Europe PMC

This website requires cookies, and the limited processing of your personal data in order to function. By using the site you are agreeing to this as outlined in our privacy notice and cookie policy.

Abstract 


Cordyceps, comprising over 400 species, was historically classified in the Clavicipitaceae, based on cylindrical asci, thickened ascus apices and filiform ascospores, which often disarticulate into part-spores. Cordyceps was characterized by the production of well-developed often stipitate stromata and an ecology as a pathogen of arthropods and Elaphomyces with infrageneric classifications emphasizing arrangement of perithecia, ascospore morphology and host affiliation. To refine the classification of Cordyceps and the Clavicipitaceae, the phylogenetic relationships of 162 taxa were estimated based on analyses consisting of five to seven loci, including the nuclear ribosomal small and large subunits (nrSSU and nrLSU), the elongation factor 1alpha (tef1), the largest and the second largest subunits of RNA polymerase II (rpb1 and rpb2), beta-tubulin (tub), and mitochondrial ATP6 (atp6). Our results strongly support the existence of three clavicipitaceous clades and reject the monophyly of both Cordyceps and Clavicipitaceae. Most diagnostic characters used in current classifications of Cordyceps (e.g., arrangement of perithecia, ascospore fragmentation, etc.) were not supported as being phylogenetically informative; the characters that were most consistent with the phylogeny were texture, pigmentation and morphology of stromata. Therefore, we revise the taxonomy of Cordyceps and the Clavicipitaceae to be consistent with the multi-gene phylogeny. The family Cordycipitaceae is validated based on the type of Cordyceps, C. militaris, and includes most Cordyceps species that possess brightly coloured, fleshy stromata. The new family Ophiocordycipitaceae is proposed based on Ophiocordyceps Petch, which we emend. The majority of species in this family produce darkly pigmented, tough to pliant stromata that often possess aperithecial apices. The new genus Elaphocordyceps is proposed for a subclade of the Ophiocordycipitaceae, which includes all species of Cordyceps that parasitize the fungal genus Elaphomyces and some closely related species that parasitize arthropods. The family Clavicipitaceaes. s. is emended and includes the core clade of grass symbionts (e.g., Balansia, Claviceps, Epichloë, etc.), and the entomopathogenic genus Hypocrella and relatives. In addition, the new genus Metacordyceps is proposed for Cordyceps species that are closely related to the grass symbionts in the Clavicipitaceaes. s.Metacordyceps includes teleomorphs linked to Metarhizium and other closely related anamorphs. Two new species are described, and lists of accepted names for species in Cordyceps, Elaphocordyceps, Metacordyceps and Ophiocordyceps are provided.

Free full text 


Logo of simycolStudies in MycologyAbout the JournalInstructions to AuthorsEditorial BoardWebshopSubscribe
Stud Mycol. 2007; 57: 5–59.
PMCID: PMC2104736
PMID: 18490993

Phylogenetic classification of Cordyceps and the clavicipitaceous fungi

Abstract

Cordyceps, comprising over 400 species, was historically classified in the Clavicipitaceae, based on cylindrical asci, thickened ascus apices and filiform ascospores, which often disarticulate into part-spores. Cordyceps was characterized by the production of well-developed often stipitate stromata and an ecology as a pathogen of arthropods and Elaphomyces with infrageneric classifications emphasizing arrangement of perithecia, ascospore morphology and host affiliation. To refine the classification of Cordyceps and the Clavicipitaceae, the phylogenetic relationships of 162 taxa were estimated based on analyses consisting of five to seven loci, including the nuclear ribosomal small and large subunits (nrSSU and nrLSU), the elongation factor 1α (tef1), the largest and the second largest subunits of RNA polymerase II (rpb1 and rpb2), β-tubulin (tub), and mitochondrial ATP6 (atp6). Our results strongly support the existence of three clavicipitaceous clades and reject the monophyly of both Cordyceps and Clavicipitaceae. Most diagnostic characters used in current classifications of Cordyceps (e.g., arrangement of perithecia, ascospore fragmentation, etc.) were not supported as being phylogenetically informative; the characters that were most consistent with the phylogeny were texture, pigmentation and morphology of stromata. Therefore, we revise the taxonomy of Cordyceps and the Clavicipitaceae to be consistent with the multi-gene phylogeny. The family Cordycipitaceae is validated based on the type of Cordyceps, C. militaris, and includes most Cordyceps species that possess brightly coloured, fleshy stromata. The new family Ophiocordycipitaceae is proposed based on Ophiocordyceps Petch, which we emend. The majority of species in this family produce darkly pigmented, tough to pliant stromata that often possess aperithecial apices. The new genus Elaphocordyceps is proposed for a subclade of the Ophiocordycipitaceae, which includes all species of Cordyceps that parasitize the fungal genus Elaphomyces and some closely related species that parasitize arthropods. The family Clavicipitaceae s. s. is emended and includes the core clade of grass symbionts (e.g., Balansia, Claviceps, Epichloë, etc.), and the entomopathogenic genus Hypocrella and relatives. In addition, the new genus Metacordyceps is proposed for Cordyceps species that are closely related to the grass symbionts in the Clavicipitaceae s. s. Metacordyceps includes teleomorphs linked to Metarhizium and other closely related anamorphs. Two new species are described, and lists of accepted names for species in Cordyceps, Elaphocordyceps, Metacordyceps and Ophiocordyceps are provided.

Keywords: Clavicipitaceae, Cordyceps, Cordycipitaceae, Elaphocordyceps, Metacordyceps, multigene phylogeny, Ophiocordyceps, Ophiocordycipitaceae

INTRODUCTION

Cordyceps Fr. is the most diverse genus in the family Clavicipitaceae in terms of number of species and host range (Kobayasi 1941, 1982, Mains 1957, 1958). There are estimated to be more than 400 species (Mains 1958, Kobayasi 1982, Stensrud et al. 2005) although this is expected to be an underestimation of the extant global diversity (Hawksworth & Rossman 1997). Its host range is broad, ranging from ten orders of arthropods to the truffle-like genus Elaphomyces, although most species are restricted to a single host species or a set of closely related host species (Kobayasi 1941, 1982, Mains 1957, 1958). The distribution is cosmopolitan, including all terrestrial regions except Antarctica, with the height of known species diversity occurring in subtropical and tropical regions, especially East and Southeast Asia (Kobayasi 1941, 1982, Samson et al. 1988). The genus is generally included in the family Clavicipitaceae, based on its cylindrical asci, thickened ascus apices, and filiform ascospores that often disarticulate into part-spores (Mains 1958, Kobayasi 1982, Rossman et al. 1999, Hywel-Jones 2002). Cordyceps is characterized and distinguished from other genera of the family by its production of superficial to completely immersed perithecia on stipitate and often clavate to capitate stromata and its ecology as a pathogen of arthropods and the fungal genus Elaphomyces (Kobayasi 1941, Mains 1957, 1958, Kobayasi & Shimizu 1960, Rogerson 1970).

Modern infrageneric classifications of Cordyceps have been based primarily on the taxonomic studies of Kobayasi (1941, 1982) and Mains (1958) (but see Massee 1895). Kobayasi (1941, 1982) recognized three subgenera (C. subg. Cordyceps, C. subg. Ophiocordyceps, and C. subg. Neocordyceps), emphasizing arrangement of perithecia and morphology of asci, ascospores and part-spores. Species of C. subg. Cordyceps (type C. militaris) were characterized by the production of either immersed or superficial perithecia produced at approximately right angles (ordinal) to the surface of the stroma and ascospores that disarticulate into part-spores at maturity. Cordyceps subg. Ophiocordyceps (Petch) Kobayasi (type C. blattae Petch) was distinguished by the production of whole ascospores that do not disarticulate into part-spores and, in some species, asci lacking pronounced apical hemispheric caps. Cordyceps subg. Neocordyceps Kobayasi (type C. sphecocephala (Klotzsch ex Berk.) Berk. & M.A. Curtis) was characterized by perithecia immersed at oblique angles in the clava region of the stroma and ascospores that disarticulate into part-spores upon maturity.

Mains (1958) expanded the infrageneric classification with a different emphasis on diagnostic characters and recognized two additional subgenera, C. subg. Racemella (Ces.) Sacc. and C. subg. Cryptocordyceps Mains. Cordyceps subg. Racemella (type C. memorabilis (Ces.) Sacc.) included species that produce superficial perithecia and asci with hemispheric to short cylindrical caps. Cordyceps subg. Cryptocordyceps (type C. ravenelii Berk. & M.A. Curtis) was diagnosed by the production of brown, partly immersed to superficial perithecia in a palisade-like layer at more or less right angles to the surface of the stroma. Kobayasi and Mains also differed in their treatments of C. subg. Ophiocordyceps and C. subg. Neocordyceps. In contrast to Kobayasi (1941), who essentially adopted the diagnosis of Petch (1931) but at the rank of subgenus, Mains (1958) placed only C. blattae and C. peltata Wakef. in C. subg. Ophiocordyceps based on their lack of a thickened ascus apex, thus deemphasizing the importance of ascospore disarticulation at the subgeneric level. Furthermore, Mains (1958) did not recognize C. subg. Neocordyceps, rather he included species with oblique perithecia in C. subg. Cordyceps sect. Cremastocarpon subsect. Entomogenae. Currently, the subgenera C. subg. Cordyceps, C. subg. Ophiocordyceps, and C. subg. Neocordyceps sensu Kobayasi (1941) have been arguably the most widely used infrageneric taxa of Cordyceps (Zang & Kinjo 1998, Artjariyasripong et al. 2001, Hywel-Jones 2002, Sung & Spatafora 2004, Stensrud et al. 2005) with the relatively recent addition of C. subg. Bolacordyceps O.E. Erikss., which is characterized by the production of bola-ascospores (Eriksson 198). Although this ascospore form has been likened to the South American bola or the East Asian ninchuk (martial arts weapon), the overall form is best likened to that of a skipping rope. The two handles of the skipping rope are two terminal sets of four cells. The `rope' is a slender hyphal thread, which appears to lack cytoplasm or, at most, has relic quantities.

In addition to the morphological characters discussed above, host affiliation has played an important role in the classification of Cordyceps (Massee 1895, Kobayasi 1982). Cordyceps species that parasitize the truffle genus Elaphomyces have been recognized as a unique taxon. The genus Cordylia Fr. (1818) was once assigned for the mycogenous Cordyceps species (Massee 1895) although it is a homonym of Cordylia Pers. 1807. Kobayasi (1941, 1982) also recognized the mycogenous Cordyceps species as taxonomic units (e.g., C. subg. Cordyceps sect. Cystocarpon subsect. Eucystocarpon ser. Mycogenae) and emphasized the utility of host affiliations in delimiting closely related species of arthropod pathogens. Mains (1958) adopted Kobayasi's treatment of the parasites of Elaphomyces, but questioned whether morphologically similar species on different insect hosts (e.g., C. irangiensis Moureau and C. sphecocephala attacking ants and wasps, respectively) are conspecific. The applicability of hosts as a taxonomic character is complicated, however, due to the difficulty in identifying immature hosts (e.g., larvae and pupae) and insufficient host identification for many herbarium collections.

Several phylogenetic studies employing ribosomal DNA (Artjariyasripong et al. 2001, Sung et al. 2001, Stensrud et al. 200) have been conducted to test and refine the classification of Cordyceps. Such studies were restricted by both limited taxon sampling and the inadequate resolution power of ribosomal DNA, resulting in limited conclusions regarding systematics of the genus. Recent phylogenetic studies (Spatafora et al. 2007, Sung et al. 2007) based on multiple independent loci provided a greater level of resolution and support, and revealed that neither Cordyceps nor the family Clavicipitaceae is monophyletic. Three monophyletic groups of the clavicipitaceous fungi were recognized, all of which include species of Cordyceps. These results reject the current infrafamilial classification (Diehl 1950) and indicate that the phylogenetic diversity of Cordyceps is representative of the entire family Clavicipitaceae (Spatafora et al. 2007, Sung et al. 2007). Therefore, a new classification of Cordyceps and the Clavicipitaceae is necessary to reflect the current hypotheses of phylogenetic relationships and to be predictive in nature.

Here, we conducted the most extensive multi-gene phylogenetic analyses to provide a basis for the phylogenetic classification of Cordyceps and the clavicipitaceous fungi. The main objectives of this study are to 1) reassess the morphological traits used in the current classifications of Cordyceps in the context of phylogeny, 2) investigate the taxonomic utility of the anamorphic forms in classification of Cordyceps and better understand the teleomorph–anamorph connections, and 3) revise the classification of Cordyceps and Clavicipitaceae to be consistent with phylogenetic relationships.

MATERIALS AND METHODS

Taxon and character sampling

A total of 162 taxa were sampled from Clavicipitaceae and other families of Hypocreales with Glomerella cingulata (Stoneman) Spauld. & H. Schrenk (Glomerellaceae) and Verticillium dahliae Kleb. (Plectosphaerellaceae) included as outgroups (Table 1). DNA extractions from cultures or herbarium specimens were conducted using a FastDNA kit (Qbiogene) following the manufacturer's instruction, with minor modifications. Polymerase chain and sequencing reactions were performed as previously described (Sung et al. 2007). DNA sequence data unique to this study were determined from five genes, including the nuclear ribosomal small and large subunits (nrSSU and nrLSU), the elongation factor 1α (tef1), and the largest and second largest subunits of RNA polymerase II (rpb1 and rpb2). These sequences were combined with data from 91 taxa, which were obtained from Sung et al. (2007). Information pertaining to voucher numbers concerning the sequences is provided in Table 1.

Table 1.

Taxa used in molecular phylogenetic analyses. (AUTAuthentic material, Tex-type culture).

GenBank Accession Number
SpeciesVoucher Info.1Host/SubstratumnrSSUnrLSUtef1rpb1rpb2tubatp6
Aphysiostroma stercorarium ATCC 62321 T Cow dung AF543769 AF543792 AF543782 AY489633 EF469103 EF469132 AY489566
Aschersonia badia BCC 8105 Scale insect (Hemiptera) DQ522573 DQ518752 DQ522317 DQ522363 DQ522411 DQ522472 EF468996
Aschersonia placenta BCC 7869 Scale insect (Hemiptera) EF469121 EF469074 EF469056 EF469085 EF469104 EF469133 EF468998
Balansia epichloë A.E.G. 96-15a Poaceae EF468949 EF468743 EF468851 EF468908
Balansia henningsiana GAM 16112 Panicum sp. (Poaceae) AY545723 AY545727 AY489610 AY489643 DQ522413 DQ522474 AY489576
Balansia pilulaeformis A.E.G. 94-2 Poaceae AF543764 AF543788 DQ522319 DQ522365 DQ522414 DQ522475 EF468999
Beauveria caledonica ARSEF 2567 T Soil AF339570 AF339520 EF469057 EF469086 EF469134 EF469000
Bionectria cf. aureofulva G.J.S. 71-328 DQ862044 DQ862027 DQ862029 DQ862013 EF469135 EF469001
Bionectria ochroleucaCBS 114056 Bark AY489684 AY489716 AY489611 DQ522415 DQ522476 EF469002
Claviceps fusiformis ATCC 26019 Poaceae DQ522538 U17402 DQ522320 DQ522366 DQ522477
Claviceps paspali ATCC 13892 Poaceae U32401 U47826 DQ522321 DQ522367 DQ522416 DQ522478
Claviceps purpurea GAM 12885 Dactylis glomerata (Poaceae) AF543765 AF543789 AF543778 AY489648 DQ522417 DQ522479
Claviceps purpurea S.A. cp11 Poaceae EF469122 EF469075 EF469058 EF469087 EF469105 EF469136
Cordyceps acicularis OSC 110987 Coleopteran larva EF468950 EF468805 EF468744 EF468852
Cordyceps acicularis OSC 110988 Coleopteran larva EF468951 EF468804 EF468745 EF468853
Cordyceps cf. acicularis OSC 128580 Coleoptera DQ522543 DQ518757 DQ522326 DQ522371 DQ522423 DQ522485 EF469003
Cordyceps agriotidis ARSEF 5692 Coleoptera DQ522540 DQ518754 DQ522322 DQ522368 DQ522418 DQ522480 EF469004
Cordyceps aphodii ARSEF 5498 TAphodius hewitti (Coleoptera) DQ522541 DQ518755 DQ522323 DQ522419 DQ522481 EF469005
Cordyceps bifusispora EFCC 5690 Lepidopteran pupa EF468952 EF468806 EF468746 EF468854 EF468909
Cordyceps bifusispora EFCC 8260 Lepidopteran pupa EF468953 EF468807 EF468747 EF468855 EF468910
Cordyceps brunneipunctata OSC 128576 AUT Coleoptera DQ522542 DQ518756 DQ522324 DQ522369 DQ522420 DQ522482
Cordyceps capitata OSC 71233 Elaphomyces sp. (Eurotiomycetes) AY489689 AY489721 AY489615 AY489649 DQ522421 DQ522483 AY489581
Cordyceps cardinalisCBS 113411T Lepidopteran larva AY184973 AY184962 DQ522325 DQ522370 DQ522422 DQ522484 EF469006
Cordyceps cardinalisCBS 113412AUT Lepidopteran larva AY184974 AY184963 EF469059 EF469088 EF469106 EF469137 EF469007
Cordyceps chlamydosporiaCBS 101244AUT Egg of slug (Diplopoda) DQ522544 DQ518758 DQ522327 DQ522372 DQ522424 DQ522486 EF469008
Cordyceps coccidiicola Scale Insect (Hemiptera) AB031195 AB031196
Cordyceps cochlidiicola Lepidopteran pupa AB027331 AB027377
Cordyceps elongata OSC 110989 Lepidopteran larva EF468808 EF468748 EF468856
Cordyceps entomorrhiza KEW 53484 Coleopteran larva EF468954 EF468809 EF468749 EF468857 EF468911
Cordyceps fracta OSC 110990 Elaphomyces sp. (Eurotiomycetes) DQ522545 DQ518759 DQ522328 DQ522373 DQ522425 DQ522487 EF469009
Cordyceps gracilis EFCC 3101 Lepidopteran larva EF468955 EF468810 EF468750 EF468858 EF468913
Cordyceps gracilis EFCC 8572 Lepidopteran larva EF468956 EF468811 EF468751 EF468859 EF468912
Cordyceps gunnii OSC 76404 Lepidopteran larva AF339572 AF339522 AY489616 AY489650 DQ522426 DQ522488 AY489582
Cordyceps heteropoda EFCC 10125 Nymph of cicada (Hemiptera) EF468957 EF468812 EF468752 EF468860 EF468914
Cordyceps heteropoda OSC 106404 Nymph of cicada (Hemiptera) AY489690 AY489722 AY489617 AY489651
Cordyceps inegoënsis Nymph of cicada (Hemiptera) AB027322 AB027368
Cordyceps irangiensis OSC 128577 Ant (Hymenoptera) DQ522546 DQ518760 DQ522329 DQ522374 DQ522427 DQ522489
Cordyceps irangiensis OSC 128579 Ant (Hymenoptera) EF469123 EF469076 EF469060 EF469089 EF469107 EF469138
Cordyceps japonica OSC 110991 Elaphomyces sp. (Eurotiomycetes) DQ522547 DQ518761 DQ522330 DQ522375 DQ522428 DQ522490 EF469010
Cordyceps jezoënsisElaphomyces sp. (Eurotiomycetes) AB027320 AB027365
Cordyceps konnoana EFCC 7295 Coleopteran larva EF468958 EF468862 EF468915
Cordyceps konnoana EFCC 7315 Coleopteran larva EF468959 EF468753 EF468861 EF468916
Cordyceps kyusyuënsis EFCC 5886 Lepidopteran pupa EF468960 EF468813 EF468754 EF468863 EF468917
Cordyceps liangshanensis EFCC 1452 Lepidopteran pupa EF468962 EF468815 EF468756
Cordyceps liangshanensis EFCC 1523 Lepidopteran pupa EF468961 EF468814 EF468755 EF468918
Cordyceps longisegmentis OSC 110992 Elaphomyces sp. (Eurotiomycetes) EF468816 EF468864 EF468919
Cordyceps longissima EFCC 6814 Nymph of cicada (Hemiptera) EF468817 EF468757 EF468865
Cordyceps melolonthae OSC 110993 Scarabaeid larva (Coleoptera) DQ522548 DQ518762 DQ522331 DQ522376 DQ522491 EF469011
Cordyceps militaris OSC 93623 Lepidopteran pupa AY184977 AY184966 DQ522332 DQ522377 AY545732 DQ522492 EF469012
Cordyceps nigrella EFCC 9247 Lepidopteran larva EF468963 EF468818 EF468758 EF468866 EF468920
Cordyceps nutans OSC 110994 Stink bug (Hemiptera) DQ522549 DQ518763 DQ522333 DQ522378 DQ522493
Cordyceps cf. ochraceostromata ARSEF 5691 Lepidoptera EF468964 EF468819 EF468759 EF468867 EF468921
Cordyceps ophioglossoides OSC 106405 Elaphomyces sp. (Eurotiomycetes) AY489691 AY489723 AY489618 AY489652 DQ522429 DQ522494 AY489583
Cordyceps paradoxa Nymph of cicada (Hemiptera) AB027323 AB027369
Cordyceps cf. pruinosa EFCC 5197 limacodid pupa (Lepidoptera) EF468965 EF468820 EF468760 EF468868
Cordyceps cf. pruinosa EFCC 5693 limacodid pupa (Lepidoptera) EF468966 EF468821 EF468762 EF468869
Cordyceps cf. pruinosa N.H.J. 10627 limacodid pupa (Lepidoptera) EF468967 EF468822 EF468763 EF468870
Cordyceps cf. pruinosa N.H.J. 10684 Limacodid pupa (Lepidoptera) EF468968 EF468823 EF468761 EF468871
Cordyceps ravenelii OSC 110995 Coleopteran larva DQ522550 DQ518764 DQ522334 DQ522379 DQ522430 DQ522495
Cordyceps rhizoidea N.H.J. 12522 Termite (Isoptera) EF468970 EF468825 EF468764 EF468873 EF468923
Cordyceps rhizoidea N.H.J. 12529 Termite (Isoptera) EF468969 EF468824 EF468765 EF468872 EF468922
Cordyceps robertsii KEW 27083 Lepidoptera EF468826 EF468766
Cordyceps scarabaeicola ARSEF 5689 Scarabaeid adult (Coleoptera) AF339574 AF339524 DQ522335 DQ522380 DQ522431 DQ522496 EF469013
Cordyceps sinensis EFCC 7287 Lepidopteran pupa EF468971 EF468827 EF468767 EF468874 EF468924
Cordyceps sobolifera KEW 78842 Nymph of cicada (Hemiptera) EF468972 EF468828 EF468875 EF468925
Cordyceps sphecocephala OSC 110998 Wasp (Hymenoptera) DQ522551 DQ518765 DQ522336 DQ522381 DQ522432 EF469014
Cordyceps staphylinidicola ARSEF 5718 Staphylinid pupa (Coleoptera) EF468981 EF468836 EF468776 EF468881
Cordyceps stylophora OSC 110999 Coleopteran larva EF468982 EF468837 EF468777 EF468882 EF468931
Cordyceps stylophora OSC 111000 Elaterid larva (Coleoptera) DQ522552 DQ518766 DQ522337 DQ522382 DQ522433 DQ522497
Cordyceps subsessilis OSC 71235 Scarabaeid larva (Coleoptera) EF469124 EF469077 EF469090 EF469108 EF469139 EF469015
Cordyceps superficialis MICH 36253 Coleopteran larva EF468983 EF468883
Cordyceps taii ARSEF 5714 Lepidoptera AF543763 AF543787 AF543775 DQ522383 DQ522434 DQ522498 EF469016
Cordyceps takaomontana Lepidoptera AB044631 AB044637
Cordyceps cf. takaomontana N.H.J. 12623 Lepidoptera EF468984 EF468838 EF468778 EF468884 EF468932
Cordyceps tricentri Spittlebug (Hemiptera) AB027330 AB027376
Cordyceps tuberculata OSC 111002 Lepidoptera DQ522553 DQ518767 DQ522338 DQ522384 DQ522435 DQ522499 EF469017
Cordyceps unilateralis OSC 128574 Ant (Hymenoptera) DQ522554 DQ518768 DQ522339 DQ522385 DQ522436
Cordyceps variabilis ARSEF 5365 Dipteran larva DQ522555 DQ518769 DQ522340 DQ522386 DQ522437 DQ522500 EF469018
Cordyceps variabilis OSC 111003 Dipteran larva EF468985 EF468839 EF468779 EF468885 EF468933
Cordyceps yakusimensis Nymph of cicada (Hemiptera) AB044632 AB044633
Cordyceps sp. EFCC 2131 Lepidopteran pupa EF468977 EF468833 EF468770 EF468876
Cordyceps sp. EFCC 2135 Lepidopteran pupa EF468979 EF468834 EF468769 EF468877
Cordyceps sp. EFCC 2535 Coleoptera EF468980 EF468835 EF468772
Cordyceps sp. N.H.J. 12118 Lepidoptera EF468978 EF468829 EF468768 EF468878 EF468927
Cordyceps sp. N.H.J. 12581 Termite (Isoptera) EF468973 EF468831 EF468775 EF468930
Cordyceps sp. N.H.J. 12582 Termite (Isoptera) EF468975 EF468830 EF468771 EF468926
Cordyceps sp. OSC 110996 Lepidoptera EF468974 EF468832 EF468773 EF468880 EF468928
Cordyceps sp. OSC 110997 Ant (Hymenoptera) EF468976 EF468774 EF468879 EF468929
Cosmospora coccineaCBS 114050Inonotus nodulosus (Hymenomycetes) AY489702 AY489734 AY489629 AY489667 DQ522438 DQ522501 AY489596
Engyodontium aranearumCBS 309.85 spider (Arachnida) AF339576 AF339526 DQ522341 DQ522387 DQ522439 DQ522502 EF469019
Epichloë typhina ATCC 56429 Festuca rubra (Poaceae) U32405 U17396 AF543777 AY489653 DQ522440 DQ522503 AY489584
Glomerella cingulataCBS 114054Fragaria sp. (Rosaceae) AF543762 AF543786 AF543773 AY489659 DQ522441 DQ522504 AY489590
Glomerella cingulata F.A.U. 513 Fragaria rp. (Rosaceae) U48427 U48428 AF543772 DQ858454 DQ858455 EF469140 EF469020
Haptocillium balanoidesCBS 250.82 Nematode AF339588 AF339539 DQ522342 DQ522388 DQ522442 DQ522505 EF469021
Haptocillium sinenseCBS 567.95T Nematode AF339594 AF339545 DQ522343 DQ522389 DQ522443 DQ522506 EF469022
Haptocillium zeosporumCBS 335.80 Nematode AF339589 AF339540 EF469062 EF469091 EF469109 EF469141 EF469023
Hirsutella sp. N.H.J. 12525 Hemipteran adult EF469125 EF469078 EF469063 EF469092 EF469111 EF469142
Hirsutella sp. OSC 128575 Hemipteran adult EF469126 EF469079 EF469064 EF469093 EF469110 EF469143
Hydropisphaera erubescens ATCC 36093 Cordyline banksii (Laxmanniaceae) AY545722 AY545726 DQ522344 DQ522390 AY545731 DQ522535 EF469024
Hydropisphaera pezizaCBS 102038 On bark AY489698 AY489730 AY489625 AY489661 DQ522444 DQ522507 AY489591
Hymenostilbe aurantiaca OSC 128578 Ant (Hymenoptera) DQ522556 DQ518770 DQ522345 DQ522391 DQ522445 DQ522508
Hypocrea lutea ATCC 208838 On decorticated conifer wood AF543768 AF543791 AF543781 AY489662 DQ522446 DQ522509 AY489592
Hypocrella schizostachyi BCC 14123 Scale insect (Hemiptera) DQ522557 DQ518771 DQ522346 DQ522392 DQ522447 DQ522510 EF469025
Hypocrella sp. G.J.S. 89-104 Scale insect (Hemiptera) U32409 U47832 DQ522347 DQ522393 DQ522448 DQ522511 EF469026
Hypomyces polyporinus ATCC 76479 Trametes versicolor (Hymenomycetes) AF543771 AF543793 AF543784 AY489663 AY489593
Isaria cf. farinosa OSC 111004 Lepidopteran pupa EF468986 EF468840 EF468780 EF468886
Isaria farinosa OSC 111005 Lepidopteran pupa DQ522558 DQ518772 DQ522348 DQ522394 DQ522512 EF469028
Isaria farinosa OSC 111006 Lepidopteran pupa EF469127 EF469080 EF469065 EF469094 EF469144 EF469027
Isaria tenuipes OSC 111007 Lepidopteran pupa DQ522559 DQ518773 DQ522349 DQ522395 DQ522449 DQ522513 EF469029
Lecanicillium antillanumCBS 350.85T Agaric (Hymenomycetes) AF339585 AF339536 DQ522350 DQ522396 DQ522450 DQ522514 EF469030
Lecanicillium aranearumCBS 726.73a Spider (Arachnida) AF339586 AF339537 EF468781 EF468887 EF468934
Lecanicillium attenuatumCBS 402.78 Leaf litter of Acer saccharum AF339614 AF339565 EF468782 EF468888 EF468935
Lecanicillium dimorphumCBS 363.86TAgaricus bisporus (Hymenomycetes) AF339608 AF339559 EF468784 EF468890
Lecanicillium fusisporumCBS 164.70TColtricia perennis (Hymenomycetes) AF339598 AF339549 EF468783 EF468889
Lecanicillium psalliotaeCBS 101270 Soil EF469128 EF469081 EF469066 EF469095 EF469113 EF469146 EF469031
Lecanicillium psalliotaeCBS 532.81 Soil AF339609 AF339560 EF469067 EF469096 EF469112 EF469145 EF469032
Leuconectria clusiae ATCC 22228T Soil AY489700 AY489732 AY489627 AY489664 EF469114 EF469147 AY489595
Mariannaea pruinosa ARSEF 5413AUTIragoides fasciata (Lepidoptera) AY184979 AY184968 DQ522351 DQ522397 DQ522451 DQ522515 EF469033
Metarhizium album ARSEF 2082 Cofana spectra (Hemiptera) DQ522560 DQ518775 DQ522352 DQ522398 DQ522452 DQ522516 EF469034
Metarhizium anisopliae ARSEF 3145 Oryctes rhinoceros (Coleoptera) AF339579 AF339530 AF543774 DQ522399 DQ522453 DQ522536 EF469035
Metarhizium flavoviride ARSEF 2037TNilaparvata lugens (Hemiptera) AF339580 AF339531 DQ522353 DQ522400 DQ522454 DQ522517 EF469036
Microhilum oncoperae AFSEF 4358AUTOncopera intricate (Lepidoptera) AF339581 AF339532 EF468785 EF468891 EF468936
Myriogenospora atramentosa A.E.G. 96-32 Andropogon virginicus (Poaceae) AY489701 AY489733 AY489628 AY489665 DQ522455 DQ522518
Nectria cinnabarinaCBS 114055Betula sp. (Betulaceae) U32412 U00748 AF543785 AY489666 DQ522456 DQ522519 EF469037
Nomuraea `typicolaCBS 744.73 Spider (Arachnida) EF468987 EF468841 EF468786 EF468892
Nomuraea rileyiCBS 806.71 Lepidoptera AY624205 AY624250 EF468787 EF468893 EF468937
Ophionectria trichosporaCBS 109876 On liana AF543766 AF543790 AF543779 AY489669 DQ522457 DQ522520 EF469039
Paecilomyces carneusCBS 239.32T Sand dune EF468988 EF468843 EF468789 EF468894 EF468938
Paecilomyces carneusCBS 399.59 Soil EF468989 EF468842 EF468788 EF468895 EF468939
Paecilomyces cinus ARSEF 2181 Meloidogynesp. (Nematoda) AF339583 AF339534 EF468790 EF468896
Paecilomyces lilacinusCBS 284.36T Soil AY624189 AY624227 EF468792 EF468898 EF468941
Paecilomyces lilacinusCBS 431.87Meloidogynesp. (Nematoda) AY624188 EF468844 EF468791 EF468897 EF468940
Paecilomyces marquandiiCBS 182.27T Soil EF468990 EF468845 EF468793 EF468899 EF468942
Phytocordyceps ninchukispora E.G.S. 38.165AUTBeilschmiedia erythrophloia (Lauraceae) EF468991 EF468846 EF468795 EF468900
Phytocordyceps ninchukispora E.G.S. 38.166AUTBeilschmiedia erythrophloia (Lauraceae) EF468992 EF468847 EF468794 EF468901
Pochonia bulbillosaCBS 145.70T Root of Picea abies AF339591 AF339542 EF468796 EF468902 EF468943
Pochonia chlamydosporiaCBS 504.66T Nematode AF339593 AF339544 EF469069 EF469098 EF469120 EF469149 EF469040
Pochonia gonioidesCBS 891.72 Nematode AF339599 AF339550 DQ522354 DQ522401 DQ522458 DQ522521 EF469041
Pochonia rubescensCBS 464.88THeterodera avenae (Nematoda) AF339615 AF339566 EF468797 EF468903 EF468944
Pseudonectria rousselianaCBS 114049Buxus sempervirens (Buxaceae) AF543767 U17416 AF543780 AY489670 DQ522459 DQ522522 AY489598
Rotiferophthora angustisporaCBS 101437 Rotifer (Rotifera) AF339584 AF339535 AF543776 DQ522402 DQ522460 DQ522523 EF469042
Roumegueriella rufulaCBS 346.85Globodera rostochiensis (Nematoda) DQ522561 DQ518776 DQ522355 DQ522403 DQ522461 DQ522524 EF469043
Roumegueriella rufula G.J.S. 91-164 Globodera rostochiensis (Nematoda) EF469129 EF469082 EF469070 EF469099 EF469116 EF469150 EF469044
Shimizuomyces paradoxus EFCC 6279 Smilax sieboldii (Smilacaceae) EF469131 EF469084 EF469071 EF469100 EF469117 EF469151 EF469046
Shimizuomyces paradoxus EFCC 6564 Smilax sieboldii (Smilacaceae) EF469130 EF469083 EF469072 EF469101 EF469118 EF469152 EF469045
Simplicillium lamellicolaCBS 116.25TAgaricus bisporus (Hymenomycetes) AF339601 AF339552 DQ522356 DQ522404 DQ522462 DQ522525 EF469047
Simplicillium lanosoniveumCBS 101267Hemileia vastatrix (Uredinales) AF339603 AF339554 DQ522357 DQ522405 DQ522463 DQ522526 EF469048
Simplicillium lanosoniveumCBS 704.86Hemileia vastatrix (Uredinales) AF339602 AF339553 DQ522358 DQ522406 DQ522464 DQ522527 EF469049
Simplicillium obclavatumCBS 311.74T Air above sugarcane field AF339567 AF339517 EF468798
Sphaerostilbella berkeleyanaCBS 102308 Polypore (Hymenomycetes) AF543770 U00756 AF543783 AY489671 DQ522465 DQ522528 EF469050
Tolypocladium parasiticum ARSEF 3436 AUT Bdelloid rotifer (Rotifera) EF468993 EF468848 EF468799 EF468904 EF468945
Torrubiella confragosaCBS 101247Coccus viridis (Hemiptera) AF339604 AF339555 DQ522359 DQ522407 DQ522466 DQ522529 EF469051
Torrubiella luteorostrata N.H.J. 11343 Scale insect (Hemiptera) EF468995 EF468850 EF468801 EF468906
Torrubiella luteorostrata N.H.J. 12516 Scale insect (Hemiptera) EF468994 EF468849 EF468800 EF468905 EF468946
Torrubiella ratticaudata ARSEF 1915 AUT Spider (Arachnida) DQ522562 DQ518777 DQ522360 DQ522408 DQ522467 DQ522530 EF469052
Torrubiella wallaceiCBS 101237T Lepidoptera AY184978 AY184967 EF469073 EF469102 EF469119 EF469153
Verticillium dahliae ATCC 16535 Crataegus crus-galli (Rosaceae) AY489705 AY489737 AY489632 AY489673 DQ522468 DQ522531 AY489600
Verticillium epiphytumCBS 154.61THemileia vastatrix (Uredinales) AF339596 AF339547 EF468802 EF468947
Verticillium epiphytumCBS 384.81Hemileia vastatrix (Uredinales) AF339596 AF339547 DQ522361 DQ522409 DQ522469 DQ522532 EF469053
Verticillium incurvumCBS 460.88TGanoderma lipsiense (Hymenomycetes) AF339600 AF339551 DQ522362 DQ522410 DQ522470 DQ522533 EF469054
Verticillium sp. CBS 102184 Spider (Arachnida) AF339613 AF339564 EF468803 EF468907 EF468948
Viridispora diparietisporaCBS 102797Crataegus crus-galli (Rosaceae) AY489703 AY489735 AY489630 AY489668 DQ522471 DQ522534 EF469055
1A.E.G., A. E. Glenn personal collection; ARSEF, USDA-ARS Collection of Entomopathogenic Fungal cultures, Ithaca, NY; ATCC, American Type Culture Collections, Manassas, VA; BCC, BIOTEC Culture Collection, Klong Luang, Thailand; CBS, Centraalbureau voor Schimmelcultures, Utrecht, the Netherlands; EFCC, Entomopathogenic Fungal Culture Collection, Chuncheon, Korea; F.A.U., F. A. Uecker personal collection; E.G.S., E, G. Simmons personal collection; GAM, Julian H. Miller Mycological Herbarium Athens, GA; G.J.S., G. J. Samuels personal collection; KEW, mycology collection of Royal Botanical Garden, KEW, Surrey, UK; MICH, University of Michigan Herbarium, Ann Arbor, MI; N.H.J., Nigel Hywel-Jones personal collection; OSC, Oregon State University Herbarium, Corvallis, OR; S.A., S. Alderman personal collection.

Sequence alignment and phylogenetic analyses

Sequences were edited using SeqEd 1.0.3 (Applied Biosystems Inc.) and contigs were assembled using CodonCode Aligner 1.4 (CodonCode Inc.). Sequences of each gene partition were initially aligned with Clustal W 1.64 (Thompson et al. 1994) and appended to an existing alignment (Sung et al. 2007). This initial alignment was manually edited as necessary in MacClade 4.0 (Maddison & Maddison 2000). All five gene regions sampled in this study were concatenated into a single, combined data set (162-taxon -gene data set) with ambiguously aligned regions excluded from phylogenetic analyses. Sequences from two additional gene regions, β-tubulin (tub) and mitochondrial ATP6 (atp6), from Sung et al. (2007) were also combined with the 162-taxon 7-gene data set to generate a supermatrix of 162-taxon 7-gene data set.

In order to detect incongruence among the five individual gene regions sampled in this study, bootstrap proportions were used for each individual data set with the 107 taxa that was complete for all five genes (Table 1). Bootstrap proportions (BP) were determined in a maximum-parsimony framework using the program PAUP* 4.0b10 (Swofford 2002). Only parsimony-informative characters were used with the following search options: 100 replicates of random sequence addition, TBR branch swapping, and MulTrees OFF. The incongruence was assumed to be significant if two different relationships for the same set of taxa were both supported with greater than 70 % bootstrap proportions by different genes (Mason-Gamer & Kellogg 1996, Wiens 1998). Previous studies revealed that tub was double copy in some clavicipitaceous species (Spatafora et al. 2007), and Sung et al. (2007) also showed that while atp6 possessed conflicting data for a limited number of taxa, the conflict was localized and the locus simultaneously provided increased level of support for other nodes. Thus, although we focused our sampling and analyses of the five aforementioned loci, we also conducted phylogenetic supermatrix analyses with tub and atp6 (162-taxon 7-gene) to detect any increased nodal support provided by those two loci.

Maximum parsimony (MP) analyses were conducted on the 162-taxon 5-gene and the 162-taxon 7-gene data set (Table 1, Fig. 3). All characters were equally weighted and unordered. MP analyses were performed using only parsimony-informative characters with the following settings: 100 replicates of random sequence addition, TBR branch swapping, and MulTrees ON. Phylogenetic confidence was assessed by nonparametric bootstrapping (Felsenstein 198). A total of 200 bootstrap replicates were used to calculate bootstrap proportions; bootstrapping used the same search options with five replicates of random sequence addition per bootstrap replicate.

An external file that holds a picture, illustration, etc.
Object name is 1fig3.jpg

Schematic diagrams of phylogenetic relationships from MP, ML, and Bayesian analyses that differ in character or taxon sampling. In addition to 162-taxon 5-gene and 7-gene data sets, 107-taxon and 152-taxon 5-gene data sets were generated with taxa complete for five genes (i.e., nrSSU, nrLSU, tef1, rpb1 and rpb2) and at least three genes, respectively. To address the impact of C. sphecocephala clade to nodal support of C. unilateralis clade in Fig. 1, a 147-taxon 5-gene data set was constructed after members of C. sphecocephala clade were excluded. Bootstrap proportions (BP ≥ 70 %) or posterior probabilities (PP ≥ 0.95 in percentage) are shown above corresponding nodes and in a thicker line.

Maximum likelihood (ML) analyses were performed with RAxML-VI-HPC v2.2. using a GTRCAT model of evolution with 25 rate categories (Stamatakis et al. 2005). The model was separately applied to each of the eleven partitions, which consisted of nrSSU, nrLSU and the nine codon positions of three protein-coding genes (tef1, rpb1, and rpb2). Nodal support was assessed with nonparametric bootstrapping using 200 replicates. Bayesian Metropolis coupled Markov chain Monte Carlo (B-MCMCMC) analyses were performed on combined datasets using MrBayes 3.0b4 (Huelsenbeck & Ronquist 2001). In estimating the likelihood of each tree, we used the general time-reversible model, with invariant sites and gamma distribution (GTR+I+Γ) and employed the model separately for each partition. In an initial analysis, a B-MCMCMC analysis with five million generations and four chains was conducted in order to test the convergence of log-likelihood. Trees were sampled every 100 generations, for a total of 50,000 trees. For a second analysis, five independent Bayesian runs with two million generations and random starting trees were conducted to reconfirm log-likelihood convergence and mixing of chains.

In addition to the analyses with 162-taxon 5-gene data set, a series of analyses were conducted in MP, ML, and Bayesian frameworks with different taxon samplings (107- and 152-taxon 5-gene data sets) to address the potential topological effects of missing data. Previous phylogenetic and simulation studies demonstrated that the phylogenetic analyses are often not negatively affected if less than 50 % characters are missing for each taxon in the phylogenetic analyses (Wiens 2003, Phylippe et al. 2004). In this study, we assumed that the phylogenetic analysis is not confounded if the taxa were complete for at least three out of five gene partitions. Therefore, ten taxa (Table 1) in the 162-taxon 5-gene data set that were complete for only two gene partitions were excluded to generate the 162-taxon 5-gene data set. A 107-taxon 5-gene data set that does not contain any missing data in gene partitions was also prepared to compare the phylogenetic relationships between 107-taxon and 152-taxon 5-gene analyses. MP, ML, and Bayesian analyses based on the 162-taxon 5-gene data set (Figs (Figs1, 1, ,2)2) showed that the C. sphecocephala clade is characterized by long-branch lengths relative to the rest of the clavicipitaceous fungi. To address the impact of the C. sphecocephala clade on the phylogenetic resolution, we excluded all members of the C. sphecocephala clade from the 152-taxon 5-gene data set and constructed a 147-taxon 5-gene data set.

An external file that holds a picture, illustration, etc.
Object name is 1fig1a.jpg
An external file that holds a picture, illustration, etc.
Object name is 1fig1b.jpg

Phylogenetic relationships among 162 taxa in the Clavicipitaceae and other families in the Hypocreales. One of 156 equally parsimonious trees is shown based on maximum parsimony analyses with combined data set of five genes (i.e., nrSSU, nrLSU, tef1, rpb1 & rpb2). Bootstrap proportions (MP-BP) of ≥ 70 % are provided above corresponding nodes and in a thicker line. Internodes that are collapsed in strict consensus tree are marked with an asterisk (*).

An external file that holds a picture, illustration, etc.
Object name is 1fig2a.jpg
An external file that holds a picture, illustration, etc.
Object name is 1fig2b.jpg

Phylogenetic relationships among 162 taxa in the Clavicipitaceae and other families in the Hypocreales. A 50 % majority consensus tree is shown based on Bayesian analyses with combined data set of five genes (i.e., nrSSU, nrLSU, tef1, rpb1 & rpb2). Outgroups (Glomerella cingulata and Verticillium dahliae) are not shown. Posterior probabilities (PP) of ≥ 0.95 are provided in percentage below corresponding nodes. Bootstrap proportions (ML-BP) are obtained in maximum likelihood analyses and shown above corresponding nodes for ≥ 70 %. Internodes that are supported with both bootstrap proportions (ML-BP ≥ 70 %) and posterior probabilities (PP ≥ 0.95) are considered strongly supported and drawn in a thicker line.

RESULTS

Sequence alignment

The combined 162-taxon 5-gene dataset consisted of 4927 base pairs of sequence data (nrSSU 1102 bp, nrLSU 954 bp, tef1 1020 bp, rpb1 803 bp, rpb2 1048 bp). As a result of excluding ambiguously aligned regions, the final alignment comprised 4600 base pairs (nrSSU 1088 bp, nrLSU 767 bp, tef1 1020 bp, rpb1 677 bp, rpb2 1048 bp), 1882 of which were parsimony-informative (nrSSU 233 bp, nrLSU 220 bp, tef1 466 bp, rpb1 382 bp, rpb2 581 bp). A total of 107 taxa were complete for all five genes and the number of complete taxa for each gene was as follows: nrSSU 158 taxa, nrLSU 157 taxa, tef1 149 taxa, rpb1 143 taxa, rpb2 122 taxa (Table 1).

Phylogenetic analyses

The reciprocal comparisons of 70 % bootstrap trees from individual data sets of the 162-taxon 5-gene dataset did not reveal any significantly supported contradictory nodes (data not shown). These results were interpreted as indicating that no strong incongruence existed among the individual data sets that would be indicative of different phylogenetic gene histories (e.g., lineage sorting or horizontal gene transfer). As a result, all five individual data sets were combined in simultaneous analyses.

MP analyses of the 162-taxon 5-gene data set resulted in 156 equally parsimonious trees. These trees were 21,323 steps with a consistency index (CI) of 0.1598 and a retention index (RI) of 0.6131. One of 156 equally parsimonious trees is shown in Fig. 1. Nodes that collapse in the strict consensus tree are denoted with asterisks. ML analyses of the 162-taxon 5-gene data set resulted in a tree with a log-likelihood (–ln) of 92019.95. In the Bayesian analyses, the five-million generation analysis converged on the log-likelihood (harmonic mean = –ln 9951.22) at approximately around 250,000 generations. The results from five of two-million generation analyses also showed a convergence on the log-likelihood at approximately 2 0,000 generations and the topologies were identical. As a result, the 3,000 trees from the first 300,000 generations were deleted from the five million generation analysis to generate a 50 % majority-rule consensus tree.

A 50 % majority consensus tree (Fig. 2) was generated from the million generation analysis. Since the topology of ML analyses (tree not shown) was nearly identical to that of the Bayesian consensus tree of Fig. 2, the bootstrap proportions of ML analyses are provided above the corresponding nodes in Fig. 2. Previous studies have shown that in interpreting the supports of the phylogenetic estimates of relationships, the posterior probability tends to overestimate the phylogenetic confidence (Doaudy et al. 2003, Lutzoni et al. 2004, Reeb et al. 2004). As a result, the posterior probabilities were used as a supplementary indicator to bootstrap proportions. In this study, nodes were considered strongly supported when supported by both bootstrap proportions (BP ≥ 70 %) and posterior probabilities (PP ≥ 0.95) (Lutzoni et al. 2004).

Phylogenetic relationships of the clavicipitaceous fungi

All MP, ML, and Bayesian analyses of the five-gene 162-taxon 5-gene data set recognized three well-supported clades of clavicipitaceous fungi (Figs (Figs1, 1, ,2),2), designated here as Clavicipitaceae clades A, B, and C (Figs (Figs1, 1, ,2),2), following the convention of the previous phylogenetic studies (Spatafora et al. 2007, Sung et al. 2007). These clades were statistically well supported by the bootstrap proportions of the MP (MP-BP) and ML (ML-BP) analyses and posterior probabilities (PP) of the Bayesian analyses (clade A: MP-BP = 98 %, ML-BP = 99 %, PP = 1.00; clade B: MP-BP = 93 %, ML-BP = 98 %, PP = 1.00; clade C: MP-BP = 100 %, ML-BP = 100 %, PP = 1.00). A sister-group relationship between clades A and B was also strongly supported (MP-BP = 72 %, ML-BP = 90 %, PP = 1.00). The monophyletic group of clade C and Hypocreaceae was moderately to strongly supported (MP-BP = 63 %, ML-BP = 92 %, PP = 1.00).

Clavicipitaceae clade A comprised five statistically well-supported subclades (Figs (Figs1, 1, ,2, 2, ,4).4). These were labelled in Figs Figs1, 1, ,2,2, and and44 as the C. taii clade (MP-BP = 73 %, ML-BP = 78 %, PP = 1.00), the Claviceps clade (MP-BP = 95 %, ML-BP = 98 %, PP = 1.00), the Hypocrella clade (MP-BP = 99 %, ML-BP = 99 %, PP = 1.00), the Shimizuomyces clade (MP-BP = 100 %, ML-BP = 100 %, PP = 1.00), and the Torrubiella luteorostrata clade (MP-BP = 100 %, ML-BP = 100 %, PP = 1.00). As indicated previously by Sung et al. (2007), internal relationships among these five subclades were not strongly supported in MP and ML analyses (Figs (Figs1, 1, ,2, 2, ,44).

An external file that holds a picture, illustration, etc.
Object name is 1fig4.jpg

Enlargement of Bayesian consensus tree in Fig. 2, showing Clavicipitaceae clade A, to emphasize relationships within the clade. Respective subgenera of Cordyceps species in current classification are provided to the right of species. Known anamorphic genera of Cordyceps species are in parentheses. Tree description is the same as in Fig. 2.

Clavicipitaceae clade B consisted of five major subclades designated as the C. gunnii, C. ophioglossoides, C. sphecocephala, C. unilateralis, and Pa. lilacinus clades (Figs (Figs1, 1, ,2, 2, ,6).6). Nearly all of the subclades in clade B were strongly supported by bootstrap proportions and posterior probabilities (C. gunnii clade: MP-BP = 97 %, ML-BP = 100 %, PP = 1.00; C. ophioglossoides clade: MP-BP = 71 %, ML-BP = 88 %, PP = 1.00; C. sphecocephala clade: MP-BP = 100 %, ML-BP = 100 %, PP = 1.00, Pa. lilacinus clade: MP-BP = 64 %, ML-BP = 76 %, PP = 1.00). It should be noted, however, that the C. unilateralis subclade was not resolved in the MP analyses (Fig. 1). This lack of resolution was due to the instability of the C. sphecocephala clade, which is characterized by long-branch lengths relative to the rest of the clavicipitaceous fungi. Multiple placements of the C. sphecocephala subclade, ranging from a basal lineage of the Clavicipitaceae clade B to a terminal clade nested within the C. unilateralis subclade, were present among the most parsimonious trees (data not shown). Our ML and Bayesian results (Fig. 3) indicate that the C. sphecocephala subclade is either a sister-group of the C. unilateralis subclade (107-taxon 5-gene data set) or in the terminal group of the C. unilateralis subclade (152-taxon 5-gene data set). In MP, ML, and Bayesian analyses with a supermatrix of 162-taxon 7-gene data set (Fig. 3), the C. sphecocephala subclade was placed as a terminal group of the C. unilateralis subclade with strong support (MP-BP = 89 %, ML-BP = 94 %, PP = 1.00) as seen in the previous analyses (Sung et al. 2007). In the light of long-branch attraction problems associated with the MP analyses (Fig. 1), we use the Bayesian tree (Fig. 2) to further discuss the relationships in clade B and we conclude that the C. sphecocephala subclade was best included as a member of the C. unilateralis subclade (Figs (Figs2, 2, ,6).6). In interpreting the C. unilateralis subclade in terms of statistical support, we used the bootstrap proportions and posterior probabilities (MP-BP = 88 %, ML-BP = 88 %, PP = 1.00) based on the results of 147-taxon 5-gene data set (Fig. 3).

An external file that holds a picture, illustration, etc.
Object name is 1fig6.jpg

Enlargement of Bayesian consensus tree in Fig. 2, showing Clavicipitaceae clade B, to emphasize relationships within the clade. Respective subgenera of Cordyceps species in current classification are provided to the right or below of species. Known anamorphic genera of Cordyceps species are in parentheses. Numbers above corresponding nodes are bootstrap proportions of ML analyses (before the backslash) and posterior probabilities (after the backslash) from 147-taxon 5-gene data set in Fig. 3. Numbers below corresponding nodes are bootstrap proportions of ML analyses (before the backslash) and posterior probabilities (after the backslash) from 162-taxon 5-gene data set in Fig. 2. Bootstrap proportions of ≥ 70 % or posterior probabilities of ≥ 0.95 (in pergentage) are shown in corresponding nodes. Internodes in a thicker line are supported by the bootstrap proportions and posterior probabilities from either 147-taxon or 162-taxon 5-gene data sets. Numbers in a circle correspond to internode that is informative for placing the C. sphecocephala clade.

Clavicipitaceae clade C comprised two well-supported subclades (Figs (Figs1, 1, ,2, 2, ,8).8). The Simplicillium subclade (MP-BP = 100 %, ML-BP = 100 %, PP = 1.00) consisted of isolates of the anamorph genus Simplicillium, most of which were isolated as parasites of other fungi. The Cordyceps subclade (MP-BP = 98 %, ML-BP = 100 %, PP = 1.00) included numerous species of Torrubiella and species of Cordyceps that produce pallid to brightly coloured stromata with ascospore morphologies ranging from whole ascospores to part-spores to bola-ascospores according to species. Importantly, the Clavicipitaceae clade C included C. militaris and represents the core Cordyceps clade. The remaining species, Torrubiella wallacei H.C. Evans, was also a member of the Cordyceps clade with strong support (ML-BP = 91 %, PP = 1.00) in ML and Bayesian analyses (Figs (Figs2, 2, ,8),8), but could not be confidently assigned to either subclade in MP analyses (Fig. 1).

An external file that holds a picture, illustration, etc.
Object name is 1fig8.jpg

Enlargement of Bayesian consensus tree in Fig. 2, showing Clavicipitaceae clade C, to emphasize relationships within the clade. Respective subgenera of Cordyceps species in previous classification are provided to the right of the species. Known anamorphic genera of Cordyceps species are in parentheses. Tree description is the same as in Fig. 2.

DISCUSSION

Phylogenetic implications on the systematics of the genus Cordyceps

The present and previous phylogenetic analyses (Spatafora et al. 2007, Sung et al. 2007) have revealed that species in the Clavicipitaceae form three strongly supported monophyletic groups based on combined data sets of six or seven genes (the genes analyzed herein with and without atp6). Although more taxa were used in our study, these results were consistent with the previous studies, recognizing three monophyletic groups designated as Clavicipitaceae clades A–C (Figs (Figs1, 1, ,2).2). In addition, our results also support the paraphyly of the Clavicipitaceae as defined by the monophyly of Clavicipitaceae clade C and Hypocreaceae (Figs (Figs1, 1, ,2).2). Although the paraphyly of the Clavicipitaceae (clade C + Hypocreaceae) was moderately supported (MP-BP = 63 %) in the 162-taxon 5-gene MP analyses (Fig. 1), it was strongly supported (ML-BP = 92 %, PP = 1.00) in the ML and Bayesian analyses (Fig. 2) and more robustly addressed in the previous MP analyses, which investigated localized conflicts among gene partitions and compared bootstrap proportions among alternative sampling strategies (Sung et al. 2007).

The phylogenetic hypothesis presented here contradicts current infrafamilial classification of the Clavicipitaceae. Diehl (1950) proposed three subfamilies, Oomycetoideae, Clavicipitoideae, and Cordycipitoideae, based on the development of stromata, anamorphic characters and host affiliations. However, these three subfamilies do not coincide with the three clades of the Clavicipitaceae inferred in the present analyses (Figs (Figs1, 1, ,2).2). Clavicipitaceae clade A includes members of all three subfamilies (e.g., Claviceps of Clavicipitoideae, Cordyceps of Cordycipitoideae, and Hypocrella of Oomycetoideae), whereas the remaining clades only comprise members of Cordycipitoideae (e.g., Cordyceps and Torrubiella). Importantly, all three major clades include members of Cordyceps, indicating that Cordyceps, like Clavicipitaceae, is not monophyletic (Figs (Figs1, 1, ,2).2). As a result, the three recognized well-supported clades (clades A–C) of the clavicipitaceous fungi represent a robust phylogenetic framework for the taxonomic revision of Cordyceps and the Clavicipitaceae.

In the current infrageneric classification of the genus, Cordyceps comprises four subgenera (C. subg. Bolacordyceps, C. subg. Cordyceps, C. subg. Neocordyceps, and C. subg. Ophiocordyceps) based on ascospore morphology and arrangement of the perithecia in the stromata (Kobayasi 1941, 1982, Eriksson 1986). However, most of these characters are not consistent with the new phylogenetic hypothesis and are not diagnostic of monophyletic taxa (e.g., subgenera and genera) (Figs (Figs1, 1, ,2).2). For example, Kobayasi (1941, 1982) emphasized ascospore morphology and the lack of ascospore disarticulation into part-spores to delimit C. subg. Ophiocordyceps from the other subgenera. Species with non-disarticulating ascospores, however, are included in all three major clades (C. acicularis Ravenel of clade B, C. cardinalis G.H. Sung & Spatafora of clade C, and Cordyceps sp. EFCC 2131 and 2135 of clade A described below as Metacordyceps yongmunensis) (Figs (Figs1, 1, ,2),2), indicating that non-disarticulating ascospores are not phylogenetically informative at this level (Figs (Figs1, 1, ,2).2). Therefore, a reassessment of diagnostic characters, in the previous and current classifications of Cordyceps, is necessary for the three major clades to provide a basis for taxonomic revisions of Cordyceps and the Clavicipitaceae.

Species in Clavicipitaceae clade A

Clavicipitaceae clade A comprises five well-supported subclades (Fig. 4). All known species of Cordyceps in the clade are included in the C. taii clade. Species of Cordyceps in the clade possess partially or completely immersed perithecia on clavate to cylindrical fertile parts of the stromata (Zang et al. 1982, Liang et al. 1991, Zare et al. 2001). They produce ascospores that either disarticulate or remain intact at maturity and include species that possess ordinal and obliquely embedded perithecia. In the current classification, clade A includes species of Cordyceps that were formerly classified in three subgenera of Cordyceps. Cordyceps liangshanensis M. Zang, D. Liu & R. Hu forms ordinal perithecia and possess disarticulating ascospores, consistent with C. subg. Cordyceps (Kobayasi 1982, Zang et al. 1982). Cordyceps chlamydosporia H.C. Evans possesses nondisarticulating ascospores, consistent with C. subg. Ophiocordyceps (Zare et al. 2001). Cordyceps taii Z.Q. Liang & A.Y. Liu, a known teleomorph species linked to the anamorph genus Metarhizium Sorokin, produces disarticulating ascospores and obliquely embedded perithecia in the stromata, a trait used to recognize C. subg. Neocordyceps (Liang et al. 1991). Importantly, Cordyceps sp. EFCC 2131 and 2135 (described below as Metacordyceps yongmunensis) produce non-disarticulating ascospores and obliquely embedded perithecia in the stromata, characters inconsistent with any of the subgenera in the current classification.

These results suggest that ascospore morphology and arrangement of perithecia are not phylogenetically informative in recognizing either the C. taii clade, or higher clades of clavicipitaceous fungi. Rather, they are more useful at species level classification. For example, our phylogenetic analyses revealed that C. taii is closely related to C. brittlebankisoides Z. Y. Liu, Z.Q. Liang, Whalley, Y.J. Yao & A.Y. Liu, the purported teleomorph of M. flavoviride (Huang et al. 2005). Although these species are similar to each other in macromorphology (e.g., greenish clavate stromata), they differ in the arrangement of the perithecia. C. brittlebankisoides possesses perithecia that are ordinally placed in the stromata, whereas C. taii has obliquely embedded perithecia. These results therefore suggest that arrangement of the perithecia in the stromata is useful in delimiting these closely related species in the C. taii clade (Fig. 4).

Species in Clavicipitaceae clade B

Species of Cordyceps in Clavicipitaceae clade B possess disarticulating or non-disarticulating ascospores and produce superficial to completely immersed perithecia that are ordinally or obliquely inserted in the stromata. As with the Cordyceps species of clade A, this clade also includes members of the former C. subg. Cordyceps (e.g., C. ophioglossoides (Ehrh.) Link and C. variabilis Petch), C. subg. Ophiocordyceps (e.g., C. acicularis and C. unilateralis (Tul. & C. Tul.) Sacc.), and C. subg. Neocordyceps (e.g., C. nutans Pat. and C. sphecocephala). The majority of Cordyceps species in this clade produce wiry to pliant or fibrous stromata that typically are completely or partially darkly pigmented and parasitize subterranean or wood-inhabiting hosts, which are buried in soil or embedded in decaying wood. Exceptions to this morphology and ecology do exist, however; for example, C. melolonthae (Tul. & C. Tul.) Sacc. is pigmented bright yellow but stains darkly upon handling, and members of the C. sphecocephala clade parasitize adult insects.

Clade B consists of five subclades. All subclades include either species of Cordyceps or anamorphs with potential links to Cordyceps (e.g., Nomuraea atypicola (Yasuda) Samson linked to C. cylindrica Petch) (Fig. 6, Evans & Samson 1987). The well-resolved tree in the present study (Fig. 6) provides the basis to characterize three of the five subclades of clade B. Due to insufficient taxon sampling, it is not possible to characterize the members of the Cordyceps species in the C. gunnii and Pa. lilacinus subclades. In the light of this, we focus on the remaining three subclades that include sufficient numbers of Cordyceps species.

The C. ophioglossoides subclade primarily consists of Cordyceps species that parasitize species of the genus Elaphomyces (e.g., C. ophioglossoides and C. capitata (Holmsk.) Link) and the nymphs of cicadas (e.g., C. inegoënsis Kobayasi and C. paradoxa Kobayasi) buried in soil (Kobayasi 1939, Mains 1957, Kobayasi & Shimizu 1960, 1963). Species in this subclade produce partially or completely immersed perithecia, in clavate to capitate fertile parts of stromata that are darkly pigmented with olivaceous tints (Kobayasi & Shimizu 1960, 1963). Because they produce disarticulating ascospores and ordinal perithecia, all known species of this clade are classified in C. subg. Cordyceps.

Cordyceps subsessilis Petch is unique to the C. ophioglossoides subclade (Fig. 6). It produces perithecia on white or pallid reduced stromata, arising from a rhizomorph-like structure from scarabaeid beetle larvae (Hodge et al. 1996). It is the only member of the subclade that parasitizes beetles embedded in decaying wood (Hodge et al. 1996). Therefore, C. subsessilis differs greatly in ecology and morphology of its stromata from most other taxa in the C. ophioglossoides clade, but it possesses several characters shared by its close relative, C. ophioglossoides (Kobayasi & Shimizu 1960, Hodge et al. 1996). Both species grow axenically on simple media, produce verticilliate anamorphs (C. subsessilis has a Tolypocladium anamorph, whereas C. ophioglossoides has verticillium-like conidiophores), possess nearly identical part-spore morphologies, and produce stromata that are connected to their hosts via rhizomorph-like structures. In contrast, C. capitata/C. longisegmentis have not successfully been grown in culture, they are attached directly to the host, and an anamorph is unknown.

The C. ophioglossoides subclade (Fig. 6) also includes parasites of subterranean cicada nymphs (e.g., C. inegoënsis and C. paradoxa), which are grouped with their close relatives (e.g., C. jezoënsis S. Imai and C. ophioglossoides) that parasitize subterranean truffles of Elaphomyces. Despite low support of inter-species relationships within the C. ophioglossoides subclade due to short branch lengths, C. paradoxa and C. inegoënsis are morphologically more similar to C. jezoënsis and C. ophioglossoides than to any other members of the clade. These taxa produce clavate fertile parts of the stromata rather than capitate stromata like other members of the clade (e.g., C. capitata and C. fracta Mains). Many of these species (e.g., C. jezoënsis and C. paradoxa) are also known to connect to their hosts via rhizomorph-like structures (Kobayasi & Shimizu 1960, 1963), supporting a close phylogenetic relationship.

The C. unilateralis subclade includes the most morphologically diverse assemblages of Cordyceps species (Fig. 6). Most of the species in the clade parasitize larval, pupal or nymph stages of arthropods (Kobayasi 1941, Mains 1958). Species of this clade produce superficial to completely immersed perithecia on the stromata with morphologies ranging from capitate to clavate to filiform (Kobayasi 1941, Mains 1958). They typically possess tough, pliant, or fibrous stromata that are entirely or partially darkly pigmented, although some exceptions (e.g., C. melolonthae and C. variabilis) do exist, which produce brightly pigmented stromata (Mains 1958). Many species in the clade (e.g., C. brunneipunctata Hywel-Jones, C. stylophora Berk. & Broome, and C. unilateralis) are also differentiated by aperithecial stromatal apices while the production of perithecia occurs in subterminal regions of the stroma.

Similar to Cordyceps species in clade A, the C. unilateralis subclade includes species that produce disarticulating or non-disarticulating (intact) ascospores. For example, some species in the C. unilateralis subclade (e.g., C. sinensis (Berk.) Sacc. and C. unilateralis) were formerly classified in C. subg. Ophiocordyceps. But these species are interspersed among other species (e.g., C. agriotidis A. Kawam. and C. robertsii (Hook.) Berk.) that are classified in C. subg. Cordyceps. This indicates that, while ascospore morphology is useful in delimiting closely related Cordyceps species and uniting others in species complexes, it is not diagnostic of the C. unilateralis subclade itself (Fig. 6).

Most members of C. subg. Neocordyceps, as classically treated by Kobayasi (1941, 1982) and others (e.g., Artjariyasripong et al. 2001, Stensrud et al. 2005), form a monophyletic group labelled as the C. sphecocephala subclade within the C. unilateralis group (Fig. 6). The majority of species in the C. sphecocephala subclade produce long, thin, pliant, brightly coloured (or dark marasmioid in a few species) stromata, which terminate in clavate to elongated fertile parts, and possess ascospores that disarticulate into sixty-four part-spores (Kobayasi 1941, 1982, Hywel-Jones 2002). Species in this clade produce perithecia, which are partially or completely immersed in the stromata at strongly oblique angles (Kobayasi 1941, 1982, Mains 1958, Hywel-Jones 1996). This clade is one of the best characterized by its morphology (obliquely embedded perithecia in a well-defined clava) and its ecology of parasitizing adult stages of insects.

Species in Clavicipitaceae clade C

Clavicipitaceae clade C includes C. militaris, the type species of the genus Cordyceps (Fig. 8). Most Cordyceps species in this clade are currently classified in C. subg. Cordyceps (Kobayasi 1941, 1982). This clade also contains the members of the former C. subg. Ophiocordyceps and C. subg. Bolacordyceps, resulting in C. subg. Cordyceps being paraphyletic within clade C (Eriksson 1982, Hywel-Jones 1994, Sung & Spatafora 2004). Species of Cordyceps in this clade produce three ascospore types, including disarticulating ascospores (e.g., C. militaris), intact ascospores (e.g., C. cardinalis and C. pseudomilitaris Hywel-Jones & Sivichai), and bola-ascospores (e.g., C. bifusispora O.E. Erikss.). Of particular note, this clade includes Phytocordyceps ninchukispora C.H. Su & H.-H. Wang in the unispecific genus Phytocordyceps C.H. Su & H.-H. Wang. The genus Phytocordyceps was originally described based on bola-ascospores and its host affiliation as a pathogen of Beilschmiedia erythrophloia Hayata (Lauraceae) plant seeds (Su & Wang 198). Morphologically, this species is most similar to C. bifusispora in that it produces bola-ascospores typical of C. subg. Bolacordyceps. However, the phylogenetic analyses in this study reveal that species producing bola-ascospores (e.g., C. bifusispora and P. ninchukispora) do not form a monophyletic group (Fig. 8). Rather, they are interspersed among other Cordyceps species possessing disarticulating ascospores, most notably C. militaris.

Species of Cordyceps in clade C produce superficial to partially immersed perithecia on fleshy stromata that are pallid to brightly pigmented. This is in contrast to Cordyceps species in clade B, which produce darkly pigmented, wiry to pliant or fibrous stromata. This suggests that pigmentation and texture of stromata may be phylogenetically informative at a higher level of classification. It should be noted, however, that some Cordyceps species in clade C are morphologically similar to distantly related Cordyceps species (e.g., C. melolonthae and C. variabilis) in stromatal pigmentation. Although these characters are useful in recognizing Cordyceps species of clade C, the utility of these characters for any future infrageneric classification is probably limited (Fig. 8). For example, C. militaris is macroscopically similar to C. cardinalis and C. pseudomilitaris. All three species produce orangish to red-coloured and fleshy stromata; however, these species differ in ascospore and anamorph morphology (Sung & Spatafora 2004). Furthermore, C. militaris is known as exhibiting considerable variability in stroma morphology (Sung & Spatafora 2004). Potentially conspecific species, such as C. roseostromata Kobayasi & Shimizu and C. kyusyuënsis A. Kawam., differ in stroma morphology, but are closely related to C. militaris and possess identical ascospore and ascus morphologies (Fig. 8, Hywel-Jones 1994, Sung & Spatafora 2004).

The variation in ascospore morphology of Clavicipitaceae clade C combined with old descriptions and unavailable type material complicates species identification for many taxa, as is the case for much of Cordyceps. For example, this study reveals a close relationship between the anamorphic species, Mariannaea pruinosa Z.Q. Liang from China, C. cf. pruinosa from Korea and Thailand, and Phytocordyceps ninchukispora from Taiwan (Fig. 8). The teleomorph of M. pruinosa is C. pruinosa Petch, which was originally described as producing disarticulating ascospores and reddish orange stromata, parasitizing lepidopteran cocoons (Petch 1924, Kobayasi 1941, Liang 1991). Although the isolate of M. pruinosa was obtained from ascospores (Liang 1991), the morphology of the ascospores was not well characterized. The species was identified primarily based on its host affiliation and macroscopic characters. In our study, C. cf. pruinosa EFCC 5197 and N.H.J. 10627 were collected from the same host family (Lepidoptera, Limacodidae) in Korea and Thailand. They are also closely related and produce reddish orange stromata (Fig. 8) and bola-ascospores and not the typical C. subg. Cordyceps part-spores. It should be noted, however, that Petch did not provide any drawings or images of ascospores and it is possible that the terminal cells of bola-ascospores could easily be interpreted as part-spores. Thus, at this time we use the name C. pruinosa for the Chinese, Korean and Thai collections and, if further attempts fail to locate type material for C. pruinosa, one of these may have to be designated a neotype. The C. pruinosa collections are closely related to and morphologically indistinguishable from P. ninchukispora with the exception of host affiliation, suggesting the possibility of host misidentification in the original description of P. ninchukispora. Because the tree topology of the C. pruinosa/P. ninchukispora complex is indicative of greater phylogenetic species diversity, i.e., the Korean, Thai, and Taiwanese material may represent unique phylogenetic species (Fig. 8), we retain the use of both names until more detailed sampling and analyses have been conducted.

Clavicipitaceae clade C not only includes members of Cordyceps but also species of the genus Torrubiella, which generally parasitize spiders and scale insects (Kobayasi & Shimizu 1982). The genus Torrubiella is morphologically characterized by the production of superficial perithecia on a mycelial subiculum that partially or completely surrounds the host (Kobayasi & Shimizu 1982, Humber & Rombach 1987). Species of Torrubiella also produce disarticulating (e.g., T. ratticaudata Humber & Rombach) and intact (e.g., T. wallacei) ascospores. Among species of Cordyceps, C. tuberculata (Lebert) Maire, a pathogen of adult Lepidoptera, has been considered an intermediate species between Torrubiella and Cordyceps (Humber & Rombach 1987, Kobayasi 1941, Mains 1958). Phylogenetic analyses in this study indicate that the members of Torrubiella do not form a monophyletic group within clade C and are interspersed among species of Cordyceps. This suggests that the stipitate stromata of Cordyceps have been gained or lost several times during the evolution of these fungi. Currently, more than 50 species of Torrubiella have been described and the members of genus Torrubiella are clearly undersampled in this study (Kobayasi & Shimizu 1982).

In summary, the characters of ascospore morphology and the arrangement of perithecia used in the current classification of the genus Cordyceps are not congruent with the three higher clades inferred in these analyses. These characters are likely to prove useful, however, in lower level classifications, such as the delimitation of closely related species and species complexes. The characters most congruent with the three higher clades of clavicipitaceous fungi are texture, pigmentation and morphology of the stromata, but with exceptions. Although we have divided Cordyceps species into three major clades, it is difficult to characterize Cordyceps species within the Clavicipitaceae clade A due to the relatively few teleomorph species that are part of this clade (see key on p. 54). They tend to produce green to white stromata, often with lilac tints, but additional sampling is needed to more definitively characterize the teleomorphs of these species. However, the majority of species within clades B and C are morphologically and/or ecologically distinct (Figs (Figs1, 1, ,22).

The majority of Cordyceps species in clade B are characterized by darkly pigmented, wiry, pliant or fibrous stromata. The dominant form of parasitism exhibited by these species is on subterranean or wood-inhabiting hosts, buried in soil or embedded in decaying wood, such as larval and pupal stages of arthropods. In contrast, Cordyceps species of clade C have brightly pigmented and fleshy stromata and parasitize their hosts in relatively more accessible environments, such as leaf litter, moss, or the uppermost soil layer. Exceptions to these morphological and ecological traits are found in some Cordyceps species in clade B. Cordyceps melolonthae, for example, produces brightly-coloured stromata, although it bruises dark upon handling and its hosts are the larvae of cockchafers or June beetles buried in soil (Mains 1958). Cordyceps unilateralis parasitizes adult ants, but is darkly pigmented with a wiry stroma and subterminal production of perithecia, and members of the C. sphecocephala clade are at least partially brightly pigmented and are restricted to adult stages of insects. These findings suggest that the traits described above are not universally informative, but collectively useful in characterizing Cordyceps species within clade B. That is, there have been gains, losses, and diversifications of most if not all traits during the evolution of these fungi, but general trends in character state evolution are evident.

The taxonomic utility of anamorphic forms in classification of Cordyceps

The genus Cordyceps is characterized by a diverse assemblage of more than 25 anamorph genera (e.g., Beauveria Vuill., Hirsutella Pat., Hymenostilbe Petch, Isaria Fr., Lecanicillium W. Gams & Zare, Metarhizium, and Tolypocladium W. Gams) (Kobayasi 1982, Samson et al. 1988, Gams & Zare 2003, Hodge 2003). The anamorph genera of Cordyceps are hyphomycetes with conidiogenous cells that are hyaline to brightly coloured and produce conidia in dry chains or slimy drops (Samson et al. 1988). Some anamorph genera (e.g., Hymenostilbe) are known as a useful diagnostic character in recognizing monophyletic groups of Cordyceps species (Artjariyasripong et al. 2001, Kobayasi 1941, 1982), while other anamorph morphologies and genera are placed in more than one clade of the Clavicipitaceae. Therefore, the distribution of anamorphic forms is discussed to evaluate their phylogenetic utility in characterizing the three clades of Cordyceps and Clavicipitaceae and to better understand teleomorph–anamorph connections.

Anamorphs of Clavicipitaceae clade A

Clavicipitaceae clade A includes isolates of the anamorph genera Aschersonia Mont., Metarhizium, Nomuraea Maublanc, Pochonia Bat. & O.M. Fonseca, Paecilomyces s. l., Rotiferophthora G.L. Barron, Tolypocladium W. Gams, and verticillium-like (Fig. 4). Nomuraea, Paecilomyces, and Tolypocladium are found in other clades of Clavicipitaceae (Figs (Figs1, 1, ,2).2). Significantly, Verticillium s. s. is known from the Plectosphaerellaceae, which is closely related with the Glomerellaceae in the Sordariomycetidae (Zare et al. 2007). Paecilomyces s. s. is in the Eurotiales (Eurotiomycetidae), but species of Paecilomyces s. l. are also present elsewhere in the Hypocreales (Luangsa-ard et al. 2004). In contrast, the anamorph genera Aschersonia, Metarhizium, Pochonia and Rotiferophthora are restricted to clade A (Figs (Figs1, 1, ,22).

Anamorph taxa of the C. taii subclade include Nomuraea rileyi (Farl.) Samson, Paecilomyces carneus (Duché & R. Heim) A.H.S. Brown & G. Smith and Pa. marquandii (Massee) S. Hughes, Pochonia, Tolypocladium parasiticum, and Metarhizium (Fig. 4). The genera Nomuraea, Pochonia and Tolypocladium are not monophyletic, although Pochonia is restricted to clade A. Nomuraea rileyi and Metarhizium are entomogenous; Pa. carneus is a common soil fungus considered a weak insect pathogen, while Pa. marquandii, Pochonia and T. parasiticum are also common soil fungi and can be parasitic on nematodes. Metarhizium is the only monophyletic anamorph genus of clade A (Fig. 4). The conidiogenous cells in the genus Metarhizium are cylindrical to clavate without a neck and produced in candelabrum-like or palisade-like fashion (Rombach et al. 1986, Driver et al. 2000, Evans 2003). The genus is most similar to Nomuraea and differs in the compact conidiophores that form a hymenial layer (Evans 2003). Nomuraea rileyi groups with species of Metarhizium, while N. atypicola (Yasuda) Samson belongs to the Pa. lilacinus clade in clade B. Interestingly, N. rileyi produces greenish-coloured conidia, as do species of Metarhizium in the C. taii subclade, while N. atypicola possesses lavender-coloured conidia similar to those of Pa. lilacinus (Coyle et al. 1990, Hywel-Jones & Sivichai 1995, Evans 2003). Currently, three teleomorphic species of Metarhizium (C. brittlebankisoides, C. campsosterni, and C. taii) have been reported (Liang et al. 1991, Liu et al. 2001, Zhang et al. 2004). The species M. taii was described with its teleomorph species, C. taii (Liang et al. 1991) and recently synonymized with M. anisopliae var. majus (Huang et al. 2005). Cordyceps brittlebankisoides was once also considered to have the anamorph M. anisopliae var. 0majus (Liu et al. 2001), but it is likened to M. flavoviride (Huang et al. 2005). In general, Metarhizium species show extensive variation in size and colour of conidia (Driver et al. 2000, Evans 2003) and more intensive sampling of anamorphs and teleomorphs is needed for this group.

The genus Tolypocladium is characterized by producing single or whorled (verticillate) conidiogenous cells (phialides), which are flask-shaped with enlarged bases that taper into a needle-like neck usually bent from the axis of the phialides (Gams 1971, Bissett 1983). The type of the genus Tolypocladium, T. inflatum W. Gams, is linked to the teleomorph C. subsessilis (Hodge et al. 1996, Gams & Zare 2003). Tolypocladium inflatum is placed in clade B and is distantly related to T. parasiticum in the C. taii clade. Tolypocladium parasiticum was described from the rotifer host Adineta and described with underwater conidiation (Barron 1980). Morphologically, T. parasiticum differs from other species of Tolypocladium, as it is the only member of the genus that produces chlamydospores in vivo (Barron 1980) and in culture (Bissett 1983, Zare et al. 2001, Gams & Zare 2003). In a recent treatment of Verticillium sect. Prostrata W. Gams, the genus Pochonia was also reclassified based on production of dictyochlamydospores or at least swollen hyphal cells (Gams & Zare 2001, Zare et al. 2001), supporting the close phylogenetic relationship of T. parasiticum and Pochonia species demonstrated in this study (Fig. 4). Hence, T. parasiticum is transferred to Pochonia below, rendering the remaining species in Tolypocladium monophyletic. Paecilomyces marquandii also produces infrequent chlamydospores in culture, as does the anamorph of Metacordyceps yongmunensis sp. nov. (discussed below). As suggested by Barron & Onions (1966), the presence of chlamydospores can be a taxonomically informative character.

The genus Aschersonia is a monophyletic lineage labelled as Hypocrella subclade (Fig. 4). The genus Aschersonia is characterized by its pycnidial or acervular conidiomata with hymenial phialides and its ecology of parasitizing only the nymphs of scale insects and whiteflies (Petch 1921, Hywel-Jones & Evans 1993). The teleomorphs of Aschersonia have long been linked to the species of Hypocrella and more than 25 species have been reported (Petch 1921, Mains 1959). While this study does not focus on sampling of Hypocrella and Aschersonia, these findings corroborate that the unique morphology of Aschersonia is phylogenetically informative and diagnostic of a monophyletic group of clavicipitaceous fungi (Fig. 4).

Anamorphs of Clavicipitaceae clade B

Clavicipitaceae clade B includes several anamorph genera including Haptocillium W. Gams & Zare, Hirsutella, Hymenostilbe and Tolypocladium (Fig. 6). Several of the anamorphic forms in the clade are phylogenetically informative. Hirsutella and Hymenostilbe occur dominantly in the C. unilateralis subclade.

Hirsutella is characterized by its typical basally-subulate phialides, narrowing into one (usually) or more (occasionally) very slender needle-like necks, on synnemata or mononematous mycelium (Hodge 1998, Gams & Zare 2003). Hirsutella species normally produce a few (<5) conidia in mucus and the phialides are not usually bent in their needle-like necks such as in the genus Tolypocladium, but also single conidia as in Hi. thompsonii F.E. Fisher. Not all Cordyceps species in the C. unilateralis subclade are connected to Hirsutella anamorphs. Some are connected to Paecilomyces s. l., Paraisaria Samson & B.L. Brady, and Syngliocladium Petch, whereas anamorphic forms are not known for many of the Cordyceps species, especially in the C. ravenelii subclade (e.g., C. heteropoda Kobayasi). However, most Cordyceps species in the rest of the C. unilateralis subclade have been linked to Hirsutella anamorphs (Fig. 6). These results suggest that Hirsutella anamorphs are phylogenetically informative for at least part of the C. unilateralis subclade or possibly symplesiomorphic for the C. unilateralis subclade as a whole.

The taxonomic utility of Hirsutella anamorphs is exemplified by the teleomorph–anamorph connection of the genus Cordycepioideus Stifler, a termite pathogen, which does not have typical ascospore and ascus morphologies of clavicipitaceous fungi (Blackwell & Gilbertson 1984, Suh et al. 1998). It possesses thick-walled multiseptate ellipsoid ascospores and its asci lack the thickened ascus tip characteristic of most clavicipitaceous fungi (Blackwell & Gilbertson 1984, Ochiel et al. 1997). The anamorph of Cordycepioideus bisporus Stifler is a synnematous Hirsutella that is either conspecific with or closely related to Hi. thompsonii (Ochiel et al. 1997, Suh et al. 1998, Sung et al. 2001). Although Cordycepioideus bisporus differs greatly from other members of the C. unilateralis subclade in its teleomorphic characters, molecular data strongly support it as a member of the C. unilateralis subclade, a finding consistent with its Hirsutella anamorph. It should be noted that species of Cordyceps outside of clade B have been described with atypical Hirsutella anamorphs (e.g., C. pseudomilitaris), but upon further investigation were more accurately characterized in other anamorph genera (e.g., Simplicillium W. Gams & Zare).

The C. unilateralis clade includes the members of the C. sphecocephala subclade, which possess a Hymenostilbe anamorph. The genus Hymenostilbe usually produces cylindrical to clavate conidiogenous cells, which are produced in a more or less dense palisade in synnemata (Samson et al. 1988). It is differentiated from closely related genera (e.g., Akanthomyces Lebert and Hirsutella) by its polyblastic conidiogenous cells, which holoblastically produce single conidia on short denticles or scars (Samson et al. 1988, Hywel-Jones 1996). The results from the present study indicate that Hymenostilbe anamorphs may be derived from within Hirsutella (Fig. 6). The close phylogenetic relationship between Hirsutella and Hymenostilbe anamorphs is exemplified by the morphologically intermediate synnematous Hirsutella/Hymenostilbe species. For example, Hy. lecaniicola (Jaap) Mains, the anamorph of C. clavulata (Schwein.) Ellis & Everh. (Hodge 1998), was previously classified in Hirsutella although it possesses extensively polyphialidic conidiogenous cells in a discontinuous layer (Mains 1950, 1958, Samson & Evans 1975, Hodge 1998). In addition, some Hirsutella species (e.g., Hi. rubripunctata Samson, H.C. Evans & Hoekstra) produce only a single conidium without a mucous sheath on denticles of extensively polyphialidic conidiogenous cells. Therefore, the modes of asexual reproduction in Hirsutella and Hymenostilbe may overlap to some extent and additional work is necessary to address the relationships between the two genera (Hodge 1998, Gams & Zare 2003).

In addition to the C. unilateralis subclade, the remaining three subclades contain Haptocillium, Tolypocladium and verticillium-like anamorphs. The genus Haptocillium was reclassified from the former Verticillium sect. Prostrata primarily based on its adhesive conidia and its ability to parasitize free-living nematodes (Zare & Gams 2001b). This study shows that the genus is a monophyletic group in the C. gunnii subclade (Fig. 6). However, the teleomorph–anamorph connection has not been established for any of the species in the clade or its close relative, C. gunnii, and thus its taxonomic utility remains unclear. The C. ophioglossoides and Pa. lilacinus subclades include anamorphic forms of Paecilomyces s. l., Nomu-raea, Tolypocladium, and verticillium-like, all of which are polyphyletic as previously discussed (Figs (Figs1, 1, ,2; 2; Oborník et al. 2001, Luangsa-ard et al. 2004, 2005). Several teleomorph–anamorph connections have been reported for Cordyceps species in the C. ophioglossoides and Pa. lilacinus subclades although their taxonomic utility is limited. Cordyceps subsessilis is known to be the teleomorph of Tolypocladium inflatum (Hodge et al. 1996) and C. ophioglossoides produces a verticillium-like anamorph (Gams 1971). In the Pa. lilacinus subclade, N. atypicola is linked to C. cylindrica (Evans & Samson 1987, Hywel-Jones & Sivichai 1995).

Anamorphs of Clavicipitaceae clade C

The anamorph genera sampled that are members of clade C include Beauveria, Isaria, Lecanicillium, Microhilum H.Y. Yip & A.C. Rath, and Simplicillium. Species of Lecanicillium and Simplicillium were previously placed in Verticillium sect. Prostrata and recently reclassified based on the phylogenetic studies of Sung et al. (2001) and Zare & Gams (2001a, b). The genus Lecanicillium is characterized by producing slender aculeate phialides that are produced singly or in whorls and usually arise from prostrate aerial hyphae (Zare & Gams 2001a). Conidia are mostly produced at the tip of phialides and attached in heads or fascicles (Zare & Gams 2001a). The morphological delimitation of Simplicillium from Lecanicillium is difficult although the species of Simplicillium tend to produce phialides that more or less arise singly from prostrate aerial hyphae (Zare & Gams 2001a). This study shows again that the species of Lecanicillium form a paraphyletic group, as species of other well-delimited anamorphic genera (e.g., Beauveria, Engyodontium G.S. de Hoog, and Isaria) are interspersed among species of Lecanicillium (Fig. 8).

Some Lecanicillium species are known to be anamorphic forms of Cordyceps and Torrubiella (Petch 1932, Evans & Samson 1982, Zare & Gams 2001a). For example, C. militaris produces a Lecanicillium anamorph in culture (Zare & Gams 2001a) and the anamorph of Torrubiella alba Petch is L. aranearum (Petch) Zare & W. Gams (Petch 1932). The type species of Lecanicillium is L. lecanii (Zimm.) Zare & W. Gams, which is connected to the teleomorph T. confragosa Mains, a pathogen of scale insects (Evans & Samson 1982), which we transfer here to Cordyceps. In addition to Lecanicillium anamorphs, other genera (e.g., Akanthomyces, Gibellula Cavara, Hirsutella, Paecilomyces (Isaria), and Simplicillium) have also been linked to Torrubiella (Kobayasi & Shimizu 1982, Samson et al. 1988, 1989, Zare & Gams 2001a).

Clavicipitaceae clade C also includes the species of Isaria, the generic name of which has been conserved with I. farinosa (Holmsk.) Fr. as the type, for some of the clavicipitaceous Paecilomyces species (Gams et al. 2005, Luangsa-ard et al. 2005). The genus Paecilomyces was a diverse genus, with molecular studies indicating its polyphyletic status (Oborník et al. 2001, Luangsa-ard et al. 2004, 2005). The type species, Pa. variotii Bainier, belongs to the order Eurotiales (Ascomycota) and is distantly related to the clavicipitaceous Paecilomyces species that were previously classified in Paecilomyces sect. Isarioidea (Samson 1974, Luangsa-ard et al. 2004). The previous taxonomy of Paecilomyces was primarily based on the monographic study by Samson (1974), which included approximately 22 species in Paecilomyces sect. Isarioidea. In a recent molecular study, Luangsa-ard et al. (2005) demonstrated that species in Paecilomyces sect. Isarioidea are subdivided into four monophyletic groups, three of which are statistically supported. As a result, eleven species of Paecilomyces sect. Isarioidea were reclassified in Isaria (e.g., I. fumosorosea Wize, I. javanica (Frieder. & Bally) Samson & Hywel-Jones and I. tenuipes Peck) (Luangsa-ard et al. 2005). The present study indicates that the four isolates of Isaria do not form a monophyletic group in clade C, as they are interspersed among other anamorphic forms in the clade. Thus, the taxonomic utility of Isaria anamorph is limited to clade C, as seen with Lecanicillium and Simplicillium anamorphs. Furthermore, few connections have been made between teleomorphs of the Clavicipitaceae and species of Isaria. Kobayasi (1941) reported that the anamorph of C. takaomontana Yakush. & Kumaz. is Isaria japonica Yasuda, which Samson (1974) synonymized with Pa. tenuipes (= I. tenuipes). Isaria farinosa is the anamorph of C. memorabilis (Pacioni & Frizzi 1978), but was once mistakenly linked to C. militaris (Petch 1936). Isaria farinosa was also connected to two Torrubiella species, T. gonylepticida (A. Möller) Petch and T. pulvinata Mains. The anamorph of the latter was reported as Spicaria pulvinata Mains, and Petch described the conidial state of T. gonylepticida as Spicaria longipes Petch, two Spicaria species that Samson (1974) synonymized with Paecilomyces farinosus (= I. farinosa). Although T. gonylepticida was originally described in combination with Cordyceps, Petch (1937) transferred the species to its current combination and redescribed the species. Isaria farinosa has been reported to occur on six insect orders (Lepidoptera, Coleoptera, Hemiptera, Homoptera, Diptera, and Hymenoptera) and also on spiders (Araneae). The simplicity and plasticity in the morphology of most Isaria species make it difficult to set boundaries among and between sister-taxa and the search for better markers in species delimitation must be a goal for further studies.

The closely related species, C. scarabaeicola Kobayasi and C. staphylinidicola Kobayasi & Shimizu produce Beauveria anamorphs (Fig. 8; Sung 1996), and C. bassiana Z.Z. Li, C.R. Li, B. Huang & M.Z. Fan and C. brongniartii Shimazu are known as teleomorphs of B. bassiana (Bals.) Vuill. and B. brongniartii (Sacc.) Petch, respectively (Shimazu et al. 1988, Li et al. 2001). The genus Beauveria is morphologically well-characterized by producing basally-inflated conidiogenous cells that sympodially produce conidia on divergent denticles (MacLeod 1954, de Hoog 1972). Beauveria has a cosmopolitan distribution with quite a broad host range (Mugnai et al. 1989, Evans 2003, Rehner & Buckley 2005). A recent molecular study (Rehner & Buckley 2005) that included 87 isolates of five Beauveria species (B. amorpha (Höhn.) Samson & H.C. Evans, B. bassiana, B. brongniartii, B. caledonica Bissett & Widden, and B. vermiconia de Hoog & V. Rao) demonstrated that the genus is monophyletic and one of the more phylogenetically-informative anamorphs of clade C.

In fungal systematics, the naming of anamorphic forms is allowed for Phyla Ascomycota and Basidiomycota by Article 59 of the International Code of Botanical Nomenclature (McNeill et al. 2006) and multiple names exist for the same organisms of teleomorphic and anamorphic taxa. Recently, molecular phylogenetics has played an important role in integrating teleomorphic and anamorphic forms in a unified classification system in the clavicipitaceous fungi (Reynolds & Taylor 1993, Sung et al. 2001, Luangsa-ard et al. 2005). In such efforts, Verticillium sect. Prostrata and Paecilomyces sect. Isarioidea have recently been reclassified into several anamorphic genera (e.g., Haptocillium, Isaria, Lecanicillium, Pochonia, Rotiferophthora, and Simplicillium) to be consistent with the current hypotheses of relationships (Zare & Gams 2001a, Zare et al. 2001, Luangsa-ard et al. 2005). The phylogeny presented here further improves our understanding of the teleomorph–anamorph connections in Cordyceps and implies that several anamorphic genera (e.g., Beauveria, Hirsutella, Hymenostilbe, and Metarhizium) are more restricted in their phylogenetic distribution and therefore phylogenetically informative in characterizing Cordyceps species (Figs (Figs4, 4, ,6, 6, ,88).

TAXONOMIC REVISION

The present phylogenetic analyses reveal three strongly supported monophyletic groups (i.e., Clavicipitaceae clades A, B, and C) of clavicipitaceous fungi (Figs (Figs1, 1, ,2),2), a result consistent with studies involving fewer taxa (Spatafora et al. 2007, Sung et al. 2007). In reviewing the diagnostic characters used in previous classification schemes, most characters are not consistent with the phylogeny presented here. Therefore, the phylogenetic relationships of Cordyceps and the related clavicipitaceous fungi provide the evidence for rejecting most of the previous classifications of Cordyceps and Clavicipitaceae (Kobayasi 1941, 1982, Diehl 1950, Mains 1958). Here, we propose a new phylogenetic classification for Cordyceps and Clavicipitaceae as follows (Fig. 10).

An external file that holds a picture, illustration, etc.
Object name is 1fig10.jpg

New classification of Cordyceps and clavicipitaceous fungi based on Bayesian consensus tree in Fig. 2. Portions of Bionectriaceae and Nectriaceae are not shown. Tree description is the same as in Fig. 2. For internodes that are related with nomenclatural changes, bootstrap proportions of MP analyses (MP-BP) in Fig. 1 are shown above corresponding nodes before the backslash. Bootstrap proportions of ML analyses (ML-BP) and posterior probabilities (PP) in Fig. 2 are shown above internodes after backslash and below internodes, respectively. For the corresponding internode of Ophiocordyceps, bootstrap proportions (MP-BP & ML-BP) and posterior probabilities (PP) were obtained from analyses based on the 147-taxon 5-gene data set in Fig. 3. Portions of the tree in grey rectangular boxes indicate nomenclatural changes of Cordyceps.

Clavicipitaceae Clade A

Clavicipitaceae clade A is a well-supported monophyletic group that represents the Clavicipitaceae s. s. (MP-BP = 98 %, ML-BP = 99 %, PP = 1.00 in Figs Figs1, 1, ,2, 2, ,10).10). The name Clavicipitaceae was first used in 1901 by Earle for the former Hypocreaceae subfam. Clavicipiteae Lindau (Earle 1901). However, Earle (1901) used it without description and without reference to its basionym. The name was then invalidly used by subsequent workers, such as Nannfeldt (1932) and Diehl (1950), until it was validated by Rogerson (1970) as confirmed by Eriksson & Hawksworth (1985). Although Clavicipitaceae is well characterized by cylindrical asci, thickened ascus apices, and filiform ascospores that tend to disarticulate at maturity as in the original description, we restrict the application of Clavicipitaceae s. s. to the members of Clavicipitaceae clade A because of the non-monophyly of Clavicipitaceae s. l. (Fig. 10). These findings suggest that the character states of cylindrical asci and filiform ascospores that disarticulate at maturity are plesiomorphic for the Clavicipitaceae s. l. / Hypocreaceae clade. Importantly, the Hypocreaceae also possesses cylindrical asci and while its ascospores are subglobose to fusiform and easily distinguished from those of Clavicipitaceae s. l., they show a similarly high frequency of disarticulation (Rogerson 1970, Rossman et al. 1999).

The family Clavicipitaceae s. s. includes the grass-associated genera Balansia Speg., Claviceps, Epichloë (Fr.) Tul. & C. Tul., and Myriogenospora G.F. Atk., which were classified in Clavicipitaceae subfam. Clavicipitoideae sensu Diehl 1950 (Fig. 10). Recent molecular studies show that Aciculosporium I. Miyake, Atkinsonella Diehl, Heteroëpichloë E. Tanaka, C. Tanaka, Gafur & Tsuda, Neoclaviceps J.F. White, Bills, S.C. Alderman & Spatafora, and Parepichloë J.F. White & P.V. Reddy are also members of this clade, thus supporting their classification in the Clavicipitaceae s. s. (White & Reddy 1998, Sullivan et al. 2001, Tanaka et al. 2002). Clavicipitaceae s. s. also includes the plant-associated Shimizuomyces paradoxus Kobayasi, which occurs on seeds of Smilax (Smilacaceae). In addition to plant-associated fungi, Clavicipitaceae s. s. contains four arthropod-associated lineages. Three of the four arthropod-associated lineages are characterized as pathogens of scale insects, including Hypocrella (pathogens of scale insects and white flies; Hywel-Jones & Evans 1993, Hywel-Jones & Samuels 1998), Regiocrella P. Chaverri & K.T. Hodge (pathogen of scale insects; Chaverri et al. 2006), and Torrubiella luteorostrata Zimm. (pathogen of scale insects; Hywel-Jones 1993). The fourth lineage is described here as Metacordyceps; it comprises former species of Cordyceps and their related anamorphs and as a genus displays relatively broad arthropod host associations.

CLAVICIPITACEAE (Lindau) Earle ex Rogerson, Mycologia 62: 900. 1970, emend. G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora

Stromata or subiculum darkly or brightly coloured, fleshy or tough. Perithecia superficial to completely immersed, ordinal or oblique in arrangement. Asci cylindrical with thickened ascus apex. Ascospores usually cylindrical and multiseptate, disarticulating into part-spores or non-disarticulating.

Type: Claviceps Tul., Ann. Sci. Nat. Bot., Sér. 3, 20: 43. 1853.

Teleomorphic genera: Aciculosporium, Atkinsonella, Balansia, Claviceps, Epichloë, Heteroepichloë, Hypocrella, Metacordyceps gen. nov., Myriogenospora, Neoclaviceps, Parepichloë, Regiocrella, Shimizuomyces.

Anamorphic genera: Aschersonia, Ephelis Fr., Metarhizium, Neotyphodium A.E. Glenn, C.W. Bacon & Hanlin, Nomuraea, paecilomyces-like, Pochonia, Sphacelia Lév., verticillium-like.

METACORDYCEPS G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, gen. nov. MycoBank MB504182.

Stromata solitaria vel nonnulla aggregata, simplicia vel ramosa. Stipes carnosus vel tenax, albidus, viridi-luteus vel viridulus, cylindricus vel sursum dilatatus. Pars fertilis cylindrica vel clavata. Perithecia partim vel omnino in stromate immersa, perpendicularia vel oblique inserta. Asci cylindrici, apice inspissato. Ascosporae cylindricae, multiseptatae, in cellulas diffrangentes vel maturae integrae remanentes.

Stromata solitary or several, simple or branched. Stipe fleshy or tough, whitish, greenish yellow to greenish, cylindrical to enlarging in fertile part. Fertile part cylindrical to clavate. Perithecia partially or completely immersed in stromata, ordinal or oblique in arrangement. Asci cylindrical with thickened ascus apex. Ascospores cylindrical, multiseptate, disarticulating into part-spores or remaining intact at maturity.

Type: Cordyceps taii Z.Q. Liang & A.Y. Liu

Etymology: Greek meta = behind, a genus close to Cordyceps (and suggesting relationship to Metarhizium).

Anamorphic genera: Metarhizium, Nomuraea, paecilomyces-like, Pochonia.

Commentary: The genus Metacordyceps is proposed for species of Cordyceps s. l. in the Clavicipitaceae s. s. based on the phylogenetic placement of C. taii (Figs (Figs1, 1, ,2, 2, ,10).10). The genus is applied to the C. taii clade, which is strongly supported (MP-BP = 73 %, ML-BP = 78 %, PP = 1.00 in Figs Figs1, 1, ,2, 2, ,10).10). Among the members of the clade, the best-known taxon is the anamorphic genus Metarhizium, because of its importance in biological control (Samson et al. 1988, Evans 2003). Currently, three species of Cordyceps (viz., C. brittlebankisoides, C. campsosterni, and C. taii) are known as teleomorphs of Metarhizium (Liang et al. 1991, Liu et al. 2001, Zhang et al. 2004). The genus name Metacordyceps is here used to emphasize that the clade includes the species of Cordyceps s. l. that produce Metarhizium anamorphs although other species of Cordyceps (e.g., C. chlamydosporia) in the clade are not connected to Metarhizium anamorphs.

Metacordyceps yongmunensis G.H. Sung, J.M. Sung & Spatafora, sp. nov. MycoBank MB504183. Figs 5B, 5F-K, 11A-G.

An external file that holds a picture, illustration, etc.
Object name is 1fig5.jpg

A–E. Representative species of Cordyceps and its allies in Clavicipitaceae clade A. F-K. Morphology of Cordyceps sp. (described here as Metacordyceps yongmunensis sp. nov. below). A. C. liangshanensis on lepidopteran larva, EFCC 1452. B. Cordyceps sp. on lepidopteran pupa, EFCC 1228. C. Hypocrella schizostachyi on scale insect (Hemiptera). D. Shimizuomyces paradoxus on seed of plant (Smilax sieboldii: Smilacaceae). E. Metarhizium sp. on adult of cicada. F. Section of perithecium, EFCC 2131. G. Asci and fascicle, EFCC 2131. H. Asci showing prominent ascus cap, EFCC 2131. I. Asci showing ascus foot, EFCC 2131. J. Ascospores showing indistinct septation, EFCC 2131. K. Discharged intact ascospores on SDAY agar, EFCC 2131. Scale bars: A–E = 10 mm, F = 200 μm, G = 100 μm, H–J = 10 μm, K = 100 μm.

An external file that holds a picture, illustration, etc.
Object name is 1fig11.jpg

A–B. Line drawings of morphology of Metacordyceps yongmunensis. C–G. Line drawings of pochonia-like anamorph of M. yongmunensis. A. Non-disarticulating ascospore and ascus. B. Oblique arrangement of perithecia in stroma. C. Conidia and phialides. D. Developing conidia germinated from ascospore. E. Chlamydospores submerged in SDAY agar. F. Developing chlamydospores submerged in SDAY agar. G. Intercalary swollen hyphae. Scale bars: A, C–G = 10 μm, B = 200 μm.

Anamorph: pochonia-like.

Stromata nonnulla vel raro singula, clavata, simplicia vel saepius ramosa, in chrysalidibus Lepidopterarum. Pars fertilis alba vel dilute lutea, a stipite haud distincta. Perithecia sparsa vel dense aggregata, partim immersa, brunneo-lutea, dilute brunnea vel aurantiobrunnea, oblique inserta, fusiformia vel clavata, 550–800 × 450–500 μm. Asci 8-spori, hyalini, cylindrici, 205–360 × 5–7 μm, apice conspicue inspissato. Ascosporae filiformes, hyalinae, inconspicue multiseptatae, haud fragmentatae, 180–345 × 1 μm. Anamorphe Pochoniae similis.

Stromata several or rarely solitary, clavate, simple or more usually branched, on pupa of Lepidoptera. Fertile area white to pale yellow, not differentiated from stipe. Perithecia scattered or crowded, loosely immersed, brownish yellow, pale brown to orangish brown, oblique in arrangement, fusiform to clavate, 550–800 × 450–500 μm. Asci 8-spored, hyaline, cylindrical, 205– 360 × 5–7 μm, possessing a prominent apical cap. Ascospores filiform, hyaline, multiseptate with indistinct septation, not fragmenting into part-spores, 180–345 × 1 μm. Conidiophores erect, produced in prostrate aerial hyphae. Phialides hyaline, solitary, awl-shaped, 20–28 × 2–2.2 μm. Conidia hyaline, elliptical to oblong, in slimy heads, 2–3.5 × 1.5–2.4 μm. Chlamydospores present.

Etymology: Yongmunensis in reference to the known locality of the first record of the species being Mt. Yongmun, Republic of Korea.

Known distribution: Republic of Korea.

Specimens examined: Mt. Yongmun, Gyunggi Province, Republic of Korea: 13 June 1998, EFCC 2131 (holotype); 13 June 1998, EFCC 2134; 13 June 1998, EFCC 2135; 30 June 1999, EFCC 3379; 30 June 1999, EFCC 3380; 29 Aug. 1999, EFCC 4342; 8 Aug. 1999, EFCC 4343; 8 June 2000, EFCC 49 1; 30 June 2004, EFCC 12287; 30 June 2004, EFCC 12288; 30 June 2004, EFCC 12291; 8 Aug. 2004, EFCC 12467. Mt. Chiak, Kangwon Province, Republic of Korea: 8 Aug. 2000, EFCC 5750. Bukbang-myun, Kangwon Province, Republic of Korea: 21 June 2002, EFCC 8808. Living culture in EFCC.

Commentary: Most specimens of M. yongmunensis possess several stromata (up to 10), on a large pupa of Lepidoptera deeply buried in soil (Fig. 5B). Stroma of the species is typically branched in a dichotomous way at its basal or upper regions (Fig. 5B). Perithecia are usually obliquely inserted in the stromata with a few exceptions that are ordinally arranged, i.e. at right angles to the surface of the stromata (Fig. 5B). While some perithecia are characterized by an acute narrowing of the perithecium at the ostiole, producing a narrow terminal end (Fig. 5F), others are not significantly narrowed (Fig. 11B). In the asci the ascospores are arranged parallel for their entire length and almost reach the ascus foot, suggesting that ascospores are of approximately the same length as the asci (Figs (Figs5I, 5I, 11A). Unlike the distinct septation of ascospores as seen in C. militaris (Fig. 9O), the septa of the ascospores are indistinct and discharged ascospores do not disarticulate into part-spores (Figs (Figs5K, 5K, 11A).

An external file that holds a picture, illustration, etc.
Object name is 1fig9.jpg

A–M. Representative species of Cordyceps and its allies in Clavicipitaceae clade C. N–S. Perithecia, asci, and ascospores. A. C. militaris on lepidopteran pupa, EFCC 5192. B. C. kyusyuënsis on lepidopteran larva, EFCC 10985. C. C. chichibuënsis on coleopteran pupa, EFCC 422. D. C. cf. ochraceostromata on lepidopteran larva, EFCC 11846. E. C. scarabaeicola on scarabaeid beetle (Coleoptera), EFCC 5014. F. C. staphylinidicola on coleopteran larva, EFCC 783. G. C. bifusispora on lepidopteran pupa, EFCC 2626. H. C. cf. pruinosa on lepidopteran pupa (Limacodidae), EFCC 11756. I. C. cardinalis on lepidopteran larva, EFCC 12212. J. C. tuberculata on adult of moth (Lepidoptera), EFCC 2067. K. Torrubiella sp. on spider (Arachnida), EFCC 10882. L. Beauveria sp. on adult of beetle (Coleoptera), EFCC 1357. M. Isaria tenuipes on lepidopteran pupa, EFCC 1497. N. C. cardinalis, section of perithecia in stroma, OSC 93609. O. C. militaris, ascus with disarticulating ascospores, OSC 93623. P. C. cardinalis, ascus with nondisarticulating ascospores, OSC 93609. Q. C. cf. pruinosa, fusiform terminal parts of ascospores in ascus, EFCC 7481. R. C. militaris, multiseptated ascospores in ascus, OSC 93623. S. C. cf. pruinosa, thread-like structures connecting fusiform terminal parts of ascospores, EFCC 7481. Scale bars: A–M = 10 mm, N = 100 μm, O–S = 5 μm.

In the anamorph of M. yongmunensis, cultures derived from ascospores are moderately fast growing in SDAY (Sabouraud-dextrose-yeast extract agar) and the colonies reach 25–35 mm diam at 25 °C in 10 d. Colonies are slightly cottony without zonation and white with a green margin, remaining greenish brown at the reverse side of the cultures. Conidiophores are erect and produced in prostrate aerial hyphae. Phialides are solitary, not in whorls, broader at the base and tapering towards the end, measuring 20–28 × 2.0–2.2 μm (Fig. 11C). Conidia are in slimy heads (with usually 2 or 3 conidia) and ellipsoidal to oblong, measuring 2–3.5 × 1.5–2.4 μm (Fig. 11C). In submerged areas of the cultures, chlamydospores are developed in chains or reduced to intercalary swollen structures (Figs 11E-G). The anamorph of M. yongmunensis is best classified as pochonia-like because of its subulate phialides and production of chlamydospores, although verticillium-like whorls of phialides were not observed (Zare et al. 2001). In Metacordyceps, M. yongmunensis is most similar to M. chlamydosporia (= C. chlamydosporia) in the shape of perithecia and its anamorph. Both species produce brownish perithecia that possess long terminal ends in white or pale yellow stromata (Zare et al. 2001). The anamorph of M. chlamydosporia is identical with the type of Pochonia. Thus the production of chlamydospores can be informative for recognizing some species of Metacordyceps.

Accepted names and new combinations for Metacordyceps

The following taxa are accepted species of Metacordyceps based on their inclusion in molecular phylogenies presented herein1 (see Table 1) or morphological descriptions matching the characters described above2. The known anamorph connection is provided for the species of Metacordyceps.

  • 2Metacordyceps brittlebankisoides (ZuoY. Liu, Z.Q. Liang, Whalley, Y.-J. Yao & A.Y. Liu) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB504184.

      • Cordyceps brittlebankisoides ZuoY. Liu, Z.Q. Liang, Whalley, Y.-J. Yao & A.Y. Liu, J. Invert. Pathol. 78: 179. 2001.

    • Anamorph: Metarhizium

  • 2Metacordyceps campsosterni (W.M. Zhang & T.H. Li) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB504185

      • Cordyceps campsosterni W.M. Zhang & T.H. Li, Fungal Diversity 17: 240. 2004. [as C. `campsosterna'].

    • Anamorph: Metarhizium

  • 1Metacordyceps chlamydosporia (H.C. Evans) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB504186.

      • Cordyceps chlamydosporia H.C. Evans, in Zare et al., Nova Hedwigia 73: 59. 2001.

    • Anamorph: Pochonia chlamydosporia (Goddard) Zare & W. Gams

  • 1Metacordyceps liangshanensis (M. Zang, D. Liu & R. Hu) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB504187.

    • Cordyceps liangshanensis M. Zang, D. Liu & R. Hu, Acta Bot. Yunnanica 4: 174. 1982.

  • 1Metacordyceps taii (Z.Q. Liang & A.Y. Liu) G.H. Sung, J.M. Sung, Hywel-Jones, Spatafora, comb. nov. MycoBank MB504188.

      • Cordyceps taii Z.Q. Liang & A.Y. Liu, Acta Mycol. Sin. 10: 257. 1991.

    • Anamorph: Metarhizium anisopliae var. anisopliae (Metschn.) Sorokin

  • 1Metacordyceps yongmunensis G.H. Sung, J.M. Sung, Spatafora, sp. nov., see p. 27.

    • Anamorph: pochonia-like

New combinations for anamorphs associated with Metacordyceps

T. parasiticum is transferred to the genus Pochonia based on molecular phylogenies presented herein1.

  • 1Pochonia parasitica (G.L. Barron) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB504189.

    • Tolypocladium parasiticum G.L. Barron, Canad. J. Bot. 58: 439. 1980.

CLAVICIPITACEAE Clade B

Clavicipitaceae clade B is strongly supported (MP-BP = 93 %, ML-BP = 98 %, PP = 1.00 in Figs Figs1, 1, ,2, 2, ,10)10) and the family Ophiocordycipitaceae is proposed for it with the type genus Ophiocordyceps Petch. Most species of the Ophiocordycipitaceae produce darkly pigmented stromata that are pliant to wiry, or fibrous to tough in texture. Ecologically, many species of the family are known as pathogens of subterranean or wood-inhabiting hosts, buried in soil or embedded in decaying wood. Notable exceptions do exist to these traits with brightly coloured species that may or may not attack adult stages of hosts and occur in exposed habitats.

OPHIOCORDYCIPITACEAE G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, fam. nov. MycoBank MB504190.

Stromata vel subiculum fusca vel raro laete colorata, tenacia, fibrosa vel flexibilia, raro carnosa, saepe ostiolis peritheciorum prominentibus, summa saepe peritheciis carentia. Perithecia superficialia vel omnino immersa, perpendicularia ad superficiem vel oblique inserta. Asci cylindrici, apice inspissato. Ascosporae cylindricae, multiseptatae, maturae in cellulas diffrangentes vel integrae remanentes.

Stromata or subiculum darkly pigmented or rarely brightly coloured, tough, fibrous to pliant, rarely fleshy, often with aperithecial apices or lateral pads. Perithecia superficial to completely immersed, ordinal or oblique in arrangement. Asci usually cylindrical with thickened ascus apex. Ascospores usually cylindrical, multiseptate, disarticulating into part-spores or nondisarticulating.

Type: Ophiocordyceps Petch, Trans. Brit. Mycol. Soc. 16: 74. 1931.

Teleomorphic genera: Elaphocordyceps, Ophiocordyceps

Anamorphic genera: Haptocillium, Harposporium Lohde, Hirsutella, Hymenostilbe, paecilomyces-like, Paraisaria, Syngliocladium, Tolypocladium, verticillium-like.

ELAPHOCORDYCEPS G.H. Sung & Spatafora, gen. nov. MycoBank MB504191.

Stromata singula vel nonnulla aggregata, simplicia vel ramosa. Stipes fibrosus vel tenax, raro carnosus, obscure brunneus vel olivaceo-viridulus, raro albidus, cylindricus vel sursum dilatatus. Stromata hospite insidentia vel rhizomorphis eo conjuncta. Pars fertilis clavata vel capitata, raro indistincta. Perithecia partim wel omnino in stromate immersa, perpendicularia ad superficiem. Asci cyindrici, apice inspissato. Ascosporae cylindricae, multiseptatae, maturae in cellulas diffrangentes. Anamorphe Verticillii similis vel absens.

Stromata solitary to several, simple or branched. Stipe fibrous to tough, rarely fleshy, dark brownish to greenish with olivaceous tint, rarely whitish, cylindrical to enlarging in the fertile part. Stroma connected directly to the host or indirectly through rhizomorph-like structures. Fertile part clavate to capitate, rarely undifferentiated. Perithecia partially or completely immersed in stromata, ordinal in arrangement. Asci cylindrical with thickened ascus apex. Ascospores cylindrical, multiseptate, disarticulating into part-spores.

Type: Cordyceps ophioglossoides (Ehrh.) Link

Etymology: Greek elaphe = deer, from the host fungus, Elaphomyces.

Commentary: The C. ophioglossoides clade is strongly supported (MP-BP = 71 %, ML-BP = 88 %, PP = 100 in Figs Figs1, 1, ,2, 2, ,10)10) and includes species of Cordyceps s. l. that parasitize the truffle-like genus Elaphomyces and cicada nymphs (e.g., C. inegoënsis and C. paradoxa) and beetles (e.g., C. subsessilis) (Figs (Figs6, 6, ,10).10). Currently, 22 species are anticipated to be included in the C. ophioglossoides clade, of which more than 18 species are known as parasites of Elaphomyces (Mains 1957, Kobayasi & Shimizu 1960, 1963). The host affiliation of Elaphomyces parasites has long been recognized as a diagnostic character in Cordyceps classification (Massee 1895, Kobayasi 1941, 1982, Mains 1957, 1958). The oldest applicable genus name is Cordylia Fr. 1818 (Massee 1895). However, it cannot be applied to the C. ophioglossoides clade because it is a homonym of Cordylia Pers. 1807 (Mains 1958), which is also homonym of Cordyla Lour. 1790 (Leguminosae). Therefore, the genus Elaphocordyceps is proposed based on the phylogenetic placement of C. ophioglossoides and applied to the well-supported C. ophioglossoides clade. Although C. subsessilis is morphologically and ecologically distinct, the genus is well recognized by its dominant ecology as being pathogens of Elaphomyces and cicadas. The darkly pigmented, fibrous stromata with more or less olivaceous tint are also good diagnostic characters for recognizing the species of Elaphocordyceps.

Anamorphic genera: Tolypocladium, verticillium-like.

Accepted names and new combinations for Elaphocordyceps

The following taxa are accepted species of Elaphocordyceps based on their inclusion in molecular phylogenies presented herein1 (see Table 1) or morphological descriptions matching the characters described above2. Where known we provide anamorph connection for the species of Elaphocordyceps.

  • 1Elaphocordyceps capitata (Holmsk.) G.H. Sung, J.M. Sung & Spatafora, comb. nov. MycoBank MB504192.

      • Sphaeria capitata Holmsk., Beata Ruris Otia Fungis Danicis 1: 38. 1790 : Fries, Syst. Mycol. 2: 324, 1823.

      • Torrubia capitata (Holmsk.: Fr.) Tul. & C. Tul., Sel. Fung. Carpol. 3: 22. 1865.

      • Cordyceps capitata (Holmsk. : Fr.) Link., Handbuch zur Erkennung der nutzbarsten und am häufigsten vorkommenden Gewächse 3: 347. 1833.

    • = Cordyceps canadensis Ellis & Everh., Bull. Torrey Bot. Club 25: 501. 1898.

      • Cordyceps capitata var. canadensis (Ellis & Everh.) Lloyd, Mycol. Writ. 5: 609. 1916.

    • = Sphaeria agariciformis Bolt., Hist. Fung. Halifax, p. 130. 1789.

      • Cordyceps agariciformis (Bolt.) Seaver, North Amer. Fl. 3: 33. 1910.

    • = Cordyceps nigriceps Peck, Bull. Torrey Bot. Club 27: 21. 1900.

    • Anamorph unknown, not growing in culture.

  • 2Elaphocordyceps delicatistipitata (Kobayasi) G.H. Sung, J.M. Sung & Spatafora, comb. nov. MycoBank MB504193.

    • Cordyceps delicatistipitata Kobayasi, Bull. Natn. Sci. Mus. Tokyo 5: 79. 1960 (as C. `delicatostipitata').

  • 1Elaphocordyceps fracta (Mains) G.H. Sung, J.M. Sung & Spatafora, comb. nov. MycoBank MB504194.

    • Cordyceps fracta Mains, Bull. Torrey Bot. Club 84: 250. 1957.

  • 1Elaphocordyceps inegoënsis (Kobayasi) G.H. Sung, J.M. Sung & Spatafora, comb. nov. MycoBank MB504195.

    • Cordyceps inegoënsis Kobayasi, Bull. Natn. Sci. Mus. Tokyo 6: 292. 1963.

  • 2Elaphocordyceps intermedia (S. Imai) G.H. Sung, J.M. Sung & Spatafora, comb. nov. MycoBank MB504196.

    • Cordyceps intermedia S. Imai, Proc. Imp. Acad. Tokyo 10: 677. 1934.

  • 2Elaphocordyceps intermedia f. michinokuënsis (Kobayasi & Shimizu) G.H. Sung, J.M. Sung & Spatafora, comb. nov. MycoBank MB504197.

    • Cordyceps intermedia f. michinokuënsis Kobayasi & Shimizu, Bull. Natn. Sci. Mus. Tokyo, Ser. B, 8: 116. 1982.

  • 1Elaphocordyceps japonica (Lloyd) G.H. Sung, J.M. Sung & Spatafora, comb. nov. MycoBank MB504198.

      • Cordyceps japonica Lloyd, Mycol. Writ. 6: 913. 1920.

    • = Cordyceps umemurae S. Imai, Trans. Sapporo Nat. Hist. Soc. 11: 32. 1929 (as C. `umemurai').

  • 1Elaphocordyceps jezoënsis (S. Imai) G.H. Sung, J.M. Sung & Spatafora, comb. nov. MycoBank MB504199.

    • Cordyceps jezoënsis S. Imai, Trans. Sapporo Nat. Hist. Soc. 11: 33. 1929.

  • 1Elaphocordyceps longisegmentis (Ginns) G.H. Sung, J.M. Sung & Spatafora, comb. nov. MycoBank MB504200.

    • Cordyceps longisegmentis Ginns, Mycologia 80: 219. 1988.

  • 2Elaphocordyceps minazukiensis (Kobayasi & Shimizu) G.H. Sung, J.M. Sung & Spatafora, comb. nov. MycoBank MB504201.

    • Cordyceps minazukiensis Kobayasi & Shimizu, Bull. Natn. Sci. Mus. Tokyo, Ser. B, 8: 117. 1982.

  • 2Elaphocordyceps miomoteana (Kobayasi & Shimizu) G.H. Sung, J.M. Sung & Spatafora, comb. nov. MycoBank MB504202.

    • Cordyceps miomoteana Kobayasi & Shimizu, Bull. Natn. Sci. Mus. Tokyo, Ser. B, 8: 118. 1982.

  • 1Elaphocordyceps ophioglossoides (Ehrh.: Fr.) G.H. Sung, J.M. Sung & Spatafora, comb. nov. MycoBank MB504203.

      • Sphaeria ophioglossoides Ehrh., in Pers., Comment de Fung. Clavaef. p. 12. 1797: Fries, Syst. Mycol. 2: 324. 1823.

      • Torrubia ophioglossoides (Ehrh. : Fr.) Tul., Sel. Fung. Carpol. 3: 20. 1865.

      • Cordyceps ophioglossoides (Ehrh. : Fr.) Link, Handbuck zur Erkennung der nutzbarsten und am häufigsten vorkommenden Gewächse 3: 347. 1833.

    • Anamorph: verticillium-like

  • 2Elaphocordyceps ophioglossoides f. alba (Kobayasi & Shimizu ex Y.J. Yao) G.H. Sung, J.M. Sung & Spatafora, comb. nov. MycoBank MB504204.

    • Cordyceps ophioglossoides f. alba Kobayasi & Shimizu ex Y.J. Yao, in Yao, Li, Pegler & Spooner, Acta. Mycol. Sin. 14: 257. 1995.

  • 2Elaphocordyceps ophioglossoides f. cuboides (Kobayasi) G.H. Sung, J.M. Sung & Spatafora, comb. nov. MycoBank MB504205.

    • Cordyceps ophioglossoides f. cuboides Kobayasi, Bull. Natn. Sci. Mus. Tokyo 5: 77. 1960.

  • 1Elaphocordyceps paradoxa (Kobayasi) G.H. Sung, J.M. Sung & Spatafora, comb. nov. MycoBank MB504206.

    • Cordyceps paradoxa Kobayasi, Bull. Biogeogr. Soc. Japan 9: 156. 1939.

  • 2Elaphocordyceps ramosa (Teng) G.H. Sung, J.M. Sung & Spatafora, comb. nov. MycoBank MB504207.

    • Cordyceps ramosa Teng, Sinensia 7: 810. 1936.

  • 2Elaphocordyceps rouxii (Cand.) G.H. Sung, J.M. Sung & Spatafora, comb. nov. MycoBank MB504208.

    • Cordyceps rouxii Cand., Mycotaxon 4: 544. 1976.

  • 1Elaphocordyceps subsessilis (Petch) G.H. Sung, J.M. Sung & Spatafora, comb. nov. MycoBank MB504209.

      • Cordyceps subsessilis Petch, Trans. Brit. Mycol. Soc. 21: 39. 1937.

    • = Cordyceps facis Kobayasi & Shimizu, Trans. Mycol. Soc. Japan 23: 361. 1982.

    • Anamorph: Tolypocladium inflatum W. Gams

  • 2Elaphocordyceps szemaoënsis (M. Zang) G.H. Sung, J.M. Sung & Spatafora, comb. nov. MycoBank MB504210.

    • Cordyceps szemaoënsis M. Zang, Acta Bot. Yunnanica 23: 295. 2001.

  • 2Elaphocordyceps tenuispora (Mains) G.H. Sung, J.M. Sung & Spatafora, comb. nov. MycoBank MB504211.

    • Cordyceps tenuispora Mains, Bull. Torrey Bot. Club 84: 247. 1957.

  • 2Elaphocordyceps toriharamontana (Kobayasi) G.H. Sung, J.M. Sung & Spatafora, comb. nov. MycoBank MB504212.

    • Cordyceps toriharamontana Kobayasi, Bull. Natn. Sci. Mus. Tokyo 6: 305. 1963.

  • 2Elaphocordyceps valliformis (Mains) G.H. Sung, J.M. Sung & Spatafora, comb. nov. MycoBank MB504213.

    • Cordyceps valliformis Mains, Bull. Torrey Bot. Club 84: 250. 1957.

  • 2Elaphocordyceps valvatistipitata (Kobayasi) G.H. Sung, J.M. Sung & Spatafora, comb. nov. MycoBank MB504214.

    • Cordyceps valvatistipitata Kobayasi, Bull. Natn. Sci. Mus. Tokyo 5: 81. 1960 (as C. volvatostipitata').

  • 2Elaphocordyceps virens (Kobayasi) G.H. Sung, J.M. Sung & Spatafora, comb. nov. MycoBank MB504215

    • Cordyceps virens Kobayasi, J. Jap. Bot. 58: 222. 1983.

OPHIOCORDYCEPS Petch, Trans. Brit. Mycol. Soc. 16: 73. 1931 emend. G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora

= Cordycepioideus Stifler, Mycologia 33: 83. 1941.

Stromata or subiculum darkly pigmented or rarely brightly coloured, tough, fibrous, pliant to wiry, rarely fleshy, often with aperithecial apices or lateral pads. Perithecia superficial to completely immersed, ordinal or oblique in arrangement. Asci hyaline, cylindrical, usually with thickened ascus apex, rarely fusoid to ellipsoid. Ascospores usually cylindrical, multiseptate, disarticulating into part-spores or non-disarticulating.

Type: Cordyceps blattae Petch, Trans. Brit. Mycol. Soc. 16: 74. 1931.

Anamorphic genera: Hirsutella, Hymenostilbe, Paraisaria, Syngliocladium.

Commentary: The C. unilateralis clade is strongly supported (MP-BP = 88 %, ML-BP = 88 %, PP = 1.00 in Figs Figs3, 3, ,10)10) and includes the species of Ophiocordyceps (e.g., C. acicularis and C. unilateralis) (Petch 1931, 1933). The genus Ophiocordyceps was proposed by Petch (1931, 1933) for species of Cordyceps that produce non-disarticulating ascospores. The genus was not accepted by subsequent workers who reclassified the species of Ophiocordyceps as Cordyceps subg. Ophiocordyceps (Kobayasi 1941) or in multiple subgenera of Cordyceps (Mains 1958). The type of Ophiocordyceps Petch is O. blattae (= C. blattae), but it was not available for this taxonomic treatment. According to the morphological description, it fits in the present generic concept. Because O. unilateralis is a well-known species that was included in the original publication of Ophiocordyceps (Petch 1931) and because additional Ophiocordyceps species (e.g., O. acicularis) are members of this clade, we apply the name Ophiocordyceps based on the placement of O. unilateralis. The genus Ophiocordyceps includes the most morphologically diverse group of the species of Cordyceps s. l. including the members of C. subg. Neocordyceps (Figs (Figs6, 6, ,10).10). For most of the species in Ophiocordyceps, the stromata are fibrous to tough or wiry to pliant in texture and darkly pigmented in at least some part of the stroma. The genus includes many species of Cordyceps s. l. that produce perithecia in subterminal regions of the stromata resulting in aperithecial apices. Of particular note, Ophiocordyceps is characterized by the dominant occurrence of Hirsutella and Hymenostilbe anamorphs (Fig. 6). Although the genus Cordycepioideus possesses thick-walled multiseptate ellipsoid ascospores and its asci lack the thickened ascus tip of most clavicipitaceous fungi (Blackwell & Gilbertson 1984, Ochiel et al. 1997), this study indicates that the genus Cordycepioideus can be merged with Ophiocordyceps according to its placement in molecular analyses and because of the Hirsutella anamorph (Fig. 10, Ochiel et al. 1997, Suh et al. 1998).

Ophiocordyceps communis Hywel-Jones & Samson, sp. nov. MycoBank MB504216. Figs 12A–G.

An external file that holds a picture, illustration, etc.
Object name is 1fig12.jpg

A–G. Morphology of Ophiocordyceps communis. A. Stromata, bar = 10 mm. B. Arrangement of perithecia. C. Ascus with ascospores. D. Ascus and ascus apex. E. Non-disarticulating ascospores. F. Conidiophores (Hymenostilbe/Hirsutella anamorph). G. Denticles of phialide (Hymenostilbe/Hirsutella anamorph). Scale bars: A, C–G = 10 μm, B = 00 μm.

Anamorph: hirsutella/hymenostilbe-like.

Stromata ex duabus (tribus) termitis adultis oriunda, mycelio albo circumdata, filiformia; 50–100 mm sub superficie stramenti oriunda, 300–600 μm lata, albido-grisea, 70–130 mm super stramentum emergentia, 600–1000 μm lata, cuius 30–40 mm pars inferior hyphis sterilibus dematiaceis (luteo-brunneis) tomentosa; pars superior, ca 90 mm longa, fertilis, levis, griseo-brunnea vel grisea, conidia in strato griseo ferens et perithecia dense aggregata. Perithecia superficialia, subterminalia, 285–675 × 195–390 μm. Asci apice conspicue inspissato, 8-spori, filiformes, 215–250 × 15 μm. Ascosporae integrae, crassitunicatae, dilute pigmentatae, (100–)120–150(–180) × 5–6 μm. Cellulae conidiogenae hymenium hyalinum formantes, cylindricae, 10–14 × 2.7–3.3 μm, unum (raro duos) denticulos fertiles apicales ferentes. Blastoconidia hyalina, amygdaliformia, 8–9 × 2.5–3 μm. Anamorphe Hirsutellae vel Hymenostilbe similis.

Hosts two (rarely three) adult termites surrounded by loose, coarse white mycelium. Stromata filiform, 50–100 mm below ground, 300–600 μm wide, whitish-grey; 70–130 mm emerging above leaf litter, 600–1000 μm wide; lower 30–40 mm of above-ground portion usually hirsute with sterile, dematiaceous (yellow-brown) hairs becoming smooth, silver-brown to grey along terminal fertile (anamorph) part of ca 90 mm. Perithecia superficial subterminal; emerging through grey anamorph, tightly packed around the stipe, 285–675 × 195–390 μm. Asci with stout cap, 8-spored, filiform, 215–250 × 15 μm. Ascospores whole, stout, lightly pigmented (100–)120–150(–180) × 5–6 μm. Conidiogenous cells in a palisade, hyaline, cylindrical, 10–14 × 2.7–3.3 μm, solitary (rarely two), prominent, terminal denticle. Conidia hyaline, almond-shaped, 7–9 × 2.5–3 μm.

Etymology: refers to the communal nature of the stromata, i.e. the fact that 600–1000 Cordyceps stromata can be found in a small area (20 × 20 metres).

Type: Holotype: N.H.J. 10673, isotypes: N.H.J. 10674, N.H.J. 10675, N.H.J. 10676, N.H.J. 10677, all on termites; coll. R. Nasit; Khao Yai National Park, Gong Giao Nature Trail; 13 June 2000.

Commentary: Most collections of O. communis were from Khao Yai National Park with the type locality (Gong Giao Nature Trail) regularly having epizootics containing (in any one season) several hundred stromata over a 20 × 20 metre area. A few other collections were from Khao Soi Dao Wildlife Sanctuary (N.H.J. 6422 and N.H.J. 6452) and Sam Lan National Park (N.H.J. 6332). All collections of the species were from adult termites. Although surveys were made over an eighteen-year period from the far north of Thailand to the far south and from sea level to over 2500 metres, O. communis is only known from these three sites in central Thailand below 800 metres elevation.

In any year there appeared to be a single `flush' with O. communis first appearing at the start of the rainy season in May/June. The earliest collections were made in May (10 May 1994: N.H.J. 3687, N.H.J. 3681 and N.H.J. 3683, Heo Sawat Waterfall; 23 May 1996; N.H.J. 6330, Gong Giao Nature Trail). In the first 2–3 weeks after appearance, the stromata appeared slender and acicular with the lower part having a shiny silken appearance and the terminal part dull greyish. The terminal grey region consisted of a palisade of tightly packed conidiogenous cells with typically a stout elongate denticle, giving rise to a single conidium.

This anamorph is intermediate between a typical Hirsutella (e.g., Hi. formicarum, Hi. citriformis, and Hi. saussurei) and a typical Hymenostilbe (e.g., Hy. dipterigena – closer to the latter) (Figs 12F–G). The palisade of crowded conidiogenous cells is indicative of Hymenostilbe rather than Hirsutella, where conidiogenous cells are sparse and mostly immature at any given time (Fig. 12F). The denticulate nature of the conidiogenous cell also is indicative of Hymenostilbe. However, in all specimens examined to date there is no evidence of multiple denticles (five or more) usually associated with Hymenostilbe; only a few conidiogenous cells were seen with two denticles (Figs 12F–G).

The anamorph of O. communis is closest to Hy. ventricosa Hywel-Jones (Hywel-Jones 1995). That species infects cockroaches and is found attached to the under side of leaves. As with the anamorph of O. communis, Hy. ventricosa produces conidiogenous cells with only a single terminal stout denticle. Conidia of Hy. ventricosa have a pronounced point and are not typical of the clavate shape usually associated with Hymenostilbe. Similarly, the conidia of the O. communis anamorph are also fattened naviculate, appearing similar to those of Hy. ventricosa but without the processed tip.

The perithecia erupt through the dull greyish anamorph spike appearing first as longitudinal splits in the palisade of conidiogenous cells at the base of the anamorph spike. Each develops as a superficial perithecium, but they become crowded and give the overall appearance of a brown subterminal fertile region (Kobayasi 1941; Figs 12A–B). The ascus shape and the form of the ascus cap comes close to Kobayasi's Figs 12C–D (Kobayasi 1941) being typical of species in the C. unilateralis clade (with Hirsutella as an anamorph). Mature perithecia eject pigmented, whole ascospores (Fig. 12E) and often the ostiole becomes blocked with these half-emerged ascospores.

Only a few species of Cordyceps sensu Kobayasi and Mains have been reported from termites. Currently accepted species include O. koningsbergeri (= C. koningsbergeri Penz. & Sacc.), which is known only from the type locality (Java, Indonesia) (Kobayasi 1941), and C. termitophila Kobayasi & Shimizu) which is known from Japan and Taiwan (Kobayasi & Shimizu 1976, 1978). Penzig & Saccardo (1904) found O. koningsbergeri to be similar to O. myrmecophila in that it had a terminal, globose head with immersed perithecia. In this feature alone it differs significantly from O. communis with its subterminal and superficial perithecia. However, as with O. communis, Penzig & Saccardo (1904) described whole ascospores of O. koningsbergeri, which were 150 × 1 μm compared with 120–150 × 5–6 μm for O. communis. Cordyceps termitophila differs from O. communis in having a `pale rosy-grey' stroma, much smaller perithecia (280–320 × 175–190 μm for C. termitophila versus 285–675 × 195–390 μm for O. communis) and smaller ascospores (100–125 × 3 μm).

Accepted names and new combinations for Ophiocordyceps

The following taxa are accepted species of Ophiocordyceps based on their inclusion in molecular phylogenies presented herein1 or morphological descriptions matching the characters described above2. Where known, the anamorph connection is provided for the species of Ophiocordyceps.

  • 1Ophiocordyceps acicularis (Ravenel) Petch, Trans. Brit. Mycol. Soc. 18: 60. 1933.

      • Cordyceps acicularis Ravenel, J. Linn. Soc. 1: 158. 1857.

    • = Cordyceps caroliniensis Berk. & Ravenel, Fungi Carolina 4: 29. 1855.

    • Anamorph: Hirsutella

  • 1Ophiocordyceps agriotidis (A. Kawam.) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB504217.

      • Cordyceps agriotidis A. Kawam., Icon. Jap. Fungi 8: 837. 1955. [as C. `agriota']

    • Anamorph: Hirsutella

  • 2Ophiocordyceps ainictos (A. Möller) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB504218.

      • Cordyceps ainictos A. Möller, Phycomyceten u. Ascomyceten, p. 226. 1901.

    • Anamorph: Hirsutella

  • 2Ophiocordyceps amazonica (Henn.) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB504219.

    • Cordyceps amazonica Henn., Hedwigia 43: 247. 1904.

  • 2Ophiocordyceps amazonica var. neoamazonica (Kobayasi & Hara) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB504220.

    • Cordyceps amazonica var. neoamazonica Kobayasi & Hara, J. Jap. Bot. 57: 17. 1982.

  • 1Ophiocordyceps aphodii (Mathieson) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB504221.

      • Cordyceps aphodii Mathieson, Trans. Brit. Mycol. Soc. 32: 134. 1949.

    • Anamorph: Hirsutella

  • 2Ophiocordyceps appendiculata (Kobayasi & Shimizu) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB504222.

    • Cordyceps appendiculata Kobayasi & Shimizu, Bull. Natn. Sci. Mus. Tokyo, Ser. B, 9: 6. 1983.

  • 2Ophiocordyceps arachneicola (Kobayasi) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB504223.

    • Cordyceps arachneicola Kobayasi, Sci. Rep. Tokyo Bunrika Daigaku, Sect. B,: 123. 1941.

  • 2Ophiocordyceps arbuscula (Teng) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB504225

    • Cordyceps arbuscula Teng, Sinensia 7: 812. 1936.

  • 2Ophiocordyceps armeniaca (Berk. & M.A. Curtis) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB504226.

    • Cordyceps armeniaca Berk. & M.A. Curtis, J. Linn. Soc. 1: 158. 1857.

  • 2Ophiocordyceps asyuënsis (Kobayasi & Shimizu) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB504227.

    • Cordyceps asyuënsis Kobayasi & Shimizu, Bull. Natn. Sci. Mus. Tokyo, Ser. B, 6: 138. 1980.

  • 2Ophiocordyceps aurantia (Kobayasi & Shimizu) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB504228.

    • Cordyceps aurantia Kobayasi & Shimizu, Bull. Natn. Sci. Mus. Tokyo, Ser. B, 6: 125. 1980.

  • 2Ophiocordyceps australis (Speg.) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB504229.

    • Cordyceps unilateralis var. australis Speg., Anales Soc. Ci. Argent. 12: 215. 1881.

    • Cordyceps australis (Speg.) Speg., Syll. Fung. 2: 571. 1883.

  • 2Ophiocordyceps barnesii (Thwaites) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB504230.

    • Cordyceps barnesii Thwaites, J. Linn. Soc. 14: 110. 1875.

    • Torrubia barnesii (Thwaites) Ces., Atti Accad. Sci. Fis. Mat., Napoli 8: 14. 1879.

  • 2Ophiocordyceps bicephala (Berk.) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB504231.

    • Cordyceps bicephala Berk., J. Bot. (Hooker) 8: 278. 1856.

  • 2Ophiocordyceps bispora (Stifler) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB504232.

      • Cordycepioideus bisporus Stifler, Mycologia 33: 85. 1941.

    • Anamorph: Hirsutella

  • 2Ophiocordyceps blattae (Petch) Petch, Trans. Brit. Mycol. Soc. 16: 74. 1931.

    • Cordyceps blattae Petch, Trans. Brit. Mycol. Soc. 10: 35. 1924.

  • 1Ophiocordyceps brunneipunctata (Hywel-Jones) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB504233.

      • Cordyceps brunneipunctata Hywel-Jones, Mycol. Res. 99: 1195. 1995. [as C. `brunneapunctata']

    • Anamorph: Hirsutella

  • 2Ophiocordyceps caloceroides (Berk. & M.A. Curtis) Petch, Trans. Brit. Mycol. Soc. 18: 63. 1933.

      • Cordyceps caloceroides Berk. & M.A. Curtis, J. Linn. Soc. 10: 375. 1868.

    • = Cordyceps wittii Henn., Bot. Jahrb. Syst. 23: 539. 1897.

  • 2Ophiocordyceps cantharelloides (Samson & H.C. Evans) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB504234.

    • Cordyceps cantharelloides Samson & H.C. Evans, Proc. Indian Acad. Sci., Pl. Sci. 94: 312. 1985.

  • 2Ophiocordyceps carabidicola (Kobayasi & Shimizu) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB504235.

    • Cordyceps carabidicola Kobayasi & Shimizu, Bull. Natn. Sci. Mus. Tokyo, Ser. B, 6: 85. 1980. [as C. `carabidiicola']

  • 2Ophiocordyceps cicadicola (Teng) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB504236.

    • Cordyceps cicadicola Teng, Sinensia 6: 191. 1935.

  • 2Ophiocordyceps clavata (Kobayasi & Shimizu) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB504237.

    • Cordyceps clavata Kobayasi & Shimizu, Bull. Natn. Sci. Mus. Tokyo, Ser. B, 6: 140. 1980.

  • 2Ophiocordyceps clavulata (Schwein.) Petch, Trans. Brit. Mycol. Soc. 18: 53. 1933.

      • Sphaeria clavulata Schwein., Trans. Amer. Philos. Soc. New Ser. 4, 188. 1832.

      • Xylaria clavulata (Schwein.) Berk. & M. A. Curtis, J. Linn. Soc. 10: 380. 1868.

      • Torrubia clavulata (Schwein.) Peck, Ann. Rep. N. Y. State Mus. 28: 70. 1876.

      • Cordyceps clavulata (Schwein.) Ellis & Everh., North Amer. Pyrenom. p. 61. 1892.

    • = Cordyceps pistillariiformis Berk. & Broome, Ann. Mag. Nat. Hist. Ser. 3, 7: 451. 1861 [as C. `pistillariaeformis'].

      • Torrubia pistillariiformis (Berk. & Broome) Cooke, Handb. Brit. Fungi 2: 771. 1871.

    • Anamorph: Hymenostilbe lecaniicola (Jaap) Mains

  • 1Ophiocordyceps coccidiicola (Kobayasi) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB504238.

    • Cordyceps coccidiicola Kobayasi, Bull. Natn. Sci. Mus. Tokyo, Ser. B, 4: 57. 1978.

  • 2Ophiocordyceps coccigena (Tul. & C. Tul.) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB504239.

    • Torrubia coccigena Tul. & C. Tul., Sel. Fung. Carpol. 3: 19. 1865.

    • Cordyceps coccigena (Tul. & C. Tul.) Sacc., Michelia 1: 320. 1879.

  • 2Ophiocordyceps cochlidiicola (Kobayasi & Shimizu) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB504240.

    • Cordyceps cochlidiicola Kobayasi & Shimizu, Bull. Natn. Sci. Mus. Tokyo, Ser. B, 6: 128. 1980.

  • 1Ophiocordyceps communis Hywel-Jones & Samson, sp. nov., see above.

    • Anamorph: hirsutella/hymenostilbe-like

  • 2Ophiocordyceps corallomyces (A. Möller) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB504241.

    • Cordyceps corallomyces A. Möller, Phycomyceten u. Ascomyceten, p. 217. 1901.

  • 2Ophiocordyceps crassispora (M. Zang, D.R. Yang & C.D. Li) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB504242.

    • Cordyceps crassispora M. Zang, D.R. Yang & C.D. Li, Mycotaxon 37: 58. 1990.

  • 2Ophiocordyceps crinalis (Ellis ex Lloyd) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB504243.

    • Cordyceps crinalis Ellis ex Lloyd, Mycol. Writ. 6: 912. 1920.

  • 2Ophiocordyceps cucumispora (H.C. Evans & Samson) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB504244.

    • Cordyceps cucumispora H.C. Evans & Samson, Trans. Brit. Mycol. Soc. 79: 442. 1982.

    • Anamorph: Hirsutella ovalispora H.C. Evans & Samson

  • 2Ophiocordyceps cucumispora var. dolichoderi (H.C. Evans & Samson) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB504245.

      • Cordyceps cucumispora var. dolichoderi H.C. Evans & Samson, Trans. Brit. Mycol. Soc. 79: 445. 1982.

    • Anamorph: Hirsutella ovalispora var. dolichoderi H.C. Evans & Samson

  • 2Ophiocordyceps curculionum (Tul. & C. Tul.) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB504246.

      • Torrubia curculionum Tul. & C. Tul., Sel. Fung. Carpol. 3: 20. 1865.

      • Cordyceps curculionum (Tul. & C. Tul.) Sacc., Michelia 1: 320. 1879.

      • Cordyceps bicephala subsp. curculionum (Tul. & C. Tul.) Moureau, Mém. Inst. Roy. Colon. Belge 7: 50. 1949.

    • Anamorph: Hymenostilbe

  • 2Ophiocordyceps cylindrostromata (Z.Q. Liang, A.Y. Liu & M.H. Liu) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB504247.

    • Cordyceps cylindrostromata Z.Q. Liang, A.Y. Liu & M.H. Liu, Fungal Diversity 14: 97. 2003.

  • 2Ophiocordyceps dayiensis (Z.Q. Liang) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB504248

    • Cordyceps dayiensis Z.Q. Liang, Fungal Diversity 12: 131. 2003.

  • 2Ophiocordyceps dermapterigena (Z.Q. Liang, A.Y. Liu & M.H. Liu) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB504249.

    • Cordyceps dermapterigena Z.Q. Liang, A.Y. Liu & M.H. Liu, Fungal Diversity 14: 96. 2003 (as C. `dermapteoigena').

  • 2Ophiocordyceps dipterigena (Berk. & Broome) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB504250.

      • Cordyceps dipterigena Berk. & Broome, J. Linn. Soc. 14: 111. 1875.

    • = Cordyceps muscicola A. Möller, Phycomyceten u. Ascomyceten, p. 221. 1901.

    • = Cordyceps surinamensis Henn., Hedwigia 41: 169 1902.

    • = Cordyceps oumensis Höhn., Sitzungsber. Kaiserl. Akad. Wiss. Wien 118: 309. 1909.

    • = Cordyceps ouwensii Höhn., Sitzungsber. Kaiserl. Akad. Wiss. Wien 118: 309. 1909.

    • = Cordyceps thwaitesii Lloyd, Mycol. Writ. 6: 1060. 1921.

    • = Cordyceps opposita Syd., Bot. Jahrb. Syst. 57: 325. 1922.

    • Anamorph: Hymenostilbe dipterigena Petch

  • 2Ophiocordyceps discoideicapitata (Kobayasi & Shimizu) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB504251.

    • Cordyceps discoideicapitata Kobayasi & Shimizu, Bull. Natn. Sci. Mus. Tokyo, Ser. B, 8: 85. 1982 (as C. `discoideocapitata').

  • 2Ophiocordyceps ditmarii (Quél.) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB504252.

    • Cordyceps ditmarii Quél., Bull. Soc. Bot. France 24: 330 1877. [as C. ditmari]

      • Anamorph: Hymenostilbe

  • 2Ophiocordyceps dovei (Rodway) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB504253.

      • Cordyceps dovei Rodway, Paper Proc. Roy. Soc. Tasmania for 1898–1899, p. 101. 1900.

    • = Cordyceps aemonae Lloyd, Mycol. Notes 2: 932. 1920.

    • Anamorph: hirsutella-like

  • 2Ophiocordyceps elateridicola (Kobayasi & Shimizu) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB504255.

    • Cordyceps elateridicola Kobayasi & Shimizu, Bull. Natn. Sci. Mus. Tokyo, Ser. B, 9: 4. 1983.

  • 2Ophiocordyceps elongata (Petch) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB504256.

      • Cordyceps elongata Petch, Trans. Brit. Mycol. Soc. 21: 47. 1937.

    • Anamorph: Hirsutella

  • 2Ophiocordyceps elongatiperitheciata (Kobayasi & Shimizu) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB504257.

    • Cordyceps elongatiperitheciata Kobayasi & Shimizu, Bull. Natn. Sci. Mus. Tokyo, Ser. B, 6: 126. 1980 (as C. `elongatoperitheciata').

  • 2Ophiocordyceps elongatistromata (Kobayasi & Shimizu) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB504258.

    • Cordyceps elongatistromata Kobayasi & Shimizu, Bull. Natn. Sci. Mus. Tokyo, Ser. B, 9: 12. 1983 (as C. `elongatostromata').

  • 2Ophiocordyceps emeiensis (A.Y. Liu & Z.Q. Liang) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB504259.

    • Cordyceps emeiensis A.Y. Liu & Z.Q. Liang, Mycosystema 16: 139. 1997.

  • 2Ophiocordyceps engleriana (Henn.) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB504260.

    • Cordyceps engleriana Henn., Bot. Jahrb. Syst. 23: 538. 1897.

    • Anamorph: Hymenostilbe

  • 1Ophiocordyceps entomorrhiza (Dicks.) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB504261.

      • Sphaeria entomorrhiza Dicks., Plant. Crypt. Brit., Fasc. 1: 22. 1785.

      • Cordyceps entomorrhiza (Dicks.) Fr., Obs. Mycol. 2: 317. 1818.

      • Torrubia entomorrhiza (Dicks.) Tul. & C. Tul, Sel. Fung. Carpol. 3: 13. 1865.

    • = Torrubia cinerea Tul. & C. Tul., Sel. Fung. Carpol. 3: 14. 1865.

      • Cordyceps cinerea (Tul. & C. Tul.) Sacc., Michelia 1: 320. 1879.

    • = Cordyceps carabi Quél., Comp. Rend. Assoc. Franç. Avancem. Sci. 2: 452. 1898.

    • Anamorph: Hirsutella eleutheratorum (Nees) Petch

  • 2Ophiocordyceps evdogeorgiae (Koval) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB504262.

    • Cordyceps evdogeorgiae Koval, Bot. Mater. Otd. Sporov. Rast. 14: 160. 1961.

  • 2Ophiocordyceps falcata (Berk.) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB504263.

    • Cordyceps falcata Berk., J. Bot. (Hooker) 6: 211. 1854 [Decad. Fung. No. 479].

      • Anamorph: Stilbella

  • 2Ophiocordyceps falcatoides (Kobayasi & Shimizu) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB504264.

    • Cordyceps falcatoides Kobayasi & Shimizu, Bull. Natn. Sci. Mus. Tokyo, Ser. B, 6: 91. 1980.

  • 2Ophiocordyceps fasciculatistromata (Kobayasi & Shimizu) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB504265.

    • Cordyceps fasciculatistromata Kobayasi & Shimizu, Bull. Natn. Sci. Mus. Tokyo, Ser. B, 8: 83. 1982 (as C. `fasciculatostromata').

  • 2Ophiocordyceps ferruginosa (Kobayasi & Shimizu) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB504266.

    • Cordyceps ferruginosa Kobayasi & Shimizu, Bull. Natn. Sci. Mus. Tokyo, Ser. B, 6: 139. 1980.

  • 2Ophiocordyceps filiformis (Moureau) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB504267.

    • Cordyceps filiformis Moureau, Mém. Inst. Roy. Colon. Belge 7: 14. 1949.

  • 2Ophiocordyceps formicarum (Kobayasi) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB504268

      • Cordyceps formicarum Kobayasi, Bull. Biogeogr. Soc. Japan 9: 28. 1939.

    • Anamorph: Hymenostilbe

  • 2Ophiocordyceps forquignonii (Quél.) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB504269.

      • Cordyceps forquignonii Quél., 16th Suppl. Champ. Jura et Vosges, p. 6. 1887.

    • Anamorph: Hymenostilbe muscarium Petch

  • 2Ophiocordyceps furcicaudata (Z.Q. Liang, A.Y. Liu & M.H. Liu) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB504270.

    • Cordyceps furcicaudata Z.Q. Liang, A.Y. Liu & M.H. Liu, Fungal Diversity 14: 95. 2003 (as C. `furcicaodata').

  • 2Ophiocordyceps gansuënsis (K. Zhang, C. Wang & M. Yan) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB504271.

    • Cordyceps gansuënsis K. Zhang, C. Wang & M. Yan, Trans. Mycol. Soc. Japan 30: 295. 1989.

  • 2Ophiocordyceps geniculata (Kobayasi & Shimizu) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB504272.

    • Cordyceps geniculata Kobayasi & Shimizu, Bull. Natn. Sci. Mus. Tokyo, Ser. B, 6: 85. 1980.

  • 2Ophiocordyceps gentilis (Ces.) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB504273.

    • Torrubia gentilis Ces., Atti Accad. Sci. Fis. Mat., Napoli, 8: 14. 1879.

    • Cordyceps gentilis (Ces.) Sacc., Syll. Fung. 2: 569. 1883.

  • 2Ophiocordyceps glaziovii (Henn.) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB504274.

    • Cordyceps glaziovii Henn., Naturw. Wochenschr. 6: 318. 1896.

  • 2Ophiocordyceps goniophora (Speg.) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB504275.

    • Cordyceps goniophora Speg., Bol. Acad. Nac. Ci. Córdoba 11: 307 1889.

  • 2Ophiocordyceps gracilioides (Kobayasi) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB504276.

      • Cordyceps gracilioides Kobayasi, Sci. Rep. Tokyo Bunrika Daigaku, Sect. B, 5: 140. 1941.

    • Anamorph: paecilomyces-like

  • 1Ophiocordyceps gracilis (Grev.) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB504277.

      • Xylaria gracilis Grev., Scot. Crypt. Fl. 2. t. 8. 1824.

      • Cordyceps gracilis (Grev.) Durieu & Mont., Fl. Algérie Crypt. 1: 449. 1846.

    • = Cordyceps mawleyi Westwood, Gard. Chron. Ser. 3, 9: 553. 1891.

    • Anamorph: Paraisaria dubia (Delacr.) Samson & B.L. Brady

  • 2Ophiocordyceps gryllotalpae Petch, Trans. Brit. Mycol. Soc. 25: 255. 1941.

    • Cordyceps gryllotalpae Kobayasi, Sci. Rep. Tokyo Bunrika Daigaku 5: 70. 1942 [non Lloyd 1924].

    • Cordyceps koreana Kobayasi, Bull. Natn. Sci. Mus. Tokyo, Ser. B, 7: 8. 1981.

  • 1Ophiocordyceps heteropoda (Kobayasi) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB504278.

    • Cordyceps heteropoda Kobayasi, Bull. Biogeogr. Soc. Japan 9: 158. 1939.

  • 2Ophiocordyceps hiugensis (Kobayasi & Shimizu) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB504279.

    • Cordyceps hiugensis Kobayasi & Shimizu, Bull. Natn. Sci. Mus. Tokyo, Ser. B, 9: 3. 1983.

  • 2Ophiocordyceps huberiana (Henn.) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB504280.

    • Cordyceps huberiana Henn., Hedwigia 48: 105. 1909.

  • 2Ophiocordyceps humbertii (C.P. Robin) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB504281.

      • Cordyceps humbertii C.P. Robin, in Tul. & C. Tul., Sel. Fung. Carpol. 3: 18. 1865 (as C. `humberti').

    • Anamorph: Hirsutella saussurei (Cooke) Speare

  • 2Ophiocordyceps insignis (Cooke & Ravenel) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB504282.

    • Cordyceps insignis Cooke & Ravenel, Grevillea 12: 38. 1883.

  • 1Ophiocordyceps irangiensis (Moureau) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB504283.

      • Cordyceps irangiensis Moureau, Lejeunia, Mém. 15: 33. 1961.

    • Anamorph: Hymenostilbe

  • 2Ophiocordyceps japonensis (Hara) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB504284.

    • Cordyceps japonensis Hara, Bot. Mag. Tokyo 28: 351. 1914.

  • 2Ophiocordyceps jiangxiensis (Z.Q. Liang, A.Y. Liu & Yong C. Jiang) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB504285.

    • Cordyceps jiangxiensis Z.Q. Liang, A.Y. Liu & Yong C. Jiang, Mycosystema 20: 30. 2001.

  • 2Ophiocordyceps jinggangshanensis (Z.Q. Liang, A.Y. Liu & Yong C. Jiang) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB504286.

    • Cordyceps jinggangshanensis Z.Q. Liang, A.Y. Liu & Yong C. Jiang, Mycosystema 20: 307. 2001.

  • 2Ophiocordyceps kangdingensis (M. Zang & N. Kinjo) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB504287.

    • Cordyceps kangdingensis M. Zang & N. Kinjo, Mycotaxon 66: 221. 1998.

  • 2Ophiocordyceps kniphofioides (H.C. Evans & Samson) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB504288.

      • Cordyceps kniphofioides H.C. Evans & Samson, Trans. Brit. Mycol. Soc. 79: 434. 1982.

    • Anamorph: Hirsutella stilbelliformis H.C. Evans & Samson

  • 2Ophiocordyceps kniphofioides var. dolichoderi (H.C. Evans & Samson) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB504289.

      • Cordyceps kniphofioides var. dolichoderi H.C. Evans & Samson, Trans. Brit. Mycol. Soc. 79: 437. 1982.

    • Anamorph: Hirsutella stilbelliformis var. dolichoderi H.C. Evans & Samson

  • 2Ophiocordyceps kniphofioides var. monacidis (H.C. Evans & Samson) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB504290.

      • Cordyceps kniphofioides var. monacidis H.C. Evans & Samson, Trans. Brit. Mycol. Soc. 79: 439. 1982.

    • Anamorph: Hirsutella stilbelliformis var. monacidis H.C. Evans & Samson

  • 2Ophiocordyceps kniphofioides var. ponerinarum (H.C. Evans & Samson) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB504291.

      • Cordyceps kniphofioides var. ponerinarum H.C. Evans & Samson, Trans. Brit. Mycol. Soc. 79: 441. 1982.

    • Anamorph: Hirsutella stilbelliformis var. ponerinarum H.C. Evans & Samson

  • 2Ophiocordyceps koningsbergeri (Penz. & Sacc.) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB504292.

    • Cordyceps koningsbergeri Penz. & Sacc., Malpighia 11: 522. 1897.

  • 1Ophiocordyceps konnoana (Kobayasi & Shimizu) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB504293.

    • Cordyceps konnoana Kobayasi & Shimizu, Bull. Natn. Sci. Mus. Tokyo, Ser. B, 6: 84. 1980.

  • 2Ophiocordyceps lachnopoda (Penz. & Sacc.) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB504295.

    • Cordyceps lachnopoda Penz. & Sacc., Malpighia 11: 521. 1897.

  • 2Ophiocordyceps larvarum (Westwood) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB504397.

      • Sphaeria larvarum Westwood, Proc. Entomol. Soc. Lond. 2: 6. 1836.

      • Cordyceps larvarum (Westwood) Olliff, Gaz. New South Wales 6: 410. 1895.

    • = Cordyceps huegelii Corda, Icon. Fung. 4: 44. 1840.

  • 2Ophiocordyceps lloydii (H.S. Fawc.) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB504296.

      • Cordyceps lloydii H.S. Fawc., Ann. Mag. Nat. Hist., Ser. 5, 18: 317. 1886.

    • = Cordyceps sheeringii Massee, Ann. Bot. 5: 510. 1890.

    • = Cordyceps subdiscoidea Henn., Hedwigia 41: 168. 1902.

    • Anamorph: Hymenostilbe formicarum Petch

  • 2Ophiocordyceps lloydii var. binata (H.C. Evans & Samson) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB504297.

    • Cordyceps lloydii var. binata H.C. Evans & Samson, Trans. Brit. Mycol. Soc. 82: 133. 18: 31. 1984.

  • 1Ophiocordyceps longissima (Kobayasi) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB504298.

    • Cordyceps longissima Kobayasi, Bull. Natn. Sci. Mus. Tokyo 6: 300. 1963.

  • 2Ophiocordyceps lutea (Moureau) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB504299.

      • Cordyceps lutea Moureau, Mém. Inst. Roy. Colon. Belge 7: 41. 1949.

    • Anamorph: Hymenostilbe sulphurea Samson & H.C. Evans

  • 2Ophiocordyceps macularis Mains, Proc. Amer. Philos. Soc. 74: 269. 1934.

    • Cordyceps macularis (Mains) Mains, Pap. Michigan Acad. Sci. 25: 82. 1940.

  • 1Ophiocordyceps melolonthae (Tul. & C. Tul.) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB504300.

    • Torrubia melolonthae Tul. & C. Tul., Sel. Fung. Carpol. 3: 12. 1865.

    • Cordyceps melolonthae (Tul. & C. Tul.) Sacc., Michelia 1: 320. 1879.

  • 2Ophiocordyceps melolonthae var. rickii (Lloyd) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB504301.

    • Cordyceps rickii Lloyd, Mycol. Writ. 6: 914. 1920.

    • Cordyceps melolonthae var. rickii (Lloyd) Mains, Mycologia 50: 198 1958.

  • 2Ophiocordyceps michiganensis (Mains) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB504302.

    • Cordyceps michiganensis Mains, Proc. Amer. Philos. Soc. 74: 266. 1934.

  • 2Ophiocordyceps minutissima (Kobayasi & Shimizu) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB504303.

    • Cordyceps minutissima Kobayasi & Shimizu, Bull. Natn. Sci. Mus. Tokyo, Ser. B, 6: 77. 1980.

  • 2Ophiocordyceps monticola (Mains) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB504304.

    • Cordyceps monticola Mains, Mycologia 32: 310. 1940.

  • 2Ophiocordyceps mrciensis (Aung, J.C. Kang, Z.Q.Liang, Soytong & K.D. Hyde) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB504305.

    • Cordyceps mrciensis Aung, J.C. Kang, Z.Q.Liang, Soytong & K.D. Hyde, Mycotaxon 97: 236. 2006.

  • 2Ophiocordyceps multiaxialis (M. Zang & Kinjo) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB504306.

    • Cordyceps multiaxialis M. Zang & Kinjo, Mycotaxon 66: 224. 1998.

  • 2Ophiocordyceps myrmecophila (Ces.) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB504307.

      • Cordyceps myrmecophila Ces., Bot. Zeitung 4: 877. 1846.

      • Torrubia myrmecophila (Ces.) Tul. & C. Tul., Sel. Fung. Carpol. 3: 18. 1865.

    • Anamorph: Hymenostilbe

  • 2Ophiocordyceps neovolkiana (Kobayasi) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB504308.

    • Cordyceps neovolkiana Kobayasi, Sci. Rep. Tokyo Bunrika Daigaku, Sect. B, 5: 169. 1941.

    • Anamorph: Hirsutella neo-volkiana Kobayasi

  • 2Ophiocordyceps nepalensis (M. Zang & Kinjo) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB504309.

    • Cordyceps nepalensis M. Zang & Kinjo, Mycotaxon 66: 224. 1998.

  • 2Ophiocordyceps nigra (Samson, H.C. Evans & E.S. Hoekstra) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB504310.

    • Cordyceps nigra Samson, H.C. Evans & E.S. Hoekstra, Proc. K. Ned. Akad. Wet., Ser. C, Biol. Med. Sci. 85: 596. 1982.

  • 1Ophiocordyceps nigrella (Kobayasi & Shimizu) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB504311.

    • Cordyceps nigrella Kobayasi & Shimizu, Icon. Veg. Wasps and Plant Worms p. 145. 1983.

    • Cordyceps nigra Kobayasi & Shimizu, Bull. Natn. Sci. Mus. Tokyo 9(1): 13. 1983 [non Samson et al. 1982]

  • 2Ophiocordyceps nigripes (Kobayasi & Shimizu) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB504312.

    • Cordyceps nigripes Kobayasi & Shimizu, Bull. Natn. Sci. Mus. Tokyo, Ser. B, 8: 116. 1982 (as C. `nigripoda').

  • 1Ophiocordyceps nutans (Pat.) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB504313.

      • Cordyceps nutans Pat., Bull. Soc. Mycol. France 3: 127. 1887.

      • Cordyceps bicephala subsp. nutans (Pat.) Moureau, Mém. Inst. Roy. Colon. Belge 7: 47. 1949.

    • Anamorph: Hymenostilbe nutans Samson & H.C. Evans

  • 2Ophiocordyceps obtusa (Penz. & Sacc.) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB504314.

    • Cordyceps obtusa Penz. & Sacc., Malpighia 11: 523. 1897.

  • 2Ophiocordyceps octospora (M. Blackwell & Gilb.) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB504315.

      • Cordycepioideus octosporus M. Blackwell & Gilb., Mycologia 73: 358. 1981.

    • Anamorph: Hirsutella

  • 2Ophiocordyceps odonatae (Kobayasi) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB504316.

      • Cordyceps odonatae Kobayasi, Bull. Natn. Sci. Mus. Tokyo, Ser. B, 7: 6. 1981.

    • Anamorph: Hymenostilbe odonatae Kobayasi

  • 2Ophiocordyceps osuzumontana (Kobayasi & Shimizu) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB504317.

    • Cordyceps osuzumontana Kobayasi & Shimizu, Bull. Natn. Sci. Mus. Tokyo, Ser. B, 6: 77. 1980.

  • 2Ophiocordyceps owariensis (Kobayasi) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB504318.

    • Cordyceps owariensis Kobayasi, Bull. Biogeogr. Soc. Japan 9: 166. 1939.

  • 2Ophiocordyceps owariensis f. viridescens (Uchiyama & Udagawa) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB504319.

      • Cordyceps owariensis f. viridescens Uchiyama & Udagawa, Mycoscience 43: 136. 2002.

    • Anamorph: Nomuraea owariensis Uchiyama & Udagawa

  • 2Ophiocordyceps oxycephala (Penz. & Sacc.) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB504320.

      • Cordyceps oxycephala Penz. & Sacc., Malpighia 11: 521. 1897.

      • Cordyceps sphecocephala f. oxycephala (Penz. & Sacc.) Kobayasi, Trans. Mycol. Soc. Japan 23: 361. 1982.

    • Anamorph: Hymenostilbe

  • 2Ophiocordyceps paludosa Mains, Proc. Amer. Philos. Soc. 74: 269. 1934.

      • Cordyceps paludosa (Mains) Mains, Pap. Michigan Acad. Sci. 25: 83. 1940.

    • Anamorph: Polycephalomyces paludosus Mains

  • 2Ophiocordyceps pentatomae (Koval) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB504321.

      • Cordyceps pentatomae Koval, Nov. Sist. Niz. Rast. 1: 166. 1964. (as C. `pentatomi')

    • Anamorph: Hirsutella

  • 2Ophiocordyceps petchii (Mains) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB504322.

    • Cordyceps petchii Mains, Bull. Torrey Bot. Club 86: 47. 1959.

    • Cordyceps ramosa Petch, Trans. Brit. Mycol. Soc 21: 42. 1937 [non Teng 1936].

  • 2Ophiocordyceps proliferans (Henn.) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB504323.

    • Cordyceps proliferans Henn., Hedwigia 43: 248. 1904.

  • 2Ophiocordyceps pseudolloydii (H.C. Evans & Samson) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB504324.

    • Cordyceps pseudolloydii H.C. Evans & Samson, Trans. Brit. Mycol. Soc. 82: 133. 1984.

  • 2Ophiocordyceps pseudolongissima (Kobayasi & Shimizu) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB504325.

    • Cordyceps pseudolongissima Kobayasi & Shimizu, Bull. Natn. Sci. Mus. Tokyo, Ser. B, 8: 119. 1982.

  • 2Ophiocordyceps purpureostromata (Kobayasi) ex G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB504326.

    • Cordyceps purpureostromata Kobayasi, Bull. Natn. Sci. Mus. Tokyo, Ser. B, 6: 136. 1980. Type Shimizu No. 128, preserved in TNS; therefore the basionym was valid from the beginning.

  • 2Ophiocordyceps purpureostromata f. recurvata (Kobayasi) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB504327.

    • Cordyceps purpureostromata f. recurvata Kobayasi, Bull. Natn. Sci. Mus. Tokyo, Ser. B, 6: 138. 1980.

  • 1Ophiocordyceps ravenelii (Berk. & M.A. Curtis) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB504328.

    • Cordyceps ravenelii Berk. & M.A. Curtis, J. Linn. Soc. 1: 159. 1857.

  • 1Ophiocordyceps rhizoidea (Höhn.) Petch, Trans. Brit. Mycol. Soc. 1: 74. 1931.

      • Cordyceps rhizoidea Höhn., Sitzungsber. Kaiserl. Akad. Wiss. Wien 118: 307. 1909.

    • Anamorph: Hirsutella

  • 2Ophiocordyceps ridleyi (Massee) Kobayasi, Bull. Biogeogr. Soc. Japan 9: 271. 1939.

    • Cordyceps ridleyi Massee, Bull. Misc. Inform. Roy. Bot. Gard. Kew, p. 173. 1899.

  • 1Ophiocordyceps robertsii (Hook.) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB504329.

    • ≡ Sphaeria robertsii Hook. Icon. Plant. 1 pl. 6. 1837.

    • ≡ Cordyceps robertsii (Hook.) Berk., Fl. New Zealand 2: 202. 1855.

  • 2Ophiocordyceps rubripunctata (Moureau) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB504331.

      • Cordyceps rubripunctata Moureau, Mém. Inst. Roy. Colon. Belge 7: 26. 1949.

    • Anamorph: Hirsutella rubripunctata Samson, H.C. Evans & Hoekstra

  • 2Ophiocordyceps rubiginosiperitheciata (Kobayasi & Shimizu) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB504332.

    • Cordyceps rubiginosiperitheciata Kobayasi & Shimizu, Bull. Natn. Sci. Mus. Tokyo, Ser. B, 9: 14. 1983 (as C. `rubiginosoperitheciata').

  • 2Ophiocordyceps ryogamiensis (Kobayasi & Shimizu) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB504333.

    • Cordyceps ryogamiensis Kobayasi & Shimizu, Bull. Natn. Sci. Mus. Tokyo, Ser. B, 9: 4. 1983.

  • 2Ophiocordyceps salebrosa (Mains) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB504334.

    • Cordyceps salebrosa Mains, Mycologia 39: 541. 1947.

  • 2Ophiocordyceps scottiana (Olliff) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB504335.

    • Cordyceps scottiana Olliff, Agric. Gaz. New South Wales 6: 407. 1895.

  • 2Ophiocordyceps selkirkii (Olliff) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB504338.

    • Cordyceps selkirkii Olliff, Agric. Gaz. New South Wales 6: 411. 1895.

  • 2Ophiocordyceps sichuanensis (Z.Q. Liang & B. Wang) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB504339.

    • Cordyceps sichuanensis Z.Q. Liang & B. Wang, Fungal Diversity 12: 129. 2003.

  • 1Ophiocordyceps sinensis (Berk.) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB504340.

      • Sphaeria sinensis Berk., J. Bot. (Hooker) 2: 207. 1843.

      • Cordyceps sinensis (Berk.) Sacc., Michelia 1: 320. 1879.

    • Anamorph: Hirsutella sinensis X.J. Liu, Y.L. Guo, Y.X. Yu & W. Zeng

  • 2Ophiocordyceps smithii (Mains) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB504341.

    • Cordyceps smithii Mains, J. Elisha Mitchell Sci. Soc. 55: 127. 1939.

  • 1Ophiocordyceps sobolifera (Hill ex Watson) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB504342.

      • Clavaria sobolifera Hill ex Watson, Philos. Trans. Roy. Soc. Lond. 53: 271. 1763.

      • Sphaeria sobolifera (Hill ex Watson) Berk., J. Bot. (Hooker) 2: 207. 1843.

      • Torrubia sobolifera (Hill ex Watson) Tul. & C. Tul., Sel. Fung. Carpol. 3: 10. 1865.

      • Cordyceps sobolifera (Hill ex Watson) Berk. & Broome, J. Linn. Soc. 14: 110. 1875.

    • Anamorph: Beauveria sobolifera Z.Y. Liu, Z.Q. Liang, Whalley, A.Y. Liu & Y.J. Yao

  • 1Ophiocordyceps sphecocephala (Klotzsch ex Berk.) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB504343.

      • Sphaeria sphecocephala Klotzsch ex Berk., J. Bot. (Hooker) 2: 206. 1843.

      • Torrubia sphecocephala (Klotzsch ex Berk.) Tul. & C. Tul., Sel. Fung. Carpol. 3: 18. 1865.

      • Cordyceps sphecocephala (Klotzsch ex Berk.) Berk. & M.A. Curtis, in Berkeley, J. Linn. Soc., Bot. 10: 376. 1868.

    • Anamorph: Hymenostilbe

  • 2Ophiocordyceps stipillata (Z.Q. Liang & A.Y. Liu) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB504344.

    • Cordyceps stipillata Z.Q. Liang & A.Y. Liu, Mycosystema 21: 11. 2002.

  • 1Ophiocordyceps stylophora (Berk. & Broome) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB504345.

      • Cordyceps stylophora Berk. & Broome, J. Linn. Soc. 1: 158. 1857.

    • Anamorph: Hirsutella stylophora Mains

  • 2Ophiocordyceps subflavida (Mains) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB504346.

    • Cordyceps subflavida Mains, Bull. Torrey Bot. Club 86: 47. 1959.

    • Cordyceps albida Pat. & Gaillard, Bull. Soc. Mycol. France 7: 116. 1888 [non Berk. & M.A. Curtis ex Cooke 1884].

  • 2Ophiocordyceps subunilateralis (Henn.) Kobayasi, Bull. Biogeogr. Soc. Japan 9: 271. 1939.

    • Cordyceps subunilateralis Henn., Hedwigia 41: 168. 1902.

  • 1Ophiocordyceps superficialis (Peck) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB504347.

    • Torrubia superficialis Peck, Rep. N. Y. State Botanist 28: 70. 1876.

    • Cordyceps superficialis (Peck) Sacc., Syll. Fung. 2: 574. 1883.

  • 2Ophiocordyceps superficialis f. crustacea (Kobayasi & Shimizu) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB504348.

    • Cordyceps superficialis f. crustacea Kobayasi & Shimizu, Bull. Natn. Sci. Mus. Tokyo, Ser. B, 6: 82. 1980.

  • 2Ophiocordyceps takaoënsis (Kobayasi) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB504349.

    • Cordyceps sobolifera var. takaoënsis Kobayasi, Bull. Biogeogr. Soc. Japan 9: 165. 1939.

    • Cordyceps takaoënsis (Kobayasi) Kobayasi, Sci. Rep. Tokyo Bunrika Daigaku, Sect. B, 5: 130. 1941.

  • 2Ophiocordyceps taylorii (Berk.) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB504350.

    • Sphaeria taylorii Berk., J. Bot. (Hooker) 2: 209. 1843 (as S. `taylori').

    • Cordyceps taylorii (Berk.) Sacc., Michelia 1: 320. 1879.

  • 2Ophiocordyceps thyrsoides (A. Möller) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB504351.

    • Cordyceps thyrsoides A. Möller, Phycomyceten u. Ascomyceten, p. 221. 1901.

  • 1Ophiocordyceps tricentri (Yasuda) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB504352.

      • Cordyceps tricentri Yasuda, in Lloyd, Mycol. Writ. 4: 568. 1915 (as C. `tricentrus').

    • = Cordyceps aphrophorae Yasuda, Bot. Mag. Tokyo 36: 51. 1922.

  • 2Ophiocordyceps uchiyamae (Kobayasi & Shimizu) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB504353.

    • Cordyceps uchiyamae Kobayasi & Shimizu, Bull. Natn. Sci. Mus. Tokyo, Ser. B, 6: 125. 1980.

  • 1Ophiocordyceps unilateralis (Tul. & C. Tul.) Petch, Trans. Brit. Mycol. Soc. 16: 74. 1931.

      • Torrubia unilateralis Tul. & C. Tul., Sel. Fung. Carpol. 3: 18. 1865.

      • Cordyceps unilateralis (Tul. & C. Tul.) Sacc., Syll. Fung. 2:570. 1883.

    • = Torrubia formicivora Tul. & C. Tul., Sel. Fung. Carpol. 3: 18. 1865.

      • Cordyceps formicivora (Tul. & C. Tul.) J. Schröt., Krypt.-Fl. Schlesien 3(2) 27. 1894.

    • Anamorph: Hirsutella formicarum Petch

  • 2Ophicordyceps unilateralis var. clavata Kobayasi, Bull. Biogeogr. Soc. Japan 9: 272. 1939.

    • Cordyceps unilateralis var. clavata (Kobayasi) Kobayasi, Sci. Rep. Tokyo Bunrika Daigaku, Sect. B, 5: 78. 1941.

  • 1Ophiocordyceps variabilis (Petch) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB504354.

      • Cordyceps variabilis Petch, Trans. Brit. Mycol. Soc. 21: 42. 1937.

    • = Cordyceps viperina Mains, Mycologia 29: 74. 1937.

    • Anamorph: Syngliocladium

  • 2Ophiocordyceps voeltzkowii (Henn.) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB504355.

    • Cordyceps voeltzkowii Henn., in Voeltzkow, Reise Ostafrica 3: 29. 1908.

  • 2Ophiocordyceps volkiana (A. Möller) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB504356.

      • Cordyceps volkiana A. Möller, Phycomyceten u. Ascomyceten, p. 233. 1901.

    • Anamorph: Hirsutella

  • 2Ophiocordyceps wuyishanensis (Z.Q. Liang, A.Y. Liu & J.Z. Huang) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB504357.

      • Cordyceps wuyishanensis Z.Q. Liang, A.Y. Liu & J.Z. Huang, Mycosystema 21: 162. 2002.

    • Anamorph: paecilomyces-like

  • 1Ophiocordyceps yakusimensis (Kobayasi) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB504358.

    • Cordyceps yakusimensis Kobayasi, Bull. Natn. Sci. Mus. Tokyo 6: 302. 1963.

  • 2Ophiocordyceps zhangjiajiensis (Z.Q. Liang & A.Y. Liu) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB504359.

      • Cordyceps zhangjiajiensis Z.Q. Liang & A.Y. Liu, Mycosystema 21: 163. 2002.

    • Anamorph: Hirsutella zhangjiajiensis Z.Q. Liang & A.Y. Liu

CLAVICIPITACEAE Clade C

Clavicipitaceae clade C is a strongly supported group that includes the type species, C. militaris, of Cordyceps (MP-BP = 100 %, ML-BP = 100 %, PP = 1.00 in Figs Figs1, 1, ,2).2). Because of the non-monophyly of Cordyceps, we reintroduce the preexisting family name Cordycipitaceae for Clavicipitaceae clade C. This family name was not validly published and it is validated herein based on the type genus Cordyceps. Most of the species in the family parasitize hosts in leaf litter, moss, or upper soil layers and produce superficial to partially immersed to completely immersed perithecia on a fleshy stroma or subiculum that is pallid or brightly coloured. The family contains species of Cordyceps and Torrubiella (Figs (Figs5, 5, ,7).7). The unispecific genus Phytocordyceps is also recognized as a member of this family and transferred to Cordyceps (Fig. 6). In addition, the recent molecular study shows that species of the genera Ascopolyporus A. Möller and Hyperdermium J. White, R. Sullivan, G. Bills & N. Hywel-Jones 2000 [non Link], both pathogens of scale insects, are also inferred to be members of the family (Sullivan et al. 2000, Bischoff et al. 2005).

An external file that holds a picture, illustration, etc.
Object name is 1fig7.jpg

A–S. Representative species of Cordyceps and its allies in Clavicipitaceae clade B. T–X. Ascus and ascospore of Cordyceps species in this clade. A. C. ophioglossoides on truffle (Elaphomyces sp.: Eurotiomycetes). B. C. japonica on truffle (Elaphomyces muricatus: Eurotiomycetes), OSC 110991. C. C. subsessilis on scarabaeid beetle in decaying wood (Coleoptera), OSC 128581. D. C. gracilis on lepidopteran larva, EFCC 10121. E. C. heteropoda on nymph of cicada (Hemiptera), EFCC 1012. F. C. nigrella on coleopteran larva, EFCC 3438. G. C. sobolifera on nymph of cicada (Hemiptera), EFCC 7768. H. C. longissima on nymph of cicada (Hemiptera), EFCC 8576. I. C. unilateralis on ant (Hymenoptera). J. C. cochlidiicola on lepidopteran larva, EFCC 377. K. C. agriotidis on coleopteran larva, EFCC 5274. L. C. sinensis on larva of Hepialus sp. (Lepidoptera), EFCC 3248. M. C. brunneipunctata on coleopteran larva. N. C. sphecocephala on wasp (Hymenoptera). O. C. nutans on stink bug (Hemiptera). P. C. tricentri on adult of Tricentrus sp. (Hemiptera), EFCC 1001; bar = 10 mm. Q. Hymenostilbe odonatae on adult of dragonfly (Odonata), EFCC 12459; bar = 10 mm. R. Hirsutella sp. on wasp (Hymenoptera). S. Paecilomyces lilacinus. T. C. robertsii, ascus with disarticulating ascospores, MICH 2874. U. C. acicularis, ascus and nondisarticulating ascospores, OSC 110987. V. C. paludosa, non-disarticulating ascospores, MICH 14366. W. C. variabilis, disarticulated part-spores in ascus, and X. Part-spores, OSC 128581. Scale bars: A–B = 10 mm, C = 1 mm, D–H = 10 mm, I = 5 mm, J–S = 10 mm, T–X = 10 μm.

CORDYCIPITACEAE Kreisel 1969 ex G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, fam. nov. MycoBank MB504360.

Cordycipitaceae Kreisel, Grundz. Natürl. Syst. Pilze: 112. 1969 [nom. inval., Art. 36].

Stromata vel subiculum pallida vel laete colorata, carnosa. Perithecia superficialia vel omnino immersa, perpendicularia ad superficiem. Asci cylindrici, apice inspissato. Ascosporae cylindricae, multiseptatae, maturae diffrangentes vel integrae remanentes.

Stromata or subiculum pallid or brightly pigmented, fleshy. Perithecia superficial to completely immersed, oriented at right angles to the surface of the stroma. Asci cylindrical with thickened ascus apex. Ascospores usually cylindrical, multiseptate, disarticulating into part-spores or remaining intact at maturity.

Type: Cordyceps Fr.

Teleomorphic genera: Ascopolyporus, Cordyceps, Hyperdermium, Torrubiella.

Anamorphic genera: Beauveria, Engyodontium, Isaria, Lecanicillium, mariannaea-like, Microhilum, Simplicillium.

CORDYCEPS Fr., Observ. Mycol. 2 (revis.): 316. 1818 emend. G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora

= Phytocordyceps C.H. Su & H.-H. Wang, Mycotaxon 2: 338. 1986.

Stromata or subiculum pallid or brightly pigmented, fleshy. Perithecia superficial to completely immersed, ordinal in arrangement. Asci hyaline, cylindrical with thickened ascus apex. Ascospores hyaline, cylindrical, multiseptate, disarticulating into part-spores or nondisarticulating, rarely possessing a thread-like structure connecting the fusiform ends.

Type: Cordyceps militaris (L.: Fr.) Fr., Observ. Mycol. 2(revis.): 317. 1818.

Anamorphic genera: Beauveria, Isaria, Lecanicillium, mariannaea-like, Microhilum, Simplicillium.

Commentary: Species of Cordyceps s. s. are characterized by possessing fleshy stromata that are pallid or brightly coloured. Because species of Torrubiella are interspersed among Cordyceps species in the basal part of the Cordycipitaceae, its ultimate application to a monophyletic taxon within the Cordycipitaceae is not clear, however (Fig. 10). The genus Torrubiella was erected in 1885 by Boudier with the type species T. aranicida Boud. (Kobayasi & Shimizu 1982). Our sampling included several species of Torrubiella that were interspersed amongst species of Cordycipitaceae, but we could not get hold of T. aranicida. Thus, Cordyceps s. s. is narrowly applied to the strongly supported clade (MP-BP = 98 %, ML-BP = 98 %, PP = 1.00 in Figs Figs1, 1, ,2, 2, ,10)10) that includes Cordyceps species closely related to C. militaris. Cordyceps species that are placed outside of the Cordyceps s. s. node, but within the Cordycipitaceae, are provisionally retained within Cordyceps s. l. Torrubiella species that are part of the Cordyceps s. s. are transferred accordingly. The full extent to which the names Cordyceps and Torrubiella will ultimately be applied awaits additional sampling of Torrubiella, especially that of T. aranicida with the possibility that Torrubiella will need to be synonymized with Cordyceps. Although Phytocordyceps is characterized by its possession of bola-ascospores, it is also synonymized with Cordyceps because of its phylogenetic placement (Figs (Figs8, 8, ,1010).

Accepted names and new combinations for Cordyceps s. s.

The following taxa are accepted species of Cordyceps s. s. based on their inclusion in molecular phylogenies presented herein1 (see Table 1) or morphological descriptions matching the characters described above2. Where known we provide the anamorph connection for the species of Cordyceps s. s.

  • 2Cordyceps ampullacea Kobayasi & Shimizu, Bull. Natn. Sci. Mus. Tokyo, Ser. B, 8: 112. 1982.

  • 2Cordyceps bassiana Z.Z. Li, C.R. Li, B. Huang & M.Z. Fan, Chinese Science Bulletin 46: 751. 2001.

    • Anamorph: Beauveria bassiana (Bals.) Vuill.

  • 2Cordyceps belizensis Mains, Mycologia 32: 21. 1940.

  • 1Cordyceps bifusispora O.E. Erikss., Mycotaxon 15: 185. 1982.

    • Anamorph: Septofusidium bifusisporum Z.Y. Liu, Z.Q. Liang & A.Y. Liu

  • 2Cordyceps brongniartii Shimazu, Trans. Mycol. Soc. Japan 29: 328. 1988.

    • Anamorph: Beauveria brongniartii (Sacc.) Petch

  • 2Cordyceps chichibuënsis Kobayasi & Shimizu, Bull. Natn. Sci. Mus. Tokyo, Ser. B, 6: 87. 1980.

  • 2Cordyceps coccinea Penz. & Sacc., Malpighia 11: 524. 1897.

  • 2Cordyceps coccinea var. subochracea Penz. & Sacc., Malpighia 1: 231. 1901.

  • 1Cordyceps confragosa (Mains) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB504361.

      • Torrubiella confragosa Mains, Mycologia 41: 305. 1949.

    • Anamorph: Lecanicillium lecanii (Zimm.) Zare & W. Gams

  • 2Cordyceps erotyli Petch, Trans. Brit. Mycol. Soc. 21: 40. 1937.

  • 2Cordyceps exasperata A.F. Vital, Anais Soc. Biol. Pernambuco 14: 65. 1956.

  • 2Cordyceps flavobrunnescens Henn., in Warburg, Monsunia 1: 164. 1900.

  • 2Cordyceps formosana Kobayasi & Shimizu, Bull. Natn. Sci. Mus. Tokyo, Ser. B, 7: 113. 1981.

  • 2Cordyceps gryllotalpae Lloyd, Mycol. Writ. 6: 913. 1920.

  • 2Cordyceps hepialidicola Kobayasi & Shimizu, Bull. Natn. Sci. Mus. Tokyo, Ser. B, 9: 11. 1983.

  • 2Cordyceps isarioides M.A. Curtis, Ann. Bot. 9: 36. 1895.

  • 2Cordyceps kyusyuënsis A. Kawam., Icon. Jap. Fungi 8: 841. 1955.

    • Anamorph: Sporotrichum formosanum Kobayasi

  • 2Cordyceps locustiphila Henn., Hedwigia 43: 246. 1904.

  • 1Cordyceps militaris (L.: Fr.) Fr., Obs. Mycol. 2: 317. 1818.

      • Clavaria militaris L., Sp. Plantarum, p. 1182. 1753.

      • Hypoxylon militare (L.) Mérat, Nouv. Fl. Envir. Paris, p. 137. 1821.

      • Xylaria militaris (L.) Gray, Nat. Arr. Brit. Pl. (London), p. 510. 1821.

      • Sphaeria militaris (L.: Fr.) Fr., Syst. Mycol. 2: 325. 1823.

      • Torrubia militaris (L.: Fr.) Tul. & C. Tul., Sel. Fung. Carpol. 3: 6. 1865.

    • Anamorph: Lecanicillium

  • 2Cordyceps miryensis Henn., Hedwigia 43: 247. 1904.

  • 2Cordyceps mitrata Pat., Bull. Soc. Mycol. France 14: 196. 1898.

  • 2Cordyceps nikkoënsis Kobayasi, Sci. Rep. Tokyo Bunrika Daigaku, Sect. B, 5: 134. 1941.

  • 1Cordyceps ninchukispora (C.H. Su & H.H. Wang) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB504362.

      • Phytocordyceps ninchukispora C.H. Su & H.-H. Wang, Mycotaxon 26: 338. 1986.

    • Anamorph: acremonium-like

  • 1Cordyceps ochraceostromata Kobayasi & Shimizu, Bull. Natn. Sci. Mus. Tokyo, Ser. B, 6: 132. 1980.

  • 2Cordyceps ogurasanensis Kobayasi & Shimizu, Bull. Natn. Sci. Mus. Tokyo, Ser. B, 8: 80. 1982.

  • 2Cordyceps oncoperae P.J. Wright, J. Invert. Pathol. 61: 211. 1994.

  • 2Cordyceps polyarthra A. Möller, Phycomyceten u. Ascomyceten, p. 213. 1901.

    • = Cordyceps subpolyarthra Henn., Hedwigia 41: 11. 1902.

    • = Cordyceps concurrens Lloyd, Mycol. Writ. 7: 1180. 1923.

    • Anamorph: Isaria tenuipes Peck

  • 1Cordyceps pruinosa Petch, Trans. Brit. Mycol. Soc. 10: 38. 1924.

    • Anamorph: Mariannaea pruinosa Z.Q. Liang

  • 2Cordyceps rosea Kobayasi & Shimizu, Bull. Natn. Sci. Mus. Tokyo, Ser. B, 8: 112. 1982.

  • 1Cordyceps roseostromata Kobayasi & Shimizu, Bull. Natn. Sci. Mus. Tokyo, Ser. B, 9: 10. 1983.

  • 1Cordyceps scarabaeicola Kobayasi, Bull. Natn. Sci. Mus. Tokyo, Ser. B, 2: 137. 1976.

    • Anamorph: Beauveria

  • 2Cordyceps singeri Mains, Bull. Torrey Bot. Club 81: 499. 1954.

  • 2Cordyceps spegazzinii M.S. Torres, J.F. White & J.F. Bisch., Mycotaxon 94: 257. 2006.

    • Anamorph: Evlachovaea

  • 1Cordyceps staphylinidicola Kobayasi & Shimizu, Bull. Natn. Sci. Mus. Tokyo, Ser. B, 8: 88. 1982 [as C. `staphylinidaecola']

    • Anamorph: Beauveria

  • 1Cordyceps takaomontana Yakush. & Kumaz., Sci. Rep. Tokyo Bunrika Daigaku, Sect. B, 5: 108. 1941.

    • Anamorph: Isaria tenuipes Peck

  • 2Cordyceps tarapotensis Henn., Hedwigia 43: 246. 1904.

  • 2Cordyceps termitophila Kobayasi & Shimizu, Bull. Natn. Sci. Mus. Tokyo, Ser. B, 4: 56. 1978.

  • 2Cordyceps truncata Moureau, Mém. Inst. Roy. Colon. Belge 7: 19. 1949.

  • 1Cordyceps tuberculata (Lebert) Maire, Bull. Soc. Hist. Nat. Afrique N. 8: 165. 1917.

      • Acrophyton tuberculatum Lebert, in Sieb & Köll., Z. Wiss. Zool. 9: 448. 1858.

    • = Torrubia sphingum Tul. & C. Tul., Sel. Fung. Carpol. 3: 12. 1865.

      • Cordyceps sphingum (Tul. & C. Tul.) Berk. & M.A. Curtis, in Berkeley, J. Linn. Soc. 10: 375. 1868.

    • Anamorph: Akanthomyces pistillariiformis (Pat.) Samson & H.C. Evans

  • 2Cordyceps tuberculata var. tuberculata [var. typica Kobayasi] f. moelleri (Henn.) Kobayasi, Sci. Rep. Tokyo Bunrika Daigaku, Sect. B,: 88. 1941.

    • Cordyceps moelleri Henn., Hedwigia 3: 221. 1897.

  • 2Cordyceps tuberculata var. terminalis Kobayasi [f. genuina Kobayasi], Sci. Rep. Tokyo Bunrika Daigaku, Sect. B, 5: 88. 1941.

  • 2Cordyceps tuberculata var. terminalis Kobayasi f. crista (A. Möller) Kobayasi, Sci. Rep. Tokyo Bunrika Daigaku, Sect. B,: 91. 1941.

    • Cordyceps crista A. Möller, Phycomyceten u. Ascomyceten, p. 212. 1901.

  • 2Cordyceps tuberculata var. terminalis Kobayasi f. cockerellii (Ellis & Everh.) Kobayasi, Sci. Rep. Tokyo Bunrika Daigaku, Sect. B, 5: 90. 1941.

    • Ophionectria cockerellii Ellis & Everh., in Cockerell, J. Inst. Jamaica 1: 141. 1892.

    • Cordyceps cockerellii (Ellis & Everh.) Ellis, in Seaver, North Am. Flora 3: 52. 1910.

  • 2Cordyceps typhuliformis Berk. & Cooke, in Cooke, Grevillea 12: 78. 1884 (as C. `typhulaeformis').

  • 2Cordyceps washingtonensis Mains, Mycologia 39: 535. 1947.

Clavicipitaceae incertae sedis

The following teleomorph genera could not be confidently assigned in the new classification because they were either not sampled as part of this study, were not sampled as part of other molecular phylogenetic studies, or the assessment of their morphology and ecology was inconclusive: Berkelella (Sacc.) Sacc., Cavimalum Yoshim. Doi, Dargan & K.S. Thind, Dussiella Pat., Epicrea Petr., Helminthascus Tranzschel, Konradia Racib., Moelleriella Bres., Mycomalus A. Möller, Neobarya Lowen, Neocordyceps Kobayasi, Podocrella Seaver, Romanoa Thirum., Sphaerocordyceps Kobayasi, and Stereocrea Syd. & P. Syd.

Residual species of Cordyceps

The following species of Cordyceps s. l. could not be confidently assigned in the new classification because they were either not assigned in any of the proposed genera in this study, were not sampled as part of this or other molecular phylogenetic studies, or the assessment of their morphology and ecology was inconclusive. These species are provisionally retained within Cordyceps s. l. until further phylogenetic analyses are conducted to classify them in a phylogenetic system. Where known we provide the anamorph connection for the species of Cordyceps s. l.

  • Cordyceps adpropinquans (Ces.) Sacc., Syll. Fung. 2: 578. 1883.

    • Torrubia adpropinquans Ces., Atti Accad. Sci. Fis. Mat., Napoli 8: 14. 1879.

  • Cordyceps aerugineosclerotia Z.Q. Liang & A.Y. Liu, Mycosystema 16: 63. 1997 [as C. `æruginosclerota'].

  • Cordyceps alba Kobayasi & Shimizu, Bull. Natn. Sci. Mus. Tokyo, Ser. B, 8: 114. 1982.

  • Cordyceps albida Berk. & M.A. Curtis ex Cooke, Grevillea 12: 78. 1884.

  • Cordyceps albocitrina Koval, Nov. Sist. Niz. Rast. 11: 209. 1974.

  • Cordyceps alboperitheciata Kobayasi & Shimizu, Bull. Natn. Sci. Mus. Tokyo, Ser. B, 8: 84. 1982.

  • Cordyceps alpicola Kobayasi, Bull. Natn. Sci. Mus. Tokyo, Ser. B, 2: 138. 1976.

  • Cordyceps annullata Kobayasi & Shimizu, Bull. Natn. Sci. Mus. Tokyo, Ser. B, 8: 91. 1982.

  • Cordyceps arachnogena Kobayasi, Bull. Natn. Sci. Mus. Tokyo, Ser. B, 2: 144. 1976.

  • Cordyceps aspera Pat., J. Bot. (Paris) 7: 344. 1893.

  • Cordyceps atewensis Samson, H.C. Evans & E.S. Hoekstra, Proc. K. Ned. Akad. Wet., Ser. C, Biol. Med. Sci. 85: 590. 1982.

  • Cordyceps atrobrunnea Penz. & Sacc., Malpighia 11: 522. 1897.

  • Cordyceps atropuncta Koval, Bot. Mater. Otd. Sporov. Rast. 14: 158. 1961.

  • Cordyceps atrovirens Kobayasi & Shimizu, Bull. Natn. Sci. Mus. Tokyo, Ser. B, 4: 52. 1978.

  • Cordyceps aurantiaca Lohwag, in Handel-Mazzetti, Symb. Sin. 2: 27. 1937.

  • Cordyceps aurea Moureau, Mém. Inst. Roy. Colon. Belge 7: 21. 1949.

  • Cordyceps barberi Giard ex Massee, Ann. Bot. 9: 18. 1895.

  • Cordyceps barnesii Thwaites, Fungi Ceylon, p. 110. 1873.

  • Cordyceps baumanniana Henn., Bot. Jahrb. Syst. 23: 539. 1897.

  • Cordyceps bicolor Pat., Mém. Acad. Malgache 6: 40. 1928.

  • Cordyceps bokyoënsis Kobayasi, J. Jap. Bot. 58: 221. 1983.

  • Cordyceps bombi Rick ex Lloyd, Mycol. Notes 62: 914. 1920.

  • Cordyceps brasiliensis Henn., Hedwigia 36: 221. 1897.

  • Cordyceps brittlebankii McLennan & Cookson, Proc. Roy. Soc. Victoria 38: 74. 1926.

  • Cordyceps bulolensis Kobayasi, Bull. Natn. Sci. Mus. Tokyo, Ser. B, 2: 142. 1976.

  • Cordyceps caespitosofiliformis Henn., Hedwigia 41: 11. 1902.

  • Cordyceps callidii Quél., Comp. Rend. Assoc. Franç. Avancem. Sci. 21. Suppl. p. 7. 1897.

  • Cordyceps cardinalis G.H. Sung & Spatafora, Mycologia 96: 660. 2004.

    • Anamorph: mariannaea/clonostachys-like

  • Cordyceps carnata Moureau, Mém. Inst. Roy. Colon. Belge 7: 10. 1949.

  • Cordyceps changpaishanensis Kobayasi, Bull. Natn. Sci. Mus. Tokyo, Ser. B, 7: 12. 1981.

  • Cordyceps chualasae Koval & Nazarova, Nov. Sist. Niz. Rast. 6: 116. 1969.

  • Cordyceps chishuiensis Z.Q. Liang & A.Y. Liu, Mycosystema 21: 9. 2002.

  • Cordyceps cinnabarina Petch, Ann. Crypt. Exot. 6: 230. 1933.

  • Cordyceps citrea Penz. & Sacc., Malpighia 11: 523. 1897.

  • Cordyceps clavicipiticola Tokugawa & S. Imai, Trans. Sapporo Nat. Hist. Soc. 14: 104. 1935.

  • Cordyceps clavicipitis Örtegren, Svensk Bot. Tidskr. 10: 57. 1916.

  • Cordyceps coccidiocapitata Kobayasi & Shimizu, Bull. Natn. Sci. Mus. Tokyo, Ser. B, 8: 91. 1982.

  • Cordyceps coccidioperitheciata Kobayasi & Shimizu, Bull. Natn. Sci. Mus. Tokyo, Ser. B, 8: 79. 1982.

  • Cordyceps consumpta G. Cunn., Trans. Proc. New Zealand Inst. 3: 377. 1921.

  • Cordyceps coronilla Höhn., Sitzungsber. Kaiserl. Akad. Wiss. Wien 118: 306. 1909.

  • Cordyceps cotopaxiana Kobayasi, Bull. Natn. Sci. Mus. Tokyo, Ser. B, 7: 126. 1981.

  • Cordyceps craigii Lloyd, Mycol. Writ. 4: 527. 1915.

  • Cordyceps cranstounii Olliff, Agric. Gazette New S. Wales 6: 408. 1895.

  • Cordyceps ctenocephala Syd., Bot. Jahrb. Syst. 57: 323. 1922.

  • Cordyceps cuboidea Kobayasi & Shimizu, Bull. Natn. Sci. Mus. Tokyo, Ser. B, 6: 131. 1980.

  • Cordyceps cusu Pat., Bull. Soc. Mycol. France 11: 229. 1895.

  • Cordyceps cylindrica Petch, Trans. Brit. Mycol. Soc. 21: 46. 1937.

    • Anamorph: Nomuraea atypicola (Yasuda) Samson

  • Cordyceps deflectens Penz. & Sacc., Malpighia 11: 522. 1897.

  • Cordyceps dimeropoda Syd., Bot. Jahrb. Syst. 57: 324. 1922.

  • Cordyceps doassansii Pat., Tab. Analyt. Fung., p. 213. 1885.

  • Cordyceps doiana Kobayasi, Bull. Natn. Sci. Mus. Tokyo, Ser. B, 7: 124. 1981.

  • Cordyceps ergoticola Tanda & Kawat., J. Jap. Bot. 52: 19. 1977.

  • Cordyceps fasciculata Pat., Bull. Soc. Mycol. France 15: 206. 1899.

  • Cordyceps fleischeri Penz. & Sacc., Malpighia 15: 230. 1901.

  • Cordyceps fuliginosa Ces., Comment. Soc. Crittog. Ital., Genova 1: 67. 1861.

  • Cordyceps furcata McLennan & Cookson, Proc. Roy. Soc. Victoria 35: 157. 1923.

  • Cordyceps gemella Moureau, Lejeunia, Mém. 15: 6. 1961.

  • Cordyceps geotrupis Teng, Sinensia 4: 293. 1934.

  • Cordyceps gracillima Kobayasi, Bull. Natn. Sci. Mus. Tokyo, Ser. B, 7: 126. 1981.

  • Cordyceps grenadensis Mains, Bull. Torrey Bot. Club 81: 499. 1954.

  • Cordyceps grylli Teng, Sinensia 7: 811. 1936.

  • Cordyceps guizhouensis Z.Y. Liu, Z.Q. Liang & A.Y. Liu, Mycosystema 16: 98. 1997.

  • Cordyceps gunnii Berk., J. Bot., London 7: 577. 1848.

    • Anamorph: paecilomyces-like

  • Cordyceps gunnii var. minor Z.Z. Li, C.R. Li, B. Huang, M.Z. Fan & M.W. Lee, Korean J. Mycol. 27: 232. 1999.

  • Cordyceps hauturu Dingley, Trans. Roy. Soc. New Zealand 81: 334. 1953.

  • Cordyceps hawkesii Gray, in Cooke, Grevillea 19: 76. 1891.

  • Cordyceps henleyae Massee, Ann. Bot. 8: 119. 1894.

  • Cordyceps hesleri Mains, J. Elisha Mitchell Sci. Soc. 55: 125. 1939.

  • Cordyceps hillii Lloyd, Mycol. Notes 65: 1061. 1921.

  • Cordyceps hirotaniana Kobayasi, J. Jap. Bot. 58: 177. 1983.

  • Cordyceps hokkaidoënsis Kobayasi, Sci. Rep. Tokyo Bunrika Daigaku, Sect. B, 5: 91. 1941.

    • Anamorph: Sporotrichum hokkaidoense Kobayasi

  • Cordyceps hormospora A. Möller, Phycomyceten u. Ascomyceten, p. 230. 1901.

  • Cordyceps ignota Marchion., Physis, B. Aires 2: 17. 1945.

  • Cordyceps imagamiana Kobayasi & Shimizu, Bull. Natn. Sci. Mus. Tokyo, Ser. B, 9: 1. 1983.

  • Cordyceps incarnata A. Möller, Phycomyceten u. Ascomyceten, p. 228. 1901.

  • Cordyceps inconspicua Moureau, Lejeunia, N.S. 14: 4. 1962.

  • Cordyceps indigotica Kobayasi & Shimizu, Bull. Natn. Sci. Mus. Tokyo, Ser. B, 4: 53. 1978.

  • Cordyceps interrupta Höhn., Sitzungsber. Kaiserl. Akad. Wiss. Wien 118: 303. 1909.

  • Cordyceps iriomoteana Kobayasi & Shimizu, Bull. Natn. Sci. Mus. Tokyo, Ser. B, 8: 82. 1982.

  • Cordyceps ithacensis Bałazy & Bujak., Mycotaxon 25: 11. 1986.

  • Cordyceps javensis Henn., Hedwigia 41: 142. 1902.

  • Cordyceps joaquiensis Henn., Hedwigia 43: 248. 1904.

  • Cordyceps juruensis Henn., Hedwigia 43: 248. 1904.

  • Cordyceps kanzashiana Kobayasi & Shimizu, Bull. Natn. Sci. Mus. Tokyo, Ser. B, 8: 86. 1982.

  • Cordyceps khaoyaiensis Hywel-Jones, Mycol. Res. 98: 939. 1994.

    • Anamorph: lecanicillium/simplicillium-like

  • Cordyceps kirkii G. Cunn., Trans. Brit. Mycol. Soc. 8: 75. 1922.

    • Anamorph: Akanthomyces

  • Cordyceps kobayasii Koval, Klavitipital'nye Griby SSSR (Kiev), p. 178. 1984.

  • Cordyceps kusanagiensis Kobayasi & Shimizu, Bull. Natn. Sci. Mus. Tokyo, Ser. B, 9: 7. 1983.

  • Cordyceps lacroixii Har. & Pat., Bull. Trimestriel Soc. Mycol. France 20: 2. 1904.

  • Cordyceps langloisii Ellis & Everh., North Amer. Pyrenom. p. 62. 1892.

  • Cordyceps larvicola Quél., Bull. Soc. Bot. France 25: 292. 1878.

  • Cordyceps lateritia Dingley, Trans. Roy. Soc. New Zealand 81: 337. 1953.

  • Cordyceps leucocephala Moureau, Lejeunia, N.S. 14: 7. 1962.

  • Cordyceps lignicola Massee, Bull. Misc. Inform. Roy. Bot. Gard. Kew p. 173. 1899.

  • Cordyceps lilacina Moureau, Mém. Inst. Roy. Colon. Belge 7: 52. 1949.

  • Cordyceps longdongensis A.Y. Liu & Z.Q. Liang, Mycosystema 16: 140. 1997.

  • Cordyceps loushanensis Z.Q. Liang & A.Y. Liu, Mycosystema 16: 61. 1997.

  • Cordyceps mantidicola Kobayasi & Shimizu, Bull. Natn. Sci. Mus. Tokyo, Ser. B, 9: 12. 1983.

  • Cordyceps manzhurica Koval, Bot. Mater. Otd. Sporov. Rast. 14: 161. 1961.

  • Cordyceps maolanensis Z.Y. Liu & Z.Q. Liang, Mycosystema 16: 4. 1997.

  • Cordyceps martialis Speg., Bol. Acad. Nac. Ci. Córdoba 11: 305. 1889.

    • = Cordyceps huntii Giard, Bull. Soc. Entomol. France 64: 171. 1895.

    • = Cordyceps submilitaris Henn., Hedwigia 36: 222. 1897.

    • = Cordyceps klenei Pat., Bull. Trimestriel Soc. Mycol. France 24: 11. 1908.

    • Anamorph: cephalosporium-like

  • Cordyceps maolanoides Z.Q. Liang, A.Y. Liu & J.Z. Huang, Mycosystema 21: 164. 2002.

  • Cordyceps memorabilis (Ces.) Sacc., Michelia 1: 321. 1879.

      • Racemella memorabilis Ces., Comment. Soc. Crittog. Ital. 1: 65. 1861.

    • Anamorph: Isaria farinosa (Holmsk.) Fr.

  • Cordyceps menesteridis F. Muell. & Berk., Gard. Chron. 2: 791. 1878.

  • Cordyceps michaelisii Henn., Hedwigia 41: 169. 1902.

  • Cordyceps miniata Moureau, Lejeunia, Mém. 15: 22. 1961.

  • Cordyceps minuta Kobayasi, Bull. Natn. Sci. Mus. Tokyo 6: 294. 1963.

  • Cordyceps muscae Henn., Bot. Jahrb. Syst. 25: 507. 1898.

  • Cordyceps musicaudata Z.Q. Liang & A.Y. Liu, Acta Mycol. Sin. 15: 265. 1996.

  • Cordyceps myosuroides Henn., Hedwigia 41: 169. 1902.

  • Cordyceps myrmecogena Kobayasi & Shimizu, Bull. Natn. Sci. Mus. Tokyo, Ser. B, 4: 55. 1978.

  • Cordyceps nakazawae A. Kawam., Icon. Jap. Fungi 8: 836. 1955 (as C. `nakazawai').

  • Cordyceps nanatakiensis Kobayasi & Shimizu, Bull. Natn. Sci. Mus. Tokyo, Ser. B, 9: 9. 1983.

  • Cordyceps necator Pat. & Har., Bull. Trimestriel Soc. Mycol. France 28: 283. 1912.

  • Cordyceps nelumboides Kobayasi & Shimizu, Kew Bull. 31: 557. 1976.

  • Cordyceps neogryllotalpae Kobayasi, Bull. Natn. Sci. Mus. Tokyo, Ser. B, 2: 143. 1976.

  • Cordyceps nipponica Kobayasi, Bull. Biogeogr. Soc. Japan 9: 151. 1939.

    • Anamorph: Isaria nipponica Kobayasi

  • Cordyceps novaezealandiae Dingley, Trans. Roy. Soc. New Zealand 81: 337. 1953.

  • Cordyceps novoguineënsis Kobayasi & Shimizu, Bull. Natn. Sci. Mus. Tokyo, Ser. B, 2: 148. 1976.

  • Cordyceps obliqua Kobayasi, Sci. Rep. Tokyo Bunrika Daigaku, Sect. B,: 177. 1941.

  • Cordyceps obliquiordinata Kobayasi & Shimizu, Bull. Natn. Sci. Mus. Tokyo, Ser. B, 8: 114. 1982.

  • Cordyceps odyneri Quél., 14th Suppl. Champ. Jura et Vosges, p. 10. 1885.

  • Cordyceps olivacea Rick, in Lloyd, Mycol. Writ. 7: 1118. 1922.

  • Cordyceps olivaceovirescens Henn., Hedwigia 39: 78. 1900.

  • Cordyceps olivascens Mains, Mycologia 39: 537. 1947.

  • Cordyceps ootakiensis Kobayasi & Shimizu, Bull. Natn. Sci. Mus. Tokyo, Ser. B, 9: 15. 1983.

  • Cordyceps ovoideoperitheciata Kobayasi & Shimizu, Bull. Natn. Sci. Mus. Tokyo, Ser. B, 8: 83. 1982.

  • Cordyceps pallidiolivacea Kobayasi & Shimizu, Bull. Natn. Sci. Mus. Tokyo, Ser. B, 8: 113. 1982.

  • Cordyceps parvula Mains, Bull. Torrey Bot. Club 86: 64. 1959.

  • Cordyceps phymatospora C.R. Li, M.Z. Fan & Z.Z. Li, Mycosystema 21: 167. 2002.

  • Cordyceps pilifera Kobayasi, Bull. Natn. Sci. Mus. Tokyo, Ser. B, 7: 126. 1981.

  • Cordyceps pittieri E. Bommer & M. Rousseau, Bull. Soc. Bot. Belg. 35: 160. 1896.

  • Cordyceps pluricapitata Kobayasi & Shimizu, Bull. Natn. Sci. Mus. Tokyo, Ser. B, 8: 87. 1982 (as C. `pleuricapitata').

  • Cordyceps podocreoides Höhn., Sitzungsber. Kaiserl. Akad. Wiss. Wien 118: 308. 1909.

  • Cordyceps polycarpica Z.Q. Liang & A.Y. Liu, Acta Mycol. Sin. 15: 264. 1996.

  • Cordyceps polycephala Kobayasi & Shimizu, Bull. Natn. Sci. Mus. Tokyo, Ser. B, 9: 1. 1983.

  • Cordyceps prolifica Kobayasi, Bull. Natn. Sci. Mus. Tokyo 6: 289. 1963.

  • Cordyceps prolifica f. terminalis Kobayasi, Bull. Natn. Sci. Mus. Tokyo 6: 292. 1963.

  • Cordyceps pseudoatrovirens Kobayasi & Shimizu, Bull. Natn. Sci. Mus. Tokyo, Ser. B, 8: 111. 1982.

  • Cordyceps pseudoinsignis Moureau, Mém. Inst. Roy. Colon. Belge 7: 34. 1949.

  • Cordyceps pseudomilitaris Hywel-Jones & Sivichai, Mycol. Res. 98: 940. 1994.

    • Anamorph: lecanicillium/simplicillium-like

  • Cordyceps pseudonelumboides Kobayasi & Shimizu, Bull. Natn. Sci. Mus. Tokyo, Ser. B, 8: 80. 1982.

  • Cordyceps puiggarii Speg., Bol. Acad. Nac. Ci. Córdoba 11: 304 1889.

  • Cordyceps ramosipulvinata Kobayasi & Shimizu, Bull. Natn. Sci. Mus. Tokyo, Ser. B, 9: 2. 1983 (as C. `ramosopulvinata').

  • Cordyceps ramosistipitata Kobayasi & Shimizu, Bull. Natn. Sci. Mus. Tokyo, Ser. B, 9: 6. 1983 (as C. `ramosostipitata').

  • Cordyceps rhizomorpha A. Möller, Phycomyceten u. Ascomyceten, p. 231. 1901.

  • Cordyceps riverae Pacioni, Giorn. Bot. Ital. 112: 395. 1978.

  • Cordyceps rostrata Z.Q. Liang, A.Y. Liu, M.H. Liu, Fungal Diversity 14: 98. 2003.

  • Cordyceps rubiginosostipitata Kobayasi & Shimizu, Bull. Natn. Sci. Mus. Tokyo, Ser. B, 9: 3. 1983.

  • Cordyceps rubra A. Möller, Phycomyceten u. Ascomyceten, p. 233. 1901.

    • Anamorph:'Cephalosporium' rubrum A. Möller

  • Cordyceps rubricapitata Kobayasi & Shimizu, Bull. Natn. Sci. Mus. Tokyo, Ser. B, 9: 9. 1983.

  • Cordyceps rubrostromata Kobayasi, J. Jap. Bot. 58: 221. 1983.

  • Cordyceps ryogamimontana Kobayasi, Bull. Natn. Sci. Mus. Tokyo 6: 303. 1963.

  • Cordyceps sakishimensis Kobayasi & Shimizu, Bull. Natn. Sci. Mus. Tokyo, Ser. B, 9: 6. 1983.

  • Cordyceps sclerotium Kobayasi, Trans. Mycol. Soc. Japan 23: 361. 1982.

  • Cordyceps shanxiensis B. Liu, F. Rong & H. Jin, J. Wuhan Bot. Res. 3: 23. 1985.

  • Cordyceps shimaensis Kobayasi, Bull. Natn. Sci. Mus. Tokyo, Ser. B, 7: 10. 1981.

  • Cordyceps shimizui Y.J. Yao, Acta Mycol. Sin. 14: 258. 1995.

  • Cordyceps sphaerocapitata Kobayasi, Bull. Natn. Sci. Mus. Tokyo, Ser. B, 2: 143. 1976.

  • Cordyceps stiphrodes Syd., Bot. Jahrb. Syst. 57: 324. 1922.

  • Cordyceps subcorticicola Henn., Hedwigia 41: 11. 1902.

  • Cordyceps sulfurea Kobayasi & Shimizu, Bull. Natn. Sci. Mus. Tokyo, Ser. B, 9: 15. 1983.

  • Cordyceps suoluoënsis Z.Q. Liang & A.Y. Liu, Mycosystema 21: 10. 2002.

  • Cordyceps taishanensis B. Liu, P.G. Yuan & J.Z. Cao, Acta Mycol. Sin. 3: 192. 1984.

  • Cordyceps thaxteri Mains, J. Elisha Mitchell Sci. Soc. 55: 120. 1939.

    • Anamorph: Akanthomyces aranearum (Petch) Mains

  • Cordyceps translucens Petch, Trans. Brit. Mycol. Soc. 10: 37. 1924.

  • Cordyceps trinidadensis Mains, Bull. Torrey Bot. Club 86: 46. 1959.

  • Cordyceps uleana Henn., Hedwigia 43: 248. 1904.

  • Cordyceps variegata Moureau, Mém. Inst. Roy. Colon. Belge 7: 30. 1949.

  • Cordyceps velutipes Massee, Ann. Bot. 9: 21. 1895.

  • Cordyceps venezuelensis Mains, Mycologia 39: 543. 1947.

  • Cordyceps vinosa Moureau, Lejeunia, Mém. 15: 28. 1961.

  • Cordyceps vorobjovii Koval & Nazarova, Nov. Sist. Niz. Rast.: 108. 1969.

  • Cordyceps wallaysii Westend., Bull. Acad. Sci. Bruxelles 7: 81. 1859.

  • Cordyceps yahagiana Kobayasi & Shimizu, Bull. Natn. Sci. Mus. Tokyo, Ser. B, 6: 88. 1980.

KEY TO THE GENERA OF FUNGI FORMERLY CLASSIFIED IN CORDYCEPS

This key is designed to emphasize the most conspicuous field-, host-, and macroscopic characters available to the user for Cordyceps sensu Kobayasi and Mains. It is a key to the monophyletic genera described herein and is not a key to the species. As relatively few species occur on Elaphomyces and adult stages of Arthropoda, the key begins with these characters so as to expeditiously highlight or remove these taxa from consideration. Host is an exceedingly important character in most species descriptions of arthropod-pathogenic fungi. The host should be collected with the fungal specimen whenever possible, but this often proves problematic. The vast majority of arthropod-pathogenic fungi occur on immature stages (e.g., larvae, pupae) of arthropods. Therefore, if the host is lacking from a particular specimen or collection, we suggest the user to begin with couplet (6). The multigene phylogeny reveals that colour, texture, and shape of stromata are particularly phylogenetically informative, thus we place special emphasis on these characters where possible but emphasize that, as with most fungal taxa, exceptions are to be expected.

To assist the user we briefly define some characters of stromatal texture and morphology that may not be intuitive:intuitive:

Table 2

Fleshy — stromata that are composed of relatively loosely woven hyphae and are soft in texture (e.g., C. militaris).
Wiry — filiform stromata that are somewhat brittle and stiff (e.g., O. unilateralis).
Pliant — filiform stromata that are more pliable and rubbery to the touch; when fresh, they bend easily without breaking; typically slightly more robust than wiry (e.g., O. nutans).
Fibrous — stromata that are composed of relatively tightly woven hyphae and are firm in texture, similar to the stipe of a mushroom (e.g., E. ophioglossoides, O. heteropoda).
Subicular — production of perithecia on a net-like structure of mycelium, not on the developed stroma (e.g., C. tuberculata).
Lateral pads — production of perithecia on a disc-like or cushion-like structure on a subterminal region of the stroma (e.g., O. variabilis, O. unilateralis).
Aperithecial apices — production of perithecia in subterminal regions of the stroma, resulting in an apical region of the stroma lacking perithecia. (Note: The term sterile apices has also been used to describe this condition, but the apical regions of many stromata produce an anamorph and thus are not technically sterile.)

Cordyceps s. s. consists almost entirely of pallid to brightly coloured species that produce soft fleshy stromata (e.g., C. militaris). The majority of species attack larvae and pupae of Lepidoptera and Coleoptera in leaf litter, moss or upper soil layers. Numerous species that produce highly reduced stromata, loosely organized hyphae, or a subiculum on the host also occur in this genus (e.g. C. tuberculata), some of which were previously classified in Torrubiella (e.g., T. confragosa).

Elaphocordyceps includes all species that parasitize Elaphomyces and closely related species that attack nymphs of cicadas. The morphology of the Elaphomyces parasites and the cicada pathogens are remarkably similar and attest to the recent history of inter-kingdom host-jumps in a common subterranean environment (Nikoh & Fukatsu 2000). The exception to this genus is E. subsessilis, which macroscopically and ecologically is distinct from the rest of the species, but is well supported as being a member of the genus based on molecular data and micromorphology.

Metacordyceps includes only a limited number of described species, of which all but one are only known from East Asia. The stromatal colour of fresh specimens ranges from white to lilac, purple or green, and the darker pigments are almost black in dried specimens. The texture of the stromata is fibrous and not fleshy like Cordyceps s. s., and the hosts are almost always buried in soil.

Ophiocordyceps is the largest genus of arthropod-pathogenic fungi. Many species are darkly pigmented and occur on immature stages of hosts buried in soil or in decaying wood. Notable exceptions exist for both of these traits among species that attack adult stages of hosts, however. For example, O. unilateralis is common on adult ants and occurs on the under sides of leaves, and O. sphecocephala is common on adult wasps and is found in leaf litter. Stromatal morphology is diverse, ranging from filiform and wiry to clavate and fibrous, according to species, and many species produce their perithecia in nonterminal regions of the stroma, either distinctly superficial, or in broad irregular patches, or in lateral pads.

  • 1. HostElaphomyces.........................................................................Elaphocordyceps (e.g., E. ophioglossoides)

  • 1. Host – Arthropods............................................................................................................................................... 2

  • 2. Host – adult Arthropods...................................................................................................................................... 3

  • 2. Host – immature stage of Arthropods................................................................................................................ 6

  • 3. Peritheciacolour: pallid, cream to white; arrangement: superficial on a subiculum or highly educed pallid stroma. Host – adult Lepidoptera............................................... Cordyceps (e.g., C. tuberculata)

  • 3. On adult Arthropods other than Lepidoptera (e.g., ant, wasp, weevil, dragonfly, etc.) and stroma typically well-developed.......................................................................................................................... 4

  • 4. Stromacolour: yellow; texture: fleshy; shape: stipitate, clavate. Peritheciacolour: like stroma; arrangement: partially immersed to pseudoimmersed at right angles to surface of stroma (ordinal). Host – typically on adult scarab beetles........................................................Cordyceps (e.g., C. scarabaeicola)

  • 4. Stromacolour: brightly or darkly pigmented; texture: wiry or pliant, not fleshy; shape: stipitate with or without pronounced fertile head region. Peritheciaarrangement: immersed at an oblique angle in fertile head region or more or less ordinal in subterminal lateral pads................................................. 5

  • 5. Stromacolour: at least partly brightly coloured; texture: pliant; shape: stipitate with globose to elongated fertile head region. Peritheciaarrangement: usually completely immersed at oblique angles, often giving the surface of the fertile head region a slightly uneven appearance when mature. Host – typically on adult insects (ants, wasps, weevils, dragonflies, etc.)........ Ophiocordyceps (e.g., O. nutans, O. sphecocephala)

  • 5. Stromacolour: darkly pigmented; texture: wiry; shape: filiform. Peritheciacolour: darkly pigmented like stroma or darker; arrangement: produced in subterminal region of stroma in lateral pad(s). Host – adult ants........................................................................................ Ophiocordyceps (e.g., O. unilateralis)

  • 6. Stroma – colour: pallid to brightly coloured; texture: fleshy to fibrous; shape: usually stipitate, clavate but stroma highly reduced or subicular in some species. Peritheciacolour: pallid to brightly coloured like stroma; arrangement: typically partially immersed to pseudoimmersed to superficial on clava or subiculum in some species............................................................................................... 7

  • 6. Stromacolour: usually darkly pigmented tan to brown to olive or black, rarely white to lilac to purple; texture: wiry, pliant or fibrous; shape: stipitate, club-shaped, or filiform, rarely subicular. Peritheciacolour: typically pigmented like stroma or darker; arrangement: immersed to partially immersed to pseudoimmersed to superficial....................................................................................................... 8

  • 7. Stromacolour: pallid, cream to white; texture: fibrous; shape: reduced to pad-like or cushion-like structure on surface of wood, connected to host buried in wood via rhizomorph-like structures. Peritheciacolour: like stroma; arrangement: immersed to partially immersed on pad-like stroma. Host – Scarabid beetle larvae buried in decaying wood.......................... Elaphocordyceps (e.g., E. subsessilis)

  • 7. Stroma – colour: yellow to red to orange; texture: fleshy; shape: usually stipitate clavate but subicular in some species. Peritheciacolour: like stroma; arrangement: ordinal, typically partially immersed to pseudoimmersed to superficial on clava or subiculum in some species. Host – typically on larvae or pupae of arthropods in relatively exposed environments, such as leaf litter, moss, or the uppermost soil layer.................Cordyceps (e.g., C. militaris, C. staphylinidicola)

  • 8. Stromacolour: olive to brown; texture: fibrous; shape: stipitate, fertile region terminal, distinctly capitate to clavate. Peritheciacolour: like that of stroma; arrangement: immersed. Host – cicada nymphs................................................................................Elaphocordyceps (e.g., E. paradoxa)

  • 8. Stromacolour: tan to brown to black or lightly pigmented, white to lilac to purple, rarely brightly pigmented; texture: wiry, pliant, fibrous; shape: stipitate, capitate to clavate to filiform, rarely subicular. Peritheciacolour: similar to stroma when immersed, often darker when superficial; arrangement: immersed, pseudoimmersed or superficial.......................................................................................................... 9

  • 9. Stromacolour: white to lilac to purple to green, then appearing almost black when dry; texture: fibrous; shape: stipitate, typically with elongated clava. Peritheciacolour: like stroma; arrangement: immersed, ordinal or oblique. Host – typically buried in soil.......................................................Metacordyceps (e.g., M. taii)

  • 9. Stromacolour: olive to brown to black rarely brightly coloured; texture: wiry, pliant, or fibrous; shape: stipitate, club-shaped to clavate or filiform, rarely subiculate. Perithecia – colour: darkly pigmented like stroma or darker; arrangement: immersed, pseudoimmersed but tightly spaced, or superficial and widely spaced, produced in terminal clava or subterminal patches or lateral pads. Host – typically embedded in rotten wood or buried in soil ..............................................................................Ophiocordyceps (e.g., O. sinensis, O. acicularis, O. variabilis)

Acknowledgments

The authors wish to thank Dr Walter Gams for assistance with Latin diagnoses for new taxa and for providing editorial comments to early drafts of this manuscript. This research was supported by grants from the National Science Foundation (DEB-0129212 and DEB-0 297 2 to J.W.S.), the Korea Science and Engineering Foundation (to J-M Sung), and continuing support from Morakot Tanticharoen and BIOTEC (to N.H.J. and J.J.L.).

Notes

Taxonomic novelties: New family: Ophiocordycipitaceae G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora. New genera: Elaphocordyceps G.H. Sung & Spatafora, Metacordyceps G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora. New species: Metacordyceps yongmunensis G.H. Sung, J.M. Sung & Spatafora; Ophiocordyceps communis Hywel-Jones & Samson. New combinations: Cordyceps confragosa (Mains) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, C. ninchukispora (C.H. Su & H.-H. Wang) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora; Elaphocordyceps capitata (Holmsk.) G.H. Sung, J.M. Sung & Spatafora, E. delicatistipitata (Kobayasi) G.H. Sung, J.M. Sung & Spatafora, E. fracta (Mains) G.H. Sung, J.M. Sung & Spatafora, E. inegoënsis (Kobayasi) G.H. Sung, J.M. Sung & Spatafora, E. intermedia (S. Imai) G.H. Sung, J.M. Sung & Spatafora, E. japonica (Lloyd) G.H. Sung, J.M. Sung & Spatafora, E. jezoënsis (S. Imai) G.H. Sung, J.M. Sung & Spatafora, E. longisegmentis (Ginns) G.H. Sung, J.M. Sung & Spatafora, E. minazukiensis (Kobayasi & Shimizu) G.H. Sung, J.M. Sung & Spatafora, E. miomoteana (Kobayasi & Shimizu) G.H. Sung, J.M. Sung & Spatafora, E. ophioglossoides (Ehrh.) G.H. Sung, J.M. Sung & Spatafora, E. paradoxa (Kobayasi) G.H. Sung, J.M. Sung & Spatafora, E. ramosa (Teng) G.H. Sung, J.M. Sung & Spatafora, E. rouxii (Cand.) G.H. Sung, J.M. Sung & Spatafora, E. subsessilis (Petch) G.H. Sung, J.M. Sung & Spatafora, E. szemaoënsis (M. Zang) G.H. Sung, J.M. Sung & Spatafora, E. tenuispora (Mains) G.H. Sung, J.M. Sung & Spatafora, E. toriharamontana (Kobayasi) G.H. Sung, J.M. Sung & Spatafora, E. valliformis (Mains) G.H. Sung, J.M. Sung & Spatafora, E. valvatistipitata (Kobayasi) G.H. Sung, J.M. Sung & Spatafora, E. virens (Kobayasi) G.H. Sung, J.M. Sung & Spatafora; infraspecific: E. intermedia f. michinokuënsis (Kobayasi & Shimizu) G.H. Sung, J.M. Sung & Spatafora, E. ophioglossoides f.alba (Kobayasi & Shimizu ex Y.J. Yao) G.H. Sung, J.M. Sung & Spatafora, E. ophioglossoides f. cuboides (Kobayasi) G.H. Sung, J.M. Sung & Spatafora; Metacordyceps brittlebankisoides (Z.Y. Liu, Z.Q. Liang, Whalley, Y.J. Yao & A.Y. Liu) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, M. campsosterni (W.M. Zhang & T. H. Li) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, M. chlamydosporia (H.C. Evans) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, M. liangshanensis (M. Zang, D. Liu & R. Hu) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, M. taii (Z.Q. Liang & A.Y. Liu) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora; Ophiocordyceps agriotidis (A. Kawam.) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, O. ainictos (A. Möller) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, O. amazonica (Henn.) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, O. aphodii (Mathieson) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, O. appendiculata (Kobayasi & Shimizu) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, O. arachneicola (Kobayasi) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, O. arbuscula (Teng) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, O. armeniaca (Berk. & M.A. Curtis) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, O. asyuënsis (Kobayasi & Shimizu) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, O. aurantia (Kobayasi & Shimizu) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, O. australis (Speg.) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, O. barnesii (Thwaites) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, O. bicephala (Berk.) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, O. bispora (Stifler) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, O. brunneipunctata (Hywel-Jones) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, O. cantharelloides (Samson & H.C. Evans) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, O. carabidicola (Kobayasi & Shimizu) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, O. cicadicola (Teng) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, O. clavata (Kobayasi & Shimizu) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, O. coccidiicola (Kobayasi) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, O. coccigena (Tul. & C. Tul.) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, O. cochlidiicola (Kobayasi & Shimizu) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, O. corallomyces (A. Möller) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, O. crassispora (M. Zang, D. R. Yang & C.D. Li) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, O. crinalis (Ellis ex Lloyd) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, O. cucumispora (H.C. Evans & Samson) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, O. curculionum (Tul. & C. Tul.) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, O. cusu (Pat.) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, O. cylindrostromata (Z.Q. Liang, A.Y. Liu & M.H. Liu) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, O. dayiensis (Z.Q. Liang) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, O. dermapterigena (Z.Q. Liang, A.Y. Liu & M.H. Liu) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, O. dipterigena (Berk. & Broome) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, O. discoideicapitata (Kobayasi & Shimizu) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, O. ditmarii (Quél.) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, O. dovei (Rodway) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, O. elateridicola (Kobayasi & Shimizu) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, O. elongata (Petch) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, O. elongatiperitheciata (Kobayasi & Shimizu) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, O. elongatistromata (Kobayasi & Shimizu) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, O. emeiensis (A.Y. Liu & Z.Q. Liang) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, O. engleriana (Henn.) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, O. entomorrhiza (Dicks.) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, O. evdogeorgiae (Koval) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, O. falcata (Berk.) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, O. falcatoides (Kobayasi & Shimizu) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, O. fasciculatistromata (Kobayasi & Shimizu) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, O. ferruginosa (Kobayasi & Shimizu) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, O. filiformis (Moureau) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, O. formicarum (Kobayasi) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, O. forquignonii (Quél.) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, O. furcicaudata (Z.Q. Liang, A.Y. Liu & M.H. Liu) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, O. gansuënsis (K. Zhang, C. Wang & M. Yan) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, O. geniculata (Kobayasi & Shimizu) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, O. gentilis (Ces.) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, O. glaziovii (Henn.) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, O. goniophora (Speg.) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, O. gracilioides (Kobayasi) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, O. gracilis (Grev.) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, O. heteropoda (Kobayasi) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, O. hiugensis (Kobayasi & Shimizu) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, O. huberiana (Henn.) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, O. humbertii (C.P. Robin) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, O. insignis (Cooke & Ravenel) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, O. irangiensis (Moureau) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, O. japonensis (Hara) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, O. jiangxiensis (Z.Q. Liang, A.Y. Liu & Y.C. Jiang) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, O. jinggangshanensis (Z.Q. Liang, A.Y. Liu & Y.C. Jiang) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, O. kangdingensis (M. Zang & Kinjo) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, O. kniphofioides (H.C. Evans & Samson) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, O. koningsbergeri (Penz. & Sacc.) G. H. Sung, J.M. Sung, Hywel-Jones & Spatafora, O. konnoana (Kobayasi & Shimizu) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, O. lachnopoda (Penz. & Sacc.) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, O. larvarum (Westwood) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, O. lloydii (H.S. Fawc.) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, O. longissima (Kobayasi) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, O. lutea (Moureau) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, O. melolonthae (Tul. & C. Tul.) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, O. michhganensis (Mains) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, O. minutissima (Kobayasi & Shimizu) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, O. monticola (Mains) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, O. mrciensis (J.C. Jung, Z.Q.Liang, Soytong & K.D. Hyde) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, O. multiaxialis (M. Zang & Kinjo) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, O. myrmecophila (Ces.) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, O. neovolkiana (Kobayasi) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, O. nepalensis (M. Zang & Kinjo) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, O. nigra (Samson, H.C. Evans & Hoekstra) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, O. nigrella (Kobayasi & Shimizu) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, O. nigripes (Kobayasi & Shimizu) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, O. nutans (Pat.) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, O. obtusa (Penz. & Sacc.) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, O. octospora (M. Blackwell & Gilb) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, O. odonatae (Kobayasi) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, O. osuzumontana (Kobayasi & Shimizu) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, O. ouwensii (Höhn.) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, O. owariensis (Kobayasi) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, O. oxycephala (Penz. & Sacc.) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, O. pentatomae (Koval) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, O. petchii (Mains) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, O. proliferans (Henn.) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, O. pseudolloydii (H.C. Evans & Samson) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, O. pseudolongissima (Kobayasi & Shimizu) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, O. purpureostromata (Kobayasi) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, O. ravenelii (Berk. & M.A. Curtis) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, O. robertsii (Hook.) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, O. rubiginosiperitheciata (Kobayasi & Shimizu) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, O. rubripunctata (Moureau) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, O. ryogamiensis (Kobayasi & Shimizu) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, O. salebrosa (Mains) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, O. scottiana (Olliff) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, O. selkirkii (Olliff) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, O. sichuanensis (Z.Q. Liang & B. Wang) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, O. sinensis (Berk.) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, O. smithii (Mains) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, O. sobolifera (Hill ex Watson) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, O. sphecocephala (Klotzsch ex Berk.) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, O. stipillata (Z.Q. Liang & A.Y. Liu) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, O. stylophora (Berk. & Broome) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, O. subflavida (Mains) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, O. superficialis (Peck) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, O. takaoënsis (Kobayasi) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, O. taylorii (Berk.) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, O. thyrsoides (A. Möller) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, O. tricentri (Yasuda) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, O. uchiyamae (Kobayasi & Shimizu) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, O. variabilis (Petch) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, O. voeltzkowii (Henn.) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, O. volkiana (A. Möller) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, O. wuyishanensis (Z.Q. Liang, A.Y. Liu & J.Z. Huang) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, O. yakusimensis (Kobayasi) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, O. zhangjiajiensis (Z.Q. Liang & A.Y. Liu) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora; infraspecific: O. amazonica var. neoamazonica (Kobayasi & Hara) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, O. cucumispora var. dolichoderi (H.C. Evans & Samson) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, O. kniphofioides var. dolichoderi (H.C. Evans & Samson) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, O. kniphofioides var. monacidis (H.C. Evans & Samson) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, O. kniphofioides var. ponerinarum (H.C. Evans & Samson) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, O. lloydii var. binata (H.C. Evans & Samson) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, O. melolonthae var. rickii (Lloyd) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, O. owariensis f. viridescens (Uchiyama & Udagawa) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, O. purpureostromata f. recurvata (Kobayasi) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, O. superficialis f. crustacea (Kobayasi & Shimizu) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora; Pochonia parasitica (G.L. Barron) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora.

References

  • Artjariyasripong S, Mitchell JL, Hywel-Jones NL, Jones EBG (2001). Relationships of the genus Cordyceps and related genera, based on parsimony and spectral analysis of partial 18S and 28S ribosomal gene sequences. Mycoscience 42: 503–517. [Google Scholar]
  • Barron GL (1980). Fungal parasites of rotifers: a new Tolypocladium with underwater conidiation. Canadian Journal of Botany 58: 439–442. [Google Scholar]
  • Barron GL, Onions AHS (1966). Verticillium chlamydosporium and its relationships to Diheterospora, Stemphyliopsis, and Paecilomyces. Canadian Journal of Botany 44: 861–869. [Google Scholar]
  • Bischoff JF, Chaverri P, White JF Jr. (2005). Clarification of the host substrate of Ascopolyporus and description of Ascopolyporus philodendrus sp. nov. Mycologia 97: 710–717. [Abstract] [Google Scholar]
  • Bissett J (1983). Notes on Tolypocladium and related genera. Canadian Journal of Botany 61: 1311–1329. [Google Scholar]
  • Blackwell M, Gilbertson RL (1984). New information on Cordycepioideus bisporus and Cordycepioideus octosporus. Mycologia 76: 763–765. [Google Scholar]
  • Chaverri P, Bischoff JF, Evans HC, Hodge KT (2006). Regiocrella, a new entomopathogenic genus with a pycnidial anamorph and its phylogenetic placement in the Clavicipitaceae. Mycologia 97(2005): 122–1237. [Abstract] [Google Scholar]
  • Coyle FA, Goloboff PA, Samson RA (1990). Actinopus trapdoor spiders (Araneae, Actinopodidae) killed by the fungus, Nomuraea atypicola (Deuteromycotina). Acta Zoologica Fennica 190: 89–93. [Google Scholar]
  • Diehl WW (1950). Balansia and the Balansiae in America. Agric. Monogr. No. 4. USDA, Washington.
  • Doaudy CJ, Delsuc F, Boucher Y, Doolittle WF, Douzery EJP (2003). Comparison of the Bayesian and maximum likelihood bootstrap measures of phylogenetic reliability. Molecular Biology and Evolution 20: 248–254. [Abstract] [Google Scholar]
  • Driver F, Milner RJ, Trueman JWH (2000). A taxonomic revision of Metarhizium based on a phylogenetic analysis of rDNA sequence data. Mycological Research 104: 134–150. [Google Scholar]
  • Earle FS (1901). Collections of Alabama fungi. In: Plant life of Alabama (Mohr C, ed). Contr. U. S. Natl. Herb.: 150–263.
  • Eriksson OE (1982). Cordyceps bifusispora spec. nov. Mycotaxon 15: 185–188. [Google Scholar]
  • Eriksson OE (1986). Notes on ascomycete systematics. Systema Ascomycetum 5: 113–174. [Google Scholar]
  • Eriksson OE, Hawksworth DL (1985). Outline of the Ascomycetes–1985. Systema Ascomycetum 4: 1–79. [Google Scholar]
  • Evans HC (2003). Use of clavicipitalean fungi for the biological control of arthropod pests. In: Clavicipitalean fungi: Evolutionary biology, Chemistry, Biocontrol and Cultural impacts (White, JF Jr., Bacon CW, Hywel-Jones NL, Spatafora JW, eds.). Marcel Dekker Inc., New York: 517–548.
  • Evans HC, Samson RA (1982). Entomogenous fungi from the Galapagos islands. Canadian Journal of Botany 60: 2325–2333. [Google Scholar]
  • Evans HC. Samson RA (1987). Fungal pathogens of spiders. Mycologist 1: 152-159. [Google Scholar]
  • Felsenstein J (1985). Confidence limits on phylogenies: An approach using the bootstrap. Evolution 39: 783–791. [Abstract] [Google Scholar]
  • Gams W (1971). Cephalosporium-artige Schimmelpilze (Hyphomycetes). G. Fischer, Stuttgart.
  • Gams W, Hodge KT, Samson RA, Korf RP, Seifert KA (2005). Proposal to conserve the name Isaria (anamorphic fungi) with a conserved type. Taxon 54: 537. [Google Scholar]
  • Gams W, Zare R (2001). A revision of Verticillium sect. Prostrata. III. Generic classification. Nova Hedwigia 72: 329–337. [Google Scholar]
  • Gams W, Zare R (2003). A taxonomic review of the clavicipitaceous anamorphs parasitizing nematodes and other microinvertebrates. In: Clavicipitalean fungi: Evolutionary biology, Chemistry, Biocontrol and Cultural Impacts (White, JF Jr., Bacon CW, Hywel-Jones NL, Spatafora JW, eds.). Marcel Dekker Inc., New York: 17–73.
  • Hawksworth DL, Rossman AY (1997). Where are all the undescribed fungi? Phytopathology 87: 888–891. [Abstract] [Google Scholar]
  • Hodge KT (1998). Revisionary studies in Hirsutella (Anamorphic Hypocreales: Clavicipitaceae). PhD Thesis, Cornell University, Ithaca, New York.
  • Hodge KT (2003). Clavicipitaceous anamorphs. In: Clavicipitalean fungi: Evolutionary biology, Chemistry, Biocontrol and Cultural Impacts (White, JF Jr., Bacon CW, Hywel-Jones NL, Spatafora JW, eds.). Marcel Dekker Inc., New York: 75–123.
  • Hodge KT, Krasnoff SB, Humber RA (1996). Tolypocladium inflatum is the anamorph of Cordyceps subsessilis. Mycologia 88: 715–719. [Google Scholar]
  • Hoog GS de (1972). The genera Beauveria, Isaria, Tritirachium and Acrodontium gen. nov. Studies in Mycology 1: 1–44. [Google Scholar]
  • Huang B, Li C, Humber RA, Hodge KT, Fan M, Li Z (2005). Molecular evidence for the taxonomic status of Metarhizium taii and its teleomorph, Cordyceps taii (Hypocreales, Clavicipitaceae). Mycotaxon 94: 137–147. [Google Scholar]
  • Huelsenbeck JP, Ronquist F (2001). MrBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17: 754–755. [Abstract] [Google Scholar]
  • Humber RA, Rombach MC (1987). Torrubiella ratticaudata sp. nov. (Pyrenomycetes: Clavicipitales) and other fungi from spiders on the Solomon Islands. Mycologia 79: 375–382. [Google Scholar]
  • Hywel-Jones NL (1993). Torrubiella luteorostrata: a pathogen of scale insects and its association with Paecilomyces cinnamomeus, with a note on Torrubiella tenuis. Mycological Research 97: 1126–1130. [Google Scholar]
  • Hywel-Jones NL (1994). Cordyceps khaoyaiensis and C. pseudomilitaris, two new pathogens of lepidopteran larvae from Thailand. Mycological Research 98: 939–942. [Google Scholar]
  • Hywel-Jones NL (1995). Hymenostilbe ventricosa sp. nov., a pathogen of cockroaches in Thailand. Mycological Research 99: 1201–1204. [Google Scholar]
  • Hywel-Jones NL (1996). Cordyceps myrmecophila-like fungi infecting ants in the leaf litter of tropical forest in Thailand. Mycological Research 100: 613–619. [Google Scholar]
  • Hywel-Jones NL (2002). Multiples of eight in Cordyceps ascospores. Mycological Research 106: 2–3. [Google Scholar]
  • Hywel-Jones NL, Evans HC (1993). Taxonomy and ecology of Hypocrella discoidea and its anamorph, Aschersonia samoënsis. Mycological Research 97: 871–876. [Google Scholar]
  • Hywel-Jones NL, Samuels GJ (1998). Three species of Hypocrella with large stromata pathogenic on scale insects. Mycologia 90: 36–46. [Google Scholar]
  • Hywel–Jones NL, Sivichai S (1995). Cordyceps cylindrica and its association with Nomuraea atypicola in Thailand. Mycological Research 99: 809–812. [Google Scholar]
  • Kobayasi Y (1939). On the genus Cordyceps and its allies on cicadae from Japan. Bulletin of the Biogeographical Society of Japan 9: 145–176. [Google Scholar]
  • Kobayasi Y (1941). The genus Cordyceps and its allies. Science Reports of the Tokyo Bunrika Daigaku, (Section B, no. 84) 5: 53–260. [Google Scholar]
  • Kobayasi Y (1982). Keys to the taxa of the genera Cordyceps and Torrubiella. Transactions of the Mycological Society of Japan 23: 329–364. [Google Scholar]
  • Kobayasi Y, Shimizu D (1960). Monographic studies of Cordyceps 1. Group parasitic on Elaphomyces. Bulletin of the National Science Museum Tokyo 5: 69–85. [Google Scholar]
  • Kobayasi Y, Shimizu D (1963). Monographic studies of Cordyceps 2. Group parasitic on Cicadae. Bulletin of the National Science Museum Tokyo 6: 286–314. [Google Scholar]
  • Kobayasi Y, Shimizu D (1976). The genus Cordyceps and its allies from New Guinea. Bulletin of the National Science Museum, Tokyo, Ser. B. 2: 133–151. [Google Scholar]
  • Kobayasi Y, Shimizu D (1978). Cordyceps species from Japan. Bulletin of the National Science Museum, Tokyo, Ser. B. 4: 44–62. [Google Scholar]
  • Kobayasi Y, Shimizu D (1982). Monograph of the genus Torrubiella. Bulletin of the National Science Museum, Tokyo, Ser. B. 8: 43–78. [Google Scholar]
  • Li Z-Z, Li C-R, Huang B, Fan M-Z (2001). Discovery and demonstration of the teleomorph of Beauveria bassiana (Bals.) Vuill., an important entomopathogenic fungus. Chinese Science Bulletin 9: 751–753. [Google Scholar]
  • Liang Z-Q (1991). Determination and identification of anamorph of Cordyceps pruinosa. Acta Mycologica Sinica 10: 72–80. [Google Scholar]
  • Liang Z-Q, Liu A-Y, Liu J-L (1991). A new species of the genus Cordyceps and its Metarhizium anamorph. Acta Mycologica Sinica 10: 257–262. [Google Scholar]
  • Liu Z-Y, Liang Z-Q, Whalley AJS, Yao Y-J, Liu A-Y (2001). Cordyceps brittlebankisoides, a new pathogen of grubs and its anamorph, Metarhizium anisopliae var. majus. Journal of Invertebrate Pathology 78: 178–182. [Abstract] [Google Scholar]
  • Luangsa-ard JJ, Hywel-Jones NL, Manoch L, Samson RA (2005). On the relationships of Paecilomyces sect. Isarioidea species. Mycological Research 109: 581–589. [Abstract] [Google Scholar]
  • Luangsa-ard JJ, Hywel-Jones NL, Samson RA (2004). The polyphyletic nature of Paecilomyces sensu lato based on 18S-generated rDNA phylogeny. Mycologia 96: 773–780. [Abstract] [Google Scholar]
  • Lutzoni F, Kauff F, Cox CJ, McLaughlin D, Celio G, Dentinger B, Padamsee M, Hibbett D, James TY, Baloch E, Grube M, Reeb V, Hofstetter V, Schoch C, Arnold AE, Miadlikowska J, Spatafora JW, Johnson D, Hambleton S, Crockett M, Shoemaker R, Sung G-H, Lucking R, Lumbsch T, O'Donnell K, Binder M, Diederich P, Ertz D, Gueidan C, Hansen K, Harris RC, Hosaka K, Lim Y-W, Matheny B, Nishida H, Pfister D, Rogers J, Rossman A, Schmitt I, Sipman H, Stone J, Sugiyama J, Yahr R, Vilgalys R (2004). Assembling the fungal tree of life: progress, classification, and evolution of subcellular traits. American Journal of Botany 91: 1446–1480. [Abstract] [Google Scholar]
  • MacLeod DM (1954). Investigations on the genera Beauveria Vuill. and Tritirachium Limber. Canadian Journal of Botany 32: 818–890. [Google Scholar]
  • McNeill JF, Barrie F, Burdet HM, Demoulin V, Hawksworth DL, Marhold K, Nicolson DH, Prado J, Silva PC, Skog JE, Wiersema J, Turland NJ, eds (2006). International Code of Botanical Nomenclature (Vienna Code). Regnum Vegetabile 146 Koeltz Scientific Books, Königstein.
  • Maddison DR, Maddison WP (2000). MacClade 4: Analysis of phylogeny and character evolution. Sinauer Associates, Sunderland, Massachusetts.
  • Mains EB (1950). Entomogenous species of Akanthomyces, Hymenostilbe and Insecticola in North America. Mycologia 42: 566–589. [Google Scholar]
  • Mains EB (1957). Species of Cordyceps parasitic on Elaphomyces. Bulletin of the Torrey Botanical Club 84: 243–251. [Google Scholar]
  • Mains EB (1958). North American entomogenous species of Cordyceps. Mycologia 50: 169–222. [Google Scholar]
  • Mains EB (1959). North American species of Aschersonia parasitic on Aleyrodidae. Journal of Insect Pathology 1: 43–47. [Google Scholar]
  • Mason-Gamer RJ, Kellogg EA (1996). Testing for phylogenetic conflict among molecular data sets in the tribe Triticeae (Gramineae). Systematic Biology 45: 524–545. [Google Scholar]
  • Massee G (1895). A revision of the genus Cordyceps. Annals of Botany 9: 1–44. [Google Scholar]
  • Mugnai L, Bridge PD, Evans HC (1989). A chemotaxonomic evaluation of the genus Beauveria. Mycological Research 92: 199–209. [Google Scholar]
  • Nannfeldt JA (1932). Studien über die Morphologie und Systematik der nicht-lichenisierten, inoperculaten Discomyceten. Nova Acta R. Societatis Scientiarum Upsaliensis, Ser. 6, 8: 1–368. [Google Scholar]
  • Nikoh N, Fukatsu T (2000). Interkingdom host jumping underground: Phylogenetic analysis of entomopathogenic fungi of the genus Cordyceps. Molecular Biology and Evolution 17: 629–638. [Abstract] [Google Scholar]
  • Oborník M, Jirku M, Dolezel D (2001). Phylogeny of mitosporic entomopathogenic fungi: Is the genus Paecilomyces polyphyletic? Canadian Journal of Microbiology 47: 813–819. [Abstract] [Google Scholar]
  • Ochiel GS, Evans HC, Eilenberg J (1997). Cordycepioideus, a pathogen of termites in Kenya. Mycologist 11: 7–9 [Google Scholar]
  • Pacioni G, Frizzi G (1978). Paecilomyces farinosus, the conidial state of Cordyceps memorabilis. Canadian Journal of Botany 56: 391–394. [Google Scholar]
  • Penzig O, Saccardo PA (1904). Icones fungorum Javanicorum. Buchhandlung and Druckerei E.J. Brill, Leiden.
  • Petch T (1921). Studies in entomogenous fungi. II. The genera of Hypocrella and Aschersonia. Annals of the Royal Botanic Garden Peradeniya 7: 167–278. [Google Scholar]
  • Petch T (1924). Studies in entomogenous fungus. IV. Some Ceylon Cordyceps. Transactions of the British Mycological Soceity 10: 28–45. [Google Scholar]
  • Petch T (1931). Notes on entomogenous fungi. Transactions of the British Mycological Society 16: 55–75. [Google Scholar]
  • Petch T (1932). Notes on entomogenous fungi. Transactions of the British Mycological Society 16: 209–245. [Google Scholar]
  • Petch T (1933). Notes on entomogenous fungi. Transactions of the British Mycological Society 18: 48–75. [Google Scholar]
  • Petch T (1936). Cordyceps militaris and Isaria farinosa. Transactions of the British Mycological Society 20: 216–224. [Google Scholar]
  • Petch T (1937). Notes on entomogenous fungi. Transactions of the British Mycological Society 21: 34–67. [Google Scholar]
  • Philippe H, Snell EA, Bapteste E, Lopez P, Holland PWH, Casane D (2004). Phylogenomics of eukaryotes: impact of missing data on large alignments. Molecular Biology and Evolution 21: 1740–1752. [Abstract] [Google Scholar]
  • Reeb V, Lutzoni F, Roux C (2004). Contribution of RPB2 to multilocus phylogenetic studies of the euascomycetes (Pezizomycota, Fungi) with special emphasis on the lichen-forming Acarosporaceae and evolution of polyspory. Molecular Phylogenetics and Evolution 32: 1036–1060. [Abstract] [Google Scholar]
  • Rehner SA, Buckley E (2005). A Beauveria phylogeny inferred from nuclear ITS and EF1-α sequences: evidence for cryptic diversification and links to Cordyceps teleomorphs. Mycologia 97: 84–98. [Abstract] [Google Scholar]
  • Reynolds DR, Taylor JW (eds) (1993). The fungal holomorph: Mitotic, meiotic and pleomorphic speciation in fungal systematics. CAB International, Wallingford UK.
  • Rogerson CT (1970). The hypocrealean fungi (Ascomycetes, Hypocreales). Mycologia 62: 865–910. [Abstract] [Google Scholar]
  • Rombach MC, Humber RA, Roberts DW (1986). Metarhizium flavoviride var. minus, var. nov., a pathogen of plant- and leafhoppers on rice in the Philippines and Solomon Islands. Mycotaxon 27: 87–92. [Google Scholar]
  • Rossman AY, Samuels GJ, Rogers JS, Lowen R (1999). Genera of Bionectriaceae, Nectriaceae and Hypocreaceae (Hypocreales, Ascomycetes). Studies in Mycology 42: 1–248. [Google Scholar]
  • Samson RA (1974). Paecilomyces and some allied hyphomycetes. Studies in Mycology 6: 1–119. [Google Scholar]
  • Samson RA, Evans HC (1975). Notes on entomogenous fungi from Ghana III. The genus Hymenostilbe. Proceedings, Koninklijke Nederlandse Akademie van Wetenschappen C 78: 73–79. [Google Scholar]
  • Samson RA, Evans HC, Latgé J-P (1988). Atlas of entomopathogenic fungi. Springer-Verlag, Berlin, Heidelberg, New York.
  • Samson RA, van Reenen-Hoekstra ES, Evans HC (1989). New species of Torrubiella (Ascomycotina: Clavicipitales) on insects from Ghana. Studies in Mycology 31: 123–132. [Google Scholar]
  • Shimazu M, Mitsuhashi W, Hashimoto H (1988). Cordyceps brongniartii sp. nov., the teleomorph of Beauveria brongniartii. Transactions of the Mycological Society of Japan 29: 323–330. [Google Scholar]
  • Spatafora JW, Sung G-H, Sung J-M, Hywel-Jones NL, White JF Jr. (2007). Phylogenetic evidence for an animal pathogen origin for ergot and the grass endophytes. Molecular Ecology 16: 1701–1711. [Abstract] [Google Scholar]
  • Stamatakis A, Ludwig T, Meier H (2005). RAxML-III: a fast program for maximum likelihood-based inference of large phylogenetic trees. Bioinformatics 21: 456–463. [Abstract] [Google Scholar]
  • Stensrud Ø, Hywel-Jones NL, Schumacher T (2005). Towards a phylogenetic classification of Cordyceps: ITS nrDNA sequence data confirm divergent lineages and paraphyly. Mycological Research 109: 41–56. [Abstract] [Google Scholar]
  • Su C-H, Wang H-H (1986). Phytocordyceps, a new genus of the Clavicipitaceae. Mycotaxon 26: 337–344. [Google Scholar]
  • Suh S-O, Spatafora JW, Ochiel GRS, Evans HC, Blackwell M (1998). Molecular phylogenetic study of a termite pathogen Cordycepioideus bisporus. Mycologia 90: 611–617. [Google Scholar]
  • Sullivan RF, Bergen MS, Patel R, Bills GF, Alderman SC, Spatafora JW, White JF Jr. (2001). Neoclaviceps monostipa: features of an enigmatic clavicipitalean fungus and the phyletic status of the anamorphic genus Ephelis. Mycologia 93: 90–99. [Google Scholar]
  • Sullivan RF, Bills GF, Hywel-Jones NL, White JF Jr. (2000). Hyperdermium: a new clavicipitalean genus for some tropical epibionts of dicotyledonous plants. Mycologia 92: 908–918. [Google Scholar]
  • Sung G-H, Spatafora JW (2004). Cordyceps cardinalis sp. nov., a new species of Cordyceps with an east Asian-eastern North American distribution. Mycologia 96: 658–666. [Abstract] [Google Scholar]
  • Sung G-H, Spatafora JW, Zare R, Hodge KT, Gams W (2001). A revision of Verticillium sect. Prostrata. II. Phylogenetic analyses of SSU and LSU nuclear rDNA sequences from anamorphs and teleomorphs of the Clavicipitaceae. Nova Hedwigia 72: 311–328. [Google Scholar]
  • Sung G-H, Sung J-M, Hywel-Jones NL, Spatafora JW (2007). A multi-gene phylogeny of Clavicipitaceae (Ascomycota, Fungi): Identification of localized incongruence using a combinational bootstrap approach. Molecular Phylogenetics and Evolution, in press. [Abstract]
  • Sung J-M (1996). The insects-born fungus of Korea in color. Kyohak Publ. Co., Seoul.
  • Swofford DL (2002). PAUP*: Phylogenetic analysis using parsimony (*and other methods), version 4. Sinauer Associates, Sunderland, Massachusetts.
  • Tanaka E, Tanaka C, Gafur A, Tsuda M (2002). Heteroepichloë, gen. nov. (Clavicipitaceae; Ascomycotina) on bamboo plants in East Asia. Mycoscience 43: 87–93. [Google Scholar]
  • Thompson JD, Higgins DG, Gibson TJ (1994). CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions-specific gap penalties and weight matrix choice. Nucleic Acids Research 22: 4673–4680. [Europe PMC free article] [Abstract] [Google Scholar]
  • White JF Jr., Reddy PV (1998). Examination of structure and molecular phylogenetic relationships of some graminicolous symbionts in genera Epichloë and Parepichloë. Mycologia 90: 226–234. [Google Scholar]
  • Wiens JJ (1998). Combining data sets with different phylogenetic histories. Systematic Biology 47: 568–581. [Abstract] [Google Scholar]
  • Wiens JJ (2003). Missing data, incomplete taxa, and phylogenetic accuracy. Systematic Biology 52: 528–538. [Abstract] [Google Scholar]
  • Zang M, Daoqing L, Ruoying H (1982). Notes concerning the subdivisions of Cordyceps and a new species from China. Acta Botanica Yunnanica 4: 173–176. [Google Scholar]
  • Zang M, Kinjo N (1998). Notes on the alpine Cordyceps of China and nearby nations. Mycotaxon 66: 215–229. [Google Scholar]
  • Zare R, Gams W (2001a). A revision of Verticillium sect. Prostrata. IV. The genera Lecanicillium and Simplicillium gen. nov. Nova Hedwigia 73: 1–50. [Google Scholar]
  • Zare R, Gams W (2001b). A revision of Verticillium sect. Prostrata. VI. The genus Haptocillium. Nova Hedwigia 73: 271–292. [Google Scholar]
  • Zare R, Gams W, Evans HC (2001). A revision of Verticillium sect. Prostrata. V. The genus Pochonia, with notes on Rotiferophthora. Nova Hedwigia 73: 51–86. [Google Scholar]
  • Zare R, Gams W, Starink-Willemse M, Summerbell RC (2007) Gibellulopsis, a suitable genus for Verticillium nigrescens, and Musicillium, a new genus for V. theobromae. Nova Hedwigia, in press.
  • Zhang WM, Li TH, Chen YQ, Qu LH (2004). Cordyceps campsosterna, a new pathogen of Campsosternus auratus. Fungal Diversity 17: 239–242. [Google Scholar]

Articles from Studies in Mycology are provided here courtesy of Westerdijk Fungal Biodiversity Institute

Citations & impact 


Impact metrics

Jump to Citations
Jump to Data

Citations of article over time

Alternative metrics

Altmetric item for https://www.altmetric.com/details/1117349
Altmetric
Discover the attention surrounding your research
https://www.altmetric.com/details/1117349

Article citations


Go to all (358) article citations

Other citations

Data 


Data behind the article

This data has been text mined from the article, or deposited into data resources.

Similar Articles 


To arrive at the top five similar articles we use a word-weighted algorithm to compare words from the Title and Abstract of each citation.


Funding 


Funders who supported this work.

National Science Foundation (1)