Skip to main content

The Chromatiaceae

  • SECTION 3.3 Gamma Subclass
  • Reference work entry
  • First Online:
The Prokaryotes

Introduction

The Chromatiaceae are γ-Proteobacteria (Woese et al., 1985) and representatives of the phototrophic purple bacteria. They are also referred to as “purple sulfur bacteria” (together with the Ectothiorhodospiraceae) and typically grow under anoxic conditions in the light using as photosynthetic electron donor, sulfide, which is oxidized to sulfate via intermediate accumulation of elemental sulfur inside the cells. A number of species also can grow under chemotrophic conditions in the dark, either autotrophically or heterotrophically using oxygen as terminal electron acceptor in respiratory processes. Phototrophic growth, photosynthetic pigment synthesis, and internal membrane formation are strictly regulated by oxygen and become derepressed at low oxygen tension.

Phylogeny

The family Chromatiaceae comprises physiologically similar species and genera of the γ-Proteobacteria that carry out anoxygenic photosynthesis (Fowler et al., 1984; Guyoneaud et al., 1998; Imhoff et al.,...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 700.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literature Cited

  • Anagnostides, K., and J. Overbeck. 1966 Methanoxydierer und hypolimnische Schwefelbakterien: Studien zur ökologischen Biocönotik der Gewässermikroorganismen Ber. Deutsch. Botanisch. Gesellsch. 79 163–174

    Google Scholar 

  • Bavendamm, W. 1924 Die farblosen und roten Schwefelbakterien des Süß-und Salzwassers G. Fischer Jena Germany

    Google Scholar 

  • Biebl, H., and G. Drews. 1969 Das in-vivo Spektrum als taxonomisches Merkmal bei Untersuchungen zur Verbreitung von Athiorhodaceae Zentralbl. Bakteriol. Parasitenkde. Infektionskr. Hyg. Abt. II Orig. 123 425–452

    CAS  Google Scholar 

  • Biebl, H., and N. Pfennig. 1978 Growth yields of green sulfur bacteria in mixed cultures with sulfur and sulfate reducing bacteria Arch. Microbiol. 117 9–16

    CAS  Google Scholar 

  • Biebl, H., and N. Pfennig. 1979 CO2-fixation by anaerobic phototrophic bacteria in lakes: A review Arch. Hydrobiol. 12 18–58

    Google Scholar 

  • Blankenship, R. E., M. T. Madigan, and C. E. Bauer (Eds.). 1995 Anoxygenic Photosynthetic Bacteria Kluwer Academic Publishers Dordrecht The Netherlands

    Google Scholar 

  • Bolliger, R., H. Zürrer, and R. Bachofen. 1985 Photoproduction of molecular hydrogen from waste of a sugar refinery by photosynthetic bacteria Appl. Microbiol. Biotech. 23 147–151

    CAS  Google Scholar 

  • Bosshard, P. P., Y. Santini, D. Grüter, R. Stettler, and R. Bachofen. 2000 Bacterial diversity and community composition in the chemocline of the meromictic alpine Lake Cadagno as revealed by 16S rDNA analysis FEMS Microbiol. Ecol. 31 173–182

    CAS  PubMed  Google Scholar 

  • Breuker, E. 1964 Die Verwertung von intrazellulärem Schwefel durch Chromatium vinosum im aeroben und anaeroben Licht-und Dunkelstoffwechsel Zentralbl. Bakteriol. Parasitenkd. Hyg. Abt. 2(118) 561–568

    Google Scholar 

  • Brown, C. M., and R. A. Herbert. 1977 Ammonia assimilation in purple and green sulfur bacteria FEMS Lett. 1 39–42

    CAS  Google Scholar 

  • Brune, D. C. 1989 Sulfur oxidation by phototrophic bacteria Biochim. Biophys. Acta 975 189–221

    CAS  PubMed  Google Scholar 

  • Brune, D. C. 1995a Isolation and characterization of sulfur globule proteins from Chromatium vinosum and Thiocapsa roseopersicina Arch. Microbiol. 163 391–399

    CAS  PubMed  Google Scholar 

  • Brune, D. C. 1995b Sulfur compounds as photosynthetic electron donors In: R. E. Blankenship, M. T. Madigan, and C. E. Bauer (Eds.) Anoxygenic Photosynthetic Bacteria Kluwer Academic Publishers Dordrecht The Netherlands 847–870

    Google Scholar 

  • Bryantseva, I. A., V. M. Gorlenko, E. I. Kompantseva, J. F. Imhoff, J. Süling, and L. Mityushina. 1999 Thiorhodospira sibirica gen.nov., sp. nov., a new alkaliphilic purple sulfur bacterium from a Siberian soda lake Int. J. Syst. Bacteriol. 49 697–703

    PubMed  Google Scholar 

  • Bryantseva, I. A., V. M. Gorlenko, E. I. Kompantseva, and J. F. Imhoff. 2000 Thioalkalicoccus limnaeus gen. nov., sp. nov., a new alkaliphilic purple sulfur bacterium with bacteriochlorophyll b Int. J. Syst. Bacteriol. 50 2157–2163

    Google Scholar 

  • Buder, J. 1915 Chloronium mirabile Ber. Deutsch. Botanisch. Gesellsch. 31 80–97

    Google Scholar 

  • Caldwell, D. E., and J. M. Tiedje. 1975 A morphological study of anaerobic bacteria from the hypolimnia of two Michigan lakes Can. J. Microbiol. 21 362–376

    CAS  PubMed  Google Scholar 

  • Caumette, P. 1984 Distribution and characterization of phototrophic bacteria isolated from the water of Bietri Bay (Ebrie Lagoon, Ivory Coast) Can. J. Microbiol. 30 273–284

    CAS  Google Scholar 

  • Caumette, P. 1986 Phototrophic sulfur bacteria and sulfate-reducing bacteria causing red waters in a shallow brackish coastal lagoon Prévost Lagoon France FEMS Microbiol. Ecol. 38 113–124

    Google Scholar 

  • Caumette, P., R. Baulaigue, and R. Matheron. 1988 Characterization of Chromatium salexigens sp. nov., a halophilic Chromatiaceae isolated from Mediterranean salinas Syst. Appl. Microbiol. 10 284–292

    Google Scholar 

  • Caumette, P., R. Baulaigue, and R. Matheron. 1991 Thiocapsa halophila sp. nov., a new halophilic phototrophic purple sulfur bacterium Arch. Microbiol. 155 170–176

    Google Scholar 

  • Caumette, P. 1993 Ecology and physiology of phototrophic bacteria and sulfate-reducing bacteria in marine salterns Experientia 49 473–481

    CAS  Google Scholar 

  • Caumette, P., R. Matheron, N. Raymond, and J. C. Relexans. 1994 Microbial mats in the hypersaline ponds of Mediterranean salterns (Salins-de-Giraud, France) FEMS Microbiol. Ecol. 13 273–286

    CAS  Google Scholar 

  • Caumette, P., J. F. Imhoff, J. Süling, and R. Matheron. 1997 Chromatium glycolicum sp. nov., a moderately halophilic purple sulfur bacterium that uses glycolate as substrate Arch. Microbiol. 167 11–18

    CAS  PubMed  Google Scholar 

  • Cerruti, A. 1938 Le condizioni oceanografiche e biologiche del Mar Piccolo di Taranto durante l’gosto del 1938 Bollettino di Pesca. Piscicoltura ed Idrobiologia, 14 711–751

    Google Scholar 

  • Clayton, R. K., and W. R. Sistrom (Eds.). 1978 The Photosynthetic Bacteria Plenum Press New York NY

    Google Scholar 

  • Cohen, Y., W. E. Krumbein, and M. Shilo. 1977 Solar lake (Sinai). 2: Distribution of photosynthetic microorganisms and primary production Limnol. Oceanogr. 22 609–620

    CAS  Google Scholar 

  • Cohn, F. 1875 Untersuchungen über Bakterien: II Beitr. Biol. Pflanz. 1 141–207

    Google Scholar 

  • Cooper, R. C. 1963 Photosynthetic bacteria in waste treatment Devel. Ind. Microbiol. 4 95–103

    CAS  Google Scholar 

  • Cooper, R. C., W. J. Oswald, and J. C. Bronson. 1965 Treatment of organic industrial wastes by lagooning In: Proceedings of the 20th Industrial Waste Conference, Engineering Bulletin Purdue University Engineering Extension 118 351–363

    Google Scholar 

  • Cooper, D. E., M. B. Rands, and C.-P. Woo. 1975 Sulfide reduction in fellmongery effluent by red sulphur bacteria J. Water Poll. Control Fed. 47 2088–2100

    CAS  Google Scholar 

  • Cviic, V. 1955 Red water in the lake “Malo Jezero” (island of Mljet) Acta Adriatica 6 1–15

    Google Scholar 

  • Cviic, V. 1960 Apparition d’eau rouge dans le Veliko Jezero (Ile de Mljet) Rapports et Procès-Verbeaux des Réunions de la Commission Internationale de l’Exploration Scientifique de la Mer Mediterranée 15 79–81

    Google Scholar 

  • Czeczuga, B. 1968a Primary production of the purple sulphuric bacteria Thiopedia rosea Winogr. (Thiorhodaceae) Photosynthetica 2 161–166

    Google Scholar 

  • Dahl, C., G. Rákhely, A. S. Pott-Sperling, B. Fodor, M. Takáks, A. S. Tóth, M. Kraeling, K. Gyórfi, A. Kovács, J. Tusz, and K. L. Kovács. 1999 Genes involved in hydrogen and sulfur metabolism in phototrophic sulfur bacteria FEMS Microbiol. Lett. 180 317–324

    CAS  PubMed  Google Scholar 

  • Davidson, M. W., G. O. Gray, and D. B. Knaff. 1985 Interaction of Chromatium vinosum flavocytochrome c-552 with cytochromes c studied by affinity chromatography FEMS Lett. 187 155–159

    CAS  Google Scholar 

  • De Wit, R., and H. Van Gemerden. 1990a Growth and metabolism of the purple sulfur bacterium Thiocapsa roseopersicina under combined light/dark and oxic/anoxic regimens Arch. Microbiol. 154 459–464

    Google Scholar 

  • De Wit, R., and H. Van Gemerden. 1990b Growth of the phototrophic sulfur bacterium Thiocapsa roseopersicina under oxic/anoxic regimens in the light FEMS Microbiol. Ecol. 73 69–76

    Google Scholar 

  • Dilling, W., W. Liesack, and N. Pfennig. 1995 Rhabdochromatium marinum gen. nom. rev., sp. nov., a purple sulfur bacterium from a salt marsh microbial mat Arch. Microbiol. 164 125–131

    CAS  Google Scholar 

  • Dolata, M. M., J. J. van Beeumen, R. P. Ambler, T. E. Meyer, and M. A. Cusanovich. 1993 Nucleotide sequence of the heme subunit of flavocytochtome c from the purple phototrophic bacterium, Chromatium vinosum: A 2.6-kilobase pair DNA fragment contains two multiheme cytochromes, a flavoprotein and a homolog of human ankyrin J. Biol. Chem. 268 14426–14431

    CAS  PubMed  Google Scholar 

  • Drews, G. 1989 Energy transduction in phototrophic bacteria In: H. G. Schlegel and B. Bowien (Eds.) Autotrophic Bacteria Springer-Verlag New York NY 461–480

    Google Scholar 

  • Drews, G., and J. F. Imhoff. 1991 Phototrophic purple bacteria In: J. M. Shively and L. L. Barton (Eds.) Variations in Autotrophic Life Academic Press London UK 51–97

    Google Scholar 

  • Düggeli, M. 1924 Hydrobiologische Untersuchungen im Pioragebiet. Bakteriologische Untersuchungen am Ritomsee Schweiz. Zeitschr. Hydrobiol. 2 65–205

    Google Scholar 

  • Ehrenberg, C. G. 1838 Die Infusionsthierchen als vollkommene Organismen: Ein Blick in das tiefere organische Leben der Natur. L. Voss Leipzig Switzerland i–xvii and 1–547

    Google Scholar 

  • Ehrenreich, A., and F. Widdel. 1994 Anaerobic oxidation of ferrous iron by purple bacteria, a new type of phototrophic metabolism Appl. Environ. Microbiol. 60 4517–4526

    CAS  PubMed  PubMed Central  Google Scholar 

  • Eichler, B., and N. Pfennig. 1986 Characterization of a new platelet-forming purple sulfur bacterium, Amoebobacter pedioformis sp. nov Arch. Microbiol. 146 295–300

    CAS  Google Scholar 

  • Eichler, B., and N. Pfennig. 1988 A new green sulphur bacterium from a freshwater pond In: J. M. Olson, J. G. Ormerod, J. Amesz, E. Stackebrandt, and H. G. Trüper (Eds.) Green Photosynthetic Bacteria Plenum Publishing New York NY 233–235

    Google Scholar 

  • Eimhjellen, K. E., H. Steensland, and J. Traetteberg. 1967 A Thiococcus sp. nov. gen., its pigments and internal membrane system Arch. Microbiol. 59 82–92

    CAS  Google Scholar 

  • Eimhjellen, K. E. 1970 Thiocapsa pfennigii sp. nov.: A new species of the phototrophic sulfur bacteria Arch. Microbiol. 73 193–194

    CAS  Google Scholar 

  • Filippi, G. M., and J. W. Vennes. 1971 Biotin production and utilization in a sewage treatment lagoon Appl. Microbiol. 22 49–54

    Google Scholar 

  • Folt, C. L., M. J. Wevers, M. P. Yoder-Williams, and R. P. Howmiller. 1989 Field studies comparing growth and viability of a population of phototrophic bacteria Appl. Environ. Microbiol. 55 78–85

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fowler, V. J., N. Pfennig, W. Schubert, and E. Stackebrandt. 1984 Towards a phylogeny of phototrophic purple sulfur bacteria: 16S rRNA oligonucleotide cataloguing of 11 species of Chromatiaceae Arch. Microbiol. 139 382–387

    CAS  Google Scholar 

  • Fuller, R. C., R. M. Smillie, E. C. Sisler, and H. L. Kornberg. 1961 Carbon metabolism in Chromatium J. Biol. Chem. 236 2140–2149

    CAS  PubMed  Google Scholar 

  • Gaffron, H. 1935 über die Kohlensäureassimilation der roten Schwefelbakterien: II Biochem. Zeitschr. 279 1–33

    CAS  Google Scholar 

  • Gasol, J. M., R. Guerrero, and C. Pedros-Alio. 1991 Seasonal variations in size structure and prokaryotic dominance in sulfurous Lake Ciso Limnol. Oceanogr. 36 860–872

    Google Scholar 

  • Genovese, S. 1963 The distribution of the H2S in the lake of Faro (Messina) with particular regard to the presence of “red water” In: C. H. Oppenheimer (Ed.) Symposium on Marine Microorganisms Charles C. Thomas Springfield IL 194–204

    Google Scholar 

  • Giesberger, G. 1947 Some observations on the culture, physiology and morphology of some brown-red Rhodospirillum-species Ant. v. Leeuwenhoek 13 135–148

    Google Scholar 

  • Glaeser, J., and J. Overmann. 1999 Selective enrichment and characterisation of Roseospirillum parvum, gen. nov. and sp. nov., a new purple nonsulfur bacterium with unusual light absorption properties Arch. Microbiol. 171 405–416

    CAS  PubMed  Google Scholar 

  • Gloyna, E. F. 1971 Waste stabilization ponds World Health Organization Monograph Series No. 60 World Health Organization Geneva Switzerland

    Google Scholar 

  • Gogotov, I. N. 1978 Relationships in hydrogen metabolism between hydrogenase and nitrogenase in phototrophic bacteria Biochimie 60 267–275

    CAS  PubMed  Google Scholar 

  • Gogotov, I. N. 1984 Hydrogenase of purple bacteria: properties and regulation of synthesis Arch. Microbiol. 140 86–90

    CAS  Google Scholar 

  • Gogotov, I. N. 1986 Hydrogenases of phototrophic microorganisms Biochimie 68 181–187

    CAS  PubMed  Google Scholar 

  • Gorlenko, V. M. 1974 Oxidation of thiosulfate by Amoebobacter roseus in the darkness under microaerobic conditions Microbiologiya 43 729–731

    CAS  Google Scholar 

  • Gorlenko, V. M., M. B. Vainstein, and V. I. Kachalkin. 1978 Microbiological characteristic of Lake Mogilnoye Arch. Hydrobiol. 81 475

    CAS  Google Scholar 

  • Gorlenko, V. M., G. A. Dubinina, and S. I. Kusnetsov. 1983 The ecology of aquatic microorganisms [monograph] In: W. Ohle (Ed.) Binnengewässer Schweizerbartsche Verlagsbuchhandlung Stuttgart Germany 254.

    Google Scholar 

  • Guerrero, R., C. Pedros-Alío, I. Esteve, and J. Mas. 1987 Communities of phototrophic sulfur bacteria in lakes of the Spanish Mediterranean region Acta Academiae Abonensis 47 125–151

    Google Scholar 

  • Guyoneaud, R., R. Matheron, W. Liesack, J. F. Imhoff, and P. Caumette. 1997 Thiorhodococcus minus, gen. nov., sp. nov. a new purple sulfur bacterium isolated from coastal lagoon sediments Arch. Microbiol. 168 16–23

    CAS  PubMed  Google Scholar 

  • Guyoneaud, R., J. Süling, R. Petri, R. Matheron, P. Caumette, N. Pfennig, and J. F. Imhoff. 1998 Taxonomic rearrangements of the genera Thiocapsa and Amoebobacter on the basis of 16S rDNA sequence analyses and description of Thiolamprovum gen. nov Int. J. Syst. Bacteriol 48 957–964

    CAS  PubMed  Google Scholar 

  • Hallenbeck, P. C. 1987 Molecular aspects of nitrogen fixation by photosynthetic prokaryotes Crit. Rev. Microbiol. 14 1–48

    CAS  PubMed  Google Scholar 

  • Haselkorn, R. 1986 Organization of the genes for nitrogen fixation in photosynthetic bacteria and cyanobacteria Ann. Rev. Microbiol. 40 525–547

    CAS  Google Scholar 

  • Hashwa, F. A., and H. G. Trüper. 1978 Viable phototrophic sulfur bacteria from the Black-Sea bottom Helgol. Wiss. Meeresunters. 31 249–253

    Google Scholar 

  • Hatzikakidis, A. D. 1952 Periodike erythrotes ton ydaton tes limnothalasses tou Aitolikou Anatypon ek ton praktikon tou Ellenikou Ydrobiologikou Institoutou Akademias Athenon 6 21–52

    Google Scholar 

  • Hatzikakidis, A. D. 1953 Epochiakai ydrologikai ereynai eis tas limnothalassas Mesologgiou kai Aitolikou Anatypon ek ton praktikon tou Ellenikou Ydrobiologikou Institoutou Akademias Athenon 6 85–143

    Google Scholar 

  • Hauser, B., and H. Michaelis. 1975 Die Makrofauna der Watten. Strände, Riffe und Wracks um den Hohen Knechtsand in der Wesermündung In: Jahresbericht Forschungsstelle für Insel-und Küstenschutz 1974 Norderney Germany 26 85–119

    Google Scholar 

  • Heldt, H. J. 1952 Eaux rouges Bull. Soc. Sci. Nat. Tunisie 5 103–106

    Google Scholar 

  • Hendley, D. D. 1955 Endogenous fermentation in Thiorhodaceae J. Bacteriol. 70 625–634

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hiraishi, A., Y. Hoshino, and H. Kitamura. 1984 Isoprenoid quinone composition in the classification of Rhodospirillaceae J. Gen. Appl. Microbiol. 30 197–210

    CAS  Google Scholar 

  • Hoffmann, C. 1942 Beiträge zur Vegetation des Farbstreifen-Sandwattes Kieler Meeresforsch. 4 85–108

    Google Scholar 

  • Hoffmann, C. 1949 über die Durchlässigkeit dünner Sandschichten für Licht Planta 37 48–56

    Google Scholar 

  • Holm, H. W., and J. W. Vennes. 1971 Occurrence of purple sulfur bacteria in a sewage treatment lagoon Appl. Microbiol. 19 988–996

    Google Scholar 

  • Imhoff, J. F., and H. G. Trüper. 1976 Marine sponges as habitats of anaerobic phototrophic bacteria Microb. Ecol. 3 1–9

    CAS  PubMed  Google Scholar 

  • Imhoff, J. F., and H. G. Trüper. 1977 Ectothiorhodospira halochloris sp. nov., a new extremely halophilic phototrophic bacterium containing bacteriochlorophyll b Arch. Microbiol. 114 115–121

    CAS  Google Scholar 

  • Imhoff, J. F., H. G. Sahl, G. S. H. Soliman, and H. G. Trüper. 1979 The Wadi Natrun: Chemical composition and microbial mass developments in alkaline brines of eutrophic desert lakes Geomicrobiology 1 219–234

    CAS  Google Scholar 

  • Imhoff, J. F., and H. G. Trüper. 1980 Chromatium purpuratum sp. nov., a new species of the Chromatiaceae Zbl. Bakt., I. Abt. Orig. C1 61–69

    Google Scholar 

  • Imhoff, J. F., and H. G. Trüper. 1981 Ectothiorhodospira abdelmalekii sp. nov., a new halophilic and alkaliphilic phototrophic bacterium Zbl. Bakt., I. Abt. Orig. C2 228–234

    Google Scholar 

  • Imhoff, J. F., D. J. Kushner, S. C. Kushawa, and M. Kates. 1982 Polar lipids in phototrophic bacteria of the Rhodospirillaceae and Chromatiaceae families J. Bacteriol. 150 1192–1201

    CAS  PubMed  PubMed Central  Google Scholar 

  • Imhoff, J. F. 1983 Rhodopseudomonas marina sp. nov., a new marine phototrophic purple bacterium Syst. Appl. Microbiol. 4 512–521

    CAS  PubMed  Google Scholar 

  • Imhoff, J. F. 1984a Quinones of phototrophic purple bacteria FEMS Microbiol. Lett. 25 85–89

    CAS  Google Scholar 

  • Imhoff, J. F. 1984b Reassignment of the genus Ectothiorhodospira Pelsh 1936 to a new family, Ectothiorhodospiraceae fem. nov., and emended description of the Chromatiaceae Bavendamm 1924 Int. J. Syst. Bacteriol. 134 338–339

    Google Scholar 

  • Imhoff, J. F. 1988a Anoxygenic phototrophic bacteria In: B. Austin (Ed.) Methods in Aquatic Bacteriology John Wiley Chichester UK 207–240

    Google Scholar 

  • Imhoff, J. F. 1988b Halophilic phototrophic bacteria In: F. Rodriguez-Valera (Ed.) Halophilic Bacteria CRC Press Boca Raton FL 85–108

    Google Scholar 

  • Imhoff, J. F. 1992 Taxonomy, phylogeny and general ecology of anoxygenic phototrophic bacteria In: N. G. Carr and N. H. Mann (Eds.) Biotechnology Handbook Photosynthetic Prokaryotes Plenum Press London UK 53–92

    Google Scholar 

  • Imhoff, J. F., and U. Bias-Imhoff. 1995 Lipids, quinones and fatty acids of anoxygenic phototrophic bacteria In: R. E. Blankenship, M. T. Madigan, and C. E. Bauer (Eds.) Anoxygenic Photosynthetic Bacteria Kluwer Academic Publishers Dordrecht The Netherlands 179–205

    Google Scholar 

  • Imhoff, J. F., and J. Süling. 1996 The phylogenetic relationship among Ectothiorhodospiraceae: A reevaluation of their taxonomy on the basis of rDNA analyses Arch. Microbiol. 165 106–113

    CAS  PubMed  Google Scholar 

  • Imhoff, J. F., J. Süling, and R. Petri. 1998 Phylogenetic relationships among the Chromatiaceae, their taxonomic reclassification and description of the new genera Allochromatium, Halochromatium, Isochromatium, Marichromatium, Thiococcus, Thiohalocapsa, and Thermochromatium Int. J. Syst. Bacteriol. 48 1129–1143

    PubMed  Google Scholar 

  • Imhoff, J. F. 2001a True marine and halophilic anoxygenic phototrophic bacteria Arch. Microbiol. 176 243–254

    CAS  PubMed  Google Scholar 

  • Imhoff, J. F., and N. Pfennig. 2001b Thioflavicoccus mobilis gen. nov., sp. nov., a novel purple sulfur bacterium with bacteriochlorophyll b Int. J. Syst. Evol. Microbiol. 51 105–110

    CAS  PubMed  Google Scholar 

  • Irgens, R. L. 1983 Thioacetamide as a source of hydrogen sulfide for colony growth of purple sulfur baceria Curr. Microbiol. 8 183–186

    CAS  Google Scholar 

  • Jannasch, H. W. 1957 Die bakterielle Rotfärbung der Salzseen des Wadi Natrun Arch. Hydrobiol. 53 425–433

    Google Scholar 

  • Jørgensen, B. B., H. Fossing, C. O. Wirsen, and H. W. Jannasch. 1991 Sulfide oxidation in the anoxic Black Sea chemocline Deep-Sea Res. 38 (Suppl. 2) 1083–1103

    Google Scholar 

  • Kämpf, C., and N. Pfennig. 1980 Capacity of Chromatiaceae for chemotrophic growth. Specific respiration rates of Thiocystis violacea and Chromatium vinosum Arch. Microbiol. 127 125–135

    Google Scholar 

  • Kämpf, C., and N. Pfennig. 1986 Isolation and characterization of some chemoautotrophic Chromatiaceae J. Basic Microbiol. 9 507–515

    Google Scholar 

  • Kobayashi, M., M. Kobayashi, and H. Nakanishi. 1971 Construction of a purification plant for polluted water using photosynthetic bacteria J. Ferment. Technol. 49 817–825

    CAS  Google Scholar 

  • Kobayashi, M., and Y. T. Tchan. 1973 Treatment of industrial waste solutions and production of useful byproducts using photosynthetic bacterial method Water Res. 7 1219–1224

    CAS  Google Scholar 

  • Kobayashi, M. 1977 Utilization and disposal of wastes by photosynthetic bacteria In: H. G. Schlegel and J. Barnea (Eds.) Microbial Energy Conversion Pergamon Press Oxford UK 443–453

    Google Scholar 

  • Kobayashi, M., and Y. T. Tchan. 1978 Formation of dimethylnitrosamine in polluted environment and the role of photosynthetic bacteria Water Res. 12 199–201

    CAS  Google Scholar 

  • Kobayashi, M., and M. Kobayashi. 1995 Waste remediation and treatment using anoxygenic phototrophic bacteria In: Anoxygenic Photosynthetic Bacteria R. E. Blankenship, M. T. Madigan, and C. E. Bauer (Eds.) Kluwer Academic Publishers Dordrecht The Netherlands 1269–1282

    Google Scholar 

  • Kondratieva, E. N. 1965 Photosynthetic Bacteria Program for Scientific Translations Jerusalem Israel

    Google Scholar 

  • Kondratieva, E. N., Y. P. Petushkova, and V. G. Zhukov. 1975 Growth and oxidation of sulphur compounds by Thiocapsa roseopersicina in the darkness [in Russian, with English summary] Mikrobiologiya 44 389–394

    Google Scholar 

  • Kondratieva, E. N., V. G. Zhukov, R. N. Ivanowsky, Y. P. Petruskova, and E. Z. Monosov. 1976 The capacity of the phototrophic sulfur bacterium Thiocapsa roseopersicina for chemosynthesis Arch. Microbiol. 108 287–292

    CAS  PubMed  Google Scholar 

  • Kondratieva, E. N. 1979 Interrelation between modes of carbon assimilation and energy production in phototrophic purple and green bacteria In: J. R. Quale (Ed.) Microbial Biochemistry: International Review of Biochemistry University Park Press Baltimore MD 21 117–175

    Google Scholar 

  • Kondratieva, E. N., and I. N. Gogotov. 1983 Production of molecular hydrogen in microorganism Adv. Biochem. Eng. Biotechnol. 28 139–191

    CAS  Google Scholar 

  • Koppenhagen, V. 1981a Metal-free corrinoids and metal-insertion In: D. Dolphin (Ed.) Vitamin B12 John Wiley New York NY 2 105–149

    Google Scholar 

  • Koppenhagen, V., G. Schlingmann, W. Scher, and B. Dresow. 1981b Extracellular metabolites from phototrophic bacteria as possible intermediates in the biosynthesis of vitamin B12 In: M. Moo-Young (Ed.) Advances in Biotechnology Pergamon Press New York NY 247–252

    Google Scholar 

  • Krasilnikova, E. N., Y. P. Petushkova, and E. N. Kondratieva. 1975 Growth of purple sulfur bacterium Thiocapsa roseopersicina under anaerobic conditions in the darkness [in Russian, with English summary] Mikrobiologiya 44 700–703

    CAS  Google Scholar 

  • Krasilnikova, E. N. 1976 Anaerobic metabolism of Thiocapsa roseopersicina [in Russian, with English summary] Mikrobiologiya 45 372–376

    CAS  Google Scholar 

  • Krasilnikova, E. N., R. N. Ivanovskii, and E. N. Kondratieva. 1983 Growth of purple bacteria utilizing acetate under anaerobic conditions in darkness [English trans.] Mikrobiologiya 52 189–194

    Google Scholar 

  • Kriss, A. E., and E. A. Rukina. 1953 Purple sulphur bacteria in deep sulfurous water of the Black Sea [in Russian] Doklady Akademii Nauk SSSR 93 1107–1110

    CAS  PubMed  Google Scholar 

  • Kumazawa, S., and A. Mitsui. 1982 Hydrogen metabolism of photosynthetic bacteria and algae In: Handbook of Biosolar Resources A. Mitsui and C. C. Black (Eds.) CRC Press Boca Raton FL 299–316

    Google Scholar 

  • Kusnetzov, S. I. 1970 The Microflora of Lakes and its Geochemical Activity University of Texas Press Austin TX

    Google Scholar 

  • Kützing, F. T. 1883 Beiträge zur Kenntnis über die Entstehung und Metamorphose der niederen vegetabilischen Organismen, nebst einer systematische Zusammenstellung der hierher gehörigen niederen Algenformen Linnaea 8 335–384

    Google Scholar 

  • Lankester, R. 1873 On a peach-colored bacterium: Bacterium rubescens n.s Quart. J. Microscop. Sci. 13 408–425

    Google Scholar 

  • Larsen, H. 1952 On the culture and general physiology of the green sulphur bacteria J. Bacteriol. 64 187–196

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liebergesell, M., E. Hustede, A. Timm, A. Steinbüchel, R. C. Fuller, R. W. Lenz, and H. G. Schlegel. 1991 Formation of poly(3-hydroxyalkanoates) by phototrophic and chemolithotrophic bacteria Arch. Microbiol. 155 415–421

    CAS  Google Scholar 

  • Liebergesell, M., B. Schmidt, and A. Steinbüchel. 1992 Isolation and identification of granule-associated proteins relevant for poly(3-hydroxyalkanoic acid) biosynthesis in Chromatium vinosum D FEMS Microbiol. Lett. 99 227–232

    CAS  Google Scholar 

  • Lindholm, T. 1987 Ecology of photosynthetic prokaryotes with special reference to meromictic lakes and coastal lagoons ABO Academy Press Abo Finland

    Google Scholar 

  • Ludden, P. W., and G. P. Roberts. 1995 The biochemistry and genetics of nitrogen fixation by photosynthetic bacteria In: R. E. Blankenship, M. T. Madigan, and C. E. Bauer (Eds.) Anoxygenic Photosynthetic Bacteria Kluwer Academic Publishers Dordrecht The Netherlands 929–947

    Google Scholar 

  • Madigan, M. T. 1986 Chromatium tepidum sp. nov., a thermophilic photosynthetic bacterium of the family Chromatiaceae Int. J. Syst. Bacteriol. 36 222–227

    CAS  Google Scholar 

  • Madigan, M. T. 1988 Microbiology, physiology, and ecology of phototrophic bacteria In: A. J. B. Zehnder (Ed.) Biology of Anaerobic Microorganisms John Wiley Chichester UK 39–111

    Google Scholar 

  • Madigan, M. T. 1995 Microbiology of nitrogen fixation by anoxygenic photosynthetic bacteria In: Anoxygenic Photosynthetic Bacteria R. E. Blankenship, M. T. Madigan, and C. E. Bauer (Eds.) Kluwer Academic Publishers Dordrecht The Netherlands 915–928

    Google Scholar 

  • May, D. S., and J. B. Stahl. 1967 The Ecology of Chromatium in Sewage Ponds: Sanitary Engineering Sec. Rep. No. 36 Bulletin No. 303 College of Engineering Research Division, Washington State University Pullman WA

    Google Scholar 

  • Mitsui, A. 1975 The utilization of solar energy for hydrogen production by cell free system of photosynthetic organisms In: T. N. Veziroglu (Ed.) Hydrogen Energy Plenum Press New York NY 309–316

    Google Scholar 

  • Mitsui, A. 1979 Biosaline research In: A. Hollaender, J. C. Aller, E. Epstein, A. San Pietro, and O. Zaborsky (Eds.) The Use of Photosynthetic Marine Organisms in Food and Feed Production Plenum Press New York NY 177–215

    Google Scholar 

  • Miyoshi, M. 1897 Studien über die Schwefelrasenbildung und die Schwefelbakterien der Thermen von Yumoto bei Nikko Zentralbl. Bakteriol. Parasitenkd. Infektionskrankh., Abt. 2 3 526–527

    Google Scholar 

  • Molisch, H. 1907 Die Purpurbakterien nach neueren Untersuchungen G. Fischer Jena Germany 1–95

    Google Scholar 

  • Nicholson, J. A. M., J. F. Stolz, and B. K. Pierson. 1987 Structure of a microbial mat at Great Sippewissett Marsh, Cape Cod, Massachusetts FEMS Microbiol. Ecol. 45 343–364

    Google Scholar 

  • Overmann, J., H. Cypionka, and N. Pfennig. 1992a An extremely low-light-adapted phototrophic sulfur bacterium from the Black Sea Limnol. Oceanogr. 37 150–155

    CAS  Google Scholar 

  • Overmann, J., U. Fischer, and N. Pfennig. 1992b A new purple sulfur bacterium from saline littoral sediments, Thiorhodovibrio winogradskyi gen. nov. and sp. nov Arch. Microbiol. 157 329–335

    CAS  Google Scholar 

  • Pattaragulwanit, K., D. C. Brune, H. G. Trüper, and C. Dahl. 1998 Molecular evidence for extracytoplasmic localization of sulfur globules in Chromatium vinosum Arch. Microbiol. 169 434–444

    CAS  PubMed  Google Scholar 

  • Pedros-Alio, C., and R. Guerrero. 1993 Microbial ecology in Lake Ciso Adv. Microb. Ecol. 13 155–209

    Google Scholar 

  • Petri, R., and J. F. Imhoff. 2001 Genetic analysis of sea-ice bacterial communities of the Western Baltic Sea using an improved double gradient method Polar. Biol. 24 252–257

    Google Scholar 

  • Pfennig, N. 1962 Beobachtungen über das Schwärmen von Chromatium okenii Arch. Microbiol. 42 90–95

    CAS  Google Scholar 

  • Pfennig, N. 1965 Anreicherungskulturen für rote und grüne Schwefelbakterien Zentralbl. Bakteriol. Parasitenkd. Infektionskrankh. Hyg. Abt. 1, Orig. Suppl. 1 179–189 and 503–505

    Google Scholar 

  • Pfennig, N., and K. D. Lippert. 1966 über das Vitamin B12-Bedürfnis phototropher Schwefelbakterien Arch. Mikrobiol. 55 245–256

    CAS  Google Scholar 

  • Pfennig, N. 1967 Photosynthetic bacteria Ann. Rev. Microbiol. 21 285–324

    CAS  Google Scholar 

  • Pfennig, N., and H. G. Trüper. 1971 Higher taxa of the phototrophic bacteria Int. J. Syst. Bacteriol. 21 17–18

    Google Scholar 

  • Pfennig, N., and H. G. Trüper. 1974 The phototrophic bacteria In: R. E. Buchanan and N. E. Gibbons (Eds.) Bergey’s Manual of Determinative Bacteriology, 8th ed Williams and Wilkins Baltimore MD 24–75

    Google Scholar 

  • Pfennig, N., and H. G. Trüper. 1981 Isolation of members of the families Chromatiaceae and Chlorobiaceae In: M. P. Starr, H. Stolp, H. G. Trüper, A. Balows, and H. G. Schlegel (Eds.) The Prokaryotes Springer-Verlag Berlin Germany 279–289

    Google Scholar 

  • Pfennig, N. 1989a Ecology of phototrophic purple and green sulfur bacteria In: H. G. Schlegel and B. Bowien (Eds.) Autotrophic Bacteria Springer-Verlag New York NY 97–116

    Google Scholar 

  • Pfennig, N. 1989b Genus Chromatium In: J. T. Staley, M. P. Bryant, N. Pfennig, and J. C. Holt (Eds.) Bergey’s Manual of Systematic Bacteriology, 1st ed Williams and Wilkins Baltimore MD 3 1639–1643

    Google Scholar 

  • Pfennig, N., and H. G. Trüper. 1992 The family Chromatiaceae In: The Prokaryotes, 2nd ed. A. Balows, H. G. Trüper, M. Dworkin, W. Harder, and K.-H. Schleifer (Eds.) Springer-Verlag New York NY 3200–3221

    Google Scholar 

  • Pfennig, N., H. Lünsdorf, J. Süling, and J. F. Imhoff. 1997 Rhodospira trueperi, gen. nov. and spec. nov., a new phototrophic Proteobacterium of the alpha-group Arch. Microbiol. 168 39–45

    CAS  PubMed  Google Scholar 

  • Podgorsek, L., and J. F. Imhoff. 1999 Tetrathionate production by sulfur-oxidizing bacteria and the role of tetrathionate in the sulfur cycle in sediments of the Baltic Sea Aquat. Microb. Ecol. 17 255–265

    Google Scholar 

  • Proctor, L. M. 1997 Nitrogen-fixing, photosynthetic, anaerobic bacteria associated with pelagic copepods Aquat. Microb. Ecol. 12 105–113

    Google Scholar 

  • Puchkova, N. N., J. F. Imhoff, and V. M. Gorlenko. 2000 Thiocapsa litoralis sp. nov, a new purple sulfur bacterium from microbial mats from the White Sea Int. J. Syst. Evol. Microbiol. 50 1441–1447

    CAS  PubMed  Google Scholar 

  • Rees, G. N., C. G. Harfoot, P. H. Janssen, L. Schoenborn, J. Kuever, and H. Lünsdorf. 2002 Thiobaca trueperi gen. nov., sp. nov., a phototrophic bacterium isolated from freshwater lake sediment Int. J. Syst. Evol. Microbiol. 52 671–678

    CAS  PubMed  Google Scholar 

  • Repeta, D. J., D. J. Simpson, B. B. Jørgensen, and H. W. Jannasch. 1989 Evidence for anoxygenic photosynthesis from the distribution of bacteriochlorophylls in the Black Sea Nature 342 69–72

    CAS  PubMed  Google Scholar 

  • Roelofsen, P. A. 1935 On the metabolism of the purple sulfur bacteria Proceedings of the Royal Dutch Academy of Sciences Amsterdam The Netherlands 37 660–669

    Google Scholar 

  • Ruttner, F. 1962 In: Grundriss der Limnologie, 3rd ed De Gruyter Berlin Germany 171–172

    Google Scholar 

  • Sahl, H. G., and H. G. Trüper. 1977 Enzymes of CO2 fixation in Chromatiaceae FEMS Microbiol. Lett. 2 129–132

    CAS  Google Scholar 

  • Sasikala, K., C. V. Ramana, P. R. Rao, and K. L. Kovacs. 1993 Anoxygenic phototrophic bacteria: physiology and advances in hydrogen production technology Adv. Appl. Microbiol. 38 211–295

    CAS  Google Scholar 

  • Schaub, B. E. M., and H. Van Gemerden. 1994 Simultaneous phototrophic and chemotrophic growth in the purple sulfur bacterium Thiocapsa roseopersicina M1 FEMS Microb. Ecol. 13 185–196

    CAS  Google Scholar 

  • Schedel, M., M. Vanselow, and H. G. Trüper. 1979 Siroheme sulfite reductase isolated from Chromatiuni vinosum Arch. Microbiol. 121 29–36

    CAS  Google Scholar 

  • Schegg, E. 1971 Produktion und Destruktion in der trophogenen Schicht Schweiz. Zeitschr. Hydrol. 33 427–532

    Google Scholar 

  • Schlegel, H. G., and N. Pfennig. 1961 Die Anreicherungskultur einiger Schwefelpurpurbakterien Arch. Mikrobiol. 38 1–39

    CAS  PubMed  Google Scholar 

  • Schrammeck, J. 1934 Untersuchungen über die Phototaxis der Purpurbacterien Beitr. Biol. Pflanz. 22 315–380

    Google Scholar 

  • Schulz, E. 1937 Das Farbstreifensandwatt und seine Fauna, eine ökologisch biozönotische Untersuchung an der Nordsee Kieler Meeresforsch. 1 359–378

    Google Scholar 

  • Schulz, E., and H. Meyer. 1939 Weitere Untersuchungen über das Farbstreifensandwatt Kieler Meeresforsch. 3 321–336

    Google Scholar 

  • Siefert, E., R. L. Irgens, and N. Pfennig. 1978 Phototrophic purple and green bacteria in a sewage treatment plant Appl. Environ. Microbiol. 35 38–44

    CAS  PubMed  PubMed Central  Google Scholar 

  • Siefert, E., and N. Pfennig. 1984 Convenient method to prepare neutral sulfide solution for cultivation of phototrophic sulfur bacteria Arch. Microbiol. 139 100–101

    CAS  Google Scholar 

  • Sletten, O., and R. H. Singer. 1971 Sulfur baceria in red lagoons J. Water Poll. Control Fed. 43 2118–2122

    CAS  Google Scholar 

  • Smith, A. J. 1965 The discriminative oxidation of the sulphur atoms of thiosulphate by a photosynthetic sulphur bacterium: Chromatium strain D Biochem. J. 94 27

    Google Scholar 

  • Smith, A. J. 1966 The role of tetrathionate in the oxidation of thiosulfate by Chromatium sp. strain D J. Gen. Microbiol. 42 371–380

    CAS  PubMed  Google Scholar 

  • Sorokin, Y. I. 1970 Interrelations between sulfur and carbon turnover in a meromictic lake Arch. Hydrobiol. 66 391–446

    Google Scholar 

  • Steenbergen, C. L. M., and H. J. Korthals. 1982 Distribution of phototrophic microorganisms in the anaerobic and microaerophilic strata of Lake Vechten (The Netherlands): Pigment analysis and role in primary production Limnol. Oceanogr. 27 883–895

    CAS  Google Scholar 

  • Steudel, R. 1989 On the nature of the “elemental sulfur” (S°) produced by sulfur-oxidizing bacteria: A model for S° globules In: H. G. Schlegel and B. Bowien (Eds.) Autotrophic Bacteria Springer-Verlag New York NY 289–304

    Google Scholar 

  • Steudel, R., G. Holdt, P. T. Visscher, and H. van Gemerden. 1990 Search for polythionates in cultures of Chromatium vinosum after sulfide incubation Arch. Microbiol. 153 432–437

    CAS  Google Scholar 

  • Stirn, J. 1971 Ecological consequences of marine pollution Rev. Int. Oceanogr. Med. 24 13–46

    CAS  Google Scholar 

  • Strzeszewski, B. 1913 Beiträge zur Kenntnis der Schwefelflora in der Umgebung von Krakau Bull. Int. Acad. Sci. Cracovie, Ser. B. Sci. Nat. I 309–334

    Google Scholar 

  • Suckow, R. 1966 Schwefelmikrobengesellschaften der See-und Boddengewässer von Hiddensee Zeitschr. Allgem. Mikrobiol. 6 309–315

    Google Scholar 

  • Szafer, W. 1910 Zur Kenntnis der Schwefelflora in der Umgebung von Lemberg Bull. Int. Acad. Sci. Cracovie, Ser. B. 160–167

    Google Scholar 

  • Tabita, F. R. 1995 The biochemistry and metabolic regulation of carbon metabolism and CO2 fixation in purple bacteria In: Anoxygenic Photosynthetic Bacteria R. E. Blankenship, M. T. Madigan, and C. E. Bauer (Eds.) Kluwer Academic Publishers Dordrecht The Netherlands 885–914

    Google Scholar 

  • Taga, N. 1967 Microbial coloring of sea water in tidal pool, with special reference of massive development of phototrophic bacteria Information Bulletin on Planetology in Japan: Commemoration Number of Dr. Y. Matsue’s Sixtieth Birthday 219–229

    Google Scholar 

  • Takahashi, M., and S. Ichimura. 1968 Vertical distribution and organic matter production of photosynthetic sulphur bacteria in Japanese lakes Limnol. Oceanogr. 13 644–655

    Google Scholar 

  • Taylor, W. R. 1964 Light and photosynthesis in intertidal benthic diatoms Helgol. Wiss. Meeresunters 10 29–37

    CAS  Google Scholar 

  • Toohey, J. I. 1971 Purification of descobalt corrins from photosynthetic bacteria In: D. B. McCormick and L. D. Wright (Eds.) Meth. Enzymol Academic Press New York NY 18 71–75

    Google Scholar 

  • Trüper, H. G. 1964 CO2-Fixierung und Intermediärstoffwechsel bei Chromatium okenii Perty Arch. Mikrobiol. 49 23–50

    Google Scholar 

  • Trüper, H. G., and N. Pfennig. 1966 Sulphur metabolism in Thiorhodaceae. III: Storage and turnover of thiosulphate sulphur in Thiocapsa floridana and Chromatium species Ant. v. Leeuwenhoek 32 261–276

    Google Scholar 

  • Trüper, H. G., and S. Genovese. 1968 Characterization of photosynthetic sulfur bacteria causing red water in Lake Faro (Messina, Sicily) Limnol. Oceanogr. 13 225–232

    Google Scholar 

  • Trüper, H. G. 1970 Culture and isolation of phototrophic sulfur bacteria from the marine environment Helgol. Wiss. Meeresunters 20 6–16

    Google Scholar 

  • Trüper, H. G. 1980 Distribution and activity of phiototrophic bacteria at the marine water-sediment interface: Coloques Internationeaux du C.N.R.S Biogéochemie de la matière organique à l’interface eau-sédiment marin 293 275–285

    Google Scholar 

  • Trüper, H. G. 1981a Photolithotrophic sulphur oxidation In: H. Bothe and A. Trebst (Eds.) Biology of Inorganic Nitrogen and Sulfur Springer-Verlag Berlin Germany 199–211

    Google Scholar 

  • Trüper, H. G. 1981b Versatility of carbon metabolism in the phototrophic bacteria In: H. Dalton (Ed.) Microbial Growth on C1 Compounds Heyden London UK 116–121

    Google Scholar 

  • Trüper, H. G., and U. Fischer. 1982 Anaerobic oxidation of sulphur compounds as electron donors for bacterial photosynthesis Phil. Trans. R. Soc. London B 298 529–542

    Google Scholar 

  • Trüper, H. G. 1984 Phototrophic bacteria and their sulfur metabolism In: A. Müller and B. Krebs (Eds.) Sulfur, its Significance for Chemistry, for the Geo-, Bio-and Cosmophere and Technology Elsevier Amsterdam The Netherlands 367–382

    Google Scholar 

  • Trüper, H. G. 1989 Physiology and biochemistry of phototrophic bacteria In: H. G. Schlegel and B. Bowien (Eds.) Autotrophic Bacteria Springer-Verlag New York NY 267–282

    Google Scholar 

  • Utermöhl, H. 1925 Limnologische Phytoplanktonstudien Arch. Hydrobiol. 5(Supp.) 251–277

    Google Scholar 

  • Van Gemerden, H. 1968a On the ATP generation by Chromatium in darkness Arch. Mikrobiol. 64 118–124

    PubMed  Google Scholar 

  • Van Gemerden, H. 1968b Utilization of reducing power in growing cultures of Chromatium Arch. Microbiol. 65 111–117

    Google Scholar 

  • Van Gemerden, H. 1974 Coexistence of organisms competing for the same substrate: An example among the purple sulfur bacteria Microb. Ecol. 1 19–23

    Google Scholar 

  • Van Gemerden, H., and H. H. Beeftink. 1983 Ecology of phototrophic bacteria In: J. G. Ormerod (Ed) The Phototrophic Bacteria: Anaerobic Life in the Light Blackwell Science Publishing Oxford UK 146–185

    Google Scholar 

  • Van Gemerden, H., E. Montesinos, J. Mas, and R. Guerrero. 1985 Diel cycle of metabolism of phototrophic purple sulphur bacteria in Lake Cisó (Spain) Limnol. Oceanogr. 30 932–943

    Google Scholar 

  • Van Gemerden, H., and J. Mas. 1995 Ecology of phototrophic sulfur bacteria In: Anoxygenic Photosynthetic Bacteria R. E. Blankenship, M. T. Madigan, and C. E. Bauer (Eds.) Kluwer Academic Publishers Dordrecht The Netherlands 49–85

    Google Scholar 

  • Van Niel., C. B. 1931 On the morphology and physiology of the purple and green sulfur bacteria Arch. Microbiol. 3 1–112

    Google Scholar 

  • Van Niel, C. B. 1971 Techniques for the enrichment, isolation, and maintenance of photosynthetic bacteria In: S. P. Collowick and N. V. Kaplan (Eds.) Methods in Enzymology Academic Press New York NY 23, part A 3–28

    Google Scholar 

  • Vignais, P. M., A. Colbeau, J. C. Willison, and Y. Jouanneau. 1985 Hydrogenase, nitrogenase, and hydrogen metabolism in photosynthetic bacteria Adv. Microb. Physiol. 26 155–234

    CAS  PubMed  Google Scholar 

  • Vignais, P. M., B. Toussaint, and A. Colbeau. 1995 Regulation of hydrogenase gene expression In: R. E. Blankenship, M. T. Madigan, and C. E. Bauer (Eds.) Anoxygenic Photosynthetic Bacteria Kluwer Academic Publishers Dordrecht The Netherlands 1175–1190

    Google Scholar 

  • Vrati, S. 1984 Single cell protein production by photosynthetic bacteria grown on the clarified effluents of a biogas plant Appl. Microbiol. Biotechnol. 19 199–202

    CAS  Google Scholar 

  • Warming, E. 1875 Om nogle ved Danmarks Kyster levende Bakterier Videnskabelige Meddelelser Dansk Naturhistorisk Foreninge 20 307–420

    Google Scholar 

  • Weckesser, J., G. Drews, and H. Mayer. 1979 Lipopolysaccharides of photosynthetic prokaryotes Ann. Rev. Microbiol. 33 215–239

    CAS  Google Scholar 

  • Weckesser, J., H. Mayer, and G. Schulz. 1995 Anoxygenic phototrophic bacteria: Model organisms for studies on cell wall macromolecules In: Anoxygenic Photosynthetic Bacteria R. E. Blankenship, M. T. Madigan, and C. E. Bauer (Eds.) Kluwer Academic Publishers Dordrecht The Netherlands 207–230

    Google Scholar 

  • Wenke, T. L., and J. C. Vogt. 1981 Temporal changes in a pink feedlot lagoon Appl. Environ. Microbiol. 41 381–385

    CAS  PubMed  PubMed Central  Google Scholar 

  • Widdel, F., S. Schnell, S. Heising, A. Ehrenreich, B. Assmus, and B. Schink. 1993 Ferrous iron oxidation by anoxygenic phototrophic bacteria Nature 362 834–836

    CAS  Google Scholar 

  • Winogradsky, S. 1888 Beiträge zur Morphologie und Physiologie der Bakterien Zur Morphologie und Physiologie der Schwefelbakterien Arthur Felix Leipzig Germany 1 1–120

    Google Scholar 

  • Woese, C. R., W. G. Weisburg, C. M. Hahn, B. J. Paster, L. B. Zablen, B. J. Lewis, T. J. Macke, W. Ludwig, and E. Stackebrandt. 1985 The phylogeny of purple bacteria: The gamma subdivision Syst. Appl. Microbiol. 6 25–33

    CAS  Google Scholar 

  • Yarapolov, A. I., V. Malovik, V. A. Isumrudov, N. A. Zorin, S. O. Bachurin, I. N. Gogotov, and S. D. Varfolomeev. 1982 Immobilization of hydrogenase in semiconductor gels and its use in the electrooxidation of hydrogen at the anode of a biofuel cell [English trans. from Russian] Appl. Biochem. Microbiol. 18 401–406

    Google Scholar 

  • Zahr, M., B. Fobel, H. Mayer, J. F. Imhoff, V. Campos, and J. Weckesser. 1992 Chemical composition of the lipopolysaccharides of Ectothiorhodospira shaposhnikovii, Ectothiorhodospira mobilis, and Ectothiorhodospira halophila Arch. Microbiol. 157 499–504

    CAS  Google Scholar 

  • Zhukov, V. G. 1976 Formation of ribulose-1,5-diphosphate carboxylase by Thiocapsa roseopersicina in different growth conditions Mikrobiologiya 45 915–917

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Imhoff, J.F. (2006). The Chromatiaceae. In: Dworkin, M., Falkow, S., Rosenberg, E., Schleifer, KH., Stackebrandt, E. (eds) The Prokaryotes. Springer, New York, NY. https://doi.org/10.1007/0-387-30746-X_31

Download citation

Publish with us

Policies and ethics