Skip to main content

Diseases of Chickpea

  • Living reference work entry
  • First Online:
Handbook of Vegetable and Herb Diseases

Abstract

Chickpeas are one of the most economically important legumes and a rich source of carbohydrates, proteins, vitamins, minerals, and fiber. Chickpea is grown mainly in the tropics, in arid and semiarid countries in Asia and Africa, but it is also present in Europe, Oceania, North America, and Latin America. The varieties available for cultivation vary in productivity according to edaphoclimatic conditions and the incidence of diseases. The incidence and severity of diseases in chickpeas vary in relation to the planting time, cultivated variety, and the causal agent. Among the main diseases with major economic importance causing losses in productivity are those caused by soil-borne fungal and nematode pathogens, and diseases of the aerial plant portion caused by viruses and fungi. Integrated management and preventive measures such as pathogen identification, field selection, seed quality, use of fungicides, and crop rotation are effective practices for managing chickpea diseases. This chapter will address the main characteristics of the economically important diseases affecting chickpeas in several prominent and expanding production countries.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Ali SS (1995) Nematode problems in chickpea. Indian Institute of Pulses Research, Kanpur

    Google Scholar 

  • Ali SS, Sharma SB (2003) Nematode survey of chickpea production areas in Rajasthan, India. Nematol Mediterr 31:147–149

    Google Scholar 

  • Ali SS, Naimuddin AM, Ali M (2010) Nematode infestation in pulse crops. Nematode infestation part I: food crops. National Academy of Science, India, pp 288–325

    Google Scholar 

  • Armstrong CL, Chongo G, Gossen BD, Duczek LJ (2001) Mating type distribution and incidence of the teleomorph of Ascochyta rabiei (Didymella rabiei) in Canada. Can J Plant Pathol 23:110–113

    Article  Google Scholar 

  • Azevedo DMQ, Rocha FS, Costa CA, Pfenning LH, Costa SS, Melo M, Silva JG, Fernandes MF (2017) Etiology of root and wilt disease of chickpea in Brazil. Trop Plant Pathol 42:273–283

    Article  Google Scholar 

  • Baird RE, Watson CE, Scruggs M (2003) Relative longevity of Macrophomina phaseolina and associated mycobiota on residual soybean roots in soil. Plant Dis 87:563–566

    Article  PubMed  Google Scholar 

  • Bayaa B, Chen W (2011) Ascochyta blight of chickpea. In: Chen W, Sharma HC, Muehlbauer FJ (eds) Compendium of chickpea and lentil diseases and pests. APS Press, St. Paul, pp 34–40

    Google Scholar 

  • Beczner L (1968) KiilOnlenyomat a Kiserletiigyi Kozlemenyek 56:51–65

    Google Scholar 

  • Bhatti MA, Kraft JM (1992) Influence of soil moisture on root rot and wilt of chickpea. Plant Dis 76:1259–1262

    Article  Google Scholar 

  • Bolton MD, Thomma BPHJ, Nelson BD (2006) Sclerotinia sclerotiorum (Lib.) de Bary: Biology and molecular traits of a cosmopolitan pathogen. Mol Plant Pathol 7(1):1–16

    Article  CAS  PubMed  Google Scholar 

  • Cabral CS, Melo MP, Fonseca MEN, Boiteux LS, Reis AA (2016) Root of chickpea caused by isolates of the Fusarium solani complex in Brazil. Plant Dis 100(10):2171. https://doi.org/10.1094/PDIS-05-15-0571-PDN. Accessed 20 Oct 2020

    Article  Google Scholar 

  • Campos HD, Campos VP, Silva JRC, Silva LHCP, Costa LSAS, Terra WC (2011) Atração e penetração de Meloidogyne javanica e Heterodera glycines em raízes excisadas de soja. Ciência Rural 41(9):1496–1502

    Article  Google Scholar 

  • Castillo P, Vovlas N (2007) Pratylenchus (Nematoda: Pratylenchidae): Diagnosis, biology, pathogenicity and management. Brill, Leiden

    Book  Google Scholar 

  • Castillo P, Gómez-Barcina A, Jiménez-Diaz RM (1996a) Plant parasitic nematodes associated with chickpea in southern Spain and effect soil temperature on reproduction by Pratylenchus thornei. Nematologica 42:211–219

    Article  Google Scholar 

  • Castillo P, Trapero-Casas JL, Jiménez-Diaz RM (1996b) The effect of temperature on hatching and penetration of chickpea roots by Pratylenchus thornei. Plant Pathol 45:310–315

    Article  Google Scholar 

  • Castillo P, Navas-Cortés JA, Landa BB, Jiménez-Díaz RM, Vovlas N (2008) Plant-parasitic nematodes attacking chickpea and their in planta interactions with rhizobia and phytopathogenic fungi. Plant Dis 92:840–853

    Article  PubMed  Google Scholar 

  • Chalam TV, Reddy MV, Nene YL, Beniwal SPS (1986) Some properties of a strain of Cucumber mosaic virus isolated from chickpea in India. Plant Dis 70:128–130

    Article  Google Scholar 

  • Chen W, Schatz B, Henson B, McPhee KE, Muehlbauer FJ (2006) First report of Sclerotinia stem rot of chickpea caused by Sclerotinia sclerotiorum in North Dakota and Washington. Plant Dis 90(1):114. https://doi.org/10.1094/PD-90-0114A

    Article  CAS  PubMed  Google Scholar 

  • Chobe DR, Gupta OM, Pawar M (2016) Radiation induced mutation for resistance against races/pathotypes of Fusarium oxysporum f.sp ciceris in chickpea (Cicer arietinum L.). Indian Phytopathol 69(4):699–701

    Google Scholar 

  • Chobe DR, Singh R, Tarafdar A, Chandran USS, Ghosh R, Sharma M (2019) Deciphering the response of putative mutants against Rhizoctonia bataticola [(taub.) butler] causing dry root rot of chickpea. J Mycol Pl Pathol 49:92–101

    Google Scholar 

  • Di Vito M, Greco N (1988a) Investigation on the biology of Meloidogyne artiellia. Revue de Nématologie 11:221–225

    Google Scholar 

  • Di Vito M, Greco N (1988b) The relationship between initial population densities of Meloidogyne artiellia and yield of winter and spring chickpea. Nematol Mediterr 16:163–166

    Google Scholar 

  • Di Vito M, Greco N, Saxena MC (1992) Pathogenicity of Pratylenchus thornei on chickpea in Syria. Nematol Mediterr 20:71–73

    Google Scholar 

  • Di Vito M, Greco N, Halila HM, Mabsoute L, Beniwal SPS, Saxena MC, Singh KB, Solh MB (1994a) Nematodes of cool-season food legumes in North Africa. Nematologia 22:3–10

    Google Scholar 

  • Di Vito M, Greco N, Oreste G, Saxena MC, Singh KB, Kusmenoglu I (1994b) Plant parasitic nematodes of legumes in Turkey. Nematol Mediterr 22:245–251

    Google Scholar 

  • Di Vito M, Greco N, Malhotra RS, Singh KB, Saxena MC, Catalano F (2001) Reproduction of eight populations of Heterodera ciceri on selected plant species. Nematol Mediterr 29:79–90

    Google Scholar 

  • Dias WP, Freitas VM, Ribeiro NR, Moita WA, Homechin M, Parpinelli NMB, Carneiro RMDG (2010) Reação de genótipos de soja a Meloidogyne enterolobii e M. ethiopica. Nematologia Brasileira 34:220–225

    Google Scholar 

  • Duffus JE (1961) Economic significance of beet western yellows (reddish yellows) on sugar beet. Phytopathology 51:605–607

    Google Scholar 

  • Dutra MR, Campos VP (2003) Manejo do solo e da irrigação como nova tática de controle de Meloidogyne incognita em feijoeiro. Fitopatol Bras 28(6):608–614

    Article  Google Scholar 

  • Fuhlbohm MJ, Tatnell JR, Ryley MJ (2003) First report of stem rot and wilt of chickpea caused by Sclerotinia minor in Queensland. Australia Austral Plant Pathol 32:323–324

    Article  Google Scholar 

  • Gill HK, Iqbal SA, Luigi DB, Andrea L (2017) The role of soil solarization in India: how an unnoticed practice could support pest control. Front Plant Sci 8. https://doi.org/10.3389/fpls.2017.01515

  • Greco N, Inserra RN (2007) Exotic and non-exotic nematode plant pests: a potential threat to the Italian agriculture and environment. Redia 91:103–109

    Google Scholar 

  • Greco N, Di Vito M, Saxena MC, Reddy MV (1988a) Effect of Heterodera ciceri on yield of chickpea and lentil and development of this nematodes on chickpea in Syria. Nematologica 34:98–114

    Article  Google Scholar 

  • Greco N, Di Vito M, Saxena MC, Reddy MV (1988b) Investigation on the root lesion nematode Pratylenchus thornei in Syria. Nematol Mediterr 16:101–105

    Google Scholar 

  • Greco N, Di Vito M, Saxena MC (1992) Plant parasitic nematodes of cool season food legumes in Syria. Nematol Mediterr 20:37–46

    Google Scholar 

  • Hansen EM, Maxwell DP (1991) Species of the Phytophthora megasperma complex. Mycologia 83:376–381

    Article  Google Scholar 

  • Harverson RM (2011) Soilborne root diseases of chickpeas in Nebraska. University of Nebraska. Available on: http://extension.unl.edu/publications. Accessed 15 Dec 2020

  • Hasanzade F, Falahati RM, Jafarpour B, Kermani M (2008) Identification of Fusarium solani f. sp. pisi the cause of root rot in chickpea and assessment of its genetic diversity using AFLP in northeast Iran. Res J Biol Sci 3:737–741

    Google Scholar 

  • Hemad AA, Makkouk KM (2002) Occurrence and management of chickpea chlorotic dwarf virus in chickpea fields in northern Sudan. Phytopathol Mediterr 41:193–198

    Google Scholar 

  • Horn NM, Reddy SV, Roberts IM, Reddy DVR (1993) Chickpea chlorotic dwarf virus, a new leaf hopper-transmitted geminivirus of chickpea in India. Ann Appl Biol 122:467–479

    Article  Google Scholar 

  • Horn NM, Sv R, Van den Heuvel JFJM, Reddy DVR (1996) Survey of chickpea (Cicer arietinum L.) for chickpea stunt disease and associated viruses in India and Pakistan. Plant Dis 80:286–290

    Article  Google Scholar 

  • Irwin JAG, Dale JL (1982) Relationships between Phytophthora megasperma isolates from chickpea, lucerne and soybean. Aust J Bot 30:199–210

    Article  Google Scholar 

  • Kaiser WJ (1991) Host range studies with the Ascochyta blight pathogen of chickpea. Int Chickpea Newsl 25:25–27

    Google Scholar 

  • Kaiser WJ, Hannan RM (1983) Etiology and control of seed decay and preemergence damping-off of chickpea by Pythium ultimum. Plant Dis 67:77–81

    Article  Google Scholar 

  • Kaiser WJ, Hannan RM (1983) Biological control of seed rot and preemergence damping-off of chickpea with Penicillium oxalicum. Plant Dis 68:806–811

    Google Scholar 

  • Kaiser WJ, Danesh D, Okhovat M, Mossahebi H (1968) Disease of pulse crops (edible legumes) in Iran. Plant Dis Rep 52:687–691

    Google Scholar 

  • Kaiser WJ, Alcala-Jimenez AR, Hervas-Vargas A, Trapero-Casas JL, Jimnez-Diaz RM (1994) Screening of wild Cicer species for resistance to races 0 and 5 of Fusarium oxysporum f. sp. ciceris. Plant Dis 78:962–967

    Article  Google Scholar 

  • Kaloshian I, Greco N, Saad AT, Vovlas N (1986) Life cycle of Heterodera cicero on chickpea. Nematol Mediterr 14:135–145

    Google Scholar 

  • Kaur L, Sirari A, Kumar D, Sandhu JS, Singh S, Kapoor K, Singh I, Gowda CLL, Pande S, Gaur P, Sharma M, Imtiaz M, Siddique K (2013) Combining Ascochyta blight and Botrytis grey mould resistance in chickpea through interspecific hybridization. Phytopathol Mediterr 52(1):157–165

    CAS  Google Scholar 

  • Kiersten A, Bradley JS, Gudmestad N (2009) Resistance to QoI Fungicides in Ascochyta rabiei from Chickpea in the Northern Great Plains. Plant Dis 93:528–536. https://doi.org/10.1094/PDIS-93-5-0528

    Article  CAS  Google Scholar 

  • Kohn LM (1979) Delimitation of the economically important plant pathogenic Sclerotinia species. Phytopathology 69:881–886

    Article  Google Scholar 

  • Ladizinsky G, Adler A (1976) The origin of chickpea Cicer arietinum L. Euphytica 25:211–217

    Article  Google Scholar 

  • Lodha S, Sharma SK, Mathur BK, Aggarwal RK (2003) Integrating sub-lethal heating with Brassica amendments and summer irrigation for control of Macrophomina phaseolina. Plant Soil 256:423–430

    Article  CAS  Google Scholar 

  • Mahapatra BC, Pahdi NN (1986) Pathogenicity and control of Rotylenchulus reniformis on Cicer arietinum. Nematol Mediterr 14:287–290

    Google Scholar 

  • Makkouk KM, Fazil Y, Kumari SG, Farzadfar S (2002) First record of Beet western yellows, Chickpea chlorotic dwarf, Faba bean necrotic yellows and Soybean dwarf viruses affecting chickpea and lentil crops in Iran. Plant Pathol 51:387

    Article  Google Scholar 

  • Matheron ME, Porchas M (2000) First report of stem and crown rot of garbanzo caused by Sclerotinia minor in the United States and by Sclerotinia sclerotiorum in Arizona. Plant Dis 84(11):1250. https://doi.org/10.1094/PDIS.2000.84.11.1250A

    Article  CAS  PubMed  Google Scholar 

  • Mengistu A, Reddy KN, Zablotowicz RM (2009) Propagule densities of Macrophomina phaseolina in soybean tissue and soil as affected by tillage cover crop and herbicide. Plant Health Progress 10. https://doi.org/10.1094/PHP-2009-0130-01-RS

  • Moore K, Ryley M, Schwinghamer M, Cumming G, Jenkins L (2015) Chickpea: managing phytophthora root rot. http://www.pulseaus.com.au/growing-pulses/bmp/chickpea/phytophthora-root-rot. Accessed 20 Mar 2021

  • Navas-Cortes JA, Trapero-Casas A, Jimenez-Diaz RM (1995) Survival of Didymella rabiei in chickpea straw debris in Spain. Plant Pathol 44:332–339

    Article  Google Scholar 

  • Nene YL (1988) Multiple disease resistance in grain legumes. Annu Rev Phytopathol 26:203–217

    Article  Google Scholar 

  • Nene YL, Reddy MV (1976) Preliminary information on chickpea stunt. Trop Grain Legum Bull 5:31–32

    Google Scholar 

  • Nene YL, Reddy MV (1987) Chickpea diseases and their control. In: Saxena MC, Singh KB (eds) The Chickpea, CAB International, Wallingford, p 233

    Google Scholar 

  • Nene YL, Menistu A, Sinclair JB, Royse DJ (1978) An annotated bibliography of chickpea diseases 1915–1976. ICRISAT Information Bulletin 1, Hyderabad, p 343

    Google Scholar 

  • Nene YL, Haware MP, Reddy MV (1981) Chickpea diseases: resistance-screening techniques. ICRISAT Inform Bull 10:1–10

    Google Scholar 

  • Nene YL, Shelia VK, Sharma SB (1996) A world list of chickpea and pigeonpea pathogens, 5th edn. International Crops Research Institute for Semi-Arid Tropics, Hyderabad, p 27

    Google Scholar 

  • Nene YL, Reddy MV, Haware MP, Ghanekar AM, Amin KS, Pande S, Sharma M (2012) Field diagnosis of chickpea diseases and their control. Information Bulletin No. 28 (revised), International Crops Research Institute for the Semi-Arid Tropics, Patancheru, 60pp

    Google Scholar 

  • Neto JFB, Pinheiro JB, Silva GO, Biscaia D, Macedo AG, Silva PP, Nascimento WM (2019) Reação de genótipos de grão-de-bico aos nematoides-das-galhas Meloidogyne incognita raça 1 e Meloidogyne enterolobii. Revista Agrária Acadêmica 2(4):63–70

    Article  Google Scholar 

  • Njambere EN, Chen W (2011) Sclerotinia stem and crown rot of chickpea. In: Chen W, Sharma HC, Muehlbauer FJ (eds) Compendium of chickpea and lentil diseases and pests. APS Press, St. Paul, pp 55–58

    Google Scholar 

  • Njambere EN, Chen W, Frate C, Wu BM, Temple SR, Muehlbauer FJ (2008) Stem and crown rot of chickpea in California caused by Sclerotinia trifoliorum. Plant Dis 92:917–922

    Article  CAS  PubMed  Google Scholar 

  • Pande S, Singh G, Rao JN, Bakr MA, Chaurasia PCP, Joshi S, Johansen C, Singh SD, Kumar J, Rahman MM, Gowda CLL (2002) Integrated management of botrytis gray mold of chickpea. Information bulletin no. 61. ICRISAT, Patancheru

    Google Scholar 

  • Pande S, Rao JN, Johansen C, Neupane RK, Stevenson PC (2003) Rehabilitation of chickpea through integrated management of botrytis gray mold in Nepal. In: Proceedings of the 8th International Congress of Plant Pathology – volume 2. Christchurch, New Zealand, p 133

    Google Scholar 

  • Pande S, Siddique KHM, Kishore GK, Bayaa B, Gaur PM, Gowda CLL, Bretag TW, Crouch JH (2005) Ascochyta blight of chickpea (Cicer arietinum L.): a review of biology, pathogenicity, and disease management. Australian J Agri Res 56:317–332

    Article  Google Scholar 

  • Pande S, Galloway JJ, Gaur PM, Siddique KHM, Tripathi HS, Taylor P, MacLeod MWJ, Basandrai AK, Bakr A, Joshi K, Kishore G, Isenegger DA, Narayana Rao J, Sharma M (2006) Botrytis grey mould of chickpea: a review of biology, epidemiology, and disease management. Aust J Agric Res 57:1137–1150

    Article  Google Scholar 

  • Pande S, Desai S, Sharma M (2010a) Impact of climate change on rain-fed crop diseases: current status and future research needs. In: Proceeding of National Symposium on Climate Change and Rain-fed Agriculture, Hyderabad, pp 55–59

    Google Scholar 

  • Pande S, Sharma M, Gaur PM, Gowda CLL (2010b) Host plant resistance to Ascochyta blight of chickpea. Information Bulletin No. 82. Patancheru 502 324, Andhra Pradesh, India: International Crops Research Institute for the Semi-Arid Tropics. 40pp. ISBN 978-92-9066-525-0. Order code:IBE 082. http://oar.icrisat.org/184/1/24_2010_IB_no_82_Host_Plant.pdf. Accessed 20 Mar 2021

  • Pande S, Sharma M, Gaur PM, Basandrai AK, Kaur L, Hooda KS, Basandrai D, Kiran Babu T, Jain SK, Rathore A (2013) Biplot analysis of genotype × environment interactions and identification of stable sources of resistance to Ascochyta blight in chickpea (Cicer arietinum L.). Australasian Plant Pathol 42:561–571

    Article  CAS  Google Scholar 

  • Pandey BK (1988) Studies on botrytis gray mold of chickpea (Cicer arietinum L.). Ph.D. thesis, Govind Ballabh Pant University of Agriculture and Technology, Pantnagar, Uttar Pradesh, India

    Google Scholar 

  • Reen RA, Mumford MH, Thompson JP (2019) Novel Sources of Resistance to root-lesion nematode (Pratylenchus thornei) in a new collection of wild Cicer species (C. reticulatum and C. echinospermum) to improve resistance in cultivated chickpea (C. arietinum). Phytopathology 109:1270–1279

    Article  PubMed  Google Scholar 

  • Rewal N, Grewal JS (1989) Inheritance of resistance to Botrytis cinerea Pers. in Cicer arietinum L. Euphytica 44:61–63

    Article  Google Scholar 

  • Savary S, Nelson A, Sparks AH, Willocquet L, Duveiller E, Mahuku G, Forbes G, Garrett KA, Hodson D, Padgham J, Pande S, Sharma M, Yuen J, Djurle A (2011) International agricultural research tackling the effects of global and climate changes on plant diseases in the developing world. Plant Dis 95:1204–1216

    Article  PubMed  Google Scholar 

  • Sharma M, Ghosh R (2016) An Update on Genetic Resistance of Chickpea to Ascochyta Blight. Agronomy 6(1):1–15. https://doi.org/10.3390/agronomy6010018

    Article  CAS  Google Scholar 

  • Sharma M, Pande S (2013) Unravelling effects of temperature and soil moisture stress response on development of dry root rot [Rhizoctonia bataticola (Taub.)] Butler in chickpea. Am J Plant Sci 4:584–589

    Article  Google Scholar 

  • Sharma SB, Smith DH, McDonald D (1992) Nematode constraints of chickpea and pigeonpea production in the semiarid tropics. Plant Dis 76:868–874

    Article  Google Scholar 

  • Sharma SB, Siddiqi MR, Rahaman PF, Ali SS, Ansari MA (1998) Description of Heterodera swarupi sp. n. (Nematoda Heteroderidae), a parasite of chickpea in India. Inst J Nematol 8:111–116

    Google Scholar 

  • Sharma M, Ghosh R, Pande S (2015) Dry root rot (Rhizoctonia bataticola (Taub.) Butler): an emerging disease of chickpea – where do we stand? Arch Phytopathol Plant Protect 48:13–16

    Article  Google Scholar 

  • Sharma M, Tarafdar A, Ghosh R (2017) Biological control as a tool for eco-friendly mmanagement of plant-pathogens. In: Adhya TK, Mishra BB, Annapurna K, Verma DK, Kumar U (eds) Advances in soil microbiology: Present trends and future prospects. Springer Publication, Singapore, pp 153–188

    Chapter  Google Scholar 

  • Sharma M, Ghosh R, Tarafdar A, Rathore A, Chobe DR, Kumar AV, Gaur PM, Samineni S, Gupta O, Singh NP, Saxena DR, Saifulla M, Pithia MS, Ghante PH, Mahalinga DM, Upadhyay JB, Harer PN (2019) Exploring the genetic cipher of chickpea (Cicer arietinum L.) through identification and multi-environment validation of resistant sources against Fusarium wilt (Fusarium oxysporum f. sp. ciceris). Front Sustain Food Syst 3:78

    Article  Google Scholar 

  • Sharma M, Chobe DR, Chandran US, Tarafdar A (2020) 3P: pulses, pests and pesticides. Outlook article. Agriculture Observer Magazine 1:3

    Google Scholar 

  • Sikora RA, Greco N, Veloso Silva JF (2005) Nematode parasites of food legumes. In: Luc M, Sikora RA, Bridge J (eds) Plant parasitic nematodes in subtropical and tropical agriculture. CABI Publishing, Wallingford, pp 259–318

    Chapter  Google Scholar 

  • Singh G, Bhan LK (1986) Chemical control of gray mold in chickpea. Int Chickpea Newsl 15:18–20

    Google Scholar 

  • Suriachandraselvan M, Seethraman K (2000) Survival of Macrophomina phaseolina, the causal agent of charcoal rot of sunflower in soil, seed and plant debris. J Mycol Plant Pathol 30:402–405

    Google Scholar 

  • Tarafdar A, Rani TS, Chandran US, Ghosh R, Chobe DR, Sharma M (2018) Exploring combined effect of abiotic (soil moisture) and biotic (Sclerotium rolfsii Sacc.) stress on collar rot development in chickpea. Front Plant Sci 9:1154. https://doi.org/10.3389/fpls.2018.01154. Accessed 20 Mar 2021

    Article  PubMed  PubMed Central  Google Scholar 

  • Thompson JP, Greco N, Eastwood R, Sharma SB, Scurrah M (2000) Integrated control of nematodes of cool legumes. In: Knight R (ed) Linking research and marketing opportunities for pulses in the 21st century (Proc. Int. Food Legumes Res. Conf. 3rd.). Kluwer Academic Publishers, Dordrecht, pp 491–506

    Google Scholar 

  • Trapero-Casas A, Kaiser WJ (1992a) Influence of temperature, wetness period, plant age, and inoculum concentration on infection and development of Ascochyta blight of chickpea. Phytopathology 82:589–596

    Article  Google Scholar 

  • Trapero-Casas A, Kaiser WJ (1992b) Development of Didymella rabiei, the teleomorph of Ascochyta rabiei, on chickpea straw. Phytopathology 82:1261–1266

    Article  Google Scholar 

  • Trapero-Casas A, Kaiser WJ, Ingram DM (1990) Control of Pythium seed rot and preemergence damping-off of chickpea in the U.S. Pacific Northwest and Spain. Plant Dis 74:563–569

    Article  Google Scholar 

  • Vock NT, Langdon PW, Pegg KG (1980) Root rot of chickpea caused by Phytophthora megasperma var. sojae in Queensland. Australas Plant Pathol 9:117. https://doi.org/10.1071/APP9800117a

    Article  Google Scholar 

  • Vovlas N, Rapoport HF, Jiménez-Díaz RM, Castillo P (2005) Differences in feeding sites induced by root-knot nematodes, Meloidogyne spp., in chickpea. Phytopathology 95:368–375. https://doi.org/10.1094/PHYTO-95-0368

    Article  PubMed  Google Scholar 

  • Wang M, Van Vleet S, McGee R, Paulitz T, Porter L, Schroeder K, Vandemark G, Chen W (2021) Chickpea seed rot and damping-off caused by metalaxyl-resistant Pythium ultimum and its management with ethaboxam. Plant Dis 105.: in press:1728

    Article  CAS  PubMed  Google Scholar 

  • Westerlund FV, Jr-Cambell RN, Kimble KA (1974) Fungal root rots and wilt of chickpea in California. Phytopathology 664:432–436

    Google Scholar 

  • Zwart RS, Thudi M, Channale S, Manchikatla P, Varshney RK, Thompson JP (2019) Resistance to plant-parasitic nematodes in chickpea: current status and future perspectives. Front Plant Sci 10:1–14

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando S. Rocha .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2024 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Rocha, F.S. et al. (2024). Diseases of Chickpea. In: Elmer, W.H., McGrath, M., McGovern, R.J. (eds) Handbook of Vegetable and Herb Diseases. Handbook of Plant Disease Management. Springer, Cham. https://doi.org/10.1007/978-3-030-35512-8_26-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-35512-8_26-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-35512-8

  • Online ISBN: 978-3-030-35512-8

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics