Europe PMC

This website requires cookies, and the limited processing of your personal data in order to function. By using the site you are agreeing to this as outlined in our privacy notice and cookie policy.

Abstract 


Neostagonosporellasichuanensis sp. nov. was found on Phyllostachysheteroclada collected from Sichuan Province in China and is introduced in a new genus Neostagonosporella gen. nov. in this paper. Evidence for the placement of the new taxon in the family Phaeosphaeriaceae is supported by morphology and phylogenetic analysis of a combined LSU, SSU, ITS and TEF 1-α DNA sequence dataset. Maximum-likelihood, maximum-parsimony and Bayesian inference phylogenetic analyses support Neostagonosporella as a distinct genus within this family. The new genus is compared with related genera of Phaeosphaeriaceae and full descriptions and illustrations are provided. Neostagonosporella is characterised by its unique suite of characters, such as multiloculate ascostromata and cylindrical to fusiform, transversely multiseptate, straight or curved ascospores, which are widest at the central cells. Conidiostromata are multiloculate, fusiform to long fusiform or rhomboid, with two types conidia; macroconidia vermiform or subcylindrical to cylindrical, transversely multiseptate, sometimes curved, almost equidistant between septa and microconidia oval, ellipsoidal or long ellipsoidal, aseptate, rounded at both ends. An updated phylogeny of the Phaeosphaeriaceae based on multigene analysis is provided.

Free full text 


Logo of mycokeysMycoKeys
MycoKeys. 2019; (46): 119–150.
Published online 2019 Feb 18. https://doi.org/10.3897/mycokeys.46.32458
PMCID: PMC6389646
PMID: 30814907

Neostagonosporellasichuanensis gen. et sp. nov. (Phaeosphaeriaceae, Pleosporales) on Phyllostachysheteroclada (Poaceae) from Sichuan Province, China

Associated Data

Supplementary Materials

Abstract

Neostagonosporellasichuanensis sp. nov. was found on Phyllostachysheteroclada collected from Sichuan Province in China and is introduced in a new genus Neostagonosporella gen. nov. in this paper. Evidence for the placement of the new taxon in the family Phaeosphaeriaceae is supported by morphology and phylogenetic analysis of a combined LSU, SSU, ITS and TEF 1-α DNA sequence dataset. Maximum-likelihood, maximum-parsimony and Bayesian inference phylogenetic analyses support Neostagonosporella as a distinct genus within this family. The new genus is compared with related genera of Phaeosphaeriaceae and full descriptions and illustrations are provided. Neostagonosporella is characterised by its unique suite of characters, such as multiloculate ascostromata and cylindrical to fusiform, transversely multiseptate, straight or curved ascospores, which are widest at the central cells. Conidiostromata are multiloculate, fusiform to long fusiform or rhomboid, with two types conidia; macroconidia vermiform or subcylindrical to cylindrical, transversely multiseptate, sometimes curved, almost equidistant between septa and microconidia oval, ellipsoidal or long ellipsoidal, aseptate, rounded at both ends. An updated phylogeny of the Phaeosphaeriaceae based on multigene analysis is provided.

Keywords: 2 new taxa, bambusicolous fungi, phylogeny, stem spot, taxonomy

Introduction

The family Phaeosphaeriaceae is a large and important family of Pleosporales, initially introduced by Barr (1979) with Phaeosphaeriaoryzae I. Miyake as the type species (Miyake 1909). The taxonomy of members within this family has often been confused with those of the Leptosphaeriaceae (Müller 1950, Holm et al. 1957, Munk 1957, Zhang et al. 2009, Phookamsak et al. 2014) and it is sometimes difficult to distinguish species. Criteria which have previously been used to differentiate species have been based mostly on the morphology of the peridial wall, asexual characteristics and host association (Eriksson 1967, 1981, Lucas and Webster 1967, Leuchtmann 1984, Shoemaker 1984, Barr 1987, Shoemaker and Babcock 1989, Shearer et al. 1990, Khashnobish and Shearer 1996, Câmara et al. 2002) and taxonomic schemes followed are those of Kirk et al. (2008), Zhang et al. (2009), Hyde et al. (2013), Phookamsak et al. (2014a) and Abd-Elsalam et al. (2016). However, this delimitation of taxa in Phaeosphaeriaceae and Leptosphaeriaceae, based solely on the above-mentioned features, is not feasible. Recent studies showed that it is very difficult to discriminate them only by such characters, because numerous new members have been introduced to these two families and these species are not significantly different in these features, but they can be differentiated by phylogenetic analysis (Zhang et al. 2012, Hyde et al. 2013, Ahmed et al. 2014, Ariyawansa et al. 2015a, 2018, Bakhshi et al. 2018). Hence there is a need to use the multigene sequence data analyses to infer relationships.

Barr (1979) originally introduced 15 genera in this family and subsequent researchers have revised this number (Barr 1992, Eriksson and Hawksworth 1993, Kirk et al. 2001, 2008, Lumbsch and Huhndorf 2007, 2010). The taxonomic placement of genera within this family has been changed in recent years based on phylogenetic analyses (Zhang et al. 2012, Hyde et al. 2013, Wijayawardene et al. 2014, Phookamsak et al. 2014a, 2017, Wanasinghe et al. 2018). Taxonomic revision of the genera in Phaeosphaeriaceae resulted in 28 genera based on morphology and phylogenetic evidence (Phookamsak et al. 2014a). Since 2014, many new genera have been introduced based on molecular data (Ariyawansa et al. 2015b, Ertz et al. 2015, Crous et al. 2015a, 2015b, 2017a, Jayasiri et al. 2015, Li et al. 2015, Phukhamsakda et al. 2015, Rossman et al. 2015, Tibpromma et al. 2015, 2017, Abd-Elsalam et al. 2016, Hernández-Restrepo et al. 2016, Hyde et al. 2016, 2017, Tennakoon et al. 2016, Wijayawardene et al. 2016, Ahmed et al. 2017, Huang et al. 2017, Karunarathna et al. 2017, Phookamsak et al. 2017, Bakhshi et al. 2018, Senanayake et al. 2018, Wanasinghe et al. 2018). The placement of some older genera has been reconfirmed with DNA sequence (Phookamsak et al. 2017, Senanayake et al. 2018). However, there are still a few genera lacking molecular data, such as Bricookea, Dothideopsella, Eudarluca, Phaeostagonospora and Tiarospora. At present, this family includes more than 800 species in 61 genera (25 genera are known only from asexual morphs) (Index Fungorum 2018, Wijayawardene et al. 2017, 2018). Many genera were introduced to accommodate a single or a few species in Phaeosphaeriaceae. Only 14 genera in the Phaeosphaeriaceaecontained 10–50 species, while Ophiobolus and Phaeosphaeria comprised more than 150 species. However, most species in Ophiobolus and Phaeosphaeria lack molecular data to confirm their phylogenetic affinities.

We are studying fungi on bamboo which is the main food for panda in Sichuan Province of China (Tang et al. 2007, Wang et al. 2017). The purpose of this paper is to introduce a new genus with one species in Phaeosphaeriaceae recovered from Phyllostachysheteroclada Oliv. Combined multigene (LSU, SSU, ITS and TEF 1-α) analyses confirm its phylogenetic position in Phaeosphaeriaceae. A comprehensive comparison with similar genera and detailed descriptions and illustrations are provided.

Materials and methods

Sampling and morphological study

The specimens were collected from Ya’an City of Sichuan Province in China, on living to near dead stems and branches of Phyllostachysheteroclada. The samples were kept in Ziplock plastic bags and brought to the laboratory. Fresh materials were examined by using stereo and compound microscopes. Vertical free-hand sections were made by using a razor blade and placed on a droplet of sterilised water on a glass slide (Gupta and Tuohy 2013). Lactate cotton blue reagent was used to observe the number of septa. Micro-morphological characters were examined by using a Nikon ECLIPSE Ni compound microscope fitted to a Cannon 600D digital camera. Fruiting tissues were observed by stereomicroscopy using NVT-GG (Shanghai Advanced Photoelectric Technology Co. Ltd, China) and photographed by VS-800C (Shenzhen Weishen Times Technology Co. Ltd, China). Measurements were taken using Tarosoft® Image Frame Work v.0.9.7.

Isolation

Single ascospore and conidium isolation was carried out following the method described by Dai et al. (2017). Germinated ascospores and conidia were separately transferred to Potato Dextrose Agar media plates (PDA) and incubated at 25°C and the colonies were observed after 10 days and as outlined by Vijaykrishna et al. (2004) and Liu et al. (2010). Specimens are deposited in Mae Fah Luang University Herbarium (MFLU), Chiang Rai, Thailand and Sichuan Agricultural University Herbarium (SICAU), Chengdu, China. Living cultures are deposited at the Culture Collection at Mae Fah Luang University (MFLUCC) and the Culture Collection at Sichuan Agricultural University (SICAUCC). Facesoffungi and Index Fungorum numbers were registered as in Jayasiri et al. (2015) and Index Fungorum (2018), respectively. New species are established following the recommendations of Jeewon and Hyde (2016).

DNA extraction, PCR amplification and sequencing

Fungal isolates were grown on PDA for seven days at 25°C and genomic DNA was extracted from fresh mycelia, following the protocols of Plant Genomic DNA Kit (Tiangen, China). If cultures were unavailable, fungal DNA was directly extracted from fruiting tissues according to Yang et al. (2017), Wanasinghe et al. (2018) and Zeng et al. (2018). The primers, LR0R and LR5 (Vilgalys and Hester 1990), NS1 and NS4, ITS5 and ITS4 (White et al. 1990) and EF1-983F and EF1-2218R (Rehner 2001) were used for the amplification of the 28S large subunit rDNA (LSU), 18S small subunit rDNA (SSU), internal transcribed spacers (5.8S, ITS) and translation elongation factor 1-α gene region (TEF 1-α), respectively. The amplification reactions were performed as stated by Phukhamsakda et al. (2015). Amplified PCR fragments were purified and sequenced at TsingKe Biological Technology Co., Ltd. (Chengdu, China). Newly generated sequences of LSU, SSU, ITS and TEF 1-α regions are deposited in GenBank.

Molecular phylogenetic analysis

Sequence data, mainly from recent publications (Phookamsak et al. 2017, Wanasinghe et al. 2018), were downloaded for analyses (Table (Table1).1). Four Massarineae taxa Cyclothyriellarubronotata (CBS 121892), C.rubronotata (CBS 141486), Didymosphaeriarubi-ulmifolii (MFLUCC 14-0024) and D.variabile (CBS 120014) were chosen as outgroup taxa based on Tanaka et al. (2015) and Jaklitsch and Voglmayr (2016). DNA alignments were performed by using MAFFT v.7.407 online service (Katoh and Standley 2013) and ambiguous regions were excluded with BioEdit version 7.0.5.3 (Hall 1999). Multigene sequences were concatenated by Mesquite version 3.11 (build 766) (Maddison and Maddison 1997–2016). Multigene phylogenetic analyses of the combined LSU, SSU, ITS and TEF 1-α sequence data were obtained from maximum likelihood (ML), maximum parsimony (MP) and Bayesian inference (BI) analyses. The alignments were converted to NEXUS file (.nxs) by using ClustalX version 1.81 (Thompson et al. 1997) for MP and BI analyses. The symbols “ABCDEFGHIKLMNOPQRSTUVWXYZ” was deleted in PAUP v. 4.0b10 (Swofford 2002) for preparing data matrix of evaluated evolutionary model by MrModeltest v. 2.2 (Nylander 2004). The best nucleotide substitution model was determined by MrModeltest v. 2.2 (Nylander 2004) and the best-fit model for BI is GTR+I+G under the Akaike Information Criterion (AIC).

Table 1.

Molecular data used in this study and GenBank accession numbers.

SpeciesStrain/Voucher No.GenBank Accession No.Refferences
LSUSSUITSTEF 1-α
Acericola italica MFLUCC 13-0609 MF167429 MF167430 MF167428 - Hyde et al. 2017
Allophaeosphaeria muriformia MFLUCC 13-0277 KX910089 KX950400 KX926415 - Liu et al. 2015
Allophaeosphaeria muriformia MFLUCC 13-0349 KP765681 KP765682 KP765680 - Liu et al. 2015
Amarenographium ammophilae MFLUCC 16-0296 KU848197 KU848198 KU848196 MG520894 Wijayawardene et al. 2016, Phookamsak et al. 2017
Amarenomyces dactylidis MFLUCC 14-0207 KY775575 - KY775577 - Hyde et al. 2017
Ampelomyces quisqualis CBS 131.31 JX681066 - AF035781 -Kiss and Nakasone 1998, Verkley et al. 2014
Ampelomyces quisqualis CBS 133.32 JX681067 --- Verkley et al. 2014
Banksiophoma australiensis CBS 142163 KY979794 - KY979739 - Crous et al. 2017
Bhatiellae rosae MFLUCC 17-0664 MG828989 MG829101 MG828873 - Wanasinghe et al. 2018
Boeremia exigua CBS 431.74 EU754183 EU754084 FJ427001 GU349080 Aveskamp et al. 2009, de Gruyter et al. 2009, Schoch et al. 2009
Camarosporioides phragmitis MFLUCC 13-0365 KX572345 KX572350 KX572340 KX572354 Hyde et al. 2016
Chaetosphaeronema achilleae MFLUCC 16-0476 KX765266 - KX765265 - Hyde et al. 2016
Chaetosphaeronema hispidulum CBS 216.75 KF251652 EU754045 KF251148 -de Gruyter et al. 2009, Quaedvlieg et al. 2013
Cyclothyriella rubronotata CBS 121892 KX650541 - KX650541 KX650516 Jaklitsch and Voglmayr 2016
Cyclothyriella rubronotata CBS 141486 KX650544 KX650507 KX650544 KX650519 Jaklitsch and Voglmayr 2016
Dactylidina shoemakeri MFLUCC 14-0963 MG829003 MG829114 MG828887 MG829200 Wanasinghe et al. 2018
Dematiopleospora cirsii MFLUCC 13-0615 KX274250 - KX274243 KX284708 Hyde et al. 2016
Dematiopleospora fusiformis MFLU 15-2133 KY239030 KY239028 KY239029 -Huang et al. 2018
Dematiopleospora mariae MFLUCC 13-0612 KJ749653 KJ749652 KJ749654 KJ749655 Wanasinghe et al. 2014
Didymocyrtis caloplacae CBS 129338 JQ238643 - JQ238641 - Lawrey et al. 2012
Didymocyrtis ficuzzae CBS 128019 JQ238616 - KP170647 -Lawrey et al. 2012, Trakunyingcharoen et al. 2014
Didymocyrtis xanthomendozae CBS 129666 JQ238634 - KP170651 -Lawrey et al. 2012, Trakunyingcharoen et al. 2014
Didymosphaeria rubi-ulmifolii MFLUCC 14-0024 KJ436585 KJ436587 -- Ariyawansa et al. 2014
Didymosphaeria variabile CBS 120014 JX496139 - JX496026 - Verkley et al. 2014
Dlhawksworthia alliariae MFLUCC 13-0070 KX494877 KX494878 KX494876 - Hyde et al. 2016
Dlhawksworthia clematidicola MFLUCC 14-0910 MG829011 MG829120 MG828901 MG829202 Wanasinghe et al. 2018
Dlhawksworthia lonicera MFLUCC 14-0955 MG829012 MG829121 MG828902 MG829203 Wanasinghe et al. 2018
Dothidotthia aspera CPC 12933 EU673276 EU673228 -- Phillips et al. 2008
Dothidotthia symphoricarpi CPC 12929 EU673273 EU673224 -- Phillips et al. 2008
Edenia gomezpompae AM04 KM246015 - KM246160 - González et al. 2007
Edenia gomezpompae CBS 124106 FJ839654 - FJ839619 - Crous et al. 2009
Edenia sp.UTHSC: DI16-264 LN907407 - LT796858 LT797098 Valenzuela-Lopez et al. 2017
Edenia sp.UTHSC: DI16-260 LN907403 - LT796855 LT797095 Valenzuela-Lopez et al. 2017
Embarria clematidis MFLUCC 14-0652 KT306953 KT306956 KT306949 - Ariyawansa et al. 2015a
Embarria clematidis MFLUCC 14-0976 MG828987 MG829099 MG828871 MG829194 Wanasinghe et al. 2018
Equiseticola fusispora MFLUCC 14-0522 KU987669 KU987670 KU987668 MG520895 Abd-Elsalam et al. 2016, Phookamsak et al. 2017
Foliophoma fallens CBS 161.78 GU238074 GU238215 KY929147 -Aveskamp et al. 2010, Crous and Groenewald 2017
Foliophoma fallens CBS 284.70 GU238078 GU238218 KY929148 -Aveskamp et al. 2010, Crous and Groenewald 2017
Galiicola pseudophaeosphaeria MFLU 14-0524 KT326693 - KT326692 MG520896 Phookamsak et al. 2017
Italica achilleae MFLUCC 14-0959 MG829013 MG829122 MG828903 MG829204 Wanasinghe et al. 2018
Juncaceicola italica MFLUCC 13-0750 KX500107 KX500108 KX500110 MG520897 Phookamsak et al. 2017
Juncaceicola luzulae MFLUCC 13-0780 KX449530 KX449531 KX449529 MG520898 Tennakoon et al. 2016, Phookamsak et al. 2017
Leptospora galii KUMCC 15-0521 KX599548 KX599549 KX599547 MG520899 Phookamsak et al. 2017
Leptospora rubella CPC 11006 DQ195792 DQ195803 DQ195780 - Crous et al. 2006
Leptospora thailandica MFLUCC 16-0385 KX655549 KX655554 KX655559 KX655564 Hyde et al. 2016
Loratospora aestuarii JK 5535B GU301838 GU296168 -- Schoch et al. 2009
Melnikia anthoxanthii MFLUCC 14-1010 KU848204 KU848205 -- Wijayawardene et al. 2016
"Muriphaeosphaeria" ambrosiae MFLU 15-1971 KX765264 - KX765267 - Hyde et al. 2016
Muriphaeosphaeria galatellae MFLUCC 14-0614 KT438329 KT438331 KT438333 - Phukhamsakda et al. 2015
Muriphaeosphaeria galatellae MFLUCC 15-0769 KT438330 KT438332 -- Phukhamsakda et al. 2015
Neocamarosporium lamiacearum MFLUCC 17-560 MF434279 MF434367 MF434191 MF434454 Wanasinghe et al. 2017
Neosetophoma clematidis MFLUCC 13-0734 KP684153 KP684154 KP744450 - Liu et al. 2015
Neosetophoma rosae MFLUCC 17-0844 MG829035 MG829141 MG828926 MG829219 Wanasinghe et al. 2018
Neosetophoma rosae MFLU 15-1073 MG829034 MG829140 MG828925 MG829218 Wanasinghe et al. 2018
Neosphaerellopsis thailandica CPC 21659 KP170721 - KP170652 - Trakunyingcharoen et al. 2014
Neostagonospora arrhenatheri MFLUCC 15-0464 KX910091 KX950402 KX926417 MG520901 Phookamsak et al. 2017, Thambugala et al. 2017
Neostagonospora caricis CBS 135092 KF251667 - KF251163 - Quaedvlieg et al. 2013
Neostagonospora phragmitis MFLUCC 16-0493 KX910090 KX950401 KX926416 MG520902 Phookamsak et al. 2017, Thambugala et al. 2017
Neostagonosporella sichuanensis MFLUCC 18-1228 MH368073 MH368079 MH368088 MK313851 This study
Neostagonosporella sichuanensis MFLUCC 18-1231 MH368074 MH368080 MH368089 -This study
Neostagonosporella sichuanensis MFLU 18-1223 MH394690 MH394687 MK296469 MK313854 This study
Neosulcatispora agaves CPC 26407 KT950867 - KT950853 - Crous et al. 2015b
Nodulosphaeria guttulatum MFLUCC 15-0069 KY496726 KY501115 KY496746 KY514394 Tibpromma et al. 2017
Nodulosphaeria multiseptata MFLUCC 15-0078 KY496728 KY501116 KY496748 KY514396 Tibpromma et al. 2017
Nodulosphaeria scabiosae MFLUCC 14-1111 KU708846 KU708842 KU708850 KU708854 Mapook et al. 2016
Ophiobolopsis italica MFLUCC 17-1791 MG520959 MG520977 MG520939 MG520903 Phookamsak et al. 2017
Ophiobolus artemisiae MFLUCC 14-1156 KT315509 MG520979 KT315508 MG520905 Phookamsak et al. 2017
Ophiobolus artemisiae MFLU 15-1966 MG520960 MG520978 MG520940 MG520904 Phookamsak et al. 2017
Ophiobolus disseminans MFLUCC 17-1787 MG520961 MG520980 MG520941 MG520906 Phookamsak et al. 2017
Ophiobolus italicus MFLUCC 14-0526 KY496727 - KY496747 KY514395 Tibpromma et al. 2017
Ophiobolus rossicus MFLU 17-1639 MG520964 MG520983 MG520944 MG520909 Phookamsak et al. 2017
Ophiobolus rudis CBS 650.86 GU301812 AF164356 KY090650 GU349012 Liew et al. 2000, Schoch et al. 2009, Ahmed et al. 2016
Ophiobolus senecionis MFLUCC 13-0575 KT728366 - KT728365 - Tibpromma et al. 2015
Ophiosimulans tanaceti MFLUCC 14-0525 KU738891 KU738892 KU738890 MG520910 Tibpromma et al. 2016b, Phookamsak et al. 2017
Ophiosphaerella agrostidis MFLUCC 11-0152 KM434281 KM434290 KM434271 KM434299 Phookamsak et al. 2014a
Ophiosphaerella agrostidis MFLUCC 12-0007 KM434282 KM434291 KM434272 KM434300 Phookamsak et al. 2014a
Ophiosphaerella aquatica MFLUCC 14-0033 KX767089 KX767090 KX767088 MG520911 Ariyawansa et al. 2015a, Phookamsak et al. 2017
Paraleptosphaeria rubi MFLUCC 14-0211 KT454718 KT454733 KT454726 - Ariyawansa et al. 2015b
Paraophiobolus arundinis MFLUCC 17-1789 MG520965 MG520984 MG520945 MG520912 Phookamsak et al. 2017
Paraophiobolus plantaginis MFLUCC 17-0245 KY815010 KY815012 KY797641 MG520913 Hyde et al. 2017, Phookamsak et al. 2017
Paraphoma chrysanthemicola CBS 522.66 GQ387582 GQ387521 KF251166 -de Gruyter et al. 2010, Quaedvlieg et al. 2013
Paraphoma radicina CBS 111.79 KF251676 EU754092 KF251172 -de Gruyter et al. 2009, Quaedvlieg et al. 2013
Parastagonospora dactylidis MFLUCC 13-0375 KU058722 - KU058712 - Li et al. 2015
Parastagonospora italica MFLUCC 13-0377 KU058724 MG520985 KU058714 MG520915 Li et al. 2015, Phookamsak et al. 2017
Parastagonospora minima MFLUCC 13-0376 KU058723 MG520986 KU058713 MG520916 Li et al. 2015, Phookamsak et al. 2017
Parastagonospora uniseptata MFLUCC 13-0387 KU058725 MG520987 KU058715 MG520917 Li et al. 2015, Phookamsak et al. 2017
Parastagonosporella fallopiae CBS 135981 MH460545 - MH460543 - Bakhshi et al. 2018
Parastagonosporella fallopiae CCTU 1151.1 MH460546 - MH460544 - Bakhshi et al. 2018
Phaeopoacea festucae MFLUCC 17-0056 KY824767 KY824769 KY824766 - Thambugala et al. 2017
Phaeopoacea phragmiticola CBS 459.84 KF251691 KY090700 KF251188 -Quaedvlieg et al. 2013, Ahmed et al. 2016
Phaeosphaeria acaciae MFLUCC 17-0320 KY768868 KY768870 KY768869 - Hyde et al. 2017
Phaeosphaeria chiangraina MFLUCC 13-0231 KM434280 KM434289 KM434270 KM434298 Phookamsak et al. 2014a
Phaeosphaeria musae MFLUCC 11-0151 KM434278 KM434288 KM434268 KM434297 Phookamsak et al. 2014a
Phaeosphaeria oryzae CBS 110110 KF251689 GQ387530 KF251186 -de Gruyter et al. 2010, Quaedvlieg et al. 2013
Phaeosphaeria thysanolaenicola MFLUCC 10-0563 KM434276 KM434286 KM434266 KM434295 Phookamsak et al. 2014a
Phaeosphaeriopsis dracaenicola MFLUCC 11-0157 KM434283 KM434292 KM434273 KM434301 Phookamsak et al. 2014a
Phaeosphaeriopsis glaucopunctata MFLUCC 13-0265 KJ522477 KJ522481 KJ522473 MG520918 Thambugala et al. 2014, Phookamsak et al. 2017
Phaeosphaeriopsis triseptata MFLUCC 13-0271 KJ522479 KJ522484 KJ522475 MG520919 Thambugala et al. 2014, Phookamsak et al. 2017
Phoma herbarum AFTOL-ID 1575 DQ678066 DQ678014 - DQ677909 Schoch et al. 2006
Stemphylium vesicarium CBS 191.86 GU238160 GU238232 EF452449 DQ471090 Spatafora et al. 2006, Andrie et al. 2008, Aveskamp et al. 2010
Stemphylium botryosum CBS 714.68 KC584345 KC584603 EF452450 DQ677888 Schoch et al. 2006, Andrie et al. 2008, Woudenberg et al. 2013
Poaceicola arundinis MFLUCC 14-1060 KX655548 KX655553 KX655558 - Hyde et al. 2016
Poaceicola arundinis MFLU 16-0158 MG829057 MG829162 MG828947 MG829229 Wanasinghe et al. 2018
Poaceicola forlicesenica MFLUCC 15-0470 KX910095 KX950406 KX926422 MG520922 Phookamsak et al. 2017, Thambugala et al. 2017
Poaceicola garethjonesii MFLUCC 15-0469 KX954390 KY205717 KX926425 MG520923 Phookamsak et al. 2017, Thambugala et al. 2017
Populocrescentia ammophilae MFLUCC 17-0665 MG829059 MG829164 MG828949 MG829231 Wanasinghe et al. 2018
Populocrescentia forlicesenensis MFLUCC 14-0651 KT306952 KT306955 KT306948 MG520925 Ariyawansa et al. 2015a, Phookamsak et al. 2017
Populocrescentia rosae TASM 6125 MG829060 MG829165 - MG829232 Wanasinghe et al. 2018
Pseudoophiobolus achilleae MFLU 17-0925 MG520966 - MG520946 - Phookamsak et al. 2017
Pseudoophiobolus galii MFLUCC 17-2257 MG520967 MG520989 MG520947 MG520926 Phookamsak et al. 2017
Pseudoophiobolus urticicola KUMCC 17-0168 MG520975 MG520996 MG520955 MG520933 Phookamsak et al. 2017
Pseudophaeosphaeria rubi MFLUCC 14-0259 KX765299 KX765300 KX765298 - Hyde et al. 2016
Pyrenochaeta nobilis CBS 407.76 DQ678096 - EU930011 DQ677936 Ferrer et al. 2006, Schoch et al. 2006
Pyrenophora bromi DAOM 127414 JN940074 JN940954 JN943666 - Schoch et al. 2012
Pyrenophora dactylidis DAOM 92161 JN940087 - JN943667 - Schoch et al. 2012
Sclerostagonospora lathyri MFLUCC 14-0958 MG829066 MG829170 MG828955 MG829235 Wanasinghe et al. 2018
Sclerostagonospora sp.CBS 118152 JX517292 - JX517283 -Crous et al. 2012.
Scolicosporium minkeviciusii MFLUCC 12-0089 KF366382 KF366383 -- Wijayawardene et al. 2013
Septoriella phragmitis CPC 24118 KR873279 - KR873251 - Crous et al. 2015c
Setomelanomma holmii CBS 110217 GQ387633 GQ387572 KT389542 GU349028 Schoch et al. 2009, de Gruyter et al. 2010, Chen et al. 2015
Setophoma chromolaena CBS 135105 KF251747 - KF251244 - Quaedvlieg et al. 2013
Setophoma sacchari CBS 333.39 GQ387586 GQ387525 KF251245 - de Gruyter et al. 2010
Setophoma sacchari MFLUCC 12-0241 KJ476147 KJ476149 KJ476145 KJ461318 Phookamsak et al. 2014b
Setophoma sacchari MFLUCC 11-0154 KJ476146 KJ476148 KJ476144 KJ461319 Phookamsak et al. 2014b
Setophoma vernoniae CPC 23123 KJ869198 - KJ869141 - Crous et al. 2014
Staurosphaeria rhamnicola MFLUCC 17-0813 MF434288 MF434376 MF434200 MF434462 Wanasinghe et al. 2017
Staurosphaeria rhamnicola MFLUCC 17-0814 MF434289 MF434377 MF434201 MF434463 Wanasinghe et al. 2017
Sulcispora pleurospora CBS 460.84-- AF439498 - Câmara et al. 2002
Sulcispora supratumida MFLUCC 14-0995 KP271444 KP271445 KP271443 - Senanayake et al. 2018
Tintelnotia destructans CBS 127737 KY090664 KY090698 KY090652 -Ahmed et al. 2016
Tintelnotia opuntiae CBS 376.91 GU238123 GU238226 KY090651 -Aveskamp et al. 2010, Ahmed et al. 2016
Vagicola chlamydospora MFLUCC 15-0177 KU163654 KU163655 KU163658 - Jayasiri et al. 2015
Vrystaatia aloeicola CBS 135107 KF251781 - KF251278 - Quaedvlieg et al. 2013
Wojnowicia italica MFLUCC 13-0447 KX430001 KX430002 KX342923 KX430003 Hyde et al. 2016
Wojnowicia lonicerae MFLUCC 13-0737 KP684151 KP684152 KP744471 - Liu et al. 2015
Wojnowiciella dactylidis MFLUCC 13-0735 KP684149 KP684150 KP744470 - Liu et al. 2015
Wojnowiciella eucalypti CPC 25024 KR476774 - KR476741 - Crous et al. 2015a
Wojnowiciella spartii MFLUCC 13-0402 KU058729 MG520998 KU058719 MG520937 Li et al. 2015, Phookamsak et al. 2017
Xenoseptoria neosaccardoi CBS 120.43 KF251783 - KF251280 - Quaedvlieg et al. 2013
Xenoseptoria neosaccardoi CBS 128665 KF251784 - KF251281 - Quaedvlieg et al. 2013
Yunnanensis phragmitis MFLUCC 17-0315 MF684863 MF684867 MF684862 MF683624 Karunarathna et al. 2017
Yunnanensis phragmitis MFLUCC 17-1361 MF684865 MF684864 MF684869 - Karunarathna et al. 2017

Maximum likelihood analysis was generated by using the CIPRES Science Gateway web server (Miller et al. 2010) and chosen RAxML-HPC BlackBox (8.2.10) (Stamatakis 2014). Maximum parsimony analysis was performed by PAUP v. 4.0b10 (Swofford 2002) with the heuristic search option with 1,000 random sequence additions and tree-bisection reconnection (TBR) as branch-swapping algorithm. All characters were unordered and of equal weight and gaps were regarded as missing data. Maxtrees were set up to 1,000, a zero of maximum branches length was collapsed and all multiple parsimonious trees were saved. Tree length [TL], consistency index [CI], retention index [RI], relative consistency index [RC] and homoplasy index [HI] were determined under different optimality criteria. The robustness was assessed using bootstrap analysis with 1,000 replications (Hillis and Bull 1993). The Kishino-Hasegawa tests were made in order to determine whether trees were significantly different (Kishino and Hasegawa 1989).

Bayesian inference analysis was conducted with MrBayes v. 3.2.2 (Ronquist et al. 2012) and a Bayesian posterior probability (BYPP) was determined by Markov Chain Monte Carlo sampling (MCMC). The Bayesian parameters were set up to “Lset applyto= (all) nst=6 rates=invgamma; prset applyto= (all) statefreqpr=dirichlet (1,1,1,1)”. Six simultaneous Markov chains were set up to 10,000,000 generations and trees were sampled every 100th generation. The programme was automatically terminated when the average standard deviation of split frequencies reached below 0.01 (Maharachchikumbura et al. 2015). The distribution of log-likelihood scores were examined to determine the stationary phase for each search and to decide if extra runs were required to achieve convergence, using Tracer v.1.6 program (Rambaut et al. 2013). The first 10% of generated trees representing the burn-in phase were discarded and the remaining trees were used to calculate posterior probabilities of the majority rule consensus tree.

The tree was made in FigTree v. 1.4.3 (Rambaut 2016) and edited in Adobe Illustrator CS6 (Adobe Systems Inc., United States). The finalised alignment and tree were submitted in TreeBASE, submission ID: 23697 (http://www.treebase.org).

Notes. Ex-type strains are given in bold and the new species in this study is in red. “-” means that the sequence is missing or unavailable.

Abbreviations.AFTOL: Assembling the Fungal Tree of Life; CBS: Westerdijk Fungal Biodiversity Institute, Utrecht, Netherlands; CCTU: Culture Collection of Tabriz University, Tabriz, Iran; CPC: Culture Collection of P.W. Crous; DAOM: Plant Research Institute, Department of Agriculture (Mycology), Ottawa, Canada; JK: J. Kohlmeyer; KUMCC: Kunming Institute of Botany Culture Collection, Chinese Academy of Sciences, Kunming, China; MFLU: Herbarium of Mae Fah Luang University, Chiang Rai, Thailand; MFLUCC: Mae Fah Luang University Culture Collection, Chiang Rai, Thailand; TASM: Tashkent Mycological Herbarium, Institute of Botany and Zoology, Uzbek Academy of Science, Uzbekistan; UTHSC: Fungus Testing Laboratory of the University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA.

Results

Phylogenetic analyses

In this phylogenetic analysis, we include all representative sequences of genera in Phaeosphaeriaceae and other representative genera and species in Pleosporineae and Massarineae. The final concatenated dataset containing 138 ingroup taxa within the suborder Pleosporineae, included 56 currently existing genera in Phaeosphaeriaceae, with 3559 characters including gaps (917 characters for LSU, 1046 for SSU, 681 for ITS and 915 for TEF 1-α). Single gene datasets of LSU, SSU, ITS and TEF 1-α were initially analysed and checked for topological congruence but these were not significantly different (data not shown). Support values of MP, ML and BI analyses (equal to or higher than 70% for MPBP and MLBP and 0.95 for BYPP) are shown in Fig. Fig.11 which is the best scoring tree generated from ML. The phylogenetic trees generated from ML analyses were similar to previous phylogenies including Phaeosphaeriaceae (Phookamsak et al. 2014a, b, 2017, Jayasiri et al. 2015, Li et al. 2015, Liu et al. 2015, Phukhamsakda et al. 2015, Tibpromma et al. 2015, 2016, 2017, Hyde et al. 2016, Mapook et al. 2016, Ahmed et al. 2017, Huang et al. 2017, Karunarathna et al. 2017, Thambugala et al. 2017, Ariyawansa et al. 2018, Bakhshi et al. 2018, Senanayake et al. 2018, Wanasinghe et al. 2018).

An external file that holds a picture, illustration, etc.
Object name is mycokeys-46-119-g001.jpg

Phylogram generated from maximum likelihood analysis (RAxML) based on combined LSU, SSU, ITS and TEF 1-α sequenced data of taxa from the family Phaeosphaeriaceae and other representative species in Pleosporineae and Massarineae. The tree is rooted to Cyclothyriellarubronotata (CBS 121892), C.rubronotata (CBS 141486), Didymosphaeriarubi-ulmifolii (MFLUCC 14-0024) and D.variabile (CBS 120014). Bootstrap support values of maximum parsimony and maximum likelihood (MPBP, left; MLBP, middle) equal to or greater than 70% and Bayesian posterior probabilities (BYPP, right) equal to or greater than 0.95 are provided. The type strains were highlighted in bold and the newly generated sequences are highlighted in red.

The best scoring RAxML tree with the final optimisation had a likelihood value of -32702.569414. The matrix had 1387 distinct alignment patterns and 32.39% in this alignment is the gaps and completely undetermined characters. Estimated base frequencies were as follows: A=0.244424, C=0.233850, G=0.265929, T=0.255797, with substitution rates AC=1.171601, AG=2.805496, AT=2.145028, CG=0.771605, CT=6.035018 and GT=1.000000. The gamma distribution shape parameter α=0.167161 and the Tree-Length=5.334112. The maximum parsimony dataset consisted of 3559 characters, of which 2580 characters were constant, 217 were parsimony-uninformative and 762 were parsimony-informative. All characters were of type ‘unord’ with equal weight. The parsimony analysis resulted in a thousand equally most parsimonious trees with a length of 5829 steps (CI = 0.270, RI = 0.654, RC = 0.177, HI = 0.730). Bayesian posterior probabilities were determined by MCMC and the final average standard deviation of split frequencies was 0.009939.

Neostagonosporellasichuanensis clusters in the family Phaeosphaeriaceae with strong support (100% MLBP/100% MPBP/1.00 BYPP) and nucleotide sequences from all strains are the same and it confirms that our three collections are the same species. The multigene analyses show that N.sichuanensis is phylogenetically close to the genus Setophoma and Edenia and separated from the remaining genera of the family in a distinct clade with moderate bootstrap support.

Taxonomy

Neostagonosporella

Keywords: Fungi, Pleosporales, Phaeosphaeriaceae

C.L. Yang, X.L. Xu & K.D. Hyde gen. nov.

Index Fungorum number: IF555713

Facesoffungi number: FoF 05490

Type species.

Neostagonosporellasichuanensis C.L. Yang, X.L. Xu & K.D. Hyde

Etymology.

Name reflects the morphological similarity to the genus Stagonospora.

Description.

Parasitic on living to nearly dead stems and branches of bamboo. Sexual morph: Ascostromata coriaceous, visible as raised to superficial on host, gregarious, multi-loculate, ellipsoidal, globose to subglobose or irregular in shape, dark brown to black, glabrous. Locules globose to subglobose, with a centrally located ostiole, lacking periphyses. Peridium multi-layered, of brown to dark brown, pseudoparenchymatous cells of textura angularis. Hamathecium comprising trabeculate, anastomosed pseudoparaphyses. Asci 8-spored, bitunicate, fissitunicate, cylindrical to cylindric-clavate, short pedicellate, apically rounded with an ocular chamber. Ascospores overlapping bi-seriate, hyaline, cylindrical to fusiform, septate, smooth-walled, surrounded by a distinct mucilaginous sheath. Asexual morph: Coelomycetous. Conidiostromata pycindial, coriaceous, superficial, dark brown to black, fusiform to long fusiform or rhomboid, multi-loculate, solitary, glabrous. Pycnidia globose to subglobose, ostiolate. Pycnidial wall comprising multi-layered, of dark brown to black, pseudoparenchymatous cells of textura angularis. Conidiophores reduced to conidiogenous cells. Conidiogenous cells ampulliform to subcylindrical, smooth, hyaline, enteroblastic, phialidic, arising from inner layer of pycnidial wall. Macroconidia hyaline, subcylindrical to cylindrical, septate, nearly equidistant between septa, smooth-walled, sometimes surrounded by a mucilaginous sheath when immature. Microconidia hyaline, varied in shape, aseptate, smooth-walled, with small guttulate.

Notes.

Stagonospora resembles Neostagonosporella in asexual status, but Stagonospora differs in having generally uni-loculate conidiomata, a thick-walled pycnidial wall, doliiform, holoblastic conidiogenous cells with several percurrent proliferations at the apex and mostly smooth to verruculose conidia (Quaedvlieg et al. 2013, Hyde et al. 2016). Phylogenetic analyses based on a concatenated LSU, SSU, ITS and TEF 1-α sequence data (Fig. (Fig.1)1) show that Neostagonosporella is closely related to Setophoma and Edenia within Phaeosphaeriaceae. There are some significant differences in morphology between these genera and these are summarised in Table Table2.2. Six species are currently accepted in Setophoma and two species in Edenia and both of them occur on different grasses but only our new collections are parasitic on bamboo. Comparison of DNA sequence data across four gene regions reveals base pair differences as shown in Table Table3.3. Phylogenetic analyses also clearly differentiate these taxa (Fig. (Fig.1).1). It is the first time that species with massarineae-like morphology occurring on bamboo, were found in the Phaeosphaeriaceae. Based on molecular phylogeny, the new genus is introduced in Phaeosphaeriaceae to accommodate a massarineae-like taxon.

Table 2.

Morphological comparison of Neostagonosporella, Setophoma and Edenia.

Morphology Neostagonosporella Setophoma Edenia
(Type: N.sichuanensis)(Type: S.terrestris)(Type: E.gomezpompae)
Ascostromata Multi-loculate, globose to subglobose or irregularUni-loculate, globose
Locules Globose to subglobose, with a central ostiole, lacking periphysesGlobose, with a central ostiole
PseudoparaphysesNarrow, septate, trabeculae, longer than asciBroad, septate, prominently branched, constricted at septa, sometimes anastomosing
AsciCylindrical to cylindric-clavate, short-pedicellateCylindrical or subcylindrical, fasciculate, pedicellate
AscosporesBi-seriate, hyaline, cylindrical to fusiform, smooth-walled, transversely multi-septateUni- to multi-seriate, light brown or red brown, fusiform, sometimes verruculose, 2–3-septate
Conidiostromata Multi-loculateUni-loculate
Pycnidia Globose to subglobose, smooth, ostiolateGlobose to subglobose, setose, with papillate ostiolate
ConidiaTwo types. Macroconidia subcylindrical to cylindrical, transversely multi-septate, hyaline. Microconidia oval, ellipsoidal or long ellipsoidal, aseptate, hyalineOne type. Ellipsoidal to subcylindrical to subfusoid, aseptate, hyalineOne type. Ellipsoidal or slightly narrowed at base, aseptate, subhyaline
OthersOn PDA, grey white, reverse dark brown. Hyphae developing by different angle branched and without forming rope-like strandsOn PDA, iron-grey-olivaceous, reverse same. Hyphae undescribedOn PDA, pinkish-white, reverse reddish-brown, velvety to floccose. Hyphae frequently developing by 90° angle branched and forming rope-like strands
ReferencesThis studyde Gruyter et al. 2010, Quaedvlieg et al. 2013, Phookamsak et al. 2014a, b, Crous et al. 2016, Thambugala et al. 2017González et al. 2007, Sun et al. 2013

Table 3.

Comparison of DNA sequence data Parastagonosporella vs Edenia and Setophoma.

Gene region Parastagonosporella vs Edenia Parastagonosporella vs Setophoma
LSU12/819 (1.47%)13/818 (1.6%)
SSUNA*4/981 (0.4%)
TEF47/869 (5.41%)43/868 (5%)
ITS89/515 (17.28%)66/515 (12.8%)

*SSU is not available for Edenia

Neostagonosporella sichuanensis

Keywords: Fungi, Pleosporales, Phaeosphaeriaceae

C.L. Yang, X.L. Xu & K.D. Hyde sp. nov.

Index Fungorum number: IF555714

Facesoffungi number: FoF 05491

Figs 2 , 3

An external file that holds a picture, illustration, etc.
Object name is mycokeys-46-119-g002.jpg

Neostagonosporellasichuanensis (MFLU 18-1212, holotype). a аppearance of ascostromata on host b ascostroma c, d vertical section of ascostroma e, f close up of ascoma g peridium h trabeculate pseudoparaphyses and asci i–k asci l bitunicate asci, note ocular chamber m, n, q, r ascospores with mucilaginous sheath o, s germinated ascospores in lactate cotton blue reagent p, t colonies on PDA (p-from above, t-from below). Scale bars: 1 cm (a); 1 mm (b); 200 μm (c, d); 100 μm (e, f); 20 μm (g–k); 10 μm (l–o, q–s).

An external file that holds a picture, illustration, etc.
Object name is mycokeys-46-119-g003.jpg

Neostagonosporellasichuanensis (MFLU 18-1220, paratype). a appearance of conidiomata on host b, c vertical section of conidioma d pycnidia e peridium f, g conidiogenous cells and developing conidia h–l conidia m germinated conidium. Scale bars: 1 cm (a); 200 μm (b–d); 20 μm (e, f); 10 μm (g–m).

Type.

CHINA, Sichuan Province, Ya’an City, Yucheng District, Kongping Township, Alt. 1133 m, 29°50.14'N 103°03'E, on living to nearly dead branches of Phyllostachysheteroclada Oliv. (Poaceae), 8 April 2016, C.L. Yang and X.L. Xu, YCL201604001 (MFLU 18-1212/SICAU 16-0001, holotype), ex-type living culture, MFLUCC 18-1228/SICAUCC 16-0001; Sichuan Province, Ya’an City, Yucheng District, Yanchang Township, Alt. 951 m, 29°43.57'N 103°04.74'E, on nearly dead stems of Phyllostachysheteroclada Oliv. (Poaceae), 9 April 2017, C.L. Yang and X.L. Xu, YCL201704001 (MFLU 18-1220/SICAU 17-0001, paratype), ex-type living culture, MFLUCC 18-1231/SICAUCC 17-0001; Sichuan Province, Ya’an City, Lushan County, Longmen Township, Alt. 949 m, 30°15.74'N 102°59.27'E, on nearly dead branches of Phyllostachysheteroclada Oliv. (Poaceae), 12 September 2017, C.L. Yang and X.L. Xu, YCL201709002 (MFLU 18-1223, paratype).

Etymology.

in reference to Sichuan Province where the specimens were collected.

Description.

Associated with stem spot disease on living to nearly dead stems and branches of Phyllostachysheteroclada (Poaceae). Sexual morph: Ascostromata (0.5–) 1–2 (–4.5) × 0.8–1.3 mm long (x¯ = 1.9 × 1 mm, n = 50), 230–340 μm high (x¯ = 290 μm, n = 20), ellipsoidal, globose to subglobose or irregular in shape, immersed in host epidermis, becoming raised to superficial, coriaceous, solitary to gregarious, multi-loculate, erumpent through host tissue, with dark brown to black, glabrous, ostiole, usually generating subrhombic to rhombic pale yellow stripes at ascostromatal fringe. Locules 230–300 μm high (x¯ = 264 μm, n = 20), 330–460 μm diam. (x¯ = 393 μm, n = 20), clustered, gregarious, globose to subglobose, with a centrally located ostiole, lacking periphyses. Peridium 18–35 μm wide (x¯ = 27 μm, n = 20), composed of several layers of small, brown to dark brown pseudoparenchymatous cells of textura angularis, with inner hyaline layer, slightly thin at base, thick at sides towards apex, upper part fused with host tissue. Hamathecium composed of 1–2 μm (x¯ = 1.59 μm, n = 50) wide, filiform, septate, trabeculate, anastomosed pseudoparaphyses, embedded in a hyaline gelatinous matrix. Asci 90–125 × 12.5–14 μm (x¯ = 108.1 × 13.3 μm, n = 40), 8-spored, bitunicate, fissitunicate, cylindrical to cylindric-clavate, short pedicellate, 7.8–14 μm long (x¯ = 11 μm, n=20), apically rounded with an ocular chamber. Ascospores 30–35 × 6–7 μm (x¯ = 31.9 × 6.6 μm, n = 50), overlapping bi-seriate, hyaline, cylindrical to fusiform or subcylindric-clavate, with rounded to acute ends, narrower towards end cells, sometimes narrower at lower end cell, straight or slightly curved, 5–8 transversely septa, mostly 7-septate, slightly constricted at septa, nearly equidistant between septa, guttulate, smooth-walled, surrounded by a mucilaginous sheath, 5–9 μm thick (x¯ = 6.9 μm, n = 30). Asexual morph: Coelomycetous. Conidiostromata 9–13 × 1–2 mm long (x¯ = 11.2 × 1.6 mm, n = 10), 320–350 μm high (x¯ = 332 μm, n=10), fusiform to long fusiform or rhomboid, coriaceous, superficial, dark brown to black, multi-loculate, solitary, scattered, glabrous. Pycnidia 180–240 μm high (x¯ = 209 μm, n = 20), 170–240 μm diam. (x¯ = 210 μm, n = 20), globose to subglobose, ostiolate. Pycnidial wall 12–18 (–23) μm wide (x¯ = 15 μm, n = 20), comprising multi-layered, brown to dark brown pseudoparenchymatous cells, of textura angularis, paler towards inner layers, slightly thin at base, thick at sides towards apex, upper part fused with host tissue. Conidiophores reduced to conidiogenous cells. Conidiogenous cells 3–5.5 (–7) × 3–4 μm (x¯ = 4.17 × 3.29 μm, n = 20), ampulliform to subcylindrical, smooth, hyaline, enteroblastic, phialidic, formed from inner layer of pycnidial wall. Macroconidia (32.5–) 33.5–40 (–44) × (5–) 5.5–7 (–7.5) μm (x¯ = 37.5 × 6.2 μm, n = 40), subcylindrical to cylindrical, narrowly rounded at both ends, sometimes curved, 7–13 transversely septa, nearly equidistant between septa, hyaline, smooth-walled, guttulate, sometimes surrounded by a mucilaginous sheath when immature. Microconidia (3–) 3.5–4 (–5) × (1–) 1.5–2 (–3) μm (x¯ = 3.9 × 1.9 μm, n = 50), oval, ellipsoidal or elongate-ellipsoidal, aseptate, rounded at both ends, hyaline, smooth-walled, with small guttulate.

Culture characteristics. Ascospores germinating in sterilised water within 24 hours at 25°C, with germ tubes developed from each cell of ascospores, mostly from middle and end of spores. Colonies on PDA circular, with concentric circles, grey white in outer side, fawn in reverse side, grey in inner side, dark brown on back side. Conidial germination similar to ascospores. Conidiomata formed on PDA at 25°C after 75 days, pycnidial, solitary to gregarious, raised on agar, black dots, pyriform, globose to subglobose, or irregular, uniloculate, covered by white or grey hyphae. Conidia two types, macroconidia and microconidia and both longer than ones on host. Macroconidia (30–)40–48(–60.5) × (4–)5–6 μm (x¯ = 43.8 × 5.2 μm, n = 50), hyaline, 4–7-septate, occasionally 3-septate, hyaline. Microconidia (3.5–)4–6(–12) × (1–)1.5–2(–3) μm (x¯ = 5.3 × 1.9 μm, n = 50), aseptate, hyaline.

Discussion

Neostagonosporella has a unique suite of characters that differentiate it from other genera in Phaeosphaeriaceae, such as multi-loculate ascostromata and trabeculate pseudoparaphyses. Trabeculate pseudoparaphyses have been shown to be uninformative at the higher taxonomic levels (Liew et al. 2000), but appear to be informative at the genus level. Neostagonosporella is the only genus of Phaeosphaeriaceae with this type of pseudoparaphyses. Phaeosphaeriaceous taxa have diverse morphological characteristics and the familial placement of some genera could not be resolved based on a concatenated phylogeny of three to four loci, because some genera contain only 1-2 described species (Crous et al. 2015a, 2015b, 2017a, Jayasiri et al. 2015, Phukhamsakda et al. 2015, Tibpromma et al. 2015, 2017, Abd-Elsalam et al. 2016, Hernández-Restrepo et al. 2016, Hyde et al. 2016, 2017, Wijayawardene et al. 2016, Ahmed et al. 2017, Karunarathna et al. 2017, Phookamsak et al. 2017, Bakhshi et al. 2018, Wanasinghe et al. 2018).

Species of Phaeosphaeriaceae have been found on various hosts and substrates, including plants, lichens, mushrooms, algae, human, soil and air (Saccardo 1883, Berlese and Voglino 1886, Phookamsak et al. 2014a, Ahmed et al. 2016, Karunarathna et al. 2017, Zhang et al. 2017, Joshi et al. 2018). However, most Phaeosphaeriaceous genera occur on plants of more than 65 host families, the majority of them being monocotyledons and herbaceous plants, such as Arecaceae, Asparagaceae, Compositae, Juncaceae, Leguminosae, Poaceae, Ranunculaceae, Restionaceae and Rosaceae etc. (Taylor and Hyde 2003, Quaedvlieg et al. 2013, Crous et al. 2015b, Hyde et al. 2016, Tibpromma et al. 2016a, Karunarathna et al. 2017, Phookamsak et al. 2017, Wanasinghe et al. 2018). Our new genus exists on Poaceae and at least 30 genera are reported within this family. Currently, 11 genera are observed only on Poaceae: Amarenomyces, Bricookea, Camarosporioides, Dactylidina, Embarria, Melnikia, Neosphaerellopsis, Phaeopoacea, Sulcispora, Vagicola and Yunnanensis, all of them being recently established except for Amarenomyces, Bricookea and Sulcispora (Eriksson 1981, Barr 1982, Shoemaker and Babcock 1989, Trakunyingcharoen et al. 2014, Ariyawansa et al. 2015b, Hyde et al. 2016, Wijayawardene et al. 2016, Karunarathna et al. 2017, Thambugala et al. 2017, Wanasinghe et al. 2018). Amongst them, all hosts are short herbaceous plants and there are no bamboo plants recorded so far, with the exception of a few species of Ophiobolus and Phaeosphaeria in the old literature (Penzig and Saccardo 1897, Miyake and Hara 1910). A large number of bamboo forests (more than 130 species) are distributed throughout Sichuan (Yi 1997) and, most likely, many Phaeosphaeriaceae species are waiting for exploration and discovery.

Supplementary Material

XML Treatment for Neostagonosporella :
XML Treatment for Neostagonosporella sichuanensis :

Acknowledgements

Chun-Lin Yang thanks Ming Liu, Xue Wang and Ren-Hua Chen for their help and support in field sampling and laboratory work. K.D. Hyde would like to acknowledge The Thailand Research Fund, grant number: RDG6130001, Impact of climate change on fungal diversity and biogeography in the Greater Mekong Subregion.

Notes

Citation

Yang C-L, Xu X-L, Wanasinghe DN, Jeewon R, Phookamsak R, Liu Y-G, Liu L-J, Hyde KD (2019) Neostagonosporella sichuanensis gen. et sp. nov. (Phaeosphaeriaceae, Pleosporales) on Phyllostachys heteroclada (Poaceae) from Sichuan Province, China. MycoKeys 46: 119–150. https://doi.org/10.3897/mycokeys.46.32458

References

  • Abd-Elsalam KA, Tibpromma S, Wanasinghe DN, Camporesi E, Hyde KD. (2016) Equiseticola gen. nov. (Phaeosphaeriaceae), from Equisetum sp. in Italy. Phytotaxa 284: 169–180. 10.11646/phytotaxa.284.3.2 [CrossRef] [Google Scholar]
  • Ahmed SA, van de Sande WWJ, Stevens DA, Fahal A, van Diepeningen AD, Menken SBJ, de Hoog GS. (2014) Revision of agents of black-grain eumycetoma in the order Pleosporales. Persoonia 33: 141–154. 10.3767/003158514X684744 [Europe PMC free article] [Abstract] [CrossRef] [Google Scholar]
  • Ahmed SA, Hofmüller W, Seibold M, de Hoog GS, Harak H, Tammer I, Diepeningen AD, Behrens-Baumann W. (2017) Tintelnotia, a new genus in Phaeosphaeriaceae harbouring agents of cornea and nail infections in humans. Mycoses 60: 244–253. 10.1111/myc.12588 [Abstract] [CrossRef] [Google Scholar]
  • Andrie RM, Schoch CL, Hedges R, Spatafora JW, Ciuffetti LM. (2008) Homologs of ToxB, a host-selective toxin gene from Pyrenophoratritici-repentis, are present in the genome of sister-species Pyrenophorabromi and other members of the Ascomycota. Fungal Genetics and Biology 45: 363–377. 10.1016/j.fgb.2007.10.014 [Abstract] [CrossRef] [Google Scholar]
  • Ariyawansa HA, Camporesi E, Thambugala KM, Mapook A, Kang J-C, Alias SA, Chukeatirote E, Thines M, Mckenzie EHC, Hyde KD. (2014) Confusion surrounding Didymosphaeria—phylogenetic and morphological evidence suggest Didymosphaeriaceae is not a distinct family. Phytotaxa 176: 102–119. 10.11646/phytotaxa.176.1.12 [CrossRef] [Google Scholar]
  • Ariyawansa HA, Phukhamsakda C, Thambugala KM, Bulgakov TS, Wanasinghe DN, Perera RH, Mapook A, Camporesi E, Kang J-C, Jones EBG, Bahkali AH, Jayasiri SC, Hyde KD, Liu ZY, Bhat JD. (2015a) Revision and phylogeny of Leptosphaeriaceae. Fungal Diversity 74: 19–51. 10.1007/s13225-015-0349-2 [CrossRef] [Google Scholar]
  • Ariyawansa HA, Hyde KD, Jayasiri SC, Buyck B, Chethana KWT, Dai D-Q, Dai Y-C, Daranagama DA, Jayawardena RS, Lücking R, Ghobad-Nejhad M, Niskanen T, Thambugala KM, Voigt K, Zhao R-L, Li G-J, Doilom M, Boonmee S, Yang Z-L, Cai Q, Cui Y-Y, Bahkali AH, Chen J, Cui B-K, Chen J-J, Dayarathne MC, Dissanayake AJ, Ekanayaka AH, Hashimoto A, Hongsanan S, Jones EBG, Larsson E, Li W-J, Li Q-R, Liu J-K, Luo Z-L, Maharachchikumbura SSN, Mapook A, McKenzie EHC, Norphanphoun C, Konta S, Pang K-L, Perera RH, Phookamsak R, Phukhamsakda C, Pinruan U, Randrianjohany E, Singtripop C, Tanaka K, Tian C-M, Tibpromma S, Abdel-Wahab MA, Wanasinghe DN, Wijayawardene NN, Zhang J-F, Zhang H, Abdel-Aziz FA, Wedin M, Westberg M, Ammirati JF, Bulgakov TS, Lima DX, Callaghan TM, Callac P, Chang C-H, Coca LF, Dal-Forno M, Dollhofer V, Fliegerová K, Greiner K, Griffith GW, Hofstetter HMH, Jeewon R, Kang J-C, Wen T-C, Kytövuori PMK, Lawrey JD, Xing J, Li H, Liu Z-Y, Liu X-Z, Liimatainen K, Lumbsch HT, Matsumura M, Moncada B, Nuankaew S, Parnmen S, de Azevedo Santiago ALCM, Sommai S, Song Y, de Souza CAF, de Souza-Motta CM, Su H-Y, Suetrong S, Wang Y, Wei S-F, Wen T-C, Yuan H-S, Zhou L-W, Réblová M, Fournier J, Camporesi E, Luangsa-ard JJ, Tasanathai K, Khonsanit A, Thanakitpipattana D, Somrithipol S, Diederich P, Millanes AM, Common RS, Stadler M, Yan J-Y, Li X-H, Lee HW, Nguyen TTT, Lee HB, Battistin E, Marsico O, Vizzini A, Vila J, Ercole E, Eberhardt U, Simonini G, Wen H-A, Chen X-H, Miettinen O, Spirin V. (2015b) Fungal diversity notes 111–252: taxonomic and phylogenetic contributions to fungal taxa. Fungal Diversity 75: 27–274. 10.1007/s13225-015-0346-5 [CrossRef] [Google Scholar]
  • Ariyawansa HA, Phillips AJL, Chuang W-Y, Tsai I. (2018) Tzeananiaceae, a new pleosporalean family associated with Ophiocordycepsmacroacicularis fruiting bodies in Taiwan. MycoKeys 37: 1–17. 10.3897/mycokeys.37.27265 [Europe PMC free article] [Abstract] [CrossRef] [Google Scholar]
  • Aveskamp MM, Verkley GJM, de Gruyter J, Murace MA, Perelló A, Woudenberg JHC, Groenewald JZ. (2009) DNA phylogeny reveals polyphyly of PhomasectionPeyronellaea and multiple taxonomic novelties. Mycologia 101: 363–382. 10.3852/08-199 [Abstract] [CrossRef] [Google Scholar]
  • Aveskamp MM, de Gruyter J, Woudenberg JHC, Verkley GJM, Crous PW. (2010) Highlights of the Didymellaceae: A polyphasic approach to characterise Phoma and related pleosporalean genera. Studies in Mycology 65: 1–60. 10.3114/sim.2010.65.01 [Europe PMC free article] [Abstract] [CrossRef] [Google Scholar]
  • Bakhshi M, Arzanlou M, Groenewald JZ, Quaedvlieg W, Crous PW. (2018) Parastagonosporellafallopiae gen. et sp. nov. (Phaeosphaeriaceae) on Fallopiaconvolvulus from Iran. Mycological Progress. 10.1007/s11557-018-1428-z [CrossRef]
  • Barr ME. (1979) A classification of Loculoascomycetes:. Mycologia 71: 935–957. 10.2307/3759283 [CrossRef] [Google Scholar]
  • Barr ME. (1982) Leptosphaeriasepalorum. Mycotaxon 15: 345–348. [Google Scholar]
  • Barr ME. (1987) Prodromus to class Loculoascomycetes:. Amherst, Massachusetts: Hamilton I. Newell, Inc, 168 pp. [Google Scholar]
  • Barr ME. (1992) Additions to and notes on the Phaeosphaeriaceae (Pleosporales, Loculoascomycetes:). Mycotaxon 43: 371–400. [Google Scholar]
  • Berlese AN, Voglino P. (1886) Sylloge fungorum. Additamenta ad Volumina I–IV. 484 pp.
  • Câmara MPS, Palm ME, van Berkum P, O'Neill NR. (2002) Molecular phylogeny of Leptosphaeria and Phaeosphaeria. Mycologia 94: 630–640. 10.1080/15572536.2003.11833191 [Abstract] [CrossRef] [Google Scholar]
  • Chen Q, Jiang J-R, Zhang G-Z, Cai L, Crous PW. (2015) Resolving the Phomaenigma. Studies in Mycology 82: 137–217. 10.1016/j.simyco.2015.10.003 [Europe PMC free article] [Abstract] [CrossRef] [Google Scholar]
  • Crous PW, Verkley GJM, Groenewald JZ. (2006) Eucalyptus microfungi known from culture. 1. Cladoriella and Fulvoflamma genera nova, with notes on some other poorly known taxa. Studies in Mycology 55: 53–63. 10.3114/sim.55.1.53 [Europe PMC free article] [Abstract] [CrossRef] [Google Scholar]
  • Crous PW, Braun U, Wingfield MJ, Wood AR, Shin HD, Summerell BA, Alfenas AC, Cumagun CJR, Groenewald JZ. (2009) Phylogeny and taxonomy of obscure genera of microfungi. Persoonia 22: 139–161. 10.3767/003158509X461701 [Europe PMC free article] [Abstract] [CrossRef] [Google Scholar]
  • Crous PW, Groenewald JZ, Lombard L, Wingfield MJ. (2012) Homortomyces gen. nov., a new dothidealean pycnidial fungus from the Cradle of Humankind. IMA Fungus 3: 109–115. 10.5598/imafungus.2012.03.02.02 [Europe PMC free article] [Abstract] [CrossRef] [Google Scholar]
  • Crous PW, Shivas RG, Quaedvlieg W, van der Bank M, Zhang Y, Summerell BA, Guarro J, Wingfield MJ, Wood AR, Alfenas AC, Braun U, Cano-Lira JF, García D, Marin-Felix Y, Alvarado P, Andrade JP, Armengol J, Assefa A, den Breeÿen A, Camele I, Cheewangkoon R, De Souza JT, Duong TA, Esteve-Raventós F, Fournier J, Frisullo S, García-Jiménez J, Gardiennet A, Gené J, Hernández-Restrepo M, Hirooka Y, Hospenthal DR, King A, Lechat C, Lombard L, Mang SM, Marbach PAS, Marincowitz S, Marin-Felix Y, Montaño-Mata NJ, Moreno G, Perez CA, Pérez Sierra AM, Robertson JL, Roux J, Rubio E, Schumacher RK, Stchigel AM, Sutton DA, Tan Y-P, Thompson EH, van der Linde E, Walker AK, Walker DM, Wickes BL, Wong PTW, Groenewald JZ. (2014) Fungal Planet description sheets: 214–280. Persoonia 32: 184–306. 10.3767/003158514X682395 [Europe PMC free article] [Abstract] [CrossRef] [Google Scholar]
  • Crous PW, Wingfield MJ, Guarro J, Hernández-Restrepo M, Sutton DA, Acharya K, Barber PA, Boekhout T, Dimitrov RA, Dueñas M, Dutta AK, Gené J, Gouliamova DE, Groenewald M, Lombard L, Morozova OV, Sarkar J, Smith MT, Stchigel AM, Wiederhold NP, Alexandrova AV, Antelmi I, Armengol J, Barnes I, Cano-Lira JF, Castañeda Ruiz RF, Contu M, Courtecuisse PR, da Silveira AL, Decock CA, de Goes A, Edathodu J, Ercole E, Firmino AC, Fourie A, Fournier J, Furtado EL, Geering AD, Gershenzon J, Giraldo A, Gramaje D, Hammerbacher A, He X-L, Haryadi D, Khemmuk W, Kovalenko AE, Krawczynski R, Laich F, Lechat C, Lopes UP, Madrid H, Malysheva EF, Marín-Felix Y, Martín MP, Mostert L, Nigro F, Pereira OL, Picillo B, Pinho DB, Popov ES, Rodas Peláez CA, Rooney-Latham S, Sandoval-Denis M, Shivas RG, Silva V, Stoilova-Disheva MM, Telleria MT, Ullah C, Unsicker SB, van der Merwe NA, Vizzini A, Wagner HG, Wong PT, Wood AR, Groenewald JZ. (2015a) Fungal Planet description sheets: 320–370. Persoonia 34: 167–266. 10.3767/003158515X688433 [Europe PMC free article] [Abstract] [CrossRef] [Google Scholar]
  • Crous PW, Wingfield MJ, Le Roux JJ, Richardson DM, Strasberg D, Shivas RG, Alvarado P, Edwards J, Moreno G, Sharma R, Sonawane MS, Tan Y-P, Altés A, Barasubiye T, Barnes CW, Blanchette RA, Boertmann D, Bogo A, Carlavilla JR, Cheewangkoon R, Daniel R, de Beer ZW, de Jesús Yáñez-Morales M, Duong TA, Fernández-Vicente J, Geering ADW, Guest DI, Held BW, Heykoop M, Hubka V, Ismail AM, Kajale SC, Khemmuk W, Kolařík M, Kurli R, Lebeuf R, Lévesque CA, Lombard L, Magista D, Manjón JL, Marincowitz S, Mohedano JM, Nováková A, Oberlies NH, Otto EC, Paguigan ND, Pascoe IG, Pérez-Butrón JL, Perrone G, Rahi P, Raja HA, Rintoul T, Sanhueza RMV, Scarlett K, Shouche YS, Shuttleworth LA, Taylor PWJ, Thorn RG, Vawdrey LL, Vidal RS, Voitk A, Wong PTW, Wood AR, Zamora JC, Groenewald JZ. (2015b) Fungal Planet Description Sheets: 371–399. Persoonia 35: 264–327. 10.3767/003158515X690269 [Europe PMC free article] [Abstract] [CrossRef] [Google Scholar]
  • Crous PW, Carris LM, Giraldo A, Groenewald JZ, Hawksworth DL, Hernández-Restrepo M, Jaklitsch WM, Lebrun M-H, Schumacher RK, Stielow JB, van der Linde EJ, Vilcāne J, Voglmayr H, Wood AR. (2015c) The Genera of Fungi – fixing the application of the type species of generic names – G2: Allantophomopsis, Latorua, Macrodiplodiopsis, Macrohilum, Milospium, Protostegia, Pyricularia, Robillarda, Rotula, Septoriella, Torula, and Wojnowicia. IMA Fungus 6: 163–198. 10.5598/imafungus.2015.06.01.11 [Europe PMC free article] [Abstract] [CrossRef] [Google Scholar]
  • Crous PW, Wingfield MJ, Richardson DM, Le Roux JJ, Strasberg D, Edwards J, Roets F, Hubka V, Taylor PWJ, Heykoop M, Martín MP, Maoreno G, Sutton DA, Wiederhold NP, Barnes CW, Carlavilla JR, Gené J, Giraldo A, Guarnacci V, Guarro J, Hernandez-Restrepo M, Kolařík M, Manjón JL, Pascoe IG, Popov ES, Sandoval-Denis M, Woudenberg JHC, Acharya K, Alexandrova AV, Alvarado P, Barbosa RN, Baseia IG, Blanchette RA, Boekhout T, Burgess TI, Cano-Lira JF, Čmoková A, Dimitrov RA, Dyakov MYu, Dueñas M, Dutta AK, Esteve-Raventós F, Fedosova AG, Fournier J, Gamboa P, Gouliamova DE, Grebenc T, Groenewald M, Hanse B, Hardy GEStJ, Held BW, Jurjević Ž, Kaewgrajang T, Latha KPD, Lombard L, Luangsa-ard JJ, Lysková P, Mallátová N, Manimohan P, Miller AN, Mirabolfathy M, Morozova OV, Obodai M, Oliveira NT, Ordóñez ME, Otto EC, Paloi S, Peterson SW, Phosri C, Roux J, Salazar WA, Sánchez A, Sarria GA, Shin H-D, Silva BDB, Silva GA, Smith MTh, Souza-Motta CM, Stchigel AM, Stoilova-Disheva MM, Sulzbacher MA, Telleria MT, Toapanta C, Traba JM, Valenzuela-Lopez N, Watling R, Groenewald JZ. (2016) Fungal Planet description sheets: 400–468. Persoonia 36: 316–458. 10.3767/003158516X692185 [Europe PMC free article] [Abstract] [CrossRef]
  • Crous PW, Groenewald JZ. (2017) The Genera of Fungi – G4: Camarosporium and Dothiora. IMA Fungus 8: 131–152. 10.5598/imafungus.2017.08.01.10 [Europe PMC free article] [Abstract] [CrossRef] [Google Scholar]
  • Crous PW, Wingfield MJ, Burgess TI, Hardy GEStJ, Barber PA, Alvarado P, Barnes CW, Buchanan PK, Heykoop M, Moreno G, Thangavel R, van der Spuy S, Barili A, Barrett S, Cacciola SO, Cano-Lira JF, Crane C, Decock C, Gibertoni TB, Guarro J, Guevara-Suarez M, Hubka V, Kolařík M, Lira CRS, Ordoñez ME, Padamsee M, Ryvarden L, Soares AM, Stchigel AM, Sutton DA, Vizzini A, Weir BS, Acharya K, Aloi F, Baseia IG, Blanchette RA, Bordallo JJ, Bratek Z, Butler T, Cano-Canals J, Carlavilla JR, Chander J, Cheewangkoon R, Cruz RHSF, da Silva M, Dutta AK, Ercole E, Escobio V, Esteve-Raventós F, Flores JA, Gené J, Góis JS, Haines L, Held BW, Jung MH, Hosaka K, Jung T, Jurjević Ž, Kautman V, Kautmanova I, Kiyashko AA, Kozanek M, Kubátová A, Lafourcade M, La Spada F, Latha KPD, Madrid H, Malysheva EF, Manimohan P, Manjón JL, Martín MP, Mata M, Merényi Z, Morte A, Nagy I, Normand AC, Paloi S, Pattison N, Pawłowska J, Pereira OL, Petterson ME, Picillo B, Raj KNA, Roberts A, Rodríguez A, Rodríguez-Campo FJ, Romański M, Ruszkiewicz-Michalska M, Scanu B, Schena L, Semelbauer M, Sharma R, Shouche YS, Silva V, Staniaszek-Kik M, Stielow JB, Tapia C, Taylor PWJ, Toome-Heller M, Vabeikhokhei JMC, van Diepeningen AD, Van Hoa N, Van Tri M, Wiederhold NP, Wrzosek M, Zothanzama J, Groenewald JZ. (2017) Fungal Planet description sheets: 558–624. Persoonia 38: 240–384. 10.3767/003158517X698941 [Europe PMC free article] [Abstract] [CrossRef] [Google Scholar]
  • Dai D-Q, Phookamsak R, Wijayawardene NN, Li W-J, Bhat DJ, Xu J-C, Taylor JE, Hyde KD, Chukeatirote E. (2017) Bambusicolous fungi. Fungal Diversity 82: 1–105. 10.1007/s13225-016-0367-8 [CrossRef] [Google Scholar]
  • de Gruyter J, Aveskamp MM, Woudenberg JHC, Verkley GJM, Groenewald JZ, Crous PW. (2009) Molecular phylogeny of Phoma and allied anamorph genera: Towards a reclassification of the Phoma complex. Mycological Research 113: 508–519. 10.1016/j.mycres.2009.01.002 [Abstract] [CrossRef] [Google Scholar]
  • de Gruyter J, Woudenberg JHC, Aveskamp MM, Verkley GJM, Groenewald JZ, Crous PW. (2010) Systematic reappraisal of species in PhomasectionParaphoma, Pyrenochaeta and Pleurophoma. Mycologia 102: 1066–1081. 10.3852/09-240 [Abstract] [CrossRef] [Google Scholar]
  • Eriksson OE. (1967) On graminicolous pyrenomycetes from Fennoscandia II. Phragmosporous and scolecosporous species. Arkiv för Botanik 6: 381–440. [Google Scholar]
  • Eriksson OE. (1981) The families of bitunicate ascomycetes. Opera Botanica 60: 1–220. 10.1111/j.1756-1051.1981.tb01167.x [CrossRef] [Google Scholar]
  • Eriksson OE, Hawksworth DL. (1993) Outline of the Ascomycetes. Systema Ascomycetum 12: 51–257. [Google Scholar]
  • Ertz D, Diederich P, Lawrey JD, Berger F, Freebury CE, Coppins B, Gardiennet A, Hafellner J. (2015) Phylogenetic insights resolve Dacampiaceae (Pleosporales) as polyphyletic: Didymocyrtis (Pleosporales, Phaeosphaeriaceae) with Phoma-like anamorphs resurrected and segregated from Polycoccum (Trypetheliales, Polycoccaceae: fam. nov.). Fungal Diversity 74: 53–89. 10.1007/s13225-015-0345-6 [CrossRef] [Google Scholar]
  • Ferrer C, Pérez-Santonja JJ, Rodríguez AE, Colom MF, Gené J, Alio JL, Verkley GJM, Guarro J. (2009) A new species of Pyrenochaeta causing keratitis. Journal of Clinical Microbiology. 10.1128/JCM.01912-08 [Europe PMC free article] [Abstract] [CrossRef]
  • González MC, Anaya AL, Glenn AE, Saucedo-García A, Macías-Rubalcava ML, Hanlin RT. (2007) A new endophytic ascomycete from EI Eden Ecological Reserve, Quintana Roo, Mexico. Mycotaxon 101: 251–260. [Google Scholar]
  • Gupta VK, Tuohy MG. (2013) Laboratory Protocols in Fungal Biology. Springer, New York and London, 114–115. 10.1007/978-1-4614-2356-0 [CrossRef]
  • Hall TA. (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series 41: 95–98. 10.1021/bk-1999-0734.ch008 [CrossRef] [Google Scholar]
  • Hernández-Restrepo M, Schumacher RK, Wingfield MJ, Ahmad I, Cai L, Duong TA, Edwards J, Gené J, Groenewald JZ, Jabeen S, Khalid AN, Lombard L, Madrid H, Marin-Felix Y, Marincowitz S, Miller AN, Rajeshkumar KC, Rashid A, Sarwar S, Stchigel AM, Taylor PWJ, Zhou N, Crous PW. (2016) Fungal systematics and evolution: FUSE 2. Sydowia 68: 193–230. [Google Scholar]
  • Hillis DM, Bull JJ. (1993) An empirical test of bootstrapping as a method for assessing confidence in phylogenetic analysis. Systematic Biology 42: 182–192. 10.1093/sysbio/42.2.182 [CrossRef] [Google Scholar]
  • Huang S-K, Jeewon R, Wanasinghe DN, Manawasinghe IS, Bulgakov TS, Hyde KD, Kang J-C. (2017) Phylogenetic taxonomy of Dematiopleosporafusiformis sp. nov. (Phaeosphaeriaceae) from Russia. Phytotaxa 316: 239–249. 10.11646/phytotaxa.316.3.3 [CrossRef] [Google Scholar]
  • Hyde KD, Jones EBG, Liu J-K, Ariyawansa HA, Boehm E, Boonmee S, Braun U, Chomnunti P, Crous PW, Dai D-Q, Diederich P, Dissanayake AJ, Doilom M, Doveri F, Hongsanan S, Jayawardena R, Lawrey JD, Li Y-M, Liu Y-X, Lücking R, Monkai J, Muggia L, Nelsen MP, Pang K-L, Phookamsak R, Senanayake I, Shearer CA, Seutrong S, Tanaka K, Thambugala KM, Wijayawardene NN, Wikee S, Wu H-X, Zhang Y, Aguirre-Hudson B, Alias SA, Aptroot A, Bahkali AH, Bezerra JL, Bhat JD, Camporesi E, Chukeatirote E, Gueidan C, Hawksworth DL, Hirayama K, De Hoog S, Kang J-C, Knudsen K, Li W-J, Li X, Liu Z-Y, Mapook A, McKenzie EHC, Miller AN, Mortimer PE, Phillips AJL, Raja HA, Scheuer C, Schumm F, Taylor JE, Tian Q, Tibpromma S, Wanasinghe DN, Wang Y, Xu J-C, Yan J-Y, Yacharoen S, Zhang M. (2013) Families of Dothideomycetes. Fungal Diversity 63: 1–313. 10.1007/s13225-013-0263-4 [CrossRef] [Google Scholar]
  • Hyde KD, Hongsanan S, Jeewon R, Bhat DJ, McKenzie EHC, Jones EBG, Phookamsak R, Ariyawansa HA, Boonmee S, Zhao Q, Abdel-Aziz FA, Abdel-Wahab MA, Banmai S, Chomnunti P, Cui BK, Daranagama DA, Das K, Dayarathne MC, de Silva NI, Dissanayake AJ, Doilom M, Ekanayaka AH, Gibertoni TB, Góes-Neto A, Huang S-K, Jayasiri SC, Jayawardena RS, Konta S, Lee HB, Li W-J, Lin C-G, Liu J-K, Lu Y-Z, Luo Z-L, Manawasinghe IS, Manimohan P, Mapook A, Niskanen T, Norphanphoun C, Papizadeh M, Perera RH, Phukhamsakda C, Richter C, de A. Santiago ALCM, Drechsler-Santos ER, Senanayake IC, Tanaka K, Tennakoon TMDS, Thambugala KM, Tian Q, Tibpromma S, Thongbai B, Vizzini A, Wanasinghe DN, Wijayawardene NN, Wu H-X, Yang J, Zeng X-Y, Zhang H, Zhang J-F, Bulgakov TS, Camporesi E, Bahkali AH, Amoozegar MA, Araujo-Neta LS, Ammirati JF, Baghela A, Bhatt RP, Bojantchev D, Buyck B, da Silva GA, de Lima CLF, de Oliveira RJV, de Souza CAF, Dai Y-C, Dima B, Duong TT, Ercole E, Mafalda-Freire F, Ghosh A, Hashimoto A, Kamolhan S, Kang J-C, Karunarathna SC, Kirk PM, Kytövuori I, Lantieri A, Liimatainen K, Liu Z-Y, Liu X-Z, Lücking R, Medardi G, Mortimer PE, Nguyen TTT, Promputtha I, Anil Raj KN, Reck MA, Lumyong S, Shahzadeh-Fazeli SA, Stadler M, Soudi MR, Su H-Y, Takahashi T, Tangthirasunun N, Uniyal P, Wang Y, Wen T-C, Xu J-C, Zhang Z-K, Zhao Y-C, Zhou J-L, Zhu L. (2016) Fungal diversity notes 367–490: taxonomic and phylogenetic contributions to fungal taxa. Fungal Diversity 80: 1–270. 10.1007/s13225-016-0373-x [CrossRef] [Google Scholar]
  • Hyde KD, Norphanphoun C, Abreu VP, Bazzicalupo A, Chethana KWT, Clericuzio M, Dayarathne MC, Dissanayake AJ, Ekanayaka AH, He M-Q, Hongsanan S, Huang S-K, Jayasiri SC, Jayawardena RS, Karunarathna A, Konta S, Kušan I, Lee H, Li J-F, Lin C-G, Liu N-G, Lu Y-Z, Luo Z-L, Manawasinghe IS, Mapook A, Perera RH, Phookamsak R, Phukhamsakda C, Siedlecki I, Mayra Soares A, Tennakoon DS, Tian Q, Tibpromma S, Wanasinghe DN, Xiao Y-P, Yang J, Zeng X-Y, Abdel-Aziz FA, Li W-J, Senanayake IC, Shang Q-J, Daranagama DA, de Silva NI, Thambugala KM, Abdel-Wahab MA, Bahkali AH, Berbee ML, Boonmee S, Bhat DJ, Bulgakov TS, Buyck B, Camporesi E, Castañeda-Ruiz RF, Chomnunti P, Doilom M, Dovana F, Gibertoni TB, Jadan M, Jeewon R, Jones EBG, Kang J-C, Karunarathna SC, Lim YW, Liu J-K, Liu Z-Y, Plautz Jr. HL, Lumyong S, Maharachchikumbura SSN, Matočec N, McKenzie EHC, Mešić A, Miller D, Pawłowska J, Pereira OL, Promputtha I, Romero AI, Ryvarden L, Su H-Y, Suetrong S, Tkalčec Z, Vizzini A, Wen T-C, Wisitrassameewong K, Wrzosek M, Xu J-C, Zhao Q, Zhao R-L, Mortimer PE. (2017) Fungal diversity notes 603–708: taxonomic and phylogenetic notes on genera and species. Fungal Diversity 87: 1–235. 10.1007/s13225-017-0391-3 [CrossRef] [Google Scholar]
  • Jaklitsch WM, Voglmayr H. (2016) Hidden diversity in Thyridaria and a new circumscription of the Thyridariaceae:. Studies in Mycology 85: 35–64. 10.1016/j.simyco.2016.09.002 [Europe PMC free article] [Abstract] [CrossRef] [Google Scholar]
  • Jayasiri SC, Wanasinghe DN, Ariyawansa HA, Jones EBG, Kang J-C, Promputtha I, Bahkali AH, Bhat J, Camporesi E, Hyde KD. (2015) Two novel species of Vagicola (Phaeosphaeriaceae) from Italy. Mycosphere 6: 716–728. 10.5943/mycosphere/6/6/7 [CrossRef] [Google Scholar]
  • Jeewon R, Hyde KD. (2016) Establishing species boundaries and new taxa among fungi: recommendations to resolve taxonomic ambiguities. Mycosphere 7: 1669–1677. 10.5943/mycosphere/7/11/4 [CrossRef] [Google Scholar]
  • Joshi Y, Tripathi M, Bisht K, Upadhyay S, Kumar V, Pal N, Gaira A, Pant S, Rawat KS, Bisht S, Bajpai R, Halda JP. (2018) Further contributions to the documentation of lichenicolous fungi from India. Kavaka 50: 26–33. [Google Scholar]
  • Karunarathna A, Papizadeh M, Senanayake IC, Jeewon R, Phookamsak R, Goonasekara ID, Wanasinghe DN, Wijayawardene NN, Amoozegar MA, Shahzadeh Fazeli SA, Camporesi E, Hyde KD, Weerahewa HLD, Lumyong S, McKenzie EHC. (2017) Novel fungal species of Phaeosphaeriaceae with an asexual/sexual morph connection. Mycosphere 8: 1818–1834. 10.5943/mycosphere/8/10/8 [CrossRef] [Google Scholar]
  • Katoh K, Standley DM. (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Molecular Biology and Evolution 30: 772–780. 10.1093/molbev/mst010 [Europe PMC free article] [Abstract] [CrossRef] [Google Scholar]
  • Khashnobish A, Shearer CA. (1996) Reexamination of some Leptosphaeria and Phaeosphaeria species, Passeriniellaobiones and Melanommaradicans. Mycological Research 100: 1341–1354. 10.1016/S0953-7562(96)80062-1 [CrossRef] [Google Scholar]
  • Kirk PM, Cannon PF, David JC, Stalpers JA. (2001) Dictionary of the Fungi (9th edn). CABI, Wallingford.
  • Kirk PM, Cannon PF, Minter DW, Stalpers JA. (2008) Ainsworth & Bisby’s Dictionary of the Fungi, 10th edn. CABI, Wallingford. 10.1079/9780851998268.0000 [CrossRef]
  • Kishino H, Hasegawa M. (1989) Evaluation of the maximum likelihood estimate of the evolutionary tree topologies from DNA sequence data, and the branching order in hominoidea. Journal of Molecular Evolution 29: 170–179. 10.1007/BF02100115 [Abstract] [CrossRef] [Google Scholar]
  • Kiss L, Nakasone KK. (1998) Ribosomal DNA internal transcribed spacer sequences do not support the species status of Ampelomycesquisqualis, a hyperparasite of powdery mildew fungi. Current Genetics 33: 362–367. 10.1007/s002940050348 [Abstract] [CrossRef] [Google Scholar]
  • Lawrey JD, Diederich P, Nelsen MP, Freebury C, van den Broeck D, Sikaroodi M, Ertz D. (2012) Phylogenetic placement of lichenicolous Phoma species in the Phaeosphaeriaceae (Pleosporales, Dothideomycetes). Fungal Diversity 55: 195–213. 10.1007/s13225-012-0166-9 [CrossRef] [Google Scholar]
  • Leuchtmann A. (1984) Uber Phaeosphaeria Miyake und andere bitunicate Ascomyceten mit mehrfach querseptierten Ascosporen. Sydowia 37: 75–194. 10.3929/ethz-a-000320965 [CrossRef] [Google Scholar]
  • Li W-J, Bhat D, Camporesi E, Tian Q, Wijayawardene NN, Dai D-Q, Phookamsak R, Chomnunti P, Bahkali AH, Hyde KD. (2015) New asexual morph taxa in Phaeosphaeriaceae. Mycosphere 6: 681–708. 10.5943/mycosphere/6/6/5 [CrossRef] [Google Scholar]
  • Liew ECY, Aptroot A, Hyde KD. (2000) Phylogenetic significance of the pseudoparaphyses in Loculoascomycete taxonomy. Molecular Phylogenetics and Evolution 16: 392–402. 10.1006/mpev.2000.0801 [Abstract] [CrossRef] [Google Scholar]
  • Liu A-R, Chen S-C, Wu S-Y, Xu T, Guo L-D, Jeewon R, Wei J-G. (2010) Cultural studies coupled with DNA based sequence analyses and its implication on pigmentation as a phylogenetic marker in Pestalotiopsis taxonomy. Molecular Phylogenetic Evolution 57: 528–535. 10.1016/j.ympev.2010.07.017 [Abstract] [CrossRef] [Google Scholar]
  • Liu J-K, Hyde KD, Jones EBG, Ariyawansa HA, Bhat DJ, Boonmee S, Maharachchikumbura SSN, McKenzie EHC, Phookamsak R, Phukhamsakda C, Shenoy BD, Abdel-Wahab MA, Buyck B, Chen J, Chethana KWT, Singtripop C, Dai D-Q, Dai Y-C, Daranagama DA, Dissanayake AJ, Doilom M, D’souza MJ, Fan X-L, Goonasekara ID, Hirayama K, Hongsanan S, Jayasiri SC, Jayawardena RS, Karunarathna SC, Li W-J, Mapook A, Norphanphoun C, Pang K-L, Perera RH, Peršoh D, Pinruan U, Senanayake IC, Somrithipol S, Suetrong S, Tanaka K, Thambugala KM, Tian Q, Tibpromma S, Udayanga D, Wijayawardene NN, Wanasinghe D, Wisitrassameewong K, Zeng X-Y, Abdel-Aziz FA, Adamčík S, Bahkali AH, Boonyuen N, Bulgakov T, Callac P, Chomnunti P, Greiner K, Hashimoto A, Hofstetter V, Kang J-C, Lewis D, Li X-H, Liu X-Z, Liu Z-Y, Matsumura M, Mortimer PE, Rambold G, Randrianjohany E, Sato G, Sri-Indrasutdhi V, Tian C-M, Verbeken A, von Brackel W, Wang Y, Wen T-C, Xu J-C, Yan J-Y, Zhao R-L, Camporesi E. (2015) Fungal diversity notes 1–110: taxonomic and phylogenetic contributions to fungal species. Fungal Diversity 72: 1–197. 10.1007/s13225-015-0324-y [CrossRef] [Google Scholar]
  • Lucas MT, Webster J. (1967) Conidial states of British species of Leptosphaeria. Transactions of the British Mycological Society 50: 85–121. 10.1016/S0007-1536(67)80067-6 [CrossRef] [Google Scholar]
  • Lumbsch HT, Huhndorf SM. (2007) Outline of Ascomycota-2007. Myconet 13: 1–58. 10.3158/1557.1 [CrossRef] [Google Scholar]
  • Lumbsch HT, Huhndorf SM. (2010) Outline of Ascomycota-2009. Fieldiana Life Earth Sci 1: 1–60. [Google Scholar]
  • Maddison W, Maddison D. (1997–2016) Mesquite, version 3.11 (build 766) Copyright (c).
  • Maharachchikumbura SSN, Hyde KD, Jones EBG, McKenzie EHC, Huang S-K, Abdel-Wahab MA, Daranagama DA, Dayarathne M, D’souza MJ, Goonasekara ID, Hongsanan S, Jayawardena RS, Kirk PM, Konta S, Liu J-K, Liu Z-Y, Norphanphoun C, Pang K-L, Perera RH, Senanayake IC, Shang Q-J, Shenoy BD, Xiao Y-P, Bahkali AH, Kang J-C, Somrothipol S, Suetrong S, Wen T-C, Xu J-C. (2015) Towards a natural classification and backbone tree for Sordariomycetes. Fungal Diversity 72: 199–301. 10.1007/s13225-015-0331-z [CrossRef] [Google Scholar]
  • Mapook A, Boonmee S, Ariyawansa HA, Tibpromma S, Campesori E, Jones EG, Bahkali AH, Hyde KD. (2016) Taxonomic and phylogenetic placement of Nodulosphaeria Mycological Progress 15: 34. 10.1007/s11557-016-1176-x [CrossRef]
  • Miller MA, Pfeiffer W, Schwartz T. (2010) "Creating the CIPRES Science Gateway for inference of large phylogenetic trees" in Proceedings of the Gateway Computing Environments Workshop (GCE), 14 Nov. 2010, New Orleans, 1–8. 10.1109/GCE.2010.5676129 [CrossRef]
  • Miyake I. (1909) Studies on the parasitic fungi of rice in Japan. Botanical Magazine Tokyo 23: 85–97. 10.15281/jplantres1887.23.266_85 [CrossRef] [Google Scholar]
  • Miyake I, Hara K. (1910) Fungi on Japanese bamboos. Botanical Magazine Tokyo 24: 331–341. 10.15281/jplantres1887.24.286_331 [CrossRef] [Google Scholar]
  • Müller E. (1950) Die schweizerischen Arten der Gattung Leptosphaeria und ihrer Verwandten. Sydowia 4: 185–319. 10.3929/ethz-a-000096214 [CrossRef] [Google Scholar]
  • Munk A. (1957) Danish pyrenomycetes. A preliminary flora. Dansk Bot Arkiv, Kjøbenhavn 17: 1–491. [Google Scholar]
  • Nylander JAA. (2004) MrModeltest v2.2 Program distributed by the author. Evolutionary Biology Centre, Uppsala University, Uppsala.
  • Penzig AJO, Saccardo PA. (1897) Diagnoses fungorum novorum in insula Java collectorum. Ser. I. Malpighia. 11: 387–409. [Google Scholar]
  • Phillips AJL, Alves A, Pennycook SR, Johnston PR, Ramaley A, Akulov A, Crous PW. (2008) Resolving the phylogenetic and taxonomic status of dark-spored teleomorph genera in the Botryosphaeriaceae. Persoonia 21: 29–55. 10.3767/003158508X340742 [Europe PMC free article] [Abstract] [CrossRef] [Google Scholar]
  • Phookamsak R, Liu J-K, McKenzie EHC, Manamgoda DS, Ariyawansa H, Thambugala KM, Dai D-Q, Camporesi E, Chukeatirote E, Wijayawardene NN, Bahkali AH, Mortimer PE, Xu J-C, Hyde KD. (2014a) Revision of Phaeosphaeriaceae. Fungal Diversity 68: 159–238. 10.1007/s13225-014-0308-3 [CrossRef] [Google Scholar]
  • Phookamsak R, Liu J-K, Manamgoda DS, Chukeatirote E, Mortimer PE, Mckenzie EHC, Hyde KD. (2014b) The sexual state of Setophoma. Phytotaxa 176: 260–269. 10.11646/phytotaxa.176.1.25 [CrossRef] [Google Scholar]
  • Phookamsak R, Wanasinghe DN, Hongsanan S, Phukhamsakda C, Huang S-K, Tennakoon DS, Norphanphoun C, Camporesi E, Bulgakov TS, Promputtha I, Mortimer PE, Xu J-C, Hyde KD. (2017) Towards a natural classification of Ophiobolus and ophiobolus-like taxa; introducing three novel genera Ophiobolopsis, Paraophiobolus and Pseudoophiobolus in Phaeosphaeriaceae (Pleosporales). Fungal Diversity 87: 299–339. 10.1007/s13225-017-0393-1 [CrossRef] [Google Scholar]
  • Phukhamsakda C, Ariyawansa HA, Phookamsak R, Chomnunti P, Bulgakov TS, Yang J-B, Bhat DJ, Bahkali AH, Hyde KD. (2015) Muriphaeosphaeriagalatellae gen. et sp. nov. in Phaeosphaeriaceae (Pleosporales). Phytotaxa 227: 55–65. 10.11646/phytotaxa.227.1.6 [CrossRef] [Google Scholar]
  • Quaedvlieg W, Verkley GJM, Shin H-D, Barreto RW, Alfenas AC, Swart WJ, Groenewald JZ, Crous PW. (2013) Sizing up Septoria. Studies in Mycology 75: 307–390. 10.3114/sim0017 [Europe PMC free article] [Abstract] [CrossRef] [Google Scholar]
  • Rambaut A, Suchard M, Drummond AJ. (2013) Tracer v. 1.6. Institute of Evolutionary Biology, University of Edinburgh. Accessed May 2018. http://tree.bio.ed.ac.uk/software/tracer/
  • Rambaut A. (2016) FigTree v. 1.4.3. Accessed May 2018. http://tree.bio.ed.ac.uk/software/figtree/
  • Rehner S. (2001) Primers for elongation factor 1-α (EF1-α). http://ocid.NACSE.ORG/research/deephyphae/EF1primer.pdf
  • Ronquist F, Teslenko M, Mark PVD, Ayres DL, Darling A, Höhna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP. (2012) MrBayes 3.2: Efficient Bayesian Phylogenetic Inference and Model Choice Across a Large Model Space. Systematic Biology 61: 539–542. 10.1093/sysbio/sys029 [Europe PMC free article] [Abstract] [CrossRef] [Google Scholar]
  • Rossman AY, Crous PW, Hyde KD, Hawksworth D L, Aptroot A, Bezerra JL, Bhat JD, Boehm E, Braun U, Boonmee S, Camporesi E, Chomnunti P, Dai D-Q, D’souza MJ, Dissanayake A, Jones EBG, Groenewald JZ, Hernández-Restrepo M, Hongsanan S, Jaklitsch WM, Jayawardena R, Li W-J, Kirk PM, Lawrey JD, Mapook A, McKenzie EHC, Monkai J, Phillips AJL, Phookamsak R, Raja HA, Seifert KA, Senanayake I, Slippers B, Suetrong S, Taylor JE, Thambugala KM, Tian Q, Tibpromma S, Wanasinghe DN, Wijayawardene NN, Wikee S, Woudenberg JHC, Wu HX, Yan J-Y, Yang T, Zhang Y. (2015) Recommended names for pleomorphic genera in Dothideomycetes. IMA fungus 6: 507–523. 10.5598/imafungus.2015.06.02.14 [Europe PMC free article] [Abstract] [CrossRef] [Google Scholar]
  • Saccardo PA. (1883) Sylloge Pyrenomycetum, Vol. II. Sylloge Fungorum 2: 1–813. [Google Scholar]
  • Schoch CL, Shoemaker RA, Seifert KA, Hambleton S, Spatafora JW, Crous PW. (2006) A multigene phylogeny of the Dothideomycetes using four nuclear loci. Mycologia 98: 1041–1052. 10.1080/15572536.2006.11832632 [Abstract] [CrossRef] [Google Scholar]
  • Schoch CL, Crous PW, Groenewald JZ, Boehm EWA, Burgess TI, de-Gruyter J, de Hoog GS, Dixon LJ, Grube M, Gueidan C, Harada Y, Hatakeyama S, Hirayama K, Hosoya T, Huhndorf SM, Hyde KD, Jones EBG, Kohlmeyer J, Kruys Å, Li Y-M, Lücking R, Lumbsch HT, Marvanová L, Mbatchou JS, Mcvay AH, Miller AN, Mugambi GK, Muggia L, Nelsen MP, Nelson P, Owensby CA, Phillips AJL, Phongpaichit S, Pointing SB, Pujade-Renaud V, Raja HA, Rivas PE, Robbertse B, Ruibal C, Sakayaroj J, Sano T, Selbmann L, Shearer CA, Shirouzu T, Slippers B, Suetrong S, Tanaka K, Volkmann-Kohlmeyer B, Wingfield MJ, Wood AR, Woudenberg JHC, Yonezawa H, Zhang Y, Spatafora JW. (2009) A class-wide phylogenetic assessment of Dothideomycetes. Studies in Mycology 64: 1–15. 10.3114/sim.2009.64.01 [Europe PMC free article] [Abstract] [CrossRef] [Google Scholar]
  • Schoch CL, Seifert KA, Huhndorf S, Robert V, Spouge JL, Levesque CA, Chen W. (2012) Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. PNAS 109: 6241–6246. 10.1073/pnas.1117018109 [Europe PMC free article] [Abstract] [CrossRef] [Google Scholar]
  • Senanayake IC, Jeewon R, Camporesi E, Hyde KD, Zeng Y-J, Tian S-L, Xie N. (2018) Sulcisporasupratumida sp. nov. (Phaeosphaeriaceae, Pleosporales) on Anthoxanthumodoratum from Italy. MycoKeys 38: 35–46. 10.3897/mycokeys.38.27729 [Europe PMC free article] [Abstract] [CrossRef] [Google Scholar]
  • Shearer CA, Crane JL, Chandra Reddy KR. (1990) Studies in Leptosphaeria. Lectotypification of Sphaeriadoliolum. Mycologia 82: 496–500. 10.1080/00275514.1990.12025913 [CrossRef] [Google Scholar]
  • Shoemaker RA. (1984) Canadian and some extralimital Leptosphaeria species. Canadian Journal of Botany 62: 2688–2729. 10.1139/b84-366 [CrossRef] [Google Scholar]
  • Shoemaker RA, Babcock CE. (1989) Phaeosphaeria. Canadian Journal of Botany 67: 1500–1599. 10.1139/b89-199 [CrossRef] [Google Scholar]
  • Spatafora JW, Sung G-H, Johnson D, Hesse C, O’Rourke B, Serdani M, Spotts R, Lutzoni F, Hofstetter V, Miadlikowska J, Reeb V, Gueidan C, Fraker E, Lumbsch T, Lücking R, Schmitt I, Hosaka K, Aptroot A, Roux C, Miller AN, Geiser DM, Hafellner J, Hestmark G, Arnold AE, Büdel B, Rauhut A, Hewitt D, Untereiner WA, Cole MS, Scheidegger C, Schultz M, Sipman H, Schoch CL. (2006) A five-gene phylogeny of Pezizomycotina. Mycologia 98: 1018–1028. 10.1080/15572536.2006.11832630 [Abstract] [CrossRef] [Google Scholar]
  • Stamatakis A. (2014) RAxML Version 8: A tool for Phylogenetic Analysis and Post-Analysis of Large Phylogenies. Bioinformatics 30: 1312–1313. 10.1093/bioinformatics/btu033 [Europe PMC free article] [Abstract] [CrossRef] [Google Scholar]
  • Sun B-D, Chen A-J, Gao W-W, Zhou Y-G, Ghazanfar MU, Wakil AW. (2013) A new endophytic ascomycete associated with the medicinal plant, achyranthes Bidentatablume (Amaranthaceae). Pakistan Journal of Botany 45: 319–323. 10.5897/AJMR12.1461 [CrossRef] [Google Scholar]
  • Swofford DL. (2002) PAUP: phylogenetic analysis using parsimony, version 4.0 b10. Sinauer Associates, Sunderland.
  • Tanaka K, Hirayama K, Yonezawa H, Sato G, Toriyabe A, Kudo H, Hashimoto A, Matsumura M, Harada Y, Kurihara Y, Shirouzu T, Hosoya T. (2015) Revision of the Massarineae (Pleosporales, Dothideomycetes). Studies in Mycology 82: 75–136. 10.1016/j.simyco.2015.10.002 [Europe PMC free article] [Abstract] [CrossRef] [Google Scholar]
  • Tang C-X, Xu E-X, Tang Y, Wang P-Y, Zhang H-M. (2007) Adaptability of giant panda to a new habitat in Bifengxia, Ya’an, Sichuan. Chinese Journal of Applied and Environmental Biology 13: 686–690. [Google Scholar]
  • Taylor JE, Hyde KD. (2003) Microfungi of tropical and temperate palms. Fungal Diversity Research Series 12: 1–459. [Google Scholar]
  • Tennakoon DS, Hyde KD, Phookamsak R, Wanasinghe DN, Camporesi E, Promputtha I. (2016) Taxonomy and Phylogeny of Juncaceicola gen. nov. (Phaeosphaeriaceae, Pleosporinae, Pleosporales). Cryptogamie, Mycologie 37: 135–156. 10.7872/crym/v37.iss2.2016.135 [CrossRef] [Google Scholar]
  • Thambugala KM, Camporesi E, Ariyawansa HA, Phookamsak R, Liu Z-Y, Hyde KD. (2014) Phylogeny and morphology of Phaeosphaeriopsistriseptata sp. nov., and Phaeosphaeriopsisglaucopunctata. Phytotaxa 176: 238–250. 10.11646/phytotaxa.176.1.23 [CrossRef] [Google Scholar]
  • Thambugala KM, Wanasinghe DN, Phillips AJL, Camporesi E, Bulgakov TS, Phukhamsakda C, Ariyawansa HA, Goonasekara ID, Phookamsak R, Dissanayake A, Tennakoon DS, Tibpromma S, Chen Y-Y, Liu Z-Y, Hyde KD. (2017) Mycosphere notes 1-50: grass (Poaceae) inhabiting Dothideomycetes. Mycosphere 8: 697–796. 10.5943/mycosphere/8/4/13 [CrossRef] [Google Scholar]
  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. (1997) The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research 24: 4876–4882. 10.1093/nar/25.24.4876 [Europe PMC free article] [Abstract] [CrossRef] [Google Scholar]
  • Tibpromma S, Promputtha I, Phookamsak R, Boonmee S, Camporesi E, Yang J-B, Bhakali AH, McKenzie EH, Hyde KD. (2015) Phylogeny and morphology of Premilcurensis gen. nov. (Pleosporales) from stems of Senecio in Italy. Phytotaxa 236: 40–52. 10.11646/phytotaxa.236.1.3 [CrossRef] [Google Scholar]
  • Tibpromma S, Liu JK, Promputtha I, Camporesi E, Bhakali AH, Hyde KD, Boonmee S. (2016a) Ophiosimulanstanaceti gen. et sp. nov. (Phaeosphaeriaceae) on Tanacetum sp. (Asteraceae) from Italy. Mycological Progress 15: 46. 10.1007/s11557-016-1187-7 [CrossRef]
  • Tibpromma S, Boonmee S, Wijayawardene NN, Maharachchikumbura SSN, Mckenzie EHC, Bahkali AH, Gareth JEB, Hyde KD, Promputtha I. (2016b) The holomorph of Parasarcopodium (Stachybotryaceae), introducing P.pandanicola sp. nov. on Pandanus sp. Phytotaxa 266: 250–260. 10.11646/phytotaxa.266.4.2 [CrossRef] [Google Scholar]
  • Tibpromma S, Hyde KD, Jeewon R, Maharachchikumbura SSN, Liu J-K, Bhat DJ, Jones EBG, McKenzie EHC, Camporesi E, Bulgakov TS, Doilom M, Santiago ALCMA, Das K, Manimohan P, Gibertoni TB, Lim YW, Ekanayaka AH, Thongbai B, Lee HB, Yang J-B, Kirk PM, Sysouphanthong P, Singh SK, Boonmee S, Dong W, Raj KNA, Latha KPD, Phookamsak R, Phukhamsakda C, Konta S, Jayasiri SC, Norphanphoun C, Tennakoon DS, Li J, Dayarathne MC, Perera RH, Xiao Y, Wanasinghe DN, Senanayake IC, Goonasekara ID, de Silva NI, Mapook A, Jayawardena RS, Dissanayake AJ, Manawasinghe IS, Chethana KW T, Luo Z-L, Hapuarachchi KK, Baghela A, Soares AM, Vizzini A, Meiras-Ottoni A, Mešić A, Dutta AK, de Souza CAF, Richter C, Lin C-G, Chakrabarty D, Daranagama DA, Lima DX, Chakraborty D, Ercole E, Wu F, Simonini G, Vasquez G, da Silva GA, Plautz Jr. HL, Ariyawansa HA, Lee H, Kušan I, Song J, Sun J, Karmakar J, Hu K, Semwal KC, Thambugala KM, Voigt K, Acharya K, Rajeshkumar KC, Ryvarden L, Jadan M, Hosen MI, Mikšík M, Samarakoon MC, Wijayawardene NN, Kim NK, Matočec N, Singh PN, Tian Q, Bhatt RP, de Oliveira RJV, Tulloss RE, Aamir S, Kaewchai S, Marathe SD, Khan S, Hongsanan S, Adhikari S, Mehmood T, Bandyopadhyay TK, Svetasheva TY, Nguyen TTT, Antonín V, Li W-J, Wang Y, Indoliya Y, Tkalčec Z, Elgorban AM, Bahkali AH, Tang AMC, Su H-Y, Zhang H, Promputtha I, Luangsa-ard J, Xu J-C, Yan J-Y, Kang J-C, Stadler M, Mortimer PE, Chomnunti P, Zhao Q, Phillips AJL, Nontachaiyapoom S, Wen T-C, Karunarathna SC. (2017) Fungal diversity notes 491–602: taxonomic and phylogenetic contributions to fungal taxa. Fungal Diversity 83: 1–261. 10.1007/s13225-017-0378-0 [CrossRef] [Google Scholar]
  • Trakunyingcharoen T, Lombard L, Groenewald JZ, Cheewangkoon R, To-anun C, Alfenas AC, Crous PW. (2014) Mycoparasitic species of Sphaerellopsis, and allied lichenicolous and other genera. IMA Fungus 5: 391–414. 10.5598/imafungus.2014.05.02.05 [Europe PMC free article] [Abstract] [CrossRef] [Google Scholar]
  • Valenzuela-Lopez N, Sutton DA, Cano-Lira JF, Paredes K, Wiederhold N, Guarro J, Stchigel AM. (2017) Coelomycetous fungi in the clinical setting: morphological convergence and cryptic diversity. Journal of Clinical Microbiology 55: 552–567. 10.1128/JCM.02221-16 [Europe PMC free article] [Abstract] [CrossRef] [Google Scholar]
  • Verkley GJM, Dukik K, Renfurm R, Göker M, Stielow JB. (2014) Novel genera and species of coniothyrium-like fungi in Montagnulaceae (Ascomycota). Persoonia 32: 25–51. 10.3767/003158514X679191 [Europe PMC free article] [Abstract] [CrossRef] [Google Scholar]
  • Vilgalys R, Hester M. (1990) Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. Journal of Bacteriology 172: 4238–4246. 10.1128/jb.172.8.4238-4246.1990 [Europe PMC free article] [Abstract] [CrossRef] [Google Scholar]
  • Vijaykrishna D, Mostert L, Jeewon R, Gams W, Hyde KD, Crous PW. (2004) Pleurostomophora, an anamorph of Pleurostoma (Calosphaeriales), a new anamorph genus morphologically similar to Phialophora. Studies in Mycology 50: 387–395. [Google Scholar]
  • Wanasinghe DN, Jones EBG, Camporesi E, Boonmee S, Karunarathna SC, Thines M, Mortimer PE, Xu J-C, Hyde KD. (2014) Dematiopleosporamariae gen. sp. nov., from Ononisspinosa in Italy. Cryptogamie, Mycologie 35: 105–117. 10.7872/crym.v35.iss2.2014.105 [CrossRef] [Google Scholar]
  • Wanasinghe DN, Hyde KD, Jeewon R, Crous PW, Wijayawardene NN, Jones EBG, Bhat DJ, Phillips AJL, Groenewald JZ, Dayarathne MC, Phukhamsakda C, Thambugala KM, Bulgakov TS, Camporesi E, Gafforov YS, Mortimer PE, Karunarathna SC. (2017) Phylogenetic revision of Camarosporium (Pleosporineae, Dothideomycetes) and allied genera. Studies in Mycology 87: 207–256. 10.1016/j.simyco.2017.08.001 [Europe PMC free article] [Abstract] [CrossRef] [Google Scholar]
  • Wanasinghe DN, Phukhamsakda C, Hyde KD, Jeewon R, Lee HB, Jones EBG, Tibpromma S, Tennakoon DS, Dissanayake AJ, Jayasiri SC, Gafforov Y, Camporesi E, Bulgakov TS, Ekanayake AH, Perera RH, Samarakoon MC, Goonasekara ID, Mapook A, Li W-J, Senanayake IC, Li J-F, Norphanphoun C, Doilom M, Bahkali AH, Xu J-C, Mortimer PE, Tibell L, Tibell S, Karunarathna SC. (2018) Fungal diversity notes 709–839: taxonomic and phylogenetic contributions to fungal taxa with an emphasis on fungi on Rosaceae. Fungal Diversity 89: 1–236. 10.1007/s13225-018-0395-7 [CrossRef] [Google Scholar]
  • Wang H-R, Zhong H-J, Hou R, Ayala J, Liu G-M, Yuan S-B, Yan Z, Zhang W-P, Liu Y-L, Cai K-L, Cai Z-G, Huang H, Zhang Z-H, Wu D. (2017) A diet diverse in bamboo parts is important for giant panda (Ailuropodamelanoleuca) metabolism and health. Scientific reports 7: 3377. 10.1038/s41598-017-03216-8 [Europe PMC free article] [Abstract] [CrossRef]
  • White TJ, Bruns T, Lee S, Taylor J. (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (Eds) PCR protocols: a guide to methods and applications. Academic, San Diego, pp 315–322.
  • Wijayawardene NN, Camporesi E, Song Y, Dai D-Q, Bhat DJ, Mckenzie EHC, Chukeatirote E, Mel'Nik VA, Wang Y, Hyde KD. (2013) Multi-Gene analyses reveal taxonomic placement of Scolicosporiumminkeviciusii in Phaeosphaeriaceae (Pleosporales). Cryptogamie, Mycologie 34: 357–366. 10.7872/crym.v34.iss2.2013.357 [CrossRef] [Google Scholar]
  • Wijayawardene NN, Crous PW, Kirk PM, Hawksworth DL, Boonmee S, Braun U, Chomnunti P, Dai D-Q, D’souza MJ, Diederich P, Dissanayake A, Doilom M, Hongsanan S, Jones EBG, Groenewald JZ, Jayawardena R, Lawrey JD, Liu J-K, Lücking R, Madrid H, Manamgoda DS, Muggia L, Nelsen MP, Phookamsak R, Suetrong S, Tanaka K, Thambugala KM, Wikee S, Zhang Y, Aptroot A, Ariyawansa HA, Bahkali AH, Bhat JD, Gueidan C, de Hoog GS, Knudsen K, Mckenzie EHC, Miller AN, Mortimer PE, Wanasinghe DN, Phillips AJL, Raja HA, Slippers B, Shivas RS, Taylor JE, Wang Y, Woudenberg JHC, Piątek M, Cai L, Jaklitsch WM, Hyde KD. (2014) Naming and outline of Dothideomycetes-2014 including proposals for the protection or suppression of generic names. Fungal Diversity 69: 1–55. 10.1007/s13225-014-0309-2 [Europe PMC free article] [Abstract] [CrossRef] [Google Scholar]
  • Wijayawardene NN, Hyde KD, Wanasinghe DN, Papizadeh M, Goonasekara ID, Camporesi E, Bhat DJ, McKenzie EHC, Phillips AJL, Diederich P, Tanaka K, Li W-J, Tangthirasunun N, Phookamsak R, Dai D-Q, Dissanayake AJ, Weerakoon G, Maharachchikumbura SSN, Hashimoto A, Matsumura M, Bahkali AH, Wang Y. (2016) Taxonomy and phylogeny of dematiaceous coelomycetes. Fungal Diversity 77: 1–316. 10.1007/s13225-016-0360-2 [CrossRef] [Google Scholar]
  • Wijayawardene NN, Hyde KD, Tibpromma S, Wanasinghe DN, Thambugala KM, Tian Q, Wang Y. (2017) Towards incorporating asexual fungi in a natural classification: checklist and notes 2012–2016. Mycosphere 8: 1457–1554. 10.5943/mycosphere/8/9/10 [CrossRef] [Google Scholar]
  • Wijayawardene NN, Hyde KD, Lumbsch T, Liu J-K, Maharachchikumbura SSN, Ekanayaka AH, Tian Q, Phookamsak R. (2018) Outline of Ascomycota – 2017. Fungal Diversity 88: 167–263. 10.1007/s13225-018-0394-8 [CrossRef] [Google Scholar]
  • Woudenberg JHC, Groenewald JZ, Binder M, Crous PW. (2013) Alternaria redefined. Studies in Mycology 75: 171–212. 10.3114/sim0015 [Europe PMC free article] [Abstract] [CrossRef] [Google Scholar]
  • Yang C-L, Xu X-L, Zhang Z-G, Liu Y-G. (2017) Lirulasichuanensis sp. nov. on Picealikiangensisvar.rubescens from Sichuan, China. Mycotaxon 132: 839–847. 10.5248/132.839 [CrossRef] [Google Scholar]
  • Yi T-P. (1997) Bamboos Flora of Sichuan. China Forestry Publishing House 1–358.
  • Zeng X-Y, Jeewon R, Wen T-C, Hongsanan S, Boonmee S, Hyde KD. (2018) Simplified and efficient DNA extraction protocol for Meliolaceae specimens. Mycological Progress 17: 403–415. 10.1007/s11557-017-1361-6 [CrossRef] [Google Scholar]
  • Zhang Y, Schoch CL, Fournier J, Crous PW, de Gruyter J, Woudenberg JHC, Hirayama K, Tanaka K, Pointing SB, Spatafora JW, Hyde KD. (2009) Multi-locus phylogeny of Pleosporales: a taxonomic, ecological and evolutionary re-evaluation. Studied in Mycology 64: 85–102. 10.3114/sim.2009.64.04 [Europe PMC free article] [Abstract] [CrossRef] [Google Scholar]
  • Zhang Y, Crous PW, Schoch CL, Hyde KD. (2012) Pleosporales. Fungal Diversity 53: 1–221. 10.1007/s13225-011-0117-x [Europe PMC free article] [Abstract] [CrossRef] [Google Scholar]
  • Zhang Z-F, Liu F, Zhou X, Liu X-Z, Liu S-J, Cai L. (2017) Culturable mycobiota from Karst caves in China, with descriptions of 20 new species. Persoonia 39: 1–31. 10.3767/persoonia.2017.39.01 [Europe PMC free article] [Abstract] [CrossRef] [Google Scholar]

Articles from MycoKeys are provided here courtesy of Pensoft Publishers

Citations & impact 


Impact metrics

Jump to Citations
Jump to Data

Citations of article over time

Alternative metrics

Altmetric item for https://www.altmetric.com/details/55685399
Altmetric
Discover the attention surrounding your research
https://www.altmetric.com/details/55685399

Smart citations by scite.ai
Smart citations by scite.ai include citation statements extracted from the full text of the citing article. The number of the statements may be higher than the number of citations provided by EuropePMC if one paper cites another multiple times or lower if scite has not yet processed some of the citing articles.
Explore citation contexts and check if this article has been supported or disputed.
https://scite.ai/reports/10.3897/mycokeys.46.32458

Supporting
Mentioning
Contrasting
0
7
0

Article citations

Data 


Data behind the article

This data has been text mined from the article, or deposited into data resources.

Similar Articles 


To arrive at the top five similar articles we use a word-weighted algorithm to compare words from the Title and Abstract of each citation.