Skip to main content

Antioxidant and Photoprotective Properties of Neotropical Bamboo Species

  • Living reference work entry
  • First Online:
Plant Antioxidants and Health

Abstract

Bamboos are known as one of the most important renewable and valuable of all forest resources. Although it has the high species diversity and is found in the neotropics, especially in Brazil, little is known about their chemical composition and biological activities. Bamboo species are known to accumulate polyphenolic compounds that are acknowledged as potent antioxidant, which might explain their use in Asian traditional medicine. They can also act indirectly in photoprotection. For these reasons, this chapter describes the distribution and species richness of neotropical bamboo species, their chemical composition, antioxidant activity, and photoprotection potential to explore the medicinal properties of these plants. Additionally, the importance of choosing the right methods to assess these biological activities for defining the correct application is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Canavan S, Richardson DM, Visser V, Roux JJL, Vorontsova MS, Wilson JRU (2016) The global distribution of bamboos: assessing correlates of introduction and invasion. AoB Plants plw078. https://doi.org/10.1093/aobpla/plw078

  2. Hidalgo-Lopéz O (2003) Bamboo: the gift of the gods. D’VINNI, Colombia

    Google Scholar 

  3. Liese W, Köhl M (1999) Bamboo: past-present-future. Am Bamboo Soc Newsl 20:1–7

    Google Scholar 

  4. Hong E-J, Jung E-M, Lee G-S, Kim JY, Na K-J, Park M-J, Kang H-Y, Choi K-C, Seong YH, Choi I-G, Jeung E-B (2010) Protective effects of the pyrolyzates derived from bamboo against neuronal damage and hematoaggregation. J Ethnopharmacol 128:594–599. https://doi.org/10.1016/j.jep.2010.01.045

    Article  CAS  PubMed  Google Scholar 

  5. Wróblewska KB, de Oliveira DCS, Grombone-Guaratini MT, Moreno PRH (2019) Medicinal properties of bamboos. In: Perveen S, Al-Taweel A (eds) Pharmacognosy – medicinal plants. IntechOpen. https://doi.org/10.5772/intechopen.82005

    Chapter  Google Scholar 

  6. Park H-S, Lim JH, Kim HJ, Choi HJ, Lee I-S (2007) Antioxidant flavone glycosides from the leaves ofSasa borealis. Arch Pharm Res 30:161–166

    Article  CAS  PubMed  Google Scholar 

  7. Hu C, Zhang Y, Kitts DD (2000) Evaluation of antioxidant and prooxidant activities of bamboo Phyllostachys nigra var. Henonis leaf extract in vitro. J Agric Food Chem 48:3170–3176

    Article  CAS  PubMed  Google Scholar 

  8. Jiao J, Zhang Y, Liu C, Liu J, Wu X, Zhang Y (2007) Separation and purification of tricin from an antioxidant product derived from bamboo leaves. J Agric Food Chem 55:10086–10092

    Article  CAS  PubMed  Google Scholar 

  9. Cavaliere C, Foglia P, Pastorini E, Samperi R, Laganà A (2005) Identification and mass spectrometric characterization of glycosylated flavonoids in Triticum durum plants by high-performance liquid chromatography with tandem mass spectrometry. Rapid Commun Mass Spectrom Int J Devoted Rapid Dissem – Minute Res Mass Spectrom 19:3143–3158

    Article  CAS  Google Scholar 

  10. Ferreres F, Andrade PB, Valentão P, Gil-Izquierdo A (2008) Further knowledge on barley (Hordeum vulgare L.) leaves O-glycosyl-C-glycosyl flavones by liquid chromatography-UV diode-array detection-electrospray ionisation mass spectrometry. J Chromatogr A 1182:56–64

    Article  CAS  PubMed  Google Scholar 

  11. Zhang Y, Bao B, Lu B, Ren Y, Tie X, Zhang Y (2005) Determination of flavone C-glucosides in antioxidant of bamboo leaves (AOB) fortified foods by reversed-phase high-performance liquid chromatography with ultraviolet diode array detection. J Chromatogr A 1065:177–185

    Article  CAS  PubMed  Google Scholar 

  12. Zhao X, Qi Y, Yi R, Park K-Y (2018) Anti-ageing skin effects of Korean bamboo salt on SKH1 hairless mice. Int J Biochem Cell Biol 103:1–13

    Article  CAS  PubMed  Google Scholar 

  13. Yi R, Qi Y-C, Zhao X, Park K-Y (2017) Anti-tumor activities of bamboo salt on sarcoma 180 tumor-bearing BALB/c mice. Biomed Res 28:4043–4048

    CAS  Google Scholar 

  14. Zhao X, Kim S-Y, Park K-Y (2013) Bamboo salt has in vitro anticancer activity in HCT-116 cells and exerts anti-metastatic effects in vivo. J Med Food 16:9–19

    Article  PubMed  Google Scholar 

  15. Kim K-Y, Nam S-Y, Shin T-Y, Park K-Y, Jeong H-J, Kim H-M (2012) Bamboo salt reduces allergic responses by modulating the caspase-1 activation in an OVA-induced allergic rhinitis mouse model. Food Chem Toxicol 50:3480–3488

    Article  CAS  PubMed  Google Scholar 

  16. Yoou M, Nam S-Y, Yoon KW, Jeong H-J, Kim H-M (2018) Bamboo salt suppresses skin inflammation in mice with 2, 4-dinitrofluorobenzene-induced atopic dermatitis. Chin J Nat Med 16:97–104

    PubMed  Google Scholar 

  17. Mejía AI, Gallardo C, Vallejo JJ, Ramírez G, Arboleda C, Durango ES, Jaramillo FA, Cadavid E (2009) Plantas del género Bambusa: importancia y aplicaciones en la industria farmacéutica, cosmética y alimentaria. Vitae 16:396–405

    Google Scholar 

  18. Kelchner SA, Clark LG (1997) Molecular evolution and phylogenetic utility of the chloroplast rpl16 intron in Chusquea and the Bambusoideae (Poaceae). Mol Phylogenet Evol 8:385–397. https://doi.org/10.1006/mpev.1997.0432

    Article  CAS  PubMed  Google Scholar 

  19. Clark LG, Londoño X, Ruiz-Sanchez E (2015) Bamboo taxonomy and habitat. Springer, Bamboo, pp 1–30

    Google Scholar 

  20. Wysocki WP, Clark LG, Attigala L, Ruiz-Sanchez E, Duvall MR (2015) Evolution of the bamboos (Bambusoideae; Poaceae): a full plastome phylogenomic analysis. BMC Evol Biol 15:50. https://doi.org/10.1186/s12862-015-0321-5

    Article  PubMed  PubMed Central  Google Scholar 

  21. Zhang X-Z, Zeng C-X, Ma P-F, Haevermans T, Zhang Y-X, Zhang L-N, Guo Z-H, Li D-Z (2016) Multi-locus plastid phylogenetic biogeography supports the Asian hypothesis of the temperate woody bamboos (Poaceae: Bambusoideae). Mol Phylogenet Evol 96:118–129

    Article  PubMed  Google Scholar 

  22. Vorontsova MS, Clark LG, Dransfield J, Govaerts R, Baker WJ (2016) World checklist of bamboos and rattans: in Celebration of INBAR’s 20th anniversary, Beijing

    Google Scholar 

  23. Soreng RJ, Peterson PM, Romaschenko K, Davidse G, Teisher JK, Clark LG, Barberá P, Gillespie LJ, Zuloaga FO (2017) A worldwide phylogenetic classification of the Poaceae (Gramineae) II: an update and a comparison of two 2015 classifications: phylogenetic classification of the grasses II. J Syst Evol 55:259–290. https://doi.org/10.1111/jse.12262

    Article  Google Scholar 

  24. Londoño X (1998) Evaluation of bamboo resources in latin America. Instituto Vallecaucano de Investigaciones Científicas, Colombia

    Google Scholar 

  25. Filgueiras TS, Gonçalves AS (2004) A checklist of the basal grasses and bamboos in Brazil (Poaceae). J Am Bamboo Soc 18:7–18

    Google Scholar 

  26. Flora do Brasil – Bambusoideae Luerss. http://floradobrasil.jbrj.gov.br/reflora/listaBrasil/FichaPublicaTaxonUC/FichaPublicaTaxonUC.do?id=FB102232. Accessed 3 Nov 2020

  27. World Checklist of selected plant families: royal botanic gardens, kew. http://wcsp.science.kew.org/prepareChecklist.do?checklist=selected_families%40%40308031120201506072. Accessed 3 Nov 2020

  28. Judziewicz EJ, Clark LG, Londoño X, Stern MJ (1999) American bamboos. Smithsonian Institution Press

    Google Scholar 

  29. Londoño X (1990) Aspectos sobre la distribución y la ecología de los bambúes de Colombia (Poaceae: Bambusoideae). Caldasia:139–153

    Google Scholar 

  30. Ruiz-Sanchez E, Sosa V, Mejía-Saules MT, Londoño X, Clark LG (2011) A taxonomic revision of Otatea (Poaceae: Bambusoideae: Bambuseae) including four new species. Syst Bot 36:314–336. https://doi.org/10.1600/036364411X569516

    Article  Google Scholar 

  31. Montti L, Campanello PI, Goldstein G (2011) Flowering, die-back and recovery of a semelparous woody bamboo in the Atlantic Forest. Acta Oecol 37:361–368. https://doi.org/10.1016/j.actao.2011.04.004

    Article  Google Scholar 

  32. Montti L, Villagra M, Campanello PI, Gatti MG, Goldstein G (2014) Functional traits enhance invasiveness of bamboos over co-occurring tree saplings in the semideciduous Atlantic Forest. Acta Oecol 54:36–44. https://doi.org/10.1016/j.actao.2013.03.004

    Article  Google Scholar 

  33. Pivello VR, Vieira MV, Grombone-Guaratini MT, Matos DMS (2018) Thinking about super-dominant populations of native species–examples from Brazil. Perspect Ecol Conserv 16:74–82

    Google Scholar 

  34. Nelson BW (1994) Natural forest disturbance and change in the Brazilian Amazon. Remote Sens Rev 10:105–125

    Article  Google Scholar 

  35. Torezan JMD, Silveira M (2000) The biomass of bamboo (Guadua weberbaueri Pilger) in open forest of the southwestern Amazon. Ecotropica 6:71–76

    Google Scholar 

  36. Vinha D, Alves LF, Zaidan LB, Grombone-Guaratini MT (2011) The potential of the soil seed bank for the regeneration of a tropical urban forest dominated by bamboo. Landsc Urban Plan 99:178–185

    Article  Google Scholar 

  37. Lima RA, Rother DC, Muler AE, Lepsch IF, Rodrigues RR (2012) Bamboo overabundance alters forest structure and dynamics in the Atlantic Forest hotspot. Biol Conserv 147:32–39

    Article  Google Scholar 

  38. Medeiros H, Castro W, Salimon CI, da Silva IB, Silveira M (2013) Tree mortality, recruitment and growth in a bamboo dominated forest fragment in southwestern Amazonia, Brazil. Biota Neotropica 13:29–34

    Article  Google Scholar 

  39. Ziccardi LG, de Alencastro Graça PML, Figueiredo EO, Fearnside PM (2019) Decline of large-diameter trees in a bamboo-dominated forest following anthropogenic disturbances in southwestern Amazonia. Ann For Sci 76:110. https://doi.org/10.1007/s13595-019-0901-4

    Article  Google Scholar 

  40. Dantas MAF, Bona K, Vieira TB, Mews HA (2020) Assessing the fine-scale effects of bamboo dominance on litter dynamics in an Amazonian forest. For Ecol Manag 474:118391. https://doi.org/10.1016/j.foreco.2020.118391

    Article  Google Scholar 

  41. de Carvalho AL, Nelson BW, Bianchini MC, Plagnol D, Kuplich TM, Daly DC (2013) Bamboo-dominated forests of the Southwest Amazon: detection, spatial extent, life cycle length and flowering waves. PLoS One 8:e54852. https://doi.org/10.1371/journal.pone.0054852

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Jose CM, Brandão Torres LM, Torres MAMG, Shirasuna RT, Farias DA, dos Santos NA, Grombone-Guaratini MT (2016) Phytotoxic effects of phenolic acids from Merostachys riedeliana, a native and overabundant Brazilian bamboo. Chemoecology 26:235–246. https://doi.org/10.1007/s00049-016-0224-y

    Article  CAS  Google Scholar 

  43. Rother DC, Rodrigues RR, Pizo MA (2016) Bamboo thickets alter the demographic structure of Euterpe edulis population: a keystone, threatened palm species of the Atlantic forest. Acta Oecol 70:96–102

    Article  Google Scholar 

  44. Lacerda AEB, Kellermann B (2019) What is the long-term effect of bamboo dominance on adult trees in the Araucaria Forest? A comparative analysis between two successional stages in southern Brazil. Diversity 11:165. https://doi.org/10.3390/d11090165

    Article  Google Scholar 

  45. Fadrique B, Veldman JW, Dalling JW, Clark LG, Montti L, Ruiz-Sanchez E, Rother DC, Ely F, Farfan-Ríos W, Gagnon P, Prada CM, Camargo García JC, Saha S, Veblen TT, Londoño X, Feeley KJ, Rockwell CA (2020) Guidelines for including bamboos in tropical ecosystem monitoring. Biotropica 52:427–443. https://doi.org/10.1111/btp.12737

    Article  Google Scholar 

  46. Dalagnol R, Wagner FH, Galvão LS, Nelson BW, Aragão LEO e C de (2018) Life cycle of bamboo in the southwestern Amazon and its relation to fire events. Biogeosciences 15:6087–6104. https://doi.org/10.5194/bg-15-6087-2018

    Article  Google Scholar 

  47. Bona K, Purificação KN, Vieira TB, Mews HA (2020) Fine-scale effects of bamboo dominance on seed rain in a rainforest. For Ecol Manag 460:117906. https://doi.org/10.1016/j.foreco.2020.117906

    Article  Google Scholar 

  48. Widmer Y (1998) Pattern and performance of understory bamboos (Chusquea spp.) under different canopy closures in old-growth oak forests in Costa Rica1. Biotropica 30:400–415. https://doi.org/10.1111/j.1744-7429.1998.tb00074.x

    Article  Google Scholar 

  49. Grombone-Guaratini MT, Jensen RC, Cardoso-Lopes EM, Torres LMB (2009) Allelopathic potential of Aulonemia aristulata (Döll) MacClure, a native bamboo of Atlantic rain Forest. Allelopathy J 24:183–190

    Google Scholar 

  50. Cupertino-Eisenlohr MA, Vinícius-Silva R, Meireles LD, Eisenlohr PV, Meira-Neto JA, Santos-Gonçalves AP (2017) Stability or breakdown under climate change? A key group of woody bamboos will find suitable areas in its richness center. Biodivers Conserv 26:1845–1861

    Article  Google Scholar 

  51. Fernandes K, Baethgen W, Bernardes S, DeFries R, DeWitt DG, Goddard L, Lavado W, Lee DE, Padoch C, Pinedo-Vasquez M, Uriarte M (2011) North tropical Atlantic influence on western Amazon fire season variability. Geophys Res Lett 38. https://doi.org/10.1029/2011GL047392

  52. Barona E, Ramankutty N, Hyman G, Coomes OT (2010) The role of pasture and soybean in deforestation of the Brazilian Amazon. Environ Res Lett 5:024002. https://doi.org/10.1088/1748-9326/5/2/024002

    Article  Google Scholar 

  53. Anderson LO, Aragão LEOC, Gloor M, Arai E, Adami M, Saatchi SS, Malhi Y, Shimabukuro YE, Barlow J, Berenguer E, Duarte V (2015) Disentangling the contribution of multiple land covers to fire-mediated carbon emissions in Amazonia during the 2010 drought. Glob Biogeochem Cycles 29:1739–1753. https://doi.org/10.1002/2014GB005008

    Article  CAS  Google Scholar 

  54. da Silva SS, Fearnside PM, Graça PML de A, Brown IF, Alencar A, Melo AWF de (2018) Dynamics of forest fires in the southwestern Amazon. For Ecol Manag 424:312–322. https://doi.org/10.1016/j.foreco.2018.04.041

    Article  Google Scholar 

  55. Carvalho WD, Mustin K, Hilário RR, Vasconcelos IM, Eilers V, Fearnside PM (2019) Deforestation control in the Brazilian Amazon: a conservation struggle being lost as agreements and regulations are subverted and bypassed. Perspect Ecol Conserv 17:122–130

    Google Scholar 

  56. Larpkern P, Moe SR, Totland Ø (2011) Bamboo dominance reduces tree regeneration in a disturbed tropical forest. Oecologia 165:161–168. https://doi.org/10.1007/s00442-010-1707-0

    Article  PubMed  Google Scholar 

  57. da Silva SS, Numata I, Fearnside PM, Graça P, Ferreira EJL, dos Santos EA, de Lima PRF, Dias MSS, de Lima RC, de Melo AWF Impact of fire on open bamboo forest in years of extreme drought in southwestern. Reg Environ Chang. https://doi.org/10.1007/s10113-020-01707-5

  58. d’Oliveira MVN, Guarino E de S, Oliveira LC, Ribas LA, MHA A (2013) Can forest management be sustainable in a bamboo dominated forest? A 12-year study of forest dynamics in western Amazon. For Ecol Manag 310:672–679. https://doi.org/10.1016/j.foreco.2013.09.008

    Article  Google Scholar 

  59. Nath AJ, Lal R, Das AK (2015) Managing woody bamboos for carbon farming and carbon trading. Glob Ecol Conserv 3:654–663. https://doi.org/10.1016/j.gecco.2015.03.002

    Article  Google Scholar 

  60. Birben E, Sahiner UM, Sackesen C, Erzurum S, Kalayci O (2012) Oxidative stress and antioxidant defense. World Allergy Organ J 5:9–19. https://doi.org/10.1097/WOX.0b013e3182439613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Burton GJ, Jauniaux E (2011) Oxidative stress. Best Pract Res Clin Obstet Gynaecol 25:287–299

    Article  PubMed  PubMed Central  Google Scholar 

  62. Pham-Huy LA, He H, Pham-Huy C (2008) Free radicals, antioxidants in disease and health. Int J Biomed Sci IJBS 4:89

    CAS  PubMed  Google Scholar 

  63. Anwar H, Rahman ZU, Javed I, Muhammad F (2012) Effect of protein, probiotic, and symbiotic supplementation on serum biological health markers of molted layers. Poult Sci 91:2606–2613

    Article  CAS  PubMed  Google Scholar 

  64. Carocho M, Ferreira IC (2013) A review on antioxidants, prooxidants and related controversy: natural and synthetic compounds, screening and analysis methodologies and future perspectives. Food Chem Toxicol 51:15–25

    Article  CAS  PubMed  Google Scholar 

  65. Procházková D, Boušová I, Wilhelmová N (2011) Antioxidant and prooxidant properties of flavonoids. Fitoterapia 82:513–523

    Article  PubMed  CAS  Google Scholar 

  66. Terpinc P, Polak T, Šegatin N, Hanzlowsky A, Ulrih NP, Abramovič H (2011) Antioxidant properties of 4-vinyl derivatives of hydroxycinnamic acids. Food Chem 128:62–69

    Article  CAS  PubMed  Google Scholar 

  67. Podsędek A (2007) Natural antioxidants and antioxidant capacity of Brassica vegetables: a review. LWT-Food Sci Technol 40:1–11

    Article  CAS  Google Scholar 

  68. Kweon M-H, Hwang H-J, Sung H-C (2001) Identification and antioxidant activity of novel chlorogenic acid derivatives from bamboo (Phyllostachys edulis). J Agric Food Chem 49:4646–4655

    Article  CAS  PubMed  Google Scholar 

  69. Akao Y, Seki N, Nakagawa Y, Yi H, Matsumoto K, Ito Y, Ito K, Funaoka M, Maruyama W, Naoi M (2004) A highly bioactive lignophenol derivative from bamboo lignin exhibits a potent activity to suppress apoptosis induced by oxidative stress in human neuroblastoma SH-SY5Y cells. Bioorg Med Chem 12:4791–4801

    Article  CAS  PubMed  Google Scholar 

  70. Pande H, Kumar B, Varshney VK (2018) HPLC-ESI-QTOF-MS analysis of phenolic compounds, antioxidant capacity and α-glucosidase inhibitory effect of Bambusa nutans leaves

    Google Scholar 

  71. Kim CY, Lee HJ, Jung SH, Lee EH, Cha KH, Kang SW, Pan C-H, Um B-H (2009) Rapid identification of radical scavenging phenolic compounds from black bamboo leaves using high-performance liquid chromatography coupled to an online ABTS+-based assay. J Korean Soc Appl Biol Chem 52:613–619

    Article  CAS  Google Scholar 

  72. dos Santos SC, Budke JC, Muller A (2012) Regeneração de espécies arbóreas sob a influência de Merostachys multiramea Hack.(Poaceae) em uma floresta subtropical. Acta Bot Bras 26:218–229

    Article  Google Scholar 

  73. Grombone-Guaratini MT, Cardoso-Lopes EM, Fukuda GR, Markowitsih CJ, Young MCM (2011) An II Semin Nac Rede Bras Bambu 50–56

    Google Scholar 

  74. Torres L, Jose C, Shirasuna R, Grombone-Guaratini MT (2014) Phenolic acids and C-glycoside flavonoids in Merostachys riedeliana (bamboo). Planta Med 80:P2B99

    Article  Google Scholar 

  75. Gagliano J, Grombone-Guaratini MT, Furlan CM (2018) Antioxidant potential and HPLC-DAD profile of phenolic compounds from leaves and culms of Merostachys pluriflora. South Afr J Bot 115:24–30. https://doi.org/10.1016/j.sajb.2017.12.008

    Article  CAS  Google Scholar 

  76. Wróblewska KB, Baby AR, Grombone Guaratini MT, Moreno PRH (2019) In vitro antioxidant and photoprotective activity of five native Brazilian bamboo species. Ind Crop Prod 130:208–215. https://doi.org/10.1016/j.indcrop.2018.12.081

    Article  CAS  Google Scholar 

  77. Wróblewska KB (2019) Atividade antioxidante e fotoprotetora de bambus nativos do Sudeste brasileiro. Thesis, Universidade de São Paulo

    Google Scholar 

  78. de Oliveira DCS (2020) Composição química e atividades biológicas de extratos de Guadua angustifolia Kunth. Dissertation, Universidade de São Paulo

    Google Scholar 

  79. Nunes FA (2020) Composição química e atividades biológicas de extratos e frações de Guadua chacoensis (Rojas) Londoño & P.M. Peterson. Dissertation, Universidade de São Paulo

    Google Scholar 

  80. Jansen B, Nierop KGJ, Tonneijck FH, van der Wielen FWM, Verstraten JM (2007) Can isoprenoids in leaves and roots of plants serve as biomarkers for past vegetation changes? A case study from the Ecuadorian Andes. Plant Soil 291:181–198. https://doi.org/10.1007/s11104-006-9185-1

    Article  CAS  Google Scholar 

  81. Matsubara S, Krause GH, Aranda J, Virgo A, Beisel KG, Jahns P, Winter K (2009) Sun-shade patterns of leaf carotenoid composition in 86 species of neotropical forest plants. Funct Plant Biol 36:20. https://doi.org/10.1071/FP08214

    Article  CAS  PubMed  Google Scholar 

  82. Torres, Marco Aurélio Mata Gonçalves (2015) Identificação e caracterização do potencial alelopático do bambu Apoclada simplex McClure & Smith. Dissertation, Instituto de Botânica da Secretaria de Estado do Meio Ambiente

    Google Scholar 

  83. Hoyweghen LV, Beer TD, Deforce D, Heyerick A (2012) Phenolic compounds and anti-oxidant capacity of twelve morphologically heterogeneous bamboo species: phenolic compounds and anti-oxidant capacity of bamboo species. Phytochem Anal 23:433–443. https://doi.org/10.1002/pca.1377

    Article  CAS  PubMed  Google Scholar 

  84. Zúñiga GE, Argandoña VH, Niemeyer HM, Corcuera LJ (1983) Hydroxamic acid content in wild and cultivated Gramineae. Phytochemistry 22:2665–2668

    Article  Google Scholar 

  85. Sánchez-Echeverri LA, Aita G, Robert D, Rodríguez-García ME (2014) Correlation between chemical compounds and mechanical response in culms of two different ages of Guadua angustifolia Kunth. Madera Bosques 20:87–94. https://doi.org/10.21829/myb.2014.202166

    Article  Google Scholar 

  86. Perea Rivas J de J, Bahamón C, Cortés M del P (2003) Evaluación y documentación de prácticas sobresalientes sobre el manejo de la cosecha y maduración de la guadua en el departamento del Huila/Recurso electrónico

    Google Scholar 

  87. ICCHHT Guideline (2013) Photosafety evaluation of pharmaceuticals S10. https://www.federalregister.gov/documents/2015/01/27/2015-01406/internationalconference-on-harmonisation-s10-photosafety-evaluation-of-pharmaceuticals-guidance-for. Accessed 28 Jan 2021

  88. Onoue S, Kawamura K, Igarashi N, Zhou Y, Fujikawa M, Yamada H, Tsuda Y, Seto Y, Yamada S (2008) Reactive oxygen species assay-based risk assessment of drug-induced phototoxicity: classification criteria and application to drug candidates. J Pharm Biomed Anal 47:967–972. https://doi.org/10.1016/j.jpba.2008.03.026

    Article  CAS  PubMed  Google Scholar 

  89. OECD (2019) Test No. 495: Ros (Reactive Oxygen Species) Assay for Photoreactivity. https://www.oecd-ilibrary.org/content/publication/915e00ac-en. Accessed 28 Jan 2021

  90. Buenger J, Ackermann H, Jentzsch A, Mehling A, Pfitzner I, Reiffen K-A, Schroeder K-R, Wollenweber U (2006) An interlaboratory comparison of methods used to assess antioxidant potentials1. Int J Cosmet Sci 28:135–146. https://doi.org/10.1111/j.1467-2494.2006.00311.x

    Article  CAS  PubMed  Google Scholar 

  91. Craft BD, Kerrihard AL, Amarowicz R, Pegg RB (2012) Phenol-based antioxidants and the in vitro methods used for their assessment. Compr Rev Food Sci Food Saf 11:148–173. https://doi.org/10.1111/j.1541-4337.2011.00173.x

    Article  CAS  Google Scholar 

  92. Ghiselli A, Serafini M, Natella F, Scaccini C (2000) Total antioxidant capacity as a tool to assess redox status: critical view and experimental data. Free Radic Biol Med 29:1106–1114. https://doi.org/10.1016/S0891-5849(00)00394-4

  93. D’Autréaux B, Toledano MB (2007) ROS as signalling molecules: mechanisms that generate specificity in ROS homeostasis. Nat Rev Mol Cell Biol 8:813–824. https://doi.org/10.1038/nrm2256

    Article  CAS  PubMed  Google Scholar 

  94. Winterbourn CC (2008) Reconciling the chemistry and biology of reactive oxygen species. Nat Chem Biol 4:278–286. https://doi.org/10.1038/nchembio.85

    Article  CAS  PubMed  Google Scholar 

  95. Murphy MP, Holmgren A, Larsson N-G, Halliwell B, Chang CJ, Kalyanaraman B, Rhee SG, Thornalley PJ, Partridge L, Gems D, Nyström T, Belousov V, Schumacker PT, Winterbourn CC (2011) Unraveling the biological roles of reactive oxygen species. Cell Metab 13:361–366. https://doi.org/10.1016/j.cmet.2011.03.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Kalyanaraman B, Darley-Usmar V, Davies KJA, Dennery PA, Forman HJ, Grisham MB, Mann GE, Moore K, Roberts LJ, Ischiropoulos H (2012) Measuring reactive oxygen and nitrogen species with fluorescent probes: challenges and limitations. Free Radic Biol Med 52:1–6. https://doi.org/10.1016/j.freeradbiomed.2011.09.030

    Article  CAS  PubMed  Google Scholar 

  97. Zielonka J, Kalyanaraman B (2008) “ROS-generating mitochondrial DNA mutations can regulate tumor cell metastasis” – a critical commentary. Free Radic Biol Med 45:1217–1219. https://doi.org/10.1016/j.freeradbiomed.2008.07.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Halliwell B, Whiteman M (2004) Measuring reactive species and oxidative damage in vivo and in cell culture: how should you do it and what do the results mean?: measuring reactive species and oxidative damage. Br J Pharmacol 142:231–255. https://doi.org/10.1038/sj.bjp.0705776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Issa FI da C (2016) Avaliação das atividades antioxidante e antimicrobiana de extratos de Apoclada simplex McClure & Smith (Poaceae: Bambusoideae). Dissertation, Universidade de São Paulo

    Google Scholar 

  100. Jose CM (2016) Estudo das atividades biológicas e caracterização química de dois bambus nativos: apoclada simplex McClure & Smith e Merostachys riedeliana Rupr. Mestrado, Instituto de Botânica da Secretaria de Estado do Meio Ambiente

    Google Scholar 

  101. Park E-J, Jhon D-Y (2010) The antioxidant, angiotensin converting enzyme inhibition activity, and phenolic compounds of bamboo shoot extracts. LWT – Food Sci Technol 43:655–659. https://doi.org/10.1016/j.lwt.2009.11.005

    Article  CAS  Google Scholar 

  102. Qi X-F, Kim D-H, Yoon Y-S, Song S-B, Teng Y-C, Cai D-Q, Lee K-J (2012) Bambusae caulis in Liquamen suppresses the expression of Thymus and activation-regulated chemokine and macrophage-derived chemokine in human keratinocytes due to antioxidant effect. Evid Based Complement Alternat Med 2012:1–9. https://doi.org/10.1155/2012/617494

    Article  Google Scholar 

  103. Takamatsu S, Hodges TW, Rajbhandari I, Gerwick WH, Hamann MT, Nagle DG (2003) Marine natural products as novel antioxidant prototypes. J Nat Prod 66:605–608. https://doi.org/10.1021/np0204038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Mahajan M, Kuiry R, Pal PK (2020) Understanding the consequence of environmental stress for accumulation of secondary metabolites in medicinal and aromatic plants. J Appl Res Med Aromat Plants 18:100255. https://doi.org/10.1016/j.jarmap.2020.100255

    Article  Google Scholar 

  105. Savvides A, Ali S, Tester M, Fotopoulos V (2016) Chemical priming of plants against multiple abiotic stresses: Mission possible? Trends Plant Sci 21:329–340. https://doi.org/10.1016/j.tplants.2015.11.003

    Article  CAS  PubMed  Google Scholar 

  106. Martinez V, Mestre TC, Rubio F, Girones-Vilaplana A, Moreno DA, Mittler R, Rivero RM (2016) Accumulation of Flavonols over Hydroxycinnamic acids favors oxidative damage protection under abiotic stress. Front Plant Sci 7:1–17. https://doi.org/10.3389/fpls.2016.00838

    Article  Google Scholar 

  107. Becker PM (2016) Antireduction: an ancient strategy fit for future. Biosci Rep 36:e00367–e00367. https://doi.org/10.1042/BSR20160085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Singh R, Singh S, Parihar P, Mishra RK, Tripathi DK, Singh VP, Chauhan DK, Prasad SM (2016) Reactive oxygen species (ROS): beneficial companions of plants’ developmental processes. Front Plant Sci 7:1–19. https://doi.org/10.3389/fpls.2016.01299

    Article  CAS  Google Scholar 

  109. Barbehenn RV, Peter Constabel C (2011) Tannins in plant–herbivore interactions. Phytochemistry 72:1551–1565. https://doi.org/10.1016/j.phytochem.2011.01.040

    Article  CAS  PubMed  Google Scholar 

  110. Richet N, Tozo K, Afif D, Banvoy J, Legay S, Dizengremel P, Cabané M (2012) The response to daylight or continuous ozone of phenylpropanoid and lignin biosynthesis pathways in poplar differs between leaves and wood. Planta 236:727–737. https://doi.org/10.1007/s00425-012-1644-8

    Article  CAS  PubMed  Google Scholar 

  111. Mierziak J, Kostyn K, Kulma A (2014) Flavonoids as important molecules of plant interactions with the environment. Molecules 19:16240–16265. https://doi.org/10.3390/molecules191016240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Kutchan TM (2001) Ecological arsenal and developmental dispatcher. The paradigm of secondary metabolism. Plant Physiol 125:58–60. https://doi.org/10.1104/pp.125.1.58

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Bian F, Zhong Z, Zhang X, Yang C, Gai X (2020) Bamboo – an untapped plant resource for the phytoremediation of heavy metal contaminated soils. Chemosphere 246:125750. https://doi.org/10.1016/j.chemosphere.2019.125750

    Article  CAS  PubMed  Google Scholar 

  114. Ge W, Zhang Y, Sun Z, Li J, Liu G, Ma Y, Gao J (2017) Physiological and anatomical responses of Phyllostachys vivax and Arundinaria fortunei (Gramineae) under salt stress. Braz J Bot 40:79–91. https://doi.org/10.1007/s40415-016-0335-2

    Article  Google Scholar 

  115. Liu C, Wang Y, Pan K, Wang Q, Liang J, Jin Y, Tariq A (2017) The synergistic responses of different Photoprotective pathways in dwarf bamboo (Fargesia rufa) to drought and subsequent Rewatering. Front Plant Sci 08. https://doi.org/10.3389/fpls.2017.00489

  116. Tong R, Zhou B, Cao Y, Ge X, Jiang L (2020) Metabolic profiles of moso bamboo in response to drought stress in a field investigation. Sci Total Environ 720:137722. https://doi.org/10.1016/j.scitotenv.2020.137722

    Article  CAS  PubMed  Google Scholar 

  117. Allevato DM, Kiyota E, Mazzafera P, Nixon KC (2019) Ecometabolomic analysis of wild populations of Pilocarpus pennatifolius (Rutaceae) using unimodal analyses. Front Plant Sci 10:258. https://doi.org/10.3389/fpls.2019.00258

    Article  PubMed  PubMed Central  Google Scholar 

  118. dos Santos KP, Sedano-Partida MD, Sala-Carvalho WR, Loureiro BOSJ, da Silva-Luz CL, Furlan CM (2018) Biological activity of Hyptis Jacq. (Lamiaceae) is determined by the environment. Ind Crop Prod 112:705–715. https://doi.org/10.1016/j.indcrop.2017.12.065

    Article  CAS  Google Scholar 

  119. Gori A, Nascimento LB, Ferrini F, Centritto M, Brunetti C (2020) Seasonal and diurnal variation in leaf Phenolics of three medicinal Mediterranean wild species: what is the best harvesting moment to obtain the richest and the Most antioxidant extracts? Molecules 25:956. https://doi.org/10.3390/molecules25040956

    Article  CAS  PubMed Central  Google Scholar 

  120. Ni Q, Xu G, Wang Z, Gao Q, Wang S, Zhang Y (2012) Seasonal variations of the antioxidant composition in ground bamboo Sasa argenteastriatus leaves. Int J Mol Sci 13:2249–2262. https://doi.org/10.3390/ijms13022249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Ni Q, Zhang Y, Xu G, Gao Q, Gong L, Zhang Y (2014) Influence of harvest season and drying method on the antioxidant activity and active compounds of two bamboo grass leaves: process affects the bamboo leave chemical property. J Food Process Preserv 38:1565–1576. https://doi.org/10.1111/jfpp.12116

    Article  CAS  Google Scholar 

  122. Ko HC, Lee JY, Jang MG, Song H, Kim S-J (2018) Seasonal variations in the phenolic compounds and antioxidant activity of Sasa quelpaertensis. Ind Crop Prod 122:506–512. https://doi.org/10.1016/j.indcrop.2018.06.031

    Article  CAS  Google Scholar 

  123. Moreira FA (2019) Avaliação sazonal do potencial biológico de extratos de Merostachys neesii Rupr. (Poaceae: Bambusoideae). Thesis., Universidade de São Paulo

    Google Scholar 

  124. Piccolella S, Crescente G, Pacifico F, Pacifico S (2018) Wild aromatic plants bioactivity: a function of their (poly)phenol seasonality? A case study from Mediterranean area. Phytochem Rev 17:785–799. https://doi.org/10.1007/s11101-018-9558-0

    Article  CAS  Google Scholar 

  125. Hockberger PE (2002) A history of ultraviolet photobiology for humans, animals and microorganisms. Photochem Photobiol 76:561–579. https://doi.org/10.1562/0031-8655(2002)076<0561:AHOUPF>2.0.CO;2

    Article  CAS  PubMed  Google Scholar 

  126. Matsumura Y, Ananthaswamy HN (2004) Toxic effects of ultraviolet radiation on the skin. Toxicol Appl Pharmacol 195:298–308. https://doi.org/10.1016/j.taap.2003.08.019

    Article  CAS  PubMed  Google Scholar 

  127. Diffey BL (2002) Sources and measurement of ultraviolet radiation. Methods 28:4–13. https://doi.org/10.1016/S1046-2023(02)00204-9

    Article  CAS  PubMed  Google Scholar 

  128. Roy CR, Gies HP, Lugg DJ, Toomey S, Tomlinson DW (1998) The measurement of solar ultraviolet radiation. Mutat Res Mol Mech Mutagen 422:7–14. https://doi.org/10.1016/S0027-5107(98)00180-8

    Article  CAS  Google Scholar 

  129. Horneck G (1995) Quantification of the biological effectiveness of environmental UV radiation. J Photochem Photobiol B 31:43–49. https://doi.org/10.1016/1011-1344(95)07167-3

    Article  CAS  Google Scholar 

  130. Mancuso JB, Maruthi R, Wang SQ, Lim HW (2017) Sunscreens: an update. Am J Clin Dermatol 18:643–650. https://doi.org/10.1007/s40257-017-0290-0

    Article  PubMed  Google Scholar 

  131. Jansen R, Osterwalder U, Wang SQ, Burnett M, Lim HW (2013) Photoprotection. J Am Acad Dermatol 69:867.e1–867.e14. https://doi.org/10.1016/j.jaad.2013.08.022

    Article  Google Scholar 

  132. Serpone N, Dondi D, Albini A (2007) Inorganic and organic UV filters: their role and efficacy in sunscreens and suncare products. Inorganica Chim Acta 360:794–802. https://doi.org/10.1016/j.ica.2005.12.057

    Article  CAS  Google Scholar 

  133. Lautenschlager S, Wulf HC, Pittelkow MR (2007) Photoprotection. Lancet 370:528–537. https://doi.org/10.1016/S0140-6736(07)60638-2

    Article  CAS  PubMed  Google Scholar 

  134. Baron ED, Kirkland EB, Domingo DS (2008) Advances in Photoprotection. Dermatol Nurs 20:265–272; quiz 273. PMID: 18819220

    Google Scholar 

  135. Schalka S, Reis VMSD (2011) Sun protection factor: meaning and controversies. An Bras Dermatol 86:507–515. https://doi.org/10.1590/s0365-05962011000300013

  136. Sheu M-T, Lin C-W, Huang M-C, Shen C-H, Ho H-O (2020) Correlation of in vivo and in vitro measurements of sun protection factor. J Food Drug Anal 11. https://doi.org/10.38212/2224-6614.2719

  137. Heinrich U, Tronnier H, Kockott D, Kuckuk R, Heise HM (2004) Comparison of sun protection factors determined by an in vivo and different in vitro methodologies: a study with 58 different commercially available sunscreen products. Int J Cosmet Sci 26:79–89. https://doi.org/10.1111/j.0412-5463.2004.00207.x

    Article  CAS  PubMed  Google Scholar 

  138. Matts PJ, Alard V, Brown MW, Ferrero L, Gers-Barlag H, Issachar N, Moyal D, Wolber R (2010) The COLIPA in vitro UVA method: a standard and reproducible measure of sunscreen UVA protection. Int J Cosmet Sci 32:35–46. https://doi.org/10.1111/j.1468-2494.2009.00542.x

    Article  CAS  PubMed  Google Scholar 

  139. Andreassi M (2011) Sunscreens and photoprotection. Expert Rev Dermatol 6:433–435. https://doi.org/10.1586/edm.11.59

    Article  Google Scholar 

  140. Europe C (2011) In vitro method for the determination of the UVA protection factor and “critical wavelength” values of sunscreen products. COLIPA Auderghem Belg:1–29

    Google Scholar 

  141. Gonzalez H, Tarras-Wahlberg N, Strömdahl B, Juzeniene A, Moan J, Larkö O, Rosén A, Wennberg A-M (2007) Photostability of commercial sunscreens upon sun exposure and irradiation by ultraviolet lamps. BMC Dermatol 7:1. https://doi.org/10.1186/1471-5945-7-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Cefali LC, Ataide JA, Moriel P, Foglio MA, Mazzola PG (2016) Plant-based active photoprotectants for sunscreens. Int J Cosmet Sci 38:346–353. https://doi.org/10.1111/ics.12316

    Article  CAS  PubMed  Google Scholar 

  143. Korać R, Khambholja K (2011) Potential of herbs in skin protection from ultraviolet radiation. Pharmacogn Rev 5:164–173. https://doi.org/10.4103/0973-7847.91114

  144. Hashemi Z, Ebrahimzadeh MA, Khalili M (2019) Sun protection factor, total phenol, flavonoid contents and antioxidant activity of medicinal plants from Iran. Trop J Pharm Res 18:1443–1448. https://doi.org/10.4314/tjpr.v18i7.11

  145. Nunes AR, Vieira ÍGP, Queiroz DB, Leal ALAB, Maia Morais S, Muniz DF, Calixto-Junior JT, Coutinho HDM (2018) Use of flavonoids and Cinnamates, the Main Photoprotectors with natural origin. Adv Pharmacol Sci 2018:1–9. https://doi.org/10.1155/2018/5341487

    Article  CAS  Google Scholar 

  146. Vihakas M (2014) Flavonoids and other phenolic compounds: characterization and interactions with lepidopteran and sawfly larvae. Thesis, University of Turku

    Google Scholar 

  147. Velasco MVR, Sarruf FD, Salgado-Santos IMN, Haroutiounian-Filho CA, Kaneko TM, Baby AR (2008) Broad spectrum bioactive sunscreens. Int J Pharm 363:50–57. https://doi.org/10.1016/j.ijpharm.2008.06.031

    Article  CAS  PubMed  Google Scholar 

  148. Gilaberte Y, González S (2010) Update on photoprotection. Actas Dermo-Sifiliográficas Engl Ed 101:659–672. https://doi.org/10.1016/S1578-2190(10)70696-X

    Article  CAS  Google Scholar 

  149. Mansur MC, Leitão S, Lima L, Ricci-Júnior E, Souza G, Barbi N, Martins T, Dellamora-Ortiz G, Leo R, Vieira R, Leitao G, Santos E (2012) Evaluation of the antioxidant and phototoxic potentials of Bauhinia microstachya var. massambabensis Vaz leaf extracts. Lat Am J Pharm 31:200–206

    CAS  Google Scholar 

  150. Morocho-Jácome AL, Freire TB, de Oliveira AC, de Almeida TS, Rosado C, Velasco MVR, Baby AR In vivo SPF from multifunctional sunscreen systems developed with natural compounds – a review. J Cosmet Dermatol n/a. https://doi.org/10.1111/jocd.13609

  151. Zhang H, Liu X, Fu S, Chen Y (2019) Fabrication of light-colored lignin microspheres for developing natural sunscreens with favorable UV absorbability and staining resistance. Ind Eng Chem Res 58:13858–13867. https://doi.org/10.1021/acs.iecr.9b02086

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paulo Roberto H. Moreno .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Grombone-Guaratini, M.T., Furlan, C.M., Lopes, P.S., Barsalobra, K.P., Leite e Silva, V.R., Moreno, P.R.H. (2021). Antioxidant and Photoprotective Properties of Neotropical Bamboo Species. In: Ekiert, H.M., Ramawat, K.G., Arora, J. (eds) Plant Antioxidants and Health. Reference Series in Phytochemistry. Springer, Cham. https://doi.org/10.1007/978-3-030-45299-5_33-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-45299-5_33-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-45299-5

  • Online ISBN: 978-3-030-45299-5

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics