Skip to main content

Pediatric Catheter Intervention

Principles and Applications

  • Living reference work entry
  • Latest version View entry history
  • First Online:
Pediatric Cardiology

Abstract

Transcatheter interventions have become the standard of care for many congenital heart defects. As with most areas of congenital heart disease management, interventional cardiology as a field has achieved great successes by standing on the shoulders of giants. In this chapter we review the indications, technical procedural details, potential complications, and outcomes of the per-catheter intervention of cardiac valves, right ventricular outflow lesions, septal defects, patent arterial duct, vascular interventions, and hybrid procedures. In addition, review of new technologies in this field are discussed as it pertains to various lesions and procedures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Rashkind WJ, Miller WW. Creation of an atrial septal defect without thoracotomy: a palliative approach to complete transposition of the great arteries. JAMA. 1966;196(11):991–2.

    Article  CAS  PubMed  Google Scholar 

  2. King TD, Thompson SL, Steiner C, Mills NL. Secundum atrial septal defect: nonoperative closure during cardiac catheterization. JAMA. 1976;235(23):2506–9.

    Article  CAS  PubMed  Google Scholar 

  3. Kan JS, White RI, Mitchell SE, Gardner TJ. Percutaneous balloon valvuloplasty: a new method for treating congenital pulmonary-valve stenosis. N Engl J Med. 1982;307(9):540–2.

    Article  CAS  PubMed  Google Scholar 

  4. Mullins CE, O’Laughlin MP, Vick GW, Mayer DC, Myers TJ, Kearney DL, et al. Implantation of balloon-expandable intravascular grafts by catheterization in pulmonary arteries and systemic veins. Circulation. 1988;77(1):188–99.

    Article  CAS  PubMed  Google Scholar 

  5. Lababidi Z. Aortic balloon valvuloplasty. Am Heart J. 1983;106(4 PART 1):751–2.

    Article  CAS  PubMed  Google Scholar 

  6. Feltes TF, Bacha E, Beekman RH, Cheatham JP, Feinstein JA, Gomes AS, et al. Indications for cardiac catheterization and intervention in pediatric cardiac disease: a scientific statement from the American Heart Association. Circulation. 2011;123(22):2607–52.

    Article  PubMed  Google Scholar 

  7. Gatzoulis MA, Rigby ML, Shinebourne EA, Redington AN. Contemporary results of balloon valvuloplasty and surgical valvotomy for congenital aortic stenosis. Arch Dis Child. 1995;73(1):66–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Justo RN, McCrindle BW, Benson LN, Williams WG, Freedom RM, Smallhorn JF. Aortic valve regurgitation after surgical versus percutaneous balloon valvotomy for congenital aortic valve stenosis. Am J Cardiol. 1996;77(15):1332–8.

    Article  CAS  PubMed  Google Scholar 

  9. Prijic SM, Vukomanovic VA, Stajevic MS, Bjelakovic BB, Zdravkovic MD, Sehic IN, et al. Balloon dilation and surgical valvotomy comparison in non-critical congenital aortic valve stenosis. Pediatr Cardiol. 2015;36(3):616–24.

    Article  PubMed  Google Scholar 

  10. Saung MT, McCracken C, Sachdeva R, Petit CJ. Outcomes following balloon aortic valvuloplasty versus surgical valvotomy in congenital aortic valve stenosis: a meta-analysis. J Invasive Cardiol. 2019;31(6):E133–42.

    PubMed  Google Scholar 

  11. Justino H, Petit CJ. Percutaneous common carotid artery access for pediatric interventional cardiac catheterization. Circ Cardiovasc Interv. 2016;9(4):e003003.

    Article  PubMed  Google Scholar 

  12. Choudhry S, Balzer D, Murphy J, Nicolas R, Shahanavaz S. Percutaneous carotid artery access in infants < 3 months of age. Catheter Cardiovasc Interv. 2016;87:757–61.

    Article  PubMed  Google Scholar 

  13. Helgason H, Keane JF, Fellows KE, Kulik TJ, Lock JE. Balloon dilation of the aortic valve: studies in normal lambs and in children with aortic stenosis. J Am Coll Cardiol. 1987;9(4):816–22.

    Article  CAS  PubMed  Google Scholar 

  14. Sholler GF, Keane JF, Perry SB, Sanders SP, Lock JE. Balloon dilation of congenital aortic valve stenosis. Results and influence of technical and morphological features on outcome. Circulation. 1988;78(2):351–60.

    Article  CAS  PubMed  Google Scholar 

  15. Egito EST, Moore P, O’Sullivan J, Colan S, Perry SB, Lock JE, et al. Transvascular balloon dilation for neonatal critical aortic stenosis: early and midterm results. J Am Coll Cardiol. 1997;29(2):442–7.

    Article  CAS  PubMed  Google Scholar 

  16. Mullins CE, Nihill MR, Wesley Vick G, Ludomirsky A, O’Laughlin MP, Bricker JT, et al. Double balloon technique for dilation of valvular or vessel stenosis in congenital and acquired heart disease. J Am Coll Cardiol. 1987;10(1):107–14.

    Article  CAS  PubMed  Google Scholar 

  17. Beekman RH, Rocchini AP, Crowley DC, Snider AR, Serwer GA, Dick M, et al. Comparison of single and double balloon valvuloplasty in children with aortic stenosis. J Am Coll Cardiol. 1988;12(2):480–5.

    Article  CAS  PubMed  Google Scholar 

  18. Yeager SB. Balloon selection for double balloon valvotomy. J Am Coll Cardiol. 1987;9:467–8.

    Article  CAS  PubMed  Google Scholar 

  19. Daehnert I, Rotzsch C, Wiener M, Schneider P. Rapid right ventricular pacing is an alternative to adenosine in catheter interventional procedures for congenital heart disease. Heart. 2004;90(9):1047–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. De Giovanni JV, Edgar RA, Singh SP, Sadiq M. Adenosine-assisted balloon valvuloplasty/angioplasty in congenital heart disease. Heart. 1998.

    Google Scholar 

  21. Brown DW, Dipilato AE, Chong EC, Lock JE, McElhinney DB. Aortic valve reinterventions after balloon aortic valvuloplasty for congenital aortic stenosis: intermediate and late follow-up. J Am Coll Cardiol. 2010;56(21):1740–9.

    Article  PubMed  Google Scholar 

  22. Rocchini AP, Beekman RH, Ben SG, Benson L, Schwartz D, Kan JS. Balloon aortic valvuloplasty: results of the valvuloplasty and angioplasty of congenital anomalies registry. Am J Cardiol. 1990;65(11):784–9.

    Article  CAS  PubMed  Google Scholar 

  23. Torres A, Vincent JA, Everett A, Lim S, Foerster SR, Marshall AC, et al. Balloon valvuloplasty for congenital aortic stenosis: multi-center safety and efficacy outcome assessment. Catheter Cardiovasc Interv. 2015;86(5):808–20.

    Article  PubMed  Google Scholar 

  24. Boe BA, Zampi JD, Kennedy KF, Jayaram N, Porras D, Foerster SR, et al. Acute success of balloon aortic valvuloplasty in the current era: a National Cardiovascular Data Registry Study. JACC Cardiovasc Interv. 2017;10(17):1717–26.

    Article  PubMed  Google Scholar 

  25. McElhinney DB, Lock JE, Keane JF, Moran AM, Colan SD. Left heart growth, function, and reintervention after balloon aortic valvuloplasty for neonatal aortic stenosis. Circulation. 2005;111(4):451–8.

    Article  PubMed  Google Scholar 

  26. Sullivan PM, Rubio AE, Johnston TA, Jones TK. Long-term outcomes and re-interventions following balloon aortic valvuloplasty in pediatric patients with congenital aortic stenosis: a single-center study. Catheter Cardiovasc Interv. 2017;89(2):288–96.

    Article  PubMed  Google Scholar 

  27. Rubio-Alvarez V, Limon R, Soni J. Valvulotomias intracardiacas por medio de un cateter. Arch Inst Cardiol Mex. 1953;23(2):183–92.

    CAS  PubMed  Google Scholar 

  28. Stanger P, Cassidy SC, Girod DA, Kan JS, Lababidi Z, Shapiro SR. Balloon pulmonary valvuloplasty: results of the valvuloplasty and angioplasty of congenital anomalies registry. Am J Cardiol. 1990;65(11):775–83.

    Article  CAS  PubMed  Google Scholar 

  29. Rao PS, Galal O, Patnana M, Buck SH, Wilson AD. Results of three to 10 year follow up of balloon dilatation of the pulmonary vale. Heart. 1998;80(6):591–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Jarrar M, Betbout F, Farhat MB, Maatouk F, Gamra H, Addad F, et al. Long-term invasive and noninvasive results of percutaneous balloon pulmonary valvuloplasty in children, adolescents, and adults. Am Heart J. 1999;138(5 I):950–4.

    Article  CAS  PubMed  Google Scholar 

  31. Radtke W, Keane JF, Fellows KE, Lang P, Lock JE. Percutaneous balloon valvotomy of congenital pulmonary stenosis using oversized balloons. J Am Coll Cardiol. 1986;8(4):909–15.

    Article  CAS  PubMed  Google Scholar 

  32. Rao PS. Influence of balloon size on short-term and long-term results of balloon pulmonary valvuloplasty. Texas Heart Inst J. 1987;14(1):57–61.

    CAS  Google Scholar 

  33. Ring JC, Kulik TJ, Burke BA, Lock JE. Morphologic changes induced by dilation of the pulmonary valve anulus with overlarge balloons in normal newborn lambs. Am J Cardiol. 1985;55(1):210–4.

    Article  CAS  PubMed  Google Scholar 

  34. McCrindle BW. Independent predictors of long-term results after balloon pulmonary valvuloplasty. Circulation. 1994;89(4):1751–9.

    Article  CAS  PubMed  Google Scholar 

  35. Narang R, Das G, Dev V, Goswami K, Saxena A, Shrivastava S. Effect of the balloon-anulus ratio on the intermediate and follow-up results of pulmonary balloon valvuloplasty. Cardiology. 1997;88(3):271–6.

    Article  CAS  PubMed  Google Scholar 

  36. Al Kasab S, Ribeiro PA, Al Zaibag M, Halim M, Habbab MA, Shahid M. Percutaneous double balloon pulmonary valvotomy in adults: one- to two-year follow-up. Am J Cardiol. 1988;62(10 PART 1):822–4.

    Article  PubMed  Google Scholar 

  37. Rao PS, Fawzy ME. Double balloon technique for percutaneous balloon pulmonary valvuloplasty: comparison with single balloon technique. J Interv Cardiol. 1988;1(4):257–62.

    Article  Google Scholar 

  38. Rao PS. Balloon pulmonary valvuloplasty: a review. Clin Cardiol. 1989;12:55–74.

    Article  CAS  PubMed  Google Scholar 

  39. Fawzy ME, Galal O, Dunn B, Shaikh A, Sriram R, Duran CMG. Regression of infundibular pulmonary stenosis after successful balloon pulmonary valvuloplasty in adults. Catheter Cardiovasc Diagn. 1990;21(2):77–81.

    Article  CAS  Google Scholar 

  40. Holzer RJ, Gauvreau K, Kreutzer J, Trucco SM, Torres A, Shahanavaz S, et al. Safety and efficacy of balloon pulmonary valvuloplasty: a multicenter experience. Catheter Cardiovasc Interv. 2012;80(4):663–72.

    Article  PubMed  Google Scholar 

  41. Devanagondi R, Peck D, Sagi J, Donohue J, Yu S, Pasquali SK, et al. Long-term outcomes of balloon valvuloplasty for isolated pulmonary valve stenosis. Pediatr Cardiol. 2017;38(2):247–54.

    Article  PubMed  Google Scholar 

  42. Piechaud JF, Ladeia AM, Da Cruz E, Gournay V, Iserin L, Delogu A, et al. Puncture-dilatation of pulmonary atresia with intact interventricular septum in the neonate and infant. Arch Mal Coeur Vaiss. 1993;86(5):581–6.

    CAS  PubMed  Google Scholar 

  43. Gournay V, Piéchaud JF, Delogu A, Sidi D, Kachaner J. Balloon valvotomy for critical stenosis or atresia of pulmonary valve in newborns. J Am Coll Cardiol. 1995;26(7):1725–31.

    Article  CAS  PubMed  Google Scholar 

  44. Siblini G, Rao PS, Singh GK, Tinker K, Balfour IC. Transcatheter management of neonates with pulmonary atresia and intact ventricular septum. Catheter Cardiovasc Diagn. 1997;42(4):395–402.

    Article  CAS  Google Scholar 

  45. Qureshi SA, Rosenthal E, Tynan M, Anjos R, Baker EJ. Transcatheter laser-assisted balloon pulmonary valve dilation in pulmonic valve atresia. Am J Cardiol. 1991;67(5):428–31.

    Article  CAS  PubMed  Google Scholar 

  46. Latson LA. Nonsurgical treatment of a neonate with pulmonary atresia and intact ventricular septum by transcatheter puncture and balloon dilation of the atretic valve membrane. Am J Cardiol. 1991;68(2):277–9.

    Article  CAS  PubMed  Google Scholar 

  47. Parsons JM, Rees MR, Gibbs JL. Percutaneous laser valvotomy with ballon dilatation of the pulmonary valve as primary treatment for pulmonary atresia. Br Heart J. 1991;66(1):36–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Gibbs JL, Blackburn ME, Uzun O, Dickinson DF, Parsons JM, Chatrath RR. Laser valvotomy with balloon valvoplasty for pulmonary atresia with intact ventricular septum: five years’ experience. Heart. 1997;77(3):225–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Redington AN, Cullen S, Rigby ML. Laser or radiofrequency pulmonary valvotomy in neonates with pulmonary atresia and intact ventricular septum—description of a new method avoiding arterial catheterization. Cardiol Young. 1992;2(4):387–90.

    Article  Google Scholar 

  50. Rosenthal E, Qureshi SA, Chen Chan K, Martin RP, Skehan DJ, et al. Radiofrequency-assisted balloon dilatation in patients with pulmonary valve atresia and an intact ventricular septum. Br Heart J. 1993;69(4):347–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Justo RN, Nykanen DG, Williams WG, Freedom RM, Benson LN. Transcatheter perforation of the right ventricular outflow tract as initial therapy for pulmonary valve atresia and intact ventricular septum in the newborn. Catheter Cardiovasc Diagn. 1997;40(4):408–13.

    Article  CAS  Google Scholar 

  52. Alwi M, Geetha K, Bilkis AA, Lim MK, Hasri S, Haifa AL, et al. Pulmonary atresia with intact ventricular septum percutaneous radiofrequency-assisted valvotomy and balloon dilation versus surgical valvotomy and Blalock Taussig shunt. J Am Coll Cardiol. 2000;35(2):468–76.

    Article  CAS  PubMed  Google Scholar 

  53. Alwi M, Budi RR, Mood MC, Leong MC, Samion H. Pulmonary atresia with intact septum: the use of conquest pro coronary guidewire for perforation of atretic valve and subsequent interventions. Cardiol Young. 2013;23(2):197–202.

    Article  PubMed  Google Scholar 

  54. Patil NC, Saxena A, Gupta SK, Juneja R, Mishra S, Ramakrishnan S, et al. Perforating the atretic pulmonary valve with CTO hardware: technical aspects. Catheter Cardiovasc Interv. 2016;88(5):E145–50.

    Article  PubMed  Google Scholar 

  55. Bakhru S, Marathe S, Saxena M, Verma S, Saileela R, Dash TK, et al. Transcatheter pulmonary valve perforation using chronic total occlusion wire in pulmonary atresia with intact ventricular septum. Ann Pediatr Cardiol. 2017;10(1):5–10.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Lefort B, Saint-Etienne C, Soulé N, Ma I, Dion F, Chantepie A. Perforation of the atretic pulmonary valve using chronic total occlusion (CTO) wire and coronary microcatheter. Congenit Heart Dis. 2019;14(5):814–8.

    Article  PubMed  Google Scholar 

  57. Weber HS, Cyran SE. Effectiveness of an umbilical artery “snare assisted” approach for critical pulmonary valve stenosis or atresia in the neonate. Am J Cardiol. 1997;80(11):1502–5.

    Article  CAS  PubMed  Google Scholar 

  58. Lamers L, Garn B, Ellsworth E, Graziano JN. Decreased incidence of right-ventricular outflow tract complications using a retrograde snare technique for radiofrequency pulmonary valve perforation. Pediatr Cardiol. 2012;33(8):1275–80.

    Article  PubMed  Google Scholar 

  59. Benson LN, Nykanen D, Collison A. Radiofrequency perforation in the treatment of congenital heart disease. Catheter Cardiovasc Interv. 2002;56(1):72–82.

    Article  PubMed  Google Scholar 

  60. Hasan BS, Bautista-Hernandez V, McElhinney DB, Salvin J, Laussen PC, Prakash A, et al. Outcomes of transcatheter approach for initial treatment of pulmonary atresia with intact ventricular septum. Catheter Cardiovasc Interv. 2013;81(1):111–8.

    Article  PubMed  Google Scholar 

  61. Petit CJ, Qureshi AM, Glatz AC, Kelleman MS, McCracken CE, Ligon RA, et al. Technical factors are associated with complications and repeat intervention in neonates undergoing transcatheter right ventricular decompression for pulmonary atresia and intact ventricular septum: results from the congenital catheterisation research coll. Cardiol Young. 2018;28(8):1042–9.

    Article  PubMed  Google Scholar 

  62. Hascoët S, Borrhomée S, Tahhan N, Petit J, Boet A, Houyel L, et al. Transcatheter pulmonary valvuloplasty in neonates with pulmonary atresia and intact ventricular septum. Arch Cardiovasc Dis. 2019;112(5):323–33.

    Article  PubMed  Google Scholar 

  63. Chubb H, Pesonen E, Sivasubramanian S, Tibby SM, Simpson JM, Rosenthal E, et al. Long-term outcome following catheter valvotomy for pulmonary atresia with intact ventricular septum. J Am Coll Cardiol. 2012;59(16):1468–76.

    Article  PubMed  Google Scholar 

  64. Schwartz MC, Glatz AC, Dori Y, Rome JJ, Gillespie MJ. Outcomes and predictors of reintervention in patients with pulmonary atresia an intact ventricular septum treated with radiofrequency pulmonary valvotomy. Abstracts: pediatric & adult interventional cardiac symposium (PICS/AICS 2013). Catheter Cardiovasc Interv. 2013;81 (1):174–221.

    Google Scholar 

  65. Petit CJ, Glatz AC, Qureshi AM, Sachdeva R, Maskatia SA, Justino H, et al. Outcomes after decompression of the right ventricle in infants with pulmonary atresia with intact ventricular septum are associated with degree of tricuspid regurgitation: results from the congenital catheterization research collaborative. Circ Cardiovasc Interv. 2017;10(5):e004428.

    Article  PubMed  Google Scholar 

  66. Humpl T, Söderberg B, McCrindle BW, Nykanen DG, Freedom RM, Williams WG, et al. Percutaneous balloon valvotomy in pulmonary atresia with intact ventricular septum: impact on patient care. Circulation. 2003;108(7):826–32.

    Article  PubMed  Google Scholar 

  67. Marasini M, Gorrieri PF, Tuo G, Zannini L, Guido P, Pellegrini M, et al. Long-term results of catheter-based treatment of pulmonary atresia and intact ventricular septum. Heart. 2009;95(18):1520–4.

    Article  CAS  PubMed  Google Scholar 

  68. Giglia TM, Jenkins KJ, Matitiau A, Mandell VS, Sanders SP, Mayer JE, et al. Influence of right heart size on outcome in pulmonary atresia with intact ventricular septum. Circulation. 1993;88(5 I):2248–56.

    Article  CAS  PubMed  Google Scholar 

  69. Minich LL, Tani LY, Ritter S, Williams RV, Shaddy RE, Hawkins JA. Usefulness of the preoperative tricuspid/mitral valve ratio for predicting outcome in pulmonary atresia with intact ventricular septum. Am J Cardiol. 2000;85(11):1325–8.

    Article  CAS  PubMed  Google Scholar 

  70. Drighil A, Aljufan M, Slimi A, Yamani S, Mathewson J, AlFadly F. Echocardiographic determinants of successful balloon dilation in pulmonary atresia with intact ventricular septum. Eur J Echocardiogr. 2010;11(2):172–5.

    Article  PubMed  Google Scholar 

  71. Van Arsdell GS, Maharaj GS, Tom J, Rao VK, Coles JG, Freedom RM, et al. What is the optimal age for repair of tetralogy of Fallot? Circulation. 2000;102(19 Suppl 3):III-123.

    Google Scholar 

  72. Kreutzer J, Perry SB, Jonas RA, Mayer JE, Castañeda AR, Lock JE. Tetralogy of Fallot with diminutive pulmonary arteries: preoperative pulmonary valve dilation and transcatheter rehabilitation of pulmonary arteries. J Am Coll Cardiol. 1996;27(7):1741–7.

    Article  CAS  PubMed  Google Scholar 

  73. Gladman G, McCrindle BW, Williams WG, Freedom RM, Benson LN. The modified Blalock-Taussig shunt: clinical impact and morbidity in Fallot’s tetralogy in the current era. J Thorac Cardiovasc Surg. 1997;114(1):25–30.

    Article  CAS  PubMed  Google Scholar 

  74. Cobanoglu A, Schultz JM. Total correction of tetralogy of Fallot in the first year of life: late results. Ann Thorac Surg. 2002;74(1):133–8.

    Article  PubMed  Google Scholar 

  75. Gibbs JL, Uzun O, Blackburn ME, Parsons JM, Dickinson DF. Right ventricular outflow stent implantation: an alternative to palliative surgical relief of infundibular pulmonary stenosis. Heart. 1997;77(2):176–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Ooi A, Moorjani N, Baliulis G, Keeton BR, Salmon AP, Monro JL, et al. Medium term outcome for infant repair in tetralogy of Fallot: indicators for timing of surgery. Eur J Cardiothorac Surg. 2006;30(6):917–22.

    Article  PubMed  Google Scholar 

  77. Dohlen G, Chaturvedi RR, Benson LN, Ozawa A, Van Arsdell GS, Fruitman DS, et al. Stenting of the right ventricular outflow tract in the symptomatic infant with tetralogy of Fallot. Heart. 2008;95(2):142–7.

    Article  PubMed  Google Scholar 

  78. Stumper O, Ramchandani B, Noonan P, Mehta C, Bhole V, Reinhardt Z, et al. Stenting of the right ventricular outflow tract. Heart. 2013;99(21):1603–8.

    Article  PubMed  Google Scholar 

  79. Sandoval JP, Chaturvedi RR, Benson L, Morgan G, Van Arsdell G, Honjo O, et al. Right ventricular outflow tract stenting in tetralogy of Fallot infants with risk factors for early primary repair. Circ Cardiovasc Interv. 2016;9(12):e003979.

    Article  PubMed  Google Scholar 

  80. Wilder TJ, Van Arsdell GS, Benson L, Pham-Hung E, Gritti M, Page A, et al. Young infants with severe tetralogy of Fallot: early primary surgery versus transcatheter palliation. J Thorac Cardiovasc Surg. 2017;154(5):1692–1700.e2.

    Article  PubMed  Google Scholar 

  81. Zachariah JPV, Pigula FA, Mayer JE, McElhinney DB. Right ventricle to pulmonary artery conduit augmentation compared with replacement in young children. Ann Thorac Surg. 2009;88:574.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Brown JW, Ruzmetov M, Rodefeld MD, Vijay P, Turrentine MW. Right ventricular outflow tract reconstruction with an allograft conduit in non-ross patients: risk factors for allograft dysfunction and failure. Ann Thorac Surg. 2005;80:655.

    Article  PubMed  Google Scholar 

  83. Batlivala SP, Emani S, Mayer JE, McElhinney DB. Pulmonary valve replacement function in adolescents: a comparison of bioprosthetic valves and homograft conduits. Ann Thorac Surg. 2012;93:2007.

    Article  PubMed  Google Scholar 

  84. Poynter JA, Eghtesady P, McCrindle BW, Walters HL, Kirshbom PM, Blackstone EH, et al. Association of pulmonary conduit type and size with durability in infants and young children. Ann Thorac Surg. 2013;96:1695.

    Article  PubMed  Google Scholar 

  85. Bartelds B, Borgdorff M, Berger R. Right ventricular adaptation in congenital heart diseases. J Cardiovasc Dev Dis. 2014;1:83.

    Google Scholar 

  86. De Ruijter FTH, Weenink I, Hitchcock FJ, Meijboom EJ, Bennink GBWE. Right ventricular dysfunction and pulmonary valve replacement after correction of tetralogy of Fallot. Ann Thorac Surg. 2002;73(6):1794–800; discussion 1800.

    Article  PubMed  Google Scholar 

  87. Geva T. Repaired tetralogy of Fallot: the roles of cardiovascular magnetic resonance in evaluating pathophysiology and for pulmonary valve replacement decision support. J Cardiovasc Magn Reson. 2011;13:1.

    Article  Google Scholar 

  88. Hickey EJ, Veldtman G, Bradley TJ, Gengsakul A, Manlhiot C, Williams WG, et al. Late risk of outcomes for adults with repaired tetralogy of Fallot from an inception cohort spanning four decades. Eur J Cardiothoracic Surg. 2009;35:156.

    Article  Google Scholar 

  89. Murphy JG, Gersh BJ, Mair DD, Fuster V, Mcgoon MD, Ilstrup DM, et al. Long-term outcome in patients undergoing surgical repair of tetralogy of Fallot. N Engl J Med. 1993;329:593.

    Article  CAS  PubMed  Google Scholar 

  90. Babu-Narayan SV, Diller GP, Gheta RR, Bastin AJ, Karonis T, Li W, et al. Clinical outcomes of surgical pulmonary valve replacement after repair of tetralogy of fallot and potential prognostic value of preoperative cardiopulmonary exercise testing. Circulation. 2014;129:18.

    Article  PubMed  Google Scholar 

  91. Shimazaki Y, Blackstone EH, Kirklin JW. The natural history of isolated congenital pulmonary valve incompetence: surgical implications. Thorac Cardiovasc Surg. 1984;32:257.

    Article  CAS  PubMed  Google Scholar 

  92. Ramadan FB, Beanlands DS, Burwash IG. Isolated pulmonic valve endocarditis in healthy hearts: a case report and review of the literature. Can J Cardiol. 2000;16:1282.

    CAS  PubMed  Google Scholar 

  93. Connolly HM, Schaff HV, Mullany CJ, Abel MD, Pellikka PA. Carcinoid heart disease: impact of pulmonary valve replacement in right ventricular function and remodeling. Circulation. 2002;106:I-51.

    Article  Google Scholar 

  94. Mascio CE, Pasquali SK, Jacobs JP, Jacobs ML, Austin EH. Outcomes in adult congenital heart surgery: analysis of the Society of Thoracic Surgeons database. J Thorac Cardiovasc Surg. 2011;142:1090.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Lee C, Lee CH, Kwak JG. Surgical pulmonary valve insertion. Cardiol Young. 2013;23:915.

    Article  PubMed  Google Scholar 

  96. Khanna AD, Hill KD, Pasquali SK, Wallace AS, Masoudi FA, Jacobs ML, et al. Benchmark outcomes for pulmonary valve replacement using the Society of Thoracic Surgeons databases. Ann Thorac Surg. 2015;100:138.

    Article  PubMed  Google Scholar 

  97. Peng LF, McElhinney DB, Nugent AW, Powell AJ, Marshall AC, Bacha EA, et al. Endovascular stenting of obstructed right ventricle-to-pulmonary artery conduits: a 15-year experience. Circulation. 2006;113:2598.

    Article  PubMed  Google Scholar 

  98. Lee C, Kim YM, Lee CH, Kwak JG, Park CS, Song JY, et al. Outcomes of pulmonary valve replacement in 170 patients with chronic pulmonary regurgitation after relief of right ventricular outflow tract obstruction: implications for optimal timing of pulmonary valve replacement. J Am Coll Cardiol. 2012;60:1005.

    Article  PubMed  Google Scholar 

  99. Bonhoeffer P, Boudjemline Y, Saliba Z, Hausse AO, Aggoun Y, Bonnet D, et al. Transcatheter implantation of a bovine valve in pulmonary position: a lamb study. Circulation. 2000;102(7):813–6.

    Article  CAS  PubMed  Google Scholar 

  100. Bonhoeffer P, Boudjemline Y, Saliba Z, Merckx J, Aggoun Y, Bonnet D, et al. Percutaneous replacement of pulmonary valve in a right-ventricle to pulmonary-artery prosthetic conduit with valve dysfunction. Lancet. 2000;356(9239):1403–5.

    Article  CAS  PubMed  Google Scholar 

  101. Warnes C, Williams R, Bashore T, Child J, Connolly H, Dearani J, et al. ACC/AHA 2008 guidelines for the management of adults with congenital heart disease: a report of the American College of Cardiology/American Heart Association task force on practice guidelines. J Am Coll Cardiol. 2008;52:1890.

    Article  Google Scholar 

  102. Silversides CK, Salehian O, Oechslin E, Schwerzmann M, Muhll IV, Khairy P, et al. Canadian Cardiovascular Society 2009 consensus conference on the management of adults with congenital heart disease: complex congenital cardiac lesions. Can J Cardiol. 2010, 26(3):e98–e117.

    Google Scholar 

  103. Baumgartner H, Bonhoeffer P, De Groot NMS, De Haan F, Deanfield JE, Galie N, et al. ESC guidelines for the management of grown-up congenital heart disease (new version 2010). Eur Heart J. 2010;31(23):2915–57.

    Article  PubMed  Google Scholar 

  104. Martin MH, Shahanavaz S, Peng LF, Asnes JD, Riley M, Hellenbrand WE, et al. Percutaneous transcatheter pulmonary valve replacement in children weighing less than 20 kg. Catheter Cardiovasc Interv. 2018;91:485.

    Article  PubMed  Google Scholar 

  105. Berman DP, McElhinney DB, Vincent JA, Hellenbrand WE, Zahn EM. Feasibility and short-term outcomes of percutaneous transcatheter pulmonary valve replacement in small. Circ Cardiovasc Interv. 2014;7:142.

    Article  PubMed  Google Scholar 

  106. Pibarot P, Dumesnil JG. Prosthetic heart valves: selection of the optimal prosthesis and long-term management. Circulation. 2009;119:1034.

    Article  PubMed  Google Scholar 

  107. Kenny D, Morgan GJ, Murphy M, AlAlwi K, Giugno L, Zablah J, et al. Use of 65 cm large caliber Dryseal sheaths to facilitate delivery of the Edwards SAPIEN valve to dysfunctional right ventricular outflow tracts. Catheter Cardiovasc Interv. 2019;94:409.

    Article  PubMed  Google Scholar 

  108. Gillespie MJ, Rome JJ, Levi DS, Williams RJ, Rhodes JF, Cheatham JP, et al. Melody valve implant within failed bioprosthetic valves in the pulmonary position: a multicenter experience. Circ Cardiovasc Interv. 2012;5:862.

    Article  PubMed  Google Scholar 

  109. Cabalka AK, Asnes JD, Balzer DT, Cheatham JP, Gillespie MJ, Jones TK, et al. Transcatheter pulmonary valve replacement using the melody valve for treatment of dysfunctional surgical bioprostheses: a multicenter study. J Thorac Cardiovasc Surg. 2018;155:1712.

    Article  PubMed  Google Scholar 

  110. Bapat V. Valve-in-valve apps: why and how they were developed and how to use them. EuroIntervention. 2014;10:U44.

    Article  PubMed  Google Scholar 

  111. Tanase D, Grohmann J, Schubert S, Uhlemann F, Eicken A, Ewert P. Cracking the ring of Edwards Perimount bioprosthesis with ultrahigh pressure balloons prior to transcatheter valve in valve implantation. Int J Cardiol. 2014;176:1048.

    Article  CAS  PubMed  Google Scholar 

  112. Shahanavaz S, Asnes JD, Grohmann J, Qureshi AM, Rome JJ, Tanase D, et al. Intentional fracture of bioprosthetic valve frames in patients undergoing valve-in-valve transcatheter pulmonary valve replacement. Circ Cardiovasc Interv. 2018;11:e006453.

    Article  PubMed  Google Scholar 

  113. McElhinney DB, Cheatham JP, Jones TK, Lock JE, Vincent JA, Zahn EM, et al. Stent fracture, valve dysfunction, and right ventricular outflow tract reintervention after transcatheter pulmonary valve implantation: patient-related and procedural risk factors in the US melody valve trial. Circ Cardiovasc Interv. 2011;4(6):602–14.

    Article  PubMed  Google Scholar 

  114. Cabalka AK, Hellenbrand WE, Eicken A, Kreutzer J, Gray RG, Bergersen L, et al. Relationships among conduit type, pre-stenting, and outcomes in patients undergoing transcatheter pulmonary valve replacement in the prospective North American and European Melody Valve Trials. JACC Cardiovasc Interv. 2017;10:174.

    Article  Google Scholar 

  115. Bensemlali M, Malekzadeh-Milani S, Mostefa-Kara M, Bonnet D, Boudjemline Y. Percutaneous pulmonary Melody® valve implantation in small conduits. Arch Cardiovasc Dis. 2017;110:517.

    Article  PubMed  Google Scholar 

  116. Shahanavaz S, Qureshi AM, Levi DS, Boudjemline Y, Peng LF, Martin MH, et al. Transcatheter pulmonary valve replacement with the melody valve in small diameter expandable right ventricular outflow tract conduits. JACC Cardiovasc Interv. 2018;11:554.

    Article  PubMed  Google Scholar 

  117. Cheatham JP, Hellenbrand WE, Zahn EM, Jones TK, Berman DP, Vincent JA, et al. Clinical and hemodynamic outcomes up to 7 years after transcatheter pulmonary valve replacement in the US melody valve investigational device exemption trial. Circulation. 2015;131:1960.

    Article  PubMed  Google Scholar 

  118. Momenah TS, El Oakley R, Al Najashi K, Khoshhal S, Al Qethamy H, Bonhoeffer P. Extended application of percutaneous pulmonary valve implantation. J Am Coll Cardiol. 2009;53:1859.

    Article  PubMed  Google Scholar 

  119. Guccione P, Milanesi O, Hijazi ZM, Pongiglione G. Transcatheter pulmonary valve implantation in native pulmonary outflow tract using the Edwards SAPIEN™ transcatheter heart valve. Eur J Cardiothoracic Surg. 2012;41:1192.

    Article  Google Scholar 

  120. Morgan GJ, Sadeghi S, Salem MM, Wilson N, Kay J, Rothman A, et al. SAPIEN valve for percutaneous transcatheter pulmonary valve replacement without “pre-stenting”: a multi-institutional experience. Catheter Cardiovasc Interv. 2019;93:324.

    Article  PubMed  Google Scholar 

  121. Martin MH, Meadows J, McElhinney DB, Goldstein BH, Bergersen L, Qureshi AM, et al. Safety and feasibility of melody transcatheter pulmonary valve replacement in the native right ventricular outflow tract: a multicenter pediatric heart network scholar study. JACC Cardiovasc Interv. 2018;11:1642.

    Article  PubMed  Google Scholar 

  122. Morray BH, McElhinney DB, Cheatham JP, Zahn EM, Berman DP, Sullivan PM, et al. Risk of coronary artery compression among patients referred for transcatheter pulmonary valve implantation a multicenter experience. Circ Cardiovasc Interv. 2013;6:535.

    Article  PubMed  Google Scholar 

  123. Torres AJ, McElhinney DB, Anderson BR, Turner ME, Crystal MA, Timchak DM, et al. Aortic root distortion and aortic insufficiency during balloon angioplasty of the right ventricular outflow tract prior to transcatheter pulmonary valve replacement. J Interv Cardiol. 2016;29(2):197–207.

    Article  PubMed  Google Scholar 

  124. Lindsay I, Aboulhosn J, Salem M, Levi D. Aortic root compression during transcatheter pulmonary valve replacement. Catheter Cardiovasc Interv. 2016;88(5):814–21.

    Article  PubMed  Google Scholar 

  125. Wilhelm C, Swinning J, Sisk M, Holzer R. Melody valve implantation using a double-balloon “flower-blossom” technique. Congenit Cardiol Today. 2014;8:1–8.

    Google Scholar 

  126. Violini R, Vairo U, Hijazi ZM. Stent strut breakage using high-pressure balloons for bifurcation stenting and subsequent percutaneous pulmonary valve replacement using the Edwards Sapien THV. Catheter Cardiovasc Interv. 2013;82:834.

    Article  PubMed  Google Scholar 

  127. Qureshi AM, Bansal N, McElhinney DB, Boudjemline Y, Forbes TJ, Maschietto N, et al. Branch pulmonary artery valve implantation reduces pulmonary regurgitation and improves right ventricular size/function in patients with large right ventricular outflow tracts. JACC Cardiovasc Interv. 2018;11:541.

    Article  PubMed  Google Scholar 

  128. Holoshitz N, Ilbawi MN, Amin Z. Perventricular melody valve implantation in a 12 kg child. Catheter Cardiovasc Interv. 2013;82:824.

    Article  PubMed  Google Scholar 

  129. Simpson KE, Huddleston CB, Foerster S, Nicholas R, Balzer D. Successful subxyphoid hybrid approach for placement of a melody percutaneous pulmonary valve. Catheter Cardiovasc Interv. 2011;78:108.

    Article  PubMed  Google Scholar 

  130. Cubeddu RJ, Hijazi ZM. Bailout perventricular pulmonary valve implantation following failed percutaneous attempt using the Edwards Sapien transcatheter heart valve. Catheter Cardiovasc Interv. 2011;77:276.

    Article  PubMed  Google Scholar 

  131. Sosnowski C, Matella T, Fogg L, Ilbawi M, Nagaraj H, Kavinsky C, et al. Hybrid pulmonary artery plication followed by transcatheter pulmonary valve replacement: comparison with surgical PVR. Catheter Cardiovasc Interv. 2016;88(5):804–10.

    Article  PubMed  Google Scholar 

  132. Phillips ABM, Nevin P, Shah A, Olshove V, Garg R, Zahn EM. Development of a novel hybrid strategy for transcatheter pulmonary valve placement in patients following transannular patch repair of tetralogy of fallot. Catheter Cardiovasc Interv. 2016;87:403.

    Article  PubMed  Google Scholar 

  133. Kenny D, Rhodes JF, Fleming GA, Kar S, Zahn EM, Vincent J, et al. 3-year outcomes of the Edwards SAPIEN Transcatheter heart valve for conduit failure in the pulmonary position from the COMPASSION multicenter clinical trial. JACC Cardiovasc Interv. 2018;11:1920.

    Article  PubMed  Google Scholar 

  134. Nordmeyer J, Ewert P, Gewillig M, AlJufan M, Carminati M, Kretschmar O, et al. Acute and midterm outcomes of the post-approval MELODY registry: a multicentre registry of transcatheter pulmonary valve implantation. Eur Heart J. 2019;40:2255.

    Article  PubMed  Google Scholar 

  135. Khambadkone S, Coats L, Taylor A, Boudjemline Y, Derrick G, Tsang V, et al. Percutaneous pulmonary valve implantation in humans: results in 59 consecutive patients. Circulation. 2005;112:1189.

    Article  PubMed  Google Scholar 

  136. Cheung G, Vejlstrup N, Ihlemann N, Arnous S, Franzen O, Bundgaard H, et al. Infective endocarditis following percutaneous pulmonary valve replacement: diagnostic challenges and application of intra-cardiac echocardiography. Int J Cardiol. 2013;169:425.

    Article  PubMed  Google Scholar 

  137. McElhinney DB, Sondergaard L, Armstrong AK, Bergersen L, Padera RF, Balzer DT, et al. Endocarditis after transcatheter pulmonary valve replacement. J Am Coll Cardiol. 2018;72(22):2717–28.

    Article  PubMed  Google Scholar 

  138. Armstrong AK, Berger F, Jones TK, Moore JW, Benson LN, Cheatham JP, et al. Association between patient age at implant and outcomes after transcatheter pulmonary valve replacement in the multicenter melody valve trials. Catheter Cardiovasc Interv. 2019;94:607.

    Article  PubMed  Google Scholar 

  139. Jones TK, Rome JJ, Armstrong AK, Berger F, Hellenbrand WE, Cabalka AK, et al. Transcatheter pulmonary valve replacement reduces tricuspid regurgitation in patients with right ventricular volume/pressure overload. J Am Coll Cardiol. 2016;68(14):1525–35.

    Article  PubMed  Google Scholar 

  140. Plessis J, Hascoët S, Baruteau A, Godart F, Le Gloan L, Warin Fresse K, et al. Edwards SAPIEN Transcatheter pulmonary valve implantation: results from a French Registry. JACC Cardiovasc Interv. 2018;11:1909.

    Article  PubMed  Google Scholar 

  141. Frigiola A, Pluchinotta FR, Saracino A, Giamberti A, Arcidiacono C, Piazza L, et al. Surgical mitral valve replacement with the melody valve in infants and children: the Italian experience. EuroIntervention. 2017;12:2104.

    Article  PubMed  Google Scholar 

  142. Hasan BS, McElhinney DB, Brown DW, Cheatham JP, Vincent JA, Hellenbrand WE, et al. Short-term performance of the transcatheter melody valve in high-pressure hemodynamic environments in the pulmonary and systemic circulations. Circ Cardiovasc Interv. 2011;4(6):615–20.

    Article  PubMed  Google Scholar 

  143. Steinberg ZL, Jones TK, Verrier E, Stout KK, Krieger EV, Karamlou T. Early outcomes in patients undergoing transcatheter versus surgical pulmonary valve replacement. Heart. 2017;103:1455.

    Article  PubMed  Google Scholar 

  144. Li WF, Pollard H, Karimi M, Asnes JD, Hellenbrand WE, Shabanova V, et al. Comparison of valvar and right ventricular function following transcatheter and surgical pulmonary valve replacement. Congenit Heart Dis. 2018;13:140.

    Article  PubMed  Google Scholar 

  145. Gillespie MJ, Bergersen L, Benson LN, Weng S, Cheatham JP. 5-year outcomes from the harmony native outflow tract early feasibility study. J Am Coll Cardiol Intv. 2021;14:816–7.

    Article  Google Scholar 

  146. Bergersen L, Benson LN, Gillespie MJ, Cheatham SL, Crean AM, Hor KN, et al. Harmony feasibility trial: acute and short-term outcomes with a self-expanding Transcatheter pulmonary valve. JACC Cardiovasc Interv. 2017;10:1763.

    Article  PubMed  Google Scholar 

  147. Gillespie M, Levi DS, McElhinney DB, Jones TK, Gray RG, Kobayashi J, et al. Primary outcomes of the harmony transcatheter pulmonary valve pivotal trial. 2020.

    Google Scholar 

  148. Zahn EM, Chang JC, Armer D, Garg R. First human implant of the alterra adaptive prestent TM: a new self-expanding device designed to remodel the right ventricular outflow tract. Catheter Cardiovasc Interv. 2018;91:1125.

    Article  PubMed  PubMed Central  Google Scholar 

  149. Shahanavaz S, Balzer D, Babaliaros V, Kim D, Dimas V, Veeram Reddy SR, et al. Alterra adaptive prestent and SAPIEN 3 THV for congenital pulmonic valve dysfunction: an early feasibility study. JACC Cardiovasc Interv. 2020;13(21):2510–24.

    Article  PubMed  Google Scholar 

  150. Inoue K, Owaki T, Nakamura T, Kitamura F, Miyamoto N. Clinical application of transvenous mitral commissurotomy by a new balloon catheter. J Thorac Cardiovasc Surg. 1984;87(3):394–402.

    Article  CAS  PubMed  Google Scholar 

  151. McElhinney DB, Sherwood MC, Keane JF, Del Nido PJ, Almond CSD, Lock JE. Current management of severe congenital mitral stenosis: outcomes of transcatheter and surgical therapy in 108 infants and children. Circulation. 2005;112(5):707–14.

    Article  PubMed  Google Scholar 

  152. Lock JE, Khalilullah M, Shrivastava S, Bahl V, Keane JF. Percutaneous catheter commissurotomy in rheumatic mitral stenosis. N Engl J Med. 1985;313(24):1515–8.

    Article  CAS  PubMed  Google Scholar 

  153. Palacios I, Block PC, Brandi S, Blanco P, Casal H, Pulido JI, et al. Percutaneous balloon valvotomy for patients with severe mitral stenosis. Circulation. 1987;75(4):778–84.

    Article  CAS  PubMed  Google Scholar 

  154. Nobuyoshi M, Hamasaki N, Kimura T, Nosaka H, Yokoi H, Yasumoto H, et al. Indications, complications, and short-term clinical outcome of percutaneous transvenous mitral commissurotomy. Circulation. 1989;80(4):782–92.

    Article  CAS  PubMed  Google Scholar 

  155. Vahanian A, Michel PL, Cormier B, Vitoux B, Michel X, Slama M, et al. Results of percutaneous mitral commissurotomy in 200 patients. Am J Cardiol. 1989;63(12):847–52.

    Article  CAS  PubMed  Google Scholar 

  156. Abascal VM, Wilkins GT, O’Shea JP, Choong CY, Palacios IF, Thomas JD, et al. Prediction of successful outcome in 130 patients undergoing percutaneous balloon mitral valvotomy. Circulation. 1990;82(2):448–56.

    Article  CAS  PubMed  Google Scholar 

  157. Hung JS, Chern MS, Wu JJ, Fu M, Yen KH, Wu YC, et al. Short- and long-term results of catheter balloon percutaneous transvenous mitral commissurotomy. Am J Cardiol. 1991;67(9):854–62.

    Article  CAS  PubMed  Google Scholar 

  158. Mckay CR, Kawanishi DT, Rahimtoola SH. Catheter balloon valvuloplasty of the mitral valve in adults using a double-balloon technique: early hemodynamic results. JAMA. 1987;257(13):1753–61.

    Article  CAS  PubMed  Google Scholar 

  159. Bonhoeffer P, Piéchaud J-F, Sidi D, Yonga G, Jowi C, Joshi M, et al. Mitral dilatation with the multi-track system: an alternative approach. Catheter Cardiovasc Diagn. 1995;36(2):189–93.

    Article  CAS  Google Scholar 

  160. McElhinney DB, Cabalka AK, Aboulhosn JA, Eicken A, Boudjemline Y, Schubert S, et al. Transcatheter tricuspid valve-in-valve implantation for the treatment of dysfunctional surgical bioprosthetic valves: an international, multicenter registry study. Circulation. 2016;133(16):1582–93.

    Article  CAS  PubMed  Google Scholar 

  161. Aboulhosn J, Cabalka AK, Levi DS, Himbert D, Testa L, Latib A, et al. Transcatheter valve-in-ring implantation for the treatment of residual or recurrent tricuspid valve dysfunction after prior surgical repair. JACC Cardiovasc Interv. 2017;10(1):53–63.

    Article  PubMed  Google Scholar 

  162. Kodali S, Hahn RT, George I, Davidson CJ, Narang A, Zahr F, et al. Transfemoral tricuspid valve replacement in patients with tricuspid regurgitation: TRISCEND study 30-day results. JACC Cardiovasc Interv. 2022;15(5):471–80.

    Article  PubMed  Google Scholar 

  163. Khalilullah M, Tyagi S, Yadav BS, Jain P, Choudhry A, Lochan R. Double-balloon valvuloplasty of tricuspid stenosis. Am Heart J. 1987;114(5):1232–3.

    Article  CAS  PubMed  Google Scholar 

  164. Goldenberg IF, Pedersen W, Olson J, Madison JD, Mooney MR, Gobel FL. Percutaneous double balloon valvuloplasty for severe tricuspid stenosis. Am Heart J. 1989;118(2):417–9.

    Article  CAS  PubMed  Google Scholar 

  165. Sharma S, Loya YS, Desai DM, Pinto RJ. Percutaneous double-valve balloon valvotomy for multivalve stenosis: immediate results and intermediate-term follow-up. Am Heart J. 1997;133(1):64–70.

    Article  CAS  PubMed  Google Scholar 

  166. Patel TM, Dani SI, Shah SC, Patel TK. Tricuspid balloon valvuloplasty: a more simplified approach using Inoue balloon. Catheter Cardiovasc Diagn. 1996;37(1):86–8.

    Article  CAS  Google Scholar 

  167. García E, Sandoval J, Unzue L, Hernandez-Antolin R, Almería C, MacAya C. Paravalvular leaks: mechanisms, diagnosis and management. EuroIntervention. 2012;8:Q41–52.

    Article  PubMed  Google Scholar 

  168. Latson LA. Transcatheter closure of paraprosthetic valve leaks after surgical mitral and aortic valve replacements. Expert Rev Cardiovasc Ther. 2009;7:507–14.

    Article  PubMed  Google Scholar 

  169. Bernard S, Yucel E. Paravalvular leaks—from diagnosis to management. Curr Treat Options Cardiovasc Med. 2019;21(11):67.

    Article  PubMed  Google Scholar 

  170. Joseph TA, Lane CE, Fender EA, Zack CJ, Rihal CS. Catheter-based closure of aortic and mitral paravalvular leaks: existing techniques and new frontiers. Expert Rev Med Devices. 2018;15:653–63.

    Article  CAS  PubMed  Google Scholar 

  171. Hourihan M, Perry SB, Mandell VS, Keane JF, Rome JJ, Bittl JA, et al. Transcatheter umbrella closure of valvular and paravalvular leaks. J Am Coll Cardiol. 1992;20(6):1371–7.

    Article  CAS  PubMed  Google Scholar 

  172. Godart F, Baudelet JB, Soquet J, Onorato E. Antegrade transcatheter closure of a dehiscence of pulmonary bioprosthesis after pulmonary valve replacement with the Occlutech paravalvular leak device. Catheter Cardiovasc Interv. 2020;95(4):855–8.

    Article  PubMed  Google Scholar 

  173. Chikkabyrappa S, Mosca RS, McElhinney DB. Retrograde transcatheter device closure of a complex paravalvular leak after bioprosthetic pulmonary valve replacement in a pediatric patient. Catheter Cardiovasc Interv. 2016;87(7):1294–7.

    Article  PubMed  Google Scholar 

  174. Seery TJ, Slack MC. Percutaneous closure of a prosthetic pulmonary paravalvular leak. Congenit Heart Dis. 2014;9(1):E19.

    Article  PubMed  Google Scholar 

  175. Iyisoy A, Kursaklioglu H, Celik T, Baysan O, Celik M. Percutaneous closure of a tricuspid paravalvular leak with an Amplatzer duct occluder II via antegrade approach. Cardiovasc J Afr. 2011;22:e7.

    Article  CAS  PubMed  Google Scholar 

  176. Turner ME, Lai WW, Vincent JA. Percutaneous closure of tricuspid paravalvular leak. Catheter Cardiovasc Interv. 2013;82(4):E511.

    Article  PubMed  Google Scholar 

  177. Mukherji A, Anantharaman R, Subramanyan R. Percutaneous closure of symptomatic large tricuspid paravalvular regurgitation using two muscular VSD occluders. Indian Heart J. 2017;69(3):334–7.

    Article  PubMed  Google Scholar 

  178. Calvert PA, Northridge DB, Malik IS, Shapiro L, Ludman P, Qureshi SA, et al. Percutaneous device closure of paravalvular leak. Circulation. 2016;134(13):934–44.

    Article  PubMed  PubMed Central  Google Scholar 

  179. Alkhouli M, Sarraf M, Maor E, Sanon S, Cabalka A, Eleid MF, et al. Techniques and outcomes of percutaneous aortic paravalvular leak closure. JACC Cardiovasc Interv. 2016;9(23):2416–26.

    Article  PubMed  Google Scholar 

  180. Millán X, Skaf S, Joseph L, Ruiz C, García E, Smolka G, et al. Transcatheter reduction of paravalvular leaks: a systematic review and meta-analysis. Can J Cardiol. 2015;31:260–9.

    Article  PubMed  Google Scholar 

  181. Alkhouli M, Rihal CS, Zack CJ, Eleid MF, Maor E, Sarraf M, et al. Transcatheter and surgical management of mitral paravalvular leak: long-term outcomes. JACC Cardiovasc Interv. 2017;10(19):1946–56.

    Article  PubMed  Google Scholar 

  182. Bhindi R, Bull S, Schrale RG, Wilson N, Ormerod OJ. Surgery insight: percutaneous treatment of prosthetic paravalvular leaks. Nat Clin Pract Cardiovasc Med. 2008;5:140–7.

    Article  PubMed  Google Scholar 

  183. Mills NL, King TD. Nonoperative closure of left to right shunts. J Thorac Cardiovasc Surg. 1976;72(3):371–8.

    Article  CAS  PubMed  Google Scholar 

  184. Mills NL, King TD. Late follow-up of nonoperative closure of secundum atrial septal defects using the King-Mills double-umbrella device. Am J Cardiol. 2003;92(3):353–5.

    Article  PubMed  Google Scholar 

  185. Suchon E, Pieculewicz M, Tracz W, Przewłocki T, Sadowski J, Podolec P. Transcatheter closure as an alternative and equivalent method to the surgical treatment of atrial septal defect in adults: comparison of early and late results. Med Sci Monit. 2009;15(12):CR612–7.

    PubMed  Google Scholar 

  186. Kaya MG, Baykan A, Dogan A, Inanc T, Gunebakmaz O, Dogdu O, et al. Intermediate-term effects of transcatheter secundum atrial septal defect closure on cardiac remodeling in children and adults. Pediatr Cardiol. 2010;31(4):474–82.

    Article  PubMed  Google Scholar 

  187. Knepp MD, Rocchini AP, Lloyd TR, Aiyagari RM. Long-term follow up of secundum atrial septal defect closure with the amplatzer septal occluder. Congenit Heart Dis. 2010;5(1):32–7.

    Article  PubMed  Google Scholar 

  188. O’Byrne ML, Gillespie MJ, Kennedy KF, Dori Y, Rome JJ, Glatz AC. The influence of deficient retro-aortic rim on technical success and early adverse events following device closure of secundum atrial septal defects: an analysis of the IMPACT registry®. Catheter Cardiovasc Interv. 2017;89(1):102–11.

    Article  PubMed  Google Scholar 

  189. Borow KM, Karp R. Atrial septal defect: lessons from the past, directions for the future. N Engl J Med. 1990;323:1698–700.

    Article  CAS  PubMed  Google Scholar 

  190. Campbell M. Natural history of atrial septal defect. Br Heart J. 1970;32(6):820–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Holzer R, Cao QL, Hijazi ZM. Closure of a moderately large atrial septal defect with a self-fabricated fenestrated Amplatzer septal occluder in an 85-year-old patient with reduced diastolic elasticity of the left ventricle. Catheter Cardiovasc Interv. 2005;64(4):513–8.

    Article  PubMed  Google Scholar 

  192. Abdelkarim A, Levi DS, Tran B, Ghobrial J, Aboulhosn J. Fenestrated Transcatheter ASD closure in adults with diastolic dysfunction and/or pulmonary hypertension: case series and review of the literature. Congenit Heart Dis. 2016;11(6):663–71.

    Article  PubMed  Google Scholar 

  193. Cheatham JP. Now we are making a hole in a device meant to close a hole: why? How? Is there a better answer? Catheter Cardiovasc Interv. 2005;64:519–21.

    Article  Google Scholar 

  194. Jalal Z, Hascoët S, Gronier C, Godart F, Mauri L, Dauphin C, et al. Long-term outcomes after percutaneous closure of ostium secundum atrial septal defect in the young: a nationwide cohort study. JACC Cardiovasc Interv. 2018;11(8):795–804.

    Article  PubMed  Google Scholar 

  195. Koenig P, Cao QL, Heitschmidt M, Waight DJ, Hijazi ZM. Role of intracardiac echocardiographic guidance in transcatheter closure of atrial septal defects and patent foramen ovale using the Amplatzer® device. J Interv Cardiol. 2003;16(1):51–62.

    Article  PubMed  Google Scholar 

  196. Zanchetta M, Rigatelli G, Pedon L, Zennaro M, Carrozza A, Onorato E, et al. Transcatheter atrial septal defect closure assisted by intracardiac echocardiography: 3-year follow-up. J Interv Cardiol. 2004;17(2):95–8.

    Article  PubMed  Google Scholar 

  197. Rigatelli G, Dell’Avvocata F, Cardaioli P, Giordan M, Dung HT, Nghia NT, et al. Safety and long-term outcome of modified intracardiac echocardiography- assisted “no-balloon” sizing technique for transcatheter closure of ostium secundum atrial septal defect. J Interv Cardiol. 2012;25(6):628–34.

    Article  PubMed  Google Scholar 

  198. El-Said HG, Hegde S, Foerster S, Hellenbrand W, Kreutzer J, Trucco SM, et al. Device therapy for atrial septal defects in a multicenter cohort: acute outcomes and adverse events. Catheter Cardiovasc Interv. 2015;85(2):227–33.

    Article  PubMed  Google Scholar 

  199. Du ZD, Hijazi ZM, Kleinman CS, Silverman NH, Larntz K. Comparison between transcatheter and surgical closure of secundum atrial septal defect in children and adults: results of a multicenter nonrandomized trial. J Am Coll Cardiol. 2002;39(11):1836–44.

    Article  PubMed  Google Scholar 

  200. Vida VL, Barnoya J, O’Connell M, Leon-Wyss J, Larrazabal LA, Castañeda AR. Surgical versus percutaneous occlusion of ostium secundum atrial septal defects: results and cost-effective considerations in a low-income country. J Am Coll Cardiol. 2006 Jan;47(2):326–31.

    Article  PubMed  Google Scholar 

  201. Varma C, Benson LN, Silversides C, Yip J, Warr MR, Webb G, et al. Outcomes and alternative techniques for device closure of the large secundum atrial septal defect. Catheter Cardiovasc Interv. 2004;61(1):131–9.

    Article  PubMed  Google Scholar 

  202. Amin Z, Hijazi ZM, Bass JL, Cheatham JP, Hellenbrand WE, Kleinman CS. Erosion of Amplatzer septal occluder device after closure of secundum atrial septal defects: review of registry of complications and recommendations to minimize future risk. Catheter Cardiovasc Interv. 2004;63:496–502.

    Article  PubMed  Google Scholar 

  203. Amin Z. Echocardiographic predictors of cardiac erosion after amplatzer septal occluder placement. Catheter Cardiovasc Interv. 2014;83(1):84–92.

    Article  PubMed  Google Scholar 

  204. McElhinney DB, Quartermain MD, Kenny D, Alboliras E, Amin Z. Relative risk factors for cardiac erosion following transcatheter closure of atrial septal defects: a case-control study. Circulation. 2016;133(18):1738–46.

    Article  PubMed  Google Scholar 

  205. Taggart NW, Dearani JA, Hagler DJ. Late erosion of an Amplatzer septal occluder device 6 years after placement. J Thorac Cardiovasc Surg. 2011;142(1):221–2.

    Article  PubMed  Google Scholar 

  206. Gillespie MJ, Javois AJ, Moore P, Forbes T, Paolillo JA. Use of the GORE® CARDIOFORM Septal Occluder for percutaneous closure of secundum atrial septal defects: results of the multicenter U.S. IDE trial. Catheter Cardiovasc Interv. 2020;95(7):1296–304.

    Article  PubMed  Google Scholar 

  207. Sommer RJ, Love BA, Paolillo JA, Gray RG, Goldstein BH, Morgan GJ, et al. ASSURED clinical study: new GORE® CARDIOFORM ASD occluder for transcatheter closure of atrial septal defect. Catheter Cardiovasc Interv. 2020;95(7):1285–95.

    Article  PubMed  Google Scholar 

  208. Javois AJ, Rome JJ, Jones TK, Zahn EM, Fleishman CE, Pignatelli RH, et al. Results of the U.S. food and drug administration continued access clinical trial of the GORE HELEX septal occluder for secundum atrial septal defect. JACC Cardiovasc Interv. 2014;7(8):905–12.

    Article  PubMed  Google Scholar 

  209. Carroll JD, Saver JL, Thaler DE, Smalling RW, Berry S, MacDonald LA, et al. Closure of patent foramen ovale versus medical therapy after cryptogenic stroke. N Engl J Med. 2013;368:1092.

    Article  CAS  PubMed  Google Scholar 

  210. Meier B, Kalesan B, Mattle HP, Khattab AA, Hildick-Smith D, Dudek D, et al. Percutaneous closure of patent foramen ovale in cryptogenic embolism. N Engl J Med. 2013;368:1083.

    Article  CAS  PubMed  Google Scholar 

  211. Furlan AJ, Reisman M, Massaro J, Mauri L, Adams H, Albers GW, et al. Closure or medical therapy for cryptogenic stroke with patent foramen ovale. N Engl J Med. 2012;366:991.

    Article  CAS  PubMed  Google Scholar 

  212. Mas JL, Derumeaux G, Guillon B, Massardier E, Hosseini H, Mechtouff L, et al. Patent foramen ovale closure or anticoagulation vs. antiplatelets after stroke. N Engl J Med. 2017;377:1011.

    Article  CAS  PubMed  Google Scholar 

  213. Søndergaard L, Kasner SE, Rhodes JF, Andersen G, Iversen HK, Nielsen-Kudsk JE, et al. Patent foramen ovale closure or antiplatelet therapy for cryptogenic stroke. N Engl J Med. 2017;377:1033.

    Article  PubMed  Google Scholar 

  214. Saver JL, Carroll JD, Thaler DE, Smalling RW, Macdonald LA, Marks DS, et al. Longterm outcomes of patent foramen ovale closure or medical therapy after stroke. N Engl J Med. 2017;377:1022.

    Article  PubMed  Google Scholar 

  215. Gaspardone A, De Marco F, Sgueglia GA, De Santis A, Iamele M, D’Ascoli E, et al. Novel percutaneous suture-mediated patent foramen ovale closure technique: early results of the NobleStitch EL Italian Registry. EuroIntervention. 2018;14(3):e272–9.

    Article  PubMed  Google Scholar 

  216. Di Bernardo S, Fasnacht M, Berger F. Transcatheter closure of a coronary sinus defect with an Amplatzer septal occluder. Catheter Cardiovasc Interv. 2003;60:287.

    Article  PubMed  Google Scholar 

  217. Torres A, Gersony WM, Hellenbrand W. Closure of unroofed coronary sinus with a covered stent in a symptomatic infant. Catheter Cardiovasc Interv. 2007;70(5):745–8.

    Article  PubMed  Google Scholar 

  218. Sandeep N, Slack MC. Percutaneous management of coronary sinus atrial septal defect: two cases representing the spectrum for device closure and a review of the literature. Cardiol Young. 2013;24:797.

    Article  Google Scholar 

  219. Crystal MA, Vincent JA, Gray WA. The wedding cake solution: a percutaneous correction of a form fruste superior sinus venosus atrial septal defect. Catheter Cardiovasc Interv. 2015;86:1204.

    Article  PubMed  Google Scholar 

  220. Riahi M, Velasco Forte MN, Byrne N, Hermuzi A, Jones M, Baruteau AE, et al. Early experience of transcatheter correction of superior sinus venosus atrial septal defect with partial anomalous pulmonary venous drainage. EuroIntervention. 2018;14(8):868–76.

    Article  PubMed  Google Scholar 

  221. Hansen JH, Duong P, Jivanji SGM, Jones M, Kabir S, Butera G, et al. Transcatheter correction of superior sinus venosus atrial septal defects as an alternative to surgical treatment. J Am Coll Cardiol. 2020;75(11):1266–78.

    Article  PubMed  Google Scholar 

  222. Bridges ND, Lock JE, Castaneda AR. Baffle fenestration with subsequent transcatheter closure. Modification of the Fontan operation for patients at increased risk. Circulation. 1990;82(5):1681–9.

    Article  CAS  PubMed  Google Scholar 

  223. Bridges ND, Mayer JE, Lock JE, Jonas RA, Hanley FL, Keane JF, et al. Effect of baffle fenestration on outcome of the modified fontan operation. Circulation. 1992;86:1762.

    Article  CAS  PubMed  Google Scholar 

  224. Daniels CJ, Bradley EA, Landzberg MJ, Aboulhosn J, Beekman RH, Book W, et al. Fontan-associated liver disease: proceedings from the American College of Cardiology Stakeholders Meeting, October 1 to 2, 2015, Washington DC. J Am Coll Cardiol. 2017;70:3173.

    Article  PubMed  Google Scholar 

  225. Bradley E, Hendrickson B, Daniels C. Fontan liver disease: review of an emerging epidemic and management options. Curr Treat Options Cardiovasc Med. 2015;17:1.

    Article  Google Scholar 

  226. Munsterman ID, Duijnhouwer AL, Kendall TJ, Bronkhorst CM, Ronot M, Van Wettere M, et al. The clinical spectrum of Fontan-associated liver disease: results from a prospective multimodality screening cohort. Eur Heart J. 2019;40:1057.

    Article  CAS  PubMed  Google Scholar 

  227. Atz AM, Travison TG, McCrindle BW, Mahony L, Quartermain M, Williams RV, et al. Late status of Fontan patients with persistent surgical fenestration. J Am Coll Cardiol. 2011;57(24):2437–43.

    Article  PubMed  PubMed Central  Google Scholar 

  228. Sommer RJ, Recto M, Golinko RJ, Griepp RB. Transcatheter coil occlusion of surgical fenestration after Fontan operation. Circulation. 1996;94:249.

    Article  CAS  PubMed  Google Scholar 

  229. Bridges ND, Lock JE, Mayer JE, Burnett J, Castaneda AR. Cardiac catheterization and test occlusion of the interatrial communication after the fenestrated Fontan operation. J Am Coll Cardiol. 1995;25:1712.

    Article  CAS  PubMed  Google Scholar 

  230. Goff DA, Blume ED, Gauvreau K, Mayer JE, Lock JE, Jenkins KJ. Clinical outcome of fenestrated Fontan patients after closure: the first 10 years. Circulation. 2000;102:2094.

    Article  CAS  PubMed  Google Scholar 

  231. Moore JW, Murdison KA, Baffa GM, Kashow K, Murphy JD. Transcatheter closure of fenestrations and excluded hepatic veins after fontan: versatility of the amplatzer device. Am Heart J. 2000;140:534.

    Article  CAS  PubMed  Google Scholar 

  232. Tofeig M, Walsh KP, Chan C, Ladusans E, Gladman G, Arnold R. Occlusion of Fontan fenestrations using the Amplatzer septal occluder. Heart. 1998;79:368.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Cowley CG, Badran S, Gaffney D, Rocchini AP, Lloyd TR. Transcatheter closure of Fontan fenestrations using the Amplatzer septal occluder: initial experience and follow-up. Catheter Cardiovasc Interv. 2000;51:301.

    Article  CAS  PubMed  Google Scholar 

  234. Rueda F, Squitieri C, Ballerini L. Closure of the fenestration in the extracardiac fontan with the amplatzer duct occluder device. Catheter Cardiovasc Interv. 2001;54:88.

    Article  CAS  PubMed  Google Scholar 

  235. Góreczny S, Dryzek P, Morgan GJ, Mazurek-Kula A, Moll JJ, Moll JA, et al. Fenestration closure with Amplatzer Duct Occluder II in patients after total cavo-pulmonary connection. Arch Med Sci. 2017;2:337.

    Article  Google Scholar 

  236. Porras D, Mitsouras D, Steigner M, Giannopoulos AA, Kelil T, Marshall AC, et al. Transcatheter mustard revision using endovascular graft prostheses. Ann Thorac Surg. 2017;103:e509.

    Article  PubMed  Google Scholar 

  237. Hill KD, Fudge JC, Rhodes JF. Complete resolution of systemic venous baffle obstruction and baffle leak using the gore excluder® covered stent in two patients with transposition of the great arteries and prior mustard procedure. Catheter Cardiovasc Interv. 2010;76:878.

    Article  PubMed  Google Scholar 

  238. Çetiner N, Yıldırım Baştuhan I, Çeliker A. Transcatheter baffle leak closure via an amplatzer septal occluder in a senning-operated child. Cardiol Young. 2020;30:1507.

    Article  PubMed  Google Scholar 

  239. Bentham J, English K, Hares D, Gibbs J, Thomson J. Effect of transcatheter closure of baffle leaks following senning or mustard atrial redirection surgery on oxygen saturations and polycythaemia. Am J Cardiol. 2012;110:1046.

    Article  PubMed  Google Scholar 

  240. Porstmann W, Wierny L, Warnke H, Gerstberger G, Romaniuk PA. Catheter closure of patent ductus arteriosus. 62 cases treated without thoracotomy. Radiol Clin N Am. 1971;9:203.

    Article  CAS  PubMed  Google Scholar 

  241. Wierny L, Plass R, Porstmann W. Transluminal closure of patent ductus arteriosus: long-term results of 208 cases treated without thoracotomy. Cardiovasc Intervent Radiol. 1986;9:279.

    Article  CAS  PubMed  Google Scholar 

  242. Krichenko A, Benson LN, Burrows P, Möes CAF, McLaughlin P, Freedom RM. Angiographic classification of the isolated, persistently patent ductus arteriosus and implications for percutaneous catheter occlusion. Am J Cardiol. 1989;63:877.

    Article  CAS  PubMed  Google Scholar 

  243. El-Said HG, Bratincsak A, Foerster SR, Murphy JJ, Vincent J, Holzer R, et al. Safety of percutaneous patent ductus arteriosus closure: an unselected multicenter population experience. J Am Heart Assoc. 2013;2(6):e000424.

    Article  PubMed  PubMed Central  Google Scholar 

  244. Magee AG, Huggon IC, Seed PT, Qureshi SA, Tynan M. Transcatheter coil occlusion of the arterial duct: results of the European registry. Eur Heart J. 2001;22:1817.

    Article  CAS  PubMed  Google Scholar 

  245. Celiker A, Aypar E, Karagöz T, Dilber E, Ceviz N. Transcatheter closure of patent ductus arteriosus with Nit-Occlud coils. Catheter Cardiovasc Interv. 2005;65:569.

    Article  PubMed  Google Scholar 

  246. Moore JW, Greene J, Palomares S, Javois A, Owada CY, Cheatham JP, et al. Results of the combined U.S. multicenter pivotal study and the continuing access study of the Nit-Occlud PDA device for percutaneous closure of patent ductus arteriosus. JACC Cardiovasc Interv. 2014;7:1430.

    Article  PubMed  Google Scholar 

  247. Kobayashi D, Salem MM, Forbes TJ, Gordon BM, Soriano BD, Dimas V, et al. Results of the combined U.S. multicenter postapproval study of the Nit-Occlud PDA device for percutaneous closure of patent ductus arteriosus. Catheter Cardiovasc Interv. 2019;93:645.

    Article  PubMed  Google Scholar 

  248. Masura J, Walsh KP, Thanopoulous B, Chan C, Bass J, Goussous Y, et al. Catheter closure of moderate- to large-sized patent ductus arteriosus using the new Amplatzer duct occluder: immediate and short-term results. J Am Coll Cardiol. 1998;31:878.

    Article  CAS  PubMed  Google Scholar 

  249. Masura J, Gavora P, Podnar T. Transcatheter occlusion of patent ductus arteriosus using a new angled Amplatzer duct occluder: initial clinical experience. Catheter Cardiovasc Interv. 2003;58:261.

    Article  PubMed  Google Scholar 

  250. Pass RH, Hijazi Z, Hsu DT, Lewis V, Hellenbrand WE. Multicenter USA amplatzer patent ductus arteriosus occlusion device trial: initial and one-year results. J Am Coll Cardiol. 2004;44(3):513–9.

    Article  PubMed  Google Scholar 

  251. Masura J, Tittel P, Gavora P, Podnar T. Long-term outcome of transcatheter patent ductus arteriosus closure using Amplatzer duct occluders. Am Heart J. 2006;151(3):755.e7–755.e10.

    Article  PubMed  Google Scholar 

  252. Jobe AH. The new BPD. NeoReviews. 2006;7:e531.

    Article  Google Scholar 

  253. Slutsky AS, Ranieri VM. Ventilator-induced lung injury. N Engl J Med. 2013;369:2126.

    Article  CAS  PubMed  Google Scholar 

  254. Schena F, Francescato G, Cappelleri A, Picciolli I, Mayer A, Mosca F, et al. Association between hemodynamically significant patent ductus arteriosus and bronchopulmonary dysplasia. J Pediatr. 2015;166:1488.

    Article  PubMed  Google Scholar 

  255. Condò M, Evans N, Bellù R, Kluckow M. Echocardiographic assessment of ductal significance: retrospective comparison of two methods. Arch Dis Child Fetal Neonatal Ed. 2012;97:F35.

    Article  PubMed  Google Scholar 

  256. Koch J, Hensley G, Roy L, Brown S, Ramaciotti C, Rosenfeld CR. Prevalence of spontaneous closure of the ductus arteriosus in neonates at a birth weight of 1000 grams or less. Pediatrics. 2006;117:1113.

    Article  PubMed  Google Scholar 

  257. Nemerofsky SL, Parravicini E, Bateman D, Kleinman C, Polin RA, Lorenz JM. The ductus arteriosus rarely requires treatment in infants > 1000 grams. Am J Perinatol. 2008;25:661.

    Article  PubMed  Google Scholar 

  258. Abu Hazeem AA, Gillespie MJ, Thun H, Munson D, Schwartz MC, Dori Y, et al. Percutaneous closure of patent ductus arteriosus in small infants with significant lung disease may offer faster recovery of respiratory function when compared to surgical ligation. Catheter Cardiovasc Interv. 2013;82:526.

    Article  PubMed  Google Scholar 

  259. Lin CC, Hsieh KS, Huang TC, Weng KP. Closure of large patent ductus arteriosus in infants. Am J Cardiol. 2009;103:857.

    Article  PubMed  Google Scholar 

  260. Sathanandam S, Balduf K, Chilakala S, Washington K, Allen K, Knott-Craig C, et al. Role of Transcatheter patent ductus arteriosus closure in extremely low birth weight infants. Catheter Cardiovasc Interv. 2019;93:89.

    Article  PubMed  Google Scholar 

  261. Clement WA, El-Hakim H, Phillipos EZ, Coté JJ. Unilateral vocal cord paralysis following patent ductus arteriosus ligation in extremely low-birth-weight infants. Arch Otolaryngol Head Neck Surg. 2008;134:28.

    Article  PubMed  Google Scholar 

  262. Teixeira LS, Shivananda SP, Stephens D, Van Arsdell G, McNamara PJ. Postoperative cardiorespiratory instability following ligation of the preterm ductus arteriosus is related to early need for intervention. J Perinatol. 2008;28:803.

    Article  CAS  PubMed  Google Scholar 

  263. Heyden CM, El-Said HG, Moore JW, Guyon PW, Katheria AC, Ratnayaka K. Early experience with the micro plug set for preterm patent ductus arteriosus closure. Catheter Cardiovasc Interv. 2020;96(7):1439–44.

    Article  PubMed  Google Scholar 

  264. Bischoff AR, Jasani B, Sathanandam SK, Backes C, Weisz DE, McNamara PJ. Percutaneous closure of patent ductus arteriosus in infants 1.5 kg or less: a meta-analysis. J Pediatr. 2021;230:84–92.e14.

    Article  PubMed  Google Scholar 

  265. Zahn EM, Peck D, Phillips A, Nevin P, Basaker K, Simmons C, et al. Transcatheter closure of patent ductus arteriosus in extremely premature newborns: early results and midterm follow-up. JACC Cardiovasc Interv. 2016;9:2429.

    Article  PubMed  Google Scholar 

  266. Sathanandam S, Justino H, Waller BR, Radtke W, Qureshi AM. Initial clinical experience with the Medtronic Micro Vascular Plug™ in transcatheter occlusion of PDAs in extremely premature infants. Catheter Cardiovasc Interv. 2017;89:1051.

    Article  PubMed  Google Scholar 

  267. Morray BH. Ventricular septal defect closure devices, techniques, and outcomes. Interv Cardiol Clin. 2019;8:1–10.

    PubMed  Google Scholar 

  268. Landman G, Kipps A, Moore P, Teitel D, Meadows J. Outcomes of a modified approach to transcatheter closure of perimembranous ventricular septal defects. Catheter Cardiovasc Interv. 2013;82(1):143–9.

    Article  PubMed  Google Scholar 

  269. Jameel AA, Arfi AM, Arif H, Amjad K, Omar GM. Retrograde approach for device closure of muscular ventricular septal defects in children and adolescents, using the Amplatzer muscular ventricular septal defect occluder. Pediatr Cardiol. 2006;27(6):720–8.

    Article  PubMed  Google Scholar 

  270. Fu YC, Bass J, Amin Z, Radtke W, Cheatham JP, Hellenbrand WE, et al. Transcatheter closure of perimembranous ventricular septal defects using the new Amplatzer membranous VSD Occluder: results of the U.S. phase I trial. J Am Coll Cardiol. 2006;47(2):319–25.

    Article  PubMed  Google Scholar 

  271. Holzer R, De Giovanni J, Walsh KP, Tometzki A, Goh TH, Hakim F, et al. Transcatheter closure of perimembranous ventricular septal defects using the Amplatzer membranous VSD occluder: immediate and midterm results of an international registry. Catheter Cardiovasc Interv. 2006;68(4):620–8.

    Article  PubMed  Google Scholar 

  272. Butera G, Carminati M, Chessa M, Piazza L, Micheletti A, Negura DG, et al. Transcatheter closure of perimembranous ventricular septal defects. Early and long-term results. J Am Coll Cardiol. 2007;50(12):1189–95.

    Article  PubMed  Google Scholar 

  273. Predescu D, Chaturvedi RR, Friedberg MK, Benson LN, Ozawa A, Lee KJ. Complete heart block associated with device closure of perimembranous ventricular septal defects. J Thorac Cardiovasc Surg. 2008;136(5):1223–8.

    Article  PubMed  Google Scholar 

  274. Santhanam H, Yang LQ, Chen Z, Tai BC, Rajgor DD, Quek SC. A meta-analysis of transcatheter device closure of perimembranous ventricular septal defect. Int J Cardiol. 2018;254:75–83.

    Article  PubMed  Google Scholar 

  275. Saurav A, Kaushik M, Mahesh Alla V, White MD, Satpathy R, Lanspa T, et al. Comparison of percutaneous device closure versus surgical closure of peri-membranous ventricular septal defects: a systematic review and meta-analysis. Catheter Cardiovasc Interv. 2015;86(6):1048–56.

    Article  PubMed  Google Scholar 

  276. Holzer R, Balzer D, Cao QL, Lock K, Hijazi ZM. Device closure of muscular ventricular septal defects using the Amplatzer muscular ventricular septal defect occluder: immediate and mid-term results of a U.S. registry. J Am Coll Cardiol. 2004;43(7):1257–63.

    Article  PubMed  Google Scholar 

  277. Gray RG, Menon SC, Johnson JT, Armstrong AK, Bingler MA, Breinholt JP, et al. Acute and midterm results following perventricular device closure of muscular ventricular septal defects: a multicenter PICES investigation. Catheter Cardiovasc Interv. 2017;90(2):281–9.

    Article  PubMed  Google Scholar 

  278. Armsby LR, Keane JF, Sherwood MC, Forbess JM, Perry SB, Lock JE. Management of coronary artery fistulae: patient selection and results of transcatheter closure. J Am Coll Cardiol. 2002;39:1026.

    Article  PubMed  Google Scholar 

  279. Xiao Y, Gowda ST, Chen Z, Delaney JW, Amin Z, Latson LA, et al. Transcatheter closure of coronary artery fistulae: considerations and approaches based on fistula origin. J Interv Cardiol. 2015;28:380.

    Article  PubMed  Google Scholar 

  280. Perry SB, Rome J, Keane JF, Baim DS, Lock JE. Transcatheter closure of coronary artery fistulas. J Am Coll Cardiol. 1992;20:205.

    Article  CAS  PubMed  Google Scholar 

  281. El-Sabawi B, Al-Hijji MA, Eleid MF, Cabalka AK, Ammash NM, Dearani JA, et al. Transcatheter closure of coronary artery fistula: a 21-year experience. Catheter Cardiovasc Interv. 2020;96:311.

    Article  PubMed  Google Scholar 

  282. Shah AH, Osten M, Benson L, Alnasser S, Bach Y, Meier L, et al. Long-term outcomes of percutaneous closure of coronary artery fistulae in the adult: a single-center experience. Catheter Cardiovasc Interv. 2020;95:939.

    Article  PubMed  Google Scholar 

  283. Valente AM, Lock JE, Gauvreau K, Rodriguez-Huertas E, Joyce C, Armsby L, et al. Predictors of long-term adverse outcomes in patients with congenital coronary artery fistulae. Circ Cardiovasc Interv. 2010;3:134.

    Article  PubMed  Google Scholar 

  284. Triedman JK, Bridges ND, Mayer JE, Lock JE. Prevalence and risk factors for aortopulmonary collateral vessels after Fontan and bidirectional Glenn procedures. J Am Coll Cardiol. 1993;22:207.

    Article  CAS  PubMed  Google Scholar 

  285. McElhinney DB, Reddy VM, Tworetzky W, Petrossian E, Hanley FL, Moore P. Incidence and implications of systemic to pulmonary collaterals after bidirectional cavopulmonary anastomosis. Ann Thorac Surg. 2000;69(4):1222–8.

    Article  CAS  PubMed  Google Scholar 

  286. Mohammad Nijres B, Taqatqa AS, Mubayed L, Jutzy GJ, Abdulla R, Diab KA, et al. Determination of the frequency of right and left internal mammary artery embolization in single ventricle patients: a two-center study. Pediatr Cardiol. 2018;39:1657.

    Article  PubMed  Google Scholar 

  287. Abdelhady K, Taqatqa A, Miranda C, Awad S. Frequency of mammary artery coiling in single-ventricle patients and future coronary artery grafting. Pediatr Cardiol. 2016;37:1302.

    Article  PubMed  Google Scholar 

  288. Hill SL, Hijazi ZM, Hellenbrand WE, Cheatham JP. Evaluation of the AMPLATZER vascular plug for embolization of peripheral vascular malformations associated with congenital heart disease. Catheter Cardiovasc Interv. 2006;67:112.

    Article  Google Scholar 

  289. Schwartz M, Glatz AC, Rome JJ, Gillespie MJ. The amplatzer vascular plug and amplatzer vascular plug II for vascular occlusion procedures in 50 patients with congenital cardiovascular disease. Catheter Cardiovasc Interv. 2010;76:411.

    Article  PubMed  Google Scholar 

  290. Pereira-Da-Silva T, Martins JD, De Sousa L, Fiarresga A, Trigo Pereira C, Cruz Ferreira R, et al. Percutaneous occlusion of vascular malformations in pediatric and adult patients: 20-year experience of a single center. Catheter Cardiovasc Interv. 2016;87:E62.

    Article  PubMed  Google Scholar 

  291. Srivastava D, Preminger T, Lock JE, Mandell V, Keane JF, Mayer JE, et al. Hepatic venous blood and the development of pulmonary arteriovenous malformations in congenital heart disease. Circulation. 1995;92:1217.

    Article  CAS  PubMed  Google Scholar 

  292. Dotter CT, Judkins MP. Transluminal treatment of arteriosclerotic obstruction. Description of a new technic and a preliminary report of its application. Circulation. 1964;30:654–70.

    Article  CAS  PubMed  Google Scholar 

  293. Lock JE, Niemi T, Burke BA, Einzig S, Castaneda-Zuniga WR. Transcutaneous angioplasty of experimental aortic coarctation. Circulation. 1982;66(6):1280–6.

    Article  CAS  PubMed  Google Scholar 

  294. Sos T, Sniderman KW, Rettek-Sos B, Strupp A, Alonso DR. Percutaneous transluminal dilatation of coarctation of thoracic aorta post mortem. Lancet. 1979;2(8149):970–1.

    Article  CAS  PubMed  Google Scholar 

  295. Lock JE, Castaneda-Zuniga WR, Bass JL, Foker JE, Amplatz K, Anderson RW. Balloon dilatation of excised aortic coarctations. Radiology. 1982;143(3):689–91.

    Article  CAS  PubMed  Google Scholar 

  296. Lock JE, Bass JL, Amplatz K, Fuhrman BP, Castaneda-Zuniga W. Balloon dilation angioplasty of aortic coarctations in infants and children. Circulation. 1983;68(1):109–16.

    Article  CAS  PubMed  Google Scholar 

  297. McCrindle BW, Jones TK, Morrow WR, Hagler DJ, Lloyd TR, Nouri S, et al. Acute results of balloon angioplasty of native coarctation versus recurrent aortic obstruction are equivalent. Valvuloplasty and Angioplasty of Congenital Anomalies (VACA) Registry Investigators. J Am Coll Cardiol. 1996;28(7):1810–7.

    Article  CAS  PubMed  Google Scholar 

  298. Mullins CE. No title. In: Cardiac catheterization in congenital heart disease: pediatric and adult. Blackwell Futura; 2006. p. 454–70.

    Google Scholar 

  299. Patel HT, Paris YM, Warner KG, Hijazi ZM. Balloon angioplasty of native coarctation of the aorta in infants and neonates: is it worth the hassle? Pediatr Cardiol. 2001;22(1):53–7.

    Article  CAS  PubMed  Google Scholar 

  300. Yetman AT, Nykanen D, McCrindle BW, Sunnegardh J, Adatia I, Freedom RM, et al. Balloon angioplasty of recurrent coarctation: a 12-year review. J Am Coll Cardiol. 1997;30(3):811–6.

    Article  CAS  PubMed  Google Scholar 

  301. Shahanavaz S, Aldoss O, Carr K, Gordon B, Seckeler MD, Hiremath G, et al. Acute and medium term results of balloon expandable stent placement in the transverse arch—a multicenter pediatric interventional cardiology early career society study. Catheter Cardiovasc Interv. 2020;96(6):1277–86.

    Article  PubMed  Google Scholar 

  302. Pushparajah K, Sadiq M, Brzezińska-Rajszys G, Thomson J, Rosenthal E, Qureshi SA. Endovascular stenting in transverse aortic arch hypoplasia. Catheter Cardiovasc Interv. 2013;82(4):E491.

    Article  PubMed  Google Scholar 

  303. Thanopoulos BV, Triposkiadis F, Margetakis A, Mullins CE. Long segment coarctation of the thoracic aorta: treatment with multiple balloon-expandable stent implantation. Am Heart J. 1997;133(4):470–3.

    Article  CAS  PubMed  Google Scholar 

  304. Dehghani P, Collins N, Benson L, Horlick E. Role of routine radial artery access during aortic coarctation interventions. Catheter Cardiovasc Interv. 2007;70(4):622–3.

    Article  PubMed  Google Scholar 

  305. Glöckler M, Halbfaβ J, Koch A, Achenbach S, Dittrich S. Multimodality 3D-roadmap for cardiovascular interventions in congenital heart disease--a single-center, retrospective analysis of 78 cases. Catheter Cardiovasc Interv. 2013;82(3):436–42.

    Article  PubMed  Google Scholar 

  306. Stenger A, Dittrich S, Glöckler M. Three-dimensional rotational angiography in the pediatric cath lab: optimizing aortic interventions. Pediatr Cardiol. 2016;37(3):528–36.

    Article  PubMed  Google Scholar 

  307. Ozawa A, Predescu D, Chaturvedi R, Lee KJ, Benson LN. Cutting balloon angioplasty for aortic coarctation. J Invasive Cardiol. 2009;21(6):295–9.

    PubMed  Google Scholar 

  308. Harris KC, Du W, Cowley CG, Forbes TJ, Kim DW. A prospective observational multicenter study of balloon angioplasty for the treatment of native and recurrent coarctation of the aorta. Catheter Cardiovasc Interv. 2014;83(7):1116–23.

    Article  PubMed  Google Scholar 

  309. Holzer RJCJP. Therapeutic cardiac catheterization. In: Allen HD, Shaddy RE, Feltes TFDDJ, editors. Moss and Adams’ heart disease in infants, children, and adolescents: including the fetus and young adult. 8th ed. Lippincott Williams & Wilkins; 2013.

    Google Scholar 

  310. Forbes TJ, Garekar S, Amin Z, Zahn EM, Nykanen D, Moore P, et al. Procedural results and acute complications in stenting native and recurrent coarctation of the aorta in patients over 4 years of age: a multi-institutional study. Catheter Cardiovasc Interv. 2007;70(2):276–85.

    Article  PubMed  Google Scholar 

  311. Holzer R, Qureshi S, Ghasemi A, Vincent J, Sievert H, Gruenstein D, et al. Stenting of aortic coarctation: acute, intermediate, and long-term results of a prospective multi-institutional registry--Congenital Cardiovascular Interventional Study Consortium (CCISC). Catheter Cardiovasc Interv. 2010;76(4):553–63.

    Article  PubMed  Google Scholar 

  312. Forbes TJ, Kim DW, Du W, Turner DR, Holzer R, Amin Z, et al. Comparison of surgical, stent, and balloon angioplasty treatment of native coarctation of the aorta: an observational study by the CCISC (congenital cardiovascular interventional study consortium). J Am Coll Cardiol. 2011;58(25):2664–74.

    Article  PubMed  Google Scholar 

  313. Mohan UR, Danon S, Levi D, Connolly D, Moore JW. Stent implantation for coarctation of the aorta in children <30 kg. JACC Cardiovasc Interv. 2009;2(9):877–83.

    Article  PubMed  Google Scholar 

  314. Zanjani KS, Sabi T, Moysich A, Ovroutski S, Peters B, Miera O, et al. Feasibility and efficacy of stent redilatation in aortic coarctation. Catheter Cardiovasc Interv. 2008;72(4):552–6.

    Article  PubMed  Google Scholar 

  315. Danon S, Gray RG, Crystal MA, Morgan G, Gruenstein DH, Goldstein BH, et al. Expansion characteristics of stents used in congenital heart disease: serial dilation offers improved expansion potential compared to direct dilation: results from a Pediatric Interventional Cardiology Early Career Society (PICES) Investigation. Congenit Heart Dis. 2016;11(6):741–50.

    Article  PubMed  Google Scholar 

  316. Crystal MA, Morgan GJ, Danon S, Gray RG, Gruenstein DH, Gordon BM, et al. Serial versus direct dilation of small diameter stents results in a more predictable and complete intentional transcatheter stent fracture: a PICES Bench Testing Study. Pediatr Cardiol. 2018;39(1):120–8.

    Article  PubMed  Google Scholar 

  317. Agrawal H, Qureshi AM, Justino H. Intentional longitudinal and side-cell stent fractures: intermediate term follow up. Catheter Cardiovasc Interv. 2018;91(6):1110–8.

    Article  PubMed  Google Scholar 

  318. Schamberger MS, Lababidi ZA. Successful balloon angioplasty of a coarctation in an infant <500 g. Pediatr Cardiol. 1998;19(5):418–9.

    Article  CAS  PubMed  Google Scholar 

  319. Fink C, Peuster M, Hausdorf G. Endovascular stenting as an emergency treatment for neonatal coarctation. Cardiol Young. 2000;10(6):644–6.

    Article  CAS  PubMed  Google Scholar 

  320. Bouzguenda I, Ou P, Boudjemline D, Agnoletti GMD. Percutaneous treatment of neonatal aortic coarctation presenting with severe left ventricular dysfunction as a bridge to surgery. Cardiol Young. 2009;19:244–51.

    Article  PubMed  Google Scholar 

  321. Meadows J, Minahan M, McElhinney DB, McEnaney K, Ringel R. Intermediate outcomes in the prospective, multicenter coarctation of the aorta stent trial (COAST). Circulation. 2015;131(19):1656–64.

    Article  PubMed  Google Scholar 

  322. Goldstein BH, Hirsch R, Zussman ME, Vincent JA, Torres AJ, Coulson J, et al. Percutaneous balloon-expandable covered stent implantation for treatment of traumatic aortic injury in children and adolescents. Am J Cardiol. 2012;110(10):1541–5.

    Article  PubMed  Google Scholar 

  323. Trivedi KR, Benson LN. Interventional strategies in the management of peripheral pulmonary artery stenosis. J Interv Cardiol. 2003;16(2):171–88.

    Article  PubMed  Google Scholar 

  324. Gay BB Jr, French RH, Shuford WH, Rogers JV Jr. The roentgenologic features of single and multiple coarctations of the pulmonary artery and branches. Am J Roentgenol Radium Therapy, Nucl Med. 1963;90:599–613.

    Google Scholar 

  325. Collins RT 2nd, Kaplan P, Somes GW, Rome JJ. Cardiovascular abnormalities, interventions, and long-term outcomes in infantile Williams syndrome. J Pediatr. 2010;156(2):253–8.e1.

    Article  PubMed  Google Scholar 

  326. McElhinney DB, Krantz ID, Bason L, Piccoli DA, Emerick KM, Spinner NB, et al. Analysis of cardiovascular phenotype and genotype-phenotype correlation in individuals with a JAG1 mutation and/or Alagille syndrome. Circulation. 2002;106(20):2567–74.

    Article  PubMed  Google Scholar 

  327. Saidi AS, Kovalchin JP, Fisher DJ, Ferry GD, Grifka RG. Balloon pulmonary valvuloplasty and stent implantation. For peripheral pulmonary artery stenosis in Alagille syndrome. Tex Heart Inst J. 1998;25(1):79–82.

    CAS  PubMed  PubMed Central  Google Scholar 

  328. Lewis MJ, Kennedy KF, Ginns J, Crystal MA, Torres A, Vincent J, et al. Procedural success and adverse events in pulmonary artery stenting: insights from the NCDR. J Am Coll Cardiol. 2016;67(11):1327–35.

    Article  PubMed  Google Scholar 

  329. Maglione J, Bergersen L, Lock JE, McElhinney DB. Ultra-high-pressure balloon angioplasty for treatment of resistant stenoses within or adjacent to previously implanted pulmonary arterial stents. Circ Cardiovasc Interv. 2009;2(1):52–8.

    Article  PubMed  Google Scholar 

  330. Crystal MIFF. Pulmonary artery stents: past, present and future. Prog Pediatr Cardiol. 2012;33(3):151–9.

    Article  Google Scholar 

  331. Butera G, Antonio LT, Massimo C, Mario C. Expanding indications for the treatment of pulmonary artery stenosis in children by using cutting balloon angioplasty. Catheter Cardiovasc Interv. 2006;67(3):460–5.

    Article  PubMed  Google Scholar 

  332. Bergersen L, Gauvreau K, Justino H, Nugent A, Rome J, Kreutzer J, et al. Randomized trial of cutting balloon compared with high-pressure angioplasty for the treatment of resistant pulmonary artery stenosis. Circulation. 2011;124(22):2388–96.

    Article  PubMed  Google Scholar 

  333. Stanfill R, Nykanen DG, Osorio S, Whalen R, Burke RP, Zahn EM. Stent implantation is effective treatment of vascular stenosis in young infants with congenital heart disease: acute implantation and long-term follow-up results. Catheter Cardiovasc Interv. 2008;71(6):831–41.

    Article  PubMed  Google Scholar 

  334. Sathanandam SK, Subramanian S, Wright D, Philip R, Waller BRHLM. Unzipping of small diameter stents: an in vitro study. Catheter Cardioc Interv. 2015;85:249–58.

    Article  Google Scholar 

  335. Law MA, Shamszad P, Nugent AW, Justino H, Breinholt JP, Mullins CE, et al. Pulmonary artery stents: long-term follow-up. Catheter Cardiovasc Interv. 2010;75(5):757–64.

    Article  PubMed  Google Scholar 

  336. O’Laughlin MP, Slack MC, Grifka RG, Perry SB, Lock JE, Mullins CE. Implantation and intermediate-term follow-up of stents in congenital heart disease. Circulation. 1993;88(2):605–14.

    Article  PubMed  Google Scholar 

  337. Fogelman R, Nykanen D, Smallhorn JF, McCrindle BW, Freedom RM, Benson LN. Endovascular stents in the pulmonary circulation. Clinical impact on management and medium-term follow-up. Circulation. 1995;92(4):881–5.

    Article  CAS  PubMed  Google Scholar 

  338. Recto MR, Ing FF, Grifka RG, Nihill MR, Mullins CE. A technique to prevent newly implanted stent displacement during subsequent catheter and sheath manipulation. Catheter Cardiovasc Interv. 2000;49(3):297–300.

    Article  CAS  PubMed  Google Scholar 

  339. Stapleton GE, Hamzeh R, Mullins CE, Zellers TM, Justino H, Nugent A, et al. Simultaneous stent implantation to treat bifurcation stenoses in the pulmonary arteries: initial results and long-term follow up. Catheter Cardiovasc Interv. 2009;73(4):557–63.

    Article  PubMed  Google Scholar 

  340. Rosales AM, Lock JE, Perry SB, Geggel RL. Interventional catheterization management of perioperative peripheral pulmonary stenosis: balloon angioplasty or endovascular stenting. Catheter Cardiovasc Interv. 2002;56(2):272–7.

    Article  PubMed  Google Scholar 

  341. Nicholson GT, Kim DW, Vincent RN, Petit CJ. Transcatheter interventions across fresh suture lines in infants and children: an 8-year experience. Catheter Cardiovasc Interv. 2015;86(2):271–7.

    Article  PubMed  Google Scholar 

  342. Ooi YK, Kim SIH, Gillespie SE, Kim DW, Vincent RN, Petit CJ. Premounted stents for branch pulmonary artery stenosis in children: a short term solution. Catheter Cardiovasc Interv. 2018;92(7):1315–22.

    Article  PubMed  Google Scholar 

  343. Kretschmar O, Sglimbea A, Prêtre R, Knirsch W. Pulmonary artery stent implantation in children with single ventricle malformation before and after completion of partial and total cavopulmonary connections. J Interv Cardiol. 2009;22(3):285–90.

    Article  PubMed  Google Scholar 

  344. McMahon CJ, El-Said HG, Grifka RG, Fraley JK, Nihill MR, Mullins CE. Redilation of endovascular stents in congenital heart disease: factors implicated in the development of restenosis and neointimal proliferation. J Am Coll Cardiol. 2001;38(2):521–6.

    Article  CAS  PubMed  Google Scholar 

  345. Ing Grifka RG, Nihill MR, Mullins CEFF. Repeat dilation of intravascular stents in congenital heart defects. Circulation. 1995;92(4):893–7.

    Article  PubMed  Google Scholar 

  346. Duke C, Rosenthal E, Qureshi SA. The efficacy and safety of stent redilatation in congenital heart disease. Heart. 2003;89(8):905–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  347. McElhinney DB, Bergersen L, Marshall AC. In situ fracture of stents implanted for relief of pulmonary arterial stenosis in patients with congenitally malformed hearts. Cardiol Young. 2008;18(4):405–14.

    Article  PubMed  PubMed Central  Google Scholar 

  348. Breinholt JP, Law MA, Justinoe H, Mullins CE, Ing FFNAW. Stent fractures in congenital heart disease. Catheter Cardioc Interv. 2008;72:977–82.

    Article  Google Scholar 

  349. Ing FF. Stenting branch pulmonary arteries. In: Hijazi ZM, Cheatham JP, Sievert H, Feldman T, editors. Complications during percutaneous interventions for congenital and structural heart disease. London: Burgess, Taylor & Francis Medical Books. Informa Healthcare, UK Ltd; 2009.

    Google Scholar 

  350. Sullivan PM, Merritt R, Pelayo JC, Ing FF. Recanalization of occluded central veins in a parenteral nutrition-dependent child with no access. Pediatrics. 2018;141(Suppl 5):S416–s420.

    Article  PubMed  Google Scholar 

  351. Ing FF, Fagan TE, Grifka RG, Clapp S, Nihill MR, Cocalis M, et al. Reconstruction of stenotic or occluded iliofemoral veins and inferior vena cava using intravascular stents: re-establishing access for future cardiac catheterization and cardiac surgery. J Am Coll Cardiol. 2001;37(1):251–7.

    Article  CAS  PubMed  Google Scholar 

  352. Salavitabar A, Flyer JN, Torres AJ, Richmond ME, Crystal MA, Turner ME, et al. Transcatheter stenting of superior vena cava obstruction after pediatric heart transplantation: a single-center experience assessing risk factors and outcomes. Pediatr Transplant. 2018;22(7):e13267.

    Article  PubMed  Google Scholar 

  353. Frazer JR, Ing FF. Stenting of stenotic or occluded iliofemoral veins, superior and inferior vena cavae in children with congenital heart disease: acute results and intermediate follow up. Catheter Cardiovasc Interv. 2009;73(2):181–8.

    Article  PubMed  Google Scholar 

  354. Zahn EM, Dobrolet NC, Nykanen DG, Ojito J, Hannan RL, Burke RP. Interventional catheterization performed in the early postoperative period after congenital heart surgery in children. J Am Coll Cardiol. 2004;43(7):1264–9.

    Article  PubMed  Google Scholar 

  355. Qureshi AM, Hill JA, Prieto LR, Arruda J, Morrison S, Worley S, et al. Transcatheter recanalization of totally occluded proximal pulmonary arteries and major systemic veins in patients with congenital heart disease. Am J Cardiol. 2013;111(3):412–7.

    Article  PubMed  Google Scholar 

  356. Holt DB, Moller JH, Larson S, Johnson MC. Primary pulmonary vein stenosis. Am J Cardiol. 2007;99(4):568–72.

    Article  PubMed  Google Scholar 

  357. Seale AN, Webber SA, Uemura H, Partridge J, Roughton M, Ho SY, et al. Pulmonary vein stenosis: the UK, Ireland and Sweden collaborative study. Heart. 2009;95(23):1944–9.

    Article  CAS  PubMed  Google Scholar 

  358. Drossner DM, Kim DW, Maher KO, Mahle WT. Pulmonary vein stenosis: prematurity and associated conditions. Pediatrics. 2008;122(3):e656–61.

    Article  PubMed  Google Scholar 

  359. Breinholt JP, Hawkins JA, Minich LA, Tani LY, Orsmond GS, Ritter S, et al. Pulmonary vein stenosis with normal connection: associated cardiac abnormalities and variable outcome. Ann Thorac Surg. 1999;68(1):164–8.

    Article  CAS  PubMed  Google Scholar 

  360. Driscoll DJ, Hesslein PS, Mullins CE. Congenital stenosis of individual pulmonary veins: clinical spectrum and unsuccessful treatment by transvenous balloon dilation. Am J Cardiol. 1982;49(7):1767–72.

    Article  CAS  PubMed  Google Scholar 

  361. Lock JE, Bass JL, Castaneda-Zuniga W, Fuhrman BP, Rashkind WJ, Lucas RV Jr. Dilation angioplasty of congenital or operative narrowings of venous channels. Circulation. 1984;70(3):457–64.

    Article  CAS  PubMed  Google Scholar 

  362. Charlagorla P, Becerra D, Patel PM, Hoyer M, Darragh RK. Congenital pulmonary vein stenosis: encouraging mid-term outcome. Pediatr Cardiol. 2016;37(1):125–30.

    Article  PubMed  Google Scholar 

  363. Seale AN, Daubeney PE, Magee AG, Rigby ML. Pulmonary vein stenosis: initial experience with cutting balloon angioplasty. Heart. 2006;92(6):815–20.

    Article  CAS  PubMed  Google Scholar 

  364. Peng LF, Lock JE, Nugent AW, Jenkins KJ, McElhinney DB. Comparison of conventional and cutting balloon angioplasty for congenital and postoperative pulmonary vein stenosis in infants and young children. Catheter Cardiovasc Interv. 2010;75(7):1084–90.

    PubMed  Google Scholar 

  365. Mendelsohn AM, Bove EL, Lupinetti FM, Crowley DC, Lloyd TR, Fedderly RT, et al. Intraoperative and percutaneous stenting of congenital pulmonary artery and vein stenosis. Circulation. 1993;88(5 Pt 2):Ii210–7.

    CAS  PubMed  Google Scholar 

  366. Cullen S, Lincoln C, Redington AHS. Congenital stenosis of pulmonary veins: failure to modify natural history by intraoperative placement of stents. Cardiol Young. 1994;4:395–8.

    Article  Google Scholar 

  367. Coles JG, Yemets I, Najm HK, Lukanich JM, Perron J, Wilson GJ, et al. Experience with repair of congenital heart defects using adjunctive endovascular devices. J Thorac Cardiovasc Surg. 1995;110(5):1513–20.

    Article  CAS  PubMed  Google Scholar 

  368. Gordon BM, Moore JW. Treatment of pulmonary vein stenosis with expanded polytetrafluoroethylene covered stents. Catheter Cardiovasc Interv. 2010;75(2):263–7.

    Article  PubMed  Google Scholar 

  369. Balasubramanian S, Marshall AC, Gauvreau K, Peng LF, Nugent AW, Lock JE, et al. Outcomes after stent implantation for the treatment of congenital and postoperative pulmonary vein stenosis in children. Circ Cardiovasc Interv. 2012;5(1):109–17.

    Article  PubMed  Google Scholar 

  370. Rehman M, Jenkins KJ, Juraszek AL, Connor JA, Gauvreau K, Muneeb M, et al. A prospective phase II trial of vinblastine and methotrexate in multivessel intraluminal pulmonary vein stenosis in infants and children. Congenit Heart Dis. 2011;6(6):608–23.

    Article  PubMed  Google Scholar 

  371. Cory MJ, Ooi YK, Kelleman MS, Vincent RN, Kim DW, Petit CJ. Reintervention is associated with improved survival in pediatric patients with pulmonary vein stenosis. JACC Cardiovasc Interv. 2017;10(17):1788–98.

    Article  PubMed  Google Scholar 

  372. Khan A, Qureshi AM, Justino H. Comparison of drug eluting versus bare metal stents for pulmonary vein stenosis in childhood. Catheter Cardiovasc Interv. 2019;94(2):233–42.

    Article  PubMed  Google Scholar 

  373. Callahan R, Esch JJ, Wang G, Ireland CM, Gauvreau K, Jenkins KJ. Systemic sirolimus to prevent in-stent stenosis in pediatric pulmonary vein stenosis. Pediatr Cardiol. 2020;41(2):282–9.

    Article  PubMed  Google Scholar 

  374. Callahan R, Kieran MW, Baird CW, Colan SD, Gauvreau K, Ireland CM, et al. Adjunct targeted biologic inhibition agents to treat aggressive multivessel intraluminal pediatric pulmonary vein stenosis. J Pediatr. 2018;198:29–35.e5.

    Article  PubMed  Google Scholar 

  375. Stein PD, Kayali F, Olson RE. Incidence of venous thromboembolism in infants and children: data from the National Hospital Discharge Survey. J Pediatr. 2004;145(4):563–5.

    Article  PubMed  Google Scholar 

  376. Gill AE, Shivaram GM. Managing systemic venous occlusions in children. CVIR Endovasc. 2020;3(1):59.

    Article  PubMed  PubMed Central  Google Scholar 

  377. Thom K, Lensing AWA, Nurmeev I, Bajolle F, Bonnet D, Kenet G, et al. Safety and efficacy of anticoagulant therapy in pediatric catheter-related venous thrombosis (EINSTEIN-Jr CVC-VTE). Blood Adv. 2020;4(19):4632–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  378. Yee DL, Chan AK, Williams S, Goldenberg NA, Massicotte MP, Raffini LJ. Varied opinions on thrombolysis for venous thromboembolism in infants and children: findings from a survey of pediatric hematology-oncology specialists. Pediatr Blood Cancer. 2009;53(6):960–6.

    Article  PubMed  Google Scholar 

  379. Grunwald IQ, Walter S, Shamdeen MG, Dautermann A, Roth C, Haass A, et al. New mechanical recanalization devices - the future in pediatric stroke treatment? J Invasive Cardiol. 2010;22(2):63–6.

    PubMed  Google Scholar 

  380. Lungren MP, Ward TJ, Patel MN, Racadio JM, Kukreja K. Endovascular thrombolysis to salvage central venous access in children with catheter-associated upper extremity deep vein thrombosis: technique and initial results. J Thromb Thrombolysis. 2015;40(3):274–9.

    Article  PubMed  Google Scholar 

  381. Qureshi AM, Petit CJ, Crystal MA, Liou A, Khan A, Justino H. Efficacy and safety of catheter-based rheolytic and aspiration thrombectomy in children. Catheter Cardiovasc Interv. 2016;87(7):1273–80.

    Article  PubMed  Google Scholar 

  382. Lin PH, Annambhotla S, Bechara CF, Athamneh H, Weakley SM, Kobayashi K, et al. Comparison of percutaneous ultrasound-accelerated thrombolysis versus catheter-directed thrombolysis in patients with acute massive pulmonary embolism. Vascular. 2009;17(Suppl 3):S137–47.

    Article  PubMed  Google Scholar 

  383. Ross J, Braunwald E, Morrow A. Left heart catheterization by the transseptal route: a description of the technic and its applications. Circulation. 1960;22:927.

    Article  Google Scholar 

  384. Brockenbrough EC, Braunwald E, Ross J. Transseptal left heart catheterization. a review of 450 studies and description of an improved technic. Circulation. 1962;25:15.

    Article  CAS  PubMed  Google Scholar 

  385. Vogel JH. Balloon embolization during atrial septostomy. Circulation. 1970;42:155.

    Article  CAS  PubMed  Google Scholar 

  386. Hohn AR, Webb HM. Balloon deflation failure: a hazard of “medical” atrial septostomy. Am Heart J. 1972;83:389.

    Article  CAS  PubMed  Google Scholar 

  387. Blanchard WB, Knauf DG, Victorica BE. Interatrial groove tear: an unusual complication of balloon atrial septostomy. Pediatr Cardiol. 1983;4:149.

    Article  CAS  PubMed  Google Scholar 

  388. Özkutlu S, Özbarlas N. Successful treatment of a nondeflatable balloon atrial septostomy catheter. Int J Cardiol. 1992;34:348.

    Article  PubMed  Google Scholar 

  389. Caixeta AM, Kajita LJ, Rati M, Violante R, Aiello V, Snitcowsky R, et al. Ductus arteriosus rupture as a balloon catheter atrioseptostomy complication. Catheter Cardiovasc Diagn. 1995;34:48.

    Article  CAS  Google Scholar 

  390. Akagi T, Tananari Y, Maeno YV, Himeno W, Furui J, Ishii M, et al. Torn-off balloon tip of Z-5 atrial septostomy catheter. Catheter Cardiovasc Interv. 2001;52:500.

    Article  CAS  PubMed  Google Scholar 

  391. McQuillen PS, Hamrick SEG, Perez MJ, Barkovich AJ, Glidden DV, Karl TR, et al. Balloon atrial septostomy is associated with preoperative stroke in neonates with transposition of the great arteries. Circulation. 2006;113:280.

    Article  PubMed  Google Scholar 

  392. Petit CJ, Rome JJ, Wernovsky G, Mason SE, Shera DM, Nicolson SC, et al. Preoperative brain injury in transposition of the great arteries is associated with oxygenation and time to surgery, not balloon atrial septostomy. Circulation. 2009;119:709.

    Article  PubMed  PubMed Central  Google Scholar 

  393. Beca J, Gunn J, Coleman L, Hope A, Whelan LC, Gentles T, et al. Pre-operative brain injury in newborn infants with transposition of the great arteries occurs at rates similar to other complex congenital heart disease and is not related to balloon atrial septostomy. J Am Coll Cardiol. 2009;53:1807.

    Article  PubMed  Google Scholar 

  394. Applegate SE, Lim DS. Incidence of stroke in patients with d-transposition of the great arteries that undergo balloon atrial septostomy in the University Healthsystem Consortium Clinical Data Base/Resource Manager. Catheter Cardiovasc Interv. 2010;76:129.

    Article  PubMed  Google Scholar 

  395. Rychik J, Rome JJ, Collins MH, Decampli WM, Spray TL. The hypoplastic left heart syndrome with intact atrial septum: atrial morphology, pulmonary vascular histopathology and outcome. J Am Coll Cardiol. 1999;34:554.

    Article  CAS  PubMed  Google Scholar 

  396. Vida VL, Bacha EA, Larrazabal A, Gauvreau K, Thiagaragan R, Fynn-Thompson F, et al. Hypoplastic left heart syndrome with intact or highly restrictive atrial septum: surgical experience from a single center. Ann Thorac Surg. 2007;84:581.

    Article  PubMed  Google Scholar 

  397. Holzer RJ, Wood A, Chisolm JL, Hill SL, Phillips A, Galantowicz M, et al. Atrial septal interventions in patients with hypoplastic left heart syndrome. Catheter Cardiovasc Interv. 2008;72(5):696–704.

    Article  PubMed  Google Scholar 

  398. Pedra CAC, Neves JR, Pedra SRF, Ferreiro CR, Jatene I, Cortez TM, et al. New transcatheter techniques for creation or enlargement of atrial septal defects in infants with complex congenital heart disease. Catheter Cardiovasc Interv. 2007;70:731.

    Article  PubMed  Google Scholar 

  399. Vlahos AP, Lock JE, McElhinney DB, Van Der Velde ME. Hypoplastic left heart syndrome with intact or highly restrictive atrial septum: outcome after neonatal transcatheter atrial septostomy. Circulation. 2004;109:2326.

    Article  PubMed  Google Scholar 

  400. Hill K, Fudge JC, Barker P, Jaggers J, Rhodes J. Novel transatrial septoplasty technique for neonates with hypoplastic left heart syndrome and an intact or highly restrictive atrial septum. Pediatr Cardiol. 2010;31:545.

    Article  PubMed  Google Scholar 

  401. Javois AJ, Van Bergen AH, Cuneo BF, Husayni TS. Novel approach to the newborn with hypoplastic left heart syndrome and intact atrial septum. Catheter Cardiovasc Interv. 2005;66:268.

    Article  PubMed  Google Scholar 

  402. Du Marchie Sarvaas GJ, Trivedi KR, Hornberger LK, Lee KJ, Kirsh JA, Benson LN. Radiofrequency-assisted atrial septoplasty for an intact atrial septum in complex congenital heart disease. Catheter Cardiovasc Interv. 2002;56:412.

    Article  PubMed  Google Scholar 

  403. Torres AJ, Sommer RJ, Crystal MA, Vincent JA, Bacha E, Turner ME. Use of the Baylis radiofrequency trans-septal needle to create an atrial communication in hypoplastic left heart syndrome. Interv Cardiol. 2015;7(2):131–6.

    Article  Google Scholar 

  404. Gordon BM, Levi DS, Shannon KM. Electrosurgical energy in combination with a transseptal needle: a novel method for the creation of an atrial communication in hypoplastic left heart syndrome with intact atrial septum. Catheter Cardiovasc Interv. 2009;73(1):113–6.

    Article  PubMed  Google Scholar 

  405. Singh SM, Neuzil P, Skoka J, Kriz R, Popelova J, Love BA, et al. Percutaneous transhepatic venous access for catheter ablation procedures in patients with interruption of the inferior vena cava. Circ Arrhythmia Electrophysiol. 2011;4:235.

    Article  Google Scholar 

  406. Hahn K, Bajwa T, Sarnoski J, Schmidt DH, Gal R. Transseptal catheterization with transesophageal guidance in high risk patients. Echocardiography. 1997;14:475.

    Article  PubMed  Google Scholar 

  407. Ruisi CP, Brysiewicz N, Asnes JD, Sugeng L, Marieb M, Clancy J, et al. Use of intracardiac echocardiography during atrial fibrillation ablation. Pacing Clin Electrophysiol. 2013;36:781.

    Article  PubMed  Google Scholar 

  408. De Ponti R, Cappato R, Curnis A, Della Bella P, Padeletti L, Raviele A, et al. Trans-septal catheterization in the electrophysiology laboratory: data from a multicenter survey spanning 12 years. J Am Coll Cardiol. 2006;47:1037.

    Article  PubMed  Google Scholar 

  409. Hill SL, Mizelle KM, Vellucci SM, Feltes TF, Cheatham JP. Radiofrequency perforation and cutting balloon septoplasty of intact atrial septum in a newborn with hypoplastic left heart syndrome using transesophageal ICE probe guidance. Catheter Cardiovasc Interv. 2005;64:214.

    Article  PubMed  Google Scholar 

  410. Prieto LR, Latson LA, Jennings C. Atrial septostomy using a butterfly stent in a patient with severe pulmonary arterial hypertension. Catheter Cardiovasc Interv. 2006;68:642.

    Article  PubMed  Google Scholar 

  411. Torres AJ, Hellenbrand WE, Pass RH. “Taking in the waist”: adjusting the size of a stented Fontan fenestration. J Interv Cardiol. 2005;18:119.

    Article  PubMed  Google Scholar 

  412. Cheatham JP. Intervention in the critically ill neonate and infant with hypoplastic left heart syndrome and intact atrial septum. J Interv Cardiol. 2001;14:357.

    Article  CAS  PubMed  Google Scholar 

  413. Kreutzer J, Lock JE, Jonas RA, Keane JF. Transcatheter fenestration dilation and/or creation in postoperative fontan patients. Am J Cardiol. 1997;79:228.

    Article  CAS  PubMed  Google Scholar 

  414. Reinhardt Z, De Giovanni J, Stickley J, Bhole VK, Anderson B, Murtuza B, et al. Catheter interventions in the staged management of hypoplastic left heart syndrome. Cardiol Young. 2008.

    Google Scholar 

  415. Bae EJ, Choi JY, Noh C, Yun YS, Lee JR. De novo creation of fenestration and stent implantation for failed extracardiac conduit Fontan operation. Int J Cardiol. 2003;88:321–2.

    Article  PubMed  Google Scholar 

  416. Chaudhari M, Stumper O. Plastic bronchitis after Fontan operation: treatment with stent fenestration of the Fontan circuit. Heart. 2004;90(7):801.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  417. Rupp S, Schieke C, Kerst G, Mazhari N, Moysich A, Latus H, et al. Creation of a transcatheter fenestration in children with failure of fontan circulation: focus on extracardiac conduit connection. Catheter Cardiovasc Interv. 2015;86(7):1189–94.

    Article  PubMed  Google Scholar 

  418. Kenny D, Mcmahon C, Walsh KP. Transhepatic approach for extracardiac inferior cavopulmonary connection stent fenestration. Congenit Heart Dis. 2011;6:276.

    Article  PubMed  Google Scholar 

  419. Mehta C, Jones T, De Giovanni JV. Percutaneous transcatheter communication between the pulmonary artery and atrium following an extra-cardiac Fontan: an alternative approach to fenestration avoiding conduit perforation. Catheter Cardiovasc Interv. 2008;71:936.

    Article  CAS  PubMed  Google Scholar 

  420. Sasikumar N, Hermuzi A, Fan CS, Lee KJ, Chaturvedi R, Hickey E, et al. Outcomes of Blalock-Taussig shunts in current era: a single center experience. Congenit Heart Dis. 2017;12(6):808–14.

    Article  PubMed  Google Scholar 

  421. Gibbs JL, Rothman MT, Rees MR, Parsons JM, Blackburn ME, Ruiz CE. Stenting of the arterial duct: a new approach to palliation for pulmonary atresia. Br Heart J. 1992;67(3):240–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  422. Gewillig M, Boshoff DE, Dens J, Mertens L, Benson LN. Stenting the neonatal arterial duct in duct-dependent pulmonary circulation: new techniques, better results. J Am Coll Cardiol. 2004;43(1):107–12.

    Article  PubMed  Google Scholar 

  423. Santoro G, Palladino MT, Capozzi G, Iacono C, Russo MG, Calabrò R. Pulmonary artery growth following arterial duct stenting in congenital heart disease with duct-dependent pulmonary circulation. Catheter Cardiovasc Interv. 2009;74(7):1072–6.

    Article  PubMed  Google Scholar 

  424. Davenport JJ, Lam L, Whalen-Glass R, Nykanen DG, Burke RP, Hannan R, et al. The successful use of alternative routes of vascular access for performing pediatric interventional cardiac catheterization. Catheter Cardiovasc Interv. 2008;72(3):392–8.

    Article  PubMed  Google Scholar 

  425. Schranz D, Michel-Behnke I, Heyer R, Vogel M, Bauer J, Valeske K, et al. Stent implantation of the arterial duct in newborns with a truly duct-dependent pulmonary circulation: a single-center experience with emphasis on aspects of the interventional technique. J Interv Cardiol. 2010;23(6):581–8.

    Article  PubMed  Google Scholar 

  426. Fischer DR, Ettedgui JA, Park SC, Siewers RD, del Nido PJ. Carotid artery approach for balloon dilation of aortic valve stenosis in the neonate: a preliminary report. J Am Coll Cardiol. 1990;15(7):1633–6.

    Article  CAS  PubMed  Google Scholar 

  427. Bauser-Heaton H, Qureshi AM, Goldstein BH, Glatz AC, Nicholson GT, Meadows JJ, et al. Use of carotid and axillary artery approach for stenting the patent ductus arteriosus in infants with ductal-dependent pulmonary blood flow: a multicenter study from the congenital catheterization research collaborative. Catheter Cardiovasc Interv. 2020;95(4):726–33.

    Article  PubMed  Google Scholar 

  428. Ligon RA, Kim DW, Vincent RN, Bauser-Heaton HD, Ooi YK, Petit CJ. Angiographic follow-up of infants and children undergoing percutaneous carotid artery interventions. Catheter Cardiovasc Interv. 2018;91(7):1301–6.

    Article  PubMed  Google Scholar 

  429. Qureshi AM, Goldstein BH, Glatz AC, Agrawal H, Aggarwal V, Ligon RA, et al. Classification scheme for ductal morphology in cyanotic patients with ductal dependent pulmonary blood flow and association with outcomes of patent ductus arteriosus stenting. Catheter Cardiovasc Interv. 2019;93(5):933–43.

    Article  PubMed  Google Scholar 

  430. Aggarwal V, Petit CJ, Glatz AC, Goldstein BH, Qureshi AM. Stenting of the ductus arteriosus for ductal-dependent pulmonary blood flow—current techniques and procedural considerations. Congenit Heart Dis. 2019;14(1):110–5.

    Article  PubMed  Google Scholar 

  431. Hussain A, Al-Zharani S, Muhammed AA, Al-Ata J, Galal OM. Midterm outcome of stent dilatation of patent ductus arteriosus in ductal-dependent pulmonary circulation. Congenit Heart Dis. 2008;3(4):241–9.

    Article  PubMed  Google Scholar 

  432. Boucek DM, Qureshi AM, Goldstein BH, Petit CJ, Glatz AC. Blalock-Taussig shunt versus patent ductus arteriosus stent as first palliation for ductal-dependent pulmonary circulation lesions: a review of the literature. Congenit Heart Dis. 2019;14(1):105–9.

    Article  PubMed  Google Scholar 

  433. Alsagheir A, Koziarz A, Makhdoum A, Contreras J, Alraddadi H, Abdalla T, et al. Duct stenting versus modified Blalock–Taussig shunt in neonates and infants with duct-dependent pulmonary blood flow: a systematic review and meta-analysis. J Thorac Cardiovasc Surg. 2021;161(2):379–390.e8.

    Article  PubMed  Google Scholar 

  434. Santoro G, Capozzi G, Caianiello G, Palladino MT, Marrone C, Farina G, et al. Pulmonary artery growth after palliation of congenital heart disease with duct-dependent pulmonary circulation. Arterial duct stenting versus surgical shunt. J Am Coll Cardiol. 2009;54(23):2180–6.

    Article  PubMed  Google Scholar 

  435. Bentham JR, Zava NK, Harrison WJ, Shauq A, Kalantre A, Derrick G, et al. Duct stenting versus modified Blalock-Taussig shunt in neonates with duct-dependent pulmonary blood flow: associations with clinical outcomes in a multicenter national study. Circulation. 2018;137(6):581–8.

    Article  PubMed  Google Scholar 

  436. Alwi M, Choo KK, Latiff HA, Kandavello G, Samion H, Mulyadi MD. Initial results and medium-term follow-up of stent implantation of patent ductus arteriosus in duct-dependent pulmonary circulation. J Am Coll Cardiol. 2004;44(2):438–45.

    Article  PubMed  Google Scholar 

  437. Aggarwal V, Dhillon GS, Penny DJ, Gowda ST, Qureshi AM. Drug-eluting stents compared with bare metal stents for stenting the ductus arteriosus in infants with ductal-dependent pulmonary blood flow. Am J Cardiol. 2019;124(6):952–9.

    Article  CAS  PubMed  Google Scholar 

  438. Warnes CA, Liberthson R, Danielson GK, Dore A, Harris L, Hoffman JI, et al. Task force 1: the changing profile of congenital heart disease in adult life. J Am Coll Cardiol. 2001;37:1170.

    Article  CAS  PubMed  Google Scholar 

  439. Kussman BD, Gauvreau K, DiNardo JA, Newburger JW, Mackie AS, Booth KL, et al. Cerebral perfusion and oxygenation after the Norwood procedure: comparison of right ventricle-pulmonary artery conduit with modified Blalock-Taussig shunt. J Thorac Cardiovasc Surg. 2007;133:648.

    Article  PubMed  Google Scholar 

  440. Wypij D, Newburger JW, Rappaport LA, DuPlessis AJ, Jonas RA, Wernovsky G, et al. The effect of duration of deep hypothermic circulatory arrest in infant heart surgery on late neurodevelopment: the Boston circulatory arrest trial. J Thorac Cardiovasc Surg. 2003;126:1397.

    Article  PubMed  Google Scholar 

  441. Andropoulos DB, Hunter JV, Nelson DP, Stayer SA, Stark AR, McKenzie ED, et al. Brain immaturity is associated with brain injury before and after neonatal cardiac surgery with high-flow bypass and cerebral oxygenation monitoring. J Thorac Cardiovasc Surg. 2010;139:543.

    Article  PubMed  Google Scholar 

  442. Andropoulos DB, Mizrahi EM, Hrachovy RA, Stayer SA, Stark AR, Heinle JS, et al. Electroencephalographic seizures after neonatal cardiac surgery with high-flow cardiopulmonary bypass. Anesth Analg. 2010;110:1680.

    Article  PubMed  Google Scholar 

  443. Newburger JW, Jonas RA, Wernovsky G, Wypij D, Hickey PR, Kuban K, et al. A comparison of the perioperative neurologic effects of hypothermic circulatory arrest versus low-flow cardiopulmonary bypass in infant heart surgery. N Engl J Med. 1993;329:1057.

    Article  CAS  PubMed  Google Scholar 

  444. Gaynor JW, Nicolson SC, Jarvik GP, Wernovsky G, Montenegro LM, Burnham NB, et al. Increasing duration of deep hypothermic circulatory arrest is associated with an increased incidence of postoperative electroencephalographic seizures. J Thorac Cardiovasc Surg. 2005;130:1278.

    Article  PubMed  PubMed Central  Google Scholar 

  445. Norwood WI, Kirklin JK, Sanders SP. Hypoplastic left heart syndrome: experience with palliative surgery. Am J Cardiol. 1980;45(1):87–91.

    Article  CAS  PubMed  Google Scholar 

  446. Hirsch JC, Gurney JG, Donohue JE, Gebremariam A, Bove EL, Ohye RG. Hospital mortality for Norwood and arterial switch operations as a function of institutional volume. Pediatr Cardiol. 2008;29:713–7.

    Article  PubMed  Google Scholar 

  447. Gibbs JL, Wren C, Watterson KG, Hunter S, Hamilton JRL. Stenting of the arterial duct combined with banding of the pulmonary arteries and atrial septectomy or septostomy: a new approach to palliation for the hypoplastic left heart syndrome. Br Heart J. 1993;69(6):551–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  448. Gibbs JL, Uzun O, Blackburn MEC, Wren C, Hamilton JRL, Watterson KG. Fate of the stented arterial duct. Circulation. 1999;99(20):2621–5.

    Article  CAS  PubMed  Google Scholar 

  449. Akintuerk H, Michel-Behnke I, Valeske K, Mueller M, Thul J, Bauer J, et al. Stenting of the arterial duct and banding of the pulmonary arteries: basis for combined Norwood stage I and II repair in hypoplastic left heart. Circulation. 2002;105(9):1099–103.

    Article  PubMed  Google Scholar 

  450. Galantowicz M, Cheatham JP. Lessons learned from the development of a new hybrid strategy for the management of hypoplastic left heart syndrome. Pediatr Cardiol. 2005;26:190–9.

    Article  PubMed  Google Scholar 

  451. Galantowicz M, Cheatham JP, Phillips A, Cua CL, Hoffman TM, Hill SL, et al. Hybrid approach for hypoplastic left heart syndrome: intermediate results after the learning curve. Ann Thorac Surg. 2008;85(6):2063–71.

    Article  PubMed  Google Scholar 

  452. Stoica SC, Philips AB, Egan M, Rodeman R, Chisolm J, Hill S, et al. The retrograde aortic arch in the hybrid approach to hypoplastic left heart syndrome. Ann Thorac Surg. 2009;88(6):1939–47.

    Article  PubMed  Google Scholar 

  453. Schranz D, Bauer A, Reich B, Steinbrenner B, Recla S, Schmidt D, et al. Fifteen-year single center experience with the “Giessen hybrid” approach for Hypoplastic left heart and variants: current strategies and outcomes. Pediatr Cardiol. 2015;36(2):365–73.

    Article  PubMed  Google Scholar 

  454. Morray BH, Albers EL, Jones TK, Kemna MS, Permut LC, Law YM. Hybrid stage 1 palliation as a bridge to cardiac transplantation in patients with high-risk single ventricle physiology. Pediatr Transplant. 2018;22(8):e13307.

    Article  PubMed  Google Scholar 

  455. Rehman SM, Ravaglioli A, Singappuli K, Roman K, Gnanapragasam J, Samarasinghe D, et al. Hybrid strategies for high-risk non-hypoplastic left heart syndrome patients. J Card Surg. 2018;33(7):399–401.

    Article  PubMed  Google Scholar 

  456. Bacha EA, Daves S, Hardin J, Abdulla RI, Anderson J, Kahana M, et al. Single-ventricle palliation for high-risk neonates: the emergence of an alternative hybrid stage I strategy. J Thorac Cardiovasc Surg. 2006;131(1):163–71.

    Article  PubMed  Google Scholar 

  457. Caldarone CA, Benson L, Holtby H, Li J, Redington AN, Van Arsdell GS. Initial experience with hybrid palliation for neonates with single-ventricle physiology. Ann Thorac Surg. 2007;84(4):1294–300.

    Article  PubMed  Google Scholar 

  458. Nwankwo UT, Morell EM, Trucco SM, Morell VO, Kreutzer J. Hybrid strategy for neonates with ductal-dependent systemic circulation at high risk for Norwood. Ann Thorac Surg. 2018;106(2):595–601.

    Article  PubMed  Google Scholar 

  459. Simsic JM, Phelps C, Kirchner K, Carpenito KR, Allen R, Miller-Tate H, et al. Interstage outcomes in single ventricle patients undergoing hybrid stage 1 palliation. Congenit Heart Dis. 2018;13(5):757–63.

    Article  PubMed  Google Scholar 

  460. Baba K, Chaturvedi R, Lee KJ, Caldarone CA, Benson LN. Fate of the ductal stent after hybrid palliation for hypoplastic left heart syndrome. Ann Thorac Surg. 2013;95(5):1660–4.

    Article  PubMed  Google Scholar 

  461. Baba K, Honjo O, Chaturvedi R, Lee KJ, Van Arsdell G, Caldarone CA, et al. Reverse Blalock-Taussig shunt: application in single ventricle hybrid palliation. J Thorac Cardiovasc Surg. 2013;146(2):352–7.

    Article  PubMed  Google Scholar 

  462. Rahkonen O, Chaturvedi RR, Benson L, Honjo O, Caldarone CA, Lee KJ. Pulmonary artery stenosis in hybrid single-ventricle palliation: high incidence of left pulmonary artery intervention. J Thorac Cardiovasc Surg. 2015;149(4):1102–1110.e2.

    Article  PubMed  Google Scholar 

  463. Gelehrter S, Fifer CG, Armstrong A, Hirsch J, Gajarski R. Outcomes of hypoplastic left heart syndrome in low-birth-weight patients. Pediatr Cardiol. 2011;32:1175–81.

    Article  PubMed  Google Scholar 

  464. Anderson RH, Becker AE, Tynan M. Description of ventricular septal defects - or how long is a piece of string? Int J Cardiol. 1986;13(3):267–78.

    Article  CAS  PubMed  Google Scholar 

  465. Serraf A, Lacour-Gayet F, Bruniaux J, Ouaknine R, Losay J, Petit J, et al. Surgical management of isolated multiple ventricular septal defects: logical approach in 130 cases. J Thorac Cardiovasc Surg. 1992;103(3):437–43.

    Article  CAS  PubMed  Google Scholar 

  466. Aoki M, Forbess JM, Jonas RA, Mayer JE, Castaneda AR. Result of biventricular repair for double-outlet right ventricle. J Thorac Cardiovasc Surg. 1994;107(2):338–50.

    Article  CAS  PubMed  Google Scholar 

  467. Lock JE, Block PC, McKay RG, Baim DS, Keane JF. Transcatheter closure of ventricular septal defects. Circulation. 1988;78(2):361–8.

    Article  CAS  PubMed  Google Scholar 

  468. Lim DS, Forbes TJ, Rothman A, Lock JE, Landzberg MJ. Transcatheter closure of high-risk muscular ventricular septal defects with the CardioSEAL occluder: initial report from the CardioSEAL VSD registry. Catheter Cardiovasc Interv. 2007;70(5):740–4.

    Article  PubMed  Google Scholar 

  469. Carminati M, Butera G, Chessa M, De Giovanni J, Fisher G, Gewillig M, et al. Transcatheter closure of congenital ventricular septal defects: results of the European registry. Eur Heart J. 2007;28(19):2361–8.

    Article  PubMed  Google Scholar 

  470. Amin Z, Berry JM, Foker JE, Rocchini AP, Bass JL. Intraoperative closure of muscular ventricular septal defect in a canine model and application of the technique in a baby. J Thorac Cardiovasc Surg. 1998;115(6):1374–6.

    Article  CAS  PubMed  Google Scholar 

  471. Bacha EA, Cao QL, Starr JP, Waight D, Ebeid MR, Hijazi ZM. Perventricular device closure of muscular ventricular septal defects on the beating heart: technique and results. J Thorac Cardiovasc Surg. 2003;126(6):1718–23.

    Article  PubMed  Google Scholar 

  472. Amin Z, Danford DA, Lof J, Duncan KF, Froemming S, Bacha EA, et al. Intraoperative device closure of perimembranous ventricular septal defects without cardiopulmonary bypass: preliminary results with the perventricular technique. J Thorac Cardiovasc Surg. 2004;127(1):234–41.

    Article  PubMed  Google Scholar 

  473. Bacha EA, Cao QL, Galantowicz ME, Cheatham JP, Fleishman CE, Weinstein SW, et al. Multicenter experience with perventricular device closure of muscular ventricular septal defects. Pediatr Cardiol. 2005;26:169–75.

    Article  CAS  PubMed  Google Scholar 

  474. Bendaly EA, Hoyer MH, Breinholt JP. Mid-term follow up of perventricular device closure of muscular ventricular septal defects. Catheter Cardiovasc Interv. 2011;78(4):577–82.

    Article  PubMed  Google Scholar 

  475. Kang SL, Tometzki A, Caputo M, Morgan G, Parry A, Martin R. Longer-term outcome of perventricular device closure of muscular ventricular septal defects in children. Catheter Cardiovasc Interv. 2015;85(6):998–1005.

    Article  PubMed  Google Scholar 

  476. Therrien J, Provost Y, Merchant N, Williams W, Colman J, Webb G. Optimal timing for pulmonary valve replacement in adults after tetralogy of Fallot repair. Am J Cardiol. 2005;95(6):779–82.

    Article  PubMed  Google Scholar 

  477. Horneffer PJ, Zahka KG, Rowe SA, Manolio TA, Gott VL, Reitz BA, et al. Long-term results of total repair of tetralogy of fallot in childhood. Ann Thorac Surg. 1990;50(2):179–85.

    Article  CAS  PubMed  Google Scholar 

  478. Gatzoulis MA, Balaji S, Webber SA, Siu SC, Hokanson JS, Poile C, et al. Risk factors for arrhythmia and sudden cardiac death late after repair of tetralogy of Fallot: a multicentre study. Lancet. 2000;356(9234):975–81.

    Article  CAS  PubMed  Google Scholar 

  479. Bove EL, Byrum CJ, Thomas FD, Kavey RE, Sondheimer HM, Blackman MS, et al. The influence of pulmonary insufficiency on ventricular function following repair of tetralogy of Fallot. Evaluation using radionuclide ventriculography. J Thorac Cardiovasc Surg. 1983;85(5):691–6.

    Article  CAS  PubMed  Google Scholar 

  480. Gatzoulis MA, Till JA, Somerville J, Redington AN. Mechanoelectrical interaction in tetralogy of Fallot: QRS prolongation relates to right ventricular size and predicts malignant ventricular arrhythmias and sudden death. Circulation. 1995;92(2):231–7.

    Article  CAS  PubMed  Google Scholar 

  481. Robb JD, Harris MA, Minakawa M, Rodriguez E, Koomalsingh KJ, Shuto T, et al. Melody valve implantation into the branch pulmonary arteries for treatment of pulmonary insufficiency in an ovine model of right ventricular outflow tract dysfunction following tetralogy of fallot repair. Circ Cardiovasc Interv. 2011;4(1):80–7.

    Article  PubMed  PubMed Central  Google Scholar 

  482. Boudjemline Y, Brugada G, Van-Aerschot I, Patel M, Basquin A, Bonnet C, et al. Outcomes and safety of transcatheter pulmonary valve replacement in patients with large patched right ventricular outflow tracts. Arch Cardiovasc Dis. 2012;105(8-9):404–13.

    Article  PubMed  Google Scholar 

  483. Dittrich S, Gloeckler M, Arnold R, Sarai K, Siepe M, Beyersdorf F, et al. Hybrid pulmonary valve implantation: injection of a self-expanding tissue valve through the main pulmonary artery. Ann Thorac Surg. 2008;85(2):632–4.

    Article  PubMed  Google Scholar 

  484. Schreiber C, Hörer J, Vogt M, Fratz S, Kunze M, Galm C, et al. A new treatment option for pulmonary valvar insufficiency: first experiences with implantation of a self-expanding stented valve without use of cardiopulmonary bypass. Eur J Cardiothoracic Surg. 2007;31(1):26–30.

    Article  Google Scholar 

  485. Mollet A, Basquin A, Stos B, Boudjemline Y. Off-pump replacement of the pulmonary valve in large right ventricular outflow tracts: a transcatheter approach using an intravascular infundibulum reducer. Pediatr Res. 2007;62(4):428–33.

    Article  PubMed  Google Scholar 

  486. Porras D, Gurvitz M, Marshall AC, Emani SM. Hybrid approach for off-pump pulmonary valve replacement in patients with a dilated right ventricular outflow tract. Ann Thorac Surg. 2015;100(5):e99–e101.

    Article  PubMed  Google Scholar 

  487. Gupta A, Kenny D, Caputo M, Amin Z. Initial experience with elective perventricular melody valve placement in small patients. Pediatr Cardiol. 2017;38:575–81.

    Article  PubMed  Google Scholar 

  488. Hu R, Zhang H, Dong W, Liu X, Xu Z, Liu J. Transventricular valvotomy for pulmonary atresia with intact ventricular septum in neonates: a single-centre experience in mid-term follow-up. Eur J Cardio-Thoracic Surg. 2014;47(1):168–72.

    Article  Google Scholar 

  489. Zampi JD, Hirsch-Romano JC, Goldstein BH, Shaya JA, Armstrong AK. Hybrid approach for pulmonary atresia with intact ventricular septum: early single center results and comparison to the standard surgical approach. Catheter Cardiovasc Interv. 2014;83(5):753–61.

    Article  PubMed  Google Scholar 

  490. Bondanza S, Calevo MG, Derchi ME, Santoro F, Marasini M. Hybrid procedure of right ventricle outflow tract stenting in small infants with pulmonary atresia and ventricular septal defect: early and mid-term results from a single centre. Cardiol Young. 2019;29(3):375–9.

    Article  PubMed  Google Scholar 

  491. Burke RP, Hannan RL, Zabinsky JA, Tirotta CF, Zahn EM. Hybrid ventricular decompression in pulmonary atresia with intact septum. Ann Thorac Surg. 2009;88(2):688–9.

    Article  PubMed  Google Scholar 

  492. Haas NA, Happel CM, Blanz U, Laser KT, Kantzis M, Kececioglu D, et al. Intraoperative hybrid stenting of recurrent coarctation and arch hypoplasia with large stents in patients with univentricular hearts. Int J Cardiol. 2016;204:156–63.

    Article  PubMed  Google Scholar 

  493. Bökenkamp R, Blom NA, De Wolf D, Francois K, Ottenkamp J, Hazekamp MG. Intraoperative stenting of pulmonary arteries. Eur J Cardiothorac Surg. 2005;27(4):544–7.

    Article  PubMed  Google Scholar 

  494. Yoon JK, Kim GB, Song MK, Bae EJ, Kim WH, Kwak JG, et al. Hybrid pulmonary vein stenting in infants with refractory to surgical pulmonary vein stenosis repair. Pediatr Cardiol. 2018;39:1642–9.

    Article  PubMed  Google Scholar 

  495. Menon SC, Cetta F, Dearani JA, Burkhart HA, Cabalka AK, Hagler DJ. Hybrid intraoperative pulmonary artery stent placement for congenital heart disease. Am J Cardiol. 2008;102(12):1737–41.

    Article  PubMed  Google Scholar 

  496. Ing FF. Delivery of stents to target lesions: techniques of intraoperative stent implantation and intraoperative angiograms. Pediatr Cardiol. 2005;26:260–6.

    Article  CAS  PubMed  Google Scholar 

  497. Holzer RJ, Sisk M, Chisolm JL, Hill SL, Olshove V, Phillips A, et al. Completion angiography after cardiac surgery for congenital heart disease: complementing the intraoperative imaging modalities. Pediatr Cardiol. 2009;30(8):1075–82.

    Article  PubMed  Google Scholar 

  498. Glatz AC, Shah SS, McCarthy AL, Geisser D, Daniels K, Xie D, et al. Prevalence of and risk factors for acute occlusive arterial injury following pediatric cardiac catheterization: a large single-center cohort study. Catheter Cardiovasc Interv. 2013;82(3):454–62.

    Article  PubMed  Google Scholar 

  499. Ho AB, Kaarne M, Mullen M, Hayes N. Hybrid transcatheter tricuspid valve-in-valve placement of an Edwards Sapien XT valve in palliated hypoplastic left heart syndrome. Catheter Cardiovasc Interv. 2019;93(3):481–3.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alejandro J. Torres .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Torres, A.J., Crystal, M.A., Turner, M.E., Barry, O.M. (2023). Pediatric Catheter Intervention. In: Abdulla, Ri., et al. Pediatric Cardiology. Springer, Cham. https://doi.org/10.1007/978-3-030-42937-9_40-2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-42937-9_40-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-42937-9

  • Online ISBN: 978-3-030-42937-9

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Pediatric Catheter Intervention
    Published:
    06 October 2023

    DOI: https://doi.org/10.1007/978-3-030-42937-9_40-2

  2. Original

    Catheter Intervention
    Published:
    19 May 2023

    DOI: https://doi.org/10.1007/978-3-030-42937-9_40-1