Skip to main content

Physiological Ecology of Ferns

  • Living reference work entry
  • First Online:
Bioactive Compounds in Bryophytes and Pteridophytes

Part of the book series: Reference Series in Phytochemistry ((RSP))

  • 68 Accesses

Abstract

This is a review of research on the physiological ecology of ferns encompassing aquatic, terrestrial, and epiphytic species. Each of these is addressed within a focus of three themes: (i) development, growth, and life cycles, (ii) environmental adaptations such as desiccation resilience and stress tolerance, and (iii) physiological aspects of light, photosynthesis, and respiration. To complement other contributions in this volume on bioactive compounds, fern research articles that included the role of biologically active compounds such as phytohormones and regulatory molecules were particularly chosen for review. Fern species have a long geological history. They evolved in the Middle Devonian, 390 million years ago (mya), and expanded in diversity during the Cenozoic (65 mya), when angiosperms were becoming dominant. The increasing presence of forests provided suitable, shady habitats where ferns adapted and flourished beneath tree canopies and some diversified to become epiphytes on the trunks and branches of the overlying trees. During evolutionary history, and radiation into diverse environments spanning deserts and drylands to tropical rain forests, ferns have developed a wide range of adaptations to survive and succeed in these sometimes challenging habitats. This chapter explores some of these remarkable adaptations and concludes with recommendations for future research strategies that capitalize on emerging molecular genetic methods that promise to bring a greater depth of insight into the role of bioactive compounds in the physiological ecology of ferns.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

ABA:

Abscisic acid

Amax:

Maximum rate of carbon dioxide assimilation

AN:

Maximum net photosynthesis

Asat:

Light-saturated rate of photosynthesis

CAM:

Crassulacean acid metabolism

CRY:

Cryptochrome

DS:

Desiccation sensitive

DT:

Desiccation tolerant

Fv/Fm:

Ratio of variable photosynthesis to maximum photosynthesis

GA:

Gibberellic acid

GID1:

GA-insensitive dwarf 1

gm:

Mesophyll conductance to CO2

gs:

Stomatal conductance for gas exchange

IAA:

Indole-acetic acid

JA:

Jasmonic acid

LHC:

Light-harvesting complex

mRNA:

Messenger RNA

mya:

Million years ago

PAR:

Photosynthetically active radiation

PHY:

Phytochrome

pI:

Isoelectric point

Pmax:

Maximum rate of photosynthesis

POD:

Peroxidase

PPO:

Polyphenol oxidase

Rd:

Dark respiration rate

RWC:

Relative water content

SC/O:

Rubisco specificity factor

T90:

Time to reach 90% maximum net photosynthetic rate

TCA:

Tricarboxylic acid

TDLAS:

Tunable diode laser absorption spectroscopy

Vc,max:

Apparent in vivo carboxylation activity

VPD:

Vapor pressure deficit

WUE:

Water use efficiency

μS:

Microsiemens

References

  1. Schneider H, Schuettpelz E, Pryer KM, Cranfill R, Magallón S, Lupia R (2004) Ferns diversified in the shadow of angiosperms. Nature 428:553–557

    Article  CAS  Google Scholar 

  2. Schuettpelz E, Pryer KM (2009) Evidence for a Cenozoic radiation of ferns in angiosperm-dominated canopy. Proc Natl Acad Sci U S A 106:11200–11205

    Article  CAS  Google Scholar 

  3. Watkins JE Jr, Cardelús CL (2012) Ferns in an angiosperm world: cretaceous radiation into the epiphytic niche and diversification on the forest floor. Int J Plant Sci 173:695–710

    Article  Google Scholar 

  4. Anderson OR (2021) Physiological ecology of ferns: biodiversity and conservation perspectives. Int J Biodivers Conserv 13:49–63

    Google Scholar 

  5. Moran RC (2013) Diversity, biogeography, and floristics. In: Ranker TA, Haufler CH (eds) Biology and evolution of ferns and lycophytes. Cambridge University Press, New York

    Google Scholar 

  6. Kessler M (2010) Biogeography of ferns. In: Mehltretter K, Walker LR, Sharpe JM (eds) Fern ecology. Cambridge University Press, New York

    Google Scholar 

  7. Sharpe JM (2019) Fern ecology and climate change. Indian Fern J 36:179–199

    Google Scholar 

  8. Sharpe JM, Mehltreter K, Walker LR (2010) Ecological importance of ferns. In: Mehltreter K, Walker LR, Sharpe JM (eds) Fern ecology. Cambridge University Press, Cambridge

    Google Scholar 

  9. Mehltreter K (2010) Fern conservation. In: Mehltreter K, Walker LR, Sharpe JM (eds) Fern ecology. Cambridge University Press, Cambridge

    Chapter  Google Scholar 

  10. Arcand NN, Ranker TA (2013) Conservation biology. In: Ranker TA, Haufler CH (eds) Biology and evolution of ferns and lycophytes. Cambridge University Press, Cambridge

    Google Scholar 

  11. Fernández-Zamudio R, García-Murillo P, Cirujano S (2010) Germination characteristics and sporeling success of Azolla filiculoides Lamarck, an aquatic invasive fern, in a Mediterranean temporary wetland. Aquat Bot 93:89–92

    Article  Google Scholar 

  12. Sadeghi R, Zarkami R, Sabetraftar K, Van Damme P (2013) A review of some ecological factors affecting the growth of Azolla spp. Caspian J Env Sci 11:65–76

    Google Scholar 

  13. Lumpkin TA, Plucknett DL (1980) Azolla: botany, physiology, and use as a green manure. Econ Bot 34:111–153

    Article  CAS  Google Scholar 

  14. Temmink RJM, Harpenslager SF, Smolders AJP, van Dijk G, Roy CJH, Peters RCJH, Lamers LPM, van Kempen MML (2018) Azolla along a phosphorus gradient: biphasic growth response linked to diazotroph traits and phosphorus-induced iron chlorosis. Sci Rep 8:4451

    Article  Google Scholar 

  15. Jampeetong A, Brix H (2009) Effects of NH4+ concentration on growth, morphology and NH4+ uptake kinetics of Salvinia natans. Ecol Eng 35:695–702

    Article  Google Scholar 

  16. Martins-Loucao MA, Wollenweber B, Raven JA (1993) Response of Salvinia spp. to different nitrogen sources: the acid-base regulation approach. Oecologia 93:524–530

    Article  Google Scholar 

  17. van Kempen MML, Smolders AJP, Bögemann GM, Lamers LPM, Roelofs JGM (2016) Interacting effects of atmospheric CO2 enrichment and solar radiation on growth of the aquatic fern Azolla filiculoides. Freshw Biol 61:596–606

    Article  Google Scholar 

  18. Medeiros JCC, Silva JCF, Teodoro GS, Coelho FF (2017) Effects of shade on individual ramet growth and on clonal growth of the aquatic fern Salvinia auriculata (Salviniaceae). Am Fern J 107:21–29

    Article  Google Scholar 

  19. Tipping PW, Martin MR, Bauer L, Pierce RM, Center TD (2012) Ecology of common Salvinia, Salvinia minima Baker, in southern Florida. Aquat Bot 102:23–27

    Article  Google Scholar 

  20. Pimsuwan S, Wongsrisakulkaew Y (2019) The effects of soil depth on the growth of the clover fern and the uses of the clover fern on the germination of fern spores. Int J Geomate 17:50–55

    Article  Google Scholar 

  21. Liu B-LL (1984) Abscisic acid induces land form characteristics in Marsilea quadrifolia. Am J Bot 71:638–644

    Article  CAS  Google Scholar 

  22. Daoud-Bouattour A, Bottollier-Curtet M, Jamaa HF-B, Ghrabi-Gammar Z, Saad-Limam SB, Rhazi L, Muller SD (2014) Effects of hydrology on recruitment of Pilularia minuta Durieu (Marsileaceae), an endangered plant of Mediterranean temporary pools. Aquat Bot 112:76–83

    Article  Google Scholar 

  23. Minissale P, Molina JA, Sciandrello S (2017) Pilularia minuta Durieu (Marsileaceae) discovered in south-eastern-Sicily: new insights on its ecology, distribution and conservation status. Bot Lett 164:197–208

    Article  Google Scholar 

  24. McMillan C, Jens CE, Adler WR, Blystone RV, Gillespie WH, Irwin JR, Janowsky RE, Kolle DO, McGlathery TR, Martin RR, Morey RW, Mynard CR, Patty TS (1968) Factors influencing the narrow restriction of Pilularia americana in Texas. Southwest Nat 13:117–127

    Article  Google Scholar 

  25. Ganger M, Sturey T (2012) Antheridiogen concentration and spore size predict gametophyte size in Ceratopteris richardii. Botany 90:175–179

    Article  CAS  Google Scholar 

  26. Ferreira AB, Piedade LR, Piedade MTF, Lopes A (2021) Biomass production of the aquatic macrophyte Ceratopteris pteridoides (Hook.) Hieron (Pteridaceae) in nutrient addition treatments. Acta Bot Bras 35:126–131

    Article  Google Scholar 

  27. Chau MM, Reyes WR, Ranker TA (2013) Ecological factors influencing growth of the endangered Hawaiian fern Marsilea villosa (Marsileaceae) and implications for conservation management. Am J Bot 100:1532–1543

    Article  Google Scholar 

  28. Gopal B (1969) Responses of some Indian species of Marsilea to different temperature treatments. Am Fern J 59:150–152

    Article  Google Scholar 

  29. Wu T-C, Kao W-Y (2011) Ecophysiological traits of leaves of three Marsilea species distributed in different geographical regions. Taiwania 56:279–286

    Google Scholar 

  30. Warne TR, Lloyd RM (1980) The role of spore germination and gametophyte development in habitat selection: temperature responses in certain temperate and tropical ferns. Bull Torrey Bot Club 107:57–64

    Article  Google Scholar 

  31. Goodnoe TT, Hill JP, Aho K (2016) Effects of variation in carbon, nitrogen, and phosphorus molarity and stoichiometry on sex determination in the fern Ceratopteris richardii. Botany 94:249–259

    Article  CAS  Google Scholar 

  32. Dong Y-H, Gituru RW, Chen J-M, Wang Q-F (2005) Effect of habitat modification on the distribution of the endangered aquatic fern Ceratopteris thalictroides (Parkeriaceae) in China. J Freshw Ecol 20:689–693

    Article  CAS  Google Scholar 

  33. Hew C-S, Wong YS (1974) Photosynthesis and respiration of ferns in relation to their habitats. Am Fern J 64:40–48

    Article  Google Scholar 

  34. Wu T-C, Lin B-L, Kao W-Y (2020) Active stomatal control of Marsilea crenata, an amphibious fern, in response to CO2 and exogenous application of ABA. Taiwania 65:431–437

    Google Scholar 

  35. Kao W-Y, Lin B-L (2010) Phototropic leaf movements and photosynthetic performance in an amphibious fern, Marsilea quadrifolia. J Plant Res 123:645–653

    Article  Google Scholar 

  36. Deans RM, Brodribb TJ, Busch FA, Farquhar GD (2019) Plant water-use strategy mediates stomatal effects on light induction of photosynthesis. New Phytol 222:382–395

    Article  Google Scholar 

  37. Tseng M-H, Lin K-H, Huang Y-J, Chang Y-L, Huang S-C, Kuo L-Y, Huang Y-M (2017) Detection of chlorophylls in spores of seven ferns. J Plant Res 130:407–416

    Article  CAS  Google Scholar 

  38. Lloyd RM, Klekowski EJ Jr (1970) Spore germination and viability in Pteridophyta: evolutionary significance of chlorophyllous spores. Biotropica 2:129–137

    Article  Google Scholar 

  39. Raghavan V (1980) Cytology, physiology, and biochemistry of germination of fern spores. Int Rev Cytol 62:69–118

    Article  CAS  Google Scholar 

  40. Suo J, Chen S, Zhao Q, Shi L, Dai S (2015) Fern spore germination in response to environmental factors. Front Biol 10:358–376

    Article  CAS  Google Scholar 

  41. Pérez-García B, Mendoza-Ruiz A, Sánchez-Coronado ME, Orozco-Segovia A (2007) Effect of light and temperature on germination of spores of four tropical fern species. Acta Oecol 32:172–179

    Article  Google Scholar 

  42. Haufler CH, Welling CB (1994) Antheridiogen, dark spore germination, and outcrossing mechanisms in Bommeria (Adiantaceae). Am J Bot 81:616–621

    Article  Google Scholar 

  43. Sugai M, Nakamura K, Yamane H, Sato Y, Takahashi N (1987) Effects of gibberellins and their methyl esters on dark germination and antheridium formation in Lygodium japonicum and Anemia phyllitidis. Plant Cell Physiol 28:199–202

    CAS  Google Scholar 

  44. Chia S-GE, Raghavan V (1982) Abscisic acid effects on spore germination and protonemal growth in the fern Mohria caffrorum. New Phytol 92:31–37

    Article  CAS  Google Scholar 

  45. Ueguchi-Tanaka M, Nakajima M, Katoh E, Ohmiya H, Asano K, Saji S, Hongyu X, Ashikari M, Kitano H, Yamaguchi I, Matsuoka M (2007) Molecular interactions of a soluble gibberellin receptor, GID1, with a rice DELLA protein, SLR1, and gibberellin. Plant Cell 19:2140–2155

    Article  CAS  Google Scholar 

  46. Cooke TJ, Racusen RH (1988) The growth forms of developing fern gametophytes: a theoretical consideration of form and function relationships. Ann Bot 62:633–641

    Article  Google Scholar 

  47. Raghavan V (2005) Developmental biology of fern gametophytes. Cambridge University Press, Cambridge

    Google Scholar 

  48. Banks JA (1999) Gametophyte development in ferns. Annu Rev Plant Physiol Plant Mol Biol 50:163–186

    Article  CAS  Google Scholar 

  49. Döpp W (1950) Eine die Antheridienbildung bei Farnen fördernde Substanz in den Prothallien von Pteridium aquilinum (L.) Kuhn. Ber Deut Bot Ges 63:139–147

    Google Scholar 

  50. Näf U (1961) Mode of action of an antheridium-inducing substance in ferns. Nature 189:900–903

    Article  Google Scholar 

  51. Atallah NM, Banks JA (2015) Reproduction and the pheromonal regulation of sex type in fern gametophytes. Front Plant Sci 6:100

    Article  Google Scholar 

  52. Warne TR, Hickok LG (1989) Evidence for a gibberellin biosynthetic origin of Ceratopteris antheridiogen. Plant Physiol 89:535–538

    Article  CAS  Google Scholar 

  53. Mander LN (2003) Twenty years of gibberellin research. Nat Prod Rep 20:49–69

    Article  CAS  Google Scholar 

  54. Romanenko KO, Babenko LM, Vasheka OV, Romanenko PO, Kosakivska IV (2020) In vitro phytohormonal regulation of fern gametophytes growth and development. Russ J Dev Biol 51:71–83

    Article  CAS  Google Scholar 

  55. Ohishi N, Hoshika N, Takeda M, Shibata K, Yamane H, Yokota T, Asahina M (2021) Involvement of auxin biosynthesis and transport in the antheridium and prothalli formation in Lygodium japonicum. Plan Theory 10:2709

    CAS  Google Scholar 

  56. Testo WL, Grasso MS, Barrington DS (2014) Beyond antheridiogens: chemical competition between gametophytes of Polypodium appalachianum and Polypodium virginianum. J Torrey Bot Soc 141:302–312

    Article  Google Scholar 

  57. Haufler CH, Pryer KM, Schuettpelz E, Sessa EB, Farrar DR, Moran R, Schneller JJ, Watkins JE Jr, Windham MD (2016) Sex and the single gametophyte: revising the homosporous vascular plant life cycle in light of contemporary research. Bioscience 66:928–937

    Article  Google Scholar 

  58. Oloyede FA, Olatunji TY, Ogbimi ER (2017) Spore germination, gametophyte development and studies of growth of Adiantum capillus-veneris L. Not Sci Biol 9:557–562

    Article  CAS  Google Scholar 

  59. Sakamaki Y, Ino Y (1999) Contribution of fern gametophytes to the growth of produced sporophytes on the basis of carbon gain. Ecol Res 14:59–69

    Article  Google Scholar 

  60. Klekowski EJ Jr (1967) Observations on pteridophyte life cycles: relative lengths under cultural conditions. Am Fern J 57:49–51

    Article  Google Scholar 

  61. López-Pozo M, Fernández-Marín B, García-Plazaola JI, Ballesteros D (2018) Desiccation tolerance in ferns: from unicellular spore to multi-tissular sporophyte. In: Fernández (ed) Current advances in fern research. Springer International Publishing AG, Cham

    Google Scholar 

  62. Watkins JE Jr, Mack MC, Sinclair TR, Mulkey SS (2007) Ecological and evolutionary consequences of desiccation tolerance in tropical fern gametophytes. New Phytol 176:708–717

    Article  Google Scholar 

  63. Chambers SM, Watkins JE Jr, Sessa EB (2017) Differences in dehydration tolerance among populations of a gametophyte-only fern. Am J Bot 104:598–607

    Article  Google Scholar 

  64. Nitta JH, Watkins JE Jr, Holbrook NM, Wang TW, Davis CC (2021) Ecophysiological differentiation between life stages in filmy ferns (Hymenophyllaceae). J Plant Res 134:971–988

    Article  CAS  Google Scholar 

  65. Reynolds TL, Bewley JD (1993) Characterization of protein synthetic changes in a desiccation-tolerant fern, Polypodium virginianum. Comparison of the effects of drying, rehydration and abscisic acid. J Exp Bot 44:921–928

    Article  CAS  Google Scholar 

  66. Nadal M, Brodribb TJ, Fernández-Marín B, García-Plazaola JI, Arzac MI, López-Pozo M, Perera-Castro AV, Gulias J, Flexas J, Farrant JM (2021) Differences in biochemical, gas exchange and hydraulic response to water stress in desiccation tolerant and sensitive fronds of the fern Anemia caffrorum. New Phytol 231:1415–1430

    Article  CAS  Google Scholar 

  67. Banupriya TG, Ramyashree C, Akash D, Yathish NS, Sharthchandra RG (2020) Studies on the mechanism of desiccation tolerance in the resurrection fern Adiantum raddianum. J Appl Biol Biotechnol 8:6–14

    Article  CAS  Google Scholar 

  68. Zivkovic S, Popovic M, Dragisic-Maksimovic J, Momcilovic ID, Grubisic D (2010) Dehydration-related changes of peroxidase and polyphenol oxidase activity in fronds of the resurrection fern Asplenium ceterach L. Arch Biol Sci 62:1071–1081

    Article  Google Scholar 

  69. Hõrak H, Kollist H, Merilo E (2017) Fern stomatal responses to ABA and CO2 depend on species and growth conditions. Plant Physiol 174:672–679

    Article  Google Scholar 

  70. Grantz DA, Linscheid BS, Grulke NE (2019) Differential responses of stomatal kinetics and steady-state conductance to abscisic acid in a fern: comparison with gymnosperm and an angiosperm. New Phytol 222:1883–1892

    Article  CAS  Google Scholar 

  71. Gong L, Liu X-D, Zeng Y-Y, Tian X-Q, Li Y-L, Turner NC, Fang X-W (2021) Stomatal morphology and physiology explain varied sensitivity to abscisic acid across vascular plant lineages. Plant Physiol 186:782–797

    Article  CAS  Google Scholar 

  72. Hasan MM, Gong L, Nie Z-F, Li F-P, Ahammed GJ, Fang X-W (2021) ABA-induced stomatal movements in vascular plants during dehydration and rehydration. Environ Exp Bot 186:104436

    Article  CAS  Google Scholar 

  73. Yang Y-J, Bi MH, Nie Z-F, Jiang H, Liu X-D, Fang X-W, Brodribb TJ (2021) Evolution of stomatal closure to optimize water-use efficiency in response to dehydration in ferns and seed plants. New Phytol 230:2001–2010

    Article  CAS  Google Scholar 

  74. Cândido-Sobrinho SA, Lima VF, Friere FBS, de Souza LP, Gago J, Fernie AR, Daloso DM (2022) Metabolism-mediated mechanisms underpin the differential stomatal speediness regulation among ferns and angiosperms. Plant Cell Environ 45:296–311

    Article  Google Scholar 

  75. Gago J, Coopman RE, Cabrera HM, Hermida C, Molins A, Conesa MÀ, Galmés J, Ribas-Carbó M, Flexas J (2013) Phoptosynthesis limitations in three fern species. Physiol Plant 149:599–611

    Article  CAS  Google Scholar 

  76. Nobel PS, Calkin HW, Gibson AC (1984) Influences of PAR, temperature and water vapor concentration on gas exchange by ferns. Physiol Plant 62:527–534

    Article  CAS  Google Scholar 

  77. Nishida K, Kodama N, Yonemura S, Hanba YT (2015) Rapid response of leaf photosynthesis in two fern species Pteridium aquilinum and Thelypteris dentata to changes in CO2 measured by tunable diode laser absorption spectroscopy. J Plant Res 128:777–789

    Article  CAS  Google Scholar 

  78. Tosens T, Nishida K, Gago J, Coopman RE, Cabrera HM, Carriqui M, Laanisto L, Morales L, Nadal M, Rojas R, Talts E, Tomas M, Hanba Y, Niinemets Ü, Flexas J (2016) The photosynthetic capacity in 35 ferns and fern allies: mesophyll CO2 diffusion as a key trait. New Phytol 209:1576–1590

    Article  CAS  Google Scholar 

  79. Saldaña A, Lusk CH, Gonzáles WL, Gianoli E (2007) Natural selection on ecophysiological traits of a fern species in a temperate rainforest. Evol Ecol 21:651–662

    Article  Google Scholar 

  80. Anderson OR, Griffin KL (2021) Preliminary ecophysiological observations of the fern Asplenium platyneuron growing in two microenvironments varying in light intentsity at an urban location in New York City. J Torrey Bot Soc 148:308–317

    Article  Google Scholar 

  81. Ludlow CJ, Wolf FT (1975) Photosynthesis and respiration rates of ferns. Am Fern J 65:43–48

    Article  Google Scholar 

  82. Nasrulhaq-Boyce A, Haji Mohamed MA (1987) Photosynthetic and respiratory characteristics of Malayan sun and shade ferns. New Phytol 105:81–88

    Article  CAS  Google Scholar 

  83. Hew C-S, Wong Y-S (1974) Photosynthesis and respiration of ferns in relation to their habitat. Am Fern J 64:40–48

    Article  Google Scholar 

  84. Nishida K, Hanba YT (2017) Photosynthetic response of four fern species from different habitats to drought stress: relationship between morpho-anatomical and physiological traits. Photosynthetica 55:689–697

    Article  Google Scholar 

  85. Dubuisson J-Y, Schneider H, Hennequin S (2009) Epiphytism in ferns: diversity and history. C R Biol 332:120–128

    Article  Google Scholar 

  86. Pinson JB, Chambers SM, Nitta JH, Kuo L-Y, Sessa EB (2017) The separation of generations: biology and biogeography of long-lived sporophyteless fern gametophytes. Int J Plant Sci 178:1–18

    Article  Google Scholar 

  87. Camloh M (1993) Spore germination and early gametophyte development of Platycerium bifurcatum. Am Fern J 83:79–85

    Article  Google Scholar 

  88. Nagmani R, Raghavan V (1983) Origin of the rhizoid and protonemal cell during germination of spores of Drymoglossum, Platycerium and Pyrrosia (Polypodiaceae). Bot Gaz 144:67–72

    Article  Google Scholar 

  89. Camloh M, Ravnikar M, Zel J (1996) Jasmonic add promotes division of fern protoplasts, elongation of rhizoids and early development of gametophytes. Physiol Plant 97:659–664

    Article  CAS  Google Scholar 

  90. Camloh M, Vilhar B, Zel J (2001) Jasmonic acid induces changes in growth and polypeptide composition of fern gametophytes. Acta Bot Croat 60:149–156

    CAS  Google Scholar 

  91. Kwa S-H, Wee Y-C, Lim T-M, Kumar PP (1995) IAA-induced apogamy in Platycerium coronarium (Koenig) Desv. gametophytes cultured in vitro. Plant Cell Rep 14:598–602

    Article  CAS  Google Scholar 

  92. Garcés M, Ulloa M, Mirana A, Bravo LA (2018) Physiological and ultrastructural characterisation of a desiccation-tolerant filmy fern, Hymenophyllum caudiculatum: influence of translational regulation and ABA on recovery. Plant Biol 20:288–295

    Article  Google Scholar 

  93. Minardi BD, Voytena APL, Santos M, Randi ÁM (2014) The epiphytic fern Elaphoglossum luridum (Fée) Christ. (Dryopteridaceae) from central and south America: morphological and physiological responses to water stress. Sci World J 2014:817892

    Article  Google Scholar 

  94. John SP, Hasenstein KH (2018) Biochemical responses of the desiccation-tolerant fern Pleopeltis polypodioides to dehydration and rehydration. J Plant Physiol 228:12–18

    Article  CAS  Google Scholar 

  95. Sillett SC, Bailey MG (2003) Effects of tree crown structure on biomass of the epiphytic fern Polypodium scouleri (Polypodiaceae) in redwood forests. Am J Bot 90:255–261

    Article  Google Scholar 

  96. Klinghardt M, Zotz G (2021) Abundance and seasonal growth of epiphytic ferns at three sites along a rainfall gradient in Western Europe. Flora 274:151749

    Article  Google Scholar 

  97. Testo WL, Watkins JE Jr (2012) Influence of plant size on the ecophysiology of the epiphytic fern Asplenium auritum (Aspleniaceae) from Costa Rica. Am J Bot 99:1840–1846

    Article  Google Scholar 

  98. Flores-Bavestrello A, Król M, Ivanov AG, Hüner NPA, García-Plazaola JI, Corcuera LJ, Bravo LA (2016) Two Hymenophyllaceae species from contrasting natural environments exhibit a homoiochlorophyllous strategy in response to desiccation stress. J Plant Physiol 191:82–94

    Article  CAS  Google Scholar 

  99. Hietz P, Briones O (1998) Correlation between water relations and within-canopy distribution of epiphytic ferns in a Mexican cloud forest. Oecologia 114:305–316

    Article  CAS  Google Scholar 

  100. Ostria-Gallardo E, Larama G, Berrios G, Fallard A, Gutiérrez-Moraga A, Ensminger I, Manque P, Bascuñán-Godoy L, Bravo LA (2020) Decoding gene networks modules that explain Hymenoglossum cruentum Cav. after extreme desiccation. Front Plant Sci 11:574

    Article  Google Scholar 

  101. Suhaimi N, Cicuzza D (2020) The effects of drought and the recovery phase of two tropical epiphytic ferns. J Trop Plant Phys 12:33–41

    Google Scholar 

  102. Sanger JC, Kirkpatrick JB (2017) The distribution of vascular epiphytes over gradients of light and humidity in north-east Australian rainforest. Austral Ecol 42:976–983

    Article  Google Scholar 

  103. Zhang Q, Chen J-W, Li B-G, Cao K-F (2009) Epiphytes and hemiepiphytes have slower photosynthetic responses to lightflecks than terrestrial plants: evidence from, ferns and figs. J Trop Ecol 25:465–472

    Article  Google Scholar 

  104. Winter K, Osmond CB, Hubick KT (1986) Crassulacean acid metabolism in the shade. Studies on an epiphytic fern Pyrrosia longifolia, and other rainforest species from Australia. Oecologia 68:224–230

    Article  CAS  Google Scholar 

  105. Griffiths H, Ong BL, Avadhani PN, Goh CJ (1989) Recycling of respiratory CO2 during Crassulacean acid metabolism: alleviation of photoinhibition in Pyrrosia piloselloides. Planta 179:115–122

    Google Scholar 

  106. Holtum JAM, Winter K (1999) Degrees of crassulacean acid metabolism in tropical epiphytic and lithophytic ferns. Aust J Plant Physiol 26:749–757

    CAS  Google Scholar 

  107. Ong BL, Kluge M, Friemert V (1986) Crassulacean metabolism in the epiphytic ferns Drymoglossum piloselloides and Pyrrosia longifolia: studies on responses to environmental signals. Plant Cell Environ 9:547–557

    CAS  Google Scholar 

  108. Minardi BD, Voytena APL, Santos M, Randi ÁM (2014) Water stress and abscisic acid treatments induce the CAM pathway in the epiphytic fern Vittaria lineata (L.) Smith. Photosynthetica 52:404–412

    Article  CAS  Google Scholar 

  109. Quinnell R, Howell D, Ritchie RJ (2017) Photosynthesis of an epiphytic resurrection fern Davallia angustata (Wall. ex Hook. & Grev.). Aust J Bot 65:348–356

    Article  CAS  Google Scholar 

  110. Tarakhovskaya ER, Maslov YI, Shishova MF (2007) Phytohormones in algae. Russ J Plant Physiol 54:163–170

    Article  CAS  Google Scholar 

  111. Zhang J, Liu L, Shu J-P, Jin D-M, Shen H, Chen H-F, Zhang R, Yan Y-H (2019) Transcriptomic evidence of adaptive evolution of the epiphytic fern Asplenium nidus. Int J Genomics 2019:142931

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Roger Anderson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Anderson, O.R. (2022). Physiological Ecology of Ferns. In: Murthy, H.N. (eds) Bioactive Compounds in Bryophytes and Pteridophytes. Reference Series in Phytochemistry. Springer, Cham. https://doi.org/10.1007/978-3-030-97415-2_33-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-97415-2_33-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-97415-2

  • Online ISBN: 978-3-030-97415-2

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics