • Sirothyriella Höhn.

  • Stomiopeltis Theiss.

  • Stomiopeltopsis Bat. & Cavalc.

  • Stomiotheca Bat.

Microthyriaceae Sacc.

  • Arnaudiella Petr.*

  • Asterostomula Theiss. (C)

  • Calothyriopsis Höhn.

  • Caribaeomyces Cif.

  • Chaetothyriothecium Hongsanan & K.D. Hyde*

  • Hansfordiella S. Hughes (H)

  • Isthmospora F. Stevens (H)

  • Leptothyrium Kunze (C)

  • Microthyrium Desm.

  • Palawania Syd. & P. Syd.

  • Seynesiella G. Arnaud

Microthyriales, genera incertae sedis

  • Neomicrothyrium Boonmee et al.

Monoblastiales Lücking et al.

Monoblastiaceae Walt. Watson

  • Acrocordia A. Massal.

  • Anisomeridium (Müll. Arg.) M. Choisy

  • Caprettia Bat. & H. Maia

  • Megalotremis Aptroot

  • Monoblastia Riddle

  • Trypetheliopsis Asahina

Mytilinidiales Boehm et al.

Gloniaceae (Corda) Boehm et al.

  • Cenococcum Moug. & Fr. (C)

  • Cleistonium Speer (C)

  • Glonium Muhl.

Mytilinidiaceae Kirschst.

  • Actidium Fr.

  • Camaroglobulus Speer (C)*

  • Lophium Fr.

  • Mytilinidion Duby

  • Ostreola Darker

  • Peyronelia Cif. & Gonz. Frag.

  • Quasiconcha M.E. Barr & M. Blackw.

  • Septonema Corda (H)

  • Taeniolella S. Hughes (H)

  • Zoggium Lar. N. Vassiljeva

Natipusillales Raja et al.

Natipusillaceae Raja et al.

  • Natipusilla A. Ferrer

Patellariales D. Hawksw. & O.E. Erikss.

Patellariaceae Corda

  • Baggea Auersw.

  • Colensoniella Hafellner*

  • Endotryblidium Petr.

  • Holmiella Petrini et al.

  • Lecanidiella Sherwood

  • Lirellodisca Aptroot

  • Murangium Seaver

  • Patellaria Fr.

  • Poetschia Körb.

  • Pseudoparodia Theiss. & Syd.

  • Rhizodiscina Hafellner

  • Schrakia Hafellner

  • Stratisporella Hafellner

  • Tryblidaria (Sacc.) Rehm

Phaeotrichales Ariyawansa et al.

Phaeotrichaceae Cain

  • Echinoascotheca Matsush.

  • Phaeotrichum Cain & M.E. Barr

  • Trichodelitschia Munk

Strigulales Lücking et al.

Strigulaceae Zahlbr.

  • Flavobathelium Lücking et al.

  • Phyllobathelium (Müll. Arg.) Müll. Arg

  • Phyllocratera Sérus. & Aptroot

  • Strigula Fr.

Trypetheliales Lücking et al.

Trypetheliaceae Zenker

  • Architrypethelium Aptroot

  • Bathelium Ach.

  • Polymeridium (Müll. Arg.) R.C. Harris

  • Pseudopyrenula Müll. Arg.

  • Trypethelium Spreng.

Tubeufiales Boonmee & K.D. Hyde*

Tubeufiaceae M.E. Barr*

  • Acanthohelicospora Boonmee & K.D. Hyde*

  • Acanthophiobolus Berl.#

  • Acanthostigma De Not.#

  • Acanthostigmina Höhn.#

  • Aquaphila Goh et al. (H)#

  • Bifrontia Norman#

  • Boerlagiomyces Butzin#

  • Chaetosphaerulina I. Hino*

  • Chlamydotubeufia Boonmee & K.D. Hyde#

  • Helicangiospora Boonmee*

  • Helicoma Corda (H)#

  • Helicomyces Link (H)#

  • Helicoön Morgan (H)

  • Helicosporium Nees (H)*

  • Kamalomyces R.K. Verma et al.#

  • Neoacanthostigma Boonmee et al.*

  • Podonectria Petch#

  • Tamhinispora Rajeshkumar & Rahul Sharma#

  • Thaxteriella Petr.#

  • Thaxteriellopsis Sivan. et al.*

  • Tubeufia Penz. & Sacc.#

  • # for notes see under Tubeufiaceae

Venturiales Yin. Zhang et al.

Venturiaceae E. Müll. & Arx ex M.E. Barr

  • Acantharia Theiss. & Syd.

  • Acroconidiellina (Berk. & Broome) M.B. Ellis (H)

  • Apiosporina Höhn.*

  • Atopospora Petr.

  • Caproventuria U. Braun

  • Coleroa Rabenh.

  • Helicodendron Peyronel (H)

  • Maireella Syd. ex Maire*

  • Metacoleroa Petr.

  • Pithosira Petr. (H)

  • Protoventuria Berl. & Sacc.

  • Pseudocladosporium U. Braun

  • Pseudoparodiella F. Stevens

  • Spilodochium Syd. (H)

  • Tyrannosorus Unter. & Malloch

  • Venturia Sacc.

Sympoventuriaceae Yin. Zhang ter et al.

  • Clavatispora S. Boonmee & K.D. Hyde*

  • Ochroconis de Hoog & Arx (H)*

  • Sympoventuria Crous & Seifert

  • Veronaeopsis Arzanlou & Crous (H)

Dothideomycetes, families incertae sedis

Argynnaceae Shearer & J.L. Crane

  • Argynna Morgan

  • Lepidopterella Shearer & J.L. Crane

Arthopyreniaceae W. Watson

  • Arthopyrenia A. Massal.

Ascoporiaceae Kutorga & D. Hawksw.

  • Ascoporia Samuels & A.I. Romero

Aulographaceae Luttr. ex P.M. Kirk et al.*

  • Aulographum Lib.#

  • Echidnodes Theiss. & Syd.*

  • Lembosiella Sacc.*

  • Lembosina Theiss.*

  • Morenoina Theiss.*

  • Thyriopsis Theiss. & Syd.*

  • #for notes see under Aulographaceae

Coccoideaceae Henn. ex Sacc. & D. Sacc.

  • Coccoidea Henn.

  • Coccoidella Höhn.

Cookellaceae Höhn. ex Saccardo & Trotter

  • Cookella Sacc.

  • Pycnoderma Syd. & P. Syd.*

  • Uleomyces Henn.

Dacampiaceae Körb.

  • Aaosphaeria Aptroot*

  • Clypeococcum D. Hawksw.

  • Dacampia A. Massal.

  • Eopyrenula R.C. Harris

  • Leptocucurthis Aptroot

  • Munkovalsaria Aptroot

  • Polycoccum Saut. ex Körb.

  • Pseudonitschkia Coppins & S.Y Kondr

  • Pyrenidium Nyl.

  • Weddellomyces D. Hawksw.

Englerulaceae Henn.*

  • Allosoma Syd.*

  • Capnodiastrum Speg. (C)

  • Digitosarcinella S. Hughes (H)

  • Englerula Henn.*

  • Goosia B. Song*

  • Parenglerula Höhn.*

  • Rhytidenglerula Höhn.*

  • Schiffnerula Höhn.*

  • Thrauste Theiss.*

Eremomycetaceae Malloch & Cain

  • Arthrographis G. Cochet ex Sigler & J.W. Carmich. (H)*

  • Eremomyces Malloch & Cain

  • Rhexothecium Samson & Mouch.

Euantennariaceae Hughes & Corlett

  • Antennatula Fr. ex F. Strauss (H)

  • Capnokyma S. Hughes (H)

  • Euantennaria Speg.

  • Hormisciomyces Bat. & Nascim. (H)

  • Plokamidomyces Bat. et al. (H)

  • Racodium Fr. (H)

  • Rasutoria M.E. Barr

  • Strigopodia Bat.

  • Trichothallus F. Stevens (H)

Fenestellaceae M.E. Barr

  • Fenestella Tul. & C. Tul.

  • Lojkania Rehm

  • Pleurostromella Petr. (C)

Kirschsteiniotheliaceae S. Boonmee & K.D. Hyde

  • Kirschsteiniothelia D. Hawksw.* (see in Table 1)

Leptopeltidaceae Höhn. ex Trotter

  • Dothiopeltis E. Müll.

  • Leptopeltis Höhn.

  • Nannfeldtia Petr.

  • Phacidina Höhn.

  • Ronnigeria Petr.

  • Staibia Bat. & Peres

Mesnieraceae Arx & E. Müll.

  • Bondiella Piroz.

  • Mesniera Sacc. & P. Syd.

  • Stegasphaeria Syd. & P. Syd.

Muyocopronaceae K.D. Hyde

  • Muyocopron Speg.

Naetrocymbaceae Höhn. ex R.C. Harris

  • Jarxia D. Hawksw.

  • Leptorhaphis Körb.

  • Naetrocymbe Körb. ex Körb.

  • Tomasellia A. Massal.

Paranectriellaceae S. Boonmee & K.D. Hyde

  • Paranectriella (P. Henn. ex Sacc & D. Sacc) Höhn.* (see in Table 1)

  • Puttemansia Henn.

Parmulariaceae E. Müll. & Arx ex M.E. Barr*

  • Aldona Racib.

  • Aldonata Sivan. & A.R.P. Sinha

  • Antoniomyces Inácio

  • Aulacostroma Syd. & P. Syd.

  • Campoa Speg.

  • Cocconia Sacc.

  • Cycloschizon Henn.

  • Cyclostomella Pat.

  • Dothidasteroma Höhn.*

  • Ferrarisia Sacc.

  • Hemigrapha (Müll. Arg.) R. Sant. ex D. Hawksw.

  • Hysterostomella Speg.

  • Inocyclus Theiss. & Syd.

  • Kiehlia Viégas

  • Mintera Inácio & P.F. Cannon

  • Pachypatella Theiss. & Syd.

  • Palawaniella Doidge

  • Parmularia Lév.

  • Parmulariopsella Sivan.

  • Parmulariopsis Petr.

  • Parmulina Theiss. & Syd.

  • Placoasterella Sacc. ex Theiss. & Syd.*

  • Placosoma Höhn.*

  • Placostromella Petr.*

  • Pleiostomellina Bat. et al.*

  • Polycyclina Theiss. & Syd.

  • Polycyclus Höhn.

  • Protothyrium G. Arnaud

  • Pseudolembosia Theiss.

  • Rhagadolobium Henn. & Lindau

  • Rhipidocarpon (Theiss.) Theiss. & Syd.

  • Symphaeophyma Speg.

  • Thallomyces H.J. Swart

  • Viegasella Inácio & P.F. Cannon

Parodiellaceae Theiss. & H. Syd. ex M.E. Barr

  • Parodiella Speg.

Perisporiopsidaceae E. Müll. & Arx ex R. Kirschner & T.A. Hofm.

  • Alina Racib.

  • Balladyna Racib.

  • Balladynocallia Bat.

  • Balladynopsis Theiss. & Syd.

  • Chevalieropsis G. Arnaud

  • Cleistosphaera Syd. & P. Syd.

  • Dimeriella Speg.

  • Dimerium (Sacc. & P. Syd.) McAlpine

  • Dysrhynchis Clem.

  • Hyalomeliolina F. Stevens

  • Leptomeliola Höhn.

  • Neoparodia Petr. & Cif.

  • Ophiomeliola Starbäck

  • Ophioparodia Petr. & Cif.

  • Parodiellina Henn. ex G. Arnaud

  • Perisporiopsis Henn.

  • Pilgeriella Henn.

  • Scolionema Theiss. & Syd.

  • Stomatogene Theiss.

Polystomellaceae Theiss. & H. Syd.

  • Dermatodothella Viégas*

  • Munkiella Speg.

  • Parastigmatea Doidge

Protoscyphaceae Kutorga & D. Hawksw.

  • Protoscypha Syd.

Pseudoperisporiaceae Toro

  • Aphanostigme Syd.

  • Bryochiton Döbbeler & Poelt

  • Bryomyces Döbbeler

  • Chaetoscutula E. Müll.*

  • Epibryon Döbbeler

  • Episphaerella Petr.

  • Eudimeriolum Speg.

  • Eumela Syd.

  • Jaffuela Speg.*

  • Keratosphaera H.B.P. Upadhyay

  • Lasiostemma Theiss. et al.

  • Lizonia (Ces. & De Not.) De Not.

  • Myxophora Döbbeler & Poelt

  • Nematostigma Syd. & P. Syd.

  • Nematostoma Syd. & P. Syd.

  • Nematothecium Syd. & P. Syd.

  • Neocoleroa Petr.

  • Ophiociliomyces Bat. & I.H. Lima

  • Phaeodimeriella Speg.

  • Phaeostigme Syd. & P. Syd.

  • Phragmeriella Hansf.

  • Pododimeria E. Müll.

  • Raciborskiomyces Siemaszko

  • Toroa Syd.

Roussoellaceae J.K. Liu et al.*

  • Appendispora K.D. Hyde*

  • Cytoplea Bizz. & Sacc. (C)*

  • Neoroussoella J.K. Liu et al.*

  • Roussoella Sacc.

  • Roussoellopsis I. Hino & Katum.

Schizothyriaceae Höhn. ex Trotter et al.

  • Amazonotheca Bat. & H. Maia

  • Chaetoplaca Syd. & P. Syd.

  • Henningsiella Rehm

  • Hexagonella F. Stevens & Guba ex F. Stevens

  • Hysteropeltella Petr.*

  • Kerniomyces Toro

  • Lecideopsella Höhn.

  • Linopeltis I. Hino & Katum.

  • Mendogia Racib.

  • Metathyriella Syd.

  • Mycerema Bat. et al.

  • Myriangiella Zimm.

  • Neopeltella Petr.

  • Orthobellus A.A. Silva & Cavalc.

  • Plochmopeltis Theiss.

  • Schizothyrium Desm. (H)*

  • Zygophiala E.W. Mason (H)*

Seynesiopeltidaceae K.D. Hyde

  • Seynesiopeltis F. Stevens & R.W. Ryan

Trichopeltinaceae (Theiss.) Bat. (=Brefeldiellaceae) *

  • Acrogenotheca Cif. & Bat.*

  • Brefeldiella Speg.*

  • Saccardinula Speg.*

  • Trichopeltella Höhn.*

  • Trichopeltheca Bat. et al.*

  • Trichopeltina Theiss.*

  • ?Trichothyrinula Petr.*

TrichothyriaceaeTheiss.

  • Lichenopeltella Höhn.

  • Macrographa Etayo

  • Pachythyrium G. Arnaud ex Spooner & P.M. Kirk

  • Trichothyrium Speg.

Vizellaceae H.J. Swart

  • Blasdalea Sacc. & P. Syd.* (see in Table 1)

  • Vizella Sacc.

Wiesneriomycetaceae Suetrong et al.*

  • Wiesneriomyces Koord.

Dothideomycetes, genera incertae sedis

  • Acanthorus Bat. & Cavalc. (C)

  • Acanthostigmella Höhn.*

  • Acarella Syd. (C)

  • Achorella Theiss. & Syd.

  • Acredontium de Hoog

  • Actinomyxa Syd. & P. Syd.

  • Alascospora Raja et al.

  • Allonecte Syd.

  • Amorosia Mantle & D. Hawksw. (H)

  • Ampullifera Deighton (H)

  • Anguillosporella U. Braun (H)

  • Anopeltis Bat. & Peres

  • Anthracostroma Petr.* (see in Table 1)

  • Anungitea B. Sutton (H)

  • Anungitopsis R.F. Castañeda & W.B. Kendr. (H)

  • Apoa Syd.

  • Aptrootia Lücking & Sipman

  • Aquamarina Kohlm. et al.

  • Aquaticheirospora Kodsueb & W.H. Ho (H)

  • Arkoola J. Walker & Stovold

  • Armata W. Yamam.

  • Asbolisia Bat. & Cif.

  • Ascocoronospora Matsush. (H)

  • Ascominuta Ranghoo & K.D. Hyde

  • Asterinema Bat. & Gayão*

  • Asteritea Bat. & R. Garnier

  • Asterodothis Theiss.*

  • Asteromassaria Höhn.

  • Asteromella Pass. & Thüm. (C)

  • Asteronia (Sacc.) Henn.

  • Asterostromina (C)

  • Astrosphaeriella Syd. & P. Syd.*

  • Astrothelium Eschw.

  • Atramixtia Tsuneda et al.

  • Austropleospora R.G. Shivas & L. Morin

  • Bactrodesmium Cooke (H)

  • Bahugada K.A. Reddy & V. Rao

  • Bahusakala Subram. (H)

  • Bahusutrabeeja Subram. & Bhat (H)

  • Banhegyia L. Zeller & Tóth

  • Belizeana Kohlm. & Volkm.-Kohlm.

  • Biciliopsis Diederich

  • Bonaria Bat.

  • Botryochora Torrend*

  • Botryohypoxylon Samuels & J.D. Rogers* (see in Table 1)

  • Botryostroma Höhn.

  • Brachyconidiella R.F. Castañeda & W.B. Kendr. (H)

  • Bramhamyces Hosag.

  • Brevicatenospora R.F. Castañeda et al.

  • Brooksia Hansf.* (see in Table 1)

  • Bryorella Döbbeler

  • Bryostroma Döbbeler

  • Bryothele Döbbeler

  • Buelliella Fink

  • Buscalionia Sambo

  • Byssocallis Syd.

  • Byssogene Syd.

  • Byssolophis Clem.

  • Byssopeltis Bat. et al.

  • Byssothecium Fuckel

  • Callebaea Bat.

  • Calyptra Theiss. & Syd.

  • Campylothelium Müll. Arg.

  • Capillataspora K.D. Hyde

  • Capnocheirides J.L. Crane & S. Hughes (H)

  • Capnodaria (Sacc.) Theiss. & Syd.

  • Capnodinula Bat. & Cif.

  • Capnophaeum Speg.

  • Capnosporium S. Hughes (H)

  • Carinispora K.D. Hyde

  • Catenolaria G.Y. Sun & H.Y. Li

  • Catinella Boud.

  • Catulus Malloch & Rogerson

  • Celtidia J.D. Janse

  • Ceramoclasteropsis Bat. & Cavalc.

  • Ceratophoma Höhn. (C)

  • Cercidospora Körb.

  • Cerodothis Muthappa

  • Ceuthodiplospora Died. (C)

  • Chaetocrea Syd.*

  • Chaetonectrioides Matsush.

  • Chaetosticta Petr. & Syd.

  • Chalara (Corda) Rabenh. (H)

  • Cheirosporium L. Cai & K.D. Hyde (H)

  • Chionomyces Deighton & Piroz.

  • Chuppia Deighton (H)

  • Cilioplea Munk

  • Cirsosina Bat. & J.L. Bezerra

  • Cirsosiopsis Butin & Speer

  • Cladoriella Crous (H)

  • Clasterosporium Schwein. (H)

  • Clavariopsis De Wild. (H)

  • Clypeispora A.W. Ramaley (C)

  • Clypeolina Theiss.

  • Clypeostroma Theiss. & Syd.

  • Cocciscia Norman

  • Coccochora Höhn.

  • Coccochorina Hara

  • Coccodothis Theiss. & Syd.

  • Comesella Speg.

  • Comminutispora A.W. Ramaley* (see in Table 1)

  • Coronospora M.B. Ellis*

  • Crauatamyces Viégas

  • Crotone Theiss. & Syd.

  • Cryomyces Selbmann et al. (H)

  • Cyclopeltis Petr.* (see in Table 1)

  • Cyclotheca Theiss.

  • Cylindrosympodium W.B. Kendr. & R.F. Castañeda

  • Cyrtidium Vain.

  • Cyrtidula Minks

  • Cyrtopsis Vain.

  • Cytostagonospora Bubák (C)

  • Dactuliophora C.L. Leakey (H)

  • Dawsomyces Döbbeler

  • Dawsophila Döbbeler

  • Decaisnella Fabre

  • Dermatodothis Racib. ex Theiss. & Syd.

  • Dianesea Inácio & P.F. Cannon

  • Dibotryon Theiss. & Syd.

  • Dictyoasterina Hansf.

  • Dictyodochium Sivan.

  • Dictyopeltis Theiss.

  • Dictyostomiopelta Viégas

  • Dictyothyrina Theiss.

  • Dictyothyrium Theiss.

  • Didymochora Hohn. (C)

  • Didymocyrtidium Vain.

  • Didymocyrtis Vain.

  • Didymolepta Munk

  • Didymopleella Munk

  • Diederichia D. Hawksw. (C)

  • Dilophospora Desm.

  • Diplochorina Gutner

  • Disculina Höhn. (C)

  • Dothichiza Lib. ex Roum.

  • Dothidasteromella Höhn.*

  • Dothidella Speg.

  • Dothivalsaria Petr.

  • Dubitatio Speg.

  • Dubujiana D.R. Reynolds & G.S. Gilber

  • Echinothecium Zopf

  • Elletevera Deighton (H)

  • Elmerinula Syd.

  • Endosporium Tsuneda (H)

  • Englerodothis Theiss. & Syd.

  • Epiphegia G.H. Otth

  • Epiphora Nyl.

  • Epipolaeum Theiss. & P. Syd.

  • Eriocercospora Deighton (H)

  • Eriocercosporella Rak. Kumar et al. (H)

  • Eriomycopsis Speg. (H)

  • Eriothyrium Speg. (C)

  • Eupelte Syd.*

  • Excipulariopsis P.M. Kirk & Spooner* (see in Table 1)

  • Exiliseptum R.C. Harris

  • Extrusothecium Matsush.

  • Farlowiella Sacc.* (see in Table 1)

  • Frondisphaeria K.D. Hyde

  • Fulvia Cif.

  • Fumiglobus D.R. Reynolds & G.S. Gilbert (C)

  • Funbolia Crous & Seifert (H)

  • Fusicladiella Höhn. (H)

  • Fusicladium Bonord. (H)

  • Gibbago E.G. Simmons (H)

  • Gibbera Fr.

  • Gibberidea Fuckel

  • Gilletiella Sacc. & P. Syd.

  • Globoa Bat. & H. Maia

  • Globulina Speg.

  • Gloeodiscus Dennis

  • Glyphium Nitschke ex F. Lehm.

  • Govindua Bat. & H. Maia

  • Graphyllium Clem.

  • Halokirschsteiniothelia Boonmee & K.D. Hyde

  • Hansfordiellopsis Deighton (H)

  • Hansfordiopsis Bat.

  • Harknessiella Sacc.

  • Hassea Zahlbr.

  • Heleiosa Kohlm. et al.

  • Helminthopeltis Sousa da Câmara

  • Helminthosporium Link (H)

  • Heptameria Rehm & Thüm.

  • Heptaster Cif. et al. (H)

  • Heteroconium Petr. (H)

  • Heterosphaeriopsis Hafellner

  • Hidakaea I. Hino & Katum.

  • Hobsoniopsis D. Hawksw. (H)

  • Homortomyces Crous & M.J. Wingf. (C)

  • Homostegia Fuckel

  • Hormiokrypsis Bat. & Nascim. (H)

  • Houjia G.Y. Sun & Crous (H)

  • Hugueninia J.L. Bezerra & T.T. Barros

  • Hyalocrea Syd. & P. Syd.

  • Hyaloscolecostroma Bat. & J. Oliveira

  • Hyalosphaera F. Stevens

  • Hyalotheles Speg.*

  • Hypobryon Döbbeler

  • Hysterodifractum D.A.C. Almeida et al.

  • Hysteroglonium Rehm ex Lindau

  • Hysteropsis Rehm

  • Idriella P.E. Nelson & S. Wilh. (H)

  • Immotthia M.E. Barr

  • Isthmosporella Shearer & J.L. Crane

  • Japonia Höhn.

  • Kabatia Bubák (C)

  • Koordersiella Höhn.

  • Kriegeriella Höhn.

  • Krishnamyces Hosag. (C)*

  • Kullhemia P. Karst.

  • Kusanobotrys Henn.

  • Lanatosphaera Matzer

  • Laocoön J.C. David (H)

  • Lasiobotrys Kunze

  • Lasmenia Speg.

  • Lautitia S. Schatz*

  • Lazarenkoa Zerova

  • Lembosiopeltis Bat. & J.L. Bezerra

  • Lemonniera De Wild. (H)

  • Leptospora Rabenh.

  • Letendraeopsis K.F. Rodrigues & Samuels

  • Leveillella Theiss. & Syd.*

  • Leveillina Theiss. & Syd.

  • Licopolia Sacc. et al.

  • Lidophia J. Walker & B. Sutton*

  • Limaciniopsis J.M. Mend.

  • Lineolata Kohlm. & Volkm.-Kohlm.

  • Lineostroma H.J. Swart

  • Lophiella Sacc.

  • Lophionema Sacc.

  • Lopholeptosphaeria Sousa da Câmara

  • Lucidascocarpa A. Ferrer et al.*

  • Macowaniella Doidge*

  • Maheshwaramyces Hosag.*

  • Malacaria Syd.*

  • Manginula G. Arnaud (C)

  • Manoharachariella Bagyan. et al.

  • Marcelaria Aptroot et al.

  • Massariola Füisting

  • Maublancia G. Arnaud

  • Megaloseptoria Naumov (C)

  • Melioliphila Speg.*

  • Mendoziopeltis Bat.

  • Microcyclella Theiss.

  • Microcyclus Sacc. et al.

  • Microdothella Syd. & P. Syd.

  • Micropustulomyces R.W. Barreto (C)

  • Microxiphium (Harv. ex Berk. & Desm.) Thüm. (H)

  • Minteriella Heredia et al.

  • Minutisphaera Shearer et al.

  • Mitopeltis Speg.

  • Miuraea Hara (H)

  • Monoblastiopsis R.C. Harris & C.A. Morse

  • Monodictys S. Hughes (H)

  • Monotosporella S. Hughes (H)

  • Montagnella Speg.

  • Moriolomyces Cif. & Tomas.

  • Moristroma A.I. Romero & Samuels

  • Muroia I. Hino & Katum.

  • Mycocryptospora J. Reid & C. Booth

  • Mycodidymella C.Z. Wei et al.

  • Mycoglaena Höhn.

  • Mycomicrothelia Keissl.

  • Mycopepon Boise

  • Mycoporellum Müll. Arg.

  • Mycothyridium Petr.

  • Mycovellosiella Rangel (H)

  • Myriangiopsis Henn.

  • Myriostigmella G. Arnaud

  • Mytilostoma P. Karst.

  • Myxocyclus Riess (C)

  • Neocoleroa Petr.

  • Neodeightoniella Crous & W.J. Swart (H)

  • Neoovularia U. Braun (H)

  • Neoramularia U. Braun (H)

  • Neottiosporina Subram. (C)

  • Neoventuria Syd. & P. Syd.

  • Ocala Raja & Shearer

  • Omphalospora Theiss. & Syd.*

  • Ophiotrichum Kunze (H)

  • Otthia Nitschke ex Fuckel

  • Parahendersonia A.W. Ramaley (C)*

  • Paraliomyces Kohlm.

  • Parastenella J.C. David (H)

  • Parasterinella Speg.*

  • Parmulariella Henn.

  • Paropodia Cif. & Bat.

  • Passeriniella Berl.

  • Passerinula Sacc.

  • Pazschkeella Syd. & P. Syd.

  • Peltaster Syd. & P. Syd. (C)

  • Peltasterella Bat. & H. Maia (C)

  • Pendulispora M.B. Ellis (H)

  • Perischizon Syd. & P. Syd.

  • Peroschaeta Bat. & A.F. Vital

  • Petrakina Cif.*

  • Petrakiopeltis Bat. et al.

  • Phaeocyrtidula Vain.

  • Phaeoglaena Clem.

  • Phaeopeltosphaeria Berl. & Peglion

  • Phaeoramularia Munt.-Cvetk. (H)

  • Phaeosclera Sigler et al. (H)

  • Phaeosperma Nitschke ex G.H. Otth

  • Phaeotheca Sigler et al. (H)

  • Phaeothecoidiella Batzer & Crous (H)

  • Phaeothyriolum Syd.

  • Phaeotomasellia Katum.

  • Phaeoxyphiella Bat. & Cif. (C)

  • Phanerococculus Cif.

  • Philobryon Döbbeler

  • Philonectria Hara

  • Phragmaspidium Bat.

  • Phragmogibbera Samuels & Rogerson

  • Phragmoscutella Woron. & Abramov*

  • Phragmosperma Theiss. & Syd.

  • Phycorella Döbbeler

  • Physalosporopsis Bat. & H. Maia

  • Pirozynskia Subram. (H)*

  • Placoasterina Toro

  • Placodothis Syd.

  • Placomelan Cif.*

  • Placosphaeria (De Not.) Sacc.

  • Plagiostromella Höhn.

  • Plectopycnis Bat. & A.F. Vital (C)

  • Plejobolus (E. Bommer et al.) O.E. Erikss.

  • Plenotrichaius Bat. & Valle (C)

  • Pleostigma Kirschst.

  • Pleotrichiella Sivan.

  • Pleurophoma Höhn. (C)

  • Pleurophomopsis Petr. (C)*

  • Podoplaconema Petr. (C)

  • Polychaetella Speg. (C)

  • Polyclypeolina Bat. & I.H. Lima

  • Polycyclinopsis Bat. et al.

  • Polyrhizon Theiss. et al.

  • Polysporidiella Petr.

  • Polystomellina Bat. & A.F. Vital

  • Polystomellopsis F. Stevens

  • Prathoda Subram. (H)

  • Pseudoallosoma F.B. Rocha et al.

  • Pseudodictyosporium Matsush. (H)

  • Pseudodidymella C.Z. Wei et al.* (see in Table 1)

  • Pseudoepicoccum M.B. Ellis

  • Pseudomorfea Punith.

  • Pseudopleospora Petr.

  • Pseudorobillarda M. Morelet (C)

  • Pseudoscypha J. Reid & Piroz.

  • Pseudovirgaria H.D. Shin et al. (H)

  • Pteridiospora Penz. & Sacc.

  • Pteropus R.W. Ham

  • Punctillum Petr. & Syd.

  • Pycnocarpon Theiss.

  • Pyrenobotrys Theiss. & Syd.

  • Pyrenochium Link

  • Pyrenocyclus Petr.

  • Quasiphloeospora B. Sutton et al. (H)

  • Quintaria Kohlm. & Volkm.-Kohlm

  • Racoleus R. Sant. & D. Hawksw.

  • Racovitziella Döbbeler & Poelt

  • Ramulariopsis Speg. (H)

  • Resendea Bat.

  • Rhabdospora (Durieu & Mont. ex Sacc.) Sacc. (C)

  • Rhizogene Syd. & P. Syd.

  • Rhizopycnis D.F. Farr (C)

  • Rhizosphaera L. Mangin & Har.

  • Rhizotexis Theiss. & Syd.*

  • Rhopographus Nitschke ex Fuckel

  • Robillardiella S. Takim.

  • Rosaria N. Carter

  • Rosasphaeria Jaklitsch & Voglmayr

  • Rosellinula R. Sant.

  • Rosenscheldia Speg.

  • Rosenscheldiella Theiss. & Syd.

  • Roumegueria (Sacc.) Henn.

  • Saccharicola D. Hawksw. & O.E. Erikss

  • Sakireeta Subram. & K. Ramakr. (C)

  • Sapucchaka K. Ramakr.

  • Sarcinomyces Lindner (H)

  • Sarcophoma Höhn.

  • Saxomyces Selbmann & Isola

  • Scirrhia Nitschke ex Fuckel

  • Scleroconidioma Tsuneda et al. (H)

  • Sclerophoma Höhn. (C)*

  • Scolecobonaria Bat.

  • Scolecoxyphium Cif. & Bat. (C)

  • Semifissispora H.J. Swart

  • Semisphaeria K. Holm & L. Holm

  • Septoidium G. Arnaud (H)

  • Shearia Petr. (C)*

  • Shivamyces Hosag.

  • Sirosporium Bubák & Serebrian. (H)

  • Sivanesaniella Gawande & D.K. Agarwal

  • Spermatoloncha Speg. (H)

  • Sphaerellopsis Cooke (C)

  • Spirosphaera Beverw. (H)

  • Sporidesmajora Batzer & Crous (H)

  • Sporidesmium Link (H)

  • Stegasphaeria Syd. & P. Syd.

  • Stegothyrium Höhn.

  • Stephanotheca Syd. & P. Syd.*

  • Stigmatodothis Syd. & P. Syd.

  • Stigmatophragmia Tehon & G.L. Stout

  • Stromatopogon Zahlbr.

  • Stuartella Fabre

  • Symphaster Theiss. & Syd.

  • Syrropeltis Bat. et al.

  • Teichosporella (Sacc.) Sacc.

  • Teratoschaeta Bat. & O.M. Fonseca

  • Tetracrium Henn. (H)

  • Thalassoascus Ollivier

  • Thelenidia Nyl.

  • Thryptospora Petr.

  • Thyrinula Petr. & Syd. (C)

  • Thyriodictyella Cif.

  • Thyrospora Kirschst.

  • Tilakiella Srinivas.

  • Titaea Sacc. (H)

  • Tomeoa I. Hino

  • Torulopsiella Bender (H)

  • Tothia Bat.

  • Trematosphaeriopsis Elenkin

  • Tretospora M.B. Ellis (H)

  • Trichodothella Petr.

  • Trichodothis Theiss. & Syd.

  • Trichometasphaeria Munk

  • Trichosporiella Kamyschko (H)

  • Trichothyriella Theiss.

  • Trichothyriomyces Bat. & H. Maia

  • Triposporium Corda (H)

  • Troposporella P. Karst. (H)

  • Uleodothis Theiss. & Syd.

  • Uredinophila Rossman*

  • Valsaria Ces. & De Not.

  • Verrucisporota D.E. Shaw & Alcorn (H)

  • Verruconis Samerpitak & de Hoog

  • Vishnumyces Hosag.*

  • Wentiomyces Koord.

  • Westea H.J. Swart

  • Wettsteinina Höhn.

  • Xenomeris Syd.

  • Xenophacidiella Crous

  • Xenosonderhenia Crous (C)

  • Xenosporium Penz. & Sacc.

  • Xenostomella Syd.

  • Xylopezia Höhn.

  • Yoshinagaia Henn.*

  • Yoshinagella Höhn.

  • Zalerion R.T. Moore & Meyers

  • Zeloasperisporium R.F. Castañeda (H)

Notes on recent changes and naming

In this section we provide notes explaining our proposals to grant particular generic names protected or suppressed status (Table 1), and also drawing attention to recent advances in our understanding of asexual and sexual morph linkages in Dothideomycetes. Furthermore, we provide notes for all newly introduced names for families and genera Dothideomycetes since Hyde et al. (2013).

Aaosphaeria Aptroot, Nova Hedwigia 60 (3–4): 329 (1995)

Notes: Aptroot (1995) stated that the type species, Aaosphaeria arxii (Aa) Aptroot has a Microsphaeropsis asexual state that “could be close to Polycoccum in the Dacampiaceae”. The type species of Microsphaeropsis, Mi. olivacea (Bonord.) Höhn. however, was shown to cluster in Didymellaceae (de Gruyter et al. 2009), thus we conclude Aaosphaeria has a microsphaeropsis-like asexual state.

Abrothallaceae Sergio Pérez-Ortega & Ave Suija, Fungal Diversity 64 (1): 303 (2014)

Notes: See notes under Abrothallales.

Abrothallales Sergio Pérez-Ortega & Ave Suija, Fungal Diversity 64 (1): 302 (2014)

Notes: Pérez-Ortega et al. (2014) introduced this order and it comprises one family viz. Abrothallaceae. Currently only one genus is placed in Abrothallaceae i.e. Abrothallus and it appears to be well-established order in Dothideomycetes. The molecular analyses of Pérez-Ortega et al. (2014) are supported in our multi-gene analyses (Fig. 1).

Abrothallus De Not., Mem Reale Accad Sci Torino ser. 2 10: 351–355 (1845)

Notes: See notes under Abrothallales.

Acanthohelicospora Boonmee & K.D. Hyde, Fungal Diversity 68 (2014)

Notes: The genus Acanthohelicospora (Tubeufiaceae) was introduced by Boonmee et al. (2014b) with A. pinicola Boonmee & K.D. Hyde as the type species. Currently the genus comprises four species including the type species A. aureum, A. guianense and A. scopulum.

Acanthostigmella Hön., Annls mycol. 3 (4): 327 (1905)

Notes: Boonmee et al. (2014b) excluded this genus from Tubeufiaceae and placed in Dothideomycetes, genera incertae sedis.

Acervuloseptoria Crous & Jol. Roux, Persoonia 32: 275 (2014)

Notes: Crous et al. (2014) introduced Acervuloseptoria with A. ziziphicola Crous & Jol. Roux as the type species. Acervuloseptoria is morphologically and phylogenetically quite distinct from Septoria sensu stricto, however, it belongs in Mycosphaerellaceae (Crous et al. 2014).

Achaetobotrys Bat. & Cif., Saccardoa 2: 49 (1963)

Notes: Kirk et al. (2008) stated that this genus has Antennariella Bat. & Cif. asexual states. However, taxonomic placement of Antennariella is uncertain; hence we do not synonymize these two genera. Further molecular-based analyses are essential.

Acicuseptoria Quaedvlieg et al., Stud. Mycol. 75: 376 (2013)

Notes: Quaedvlieg et al. (2013) introduced Acicuseptoria and molecular data analyses showed it belongs in Leptosphaeriaceae.

Acrocalymma Alcorn & J.A.G. Irwin, Trans. Br. mycol. Soc. 88 (2): 163 (1987)

Notes: Alcorn and Irwin (1987) established this genus with Acrocalymma medicaginis Alcorn & J.A.G. Irwin as the type species. Shoemaker et al. (1991) observed the sexual state of Acrocalymma medicaginis in pure culture and named it as Massarina walkeri Shoemaker et al. Zhang et al. (2012) introduced a new species, Acrocalymma aquatica H. Zhang & K.D. Hyde and confirmed the close relationship with A. medicaginis in their combined SSU and LSU and ITS analyses. However, Zhang et al. (2012) further showed that Massarina walkeri is not congeneric with Massarina sensu stricto and placed it in Pleosporales genera incertae sedis close to Morosphaeriaceae. Thus, we conclude that Acrocalymma has massarina-like sexual states.

Acrogenotheca Cif. & Bat., Saccardoa 2: 51 (1963)

Notes: Hongsanan et al. (2014a) accepted this genus in Trichopeltinaceae.

Acrospermum Tode, Fung. mecklenb. sel. (Lüneburg) 1: 8 (1790)

Notes: Carmichael et al. (1980) reported Acrospermum compressum Tode to have a Dactylaria Sacc. asexual state. However, Dactylaria is considered as polyphyletic (Seifert et al. 2011; Wijayawardene et al. 2012), hence we conclude that Acrospermum has dactylaria-like asexual states.

Alanphillipsia Crous & M.J. Wingf., Persoonia, Mol. Phyl. Evol. Fungi 31: 197 (2013)

Notes: Crous et al. (2013) introduced this genus with four species and megablast results showed it belongs to Botryosphaeriaceae.

Allosoma Syd., Annls mycol. 24 (5/6): 353 (1926)

Notes: Lumbsch and Huhndorf (2010) listed Allosoma under Dothideomycetes, genera incertae sedis. Thambugala et al. (2014c) refer Allosoma to Englerulaceae based on morphological similarities with the generic type of Englerulaceae.

Alternaria Nees, Syst. Pilze (Würzburg): 72 (1816) [1816–17]

  • =

    Elosia Pers., Mycol. Eur. (Erlanga) 1: 12 (1822)

  • =

    Macrosporium Fr., Syst. Mycol. (Lundae) 3: 373 (1832)

  • =

    Rhopalidium Mont., Ann. Sci. Nat., Bot., Sér. 2, 6: 30 (1836)

  • =

    Brachycladium Corda, Icon. Fungorum hucusque Cogn. (Prague) 2: 14 (1838)

  • =

    Ulocladium Preuss, Linnaea 24: 111 (1851)

  • =

    Macrospora Fuckel, Jb. nassau. Ver. Naturk. 23–24: 139 (1870) [1869–70]

  • =

    Chmelia Svob.-Pol., Biologia (Bratislava) 21: 82 (1966)

  • =

    Embellisia E.G. Simmons, Mycologia 63: 380 (1971)

  • =

    Trichoconiella B.L. Jain, Kavaka 3: 39 1976 [1975]

  • =

    Botryomyces de Hoog & C. Rubio, Sabouraudia 20: 19 (1982) (nom. illegit.)

  • =

    Lewia M.E. Barr & E.G. Simmons, Mycotaxon 25: 289 (1986)

  • =

    Ybotromyces Rulamort, Bull. Soc. Bot. Centre-Ouest, Nouv. Sér. 17: 192 (1986)

  • =

    Nimbya E.G. Simmons, Sydowia 41: 316 (1989)

  • =

    Allewia E.G. Simmons, Mycotaxon 38: 260 (1990)

  • =

    Crivellia Shoemaker & Inderb., Canad. J. Bot. 84: 1308 (2006)

  • =

    Chalastospora E.G. Simmons, CBS Biodiversity Ser. (Utrecht) 6: 668 (2007)

  • =

    Teretispora E.G. Simmons, CBS Biodiversity Ser. (Utrecht) 6: 674 (2007)

  • =

    Undifilum B.M. Pryor et al., Botany 87: 190 (2009)

  • =

    Sinomyces Yong Wang bis & X.G. Zhang, Fungal Biol. 115: 192 (2011)

Notes: Simmons (1986; 2002; 2007) showed that Lewia is the sexual morph of Alternaria and discussed the morphological differences of the latter from Pleospora to which Alternaria was originally linked (Pleospora is the sexual state of Stemphylium). Simmons (1986) also mentioned that Lewia scrophulariae (Desm.) M.E. Barr & E.G. Simmons, the generic type, has an Alternaria asexual state. Woudenberg et al. (2013) showed that Lewia states developed in several sections of Alternaria, and reduced Brachycladium, Chalastospora, Chmelia, Crivellia, Embellisia, Lewia, Nimbya, Sinomyces, Teretispora, Ulocladium, Undifilum and Ybotromyces to synonymy under Alternaria based on molecular and morphological studies. Furthermore, Woudenberg et al. (2013) treated the type species of Macrospora Fuckel, M. scirpicola (DC.) Fuckel as a synonym of Alternaria scirpicola (Fuckel) Sivan. which is the type species of Alternaria, section Nimbya.

Alternariaster E.G. Simmons, CBS Diversity Ser. (Utrecht) 6: 667 (2007)

Notes: Simmons (2007) introduced this monotypic genus and transferred Alternaria helianthi (Hansf.) E.G. Simmons to Alternariaster helianthi (Hansf.) E.G. Simmons. Simmons (2007) considered Alternariaster to be related to Alternaria, however, Alves et al. (2013) and Woudenberg et al. (2013) clealy showed Alternariaster (Leptosphaeriaceae) to have a distinct phylogenetic affinity in Pleosporales and removed it from Alternaria sensu stricto (Pleosporaceae).

Amniculicola Y. Zhang ter & K.D. Hyde, Mycol. Res. 112(10): 1189 (2008)

Notes: Zhang et al. (2009a, b) showed that this genus forms a well-established monophyletic clade in their LSU rDNA analysis. In the same clade, two asexual fungi i.e. Anguillospora longissima (Sacc. & P. Syd.) Ingold and Repetophragma ontariense (Matsush.) W.P. Wu also grouped. The type species of Amniculicola, A. lignicola Y. Zhang ter & K.D. Hyde grouped with Anguillospora longissima, the type species of Anguillospora with low bootstrap values. However, it is essential to include more strains and more gene regions before synonymizing Amniculicola under an older hyphomycete name.

Amycosphaerella Quaedvlieg & Crous, Persoonia 33: 22 (2014)

Notes: Quaedvlieg et al. (2014) showed that Mycosphaerella africana Crous & M.J. Wingf. is not congeneric with Mycosphaerella sensu stricto and introduced Amycosphaerella to accommodate M. africana. Both genera are distinct in morphology, and Amycosphaerella does not produce a Ramularia asexual morph (Quaedvlieg et al. 2014).

Anariste Syd., Annls mycol. 25(1/2): 76 (1927)

Notes: Hongsanan et al. (2014c) transferred this genus from Asterinaceae to Micropeltidaceae.

Anguillospora Ingold, Trans. Br. mycol. Soc. 25(4): 401 (1942) [1941]

Notes: See notes under Amniculicola.

Anhellia Racib., Parasit. Alg. Pilze Java's (Jakarta) 2: 10 (1900)

Notes: See notes under Myriangiaceae.

Annellosympodiella Crous & Assefa, Persoonia, Mol. Phyl. Evol. Fungi 32: 245 (2014)

Notes: Crous et al. (2014) introduced this genus and showed it belongs to Mycosphaerellaceae, Capnodiales.

Antennulariella Woron., Trudy Byuro Prikl. Bot. 8(6): 771 (1915)

  • =

    Antennariella Bat. & Cif., Quad. Lab. crittogam., Pavia 31: 22 (1963)

  • =

    Capnodendron S. Hughes, Mycologia 68(4): 750 (1976)

  • =

    Capnociferria Bat., Saccardoa 2: 76 (1963)

  • =

    Capnocrinum Bat. & Cif., Saccardoa 2: 78 (1963)

  • =

    Capnodina (Sacc.) Sacc., Syll. fung. (Abellini) 24(1): 366 (1926)

  • =

    Capnodium subgen. Capnodina Sacc., Syll. fung. (Abellini) 22: 60 (1913)

Notes: Hughes (1976; 2000) stated that the sooty mould genus Antennulariella is the sexual state of Antennariella and its Capnodendron synasexual. Most of these links were established based on co-occurrence of both morphs on the same substrate and so far not proved by molecular phylogeny. However, Hyde et al. (2013) synonymised Antennariella Bat. & Cif and Capnodendron S. Hughes under Antennulariella.

Anthracostroma Petr., Sydowia 8(1–6): 96 (1954)

  • =

    Camarosporula Petr., Sydowia 8(1–6): 99 (1954)

Notes: Petrak (1954) established Camarosporula to place the conidial state of Anthracostroma. This established link was confirmed by Crous et al. (2011) in their DNA sequence analysis. Both genera are monophyletic and thus priority should apply to the older name Anthracostroma and the asexual state Camarosporula synonymized under Anthracostroma.

Apenidiella Quaedvlieg & Crous, Persoonia 33: 28 (2014)

Notes: The genus Apenidiella was introduced to place the morphologically similar Penidiella strumelloidea (Milko & Dunaev) Crous & U. Braun (Quaedvlieg et al. 2014), which is phylogenetically distinct. It is placed in Teratosphaeriaceae by molecular data.

Apiosporina Höhn., Sber. Akad. Wiss. Wien, Math.-naturw. Kl., Abt. 1 119: 439 (1910)

  • =

    Dibotryon Theiss. & Syd., Annls mycol. 13(5/6): 663 (1915)

  • =

    Parodiodia Bat., Saccardoa 1:9 (1960)

Notes: Zhang et al. (2011) and Hyde et al. (2013) considered Dibotryon to be a synonym of Apiosporina following von Arx and Müller (1975), Barr (1968) and Crous et al. (2007). Furthermore, Winton et al. (2007) phylogenetically showed that Apiosporina collinsii (Schwein.) Höhn., the type species of Apiosporina and Dibotryon morbosum (Schwein.) Theiss. & Syd., the type species of Dibotryon are congeneric. Herein, we also accept Dibotryon, as a synonym of Apiosporina.

Aplosporella Speg., Anal. Soc. cient. argent. 10(5–6): 157 (1880)

Notes: See notes under Aplosporellaceae.

Aplosporellaceae Slippers et al., Stud Mycol 76: 41 (2013)

Notes: Slippers et al. (2013) showed that Aplosporella and Bagnisiella, Melanops, and Saccharata have distinct phylogenetic lineages in Botryosphaeriales. Hence they introduced Aplosporellaceae (Aplosporella and Bagnisiella), Melanopsaceae (Melanops) and Saccharataceae (Saccharata) as new families in Botryosphaeriales.

Aposphaeria Sacc., Michelia 2(no. 6): 4 (1880)

Notes: De Gruyter et al. (2013) showed that Aposphaeria accommodated in Melanommataceae in their molecular data analyses.

Appendispora K.D. Hyde, Anal. Soc. cient. argent. 46(1): 29 (1994)

Notes: Based on its similarities with Roussoellaceae, Ariyawansa et al. (2014b) placed Appendispora in Roussoellaceae.

Arnaudiella Petr., Annls mycol. 25(3/4): 339 (1927)

Notes: Crous and Kendrick (1994) introduced Xenogliocladiopsis to place the conidial state of Arnaudiella eucalyptorum Crous & W.B. Kendr. However, several collections of X. eucalyptorum from Eucalyptus in Australia and South Africa have since shown that this published connection was in fact incorrect, and that Xenogliocladiopsis is a distinct genus in the Hypocreales (Nectriaceae), and does not belong to the Dothideomycetes (P.W. Crous, unpubl. data). Presently there are no confirmed asexual morphs for Arnaudiella.

Arthrocatena E. Egidi & L. Selbmann, Fungal Diversity 65: 159 (2014)

Notes: This new genus was introduced with A. tenebrio Egidi & Selbmann in Egidi et al. (2014). Molecular analyses of a combined data set of nu LSU, RPB2, ITS, BT2 showed Arthrocatena to belong in Capnodiales incertae sedis (Egidi et al. 2014).

Arthrographis G. Cochet ex Sigler & J.W. Carmich., Mycotaxon 4(2): 359 (1976)

Notes: The genus Arthrographis is traditionally considered as a member of Eremomycetaceae (Malloch and Sigler 1988). Giraldo et al. (2014) showed that Arthrographis is polyphyletic. However, the type species of Arthrographis, A. kalrae (R.P. Tewari & Macph.) Sigler & J.W. Carmich. was shown to belong in Eremomycetaceae (Giraldo et al. 2014).

Ascohyta Lib., Pl. crypt. Arduenna (Liège), fasc. 1(Praef.): 8 (1830)

  • =

    Ascochytella Tassi, Bulletin Labor. Orto Bot. de R. Univ. Siena 5: 6, 27 (1902)

  • =

    Ascochytula (Potebnia) Died., Annls mycol. 10(2): 141 (1912)

  • =

    Macrodiplodina Petr., Sydowia 15(1–6): 190 (1962) [1961]

  • =

    Stagonosporopsis Died., Annls mycol. 10(2): 142 (1912)

Notes: De Gruyter et al. (2009) showed that Ascochyta pisi, the sexual state Didymella pisi and generic type of Ascochyta, groups close to Didymella exigua (Niessl) Sacc., the type species of Didymella. Peever et al. (2007) showed that A. pinodes L.K. Jones has Didymella sexual states (i.e. D. pinodes (Berk. & A. Bloxam). Didymella exigua was not linked with any Ascochyta spp., but it groups close to A. pisi and other Ascochyta spp. Woudenberg et al. (2009) however, also showed Phoma clematidina (Thüm.) Boerema also has a Didymella sexual state. Further research is necessary, however, to resolve clades in the Didymellaceae. Because the phylogeny of Didymella and Ascochyta has yet to be resolved, both genera are maintained for usage.

Ascoronospora Matsush., Matsush. Mycol. Mem. 10: 179 (2003)

Notes: Matsushima (2003) described the genus Ascoronospora and observed the Coronospora asexual state in culture. However, the link between Ascoronospora and type species of Coronospora was not confirmed. Hence we conclude Ascoronospora has coronospora-like asexual state.

Ascostratum Syd. & P. Syd., Annls mycol. 10(1): 41 (1912)

Notes: Tian et al. (2014) placed Ascostratum in Myriangiaceae based on the difference colour and shape of the ascospores and their completely different habits.

Asterina Lév., Annls Sci. Nat., Bot., sér. 3 3: 59 (1845)

  • =

    Aphanopeltis Syd., Annls mycol. 25(1/2): 82 (1927)

  • =

    Asterolibertia G. Arnaud, Annals d'École National d'Agric. de Montpellier, Série 2 16(1–4): 165 (1918) [1917]

  • =

    Asterostomella Speg., Anal. Soc. cient. argent. 22(4): 198 (1886)

  • =

    Bheemamyces Hosag., J. Threatened Taxa 2(12): 1323 (2010)

  • =

    Gangamyces Hosag., Mycosphere 3(5): 778 (2012)

  • =

    Ishwaromyces Hosag. [as ‘Ishwaramyces’], J. Econ. Taxon. Bot. 28(1): 183 (2004)

  • =

    Mahanteshomyces Hosag. & C.K. Biju [as ‘Mahanteshamyces’], J. Econ. Taxon. Bot. 28(1): 189 (2004)

  • =

    Neostomella Syd., Annls mycol. 25(1/2): 38 (1927)

  • =

    Placoasterina Toro, J. Dept. Agric. Porto Rico 14(4): 229 (1930)

  • =

    Symphaster Theiss. & Syd., Annls mycol. 13(3/4): 217 (1915)

Notes: Several genera listed above were newly synonymized under Asterina by Hongsanan et al. (2014c) who also provided a generic revision.

Asterinaceae Hansf., Mycol. Pap. 15: 188 (1946)

  • =

    Lembosiaceae Hosag., J. Mycopathol. Res. 39(1): 61 (2001)

  • =

    Lembosiaceae Höhn., Annls mycol. 16(1/2): 146 (1918)

Notes: Hongsanan et al. (2014c) revised Asterinaceae and accepted 16 genera. Furthermore, Lembosiaceae Hosag. and Lembosiaceae Höhn. were treated as synonyms of Asterinaceae. At the same time Hongsanan et al. (2014c) transferred Aulographina to Teratosphaeriaceae and Yamamotoa Bat. was listed as a synonym of Lembosia.

Asterinales M.E. Barr ex D. Hawksw. & O.E. Erikss., Syst. Ascom. 5(1): 177 (1986)

Notes: Hongsanan et al. (2014c) revisited Asterinales and accepted only one family i.e. Asterinaceae. Aulographaceae and Parmulariaceae was listed under Asterinales in Lumbsch and Huhndorf (2010) but Hongsanan et al. (2014c) treated both families as Dothideomycetes, family incertae sedis.

Asterinema Bat. & Gayão, Anais IV Congr. Soc. bot. Brasil: 160 (1953)

Notes: Wu et al. (2014) transferred this genus to Asterinaceae. However, Hongsanan et al. (2014c) treated this genus as Dothideomycetes, genera incertae sedis as the genus has characters that are typical of Asterinaceae and Microthyriaceae.

Asterodothis Theiss., Annls mycol. 10(2): 179 (1912)

Notes: Hongsanan et al. (2014c) transferred this genus from Asterinaceae to Dothideomycetes, genera incertae sedis.

Astrosphaeriella Syd. & P. Syd., Annls mycol. 11(3): 260 (1913)

Notes: Tanaka and Harada (2005) observed a pleurophomopsis-like conidial state in the cultures of A. aggregata (I. Hino & Katum.) Kaz. Tanaka & Y. Harada. However, molecular analysis has not been carried out for Pleurophomopsis hence its taxonomic position remains uncertain.

Aulographaceae Luttr. ex P.M. Kirk et al., Ainsworth & Bisby's Dictionary of the Fungi Edn 9 (Wallingford): ix (2001)

Notes: Hongsanan et al. (2014c) revised the family and accepted six genera.

Aulographina Arx & E. Müll., Sydowia 14: 330 (1960)

Notes: Aulographina pinorum (Desm.) Arx & E. Müll., the ex-type of Aulographina, clusters apart from A. eucalypti (Cooke & Massee) Arx & E. Müll., which has Thyrinula eucalypti (Cooke & Massee) H.J. Swart (type of Thyrinula) as asexual morph (Carnegie and Keane 2003). Target spot of Eucalyptus, should therefore more correctly be ascribed to T. eucalypti rather than to Aulographina. Both genera, Aulographina and Thyrinula should thus be retained. Hongsanan et al. (2014c) transferred Aulographina from Asterinaceae to Teratosphaeriaceae.

Aureobasidiaceae K.M. Thambugala & K.D. Hyde, Fungal Diversity 68 (2014)

Notes: See notes under Dothideales and Thambugala et al. (2014a).

Austroafricana Quaedvlieg & Crous, Persoonia 33: 25 (2014)

Notes: Quaedvlieg et al. (2014) introduced Austroafricana to accommodate three teratosphaeria-like species as Teratosphaeria associata (Crous & Carnegie) Crous & U. Braun, T. keanei Carnegie & G.S. Pegg and T. parva (R.F. Park & Keane) Crous & U. Braun, which are phylogenetically distinct from Teratosphaeria sensu stricto in their molecular data analysis.

Bagnisiella Speg., Anal. Soc. cient. argent. 10(5–6): 146 (1880)

Notes: See notes under Aplosporellaceae. Further taxonomic notes are provided in Thambugala et al. (2014a).

Barria Z.Q. Yuan, Mycotaxon 51: 313 (1994)

Notes: Hyde et al. (2013) listed this genus in Phaeosphaeriaceae but Phookamsak et al. (2014) excluded it based on morphological characters, and Ariyawansa et al. (2014c) transferred Barria to Didymosphaeriaceae based on morpholgy.

Bipolaris Shoemaker, Can. J. Bot. 37(5): 882 (1959)

  • =

    Cochliobolus Drechsler, Phytopathology 24: 973 (1934)

Notes: Manamgoda et al. (2012) resolved the complex of Bipolaris, Cochliobolus and Curvularia and showed Bipolaris to be the asexual state of Cochliobolus. At the same time Manamgoda et al. (2012) proposed the use of Bipolaris over the older Cochliobolus name stating the importance of Bipolaris as an economically significant pathogen. Manamgoda et al. (2012) also considered the number of epithets under each genus to support their argument, with Bipolaris having many more epithets than Cochliobolus. Rossman et al. (2013) introduced their proposal to conserve Bipolaris over Cochliobolus.

Blasdalea Sacc. & P. Syd., Syll. fung. (Abellini) 16: 634 (1902)

  • =

    Singeriella Petr., Sydowia 12(1–6): 252 (1959) [1958]

  • =

    Chrysogloeum Petr., Sydowia 12(1–6): 254 (1959) [1958]

Notes: Petrak (1958) established the genus Chrysogloeum to accommodate the conidial state of Singeriella Petr. Singeriella was considered as a synonym of Blasdalea Sacc. (Kirk et al. 2008) and as both genera are monotypic. Hence we propose the oldest name Blasdalea over Chrysogloeum.

Botryochora Torrend, Brotéria, sér. bot. 12: 65 (1914)

Notes: Lumbsch and Huhndorf (2010) listed this genus under Dothioraceae (=Dothideaceae fide Thambugala et al. 2014a) but Thambugala et al. (2014a) excluded this genus from Dothideaceae and placed in Dothideomycetes, genera incertae sedis based on morphology.

Botryohypoxylon Samuels & J.D. Rogers, Mycotaxon 25(2): 631 (1986)

  • =

    Iledon Samuels & J.D. Rogers, Mycotaxon 25(2): 633 (1986)

Notes: Samuels and Rogers (1986) described the genus Botryohypoxylon. Its coelomycetous asexual state was observed in culture and described as Iledon. Both genera are monotypic (Index Fungorum 2014, http://www.indexfungorum.org/names/names.asp). In this case, we give priority to the older sexual state and propose Botryohypoxylon over Iledon.

Botryosphaeria Ces. & De Not., Comm. Soc. crittog. Ital. 1(4): 211 (1863)

  • =

    Fusicoccum Corda, Deutschl. Fl., 3 Abt. (Pilze Deutschl.) 2: 111 (1829)

Notes: Slippers et al. (2004) reduced Fusicoccum aesculi Corda, the type species of Fusicoccum under Botryosphaeria dothidea (Moug.) Ces. & De Not., the type species of Botryosphaeria. Phillips et al. (2013) accept six species of Botryosphaeria with Fusicoccum asexual morphs based on culture and molecular studies. Botryosphaeria was chosen over the older name Fusicoccum, as its clearly defined, epitypified and commonly used in plant pathological literature.

Brefeldiella Speg., Boln Acad. nac. Cienc. Córdoba 11(4): 558 (1889)

Notes: Hongsanan et al. (2014a) accepted this genus in Trichopeltinaceae.

Brooksia Hansf., Proc. Linn. Soc. N.S.W. 81: 32 (1956)

  • =

    Hiospira R.T. Moore, Trans. Br. mycol. Soc. 45(1): 145 (1962)

Notes: Moore (1962) established Hiospira R.T. Moore to accommodate the conidial state of Brooksia tropicalis Hansf., the type species of Brooksia Hansf. Hence, we reduce Hiospira, the younger asexual typified name under Brooksia, the sexual typified name.

Butleria Sacc., Annales Mycologici 12: 302 (1914)

Notes: See notes under Elsinoaceae.

Bryopelta Döbbeler & Poelt, Mitt. bot. StSamml., Münch. 14: 126 (1978)

Notes: Lumbsch and Huhndorf (2010) referred this genus to Dothideomycetes, genera incertae sedis however, Li et al. (2014) reexamined the type species of Bryopelta and accepted it as a genus in Mycosphaerellaceae.

Bryosphaeria Döbbeler, Mitt. bot. StSamml., Münch. 14: 151 (1978)

Notes: Li et al. (2014) referred Bryosphaeria in Trematosphaeriaceae based on morphological similarities with the generic type Trematosphaeria.

Camaroglobulus Speer, Bull. trimest. Soc. mycol. Fr. 102: 100 (1986)

Notes: Speer (1986) introduced Camaroglobulus to accommodate the conidial state of Mytilinidion resinae Speer. However, M. resinae was not confirmed as a Mytilinidion species by molecular phylogeny. Therefore, we do not synonymize Camaroglobulus under Mytilinidion and conclude that Camaroglobulus has a mytilinidion-like sexual state.

Camarosporaceae Wijayawardene & K. D. Hyde (in prep.)

Notes: See notes under Camarosporium.

Camarosporium Schulzer, Verh. zool.-bot. Ges. Wien 20: 649 (1870)

Notes: Cortinas et al. (2006) showed that the type species, C. quaternatum Schulzer grouped outside the Botryosphaeriaceae. Liu et al. (2012), however concluded placement of Camarosporium under Botryosphaeriales incertae sedis. This genus has been considered as the asexual state of Cucurbitaria (Doilom et al. 2013), hence a generic revision for camarosporium-like coelomycetous fungi is required. However, Wijayawardene et al. (2014a) showed that Camarosporium sensu stricto groups in Pleosporinae, Pleosporales. Furthermore, it shows cucurbitaria-like sexual states (viz. Cucurbitaria elongata hence introduced as a new combination of Camarosporium) (Wijayawardene et al. 2014c). Furthermore, Wijayawardene et al. (2014c) showed that the genus Camarosporium is polyphyletic, and introduced Paracamarosporium Wijayawardene & K.D. Hyde and Pseudocamarosporium Wijayawardene & K.D. Hyde (Montagnulaceae, Massarineae), while Crous et al. (2014) introduced Neocamarosporium Crous & M.J. Wingf. Our phylogenetic analyses agree with Wijayawardene et al. (2014a, c) and Wijayawardene et al. (in prep) introduced Camarosporaceae to accommodate Camarosporium sensu stricto.

Capnodium Mont., Annls Sci. Nat., Bot., sér. 3 11: 233 (1849)

  • =

    Polychaeton (Pers.) Lév., Dict. Univ. Hist. Nat. 8: 493 (1846)

  • =

    Fumagospora G. Arnaud, Annals d'École National d'Agric. de Montpellier, Série 2 10(4): 326 (1911)

Notes: Chomnunti et al. (2011) adopted Capnodium, the younger, but more widely used name over the older name, Polychaeton, typified by species with an asexual morph type. We also accept Capnodium as it has a larger number of epithets (Index Fungorum 2014) and thus this approach reduces nomenclature changes. This selection was given as an example of good practice in the Melbourne Code under Art. 57.2 (McNeill et al. 2012).

Caryophylloseptoria Verkley et al., Stud. Mycol. 75: 233 (2013)

Notes: Verkley et al. (2013) introduced this genus and showed it belongs in Mycosphaerellaceae.

Catenulomyces E. Egidi & G.S. de Hoog, Fungal Diversity 65: 154 (2014)

Notes: Egidi et al. (2014) introduced this genus with C. convolutus Egidi & de Hoog. as the type species. Molecular analyses showed that this genus is related to Capnodiales, genera incertae sedis (Egidi et al. 2014).

Celosporium Tsuneda & M.L. Davey, Botany 88: 472 (2010)

Notes: Thambugala et al. (2014a) treated this genus as Dothideales, genera incertae sedis as the type species of Celosporium, C. laricicola Tsuneda & M.L. Davey formed a distinct clade in their molecular data analyses.

Cercospora Fresen., Beitr. Mykol. 3: 91 (1863)

Notes: Goodwin et al. (2001) and Crous et al. (2007, 2009) accepted that Cercospora has mycosphaerella-like sexual states. However, Crous et al. (2009) restricted Mycosphaerella sensu stricto to Ramularia sensu stricto and synonymised the former under the latter genus. Thus, Cercospora is now recognized as a separate genus with mycosphaerella-like sexual morphs (Crous et al. 2009, 2013; Groenewald et al. 2013). The case is discussed in detail by Braun et al. (2013).

Chaetocrea Syd., Annls mycol. 25(1/2): 18 (1927)

Notes: Boonmee et al. (2014b) excluded this genus from Tubeufiaceae and placed in Dothideomycetes, genera incertae sedis.

Chaetoplea (Sacc.) Clem., Gen. fung., Edn 2 (Minneapolis): 275 (1931)

Notes: Hyde et al. (2013) listed this genus in Phaeosphaeriaceae but Phookamsak et al. (2014) excluded it based on morphological characters and placed the genus in Leptosphaeriaceae.

Chaetoscutula E. Müll., Sydowia 12(1–6): 190 (1959) [1958]

Notes: Lumbsch and Huhndorf (2010) placed Chaetoscutula in Dothideomycetes, genera incertae sedis. Based on morphological characters, Tian et al. (2014) transferred this genus to Pseudoperisporiaceae.

Chaetosphaerulina I. Hino, Bulletin Miyazaki Coll. Agric. Forest. 10: 62 (1938)

Notes: Boonmee et al. (2014b) treated this genus as a doubtful genera but listed under Tubeufiaceae.

Chaetothyriothecium Hongsanan & K.D. Hyde, Phytotaxa 161 (2): 161 (2014)

Notes: Hongsanan et al. (2014b) introduced Chaetothyriothecium as a new genus in Microthyriaceae based on LSU data analysis. This familial placement agrees with our molecular data analyses (Fig. 1).

Cladosporium Link, Mag. Gesell. naturf. Freunde, Berlin 7: 37 (1816) [1815]

  • =

    Davidiella Crous & U. Braun, Mycol. Progr. 2(1): 8 (2003)

Notes: Braun et al. (2003) proposed Davidiella to accommodate Cladosporium sensu stricto Schoch et al. (2006) introduced the family Davidiellaceae to accommodate these two genera. Bensch et al. (2012) and Crous et al. (2013) however, reinstated Cladosporiaceae, which had been introduced in Nannizzi (1934) and accepted Cladosporium as the family type. Hyde et al. (2013) also accepted this arrangement. We therefore propose using the oldest name Cladosporim over Davidiella. This makes sense as Cladosporium has many more described species (Bensch et al. 2012) and is well known amongst mycologists.

Clavatispora S. Boonmee & K.D. Hyde, Phytotaxa 176(1): 95 (2014)

Notes: Boonmee et al. (2014a) introduced this genus and molecular phylogenetic analyses show it belongs in Sympoventuriaceae, Venturiales. It has unusual alternaria-like asospores.

Coccostromella Petr., Sydowia 21: 267 (1968) [1967]

Notes: Thambugala et al. (2014a) excluded this genus from Dothideaceae and placed it in Botryosphaeriaceae as it has filiform pseudoparaphyses and clavate to cylindro-clavate asci and aseptate ascospores.

Colensoniella Hafellner, Beih. Nova Hedwigia 62: 160 (1979)

Notes: Based on morphological characters, Tian et al. (2014) suggested to place Colensoniella in Patellariaceae based on similarities in morphology.

Colletogloeum Petr., Sydowia 7(5–6): 368 (1953)

Notes: Sutton (1980) and Verkley and Priest (2000) reported Colletogloeum to have mycosphaerella-like sexual morphs. Although, morphologically, Colletogloeum and Phloeospora Wallr. are quite similar, Quaedvlieg et al. (2013) accepted both genera as legitimate names.

Comminutispora A.W. Ramaley, Mycologia 88(1): 132 (1996)

  • =

    Hyphospora A.W. Ramaley, Mycologia 88(1): 133 (1996)

Notes: When Ramaley (1996) established the genus Comminutispora with C. agavacearum A.W. Ramaley, its hyphomycetous asexual state i.e. Hyphospora (Hyphospora agavacearum A.W. Ramaley) was observed in the culture. We propose to accept the name of older sexual state viz. Comminutispora over Hyphospora.

Coniothyrium Corda, Icon. fung. (Prague) 4: 38 (1840)

Notes: Coniothyrium was considered to be the asexual state of Leptosphaeria, Mycosphaerella and Massarina (Sivanesan 1984). However, many species were removed from Coniothyrium and included in other genera or upgraded to generic level (Verkley et al. 2004, 2014; Cortinas et al. 2006). De Gruyter et al. (2013) reinstated Coniothyriaceae (Coniothyrium as family type), which was synonymized under Leptosphaeriaceae (Kirk et al. 2008). Hyde et al. (2013) recognized Coniothyriaceae as an accepted family.

Constantinomyces E. Egidi & S. Onofri, Fungal Diversity 65: 155 (2014)

Notes: The genus Constantinomyces was introduced by Egidi et al. (2014) with C. virgultus Egidi & Onofri as the type species. Multi-gene analysis of nu LSU, RPB2, ITS and BT2 showed this genus clusters in Teratosphaeriaceae (Egidi et al. 2014).

Coronospora M.B. Ellis, Mycol. Pap. 125: 16 (1971)

Notes: See notes under Ascoronospora.

Corynespora Güssow, Z. PflKrankh. PflPath. PflSchutz 16: 10 (1906)

Notes: Corynespora has been shown to be the asexual morph of many genera (Seifert et al. 2011). Sivanesan (1996) established Corynesporascaceae Sivan. to accommodate Corynespora and Corynesporasca Sivan. sexual states. Tanaka et al. (2005) stated that Pleomassaria swidae Kaz. Tanaka, Y. Harada & M.E. (Pleomassariaceae) has a Corynespora asexual state. Schoch et al. (2009) did not include Corynesporascaceae in their phylogenetic analysis but showed Corynespora to be polyphyletic. We conclude that this genus requires more work to confirm its taxonomic position and propose that the usage of the Corynespora and Corynesporasca should be continued pending further studies.

Cucurbidothis Petr., Annls mycol. 19(3–4): 201 (1921)

Notes: After observing the paratype of the genus Cucurbidothis, C. pityophila, Ariyawansa et al. (2014d) proposed to maintain this genus as a separate genus in Cucurbitariaceae.

Cucurbitaria Gray, Nat. Arr. Brit. Pl. (London) 1: 508, 519 (1821)

Notes: The link between Cucurbitaria and Pyrenochaeta was discussed by de Gruyter et al. (2010). They accepted Cucurbitaria berberidis (Pers.) Gray, the generic type of Cucurbitaria as the sexual state of Pyrenochaeta berberidis (Sacc.) Brunaud. In this study, they used the name C. berberidis (CBS 363.93 and CBS 394.84), and this was followed by de Gruyter et al. (2013). De Gruyter (2010) further showed that C. berberidis grouped along with P. nobilis De Not., the generic type of Pyrenochaeta. Doilom et al. (2013) however, considered these two genera to be distinct as P. nobilis De Not, the type species of Pyrenochaeta, groups separate from Cucurbitaria berberidis (Pers.) Gray, the type species of Cucurbitaria. We therefore propose the continued use of Cucurbitaria and Pyrenochaeta pending further studies.

Curvularia Boedijn, Bull. Jard. bot. Buitenz, 3 Sér. 13(1): 123 (1933)

  • =

    Pseudocochliobolus Tsuda, Ueyama & Nishih., Mycologia 69(6): 1117 (1978) [1977]

Notes: Manamgoda et al. (2012) confirmed the phylogenetic relationship between Curvularia and Pseudocochliobolus and proposed Curvularia to take priority. We agree with this as Curvularia is the oldest and more commonly used name, which is also used by plant pathologists (Monterio et al. 2003).

Cyclopeltis Petr., Sydowia 7(5–6): 370 (1953)

  • =

    Cyclopeltella Petr., Sydowia 7 (5–6): 373 (1953)

Notes: Cyclopeltella was described to accommodate the conidial state of Cyclopeltis Petr. in the same publication, but three pages after the sexual state was introduced (Petrak 1953). Cyclopeltis has more epithets than Cyclopeltella (Index Fungorum 2014), hence we propose usage of the older name, Cyclopeltis over Cyclopeltella.

Cyclothyrium Petr., Annls mycol. 21(1/2): 5 (1923)

Notes: Cyclothyrium was treated at subgeneric rank within Cytoplea Bizz. & Sacc. by Petrak and Sydow (1927). Sutton (1980) however, accepted Cyclothyrium as a distinct genus. Sutton (1980) mentioned that Thyridaria rubronotata (Berk. & Br.) Sacc. is the sexual state of Cyclothyrium juglandis (Schum .ex Rabenh.) Sutton, which is the type species of Cyclothyrium. This was accepted by Verkley et al. (2004) and Damm et al. (2008) while de Gruyter et al. (2013) showed its taxonomic placement in Pleosporales by analysis of SSU rDNA sequence data. However, the type species of Thyridaria is not linked to any Cyclothyrium species hence we conclude that Cyclothyrium has thyridaria-like sexual states. Cystocoleus Thwaites, Ann. Mag. nat. Hist., Ser. 2 3: 241 (1849)

Notes: Phylogenetic analysis showed C. ebeneusis not close to lichenized members and rather belongs to Capnodiales (Muggia et al. 2008). Following a phylogenetic analysis, Hyde et al. (2013) suggested that Cystocoleus should be placed in Capnodiales, genera incertae sedis.

Cytoplea Bizz. & Sacc., Atti Ist. Veneto Sci. lett. ed Arti, Sér. 3 3: 307 (1885)

Notes: Hyde et al. (1996) showed by cultural methods that Roussoella hysterioides (Ces.) Höhn. has a conidial state in Cytoplea (i.e. C. hysterioides K.D. Hyde) and Hyde (1997) recognized R. hysterioides as an accepted species in Roussoella. Kang et al. (1998) confirmed this relationship using molecular data and Verkley et al. (2004) accepted this in the analyses of ITS and SSU sequence analyses. Liu et al. (2014) listed Cytoplea as a possible synonym of Roussoëlla. However, this relationship must be confirmed by using the type species of Cytoplea hence we propose the continued use of Cytoplea and Roussoella pending further studies. Cytoplea would have priority as it is the oldest genus and has higher number of species epithets (Index Fungorum 2014) and higher number of Google Scholar hits.

Dematiopleospora Wanasinghe et al., Crypto. Mycol. 35 (2): 110 (2014)

Notes: Wanasinghe et al. (2014) introduced Dematiopleospora with D. mariae Wanasinghe et al. as the type species. Combined gene analyses (LSU and SSU) shows Dematiopleospora belongs in Phaeosphaeriaceae (Wanasinghe et al. 2014).

Dermatodothella Viégas, Bragantia 4(1–6): 150 (1944)

Notes: Ariyawansa et al. (2013) placed Dermatodothella in Polystomellaceae based on multi-loculate, globose to subglobose ascostromata, with widely porate ostioles and its similarities with other genera in this family.

Dictyocyclus Sivan. et al., J. Linn. Soc., Bot. 126(4): 324 (1998)

Notes: See notes under Myriangiaceae.

Didymella Sacc., Michelia 2(no. 6): 57 (1880)

Notes: See note under Ascochyta and Phoma.

Didymosphaeriaceae Munk, Dansk bot. Ark. 15(no. 2): 128 (1953)

Notes: Ariyawansa et al. (2014c) revised the family Didymosphaeriaceae with 20 genera and listed Montagnulaceae as a symonym of Didymosphaeriaceae. Detailed taxonomic notes and revisions are provided in Ariyawansa et al. (2014c) for this family and its accepted genera.

Dimorphiopsis Crous, Persoonia, Mol. Phyl. Evol. Fungi 31: 217 (2013)

Notes: Crous et al. (2013) introduced this monotypic genus and placed it in Lophiostomataceae based on molecular data.

Diplodia Fr., Annls Sci. Nat., Bot., sér. 2 1: 302 (1834)

Notes: Phillips et al. (2008, 2013) and Liu et al. (2012) accepted this genus as a well-supported genus in Botryosphaeriaceae based on their molecular-based analyses. The type species of Diplodia, D. mutila Fr. has a botryosphaeria-like sexual state, “Botryosphaeria stevensii”.

Diplotheca Starbäck, Botaniska Notiser: 30 (1893)

Notes: See notes under Myriangiaceae.

Dissoconiaceae Crous & de Hoog, Stud. Mycol. 64: 36 (2009)

Notes: Li et al. (2012) revised this family and their molecular analyses show Dissoconiaceae comprises of four distinct genera viz. Dissoconium, Pseudoveronaea, Ramichloridium and Uwebraunia.

Dothidasteroma Höhn., Sber. Akad. Wiss. Wien, Math.-naturw. Kl., Abt. 1 118: 1509 (1909)

Notes: See notes under Placomelan.

Dothidasteromella Höhn., Sber. Akad. Wiss. Wien, Math.-naturw. Kl., Abt. 1 119: 421 (1910)

Notes: Hongsanan et al. (2014c) transferred this genus from Asterinaceae to Dothideomycetes, genera incertae sedis.

Dothideales Lindau, Nat. Pflanzenfam., Teil. I (Leipzig) 1(1): 373 (1897)

Notes: Based on molecular data analyses, Thambugala et al. (2014a) have not treated Dothioraceae as a distinct family in Dothideales and reduced it under Dothideaceae. They accepted 15 genera in Dothideaceae. Furthermore, Thambugala et al. (2014a) introduced Aureobasidiaceae to place Aureobasidium and other six genera.

Dothideaceae Chevall., Fl. gén. env. Paris (Paris) 1: 446 (1826); as ‘Dothideae’.

Notes: See notes under Dothideales and Thambugala et al. (2014a). Notes for genera marked with # are provided in Thambugala et al. (2014a).

Dothideopsella Höhn., Sber. Akad. Wiss. Wien, Math.-naturw. Kl., Abt. 1 124: 70 (1915)

Notes: Dothideopsella shows similarities with Phaeosphaeriaceae in having immersed ascomata with short papillate ostioles, a peridium of pseudoparenchymatous cells, cellular pseudoparaphyses and pale brown, septate ascospores thus Ariyawansa et al. (2013) referred Dothideopsella to Phaeosphaeriaceae.

Echidnodes Theiss. & Syd., Annls. Mycol. 15(6): 422 (1918) [1917]

Notes: Hongsanan et al. (2014c) accepted this genus as a member of Aulographaceae.

Elsinoë Racib., Parasit. Alg. Pilze Java's (Jakarta) 1: 14 (1900)

  • =

    Sphaceloma de Bary, Ann. Oenol. 4: 165–167 (1874)

Notes: Sutton (1980) and Sivanesan (1984) stated that Elsinoë is the sexual state of Sphaceloma, which has also been well established based on different molecular studies (Mchau et al. 1998; Swart et al. 2001; Cheewangkoon et al. 2009). Sphaceloma has a larger number of species epithets (168) than Elsinoë (139) and is also the older genus. However, the number of Google scholar hits of Elsinoë (3810) is higher than Sphaceloma (2690). Elsinoë is also well established in the plant pathological and plant breeder community (Wang et al. 2009; Chung 2011) hence Hyde et al. (2013) recognised Elsinoë as the accepted name over Sphaceloma.

Elsinoaceae Höhn. ex Sacc. & Trotter, Syll. fung. (Abellini) 22: 584 (1913)

Notes: Jayawardena et al. (2014) revised the family and accepted only Elsinoë Racib. (=Sphaceloma de Bary) and Molleriella G. Winter. Furthermore, Jayawardena et al. (2014) excluded Hemimyriangium, Butleria, Micularia (placed in Myriangiaceae), Saccardinula (placed in Trichopeltinaceae), Hyalotheles Speg. (placed in Dothideomycetes, genera incertae sedis), Beelia F. Stevens & R.W. Ryan (Chaetothyriaceae) and Xenodium Syd. (Sordariomycetes, genera incertae sedis) from Elsinoaceae.

Englerula Henn., Bot. Jb. 34: 49 (1904)

Notes: See notes under Englerulaceae.

Englerulaceae Henn., Hedwigia Beibl. 43: 353 (1904)

Notes: Dai et al. (2014b) revised this family and accepted Englerula, Goosia, Parenglerula, Rhytidenglerula, Schiffnerula and Thrauste. Höhn. Thambugala et al. (2014c) accepted Allosoma Syd. as a genus in this family.

Eriosporella Höhn., Sber. Akad. Wiss. Wien, Math.-naturw. Kl., Abt. 1 125(1–2): 109 (1916)

Notes: Dai et al. (2014c) introduced a new species Eriosporella i.e. Eriosporella bambusicola Dai et al. and showed that this species is belonging to Capnodiales incertae sedis in their molecular data analyses. However, Eriosporella calami (Niessl) Höhn., the type species of Eriosporella was not linked with any taxonomic level (Wijayawardene et al. 2012). Hence we conclude that Eriosporella sensu lato belongs to Capnodiales.

Eupelte Syd., Annls mycol. 22(3/6): 426 (1924)

Notes: See notes under Pirozynskia.

Eupenidiella Quaedvlieg & Crous, Persoonia 33: 25 (2014)

Notes: The genus Eupenidiella was introduced to accommodate Penidiella venezuelensis Crous & U. Braun (Quaedvlieg et al. 2014) since it is phylogenetically distinct from Penidiella sensu s t ricto and i s placed in Teratosphaeriaceae by molecular data.

Eurytheca De Seynes, Bull. Soc. bot. Fr. 25: 88 (1878)

Notes: See notes under Myriangiaceae.

Euteratosphaeria Quaedvlieg & Crous, Persoonia 33: 25 (2014)

Notes: Quaedvlieg et al. (2014) introduced Euteratosphaeria to accommodate Mycosphaerella verrucosiafricana Crous & M.J. Wingf., which clusters in Teratosphaeriaceae. Euteratosphaeria is morphologically similar to species of Teratosphaeria but phylogenetically distinct.

Excipulariopsis P.M. Kirk & Spooner, Trans. Br. mycol. Soc. 78(2): 251 (1982)

  • =

    Kentingia Sivan. & W.H. Hsieh, Mycol. Res. 93(1): 83 (1989)

Notes: Sivanesan and Hsieh (1989) established Kentingia to accommodate the sexual state of Excipulariopsis narsapurensis (Subram.) Spooner & P.M. Kirk. Both genera are monotypic and hence we propose to use the oldest name, Excipulariopsis over Kentingia.

Exosporiella P. Karst., Finlands mögelsvampar, (Hyphomycetes fennici): 160 (1892)

  • =

    Anomalemma Sivan., Trans. Br. mycol. Soc. 81(2): 328 (1983)

Notes: Sivanesan (1983) introduced Anomalemma as a new combination and at the same time confirmed the link with its asexual morph Exosporiella. Each genus is monotypic and herein we propose usage of the oldest name Exosporiella.

Exserohilum K.J. Leonard & Suggs, Mycologia 66(2): 289 (1974)

  • =

    Setosphaeria K.J. Leonard & Suggs, Mycologia 66(2): 294 (1974)

Notes: Exserohilum has sexual states in Setosphaeria. We propose the usage of Exserohilum over Setosphaeria. Exserohilum has more epithets (Index Fungorum 2014), and is more commonly used in literature. Furthermore, several Exserohilum species names are considered to be of important quarantine significance (Takuya and Takao 2012), or of importance in medical mycology (Adler et al. 2006).

Extremus Quaedvlieg & Crous, Persoonia 33: 21 (2014)

Notes: Devriesia sensu stricto was shown to belong in Teratosphaeriaceae, but D. adstricta and D. antarctica grouped away from Teratosphaeriaceae (Quaedvlieg et al. 2014). Hence the genus Extremus was introduced (in Extremaceae) by Quaedvlieg et al. (2014) to accommodate these two species as E. adstrictus and E. antarcticus.

Extremaceae Quaedvlieg & Crous, Persoonia 33: 21 (2014)

Notes: Quaedvlieg et al. (2014) introduced this family and currently it comprises of five genera; viz Extremus, Petrophila, Pseudoramichloridium, Staninwardia and Vermiconia.

Farlowiella Sacc., Syll. fung. (Abellini) 9: 1100 (1891)

  • =

    Acrogenospora M.B. Ellis, Demat. Hyphom. (Kew): 114 (1971)

Notes: Ellis (1971, 1976) stated that Farlowiella is the sexual state of Acrogenospora. Schoch et al. (2009) accepted Farlowiella as the sexual state of Acrogenospora and hence, we propose usage of the oldest name, Farlowiella over Acrogenospora.

Glaxoa P.F. Cannon, Syst. Ascom. 15(1–2): 122 (1997)

Notes: Boonmee et al. (2014b) transferred this genus to Pleosporales, genera incertae sedis from Tubeufiaceae.

Goosia B. Song, Mycotaxon 87: 413 (2003)

Notes: See notes under Englerulaceae.

Grandigallia M.E. Barr et al., Mycotaxon 29: 196 (1987)

Notes: Based on similarities with Shiraia, Ariyawansa et al. (2013) suggested that Grandigallia can be referred to Pleosporales where it may be related to Shiraiacaeae.

Hadrospora Boise, Mem. N. Y. bot. Gdn 49: 310 (1989)

Notes: Hyde et al. (2013) listed this genus in Phaeosphaeriaceae however, Phookamsak et al. (2014) excluded it based on morphological characters and placed it in Trematosphaeriaceae.

Helicangiospora Boonmee et al., Fungal Diversity 68 (2014)

Notes: Boonmee et al. (2014b) introduced Helicangiospora with H. lignicola Boonmee et al. as the type species and showed it belongs in Tubeufiaceae in their molecular analyses.

Helicosporium Nees, Syst. Pilze (Würzburg): 68 (1816) [1816–17]

Notes: Boonmee et al. (2014b) showed that Tubeufia cerea (Berk. & M.A. Curtis) Höhn. grouped with the type species of Helicosporium, H. vegetum Nees in their molecular data analyses. Based on this, we conclude that Helicosporium sensu stricto has tubeufia-like sexual states.

Hemimyriangium J. Reid & Piroz., Can. J. Bot. 44: 650 (1966)

Notes: See notes under Elsinoaceae.

Heterospora (Boerema et al.) Gruyter et al., Stud. Mycol. 75: 18 (2012)

Notes: Heterospora was considered as a section of Phoma (Boerema 1997) and the type of this section is P. heteromorphospora. De Gruyter et al. (2013) showed by phylogenetic analysis that this species is unrelated to two other phoma-like genera (i.e. Plenodomus and Subplenodomus) in Leptosphaeriaceae as well Phoma sensu stricto in Didymellaceae. Hence, the section Heterospora was upgraded to generic level and Phoma heteromorphospora and P. dimorphospora were transferred to H. chenopodii and H. dimorphospora respectively and palced in Leptosphaeriaceae.

Hongkongmyces Tsang et al., Medical Mycology 52 (7): 740 (Tsang et al. 2014)

Notes: Tsang et al. (2014) introduced this mycelial fungal genus, known to infect humans, and showed it belongs to Lindgomycetaceae in their phylogenetic analysis.

Hormonema Lagerb. & Melin, Svensk Skogsv. Tidskr. 25: 233 (1927)

Notes: See notes under Pseudosydowia and Sydowia.

Hyalotheles Speg., Revta Mus. La Plata 15(2): 11 (1908)

Notes: See notes under Elsinoaceae.

Hyphoconis E. Egidi & W. Quaedvlieg, Fungal Diversity 65: 153 (2014)

Notes: Egidi et al. (2014) introduced this genus from a culture and showed it belongs to Capnodiales incertae sedis based on molecular data analysis of the combined data set of nu LSU, RPB2, ITS and BT2. However the type species of Hyphoconis, H. sterilis Egidi & Quaedvlieg lacks conidia or chlamydospores and thus morphological characters are unknown (Egidi et al. 2014).

Hysteropeltella Petr., Annls mycol. 21(1/2): 9 (1923)

Notes: Hysteropeltella shows similar characters with the genera of Schizothyriaceae thus Ariyawansa et al. (2013) tentatively referred Hysteropeltella in Schizothyriaceae.

Incertomyces E. Egidi & L. Zucconi Galli Fonseca, Fungal Diversity 65: 157 (2014)

Notes: The genus Incertomyces was introduced by Egidi et al. (2014) and shown to belong in Teratosphaeriaceae based on analysis of combined LSU, RPB2, ITS and BT2 sequence data.

Jaffuela Speg., Boln Acad. nac. Cienc. Córdoba 25: 39 (1921)

Notes: Thambugala et al. (2014a) excluded this genus from Dothioraceae (=Dothideaceae fide Thambugala et al. 2014a) and placed in Pseudoperisporiaceae based on morphology.

Jahnula Kirschst., Annls mycol. 34(3): 196 (1936)

Notes: Sivichai et al. (2011) predicted that Jahnula aquatica (Kirschst.) Kirschst., the type species of Jahnula would prove to be the sexual state of Xylomyces chlamydosporus Goos et al. the type species of Xylomyces Goos et al., using a culture-based approach. However, Campbell et al. (2007) and Suetrong et al. (2011) showed that the link was not supported by molecular data analysis. Hence, it is essential to carry out further molecular data analyses by using different isolates of both genera.

Julella Fabre, Annls Sci. Nat., Bot., sér. 6 9: 113 (1879) [1878]

Notes: Hyde et al. (2013) listed this genus in Halojulellaceae but with uncertainty. However, Ariyawansa et al. (2014c) transferred Julella to Didymosphaeriaceae.

Karschia Körb., Parerga lichenol. (Breslau): 459 (1865)

Notes: Thambugala et al. (2014b) transferred this genus from Dothideomycetes incertae sedis to Lichenotheliaceae.

Kellermania Ellis & Everh., J. Mycol. 1(12): 53 (1885)

  • =

    Planistromella A.W. Ramaley, Mycotaxon 47: 260 (1993)

  • =

    Piptarthron Mont. ex Höhn., Hedwigia: 60: 203 (1918)

  • =

    Alpakesa Subram. & K. Ramakr., J. Indian Bot. Soc. 33: 204 (1954)

  • =

    Septoplaca Petr., Sydowia 17: 271 (1964) [1963]

Notes: Ramaley (1993) introduced Planistromella to accommodate the sexual state of Kellermania. She recognized Planistromella yuccifoliorum A.W. Ramaley and P. uniseptata A.W. Ramaley as sexual state of Kellermania yuccifoliorum A.W. Ramaley and K. yuccigena Ellis & Everh. respectively. These links were confirmed by DNA sequence analyses and accepted by Minnis et al. (2012) and Monkai et al. (2013). Minnis et al. (2012) and Hyde et al. (2013) accepted the oldest name i.e. Kellermania as the preferred name and we agree with this conclusion.

Kirschsteiniothelia D. Hawksw., J. Linn. Soc., Bot. 91:182 (1985)

  • =

    Dendryphiopsis S. Hughes, Can. J. Bot. 31:655 (1953)

Notes: Boonmee et al. (2012) found in their DNA sequence analyses, that the type species of Kirschsteiniothelia, K. aethiops (Berk. & M.A. Curtis) D. Hawksw. grouped with Dendryphiopsis atra (Corda) S. Hughes, the type species of Dendryphiopsis. The link had previously been confirmed by Hughes (1978) from cultures of fragments of the ascomata. In Index Fungorum (2014) there are 18 epithets for Kirschsteiniothelia, whereas Dendryphiopsis only has six epithets. Further, asexual recombination not been established for many species of Kirschsteiniothelia. If we choose Dendryphiopsis it might result in more name changes than Kirschsteiniothelia. Therefore, we propose to use Kirschsteiniothelia over Dendryphiopsis, the former also being better established in literature than Dendryphiopsis. [This decision means that the correct name for the type species becomes Kirschteiniothelia atra (Corda) D. Hawksw., comb. nov. (Mycobank no. MB804962; basionym: Dendryphion atrum Corda, Icon. Fung. 4: 33, 1840; synonym: Dendryphiopsis atra (Corda) S. Hughes, Can. J. Bot. 31: 655, 1953)]

Krishnamyces Hosag., Zoos' Print Journal 18(8): 1159 (2003)

Notes: Hosagoudar (2003) introduced the genus Krishnamyces to accommodate the conidial state of Rhytidenglerula tremae (Sydow) Arx. However, the current name of Rhytidenglerula tremae is Schiffnerula trematis Syd. (Species Fungorum 2014) and we conclude that Krishnamyces has schiffnerula-like sexual states.

Lapidomyces de G.S. de Hoog & B. Stielow, Fungal Diversity 65: 159 (2014)

Notes: Egidi et al. (2014) introduced this genus in Teratosphaeriaceae based on molecular data analysis. However Lapidomyces was described from a culture and lacks distinguishing morphological characters (Egidi et al. 2014).

Lautitia S. Schatz, Can. J. Bot. 62(1): 31 (1984)

Notes: Phookamsak et al. (2014) excluded this genus from Phaeosphaeriaceae based on its morphological characters and placed in Dothideomycetes, genera incertae sedis.

Lecanosticta Syd., Annls mycol. 20(3/4): 211 (1922)

  • =

    Eruptio M.E. Barr, Mycotaxon 60: 437 (1996)

Notes: The sexual morph of Lecanosticta acicola is the type species of Eruptio (E. acicola (Dearn.) M.E. Barr ≡ Mycosphaerella dearnesii M.E. Barr) (Barr 1996). Lecanosticta acicola (=L. pini fide Crous et al. 2009), the type species of Lecanosticta is reported as the asexual state of Mycosphaerella dearnesii (Crous et al. 2009; Markovskaja et al. 2011). The genus Lecanosticta is of quarantine concern on conifers (Quaedvlieg et al. 2012). The older asexual morph-typified name Lecanosticta has been prioritized by Crous et al. (2009) and Hyde et al. (2013), as its well established in literature, and commonly used by plant pathologists.

Lembosia Lév., Annls Sci. Nat., Bot., sér. 3 3: 58 (1845)

  • =

    Heraldoa Bat., Atti Ist. bot. Univ. Lab. crittog. Pavia, Ser. 5 16: 105 (1959)

  • =

    Lembosidium Speg., Boln Acad. nac. Cienc. Córdoba 26(2–4): 342 (1921)

  • =

    Lembosiellina Bat. & H. Maia, Atas Inst. Micol. Univ. Recife 1: 323 (1960)

  • =

    Yamamotoa Bat., Publicações Inst. Micol. Recife 291: 11 (1960)

  • =

    Viegasia Bat., Bol. Secr. Agric. (Pernambuco) 18: 32 (1951)

  • =

    Micrographa Müll. Arg., Flora, Jena 73: 194 (1890)

  • =

    Micrographomyces Cif. & Tomas., Atti Ist. bot. Univ. Lab. crittog. Pavia, Ser. 5 10(1): 77 (1953)

  • =

    Morenoella Speg., Anal. Soc. cient. argent. 19(6): 258 (1885)

  • =

    Trichamelia Bat., Publicações Inst. Micol. Recife 295: 9 (1960)

Notes: Several genera listed above were newly synonymized under Lembosia by Hongsanan et al. (2014c) who also provided a generic revision.

Lembosiella Sacc., Syll. fung. (Abellini) 9: 1101 (1891)

Notes: Hongsanan et al. (2014c) accepted this genus as a member of Aulographaceae.

Lembosina Theiss., Annls mycol. 11(5): 437 (1913)

Notes: Hongsanan et al. (2014c) accepted this genus as a member of Aulographaceae.

Lembosiopsis Theiss., Annls mycol. 15(6): 422 (1917)

Notes: Hongsanan et al. (2014c) transferred this genus to Mycosphaerellaceae from Asterinaceae.

Leptosphaeria Ces. & De Not., Comm. Soc. crittog. Ital. 1(4): 234 (1863)

Notes: De Gruyter et al. (2009) and Aveskamp et al. (2010) showed that some species of Phoma grouped in the family Leptosphaeriaceae. However, de Gruyter et al. (2013) restricted Phoma sensu stricto for species in the Didymellaceae, hence new combinations were introduced in phoma-like species that grouped with Leptosphaeria doliolum (Pers.) Ces. & De Not. the type species of Leptosphaeria. Therefore, the usage of Leptosphaeria is maintained and asexual morphs are considered phoma-like.

Leptosphaerulina McAlpine, Fungus diseases of stonefruit trees in Australia and their treatment: 103 (1902)

Notes: Roux (1986) reported that Leptosphaerulina chartarum Cec. Roux was the sexual state of Pithomyces chartarum (Berk. & M.A. Curtis) M.B. Ellis. However, these species are not types of Leptosphaerulina or Pithomyces. Leptosphaerulina australis McAlpine and Pithomyces flavus Berk. & Broome are type species of these respective genera, hence we do not reduce the younger sexual name to synonymy under the older asexual typified name, and propose the continued use of both names until the link between the type species is proven by molecular data analyses. Recently, Phookamsak et al. (2013) reported that Leptosphaerulina saccharicola Phookamsak et al. has a pithomyces-like asexual state based on cultural studies. Furthermore, Phookamsak et al. (2013) showed that Leptosphaerulina sensu stricto and Pithomyces sensu stricto have distinct separate phylogenetic affinities.

Letendraea Sacc., Michelia 2(no. 6): 73 (1880)

  • =

    Wilmia Dianese et al., Mycologia 93(5): 1014 (2001)

Notes: Ariyawansa et al. (2014c) treated Wilmia Dianese et al. as a synonym of Letendraea Sacc.

Leveillella Theiss. & Syd., Annls mycol. 13(3/4): 284 (1915)

Notes: Hongsanan et al. (2014c) transferred this genus from Asterinaceae to Dothideomycetes, genera incertae sedis. The asci are subglobose unlike most Asterinaceae, however the brown conglobate ascospores, asci with a thick opaque region and colonies are rather typical of Asterinaceae (Hongsanan et al. 2014c).

Lidophia J. Walker & B. Sutton, Trans. Br. mycol. Soc. 62(2): 232 (1974)

Notes: Walker and Sutton (1974) introduced this genus with Dilophospora Desm. (D. alopecuri (Fr.) Fr.) as its asexual state. Their proposition was based on the psuedothecia of L. graminis (Sacc.) J. Walker & B. Sutton mixed with pycnidia of Dilophospora alopecuri. However this link was not established by culture or molecular methods (Walker and Sutton 1974), so both names should be retained until studies confirm this link.

Lophiosphaerella Hara, Byogaichu-Hoten (Manual of Pests and Diseases): 778 (1948)

Notes: Li et al. (2014) re-examined and illustrated Lophiosphaerella euryae, the type species of Lophiosphaerella and transferred it from Dothideomycetes, genera incertae sedis to Mycosphaerellaceae.

Lucidascocarpa A. Ferrer et al., Mycologia 100(4): 642 (2008)

Notes: Thambugala et al. (2014a) excluded this genus from Dothideaceae and placed in Dothideomycetes, genera incertae sedis based on morphology.

Macowaniella Doidge, Bothalia 1(1): 9 (1921)

Notes: Lumbsch and Huhndorf (2010) listed this genus under Asterinaceae however; Hongsanan et al. (2014c) treated it as a doubtful genus.

Macrodiplodiopsis Petr., Annls mycol. 20(5/6): 343 (1922)

  • =

    Floricola Kohlm. & Volkm.-Kohlm., Bot. Mar. 43(4): 385 (2000)

  • =

    Misturatosphaeria Mugambi & Huhndorf, Stud. Mycol. 64: 108 (2009)

Notes: Wijayawardene et al. (2014b) showed that Floricola and Misturatosphaeria grouped in a well-supported monophyletic clade with high bootstrap values in multi-gene analyses. Hence, Wijayawardene et al. (2014b) transferred the type species of Floricola, F. striata Kohlm. & Volkm.-Kohlm. to Macrodiplodiopsis and other nine species of Misturatosphaeria. Macrodiplodiopsis was used as it is the oldest name.

Maheshwaramyces Hosag., Indian Journal of Science and Technology 2(6): 12 (2009)

Notes: Lumbsch and Huhndorf (2010) listed Maheshwaramyces under Asterinaceae however; Hongsanan et al. (2014c) treated it as a doubtful genus.

Maireella Syd. ex Maire, Annls mycol. 6(2): 145 (1908)

Notes: Lumbsch and Huhndorf (2010) placed the genus in Dothideomycetes, genera incertae sedis. Maireella has similarities with Venturiaceae and shares similar characters with the type species of Venturia, thus Li et al. (2014) referred Maireella to Venturiaceae (Venturiales).

Malacaria Syd., Annls mycol. 28(1/2): 69 (1930)

Notes: Boonmee et al. (2014b) excluded this genus from Tubeufiaceae and placed in Dothideomycetes, genera incertae sedis.

Medicopsis Gruyter et al., Stud. Mycol. 75: 28 (2012) [2013]

Notes: de Gruyter et al. (2013) introduced this genus to accommodate a pyrenochaeta-like taxon in Trematosphaeriaceae.

Melanopsaceae Phillips et al., Stud. Mycol. 76: 43 (2014)

Notes: See notes in Aplosporellaceae.

Melioliphila Speg., Boln Acad. nac. Cienc. Córdoba 26(2–4): 344 (1921)

Notes: Lumbsch and Huhndorf (2010) listed this genus under Tubeufiaceae but Boonmee et al. (2014b) excluded this genus from Tubeufiaceae and placed in Dothideomycetes, genera incertae sedis.

Meristemomyces D. Isola & S. Onofri, Fungal Diversity 65: 158 (2014)

Notes: The genus Meristemomyces was introduced by Egidi et al. (2014) and clustered in Teratosphaeriaceae in their molecular analysis.

Metacapnodium S. Hughes & Corlett, N.Z. Jl. Bot. 10: 239 (1972)

Notes: The application of the earlier name Antennularia Reichenb. (≡Antennaria Link, non Gaertn.) has recently been clarified and found to apply to a species of Metacapnodium (Hyde et al. 2013). As the generic name Antennularia has not been adopted by modern authors, while Metacapnodium is well-established, protection of Metacapnodium is proposd.

Metameris Theiss. & Syd., Annls mycol. 13(3/4): 342 (1915)

Notes: Hyde et al. (2013) listed this genus under Phaeosphaeriaceae but Phookamsak et al. (2014) excluded it from Phaeosphaeriaceae and placed in Botryosphaeriaceae based on morpholgy.

Micularia Boedijn, Persoonia 2(1): 67 (1961)

Notes: See notes under Elsinoaceae.

Mixtura O.E. Erikss. & J.Z. Yue, Mycotaxon 38: 203 (1990)

Notes: Hyde et al. (2013) listed this genus under Phaeosphaeriaceae but Phookamsak et al. (2014) excluded it from Phaeosphaeriaceae and placed in Didymellaceae based on morphology.

Molleriella G. Winter, Boletim da Sociedade Broteriana, Coimbra, sér 1, 4: 199 (1886)

Notes: Jayawardena et al. (2014) accepted this genus as belonging in Elsinoaceae.

Monticola L. Selbmann & E. Egidi, Fungal Diversity 65: 155 (2014)

Notes: Egidi et al. (2014) described Monticola with M. elongata Selbmann & Egidi as the type species. Molecular analysis shows Monticola belongs in Teratosphaeriaceae (Egidi et al. 2014).

Morenoina Theiss., Annls mycol. 11(5): 434 (1913)

Notes: Hongsanan et al. (2014c) accepted this genus as a member of Aulographaceae.

Mucomycosphaerella Quaedvlieg & Crous, Persoonia 33: 22 (2014)

Notes: The genus Mucomycosphaerella (Capnodiales, incertae sedis) was introduced by Quaedvlieg et al. (2014) to accommodate Mycosphaerella eurypotami Kohlm. et al. Mucomycosphaerella is morphologically and phylogenetically distinguished from Mycosphaerella sensu stricto and there are no asexual states so far reported (Quaedvlieg et al. 2014).

Muellerites L. Holm, Svensk bot. Tidskr. 62: 231 (1968)

Notes: Dai et al. (2014a) this genus as a member of Dothidotthiaceae.

Mycopappus Redhead & G.P. White, Can. J. Bot. 63(8): 1430 (1985)

Notes: Phookamsak et al. (2014) showed this genus belongs to Melanommataceae in their molecular phylogenetic analyses and hence excluded it from Phaeosphaeriaceae.

Mycoporis Clem., Gen. fung. (Minneapolis) 50: 173 (1909)

Notes: Thambugala et al. (2014a) excluded this genus from Dothideaceae and placed in Mycosphaerellaceae based on morphology.

Myriangiaceae Nyl., Mém. Soc. Sci. nat. Cherbourg 2: 9 (1854)

Notes: Dissanayake et al. (2014) revised the family Myriangiaceae and accepted only Anhellia, Ascostratum, Butleria, Dictyocyclus, Diplotheca, Eurytheca, Hemimyriangium, Micularia, Myriangium and Zukaliopsis as the accepted genera.

Myriangium Mont. & Berk., London J. Bot. 4: 72 (1845)

Notes: See notes under Myriangiaceae.

Myrtapenidiella Quaedvlieg & Crous, Persoonia 33: 26 (2014)

Notes: The genus Myrtapenidiella was introduced by Quaedvlieg et al. (2014) to accommodate Penidiella corymbia Cheew. & Crous and P. eucalypti Cheew. et al. Myrtapenidiella and Penidiella share close morphological characters but show distinct phylogenetic placements in Teratosphaeriaceae (Quaedvlieg et al. 2014).

Navicella Fabre, Annls Sci. Nat., Bot., sér. 6 9: 96 (1879) [1878]

Notes: Based on superficial globose to subglobose, coriaceous ascomata with long, trabeculate pseudoparaphyses embedded in a gelatinous matrix and brown ascospores, Ariyawansa et al. (2014d) assign Navicella to Melanommataceae pending molecular investigation

Neoacanthostigma Boonmee et al., Fungal Diversity 68 (2014)

Notes: The generic name Neoacanthostigma is based on the type species, N. fusiforme Boonmee et al. and is a distinct genus in Tubeufiaceae (Boonmee et al. 2014b). Neoacanthostigma is morphologically similar to Acanthostigma but phylogenetically distinct (Boonmee et al. 2014b).

Neocamarosporium Crous & M.J. Wingf., Persoonia 32: 273 (2014)

Notes: See notes under Camarosporium.

Neocatenulostroma Quaedvlieg & Crous, Persoonia 33: 26 (2014)

Notes: Quaedvlieg et al. (2014) introduced Neocatenulostroma to accommodate three Catenulostroma species, viz. C. abietis (Butin & Pehl) Crous & U. Braun, C. germanicum Crous & U. Braun and C. microsporum (Joanne E. Taylor & Crous) Crous & U. Braun, which group away from Catenulostroma sensu stricto in Teratosphaeriaceae.

Neoceratosperma Crous & Cheew., Persoonia, Mol. Phyl. Evol. Fungi 32: 257 (2014)

Notes: Crous et al. (2014) introduced this genus and showed it belongs to Mycosphaerellaceae.

Neocylindroseptoria K.M. Thambugala & K.D. Hyde, Fungal Diversity 68 (2014)

Notes: Thambugala et al. (2014a) introduced this genus and showed it belongs to Dothideaceae, Dothideales.

Neodevriesia Quaedvlieg & Crous, Persoonia 33: 24 (2014)

Notes: Quaedvlieg et al. (2014) showed that Devriesia hilliana Crous & U. Braun and D. xanthorrhoeae Crous et al. are phylogenetically distinct from Devriesia sensu stricto (Mycosphaerellaceae) and hence introduced Neodevriesia (Neodevriesiaceae) to accommodate them.

Neodevriesiaceae Quaedvlieg & Crous, Persoonia 33: 24 (2014)

Notes: See notes under Neodevriesia.

Neohortaea Quaedvlieg & Crous, Persoonia 33: 27 (2014)

Notes: The genus Neohortaea was introduced by Quaedvlieg et al. (2014) to place Hortaea acidophila Hölker which has distinct phylogenetic lineage from Hortea sensu stricto in Teratosphaeriaceae.

Neokalmusia Kaz. Tanaka et al., Fungal Diversity 68 (2014)

Notes: Ariyawansa et al. (2014c) introduced this genus to accomodate Kalmusia brevispora and K. scabrispora in Didymosphaeriaceae.

Neomycosphaerella Crous, Persoonia, Mol. Phyl. Evol. Fungi 31: 195 (2013)

Notes: Crous et al. (2013) introduced Neomycosphaerella with N. pseudopentameridis Crous as the type species. Neomycosphaerella is morphologically similar with Mycosphaerella sensu stricto (i.e. Ramularia sensu stricto) but lacks Ramularia asexual states. However, Neomycosphaerella phylogenetically distinct from Mycosphaerella and closer related to Brunneosphaerella (Crous et al. 2013)

Neopenidiella Quaedvlieg & Crous, Persoonia 33: 22 (2014)

Notes: Quaedvlieg et al. (2014) showed that Penidiella nectandrae Crous et al. is not congeneric with Penidiella sensu stricto thus introduced Neopenidiella in Mycosphaerellaceae.

Neophaeothecoidea Quaedvlieg & Crous, Persoonia 33: 27 (2014)

Notes: Quaedvlieg et al. (2014) introduced Neophaeothecoidea (Teratosphaeriaceae) to accommodate Phaeothecoidea proteae Crous, which is phylogenetically distinct from Phaeothecoidea sensu stricto (Mycosphaerellaceae).

Neopseudocercospora Crous, Persoonia, Mol. Phyl. Evol. Fungi 31: 219 (2013)

Notes: Crous et al. (2013) introduced this genus and megablast results of LSU, SSU and ITS gene regions showed it belongs in Mycosphaerellaceae.

Neoseptoria Quaedvlieg et al., Stud. Mycol. 75: 352 (2013)

Notes: Quaedvlieg et al. (2013) introduced this genus and molecular data analyses showed it belongs in Mycosphaerellaceae.

Neoroussoella J.K. Liu et al. Phytotaxa (2014)

Notes: See notes under Roussoellaceae.

Neotrimmatostroma Quaedvlieg & Crous, Persoonia 33: 27 (2014)

Notes: Quaedvlieg et al. (2014) introduced Neotrimmatostroma to accommodate two Trimmatostroma species, viz. T. bifarium Gadgil & M.A. Dick and T. excentricum B. Sutton & Ganap. However, only Neotrimmatostroma excentricum (B. Sutton & Ganap.) Quaedvlieg & Crous is shown to belong in Teratosphaeriaceae.

Nigrograna Gruyter et al., Stud. Mycol. 75: 31 (2012) [2013]

Notes: De Gruyter et al. (2013) introduced this genus and showed it belongs in Pleosporales via molecular data analyses.

Ochroconis de Hoog & Arx, Kavaka 1: 57 (1973)

Notes: Machouart et al. (2014) showed that Ochroconis de Hoog & Arx belongs to Sympoventuriaceae (Venturiales) in their multi-gene analyses.

Oedohysterium E. Boehm & C.L. Schoch, Stud. Mycol. 64: 59 (2009)

Notes: Boehm et al. (2009) established Oedohysterium and mentioned the type species, O. insidens (Schwein.) E.W.A. Boehm & C.L. Schoch had a Septonema spilomeum as asexual state. However, Septonema was listed in Mytilinidiaceae (Seifert et al. 2011). We conclude that Oedohysterium has a septonema-like asexual state.

Oleoguttula L. Selbmann & G.S. de Hoog, Fungal Diversity 65: 152 (2014)

Notes: The genus Oleoguttula was described by Egidi et al. (2014) and belongs in Teratosphaeriaceae based on molecular analysis.

Omphalospora Theiss. & Syd., Annls mycol. 13(3/4): 361 (1915)

Notes: Thambugala et al. (2014a) excluded this genus from Dothideaceae and placed in Dothideomycetes, genera incertae sedis based on morphology.

Ophiosphaerella Speg., Anal. Mus. nac. B. Aires, ser. 3 12: 401 (1909)

Notes: See notes under Wojnowicia.

Pachysacca Syd., Annls mycol. 28(5/6): 435 (1930)

Notes: Thambugala et al. (2014c) excluded this genus from Dothideaceae and placed in Teratosphaeriaceae based on morphology.

Paracamarosporium Wijayawardene & K.D. Hyde, Crypt. Mycol. 35 (2): 183 (2014)

Notes: See notes under Camarosporium.

Paracercospora Deighton, Mycol. Pap. 144: 47 (1979)

Notes: Stewart et al. (1999) reduced Paracercospora to synonym with Pseudocercospora. Crous et al. (2012) show that Paracercospora is distinct from Pseudocercospora in their molecular DNA analysis hence the genus was reinstated.

Paraconiothyrium Verkley, Stud. Mycol. 50(2): 327 (2004)

Notes: See under Paraphaeosphaeria O.E. Erikss.

Paradendryphiella Woudenberg & Crous, Stud. Mycol. 75(1): 207 (2013)

Notes: Woudenberg et al. (2013) introduced this genus and showed it belongs in Pleosporaceae via their molecular data analyses.

Parahendersonia A.W. Ramaley, Aliso 14(2): 152 (1995)

Notes: Ramaley (1995) introduced Parahendersonia A.W. Ramaley to accommodate the coelomycetous asexual state of Chaetoplea dasylirii A.W. Ramaley based on culture methods. However, the relationship between C. dasylirii and C. calvescens (Fr.) Clem. the type species of Chaetoplea (Sacc.) Clem. is not confirmed. Hence we conclude Parahendersonia has chaetoplea-like sexual states.

Paramycosphaerella Crous & Jol. Roux, Persoonia 31: 245 (2013)

Notes: Crous et al. (2013) observed that Paramycosphaerella is morphologically similar to Mycosphaerella, but phylogenetically distinct from Mycosphaerella sensu stricto and also lacks a Ramularia asexual morph. It is placed in Mycosphaerellaceae.

Paranectriella (Henn. ex Sacc. & D. Sacc.) Höhn., Sber. Akad. Wiss. Wien, Math.-naturw. Kl., Abt. 1 119: 899 (1910)

  • =

    Araneomyces Höhn., Sber. Akad. Wiss. Wien, Math.-naturw. Kl., Abt. 1 118: 894 (1909)

Notes: Araneomyces was introduced as the asexual state of Paranectria juruana Henn. by Höhnel (1909). Höhnel (1910), however transferred Paranectria juruana into a new genus as new combination and established Paranectriella (Henn. ex Sacc. & D. Sacc.) Höhn. Hence Araneomyces was accepted as the asexual state of Paranectriella (Sutton 1984; Wu et al. 1997). Although Araneomyces is the oldest name, it has fewer epithets in Index Fungorum than Araneomyces and all Paranectriella species are not linked with Araneomyces. Thus we propose Paranectriella as the proposed name over Araneomyces.

Paraphaeosphaeria O.E. Erikss., Ark. Bot., ser. 2 6: 405 (1967)

Notes: Verkley et al. (2004) described Paraconiothyrium to accommodate coniothyrium-like fungi which are phyllogenetically distinct from Coniothyrium palmarum, the generic type of Coniothyrium. Verkley et al. (2004) also showed that Paraconiothyrium groups with Paraphaeosphaeria in their molecular data analysis. Further, Damm et al. (2008) also showed that the type species (Paraphaeosphaeria michotii (Westend.) O.E. Erikss. and Paraconiothyrium estuarinum Verkley & M. da Silva) of both genera cluster in same clade with other Paraconiothyrium species. However, Verkley et al. (2014) showed Paraconiothyrium estuarinum to represent a distinct phylogenetic linage from Paraphaeosphaeria michotii in their multi gene analyses. At the same time Verkley et al. (2014) introduced new combinations (as Paraphaeosphaeria sporulosa and Para. minitans) for Paraconiothyrium sporulosa and P. minitans which cluster with Paraphaeosphaeria. Hence we retain both genera i.e. Paraconiothyrium and Paraphaeosphaeria, acknowledging that Paraphaeosphaeria has paraconiothyrium-like asexual states. Ariyawansa et al. (2014a, c) showed that Paraconiothyrium brasiliense grouped with Didymosphaeria rubi-ulmifolii (in Didymosphaeria sensu stricto) hence the former name was synonymised under the later name. At the same time, Ariyawansa et al. (2014c) reported the sexual state of Paraconiothyrium fuckelii. Furthermore, Ariyawansa et al. (2014c) established a new epitype for Paraphaeosphaeria michotii.

Parasterinella Speg., Boln Acad. nac. Cienc. Córdoba 27(4): 382 (1924)

Notes: Lumbsch and Huhndorf (2010) listed this genus under Asterinaceae however; Hongsanan et al. (2014c) treated it as a doubtful genus.

Parateratosphaeria Quaedvlieg & Crous, Persoonia 33: 28 (2014)

Notes: The genus Parateratosphaeria is morphologically indistinguishable from Teratosphaeria but distinguishable with molecular data. Both genera group well in Teratosphaeriaceae with distinct phylogenetic linages (Quaedvlieg et al. 2014).

Parenglerula Höhn., Sber. Akad. Wiss. Wien, Math.-naturw. Kl., Abt. 1 119: 465 (1910)

Notes: See notes under Englerulaceae.

Parmulariaceae E. Müll. & Arx ex M.E. Barr, Mycologia 71(5): 944 (1979)

Notes: See notes under Asterinales.

Perusta E. Egidi & B. Stielow, Fungal Diversity 65: 155 (2014)

Notes: Egidi et al. (2014) introduced Perusta, with P. inaequalis Egidi & Stielow as the type species. Molecular analysis of ITS sequences shows that it belongs to Capnodiales, incertae sedis (Egidi et al. 2014).

Petrakina Cif., Annls mycol. 30(3/4): 225 (1932)

Notes: Hongsanan et al. (2014c) transferred this genus from Asterinaceae to Dothideomycetes, genera incertae sedis because its copious pseudoparaphyses, fusiform asci and muriform ascopores are atypical of Asterinaceae.

Petrophila G.S. de Hoog & W. Quaedvlieg, Fungal Diversity 65: 152 (2014)

Notes: The genus Petrophila was introduced by Egidi et al. (2014) and belonged in Teratosphaeriaceae sensu lato. However, Quaedvlieg et al. (2014) showed that Petrophila was more closely related with Extremus Quaedvlieg & Crous (Extremaceae).

Phaeophleospora Rangel, Arquiv Mus. Nac. Rio de Janeiro 18: 162 (1916)

Notes: Quaedvlieg et al. (2014) showed that three mycosphaerella-like species cluster with Phaeophleospora sensu stricto (Mycosphaerellaceae) in their molecular analysis and introduced new combinations of Phaeophleospora to accommodate Mycosphaerella gregaria, M. scytalidii and M. stramenti.

Phaeosphaeria I. Miyake, Bot. Mag., Tokyo 23: 93 (1909)

  • =

    Phaeoseptoria Speg., Revta Mus. La Plata 15: 39 (1908)

Notes: Quaedvlieg et al. (2013) showed that Phaeoseptoria papayae Speg., the type species of Phaeoseptoria groups with Phaeosphaeria oryzae I. Miyake, the type species of Phaeosphaeria. Furthermore, they reduced Phaeoseptoria under Phaeosphaeria as the latter sexual typified genus is the widely used name. We also agree with the adopted name i.e. Phaeosphaeria.

Phaeosphaeriaceae M.E. Barr, Mycologia 71(5): 948 (1979)

Notes: Phookamsak et al. (2014) revisited Phaeosphaeriaceae and accepted 30 genera. Detailed taxonomic notes for genera marked in # are provided in Phookamsak et al. (2014).

Phloeospora Wallr., Flora Cryptogamica Germaniae 2: 176 (1833)

Notes: Crous et al. (2012) showed that the type species of Phloeospora, P. ulmi (Fr.) Wallr. grouped in Mycosphaerellaceae. However, Phloeospora is shown to be polyphyletic by Quaedvlieg et al. (2011).

Phragmocapnias Theiss. & Syd., Annls mycol. 15(6): 480 (1918) [1917]

  • =

    Conidiocarpus Woron., Annls mycol. 24(3/4): 250 (1927) [1926]

Notes: Chomnunti et al. (2011) accepted that Conidiocarpus is the asexual state of Phragmocapnias and introduced new combination for the type species of Conidiocarpus, (i.e. Conidiocarpus penzigii Woron.) as Phragmocapnias penzigii (Woron.) Chomnunti & K.D. Hyde. We accept this adoption and propose to use Phragmocapnias as the accepted name.

Phyllosticta Pers., Traité Champ. Comest. (Paris): 55, 147 (1818).

  • =

    Guignardia Viala & Ravaz, Bull. Soc. mycol. Fr. 8: 63 (1892)

Notes: Glienke et al. (2011), Wikee et al. (2011) and Su and Cai (2012) reconfirmed the well-established relationship between Phyllosticta and Guignardia with molecular data. All the above publications use Phyllosticta over Guignardia. Liu et al. (2012) showed in their multigene analysis that both these genera have distinct phylogenetic relationships from other accepted genera in Botryosphaeriaceae. Hence, Wikee et al. (2013a, b) reinstated the family Phyllostictaceae to include both of these genera. Since Phyllosticta is the oldest name, is a more important pathogen, has more species and has been used over Guignardia in recent publications (Wulandari et al. 2010; Glienke et al. 2011; Wikee et al. 2011, 2013a, b; Su and Cai 2012), we also propose using Phyllosticta over Guignardia.

Phoma Sacc., Michelia 2: 4 (1880), nom. cons.

  • =

    Phoma Fr., Nov. Fl. Suec.: 80 (1819), nom. rej.

Notes: Phoma is very important phytopathogen (Aveskamp et al. 2010) and much research has been carried out on this the genus which was established by Saccardo (1880). Molecular based studies have shown that Phoma is polyphyletic and scattered throughout Pleosporales (Cucurbitariaceae, Didymellaceae, Leptosphaeriaceae, Phaeosphaeriaceae and Pleosporaceae) (de Gruyter et al. 2009, 2010, 2013; Aveskamp et al. 2010). The type species of Phoma, P. herbarum Westend. grouped in Didymellaceae (de Gruyter et al. 2009), hence Pyrenochaetopsis Gruyter et al. was introduced to accommodated phoma-like species in Cucurbitariaceae (de Gruyter et al. 2009), while Setophoma Gruyter et al., Neosetophoma Gruyter et al. and Paraphoma Morgan-Jones & J.F. White were introduced to accommodate phoma-like species in Phaeosphaeriaceae. Furthermore, de Gruyter et al. (2013) raised Plenodomus Preuss, Heterospora (Boerema, Gruyter & Noordel.) Gruyter et al. to generic level and introduced Subplenodomus Gruyter et al. to accommodate phoma-like species in Leptosphaeriaceae.

Phragmoscutella Woron. & Abramov, Annls mycol. 24(3/4): 231 (1927) [1926]

Notes: Hongsanan et al. (2014a) excluded this genus from Trichopeltinaceae and its placement is uncertain.

Pirozynskia Subram., Curr. Sci. 41(19): 711 (1972)

Notes: Subramaniam (1972) introduced Pirozynskia to accommodate the conidial state of the type species of Maurodothina i.e. Maurodothina dothideoides (Ellis & Everh.) Piroz. & Shoemaker (≡Asteridium dothideoides Ellis & Everh.). Von Arx and Müller (1975) moved Maurodothina dothideoides to Eupelte as a new combination i.e. Eupelte dothideoides (Ellis & Everh.) Arx & E. Müll. However, there is no established link between type species of Eupelte, Eupelte amicta Syd. and Pirozynskia, hence we propose the continued use of both names until prove the links between two genera by using molecular data analyses. Hongsanan et al. (2014c) regarded Eupelte as a doubtful genus as they could not locate good type material.

Pithomyces Berk. & Broome, J. Linn. Soc., Bot. 14: 100 (1873) [1875]

Notes: See notes under Leptosphaerulina.

Placoasterella Sacc. ex Theiss. & Syd., Annls mycol. 13(3/4): 236 (1915)

Notes: Hongsanan et al. (2014c) transferred this genus to Parmulariaceae from Asterinaceae.

Placomelan Cif., Atti Ist. bot. Univ. Lab. crittog. Pavia, ser. 5 19: 124 (1962)

Notes: The type species of Placomelan, i.e. P. dipteridis Cif. was the conidial state of Melanoplaca dipteris Syd. & P. Syd. (current name Dothidasteroma dipteridis (Syd. & P. Syd.) Arx. However, D. dipteridis is not the type species hence we conclude Placomelan has dothidasteroma-like sexual states.

Placosoma Syd., Annls mycol. 22(3/6): 302 (1924)

Notes: Hongsanan et al. (2014c) transferred this genus to Parmulariaceae.

Placostromella Petr., Sydowia 1(1–3): 9 (1947)

Notes: Thambugala et al. (2014c) examined and illustrated Placostromella macrospora, the type species of Placostromella and placed in Parmulariaceae based on its morphology.

Planistroma A.W. Ramaley, Mycotaxon 42: 69 (1991)

Notes: Minnis et al. (2012) treated this genus as a synonym of Kellermania. However, Monkai et al. (2013) recognized Planistroma as a distinct genus in Planistromellaceae.

Platypeltella Petr., Annls mycol. 27(1/2): 62 (1929)

Notes: Wu et al. (2014) include this genus in Asterinaceae based on superficial hyphae with intercalary capitate appressoria, and tis similar to Asterinella.

Pleiostomellina Bat. et al., Portug. acta biol., Sér. B 7(4): 373 (1964)

Notes: Ariyawansa et al. (2014d) referred Pleiostomellina to Parmulariaceae based on its solitary to gregarious, carbonaceous ascomata with multi-locules, fissitunicate, cylindrical asci and dark brown to reddish brown, 1-septate, verrucose ascospores.

Plenodomus Preuss, Linnaea 24: 145 (1851)

Notes: Boerema (1997) considered Plenodomus as one of the sections of Phoma and Phoma lingam (=Plenodomus lingam) was considered to be the type species of Phoma section Plenodomus; the sexual state was considered to be Leptosphaeria maculans (Schoch et al. 2006; de Gruyter et al. 2009). De Gruyter et al. (2013) reinstated the genus Plenodomus, and introduced new combinations for all Leptosphaeria and Phoma species that grouped with Plenodomus lingam. The renaming of Leptosphaeria maculans as Plenodomus maculans was unfortunate, and has caused ripples in the community working with Brassica crops. Plenodomus maculans, however, is unrelated to the type of Leptosphaeria (=Leptosphaeria doliolum (Pers.) Ces. & De Not.) and therefore L. maculans could not be retained in Leptosphaeria under any circumstances unless the type of Leptosphaeria was changed. The species epithet, “maculans” is also unavailable in Leptosphaeria for the blackleg disease of canola, as L. maculans (Sowerby) P. Karst. is a homonym of L. maculans (Fuckel) Ces. & De Not.

Pleoseptum A.W. Ramaley & M.E. Barr, Mycotaxon 54: 76 (1995)

Notes: Hyde et al. (2013) listed this genus under Phaeosphaeriaceae but Phookamsak et al. (2014) excluded it from Phaeosphaeriaceae and placed in Pleosporaceae based on morphology.

Plurispermiopsis Pereira-Carv et al., Mycologia 102(5): 1163 (2010)

Notes: Pereira-Carvalho et al. (2010) introduced this genus and placed in Capnodiaceae based on morphology.

Pleurophomopsis Petr., Annls mycol. 22(1/2): 156 (1924)

Notes: See notes under Astrosphaeriella.

Polyphialoseptoria Quaedvlieg et al., Stud. Mycol. 75: 355 (2013)

Notes: Quaedvlieg et al. (2013) introduced this genus and molecular data analyses showed it belongs to Mycosphaerellaceae.

Polythrincium Kunze, Mykol. Hefte (Leipzig) 1: 13 (1817)

  • =

    Cymadothea F.A. Wolf, Mycologia 27(1): 71 (1935)

Notes: Wolf (1935) established Cymadothea F.A. Wolf to accommodate the sexual state Polythrincium trifolii Kunze, the type species i.e. of Polythrincium Kunze. Simon et al. (2009) provided molecular proof for the link, while Hyde et al. (2013) reduced the younger sexual typified name under older asexual typified name.

Prillieuxina G. Arnaud, Ann.École Nat.Agric. Montpellier, série 2 16(1–4): 161 (1918) [1917]

  • =

    Leprieurina G. Arnaud, Ann. École Nat. Agric. Montpellier, série 2 16(1–4): 210 (1918) [1917]

Notes: The genus Leprieurina, (type species L. winteriana G. Arnaud) was introduced to accommodate the conidial state of the type species of Prillieuxina winteriana (Pazschke) G. Arnaud, the type species of Prillieuxina. Hence, we propose use of the older name Prillieuxina over Leprieurina. Hongsanan et al. (2014c) also agree with this adoption.

Pringsheimia Schulzer, Verh. zool.-bot. Ges. Wien 16: 57 (1866)

Notes: Thambugala et al. (2014a) accommodate this genus in Dothideaceae but state that its placement is uncertain.

Prosthemium Kunze, Mykol. Hefte (Leipzig) 1: 17 (1817)

  • =

    Pleomassaria Speg., Anal. Soc. cient. argent. 9: (in plate to p. 192) (1880)

Notes: Tanaka et al. (2010) showed that the type species of Pleomassaria and Prosthemium (Pleomassaria siparia (Berk. & Broome) Sacc. and P. betulinum Kunze respectively) grouped together in a monophyletic clade in their molecular analysis. Hence we propose to adopt the older asexual typified name i.e. Prosthemium over younger sexual typified name i.e. Pleomassaria.

Pseudocamarosporium Wijayawardene & K.D. Hyde, Crypto. Mycol. 35 (2): 185 (2014)

Notes: See notes under Camarosporium.

Pseudocercospora Speg., Anal. Mus. nac. B. Aires, Ser. 3 13: 437 (1910)

Notes: Pseudocercospora was shown to be an asexual state in Mycosphaerellaceae (Stewart et al. 1999; Crous et al. 2009). Crous et al. (2009, 2013), showed that Mycosphaerella sensu stricto and Pseudocercospora sensu stricto represent different phylogenetic linages, and hence Pseudocercospora was accepted as distinct genus with mycosphaerella-like sexual states. Implications of this decision is that the major pathogens of banana, e.g. the Sigatoka disease complex, will be known as P. fijiensis, P. eumusae and P. musae.

Pseudodidymella C.Z. Wei et al., Mycologia 89(3): 494 (1997)

  • =

    Pycnopleiospora C.Z. Wei et al., Mycologia 89(3): 496 (1997)

Notes: Wei et al. (1997) described Pseudodidymella as the asexual state of Pycnopleiospora in the same publication as introducing the sexual state. The link was based on co-occurrence of both states on same substrate and also confirmed in culture (Wei et al. 1997). Hence we prioritize the first introduced name Pseudodidymella over Pycnopleiospora.

Pseudofusicoccum Mohali et al., Stud. Mycol. 55: 249 (2006)

Notes: Hyde et al. (2013) listed this genus under Botryosphaeriaceae and Slippers et al. (2013) and Phillips et al. (2013) also showed Pseudofusicoccum groups in Botryosphaeriaceae. However, the type species of Pseudofusicoccum, P. stromaticum (Mohali et al.) Mohali et al. groups in Phyllostictaceae in our analyses (Fig. 1).

Pseudoramichloridium Cheew. & Crous, Persoonia 23: 75 (2009)

Notes: Quaedvlieg et al. (2014) showed Pseudoramichloridium grouped in Extremaceae in their molecular data analyses.

Pseudosydowia K.M. Thambugala & K.D. Hyde, Fungal Diversity 68 (2014)

Notes: Crous et al. (2003) and Cheewangkoon et al. (2009) showed that Sydowia eucalypti is linked to the asexual morph Selenophoma eucalypti, and phylogenetically clusters with other Aureobasidium and Hormonema species. However, Thambugala et al. (2014c) showed that Sydowia eucalypti is not congeneric with Sydowia sensu stricto (Dothideaceae) and clustered in Aureobasidiaceae and hence introduced a new genus Pseudosydowia to accommodate the taxon.

Pseudoteratosphaeria Quaedvlieg & Crous, Persoonia 33: 29 (2014)

Notes: In morphology, Pseudoteratosphaeria is similar to Teratosphaeria sensu stricto but has distinct phylogenetic lineages in Teratosphaeriaceae.

Pseudotrichia Kirschst., Annls mycol. 37(1/2): 125 (1939)

Notes: Mugambi and Huhndorf (2009) included Pseudotrichia under Melanommataceae while Hyde et al. (2013) placed it in Platystomaceae. Thambugala et al. (2014b) assigned Pseudotrichia in Didymosphaeriaceae (Montagnulaceae) based on morphology.

Pseudoveronaea Crous & Batzer, Persoonia, Mol. Phyl. Evol. Fungi (2012)

Notes: Li et al. (2012) introduced this genus with two species and showed it belongs in Dissaconiaceae, Capnodiales in their molecular data analyses.

Pycnoderma Syd. & P. Syd., Annls mycol. 12(6): 563 (1914)

Notes: Hongsanan et al. (2014a) accepted Pycnoderma as a distinct genus in Cookellaceae.

Pyrenochaeta De Not., Mem. R. Accad. Sci. Torino, ser. 2 10: 348 (1849)

Notes: See notes under Cucurbitaria.

Pyrenophora Fr., Summa veg. Scand. (Stockholm) 2: 397 (1849)

  • =

    Drechslera S. Ito, Proc. Imp. Acad. Japan 6: 355 (1930)

Notes: Shoemaker (1962) and Sivanesan (1984) stated that Pyrenophora has Drechslera asexual states. Crous et al. (2011) and Ariyawansa et al. (2014b) showed with molecular data that these genera group in the same clade. Although this was not based on type species, all included species are well-established taxa of these genera. Pyrenophora has more epithets (199 fide Index Fungorum 2014, http://www.indexfungorum.org/names/names.asp) and is the older name, hence we propose to reduce Drechslera under Pyrenophora. Furthermore, Pyrenophora is a generic name linked to important diseases of barley, and wheat (Ellwood et al. 2010; Manning et al. 2013), and is well-established in the plant pathology and plant breeder community.

Queenslandipenidiella Quaedvlieg & Crous, Persoonia 33: 29 (2014)

Notes: The genus Queenslandipenidiella was introduced to accommodate Penidiella kurandae Crous & J.K. Stone by Quaedvlieg et al. (2014). Penidiella and Queenslandipenidiella share a few common morpho-characters, but group as distinct clades in Teratosphaeriaceae (Quaedvlieg et al. 2014).

Ramichloridium Stahel ex de Hoog, Stud. Mycol. 15: 59 (1977)

Notes: Li et al. (2012) showed the type species of Ramichloridium, R. apiculatum (J.H. Mill. et al.) de Hoog grouped in Dissaconiaceae, Capnodiales.

Ramularia Unger, Exanth. Pflanzen (Wien): 119 (1833), nom. cons.

  • =

    Ramularia Roussek, Fl. Calvados, 2nd end 2: 98 (1806), nom. rej.

  • =

    Mycosphaerella Johanson, Öfvers. K. Svensk. Vetensk.-Akad. Förhandl. 41(9):163 (1884)

Notes: The oldest asexual typified name, Ramularia was accepted over Mycosphaerella by Crous et al. (2009). Mycosphaerella sensu stricto. has Ramularia sensu stricto. asexual morphs. Mycosphaerella sensu lato, however, represents more than 40 diverse genera, distributed over several different families. If Mycosphaerella would be chosen over Ramularia, more than 500 new combinations would be required, whereas in choosing Ramularia, no new names are required, as all established connections already have species names in Ramularia. This adoption was accepted by Hyde et al. (2013).

Ramimonilia B. Stielow. & W. Quaedvlieg, Fungal Diversity 65: 155 (2014)

Notes: Egidi et al. (2014) introduced Ramimonilia with R. apicalis Stielow & Quaedvlieg as the type species. Molecular data analysis shows that Ramimonilia belongs in Capnodiales, incertae sedis (Egidi et al. 2014).

Ramopenidiella Crous & R.G. Shivas, Persoonia, Mol. Phyl. Evol. Fungi 32: 207 (2014)

Notes: The genus Ramopenidiella was introduced by Crous et al. (2014) with R. cycadicola Crous & R.G. Shivas as the type species. Ramopenidiella is morphologically and phylogenetically distinct from Penidiella sensu stricto but both genera belong to Teratosphaeriaceae (Crous et al. 2014).

Readeriella Syd. & P. Syd., Annls mycol. 6(5): 484 (1908)

  • =

    Nothostrasseria Nag Raj, Can. J. Bot. 61(1): 23 (1983)

  • =

    Cibiessia Crous, Fungal Diversity 26: 151 (2007)

Notes: Crous et al. (2009) accepted that Cibiessia is the synasexual morph of Readeriella. Furthermore, Crous et al. (2009) showed that Nothostrasseria has similar conidiogenesis to Readeriella and reduced the genus to synonymy under Readeriella. Hence, we accept Cibiessia and Nothostrasseria as synonyms of Readeriella.

Rebentischia P. Karst., Fungi Fenniae Exsiccati, Fasc. 9: no. 881 (1869)

Notes: Boonmee et al. (2014b) transferred this genus to Pleosporales, genera incertae sedis from Tubeufiaceae based on morphology.

Rhytidenglerula Höhn., Sber. Akad. Wiss. Wien, Math.-naturw. Kl., Abt. 1 127: 386 (1918)

Notes: See notes under Englerulaceae.

Rhizotexis Theiss. & Syd., Annls mycol. 15(1/2): 140 (1917)

Notes: Rhexotexis may be a synonym of Asterotexis (Hongsanan et al. 2014c).

Roussoellaceae J.K. Liu et al., Phytotaxa 181: 1–33

Notes: Liu et al. (2014) introduced Roussoellaceae based on Roussoella Sacc. as the type genus. This family currently comprises four genera viz. Cytoplea, Neoroussoella, Roussoella and Roussoellopsis. Nevertheless, Liu et al. (2014) listed Cytoplea as a possible synonym of Roussoella but we keep Cytoplea as a distinct genus in Roussoellaceae (See notes under Cytoplea).

Ruptoseptoria Quaedvlieg et al., Stud. Mycol. 75: 356 (2013)

Notes: Quaedvlieg et al. (2013) introduced Ruptoseptoria and molecular data analyses showed it belongs in Mycosphaerellaceae.

Saccardinula Speg., Anales de la Sociedad cientifica argentina 19: 257 (1885)

Notes: Jayawardene et al. (2014) transferred this genus to Trichopeltinaceae from Elsinoaceae based on morphological characters. Hongsanan et al. (2014a) accepted this genus in Trichopeltinaceae.

Saccharataceae Slippers et al., Stud. Mycol. 76: 41 (2014)

Notes: See notes under Aplosporellaceae.

Schenckiella Henn., Bot. Jb. 17: 523 (1893)

  • =

    Allothyrium Syd., Annls mycol. 37(4/5): 393 (1939)

Notes: Hongsanan et al. (2014c) treated Allothyrium Syd. as a synonym of Schenckiella.

Schiffnerula Höhn., Sber. Akad. Wiss. Wien, Math.-naturw. Kl., Abt. 1 118: 867 (1909)

Notes: Dai et al. (2014b) treated Mitteriella Syd., Questieriella G. Arnaud ex S. Hughes, and Sarcinella Sacc. as synonyms of Schiffnerula.

Schizothyrium Desm., Annls Sci. Nat., Bot., sér. 3 11: 360 (1849)

Notes: Batzer et al. (2008) showed that Schizothyrium pomi (Mont. & Fr.) Arx grouped with Zygophiala spp. in their phylogenetic analysis of LSU rDNA sequence data. However, none of species included in their phylogenetic analysis, are the type species of their respective genera. However, the connection between Schizothyrium (1849) and Zygophiala (1945) appears to be well-established in culture, and if this is the case for the type species, preference should be given to the older name, Schizothyrium.

Sclerophoma Höhn., Sber. Akad. Wiss. Wien, Math.-naturw. Kl., Abt. 1 118: 1234 (1909)

Notes: Sutton (1980) and Sivanesan (1984) stated that Sclerophoma pythiophila (Cda) Höhn. is an asexual state of Sydowia polyspora (Bref. & Tavel) E. Müll. However, this link has not been confirmed by molecular sequence data analyses. Hence, we propose to retain Sclerophoma until its link with Sydowia polyspora is confirmed.

Scolicosporium Lib. ex Roum., Fungi Selecti Galliaei Exs.: no. 676 (1880)

Notes: Spooner and Kirk (1982) stated that Asteromassaria macrospora (Desm.) Höhn. (Pleomassariaceae) is the sexual state of the type species of Scolicosporium i.e. S. macrosporium (Berk.) B. Sutton. Wijayawardene et al. (2013), however, showed that Scolicosporium minkeviciusii Treigienė belongs in Phaeosphaeriaceae in their molecular analyses. Hence, the type species of the genus needs recollecting and sequence to confirm its correct taxonomic placement.

Selenophoma Maire, Bull. Soc. bot. Fr. 53: clxxxvii (1907)

Notes: Crous et al. (2003) linked Selenophoma eucalypti to Sydowia eucalypti based on culture studies, while Cheewangkoon et al. (2009) also confirmed this taxon to have a coniothyrium-like synasexual morph. Tsuneda et al. (2010) showed that Discosphaerina fagi (H.J. Huds.) M.E. Barr grouped with Selenophoma mahoniae A.W. Ramaley in their molecular analysis. Selenophoma is clearly paraphyletic, and we therefore retain Selenophoma until its type species (S. catananches) has been recollected and subjected to molecular data analysis.

Septoria Sacc., Syll. fung. (Abellini) 3: 474 (1884)

Notes: Quaedvlieg et al. (2013) revised the genus Septoria and showed it is polyphyletic in their molecular data analyses. Hence, several new genera have been introduced (e.g. Cylindroseptoria in Dothideaceae; Ruptoseptoria in Mycosphaerellaceae) to place septoria-like taxa. Septoria remained in Mycosphaerellaceae.

Septorioides Quaedvlieg et al., Stud. Mycol. 75: 383 (2013)

Notes: Quaedvlieg et al. (2013) introduced Septorioides and molecular data analyses showed it belongs to Botryosphaeriaceae.

Setophaeosphaeria Crous & Y. Zhang ter, Persoonia, Mol. Phyl. Evol. Fungi 32: 271 (2014)

Notes: Crous et al. (2014) introduced this genus with two species, (i.e. Setophaeosphaeria badalingensis, S. hemerocallidis) and with new combination (i.e. S. vernoniae). Based on molecular data blast searches, Crous et al. (2014) placed this genus in Phaeosphaeriaceae. However, Phookamsak et al. (2014) show the type species Setophaeosphaeria hemerocallidis forms a clade outside Phaeosphaeriaceae, close to Cucurbitariaceae, while Sp. badalingensis clusters with Phaeosphaeria sensu stricto in Phaeosphaeriaceae.

Shearia Petr., Annls mycol. 22(1/2): 180 (1924)

Notes: Shearia was reported as the asexual morph of Pleomassaria Speg. by Sutton (1980). Shearia acericola Petr. was proposed to be the asexual state of Pleomassaria acericola Petr. by Petrak (1952) as conidiomata and ascomata co-occurred on the same substrate. Petrak (1962) revised the genus and Sutton (1980) accepted this revision by mentioning that Shearia formosa is the asexual state of Pleomassaria magnolia Shear. These links have not been confirmed by molecular data, hence we conclude that Shearia has a pleomassaria-like sexual state. However, Pleomassaria sensu stricto is linked with Prosthemium sensu stricto by Tanaka et al. (2010). Thus placement of this genus is uncertain.

Sphaeropsis Sacc., Michelia 2: 105 (1880)

  • =

    Phaeobotryosphaeria Speg., Ann. Inst. Rech. Agron. 17, 10: 120 (1908)

Notes: Phillips et al. (2008) established the connection between the asexual and sexual morphs of Sphaeropsis visci, the type species of Sphaeropsis, S. visci (Alb. & Schwein.) Sacc. Phillips et al. (2013) considered Sphaeropsis to be more suitable than Phaeobotryosphaeria, since it is the oldest name and is the name most used in the literature.

Sphaerulina Sacc., Michelia 1(no. 4): 399 (1878)

Notes: In their molecular data analyses, Quaedvlieg et al. (2013) showed that Sphaerulina is a distinct genus in Mycosphaerellaceae but very closely related to Septoria sensu stricto. Furthermore, they show several septoria-like taxa also grouped in Sphaerulina sensu stricto clade hence they introduced several new combinations.

Stagonospora (Sacc.) Sacc., Syll. fung. (Abellini) 3: 445 (1884)

Notes: Quaedvlieg et al. (2013) showed that Stagonospora sensu stricto belongs in Massarinaceae in their molecular data analyses.

Staninwardia B. Sutton, Trans. Br. mycol. Soc. 57(3): 540 (1971)

Notes: Quaedvlieg et al. (2014) showed Staninwardia grouped in Extremaceae in their molecular data analyses.

Stemphylium Wallr., Fl. crypt. Germ. (Nurmberg) 2: 300 (1833)

  • =

    Pleospora Rabenh. ex Ces. & De Not., Comm. Soc. crittog. Ital. 1(4): 217 (1863)

Notes: The genus Stemphylium is preferred over Pleospora as Stemphyllium is the older name and has priorty, is better established in the literature (more than double the number of hits for Stemphylium in Google Scholar), and the genus is well-known to the plant pathology community, and is well circumscribed at the molecular level (Lawrence et al. 2012). Although there are more species epithets in Pleospora, most appear to belong to other genera, as many genera form pleospora-like sexual morphs (e.g. Lewia, linked to Alternaria). Stemphylium, however, is unique, and its conidium and conidiogenous morphology can in combination not easily be confused with say Alternaria, which is the genus morphologically most similar to it. Many serious diseases are known to be caused by Stemphylium species (purple spot of Asparagus, brown spot of barley, Stemphylium leaf blight of cotton, brown spot disease of pears, leaf spot disease of spinach, leaf spot and foliar blight of tomato), whereas these diseases are not clearly linked to Pleospora names. More than 2300 records are linked to “Stemphylium disease” in the CABI direct database.

Stephanotheca Syd. & P. Syd., Philippine Journal of Science Section C Botany 9 (2): 178 (1914) Notes: Jayawardena et al. (2014) accepted this genus as Asterinaceae. However, Hongsanan et al. (2014b) did not recognize Stephanotheca as a genus in Asterinaceae.

Suberoteratosphaeria Quaedvlieg & Crous, Persoonia 33: 31 (2014)

Notes: Quaedvlieg et al. (2014) introduced this genus in Teratosphaeriaceae with S. suberosa (Crous et al.) Quaedvlieg & Crous as the type species. Suberoteratosphaeria is morphologically quite similar to Teratosphaeria sensu stricto but able to distinguish by colony and ascospore characters (Crous et al. 2014).

Stromatoseptoria Quaedvlieg et al., Stud. Mycol. 75: 373 (2013)

Notes: Quaedvlieg et al. (2013) introduced Stromatoseptoria and molecular data analyses showed it belongs to Mycosphaerellaceae.

Subplenodomus Gruyter et al., Stud. Mycol. 75: 23 (2013)

Notes: This genus was introduced by de Gruyter et al. (2013) to accommodate four phoma-like species grouped in Leptosphaeriaceae, but separate from the clade in which Plenodomus rabenhorstii Preuss (=Plenodomus lingam (Tode: Fr.) Höhn., type species of Plenodomus) is placed. The name is therefore used for phoma-like species in Leptosphaeriaceae which differ from Plenodomus based on combined LSU and ITS rDNA analysis.

Sydowia Bres., Hedwigia 34 (Beibl.): 66 (1895)

Notes: Bills et al. (2004) showed that the type species of Hormonema, H. dematioides Lagerb. & Melin grouped with Sydowia polyspora (Bref. & Tavel) E. Müll. in their molecular data analysis. Sydowia, however, is polyphyletic (Crous et al. 2003), and hence it is best to retain Hormonema as separate from Sydowia until the type species, S. gregaria, has been recollected and subjected to DNA analysis. For further taxonomic notes, see Thambugala et al. (2014c).

Syncarpella Theiss. & Syd., Annls mycol. 13(5/6): 631 (1915)

Notes: Ramaley and Barr (1997) described Syntholus A.W. Ramaley & M.E. Barr to accommodate the conidial state of Syncarpella ribis A.W. Ramaley & M.E. Barr i.e. Syntholus ribis A.W. Ramaley & M.E. Barr. However the relationship between Syntholus tumefaciens (Ellis & Harkn.) Theiss. & Syd. the type species of Syncarpella and Syntholus ribis has not been confirmed by molecular data. Hence we conclude that Syncarpella has syntholus-like asexual states and propose continued use of both generic names.

Teratosphaeria Syd. & P. Syd., Annls mycol. 10(1): 39 (1912)

  • =

    Colletogloeopsis Crous & M.J. Wingf., Can. J. Bot. 75(4): 668 (1997)

  • =

    Kirramyces J. Walker et al., Mycol. Res. 96(11): 919 (1992)

Notes: Crous et al. (2009) accepted that Teratosphaeria sensu stricto has Colletogloeopsis and Kirramyces asexual states. Hence we propose to use the older sexual typified name Teratosphaeria over Colletogloeopsis and Kirramyces.

Teratosphaericola Quaedvlieg & Crous, Persoonia 33: 32 (2014)

Notes: The genus Teratosphaericola was introduced by Quaedvlieg et al. (2014) to accommodate Teratosphaeria pseudoafricana (Crous & T.A. Cout.) Crous & U. Braun. Teratosphaericola is morphologically similar to Teratosphaeria sensu stricto thus can only be distinguished based on DNA phylogeny.

Teratosphaeriopsis Quaedvlieg & Crous, Persoonia 33: 33 (2014)

Notes: The genus Teratosphaeriopsis was introduced by Quaedvlieg et al. (2014) to place Teratosphaeriopsis pseudoafricana Quaedvlieg & Crous which is morphologically similar to Teratosphaeria sensu stricto. Hence, Teratosphaeriopsis and Teratosphaeria are can only be distinguished via phylogenetic data.

Tetraploa Berk. & Broome, Ann. Mag. nat. Hist., Ser. 2 5: 459 (1850)

  • =

    Tetraplosphaeria Kaz. Tanaka & K. Hiray., Stud. Mycol. 64: 177 (2009)

Notes: Tanaka et al. (2009) introduced the family Tetraplosphaeriaceae to place Tetraploa sensu stricto, and its newly introduced sexual state Tetraplosphaeria. Tanaka et al. (2009) clearly showed that T. aristata Berk. & Broome, the type species of Tetraploa, grouped closely with Tetraplosphaeria sasicola Kaz. Tanaka & K. Hiray, the type species of Tetraplosphaeria. Hyde et al. (2013) also accepted this link and adopted Tetraploa, the older asexual typified name over Tetraplosphaeria.

Thrauste Theiss., Verh. zool.-bot. Ges. Wien 66: 337 (1916)

Notes: See notes under Englerulaceae.

Thaxteriellopsis Sivan. et al., Kavaka 4: 39 (1977) [1976]

Notes: Subramanian and Sekar (1982) observed with moorella-like asexual morph in Thaxteriellopsis lignicola Sivan. et al. However, the authors (i.e. Subramanian and Sekar 1982) referred to the asexual genus and did not identify it to species level. Thus, we do not synonymize Thaxteriellopsis under Moorella. Boonmee et al. (2014b) accepted Thaxteriellopsis as a genus in Tubeufiaceae and provide detailed taxonomic notes and illustrations.

Thyridaria Sacc., Grevillea 4: 21 (1875)

Notes: See notes under Cyclothyrium.

Thyriopsis Theiss. & Syd., Annls mycol. 13(3/4): 369 (1915)

Notes: Hongsanan et al. (2014c) accepted this genus as a member of Aulographaceae.

Thyrostroma Höhn., Sber. Akad. Wiss. Wien, Math.-naturw. Kl., Abt. 1 120: 472 (1911)

Notes: Ramaley (2005) and Phillips et al. (2008) showed that Dothidotthia symphoricarpi (Rehm) Höhn., the generic type of Dothidotthia has a Thyrostroma asexual morph (i.e. Thyrostroma negundinis (Berk. & M.A. Curtis) A.W. Ramaley). This was confirmed by Seifert et al. (2011). However, no link has thus far been established between the type species of Thyrostroma and Dothidotthia. Hence we propose to continued use of both names until above mentioned links are proven. If shown to be synonymous, preference would be given to Thyrostroma, which is the older genus, with the majority of species names. Phillips et al. (2008) placed this genus in Dothidotthiaceae.

Trichopeltella Höhn., Sber. Akad. Wiss. Wien, Math.-naturw. Kl., Abt. 1 119: 458 (1910)

Notes: Hongsanan et al. (2014a) accepted this genus in Trichopeltinaceae.

Trichopeltheca Bat. et al., Atti Ist. bot. Univ. Lab. crittog. Pavia, Ser. 5 15: 44 (1958)

Notes: Hongsanan et al. (2014a) accepted this genus in Trichopeltinaceae.

Trichopeltina Theiss., Beih. bot. Zbl., Abt. 2 32: 3 (1914)

Notes: Hongsanan et al. (2014a) accepted this genus in Trichopeltinaceae.

Trichopeltinaceae (Theiss.) Bat. et al., Atti Ist Bot. Univ. Lab. Crittog. Pavia 15: 37 (1958)

  • =

    Brefeldiellaceae E. Müll. & Arx, Beitr. Kryptfl. Schweiz 11(no. 2): 148 (1962)

  • =

    Saccardinulaceae G. Arnaud, Annls Sci. Nat., Bot., sér. 10 7: 647 (1925)

  • =

    Trichopeltaceae Theiss., Centralbl. Bakteriol. Parasitol., II 39:629 (1914)

  • =

    Trichopeltidaceae Theiss. [as ‘Trichopeltaceae’], Zentbl. Bakt. ParasitKde, Abt. II 39: 629 (1914) [1913]

Notes: Hongsanan et al. (2014a) revised this family and accepted six genera viz. Acrogenotheca, Brefeldiella, Saccardinula, Trichopeltina, Trichopeltheca and Trichopeltella. Furthermore, Hongsanan et al. (2014a) treated Brefeldiellaceae E. Müll. & Arx as a synonym of Trichopeltinaceae.

Trichopeltospora Bat. & Cif., Publicações Inst. Micol. Recife 90: 17 (1958)

Notes: Wu et al. (2011) stated the placement of this genus in Asterinaceae is uncertain. However, Hongsanan et al. (2014c) referred Trichopeltospora to Asterinaceae.

Trichothyrinula Petr., Sydowia 4(1–6): 171 (1950)

Notes: Hongsanan et al. (2014a) mentioned that the placement of this genus in Trichopeltinaceae is uncertain and suggested that a new family might be needed to accommodate it.

Tubeufiaceae M.E. Barr, Mycologia 71(5): 948 (1979)

Notes: Boonmee et al. (2014b) revised the family Tubeufiaceae and accepted 19 genera. Boonmee et al. (2014b) also illustrated and redescribed most of the genera and provided detailed taxonomic notes for each genus. Notes for genera marked with a # are provided in Boonmee et al. (2014b).

Tubeufiales S. Boonmee & K.D. Hyde, Fungal Diversity 68 (2014)

Notes: Boonmee et al. (2014b) raised Tubeufiaceae as an order and currently it comprises one family.

Uredinophila Rossman, Mycol. Pap. 157: 43 (1987)

Notes: Boonmee et al. (2014b) excluded this genus from Tubeufiaceae and placed in Dothideomycetes, genera incertae sedis.

Uwebraunia Crous & M.J. Wingf., Mycologia 88(3): 446 (1996)

Notes: Species of Uwebraunia have mycosphaerella-like sexual morphs, are pathogenic on Eucalyptus spp. (Crous et al. 2004), but are also associated with sooty blotch and flyspeck syndromes on apples (Li et al. 2012). They are morphologically similar to species of Dissoconium, which are normally mycophylic on Erysiphaceae (de Hoog et al. 1991). Species of Dissoconium have large, obclavate to ellipsoid microconidia, and produce sclerotia in culture. Uwebraunia, on the other hand, has small, pyriform microconidia and does not form sclerotia in culture (Li et al. 2012).

Vermiconia E. Egidi & S. Onofri, Fungal Diversity 65: 150 (2014)

Notes: The genus Vermiconia was introduced by Egidi et al. (2014) and shown to belong in Teratosphaeriaceae sensu lato. However, Quaedvlieg et al. (2014) showed this genus to belong in the new family Extremaceae.

Vishnumyces Hosag., Indian Phytopath. 63(1): 85 (2010)

Notes: Lumbsch and Huhndorf (2010) listed this genus under Asterinaceae however; Hongsanan et al. (2014c) treated it as a doubtful genus.

Vizellopsis Bat. et al., Publções Inst. Micol. Recife 637: 5 (1969)

Notes: The monotypic genus Vizellopsis was introduced by Batista et al. (1969) and is typified by V. grevilleae Bat. Batista et al. (1969) placed Vizellopsis in the family Microthyriaceae, according to the black, circular, flattened thyriothecia. Lumbsch and Huhndorf (2010) included this genus as Dothideomycetes, genera incertae sedis, as the morphological characters are not similar to Microthyriaceae. Based on morphological characters of the type species of Vizellopsis, V. grevilleae Bat., Dai et al. (2014a) placed this genus in Asterinaceae and this was followed by Hongsanan et al. (2014c).

Wiesneriomycetaceae Suetrong et al., Phytotaxa 176 (1): 285 (2014)

Notes: Suetrong et al. (2014) introduced this family to place Wiesneriomyces which forms a distinct clade close to Tubeufiales.

Wojnowicia Sacc., Syll. fung. (Abellini) 10: 328 (1892)

Notes: De Gruyter et al. (2009) showed the type species of Wojnowicia, W. hirta (J. Schröt.) Sacc. groups with Ophiosphaerella herpotricha (Fr.) J. Walker in their LSU and SSU rDNA sequence analyses. However, there are no sequences of the type species of Ophiosphaerella (Ophiosphaerella graminicola Speg.) in GenBank, hence the link between Ophiosphaerella sensu stricto and Wojnowicia has not yet been proven. The use of Ophiosphaerella and Wojnowicia is therefore retained pending further studies. We conclude that Wojnowicia has ophiosphaerella-like sexual states.

Xenobotryosphaeria Quaedvlieg et al., Stud. Mycol. 75: 374 (2013)

Notes: Quaedvlieg et al. (2013) introduced this genus and showed it belongs in Pleosporales, genera incertae sedis.

Xenomycosphaerella Quaedvlieg & Crous, Persoonia 33: 24 (2014)

Notes: Mycosphaerella elongata Crous & M.J. Wingf., introduced by Crous et al. (2007) is distinct from Mycosphaerella sensu stricto and hence Quaedvlieg et al. (2014) introduced Xenomycosphaerella to accommodate Mycosphaerella elongata as Xenomycosphaerella elongata (Crous & M.J. Wingf.) Quaedvlieg & Crous.

Xenopenidiella Quaedvlieg & Crous, Persoonia 33: 33 (2014)

Notes: Quaedvlieg et al. (2014) showed that Penidiella rigidophora Crous et al. is not congeneric with Penidiella sensu stricto, hence Xenopenidiella was introduced to accommodate the taxon. Penidiella and Xenopenidiella are morphologically quite similar, but they are phylogenetically distinct.

Xenoteratosphaeria Quaedvlieg & Crous, Persoonia 33: 34 (2014)

Notes: The genus Xenoteratosphaeria was introduced to accommodate Teratosphaeria jonkershoekensis (P.S. van Wyk et al.) Crous & U. Braun. Teratosphaeria and Xenoteratosphaeria share close morphologies but are phylogenetically distinct.

Xenostigmina Crous, Mycol. Mem. 21: 154 (1998)

Notes: Phookamsak et al. (2014) showed Xenostigmina belongs to Melanommataceae in their molecular phylogenetic analyses and hence they excluded the genus from Phaeosphaeriaceae.

Yoshinagaia Henn., Hedwigia 43: 143 (1904)

Notes: Thambugala et al. (2014a) excluded this genus from Dothideaceae and placed in Dothideomycetes genera incertae sedis based on morphology.

Zasmidium Fr., Summa veg Scand. 2: 407 (1849)

Notes: Quaedvlieg et al. (2014) showed that Mycosphaerella eucalyptorum Crous & M.J. Wingf. is phylogenetically close to Zasmidium sensu stricto and introduced the new combination, Z. eucalyptorum (Crous & M.J. Wingf.) Quaedvlieg & Crous.

Zukaliopsis Henn., Hedwigia 43: 367 (1904)

Notes: See notes under Myriangiaceae.

Zygophiala E.W. Mason, Mycol. Pap. 13: 3 (1945)

Notes: See notes under Schizothyrium.

Zymoseptoria Quaedvl. & Crous, Persoonia, Mol. Phyl. Evol. Fungi 26: 64 (2011)

Notes: The genus Zymoseptoria is associated with a range of leaf spot diseases of cereals and grasses (Quaedvlieg et al. 2011; Crous et al. 2012). Zymoseptoria tritici (=Mycosphaerella graminicola) causes septoria tritici blotch in wheat, which is a very serious disease of this crop, occurring wherever wheat is grown. Zymoseptoria species have mycosphaerella-like sexual morphs, and although the genus occurs in the Mycosphaerellaceae, it is unrelated to Mycosphaerella sensu stricto (Stukenbrock et al. 2012).

Supplementary Material

Electronic supplementary material The online version of this article (10.1007/s13225-014-0309-2) contains supplementary material, which is available to authorized users.

Supplemental Material

Acknowledgments

We thank Humidtropics, a CGIAR Research Program that aims to develop new opportunities for improved livelihoods in a sustainable environment, for partially funding this work. Plant Germplasm and Genomics Center in Germplasm Bank of Wild Species, Kunming Institute of Botany is appreciated for the help of molecule work. Nalin N. Wijayawardene is indebted to the Mushroom Research Foundation (MRF), Chiang Rai Province, Thailand for providing Postgraduate Scholarship. Kevin D. Hyde thanks the Chinese Academy of Sciences, project number 2013T2S0030, for the award of Visiting Professorship for Senior International Scientists at Kunming Institute of Botany. K.D. Hyde acknowledges a research grant from the Biodiversity Research and Training Program (BRT R253012) and The Thailand Research Fund (BRG 5280002). Yong Wang would like to thank The International Scientific Cooperated Project of Guizhou Province (No[2013] 7004). This contribution was prepared while D.L. Hawksworth was in receipt of funding from the Spanish Ministerio de Ciencia e Innovación project CGL2011-25003.

Contributor Information

Nalin N. Wijayawardene, Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Science, Kunming 650201, Yunnan, People’s Republic of China; World Agroforestry Centre, East and Central Asia, Kunming 650201, Yunnan, People’s Republic of China; Institute of Excellence in Fungal Research, Chiang Rai 57100, Thailand.

Pedro W. Crous, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria 0002, South Africa; CBS-KNAW Fungal Biodiversity Centre, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands.

Paul M. Kirk, State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101; Mycology Section, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3DS, UK.

David L. Hawksworth, Department of Life Sciences, The Natural History Museum, Cromwell Road, London SW7 5BD, UK; Departamento de Biología Vegetal II, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramón y Cajal, Madrid 28040, Spain.

Saranyaphat Boonmee, Institute of Excellence in Fungal Research, Chiang Rai 57100, Thailand; School of Science, Mae Fah Luang University; Mycology Section, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3DS, UK.

Uwe Braun, Institut Für Biologie, Martin-Luther-Universität, Bereich Geobotanik Und Botanischer Garten, Herbarium, Neuwerk 21, 06099 Halle (Saale), Germany.

Dong-Qin Dai, Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Science, Kunming 650201, Yunnan, People’s Republic of China; World Agroforestry Centre, East and Central Asia, Kunming 650201, Yunnan, People’s Republic of China; Institute of Excellence in Fungal Research, Chiang Rai 57100, Thailand; School of Science, Mae Fah Luang University.

Melvina J. D’souza, Institute of Excellence in Fungal Research, Chiang Rai 57100, Thailand; School of Science, Mae Fah Luang University.

Paul Diederich, Musée National d'histoire Naturelle, 25 Rue Munster, L-2160 Luxembourg, Luxembourg.

Asha Dissanayake, Institute of Excellence in Fungal Research, Chiang Rai 57100, Thailand; School of Science, Mae Fah Luang University; Institute of Plant and Environment Protection,Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, People’s Republic of China.

Mingkhuan Doilom, Institute of Excellence in Fungal Research, Chiang Rai 57100, Thailand; School of Science, Mae Fah Luang University.

Singang Hongsanan, Institute of Excellence in Fungal Research, Chiang Rai 57100, Thailand; School of Science, Mae Fah Luang University.

E. B.Gareth Jones, Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Kingdom of Saudi Arabia.

Johannes Z. Groenewald, CBS-KNAW Fungal Biodiversity Centre, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands.

Ruvishika Jayawardena, Institute of Excellence in Fungal Research, Chiang Rai 57100, Thailand; School of Science, Mae Fah Luang University; CBS-KNAW Fungal Biodiversity Centre, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands; Institute of Plant and Environment Protection,Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, People’s Republic of China.

James D. Lawrey, Department of Environmental Science and Policy, George Mason University, 4400 University Drive, Fairfax, VA 22030-4444, USA.

Jian-Kui Liu, Institute of Excellence in Fungal Research, Chiang Rai 57100, Thailand; School of Science, Mae Fah Luang University.

Robert Lücking, Science and Education, Integrative Research (Botany), The Field Museum, 1400 South Lake Shore Drive, Chicago, IL 60605-2496, USA.

Hugo Madrid, CBS-KNAW Fungal Biodiversity Centre, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands; Center for Genomics and Bioinformatics and Medicine Faculty, Mayor University, Camino La Pirámide 5750.

Dimuthu S. Manamgoda, Institute of Excellence in Fungal Research, Chiang Rai 57100, Thailand; School of Science, Mae Fah Luang University.

Lucia Muggia, Institute of Plant Sciences, University of Graz, Holteigasse 6, 8010, Graz, Austria; Department of Life Science, University of Trieste, Via L. Giorgieri 10, Trieste, Italy.

Matthew P. Nelsen, Science and Education, Integrative Research (Botany),The Field Museum, 1400 South Lake Shore Drive, Chicago, IL 60605-2496, USA; Committee on Evolutionary Biology, University of Chicago, 1025 E. 57th Street, Chicago, IL 60637, USA.

Rungtiwa Phookamsak, Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Science, Kunming 650201, Yunnan, People’s Republic of China; World Agroforestry Centre, East and Central Asia, Kunming 650201, Yunnan, People’s Republic of China; Institute of Excellence in Fungal Research, Chiang Rai 57100, Thailand; School of Science, Mae Fah Luang University.

Satinee Suetrong, Fungal Biodiversity Laboratory (BFBD), National Center for Genetic Engineering and Biotechnology (BIOTEC), 113 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani, Thailand.

Kazuaki Tanaka, Faculty of Agriculture and Life Science, Hirosaki University, 3 Bunkyo-cho, Hirosaki, Aomori 036-8561, Japan.

Kasun M. Thambugala, Institute of Excellence in Fungal Research, Chiang Rai 57100, Thailand; School of Science, Mae Fah Luang University.

Dhanushka N. Wanasinghe, Institute of Excellence in Fungal Research, Chiang Rai 57100, Thailand; School of Science, Mae Fah Luang University.

Saowanee Wikee, Institute of Excellence in Fungal Research, Chiang Rai 57100, Thailand; School of Science, Mae Fah Luang University.

Ying Zhang, Institute of Microbiology, Beijing Forestry University, P.O. Box 61, Beijing 100083, People’s Republic of China.

André Aptroot, ABL Herbarium, G.v.d.Veenstraat 107, NL-3762 XK Soest, The Netherlands.

H. A. Ariyawansa, Institute of Excellence in Fungal Research, Chiang Rai 57100, Thailand; School of Science, Mae Fah Luang University.

Ali H. Bahkali, College of Science, Botany and Microbiology Department, King Saud University, Riyadh 1145, Saudi Arabia.

D. Jayarama Bhat, Institute of Excellence in Fungal Research, Chiang Rai 57100, Thailand; School of Science, Mae Fah Luang University; No. 128/1-J,AzadHousing Society, Curca, Goa Velha 403108, India.

Cécile Gueidan, Department of Life Sciences, The Natural History Museum, Cromwell Road, London SW7 5BD, UK.

Putarak Chomnunti, Institute of Excellence in Fungal Research, Chiang Rai 57100, Thailand; School of Science, Mae Fah Luang University.

G. Sybren De Hoog, CBS-KNAW Fungal Biodiversity Centre, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands.

Kerry Knudsen, Department of Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences, Prague, Kamýcká 129, Praha 6—Suchdol CZ–165 21, Czech Republic.

Wen-Jing Li, Institute of Excellence in Fungal Research, Chiang Rai 57100, Thailand; School of Science, Mae Fah Luang University.

Eric H. C. McKenzie, ManaakiWhenua Landcare Research, Private Bag 92170, Auckland, New Zealand.

Andrew N. Miller, Illinois Natural History Survey, University of Illinois, 1816 South Oak Street, Champaign, IL 61820, USA.

Alan J. L. Phillips, Centro de Recursos Microbiológicos, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516, Caparica Lisbon, Portugal.

Marcin Piątek, Department of Mycology, W. Szafer Institute of Botany, Polish Academy of Sciences, Lubicz 46, PL-31-512 Kraków, Poland.

Huzefa A. Raja, Department of Chemistry and Biochemistry, 457 Sullivan Science Building, University of North Carolina, Greensboro, NC 27402-6170, USA.

Roger S. Shivas, Plant Pathology Herbarium, Department of Agriculture, Fisheries and Forestry, Dutton Park 4102, Queensland, Australia.

Bernad Slippers, Department of Genetics, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria 0002, South Africa.

Joanne E. Taylor, Royal Botanic Garden Edinburgh, 20A Inverleith Row, Edinburgh EH3 5LR, UK.

Qing Tian, Institute of Excellence in Fungal Research, Chiang Rai 57100, Thailand.

Yong Wang, Institute of Excellence in Fungal Research, Chiang Rai 57100, Thailand; School of Science, Mae Fah Luang University; Department of Plant Pathology, Agriculture College, Guizhou University, Guiyang 550025, People’s Republic of China.

Joyce H. C. Woudenberg, CBS-KNAW Fungal Biodiversity Centre, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands.

Lei Cai, State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China.

Walter M. Jaklitsch, Department of Botany and Biodiversity Research, Faculty of Life Sciences, University of Vienna, Rennweg 14, 1030 Wien, Austria; Institute of Forest Entomology, Forest Pathology and Forest Protection, Department of Forest-and Soil Sciences, Hasenauerstrasse 38, A-1180 Wien, University of Natural Resources and Life Sciences, Vienna, Austria.

Kevin D. Hyde, Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Science, Kunming 650201, Yunnan, People’s Republic of China; World Agroforestry Centre, East and Central Asia, Kunming 650201, Yunnan, People’s Republic of China; Institute of Excellence in Fungal Research, Chiang Rai 57100, Thailand.

References

  • Adler A, Yaniv I, Samra Z, Yacobovich J, Fisher S, Avrahami G, Levy I. Exserohilum: an emerging human pathogen. Eur J Clin Microbiol Infect Dis. 2006;25(4):247–253. [Abstract] [Google Scholar]
  • Alcorn JL, Irwin JAG. Acrocalymma medicaginis gen. et sp. nov. causing root and crown rot of Medicago sativa in Australia. Trans Br Mycol Soc. 1987;88:63–167. [Google Scholar]
  • Alves JL, Woudenberg JHC, Duarte LL, Crous PW, Barreto RW. Reappraisal of the genus Alternariaster (Dothideomycetes) Persoonia. 2013;31:77–85. [Europe PMC free article] [Abstract] [Google Scholar]
  • Aptroot A. Redisposition of some species excluded from Didymosphaeria (Ascomycotina) Nova Hedwigia. 1995;60(3-4):325–379. [Google Scholar]
  • Ariyawansa HA, Camporesi E, Thambugala KM, Mapook A, Kang JC, Alias SA, Chukeatirote E, Thines M, Mckenzie EHC, Hyde KD. Confusion surrounding Didymosphaeria — phylogenetic and morphological evidence suggest Didymosphaeriaceae is not a distinct family. Phytotaxa. 2014a;176(1):102–119. [Google Scholar]
  • Ariyawansa HA, Kang JC, Alias SA, Chukeatirote E, Hyde KD. Pyrenophora. Mycosphere. 2014b;5(2):351–362. [Google Scholar]
  • Ariyawansa HA, Tanaka K, Thambugala KM, Phookamsak R, Tian Q, Camporesi E, Hongsanan S, Monkai J, Wanasinghe DN, Chukeatirote E, Kang JC, et al. A molecular phylogenetic reappraisal of the Didymosphaeriaceae (=Montagnulaceae) Fungal Diver. 2014c;68:69–104. [Google Scholar]
  • Ariyawansa HA, Thambugala KM, Kang JC, Alias SA, Chukeatirote E, Hyde KD. Towards a natural classification of Dothideomycetes 2: The genera Cucurbidothis, Heterosphaeriopsis, Hyalosphaera Navicella, and Pleiostomellina (Dothideomycetes incertae sedis) Phytotaxa. 2014d;176(1):7–17. [Google Scholar]
  • Ariyawansaa HA, Kang JC, Alias SA, Chukeatirote E, Hyde KD. Towards a natural classification of Dothideomycetes: The genera Dermatodothella, Dothideopsella, Grandigallia, Hysteropeltella and Gloeodiscus (Dothideomycetes incertae sedis) Phytotaxa. 2013;147(2):35–47. [Google Scholar]
  • Aveskamp MM, De Gruyter J, Woudenberg JHC, Verkley GJ, Crous PW. Highlights of the Didymellaceae: A polyphasic approach to characterize Phoma and related pleosporalean genera. Stud Mycol. 2010;65:1–60. [Europe PMC free article] [Abstract] [Google Scholar]
  • Barr ME. The Venturiaceae in North America. Can J Bot. 1968;46(6):799–864. [Google Scholar]
  • Barr ME. Planistromellaceae, a new family in the Dothideales. Mycotaxon. 1996;60:433–442. [Google Scholar]
  • Batista AC, Bezerra JL, Barros TT. Publ Inst Micol Recife. 1969;637:5. [Google Scholar]
  • Batzer JC, Arias MM, Harrington TC, Gleason ML, Groenewald JZ, Crous PW. Four species of Zygophiala (Schizothyriaceae, Capnodiales) are associated with the sooty blotch and flyspeck complex on apple. Mycologia. 2008;100(2):246–258. [Abstract] [Google Scholar]
  • Bensch K, Braun U, Groenewald JZ, Crous PW. The genus Cladosporium. Stud Mycol. 2012;72:1–401. [Europe PMC free article] [Abstract] [Google Scholar]
  • Berkeley MJ. Introduction to cryptogamic botany. Bailliere; London: 1857. p. 604. [Google Scholar]
  • Bills GF, Collado J, Ruibal C, Peláez F, Platas G. Hormonema carpetanum sp. nov., a new lineage of dothideaceous black yeasts from Spain. Stud Mycol. 2004;50:149–157. [Google Scholar]
  • Boehm EWA, Mugambi GK, Miller AN, Huhndorf SM, Marincowitz S, Spatafora JW, Schoch CL. A molecular phylogenetic reappraisal of the Hysteriaceae, Mytilinidiaceae and Gloniaceae (Pleosporomycetidae, Dothideomycetes) with keys to world species. Stud Mycol. 2009;64:49–83. [Europe PMC free article] [Abstract] [Google Scholar]
  • Boerema GH. Contributions towards a monograph of Phoma (coelomycetes) – V. Subdivision of the genus in sections. Mycotaxon. 1997;64:321–333. [Google Scholar]
  • Boonmee S, Ko Ko TW, Chukeatirote E, Hyde KD, Chen H, Lei C, McKenzie EHC, Jones EBG, Rampai K, Bahkali AH. Kirschsteiniotheliaceae fam. nov. Mycologia. 2012;104:698–714. [Abstract] [Google Scholar]
  • Boonmee S, Bhat JD, Maharachchikumbura SSN, Hyde KD. Clavatispora thailandica gen. et sp. nov., a novel taxon of Venturiales (Dothideomycetes) from Thailand. Phytotaxa. 2014a;176(1):92–101. [Google Scholar]
  • Boonmee S, Rossman AY, Liu JK, Li WJ, Dai DQ, Bhat JD, Jones EBG, McKenzie EHC, Xu JC, Hyde KD. Tubeufiales, ord. nov., integrating sexual and asexual generic names. Fungal Divers. 2014b;68:239–298. [Google Scholar]
  • Braun U, Crous PW, Dugan F, Groenewald JZ, de Hoog GS. Phylogeny and taxonomy of cladosporium-like hyphomycetes, including Davidiella gen. nov., the teleomorph of Cladosporium s. str. Mycol Prog. 2003;2:3–18. [Google Scholar]
  • Braun U, Nakashima C, Crous PW. Cercosporoid fungi (Mycosphaerellaceae) 1. Species on othe fungi, Pteridophyta and Gymnospermae. IMA Fungus. 2013;4:265–345. [Europe PMC free article] [Abstract] [Google Scholar]
  • Briquet J, Flahault C, Harms H, Rendle AB. Règles Internationales de la Nomenclature Botanique adoptées par le Congrès International de Botanique de Vienne 1905. Gustav Fischer; Jena: 1906. [Google Scholar]
  • Campbell J, Ferrer A, Raja HA, Sivichai S, Shearer CA. Phylogenetic relationships among taxa in theJahnulales inferred from 18S and 28S nuclear ribosomal DNA sequences. Can J Bot. 2007;85:873–882. [Google Scholar]
  • Cannon PF, Kirk PM. The philosophy and practicalities of amalgamating anamorph and teleomorph concepts. Stud Mycol. 2000;45:19–25. [Google Scholar]
  • Carmichael JW, Kendrick WB, Conners IL, Sigler L. Genera of Hyphomycetes. Universityof Alberta Press; Alberta: 1980. p. 386. [Google Scholar]
  • Carnegie AJ, Keane PJ. Variation in severity of target spot, caused by Aulographina eucalypti, in a Eucalypt species and provenance trial in Victoria. Aust Plant Pathol. 2003;32(3):393–402. [Google Scholar]
  • Cheewangkoon R, Groenewald JZ, Summerell BA, Hyde KD, To-anun C, Crous PW. Myrtaceae, a cache of fungal biodiversity. Persoonia. 2009;23:55–85. [Europe PMC free article] [Abstract] [Google Scholar]
  • Chomnunti P, Schoch CL, Aguirre-Hudson B, KoKo TW, Hongsanan S, Jones EBG, Kodsueb R, Phookamsak R, Chukeatirote E, Bahkali AH, Hyde KD. Capnodiaceae. Fungal Divers. 2011;51:103–134. [Europe PMC free article] [Abstract] [Google Scholar]
  • Chung KR. Elsinoë fawcettii and Elsinoë australis: the fungal pathogens causing citrus scab. Mol Plant Pathol. 2011;12(2):123–135. [Europe PMC free article] [Abstract] [Google Scholar]
  • Cortinas MN, Burgess T, Dell B, Xu D, Crous PW, Wingfield BD, Wingfield MJ. First record of Colletogloeopsis zuluensis comb. nov., causing stem canker of Eucalyptus in China. Mycol Res. 2006;110:229–236. [Abstract] [Google Scholar]
  • Crous PW, Kendrick WB. Arnaudiella eucalyptorum sp. nov. (Dothideales, Ascomycetes) and its hyphomycetos anamorph Xenogliocladiopsis gen. nov. from Eucalyptus leaf litter in South Africa. Can J Bot. 1994;72:59–64. [Google Scholar]
  • Crous PW, Groenewald JZ, Wingfield MJ, Aptroot A. The value of ascospore septation in separating Mycosphaerella from Sphaerulina in the Dothideales: a Saccardoan myth ? Sydowia. 2003;55(2):136–152. [Google Scholar]
  • Crous PW, Groenewald JZ, Mansilla JP, Hunter GC, Wingfield MJ. Phylogenetic reassessment of Mycosphaerella spp. and their anamorphs occurring on Eucalyptus. Stud Mycol. 2004;50:195–214. [Europe PMC free article] [Abstract] [Google Scholar]
  • Crous PW, Braun U, Groenewald JZ. Mycosphaerella is polyphyletic. Stud Mycol. 2007;58:1–32. [Europe PMC free article] [Abstract] [Google Scholar]
  • Crous PW, Summerell BA, Carnegie AJ, Wingfield MJ, Hunter GC, Burgess TI, Andjic V, Barber PA, Groenewald JZ. Unravelling Mycosphaerella: do you believe in genera? Persoonia. 2009;23:99–118. [Europe PMC free article] [Abstract] [Google Scholar]
  • Crous PW, Summerell BA, Swart L, Denman S, Taylor JE, Bezuidenhout CM, Palm ME, Marincowitz S, Groenewald JZ. Fungal pathogens of Proteaceae. Persoonia. 2011;27:20–45. [Europe PMC free article] [Abstract] [Google Scholar]
  • Crous PW, Braun U, Hunter GC, Wingfield MJ, Verkley GJM, Shin H-D, Nakashima C, Groenewald JZ. Phylogenetic lineages in Pseudocercospora. Stud Mycol. 2012;75:37–114. [Europe PMC free article] [Abstract] [Google Scholar]
  • Crous PW, Wingfield MJ, Guarro J, Cheewangkoon R, van der Bank M, et al. Fungal Planet description sheets: 154–213. Persoonia. 2013;31:188–296. [Europe PMC free article] [Abstract] [Google Scholar]
  • Crous PW, Shivas RG, Quaedvlieg W, van der Bank M, Zhang Y, Summerell BA, Guarro J, Wingfield MJ, Wood AR, Alfenas AC, Braun U, et al. Fungal Planet Description Sheets: 214–280. Persoonia. 2014;32:184–306. [Europe PMC free article] [Abstract] [Google Scholar]
  • Da Cunha KC, Sutton DA, Fothergill AW, Cano J, Gené J, Madrid H, de Hoog S, Crous PW, Guarro J. Diversity of Bipolaris species in clinical samples in the United States and their antifungal susceptibility profiles. J Clin Microbiol. 2012;50:4061–4066. [Europe PMC free article] [Abstract] [Google Scholar]
  • Da Cunha KC, Sutton DA, Fothergill AW, Gené J, Cano J, Madrid H, de Hoog GS, Crous PW, Guarro J. In vitro antifungal susceptibility and molecular identity of 99 clinical isolates of the opportunistic fungal genus Curvularia. Diagn Microbiol Infect Dis. 2013;76:168–174. [Abstract] [Google Scholar]
  • Dai DQ, Bahkali AH, Bhat DJ, Xiao YP, Chukeatirote E, Zhao RL, Mckenzie EHC, Xu JC, Hyde KD. Towards a natural classification of Dothideomycetes 3: The genera Muellerites, Trematosphaeriopsis, Vizellopsis and Yoshinagella (Dothideomycetes incertae sedis) Phytotaxa. 2014a;176(1):18–27. [Google Scholar]
  • Dai DQ, Boonmee S, Tian Q, Xiao YP, Bhat JD, Chukeatirote E, Alias SA, Zhao RL, Wang Y, Hyde KD. Englerulaceae (Dothideomycetes) Phytotaxa. 2014b;176(1):139–155. [Google Scholar]
  • Dai DQ, Wijayawardene NN, Bhat DJ, Chukeatirote E, Zhao RL, Wang Y, Bahkali AH, Hyde KD. The Phylogenetic Placement of Eriosporella bambusicola sp. nov. in Capnodiales. Cryptogam Mycol. 2014c;35(1):41–49. [Google Scholar]
  • Damm U, Verkley GJM, Crous PW, Fourie PH, Haegi A, Riccioni L. Novel Paraconiothyrium species on stone fruit trees and other woody hosts. Persoonia. 2008;20:9–17. [Europe PMC free article] [Abstract] [Google Scholar]
  • de Gruyter J, Aveskamp MM, Woudenberg JHC, Verkley GJM, Groenewald JZ, Crous PW. Molecular phylogeny of Phoma and allied anamorph genera: Towards a re-classification of the Phoma complex. Mycol Res. 2009;113:508–519. [Abstract] [Google Scholar]
  • de Gruyter J, Woudenberg JHC, Aveskamp MM, Verkley GJM, Groenewald JZ, Crous PW. Systematic reappraisal of species in Phoma section Paraphoma, Pyrenochaeta and Pleurophoma. Mycologia. 2010;102:1066–1081. [Abstract] [Google Scholar]
  • de Gruyter J, Woudenberg JHC, Aveskamp MM, Verkley GJM, Groenewald JZ, Crous PW. Redisposition of Phoma-like anamorphs in Pleosporales. Stud Mycol. 2013;75:1–36. [Europe PMC free article] [Abstract] [Google Scholar]
  • de Hoog GS, Hijwegen T, Batenburg-van der Vegte WH. A new species of Dissoconium. Mycol Res. 1991;95:679–682. [Google Scholar]
  • De Wit PJGM, van der Burgt A, Ökmen B, Stergiopoulos I, Abd-Elsalam K, Aerts AL, Bahkali AHA, Beenen HG, Chettri P, Cox MP, Datema E, et al. The genomes of the fungal plant pathogens Cladosporium fulvum and Dothistroma septosporum reveal adaptation to different hosts and lifestyles but also signatures of common ancestry. PLoS Genet. 2012;8:e1003088. [Europe PMC free article] [Abstract] [Google Scholar]
  • Dissanayake AJ, Jayawardena RS, Boonmee S, Thambugala KM, Senanayake IC, Tain Q, Mapook A, Yan JY, Li YM, Li XH, Chukeatirote E, et al. The status of family Myriangiaceae (Dothideomycete) Phytotaxa. 2014;176(1):219–237. [Google Scholar]
  • Doilom M, Liu JK, Jaklitsch WM, Ariyawansa H, Wijayawardene NN, Chukeatirote E, Zhang M, McKenzie EHC, Geml J, Voglmayr H, Hyde KD. An outline of the family Cucurbitariaceae. Sydowia. 2013;65(1):167–192. [Google Scholar]
  • Egidi E, de Hoog GS, Isola D, Onofri S, Quaedvlieg W, de Vries M, Verkley GJM, Stielow JB, Zucconi L, Selbmann L. Phylogeny and taxonomy of meristematic rock-inhabiting black fungi in the Dothideomycetes based on multi-locus phylogenies. Fungal Divers. 2014;65:127–165. [Google Scholar]
  • Ellis MB. Demattaceous Hyphomycetes. Commonwealth Mycological Institute; Kew: 1971. [Google Scholar]
  • Ellis MB. More Dematiaceous Hyphomycetes. Commonwealth Mycological Institute; Kew: 1976. [Google Scholar]
  • Ellwood SR, Liu Z, Syme RA, Lai Z, Hane JK, Keiper F, Moffat CS, Oliver RP, Friesen TL. A first genome assembly of the barley fungal pathogen Pyrenophora teres f. teres. Genome Biol. 2010;11:R109. [Europe PMC free article] [Abstract] [Google Scholar]
  • Giraldo A, Gené J, Sutton DA, Madrid H, Cano J, Crous PW, Guarro J. Phylogenetic circumscription of Arthrographis (Eremomycetaceae, Dothideomycetes) Persoonia. 2014;32:102–114. [Europe PMC free article] [Abstract] [Google Scholar]
  • Glienke C, Pereira OL, Stringari D, Fabris J, Kava-Cordeiro V, Galli-Terasawa L, Cunnington J, Shivas RG, Groenewald JZ, Crous PW. Endophytic and pathogenic Phyllosticta species, with reference to those associated with Citrus Black Spot. Persoonia. 2011;26:47–56. [Europe PMC free article] [Abstract] [Google Scholar]
  • Goodwin SB, Dunkle LD, Zismann VL. Phylogenetic analysis of Cercospora and Mycosphaerella based on the internal transcribed spacer region of ribosomal DNA. Phytopathol. 2001;91:648–658. [Abstract] [Google Scholar]
  • Groenewald JZ, Nakashima C, Nishikawa J, Shin H-D, Park J-H, Jama AN, Groenewald M, Braun U, Crous PW. Species concepts in Cercospora: spotting the weeds among the roses. Stud Mycol. 2013;75:115–170. [Europe PMC free article] [Abstract] [Google Scholar]
  • Hall T. BioEdit v. 7.0.1. Department of Microbiology, North Carolina State University; 2004. Available at www.mbio.ncsu.edu/BioEdit/bioedit.html. [Google Scholar]
  • Hawksworth DL. Managing and coping with names of pleomorphic fungi in a period of transition. IMA Fungus. 2012;3(1):15–24. Mycosphere 3(2) 143-155. [Europe PMC free article] [Abstract] [Google Scholar]
  • Hillis DM, Bull JJ. An empirical test of bootstrapping as a method for assessing confidence in phylogenetic analysis. Syst Biol. 1993;42:182. [Google Scholar]
  • Höhnel F von. Fragmente zur Mykologie: VII. Mitteilung (Nr. 289 bis 353). Sitzungsberichte der Kaiserlichen Akademie der Wissenschaften Math.-naturw. Klasse Abt. I. 1909;118:813–904. [Google Scholar]
  • Hongsanan S, Bahkali AH, McKenzie EHC, Chukeatirote E, Hyde KD. Trichopeltinaceae (Dothideomycetes), an earlier name for Brefeldiellaceae, with a new species of Trichopeltina. Phytotaxa. 2014a;176(1):270–282. [Google Scholar]
  • Hongsanan S, Chomnunti P, Crous PW, Chukeatirote E, Hyde KD. Introducing Chaetothyriothecium, a new genus of Microthyriales. Phytotaxa. 2014b;161(2):157–164. [Google Scholar]
  • Hongsanan S, Li YM, Liu JK, Hofmann T, Piepenbring M, Jones EBG, Bhat JD, Boonmee S, Doliom M, Singtripop C, Tian Q, et al. Revision of Asterinales. Fungal Divers. 2014c;68:1–68. [Abstract] [Google Scholar]
  • Hosagoudar VB. Studies on foliicolous fungi – XIII a new genus and a new species. Zoos' Print J. 2003;18(8):1159–1162. http://www.indexfungorum.org/names/names.asp. [Google Scholar]
  • Huelsenbeck JP, Ronquist F. MRBAYES: Bayesian inference of phylogenetic trees. Bioinform. 2001;17:754–755. [Abstract] [Google Scholar]
  • Hughes SJ. Sooty moulds. Mycologia. 1976;68(4):693–820. [Google Scholar]
  • Hughes SJ. New Zeland Fungi 25. Miscellaneous species. NZ J Bot. 1978;16:311–370. [Google Scholar]
  • Hughes SJ. Antennulariella batistae n. sp. and its Capnodendron and Antennariella synanamorphs, with notes on Capnodium capsuliferum. Can J Bot. 2000;78(9):1215–1226. [Google Scholar]
  • Hyde KD. The genus Roussoëlla, including two new species from palms in Cuyabeno, Ecuador. Mycol Res. 1997;101:609–616. [Google Scholar]
  • Hyde KD, Eriksson OE, Yue JZ. Roussoëlla, an ascomycete genus of uncertain relationships with a Cytoplea anamorph. Mycol Res. 1996;100:1522–1528. [Google Scholar]
  • Hyde KD, McKenzie EHC, KoKo TW. Towards incorporating anamorphic fungi in a natural classification – checklist and notes for 2010. Mycosphere. 2011;2:1–88. [Google Scholar]
  • Hyde KD, Jones EBG, Lui J-K, Ariyawansa H, Boehm E, et al. Families of Dothideomycetes. Fungal Divers. 2013;63:1–313. [Google Scholar]
  • Hyde KD, Nilsson RH, Alias SA, Ariyawansa HA, Blair JE, Cai L, et al. One stop shop: backbones trees for important pytopathogenic genera: I. Fungal Divers. 2014;67:21–125. [Google Scholar]
  • Jayawardena RS, Ariyawansa HA, Singtripop C, Li YM, Yan JY, Li XH, Nilthong S, Hyde KD. A re-assessment of Elsinoaceae (Myriangiales, Dothideomycetes) Phytotaxa. 2014;176(1):120–138. [Google Scholar]
  • Kang JC, Kong RYC, Hyde KD. Studies on the Amphisphaeriales l. Amphisphaeriaceae (sensu stricto) and its phylogenetic relationships inferred from 5.8S rDNAand ITS2 sequences. Fungal Divers. 1998;1:147–157. [Google Scholar]
  • Kendrick B, editor. The Whole Fungus: the sexual-asexual synthesis. Vol. 2 National Museums of Canada; Ottawa: 1979. [Google Scholar]
  • Kirk PM, Cannon PF, Minter DW, Stalpers JA. Ainsworth & Bisby's Dictionary of the Fungi. 10th edn. CABI; Wallingford: 2008. [Google Scholar]
  • Kirk PM, Stalpers JA, Braun U, Crous PW, Hansen K, et al. A without-prejudice list of generic names of fungi for protection under the International Code of Nomenclature for algae, fungi and plants. IMA Fungus. 2013;4:381–443. [Europe PMC free article] [Abstract] [Google Scholar]
  • Lawrence DP, Park MS, Pryor BM. Nimbya and Embellisia revisited, with nov. comb. for Alternaria celosiae and A. perpunctulata. Mycol Prog. 2012;11:799–815. [Google Scholar]
  • Leonard KJ, Suggs EG. Setosphaeria prolata, the ascigerous state of Exserohilum prolatum. Mycologia. 1974;66(2):281–297. [Google Scholar]
  • Li HY, Sun GY, Zhai XR, Batzer JC, Mayfield DA, Crous PW, Groenewald JZ, Gleason ML. Dissoconiaceae associated with sooty blotch and flyspeck on fruits in China and the United States. Persoonia. 2012;28:113–125. [Europe PMC free article] [Abstract] [Google Scholar]
  • Li WJ, Bhat JD, Hyde KD, Wang Y. Towards a natural classification of Dothideomycetes 4: The genera Bryopelta, Bryorella, Bryosphaeria, Lophiosphaerella and Maireella (Dothideomycetes incertae sedis) Phytotaxa. 2014;176(1):28–41. [Google Scholar]
  • Liu JK, Phookamsak R, Jones EBG, Zhang Y, Ko-Ko TW, Hu HL, Boonmee S, Doilom M, Chukeatirote E, Bahkali AH, Wang Y, et al. Astrosphaeriella is polyphyletic, with species in Fissuroma gen. nov., and Neoastrosphaeriella gen. nov. Fungal Divers. 2011;51:135–154. [Google Scholar]
  • Liu JK, Phookamsak R, Doilom M, Wikee S, Li Y-M, et al. Towards a natural classification of Botryosphaeriales. Fungal Divers. 2012;57:149–210. [Google Scholar]
  • Liu JK, Phookamsak P, Dai DQ, Tanaka K, Jones EBG, Xu JC, Chukeatirote E, Hyde KD. Roussoellaceae, a new pleosporalean family to accommodate the genera Neoroussoella gen. nov., Roussoella and Roussoellopsis. Phytotaxa. 2014;181:1–33. [Google Scholar]
  • Lumbsch HT, Huhndorf SM. Myconet Volume 14. Part one. Outline of Ascomycota 2009. Part Two. Notes on Ascomycete Systematics. Nos. 4751–5113. Fieldiana Life Earth Sci. 2010;1:1–64. [Google Scholar]
  • Machouart M, Samerpitak K, de Hoog GS, Gueidan C. A multigene phylogeny reveals that Ochroconis belongs to the family Sympoventuriaceae (Venturiales, Dothideomycetes) Fungal Divers. 2014;65:77–88. [Google Scholar]
  • Malloch D, Sigler L. The Eremomycetaceae (Ascomycotina) Can J Bot. 1988;66:1929–1932. [Google Scholar]
  • Manamgoda DS, Cai L, McKenzie EHC, Crous PW, Madrid H, Chukeatirote E, Shivas RG, Tan YP, Hyde KD. A phylogenetic and taxonomic re-evaluation of the Bipolaris-Cochliobolus-Curvularia complex. Fungal Divers. 2012;56:131–144. [Google Scholar]
  • Manning VA, Pandelova I, Dhillon B, Wilhelm LJ, Goodwin SB, Berlin AM, Figueroa M, Freitag M, Hane JK, Henrissat B, Holman WH, et al. Comparative genomics of a plant-pathogenic fungus, Pyrenophora tritici-repentis, reveals transduplication and the impact of repeat elements on pathogenicity and population divergence. G3 (Bethesda) 2013;3(1):41–63. [Europe PMC free article] [Abstract] [Google Scholar]
  • Markovskaja S, Kačergius A, Treigienė A. Occurrence of new alien pathogenic fungus Mycosphaerella dearnessii in Lithuania. Bot Lith. 2011;17(1):29–37. [Google Scholar]
  • Matsushima T. Matsushima Mycological Memoirs. 2003;10:1–214. (Originally published on CD-ROM in PDF format Oct. 2001; effectively published 10 Feb. 2003 through distribution of two hard-copies.) [Google Scholar]
  • Mchau GRA, Crous PW, Phillips AJL. Molecular characterization of some Elsinoë isolates from leguminous hosts. Plant Pathol. 1998;47:773–779. [Google Scholar]
  • McNeill J, Barrie FR, Buck WR, Demoulin V, Greuter W, Hawksworth DL, Herendeen PS, Knapp S, Marhold K, Prado J, Prud'homme van Reine WF, et al., editors. International Code of Nomenclature for algae, fungi, and plants (Melbourne Code) adopted by the Eighteenth International Botanical Congress Melbourne, Australia, July 2011; Königsten: Koeltz Scientific Books; 2012. [Regnum Vegetabile No. 154.] [Google Scholar]
  • Minnis AM, Kennedy AH, Grenier DB, Palm ME, Rossman AY. Phylogeny and taxonomic revision of the Planistromellaceae including its coelomycetous anamorphs: contributions towards a monograph of the genus Kellermania. Persoonia. 2012;29:11–28. [Europe PMC free article] [Abstract] [Google Scholar]
  • Monkai J, Liu JK, Boonmee S, Chomnunti P, Chukeatirote E, Jones EBG, Wang Y, Hyde KD. Planistromellaceae (Botryosphaeriales) Cryptogam Mycol. 2013;34:45–77. [Google Scholar]
  • Monterio FT, Vieira BS, Barreto RB. Curvularia lunata and Phyllachora sp.: two fungal pathogens of the grassy weed Hymenachne amplexicaulis from Brazil. Aust Plant Pathol. 2003;32:449–453. [Google Scholar]
  • Moore RT. Hiospira, a new genus of the Helicosporae. Trans Br Mycol Soc. 1962;45:143–146. [Google Scholar]
  • Muggia L, Hafellner J, Wirtz N. The sterile microfilamentous lichenized fungi Cystocoleus ebeneus and Racodium rupestre are relatives of plant pathogens and clinically important dothidealean fungi. Mycol Res. 2008;112:50–56. [Abstract] [Google Scholar]
  • Nannizzi A. Repertorio sistematico dei miceti dell' uomo e degli animali. 1934;4:1–557. [Google Scholar]
  • Nilsson RH, Hyde KD, Pawłowska J, Ryberg M, Tedersoo L, et al. Improving ITS sequence data for identification of plant pathogenic fungi. Fungal Divers. 2014;67:1–9. [Google Scholar]
  • Nylander JAA. MrModeltest 2.0. Program distributed by the author. Evolutionary Biology Centre, Uppsala University; 2004. [Google Scholar]
  • Ohm RA, Feau N, Henrissat B, Schoch CL, Horwitz BA, Barry KW, Condon BJ, Copeland AC, Dhillon B, Glaser F, Hesse CN, et al. Diverse life styles and strategies of plant pathogenesis encoded in the genomes of eighteen Dothideomycetes Fungi. PLoS Pathog. 2012;8(12):e1003037. [Europe PMC free article] [Abstract] [Google Scholar]
  • Page RDM. Tree View: an application to display phylogenetic trees on personal computers. Comput Appl Bios. 1996;12:357–358. [Abstract] [Google Scholar]
  • Peever TL, Barve MP, Stone LJ, Kaiser WJ. Evolutionary relationships among Ascochyta species infecting wild and cultivated hosts in the legume tribes Cicereae and Vicieae. Mycologia. 2007;99:59–77. [Abstract] [Google Scholar]
  • Pereira-Carvalho RC, Inácio CA, Dianese JC. Plurispermiopsis: a new capnodiceous genus from the Brazilian Cerrado. Mycologia. 2010;102(5):1163–1166. [Abstract] [Google Scholar]
  • Pérez-Ortega S, Suija A, Crespo A, de los Ríos A. Lichenicolous fungi of the genus Abrothallus (Dothideomycetes: Abrothallales ordo nov.) are sister to the predominantly aquatic Jahnulales. Fungal Divers. 2014;64:295–304. [Google Scholar]
  • Petrak F. Fungi Beltsvillensis. III. Sydowia. 1952;6(1-4):5–16. [Google Scholar]
  • Petrak F. Cyclopeltis n. gen., eine neue Gattung der Polystomellaceen. Sydowia. 1953;7(5-6):370–374. [Google Scholar]
  • Petrak F. Anthracostroma n. gen., eine neue Gattung der dothidealen Pyrenomyzeten. Sydowia. 1954;8(1-6):96–99. [Google Scholar]
  • Petrak F. Singeriella n. gen., eine neue, mit den Entopeltaceen verwandte Gattung aus den Hochgebirgen Perus. Sydowia. 1958;12(1-6):252–257. [Google Scholar]
  • Petrak F. Mykologische Bemerkungen. Sydowia. 1962;15:204–217. [Google Scholar]
  • Petrak F, Sydow H. Die Gattungen der Pyrenomyzeten, Sphaeropsideen und Melanconieen. Beih Rep spec nov regniveg. 1927;42:1–551. [Google Scholar]
  • Phillips AJL, Alves A, Pennycook SR, Johnston PR, Ramaley A, Akulov A, Crous PW. Resolving the phylogenetic and taxonomic status of dark-spored teleomorph genera in the Botryosphaeriaceae. Persoonia. 2008;21:29–55. [Europe PMC free article] [Abstract] [Google Scholar]
  • Phillips AJL, Alves A, Abdollahzadeh J, Slippers B, Wingfield MJ, Groenewald JZ, Crous PW. The Botryosphaeriaceae: genera and species known from culture. Stud Mycol. 2013;76:51–167. [Europe PMC free article] [Abstract] [Google Scholar]
  • Phookamsak R, Liu JK, Chukeatirote E, McKenzie EHC, Hyde KD. Phylogeny and morphology of Leptosphaerulina saccharicola sp. nov. and Pleosphaerulina oryzae and relationships with Pithomyces. Cryptogam Mycol. 2013;34(4):303–319. [Google Scholar]
  • Phookamsak R, Liu JK, McKenzie EHC, Manamgoda DS, Chatpapamon C, Ariyawansa HA, Thambugala KM, Dai DQ, Camporesi E, Chukeatirote E, Wijayawardene NN, et al. Revision of Phaeosphaeriaceae. Fungal Divers. 2014;68:159–238. [Google Scholar]
  • Quaedvlieg W, Kema GHJ, Groenewald JZ, Verkley GJM, Seifbarghi S, Razavi M, Mirzadi Gohari A, Mehrabi R, Crous PW. Zymoseptoria gen. nov.: a new genus to accommodate septoria-like species occurring on graminicolous hosts. Persoonia. 2011;26:57–69. [Europe PMC free article] [Abstract] [Google Scholar]
  • Quaedvlieg W, Groenewald JZ, de Jesús Y-MM, Crous PW. DNA barcoding of Mycosphaerella species of quarantine importance to Europe. Persoonia. 2012;29:101–115. [Europe PMC free article] [Abstract] [Google Scholar]
  • Quaedvlieg W, Verkley GJM, Shin H-D, Barreto RW, Algenas AC, Swart WJ, Groenewald JZ, Crous PW. Sizing up Septoria. Stud Mycol. 2013;75:307–390. [Europe PMC free article] [Abstract] [Google Scholar]
  • Quaedvlieg W, Binder M, Groenewald JZ, Summerell BA, Carnegie AJ, Burgess TI, Crous PW. Introducing the consolidated species concept to resolve species in the Teratosphaeriaceae. Persoonia. 2014;33:1–40. [Europe PMC free article] [Abstract] [Google Scholar]
  • Ramaley AW. New fungi from Yucca: Planistromella yuccifoliorum, gen. et sp. nov., its anamorph, Kellermania yuccifoliorum, sp. nov., and Planistromella uniseptata, sp. nov., the teleomorph of Kellermania yuccigena. Mycotaxon. 1993;47:259–274. [Google Scholar]
  • Ramaley AW. New fungi from Dasylirion (Agavaceae) Aliso. 1995;14(2):152. [Google Scholar]
  • Ramaley AW. Comminutispora gen. nov. and its Hyphospora gen. nov. anamorph. Mycologia. 1996;88(1):132–136. [Google Scholar]
  • Ramaley AW. The connection of Dothidotthia aspera (Botryosphaeriaceae) to a hyphomycetous anamorphic fungus, Thyrostroma negundinis. Mycotaxon. 2005;94:127–132. [Google Scholar]
  • Ramaley AW, Barr ME. Syncarpella ribis sp. nov. and its anamorph, Syntholus ribis gen. et sp. nov. Mycotaxon. 1997;65:499–506. [Google Scholar]
  • Rannala B, Yang Z. Probability distribution of molecular evolutionary trees: a new method of phylogenetic inference. J Mol Evol. 1996;43:304–311. [Abstract] [Google Scholar]
  • Rossman AY, Manamgoda DS, Hyde KD. Proposal to conserve the name Bipolaris against Cochliobolus (Ascomycota: Pleosporales: Pleosporaceae) Taxon. 2013;62(6):1331–1332. [Google Scholar]
  • Roux C. Leptosphaerulina chartarum sp. nov., the teleomorph of Pithomyces chartarum. Trans Br Mycol Soc. 1986;86(2):319–323. [Google Scholar]
  • Saccardo PA. Conspectus generum fungorum Italiae inferiorum nempe ad Sphaeropsideas, Melanconieas et Hyphomyceteas pertinentium systemate sporologico dispositorum. Michelia. 1880;2(6):1–38. [Google Scholar]
  • Saccardo PA. De Diagnostica et nomenclatura mycologica, Admonita quaedam. Annales Mycologici. 1904;2:195–198. [English translation by Clements FE (1904) J Mycol10: 109–112] [Google Scholar]
  • Samuels GJ, Rogers JD. Botryohypoxylon gen.nov. and its anamorph, Iledon gen. nov. Mycotaxon. 1986;25(2):629–637. [Google Scholar]
  • Schoch CL, Shoemaker RA, Seifert KA, Hambleton S, Spatafora JW, Crous PW. A multigene phylogeny of Dothideomycetes using four nuclear loci. Mycologia. 2006;98:1041–1052. [Abstract] [Google Scholar]
  • Schoch CL, Crous PW, Groenewald JZ, Boehm EWA, Burgess TI, de Gruyter J, et al. A class-wide phylogenetic assessment of Dothideomycetes. Stud Mycol. 2009;64(1):1–15. [Europe PMC free article] [Abstract] [Google Scholar]
  • Seifert K, Morgan-Jones G, Gams W, Kendrick B. The Genera of Hyphomycetes. CBS-KNAW Fungal Biodiversity Centre; Utrecht, The Netherlands: 2011. [Google Scholar]
  • Shoemaker RA. Drechslera Ito. Can J Bot. 1962;40:809–936. [Google Scholar]
  • Shoemaker RA, Babcock CE, Irwin JAG. Massarina walkeri n. sp., the teleomorph of Acrocalymma medicaginis from Medicago sativa contrasted with Leptosphaeria pratensis, L. weimeri n. sp., and L. viridella. Can J Bot. 1991;69(3):569–573. [Google Scholar]
  • Silvestro D, Michalak I. raxmlGUI: a graphical front-end for RAxML. [Accessed August 2010];2010 http://sourceforge.net/projects/raxmlgui/
  • Simmons EG. Alternaria themes and variations (22–26) Mycotaxon. 1986;25(1):287–308. [Google Scholar]
  • Simmons EG. Alternaria themes and variations (305–309). Lewia/Alternaria revisited. Mycotaxon. 2002;83:127–145. [Google Scholar]
  • Simmons EG. Alternaria: an identification manual. [CBS Biodiversity Series no. 6] Utrecht: CBS-KNAW Fungal Biodiversity Centre; 2007. [Google Scholar]
  • Simon UK, Groenewald JZ, Crous PW. Cymadothea trifolii, an obligate biotrophic leaf parasite of Trifolium, belongs to Mycosphaerellaceae as shown by nuclear ribosomal DNA analyses. Persoonia. 2009;22:49–55. [Europe PMC free article] [Abstract] [Google Scholar]
  • Siu K, Lzumi AK. Phaeohyphomycosis caused by Coniothyrium. Cutis. 2004;73:127–130. [Abstract] [Google Scholar]
  • Sivanesan A. Studies on ascomycetes. Trans Br Mycol Soc. 1983;81(2):313–332. [Google Scholar]
  • Sivanesan A. The Bitunicate Ascomycetes and their Anamorphs. J. Cramer, Vaduz; 1984. [Google Scholar]
  • Sivanesan A. Corynesporasca caryotae gen. et sp. nov. with a Corynespora anamorph, and the family Corynesporascaceae. Mycol Res. 1996;100(7):783–788. [Google Scholar]
  • Sivanesan A, Hsieh WH. Kentingia and Setocampanula, two new genera. Mycol Res. 1989;93:83–90. [Google Scholar]
  • Sivichai S, Sri-indrasudhi V, Jones EBG. Jahnula aquatic and its anamorph Xylomyces chlamydosporus on submerged wood in Thailand. Mycotaxon. 2011;116:137–142. [Google Scholar]
  • Slippers B, Crous PW, Denman S, Coutinho TA, Wingfield BD, Wingfield MJ. Combined multiple gene genealogies and phenotypic characters differentiate several species previously identified as Botryosphaeria dothidea. Mycologia. 2004;96(1):83–101. [Abstract] [Google Scholar]
  • Slippers B, Boissin E, Phillips AJL, Groenewald JZ, Wingfield MJ, et al. Phylogenetic lineages in the Botryosphaeriales: A systematic and evolutionary framework. Stud Mycol. 2013;76:31–49. [Europe PMC free article] [Abstract] [Google Scholar]
  • Speer EO. A propos de champignons du Brésil III. Mytilidion resinae sp. nov. (Hysteriales) et sa forme conidienne, Camaroglobulus resinae gen. et spec. nov. (Sphaeropsidales) Bulletin de la Société Mycologique de France. 1986;102:97–100. [Google Scholar]
  • Spooner BM, Kirk PM. Taxonomic notes on Excipularia and Scolicosporium. Trans Br Mycol Soc. 1982;78:247–257. [Google Scholar]
  • Stamatakis A. RAxML-VI-HPC: Maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinforma. 2006;22:2688–2690. [Abstract] [Google Scholar]
  • Stergiopoulos I, Kourmpetis YAI, Slot JC, Bakker FT, De Wit JPGM, Rokas A. In silico characterization and molecular evolutionary analysis of a novel superfamily of fungal effector proteins. Mol Biol Evol. 2012;29(11):3371–3384. [Abstract] [Google Scholar]
  • Stewart EL, Liu Z, Crous PW, Szabo L. Phylogenetic relationships among some cercosporoid anamorphs of Mycosphaerella based on rDNA sequence analysis. Mycol Res. 1999;103:1491–1499. [Google Scholar]
  • Stukenbrock EH, Quaedvlieg W, Javan-Nikhah M, Zala M, Crous PW, McDonald BA. Zymoseptoria ardabiliae and Z. pseudotritici, two progenitor species of the Septoria tritici leaf blotch fungus Z. tritici (synonym: Mycosphaerella graminicola) Mycologia. 2012;104(6):1397–1407. [Abstract] [Google Scholar]
  • Su YY, Cai L. Polyphasic characterisation of three new Phyllosticta spp. Persoonia. 2012;28:76–84. [Europe PMC free article] [Abstract] [Google Scholar]
  • Subramaniam CV. Pirozynskia, a new hyphomycete genus. Curr Sci. 1972;41(19):711–712. [Google Scholar]
  • Subramanian CV, Sekar G. Thaxteriellopsis lingicola and its Moorella anamorph. Plant Sci. 1982;91(1):1–7. [Google Scholar]
  • Suetrong S, Boonyue N, Pang KL, Ueapattanakit J, Klaysuban A, Sri-Inddrasutdhi V, Sivichai S, Jones EBG. A taxonomic revision and phylogenetic reconstruction of the Jahnulales (Dothideomycetes), and the new family Manglicolaceae. Fungal Divers. 2011;51:163–188. [Google Scholar]
  • Suetrong S, Rungjindamai N, Sommai S, Rung-Areerate P, Sommrithipol S, Jones EBG. Wiesneriomyces a new lineage of Dothideomycetes (Ascomycota) basal to Tubeufiales. Phytotaxa. 2014;176(1):283–297. [Google Scholar]
  • Sutton BC. The Coelomycetes: fungi imperfecti with pycnidia, acervuli and stromata. Commonwealth Mycological Institute; Kew: 1980. [Google Scholar]
  • Sutton BC. Notes on Titaea (Hyphomycetes) Trans Br Mycol Soc. 1984;83:399–413. [Google Scholar]
  • Swart L, Crous PW, Kang JC, Mchau GRA, Pascoe I, Palm ME. Differentiation of species of Elsinoe associated with scab disease of proteaceae based morphology, symptomatology, and ITS sequence phylogeny. Mycologia. 2001;93(2):366–379. [Google Scholar]
  • Swofford DL. PAUP: phylogenetic analysis using parsimony, version 4.0 b10. Sinauer Associates; Sunderland: 2002. [Google Scholar]
  • Takuya S, Takao T. Exserohilum neoregeliae sp. nov., a new pathogen of Neoregelia carolinae. Mycotaxon. 2012;118:213–218. [Google Scholar]
  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary dfistance, and maximum parsimony methods. Mol Biol Evol. 2011;28:2731–2739. [Europe PMC free article] [Abstract] [Google Scholar]
  • Tanaka K, Harada Y. Bambusicolous fungi in Japan (4): a new combination, Astrosphaeriella aggregata. Mycoscience. 2005;46:114–118. [Google Scholar]
  • Tanaka K, Ooki Y, Hatakeyama S, Harada Y, Barr ME. Pleosporales in Japan (5): Pleomassaria, Asteromassaria, and Splanchnonema. Mycoscience. 2005;46(4):248–260. [Google Scholar]
  • Tanaka K, Hirayama K, Yonezawa H, Hatakeyama S, Harada Y, SanoT ST, Hosoya T. Molecular taxonomy of bambusicolous fungi: Tetraplosphaeriaceae, a new pleosporalean family with Tetraploa-like anamorphs, and notes on the phylogeny of selected species from bamboo. Stud Mycol. 2009;64:175–209. [Europe PMC free article] [Abstract] [Google Scholar]
  • Tanaka K, Mel'nik VA, Kamiyama M, Hirayama K, Shirouzu T. Molecular phylogeny of two coelomycetous fungal genera with stellate conidia, Prosthemium and Asterosporium, on Fagales trees. Botany. 2010;88:1057–1071. [Google Scholar]
  • Taylor JE. One fungus=one name: DNA and fungal nomenclature twenty years after PCR. IMA Fungus. 2011;2:113–120. [Europe PMC free article] [Abstract] [Google Scholar]
  • Thambugala KM, Ariyawansa HA, Li YM, Boonmee S, Hongsanan S, Tian Q, Singtripop C, Bhat JD, Camporesi E, Jayawardena R, Liu ZY, et al. Dothideales. Fungal Divers. 2014a;68:105–158. [Google Scholar]
  • Thambugala KM, Ariyawansa HA, Liu ZY, Chukeatirote E, Hyde KD. Towards a natural classification of Dothideomycetes 6: The genera Dolabra, Placostromella, Pleosphaerellula, Polysporidiella and Pseudotrichia (Dothideomycetes incertae sedis) Phytotaxa. 2014b;176(1):55–67. [Google Scholar]
  • Thambugala KM, Singtripop C, Chunfang Y, Mckenzie EHC, Liu ZY, Chukeatirote E, Hyde KD. Towards a natural classification of Dothideomycetes 7: The genera Allosoma, Austropleospora, Dangeardiella, Griggsia and Karschia (Dothideomycetes incertae sedis) Phytotaxa. 2014c;181:34–46. [Google Scholar]
  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 1997;25(24):4876. [Europe PMC free article] [Abstract] [Google Scholar]
  • Tian Q, Chomnunti P, Bhat JD, Alias SA, Mortimer PE, Hyde KD. Towards a natural classification of Dothideomycetes 5: The genera Ascostratum, Chaetoscutula, Ceratocarpia, Cystocoleus, and Colensoniella (Dothideomycetes incertae sedis) Phytotaxa. 2014;176(1):42–54. [Google Scholar]
  • Tsang CH, Chan JFW, Trendell-Smith NJ, Ngan AHY, Ling IWH, Lau SKP, Woo PCY. Subcutaneous phaeohyphomycosis in a patient with Ig G4-related sclerosing disease caused by a novel ascomycete, Hongkongmyces pedis gen. et sp. nov.: first report of human infection associated with the family Lindgomycetaceae. Med Mycol. 2014;52(7):736–747. [Abstract] [Google Scholar]
  • Tsuneda A, Davey ML, Tsuneda I, Currah RS. Two new dothideomycetous endocoidial genera from declining larch. Botany. 2010;88:471–487. [Google Scholar]
  • Verkley GJM, Priest MJ. Septoria and similar coelomycetous anamorphs of Mycosphaerella. Stud Mycol. 2000;45:123–128. [Google Scholar]
  • Verkley GJM, da Silva M, Wicklow DT, Crous PW. Paraconiothyrium, a new genus to accommodate the mycoparasite Coniothyrium minitans, anamorphs of Paraphaeosphaeria, and four new species. Stud Mycol. 2004;50:323–335. [Google Scholar]
  • Verkley GJM, Quaedvlieg W, Crous PW. A new approach to species delimitation in Septoria. Studies in Mycology. 2013;75:213–305. [Europe PMC free article] [Abstract] [Google Scholar]
  • Verkley GJM, Renfurm R, Göker M, Stielow JB. Novel genera and species of coniothyrium-like fungi in Montagnulaceae (Ascomycota) Persoonia. 2014;32:25–51. [Europe PMC free article] [Abstract] [Google Scholar]
  • von Arx JA, Müller E. A re–evaluation of the bitunicate Ascomycetes with keys to families and genera. Stud Mycol. 1975;9:1–159. [Google Scholar]
  • Walker J, Sutton BC. Dilophia Sacc. and Dilophospora Desm. Trans Br Mycol Soc. 1974;62(2):231–241. [Google Scholar]
  • Wanasinghe DN, Jones EBG, Camporesi E, Boonmee S, Karunarathna SC, Thines M, Mortimer PE, Xu J, Hyde KD. Dematiopleospora mariae gen. sp. nov., from Ononis spinosain Italy. Crypto Mycol. 2014;35(2):105–117. [Google Scholar]
  • Wang LY, Lioa HL, Bau HJ, Chung KR. Characterization of pathogenic variants of Elsinoë fawcettii of citrus implies the presence of new pathotypes and cryptic species in Florida. Can J Plant Pathol. 2009;31(1):28–37. [Google Scholar]
  • Wei CZ, Harada Y, Katumoto K. Pseudodidymella fagi gen. et sp. nov. and its hyphomycete anamorph Pycnopleiospora fagi gen. et sp.nov. on Fagus crenata in Japan. Mycologia. 1997;89(3):494–502. [Google Scholar]
  • Wijayawardene DNN, McKenzie EHC, Hyde KD. Towards incorporating anamorphic fungi in a natural classification – checklist and notes for 2011. Mycosphere. 2012;3(2):157–228. [Google Scholar]
  • Wijayawardene NN, Camporesi E, Song Y, Dai DQ, Bhat DJ, Mckenzie EHC, Chukeatirote E, Mel'nik VA, Wang Y, Hyde KD. Multigene analyses reveal taxonomic placement of Scolicosporium minkeviciusiiin Phaeosphaeriaceae (Pleosporales) Cryptogam Mycol. 2013;34(4):357–366. [Google Scholar]
  • Wijayawardene NN, Bhat DJ, Hyde KD, Camporesi E, Wikee S, Chethana KWT, Tangthirasunun N, Wang Y. Camarosporium sensu stricto in Pleosporinae, Pleosporales with two new species. Phytotaxa. 2014a;183(1):16–26. [Google Scholar]
  • Wijayawardene NN, Camporesi E, Bhat DJ, Song Y, Chethana KWT, Chukeatirote E, Wang Y, Hyde KD. Macrodiplodiopsis in Lophiostomataceae, Pleosporales. Phytotaxa. 2014b;176(1):192–200. [Google Scholar]
  • Wijayawardene NN, Hyde KD, Bhat DJ, Camporesi E, Schumacher RK, Chethana KWT, Wikee S, Bahkali AH, Wang Y. Camarosporium-like species are polyphyletic in Pleosporales; introducing Paracamarosporium and Pseudocamarosporium gen. nov. in Montagnulaceae. Cryptogam Mycol. 2014c;35(2):177–198. [Google Scholar]
  • Wikee S, Udayanga D, Crous PW, Chukeatirote E, Mckenzie EHC, Bahkali AH, Dai DQ, Hyde KD. Phyllosticta—an overview of current status of species recognition. Fungal Divers. 2011;51:43–61. [Google Scholar]
  • Wikee S, Lombard L, Crous PW, Nakashima C, Motohshi K, Chukeatirote E, Alias SA, McKenzie EHC, Hyde KD. Phyllosticta capitalensis, a widespread endophyte of plants. Fungal Divers. 2013a;60:91–105. [Google Scholar]
  • Wikee S, Lombard L, Nakashima C, Motohashi K, Chukeatirote E, Cheewangkoon R, McKenzie EHC, Hyde KD, Crous PW. A phylogenetic re-evaluation of Phyllosticta (Botryosphaeriales) Stud Mycol. 2013b;76:1–29. [Europe PMC free article] [Abstract] [Google Scholar]
  • Wingfield MJ, De Beer ZW, Slippers B, Wingfield BD, Groenewald JZ, Lombard L, Crous PW. One fungus one name promotes progressive plant pathology. Mol Plant Pathol. 2012;13(6):604–613. [Europe PMC free article] [Abstract] [Google Scholar]
  • Winton LM, Stone JK, Hansen EM, Shoemaker RA. The systematic position of Phaeocryptopus gaeumannii. Mycologia. 2007;99:240–252. [Abstract] [Google Scholar]
  • Wolf FA. Morphology of Polythrincium, causing sooty blotch of clover. Mycologia. 1935;27:58–73. [Google Scholar]
  • Woudenberg JHC, Aveskamp MM, de Gruyter J, Spiers AG, Crous PW. Multiple Didymella teleomorphs are linked to the Phoma clematidina morphotype. Persoonia. 2009;22:56–62. [Europe PMC free article] [Abstract] [Google Scholar]
  • Woudenberg JHC, Groenewald JZ, Binder M, Crous PW. Alternaria redefined. Stud Mycol. 2013;75:171–212. [Europe PMC free article] [Abstract] [Google Scholar]
  • Wu W, Sutton BC, Gange AC. Notes on three fungicolous fungi: Anastomyces microsporus gen. et sp. nov., Idriella rhododendri sp. nov. and Infundibura adhaerens. Mycol Res. 1997;101(11):1318–1322. [Google Scholar]
  • Wu HX, Schoch CL, Boonmee S, Bahkali AH, Chomnunti P, Hyde KD. A reappraisal of Microthyriaceae. Fungal Divers. 2011;51(1):189–248. [Europe PMC free article] [Abstract] [Google Scholar]
  • Wu X, Tian Q, Li WJ, Hyde KD. A reappraisal of Microthyriaceae. Phytotaxa. 2014;176(1):201–212. [Google Scholar]
  • Wulandari NF, To-Anun C, Lei C, Abd-Elsalam KA, Hyde KD. Guignardia/Phyllosticta species on banana. Cryptogam Mycol. 2010;31(4):403–418. [Google Scholar]
  • Zhang Y, Fournier J, Crous PW, Pointing SB, Hyde KD. Phylogenetic and morphological assessment of two new species Of Amniculicola and their allies (Pleosporales) Persoonia. 2009a;23:48–54. [Europe PMC free article] [Abstract] [Google Scholar]
  • Zhang Y, Schoch CL, Fournier J, Crous PW, De Gruyter J, Woudenberg JHC, Hirayama K, Tanaka K, Pointing SB, Hyde KD. Multilocus phylogeny of the Pleosporales: a taxonomic, ecological and evolutionary re-evaluation. Stud Mycol. 2009b;64:85–102. [Europe PMC free article] [Abstract] [Google Scholar]
  • Zhang M, Koko TW, Hyde KD. Towards a monograph of Dothideomycetes: studies on Diademaceae. Cryptogam Mycol. 2011;32:115–126. [Google Scholar]
  • Zhang H, Hyde KD, McKenzie EHC, Bahkali AH, Zhou D. Sequence data reveals phylogenetic affinities of Acrocalymma aquatica sp. nov., Aquasubmersa mircensis gen. et sp. nov. and Clohesyomyces aquaticus (Freshwater coelomycetes) Cryptogam Mycol. 2012;33(3):333–346. [Google Scholar]
  • Zhaxybayeva O, Gogarten JP. Bootstrap, Bayesian probability and maximum likelihood mapping: exploring new tools for comparative genome analyses. BMC Genomics. 2002;3(1):4. [Europe PMC free article] [Abstract] [Google Scholar]

Citations & impact 


Impact metrics

Jump to Citations
Jump to Data

Citations of article over time

Alternative metrics

Altmetric item for https://www.altmetric.com/details/62094064
Altmetric
Discover the attention surrounding your research
https://www.altmetric.com/details/62094064

Smart citations by scite.ai
Smart citations by scite.ai include citation statements extracted from the full text of the citing article. The number of the statements may be higher than the number of citations provided by EuropePMC if one paper cites another multiple times or lower if scite has not yet processed some of the citing articles.
Explore citation contexts and check if this article has been supported or disputed.
https://scite.ai/reports/10.1007/s13225-014-0309-2

Supporting
Mentioning
Contrasting
3
150
2

Article citations


Go to all (54) article citations

Other citations

Data 


Data behind the article

This data has been text mined from the article, or deposited into data resources.

Similar Articles 


To arrive at the top five similar articles we use a word-weighted algorithm to compare words from the Title and Abstract of each citation.


Funding 


Funders who supported this work.

Austrian Science Fund FWF (1)