Europe PMC

This website requires cookies, and the limited processing of your personal data in order to function. By using the site you are agreeing to this as outlined in our privacy notice and cookie policy.

Abstract 


The Didymellaceae is one of the most species-rich families in the fungal kingdom, and includes species that inhabit a wide range of ecosystems. The taxonomy of Didymellaceae has recently been revised on the basis of multi-locus DNA sequence data. In the present study, we investigated 108 Didymellaceae isolates newly obtained from 40 host plant species in 27 plant families, and various substrates from caves, including air, water and carbonatite, originating from Argentina, Australia, Canada, China, Hungary, Israel, Italy, Japan, South Africa, the Netherlands, the USA and former Yugoslavia. Among these, 68 isolates representing 32 new taxa are recognised based on the multi-locus phylogeny using sequences of LSU, ITS, rpb2 and tub2, and morphological differences. Within the Didymellaceae, five genera appeared to be limited to specific host families, with other genera having broader host ranges. In total 19 genera are recognised in the family, with Heracleicola being reduced to synonymy under Ascochyta. This study has significantly improved our understanding on the distribution and biodiversity of Didymellaceae, although the placement of several genera still need to be clarified.

Free full text 


Logo of simycolStudies in MycologyAbout the JournalInstructions to AuthorsEditorial BoardWebshopSubscribe
Stud Mycol. 2017 Jun; 87: 105–159.
PMCID: PMC5498420
PMID: 28706324

Didymellaceae revisited

Abstract

The Didymellaceae is one of the most species-rich families in the fungal kingdom, and includes species that inhabit a wide range of ecosystems. The taxonomy of Didymellaceae has recently been revised on the basis of multi-locus DNA sequence data. In the present study, we investigated 108 Didymellaceae isolates newly obtained from 40 host plant species in 27 plant families, and various substrates from caves, including air, water and carbonatite, originating from Argentina, Australia, Canada, China, Hungary, Israel, Italy, Japan, South Africa, the Netherlands, the USA and former Yugoslavia. Among these, 68 isolates representing 32 new taxa are recognised based on the multi-locus phylogeny using sequences of LSU, ITS, rpb2 and tub2, and morphological differences. Within the Didymellaceae, five genera appeared to be limited to specific host families, with other genera having broader host ranges. In total 19 genera are recognised in the family, with Heracleicola being reduced to synonymy under Ascochyta. This study has significantly improved our understanding on the distribution and biodiversity of Didymellaceae, although the placement of several genera still need to be clarified.

Key words: Host-associated, Karst caves, Multi-locus phylogeny, Phoma, Taxonomy
Taxonomic novelties: New species: Allophomaoligotrophica Q. Chen, Crous & L. Cai, Ascochytaboeremae L.W. Hou, Crous & L. Cai, Calophomarosae Q. Chen, Crous & L. Cai, Didymellaaeria Q. Chen, Crous & L. Cai, D. aquatica Q. Chen, Crous & L. Cai, D. chloroguttulata Q. Chen, Crous & L. Cai, D. ellipsoidea Q. Chen, Crous & L. Cai, D. ilicicola Q. Chen, Crous & L. Cai, D. infuscatispora Q. Chen, Crous & L. Cai, D. macrophylla Q. Chen, Crous & L. Cai, D. ocimicola Q. Chen, Crous & L. Cai, D. pteridis L.W. Hou, Crous & L. Cai, D. sinensis Q. Chen, Crous & L. Cai, D. suiyangensis Q. Chen, Crous & L. Cai, Epicoccumcamelliae Q. Chen, Crous & L. Cai, E. dendrobii Q. Chen, Crous & L. Cai, E. duchesneae Q. Chen, Crous & L. Cai, E. hordei Q. Chen, Crous & L. Cai, E. italicum Q. Chen, Crous & L. Cai, E. latusicollum Q. Chen, Crous & L. Cai, E. layuense Q. Chen, Crous & L. Cai, E. poae Q. Chen, Crous & L. Cai, E. viticis Q. Chen, Crous & L. Cai, Heterophomaverbascicola Q. Chen, Crous & L. Cai, Neoascochytaargentina L.W. Hou, Crous & L. Cai, Neoa. soli Q. Chen, Crous & L. Cai, Neoa. triticicola L.W. Hou, Crous & L. Cai, Neodidymelliopsisachlydis L.W. Hou, Crous & L. Cai, Neod. longicolla L.W. Hou, Crous & L. Cai, Stagonosporopsisbomiensis Q. Chen, Crous & L. Cai, S. papillata Q. Chen, Crous & L. Cai
New variety: Boeremiaexigua var. opuli Q. Chen, Crous & L. Cai
New combinations: Ascochytapremilcurensis (Tibpromma et al.) Q. Chen, Crous & L. Cai, Didymellasegeticola (Q. Chen) Q. Chen, Crous & L. Cai

Introduction

The Didymellaceae is the largest family in the Pleosporales (Ascomycota, Pezizomycotina, Dothideomycetes), with more than 5 400 taxon names listed in MycoBank (Crous et al. 2004). The family Didymellaceae was established by de Gruyter et al. (2009) to encompass three main genera, viz. Ascochyta, Didymella and Phoma, and other allied phoma-like genera which grouped in the Didymellaceae. Aveskamp et al. (2010) circumscribed the boundaries of Didymellaceae, redefined the genera Epicoccum, Peyronellaea and Stagonosporopsis, and established the genus Boeremia. He also acknowledged two sexual genera in the family, namely Leptosphaerulina and Macroventuria. In spite of these studies, the polyphyly of Ascochyta, Didymella and Phoma remained unresolved. A revision of the Didymellaceae has recently been published, comprising 17 well-supported monophyletic clades which were treated as individual genera (Chen et al. 2015a). Moreover, the generic delimitations of Ascochyta, Didymella, Epicoccum and Phoma were further emended to reveal more natural evolutionary relationships (Chen et al. 2015a). Subsequent to this revision, several additional genera were added, namely Briansuttonomyces (Crous & Groenewald 2016), Neomicrosphaeropsis (Thambugala et al. 2017), Didymellocamarosporium (Wijayawardene et al. 2016), Heracleicola and Neodidymella (Ariyawansa et al. 2015).

Species of Didymellaceae are cosmopolitan and distributed throughout a broad range of environments. Most of the members in this family are plant pathogens of a wide range of hosts, mainly causing leaf and stem lesions; some are of quarantine significance (Aveskamp et al., 2008, Aveskamp et al., 2010, Chen et al., 2015a, Chen et al., 2015b). Several species belonging to Ascochyta and Nothophoma have been reported to be host-specific to a single plant genus or family (Aveskamp et al., 2010, Chen et al., 2015a). Nevertheless, host specificity in genera of Didymellaceae has not been specifically addressed.

Correct species identification in this family has always proven difficult, chiefly relying on morphology and plant host association (Aveskamp et al., 2010, Chen et al., 2015a). However, a robust backbone tree based on internal transcribed spacer regions and intervening 5.8S nrDNA (ITS), partial 28S large subunit nrDNA (LSU) sequences, and partial regions of RNA polymerase II second largest subunit (rpb2) and β-tubulin (tub2) genes provide a relatively robust phylogenetic backbone for taxon determination (Chen et al. 2015a).

The present study reports on a collection of 108 Didymellaceae isolates obtained from 40 host plant species in 27 plant families in China, as well as several other countries. Of these, 68 isolates representing 32 new taxa are described by employing a polyphasic approach using morphological characteristics and multi-locus phylogenetics.

Materials and methods

Sampling and isolation

The majority of Didymellaceae strains were isolated from diseased plants in seven provinces of China (Gansu, Guizhou, Inner Mongolia, Jiangxi, Qianghai, Shandong and Tibet), as well as Australia, Italy, Japan and the USA. Some strains isolated from air, soil, water and faeces were collected from the Mingyong Glacier in Yunnan Province and inside the Karst caves in Guizhou Province in China. The air, soil and water samples were collected from inside the cave following the methods used by Zhang et al. (2017). Several strains were obtained from the Herbarium BRIP (Dutton Park, Queensland, Australia), the International Collection of Microorganisms from Plants (ICMP, Landcare Research, Auckland, New Zealand), and the Westerdijk Fungal Biodiversity Institute (CBS, Utrecht, the Netherlands), as listed in Table 1.

Table 1

Isolates used in this study and their GenBank accession numbers. New taxa and new combinations introduced in the present study and newly generated sequences are indicated in bold.

SpeciesStrain number1Status2Host, substrateHost familyCountryGenBank accession numbers3
LSUITSRPB2TUB
Allophoma labilisCBS 124.93; PD 87/269Lycopersicon esculentumSolanaceaeNetherlandsGU238091GU237765KT389552GU237619
Al. minorCBS 325.82TSyzygium aromaticumMyrtaceaeIndonesiaGU238107GU237831KT389553GU237632
Al. nicaraguensisCBS 506.91; PD 91/876; IMI 215229TCoffea arabicaRubiaceaeNicaraguaGU238058GU237876KT389551GU237596
Al. oligotrophicaCGMCC 3.18114; LC 6245TAirChinaKY742194KY742040KY742128KY742282
CGMCC 3.18115; LC 6246AirChinaKY742195KY742041KY742129KY742283
CGMCC 3.18116; LC 6247AirChinaKY742196KY742042KY742130KY742284
Al. piperisCBS 268.93; CBS 108.93; PD 88/720TPeperomia pereskiifoliaPiperaceaeNetherlandsGU238129GU237816KT389554GU237644
CBS 108.93; PD 90/2011Peperomia sp.PiperaceaeNetherlandsGU238130GU237921KT389555GU237645
Al. tropicaCBS 436.75; DSM 63365TSaintpaulia ionanthaGesneriaceaeGermanyGU238149GU237864KT389556GU237663
Al. zantedeschiaeCBS 131.93; PD 69/140Calla sp.AraceaeNetherlandsGU238159FJ427084KT389557FJ427188
CBS 229.32Cicer arietinumFabeceaeRomaniaKT389690KT389473KT389558KT389767
ICMP 16850Lycopersicon esculentumSolanaceaeHungaryKY742197KY742043KY742131KY742285
Ascochyta boeremaeCBS 372.84; PD 80/1246TPisum sativumFabeceaeAustraliaKT389697KT389480KT389774
As. boeremaeCBS 373.84; PD 80/1247Pisum sativumFabeceaeAustraliaKT389698KT389481KT389560KT389775
As. fabaeCBS 524.77Phaseolus vulgarisFabeceaeBelgiumGU237963GU237880GU237526
CBS 649.71Vicia fabaFabeceaeNetherlandsGU237964GU237902GU237527
PD 83/492Phaseolus vulgarisFabeceaeNetherlandsGU237965GU237917GU237528
As. herbicolaCBS 629.97; PD 76/1017RWaterUSAGU238083GU237898KP330421GU237614
As. lentisCBS 370.84; PD 81/783Lens culinarisFabeceaeKT389691KT389474KT389768
As. medicaginicola var. macrosporaBRIP 45051; LC 5258Medicago sativaFabeceaeAustraliaKY742198KY742044KY742132KY742286
CBS 112.53TMedicago sativaFabeceaeUSAGU238101GU237749GU237628
CBS 404.65; IMI 116999RMedicago sativaFabeceaeCanadaGU238102GU237859KP330423GU237629
As. medicaginicola var. medicaginicolaCBS 316.90Medicago sativaFabeceaeCzech RepublicGU238103GU237828GU237630
As. nigripycnidiaCBS 116.96; PD 95/7930TVicia craccaFabeceaeRussiaGU238118GU237756GU237637
As. phacaeCBS 184.55TPhaca alpinaFabeceaeSwitzerlandKT389692KT389475KT389769
As. pisiCBS 122750; ATCC 201619Pisum sativumFabeceaeUSAKT389694KT389477KT389771
CBS 122751; ATCC 201620Pisum sativumFabeceaeCanadaKP330444KP330432EU874867KP330388
CBS 122785; PD 78/517TPisum sativumFabeceaeNetherlandsGU237969GU237763GU237532
CBS 126.54Pisum sativumFabeceaeNetherlandsEU754137GU237772DQ677967GU237531
CBS 108.49Juglans regiaJuglandaceaeNetherlandsKT389693KT389476KT389770
As. premilcurensisMFLUCC 14-0518THeracleum sphondyliumApiaceaeItalyKT326695KT326694
As. rabieiCBS 206.30KT389695KT389478KT389559KT389772
CBS 237.37TCicer arietinumFabeceaeBulgariaKT389696KT389479KT389773
CBS 534.65Cicer arietinumFabeceaeIndiaGU237970GU237886KP330405GU237533
As. syringaeCBS 545.72Syringa vulgarisOleaceaeNetherlandsKT389700KT389483KT389777
As. versabilisCBS 876.97; PD 82/1008RSilene sp.CaryophyllaceaeNetherlandsGU238152GU237909KT389561GU237664
As. viciaeCBS 451.68Vicia sepiumFabeceaeNetherlandsKT389701KT389484KT389562KT389778
As. viciae-pannonicaeCBS 254.92Vicia pannonicaFabeceaeCzech RepublicKT389702KT389485KT389779
Boeremia crinicolaCBS 109.79; PD 77/747RCrinum powelliiAmaryllidaceaeNetherlandsGU237927GU237737KT389563GU237489
B. diversisporaCBS 102.80; IMI 331907; PD 79/61Phaseolus vulgarisFabeceaeKenyaGU237930GU237725KT389565GU237492
CBS 101194; PD 79/687; IMI 373349Phaseolus vulgarisFabeceaeNetherlandsGU237929GU237716KT389564GU237491
B. exigua var. coffeaeCBS 119730Coffea arabicaRubiaceaeBrazilGU237942GU237759KT389567GU237504
CBS 109183; PD 2000/10506; IMI 300060RCoffea arabicaRubiaceaeCameroonGU237943GU237748KT389566GU237505
CBS 431.74; PD 74/2447RSolanum tuberosumSolanaceaeNetherlandsEU754183FJ427001KT389569FJ427112
B. exigua var. forsythiaeCBS 101197; PD 95/721Forsythia sp.OleaceaeNetherlandsGU237931GU237718KT389570GU237493
CBS 101213; PD 92/959RForsythia sp.OleaceaeNetherlandsGU237932GU237723KT389571GU237494
B. exigua var. gilvescensCBS 101150; PD 79/118Cichorium intybusAsteraceaeNetherlandsEU754182GU237715KT389568GU237495
B. exigua var. heteromorphaCBS 443.94TNerium oleanderApocynaceaeItalyGU237935GU237866KT389573GU237497
CBS 101196; PD 79/176Nerium oleanderApocynaceaeFranceGU237934GU237717KT389572GU237496
B. exigua var. linicolaCBS 114.28Linum usitatissimumLinaceaeNetherlandsGU237937GU237752GU237499
CBS 116.76; ATCC 32332; IMI 197074; PD 75/544RLinum usitatissimumLinaceaeNetherlandsGU237938GU237754KT389574GU237500
CBS 248.38Nemophila insignisHydrophyllaceaeNetherlandsKT389703KT389486KT389575KT389780
B. exigua var. opuliCGMCC 3.18354; LC 8117TViburnum opulusCaprifoliaceaeUSAKY742199KY742045KY742133KY742287
LC 8118Viburnum opulusCaprifoliaceaeUSAKY742200KY742046KY742134KY742288
B. exigua var. populiCBS 100167; PD 93/217TPopulus (×) euramericanaSalicaceaeNetherlandsGU237939GU237707GU237501
B. exigua var. pseudolilacisCBS 423.67Lathyrus sp.FabeceaeNetherlandsKT389704KT389487KT389576KT389781
CBS 462.67Lamium maculatumLamiaceaeNetherlandsKT389705KT389488KT389782
CBS 101207; PD 94/614TSyringa vulgarisOleaceaeNetherlandsGU237941GU237721GU237503
B. exigua var. viburniCBS 100354; PD 83/448RViburnum opulusCaprifoliaceaeNetherlandsGU237944GU237711KT389577GU237506
B. foveataCBS 109176; PD 94/1394RSolanum tuberosumSolanaceaeBulgariaGU237946GU237742KT389578GU237508
B. hedericolaCBS 367.91; PD 87/229RHedera helixAraliaceaeNetherlandsGU237949GU237842KT389579GU237511
B. lilacisCBS 569.79; PD 72/741; IMI 331909RSyringa vulgarisOleaceaeNetherlandsGU237936GU237892GU237498
CBS 588.67Philadelphus sp.SaxifragaceaeNetherlandsKT389709KT389492KT389786
LC 5178Lonicera japonicaCaprifoliaceaeChinaKY742201KY742047KY742289
LC 8116Ocimum sp.LamiaceaeChinaKY742202KY742048KY742290
B. lycopersiciCBS 378.67; PD 67/276RLycopersicon esculentumSolanaceaeNetherlandsGU237950GU237848KT389580GU237512
B. noackianaCBS 100353; PD 87/718RPhaseolus vulgarisFabeceaeGuatemalaGU237952GU237710GU237514
CBS 101203; PD 79/1114Phaseolus vulgarisFabeceaeColombiaGU237953GU237720KT389581GU237515
B. sambuci-nigraeCBS 629.68; CECT 20048; IMI 331913; PD 67/753TSambucus nigraCaprifoliaceaeNetherlandsGU237955GU237897GU237517
B. strasseriCBS 126.93; PD 73/642Mentha sp.LamiaceaeNetherlandsGU237956GU237773KT389584GU237518
B. telephiiCBS 760.73; PD 71/1616RSedum telephiumCrassulaceaeNetherlandsGU237959GU237905GU237521
CBS 109175; PD 79/524RSedum telephiumCrassulaceaeNetherlandsGU237958GU237741KT389585GU237520
B. trachelospermiCGMCC 3.18222; LC 8105TTrachelospermum jasminoidesApocynaceaeUSAKY064032KY064028KY064033KY064051
Briansuttonomyces eucalyptiCBS 114879; CPC 362TEucalyptus sp.MyrtaceaeSouth AfricaKU728519KU728479KU728595
CBS 114887; CPC 363Eucalyptus sp.MyrtaceaeSouth AfricaKU728520KU728480KU728596
Calophoma aquilegiicolaCBS 107.31Aquilegia sp.RanunculaceaeKT389710KT389493KT389787
C. aquilegiicolaCBS 107.96; PD 73/598RAconitum pyramidaleRanunculaceaeNetherlandsGU238041GU237735KT389586GU237581
CBS 108.96; PD 79/611RAquilegia sp.RanunculaceaeNetherlandsGU238042GU237736GU237582
CBS 109.96; PD 83/832Aquilegia sp.RanunculaceaeNetherlandsKT389711KT389494KT389788
CBS 116402Thalictrum dipterocarpumRanunculaceaeNew ZealandKT389712KT389495KT389789
C. clematidinaCBS 102.66Clematis sp.RanunculaceaeUKFJ515630FJ426988KT389587FJ427099
CBS 108.79; PD 78/522TClematis sp.RanunculaceaeNetherlandsFJ515632FJ426989KT389588FJ427100
C. clematidis-rectaeCBS 507.63; PD 07/03486747; MUCL 9574Clematis sp.RanunculaceaeNetherlandsFJ515647FJ515606KT389589FJ515624
C. complanataCBS 268.92; PD 75/3Angelica sylvestrisUmbelliferaeNetherlandsEU754180FJ515608GU371778FJ515626
CBS 100311Heracleum sphondyliumUmbelliferaeNetherlandsEU754181GU237709KT389590GU237594
C. glauciiCBS 112.96; PD 79/765Dicentra sp.PapaveraceaeNetherlandsGU238077GU237750GU237610
CBS 114.96; PD 94/888Chelidonium majusPapaveraceaeNetherlandsFJ515649FJ515609FJ515627
C. rosaeCGMCC 3.18347; LC 5169TRosa sp.RosaceaeChinaKY742203KY742049KY742135KY742291
LC 8119Rosa sp.RosaceaeChinaKY742204KY742050KY742136KY742292
C. vodakiiCBS 173.53THepatica trilobaRanunculaceaeSwitzerlandKT389714KT389497KT389791
Didymella acetosellaeCBS 179.97Rumex hydrolapathumPolygonaceaeNetherlandsGU238034GU237793KP330415GU237575
D. aeriaCGMCC 3.18353; LC 7441TAirChinaKY742205KY742051KY742137KY742293
LC 8120AirChinaKY742206KY742052KY742138KY742294
D. alienaCBS 379.93; PD 82/945Berberis sp.BerberidaceaeNetherlandsGU238037GU237851KP330416GU237578
LC 8121Pyrus calleryanaRosaceaeItalyKY742207KY742053KY742295
D. americanaCBS 185.85; PD 80/1191RZea maysPoaceaeUSAGU237990FJ426972KT389594FJ427088
CBS 568.97; ATCC 44494; PD 94/1544Glycine maxFabeceaeUSAGU237991FJ426974FJ427090
LC 5157Sorghum bicolorPoaceaeChinaKY742208KY742054KY742139KY742296
D. anserinaCBS 253.80GermanyKT389715KT389498KT389595KT389795
CBS 285.29Calluna sp.EricaceaeUKKT389716KT389499KT389796
CBS 360.84RPotato flourNetherlandsGU237993GU237839KT389596GU237551
CBS 397.65PlasticGermanyKT389717KT389500KT389597KT389797
D. aquaticaCGMCC 3.18349; LC 5556TWaterChinaKY742209KY742055KY742140KY742297
LC 5555WaterChinaKY742210KY742056KY742141KY742298
D. arachidicolaCBS 333.75; ATCC 28333; IMI 386092; PREM 44889TArachis hypogaeaFabeceaeSouth AfricaGU237996GU237833KT389598GU237554
D. aureaCBS 269.93; PD 78/1087TMedicago polymorphaFabeceaeNew ZealandGU237999GU237818KT389599GU237557
D. bellidisCBS 714.85; PD 74/265RBellis perennisAsteraceaeNetherlandsGU238046GU237904KP330417GU237586
PD 94/886Bellis sp.AsteraceaeNetherlandsGU238047GU237923GU237587
D. boeremaeCBS 109942; PD 84/402TMedicago littoralis cv. HarbingerFabeceaeAustraliaGU238048FJ426982KT389600FJ427097
D. calidophilaCBS 448.83TSoilEgyptGU238052FJ427059FJ427168
PD 84/109Cucumis sativusCucurbitaceaeNetherlandsGU238053FJ427060FJ427169
D. chenopodiiCBS 128.93; PD 79/140RChenopodium quinoa cv. SajanaChenopodiaceaePeruGU238055GU237775KT389602GU237591
D. chloroguttulataCGMCC 3.18351; LC 7435TAirChinaKY742211KY742057KY742142KY742299
LC 8122AirChinaKY742212KY742058KY742143KY742300
D. coffeae-arabicaeCBS 123380; PD 84/1013TCoffea arabicaRubiaceaeEthiopiaGU238005FJ426993KT389603FJ427104
LC 8975Lagerstroemia indicaLythraceaeItalyKY742213KY742059KY742144KY742301
D. curtisiiCBS 251.92; PD 86/1145RNerine sp.AmaryllidaceaeNetherlandsGU238013FJ427038FJ427148
PD 92/1460Sprekelia sp.AmaryllidaceaeNetherlandsGU238012FJ427041KT389604FJ427151
D. dactylidisCBS 124513; PD 73/1414TDactylis glomerataPoaceaeUSAGU238061GU237766GU237599
D. dimorphaCBS 346.82TOpuntia spCactaceaeSpainGU238068GU237835GU237606
D. ellipsoideaCGMCC 3.18350; LC 7434TAirChinaKY742214KY742060KY742145KY742302
LC 8123AirChinaKY742215KY742061KY742146KY742303
D. eucalypticaCBS 377.91; PD 79/210REucalyptus sp.MyrtaceaeAustraliaGU238007GU237846KT389605GU237562
D. exiguaCBS 183.55TRumex arifoliusPolygonaceaeFranceEU754155GU237794EU874850GU237525
D. gardeniaeCBS 626.68; IMI 108771TGardenia jasminoidesRubiaceaeIndiaGQ387595FJ427003KT389606FJ427114
D. glomerataCBS 133.72Fresco in churchRomaniaKT389718FJ427004FJ427115
CBS 528.66; PD 63/590RChrysanthemum sp.AsteraceaeNetherlandsEU754184FJ427013GU371781FJ427124
LC 4963Leymus chinensisPoaceaeChinaKY742216KY742062KY742147KY742304
LC 8124FaecesChinaKY742217KY742063KY742148KY742305
D. heteroderaeCBS 109.92; PD 73/1405TUndefined food materialNetherlandsGU238002FJ426983KT389601FJ427098
LC 8125Hydrangea macrophyllaSaxifragaceaeChinaKY742218KY742064KY742149KY742306
D. ilicicolaCGMCC 3.18355; LC 8126; LC 8127TIlex chinensisAquifoliaceaeItalyKY742219KY742065KY742150KY742307
LC 8127Ilex chinensisAquifoliaceaeItalyKY742220KY742066KY742151KY742308
D. infuscatisporaCGMCC 3.18356; LC 8128TChrysanthemum indicumAsteraceaeChinaKY742221KY742067KY742152KY742309
LC 8129Chrysanthemum indicumAsteraceaeChinaKY742222KY742068KY742310
D. lethalisCBS 103.25GU238010GU237729KT389607GU237564
LC 8130Liquidambar styracifluaHamamelidaceaeItalyKY742223KY742069KY742153KY742311
D. longicollaCBS 124514; PD 80/1189TOpuntia sp.CactaceaeSpainGU238095GU237767GU237622
D. macrophyllaCGMCC 3.18357; LC 8131THydrangea macrophyllaSaxifragaceaeItalyKY742224KY742070KY742154KY742312
LC 8132Hydrangea macrophyllaSaxifragaceaeItalyKY742225KY742071KY742155KY742313
D. mascrostomaCBS 223.69RAcer pseudoplatanusAceraceaeSwitzerlandGU238096GU237801KT389608GU237623
CBS 247.38Pinus nigra var. astriacaPinaceaeKT389719KT389501KT389798
CBS 482.95Larix deciduaPinaceaeGermanyGU238099GU237869KT389609GU237626
CBS 529.66; PD 66/521RMalus sylvestrisRosaceaeNetherlandsGU238098GU237885GU237625
LC 5203SoilChinaKY742226KY742072KY742156KY742314
D. maydisCBS 588.69TZea maysPoaceaeUSAEU754192FJ427086GU371782FJ427190
D. microchlamydosporaCBS 105.95TEucalyptus sp.MyrtaceaeUKGU238104FJ427028KP330424FJ427138
D. mollerianaCBS 229.79; LEV 7660RDigitalis purpureaScrophulariaceaeNew ZealandGU238067GU237802KP330418GU237605
CBS 109179; PD 90/835-1Digitalis sp.ScrophulariaceaeNetherlandsGU238066GU237744GU237604
D. musaeCBS 463.69RMangifera indicaAnacardiaceaeIndiaGU238011FJ427026FJ427136
D. negrianaCBS 358.71RVitis viniferaVitaceaeGermanyGU238116GU237838KT389610GU237635
ICMP 10845; LC 5249Vitis viniferaVitaceaeformer YugoslaviaKY742227KY742073KY742315
D. nigricansCBS 444.81; PDDCC 6546TActinidia chinensisActinidiaceaeNew ZealandGU238000GU237867GU237558
LC 8133Robinia pseudoacacia f. decaisneanaFabeceaeItalyKY742228KY742074KY742157KY742316
LC 8134Acer palmatumAceraceaeJapanKY742229KY742075KY742158KY742317
LC 8135Acer palmatumAceraceaeJapanKY742230KY742076KY742159KY742318
LC 8136Acer palmatumAceraceaeJapanKY742231KY742077KY742160KY742319
PD 77/919Actinidia chinensisActinidiaceaeNew ZealandGU238001GU237915KT389611GU237559
D. ocimicolaCGMCC 3.18358; LC 8137TOcimum sp.LamiaceaeChinaKY742232KY742078KY742320
LC 8138Ocimum sp.LamiaceaeChinaKY742233KY742079KY742321
D. pedeiaeCBS 124517; PD 92/612ATSchefflera elegantissimaAraliaceaeNetherlandsGU238127GU237770KT389612GU237642
D. pinodellaCBS 318.90; PD 81/729Pisum sativumFabeceaeNetherlandsGU238016FJ427051FJ427161
CBS 531.66Trifolium pretenseFabeceaeUSAGU238017FJ427052KT389613FJ427162
LC 8139Acer palmatumAceraceaeJapanKY742234KY742080KY742161KY742322
D. pinodesCBS 525.77TPisum sativumFabeceaeBelgiumGU238023GU237883KT389614GU237572
D. pomorumCBS 285.76; ATCC 26241; IMI 176742; VKM F-1843Heracleum dissectumUmbelliferaeRussiaGU238025FJ427053KT389615FJ427163
CBS 354.52Triticum speltaPoaceaeSwitzerlandKT389720KT389502KT389616KT389799
CBS 388.80Triticum sp.PoaceaeSouth AfricaGU238027FJ427055KT389617FJ427165
CBS 539.66; ATCC 16791; IMI 122266; PD 64/914RPolygonum tataricumPolygonaceaeNetherlandsGU238028FJ427056KT389618FJ427166
LC 5185Gentiana stramineaGentianaceaeChinaKY742235KY742081KY742162KY742323
LC 8140Dendrobium fimbriatumOrchidaceaeChinaKY742236KY742082KY742324
D. protuberansCBS 132.96; PD 93/853Rhinanthus majorScrophulariaceaeNetherlandsGU237989GU237778GU237550
CBS 377.93; PD 80/976Daucus carotaUmbelliferaeNetherlandsGU238014GU237847KT389619GU237565
CBS 381.96; PD 71/706TLycium halifoliumSolanaceaeNetherlandsGU238029GU237853KT389620GU237574
CBS 391.93; PD 80/87Spinacia oleraceaChenopodiaceaeNetherlandsGU238015GU237858KT389621GU237566
D. pteridisCBS 379.96TPteris sp.PteridaceaeNetherlandsKT389722KT389504KT389624KT389801
D. rheiBRIP 5562; LC 5251Rheum rhaponticumPolygonaceaeAustraliaKY742237KY742083KY742163KY742325
CBS 109177; LEV 15165; PD 2000/9941RRheum rhaponticumPolygonaceaeNew ZealandGU238139GU237743KP330428GU237653
D. rumicicolaCBS 683.79; LEV 15094TRumex obtusifoliusPolygonaceaeNew ZealandKT389721KT389503KT389622KT389800
D. sanctaCBS 281.83TAilanthus altissimaSimaroubaceaeSouth AfricaGU238030FJ427063KT389623FJ427170
D. segeticolaCGMCC 3.17489; LC 1636TCirsium segetumAsteraceaeChinaKP330455KP330443KP330414KP330399
CGMCC 3.17498; LC 1635Cirsium segetumAsteraceaeChinaKP330454KP330442KP330413KP330398
LC 1633Cirsium segetumAsteraceaeChinaKP330452KP330440KP330411KP330396
LC 1634Cirsium segetumAsteraceaeChinaKP330453KP330441KP330412KP330397
LC 8141Camellia sasanquaTheaceaeJapanKY742238KY742084KY742164KY742326
D. senecionicolaCBS 160.78; LEV 11451RSenecio jacobaeaAsteraceaeNew ZealandGU238143GU237787GU237657
D. sinensisCGMCC 3.18348; LC 5210TCerasus pseudocerasusRosaceaeChinaKY742239KY742085KY742327
LC 5246UrticaceaeUrticaceaeChinaKY742240KY742086KY742165KY742328
LC 8142Dendrobium officinaleOrchidaceaeChinaKY742241KY742087KY742166KY742329
LC 8143Dendrobium officinaleOrchidaceaeChinaKY742242KY742088KY742167KY742330
D. subglomerataCBS 110.92; PD 76/1010RTriticum sp.PoaceaeUSAGU238032FJ427080KT389626FJ427186
D. subherbarumCBS 249.92; PD 78/1088Solanum sp.SolanaceaePeruGU238144GU237808GU237658
CBS 250.92; DAOM 171914; PD 92/371TZea maysPoaceaeCanadaGU238145GU237809GU237659
D. suiyangensisCGMCC 3.18352; LC 7439TAirChinaKY742243KY742089KY742168KY742330
LC 8144AirChinaKY742244KY742090KY742169KY742332
D. viburnicolaCBS 523.73; PD 69/800RViburnum cassioidesCaprifoliaceaeNetherlandsGU238155GU237879KP330430GU237667
Didymellocamarosporium tamaricisMFLUCC 14-0241TTamarix sp.TamaricaceaeItalyKU848183
Endocoryneum festucaeMFLUCC 14-0461TFestuca sp.PoaceaeItalyKU848203
Epicoccum brasilienseCBS 120105TAmaranthus sp.AmaranthaceaeBrazilGU238049GU237760KT389627GU237588
E. camelliaeCGMCC 3.18343; LC 4858TCamellia sinensisTheaceaeChinaKY742245KY742091KY742170KY742333
LC 4862Camellia sinensisTheaceaeChinaKY742246KY742092KY742171KY742334
E. dendrobiiCGMCC 3.18359; LC 8145TDendrobium fimbriatumOrchidaceaeChinaKY742247KY742093KY742335
LC 8146Dendrobium fimbriatumOrchidaceaeChinaKY742248KY74209KY742336
E. draconisCBS 186.83; PD 82/47RDracaena sp.AgavaceaeRwandaGU238070GU237795KT389628GU237607
E. duchesneaeCGMCC 3.18345; LC 5139TDuchesnea indicaRosaceaeChinaKY742249KY742095KY742337
LC 8147Duchesnea indicaRosaceaeChinaKY742250KY742096KY742338
E. henningsiiCBS 104.80; PD 74/1017RAcacia mearnsiiFabeceaeKenyaGU238081GU237731KT389629GU237612
E. hordeiCGMCC 3.18360; LC 8148THordeum vulgarePoaceaeAustraliaKY742251KY742097KY742339
LC 8149Hordeum vulgarePoaceaeAustraliaKY742252KY742098KY742340
E. huancayenseCBS 105.80; PD 75/908TSolanum sp.SolanaceaePeruGU238084GU237732KT389630GU237615
E. italicumCGMCC 3.18361; LC 8150TAcca sellowianaMyrtaceaeItalyKY742253KY742099KY742172KY742341
LC 8151Acca sellowianaMyrtaceaeItalyKY74225KY742100KY742173KY742342
E. latusicollumCGMCC 3.18346; LC 5158TSorghum bicolorPoaceaeChinaKY742255KY742101KY742174KY742343
LC 4859Camellia sinensisTheaceaeChinaKY742256KY742102KY742175KY742344
LC 5124Vitex negundoVerbenaceaeChinaKY742257KY742103KY742345
LC 8152Podocarpus macrophyllusPodocarpaceaeJapanKY742258KY742104KY742176KY742346
LC 8153Podocarpus macrophyllusPodocarpaceaeJapanKY742259KY742105KY742177KY742347
LC 8154Acer palmatumAceraceaeJapanKY742260KY742106KY742348
E. layuenseCGMCC 3.18362; LC 8155TPerilla sp.LamiaceaeChinaKY742261KY742107KY742349
LC 8156Perilla sp.LamiaceaeChinaKY742262KY742108KY742350
E. nigrumCBS 125.82; IMI 331914; CECT 20044Human toenailNetherlandsGU237974FJ426995KT389631FJ427106
CBS 173.73; ATCC 24428; IMI 164070TDactylis glomerataPoaceaeUSAGU237975FJ426996KT389632FJ427107
LC 5180Lonicera japonicaCaprifoliaceaeChinaKY742263KY742109KY742178KY742351
LC 8157Ocimum sp.LamiaceaeChinaKY742264KY742110KY742179KY742352
LC 8158Poa annuaPoaceaeUSAKY742265KY742111KY742180KY742353
LC 8159Poa annuaPoaceaeUSAKY742266KY742112KY742181KY742354
E. pimprinumCBS 246.60; ATCC 22237; ATCC 16652; IMI 81601TSoilIndiaGU237976FJ427049FJ427159
PD 77/1028SoilIndiaGU237977FJ427050KT389633FJ427160
E. plurivorumCBS 558.81; PDDCC 6873TSetaria sp.PoaceaeNew ZealandGU238132GU237888KT389634GU237647
E. poaeCGMCC 3.18363; LC 8160TPoa annuaPoaceaeUSAKY742267KY742113KY742182KY742355
LC 8161Poa annuaPoaceaeUSAKY742268KY742114KY742183KY742356
LC 8162Poa annuaPoaceaeUSAKY742269KY742115KY742184KY742357
E. sorghinumCBS 179.80; PD 76/1018Sorghum vulgarePoaceaePuerto RicoGU237978FJ427067KT389635FJ427173
CBS 627.68; PD 66/926Citrus sp.RutaceaeFranceGU237979FJ427072KT389636FJ427178
LC 4860Camellia sinensisTheaceaeChinaKY742270KY742116KY742185KY742358
E. viticisBRIP 29294; LC 5257Andropogon gayanusPoaceaeAustraliaKY742271KY742117KY742359
CGMCC 3.18344; LC 5126TVitex negundoVerbenaceaeChinaKY742272KY742118KY742186KY742360
Heterophoma adonidisCBS 114309; UPSC 2982Adonis vernalisRanunculaceaeSwedenKT389724KT389506KT389637KT389803
H. dictamnicolaCBS 507.91; PD 74/148Dictamnus albusRutaceaeNetherlandsGU238065GU237877KT389638GU237603
H. novae-verbascicolaCBS 127.93; PD 92/347Verbascum densiflorumScrophulariaceaeNetherlandsGU238120GU237774GU237639
H. poolensisCBS 113.20; PD 92/774GU238119GU237751GU237638
CBS 116.93; PD 71/884Antirrhinum majusScrophulariaceaeNetherlandsGU238134GU237755GU237649
H. sylvaticaCBS 874.97; PD 93/764Melampyrum pratenseScrophulariaceaeNetherlandsGU238148GU237907GU237662
H. verbascicolaCGMCC 3.18364; LC 8163TVerbascum thapsusScrophulariaceaeChinaKY742273KY742119KY742187KY742361
LC 8164Verbascum thapsusScrophulariaceaeChinaKY742274KY742120KY742188KY742362
Leptosphaeria conoideaCBS 616.75; ATCC 32813; IMI 199777; PD 74/56Lunaria annuaCruciferaeNetherlandsJF740279JF740201KT389639KT389804
Leptosphaeria doliolumCBS 505.75TUrtica dioicaUrticaceaeNetherlandsGQ387576JF740205KT389640JF740144
Leptosphaerulina americanaCBS 213.55Trifolium pratenseFabeceaeUSAGU237981GU237799KT389641GU237539
L. arachidicolaCBS 275.59; ATCC 13446Arachis hypogaeaFabeceaeTaiwan, ChinaGU237983GU237820GU237543
L. australisCBS 317.83Eugenia aromaticaMyrtaceaeIndonesiaEU754166GU237829GU371790GU237540
L. trifoliiCBS 235.58Trifolium sp.FabeceaeNetherlandsGU237982GU237806GU237542
Macroventuria anomochaetaCBS 502.72Medicago sativaFabeceaeSouth AfricaGU237985GU237873GU237545
CBS 525.71TDecayed canvasSouth AfricaGU237984GU237881GU456346GU237544
M. wentiiCBS 526.71TPlant litterUSAGU237986GU237884KT389642GU237546
Neoascochyta argentinaCBS 112524TTriticum aestivumPoaceaeArgentinaKT389742KT389524KT389822
Neoa. desmazieriCBS 247.79PoaceaePoaceaeAustriaKT389725KT389507KT389805
CBS 297.69TLolium perennePoaceaeGermanyKT389726KT389508KT389644KT389806
CBS 758.97HayNorwayKT389727KT389509KT389807
Neoa. europaeaCBS 819.84Hordeum vulgarePoaceaeGermanyKT389728KT389510KT389645KT389808
CBS 820.84THordeum vulgarePoaceaeGermanyKT389729KT389511KT389646KT389809
Neoa. exitialisCBS 118.40KT389732KT389514KT389647KT389812
CBS 389.86Triticum aestivumPoaceaeSwitzerlandKT389733KT389515KT389648KT389813
CBS 811.84Secale cerealePoaceaeGermanyKT389734KT389516KT389814
CBS 812.84Hordeum vulgarePoaceaeGermanyKT389735KT389517KT389815
CBS 110124Triticum sp.PoaceaeNetherlandsKT389730KT389512KT389810
CBS 113693; UPSC 1929Allium sp.LiliaceaeSwedenKT389731KT389513KT389811
Neoa. graminicolaCBS 301.69Lolium multiflorumPoaceaeGermanyKT389737KT389519KT389650KT389817
CBS 447.82Triticum aestivumPoaceaeGermanyKT389738KT389520KT389818
CBS 586.79Hordeum vulgarePoaceaeBelgiumKT389739KT389521KT389819
CBS 815.84Hordeum vulgarePoaceaeGermanyKT389740KT389522KT389820
CBS 816.84Hordeum vulgarePoaceaeGermanyKT389741KT389523KT389651KT389821
CBS 102789RLolium perennePoaceaeNew ZealandKT389736KT389518KT389649KT389816
Neoa. paspaliCBS 560.81; PD 92/1569TPaspalum dilatatumPoaceaeNew ZealandGU238124FJ427048KP330426FJ427158
Neoa. soliCGMCC 3.18365; LC 8165TSoilChinaKY742275KY742121KY742363
LC 8166SoilChinaKY742276KY742122KY742364
Neoa. triticicolaCBS 544.74TTriticum aestivumPoaceaeSouth AfricaEU754134GU237887KT389652GU237488
Neodidymelliopsis achlydisCBS 256.77TAchlys triphyllaBerberidaceaeCanadaKT389749KT389531KT389829
Neod. cannabisCBS 121.75; ATCC 32164; IMI 194767; PD 73/584TUrtica dioicaUrticaceaeNetherlandsGU237972GU237761GU237535
CBS 234.37Cannabis sativaMoraceaeGU237961GU237804KP330403GU237523
CBS 591.67Urtica dioicaUrticaceaeNetherlandsKT389746KT389528KT389826
CBS 629.76Packing materialNetherlandsKT389747KT389529KT389827
Neod. longicollaCBS 382.96TSoil in desertIsraelKT389750KT389532KT389830
Neod. polemoniiCBS 375.67Polemonium caeruleumPolemoniaceaeNetherlandsKT389748KT389530KT389828
CBS 109181; PD 83/757TPolemonium caeruleumPolemoniaceaeNetherlandsGU238133GU237746KP330427GU237648
Neod. xanthinaCBS 168.70Delphinium sp.RanunculaceaeNetherlandsKT389751KT389533KT389831
CBS 383.68TDelphinium sp.RanunculaceaeNetherlandsGU238157GU237855KP330431GU237668
Neomicrosphaeropsis italicaMFLUCC 15-0485; ICMP 21253TTamarix sp.TamaricaceaeItalyKU729854KU900318KU674820
MFLUCC 15-0484Tamarix sp.TamaricaceaeItalyKU729853KU900319KU695539KX453298
MFLUCC 16-0284Tamarix sp.TamaricaceaeItalyKU900296KU900321KU714604KX453299
Neom. novorossicaMFLUCC 14-0578; ICMP 20751TTamarix ramosissimaTamaricaceaeRussiaKX198710KX198709
Neom. rossicaMFLUCC 14-0586; ICMP 20753TTamarix ramosissimaTamaricaceaeRussiaKU729855KU752192
Neom. tamaricicolaMFLUCC 14-0443; ICMP 20708Tamarix gallicaTamaricaceaeItalyKU729851KU900322
MFLUCC 14-0439; ICMP 20743Tamarix gallicaTamaricaceaeItalyKU729858KU900323
Nothophoma anigozanthiCBS 381.91; PD 79/1110TAnigozanthus maugleisiiHaemodoraceaeNetherlandsGU238039GU237852KT389655GU237580
No. arachidis-hypogaeaeCBS 125.93; PD 77/1029RArachis hypogaeaFabeceaeIndiaGU238043GU237771KT389656GU237583
No. gossypiicolaCBS 377.67Gossypium sp.MalvaceaeUSAGU238079GU237845KT389658GU237611
No. infossaCBS 123395TFraxinus pennsylvanicaOleaceaeArgentinaGU238089FJ427025KT389659FJ427135
No. quercinaCBS 633.92; ATCC 36786; VKM MF-325Microsphaera alphitoides from Quercus sp.UkraineEU754127GU237900KT389657GU237609
Paraboeremia adianticolaCBS 187.83; PD 82/128Polystichum adiantiformeDryopteridaceaeUSAGU238035GU237796KP330401GU237576
CBS 260.92; PD 86/1103Pteris ensiformisPteridaceaeKT389752KT389534KT389832
Pa. camellaeCGMCC 3.18106; LC 4852TCamellia sp.TheaceaeChinaKX829042KX829034KX829050KX829058
CGMCC 3.18107; LC 6253Camellia sp.TheaceaeChinaKX829043KX829035KX829051KX829059
CGMCC 3.18108; LC 6254Camellia sp.TheaceaeChinaKX829044KX829036KX829052KX829060
Pa. litseaeCGMCC 3.18109; LC 5028TLitsea sp.LauraceaeChinaKX829037KX829029KX829045KX829053
CGMCC 3.18110; LC 5030Litsea sp.LauraceaeChinaKX829038KX829030KX829046KX829054
Pa. oligotrophicaCGMCC 3.18111; LC 6250TCarbonatiteChinaKX829039KX829031KX829047KX829055
CGMCC 3.18112; LC 6251CarbonatiteChinaKX829040KX829032KX829048KX829056
CGMCC 3.18113; LC 6252CarbonatiteChinaKX829041KX829033KX829049KX829057
Pa. putaminumCBS 130.69; CECT 20054; IMI 331916RMalus sylvestrisRosaceaeDenmarkGU238138GU237777GU237652
CBS 372.91; PD 75/960RUlmus sp.UlmaceaeNetherlandsGU238137GU237843GU237651
Pa. selaginellaeCBS 122.93; PD 77/1049TSelaginella sp.SelaginellaceaeNetherlandsGU238142GU237762GU237656
Phoma herbarumCBS 134.96; PD 84/676Delphinium sp.RanunculaceaeNetherlandsKT389753KT389535KT389661KT389834
CBS 274.37Picea excelsaPinaceaeUKKT389754KT389537KT389662KT389835
CBS 304.51Achillea millefoliumAsteraceaeSwitzerlandKT389755KT389538KT389836
CBS 377.92; IMI 213845Human legNetherlandsKT389756KT389536KT389663KT389837
CBS 502.91; PD 82/276Nerium sp.ApocynaceaeNetherlandsGU238082GU237874KP330419GU237613
CBS 615.75; PD 73/665; IMI 199779RRosa multiflora cv. CathayensisRosaceaeNetherlandsEU754186FJ427022KP330420FJ427133
CBS 127589; UAMH 10909Polytrichum juniperinumPolytrichaceaeUSAKT389757KT389539KT389664KT389838
Phomatodes aubrietiaeCBS 383.67; PD 65/223RAubrietia hybrida cv. SuperbissimaCruciferaeNetherlandsGU238044GU237854GU237584
Phomat. aubrietiaeCBS 627.97; PD 70/714TAubrietia sp.CruciferaeNetherlandsGU238045GU237895KT389665GU237585
Phomat. nebulosaCBS 117.93; PD 83/90Mercurialis perennisEuphorbiaceaeNetherlandsGU238114GU237757KP330425GU237633
CBS 740.96Armoracia rusticanaCruciferaeNetherlandsKT389758KT389540KT389667KT389839
CBS 100191Thlaspi arvenseCruciferaePolandKP330446KP330434KT389666KP330390
Pseudohendersonia galiorumMFLUCC 14–0452TGalium sp.RubiaceaeItalyKU848207
Stagonosporopsis actaeaeCBS 106.96; PD 94/1318TActaea spicataRanunculaceaeNetherlandsGU238166GU237734KT389672GU237671
CBS 114303; UPSC 2962Actaea spicataRanunculaceaeSwedenKT389760KT389544KT389847
S. ajacisCBS 177.93; PD 90/115TDelphinium sp.RanunculaceaeKenyaGU238168GU237791KT389673GU237673
S. andigenaCBS 101.80; PD 75/909; IMI 386090RSolanum sp.SolanaceaePeruGU238169GU237714GU237674
CBS 269.80; PD 75/914Solanum sp.SolanaceaePeruGU238170GU237817GU237675
S. artemisiicolaCBS 102636; PD 73/1409RArtemisia dracunculusAsteraceaeFranceGU238171GU237728KT389674GU237676
S. astragaliCBS 178.25; MUCL 9915RAstragalus sp.FabeceaeGU238172GU237792GU237677
S. bomiensisCGMCC 3.18366; LC 8167TBoraginaceaeBoraginaceaeChinaKY742277KY742123KY742189KY742365
LC 8168BoraginaceaeBoraginaceaeChinaKY742278KY742124KY742190KY742366
S. caricaeCBS 248.90Carica papayaCaricaceaeChileGU238175GU237807GU237680
CBS 282.76Brassica sp.CruciferaeIndonesiaGU238177GU237821GU237682
S. chrysanthemiCBS 500.63; MUCL 8090RChrysanthemum indicumAsteraceaeGermanyGU238190GU237871GU237695
CBS 137.96; PD 84/75RChrysanthemum indicumAsteraceaeNetherlandsGU238191GU237783GU237696
S. crystalliniformisCBS 713.85; ATCC 76027; PD 83/826TLycopersicon esculentumSolanaceaeColombiaGU238178GU237903KT389675GU237683
S. cucurbitacearumCBS 133.96; PD 79/127Cucumis sp.CucurbitaceaeNew ZealandGU238181GU237780KT389676GU237686
S. dennisiiCBS 631.68; PD 68/147TSolidago floribundaAsteraceaeNetherlandsGU238182GU237899KT389677GU237687
S. dorenboschiiCBS 426.90; IMI 386093; PD 86/551TPhysostegia virginianaLamiaceaeeNetherlandsGU238185GU237862KT389678GU237690
S. helianthiCBS 200.87THelianthus annuusAsteraceaeItalyKT389761KT389545KT389683KT389848
S. heliopsidisCBS 109182; PD 74/231RHeliopsis patulaAsteraceaeNetherlandsGU238186GU237747KT389679GU237691
S. hortensisCBS 104.42RNetherlandsGU238198GU237730KT389680GU237703
CBS 572.85; PD 79/269RPhaseolus vulgarisFabeceaeNetherlandsGU238199GU237893KT389681GU237704
S. inoxydabilisCBS 425.90; PD 81/520TChrysanthemum partheniiAsteraceaeNetherlandsGU238188GU237861KT389682GU237693
S. loticolaCBS 562.81; PDDCC 6884TLotus pedunculatusFabeceaeNew ZealandGU238192GU237890KT389684GU237697
S. lupiniCBS 101494; PD 98/5247TLupinus albusFabeceaeUKGU238194GU237724KT389685GU237699
S. oculo-hominisCBS 634.92; IMI 193307THuman corneal ulcerUSAGU238196GU237901KT389686GU237701
S. papillatusCGMCC 3.18367; LC 8169TRumex nepalensisPolygonaceaeChinaKY742279KY742125KY742191KY742367
LC 8170Rumex nepalensisPolygonaceaeChinaKY742280KY742126KY742192KY742368
LC 8171BoraginaceaeBoraginaceaeChinaKY742281KY742127KY742193KY742369
S. rudbeckiaeCBS 109180; PD 79/175RRudbeckia bicolorAsteraceaeNetherlandsGU238197GU237745GU237702
S. tanacetiCBS 131484TTanacetum cinerariifoliumAsteraceaeAustraliaJQ897461NR_111724JQ897496
S. tracheliiCBS 379.91; PD 77/675RCampanula isophyllaCampanulaceaeNetherlandsGU238173GU237850KT389687GU237678
CBS 384.68RCampanula isophyllaCampanulaceaeSwedenGU238174GU237856GU237679
S. valerianellaeCBS 273.92; PD 82/43Valerianella locustaCaprifoliaceaeNetherlandsGU238200GU237819GU237705
CBS 329.67; PD 66/302TValerianella locusta var. oleraceaCaprifoliaceaeNetherlandsGU238201GU237832GU237706
Xenodidymella applanataCBS 195.36TRubus idaeusRosaceaeNetherlandsKT389764KT389548KT389852
X. applanataCBS 205.63Rubus idaeusRosaceaeNetherlandsGU237998GU237798KP330402GU237556
CBS 115577Rubus idaeusRosaceaeSwedenKT389762KT389546KT389688KT389850
CBS 115578Rubus arcticus nothossp. stellarcticusRosaceaeSwedenKT389763KT389547KT389851
X. asphodeliCBS 375.62TAsphodelus albusAsphodelaceaeFranceKT389765KT389549KT389689
CBS 499.72Asphodelus ramosusAsphodelaceaeItalyKT389766KT389550KT389853
X. catariaeCBS 102635; PD 77/1131Nepeta catariaLamiaceaeeNetherlandsGU237962GU237727KP330404GU237524
X. humicolaCBS 220.85; PD 71/1030RFranseria sp.AsteraceaeUSAGU238086GU237800KP330422GU237617
1ATCC: American Type Culture Collection, Virginia, U.S.A.; BRIP: Plant Pathology Herbarium, Department of Employment, Economic, Development and Innovation, Queensland, Australia; CBS: Westerdijk Fungal Biodiversity Institute (formerly CBS-KNAW), Utrecht, The Netherlands; CECT: Colección Española de Cultivos Tipo, Valencia University, Spain; CGMCC: China General Microbiological Culture Collection, Beijing, China; CPC: Culture collection of Pedro Crous, housed at CBS; DAOM: Canadian Collection of Fungal Cultures, Ottawa, Canada; DSM: Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH, Braunschweig, Germany; FMR, Facultat de Medicina, Universitat Rovira i Virgili, Reus, Spain; ICMP: International Collection of Microorganisms from Plants, Auckland, New Zealand; IMI: International Mycological Institute, CABI-Bioscience, Egham, Bakeham Lane, U.K.; LC: Corresponding author's personal collection deposited in laboratory, housed at CAS, China; LEV: Plant Health and Diagnostic Station, Auckland, New Zealand; MFLUCC: Mae Fah Luang University Culture Collection, Chiang Rai, Thailand; MUCL: Mycotheque de l'Universite catholique de Louvain, Louvain-la-Neuve, Belgium; PD: Plant Protection Service, Wageningen, the Netherlands; PDDCC: Plant Diseases Division Culture Collection, Auckland, New Zealand; PREM: National Collection of Fungi: Culture Collection, Pretoria, South Africa; UAMH: University of Albert Microfungus Colletion and Herbarium, Canada; UPSC: Uppsala University Culture Collection, Sweden; UTHSC, Fungus Testing Laboratory at the University of Texas Health Science Center, San Antonio, Texas, USA; VKM: All-Russian Collection of Microorganisms, Pushchino, Russia.
2T: ex-type strain; R: representative strain.
3ITS: internal transcibed spacer regions 1 & 2 including 5.8S nrDNA gene; LSU: 28S large subunit of the nrRNA gene; RPB2: RNA polymerase II second subunit; TUB: ß-tubulin.

Plant-associated isolates were obtained from symptomatic tissue with sporocarps using the single spore isolation protocols of Choi et al. (1999) and Zhang et al. (2013), and from tissue according to the techniques outlined by Cai et al. (2009). Isolates from other substrates were obtained following the methods described by Zhang et al. (2017) and further screened with carbon-free silica gel medium to select the oligotrophic strains (Wainwright & Al-Talhi 1999). All the Didymellaceae isolates were primarily identified based on morphology and ITS sequence data, which distinguished them from other groups of fungi. Type specimens of new species in this study were deposited in the Mycological Herbarium of Institute of Microbiology, Chinese Academy of Sciences, Beijing, China (HMAS), with the ex-type living cultures deposited in China General Microbiological Culture Collection Center (CGMCC), or the other Biological Resource Centres cited above.

Morphology

Isolates were incubated on oatmeal agar (OA), malt extract agar (MEA) and potato dextrose agar (PDA) (Crous et al. 2009) at 25 °C, and under near-ultraviolet (UV) light (12 h light/12 h dark) or on pine needle agar (PNA) (Smith et al. 1996) to induce sporulation. Colony diameters were measured after 7 d of incubation, and the culture characters were determined after 14 d (Boerema et al. 2004). Colony colours were rated according to the colour charts of Rayner (1970). Preparations were mounted in distilled water to study the micromorphological structures of mature ascomata/conidiomata, ascospores/conidia and conidiogenous cells from OA cultures (Aveskamp et al., 2010, Chen et al., 2015a, Chen et al., 2015b). Observations were conducted with a Leica M125 dissecting microscope and a Nikon Eclipse 80i compound microscope under differential interference contrast (DIC) illumination. To study the pseudothecial/pycnidial wall, sections of mature pseudothecia/pycnidia were made by a Leica CM1950 freezing microtome (Aveskamp et al., 2010, Chen et al., 2015a, Chen et al., 2015b). The NaOH spot test was carried out by a drop of 1N NaOH to determine the secretion of metabolite E on MEA cultures (Boerema et al. 2004).

DNA isolation, amplification and phylogenetic analyses

Total genomic DNA was extracted from fresh mycelia using the MP Fastprep-24 sample preparation system, according to the protocol described by Cubero et al. (1999). The primers V9G (de Hoog & Gerrits van den Ende 1998) and ITS4 (White et al. 1990) were used to amplify part of the nuclear rDNA operon (ITS) spanning the 3′ end of the 18S rRNA gene, the first internal transcribed spacer (ITS1), the 5.8S rRNA gene, the second ITS region (ITS2), and the first 100 bp of the 5′ end of the 28S rRNA gene (LSU); the primers LR0R (Rehner & Samuels 1994), LR7 and LR5 (Vilgalys & Hester 1990) were used for LSU amplification; Btub2Fd and Btub4Rd (Woudenberg et al. 2009) for the partial β-tubulin (tub2) gene region, and RPB2-5F2 (Sung et al. 2007) and fRPB2-7cR (Liu et al. 1999) for the RNA polymerase II second largest subunit (rpb2). Amplicons for each locus were generated following the protocols listed in Chen et al. (2015a).

Sequencing was conducted in both directions with the same primer pair used for amplification at the Omega Genetics Company (Beijing, China). Consensus sequences were assembled in MEGA v. 6.0 (Tamura et al. 2013) and additional reference sequences were obtained from GenBank (Table 1). Subsequent alignments for each locus were generated with MAFFT v. 7 (http://mafft.cbrc.jp/alignment/server/index.html; Katoh & Standley 2013), and manually corrected when necessary. The concatenated aligned dataset and each locus were analysed separately using Maximum Likelihood (ML) and Bayesian Inference (BI). The best-fit models of evolution for the four loci tested (SYM+I+G for ITS and GTR+I+G for LSU, rpb2 and tub2) were estimated by MrModeltest v. 2.3 (Nylander 2004).

The ML analyses were conducted with RAxML v. 7.2.6 (Stamatakis & Alachiotis 2010) using a GTRGAMMA substitution model with 1 000 bootstrap replicates. The robustness of the analyses was evaluated by bootstrap support (MLBS). Bayesian (BI) analyses were performed on MrBayes v. 3.2.1 (Ronquist et al. 2012) based on the models selected by the MrModeltest. The Markov Chain Monte Carlo (MCMC) algorithm of four chains was initiated in parallel from a random tree topology. The analyses lasted until the average standard deviation of split frequencies was below 0.01 with trees saved each 1 000 generations. The first 25 % of trees were removed as burn-in phase and the remaining trees were used to calculate posterior probabilities. Posterior probabilities values of the BI analyses (BPP) over 0.95 were considered significant. Leptosphaeria conoidea (CBS 616.75) and L. doliolum (CBS 505.75) were selected as outgroup. Sequences generated in this study were deposited in GenBank (Table 1), the final matrices and trees in TreeBASE (www.treebase.org; accession number: S20724), and novel taxonomic descriptions and nomenclature in MycoBank (www.MycoBank.org; Crous et al. 2004).

Unique fixed nucleotide positions are used to describe a sterile species (see Taxonomy below), and the closest phylogenetic neighbour was selected and subjected to single nucleotide polymorphism (SNP) analyses using MEGA v. 6.0 (Tamura et al. 2013).

Statistical analysis

A heatmap showing the host distribution of each genus of Didymellaceae was generated with R v. 3.3.1 heatmap.2 (https://www.r-project.org/).

Results

Phylogeny

A multi-locus phylogeny, based on four loci, was used to infer the relationships among species in Didymellaceae (Fig. 1). The resulting concatenated aligned dataset comprised 360 ingroup isolates belonging to 194 taxa and consisted of 2 460 characters (964 for LSU, 531 for ITS, 599 for rpb2 and 354 for tub2, including alignment gaps), of which 265 are conserved and 901 are phylogenetically informative (173 for LSU, 230 for ITS, 310 for rpb2 and 188 for tub2). The trees generated from ML and Bayesian analyses of the individual loci (data not shown) and the combined dataset showed essentially congruent topologies. The ML tree based on the combined dataset was presented, with bootstrap support values (MLBS) and Bayesian posterior probabilities (BPP) indicated for well-supported clades in Fig. 1. The LSU sequences were the least successful in resolving species with only 59 out of 194 taxa resolved (30 %), followed by ITS with 104 out of 194 taxa (54 %), and tub2 (90 %) and rpb2 (92 %) which proved to be more suitable for the resolution of species.

Fig. 1
Fig. 1
Fig. 1
Fig. 1
Fig. 1
Fig. 1

Phylogenetic tree inferred from a Maximum likelihood analysis based on a concatenated alignment of LSU, ITS, rpb2 and tub2 sequences of 360 strains representing species in Didymellaceae. The RAxML bootstrap support values (MLBS) and Bayesian posterior probabilities (BPP) are given at the nodes (BPP/MLBS). Some branches were shortened to fit them to the page – these are indicated by two diagonal lines with the number of times a branch was shortened indicated next to the lines. New taxa and new combination introduced in this study are formatted in bold. Ex-type strains are marked by an asterisk (*). The tree was rooted to Leptosphaeria conoidea (CBS 616.75) and L. doliolum (CBS 505.75).

A total of 194 ingroup taxa formed a clade (BPP = 1; MLBS = 100 %) representing the Didymellaceae, which include 19 monophyletic generic clades. Seventeen genera previously recognised, namely Allophoma (BPP = 1; MLBS = 100 %), Ascochyta (BPP = 1; MLBS = 87 %), Boeremia (BPP = 1; MLBS = 100 %), Calophoma (BPP = 1; MLBS = 90 %), Didymella (BPP = 0.97; MLBS = 60 %), Epicoccum (BPP = 1; MLBS = 99 %), Heterophoma (BPP = 1; MLBS = 99 %), Leptosphaerulina (BPP = 1; MLBS = 100 %), Macroventuria (BPP = 1; MLBS = 100 %), Neoascochyta (BPP = 1; MLBS = 80 %), Neodidymelliopsis (BPP = 1; MLBS = 100 %), Nothophoma (BPP = 1; MLBS = 76 %), Paraboeremia (BPP = 1; MLBS = 77 %), Phoma (BPP = 1; MLBS = 100 %), Phomatodes (BPP = 1; MLBS = 100 %), Stagonosporopsis (BPP = 1; MLBS = 93 %) and Xenodidymella (BPP = 1; MLBS = 96 %), and two genera recently added in this family, namely Briansuttonomyces (BPP = 1; MLBS = 100 %) and Neomicrosphaeropsis (BPP = 1; MLBS = 97 %) were highly supported as independent groups.

Host specificity analysis

The heatmap was plotted to reveal the distribution of Didymellaceae species in various host families. The colour-coding columns indicate the number of species in each fungal genus that are associated with a particular host family. A darker colour indicates more fungal species related to the host family. In the present study, all the plant-associated species are linked to 70 different host families in total, of which Asteraceae, Fabaceae, Poaceae, Ranunculaceae, Rosaceae and Solanaceae are the most common hosts for Didymellaceae. Most of the Didymellaceae genera have a wide host range, while Ascochyta, Neoascochyta and Neomicrosphaeropsis showed relatively high host specificity within Fabaceae, Poaceae and Tamaricaceae, respectively (Fig. 2).

Fig. 2

Heatmap of relative abundances of different host plant families in each genus of Didymellaceae. The colour-coding for columns indicate the number of species in each fungal genus that are associated with a particular host family.

Taxonomy

As a result of morphological comparisons and multi-locus sequence analysis of 360 strains, including 108 strains studied in the present paper and 252 reference strains, 194 taxa are recognised in 19 different genera of Didymellaceae. Recognised clades of novel taxa are described and illustrated, and two new combinations are proposed below. One species proved to be sterile in culture, and therefore is described based on DNA sequence data, following the approach of Gomes et al. (2013) and Lombard et al. (2016). Novel taxa are arranged in alphabetical order by genus and species.

Allophoma Q. Chen & L. Cai, Stud. Mycol. 82: 162. 2015.

Allophoma oligotrophica Q. Chen, Crous & L. Cai, sp. nov. MycoBank MB818956. Fig. 3.

Fig. 3

Allophoma oligotrophica (CGMCC 3.18114). A–B. Colony on OA (front and reverse). C–D. Colony on MEA (front and reverse). E–F. Colony on PDA (front and reverse). G. Pycnidia producing on OA. H. Pycnidium. I. Section of pycnidium. J. Section of pycnidial wall. K. Conidiogenous cells. L. Conidia. Scale bars: G = 100 μm; H–I = 50 μm; J, L = 10 μm; K = 5 μm.

Etymology: Oligotrophica, referring to the oligotrophic substrate of the fungus.

Conidiomata pycnidial, solitary, globose to subglobose, brown, glabrous, semi-immersed or immersed, 150–440(–590) × 145–420 μm. Ostioles single, slightly papillate. Pycnidial wall pseudoparenchymatous, composed of oblong to isodiametric cells, 3–5 layers, 11–19.5 μm thick. Conidiogenous cells phialidic, hyaline, smooth, ampulliform to doliiform, 4.5–7 × 3.5–6.5 μm. Conidia oblong to cylindrical, smooth- and thin-walled, hyaline, aseptate, 3–4.5 × 1.5–2.5 μm, with 2 distinct pale green polar guttules. Conidia matrix whitish.

Culture characteristics: Colonies on OA, 45–50 mm diam after 7 d, margin regular, covered by white floccose aerial mycelia, white to pale olivaceous; reverse buff, with pale olivaceous concentric rings near the centre. Colonies on MEA 50–55 mm diam after 7 d, margin regular, aerial mycelia sparse, olivaceous, white near the centre; reverse olivaceous. Colonies on PDA, 50–55 mm diam after 7 d, margin regular, covered by dense white felty aerial mycelia, white, olivaceous near the centre; reverse buff, olivaceous near the centre. NaOH test negative.

Specimens examined: China, Guizhou, Shuanghe Cave National Geopark, from air, 8 May 2015, Z.F. Zhang (holotype HMAS 247035, dried culture, ex-holotype living culture CGMCC 3.18114 = LC 6245); ibid. CGMCC 3.18115 = LC 6246; ibid. CGMCC 3.18116 = LC 6247.

Notes: Species of Allophoma were hitherto all known as plant pathogens, while Al. oligotrophica is the first species which was isolated from air using carbon-free silica gel medium (Jiang et al. 2017). Allophoma oligotrophica is closely related to Al. nicaraguensis (1 bp difference in ITS, 14 in rpb2 and 3 in tub2) and Al. tropica (1 bp difference in ITS, 15 in rpb2 and 2 in tub2) (Fig. 1). Morphologically, Al. oligotrophica produces larger pycnidia (150–440 × 145–420 μm vs. 30–150 × 28–120 μm) and longer conidiogenous cells (4.5–7 × 3.5–6.5 μm vs. 3–4.5 × 3.5–4.5 μm) than Al. nicaraguensis (Chen et al. 2015a), and differs from Al. tropica in its slightly larger conidiogenous cells (4.5–7 × 3.5–6.5 μm vs. 2–6 × 3–6 μm) and oblong to cylindrical conidia (de Gruyter & Noordeloos 1992).

Ascochyta Lib. emend. Q. Chen & L. Cai. Stud. Mycol. 82: 185. 2015.

Synonym: Heracleicola Tibpromma et al., Fungal Divers. 75: 58. 2015.

Ascochyta boeremae L.W. Hou, Crous & L. Cai, sp. nov. MycoBank MB820000. Fig. 4.

Fig. 4

Ascochyta boeremae (CBS 372.84). A–B. Colony on OA (front and reverse). C–D. Colony on MEA (front and reverse). E–F. Colony on PDA (front and reverse). G. Pycnidia forming on OA. H. Pycnidium. I. Section of pycnidium. J. Section of pycnidial wall. K–L. Conidiogenous cells. M–N. Conidia. Scale bars: G = 300 μm; H–I = 50 μm; J–N = 10 μm.

Etymology: Named after Gerhard H. Boerema, who collected the holotype of this species.

Conidiomata pycnidial, mostly solitary, sometimes confluent, (sub-)globose or flask-shaped, glabrous, semi-immersed in or superficial on the agar, ostiolate, 170–550(–650) × 140–400(–650) μm. Ostiole single, slightly papillate, sometimes elongated as a short neck. Pycnidial wall pseudoparenchymatous, composed of oblong to isodiametric cells, 3–6-layers, with outer 2–3-layers pigmented, 25–50 μm thick. Conidiogenous cells phialidic, hyaline, smooth, ampulliform or doliiform, 9.5–14.5 × 8.5–13 μm. Conidia greatly variable in shape and size, large conidia mostly oblong to bacilliform, or fusiform, mainly aseptate but sometimes uniseptate; small conidia ellipsoidal to oval, broadly ovoid, smooth- and thin-walled, hyaline, aseptate, (14–)16.5–26(–32) × 4.5–7.5(–8.5) μm, eguttulate or sometimes with 1–2 guttules per cell. Conidial matrix whitish cream.

Culture characteristics: Colonies on OA, 25–30 mm diam after 7 d, margin regular, covered by sparsely flat aerial mycelia, yellowish olivaceous; reverse concolourous. Colonies on MEA 20–25 mm diam after 7 d, margin regular, covered with floccose aerial mycelia, white, grey near the centre; reverse sienna to pale brown. Colonies on PDA, 15–20 mm diam after 7 d, margin regular, covered by woolly aerial mycelia, greenish olivaceous, buff near the margin; reverse concolourous. NaOH spot test: a dark reddish brown discolouration on MEA.

Specimens examined: Australia, from a leaf of Pisum sativum, deposited in CBS Sep. 1984, G.H. Boerema (holotype CBS H-23017, dried culture, ex-holotype living culture CBS 372.84 = PD 80/1246); from a leaf of Pisum sativum, deposited in CBS Sep. 1984, G.H. Boerema, CBS H-9078, culture CBS 373.84 = PD 80/1247.

Notes: CBS 372.84 and CBS 373.84 were originally deposited as “Ascochyta fabae”, but are distinct from the authentic cultures of As. fabae (CBS 524.77, CBS 649.71 and PD 83/492) in the phylogenetic tree. Morphologically, these two strains produce aseptate conidia differing from the uniseptate conidia of As. fabae (Saccardo 1902). Therefore, we describe it as a new species, As. boeremae. Ascochyta boeremae is genetically closely related to As. nigripycnidia (Fig. 1), but differs morphologically from the latter by producing larger conidia (14–32 × 4.5–8.5 μm vs. 5.5–15 × 1.5–4 μm; Boerema et al. 2004).

Ascochyta premilcurensis (Tibpromma et al.) Q. Chen, Crous & L. Cai, comb. nov. MycoBank MB820001.

Basionym: Heracleicola premilcurensis Tibpromma et al., Fungal Divers. 75: 59. 2015.

Description: Ariyawansa et al. (2015).

Specimen examined: Italy, Premilcuore, Province of Forli-Cesena, Valbura, on dead stem of Heracleum sphondylium, 6 Jun. 2014, E. Camporesi (holotype MFLU 14-0725, ex-holotype living culture MFLUCC 14-0518).

Notes: The genus Heracleicola was introduced by Ariyawansa et al. (2015) to accommodate a single species Heracleicola premilcurensis, which is located in the genus Ascochyta based on combined LSU and ITS analysis (Supplementary Fig. S1) in the present study. Heracleicola is therefore synonymised under Ascochyta, and a new combination in Ascochyta proposed.

Boeremia Aveskamp et al., Stud. Mycol. 65: 36. 2010.

Boeremia exigua var. opuli Q. Chen, Crous & L. Cai, var. nov. MycoBank MB818957. Fig. 5.

Fig. 5

Boeremia exigua var. opuli (CGMCC 3.18354). A–B. Colony on OA (front and reverse). C–D. Colony on MEA (front and reverse). E–F. Colony on PDA (front and reverse). G. Pycnidia forming on OA. H. Section of pycnidial wall. I–J. Conidiogenous cells. K. Conidia. Scale bars: G = 400 μm; H–J = 5 μm; K = 10 μm.

Etymology: Named after the host species from which the holotype was collected, Viburmum opulus.

Conidiomata pycnidial, solitary or aggregated, globose to subglobose, brown, covered with hyphae, produced on the agar surface or (semi-)immersed, 245–360 × 200–305 μm. Ostiole single, slightly papillate. Pycnidial wall pseudoparenchymatous, composed of isodiametric cells, 4–5 layers, 20–37.5 μm thick. Conidiogenous cells phialidic, hyaline, smooth, ampulliform to doliiform, 4–9(–10) × 4–7.5 μm. Conidia oblong to cylindrical, obovoid, incidentally slightly curved, or reniform, smooth- and thin-walled, hyaline, aseptate, 5.5–9.5 × 2.5–4 μm, with 2 or several minute guttules. Conidia matrix cream.

Culture characteristics: Colonies on OA, 70–76 mm diam after 7 d, margin regular, covered by white floccose aerial mycelia, white with a pale green concentric ring, pale olivaceous near the centre; reverse reddish brown, grey near the centre. Colonies on MEA 70–75 mm diam after 7 d, margin regular, aerial mycelia white, velvety, olivaceous; reverse concolourous. Colonies on PDA, 65–80 mm diam after 7 d, margin regular, aerial mycelia white, felty, in some sectors covered by a low mat of floccose white to grey aerial mycelia, olivaceous near the centre; reverse olivaceous, with a buff margin. Application of NaOH results in a pale green discolouration of the agar.

Specimens examined: USA, from seedlings of Viburmum opulus, 2014, W.J. Duan (holotype HMAS 247147, dried culture, ex-holotype living culture CGMCC 3.18354 = LC 8117); ibid. LC 8118.

Notes: Boeremia exigua var. opuli is phylogenetically closely related to B. exigua var. exigua, B. exigua var. forsythiae, B. exigua var. glivescens and B. exigua var. viburni (Fig. 1). Although similar in conidial dimensions, pycnidia of B. exigua var. opuli (245–360 × 200–305 μm) are much larger than those of the other four varieties (75–200 μm; van der Aa et al. 2000). Boeremia exigua var. opuli also differs from those four varieties in seven positions in the rpb2 locus. Varieties of B. exigua are morphologically very similar and phylogenetically closely related to each other. Boeremia exigua var. exigua and var. forsythia have a wide host range, while other varieties appear host specific to a certain group of plants, such as var. coffeae to Coffea arabica (Rubiaceae), var. forsythia to Forsythia hybrids (Oleaceae), var. heteromorpha to Nerium oleander and Vinca spp. (Apocynaceae), var. linicola to Linum usitatissimum (Linaceae), var. populi to Populus and Salix (Salicaceae), and var. viburni to Viburnum spp. and occasionally Lonicera sp. (Caprifoliaceae) (Boerema et al. 2004). Besides, B. exigua var. pseudolilacis has been found only on Syringa vulgaris (Oleaceae; Aveskamp et al. 2010) and var. opuli only on Viburnum opulus. A host-range determination of B. exigua var. rhapontica indicates that this variety also has a very narrow host range (Berner et al. 2015). Thus, the plant generic inter-relatedness is presumed to be the basis for susceptibility to Boeremia exigua varieties (Berner et al. 2015).

Calophoma Q. Chen & L. Cai, Stud. Mycol. 82: 191. 2015.

Calophoma rosae Q. Chen, Crous & L. Cai, sp. nov. MycoBank MB818976. Fig. 6A.

Fig. 6

Calophoma rosae (CGMCC 3.18347). A–B. Colony on OA (front and reverse). C–D. Colony on MEA (front and reverse). E–F. Colony on PDA (front and reverse). G. Pycnidia forming on OA. H. Pycnidia. I. Section of pycnidium. J. Section of pycnidial wall. K. Conidiogenous cells. L. Conidia. Scale bars: G = 100 μm; H = 40 μm; I–L = 10 μm.

Etymology: Named after the host genus Rosa, from which the holotype was isolated.

Leaf spots amphigenous, circular to irregular, up to 15 mm diam, occurring on or close to the tip of the leaf, brown, surrounded by a dark purple border (Fig. 7). Conidiomata pycnidial, mostly aggregated but sometimes solitary, globose to subglobose, brown, glabrous or covered with some hyphal outgrowths, semi-immersed in or superficial on the agar, ostiolate, (110–)130–210 × (110–)130–180 μm. Ostiole single, sometimes with short necks, slightly papillate. Pycnidial wall pseudoparenchymatous, composed of isodiametric cells, 3–4 layers, 11–20 μm thick, pigmented. Conidiogenous cells phialidic, hyaline, smooth, ampulliform to doliiform, 6.5–7 × 7–8.5 μm. Conidia ellipsoidal to oblong, smooth- and thin-walled, 0–1-septate, hyaline, later becoming pale brown with ageing, 6–10 × 3–4.5 μm, eguttulate or sometimes with several guttules. Conidial matrix initially buff, gradually becoming dark brown.

Fig. 7

Symptoms on diseased leaves. A.Calophoma rosae on Rosa sp. B.Didymella infuscatispora on Chrysanthemum indicum. C.Didymella ocimicola on Ocimum sp. D.Didymella sinensis on Cerasus pseudocerasus. E.Epicoccum dendrobii on Dendrobium fimbriatum. F.Epicoccum duchesneae on Duchesnea indica. G.Stagonosporopsis bomiensis on Boraginaceae. H.Epicoccum viticis on Vitex negundo. I.Epicoccum layuense on Perilla sp. J.Heterophoma verbascicola on Verbascum thapsus. K.Stagonosporopsis papillata on Rumex nepalensis.

Culture characteristics: Colonies on OA, 35–40 mm diam after 7 d, margin regular, covered by floccose aerial mycelia, dense, white; reverse buff. Colonies on MEA 33–35 mm diam after 7 d, margin regular, aerial mycelia sparse, flattened, white; reverse concolourous. Colonies on PDA, 30–36 mm diam after 7 d, margin regular, aerial mycelia covering the whole colony, floccose, dense, white; reverse yellowish green, with concentric rings. NaOH test negative.

Specimens examined: China, Qinghai, Xunhua, from leaves of Rosa sp., 2 Sep. 2013, Q. Chen (holotype HMAS 247148, dried culture, ex-holotype living culture CGMCC 3.18347 = LC 5169); ibid. LC 8119.

Notes: Calophoma rosae is phylogenetically closely related to C. clematidis-rectae and C. vodakii (Fig. 1). Morphologically C. rosae differs from C. clematidis-rectae in having larger conidiogenous cells (6.5–7 × 7–8.5 μm vs. 3–5 × 2.5–4.5 μm), larger conidia (6–10 × 3–4.5 μm vs. 3–8 × 2–3.5 μm) (Aveskamp et al. 2010), and from C. vodakii in having shorter and wider conidia (6.5–7 × 7–8.5 μm vs. 14–22 × 4–4.5 μm; Saccardo and Trotter, 1913, Müller, 1953).

Calophoma rosae is the first and only record thus far from the Rosaceae, while most species in this genus are associated with species of Ranunculaceae.

Didymella Sacc. ex Sacc., Syll. Fung. 1: 545. 1882, emend. Q. Chen & L. Cai, Stud. Mycol. 82: 173. 2015.

Didymella aeria Q. Chen, Crous & L. Cai, sp. nov. MycoBank MB818968. Fig. 8.

Fig. 8

Didymella aeria (CGMCC 3.18353). A–B. Colony on OA (front and reverse). C–D. Colony on MEA (front and reverse). E–F. Colony on PDA (front and reverse). G. Pycnidia forming on OA. H. Pycnidia. I. Section of pycnidium. J. Section of pycnidial wall. K. Conidia. Scale bars: G = 200 μm; H = 30 μm; I = 20 μm; J–K = 10 μm.

Etymology: Name linked to the fact that this species was collected from air.

Conidiomata pycnidial, solitary or aggregated, globose to subglobose, later becoming irregular, brown, glabrous, superficial or semi-immersed, 155–375(–460) × 130–340(–460) μm. Ostiole single, with a short neck, slightly papillate or non-papillate. Pycnidial wall pseudoparenchymatous, composed of oblong to isodiametric cells, 2–3 layers, 8.5–25 μm thick, brown-pigmented. Conidiogenous cells phialidic, hyaline, smooth, ampulliform to doliiform, 5–7 × 4.5–6 μm. Conidia ellipsoidal, smooth- and thin-walled, hyaline, aseptate, 3–5 × 2–3 μm, with 2 large dull green polar guttules. Conidial matrix salmon.

Culture characteristics: Colonies on OA, 55–60 mm diam after 7 d, margin regular, white aerial mycelia sparse, brownish olivaceous; reverse white to reddish brown. Colonies on MEA 44–48 mm diam after 7 d, margin regular, white to olivaceous, with sparse white aerial mycelia spreading over the colony; reverse concolourous. Colonies on PDA, 15–20 mm diam after 7 d, margin irregular, fluffy to felty, white; reverse amber to saffron. NaOH spot test: a brown discolouration on MEA.

Specimens examined: China, Guizhou, Zunyi, Shuanghe Cave National Geopark, from air, 8 May 2015, Z.F. Zhang (holotype HMAS 247149, dried culture, ex-holotype living culture CGMCC 3.18353 = LC 7441); ibid. LC 8120.

Notes: The most closely related species to Didymella aeria are D. sinensis and D. pomorum (Fig. 1), but with respectively 33 bp and 55 bp differences in four sequenced loci. Didymella aeria produces hyaline conidia measuring 3–5 × 2–3 μm, while D. pomorum produces longer, brown conidia (4–8 × 1.5–3 μm; Boerema 1993). The asexual morph of D. sinensis was unfortunately not observed. Didymella aeria was trapped from air in a Karst cave in China.

Didymella aquatica Q. Chen, Crous & L. Cai, sp. nov. MycoBank MB818973. Fig. 9.

Fig. 9

Didymella aquatica (CGMCC 3.18349). A–B. Colony on OA (front and reverse). C–D. Colony on MEA (front and reverse). E–F. Colony on PDA (front and reverse). G. Pycnidia sporulating on OA. H. Pycnidia. I. Section of pycnidium. J. Section of pycnidial wall. K. Conidia. Scale bars: G = 100 μm; H = 50 μm; I, K = 10 μm; J = 5 μm.

Etymology: Name derived from the substrate where the holotype was collected, water.

Conidiomata pycnidial, solitary, sometimes aggregated, globose to subglobose, brown, glabrous or covered with some hyphal outgrowths, superficial, ostiolate, 105–355 × 95–315 μm. Ostioles 2–13, sometimes elongated as a short neck, up to 50.5 μm long, papillate. Pycnidial wall pseudoparenchymatous, composed of oblong to isodiametric cells, 2–5 layers, 14–35 μm thick, outer wall 2–3-layers pigmented. Conidiogenous cells phialidic, hyaline, smooth, ampulliform to doliiform, 4–5 × 3.5–5 μm. Conidia ellipsoidal to oblong, smooth- and thin-walled, hyaline, aseptate, 4–5.5 × 2–3 μm, with 2 distinct polar guttules. Conidial matrix cream.

Culture characteristics: Colonies on OA, 15–40 mm diam after 7 d, margin regular, covered by velvety aerial mycelia, flat, white to amber; reverse concolourous. Colonies on MEA 46–53 mm diam after 7 d, margin regular, white to pale green, with sparse aerial mycelia near the centre; reverse concolourous. Colonies on PDA, 54–56 mm diam after 7 d, margin regular, floccose to felty, white to grey, iron grey near the centre; reverse white, hazel to brown. NaOH test negative.

Specimens examined: China, Guizhou, Kuankuoshui National Geopark, water, 23 Jul. 2014, Z.F. Zhang (holotype HMAS 247150, dried culture, ex-holotype living culture CGMCC 3.18349 = LC 5556); ibid. LC 5555.

Notes: Didymella aquatica formed a distinct lineage sister to D. macrophylla, with 6 bp differences in both rpb2 and tub2 loci. Morphologically, D. aquatica is clearly differentiated from D. macrophylla in producing smaller conidiogenous cells (4–5 × 3.5–5 μm vs. 6–8 × 4.5–8 μm), longer and narrower conidia (4–5.5 × 2–3 μm vs. 1.5–2.5 × 3.5–5.5 μm), and in the number of conidiomatal ostioles (2–13 vs. 1). This is the first Didymella species known from water.

Didymella chloroguttulata Q. Chen, Crous & L. Cai, sp. nov. MycoBank MB818970. Fig. 10.

Fig. 10

Didymella chloroguttulata (CGMCC 3.18351). A–B. Colony on OA (front and reverse). C–D. Colony on MEA (front and reverse). E–F. Colony on PDA (front and reverse). G. Pycnidia forming on OA. H. Section of pycnidial wall. I. Conidia. Scale bars: G = 200 μm; H–I = 10 μm.

Etymology: Latin, chloro- = green, referring to the two green guttules of the conidia.

Conidiomata pycnidial, confluent, globose to subglobose, brown, glabrous, superficial, 145–260(–410) × 130–230(–365) μm. Ostiole single, sometimes with a short neck, slightly papillate or non-papillate. Pycnidial wall pseudoparenchymatous, composed of isodiametric cells, 3–4 layers, 14.5–22 μm thick, pigmented. Conidiogenous cells phialidic, hyaline, smooth, ampulliform to doliiform, 5.5–8 × 4–6.5 μm. Conidia oblong to cylindrical, incidentally slightly curved, smooth- and thin-walled, hyaline, aseptate, 4–6 × 2–3 μm, with 2–3 dull green polar guttules. Conidial exudates not recorded.

Culture characteristics: Colonies on OA, 54–57 mm diam after 7 d, margin regular, covered by floccose aerial mycelia, dense, grey; reverse black. Colonies on MEA 44–47 mm diam after 7 d, margin regular, white aerial mycelia sparse, fluffy, greenish brown; reverse concolourous. Colonies on PDA, 57–62 mm diam after 7 d, margin regular, floccose, grey to leaden-black; reverse leaden-black. NaOH spot test: a pale reddish brown discolouration on MEA.

Specimens examined: China, Guizhou, Zunyi, Shuanghe Cave National Geopark, air, 8 May 2015, Z.F. Zhang (holotype HMAS 247151, dried culture, ex-holotype living culture CGMCC 3.18351 = LC 7435); ibid. LC 8122.

Notes: Didymella chloroguttulata is characterised by having two to three dull green polar guttules in its oblong to cylindrical conidia and sometimes having conidiomata with a short neck. In the phylogenetic tree, it formed a distinct clade sister to D. dactylidis and D. rhei (Fig. 1). Didymella chloroguttulata is well distinguished from these two species in the NaOH reactions (pale reddish brown discolouration on D. chloroguttulata, slight greenish discolouration on D. dactylidis, and no effect on D. rhei) (de Gruyter et al. 2002, Aveskamp et al. 2010).

Didymella ellipsoidea Q. Chen, Crous & L. Cai, sp. nov. MycoBank MB818971. Fig. 11.

Fig. 11

Didymella ellipsoidea (CGMCC 3.18350). A–B. Colony on OA (front and reverse). C–D. Colony on MEA (front and reverse). E–F. Colony on PDA (front and reverse). G. Pycnidia sporulating on OA. H. Pycnidia. I. Ostioles on pycnidium. J. Section of pycnidium. K. Section of pycnidial wall. L. Conidia. Scale bars: G = 100 μm; H = 50 μm; I, K–L = 10 μm; J = 20 μm.

Etymology: Name refers to its ellipsoidal conidia.

Conidiomata pycnidial, solitary, globose to subglobose, brown, glabrous or covered with some hyphal outgrowths, superficial, ostiolate, 335–400(–460) × 290–340(–440) μm. Ostioles 1–8, often developing to elongated short necks, up to 80 μm long, papillate. Pycnidial wall pseudoparenchymatous, composed of isodiametric cells, 3–5 layers, 23.5–50 μm thick, pigmented. Conidiogenous cells phialidic, hyaline, smooth, ampulliform to doliiform, 5.5–7.5 × 4.5–6.5 μm. Conidia ellipsoidal, smooth- and thin-walled, hyaline, aseptate, 3–4.5 × 2–3 μm, with 2 pale green guttules. Conidial matrix cream.

Culture characteristics: Colonies on OA, 56–62 mm diam after 7 d, margin regular, covered by floccose aerial mycelia, dense, white to pale brown; reverse white to greenish brown. Colonies on MEA 61–64 mm diam after 7 d, margin regular, white aerial mycelia sparse, fluffy, grey to olivaceous; reverse concolourous. Colonies on PDA, 52–54 mm diam after 7 d, margin regular, floccose, grey to leaden-black, with a white concentric ring near the centre; reverse concolourous. NaOH test negative.

Specimen examined: China, Guizhou, Zunyi, Shuanghe Cave National Geopark, air, 8 May 2015, Z.F. Zhang (holotype HMAS 247152, dried culture, ex-holotype living culture CGMCC 3.18350 = LC 7434); ibid. LC 8123.

Notes: This species is represented by two isolates trapped from air in a Karst cave which cluster in a distinct lineage clearly differentiated from other species in Didymella (Fig. 1). Morphologically, Didymella ellipsoidea is distinguishable from its closest neighbours, D. viburnicola, in producing wider conidia (3–4.5 × 2–3 μm vs. 3.5–5.5 × 1.5–2 μm; de Gruyter & Noordeloos 1992), from D. macrostoma in having shorter conidia (3–4.5 × 2–3 μm vs. 4–11 × 2–4 μm; de Gruyter et al. 2002), and from D. pteridis in producing larger conidiogenous cells (5.5–7.5 × 4.5–6.5 μm vs. 4–5 × 3.5–4.5 μm).

Didymella ilicicola Q. Chen, Crous & L. Cai, sp. nov. MycoBank MB818969. Fig. 12.

Fig. 12

Didymella ilicicola (CGMCC 3.18355). A–B. Colony on OA (front and reverse). C–D. Colony on MEA (front and reverse). E–F. Colony on PDA (front and reverse). G. Pycnidia forming on OA. H. Pycnidium. I. Section of pycnidium. J. Section of pycnidial wall. K–L. Conidiogenous cells. M. Conidia. Scale bars: G = 100 μm; H = 20 μm; I–J = 10 μm; K–M = 5 μm.

Etymology: Name derived from Ilex, the plant from which the holotype was collected.

Conidiomata pycnidial, solitary or aggregated, (sub-)globose to flask-shaped, or obpyriform, brown, later becoming irregular when matured, covered with hyphal outgrowths, mostly erumpent, sometimes semi-immersed, ostiolate, (80–)150–200 × (70–)150–180 μm. Ostioles 2–3, elongated as short papillate necks. Pycnidial wall pseudoparenchymatous, composed of oblong to isodiametric cells, 2–5 layers, 15–20 μm thick, outer wall 2–3-layers pigmented. Conidiogenous cells phialidic, hyaline, smooth, ampulliform to doliiform, 4.5–8 × 3.5–5 μm. Conidia ellipsoidal to oblong, smooth- and thin-walled, hyaline, aseptate, 3–4 × 1.5–2.5 μm, with two minute guttules. Conidial matrix cream to buff.

Culture characteristics: Colonies on OA, 43–50 mm diam after 7 d, margin regular, covered by floccose aerial mycelia, white to pale buff, with a dull green concentric ring near the centre; reverse reddish brown to buff, with a brown concentric ring. Colonies on MEA 56–65 mm diam after 7 d, margin irregular, white, aerial mycelia sparse; reverse concolourous. Colonies on PDA, 62–65 mm diam after 7 d, margin regular, felty to floccose, dense, white to pale yellow; reverse white to buff with some pale reddish brown tings in concentric rings. NaOH test negative.

Specimens examined: Italy, from seedlings of Ilex chinensis, 2013, W.J. Duan (holotype HMAS 247153, dried culture, ex-holotype living culture CGMCC 3.18355 = LC 8126); ibid. LC 8127.

Notes: Didymella ilicicola clustered in a clade together with D. subherbarum and D. pedeiae (Fig. 1), but with 1 bp and 9 bp differences in ITS and tub2 respectively from D. subherbarum (lack of rpb2 sequence), and 26 bp and 12 bp differences in rpb2 and tub2 respectively from D. pedeiae. Morphologically, D. ilicicola differs from D. subherbarum in producing shorter conidia (3–4 × 1.5–2.5 μm vs. 4–6.5 × 1.5–2 μm; de Gruyter et al. 1993), and from D. pedeiae in producing larger conidiogenous cells (4.5–8 × 3.5–5 μm vs. 3.5–4.5 × 3–4 μm; Aveskamp et al. 2010).

Didymella infuscatispora Q. Chen, Crous & L. Cai, sp. nov. MycoBank MB818974. Fig. 13.

Fig. 13

Didymella infuscatispora (CGMCC 3.18356). A–B. Colony on OA (front and reverse). C–D. Colony on MEA (front and reverse). E–F. Colony on PDA (front and reverse). G. Pycnidia forming on OA. H. Pycnidia. I. Conidia. J. Conidiogenous cell. Scale bars: G = 200 μm; H = 50 μm; I = 10 μm; J = 2.5 μm.

Etymology: Latin, infuscat- = brownish, referring to the colour of its conidia.

Leaf spots amphigenous, irregular, 3–11 mm diam, extending along leaf margin to the whole leaf, dark grey to dark brown (Fig. 7B). Conidiomata pycnidial, solitary, globose to subglobose, brown, later becoming irregular when matured, covered with some hyphal outgrowths, superficial, ostiolate, (50–)95–265 × (20–)75–165 μm. Ostiole single, sometimes elongated as short necks, slightly papillate. Pycnidial wall pseudoparenchymatous, composed of isodiametric cells, 2–3 layers, 13.5–23 μm thick. Conidiogenous cells phialidic, hyaline, smooth, ampulliform to doliiform, 6–8.5 × 5.5–8 μm. Conidia globose to broadly ellipsoidal, oblong, smooth- and thin-walled, hyaline, later becoming pale brown, mostly aseptate, occasionally 1-septate, 5–8.5 × 3.5–5.5 μm, with several indistinct minute guttules. Conidial matrix dark brown.

Culture characteristics: Colonies on OA, 15–20 mm diam after 7 d, margin regular, covered by felty aerial mycelia, white to buff, pale brown near the centre; reverse white to amber, hazel near the centre. Colonies on MEA 10–15 mm diam after 7 d, margin irregular, aerial mycelia sparse, white to pale green; reverse white to pale green, yellowish brown near the centre. Colonies on PDA, 14–16 mm diam after 7 d, margin regular, aerial mycelia felty, flat, white to pale brown; reverse buff to brown. NaOH test negative.

Specimens examined: China, Tibet, Lulang, on leaves of Chrysanthemum indicum, 15 Jun. 2015, Q. Chen (holotype HMAS 247154, dried culture, ex-holotype living culture CGMCC 3.18356 = LC 8128); ibid. LC 8129.

Note: This species clustered in a distinct lineage separated from other species in this genus, and is characterised by pale brown and broadly ellipsoidal conidia and a dark brown conidial matrix when mature.

Didymella macrophylla Q. Chen, Crous & L. Cai, sp. nov. MycoBank MB819189. Fig. 14.

Fig. 14

Didymella macrophylla (CGMCC 3.18357). A–B. Colony on OA (front and reverse). C–D. Colony on MEA (front and reverse). E–F. Colony on PDA (front and reverse). G. Pycnidia forming on OA. H. Pycnidia. I. Conidia. Scale bars: G = 200 μm; H–I = 10 μm.

Etymology: Named after the host species Hydrangea macrophylla, from which the holotype was collected.

Conidiomata pycnidial, mostly solitary, sometime aggregated, globose to subglobose, pale brown, glabrous, semi-immersed or immersed in agar, ostiolate, (80–)120–200 × (60–)100–150 μm. Ostiole single, slightly papillate. Pycnidial wall pseudoparenchymatous, composed of oblong to isodiametric cells, 1–2 layers, 7–15 μm thick, pigmented. Conidiogenous cells phialidic, hyaline, smooth, ampulliform to doliiform, 6–8 × 4.5–8 μm. Conidia obovoid, ellipsoidal to oblong, smooth- and thin-walled, hyaline, aseptate, 3.5–5.5 × 1.5–2.5 μm, with two polar guttules. Conidial matrix buff.

Culture characteristics: Colonies on OA, 44–46 mm diam after 7 d, margin regular, covered by floccose aerial mycelia, white to grey, yellowish grey near the centre; reverse grey to greyish yellow. Colonies on MEA 54–60 mm diam after 7 d, margin regular, covered by white aerial mycelia, fluffy; reverse concolourous. Colonies on PDA, 59–68 mm diam after 7 d, margin regular, aerial mycelia floccose, dense, white to yellowish grey; reverse dark brown with pale olivaceous margin. NaOH test negative.

Specimens examined: Italy, Hydrangea macrophylla, 2013, W.J. Duan (holotype HMAS 247155, dried culture, ex-holotype living culture CGMCC 3.18357 = LC8131); ibid. LC 8132.

Note: Didymella macrophylla is phylogenetically most closely related to D. aquatica (Fig. 1), which is discussed under the notes of the latter species.

Didymella ocimicola Q. Chen, Crous & L. Cai, sp. nov. MycoBank MB819127. Fig. 15.

Fig. 15

Didymella ocimicola (CGMCC 3.18358). A–B. Colony on OA (front and reverse). C–D. Colony on MEA (front and reverse). E–F. Colony on PDA (front and reverse). G. Pycnidia forming on OA. H. Section of pycnidium. I. Conidia. Scale bars: G = 100 μm; H = 50 μm; I = 10 μm.

Etymology: Name derived from Ocimum, the plant host from which the holotype was collected.

Leaf spots amphigenous, irregular, 8–15 mm diam, next to or close to the leaf margin, pale brown (Fig. 7C). Conidiomata pycnidial, solitary, sometimes aggregated, globose to flask-shaped, brownish olivaceous, covered by some hyphal outgrowths, superficial or semi-immersed, ostiolate, 100–235 × 95–180 μm. Ostiole single, with an elongated neck, slightly papillate or non-papillate. Pycnidial wall pseudoparenchymatous, composed of isodiametric cells, 2–5 layers, 12–35.5 μm thick, brown-pigmented. Conidiogenous cells phialidic, hyaline, smooth, ampulliform to doliiform, 5–5.5 × 3.5–5 μm. Conidia globose to broadly ellipsoidal, smooth- and thin-walled, hyaline, aseptate, 4–6.5 × 3–4.5 μm, with one to several distinct guttules. Conidial exudates not recorded.

Culture characteristics: Colonies on OA, 10–15 mm diam after 7 d, margin regular, aerial mycelia floccose, flat, white to buff; reverse concolourous. Colonies on MEA 9–12 mm diam after 7 d, margin irregular, aerial mycelia floccose, white, dull green; reverse white to dull green. Colonies on PDA, 10–15 mm diam after 7 d, margin regular, aerial mycelia floccose, white; reverse olivaceous with white to pale brown patches. NaOH test negative.

Specimens examined: China, Tibet, Lulang, on leaves of Ocimum sp., 15 Jun. 2015, Q. Chen (holotype HMAS 247156, dried culture, ex-holotype living culture CGMCC 3.18358 = LC 8137); ibid. LC 8138.

Notes: Didymella ocimicola grouped closely with D. chenopodii and D. senecionicola (Fig. 1), but differs from D. chenopodii in smaller conidiogenous cells (5–5.5 × 3.5–5 μm vs. 4–8 × 4–6 μm) and wider conidia (4–6.5 × 3–4.5 μm vs. 5–5.5 × 2–2.2 μm) and from D. senecionicola in wider conidia (4–6.5 × 3–4.5 μm vs. 4–6.5 × 1.5–2.5 μm) (de Gruyter et al. 1993). Didymella ocimicola has 44 bp and 30 bp differences in three loci (lack of rpb2 sequence) from D. chenopodii and D. senecionicola respectively.

Didymella pteridis L.W. Hou, Crous & L. Cai, sp. nov. MycoBank MB820002. Fig. 16.

Fig. 16

Didymella pteridis (CBS 379.96). A–B. Colony on OA (front and reverse). C–D. Colony on MEA (front and reverse). E–F. Colony on PDA (front and reverse). G. Pycnidia forming on OA. H. Pycnidium. I. Section of pycnidium. J. Section of pycnidial wall. K. Conidiogenous cells. L. Conidia. Scale bars: G = 300 μm; H = 40 μm; I = 20 μm; J–L = 10 μm.

Etymology: Named after the host genus Pteris, from which the holotype was collected.

Conidiomata pycnidial, mainly solitary, sometimes aggregated, (sub-)globose or flask-shaped, glabrous or with some mycelial outgrowths, superficial or semi-immersed, ostiolate, 170–350(–430) × 150–330 μm. Ostiole single, papillate, sometimes elongated as a short neck, with dark colour near the ostioles. Pycnidial wall pseduoparenchymatous, composed of oblong to isodiametric cells, 3–6 layers, 9–28 μm thick, with outer 1–2-layers pigmented. Conidiogenous cell phialidic, hyaline, smooth, ampulliform to doliiform, 4–5 × 3.5–4.5 μm. Conidia ovoid to broadly oval, smooth- and thin-walled, hyaline, aseptate, (3–)4–6 × 2.5–3.5 μm, with two polar guttules. Conidial matrix pale salmon.

Culture characteristics: Colonies on OA, 58–60 mm diam after 7 d, margin regular, aerial mycelia flat, cinnamon to hazel, mycelia sparse in some furrowed zone, pycnidia abundant near the margin; reverse buff to pale olivaceous. Colonies on MEA 20–25 mm diam after 7 d, margin regular, aerial mycelia floccose, white, grey near the centre, pale salmon conidial matrix appeared near the centre; reverse yellow in outer ring, changing towards the centre from saffron, hazel, greyish brown to brown. Colonies on PDA, 65–68 mm diam after 7 d, margin regular, densely covered by floccose aerial mycelia, greenish brown, with some white mycelial pellets scattering over the colony; reverse dark brown, buff near the margin. NaOH spot test: a pale reddish brown discolouration on MEA.

Specimen examined: The Netherlands, Wageningen, Alphen aan de Rijn, from a leaf of Pteris sp., deposited in CBS Apr. 1996 (holotype CBS H-23013, dried culture, ex-holotype living culture CBS 379.96).

Notes: CBS 379.96 was originally identified as “Didymella adianticola”, which is currently a synonym of Paraboeremia adianticola. CBS 379.96 is well distinguished from Pa. adianticola both in morphology and phylogeny. Didymella pteridis produces pycnidia with a single ostiole and shorter conidiogenous cells (4–5 × 3.5–4.5 μm), different from Pa. adianticola (pycnidia with 1–3 ostioles, conidiogenous cells 5.5–7 × 3–6.5 μm; Chen et al. 2015a). Thus, we introduce CBS 379.96 as a new species, D. pteridis. Didymella pteridis is closely related to D. viburnicola in the multi-locus phylogenetic analyses (Fig. 1), but D. pteridis is differentiated from the latter by wider conidia (3–6 × 2.5–3.5 μm vs. 3.6–5.6 × 1.6–2.2 μm) and the colour of its conidial matrix (pale salmon vs. whitish) (de Gruyter & Noordeloos 1992).

Didymella segeticola (Q. Chen) Q. Chen, Crous & L. Cai, comb. nov. MycoBank MB819327.

Basionym: Phoma segeticola Q. Chen, Phytotaxa 197: 274. 2015.

Description: Chen et al. (2015b).

Specimens examined: China, Hubei, Shennongjia Forest Region, on diseased leaves of Cirsium segetum, 1 Aug. 2011, K. Zhang (holotype HMAS 245746, ex-holotype living culture CGMCC 3.17489); ibid. CGMCC 3.17498 = LC 1635; ibid. LC 1633; ibid. LC 1634.

Notes: This species was introduced as Phoma segeticola, before the comprehensive revision of Didymellaceae (Chen et al. 2015b). Under current circumstance of Didymellaceae, it belongs to Didymella. Didymella segeticola is closely related to D. bellidis, and has 12 bp differences in four loci from the latter. Morphologically, D. segeticola could be distinguished from the latter in producing wider conidia (4.5–7 × 2.5–4 μm vs. 4–6.5 × 2–2.5 μm; Chen et al. 2015b).

Didymella sinensis Q. Chen, Crous & L. Cai, sp. nov. MycoBank MB818967. Fig. 17.

Fig. 17

Didymella sinensis (CGMCC 3.18348). A–B. Colony on OA (front and reverse). C–D. Colony on MEA (front and reverse). E–F. Colony on PDA (front and reverse). G. Section of pseudothecial wall. H. Asci forming in ascomata. I–J. Asci. K–N. Ascospores. Scale bar: G–H = 10 μm; I–K, M = 5 μm; L, N = 2.5 μm.

Etymology: Epithet derived from the country of origin, China.

Leaf spots amphigenous, angular to irregular, 3–5 mm diam, scatter over the leaf, dark brown to black (Fig. 7D). Ascomata aggregated, globose to irregular, brown, small, up to 170 μm diam, papillate. Pseudothecial wall 18–29.5 μm thick, outer wall consisting of 2–5 layers of cells of textura angularis. Pseudoparaphyses hyaline, 1.5–2 μm diam, septate. Asci bitunicate, clavate to short cylindrical, 32–52 × 8.5–16 μm. Ascospores biseriate, ellipsoidal, straight to slightly curved, 12–18 × 4.5–7.5 μm, hyaline, smooth, apex obtuse, base broadly obtuse to subobtuse, medianly 1-septate, upper cell often wider than lower cell, slightly constricted at the septum.

Culture characteristics: Colonies on OA, 49–52 mm diam after 7 d, margin regular, covered by floccose aerial mycelia, grey to black; reverse black. Colonies on MEA 57–60 mm diam after 7 d, margin regular, greyish brown; reverse concolourous. Colonies on PDA, 56–60 mm diam after 7 d, margin regular, pale grey, with brownish olivaceous margin; reverse dark brown. NaOH spot test: a hazel discolouration on MEA.

Specimens examined: China, Guizhou, Huangguoshu waterfall, on leaves of Cerasus pseudocerasus, 21 Jul. 2014, Q. Chen (holotype HMAS 247157, dried culture, ex-holotype living culture CGMCC 3.18348 = LC 5210); Guizhou, Kuankuoshui National Geopark, Urticaceae, 20 Jul. 2014, Q. Chen, LC 5246; Guizhou, Xingyi, on leaves of Dendrobium officinale, 4 Jul. 2015, Q. Chen, LC 8142; ibid. LC 8143.

Notes: Didymella sinensis has only been observed as a sexual morph, which is not common among species of Didymellaceae. Four isolates from diseased leaves of three host plants in different families were collected, i.e. Cerasus pseudocerasus (Rosaceae), Dendrobium officinale (Orchidaceae) and Urticaceae, indicating an opportunistic pathogen with very broad host range.

Didymella suiyangensis Q. Chen, Crous & L. Cai, sp. nov. MycoBank MB818972. Fig. 18.

Fig. 18

Didymella suiyangensis (CGMCC 3.18352). A–B. Colony on OA (front and reverse). C–D. Colony on MEA (front and reverse). E–F. Colony on PDA (front and reverse). G. Pycnidia forming on OA. H. Pycnidia. I. Section of pycnidial wall. J. Conidia. Scale bars: G = 300 μm; H = 30 μm; I–J = 5 μm.

Etymology: Epithet derived from the location of origin, Suiyang County in Guizhou, China.

Conidiomata pycnidial, solitary, sometimes aggregated, globose to irregular, brown, covered by some hyphal outgrowths, superficial or semi-immersed, ostiolate, (65–)90–240 × 55–180 μm. Ostiole single, slightly papillate or non-papillate. Pycnidial wall pseudoparenchymatous, composed of oblong to isodiametric cells, 2–4 layers, 15–36.5 μm thick, outer wall 2-layers pigmented. Conidiogenous cells phialidic, hyaline, smooth, ampulliform to doliiform, 4–4.5 × 3–4 μm. Conidia ellipsoidal to oblong, smooth- and thin-walled, hyaline, aseptate, 3.5–7 × 2–3 μm, with indistinct guttules. Conidial matrix cream.

Culture characteristics: Colonies on OA, 52–55 mm diam after 7 d, margin regular, covered by floccose aerial mycelia, sparsely, white to buff; reverse concolourous. Colonies on MEA 59–64 mm diam after 7 d, margin regular, floccose, pale grey to greenish olivaceous; reverse white to yellowish green. Colonies on PDA, 57–61 mm diam after 7 d, margin regular, floccose, white to pale greyish brown; reverse white to hazel. NaOH spot test: a reddish brown discolouration on MEA.

Specimens examined: China, Guizhou, Zunyi, Shuanghe Cave National Geopark, air, 8 May 2015, Z.F. Zhang (holotype HMAS 247158, dried culture, ex-holotype living culture CGMCC 3.18352 = LC 7439); ibid. LC 8144.

Notes: Didymella suiyangensis formed a distinct clade sister to D. bellidis and D. segeticola (Fig. 1), with respectively 18 bp and 19 bp differences in four loci from the latter two species. However, D. suiyangensis is differentiated from D. bellidis and D. segeticola in producing narrower conidiogenous cells (4–4.5 × 3–4 μm vs. 3–6 × 4–8 μm and 5–6.5 × 4–5.5 μm), and the number of ostioles (1 vs. 1–5 and 1–2, respectively). Moreover, the NaOH reactions on MEA showed a reddish brown discolouration on D. suiyangensis, but green to red on D. bellidis and negative on D. segeticola (de Gruyter et al. 1993, Chen et al. 2015b).

Epicoccum Link, Mag. Neuesten Entdeck. Gesammten Naturk. Ges. Naturf. Freunde Berlin 7: 32. 1815, emend. Q. Chen & L. Cai, Stud. Mycol. 82: 171. 2015.

Epicoccum camelliae Q. Chen, Crous & L. Cai, sp. nov. MycoBank MB818958.

Etymology: Name refers to the host genus from which the holotype was collected, Camellia.

Cultures sterile. Epicoccum camelliae differs from its closest phylogenetic neighbour E. viticis by unique fixed alleles in three loci based on alignments of the separate loci deposited in TreeBASE (S20724): LSU positions: 66(T), 398(T); tub2 positions: 30(T), 258(C); rpb2 positions: 47(C), 95(C), 197(A), 419(C), 554(A).

Specimens examined: China, Jiangxi, Ganzhou, leaves of Camellia sinensis, 7 Sep. 2013, Y. Zhang (holotype HMAS 247159, dried culture, culture ex-holotype CGMCC 3.18343 = LC 4858); ibid. LC4862.

Notes: Epicoccum camelliae is closely related to E. viticis with a high support value in the phylogenetic tree (Fig. 1), and has 10 bp differences in four loci from the latter. Two isolates of this species are both from Camellia sinensis, one as endophyte in healthy leaves and the other as pathogenic fungus from diseased leaves. Both isolates proved to be sterile on the defined media used in this study.

Epicoccum dendrobii Q. Chen, Crous & L. Cai, sp. nov. MycoBank MB818964. Fig. 19.

Fig. 19

Epicoccum dendrobii (CGMCC 3.18359). A–B. Colony on OA (front and reverse). C–D. Colony on MEA (front and reverse). E–F. Colony on PDA (front and reverse). G. Sporodochia. H–I. Conidia. Scale bars: G–I = 10 μm.

Etymology: Named after the host plant, Dendrobium.

Leaf spots amphigenous, subcircular, up to 10 mm diam, black (Fig. 7E). Conidiomata sporodochial, aggregated, semi-immersed or superficial, clavate, pale brown. Hyphae septate, frequently branched, 2.5–4.5 μm. Conidia globose, aseptate and smooth when young, later becoming multicellular-phragmosporous, verrucose, subglobose-pyriform, brown, with a basal cell, 11–19 μm diam.

Culture characteristics: Colonies on OA, 58–64 mm diam after 7 d, margin regular, covered by floccose aerial mycelia, dense, white to greyish yellow; reverse white to pale grey, with some purple dots scattered over the colony. Colonies on MEA 65–68 mm diam after 7 d, margin regular, grey, with sparse white aerial mycelia; reverse white to yellow. Colonies on PDA, 34–38 mm diam after 7 d, margin regular, aerial mycelia felty to floccose, flat, white to buff, olivaceous near the centre; reverse pale salmon, hazel to brown near the centre. NaOH test negative.

Specimens examined: China, Guizhou, Xingyi, on leaves of Dendrobium fimbriatum, 4 Jul. 2015, Q. Chen (holotype HMAS 247160, dried culture, ex-holotype living culture CGMCC 3.18359 = LC 8145); ibid. LC 8146.

Notes: Epicoccum dendrobii formed a distinct clade basal to E. nigrum, E. poae and E. layuense (Fig. 1). These species all produce typical epicoccoid conidia (multicellular-phragmosporous, verrucose), with phoma-like conidia only observed in E. nigrum. Epicoccum dendrobii differs in the length of its epicoccoid conidia (11–19 μm) from E. nigrum (15–35 μm; Punithalingam et al. 1972) and E. poae (10–23 μm), and in its NaOH reaction (negative) from E. layuense (a pale reddish brown discolouration on MEA, with a yellowish brown margin).

Epicoccum duchesneae Q. Chen, Crous & L. Cai, sp. nov. MycoBank MB818966. Fig. 20.

Fig. 20

Epicoccum duchesneae (CGMCC 3.18345). A–B. Colony on OA (front and reverse). C–D. Colony on MEA (front and reverse). E–F. Colony on PDA (front and reverse). G–H. Pycnidia. I. Section of pycnidium. J. Section of pycnidial wall. K–M. Conidiogenous cells. N. Conidia. Scale bars: G–I = 40 μm; J, M–N = 10 μm; K–L = 5 μm.

Etymology: Name derived from Duchesnea, the plant genus from which the holotype was collected.

Leaf spots amphigenous, circular to irregular, 2–5 mm diam, yellowish brown, surrounded by a purple border (Fig. 7F). Conidiomata pycnidial, solitary, globose to subglobose, covered with hyphal outgrowths, immersed in agar, ostiolate, (150–)170–270 × (100–)150–230 μm. Ostiole single, sometimes with an elongated, pale brown neck, slightly papillate. Pycnidial wall pseudoparenchymatous, composed of isodiametric cells, 3–5 layers, 13–30 μm thick, outer wall of 2–3 pigmented layers. Conidiogenous cells phialidic, hyaline, smooth, ampulliform to doliiform, 4.5–9.5 × 3.5–7 μm. Conidia ellipsoidal to oblong, smooth- and thin-walled, hyaline, aseptate, 2.5–3.5 × 1.5–2 μm, egutullate or sometimes with 1(–3) small guttules. Conidial matrix whitish to salmon.

Culture characteristics: Colonies on OA, 62–65 mm diam after 7 d, margin regular, covered by floccose aerial mycelia, white to grey, greyish brown near the centre; reverse white to dark brown. Colonies on MEA 24–27 mm diam after 7 d, margin regular, covered by white, sparse floccose aerial mycelia, grey to pale olivaceous; reverse concolourous. Colonies on PDA, 55–60 mm diam after 7 d, margin regular, aerial mycelia covering the whole colony, floccose, white to grey; reverse greenish olivaceous to dark brown. Application of NaOH results in a pale olivaceous discolouration of the agar.

Specimens examined: China, Jiangxi, Ganzhou, on leaves of Duchesnea indica, 12 May 2013, Q. Chen (holotype HMAS 247161, dried culture, ex-holotype living culture CGMCC 3.18345 = LC 5139); ibid. LC 8147.

Notes: Epicoccum duchesneae formed a distinct lineage close to E. huancayense (Fig. 1). Epicoccum duchesneae differs in producing smaller conidia from E. huancayense, 2.5–3.5 × 1.5–2 μm vs. (4–)5–8(–12) × 2.5–4.5 μm (de Gruyter et al. 1998).

Epicoccum hordei Q. Chen, Crous & L. Cai, sp. nov. MycoBank MB818961. Fig. 21.

Fig. 21

Epicoccum hordei (CGMCC 3.18360). A–B. Colony on OA (front and reverse). C–D. Colony on MEA (front and reverse). E–F. Colony on PDA (front and reverse). G. Pycnidia forming on OA. H. Pycnidia. I. Section of pycnidium. J. Section of pycnidial wall. K. Chlamydospores. L. Conidiogenous cells. M. Conidia. Scale bars: G = 300 μm; H = 30 μm; I, K = 20 μm; J, M = 10 μm; L = 5 μm.

Etymology: Named after the host genus Hordeum, from which the holotype was isolated.

Conidiomata pycnidial, solitary or aggregated, globose to subglobose, glabrous, semi-immersed or on the surface of agar, ostiolate, (85–)115–190(–260) × (70–)95–180 μm. Ostiole single, non-papillate. Pycnidial wall pseudoparenchymatous, composed of oblong to isodiametric cells, 2–3 layers, 11–18.5 μm thick, pigmented. Conidiogenous cells phialidic, hyaline, smooth, ampulliform to doliiform, 7–8.5 × 5.5–7.5 μm. Conidia obovoid, ellipsoidal to oblong, cylindrical, smooth- and thin-walled, hyaline, aseptate, 6.5–9 × 3–4 μm, with several minute guttules. Conidial matrix pale brown. Chlamydospores unicellular, produced on the agar, yellowish brown to dark brown, intercalary, in chains, globose to subglobose, 6–21.5 μm diam, thick-walled.

Culture characteristics: Colonies on OA, 58–62 mm diam after 7 d, margin regular, covered by floccose aerial mycelia, white to grey, pale olivaceous near the centre; reverse white to amber. Colonies on MEA 43–46 mm diam after 7 d, margin regular, aerial mycelia white, fluffy to floccose, grey to greenish yellow; reverse concolourous. Colonies on PDA, 54–56 mm diam after 7 d, margin regular, aerial mycelia floccose, white to grey, with pale olivaceous concentric rings; reverse pale greenish brown to olivaceous, with concentric rings. Application of NaOH results in a pale brown discolouration of the agar.

Specimens examined: Australia, on seeds of Hordeum vulgare, 2014, W.J. Duan (holotype HMAS 247162, dried culture, ex-holotype living culture CGMCC 3.18360 = LC 8148); ibid. LC 8149.

Notes: Isolates of this species clustered in a lineage closely related to E. pimprinum (49 bp differences in four sequenced loci) (Fig. 1). Morphologically, E. hordei differs in the colour of its conidial matrix (pale brown) from E. pimprinum (salmon) and the absence of elongated necks of pycnidia (with pronounced necks in E. pimprinum) (Boerema 1993).

Epicoccum italicum Q. Chen, Crous & L. Cai, sp. nov. MycoBank MB818965. Fig. 22.

Fig. 22

Epicoccum italicum (CGMCC 3.18361). A–B. Colony on OA (front and reverse). C–D. Colony on MEA (front and reverse). E–F. Colony on PDA (front and reverse). G–H. Sporodochia. I. Conidia. Scale bars: G–I = 10 μm.

Etymology: Named after the country where the holotype was collected, Italy.

Conidiomata sporodochial, aggregated, semi-immersed or superficial, clavate, yellowish brown. Hyphae septate, branched, 3.5–5 μm. Conidia multicellular-phragmosporous, verrucose, subglobose-pyriform, brown, with a basal cell, 12.5–28 μm diam.

Culture characteristics: Colonies on OA, 48–50 mm diam after 7 d, margin regular, covered by floccose aerial mycelia, dense, white to yellow, dark iron-grey near the centre, with a pale yellow halo near the margin, and a yellow concentre ring; reverse buff to yellowish brown. Colonies on MEA 50–55 mm diam after 7 d, margin regular, grey to pale yellowish green, with sparse white aerial mycelia; reverse concolourous. Colonies on PDA, 35–39 mm diam after 7 d, margin irregular, aerial mycelia floccose, yellow with a white margin, black near the centre; reverse salmon to saffron, with a yellow margin. Application of NaOH results in a yellow discolouration of the agar.

Specimens examined: Italy, on seedlings of Acca sellowiana, 2013, W.J. Duan (holotype HMAS 247163, dried culture, ex-holotype living culture CGMCC 3.18361 = LC 8150); ibid. LC 8151.

Notes: Phylogenetically, Epicoccum italicum formed a distinct lineage closely related to E. dendrobii. Morphologically, the two species could be distinguished in the length of epicoccoid conidia (12.5–28 μm in E. italicum vs. 11–19 μm in E. dendrobii), and the results of NaOH test (a yellow discolouration in E. italicum vs. negative in E. dendrobii).

Epicoccum latusicollum Q. Chen, Crous & L. Cai, sp. nov. MycoBank MB818960. Fig. 23.

Fig. 23

Epicoccum latusicollum (CGMCC 3.18346). A–B. Colony on OA (front and reverse). C–D. Colony on MEA (front and reverse). E–F. Colony on PDA (front and reverse). G. Pycnidia forming on OA. H. Pycnidia. I. Section of pycnidium. J. Section of pycnidial wall. K–L. Conidiogenous cells. M. Conidia. Scale bars: G = 100 μm; H = 20 μm; I–J = 10 μm; K–M = 5 μm.

Etymology: Name refers to the wide neck of pycnidia, latus = wide, collum = neck.

Conidiomata pycnidial, mostly solitary, sometime aggregated, globose to subglobose or pyriform, glabrous, produced on the agar surface, ostiolate, 110–155 × 90–130 μm. Ostioles 1–2, sometimes elongated as a short, slightly papillate neck. Pycnidial wall pseudoparenchymatous, composed of oblong to isodiametric cells, 3–4 cell layers of which outer 2–3 are brown pigmented, 15–20 μm thick. Conidiogenous cells phialidic, hyaline, smooth, ampulliform to doliiform, 5–8 × 4–5.5 μm. Conidia ellipsoidal to oblong, smooth- and thin-walled, hyaline, aseptate, 4–6.5 × 2–3 μm, guttulate. Conidial matrix buff.

Culture characteristics: Colonies on OA, 70–72 mm diam after 7 d, margin regular, flattened, whole colony covered by floccose aerial mycelia, white, grey to smoke grey near the centre; reverse white to buff. Colonies on MEA 75–80 mm diam after 7 d, margin regular, aerial mycelia floccose, greyish dull green, forming several mycelial pellets, white or pale salmon; reverse grey, with some yellow sections. Colonies on PDA, 80–85 mm diam after 7 d, margin regular, floccose aerial mycelia covering the whole colony, dense, white to grey, forming several white mycelial pellets; reverse white to hazel. NaOH spot test: a green discolouration on MEA, later changing to three colour layers, via dark green, pale red to purple, from the centre to the outer ring.

Specimens examined: China, Jiangxi, Ganzhou, on leaves of Vitex negundo, 25 Apr. 2013, Q. Chen, LC 5124; Jiangxi, Ganzhou, endophyte of Camellia sinensis, 7 Sep. 2013, Y. Zhang, LC 4859; Shandong, Jining, on leaves of Sorghum bicolor, 3 Aug. 2013, N. Zhou (holotype HMAS 247164, dried culture, ex-holotype living culture CGMCC 3.18346 = LC 5158). Japan, Podocarpus macrophyllus, 2013, W.J. Duan, LC 8152; ibid. LC 8153; on stem of Acer palmatum, LC 8154.

Notes: Isolates of Epicoccum latusicollum clustered in a sister clade to E. camelliae, E. sorghinum and E. viticis (Fig. 1). Although the conidial dimensions are similar in these species, E. latusicollum differs in 1 bp in ITS, 14 bp in rpb2 and 5 bp in tub2 from E. camelliae; 16 bp in rpb2 and 7 bp in tub2 from E. sorghinum; and 1 bp in ITS, 1 bp in LSU, 16 bp in rpb2 and 4 bp in tub2 from E. viticis.

This is the first report of an Epicoccum species from Acer palmatum (Aceraceae), Podocarpus macrophyllus (Podocarpaceae) and Vitex negundo (Verbenaceae).

Epicoccum layuense Q. Chen, Crous & L. Cai, sp. nov. MycoBank MB818963. Fig. 24.

Fig. 24

Epicoccum layuense (CGMCC 3.18362). A–B. Colony on OA (front and reverse). C–D. Colony on MEA (front and reverse). E–F. Colony on PDA (front and reverse). G. Sporodochia. H–I. Conidia producing on sporodochia. J. Conidia. Scale bars: G–I = 10 μm.

Etymology: Epithet derived from the location of origin, Layue Village in Tibet, China.

Leaf spots distinct, angular to irregular, up to 12 mm diam, dark brown. Conidiomata sporodochial, aggregated, superficial, clavate, brown (Fig. 7I). Hyphae septate, branched, 2–5.5 μm. Conidia multicellular-phragmosporous, verrucose, subglobose-pyriform, with a basal cell, dark brown, 13–19.5 μm diam.

Culture characteristics: Colonies on OA, 27–37 mm diam after 7 d, margin regular, covered by floccose aerial mycelia, yellow to greenish yellow, olivaceous; reverse yellow to saffron, with dark brown sections. Colonies on MEA 30–43 mm diam after 7 d, margin irregular, aerial mycelia white, floccose, greenish yellow to pale brown; reverse concolourous. Colonies on PDA, 47–55 mm diam after 7 d, margin irregular, aerial mycelia floccose, bright yellow; reverse yellow to pale brown, with a brown concentric ring near the centre. NaOH spot test: a pale reddish brown discolouration on MEA, with a yellowish brown margin.

Specimens examined: China, Tibet, Lulang, on leaves of Perilla sp., 15 Jun. 2015, Q. Chen (holotype HMAS 247165, dried culture, ex-holotype living culture CGMCC 3.18362 = LC 8155); ibid. LC 8156.

Notes: This species is phylogenetically closely related to E. nigrum and E. poae, but E. layuense has differences at 19 positions from E. nigrum and 14 positions from E. poae in the multi-locus sequences of their ex-type strains. Morphologically, E. layuense produces smaller epicoccoid conidia than E. nigrum (13–19.5 μm vs. 15–35 μm; Punithalingam et al. 1972), and they also differ in their NaOH reactions (a pale reddish brown discolouration on E. layuense, but pale brown on E. poae).

Epicoccum poae Q. Chen, Crous & L. Cai, sp. nov. MycoBank MB818962. Fig. 25.

Fig. 25

Epicoccum poae (CGMCC 3.18363). A–B. Colony on OA (front and reverse). C–D. Colony on MEA (front and reverse). E–F. Colony on PDA (front and reverse). G. Conidia producing on OA. H–I. Conidia. Scale bars: G = 100 μm; H = 20 μm; I = 10 μm.

Etymology: Name derived from Poa, the plant genus from which the holotype was collected.

Conidiomata sporodochial, aggregated, superficial, clavate, brown. Hyphae septate, branched, 2–3 μm. Conidia multicellular-phragmosporous, verrucose, subglobose-pyriform, with a basal cell, dark brown, 10–23 μm diam.

Culture characteristics: Colonies on OA, 49–51 mm diam after 7 d, margin regular, covered by floccose aerial mycelia, yellow, reddish brown to brown near the centre, with a white margin; reverse yellow to saffron, with some brown sections. Colonies on MEA 25–27 mm diam after 7 d, margin irregular, aerial mycelia white to greenish yellow, fluffy to floccose, grey to greenish yellow; reverse white to greenish yellow. Colonies on PDA, 20–22 mm diam after 7 d, margin irregular, aerial mycelia flattened, brownish yellow, with a white margin; reverse yellow to saffron, brown towards the centre. NaOH spot test: a pale brown discolouration on MEA.

Specimens examined: USA, on seeds of Poa annua, Oct. 2014, X.M. Wang, strain isolated by Q. Chen (holotype HMAS 247166, dried culture, ex-holotype living culture CGMCC 3.18363 = LC 8160); ibid. LC 8161, LC 8162.

Notes: Epicoccum poae is phylogenetically closely related to E. nigrum (Fig. 1), but differs in producing smaller epicoccoid conidia (10–23 μm vs. 15–35 μm; Punithalingam et al. 1972). Furthermore, E. poae hasn't been observed to have phoma-like conidia, while E. nigrum readily produces short-cylindrical conidia, 3–7(–10) × 1.5–3(–3.5) μm (Punithalingam et al. 1972).

Epicoccum viticis Q. Chen, Crous & L. Cai, sp. nov. MycoBank MB818959. Fig. 26.

Fig. 26

Epicoccum viticis (CGMCC 3.18344). A–B. Colony on OA (front and reverse). C–D. Colony on MEA (front and reverse). E–F. Colony on PDA (front and reverse). G. Pycnidia forming on OA. H. Pycnidia. I. Section of pycnidium. J. Section of pycnidial wall. K–N. Conidiogenous cells. O. Conidia. Scale bars: G–H = 40 μm; I = 20 μm; J = 10 μm; K–O = 5 μm.

Etymology: Name derived from Vitex, the plant genus from which the holotype was collected.

Leaf spots amphigenous, circular to irregular, 2–8 mm diam, close to the leaf margin, reddish brown, single lesions may coalesce to form larger lesions and become dark brown (Fig. 7H). Conidiomata pycnidial, aggregated or sometimes solitary, (sub-)globose, glabrous, produced on the agar surface, 120–200 × 100–175 μm. Ostioles 1–2, papillate. Pycnidial wall pseudoparenchymatous, composed of oblong to isodiametric cells, 2–3 cell layers, outer 1–2 layers brown pigmented, 8–16 μm thick. Conidiogenous cells phialidic, hyaline, smooth, ampulliform to doliiform, 5.5–9 × 3–6 μm. Conidia ellipsoidal to obovoid, smooth- and thin-walled, hyaline, aseptate, 3.5–6 × 2–3 μm, with two minute polar guttules. Conidial matrix buff to cinnamon.

Culture characteristics: Colonies on OA, 48–67 mm diam after 7 d, margin regular, aerial mycelia floccose, white to grey, with a greyish olivaceous concentric ring; reverse white to pale olivaceous, with a broad greyish olivaceous concentric ring. Colonies on MEA 75–80 mm diam after 7 d, margin regular, aerial mycelia fluffy to floccose, grey to pale yellowish green; reverse concolourous. Colonies on PDA, 70–75 mm diam after 7 d, margin regular, floccose aerial mycelia covering the whole colony, grey; reverse white to buff, with some dull green dots. NaOH test negative.

Specimens examined: Australia, Darwin, Northern Territory University, Greenhouse, from Andropogon gayanus, 2002, A. Hollingsworth, BRIP 29294 = LC 5257. China, Jiangxi, Ganzhou, on leaves of Vitex negundo, 25 Apr. 2013, Q. Chen (holotype HMAS 247167, dried culture, ex-holotype living culture CGMCC 3.18344 = LC 5126).

Note: Epicoccum viticis is phylogenetically closely related to E. camelliae (Fig. 1), with 10 bp differences in four sequenced loci.

Heterophoma Q. Chen & L. Cai, Stud. Mycol. 82: 165. 2015.

Heterophoma verbascicola Q. Chen, Crous & L. Cai, sp. nov. MycoBank MB819128. Fig. 27.

Fig. 27

Heterophoma verbascicola (CGMCC 3.18364). A–B. Colony on OA (front and reverse). C–D. Colony on MEA (front and reverse). E–F. Colony on PDA (front and reverse). G. Pycnidium forming on OA. H. Pycnidium. I. Section of pycnidium. J. Section of pycnidial wall. K–M. Conidiogenous cells. N. Conidia. Scale bars: G–H = 40 μm; I = 20 μm; J–N = 5 μm.

Etymology: Named after the host genus from which the holotype was collected, Verbascum.

Leaf spots amphigenous, angular to irregular, 2–7 mm diam, scattered over the leaf, brown, with a pale yellow diffuse halo (Fig. 7J). Conidiomata pycnidial, aggregated or solitary, globose to subglobose or obpyriform, brown, covered with some hyphal outgrowths, semi-immersed or superficial, ostiolate, 120–300 × (100–)150–300 μm. Ostioles 2–3, elongated as short necks, slightly papillate or non-papillate. Pycnidial wall pseudoparenchymatous, composed of oblong to isodiametric cells, 2–3 layers, 7–20 μm thick, outer wall 1–2-layers pigmented. Conidiogenous cells phialidic, hyaline, smooth, ampulliform to doliiform, 5.5–6 × 3.5–5 μm. Conidia ellipsoidal to oblong, smooth- and thin-walled, hyaline, aseptate, incidentally produce 1-septate large conidia, 3.5–6(–8) × 1.5–3.5 μm, with 1–2 guttules. Conidial matrix cream to buff.

Culture characteristics: Colonies on OA, 40–45 mm diam after 7 d, margin regular, covered by floccose aerial mycelia, white, with grey margin, greyish olivaceous near the centre; reverse white to pale olivaceous with a broad white concentric ring. Colonies on MEA 50–52 mm diam after 7 d, margin regular, aerial mycelia fluffy to floccose, white; reverse concolourous. Colonies on PDA, 50–53 mm diam after 7 d, margin irregular, crenate, dense, felty, white to mouse-grey; reverse white to hazel, with brown concentric rings. NaOH test negative.

Specimens examined: China, Tibet, Lulang, on leaves of Verbascum thapsus, 15 Jun. 2015, Q. Chen (holotype HMAS 247168, dried culture, ex-holotype living culture CGMCC 3.18364 = LC 8163); ibid. LC 8164.

Notes: Heterophoma verbascicola is phylogenetically closely related to H. novae-verbascicola, but is distinguishable from the latter species in its slightly narrower conidiogenous cells (5.5–6 × 3.5–5 μm vs. 2–6 × 4–6 μm; de Gruyter et al. 1993) and larger conidia (3.5–8 × 1.5–3.5 μm vs. 3.5–5.5 × 1.5–2.5 μm). Moreover, the NaOH test showed a yellowish green discolouration that became reddish in H. novae-verbascicola, but remained negative in H. verbascicola.

Neoascochyta Q. Chen & L. Cai, Stud. Mycol. 82: 198. 2015.

Neoascochyta argentina L.W. Hou, Crous & L. Cai, sp. nov. MycoBank MB820003. Fig. 28.

Fig. 28

Neoascochyta argentina (CBS 112524). A–B. Colony on OA (front and reverse). C–D. Colony on MEA (front and reverse). E–F. Colony on PDA (front and reverse). G. Pycnidia forming on OA. H. Pycnidium. I. Section of pycnidium. J. Section of pycnidial wall. K–M. Conidiogenous cells. N. Conidia. Scale bars: G = 100 μm; H = 50 μm; I = 20 μm; J–N = 10 μm.

Etymology: Epithet derived from the country of origin, Argentina.

Conidiomata pycnidial, solitary or aggregated, (sub-)globose of flask-shaped, glabrous, semi-immersed or immersed, ostiolate, 210–390 × 140–270 μm. Ostioles 1–3, sometimes elongated as a long neck (up to 350 μm), papillate. Pycnidial wall pseduoparenchymatous, composed of oblong to isodiametric cells, 4–6 layers, with outer 3–4-layers pigmented, 14.5–52 μm thick. Conidiogenous cells phialidic, hyaline, smooth, ampulliform to doliiform, 7.5–14.5 × 6–13.5 μm. Conidia cylindrical, smooth- and thin-walled, hyaline, 0–1-septate, (10.5–)11.5–14.5(–16) × 3–5 μm, guttulate. Conidial matrix whitish cream.

Culture characteristics: Colonies on OA, 50–55 mm diam after 7 d, margin regular, densely covered by floccose aerial mycelia, greyish olivaceous, with some white zones near the margin; reverse greyish black. Colonies on MEA 55–60 mm diam after 7 d, margin regular, densely covered by woolly aerial mycelia, fawn, white near margin; reverse brown. Colonies on PDA, 60–65 mm diam after 7 d, margin regular, covered by pale grey aerial mycelia, floccose, dark olivaceous near the margin; reverse greyish brown. NaOH spot test: a pale reddish brown discolouration on MEA.

Specimen examined: Argentina, Tandil, from a leaf of Triticum aestivum, Oct. 2002 (holotype CBS H-23014, dried culture, ex-holotype living culture CBS 112524).

Notes: CBS 112524 was initially received as “Ascochyta hordei”. However, this isolate clustered in the Neoascochyta clade, and produces much smaller conidia (10.5–16 × 3–5 μm) than As. hordei (15–22 × 3.5–4.5 μm; Punithalingam 1979). Therefore, Neoa. argentina is introduced as a new species, based on isolate CBS 112524. Neoascochyta argentina is well distinguished from its most closely related species Neoa. triticicola by its smaller conidia (10.5–16 × 3–5 μm vs. 16.5–27 × 5–8.5 μm).

Neoascochyta triticicola L.W. Hou, Crous & L. Cai, sp. nov. MycoBank MB820004. Fig. 29.

Fig. 29

Neoascochyta triticicola (CBS 544.74). A–B. Colony on OA (front and reverse). C–D. Colony on MEA (front and reverse). E–F. Colony on PDA (front and reverse). G. Pycnidia forming on OA. H. Pycnidia. I–J. Section of pycnidia. K. Section of pycnidial wall. L–N. Conidiogenous cells. O–P. Conidia. Scale bars: G = 500 μm; H = 200 μm; I–J = 50 μm; K–L, O = 10 μm; M–N, P = 5 μm.

Etymology: Name refers to the host genus Triticum, from which the holotype was collected.

Conidiomata pycnidial, mostly confluent, flask-shaped, glabrous or sometimes with hyphal outgrows, superficial or semi-immersed on the agar, (170–)230–420(–620) × 160–430 μm; conidiomata becoming black, irregular with age, and ostiolate. Ostioles 1–3(–5), developing to conspicuously elongated necks (up to 400 μm tall), papillate. Pycnidial wall pseudoparenchymatous, composed of oblong to isodiametric cells, 4–6 layers, with outer 2–3-layers pigmented, 25–40 μm thick. Conidiogenous cells phialidic, hyaline, smooth, ampulliform to doliiform, 8.5–13 × (4.5–)7.5–12(–13) μm. Conidia bacilliform to fusiform, smooth- and thin-walled, hyaline, mainly uniseptate, occasionally aseptate, (16.5–)20–27 × 5–8.5 μm, guttulate. Conidial matrix whitish cream to pale salmon.

Culture characteristics: Colonies on OA, 55–65 mm diam after 7 d, margin regular, aerial mycelia floccose, greyish black, with some greyish mycelia tufts; reverse concolourous. Colonies on MEA 40–55 mm diam after 7 d, margin irregular, slightly lobate, covered by floccose mycelia, white, greyish olivaceous to greyish pink near the centre; reverse dark brown, saffron near the margin. Colonies on PDA, 55–65 mm diam after 7 d, margin irregular, slightly lobate, covered by floccose, greenish black mycelia, with erected tufts of white mycelia; reverse greyish olivaceous. NaOH spot test: a pale reddish brown discolouration on MEA.

Specimen examined: South Africa, Heilbron, from Triticum aestivum, deposited in CBS Sep. 1974, W.J. Jooste (holotype CBS H-9008, ex-holotype living culture CBS 544.74).

Notes: Isolate CBS 544.74 was originally identified as “Ascochyta hordei” but clustered in the Neoascochyta clade. Morphologically, it differs in producing larger conidia (16.5–27 × 5–8.5 μm) from Ascochyta hordei (15–22 × 3.5–4.5 μm; Punithalingam 1979). Therefore, we introduce CBS 544.74 as a new species, Neoa. triticicola. In Neoascochyta, it should be compared with Neoa. argentina, which is discussed under the notes of the latter species.

Neoascochyta soli Q. Chen, Crous & L. Cai, sp. nov. MycoBank MB818975. Fig. 30.

Fig. 30

Neoascochyta soli (CGMCC 3.18365). A–B. Colony on OA (front and reverse). C–D. Colony on MEA (front and reverse). E–F. Colony on PDA (front and reverse). G. Section of pycnidium. H–I. Conidiogenous cells. J. Conidia. Scale bars: G = 20 μm; H–I = 5 μm; J = 10 μm.

Etymology: Name derived from the substrate where the holotype was collected, soil.

Conidiomata pycnidial, aggregated or solitary, globose to subglobose, dark brown, glabrous, superficial, ostiolate, (135–)390–630 × (110–)340–565 μm. Ostiole single, slightly papillate or non-papillate. Pycnidial wall pseudoparenchymatous, composed of isodiametric cells, 3–5 layers, 18–42 μm thick, outer wall of 1–2-pigmented layers. Conidiogenous cells phialidic, hyaline, smooth, ampulliform to doliiform, 6–10.5 × 5.5–9 μm. Conidia ellipsoidal to oblong, smooth- and thin-walled, hyaline, aseptate, 7–10 × 3–4 μm, with 2 to several polar guttules. Conidial exudates not recorded.

Culture characteristics: Colonies on OA, 62–64 mm diam after 7 d, margin regular, covered by floccose aerial mycelia, dense, white, greyish olivaceous near the centre; reverse white to iron grey. Colonies on MEA 45–47 mm diam after 7 d, margin irregular, grey, white near the centre; reverse white to olivaceous, forming concentric rings. Colonies on PDA, 50–53 mm diam after 7 d, margin regular, aerial mycelia fluffy, white to olivaceous; reverse concolourous. NaOH test negative.

Specimens examined: China, Guizhou, Kuankuoshui National Geopark, soil, 23 Jul. 2014, Z.F. Zhang (holotype HMAS 247169, dried culture, ex-holotype living culture CGMCC 3.18365 = LC 8165); ibid. LC 8166.

Notes: Neoascochyta soli clustered with Neoa. paspali in a distinct clade in this genus, but can be differentiated from the latter in producing larger conidiogenous cells (6–10.5 × 5.5–9 μm vs. 4–6 × 4–6 μm). In addition, the test of metabolite E production was negative for Neoa. soli, while a green to bluish discolouration, becoming red, appeared in Neoa. paspali (de Gruyter et al. 1998).

Neodidymelliopsis Q. Chen & L. Cai, Stud. Mycol. 82: 207. 2015.

Neodidymelliopsis achlydis L.W. Hou, Crous & L. Cai, sp. nov. MycoBank MB820005. Fig. 31.

Fig. 31

Neodidymelliopsis achlydis (CBS 256.77). A–B. Colony on OA (front and reverse). C–D. Colony on MEA (front and reverse). E–F. Colony on PDA (front and reverse). G. Pycnidia forming on OA. H. Pycnidium. I. Section of pycnidial wall. J. Section of pycnidium. K, M. Conidiogenous cells. L. Conidia. Scale bars: G = 500 μm; H, J = 50 μm; I, K–M = 10 μm.

Etymology: Named after the host genus Achlys, from which the holotype was collected.

Conidiomata pycnidial, solitary or aggregated, (sub-)globose, glabrous, semi-immersed or superficial, ostiolate, (150–)300–550(–630) × (120–)250–500(–630) μm. Ostioles 1–5, slightly papillate. Pycnidial wall pseudoparenchymatous, composed of oblong to isodiametric cells, 4–9 layers, with outer 2–4-layers pigmented, 30–80 μm thick. Conidiogenous cells phialidic, hyaline, smooth, ampulliform to doliiform, (4–)6.5–10 × (3.5–)4.5–6.5 μm. Conidia oblong to cylindrical, incidentally slightly curved, smooth- and thin-walled, hyaline, aseptate, 7.5–10(–18) × 2–3.5(–5) μm, with two polar guttules. Conidial matrix whitish cream.

Culture characteristics: Colonies on OA, 45–50 mm diam after 7 d, margin regular, aerial mycelia floccose, white to pale brown; reverse pale salmon, with some pale olivaceous tinges near the centre. Colonies on MEA 40–45 mm diam after 7 d, margin regular, aerial mycelia floccose and compact, white to pale grey; reverse saffron to pale yellowish brown, yellow near margin. Colonies on PDA, 50–52 mm diam after 7 d, margin regular, densely covered by floccose, grey aerial mycelia, white near the margin; reverse pale brown to brown. NaOH spot test: a dull green discolouration with a reddish brown margin on MEA.

Specimen examined: Canada, British Columbia, from a leaf of Achlys triphylla, Jun. 1976, J. Gremmen (holotype CBS H-23015, dried culture, ex-holotype living culture CBS 256.77).

Notes: Isolate CBS 256.77 was received as “Ascochyta achlydis”, which was from the same host (Achlys triphylla) and the same location (Canada) as reported for Ascochyta achlydis (Dearness 1916). However, it produces narrower and aseptate conidia compared to the uniseptate conidia of As. achlydis (7.5–18 × 2–5 μm vs. 14–20 × 5–6.5 μm; Dearness 1916), and is obviously a different species. Phylogenetically, CBS 256.77 clustered in the Neodidymelliopsis clade, closely related to Neod. polemonii and Neod. xanthina (Fig. 1), and has differences at six positions from Neod. polemonii and 12 positions from Neod. xanthina in multi-locus sequences of their ex-type strains. We therefore introduce a new species, Neod. achlydis based on CBS 256.77. Morphologically, Neod. achlydis produces pycnidia with 1–5 ostioles, while Neod. xanthina only has pycnidia with a single ostiole (Boerema et al. 2004). Neodidymelliopsis achlydis differs from Neod. polemonii in its whitish cream conidial matrix from whitish/smoke grey of Neod. polemonii (Boerema et al. 2004). Neodidymelliopsis achlydis is also well distinguished from Neod. polemonii and Neod. xanthina in the NaOH reactions (dull green with pale reddish brown margin in Neod. achlydis, pale sienna to rust colour in Neod. polemonii, reddish brown discolouration in Neod. xanthina; Boerema et al. 2004).

Neodidymelliopsis longicolla L.W. Hou, Crous & L. Cai, sp. nov. MycoBank MB820006. Fig. 32.

Fig. 32

Neodidymelliopsis longicolla (CBS 382.96). A–B. Colony on OA (front and reverse). C–D. Colony on MEA (front and reverse). E–F. Colony on PDA (front and reverse). G. Pycnidia forming on OA. H. Pycnidium. I. Section of pycnidium. J. Section of pycnidial wall. K. Conidiogenous cells and conidia. L. Conidia. Scale bars: G = 250 μm; H–I = 50 μm; J = 5 μm; K–L = 10 μm.

Etymology: Name refers to the elongated, long ostiolar necks.

Conidiomata pycnidial, solitary or aggregated, globose to flask-shaped, glabrous or with some hyphal outgrows, superficial or semi-immersed, ostiolate, 200–490 × 150–360 μm. Ostioles 1–3, developing into elongated necks, up to 250 μm tall, papillate. Pycnidial wall pseudoparenchymatous, composed of isodiametric cells, 4–7 layers, outer 3–6-layers pigmented, 20–45 μm thick. Conidiogenous cells phialidic, hyaline, smooth, ampulliform, 4.5–6.5 × 4.5–6 μm. Conidia oblong to cylindrical, smooth- and thin-walled, initially aseptate and hyaline, later becoming 1-septated and pale brown, somewhat constricted at the septum, 12–15(–16.5) × 4–7 μm, guttulate. Conidial matrix brown.

Culture characteristics: Colonies on OA, 45–52 mm diam after 7 d, margin regular, aerial mycelia white and woolly, greenish olivaceous; reverse darker brown. Colonies on MEA 55–57 mm diam after 7 d, margin regular, covered by floccose, white aerial mycelia, black pycnidia visible; reverse brown, saffron near the margin. Colonies on PDA, 55–60 mm diam after 7 d, margin regular, densely covered by floccose aerial mycelia, grey, greenish olivaceous near the margin; reverse dark brown, pale brown near the margin. Application of NaOH results in a pale reddish brown discolouration on MEA.

Specimen examined: Israel, En Avdat, Negev desert, from soil in desert, Feb. 1996, A. van Iperen (holotype CBS H-23016, dried culture, ex-holotype living culture CBS 382.96).

Notes: CBS 382.96 was deposited as “Ascochyta scotinospora”, but differs from As. scotinospora by its larger pycnidia (200–490 × 150–360 μm vs. 140 μm diam) and forming elongated long necks (Punithalingam 1979). Phylogenetically, it clustered in the Neodidymelliopsis clade, basal to Neod. achlydis, Neod. polemonii and Neod. xanthina (Fig. 1). Hence, CBS 382.96 was described as a new species, Neod. longicolla. Neodidymelliopsis longicolla differs from Neod. achlydis in its septate conidia (mainly 1-septated vs. aseptate) and colour of its conidial matrix (brown vs. whitish cream); from Neod. polemonii in producing wider conidia (12–16.5 × 4–7 μm vs. 4.5–7.5 × 1.5–4 μm; Chen et al. 2015a); from Neod. xanthina in the number of pycnidial ostioles (1–3 vs. 1; Boerema et al. 2004).

Phoma Sacc. emend. Q. Chen & L. Cai, Stud. Mycol. 82: 194. 2015.

Phoma herbarum Westend., Bull. Acad. R. Sci. Belg., Cl. Sci. 19(3): 118. 1852, emend. Q. Chen & L. Cai, Stud. Mycol. 82: 195. 2015.

Synonyms: Phoma neerlandica Q. Chen & L. Cai, Stud. Mycol. 82: 197. 2015.

Atradidymella muscivora M.L. Davey & Currah, Amer. J. Bot. 96: 1283. 2009.

Phoma muscivora M.L. Davey & Currah, Amer. J. Bot. 96: 1283. 2009.

Phoma cruris-hominis Punith., Nova Hedwigia 31: 135. 1979.

Specimens examined: Canada, Alberta, Wolf Lake, from gametophytes of Polytrichum juniperinum, 2008, M.L. Davey, UAMH 10909 = CBS 127589. Switzerland, Kt. Graubünden, from Achillea millefolium, deposited in CBS Mar. 1951, E. Müller, CBS 304.51. The Netherlands, Emmeloord, from the stem of Rosa multiflora cv. Cathayensis, deposited in CBS Dec. 1975, G.H. Boerema, CBS 615.75 = PD 73/665 = IMI 199779; Emmeloord, from a leaf of Delphinium sp., deposited in CBS Feb. 1996, culture ex-holotype of “Phoma neerlandica” CBS 134.96 = PD 84/676; Naaldwijk, from a stem base of Nerium sp., deposited in CBS Sep. 1991, J. de Gruyter, CBS 502.91 = PD 82/276. UK, from a leg of woman, Apr. 1977, Y.M. Clayton, CBS 377.92 = IMI 213845; near Dumfries, from die-back of Picea excelsa, deposited in CBS Oct. 1937, T.R. Peace, CBS 274.37.

Notes: Phoma neerlandica was regarded distinct from P. herbarum based on its slightly longer and occasionally uniseptate conidia (Chen et al. 2015a). Similar to many other species in Didymellaceae, such an overlapping morphology often caused confusion with regards to species boundaries. Unfortunately, a sequencing error occurred in the tub2 sequence of CBS 134.96, which was not detected in the subsequent control and processing steps. Phoma neerlandica therefore became a name introduced with ambiguous data, and is therefore reduced to synonymy.

Stagonosporopsis Died. emend. Aveskamp et al., Stud. Mycol. 65: 44. 2010.

Stagonosporopsis bomiensis Q. Chen, Crous & L. Cai, sp. nov. MycoBank MB818955. Fig. 33.

Fig. 33

Stagonosporopsis bomiensis (CGMCC 3.18366). A–B. Colony on OA (front and reverse). C–D. Colony on MEA (front and reverse). E–F. Colony on PDA (front and reverse). G–H. Pycnidium forming on OA. I. Pycnidia. J. Section of pycnidium. K–N. Conidiogenous cells. O. Conidia. Scale bars: G–H = 40 μm; I–J = 20 μm; K–O = 5 μm.

Etymology: Epithet derived from its location of origin, Bomi in Tibet, China.

Leaf spots amphigenous, circular to irregular, 2–5 mm diam, scattered over the leaf, brown, surrounded by a greenish yellow border, single lesions may coalesce to form larger lesions till the whole leaf and getting dark brown (Fig. 7G). Conidiomata pycnidial, solitary, sometimes aggregated, globose to subglobose, pale brown, glabrous, superficial, ostiolate, 100–200 × 100–180 μm. Ostiole single, with an elongated neck, slightly papillate or non-papillate. Pycnidial wall pseudoparenchymatous, composed of oblong to isodiametric cells, 2–3 layers, 20–30 μm thick, outer wall 1–2-layers pigmented. Conidiogenous cells phialidic, hyaline, smooth, ampulliform to doliiform, 5–8 × 4.5–7 μm. Conidia ovoid to ellipsoidal, smooth- and thin-walled, hyaline, aseptate, 3.5–6.5 × 2–3.5 μm, with 1–2 distinct polar guttules. Conidial matrix buff.

Culture characteristics: Colonies on OA, 35–43 mm diam after 7 d, margin regular, covered by floccose aerial mycelia, dense, white to greyish olivaceous; reverse white to olivaceous. Colonies on MEA 45–47 mm diam after 7 d, margin irregular, olivaceous, with sparse white aerial mycelia near the centre; reverse concolourous. Colonies on PDA, 53–55 mm diam after 7 d, margin regular, aerial mycelia floccose, white to olivaceous, forming concentric rings; reverse olivaceous with pale green margin. NaOH test negative.

Specimens examined: China, Tibet, Bomi, leaves of Boraginaceae, 14 Jun. 2015, Q. Chen (holotype HMAS 247170, dried culture, ex-holotype living culture CGMCC 3.18366 = LC 8167); ibid. LC 8168.

Notes: Stagonosporopsis bomiensis is most closely related to S. papillata, another novel species collected from Tibet. However, S. bomiensis is distinguishable from S. papillata by having slightly shorter and wider conidia (3.5–6.5 × 2–3.5 μm vs. 3.5–9 × 1.5–3 μm), and based on its number of ostioles (1 vs. 2–3).

This is the first record of a Stagonosporopsis species on a member of the Boraginaceae.

Stagonosporopsis papillata Q. Chen, Crous & L. Cai, sp. nov. MycoBank MB818954. Fig. 34.

Fig. 34

Stagonosporopsis papillata (CGMCC 3.18367). A–B. Colony on OA (front and reverse). C–D. Colony on MEA (front and reverse). E–F. Colony on PDA (front and reverse). G. Pycnidium forming on OA. H. Pycnidium. I. Section of pycnidium. J. Section of pycnidial wall. K–M. Conidiogenous cells. N. Conidia. Scale bars: G = 100 μm; H = 40 μm; I–J = 10 μm; K–N = 5 μm.

Etymology: Name refers to its papillate pycnidia.

Leaf spots amphigenous, angular to irregular, 2–8 mm diam, reddish brown, indefinite border (Fig. 7K). Conidiomata pycnidial, solitary or aggregated, yellowish brown to brown, globose to subglobose or obpyriform, with hyphal outgrowths, semi-immersed in the agar, ostiolate, (130–)200–280 × (100–)150–250 μm. Ostioles 2–3, slightly papillate. Pycnidial wall pseudoparenchymatous, composed of oblong to isodiametric cells, 2–3 layers, 10–15(–20) μm thick, outer wall 1–2-layers pigmented. Conidiogenous cells phialidic, hyaline, smooth, ampulliform to doliiform, 5–8.5 × 4–7.5 μm. Conidia ellipsoidal to oblong, incidentally slightly curved, smooth- and thin-walled, hyaline, aseptate, 3.5–6.5(–9) × 1.5–3 μm, with two large polar guttules. Conidial matrix buff.

Culture characteristics: Colonies on OA, 44–50 mm diam after 7 d, margin regular, covered by white, dense aerial mycelia, grey near the centre, with white margin; reverse olivaceous with white margin. Colonies on MEA 50–52 mm diam after 7 d, margin regular, dull green, aerial mycelia sparsely; reverse concolourous. Colonies on PDA, 55–57 mm diam after 7 d, margin regular, aerial mycelia covering the whole colony, white; reverse olivaceous with white margin. NaOH test negative.

Specimens examined: China, Tibet, Bomi, on leaves of Rumex nepalensis, 14 Jun. 2015, Q. Chen (holotype HMAS 247171, dried culture, ex-holotype living culture CGMCC 3.18367 = LC 8169); ibid. LC 8170; Bomi, on leaves of Boraginaceae, 14 Jun. 2015, Q. Chen, LC 8171.

Notes: Stagonosporopsis papillata is phylogenetically allied to S. bomiensis and S. dorenboschii (Fig. 1). Morphological differences between S. papillata and S. bomiensis are discussed under the latter species. Stagonosporopsis papillata could be differentiated from S. dorenboschii by producing slightly larger conidiogenous cells (5–8.5 × 4–7.5 μm vs. 4–6 × 3–6 μm) and conidia (3.5–9 × 1.5–3 μm vs. 3–5.5 × 1.5–2.5 μm; de Gruyter & Noordeloos 1992).

Discussion

The Didymellaceae has recently undergone extensive revision based on its phylogenetic relationships (Aveskamp et al., 2009a, Aveskamp et al., 2009b, Aveskamp et al., 2010, de Gruyter et al. 2009, Chen et al. 2015a). In this study, 32 new taxa and two new combinations are proposed in nine genera, mostly based on specimens collected from Asia.

The majority of members in Didymellaceae are plant associated fungi. So far, only a few species were reported from other substrates, such as Phoma herbarum, Didymella glomerata, D. pomorum from inorganic materials including asbestos, cement, paint, etc. (Aveskamp et al. 2008), D. eucalyptica from water, D. gardeniae from air, and Leptosphaerulina australis from soil (Aveskamp et al. 2010). In the present study, several new species, namely Allophoma oligotrophica, Didymella aeria, D. aquatica, D. chloroguttulata, D. ellipsoidea, D. suiyangensis were collected from substrates such as air, soil, water and limestone from caves in South-west China, a typical environment with relatively low temperature, low nutrition, high humidity, and absolute darkness (Zhang et al. 2017). All these species are oligotrophic fungi except D. aquatic. It is interesting that many of these new species present pale green to dull green polar guttules which are not often observed in other species, while few other recognizable morphological differences could be observed.

The 360 isolates belonging to 194 taxa investigated in this study represent a large collection of Didymellaceae, which occurred on 163 different host genera within 70 families. Our results indicated that Asteraceae, Fabaceae, Poaceae, Ranunculaceae, Rosaceae and Solanaceae were the six most common host families associated with Didymellaceae (Fig. 2). Based on currently available data, several genera exhibited a certain level of host-specificity, i.e. Ascochyta species show relatively high host specificity to Fabaceae, Neoascochyta to Poaceae and Neomicrosphaeropsis to Tamaricaceae. Heterophoma species appear somewhat specific to Scrophulariaceae, as well as Phomatodes to Brassicaceae. Other genera appear to have a rather broad range of host families. Among the five apparently host-specific genera listed above, Neoascochyta is located in the earliest divergent clade in Didymellaceae, followed by Phomatodes, Ascochyta, Neomicrosphaeropsis and Heterophoma. Surprisingly, this evolutionary direction is consistent with that of their respective host families, i.e. Poaceae as earliest, followed by Brassicaceae, Fabaceae, Tamaricaceae and Scrophulariaceae (Bremer et al. 2009). Our data suggest, therefore, a general trend of coevolution in the host-specific groups in Didymellaceae.

Nine new species belonging to Epicoccum and 10 in Didymella are proposed in this paper, which reflect the high diversity of species in these two genera. The most remarkable feature of Epicoccum species is the formation of the darkly pigmented multi-septate conidia (dictyochlamydospores) from sporodochia. Of the nine new taxa, four were only observed as typical Epicoccum conidia, while the pycnidial morphs proved to be absent. These four species could also produce yellowish pigments that diffuse into culture media. In addition, six of the new Epicoccum species showed positive reactions in the NaOH test, that detects the production of metabolite E. Epicoccum camelliae is likely an opportunistic pathogen that could asymptomatically colonise plants as a potential destructive invader, as we obtained two strains, one from a healthy leaf, and another from a diseased leaf. Among the 10 new species described in the sexual genus Didymella, D. sinensis was recorded as sexual morph in all the single ascospore isolates obtained from three different hosts, while the asexual morph was not observed, revealing the homothallic nature of this species.

In spite of the good performance on the resolution of genera and species in Didymellaceae using the combined four loci, LSU, ITS, rpb2 and tub2, there are still several taxa or species complexes that await further assessment, such as the Boeremia exigua varieties (Abeln et al., 2002, Aveskamp et al., 2009b) and the Epicoccum nigrum complex (Fávaro et al. 2011). Additional loci and more isolates are required for a future study to clarify their phylogenetic relationships as well as species boundaries.

Following the 17 genera accepted in Didymellaceae by Chen et al. (2015a), Briansuttonomyces (Crous and Groenewald 2016) and Neomicrosphaeropsis (Thambugala et al. 2017) were subsequently embedded in this family based on the multi-locus phylogenies, which were confirmed in this paper. However, the introduction of several other genera are in need of reassessment. The monotypic genus Heracleicola erected by Ariyawansa et al. (2015) is herewith reduced to synonymy with Ascochyta, according to our combined LSU and ITS sequences analysis (Supplementary Fig. S1). Another genus, Neodidymella, was established in the same paper without any sequence data provided, although a tree was presented which suggested a very close relationship to Boeremia (Ariyawansa et al. 2015). Wijayawardene et al. (2016) proposed another monotypic genus Didymellocamarosporium, typified with Didymelloc. tamaricis, for which only SSU and LSU sequences could be obtained from public sequence repositories. The tree presented in Wijayawardene et al. (2016) provided little information as most of the Didymellaceae members were ignored in their analysis. We conducted a phylogenetic analysis using LSU sequences (Supplementary Fig. S2) and Didymelloc. tamaricis was embedded within the genus Neomicrosphaeropsis that was established later in the same year (Thambugala et al. 2017). Morphologically, Didymellocamarosporium tamaricis produces large brown, muriformly septate conidia (13–21.5 × 7–9.5 μm), which is obviously different from Neomicrosphaeropsis species and other genera in Didymellaceae.

The genera Endocoryneum and Pseudohendersonia were established by Petrak (1922) and Crous & Palm (1999) respectively, with their familial placements undetermined. Recently two new species, Endocoryneum festucae and Pseudohendersonia galiorum were introduced and they were placed in Didymellaceae by Wijayawardene et al. (2016), in which however, only LSU sequences were provided. Our analysis on the basis of LSU sequences revealed that E. festucae belonged to Stagonosporopsis, and formed an unexpected very long terminal branch (Supplementary Fig. S2). The sequence of E. festucae (access number: KU848203) needs to be verified. The phylogenetic relationships of Pseudohendersonia galiorum can also not be clarified solely based on the LSU sequence provided in Wijayawardene et al. (2016). From the morphological aspect, E. festucae and P. galiorum both produce large brown conidia (30–37 × 9–12 μm, and 9–15 × 3.5–5.5 μm), with 3–4 transverse septa (Wijayawardene et al. 2016), obviously atypical for Didymellaceae. Due to the lack of sequences and the morphological divergence, their taxonomic placement remains unresolved, and these genera can thus not be accepted in Didymellaceae.

Our study, together with that of Aveskamp et al. (2010) and Chen et al. (2015a), have set the foundation for the systematics and taxonomy of Didymellaceae. Most of the genera included in this family have been well circumscribed, and useful molecular loci have been identified for species delimitation. The present study adds further indication that a large number of unknown Didymellaceae species exist in nature, especially from previously ignored ecosystems.

Acknowledgements

This study was financially supported by the Project for Fundamental Research on Science and Technology, MOST (2014FY120100) and NSFC 31600023. Jiang-Rui Jiang, Zhi-Feng Zhang, Nan Zhou and Fang Liu are thanked for help with sample collection, as well as providing cultures. Roger G. Shivas and Bevan S. Weir are acknowledged for providing fungal cultures. Da-Chuan Bao and Bing Liu are thanked for helping in identifying the various host plants. Xiao-Ling Zhang is thanked for helping with the statistical analysis. Ling-Wei Hou acknowledges CAS GJHZ1310 for supporting her visit to the Westerdijk Fungal Biodiversity Institute.

Footnotes

Peer review under responsibility of Westerdijk Fungal Biodiversity Institute.

Appendix ASupplementary data related to this article can be found at http://dx.doi.org/10.1016/j.simyco.2017.06.002.

Appendix A. Supplementary data

The following is the supplementary data related to this article:

Supplementary Fig. S1. Phylogenetic tree inferred from a Maximum likelihood analysis based on a concatenated alignment of LSU and ITS sequences of 363 strains. New taxa and new combinations introduced in this study are formatted in bold, of which the ex-type strains are marked by an asterisk (*). The tree was rooted to Leptosphaeria conoidea (CBS 616.75) and L. doliolum (CBS 505.75).

Supplementary Fig. S2. Phylogenetic tree inferred from a Maximum likelihood analysis based on LSU sequences of 365 strains. New taxa and new combinations introduced in this study are formatted in bold, of which the ex-type strains are marked by an asterisk (*). The tree was rooted to Leptosphaeria conoidea (CBS 616.75) and L. doliolum (CBS 505.75).

References

  • Abeln E.C.A., Stax A.M., de Gruyter J. Genetic differentiation of Phoma exigua varieties by means of AFLP fingerprints. Mycological Research. 2002;106:419–427. [Google Scholar]
  • Ariyawansa H.A., Hyde K.D., Jayasiri S.C. Fungal diversity notes 111–252–taxonomic and phylogenetic contributions to fungal taxa. Fungal Diversity. 2015;75:27–274. [Google Scholar]
  • Aveskamp M.M., de Gruyter J., Crous P.W. Biology and recent developments in the systematics of Phoma, a complex genus of major quarantine significance. Fungal Diversity. 2008;31:1–18. [Google Scholar]
  • Aveskamp M.M., de Gruyter J., Woudenberg J.H.C. Highlights of the Didymellaceae: A polyphasic approach to characterise Phoma and related pleosporalean genera. Studies in Mycology. 2010;65:1–60. [Europe PMC free article] [Abstract] [Google Scholar]
  • Aveskamp M.M., Verkley G.J.M., de Gruyter J. DNA phylogeny reveals polyphyly of Phoma section Peyronellaea and multiple taxonomic novelties. Mycologia. 2009;101:363–382. [Abstract] [Google Scholar]
  • Aveskamp M.M., Woudenberg J.H.C., de Gruyter J. Development of taxon-specific sequence characterized amplified region (SCAR) markers based on actin sequences and DNA amplification fingerprinting (DAF): a case study in the Phoma exigua species complex. Molecular Plant Pathology. 2009;10:403–414. [Abstract] [Google Scholar]
  • Berner D., Cavin C., Woudenberg J.H.C. Assessment of Boeremia exigua var. rhapontica, as a biological control agent of Russian knapweed (Rhaponticum repens) Biological Control. 2015;81:65–75. [Google Scholar]
  • Boerema G.H. Contributions towards a monograph of Phoma (Coelomycetes) – II. Section Peyronellaea. Persoonia. 1993;15:197–221. [Google Scholar]
  • Boerema G.H., de Gruyer J., Noordeloos M.E. CABI Publishing; Wallingford, UK.: 2004. Phoma identification manual. Differentiation of specific and infra-specific taxa in culture. [Google Scholar]
  • Bremer B., Bremer K., Chase M. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG III. Botanical Journal of the Linnean Society. 2009;161:105–121. [Google Scholar]
  • Cai L., Hyde K.D., Taylor P.W.J. A polyphasic approach for studying Colletotrichum. Fungal Diversity. 2009;39:183–204. [Google Scholar]
  • Chen Q., Jiang J.R., Zhang G.Z. Resolving the Phoma enigma. Studies in Mycology. 2015;82:137–217. [Europe PMC free article] [Abstract] [Google Scholar]
  • Chen Q., Zhang K., Zhang G.Z. A polyphasic approach to characterise two novel species of Phoma (Didymellaceae) from China. Phytotaxa. 2015;197:267–281. [Google Scholar]
  • Choi Y.W., Hyde K.D., Ho W.H. Single spore isolation of fungi. Fungal Diversity. 1999;3:29–38. [Google Scholar]
  • Crous P.W., Gams W., Stalpers J.A. MycoBank: an online initiative to launch mycology into the 21st century. Studies in Mycology. 2004;50:19–22. [Google Scholar]
  • Crous P.W., Groenewald J.Z. They seldom occur alone. Fungal Biology. 2016;120:1392–1415. [Abstract] [Google Scholar]
  • Crous P.W., Palm M.E. Systematics of selected foliicolous fungi associated with leaf spots of Proteaceae. Mycological Research. 1999;103:1299–1304. [Google Scholar]
  • Crous P.W., Verkley G.J.M., Groenewald J.Z. Vol. 1. Westerdijk Fungal Biodiversity Institute; Utrecht, Netherlands: 2009. Fungal biodiversity. (CBS Laboratory Manual Series). [Google Scholar]
  • Cubero O.F., Crespo A., Fatehi J. DNA extraction and PCR amplification method suitable for fresh, herbarium stored, lichenized, and other fungi. Plant Systematics and Evolution. 1999;216:243–249. [Google Scholar]
  • De Gruyter J., Aveskamp M.M., Woudenberg J.H.C. Molecular phylogeny of Phoma and allied anamorph genera: Towards a reclassification of the Phoma complex. Mycological Research. 2009;113:508–519. [Abstract] [Google Scholar]
  • De Gruyter J., Boerema G.H., van der Aa H.A. Contributions towards a monograph of Phoma (Coelomycetes) VI – 2. Section Phyllostictoides: Outline of its taxa. Persoonia. 2002;18:1–53. [Google Scholar]
  • De Gruyter J., Noordeloos M.E. Contributions towards a monograph of Phoma (Coelomycetes) – I. 1. Section Phoma: taxa with very small conidia in vitro. Persoonia. 1992;15:71–92. [Google Scholar]
  • De Gruyter J., Noordeloos M.E., Boerema G.H. Contributions towards a monograph of Phoma (Coelomycetes) – I. 2. Section Phoma: additional taxa with very small conidia and taxa with conidia up to 7 μm long. Persoonia. 1993;15:369–400. [Google Scholar]
  • De Gruyter J., Noordeloos M.E., Boerema G.H. Contributions towards a monograph of Phoma (Coelomycetes) – I. 3. Section Phoma: taxa with conidia longer than 7 μm. Persoonia. 1998;16:471–490. [Google Scholar]
  • De Hoog G.S., Gerrits van den Ende A.H.G. Molecular diagnostics of clinical strains of filamentous Basidiomycetes. Mycoses. 1998;41:183–189. [Abstract] [Google Scholar]
  • Dearness J. New or noteworthy species of fungi. Mycologia. 1916;8:98–107. [Google Scholar]
  • Fávaro L.C.dL, de Melo F.L., Aguilar-Vildoso C.I. Polyphasic analysis of intraspecific diversity in Epicoccum nigrum warrants reclassification into separate species. PLoS One. 2011;6:e14828. [Europe PMC free article] [Abstract] [Google Scholar]
  • Gomes R.R., Glienke C., Videira S.I.R. Diaporthe: a genus of endophytic, saprobic and plant pathogenic fungi. Persoonia. 2013;31:1–41. [Europe PMC free article] [Abstract] [Google Scholar]
  • Jiang J.R., Chen Q., Cai L. Polyphasic characterisation of three novel species of Paraboeremia. Mycological Progress. 2017;16:285–295. [Google Scholar]
  • Katoh K., Standley D.M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Molecular Biology and Evolution. 2013;30:772–780. [Europe PMC free article] [Abstract] [Google Scholar]
  • Liu Y.J., Whelen S., Hall B.D. Phylogenetic relationships among ascomycetes evidence from an RNA polymerase II subunit. Molecular Biology and Evolution. 1999;16:1799–1808. [Abstract] [Google Scholar]
  • Lombard L., Houbraken J., Decock C. Generic hyper-diversity in Stachybotriaceae. Persoonia. 2016;36:156–246. [Europe PMC free article] [Abstract] [Google Scholar]
  • Müller E. Kulturversuche mit Ascomyceten I. Sydowia. 1953;7:325–334. [Google Scholar]
  • Nylander J.A.A. Evolutionary Biology Centre, Uppsala University; 2004. MrModeltest v2. Program distributed by the author. [Google Scholar]
  • Petrak F. Mykologische Notizen. IV. Annales Mycologici. 1922;20:300–345. [Google Scholar]
  • Punithalingam E. Graminicolous Ascochyta species. Mycological Papers. 1979;142:1–214. [Google Scholar]
  • Punithalingam E., Tulloch M., Leach C.M. Phoma epicoccina sp. nov. on Dactylis glomerata. Transactions of the British Mycological Society. 1972;59:341–345. [Google Scholar]
  • Rayner R.W. Commonwealth Mycological Institute and British Mycological Society; Kew, Surrey, UK: 1970. A mycological colour chart. [Google Scholar]
  • Rehner S.A., Samuels G.J. Taxonomy and phylogeny of Gliocladium analysed from nuclear large subunit ribosomal DNA sequences. Mycological Research. 1994;98:625–634. [Google Scholar]
  • Ronquist F., Teslenko M., van der Mark P. MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology. 2012;61:539–542. [Europe PMC free article] [Abstract] [Google Scholar]
  • Saccardo P.A. Vol. 16. 1902. pp. 1–1291. (Sylloge Fungorum omnium hucusque cognitorum: Supplementum Universale, Pars V). Padova, Italy. [Google Scholar]
  • Saccardo P.A., Trotter A. Vol. 22. 1913. pp. 1–1612. (Sylloge Fungorum omnium hucusque cognitorum: Supplementum Universale, Pars IX). Padova, Italy. [Google Scholar]
  • Smith H., Wingfield M.J., Coutinho T.A. Sphaeropsis sapinea and Botryosphaeria dothidea endophytic in Pinus spp. and Eucalyptus spp. in South Africa. South African Journal of Botany. 1996;62:86–88. [Google Scholar]
  • Stamatakis A., Alachiotis N. Time and memory efficient likelihood-based tree searched on phylogenomic alignments with missing data. Bioinformatics. 2010;26:i132–i139. [Europe PMC free article] [Abstract] [Google Scholar]
  • Sung G.-H., Sung J.-M., Hywel-Jones N.L. A multi-gene phylogeny of Clavicipitaceae (Ascomycota, Fungi): identification of localized incongruence using a combinational bootstrap approach. Molecular Phylogenetics and Evolution. 2007;44:1204–1223. [Abstract] [Google Scholar]
  • Tamura K., Stecher G., Peterson D. MEGA6: molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolutionary. 2013;30:2725–2729. [Europe PMC free article] [Abstract] [Google Scholar]
  • Thambugala K.M., Daranagama D.A., Phillips A.J.L. Microfungi on Tamarix. Fungal Diversity. 2017;82:239–306. [Google Scholar]
  • Van der Aa H.A., Boerema G.H., de Gruyer J. Contributions towards a monograph of Phoma (Coelomycetes) – VI-1. Section Phyllostictoides: characteristics and nomenclature of its type species Phoma exigua. Persoonia. 2000;17:435–456. [Google Scholar]
  • Vilgalys R., Hester M. Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. Journal of Bacteriology. 1990;172:4238–4246. [Europe PMC free article] [Abstract] [Google Scholar]
  • Wainwright M., Al-Talhi A. Selective isolation and oligotrophic growth of Candida on nutrient-free silica gel medium. Journal of Medical Microbiology. 1999;48 1130–1130. [Abstract] [Google Scholar]
  • White T.J., Bruns T., Lee S. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis M.A., Gelfand D.H., Sninsky J.J., White T.J., editors. PCR Protocols: a guide to methods and applications. Academic Press; San Diego, California, USA: 1990. pp. 315–322. [Google Scholar]
  • Wijayawardene N.N., Hyde K.D., Wanasinghe D.N. Taxonomy and phylogeny of dematiaceous coelomycetes. Fungal Diversity. 2016;77:1–316. [Google Scholar]
  • Woudenberg J.H.C., Aveskamp M.M., de Gruyter J. Multiple Didymella teleomorphs are linked to the Phoma clematidina morphotype. Persoonia. 2009;22:56–62. [Europe PMC free article] [Abstract] [Google Scholar]
  • Zhang K., Su Y.Y., Cai L. An optimized protocol of single spore isolation for fungi. Cryptogamie, Mycologie. 2013;34:349–356. [Google Scholar]
  • Zhang Z.F., Liu F., Zhou X. Culturable mycobiota from Karst caves in China, with descriptions of 20 new species. Persoonia. 2017;39:1–31. [Europe PMC free article] [Abstract] [Google Scholar]

Articles from Studies in Mycology are provided here courtesy of Westerdijk Fungal Biodiversity Institute

Citations & impact 


Impact metrics

Jump to Citations
Jump to Data

Citations of article over time

Alternative metrics

Altmetric item for https://www.altmetric.com/details/86360386
Altmetric
Discover the attention surrounding your research
https://www.altmetric.com/details/86360386

Article citations


Go to all (67) article citations

Data 


Data behind the article

This data has been text mined from the article, or deposited into data resources.

Similar Articles 


To arrive at the top five similar articles we use a word-weighted algorithm to compare words from the Title and Abstract of each citation.


Funding 


Funders who supported this work.

Fundamental Research on Science and Technology

    MOST (1)

    NSFC (1)