Skip to main content

Pigments and Colorants from Filamentous Fungi

  • Living reference work entry
  • First Online:
Fungal Metabolites

Abstract

With the impact of globalization on research trends; the search for healthier lifestyles; the increasing public demand for natural, organic, and “clean labelled” products; as well as the growing global market for natural colorants in economically fast-growing countries all over the world, filamentous fungi started to be investigated as readily available sources of chemically diverse pigments and colorants. The formulation of recipes containing fungal pigmented secondary metabolites has steadily increased over recent years. For all of these reasons, this chapter highlights exciting findings, which may pave the way for alternative and/or additional biotechnological processes for industrial applications of fungal pigments and colorants. The fungal biodiversity from terrestrial and marine origins is first discussed as potential sources of well-known carotenoid pigments (e.g., β-carotene, lycopene) and other specific pigmented polyketide molecules, such as Monascus and Monascus-like azaphilones, which are yet not known to be biosynthesized by any other organisms like higher plants. These polyketide pigments also represent promising and yet unexplored hydroxy-anthraquinoid colorants from Ascomycetous species. The putative biosynthetic pathways of the carotenoids and polyketide-derivative colored molecules (i.e., azaphilones, hydroxyanthraquinones, and naphthoquinones) in pigment-producing fungal species are investigated herein. As an additional aspect, this chapter describes biotechnological approaches for improving fungal pigment production and identifying new clean opportunities for the future. Alternative greener extraction processes of the fungal colored compounds are also further explored. The current industrial applications along with their limits and further opportunities for the use of fungal pigments in beverage, food, pharmaceutical, cosmetic, textile, and painting areas are, then, presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

ADI:

Acceptable daily intake

ASE:

Accelerated solvent extraction

ATPS:

Aqueous two-phase system

BIK:

Bikaverin polyketide synthase

CoA:

Coenzyme A

CWD:

Cold-water-dispersible

DOE:

Design of Experiment

EAE:

Enzyme assisted extraction

EFSA:

European Food Safety Authority

EU:

European Union

FDA:

Food and Drug Agency

GMO:

Genetic Modified Organism

GMP:

Good Manufacturing Practices

GRAS:

Generally Recognized As Safe

HPLC:

High performance liquid chromatography

IL:

Ionic liquids

IPP:

IsoPentenyl-pyrophosphate

JECFA:

Joint FAO/WHO Expert Committee on Food Additives

MAE:

Microwave assisted extraction

PCR:

Polymerase chain reaction

PKS:

Polyketide synthase

PLE:

Pressurised fluid extraction

PUFAs:

Polyunsaturated fatty acids

SFE:

Subcritical fluid extraction

SWE:

Subcritical water extraction

TLC:

Thin layer chromatography

UAE:

Ultrasound assisted extraction

UV:

Ultraviolet

References

  1. Dufossé L, Galaup P, Yaron A, Arad SH, Blanc P, Chidambara Murthy KN, Ravishankar GA (2005) Microorganisms and microalgae as sources of pigments for food use: a scientific oddity or an industrial reality? Trends Food Sci Technol 16:389–406

    Article  CAS  Google Scholar 

  2. Dufossé L (2006) Microbial production of food grade pigments. Food Technol Biotechnol 44:313–321

    Google Scholar 

  3. Dufossé L, Fouillaud M, Caro Y, Mapari SAS, Sutthiwong N (2014) Filamentous fungi are large-scale producers of pigments and colorants for the food industry. Curr Opin Biotechnol 26:56–61

    Article  CAS  Google Scholar 

  4. Sutthiwong N, Caro Y, Laurent P, Fouillaud M, Valla A, Dufossé L (2013) Production of biocolours (Chapter 12). In: Panesar PS, Marwaha SS (eds) Biotechnology in agriculture and food processing: opportunities and challenges, 1st edn. Francis %26 Taylor, CRC Press, Boca Raton

    Google Scholar 

  5. Frisvad JC, Andersen B, Thrane U (2008) The use of secondary metabolite profiling in fungal taxonomy. Mycol Res 112:231–240

    Article  CAS  Google Scholar 

  6. Kroken S, Glass NL, Taylor JW, Yoder OC, Turgeon BG (2003) Phylogenomic analysis of type I polyketide synthase genes in pathogenic and saprobic ascomycetes. Proc Natl Acad Sci U S A 100:15670–15675. doi:10.1073/pnas.2532165100

    Article  CAS  Google Scholar 

  7. Brown DW, Butchko RA, Baker SE, Proctor RH (2012) Phylogenomic and functional domain analysis of polyketide synthases in Fusarium. Fungal Biol 116:318–331

    Article  CAS  Google Scholar 

  8. Gao J-M, Yang S-X, Qin J-C (2013) Azaphilones: chemistry and biology. Chem Rev 113:4755–4811

    Article  CAS  Google Scholar 

  9. Yang Y, Liu B, Du X, Li P, Liang B, Cheng X, Du L, Huang D, Wang L, Wang S (2015) Complete genome sequence and transcriptomics analyses reveal pigment biosynthesis and regulatory mechanisms in an industrial strain, Monascus purpureus YY-1. Sci Rep 5:8331. doi:10.1038/srep08331

    Article  CAS  Google Scholar 

  10. Fu G, Xu Y, Li Y, Tan W (2007) Construction of a replacement vector to disrupt pksCT gene for the mycotoxin citrinin biosynthesis in Monascus aurantiacus and maintain food red pigment production. Asia Pac J Clin Nutr 16(Suppl 1):137–142

    CAS  Google Scholar 

  11. Woo PC, Lam CW, Tam EW, Lee KC, Yung KK, Leung CK, Sze KH, Lau SK, Yuen KY (2014) The biosynthetic pathway for a thousand-year-old natural food colorant and citrinin in Penicillium marneffei. Sci Rep 4:6728. doi:10.1038/srep06728

    Article  CAS  Google Scholar 

  12. Kumar M, Dwivedi P, Sharma AK, Sankar M, Patil RD, Singh ND (2014) Apoptosis and lipid peroxidation in ochratoxin A- and citrinin-induced nephrotoxicity in rabbits. Toxicol Ind Health 30:90–98

    Article  CAS  Google Scholar 

  13. Leite DP Jr, Yamamoto AC, Amadio JV, Martins ER, do Santos FA, Simões Sde A, Hahn RC (2012) Trichocomaceae: biodiversity of Aspergillus spp and Penicillium spp residing in libraries. J Infect Dev Ctries 6:734–742

    Google Scholar 

  14. Frisvad JC (2015) Taxonomy, chemodiversity, and chemoconsistency of Aspergillus, Penicillium, and Talaromyces species. Front Microbiol 5:773. doi:10.3389/fmicb.2014.00773

    Article  Google Scholar 

  15. Teixeira MFS, Martins MS, Da Silva JC, Kirsch LS, Fernandes OCC, Carneiro ALB, De Conti R, Durán N (2012) Amazonian biodiversity: pigments from Aspergillus and Penicillium-characterizations, antibacterial activities and their toxicities. Curr Trends Biotechnol Pharmacol 6:300–311

    CAS  Google Scholar 

  16. Sardaryan E (2002) Strain of the microorganism Penicillium oxalicum var. armeniaca and its application. Patent US 6340586 B1: 4

    Google Scholar 

  17. Caro Y, Anamale L, Fouillaud M, Laurent P, Petit T, Dufossé L (2012) Natural hydroxyanthraquinoid pigments as potent food grade colorants: an overview. Nat Prod Bioprospect 2:174–193

    Article  CAS  Google Scholar 

  18. Ogihara J, Kato J, Oishi K, Fujimoto Y (2001) PP-R, 7-(2-Hydroxyethyl)-Monascorubramine, a red pigment produced in the mycelia of Penicillium sp. AZ. J Biosci Bioeng 91:44–47

    Article  CAS  Google Scholar 

  19. Mapari SAS, Hansen ME, Meyer AS, Thrane U (2008) Computerized screening for novel producers of Monascus like food pigments in Penicillium species. J Agric Food Chem 56:9981–9989. doi:10.1021/jf801817q

    Article  CAS  Google Scholar 

  20. Mendez A, Perez C, Montanez JC, Martinez G, Aguilar CN (2011) Red pigment production by Penicillium purpurogenum GH2 is influenced by pH and temperature. J Zhejiang Univ-Sci B (Biomed Biotechnol) 12:961–968

    Article  CAS  Google Scholar 

  21. Hailei W, Zhifang R, Ping L, Yanchang G, Guosheng L, Jianming Y (2011) Improvement of the production of a red pigment in Penicillium sp HSD07B synthesized during co-culture with Candida tropicalis. Bioresour Technol 102:6082–6087

    Article  CAS  Google Scholar 

  22. Santos-Ebinuma VC, Teixeira MFS, Pessoa A Jr (2013) Submerged culture conditions for the production of alternative natural colorants by a new isolated Penicillium purpurogenum DPUA 1275. J Microbiol Biotechnol 23:802–810

    Article  CAS  Google Scholar 

  23. Yilmaz N, Houbraken J, Hoekstra ES, Frisvad JC, Visagie CM, Samson RA (2012) Delimitation and characterisation of Talaromyces purpurogenus and related species. Persoonia 29:39–54. doi:10.3767/003158512X659500

    Article  CAS  Google Scholar 

  24. Espinoza-Hernández TC, Rodríguez-Herrera R, Aguilar-González CN, Lara-Victoriano F, Reyes-Valdés MH, Castillo-Reyes F (2013) Characterization of three novel pigment-producing Penicillium strains isolated from the Mexican semidesert. Afr J Biotechnol 12:3405–3413

    Google Scholar 

  25. Mapari SAS, Meyer AS, Thrane U, Frisvad JC (2009) Identification of potentially safe promising fungal cell factories for the production of polyketide natural food colorants using chemotaxonomic rationale. Microb Cell Fact 8:24–28

    Article  CAS  Google Scholar 

  26. Jeya M, Joo AR, Lee KM, Tiwari MK, Lee KM, Kim SH, Lee JK (2010) Characterization of b-glucosidase from a strain of Penicillium purpurogenum KJS506. Appl Microbiol Biotechnol 86:1473–1484

    Article  CAS  Google Scholar 

  27. Zou S, Xie L, Liu Y, Kaleem I, Zhang G, Li C (2012) N-linked glycosylation influences on the catalytic and biochemical properties of Penicillium purpurogenum b-d-glucuronidase. J Biotechnol 157:399–404

    Article  CAS  Google Scholar 

  28. Houbraken J, de Vries RP, Samson RA (2014) Chapter four – modern taxonomy of biotechnologically important Aspergillus and Penicillium species. Adv Appl Microbiol 86:199–249

    Article  Google Scholar 

  29. Arai T, Koganei K, Umemura S, Kojima R, Kato J, Kasumi T, Ogihara J (2013) Importance of the ammonia assimilation by Penicillium purpurogenum in amino derivative Monascus pigment, PP-V, production. AMB Express 3:19, http://www.amb-express.com/content/3/1/19

    Article  CAS  Google Scholar 

  30. Mapari SAS, Meyer AS, Thrane U, Frisvad JC (2012) Production of Monascus-like pigments. European patent EP 2010/2262862 A2; 2012

    Google Scholar 

  31. Frisvad JC, Yilmaz N, Thrane U, Rasmussen KB, Houbraken J, Samson RA (2013) Talaromyces atroroseus, a new species efficiently producing industrially relevant red pigments. PLoS One 8:e84102. doi: 10.1371/journal.pone.0084102

    Google Scholar 

  32. Gessler NN, Egorova AS, Belozerskaya TA (2013) Fungal anthraquinones. Appl Biochem Micro + 49:85–99

    Google Scholar 

  33. Gonçalves RCR, Lisboa HCF, Pombeiro-Sponchiado SR (2012) Characterization of melanin pigment produced by Aspergillus nidulans. World J Microbiol Biotechnol 28:1467–1474

    Article  CAS  Google Scholar 

  34. Brakhage AA, Liebmann B (2005) Aspergillus fumigatus conidial pigment and cAMP signal transduction: significance for virulence. Med Mycol 43:S75–S82

    Article  CAS  Google Scholar 

  35. Chiang YM, Meyer KM, Praseuth M, Baker SE, Bruno KS, Wang CC (2011) Characterization of a polyketide synthase in Aspergillus niger whose product is a precursor for both dihydroxynaphthalene (DHN) melanin and naphtho-γ-pyrone. Fungal Genet Biol 48:430–437

    Article  CAS  Google Scholar 

  36. Jørgensen TR, Park J, Arentshorst M, van Welzen AM, Lamers G, Vankuyk PA, Damveld RA, van den Hondel CA, Nielsen KF, Frisvad JC, Ram AF (2011) The molecular and genetic basis of conidial pigmentation in Aspergillus niger. Fungal Genet Biol 48:544–553

    Article  CAS  Google Scholar 

  37. Zabala AO, Xu W, Chooi YH, Tang Y (2012) Discovery and characterization of a silent gene cluster that produces azaphilones from Aspergillus niger ATCC 1015 reveal a Hydroxylation-Mediated Pyran-Ring Formation. Chem Biol 19:1049–1059

    Article  CAS  Google Scholar 

  38. Ogasawara N, Mizuno R, Kawai KI (1997) Structures of a new type of yellow pigments, falconensones A and B, from Emericella falconensis. J Chem Soc Perkin Trans 1:2527–2530

    Article  Google Scholar 

  39. Mapari SAS, Nielsen KF, Larsen TO, Frisvad JC, Meyer AS, Thrane U (2005) Exploring fungal biodiversity for the production of water-soluble pigments as potential natural food colorants. Curr Opin Biotechnol 16:231–238

    Article  CAS  Google Scholar 

  40. Hideyuki T, Koohei N, Ken-ichi K (1996) Isolation and structures of dicyanide derivatives, epurpurins A to C, from Emericella purpurea. Chem Pharm Bull (Tokyo) 44:2227–2230

    Article  Google Scholar 

  41. Rank C, Nielsen KF, Larsen TO, Varga J, Samson RA, Frisvad JC (2011) Distribution of sterigmatocystin in filamentous fungi. Fungal Biol-UK 115:406–420

    Article  CAS  Google Scholar 

  42. Velmurugan P, Kamala-Kannan S, Balachandar V, Lakshmanaperumalsamy P, Chae JC, Oh BT (2010) Natural pigment extraction from five filamentous fungi for industrial applications and dyeing of leather. Carbohydr Polym 79:262–268

    Article  CAS  Google Scholar 

  43. Frisvad JC, Thrane U (2004) Mycotoxin production by common filamentous fungi. In: Samson RA, Hoekstra ES, Frisvad JC (eds) Introduction to food- and airborne fungi. Centraalbureau voor Schimmelcultures (CBS), Utrecht

    Google Scholar 

  44. Anke H, Kolthoum I, Zähner H, Laatsch H (1980) Metabolic products of microorganisms. 185. The anthraquinones of the Aspergillus glaucus group. I. Occurrence, isolation, identification and antimicrobial activity. Arch Microbiol 126:223–230

    Article  CAS  Google Scholar 

  45. Li DL, Li XM, Wang BG (2009) Natural anthraquinone derivatives from a marine mangrove plant-derived endophytic fungus Eurotium rubrum: structural elucidation and DPPH radical scavenging activity. J Microbiol Biotechnol 19:675–680

    CAS  Google Scholar 

  46. Cho YJ, Hwang HJ, Kim SW, Song CH, Yun JW (2002) Effect of carbon source and aeration rate on broth rheology and fungal morphology during red pigment production by Paecilomyces sinclairii in a batch bioreactor. J Biotechnol 95:13–23

    Article  CAS  Google Scholar 

  47. Díaz-Sánchez V, Avalos J, Limón MC (2012) Identification and regulation of fusA, the polyketide synthase gene responsible for fusarin production in Fusarium fujikuroi. Appl Environ Microbiol 78:7258–7266

    Article  CAS  Google Scholar 

  48. Niehaus EM, Janevska S, von Bargen KW, Sieber CMK, Harrer H, Humpf H-U, Tudzynski B (2014) Apicidin F: characterization and genetic manipulation of nesecondary metabolite gene cluster in the rice pathogen Fusarium fujikuroi. PLoS One 9:e103336. doi:10.1371/journal.pone.0103336

    Article  CAS  Google Scholar 

  49. Tudzynski B (2005) Gibberellin biosynthesis in fungi: genes, enzymes, evolution, and impact on biotechnology. Appl Microbiol Biotechnol 66:597–611

    Article  CAS  Google Scholar 

  50. Avalos J, Prado-Cabrero A, Estrada AF (2012) Neurosporaxanthin production by Neurospora and Fusarium (Chapter 18). In: Barredo JL (ed) Microbial carotenoids from fungi: methods in molecular biology, vol 898. Springer, New York

    Chapter  Google Scholar 

  51. Tatum JH, Baker RA, Berry RE (1985) Naphthoquinones produced by Fusarium oxysporum isolated from citrus. Phytochemistry 24:457–459

    Article  CAS  Google Scholar 

  52. Norred WP, Plattner RD, Vesonder RF, Bacon CW, Voss KA (1992) Effects of selected secondary metabolites of Fusarium moniliforme on unscheduled synthesis of DNA by rat primary hepatocytes. Food Chem Toxicol 30:233–237

    Article  CAS  Google Scholar 

  53. Kitagawa A, Sugihara Y, Okumura M, Kawai K, Hamasaki T (1997) Reexamination of respiration-impairing effect of bikaverin on isolated mitochondria. Cereal Res Commun 25:451–452

    CAS  Google Scholar 

  54. Wiemann P, Willmann A, Straeten M, Kleigrewe K, Beyer M, Humpf H-U, Tudzynski B (2009) Biosynthesis of the red pigment bikaverin in Fusarium fujikuroi: genes, their function and regulation. Mol Microbiol 72:931–946

    Article  CAS  Google Scholar 

  55. Limón MC, Rodríguez-Ortiz R, Avalos J (2010) Bikaverin production and applications. Appl Microbiol Biotechnol 87:21–29

    Article  CAS  Google Scholar 

  56. Rodríguez-Ortiz R, Mehta B, Avalos J, Limón M (2010) Stimulation of bikaverin production by sucrose and by salt starvation in Fusarium fujikuroi. Appl Microbiol Biotechnol 85:1991–2000

    Article  CAS  Google Scholar 

  57. Frandsen RJ, Nielsen NJ, Maolanon N, Sørensen JC, Olsson S, Nielsen J, Giese H (2006) The biosynthetic pathway for aurofusarin in Fusarium graminearum reveals a close link between the naphthoquinones and naphthopyrones. Mol Microbiol 61:1069–1080

    Article  CAS  Google Scholar 

  58. Frandsen RJN, Schutt C, Lund BW, Staerk D, Nielsen J, Olsson S, Giese H (2011) Two novel classes of enzymes are required for the biosynthesis of aurofusarin in Fusarium graminearum. J Biol Chem 286:10419–10428

    Article  CAS  Google Scholar 

  59. Graziani S, Vasnier C, Daboussi MJ (2004) Novel polyketide synthase from Nectria haematococca. Appl Environ Microbiol 70:2984–2988

    Article  CAS  Google Scholar 

  60. Proctor RH, Butchko RAE, Brown DW, Moretti A (2007) Functional characterization, sequence comparisons and distribution of a polyketide synthase gene required for perithecial pigmentation in some Fusarium species. Food Addit Contam 24:1076–1087

    Article  CAS  Google Scholar 

  61. Boonyapranai K, Tungpradit R, Lhieochaiphant S, Phutrakul S (2008) Optimization of submerged culture for the production of naphthoquinones pigment by Fusarium verticillioides. Chiang Mai J Sci 35:457–466

    CAS  Google Scholar 

  62. Studt L, Wiemann P, Kleigrewe K, Humpf H-U, Tudzynski B (2012) Biosynthesis of fusarubins accounts for pigmentation of Fusarium fujikuroi perithecia. Appl Environ Microbiol 78:4468–4680

    Article  CAS  Google Scholar 

  63. Baker RA, Tatum JH (1998) Novel anthraquinones from stationary cultures of Fusarium oxysporum. J Ferment Bioeng 85:359–361

    Article  CAS  Google Scholar 

  64. Cajori FA, Otani TT, Hamilton MA (1954) The isolation and some properties of an antibiotic from Fusarium bostrycoides. J Biol Chem 208:107–114

    CAS  Google Scholar 

  65. Ashley JN, Hobbs BC, Raistrick H (1937) Studies in the biochemistry of microorganisms LIII. The crystallinecolouring matters of Fusarium culmorum (W.G. Smith) Sacc. and related forms. Biochem J 31:385–397

    Article  CAS  Google Scholar 

  66. Samson RA, Hoekstra ES, Frisvad JC (2000) Introduction to food- and airborne fungi. Centraalbureau voor Schimmelcultures (CBS), Utrecht

    Google Scholar 

  67. Medentsev AG, Akimenko VK (1998) Naphthoquinone metabolites of the fungi. Phytochemistry 47:935–959

    Article  CAS  Google Scholar 

  68. Kreitman G, Nord FF (1949) Lycopersin, pigment of Fusarium lycopersici. Arch Biochem 21:457–458

    CAS  Google Scholar 

  69. Son SW, Kim HY, Choi GJ, Lim HK, Jang KS, Lee SO, Lee S, Sung ND, Kim J-C (2008) Bikaverin and fusaric acid from Fusarium oxysporum show antioomycete activity against Phytophthora infestans. J Appl Microbiol 104:692–698

    Article  CAS  Google Scholar 

  70. Zhan J, Burns AM, Liu MX, Faeth SH, Gunatilaka AAL (2007) Search for cell motility and angiogenesis inhibitors with potential anticancer activity: beauvericin and other constituents of two endophytic strains of Fusarium oxysporum. J Nat Prod 70:227–232

    Article  CAS  Google Scholar 

  71. Sørensen JL, Nielsen KF, Sondergaard TE (2012) Redirection of pigment biosynthesis to isocoumarins in Fusarium. Fungal Genet Biol 49:613–618

    Article  CAS  Google Scholar 

  72. Medentsev AG, Arinbasarova AY, Akimenko VK (2005) Biosynthesis of naphthoquinone pigments by fungi of the genus Fusarium. Appl Biochem Micro + 41:503–507

    Google Scholar 

  73. Gaffoor I, Brown DW, Plattner R, Proctor RH, Qi W et al (2005) Functional analysis of the polyketide synthase genes in the filamentous fungus Gibberella zeae (anamorph Fusarium graminearum). Eukaryot Cell 4:1926–1933

    Article  CAS  Google Scholar 

  74. Parisot D, Devys M, Barbier M (1990) Naphthoquinone pigments related to fusarubin from the fungus Fusarium solani (Mart) Sacc. Microbios 64:31–47

    CAS  Google Scholar 

  75. Brown DW, Butchko RAE, Busman M, Proctor RH (2012) Identification of gene clusters associated with fusaric acid, fusarin, and perithecial pigment production in Fusarium verticillioides. Fungal Genet Biol 49:521–532

    Article  CAS  Google Scholar 

  76. Vinale F, Sivasithamparam K, Ghisalberti EL, Marra R, Woo SL, Lorito M (2008) Trichoderma–plant–pathogen interactions. Soil Biol Biochem 40:1–10

    Article  CAS  Google Scholar 

  77. Lin YR, Lo CT, Li SY, Peng KC (2012) Involvement of pachybasin and emodin in self-regulation of Trichoderma harzianum mycoparasitic coiling. J Agric Food Chem 60:2123–2128

    Article  CAS  Google Scholar 

  78. Vinale F, Ghisalberti EL, Sivasithamparam K, Marra R, Ritieni A, Ferracane R, Woo S, Lorito M (2009) Factors affecting the production of Trichoderma harzianum secondary metabolites during the interaction with different plant pathogens. Lett Appl Microbiol 48:705–711

    CAS  Google Scholar 

  79. Durán N, Teixeira MFS, de Conti R, Esposito E (2002) Ecological-friendly pigments from fungi. Crit Rev Food Sci Nutr 42:53–66

    Article  Google Scholar 

  80. Andersen B, Dongo A, Pryor BM (2008) Secondary metabolite profiling of Alternaria dauci, A. porri, A. solani, and A. tomatophila. Mycol Res 112:241–250

    Article  CAS  Google Scholar 

  81. Peciulyte R, Kacergius A (2012) Lecanicillium aphanocladii – a new specie to the mycoflora of Lithuania and a new pathogen of tree leaves mining insects. Bot Lith 18:133–146

    Google Scholar 

  82. Unagul P, Wongsa P, Kittakoop P, Intamas S, Srikitikulchai P, Tanticharoen M (2005) Production of red pigments by the insect pathogenic fungus Cordyceps unilateralis BOC 1869. J Ind Microbiol Biotechnol 32:135–140

    Article  CAS  Google Scholar 

  83. Vining LC, Kelleher WJ, Schwarting AE (1962) Oosporein production by a strain of Beauvaria bassiana originally identified as Amanita muscaria. Can J Microbiol 8:931–933

    Article  CAS  Google Scholar 

  84. Souza PN, Grigoletto TL, de Moraes LA, Abreu LM, Guimarães LH, Santos CR, Galvão LR, Cardoso PG (2015) Production and chemical characterization of pigments in filamentous fungi. Microbiology. doi:10.1099/mic.0.000168

    Google Scholar 

  85. El Basyouni SH, Brewer D, Vining LC (1968) Pigments of the genus Beauvaria. Canad J Bot 46:441–448

    Article  Google Scholar 

  86. Watt C-K, McInnes AG, Smith DG, Wright JLC, Vining LC (1977) The yellow pigments of Beauvaria species. Structures of tenellin and bassianin. Canad J Chem 55:4090–4098

    Article  Google Scholar 

  87. Goldberg I, Rokem JS (2009) Organic and fatty acid production. In: Schaechter M (ed) Encyclopedia of microbiology, 3rd edn. Academic, Oxford

    Google Scholar 

  88. Kornsakulkarn J, Thongpanchang C, Lapanun S, Srichomthong K (2009) Isocoumarin glucosides from the scale insect fungus Torrubiella tenuis BCC 12732. J Nat Prod 72:1341–1343

    Article  CAS  Google Scholar 

  89. Isaka M, Chinthanom P, Supothina S, Tobwor P, Hywel-Jones NL (2010) Pyridone and tetramic acid alkaloids from the spider pathogenic fungus Torrubiella sp. BCC 2165. J Nat Prod 73:2057–2060

    Article  CAS  Google Scholar 

  90. Stadler M, Hellwig V (2005) Chemotaxonomy of the Xylariaceae and remarkable bioactive compounds from Xylariales and their associated asexual stages. Recent Res Dev Phytochem 9:41–93

    CAS  Google Scholar 

  91. Stadler M, Hellwig V (2004) PCR-based data and secondary metabolites as chemotaxonomic markers in high throughput screening for bioactive compounds from fungi handbook of industrial mycology. In: Zhiqiang A (ed) Marcel handbook of industrial mycology. Dekker, New York

    Google Scholar 

  92. Stadler M, Fournier J (2006) Pigment chemistry, taxonomy and phylogeny of the Hypoxyloideae (Xylariaceae). Rev Iberoam Micol 23:160–170

    Article  Google Scholar 

  93. Kuhnert E, Heitkämper S, Fournier J, Surup F, Stadler M (2014) Hypoxyvermelhotins A–C, new pigments from Hypoxylon lechatii sp. nov. Fungal Biol 118:242–252

    Article  CAS  Google Scholar 

  94. Kuhnert E, Surup F, Herrmann J, Huch V, Müller R, Stadler M (2015) Rickenyls A–E, antioxidative terphenyls from the fungus Hypoxylon rickii (Xylariaceae, Ascomycota). Phytochemistry 118:68–73

    Article  CAS  Google Scholar 

  95. Kuhnert E, Surup F, Wiebach V, Bernecker S, Stadler M (2015) Botryane, noreudesmane and abietane terpenoids from the ascomycete Hypoxylon rickii. Phytochemistry 117:116–122

    Article  CAS  Google Scholar 

  96. Stadler M, Fournier J, Quang DN, Akulov AY (2007) Metabolomic studies on the chemical ecology of the Xylariaceae (Ascomycota). Nat Prod Commun 2:287–304

    CAS  Google Scholar 

  97. Steglich W, Klaar M, Furtner W (1974) (+)-Mitorubrin derivatives from Hypoxylon fragiforme. Phytochemistry 13:2874–2875

    Article  CAS  Google Scholar 

  98. Anderson JR, Edwards RL, Whalley AJS (1983) Metabolites of the higher fungi. Part 21. 3-Methyl-3,4-dihydroisocoumarins and related compounds from the ascomycete family Xylariaceae. J Chem Soc Perkin Trans 1:2185–2192

    Article  Google Scholar 

  99. Edwards RL, Fawcett V, Maitland DJ, Nettleton R, Shields L, Whalley AJS (1991) Hypoxyxylerone. A novel green pigment from the fungus Hypoxylon fragiforme (pers.: Fries) Kickx. J Chem Soc Chem Commun 15:1009–1010

    Article  Google Scholar 

  100. Sir E, Kuhnert E, Surup F, Hyde K, Stadler M (2015) Discovery of new mitorubrin derivatives from Hypoxylon fulvo-sulphureum sp. nov. (Ascomycota, Xylariales). Mycol Progress 14:1–12

    Article  Google Scholar 

  101. Bodo B, Tih RG, Davoust D, Jacquemin H (1983) Hypoxylone, a naphthyl-naphthoquinone pigment from the fungus Hypoxylon sclerophaeum. Phytochemistry 22:2579–2581

    Article  CAS  Google Scholar 

  102. Kuhnert E, Surup F, Sir E, Lambert C, Hyde K, Hladki A, Romero A, Stadler M (2015) Lenormandins A-G, new azaphilones from Hypoxylon lenormandii and Hypoxylon jaklitschii sp. nov., recognised by chemotaxonomic data. Fungal Biol 71:165–184

    Google Scholar 

  103. Stadler M, Fournier J, Granmo A, Beltrán-Tejera E (2008) The “red Hypoxylons” of the temperate and subtropical Northern hemisphere. N Am Fungi 3:73–125

    Article  Google Scholar 

  104. Anderson R (2008) Hypoxylon in Britain and Ireland. 2. Hypoxylon rubiginosum and its allies. Field Mycol 9:41–48

    Article  Google Scholar 

  105. Greenhalgh GN, Whalley AJS (1970) Stromal pigments of some species of Hypoxylon. T Brit Mycol Soc 55:89–96

    Article  Google Scholar 

  106. Læssøe T, Srikitikulchai P, Fournier J, Köpcke B, Stadler M (2010) Lepraric acid derivatives as chemotaxonomic markers in Hypoxylon aeruginosum, Chlorostroma subcubisporum and C. cyaninum sp. nov. Fungal Biol 114:481–489

    Article  CAS  Google Scholar 

  107. Ellis GP (1977) Naturally occurring chromones (chapter VII). In: Ellis GP (ed) Chemistry of heterocyclic compounds: chromenes, chromanones, and chromones, vol 31. Wiley, Hoboken

    Chapter  Google Scholar 

  108. Quang DN, Hashimoto T, Fournier J, Stadler M, Radulovic N, Asakawa Y (2005) Sassafrins A-D, new antimicrobial azaphilones from the fungus Creosphaeria sassafras. Tetrahedron 61:1743–1748

    Article  CAS  Google Scholar 

  109. Quang DN, Hashimoto T, Nomura Y, Wollweber H, Hellwig V, Fournier J, Stadler M, Asakawa Y (2005) Cohaerins A and B, azaphilones from the fungus Hypoxylon cohaerens, and comparison of HPLC-based metabolite profiles in Hypoxylon sect. Annulata. Phytochemistry 66:797–809

    Article  CAS  Google Scholar 

  110. Hsieh HM, Ju YM, Rogers JD (2005) Molecular phylogeny of Hypoxylon and closely related genera. Mycologia 97:844–865

    Article  CAS  Google Scholar 

  111. Quang DN, Stadler M, Fournier J, Tomita A, Hashimoto T (2006) Cohaerins C–F, four azaphilones from the xylariaceous fungus Annulohypoxylon cohaerens. Tetrahedron 62:6349–6354

    Article  CAS  Google Scholar 

  112. Surup F, Mohr KI, Jansen R, Stadler M (2013) Cohaerins G–K, azaphilone pigments from Annulohypoxylon cohaerens and absolute stereochemistry of cohaerins C–K. Phytochemistry 95:252–258

    Article  CAS  Google Scholar 

  113. Stadler M, Wollweber H, Fournier J (2004) A host-specific species of Hypoxylon from France, and notes on the chemotaxonomy of the “Hypoxylon rubiginosum complex”. Mycotaxon 90:187–211

    Google Scholar 

  114. Hellwig V, Ju Y-M, Rogers JD, Fournier J, Stadler M (2005) Hypomiltin, a novel azaphilone from Hypoxylon hypomiltum, and chemotypes in Hypoxylon sect. Hypoxylon as inferred from analytical HPLC profiling. Mycol Prog 4:39–54

    Article  Google Scholar 

  115. Spatafora JW, Blackwell M (1993) Molecular systematics of unitunicate perithecial ascomycetes: the Clavicipitales-Hypocreales connection. Mycologia 85:912–922

    Article  CAS  Google Scholar 

  116. Stadler M, Wollweber H, Mühlbauer A, Asakawa Y, Hashimoto T, Rogers JD, Ju Y-M, Wetzstein H-G, Tichy H-V (2001) Molecular chemotaxonomy of Daldinia and other Xylariaceae. Mycol Res 105:1191–1205

    Article  CAS  Google Scholar 

  117. Hashimoto T, Tahara S, Takaoka S, Tori M, Asakawa Y (1994) Structures of daldinins A-C, three novel azaphilone derivatives from ascomycetous fungus Daldinia concentrica. Chem Pharm Bull 42:2397–2399

    Article  CAS  Google Scholar 

  118. Soytong K, Kanokmedhakul S, Kukongviriyapa V, Isobe M (2001) Application of Chaetomium species (Ketomium) as a new broad spectrum biological fungicide for plant disease control: a review article. Fungal Divers 7:1–15

    Google Scholar 

  119. Kanokmedhakul S, Kanokmedhakul K, Nasomjai P, Louangsysouphanh S, Soytong K, Isobe M, Kongsaeree P, Prabpai S, Suksamrarn A (2006) Antifungal azaphilones from the fungus Chaetomium cupreum CC3003. J Nat Prod 69:891–895

    Article  CAS  Google Scholar 

  120. Gray RW, Whalley WB (1971) The chemistry of fungi. Part LXIII. Rubrorotiorin, a metabolite of Penicillium hirayamae Udagawa. J Chem Soc 21:3575–3577

    Google Scholar 

  121. Takahashi M, Koyama K, Natori S (1990) Four new azaphilones from Chaetomium globosum var. flavo-viridae. Chem Pharm Bull 38:625–628

    Article  CAS  Google Scholar 

  122. Ge H-M, Zhang WY, Ding G, Saparpakorn P, Song YC, Hannongbua S, Tan RX (2008) Chaetoglobins A and B, two unusual alkaloids from endophytic Chaetomium globosum culture. Chem Commun 45:5978–5980. doi: 10.1039/B812144C

    Google Scholar 

  123. McMullin DR (2008) Structural characterization of secondary metabolites produced by fungi obtained from damp Canadian buildings. PhD dissertation, Ottawa-Carleton Institute of Chemistry, Carleton University, Ottawa

    Google Scholar 

  124. McMullin DR, Sumarah MW, Blackwell BA, Miller JD (2013) New azaphilones from Chaetomium globosum isolated from the built environment. Tetrahedron Lett 54:568–572

    Article  CAS  Google Scholar 

  125. Brewer D, Jerram W, Taylor A (1968) The production of cochliodinol and a related metabolite by Chaetomium species. Can J Microbiol 14:861–866

    Article  CAS  Google Scholar 

  126. Stchigel AM (2000) Estudio taxonómico de los ascomycetes del suelo. PhD Dissertation, Facultat de Medicina i Ciències de La Salut, Departament de Ciències Mèdiques Bàsiques, Unitat de Biologia i Microbiologia, Universitat Rovira i Virgili, Reus Espanya

    Google Scholar 

  127. Mouchacca J (1999) Thermophilic fungi: present taxonomic concepts. In: Johri BN, Satyanarayana T, Olsen J (eds) Thermophilic moulds in biotechnology. Springer Science %26 Business Media, Dordrecht

    Google Scholar 

  128. Wijeratne EMK, Espinosa-Artiles P, Gruener R et al (2014) Thielavialides A–E, nor-spiro-azaphilones, and a bis-spiro-azaphilone from Thielavia sp. PA0001, an endophytic fungus Isolated from aeroponically grown Physalis alkekengi. J Nat Prod 77:1467–1472

    Article  CAS  Google Scholar 

  129. Wang S, Li X-M, Teuscher F, Li D, Diesel A, Ebel R (2006) Chaetopyranin, a benzaldehyde derivative, and other related metabolites from Chaetomium globosum, an endophytic fungus derived from the marine red alga Polysiphonia urceolata. J Nat Prod 69:1622–1625

    Article  CAS  Google Scholar 

  130. Zalokar M (1957) Variations in the production of carotenoids in Neurospora. Arch Biochem Biophys 70:561–567

    Article  CAS  Google Scholar 

  131. Kritsky MS, Sokolovsky VY, Belozerskaya TA, Chernysheva EK (1982) Relationship between cyclic AMP level and accumulation of carotenoid pigments in Neurospora crassa. Arch Microbiol 133:206–208

    Article  CAS  Google Scholar 

  132. Priatni S (2014) Potential production of carotenoids from Neurospora. Bioscience 6:63–68

    Google Scholar 

  133. Yan ZW, Wang CG, Lin JG, Cai J (2013) Medium optimization using mathematical statistics for production of beta-carotene by Blakeslea trispora and fermenting process regulation. Food Sci Biotechnol 22:1667–1673

    Article  CAS  Google Scholar 

  134. Wang JF, Liu XJ, Liu RS, Li HM, Tang YJ (2012) Optimization of the mated fermentation process for the production of lycopene by Blakeslea trispora NRRL 2895 (+) and NRRL 2896 (-). Bioprocess Biosyst Eng 35:553–564

    Article  CAS  Google Scholar 

  135. Pohl U, Dohrmann U, Raugei G, Russo VEA (1984) Influence of blue-light on the accumulation of carotenoids in Phycomyces blakesleeanus. Ber Deutsch Bot Ges 97:327–333

    CAS  Google Scholar 

  136. Fraser PD, Ruiz Hidalgo MJ, Lopez Matas MA, Alvarez MI, Eslava AP, Bramley PM (1996) Carotenoid biosynthesis in wild type and mutant strains of Mucor circinelloides. Biochim Biophys Acta 1289:203–208

    Article  Google Scholar 

  137. Wang Q, Feng LR, Luo W, Li HG, Zhou Y, Yu XB (2015) Effect of inoculation process on lycopene production by Blakeslea trispora in a stirred-tank reactor. Appl Biochem Biotechnol 175:770–779

    Article  CAS  Google Scholar 

  138. Ebel R (2010) Natural product diversity from marine fungi. In: Mander L, Liu HW (eds) Comprehensive natural products II: chemistry and biology. Elsevier, Oxford

    Google Scholar 

  139. Kim SK (2013) Marine microbiology: bioactive compounds and biotechnological applications, 1st edn. Wiley-VCH, Weinheim

    Book  Google Scholar 

  140. Kjer J, Debbab A, Aly AH, Proksch P (2010) Methods for isolation of marine-derived endophytic fungi and their bioactive secondary products. Nat Protoc 5:479–490

    Article  CAS  Google Scholar 

  141. Saleem M, Nazir M (2015) Chapter 9 – Bioactive natural products from marine-derived fungi: an update. In: Atta-ur-Rahman (ed) Studies in natural products chemistry, vol 45. Elsevier, Amsterdam

    Google Scholar 

  142. Kathiresan K, Bingham BL (2001) Biology of mangroves and mangrove ecosystems. In: Southward AJ, Tyler P, Young CM, Fuiman LA (eds) Advances in marine biology, vol 40. Academic, London

    Google Scholar 

  143. Kohlmeyer J (1984) Tropical marine fungi. Mar Ecol 5:29–378

    Article  Google Scholar 

  144. Pagano MC, Dhar PP (2015) Fungal pigments. In: Gupta VK, Mach RL, Sreenivasaprasad S (eds) Fungal biomolecules: sources, applications and recent developments. Wiley, Chichester

    Google Scholar 

  145. Hiort J, Maksimenka K, Reichert M, Perović-Ottstadt S, Lin WH, Wray V, Steube K, Schaumann K, Weber H, Proksch P, Ebel R et al (2004) New natural products from the sponge-derived fungus Aspergillus niger. J Nat Prod 67:1532–1543

    Article  CAS  Google Scholar 

  146. Chooi YH, Tang Y (2012) Navigating the fungal polyketide chemical space: from genes to molecules. J Org Chem 77:9933–9953. doi:10.1021/jo301592k

    Article  CAS  Google Scholar 

  147. Sanchez JF, Somoza AD, Keller NP, Wang CCC (2012) Advances in Aspergillus secondary metabolite research in the post-genomic era. Nat Prod Rep 29:351–371

    Article  CAS  Google Scholar 

  148. Cacho RA, Tang Y, Chooi YH (2015) Next-generation sequencing approach for connecting secondary metabolites to biosynthetic gene clusters in fungi. Front Microbiol 5:article 774. doi: 10.3389/fmicb.2014.00774

    Google Scholar 

  149. Turner WB (1971) Fungal metabolites. Academic, London

    Google Scholar 

  150. Turner WB, Aldridge DC (1983) Fungal metabolites, vol 2. Academic, London

    Google Scholar 

  151. Gill M, Steglich W (1987) Pigments of fungi (Macromycetes). Prog Chem Org Nat Prod 51:1–317

    CAS  Google Scholar 

  152. Sturdikova M, Slugen D, Lesova K, Rosenberg M (2000) Mikrobialna produkcia farbnych azaphilonovych metabolitov. Chem Listy 94:105–110

    CAS  Google Scholar 

  153. Zhu J, Grigoriadis NP, Lee JP, Porco JA Jr (2005) Synthesis of the azaphilones using copper-mediated enantioselective oxidative dearomatization. J Am Chem Soc 127:9342–9343

    Article  CAS  Google Scholar 

  154. Dong J, Zhou Y, Li R, Zhou W, Li L, Zhu Y, Huang R, Zhang K (2006) New nematicidal azaphilones from the aquatic fungus Pseudohalonectria adversaria YMF1.01019. FEMS Microbiol Lett 264:65–69

    Article  CAS  Google Scholar 

  155. Osmanova N, Schultze W, Ayoub N (2010) Azaphilones: a class of fungal metabolites with diverse biological activities. Phytochem Rev 9:315–334

    Article  CAS  Google Scholar 

  156. Hajjaj H, Klaebe A, Loret MO, Goma G, Blanc PJ, Francois J (1999) Biosynthetic pathway of citrinin in the filamentous fungus Monascus ruber as revealed by 13C nuclear magnetic resonance. Appl Environ Microbiol 65:311–314

    CAS  Google Scholar 

  157. Velisek J, Davidek J, Cejpek K (2008) Biosynthesis of food constituents: natural pigments. Part 2- a review. Czech J Food Sci 26:73–98

    CAS  Google Scholar 

  158. Jongrungruangchok S, Kittakoop P, Yongsmith B, Bavovada R, Tanasupawat S, Lartpornmatulee N, Thebtaranonth Y (2004) Azaphilone pigments from a yellow mutant of the fungus Monascus kaoliang. Phytochemistry 65:2569–2575

    Article  CAS  Google Scholar 

  159. Yu JH, Keller N (2005) Regulation of secondary metabolism in filamentous fungi. Annu Rev Phytopathol 43:437–458

    Article  CAS  Google Scholar 

  160. Dufossé L (2014) Anthraquinones, the Dr Jekyll and Mr Hyde of the food pigment family. Food Res Int 65:132–136

    Article  CAS  Google Scholar 

  161. Hunger K (2003) Indusrial dyes. Chemistry, properties, applications. Wiley-VCH, Weinheim

    Google Scholar 

  162. Hanson JR (2003) Natural products: the secondary metabolites. The Royal Society of Chemistry, Cambridge

    Google Scholar 

  163. Bringmann G, Irmer A, Feineis D, Gulder TAM, Fiedler H-P (2009) Convergence in the biosynthesis of acetogenic natural products from plants, fungi, and bacteria. Phytochemistry 70:1776–1786

    Article  CAS  Google Scholar 

  164. Ma L-J, van der Does HC, Borkovich KA, Coleman JJ, Daboussi MJ et al (2010) Comparative genomics reveals mobile pathogenicity chromosomes in Fusarium. Nature 464:367–373

    Article  CAS  Google Scholar 

  165. Hansen FT, Sørensen JL, Giese H, Sondergaard TE, Frandsen RJN (2012) Quick guide to polyketide synthase and nonribosomal synthetase genes in Fusarium. Int J Food Microbiol 155:128–136

    Article  CAS  Google Scholar 

  166. Wiemann P, Sieber CMK, von Bargen KW, Studt L, Niehaus E-M et al (2013) Deciphering the cryptic genome: genome-wide analyses of the rice pathogen Fusarium fujikuroi reveal complex regulation of secondary metabolism and novel metabolites. PLoS Pathog 9:e1003475. doi:10.1371/journal.ppat.1003475

    Article  CAS  Google Scholar 

  167. Niehaus EM, Kleigrewe K, Wiemann P, Studt L, Sieber CM et al (2013) Genetic manipulation of the Fusarium fujikuroi fusarin gene cluster yields insight into the complex regulation and fusarin biosynthetic pathway. Chem Biol 20:1055–1066

    Article  CAS  Google Scholar 

  168. Von Bargen KW, Niehaus E-M, Krug I, Bergander K, Würthwein E-U, Tudzynski B, Humpf H-U (2015) Isolation and structure elucidation of fujikurins A–D: products of the PKS19 gene cluster in Fusarium fujikuroi. J Nat Prod 78:1809–1815

    Article  CAS  Google Scholar 

  169. Linnemannstöns P, Schulte J, del Mar PM, Proctor RH, Avalos J, Tudzynski B (2002) The polyketide synthase gene pks4 from Gibberella fujikuroi encodes a key enzyme in the biosynthesis of the red pigment bikaverin. Fungal Genet Biol 37:134–148

    Article  CAS  Google Scholar 

  170. Arndt B, Studt L, Wiemann P, Osmanov H, Kleigrewe K, Köhler J, Krug I, Tudzynski B, Hans-Ulrich Humpf H-U (2015) Genetic engineering, high resolution mass spectrometry and nuclear magnetic resonance spectroscopy elucidate the bikaverin biosynthetic pathway in Fusarium fujikuroi. Fungal Genet Biol 84:26–36

    Article  CAS  Google Scholar 

  171. Brown DW, Butchko RAE, Proctor RH (2008) Genomic analysis of Fusarium verticillioides. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 25:1158–1165

    Article  CAS  Google Scholar 

  172. Ma SM, Zhan J, Watanabe K, Xie X, Zhang W, Wang CC, Tang Y (2007) Enzymatic synthesis of aromatic polyketides using PKS4 from Gibberella fujikuroi. J Am Chem Soc 129:10642–10643

    Article  CAS  Google Scholar 

  173. Jin J-M, Lee J, Lee Y-W (2010) Characterization of carotenoid biosynthetic genes in the ascomycete Gibberella zeae. FEMS Microbiol Lett 302:197–202

    Google Scholar 

  174. Chang JJ, Thia C, Lin HY, Liu HL, Ho FJ, Wu JT, Shih MC, Li WH, Huan CC (2015) Integrating an algal β-carotene hydroxylase gene into a designed carotenoid-biosynthesis pathway increases carotenoid production in yeast. Bioresour Technol 184:2–8

    Article  CAS  Google Scholar 

  175. Velayos A, Fuentes-Vicente M, Aguilar-Elena R, Eslava AP, Iturriaga EA (2004) A novel fungal prenyl diphosphate synthase in the dimorphic zygomycete Mucor circinelloides. Curr Genet 45:371–377

    Article  CAS  Google Scholar 

  176. Duran N, De Conti R, Teixeira MFS (2009) Pigments from fungi: industrial perspective. In: Rai M (ed) Advances in fungal biotechnology. I.K. International Publishing House, New Delhi

    Google Scholar 

  177. U.S. Food and Drug Administration (2015) Microorganisms %26 microbial-derived ingredients used in food (partial list). http://www.fda.gov/Food/IngredientsPackagingLabeling/GRAS/MicroorganismsMicrobialDerivedIngredients/default.htm. Accessed 25 Sept 2015

  178. U.S. Food and Drug Administration (2015) Part 184- direct food substances affirmed as generally recognized as safe. https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm?CFRPart=184. Accessed 25 Sept 2015

  179. Chen Y, Nielsen J (2013) Advances in metabolic pathway and strain engineering paving the way for sustainable production of chemical building blocks. Curr Opin Biotechnol 24:965–972

    Article  CAS  Google Scholar 

  180. Cho A, Yun H, Park J, Lee S, Park S (2010) Prediction of novel synthetic pathways for the production of desired chemicals. BMC Syst Biol 28:4–35

    Google Scholar 

  181. Carbonell P, Parutto P, Baudier C, Junot C, Faulon JL (2014) Retropath: automated pipeline for embedded metabolic circuits. ACS Synth Biol 3:565–577

    Article  CAS  Google Scholar 

  182. Hanlon S, Rizzo J, Tatomer D, Lieb J, Buck M (2011) The stress response factors Yap6, Cin5, Phd1, and Skn7 direct targeting of the conserved co-repressor Tup1-Ssn6 in S. cerevisiae. PLoS One 6:e19060. doi: 10.1371/journal.pone.0019060.

    Google Scholar 

  183. Zhou H, Cheng JS, Wang BL, Fink GR (2012) Xylose isomerase overexpression along with engineering of the pentose phosphate pathway and evolutionary engineering enable rapid xylose utilization and ethanol production by Saccharomyces cerevisiae. Metab Eng 14:611–622

    Article  CAS  Google Scholar 

  184. Çakar ZP, Turanlı-Yıldız B, Alkım C, Yılmaz Ü (2012) Evolutionary engineering of Saccharomyces cerevisiae for improved industrially important properties. FEMS Yeast Res 12:171–182

    Article  CAS  Google Scholar 

  185. Yan D, Wang C, Zhou J, Liu Y, Yang M, Xing J (2014) Construction of reductive pathway in Saccharomyces cerevisiae for effective succinic acid fermentation at low pH value. Bioresour Technol 156:232–239

    Article  CAS  Google Scholar 

  186. Çakar Z, Seker U, Tamerler C, Sonderegger M, Sauer U (2005) Evolutionary engineering of multiple-stress resistant Saccharomyces cerevisiae. FEMS Yeast Res 5:569–578

    Article  CAS  Google Scholar 

  187. Sánchez C (2009) Lignocellulosic residues: biodegradation and bioconversion by fungi. Biotechnol Adv 27:185–194

    Article  CAS  Google Scholar 

  188. Panesar R, Kaur S, Panesar PS (2015) Production of microbial pigments utilizing agro-industrial waste: a review. Curr Opin Food Sci 1:70–76

    Article  Google Scholar 

  189. Dai J, Mumper JR (2010) Plant phenolics: extraction, analysis and their antioxidant and anticancer properties. Molecules 15:7313–7352

    Article  CAS  Google Scholar 

  190. Ahlawat KS, Khatkar BS (2011) Processing, food applications and safety of aloe vera products: a review. J Food Sci Technol 48:525–533

    Article  CAS  Google Scholar 

  191. Hynninen PH, Räisänen R, Elovaara P, Nokelainen E (2000) Preparative isolation of anthraquinones from the fungus Dermocybe sanguinea using enzymatic hydrolysis by the endogenous β-glucosidase. Z Naturforsch 55(7–8). doi: 10.1515/znc-2000-7-820

    Google Scholar 

  192. Lech K, Jarosz M (2011) Novel methodology for the extraction and identification of natural dyestuffs in historical textiles by HPLC-UV-Vis-ESI-MS. Case study: chasubles from the Wawel Cathedral collection. Anal Bioanal Chem 399:3241–3251

    Article  CAS  Google Scholar 

  193. Neagu D, Leopold L, Thonart P, Destain J, Socaciu C (2014) Enzyme-assisted extraction of carotenoids and phenolic derivatives from tomatoes. Bull UASVM Anim Sci Biotechnol 71:20–26

    CAS  Google Scholar 

  194. Vinale F, Marra R, Scala F, Ghisalberti EL, Lorito M, Sivasithamparam K (2006) Major secondary metabolites produced by two commercial Trichoderma strains active against different phytopathogens. Lett Appl Microbiol 43:143–148

    Article  CAS  Google Scholar 

  195. Cao X, Ye X, Lu Y, Yu Y, Mo W (2009) Ionic liquid-based ultrasonic-assisted extraction of piperine from white pepper. Anal Chim Acta 640:47–51

    Article  CAS  Google Scholar 

  196. Du F-Y, Xiao X-H, Luo X-J, Li G-K (2009) Application of ionic liquids in the microwave-assisted extraction of polyphenolic compounds from medicial plants. Talanta 78:1177–1184

    Article  CAS  Google Scholar 

  197. Zhang L, Geng Y, Duan W, Wang D, Fu M, Wang X (2009) Ionic liquid-based ultrasound-assisted extraction of fangchinoline and tetrandrine from Stephaniae tetrandrae. J Sep Sci 32(20):3550–3554. doi:10.1002/jssc.200900413

    Article  CAS  Google Scholar 

  198. Han D, Row KH (2010) Recent applications of ionic liquids in separation technology. Molecules 15:2405–2426

    Article  CAS  Google Scholar 

  199. Veggi PC, Martinez J, Meireles MAA (2013) Fundamentals of microwave extraction. In: Chemat F, Cravotto G (eds) Microwave-assisted extraction for bioactive compounds: theory and practice. Springer, New York

    Google Scholar 

  200. Zhang H-F, Yang X-H, Wang Y (2011) Microwave assisted extraction of secondary metabolites from plants: current status and future directions. Trends Food Sci Technol 22:672–688

    Article  CAS  Google Scholar 

  201. Baiano A (2014) Recovery of biomolecules from food wastes – a review. Molecules 19:14821–14842

    Article  CAS  Google Scholar 

  202. Li H, Chen B, Zhang Z, Yao S (2004) Focused microwave-assisted solvent extraction and HPLC determination of effective constituents in Eucommia ulmodies Oliv. (E. ulmodies). Talanta 63:659–665

    Article  CAS  Google Scholar 

  203. Mandal V, Mohan Y, Hemalatha S (2008) Microwave assisted extraction of curcumin by sample-solvent dual heating mechanism using Taguchi L9 orthogonal design. J Pharm Biomed Anal 46:322–327

    Article  CAS  Google Scholar 

  204. Gallo M, Ferracane R, Graziani G, Ritieni A, Fogliano V (2010) Microwave assisted extracion of phenolic compounds from four different spices. Molecules 15:6365–6374

    Article  CAS  Google Scholar 

  205. Hemwimol S, Pavasant P, Shotipruk A (2006) Ultrasound-assisted extraction of anthraquinones from roots of Morinda citrifolia. Ultrason Sonochem 13:543–548

    Article  CAS  Google Scholar 

  206. Barrera Vázquez MF, Comini LR, Martini RE, Núñez Montoya SC, Bottini S, Cabrera JL (2014) Comparisons between conventional, ultrasound-assisted and microwave-assisted methods for extraction of anthraquinones from Heterphyllaea pustulata Hook f. (Rubiaceae). Ultrason Sonochem 21:478–484

    Article  CAS  Google Scholar 

  207. Borges ME, Tejera RL, Díaz L, Esparza P, Ibáñez E (2012) Natural dyes extraction from cochineal (Dactylopius coccus). New extraction methods. Food Chem 132:1855–1860

    Article  CAS  Google Scholar 

  208. Plaza M, Amigo-Benavent M, del Castillo MD, Ibáñez E, Herrero M (2010) Neoformation of antioxydants in glycation model systems treated under subcritical water extraction conditions. Food Res Int 43:1123–1129

    Article  CAS  Google Scholar 

  209. Baby KC, Ranganathan TV (2013) Enzyme-assisted extraction of bioingredients. Chem Week 59:213–224

    Google Scholar 

  210. Gandhi K (2014) A review of ionic liquids, their limits and applications. Green Sustainable Chem 4:article ID:43349. doi:10.4236/gsc.2014.41008

    Google Scholar 

  211. Fan Y, Chen M, Shentu C, El-Sepai F, Wang K, Zhu Y, Ye M (2009) Ionic liquids extraction of para red and sudan dyes from chilli powder, chilli oil and food additive combined with high performance liquid chromatography. Anal Chim Acta 650:65–69

    Article  CAS  Google Scholar 

  212. Tan Z, Li F, Xu X (2012) Isolation and purification of aloe anthraquinones based on an ionic liquid/salt aqueous two-phase system. Sep Purif Technol 98:150–157

    Article  CAS  Google Scholar 

  213. Ventura SP, Santos-Ebinuma VC, Pereira JF, Teixeira MF, Pessoa A, Coutinho JA (2013) Isolation of natural red colorants from fermented broth using ionic liquid-based aqueous two-phase systems. J Ind Microbiol Biotechnol 40:507–516

    Article  CAS  Google Scholar 

  214. Shen L, Zhang X, Liu M, Wang Z (2014) Transferring of red Monascus pigments from nonionic surfactant to hydrophobic ionic liquid by novel microemulsion extraction. Sep Purif Technol 138:34–40

    Article  CAS  Google Scholar 

  215. Mapari SAS, Thrane U, Meyer AS (2010) Fungal polyketide azaphilone pigments as future natural food colorants? Trends Biotechnol 28:300–307

    Article  CAS  Google Scholar 

  216. Latha BV, Jeevaratnam K (2010) Purification and characterization of the pigments from Rhodotorula glutinis DFR-PDY isolated from natural source. Glob J Biotechnol Biochem 5:166–174

    CAS  Google Scholar 

  217. Fang LZ, Qing C, Shao HJ, Yang YD, Dong ZJ, Wang F, Zhao W, Yang WQ, Liu JK (2006) Hypocrellin D, a cytotoxic fungal pigment from fruiting bodies of the ascomycete Shiraia bambusicola. J Antibiot (Tokyo) 59:351–354

    Article  CAS  Google Scholar 

  218. Thakur M, Azmi W (2013) Extraction and purification of β-carotene from filamentous fungus Mucor azygosporus. Ann Phytomed 2:79–84

    CAS  Google Scholar 

  219. Sasanya JJ (2008) Quantification and characterization of mycotoxins, masked mycotoxins, and Fusarium graminearum pigment. PhD dissertation, North Dakota State University of Agriculture and Applied Science, Dakota

    Google Scholar 

  220. Leatherhead Food Research (2015) New research reveals natural colours overtake artificial/synthetic colours for first time. https://www.leatherheadfood.com/new-research-reveals-natural-colours-overtake-artificial-synthetic-colours-for-first-time#sthash.fr6dEk5D.dpuf. Accessed 28 Sept 2015

  221. Prepared Foods %26 BNP Media (2011) Trends in global colorings. http://www.preparedfoods.com/articles/109323-trends-in-global-colorings. Accessed 25 Sept 2015

  222. Mortensen A (2006) Carotenoids and other pigments as natural colorants. Pure Appl Chem 78:1477–1491

    Article  CAS  Google Scholar 

  223. Dufossé L (2009) Microbial and microalgal carotenoids as colourants and supplements (Chapter 5). In: Britton G, Pfander H, Liaaen-Jensen S (eds) Carotenoids, vol 5, Nutrition and health. Birkhäuser, Basel

    Google Scholar 

  224. Leray C (2014) Lipids and human nutrition (Chapter 3). In: Leray C (ed) Lipids: nutrition and health. CRC Press, Boca Raton

    Chapter  Google Scholar 

  225. EFSA (2008) Use of lycopene as a food colour. Scientific opinion of the panel on food additives, flavourings, processing aids and materials in contact with food. EFSA J 674:51–66. http://www.efsa.europa.eu/sites/default/files/scientific_output/files/main_documents/afc_ej674_lycopene_op_en,3.pdf. Accessed 28 Sept 2015

    Google Scholar 

  226. Horgan KA, Murphy RA (2001) Pharmaceutical and chemical commodities from fungi (Chapter 6). In: Kavanagh K (ed) Fungi: biology and applications, 2nd edn. Wiley, Chichester

    Google Scholar 

  227. Kumar A, Hari Shankar Vishwakarma HS, Singh J, Dwivedi S, Kumar M (2015) Microbial pigments: production and their applications in various industries. J Pharm Chem Biol Sci 5:203–212

    CAS  Google Scholar 

  228. Esser K, Hofrichter M (2010) The Mycota: a comprehensive treatise on fungi as experimental systems for basic and applied research. 10. Industrial applications, 2nd edn. Springer, Berlin

    Google Scholar 

  229. Fabre CE, Santerre AL, Loret MO, Baberian R, Pareilleux A, Goma G, Blanc PJ (1993) Production and food applications of the red pigments of Monascus ruber. J Food Sci 58:1099–1102

    Article  CAS  Google Scholar 

  230. Baranova M, Mal’a P, Burdova O, Hadbavny M, Sabolova G (2004) Effect of natural pigment of Monascus purpureus on the organoleptic characters of processed cheeses. Bull Vet Inst Pulawy 48:59–62

    Google Scholar 

  231. Ropars J, Cruaud C, Lacoste S, Dupont J (2015) A taxonomic and ecological overview of cheese fungi. Int J Food Microbiol 155:199–210

    Article  Google Scholar 

  232. Wang CC, Chiang YM, Kuo PL, Chang JK, Hsu YL (2008) Norsolorinic acid from Aspergillus nidulans inhibits the proliferation of human breast adenocarcinoma MCF-7 cells via Fas-mediated pathway. Basic Clin Pharmacol Toxicol 102:491–497

    Article  CAS  Google Scholar 

  233. Cai Y, Ding Y, Tao G, Liao X (2008) Production of 1,5-dihydroxy-3-methoxy-7-methylanthracene-9,10-dione by submerged culture of Shiraia bambusicola. J Microbiol Biotechnol 18:322–327

    CAS  Google Scholar 

  234. Ahmad W, Yusof NZ, Nordin N, Zakaria ZA, Rezali MF (2012) Production and characterization of violacein by locally isolated Chromobacterium violaceum grown in agricultural wastes. Appl Biochem Biotechnol 167:1220–1234

    Article  CAS  Google Scholar 

  235. Križanec B, Le Marechal AM, Vončina E, Brodnjak-Vončina D (2005) Presence of dioxins in textile dyes and their fate during the dyeing processes. Acta Chim Slov 52:111–118

    Google Scholar 

  236. Raisanen R (2002) Anthraquinones from the fungus Dermocybe sanguinea as textile dyes. Academic dissertation, University of Helsinki

    Google Scholar 

  237. Nagia FA, EL-Mohamedy RSR (2007) Dyeing of wool with natural anthraquinone dyes from Fusarium oxysporum. Dyes Pigm 75:550–555

    Article  CAS  Google Scholar 

  238. Sharma D, Gupta C, Aggarwal S, Nagpal N (2012) Pigment extraction from fungus for textile dyeing. Indian J Fibre Text Res 37:68–73

    CAS  Google Scholar 

  239. Poorniammal R, Parthiban M, Gunasekaran S, Murugesan R, Thilagavathi G (2013) Natural dye production from Thermomyces sp fungi for textile application. Indian J Fibre Text Res 38:276–279

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanis Caro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this entry

Cite this entry

Caro, Y., Venkatachalam, M., Lebeau, J., Fouillaud, M., Dufossé, L. (2015). Pigments and Colorants from Filamentous Fungi. In: Merillon, JM., Ramawat, K. (eds) Fungal Metabolites. Reference Series in Phytochemistry. Springer, Cham. https://doi.org/10.1007/978-3-319-19456-1_26-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-19456-1_26-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-19456-1

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics