Skip to main content

Microfossils: Palynology

  • Living reference work entry
  • First Online:
Encyclopedia of Petroleum Geoscience

Part of the book series: Encyclopedia of Earth Sciences Series ((EESS))

Definition

The term “palynology” is derived from the Greek palunō (“to strew or sprinkle”) and logia (“the study of”). A literal translation would be the “study of dust,” but in fact palynology is the study of microscopic organisms or parts of organisms, collectively known as palynomorphs, whose walls are composed of acid-resistant organic material. The study of organic-walled microfossils is one branch of palynology, sometimes termed paleopalynology. But most paleontologists who study these fossils describe themselves simply as palynologists.

Introduction

Palynomorphs can occur in their thousands in a few grams of sedimentary rock, a distinct advantage when using them for biostratigraphic or paleoenvironmental analyses, especially of samples recovered from wells. Perhaps the best-known palynomorphs are pollen and spores. However, palynomorphs also include acritarchs, chitinozoans, dinoflagellate cysts, and some other groups. Below we briefly discuss the morphology of each of these...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Bibliography

  • Batten D (1980) Use of transmitted light microscopy of sedimentary organic matter for evaluation of hydrocarbon source potential. In: Proceedings of the 4th international palynological conference (1976–1977), vol 2, Lucknow, pp 589–594

    Google Scholar 

  • Batten D (1996a) Chapter 26A. Palynofacies and palaeoenvironmental interpretation. In: Jansonius J, McGregor DC (eds) Palynology: principles and applications, vol 3. American Association of Stratigraphic Palynologists Foundation, Dallas, pp 1011–1064

    Google Scholar 

  • Batten D (1996b) Chapter 26B. Palynofacies and petroleum potential. In: Jansonius J, McGregor DC (eds) Palynology: principles and applications, vol 3. American Association of Stratigraphic Palynologists Foundation, Dallas, pp 1065–1084

    Google Scholar 

  • Brinkhuis H (1994) Late Eocene to early Oligocene dinoflagellate cysts from the Priabonian type-area (Northeast Italy): biostratigraphy and paleoenvironmental interpretation. Palaeogeogr Palaeoclimatol Palaeoecol 107:121–163

    Article  Google Scholar 

  • Cadell HM, Grant Wilson JS, Caldwell W, Stewart DR (1906) The oil-shales of the Lothians. Memoirs of the Geological Survey, Scotland. James Hedderwick and Sons, Ltd, Glasgow

    Google Scholar 

  • Combaz A (1964) Les palynofacies. Rev Micropaleontol 7:205–218

    Google Scholar 

  • Correia M (1967) Rélations possibles entre l’état de conservation des éléments figurés de la matière organique (microfossiles palynoplanctologique) et l’existence de gisements d’hydrocarbures. Rev Inst Fr Pét 22:1285–1306

    Google Scholar 

  • Dorning KJ (1981) Silurian acritarch distribution in the Ludlovian shelf sea of South Wales and the Welsh Borderland. In: Neal RG, Brasier MD (eds) Microfossils from recent and fossil shelf seas. Ellis Horwood Ltd., Chichester, pp 31–36

    Google Scholar 

  • Evitt WR (1961) Observations on the morphology of fossil dinoflagellates. Micropaleontology 7(4):385–420

    Article  Google Scholar 

  • Evitt WR (1963) A discussion and proposals concerning fossil dinoflagellates, hystrichospheres, and acritarchs, II. Proc Natl Acad Sci USA 49:298–302

    Article  Google Scholar 

  • Faegri K, Iversen J, Kaland PE, Kryzwinski K (1989) Textbook of pollen analysis, 4th edn. Blackburn Press, Caldwell. (reprinted 2000)

    Google Scholar 

  • Fensome RA, Riding JB, Taylor FJR (1996a) Chapter 6. Dinoflagellates. In: Jansonius J, McGregor DC (eds) Palynology: principles and applications, vol 1. American Association of Stratigraphic Palynologists Foundation, Dallas, pp 107–169

    Google Scholar 

  • Fensome RA, MacRae RA, Moldowan JM, Taylor FJR, Williams GL (1996b) The early Mesozoic radiation of dinoflagellates. Paleobiology 22:329–338

    Article  Google Scholar 

  • Fensome RA, Saldarriaga JF, Taylor FJR (2000) Dinoflagellate phylogeny revisited: reconciling morphological and molecular based phylogenies. Grana 38:66–80. (Cover date 1999; issued 2000)

    Article  Google Scholar 

  • Göppert H (1838) Bericht über die Versammlungen der naturwissenschaftlichen Section im Jahre 1834–1838. http://lod.b3kat.de/bib/DE-12

  • Götz A, Ruckwied K (2013) Palynological records of the early Permian postglacial climate amelioration (Karoo Basin, South Africa). Palaeobiodiv Palaeoenviron 94:229–235

    Article  Google Scholar 

  • Grew N (1682) The anatomy of plants: with an idea of a philosophical history of plants: and several other lectures read before the Royal Society. W. Rawlins, London

    Google Scholar 

  • Herngreen GFW, Kedves M, Rovnina LV, Smirnova SB (1996) Chapter 29C. Cretaceous palynofloral provinces: a review. In: Jansonius J, McGregor DC (eds) Palynology: principles and applications, vol 3. American Association of Stratigraphic Palynologists Foundation, Dallas, pp 1157–1188

    Google Scholar 

  • Hyde HA, Williams DW (1944) Right word. Pollen Anal Circular 8:6

    Google Scholar 

  • Jacob J, Paris F, Monod O, Miller MA, Tang P, Simon GC, Bény J-M (2007) New insights into the chemical composition of chitinozoans. Org Geochem 38:1782–1788

    Article  Google Scholar 

  • Janouškovec J, Gavelis GS, Burki F, Dinh D et al (2016) Major transitions in dinoflagellate evolution unveiled by phylotranscriptomics. Proc Natl Acad Sci USA 114:E171–E180. https://doi.org/10.1073/pnas.1614842114

    Article  Google Scholar 

  • Jansonius J, McGregor DC (eds) (1996) Palynology: principles and applications, vol 1–3. American Association of Stratigraphic Palynologists Foundation, Dallas

    Google Scholar 

  • Jarzen DM, Nichols DJ (1996) Chapter 9. Pollen. In: Jansonius J, McGregor DC (eds) Palynology: principles and applications, vol 1. American Association of Stratigraphic Palynologists Foundation, Dallas, pp 261–291

    Google Scholar 

  • Knoll AH (1996) Chapter 4. Archean and Proterozoic paleontology. In: Jansonius J, McGregor DC (eds) Palynology: principles and applications, vol 1. American Association of Stratigraphic Palynologists Foundation, Dallas, pp 51–80

    Google Scholar 

  • Kozlowski R (1963) Sur la nature des chitinozoaires. Acta Palaeontol Pol 8:425–449

    Google Scholar 

  • Mantell G (1836) Thoughts on a pebble; or, first lesson in geology. Relf and Fletcher, London

    Google Scholar 

  • McNeill J, Barrie FR, Buck WR, Demoulin V et al (2012) International code of nomenclature for algae, fungi, and plants (Melbourne code). Regnum Vegetabile, vol 154. Koeltz Scientific Books, Oberreifenberg. http://www.iapt-taxon.org/nomen/main.php

    Google Scholar 

  • Miller MA (1996) Chapter 11. Chitinozoa. In: Jansonius J, McGregor DC (eds) Palynology: principles and applications, vol 1. American Association of Stratigraphic Palynologists Foundation, Dallas, pp 81–106

    Google Scholar 

  • Moore PD, Webb JA, Collinston M (1991) Pollen Analysis, 2nd edn. Blackwell Scientific, Oxford

    Google Scholar 

  • Nøhr-Hansen H, Williams GL, Fensome RA (2017) Biostratigraphic correlation of the western and eastern margins of the Labrador–Baffin seaway and implications for the regional geology. Geol Surv Den Greenl Bull 37:1–74. (Cover date 2016, issue date 2017)

    Google Scholar 

  • Palynodata Inc., White JM (2008) Geol Surv Canada, Open File 5793, 1 CD-ROM. https://doi.org/10.4095/225704

  • Paris F (1996) Chapter 17. Chitinozoan biostratigraphy and palaeoecology. In: Jansonius J, McGregor DC (eds) Palynology: principles and applications, vol 2. American Association of Stratigraphic Palynologists Foundation, Dallas, pp 531–552

    Google Scholar 

  • Paris F, Verniers J (2005) Chitinozoa. In: Selley RC, Cocks LRM, Plimer IR (eds) Encyclopedia of geology. Elsevier, Amsterdam, pp 428–440

    Chapter  Google Scholar 

  • Playford G, Dettmann ME (1996) Chapter 9. Spores. In: Jansonius J, McGregor DC (eds) Palynology: principles and applications, vol 1. American Association of Stratigraphic Palynologists Foundation, Dallas, pp 227–260

    Google Scholar 

  • Reinsch PF (1884) Micro-palaeophytologia formationis carboniferae, vol 2. Krische, Erlangen, pp I–VII, 1–80, 1–50, pl 1–66

    Google Scholar 

  • Richardson JB (1996) Chapter 18. Lower and middle Palaeozoic records of terrestrial palynomorphs. In: Jansonius J, McGregor DC (eds) Palynology: principles and applications, vol 2. American Association of Stratigraphic Palynologists Foundation, Dallas, pp 555–574

    Google Scholar 

  • Riding JB, Kyffin-Hughes JE, Owens B (2007) An effective palynological processing technique using hydrogen peroxide. Palynology 31:19–36

    Article  Google Scholar 

  • Salvador A (ed) (1994) International stratigraphic guide. A guide to stratigraphic classification, terminology and procedure, 2nd edn. International Union of Geological Sciences – Geological Society of America, Boulder

    Google Scholar 

  • Sluijs A, Brinkhuis H (2009) A dynamic climate and ecosystem state during the Paleocene–Eocene thermal maximum: inferences from dinoflagellate cyst assemblages on the New Jersey shelf. Biogeosciences 6:1755–1781

    Article  Google Scholar 

  • Sluijs A, Pross J, Brinkhuis H (2005) From greenhouse to icehouse: organic-walled dinoflagellate cysts as paleoenvironmental indicators in the Paleogene. Earth-Sci Rev 68:281–315

    Article  Google Scholar 

  • Sluijs A, Brinkhuis H, Crouch EM et al (2008) Eustatic variations during the Paleocene-Eocene greenhouse world. Paleoceanography 23(4), 17 p. https://doi.org/10.1029/2008PA001615

    Article  Google Scholar 

  • Staplin FL (1961) Reef-controlled distribution of Devonian microplankton in Alberta. Palaeontology 4:392–424

    Google Scholar 

  • Staplin FL (1969) Sedimentary organic mater, organic metamorphism and oil and gas occurrence. Bull Can Petrol Geol 17:47–46

    Google Scholar 

  • Stover LE, Sarjeant WAS, Drugg WS (1977) The Jurassic dinoflagellate genus Stephanelytron: emendation and discussion. Micropaleontology 23:330–338

    Article  Google Scholar 

  • Stricanne L, Munnecke A, Pross J, Servais T (2004) Acritarch distribution along an inshore–offshore transect in the Gorstian (lower Ludlow) of Gotland, Sweden. Rev Palaeobot Palynol 30:195–216

    Article  Google Scholar 

  • Strother PK (1996) Chapter 5. Acritarchs. In: Jansonius J, McGregor DC (eds) Palynology: principles and applications, vol 1. American Association of Stratigraphic Palynologists Foundation, Dallas, pp 81–106

    Google Scholar 

  • Talyzina NM, Moldowan JM, Johannisson A, Fago FJ (2000) Affinities of early Cambrian acritarchs studied by using microscopy, fluorescence flow cytometry and biomarkers. Rev Palaeobot Palynol 108:37–53

    Article  Google Scholar 

  • Tappan H (1980) The paleobiology of plant protists. WH Freeman and Co., San Francisco

    Google Scholar 

  • Traverse A (ed) (1994) Sedimentation of organic particles. Cambridge University Press, Cambridge

    Google Scholar 

  • Traverse A (2007) Paleopalynology, 2nd edn. Springer, Dordrecht

    Google Scholar 

  • Tyson RV (1995) Sedimentary organic matter. Chapman & Hall, London

    Book  Google Scholar 

  • Volkman JK, Barrett SM, Dunstan GA, Jeffrey SW (1993) Geochemical significance of the occurrence of dinosterol and other 4-methyl sterols in a marine diatom. Org Geochem 20:7–15

    Article  Google Scholar 

  • Von Post L (1916) Om skogsträdpollen I sydsvenska torfmossclagerfölyder. Geol Fören Stockholm Förh 38:384–390

    Google Scholar 

  • Voss-Foucart MF, Jeuniaux C (1972) Lack of chitin in a sample of Ordovician chitinozoa. J Paleontol 46:769–770

    Google Scholar 

  • Warrington G (1996) Chapter 18. Permian spores and pollen. In: Jansonius J, McGregor DC (eds) Palynology: principles and applications, vol 2. American Association of Stratigraphic Palynologists Foundation, Dallas, pp 607–619

    Google Scholar 

  • Williams GL, Fensome RA, MacRae RA (2017) DINOFLAJ3. American Association of Stratigraphic Palynologists, Data Series no. 2. http://dinoflaj.smu.ca/dinoflaj3

  • Wood GD, Gabriel AM, Lawson JC (1996) Chapter 3. Palynological techniques – processing and microscopy. In: Jansonius J, McGregor DC (eds) Palynology: principles and applications, vol 2. American Association of Stratigraphic Palynologists Foundation, Dallas, pp 29–50

    Google Scholar 

  • Zonneveld KAF, Marret F, Versteegh G et al (2013) Atlas of modern dinoflagellate cyst distribution based on k2405 data points. Rev Palaeobot Palynol 191:1–197

    Article  Google Scholar 

Download references

Acknowledgments

We thank Dawn Kellett of GSC Atlantic for her insightful review that resulted in significant improvements to the text, as well as input from two anonymous reviewers and editor Rasoul Sorkhabi. We are grateful to Bill MacMillan of GSC Atlantic for help with the drafting of figures. This is ESS Contribution 20170276.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Graham Williams .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Crown

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Williams, G., Fensome, R., Miller, M., Bujak, J. (2018). Microfossils: Palynology. In: Sorkhabi, R. (eds) Encyclopedia of Petroleum Geoscience. Encyclopedia of Earth Sciences Series. Springer, Cham. https://doi.org/10.1007/978-3-319-02330-4_146-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-02330-4_146-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-02330-4

  • Online ISBN: 978-3-319-02330-4

  • eBook Packages: Springer Reference Earth and Environm. ScienceReference Module Physical and Materials ScienceReference Module Earth and Environmental Sciences

Publish with us

Policies and ethics