Skip to main content

Botryosphaeran

An Unusual Exocellular Fungal (1→3)(1→6)-β-D-Glucan with Notable Biomedical Applications

  • Reference work entry
  • First Online:
Polysaccharides of Microbial Origin

Abstract

Botryosphaeran [(1→3)(1→6)-β-D-glucan] is an exopolysaccharide (EPS) produced by the ascomycete Botryosphaeria rhodina MAMB-05 when cultivated on glucose medium. Botryosphaeran has an unusual chemical structure in the sense that one of its two appendage residues (gentiobiose) attached to the (1→3)-linked backbone chain is rare, the other, glucose, is common to most β-glucans of this type. A family of botryosphaerans is produced on different carbohydrate substrates. Botryosphaeran is neither mutagenic nor genotoxic, and presents antioxidant, anticlastogenic, hypoglycemic, hypocholesterolemic, and hypotriglyceridemic activities and reduced the development of Walker-256 bearing tumors and cachexia syndrome in rats. Botryosphaeran exhibited antiproliferation of cancer cells that is associated with cell cycle arrest, apoptosis, necrosis, and oxidative stress in breast carcinoma MCF-7 cells, and cell cycle arrest in human T-lymphocyte tumorigenic cells. Botryosphaeran is commercially used in formulated cosmetic products to promote skin health and treat skin conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 899.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 999.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bacic A, Fincher G, Stone BA, editors. Chemistry, biochemistry and biology of (1→3)-β-glucans and related polysaccharides. Cambridge: Academic; 2009.

    Google Scholar 

  • Barbosa AM, Dekker RFH, St. Hardy GE. Veratryl alcohol as an inducer of laccase by an ascomycete, Botryosphaeria sp., when screened on the polymeric dye poly R-478. Lett Appl Microbiol. 1996;23:93–6.

    Article  CAS  Google Scholar 

  • Barbosa AM, Steluti RM, Dekker RFH, Cardoso MS, Corradi da Silva ML. Structural characterization of botryosphaeran: a (1→3;1→6)-β-D-glucan produced by the ascomyceteous fungus, Botryosphaeria sp. Carbohydr Res. 2003;338:1691–8.

    Article  CAS  PubMed  Google Scholar 

  • Batbayar S, Lee DH, Kim HW. Immunomodulation of fungal β-glucan in host defense signaling by dectin-1. Biomol Ther. 2012;20:433–45.

    Article  CAS  Google Scholar 

  • Bohn JA, BeMiller JN. (1→3)-β-D-glucans as biological response modifiers: a review of structure-functional activity relationships. Carbohydr Polym. 1995;28:3–14.

    Article  CAS  Google Scholar 

  • Brandi J, Oliveira EC, Monteiro NK, Vasconcelos AFD, Dekker RFH, Barbosa AM, Silveira JLM, Mourao PAS, Corradi da Silva ML. Chemical modification of botryosphaeran: structural characterization and anticoagulant activity of a water-soluble sulfonated (1→3)(1→6)-β-D-glucan. J Microbiol Biotechnol. 2011;21:1036–42.

    Article  CAS  PubMed  Google Scholar 

  • Brennan CS, Cleary LJ. The potential use of cereal (1→3,1→4)-β-D-glucans as functional food ingredients. J Cereal Sci. 2005;42:1–13.

    Article  CAS  Google Scholar 

  • Brunet A, Bonni A, Zigmond MJ, Lin MZ, Juo P, Hu LS, Anderson MJ, Arden KC, Blenis J, Greenberg ME. Akt promotes cell survival by phosphorylating and inhibiting a forkhead transcription factor. Cell. 1999;96:857–68.

    Article  CAS  PubMed  Google Scholar 

  • Calnan DR, Brunet A. The FoxO code. Oncogene. 2008;27:2276–88.

    Article  CAS  PubMed  Google Scholar 

  • Chan G, Chan W, Sze D. The effects of β-glucan on human immune and cancer cells. J Hematol Oncol. 2009;2:25.

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen L, Huang G The antiviral activity of polysaccharides and their derivatives, Int J Biol Macromol. 2018;115:77–82.

    Google Scholar 

  • Chen J, Raymond K. Beta-glucans in the treatment of diabetes and associated cardiovascular risks. Vasc Health Risk Manag. 2008;4:1265–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coelho JH, Eisele APP, Valezi CF, Mattos GJ, Schirmann JG, Dekker RFH, Barbosa-Dekker AM, Sartori ER. Exploring the exocellular fungal biopolymer botryosphaeran for laccase-biosensor architecture and application to determine dopamine and spironolactone. Talanta. 2019;204:475–83.

    Article  CAS  PubMed  Google Scholar 

  • Comiran PK, Ribeiro MC, Silva JHG, Martins KO, Santos IA, Chiaradia AEF, Silva AZ, Dekker RFH, Barbosa-Dekker AM, Alegranci P, Queiroz AIF. Botryosphaeran attenuates tumor development and the cancer cachexia syndrome in Walker-256 tumor-bearing obese rats and improves the metabolic and hematological profiles of these rats. Nutr Cancer 2021;73:1175–1192.

    Google Scholar 

  • Corradi da Silva MDL, Izeli NL, Martinez PF, Silva IR, Constantino CJL, Cardoso MS, Barbosa AM, Dekker RFH, Silva GVJ. Purification and structural characterisation of (1→3;1→6)-β-D-glucans (botryosphaerans) from Botryosphaeria rhodina grown on sucrose and fructose as carbon sources: a comparative study. Carbohydr Polym. 2005;61:10–7.

    Article  CAS  Google Scholar 

  • Dekker RFH, Barbosa AM. Effect of aeration and veratryl alcohol on the production of two laccases by the ascomycete Botryosphaeria sp. Enzym Microb Technol. 2001;28:81–8.

    Article  CAS  Google Scholar 

  • Dijkers PF, Medema RH, Lammers JWJ, Koenderman L, Coffer PJ. Expression of the pro-apoptotic Bcl-2 family member Bim is regulated by the forkhead transcription factor FKHR-L1. Curr Biol. 2000;10:1201–4.

    Article  CAS  PubMed  Google Scholar 

  • Eisele APP, Valezi CF, Mazziero T, Dekker RFH, Barbosa-Dekker AM, Sartori ER. Layering of a film of carboxymethyl-botryosphaeran onto carbon black as a novel sensitive electrochemical platform on glassy carbon electrodes for the improvement in the simultaneous determination of phenolic compounds. Sensors Actuators B Chem. 2019;287:18–26.

    Article  CAS  Google Scholar 

  • Fenech M. The cytokinesis-block micronucleus technique and its application to genotoxicity studies in human populations. Environ Health Perspect. 1993;101(Suppl 3):101–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fonseca PRMS, Dekker RFH, Barbosa AM, Silveira JLM, Vasconcelos AFD, Monteiro NK, Aranda-Selverio G, Corradi da Silva ML. Thermal and rheological properties of a family of botryosphaerans produced by Botryosphaeria rhodina MAMB-05. Molecules. 2011;16:7488–501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Geraldelli D, Ribeiro MC, Medeiros TC, Comiran PK, Martins KO, Oliveira MF, Oliveira GA, Dekker RFH, Barbosa-Dekker AM, Alegranci P, Queiroz EAIF. Tumor development in rats and cancer cachexia are reduced by treatment with botryosphaeran by increasing apoptosis and improving the metabolic profile. Life Sci. 2020a;252:117608.

    Article  CAS  PubMed  Google Scholar 

  • Geraldelli D, Ribeiro MC, Medeiros TC, Comiran PK, Martins KO, Oliveira MF, Oliveira GA, Dekker RFH, Barbosa-Dekker AM, Alegranci P, Queiroz EAIF. Botryosphaeran, a (1→3)(1→6)-β-D-glucan, reduces tumor development and cachexia syndrome in obese male rats by increasing insulin sensitivity and FOXO3a activity. Int J Biol Macromol. 2020b;165:985–994.

    Google Scholar 

  • Giese EC, Dekker RFH, Barbosa AM, da Silva R. Triple helix conformation of botryosphaeran, a (1→3;1→6)-β-D-glucan produced by Botryosphaeria rhodina MAMB-05. Carbohydr Polym. 2008;74:953–6.

    Article  CAS  Google Scholar 

  • Giese EC, Gascon J, Anzelmo G, Barbosa AM, Alves da Cunha MA, Dekker RFH. Free- radical scavenging properties and antioxidant activities of the β-glucans: botryosphaeran, laminarin, curdlan and lasiodiplodan. Int J Biol Macromol. 2015;72:125–30.

    Article  CAS  PubMed  Google Scholar 

  • Gomes A, Mattos GJ, Coldibeli B, Dekker RFH, Barbosa Dekker AM, Sartori ER. Covalent attachment of laccase to carboxymethyl-botryosphaeran in aqueous solution for the construction of a voltammetric biosensor to quantify quercetin. Bioelectrochemistry. 2020;135:107543.

    Article  CAS  PubMed  Google Scholar 

  • Gow NAR, Latge J, Munro CA. The fungal cell wall: structure, biosynthesis and function. Microbiol Spectr. 2017;5:1–25.

    Article  Google Scholar 

  • Goulomb, BA, Evans MA. Statin adverse effects: A review of the literature and evidence for a mitochondrial mechanism, Am. J. Cardiovasc Drugs 2008;8:373–418.

    Google Scholar 

  • Hayashi M. The micronucleus test-most widely used in vivo genotoxicity test. Genes Environ. 2016;38:18. (pages 1–6)

    Article  PubMed  PubMed Central  Google Scholar 

  • Jiao G, Yu G, Zhang J, Ewart HS. Chemical structures and bioactivities of sulfated polysaccharides from marine algae. Mar Drugs. 2011;9:196–233.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kagimura FY, Cunha MAA, Barbosa AM, Dekker RFH, Malfatti CRM. Biological activities of derivatized D-glucans: a review. Int J Biol Macromol. 2015;72:588–98.

    Article  CAS  PubMed  Google Scholar 

  • Kahn BB, Alquier T, Carling D, Hardie DG. AMP-activated protein kinase: ancient energy gauge provides clues to modern understanding of metabolism. Cell Metab. 2005;1:15–25.

    Article  CAS  PubMed  Google Scholar 

  • Leung MYK, Liu C, Koon JCM, Fung KP. Polysaccharide biological response modifiers. Immunol Lett. 2006;105:101–14.

    Article  CAS  PubMed  Google Scholar 

  • Malini M, Souza MF, Oliveira MT, Antunes LMG, Figueiredo SG, Barbosa AM, Dekker RFH, Cólus IM. Modulation of gene expression and cell cycle by botryosphaeran, a (1→3)(1→6)-β-d-glucan in human lymphocytes. Int J Biol Macromol. 2015;77:214–21.

    Article  CAS  PubMed  Google Scholar 

  • Malini M, Camargo MS, Hernandes LC, Vargas-Rechia CG, Varanda EA, Barbosa AM, Dekker RFH, Matsumoto ST, Antunes LMG, Cólus IMS. Chemopreventive effect and lack of genotoxicity and mutagenicity of the exopolysaccharide botryosphaeran on human lymphocytes. Toxicol In Vitr. 2016;36:18–25.

    Article  CAS  Google Scholar 

  • Maron DM, Ames BN. Revised methods for the Salmonella mutagenicity test. Mutat Res, Environ Mutagen Relat Subj. 1983;113:173–215.

    CAS  Google Scholar 

  • Mattos GJ, Moraes JT, Barbosa EM, PC PCC, RFH D, Barbosa-Dekker AM, Sartori ER. Laccase stabilized on β-D-glucan films on the surface of carbon black/gold nanoparticles: a new platform for electrochemical biosensing. Bioelectrochemistry. 2019;129:116–23.

    Article  CAS  PubMed  Google Scholar 

  • Melo FR, Pereira MS, Foguel D, Mourão PAS. Antithrombin-mediated anticoagulant activity of sulfated polysaccharides: different mechanisms for heparin and sulfated galactans. J Biol Chem. 2004;279:20824–35.

    Article  CAS  PubMed  Google Scholar 

  • Mendes SF, Santos O, Barbosa AM, Vasconcelos AFD, Aranda-Selverio G, Monteiro NK, Dekker RFH, Pereira MS, Tovar AMF, Mourão PAS, Corradi da Silva ML. Sulfonation and anticoagulant activity of botryosphaeran from Botryosphaeria rhodina MAMB-05 grown on fructose. Int J Biol Macromol. 2009;45:305–9.

    Article  CAS  PubMed  Google Scholar 

  • Miranda CCBO, Dekker RFH, Serpeloni JM, Fonseca EAI, Cólus IMS, Barbosa AM. Anticlastogenic activity exhibited by botryosphaeran, a new exopolysaccharide produced by Botryosphaeria rhodina MAMB-05. Int J Biol Macromol. 2008;42:172–7.

    Article  CAS  PubMed  Google Scholar 

  • Miranda-Nantes CCBO, Fonseca EAI, Zaia CTBV, Dekker RFH, Khaper N, Castro IA, Barbosa AM. Hypoglycemic and hypocholesterolemic effects of botryosphaeran from Botryosphaeria rhodina MAMB-05 in diabetes-induced and hyperlipidemia conditions in rats. Mycobiology. 2011;39:187–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods. 1983;65:55–63.

    Article  CAS  PubMed  Google Scholar 

  • Queiroz EAIF, Puukila S, Eichler R, Sampaio SC, Forsyth HL, Lees SJ, Barbosa AM, Dekker RFH, Fortes ZB, Khaper N. Metformin induces apoptosis and cell cycle arrest mediated by oxidative stress, AMPK and FOXO3a in MCF-7 breast cancer cells. PLoS One. 2014;9:e98207.

    Article  PubMed  PubMed Central  Google Scholar 

  • Queiroz EAIF, Fortes ZB, da Cunha MAA, Barbosa AM, Khaper N, Dekker RFH. Antiproliferative and pro-apoptotic effects of three fungal exocellular β-glucans in MCF-7 breast cancer cells is mediated by oxidative stress, AMP-activated protein kinase (AMPK) and the Forkhead transcription factor, FOXO3a. Int J Biochem Cell Biol. 2015;67:14–24.

    Article  CAS  PubMed  Google Scholar 

  • Rahmani J, Miri A, Černevičiūtė R, Thompson J, de Souza NN, Sultana R, Kord Varkaneh H, Mousavi SM, Hekmatdoost A. Effects of cereal beta-glucan consumption on body weight, body mass index, waist circumference and total energy intake: a meta-analysis of randomized controlled trials. Complement Ther Med. 2019;43:131–9.

    Article  PubMed  Google Scholar 

  • Sacchelli BAL, Galhardi LCF, Linhares REC, Lopes JL, Dekker RFH, Barbosa-Dekker AM, Orsato A. Botryosphaeran and sulfonated derivatives as novel antiviral agents for Herpes simplex and dengue fever. Int J Biol Macromol. 2019;138:334–9.

    Article  CAS  PubMed  Google Scholar 

  • Salamanca-Neto CAR, Olean-Oliveira A, Scremin J, Ceravolo GS, Dekker RFH, Barbosa-Dekker AM, Teixeira MFS, Sartori ER. Carboxymethyl-botryosphaeran stabilized carbon nanotubes aqueous dispersion: a new platform design for electrochemical sensing of desloratadine. Talanta. 2020;210:120642.

    Article  CAS  PubMed  Google Scholar 

  • Saldanha RL, Garcia JE, Dekker RFH, Vilas-Bôas LA, Barbosa AM. Genetic diversity among Botryosphaeria species and their correlation with cell wall lytic enzyme production. Braz J Microbiol. 2007;38:259–64.

    Article  Google Scholar 

  • Shackelford DB, Shaw RJ. The LKB1-AMPK pathway: metabolism and growth control in tumor suppression. Nat Rev Cancer. 2009;9:563–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Silva AZ, Costa FP, Souza IL, Ribeiro MC, Giordani M, Queiroz DA, Luvizotto RAM, Nascimento AF, Bomfim GF, Sugizaki MM, Dekker RFH, Barbosa-Dekker AM, Queiroz EAIF. Botryosphaeran reduces obesity, hepatic steatosis, dyslipidaemia, insulin resistance and glucose intolerance in diet-induced obese rats. Life Sci. 2018;211:147–56.

    Article  CAS  PubMed  Google Scholar 

  • Silva-Sena GG, Malini M, Delarmelina JM, Dutra JCV, Gervásio SV, Leal MAS, Costa Pereira TM, Barbosa-Dekker AM, Dekker RFH, de Paula F, Batitucci MCP. In vivo antimutagenic and antiatherogenic effects of the (1→3)(1→6)-β-D-glucan botryosphaeran. Mutat Res, Genet Toxicol Environ Mutagen. 2018;826:6–14.

    Google Scholar 

  • Sima P, Vannucci L, Vetvicka V. β-Glucans and cholesterol. Int J Mol Med. 2018;41:1799–808.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Steluti RM, Giese EC, Piggato MM, Sumiya AFG, Covizzi LG, Job AE, Cardoso MS, Corradi da Silva ML, Dekker RFH, Barbosa AM. Comparison of botryosphaeran production by the ascomyceteous fungus Botryosphaeria sp., grown on different carbohydrate carbon sources, and their partial structural features. J Basic Microbiol. 2004;44:480–6.

    Article  CAS  PubMed  Google Scholar 

  • Stone BA. Chemistry of β-glucans. In: Stone BA, Clark AE, Fincher GB, Basic A, editors. Chemistry and biology of (1→3)-β-glucans and related polysaccharides. Burlington: Elsevier Press; 2009. p. 5–46.

    Google Scholar 

  • Stone BA, Clarke AE, editors. Chemistry and biology of (1→3)-β-glucans. Bundoora: La Trobe University Press; 1992.

    Google Scholar 

  • Tice RR, Agurell E, Anderson D, Burlinson B, Hartmann A, Kobayashi H, Miyamae Y, Rojas E, Ryu JC, Sasaki YF. Single cell gel/comet assay: guidelines for in vitro and in vivo genetic toxicology testing. Environ Mol Mutagen. 2000;35:206–21.

    Article  CAS  PubMed  Google Scholar 

  • Vetvicka V, Vetvickova J. β(1→3)-glucan in cancer treatment. Am J Immunol. 2012;8:38–43.

    Article  CAS  Google Scholar 

  • Wang H, Liu Y, Qi Z, Wang S, Liu S, Li X, Wang H, Xia X. An overview on natural polysaccharides with antioxidant properties. Curr Med Chem. 2013;20:2899–913.

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Hu S, Nie S, Yu Q, Xie M. Reviews on mechanisms of in vitro antioxidant activity of polysaccharides. Oxidative Med Cell Longev. 2016;2016:5692852.

    Article  Google Scholar 

  • Wang Q, Sheng X, Shi A, Hu H, Yang Y, Liu L, Fei L, Liu H. β-Glucans: relationships between modification, conformation and functional activities. Molecules. 2017;22:257.

    Article  PubMed Central  Google Scholar 

  • Wouk J, Dekker RFH, Queiroz, EAIF, Barbosa-Dekker AM. β-Glucans as a panacea for a healthy heart? Their roles in preventing and treating cardiovascular diseases. Int J Biol Macromol 2021; 177:176–203.

    Google Scholar 

  • Yoshitomi H, Sakaguchi N, Kobayashi K, Brown GD, Tagami T, Sakihama T, Hirota K, Tanaka S, Nomura T, Miki I, Gordon S, Akira S, Nakamura T, Sakaguchi S. A role for fungal β-glucans and their receptor dectin-1 in the induction of autoimmune arthritis in genetically susceptible mice. J Exp Med. 2005;201:949–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Danielle Geraldelli and Dr. Eveline Queiroz (Núcleo de Pesquisa e Apoio Didático em Saúde, Instituto de Ciências da Saúde, Universidade Federal de Mato Grosso, Sinop-MT, Brazil) for the provision of photographs of rats bearing the Walker-256 tumors.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Dekker, R.F.H., Barbosa-Dekker, A.M. (2022). Botryosphaeran. In: Oliveira, J.M., Radhouani, H., Reis, R.L. (eds) Polysaccharides of Microbial Origin. Springer, Cham. https://doi.org/10.1007/978-3-030-42215-8_63

Download citation

Publish with us

Policies and ethics