Skip to main content

Fungal Genes and Metabolites Associated with the Biocontrol of Soil-borne Plant Pathogenic Fungi

  • Reference work entry
  • First Online:
Fungal Metabolites

Abstract

The biocontrol of plant pathogenic fungi includes two complementary approaches depending on whether the aim is to control soil-borne or air-borne pathogenic fungi. In the first case, natural biotic interactions within the indigenous microflora should be stimulated to regulate inoculum density and the infectious activity of pathogen populations. This strategy can be enhanced by inoculating one or more previously selected biocontrol agents. In the second case, one or more previously selected biocontrol agents can be sprayed on plant foliage to interfere with the development of the targeted pathogen through different mechanisms involving particular enzymes or metabolites. Selecting the most effective biological control agents implies (i) knowing the mechanisms of their interactions with the pathogens and (ii) checking that the environment in which the biocontrol agent is introduced will permit the expression of these mechanisms. The common thread of this chapter is the impressive diversity of metabolites and proteins produced by fungi and involved in interactions between pathogenic and nonpathogenic fungi. Many metabolites and proteins were discovered empirically or by chance a few decades ago, and what we knew about them was they inhibited the growth of pathogenic models on agar medium. Fungi producing these metabolites were not well-known fungal species and were not used as biocontrol agents. However, the demonstration of their intense metabolic activity paved the way for more investigations in this area and led to deciphering the mechanisms of interactions between fungal strains. Thus, in recent years a large number of enzymes, signal molecules, secondary metabolites, large-size proteins, as well as new metabolic pathways have been revealed by genomics, and it is now possible to understand why some strains can control a given pathogen more than others or stimulate plant defense reactions. To date, the most studied fungi include many strains of the genus Trichoderma but also the species Chlonostachys rosea, Coniothyrium minitans, Verticillium biguttatum, and the oomycete Pythium oligandrum. All of them are successfully used as biocontrol agents. This chapter does not aim to provide a comprehensive catalog, but rather to associate these metabolites and proteins to the modes of action involved in pathogen control. The state of the art presented in this review suggests promising prospects for rational, appropriate, and effective use of the biocontrol potential offered by the huge diversity of fungal metabolites and proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

Abbreviations

6PAP:

6-pentyl-alpha-pyrone

ABC:

ATP-binding cassette

cAMP:

Cyclic adenosine monophosphate

CBD:

Carbohydrate-binding module

CWDE:

Cell-wall-degrading enzyme

GH:

Glycosyl hydrolase

ISR:

Induced systemic resistance

MAPK:

Mitogen-activated protein kinase

NAGase:

N-acetyl-β-glucosaminidase

NRPS:

Non-ribosomal peptide synthetase

PGPF:

Plant-growth-promoting fungi

PGPR:

Plant-growth-promoting rhizobacteria

PKS:

Polyketide synthase

ROS:

Reactive oxygen species

SAR:

Systemic acquired resistance

TF:

Transcription factor

References

  1. Alabouvette C (1986) Fusarium-wilt suppressive soils from the Châteaurenard region: review of a 10-year study. Agronomie 6:273–284

    Article  Google Scholar 

  2. Raaijmakers JM, Paulitz TC, Steinberg C, Alabouvette C, Moënne-Loccoz Y (2009) The rhizosphere: a playground and battlefield for soilborne pathogens and beneficial microorganisms. Plant Soil 321:341–361

    Article  CAS  Google Scholar 

  3. Kyselková M, Moënne-loccoz Y (2012) Pseudomonas and other microbes in disease-suppressive soils. Sustain Agric Rev 9:93–140

    Article  Google Scholar 

  4. Aimé S, Alabouvette C, Steinberg C, Olivain C (2013) The endophytic strain Fusarium oxysporum Fo47: a good candidate for priming the defense responses in tomato roots. Mol Plant Microbe Interact 26:918–926

    Article  CAS  Google Scholar 

  5. Höper H, Steinberg C, Alabouvette C (1995) Involvement of clay type and pH in the mechanisms of soil suppressiveness to Fusarium wilt of flax. Soil Biol Biochem 27:955–967

    Article  Google Scholar 

  6. Janvier C, Villeneuve F, Alabouvette C, Edel-Hermann V, Mateille T, Steinberg C (2007) Soil health through soil disease suppression: which strategy from descriptors to indicators? Soil Biol Biochem 39:1–23

    Article  CAS  Google Scholar 

  7. Becker DM, Kinkel LL, Janet L (1997) Evidence for interspecies communication and its potential role in pathogen suppression in a naturally occurring disease suppressive soil. Can J Microbiol 43:985–990

    Article  CAS  Google Scholar 

  8. Persson L, Larsson-Wikstrom M, Gerhardson B (1999) Assessment of soil suppressiveness to Aphanomyces root rot of pea. Plant Dis 83:1108–1112

    Article  Google Scholar 

  9. Weller DM, Raaijmakers JM, Gardener BBM, Thomashow LS (2002) Microbial populations responsible for specific soil suppressiveness to plant pathogens. Annu Rev Phytopathol 40:309–348

    Article  CAS  Google Scholar 

  10. Rimé D, Nazaret S, Gourbière F, Cadet P, Moënne-Loccoz Y (2003) Comparison of sandy soils suppressive or conducive to ectoparasitic nematode damage on sugarcane. Phytopathology 93:1437–1444

    Article  Google Scholar 

  11. Steinberg C, Edel-Hermann V, Alabouvette C, Lemanceau P (2007) Soil suppressiveness to plant diseases. In: van Elsas J-D, Jansson J, Trevors J-T (eds) Modern soil ecology. CRC Press, New York, pp 455–477

    Google Scholar 

  12. Cook RJ, Baker KF (1983) The nature and practice of biological control of plant pathogens. APS Press, St Paul

    Google Scholar 

  13. Mendes R, Kruijt M, de Bruijn I, Dekkers E, van der Voort M, Schneider JHM, Piceno YM, DeSantis TZ, Andersen GL, Bakker PAHM, Raaijmakers JM (2011) Deciphering the rhizosphere microbiome for disease-suppressive bacteria. Science 332:1097–1100

    Article  CAS  Google Scholar 

  14. Massart S, Jijakli HM (2007) Use of molecular techniques to elucidate the mechanisms of action of fungal biocontrol agents: a review. J Microbiol Methods 69:229–241

    Article  CAS  Google Scholar 

  15. Mukherjee PK, Horwitz BA, Kenerley CM (2012) Secondary metabolism in Trichoderma-a genomic perspective. Microbiology 158:35–45

    Article  CAS  Google Scholar 

  16. Reithner B, Mach-Aigner AR, Herrera-Estrella A, Mach RL (2014) The transcriptional regulator Xyr1 of Trichoderma atroviride supports the induction of systemic resistance in plants. Appl Environ Microbiol 80:5274–5281

    Article  CAS  Google Scholar 

  17. Vinale F, Nigro M, Sivasithamparam K, Flematti G, Ghisalberti EL, Ruocco M, Varlese R, Marra R, Lanzuise S, Eid A, Woo SL, Lorito M (2013) Harzianic acid: a novel siderophore from Trichoderma harzianum. FEMS Microbiol Lett 347:123–129

    CAS  Google Scholar 

  18. Viterbo A, Landau U, Kim S, Chernin L, Chet I (2010) Characterization of ACC deaminase from the biocontrol and plant growth-promoting agent Trichoderma asperellum T203. FEMS Microbiol Lett 305:42–48

    Article  CAS  Google Scholar 

  19. Sharma P, Kumar PV, Ramesh R, Saravanan K, Deep S, Sharma M, Mahesh S, Dinesh S (2011) Biocontrol genes from Trichoderma species: a review. Afr J Biotechnol 10:19898–19907

    CAS  Google Scholar 

  20. Szekeres A, Leitgeb B, Kredics L, Antal Z, Hatvani L, Manczinger L, Vágvölgyi C (2005) Peptaibols and related peptaibiotics of Trichoderma A review. Acta Microbiol Immunol Hung 52:137–168

    Article  CAS  Google Scholar 

  21. Horner NR, Grenville-Briggs LJ, van West P (2012) The oomycete Pythium oligandrum expresses putative effectors during mycoparasitism of Phytophthora infestans and is amenable to transformation. Fungal Biol 116:24–41

    Article  CAS  Google Scholar 

  22. Mamarabadi M, Jensen DF, Lübeck M (2009) An N-acetyl-beta-d-glucosaminidase gene, cr-nag1, from the biocontrol agent Clonostachys rosea is up-regulated in antagonistic interactions with Fusarium culmorum. Mycol Res 113:33–43

    Article  CAS  Google Scholar 

  23. McQuilken MP, Gemmell J (2004) Enzyme production by the mycoparasite Verticillium biguttatum against Rhizoctonia solani. Mycopathologia 157:201–205

    Article  CAS  Google Scholar 

  24. Morissette DC, Seguin P, Jabaji-Hare SH (2006) Expression regulation of the endochitinase-encoding gene sechi44 from the mycoparasite Stachybotrys elegans. Can J Microbiol 52:1103–1109

    Article  CAS  Google Scholar 

  25. Muthumeenakshi S, Sreenivasaprasad S, Rogers CW, Challen MP, Whipps JM (2007) Analysis of cDNA transcripts from Coniothyrium minitans reveals a diverse array of genes involved in key processes during sclerotial mycoparasitism. Fungal Genet Biol 44:1262–1284

    Article  CAS  Google Scholar 

  26. Teichmann B, Labbé C, Lefebvre F, Bölker M, Linne U, Bélanger RR (2011) Identification of a biosynthesis gene cluster for flocculosin a cellobiose lipid produced by the biocontrol agent Pseudozyma flocculosa. Mol Microbiol 79:1483–1495

    Article  CAS  Google Scholar 

  27. Scarselletti R, Faull JL (1994) In-vitro activity of 6-pentyl-alpha-pyrone, a metabolite of Trichoderma harzianum, in the inhibition of Rhizoctonia solani and Fusarium oxysporum f. sp. lycopersici. Mycol Res 98:1207–1209

    Article  CAS  Google Scholar 

  28. Pezet R, Pont V, Tabacchi R (1999) Simple analysis of 6-pentyl-alpha-pyrone, a major antifungal metabolite of Trichoderma spp., useful for testing the antagonistic activity of these fungi. Phytochem Anal 10:285–288

    Article  CAS  Google Scholar 

  29. El-Hasan A, Walker F, Schone J, Buchenauer H (2007) Antagonistic effect of 6-pentyl-alpha-pyrone produced by Trichoderma harzianum toward Fusarium moniliforme. J Plant Dis Prot 11:62–68

    Article  Google Scholar 

  30. Chen LH, Cui YQ, Yang XM, Zhao DK, Shen QR (2012) An antifungal compound from Trichoderma harzianum SQR-T037 effectively controls Fusarium wilt of cucumber in continuously cropped soil. Australas Plant Pathol 41:239–245

    Article  CAS  Google Scholar 

  31. Evidente A, Cabras A, Maddau L, Serra S, Andolfi A, Motta A (2003) Viridepyronone, a new antifungal 6-substituted 2H-pyran-2-one produced by Trichoderma viride. J Agric Food Chem 51:6957–6960

    Article  CAS  Google Scholar 

  32. Wu SH, Chen YW, Shao SC, Wang LD, Yu Y, Li ZY, Yang LY, Li SL, Huang R (2009) Two new solanapyrone analogues from the endophytic fungus Nigrospora sp YB-141 of Azadirachta indica. Chem Biodivers 6:79–85

    Article  CAS  Google Scholar 

  33. Xiao J, Zhang Q, Gao YQ, Tang JJ, Zhang AL, Gao JM (2014) Secondary metabolites from the endophytic Botryosphaeria dothidea of Melia azedarach and their antifungal, antibacterial, antioxidant, and cytotoxic activities. J Agric Food Chem 62:3584–3590

    Article  CAS  Google Scholar 

  34. Wang HX, Ng TB, Liu QH (2004) Alveolarin, a novel antifungal polypeptide from the wild mushroom Polyporus alveolaris. Peptides 25:693–696

    Article  CAS  Google Scholar 

  35. Lu KY, Zhang YS, Li L, Wang XW, Ding G (2013) Chaetochromones A and B, two new polyketides from the fungus Chaetomium indicum (CBS.860.68). Molecules 18:10944–10952

    Article  CAS  Google Scholar 

  36. Park JH, Choi GJ, Jang KS, Lim HK, Kim HT, Cho KY, Kim JC (2005) Antifungal activity against plant pathogenic fungi of chaetoviridins isolated from Chaetomium globosum. FEMS Microbiol Lett 252:309–313

    Article  CAS  Google Scholar 

  37. Awad NE, Kassem HA, Hamed MA, El-Naggar MAA, El-Feky AMM (2014) Bioassays guided isolation of compounds from Chaetomium globosum. J Mycol Med 24:e35–e42

    Article  CAS  Google Scholar 

  38. Zhao JH, Zhang YL, Wang LW, Wang JY, Zhang CL (2012) Bioactive secondary metabolites from Nigrospora sp LLGLM003, an endophytic fungus of the medicinal plant Moringa oleifera Lam. World J Microbiol Biotechnol 28:2107–2112

    Article  CAS  Google Scholar 

  39. Che YS, Gloer JB, Koster B, Malloch D (2002) Decipinin A and decipienolides A and B: new bioactive metabolites from the coprophilous fungus Podospora decipiens. J Nat Prod 65:916–919

    Article  CAS  Google Scholar 

  40. Park JH, Choi GJ, Lee HB, Kim KM, Jung HS, Lee SW, Jang KS, Cho KY, Kim JC (2005) Griseofulvin from Xylaria sp strain F0010, an endophytic fungus of Abies holophylla and its antifungal activity against plant pathogenic fungi. J Microbiol Biotechnol 15:112–117

    CAS  Google Scholar 

  41. Xu LX, Xue JH, Wu P, Wang DD, Lin LJ, Jiang YM, Duan XW, Wei XY (2013) Antifungal activity of hypothemycin against Peronophythora litchii in vitro and in vivo. J Agric Food Chem 61:10091–10095

    Article  CAS  Google Scholar 

  42. McQuilken MP, Gemmell J, Hill RA, Whipps JM (2003) Production of macrosphelide A by the mycoparasite Coniothyrium minitans. FEMS Microbiol Lett 219:27–31

    Article  CAS  Google Scholar 

  43. Shim SH, Baltrusaitis J, Gloer JB, Wicklow DT (2011) Phomalevones A-C: dimeric and pseudodimeric polyketides from a fungicolous Hawaiian isolate of Phoma sp. (Cucurbitariaceae). J Nat Prod 74:395–401

    Article  CAS  Google Scholar 

  44. Wicklow DT, Roth S, Deyrup ST, Gloer JB (2005) A protective endophyte of maize: Acremonium zeae antibiotics inhibitory to Aspergillus flavus and Fusarium verticillioides. Mycol Res 109:610–618

    Article  CAS  Google Scholar 

  45. Mudur SV, Gloer JB, Wicklow DT (2006) Sporminarins A and B: antifungal metabolites from a fungicolous isolate of Sporormiella minimoides. J Antibiot 59:500–506

    Article  CAS  Google Scholar 

  46. Zhang GZ, Zhang YH, Qin JC, Qu XY, Liu JL, Li X, Pan HY (2013) Antifungal metabolites produced by Chaetomium globosum No.04, an endophytic fungus isolated from Ginkgo biloba. Indian J Microbiol 53:175–180

    Article  CAS  Google Scholar 

  47. Xue M, Zhang Q, Gao JM, Li H, Tian JM, Pescitelli G (2012) Chaetoglobosin Vb from endophytic Chaetomium Globosum: absolute configuration of chaetoglobosins. Chirality 24:668–674

    Article  CAS  Google Scholar 

  48. Wang Y, Xu L, Ren W, Zhao D, Zhu Y, Wu X (2012) Bioactive metabolites from Chaetomium globosum L18, an endophytic fungus in the medicinal plant Curcuma wenyujin. Phytomedicine 19:364–368

    Article  CAS  Google Scholar 

  49. Cafêu MC, Silva GH, Teles HL, da Bolzani VS, Araújo ÂR, Young MCM, Pfenning LH (2005) Antifungal compounds of Xylaria sp., an endophytic fungus isolated from Palicourea marcgravii (Rubiaceae). Quim Nova 28:991–995

    Article  Google Scholar 

  50. Liu K, Yang Y, Miao CP, Zheng YK, Chen JL, Chen YW, Xu LH, Guang HL, Ding ZT, Zhao LX (2015) Koningiopisins A-H, polyketides with synergistic antifungal activities from the endophytic fungus Trichoderma koningiopsis. Planta Med. doi:10.1055/s-0035-1558228

    Google Scholar 

  51. Malmierca MG, Barua J, McCormick SP, Izquierdo-Bueno I, Cardoza RE, Alexander NJ, Hermosa R, Collado IG, Monte E, Gutierrez S (2015) Novel aspinolide production by Trichoderma arundinaceum with a potential role in Botrytis cinerea antagonistic activity and plant defence priming. Environ Microbiol 17:1103–1118

    Article  CAS  Google Scholar 

  52. Wicklow DT, Joshi BK, Gamble WR, Gloer JB, Dowd PF (1998) Antifungal metabolites (monorden, monocillin IV, and cerebrosides) from Humicola fuscoatra Traaen NRRL 22980, a mycoparasite of Aspergillus flavus sclerotia. Appl Environ Microbiol 64:4482–4484

    CAS  Google Scholar 

  53. Oh SU, Yun BS, Lee SJ, Kim JH, Yoo ID (2002) Atroviridins A approximate to C and neoatroviridins A approximate to D, novel peptaibol antibiotics produced by Trichoderma atroviride F80317. I. Taxonomy, fermentation, isolation and biological activities. J Antibiot 55:557–564

    Article  CAS  Google Scholar 

  54. Dornberger K, Ihn W, Ritzau M, Grafe U, Schlegel B, Fleck WF, Metzger JW (1995) Chrysospermins, new peptaibol antibiotics from Apiocrea chrysosperma Ap101. J Antibiot 48:977–989

    Article  CAS  Google Scholar 

  55. Guo YX, Wang HX, Ng TB (2005) Isolation of trichogin, an antifungal protein from fresh fruiting bodies of the edible mushroom Tricholoma giganteum. Peptides 26:575–580

    Article  CAS  Google Scholar 

  56. Song XY, Shen QT, Xie ST, Chen XL, Sun CY, Zhang YZ (2006) Broad-spectrum antimicrobial activity and high stability of Trichokonins from Trichoderma koningii SMF2 against plant pathogens. FEMS Microbiol Lett 260:119–125

    Article  CAS  Google Scholar 

  57. Shi M, Chen L, Wang XW, Zhang T, Zhao PB, Song XY, Sun CY, Chen XL, Zhou BC, Zhang YZ (2012) Antimicrobial peptaibols from Trichoderma pseudokoningii induce programmed cell death in plant fungal pathogens. Microbiology 158:166–175

    Article  CAS  Google Scholar 

  58. Goulard C, Hlimi S, Rebuffat S, Bodo B (1995) Trichorzins HA and MA, antibiotic peptides from Trichoderma harzianum. 1. Fermentation, isolation and biological properties. J Antibiot 48:1248–1253

    Article  CAS  Google Scholar 

  59. Lorito M, Farkas V, Rebuffat S, Bodo B, Kubicek CP (1996) Cell wall synthesis is a major target of mycoparasitic antagonism by Trichoderma harzianum. J Bacteriol 178:6382–6385

    Article  CAS  Google Scholar 

  60. Vargas WA, Mukherjee PK, Laughlin D, Wiest A, Moran-Diez ME, Kenerley CM (2014) Role of gliotoxin in the symbiotic and pathogenic interactions of Trichoderma virens. Microbiology 160:2319–2330

    Article  CAS  Google Scholar 

  61. Anisha C, Radhakrishnan EK (2015) Gliotoxin-producing endophytic Acremonium sp from Zingiber officinale found antagonistic to soft rot pathogen Pythium myriotylum. Appl Biochem Biotechnol 175:3458–3467

    Article  CAS  Google Scholar 

  62. Cheng YL, McNally DJ, Labbe C, Voyer N, Belzile F, Belanger RR (2003) Insertional mutagenesis of a fungal biocontrol agent led to discovery of a rare cellobiose lipid with antifungal activity. Appl Environ Microbiol 69:2595–2602

    Article  CAS  Google Scholar 

  63. Benyagoub M, Rhlid RB, Belanger RR (1996) Purification and characterization of new fatty acids with antibiotic activity produced by Sporothrix flocculosa. J Chem Ecol 22:405–413

    Article  CAS  Google Scholar 

  64. Choudhury SR, Traquair JA, Jarvis WR (1994) 4-Methyl-7,11-heptadecadienal and 4-methyl-7,11-heptadecadienoic acid: new antibiotics from Sporothrix flocculosa and Sporothrix rugulosa. J Nat Prod 57:700–704

    Article  CAS  Google Scholar 

  65. Avis TJ, Belanger RR (2001) Specificity and mode of action of the antifungal fatty acid cis-9-heptadecenoic acid produced by Pseudozyma flocculosa. Appl Environ Microbiol 67:956–960

    Article  CAS  Google Scholar 

  66. Kulakovskaya T, Shashkov A, Kulakovska E, Golubev W, Zinin A, Tsvetkov Y, Grachev A, Nifantiev N (2009) Extracellular cellobiose lipid from yeast and their analogues: structures and fungicidal activities. J Oleo Sci 58:133–140

    Article  CAS  Google Scholar 

  67. Kulakovskaya TV, Shashkov AS, Kulakovskaya EV, Golubev WI (2005) Ustilagic acid secretion by Pseudozyma fusiformata strains. FEMS Yeast Res 5:919–923

    Article  CAS  Google Scholar 

  68. Malmierca MG, Cardoza RE, Alexander NJ, McCormick SP, Hermosa R, Monte E, Gutiérrez S (2012) Involvement of Trichoderma trichothecenes in the biocontrol activity and induction of plant defense-related genes. Appl Environ Microbiol 78:4856–4868

    Article  CAS  Google Scholar 

  69. Mannina L, Segre AL, Ritieni A, Fogliano V, Vinale F, Randazzo G, Maddau L, Bottalico A (1997) A new fungal growth inhibitor from Trichoderma viride. Tetrahedron 53:3135–3144

    Article  CAS  Google Scholar 

  70. Minerdi D, Bossi S, Gullino ML, Garibaldi A (2009) Volatile organic compounds: a potential direct long-distance mechanism for antagonistic action of Fusarium oxysporum strain MSA 35. Environ Microbiol 11:844–854

    Article  CAS  Google Scholar 

  71. Hiratsuka Y, Chakravarty P, Miao S, Ayer WA (1994) Potential for biological protection against blue stain in Populus tremuloides with a hyphomycetous fungus, Stachybotrys cylindrospora. Can J For Res 24:174–179

    Article  Google Scholar 

  72. Chamoun R, Aliferis KA, Jabaji S (2015) Identification of signatory secondary metabolites during mycoparasitism of Rhizoctonia solani by Stachybotrys elegans. Front Microbiol 6:353

    Article  Google Scholar 

  73. Freeman GG, Morrison RI (1948) Trichothecin: an antifungal metabolic product of Trichothecium roseum Link. Nature 162:30

    Article  CAS  Google Scholar 

  74. Campos Ziegenbein F, Hanssen H-P, Konig WA (2006) Secondary metabolites from Ganoderma lucidum and Spongiporus leucomallellus. Phytochemistry 67:202–211

    Article  CAS  Google Scholar 

  75. Brian PW, McGowan JC (1945) Viridin: a highly fungistatic substance produced by Trichoderma viride. Nature 156:144–145

    Article  CAS  Google Scholar 

  76. Hao JJ, Geng CD, Xie WJ, Gong ZZ, Liu WY, Wang ED (1999) Isolation and characterization of viridin, a new 65 kDa antifungal protein from the mould Trichoderma viride. Biol Chem 380:1243–1245

    Article  CAS  Google Scholar 

  77. Anke T, Oberwinkler F, Steglich W, Schramm G (1977) Strobilurins: new antifungal antibiotics from Basidiomycete Strobilurus tenacellus (Pers. ex Fr.) Sing. J Antibiot 30:806–810

    Article  CAS  Google Scholar 

  78. Anke T, Besl H, Mocek U, Steglich W (1983) Antibiotics from Basidiomycetes. XVIII. Strobilurin C and oudemansin-B, 2 new anti-fungal metabolites from Xelura species (Agaricales). J Antibiot 36:661–666

    Article  CAS  Google Scholar 

  79. Weber W, Anke T, Steffan B, Steglich W (1990) Antibiotics from basidiomycetes. XXXII. Strobilurin E: a new cytostatic and antifungal (E)-beta-methoxyacrylate antibiotic from Crepidotus fulvotomentosus Peck. J Antibiot 43:207–212

    Article  CAS  Google Scholar 

  80. Fredenhagen A, Kuhn A, Peter HH, Cuomo V, Giuliano U (1990) Strobilurins F, G, and H, three new antifungal metabolites from Bolinea lutea. I. Fermentation, isolation and biological activity. J Antibiot 43:655–660

    Article  CAS  Google Scholar 

  81. Daferner M, Anke T, Hellwig V, Steglich W, Sterner O (1998) Strobilurin M, tetrachloropyrocatechol and tetrachloropyrocatechol methyl ether: new antibiotics from a Mycena species. J Antibiot 51:816–822

    Article  CAS  Google Scholar 

  82. Subík J, Behún M, Smigán P, Musílek V (1974) Mode of action of mucidin, a new antifungal antibiotic produced by the basidiomycete Oudemansiella mucida. Biochim Biophys Acta 343:363–370

    Article  Google Scholar 

  83. Engler-Lohr M, Anke T, Hellwig V, Steglich W (1999) Noroudemansin A, a new antifungal antibiotic from Pterula species 82168 and three semisynthetic derivatives. Z Naturforsch C 54:163–168

    Article  CAS  Google Scholar 

  84. Anke T, Werle A, Bross M, Steglich W (1990) Antibiotics from basidiomycetes. XXXIII. Oudemansin X, a new antifungal (E)-beta-methoxyacrylate from Oudemansiella radicata (Relhan ex Fr.) Sing. J Antibiot 43:1010–1011

    Article  CAS  Google Scholar 

  85. Anke T, Hecht HJ, Schramm G, Steglich W (1979) Antibiotics from Basidiomycetes. IX. Oudemansin, an antifungal antibiotic from Oudemansiella mucida (Schrader ex Fr.) Hoehnel (Agaricales). J Antibiot 32:1112–1117

    Article  CAS  Google Scholar 

  86. Wang JY, Wang GP, Zhang YL, Zheng BQ, Zhang CL, Wang LW (2014) Isolation and identification of an endophytic fungus Pezicula sp in Forsythia viridissima and its secondary metabolites. World J Microbiol Biotechnol 30:2639–2644

    Article  CAS  Google Scholar 

  87. Vinale F, Girona IA, Nigro M, Mazzei P, Piccolo A, Ruocco M, Woo S, Rosa DR, Herrera CL, Lorito M (2012) Cerinolactone, a hydroxy-lactone derivative from Trichoderma cerinum. J Nat Prod 75:103–106

    Article  CAS  Google Scholar 

  88. Vinale F, Marra R, Scala F, Ghisalberti EL, Lorito M, Sivasithamparam K (2006) Major secondary metabolites produced by two commercial Trichoderma strains active against different phytopathogens. Lett Appl Microbiol 43:143–148

    Article  CAS  Google Scholar 

  89. Dickinson JM, Hanson JR, Hitchcock PB (1989) Structure and biosynthesis of harzianopyridone, an antifungal metabolite of Trichoderma harzianum. J Chem Soc Perkin Trans 1:1985–1987

    Google Scholar 

  90. Strobel GA, Dirkse E, Sears J, Markworth C (2001) Volatile antimicrobials from Muscodor albus, a novel endophytic fungus. Microbiology 147:2943–2950

    Article  CAS  Google Scholar 

  91. Masoud W, Poll L, Jakobsen M (2005) Influence of volatile compounds produced by yeasts predominant during processing of Coffea arabica in East Africa on growth and ochratoxin A (OTA) production by Aspergillus ochraceus. Yeast 22:1133–1142

    Article  CAS  Google Scholar 

  92. Huang R, Li GQ, Zhang J, Yang L, Che HJ, Jiang DH, Huang HC (2011) Control of postharvest botrytis fruit rot of strawberry by volatile organic compounds of Candida intermedia. Phytopathology 101:859–869

    Article  CAS  Google Scholar 

  93. Hua SST, Beck JJ, Sarreal SBL, Gee W (2014) The major volatile compound 2-phenylethanol from the biocontrol yeast, Pichia anomala, inhibits growth and expression of aflatoxin biosynthetic genes of Aspergillus flavus. Mycotoxin Res 30:71–78

    Article  CAS  Google Scholar 

  94. Liu P, Cheng YJ, Yang M, Liu YJ, Chen K, Long CA, Deng XX (2014) Mechanisms of action for 2-phenylethanol isolated from Kloeckera apiculata in control of Penicillium molds of citrus fruits. BMC Microbiol 14:14

    Article  CAS  Google Scholar 

  95. Santos A, Marquina D (2004) Killer toxin of Pichia membranifaciens and its possible use as a biocontrol agent against grey mould disease of grapevine. Microbiology 150:2527–2534

    Article  CAS  Google Scholar 

  96. Santos A, Sanchez A, Marquina D (2004) Yeasts as biological agents to control Botrytis cinerea. Microbiol Res 159:331–338

    Article  CAS  Google Scholar 

  97. Santos A, Mauro MS, Bravo E, Marquina D (2009) PMKT2, a new killer toxin from Pichia membranifaciens, and its promising biotechnological properties for control of the spoilage yeast Brettanomyces bruxellensis. Microbiology 155:624–634

    Article  CAS  Google Scholar 

  98. Kaiserer L, Oberparleiter C, Weiler-Gorz R, Burgstaller W, Leiter E, Marx F (2003) Characterization of the Penicillium chrysogenum antifungal protein PAF. Arch Microbiol 180:204–210

    Article  CAS  Google Scholar 

  99. Barna B, Leiter E, Hegedus N, Biro T, Pocsi I (2008) Effect of the Penicillium chrysogenum antifungal protein (PAF) on barley powdery mildew and wheat leaf rust pathogens. J Basic Microbiol 48:516–520

    Article  CAS  Google Scholar 

  100. Meyer V (2008) A small protein that fights fungi: AFP as a new promising antifungal agent of biotechnological value. Appl Microbiol Biotechnol 78:17–28

    Article  CAS  Google Scholar 

  101. Theis T, Marx F, Salvenmoser W, Stahl U, Meyer V (2005) New insights into the target site and mode of action of the antifungal protein of Aspergillus giganteus. Res Microbiol 156:47–56

    Article  CAS  Google Scholar 

  102. Ruocco M, Lanzuise S, Lombardi N, Woo SL, Vinale F, Marra R, Varlese R, Manganiello G, Pascale A, Scala V, Turrà D, Scala F, Lorito M (2015) Multiple roles and effects of a novel Trichoderma Hydrophobin. Mol Plant Microbe Interact 28:167–179

    Article  CAS  Google Scholar 

  103. Sun ZB, Li SD, Zhong ZM, Sun MH (2015) A perilipin gene from Clonostachys rosea f. catenulata HL-1-1 is related to sclerotial parasitism. Int J Mol Sci 16:5347–5362

    Article  CAS  Google Scholar 

  104. Kubicek CP, Herrera-Estrella A, Seidl-Seiboth V et al (2011) Comparative genome sequence analysis underscores mycoparasitism as the ancestral life style of Trichoderma. Genome Biol 12:R40

    Article  CAS  Google Scholar 

  105. Atanasova L, Knox BP, Kubicek CP, Druzhinina IS, Baker SE (2013) The polyketide synthase gene pks4 of Trichoderma reesei provides pigmentation and stress resistance. Eukaryot Cell 12:1499–1508

    Article  CAS  Google Scholar 

  106. Zhang HY, Yang Q, Wang G, Shang FD (2009) Analysis of expressed sequence tags from Chaetomium cupreum grown under conditions associated with mycoparasitism. Lett Appl Microbiol 48:275–280

    Article  CAS  Google Scholar 

  107. Winter JM, Sato M, Sugimoto S, Chiou G, Garg NK, Tang Y, Watanabe K (2012) Identification and characterization of the chaetoviridin and chaetomugilin gene cluster in Chaetomium globosum reveal dual functions of an iterative highly-reducing polyketide synthase. J Am Chem Soc 134:17900–17903

    Article  CAS  Google Scholar 

  108. Wiest A, Grzegorski D, Xu B-W, Goulard C, Rebuffat S, Ebbole DJ, Bodo B, Kenerley C (2002) Identification of peptaibols from Trichoderma virens and cloning of a peptaibol synthetase. J Biol Chem 277:20862–20868

    Article  CAS  Google Scholar 

  109. Wei X, Yang F, Straney DC (2005) Multiple non-ribosomal peptide synthetase genes determine peptaibol synthesis in Trichoderma virens. Can J Microbiol 51:423–429

    Article  CAS  Google Scholar 

  110. Mukherjee PK, Wiest A, Ruiz N, Keightley A, Moran-Diez ME, McCluskey K, Pouchus YF, Kenerley CM (2011) Two classes of new peptaibols are synthesized by a single non-ribosomal peptide synthetase of Trichoderma virens. J Biol Chem 286:4544–4554

    Article  CAS  Google Scholar 

  111. Chutrakul C, Peberdy JF (2005) Isolation and characterisation of a partial peptide synthetase gene from Trichoderma asperellum. FEMS Microbiol Lett 252:257–265

    Article  CAS  Google Scholar 

  112. Vizcaíno JA, Cardoza RE, Dubost L, Bodo B, Gutiérrez S, Monte E (2006) Detection of peptaibols and partial cloning of a putative peptaibol synthetase gene from Trichoderma harzianum CECT 2413. Folia Microbiol (Praha) 51:114–120

    Article  Google Scholar 

  113. Wilhite SE, Lumsden RD, Straney DC (1994) Mutational analysis of gliotoxin production by the biocontrol fungus Gliocladium virens in relation to suppression of Pythium damping-off. Phytopathology 84:816–821

    Article  CAS  Google Scholar 

  114. Atanasova L, Le Crom S, Gruber S, Coulpier F, Seidl-Seiboth V, Kubicek CP, Druzhinina IS (2013) Comparative transcriptomics reveals different strategies of Trichoderma mycoparasitism. BMC Genomics 14:121

    Article  CAS  Google Scholar 

  115. Zhang HY, Li M (2012) Transcriptional profiling of ESTs from the biocontrol fungus Chaetomium cupreum. Sci World J 2012:340565

    Google Scholar 

  116. Cardoza RE, Malmierca MG, Hermosa MR, Alexander NJ, McCormick SP, Proctor RH, Tijerino AM, Rumbero A, Monte E, Gutiérrez S (2011) Identification of loci and functional characterization of trichothecene biosynthesis genes in filamentous fungi of the genus Trichoderma. Appl Environ Microbiol 77:4867–4877

    Article  CAS  Google Scholar 

  117. Cardoza RE, Hermosa MR, Vizcaíno JA, González F, Llobell A, Monte E, Gutiérrez S (2007) Partial silencing of a hydroxy-methylglutaryl-CoA reductase-encoding gene in Trichoderma harzianum CECT 2413 results in a lower level of resistance to lovastatin and lower antifungal activity. Fungal Genet Biol 44:269–283

    Article  CAS  Google Scholar 

  118. Liu M, Liu J, Wang WM (2012) Isolation and functional analysis of Thmfs1, the first major facilitator superfamily transporter from the biocontrol fungus Trichoderma harzianum. Biotechnol Lett 34:1857–1862

    Article  Google Scholar 

  119. Cardoza RE, Vizcaíno JA, Hermosa MR, Sousa S, González FJ, Llobell A, Monte E, Gutiérrez S (2006) Cloning and characterization of the erg1 gene of Trichoderma harzianum: effect of the erg1 silencing on ergosterol biosynthesis and resistance to terbinafine. Fungal Genet Biol 43:164–178

    Article  CAS  Google Scholar 

  120. Malmierca MG, Cardoza RE, Alexander NJ, McCormick SP, Collado IG, Hermosa R, Monte E, Gutiérrez S (2013) Relevance of trichothecenes in fungal physiology: disruption of tri5 in Trichoderma arundinaceum. Fungal Genet Biol 53:22–33

    Article  CAS  Google Scholar 

  121. Gallo A, Mulè G, Favilla M, Altomare C (2004) Isolation and characterisation of a trichodiene synthase homologous gene in Trichoderma harzianum. Physiol Mol Plant Pathol 65:11–20

    Article  CAS  Google Scholar 

  122. Murray FR, Llewellyn DJ, Peacock WJ, Dennis ES (1997) Isolation of the glucose oxidase gene from Talaromyces flavus and characterisation of its role in the biocontrol of Verticillium dahliae. Curr Genet 32:367–375

    Article  CAS  Google Scholar 

  123. Kriaa M, Hammami I, Sahnoun M, Azebou MC, Triki MA, Kammoun R (2015) Purification, biochemical characterization and antifungal activity of a novel Aspergillus tubingensis glucose oxidase steady on broad range of pH and temperatures. Bioprocess Biosyst Eng 38:2155–2166

    Article  CAS  Google Scholar 

  124. Montero-Barrientos M, Hermosa R, Cardoza RE, Gutiérrez S, Monte E (2011) Functional analysis of the Trichoderma harzianum nox1 gene, encoding an NADPH oxidase, relates production of reactive oxygen species to specific biocontrol activity against Pythium ultimum. Appl Environ Microbiol 77:3009–3016

    Article  CAS  Google Scholar 

  125. Carpenter M, Ridgway HJ, Stringer AM, Hay AJ, Stewart A (2008) Characterisation of a Trichoderma hamatum monooxygenase gene involved in antagonistic activity against fungal plant pathogens. Curr Genet 53:193–205

    Article  CAS  Google Scholar 

  126. Wei W, Zhu W, Cheng J, Xie J, Li B, Jiang D, Li G, Yi X, Fu Y (2013) CmPEX6, a gene involved in peroxisome biogenesis, is essential for parasitism and conidiation by the sclerotial parasite Coniothyrium minitans. Appl Environ Microbiol 79:3658–3666

    Article  CAS  Google Scholar 

  127. Velázquez-Robledo R, Contreras-Cornejo HA, Macias-Rodriguez L, Hernandez-Morales A, Aguirre J, Casas-Flores S, Lopez-Bucio J, Herrera-Estrella A (2011) Role of the 4-phosphopantetheinyl transferase of Trichoderma virens in secondary metabolism and induction of plant defense responses. Mol Plant Microbe Interact 24:1459–1471

    Article  CAS  Google Scholar 

  128. Dubey MK, Jensen DF, Karlsson M (2014) An ATP-binding cassette pleiotropic drug transporter protein is required for xenobiotic tolerance and antagonism in the fungal biocontrol agent Clonostachys rosea. Mol Plant Microbe Interact 27:725–732

    Article  CAS  Google Scholar 

  129. Ruocco M, Lanzuise S, Vinale F, Marra R, Turrà D, Woo SL, Lorito M (2009) Identification of a new biocontrol gene in Trichoderma atroviride: the role of an ABC transporter membrane pump in the interaction with different plant-pathogenic fungi. Mol Plant Microbe Interact 22:291–301

    Article  CAS  Google Scholar 

  130. Zeng LM, Zhang J, Han YC, Yang L, Wu MD, Jiang DH, Chen W, Li GQ (2014) Degradation of oxalic acid by the mycoparasite Coniothyrium minitans plays an important role in interacting with Sclerotinia sclerotiorum. Environ Microbiol 16:2591–2610

    Article  CAS  Google Scholar 

  131. Popiel D, Koczyk G, Dawidziuk A, Gromadzka K, Blaszczyk L, Chelkowski J (2014) Zearalenone lactonohydrolase activity in Hypocreales and its evolutionary relationships within the epoxide hydrolase subset of a/b-hydrolases. BMC Microbiol 14:82

    Article  CAS  Google Scholar 

  132. Kosawang C, Karlsson M, Vélëz H, Rasmussen PH, Collinge DB, Jensen B, Jensen DF (2014) Zearalenone detoxification by zearalenone hydrolase is important for the antagonistic ability of Clonostachys rosea against mycotoxigenic Fusarium graminearum. Fungal Biol 118:364–373

    Article  CAS  Google Scholar 

  133. Kosawang C, Karlsson M, Jensen DF, Dilokpimol A, Collinge DB (2014) Transcriptomic profiling to identify genes involved in Fusarium mycotoxin Deoxynivalenol and Zearalenone tolerance in the mycoparasitic fungus Clonostachys rosea. BMC Genomics 15:55

    Article  CAS  Google Scholar 

  134. Rogers CW, Challen MP, Muthumeenakshi S, Sreenivasaprasad S, Whipps JM (2008) Disruption of the Coniothyrium minitans PIF1 DNA helicase gene impairs growth and capacity for sclerotial mycoparasitism. Microbiology 154:1628–1636

    Article  CAS  Google Scholar 

  135. Collins RP, Halim AF (1972) Characterization of the major aroma constituent of the fungus Trichoderma viride. J Agric Food Chem 20:437–438

    Article  CAS  Google Scholar 

  136. Jeleń H, Blaszczyk L, Chelkowski J, Rogowicz K, Strakowska J (2014) Formation of 6-n-pentyl-2H-pyran-2-one (6-PAP) and other volatiles by different Trichoderma species. Mycol Prog 13:589–600

    Article  Google Scholar 

  137. Ghisalberti EL, Narbey MJ, Dewan MM, Sivasithamparam K (1990) Variability among strains of Trichoderma harzianum in their ability to reduce take-all and to produce pyrones. Plant Soil 121:287–291

    Article  CAS  Google Scholar 

  138. Parker SR, Cutler HG, Jacyno JM, Hill RA (1997) Biological activity of 6-pentyl-2H-pyran-2-one and its analogs. J Agric Food Chem 45:2774–2776

    Article  CAS  Google Scholar 

  139. Chattapadhway TK, Dureja P (2006) Antifungal activity of 4-methyl-6-alkyl-2H-pyran-2-ones. J Agric Food Chem 54:2129–2133

    Article  CAS  Google Scholar 

  140. El-Hasan A, Walker F, Buchenauer H (2008) Trichoderma harzianum and its metabolite 6-pentyl-alpha-pyrone suppress fusaric acid produced by Fusarium moniliforme. J Phytopathol 156:79–87

    Article  CAS  Google Scholar 

  141. Cooney JM, Lauren DR, di Menna MEJ (2001) Impact of competitive fungi on Trichothecene production by Fusarium graminearum. J Agric Food Chem 49:522–526

    Article  CAS  Google Scholar 

  142. Vinale F, Sivasithamparam K, Ghisalberti EL, Marra R, Barbetti MJ, Li H, Woo SL, Lorito M (2008) A novel role for Trichoderma secondary metabolites in the interactions with plants. Physiol Mol Plant Pathol 72:80–86

    Article  CAS  Google Scholar 

  143. Fukazawa H, Ikeda Y, Fukuyama M, Suzuki T, Hori H, Okuda T, Uehara Y (2010) The resorcylic acid lactone hypothemycin selectively inhibits the mitogen-activated protein kinase kinase-extracellular signal-regulated kinase pathway in cells. Biol Pharm Bull 33:168–173

    Article  CAS  Google Scholar 

  144. Schulte TW, Akinaga S, Soga S, Sullivan W, Stensgard B, Toft D, Neckers LM (1998) Antibiotic radicicol binds to the N-terminal domain of Hsp90 and shares important biologic activities with geldanamycin. Cell Stress Chaperones 3:100–108

    Article  CAS  Google Scholar 

  145. De Carli L, Larizza L (1988) Griseofulvin. Mutat Res 195:91–126

    Article  Google Scholar 

  146. Baker SE, Perrone G, Richardson NM, Gallo A, Kubicek CP (2012) Phylogenomic analysis of polyketide synthase-encoding genes in Trichoderma. Microbiology 158:147–154

    Article  CAS  Google Scholar 

  147. Mukherjee PK, Buensanteai N, Morán-Diez ME, Druzhinina IS, Kenerley CM (2012) Functional analysis of non-ribosomal peptide synthetases (NRPSs) in Trichoderma virens reveals a polyketide synthase (PKS)/NRPS hybrid enzyme involved in the induced systemic resistance response in maize. Microbiology 158:155–165

    Article  CAS  Google Scholar 

  148. Daniel JFDS, Filho ER (2007) Peptaibols of Trichoderma. Nat Prod Rep 24:1128–1141

    Article  CAS  Google Scholar 

  149. Xiao-Yan S, Qing-Tao S, Shu-Tao X, Xiu-Lan C, Cai-Yun S, Yu-Zhong Z (2006) Broad-spectrum antimicrobial activity and high stability of Trichokonins from Trichoderma koningii SMF2 against plant pathogens. FEMS Microbiol Lett 260:119–125

    Article  CAS  Google Scholar 

  150. Tieleman DP, Berendsen HJ, Sansom MS (1999) An alamethicin channel in a lipid bilayer: molecular dynamics simulations. Biophys J 76:1757–1769

    Article  CAS  Google Scholar 

  151. Vey A, Hoagland RE, Butt TM (2001) Toxic metabolites of fungal biocontrol agents. In: Butt TM, Jackson C, Magan N (eds) Fungi as biocontrol agents: progress, problems, and potential. CABI Publishing, Oxford, UK, pp 311–346

    Chapter  Google Scholar 

  152. Marahiel MA, Stachelhaus T, Mootz HD (1997) Modular peptide synthetases involved in nonribosomal peptide synthesis. Chem Rev 97:2651–2674

    Article  CAS  Google Scholar 

  153. Weindling R (1941) Experimental consideration of the mold toxins of Gliocladium and Trichoderma. Phytopathology 31:991–1003

    CAS  Google Scholar 

  154. Mull RP, Townley RW, Scholz CR (1945) Production of gliotoxin and a second active isolate by Penicillium obscurum Biourge. J Am Chem Soc 67:1626–1627

    Article  CAS  Google Scholar 

  155. Scharf DH, Heinekamp T, Remme N, Hortschansky P, Brakhage AA, Hertweck C (2012) Biosynthesis and function of gliotoxin in Aspergillus fumigatus. Appl Microbiol Biotechnol 93:467–472

    Article  CAS  Google Scholar 

  156. Lorito M, Peterbauer C, Hayes CK, Harman GE (1994) Synergistic interaction between fungal cell wall degrading enzymes and different antifungal compounds enhances inhibition of spore germination. Microbiology 140:623–629

    Article  CAS  Google Scholar 

  157. Waring P, Beaver J (1996) Gliotoxin and related epipolythiodioxopiperazines. Gen Pharmacol 27:1311–1316

    Article  CAS  Google Scholar 

  158. Benyagoub M, Willemot C, Belanger RR (1996) Influence of a subinhibitory dose of antifungal fatty acids from Sporothrix flocculosa on cellular lipid composition in fungi. Lipids 31:1077–1082

    Article  CAS  Google Scholar 

  159. Hajlaoui MR, Benhamou N, Bélanger RR (1992) Cytochemical study of the antagonistic activity of Sporothrix flocculosa on rose powdery mildew. Phytopathology 82:583–589

    Article  Google Scholar 

  160. Hajlaoui MR, Traquair JA, Jarvis WR, Bélanger RR (1994) Antifungal activity of extracellular metabolites produced by Sporothrix flocculosa. Biocontrol Sci Tech 4:229–237

    Article  Google Scholar 

  161. Mimee B, Pelletier R, Belanger RR (2009) In vitro antibacterial activity and antifungal mode of action of flocculosin, a membrane-active cellobiose lipid. J Appl Microbiol 107:989–996

    Article  CAS  Google Scholar 

  162. Golubev VI, Kulakovskaia TV, Shashkov AS, Kulakovskaia EV, Golubev NV (2008) Antifungal cellobiose lipid secreted by the epiphytic yeast Pseudozyma graminicola. Mikrobiologiia 77:201–206

    CAS  Google Scholar 

  163. Kulakovskaya TV, Shashkov AS, Kulakovskaya EV, Golubev WI (2004) Characterization of an antifungal glycolipid secreted by the yeast Sympodiomycopsis paphiopedili. FEMS Yeast Res 5:247–252

    Article  CAS  Google Scholar 

  164. Boothroyd B, Thorn JA, Haskins RH (1956) Biochemistry of the ustilaginales. XII. Characterization of extracellular glycolipids produced by Ustilago sp. Can J Biochem Physiol 34:10–14

    Article  CAS  Google Scholar 

  165. Cundliffe E, Cannon M, Davies J (1974) Mechanism of inhibition of eukaryotic protein synthesis by trichothecene fungal toxins. Proc Natl Acad Sci U S A 71:30–34

    Article  CAS  Google Scholar 

  166. Cundliffe E, Davies JE (1977) Inhibition of initiation, elongation, and termination of eukaryotic protein synthesis by trichothecene fungal toxins. Antimicrob Agents Chemother 11:491–499

    Article  CAS  Google Scholar 

  167. Fried HM, Warner JR (1981) Cloning of yeast gene for trichodermin resistance and ribosomal protein L3. Proc Natl Acad Sci U S A 78:238–242

    Article  CAS  Google Scholar 

  168. Rocha O, Ansari K, Doohan FM (2005) Effects of trichothecene mycotoxins on eukaryotic cells: a review. Food Addit Contam 22:369–378

    Article  CAS  Google Scholar 

  169. McLaughlin JE, Bin-Umer MA, Tortora A, Mendez N, McCormick S, Tumer NE (2009) A genome-wide screen in Saccharomyces cerevisiae reveals a critical role for the mitochondria in the toxicity of a trichothecene mycotoxin. Proc Natl Acad Sci U S A 106:21883–21888

    Article  CAS  Google Scholar 

  170. Bin-Umer MA, McLaughlin JE, Basu D, McCormick S, Tumer NE (2011) Trichothecene mycotoxins inhibit mitochondrial translation. Implication for the mechanism of toxicity. Toxins 3:1484–1501

    Article  CAS  Google Scholar 

  171. Mukherjee M, Horwitz BA, Sherkhane PD, Hadar R, Mukherjee PK (2006) A secondary metabolite biosynthesis cluster in Trichoderma virens: evidence from analysis of genes underexpressed in a mutant defective in morphogenesis and antibiotic production. Curr Genet 50:193–202

    Article  CAS  Google Scholar 

  172. Crutcher FK, Parich A, Schuhmacher R, Mukherjee PK, Zeilinger S, Kenerley CM (2013) A putative terpene cyclase, vir4, is responsible for the biosynthesis of volatile terpene compounds in the biocontrol fungus Trichoderma virens. Fungal Genet Biol 56:67–77

    Article  CAS  Google Scholar 

  173. Cardoza RE, Malmierca MG, Gutiérrez S (2014) Overexpression of erg1 gene in Trichoderma harzianum CECT 2413: effect on the induction of tomato defence-related genes. J Appl Microbiol 117:812–823

    Article  CAS  Google Scholar 

  174. Musílek V, Cerná J, Sasek V, Semerdzieva M, Vondrácek M (1969) Antifungal antibiotic of the basidiomycete Oudemansiella mucida. I. Isolation and cultivation of a producing strain. Folia Microbiol (Praha) 14:377–387

    Article  Google Scholar 

  175. Becker WF, Vonjagow G, Anke T, Steglich W (1981) Oudemansin, strobilurin A, strobilurin B and myxothiazol: new inhibitors of the bc1 segment of the respiratory chain with an E-beta-methoxyacrylate system as common structural element. FEBS Lett 132:329–333

    Article  CAS  Google Scholar 

  176. di Rago JP, Coppee JY, Colson AM (1989) Molecular basis for resistance to myxothiazol, mucidin (strobilurin A), and stigmatellin. Cytochrome b inhibitors acting at the center o of the mitochondrial ubiquinol-cytochrome c reductase in Saccharomyces cerevisiae. J Biol Chem 264:14543–14548

    Google Scholar 

  177. Bartlett DW, Clough JM, Godwin JR, Hall AA, Hamer M, Parr-Dobrzanski B (2002) The strobilurin fungicides. Pest Manag Sci 58:649–662

    Article  CAS  Google Scholar 

  178. Wong FP, Wilcox WF (2000) Distribution of baseline sensitivities to azoxystrobin among isolates of Plasmopara viticola. Plant Dis 84:275–281

    Article  CAS  Google Scholar 

  179. Fraaije BA, Butters JA, Coelho JM, Jones DR, Hollomon DW (2002) Following the dynamics of strobilurin resistance in Blumeria graminis f.sp tritici using quantitative allele-specific real-time PCR measurements with the fluorescent dye SYBR Green I. Plant Pathol 51:45–54

    Article  CAS  Google Scholar 

  180. Ma ZH, Felts D, Michailides TJ (2003) Resistance to azoxystrobin in Alternaria isolates from pistachio in California. Pestic Biochem Physiol 77:66–74

    Article  CAS  Google Scholar 

  181. Pasche JS, Piche LM, Gudmestad NC (2005) Effect of the F129L mutation in Alternaria solani on fungicides affecting mitochondrial respiration. Plant Dis 89:269–278

    Article  CAS  Google Scholar 

  182. Castroagudín VL, Ceresini PC, de Oliveira SC, Reges JT, Maciel JL, Bonato AL, Dorigan AF, McDonald BA (2015) Resistance to QoI fungicides is widespread in Brazilian populations of the wheat blast pathogen Magnaporthe oryzae. Phytopathology 105:284–294

    Article  CAS  Google Scholar 

  183. Beautement K, Clough KB (1987) Stereocontrolled syntheses of strobilurin A and its (9E)-isomer. Tetrahedron Lett 28:475–478

    Article  CAS  Google Scholar 

  184. Sutter M (1989) First total synthesis of strobilurin B. Tetrahedron Lett 30:5417–5420

    Article  CAS  Google Scholar 

  185. Bertram G, Scherer A, Steglich W, Weber W, Anke T (1996) Total synthesis of (+)-Strobilurin E. Tetrahedron Lett 37:7955–7958

    Article  CAS  Google Scholar 

  186. Nerud F, Sedmera P, Zouchová Z, Musílek V, Vondráček M (1982) Biosynthesis of mucidin, an antifungal antibiotic from basidiomycete Oudemansiella mucida 2H-, 13C-, and 14C-labelling study. Collect Czechoslov Chem Commun 47:1020–1025

    Article  CAS  Google Scholar 

  187. Iqbal A, Iqbal M, Bibi H, ud Din Z, Idrees M, Sajid M, Khan IA, Shah HU (2013) Feeding of L-phenylalanine as precursor enhances strobilurin A biosynthesis in the basidiomycete Strobilurus tenacellus. Afric J Microbiol Res 11:921–924

    Google Scholar 

  188. Comitini F, De Ingeniis J, Pepe L, Mannazzu I, Ciani M (2004) Pichia anomala and Kluyveromyces wickerhamii killer toxins as new tools against Dekkera/Brettanomyces spoilage yeasts. FEMS Microbiol Lett 238:235–240

    Article  CAS  Google Scholar 

  189. Makower M, Bevan EA (1963) The inheritance of the killer character in yeast (Saccharomyces cerevisiae). In: Geerts SJ (ed) Proceedings of the 11th international congress on genetics, vol I. Pergamon Press, Oxford, UK, pp 202–203

    Google Scholar 

  190. Santos A, Alonso A, Belda I, Marquina D (2013) Cell cycle arrest and apoptosis, two alternative mechanisms for PMKT2 killer activity. Fungal Genet Biol 50:44–54

    Article  CAS  Google Scholar 

  191. Santos A, Marquina D, Leal JA, Peinado JM (2000) (1–>6)-beta-D-glucan as cell wall receptor for Pichia membranifaciens killer toxin. Appl Environ Microbiol 66:1809–1813

    Article  CAS  Google Scholar 

  192. Santos A, San Mauro M, Abrusci C, Marquina D (2007) Cwp2p, the plasma membrane receptor for Pichia membranifaciens killer toxin. Mol Microbiol 64:831–843

    Article  CAS  Google Scholar 

  193. Hagen S, Marx F, Ram AF, Meyer V (2007) The antifungal protein AFP from Aspergillus giganteus inhibits chitin synthesis in sensitive fungi. Appl Environ Microbiol 73:2128–2134

    Article  CAS  Google Scholar 

  194. Oberparleiter C, Kaiserer L, Haas H, Ladurner P, Andratsch M, Marx F (2003) Active internalization of the Penicillium chrysogenum antifungal protein PAF in sensitive aspergilli. Antimicrob Agents Chemother 47:3598–3601

    Article  CAS  Google Scholar 

  195. Hegedus N, Leiter E, Kovacs B, Tomori V, Kwon NJ, Emri T, Marx F, Batta G, Csernoch L, Haas H, Yu JH, Pocsi I (2011) The small molecular mass antifungal protein of Penicillium chrysogenum – a mechanism of action oriented review. J Basic Microbiol 51:561–571

    Article  CAS  Google Scholar 

  196. Egan MJ, Wang ZY, Jones MA, Smirnoff N, Talbot NJ (2007) Generation of reactive oxygen species by fungal NADPH oxidases is required for rice blast disease. Proc Natl Acad Sci U S A 1044:11772–11777

    Article  CAS  Google Scholar 

  197. Takemoto D, Tanaka A, Scott B (2007) NADPH oxidases in fungi: diverse roles of reactive oxygen species in fungal cellular differentiation. Fung Genet Biol 44:1065–1076

    Article  CAS  Google Scholar 

  198. Heller J, Tudzynski P (2011) Reactive oxygen species in phytopathogenic fungi: signaling, development, and disease. Ann Rev Phytopathol 49:369–390

    Article  CAS  Google Scholar 

  199. Lambeth JD (2004) NOX enzymes and the biology of reactive oxygen. Nat Rev Immunol 4:181–189

    Article  CAS  Google Scholar 

  200. Torres MA, Dangl JL (2005) Functions of the respiratory burst oxidase in biotic interactions, abiotic stress and development. Curr Opin Plant Biol 8:397–403

    Article  CAS  Google Scholar 

  201. Beckman KB, Ames BN (1998) The free radical theory of aging matures. Physiol Rev 78:547–581

    CAS  Google Scholar 

  202. Kim KK, Fravel DR, Papavizas GC (1988) Identification of a metabolite produced by Talaromyces flavus as glucose oxidase and its role in the biocontrol of Verticillium dahliae. Phytopathology 78:488–492

    Article  CAS  Google Scholar 

  203. Guimarães RL, Stotz HU (2004) Oxalate production by Sclerotinia sclerotiorum deregulates guard cells during infection. Plant Physiol 136:3703–3711

    Article  CAS  Google Scholar 

  204. Wei SJ, Li GQ, Jiang DH, Wang DB (2004) Effect of oxalic acid on spore germination and mycelial growth of the mycoparasite Coniothyrium minitans. Acta Phytopathol Sin 34:199–203

    Google Scholar 

  205. Kim KS, Min JY, Dickman MB (2008) Oxalic acid is an elicitor of plant programmed cell death during Sclerotinia sclerotiorum disease development. Mol Plant Microbe Interact 21:605–612

    Article  CAS  Google Scholar 

  206. Williams B, Kabbage M, Min JY, Britt R, Dickman MB (2011) Tipping the balance: Sclerotinia sclerotiorum secreted oxalic acid suppresses host defenses by manipulating the host redox environment. PLoS Pathog 7:e1002107

    Article  CAS  Google Scholar 

  207. Kabbage M, Williams B, Dickman MB (2013) Cell death control: the interplay of apoptosis and autophagy in the pathogenicity of Sclerotinia sclerotiorum. PLoS Pathog 9:e1003287

    Article  CAS  Google Scholar 

  208. de Boer W, Verheggen P, Gunnewiek PJAK, Kowalchuk GA, van Veen JA (2003) Microbial community composition affects soil fungistasis. Appl Environ Microbiol 69:835–844

    Article  CAS  Google Scholar 

  209. Sivan A, Chet I (1989) The possible role of competition between Trichoderma harzianum and Fusarium oxysporum on rhizospere colonization. Phytopathology 79:198–203

    Article  Google Scholar 

  210. Alabouvette C, Olivain C, Migheli Q, Steinberg C (2009) Microbiological control of soil-borne phytopathogenic fungi with special emphasis on wilt-inducing Fusarium oxysporum. New Phytol 184:529–544

    Article  CAS  Google Scholar 

  211. Sarrocco S, Guidi L, Fambrini S, Del’Innocenti E, Vannacci G (2009) Competition for cellulose exploitation between Rhizoctonia solani and two Trichoderma isolates in the decomposition of wheat straw. J Plant Pathol 91:331–338

    CAS  Google Scholar 

  212. Doehlemann G, Molitor F, Hahn M (2005) Molecular and functional characterization of a fructose specific transporter from the gray mold fungus Botrytis cinerea. Fungal Genet Biol 42:601–610

    Article  CAS  Google Scholar 

  213. Barbi F, Bragalini C, Vallon L, Prudent E, Dubost A, Fraissinet-Tachet L, Marmeisse R, Luis P (2014) PCR primers to study the diversity of expressed fungal genes encoding lignocellulolytic enzymes in soils using high-throughput sequencing. PLoS One 9:e116264

    Article  CAS  Google Scholar 

  214. Aro N, Pakula T, Penttila M (2005) Transcriptional regulation of plant cell wall degradation by filamentous fungi. FEMS Microbiol Rev 29:719–739

    Article  CAS  Google Scholar 

  215. Miao YZ, Liu DY, Li GQ, Li P, Xu YC, Shen QR, Zhang RF (2015) Genome-wide transcriptomic analysis of a superior biomass-degrading strain of Aspergillus fumigatus revealed active lignocellulose-degrading genes. BMC Genomics 16:459

    Article  CAS  Google Scholar 

  216. Lingner U, Muench S, Sode B, Deising HB, Sauer N (2011) Functional characterization of a eukaryotic melibiose transporter. Plant Physiol 156:1565–1576

    Article  CAS  Google Scholar 

  217. Saier MH, Reddy VS, Tamang DG, Vastermark A (2014) The transporter classification database. Nucleic Acids Res 42:251–258

    Article  CAS  Google Scholar 

  218. Vieira PM, Coelho ASG, Steindorff AS, de Siqueira SJL, Silva RDN, Ulhoa CJ (2013) Identification of differentially expressed genes from Trichoderma harzianum during growth on cell wall of Fusarium solani as a tool for biotechnological application. BMC Genomics 14:177

    Article  CAS  Google Scholar 

  219. Delgado-Jarana J, Moreno-Mateos MA, Benítez T (2003) Glucose uptake in Trichoderma harzianum: role of gtt1. Eukaryot Cell 2:708–717

    Article  CAS  Google Scholar 

  220. Vizcaíno JA, Cardoza RE, Hauser M, Hermosa R, Rey M, Llobell A, Becker JM, Gutiérrez S, Monte E (2006) ThPTR2, a di/tri-peptide transporter gene from Trichoderma harzianum. Fungal Genet Biol 43:234–246

    Article  CAS  Google Scholar 

  221. Vinale F, Flematti G, Sivasithamparam K, Lorito M, Marra R, Skelton BW, Ghisalberti EL (2009) Harzianic acid, an antifungal and plant growth promoting metabolite from Trichoderma harzianum. J Nat Prod 72:2032–2035

    Article  CAS  Google Scholar 

  222. Türkel S, Ener B (2009) Isolation and characterization of new Metschnikowia pulcherrima strains as producers of the antimicrobial pigment pulcherrimin. Z Naturforsch C 64:405–410

    Google Scholar 

  223. Sipiczki M (2006) Metschnikowia strains isolated from botrytized grapes antagonize fungal and bacterial growth by iron depletion. Appl Environ Microbiol 72:6716–6724

    Article  CAS  Google Scholar 

  224. Spadaro D, Vola R, Piano S, Gullino ML (2002) Mechanisms of action and efficacy of four isolates of the yeast Metschnikowia pulcherrima active against postharvest pathogens on apples. Postharvest Biol Technol 24:123–134

    Article  Google Scholar 

  225. Calvente V, Benuzzi D, de Tosetti MIS (1999) Antagonistic action of siderophores from Rhodotorula glutinis upon the postharvest pathogen Penicillium expansum. Int Biodeterior Biodegrad 43:167–172

    Article  CAS  Google Scholar 

  226. Sansone G, Rezza I, Calvente V, Benuzzi D, de Tosetti MIS (2005) Control of Botrytis cinerea strains resistant to iprodione in apple with rhodotorulic acid and yeasts. Postharvest Biol Technol 35:245–251

    Article  CAS  Google Scholar 

  227. Morán-Diez E, Hermosa R, Ambrosino P, Cardoza RE, Gutiérrez S, Lorito M, Monte E (2009) The ThPG1 endopolygalacturonase is required for the Trichoderma harzianum-plant beneficial interaction. Mol Plant Microbe Interact 22:1021–1031

    Article  CAS  Google Scholar 

  228. Dubey MK, Jensen DF, Karlsson M (2014) Hydrophobins are required for conidial hydrophobicity and plant root colonization in the fungal biocontrol agent Clonostachys rosea. BMC Microbiol 14:18

    Article  CAS  Google Scholar 

  229. Viterbo A, Chet I (2006) TasHyd1, a new hydrophobin gene from the biocontrol agent Trichoderma asperellum, is involved in plant root colonization. Mol Plant Pathol 7:249–258

    Article  CAS  Google Scholar 

  230. Huang Y, Mijiti G, Wang ZY, Yu WJ, Fan HJ, Zhang RS, Liu ZH (2015) Functional analysis of the class II hydrophobin gene HFB2-6 from the biocontrol agent Trichoderma asperellum ACCC30536. Microbiol Res 171:8–20

    Article  CAS  Google Scholar 

  231. Adomas A, Eklund M, Johansson M, Asiegbu FO (2006) Identification and analysis of differentially expressed cDNAs during nonself-competitive interaction between Phlebiopsis gigantea and Heterobasidion parviporum. FEMS Microbiol Ecol 57:26–39

    Article  CAS  Google Scholar 

  232. Viterbo A, Harel M, Chet I (2004) Isolation of two aspartyl proteases from Trichoderma asperellum expressed during colonization of cucumber roots. FEMS Microbiol Lett 238:151–158

    CAS  Google Scholar 

  233. Brotman Y, Briff E, Viterbo A, Chet I (2008) Role of swollenin, an expansin-like protein from Trichoderma, in plant root colonization. Plant Physiol 147:779–789

    Article  CAS  Google Scholar 

  234. Saloheimo M, Paloheimo M, Hakola S, Pere J, Swanson B, Nyyssönen E, Bhatia A, Ward M, Penttilä M (2002) Swollenin, a Trichoderma reesei protein with sequence similarity to the plant expansins, exhibits disruption activity on cellulosic materials. Eur J Biochem 269:4202–4211

    Article  CAS  Google Scholar 

  235. Steindorff AS, Silva RDN, Coelho ASG, Nagata T, Noronha EF, Ulhoa CJ (2012) Trichoderma harzianum expressed sequence tags for identification of genes with putative roles in mycoparasitism against Fusarium solani. Biol Control 61:134–140

    Article  CAS  Google Scholar 

  236. Rosado IV, Rey M, Codón AC, Govantes J, Moreno-Mateos MA, Benítez T (2007) QID74 Cell wall protein of Trichoderma harzianum is involved in cell protection and adherence to hydrophobic surfaces. Fungal Genet Biol 44:950–964

    Article  CAS  Google Scholar 

  237. Samolski I, Rincón AM, Pinzón LM, Viterbo A, Monte E (2012) The qid74 gene from Trichoderma harzianum has a role in root architecture and plant biofertilization. Microbiology 158:129–138

    Article  CAS  Google Scholar 

  238. Crutcher FK, Moran-Diez ME, Ding S, Liu J, Horwitz BA, Mukherjee PK, Kenerley CM (2015) A paralog of the proteinaceous elicitor SM1 is involved in colonization of maize roots by Trichoderma virens. Fungal Biol 119:476–486

    Article  CAS  Google Scholar 

  239. Berto P, Jijakli MH, Lepoivre P (2001) Possible role of colonization and cell wall-degrading enzymes in the differential ability of three Ulocladium atrum strains to control Botrytis cinerea on necrotic strawberry leaves. Phytopathology 91:1030–1036

    Article  CAS  Google Scholar 

  240. Mandeel Q, Baker R (1991) Mechanisms involved in biological control of Fusarium wilt of cucumber with strains of non pathogenic Fusarium oxysporum. Phytopathology 81:462–469

    Article  Google Scholar 

  241. Alabouvette C (1999) Fusarium wilt suppressive soils: an example of disease-suppressive soils. Australas Plant Pathol 28:57–64

    Article  Google Scholar 

  242. Segarra G, Casanova E, Avilés M, Trillas I (2010) Trichoderma asperellum strain T34 controls Fusarium wilt disease in tomato plants in soilless culture through competition for iron. Microb Ecol 59:141–149

    Article  Google Scholar 

  243. Dutta S, Kundu A, Chakraborty M, Ojha S, Chakrabarti J, Chatterejee N (2006) Production and optimization of Fe(III) specific ligand, the siderophore of soil inhabiting and wood rotting fungi as deterrent to plant pathogens. Acta Phytopathol Entomol Hung 41:237–248

    Article  CAS  Google Scholar 

  244. Lehner SM, Atanasova L, Neumann NK, Krska R, Lemmens M, Druzhinina IS, Schuhmacher R (2013) Isotope-assisted screening for iron-containing metabolites reveals a high degree of diversity among known and unknown siderophores produced by Trichoderma spp. Appl Environ Microbiol 79:18–31

    Article  CAS  Google Scholar 

  245. Bartholdy BA, Berreck M, Haselwandter K (2001) Hydroxamate siderophore synthesis by Phialocephala fortinii, a typical dark septate fungal root endophyte. Biometals 14:33–42

    Article  CAS  Google Scholar 

  246. van Hees PA, Rosling A, Essén S, Godbold DL, Jones DL, Finlay RD (2006) Oxalate and ferricrocin exudation by the extramatrical mycelium of an ectomycorrhizal fungus in symbiosis with Pinus sylvestris. New Phytol 169:367–377

    Article  CAS  Google Scholar 

  247. Haselwandter K, Haninger G, Ganzera M, Haas H, Nicholson G, Winkelmann G (2013) Linear fusigen as the major hydroxamate siderophore of the ectomycorrhizal Basidiomycota Laccaria laccata and Laccaria bicolor. Biometals 26:969–979

    Article  CAS  Google Scholar 

  248. Sylvia DM, Sinclair WA (1983) Suppressive influence of Laccaria laccata on Fusarium oxysporum and on Douglas fir seedlings. Phytopathology 73:384–389

    Article  Google Scholar 

  249. Wösten HAB (2001) Hydrophobins: multipurpose proteins. Annu Rev Microbiol 55:625–646

    Article  Google Scholar 

  250. Linder MB, Szilvay GR, Nakari-Setälä T, Penttilä ME (2005) Hydrophobins: the protein-amphiphiles of filamentous fungi. FEMS Microbiol Rev 29:877–896

    Article  CAS  Google Scholar 

  251. Jensen BG, Andersen MR, Pedersen MH, Frisvad JC, Søndergaard I (2010) Hydrophobins from Aspergillus species cannot be clearly divided into two classes. BMC Res Notes 3:1–6

    Article  CAS  Google Scholar 

  252. Seidl-Seiboth V, Gruber S, Sezerman U, Schwecke T, Albayrak A, Neuhof T, von Döhren H, Baker SE, Kubicek CP (2011) Novel hydrophobins from Trichoderma define a new hydrophobin subclass: protein properties, evolution, regulation and processing. J Mol Evol 72:339–351

    Article  CAS  Google Scholar 

  253. Talbot NJ, Ebbole DJ, Hamer JE (1993) Identification and characterization of MPG1, a gene involved in pathogenicity from the rice blast fungus Magnaporthe grisea. Plant Cell 5:1575–1590

    Article  CAS  Google Scholar 

  254. Talbot NJ, Kershaw MJ, Wakley GE, De Vries O, Wessels J, Hamer JE (1996) MPG1 encodes a fungal hydrophobin involved in surface interactions during infection-related development of Magnaporthe grisea. Plant Cell 8:985–999

    Article  CAS  Google Scholar 

  255. Whitney SE, Gidley MJ, McQueen-Mason SJ (2000) Probing expansin action using cellulose/hemicellulose composites. Plant J 22:327–334

    Article  CAS  Google Scholar 

  256. Zeilinger S, Galhaup C, Payer K, Woo SL, Mach RL, Fekete C, Lorito M, Kubicek CP (1999) Chitinase gene expression during mycoparasitic interaction of Trichoderma harzianum with its host. Fungal Genet Biol 26:131–140

    Article  CAS  Google Scholar 

  257. Donzelli BG, Lorito M, Scala F, Harman GE (2001) Cloning, sequence and structure of a gene encoding an antifungal glucan 1,3-beta-glucosidase from Trichoderma atroviride (T. harzianum). Gene 277:199–208

    Article  CAS  Google Scholar 

  258. Harman GE, Petzoldt R, Comis A, Chen J (2004) Interactions between Trichoderma harzianum strain T22 and maize inbred line Mo17 and effects of these interactions on diseases caused by Pythium ultimum and Colletotrichum graminicola. Phytopathology 94:147–153

    Article  Google Scholar 

  259. Grinyer J, Hunt S, McKay M, Herbert BR, Nevalainen H (2005) Proteomic response of the biological control fungus Trichoderma atroviride to growth on the cell walls of Rhizoctonia solani. Curr Genet 47:381–388

    Article  CAS  Google Scholar 

  260. Montero M, Sanz L, Rey M, Llobell A, Monte E (2007) Cloning and characterization of bgn163, coding for a beta-1,6-glucanase expressed during Trichoderma harzianum mycoparasitism. J Appl Microbiol 103:1291–1300

    Article  CAS  Google Scholar 

  261. Chatterton S, Punja ZK (2009) Chitinase and beta-1,3-glucanase enzyme production by the mycoparasite Clonostachys rosea f. catenulata against fungal plant pathogens. Can J Microbiol 55:356–367

    Article  CAS  Google Scholar 

  262. Hjort K, Bergström M, Adesina MF, Jansson JK, Smalla K, Sjöling S (2010) Chitinase genes revealed and compared in bacterial isolates, DNA extracts and a metagenomic library from a phytopathogen-suppressive soil. FEMS Microbiol Ecol 71:197–207

    Article  CAS  Google Scholar 

  263. Duo-Chuan LI, Chen S, Jing LU (2005) Purification and partial characterization of two chitinases from the mycoparasitic fungus Talaromyces flavus. Mycopathologia 159:223–229

    Article  CAS  Google Scholar 

  264. Kunz C, Ludwig A, Bertheau Y, Boller T (1992) Evaluation of the antifungal activity of the purified chitinase 1 from the filamentous fungus Aphanocladium album. FEMS Microbiol Lett 90:105–109

    Article  CAS  Google Scholar 

  265. Liu Z, Yang X, Sun D, Song J, Chen G, Juba O, Yang Q (2010) Expressed sequence tags-based identification of genes in a biocontrol strain Trichoderma asperellum. Mol Biol Rep 37:3673–3681

    Article  CAS  Google Scholar 

  266. Kowsari M, Motallebi M, Zamani M (2014) Protein engineering of Chit42 towards improvement of chitinase and antifungal activities. Curr Microbiol 68:495–502

    Article  CAS  Google Scholar 

  267. Tzelepis G, Dubey M, Jensen DF, Karlsson M (2015) Identifying glycoside hydrolase family 18 genes in the mycoparasitic fungal species Clonostachys roseae. Microbiology 161:1407–1419

    Article  CAS  Google Scholar 

  268. Jones D, Watson D (1969) Parasitism and lysis by soil fungi of Sclerotinia sclerotiorum (Lib.) de Bary, a phytopahogenic fungus. Nature 224:287–288

    Article  Google Scholar 

  269. Jones D, Gordon AH, Bacon JS (1974) Co-operative action by endo- and exo-beta-(1 leads 3)-glucanases from parasitic fungi in the degradation of cell-wall glucans of Sclerotinia sclerotiorum (Lib.) de Bary. Biochem J 140:47–55

    Article  CAS  Google Scholar 

  270. Mathivanan N, Kabilan V, Murugesan K (1998) Purification, characterization, and antifungal activity of chitinase from Fusarium chlamydosporum, a mycoparasite to groundnut rust, Puccinia arachidis. Can J Microbiol 44:646–651

    Article  CAS  Google Scholar 

  271. Kordowska-Wiater M, Wagner A, Hetman B (2012) Efficacy of Candida melibiosica for control of post-harvest fungal diseases of carrot (Daucus carota L.). Acta Sci Pol Hortorum Cultus 11:55–65

    Google Scholar 

  272. Saravanakumar D, Spadaro D, Garibaldi A, Gullino M (2009) Detection of enzymatic activity and partial sequence of a chitinase gene in Metschnikowia pulcherrima strain MACH1 used as post-harvest biocontrol agent. Eur J Plant Pathol 123:183–193

    Article  CAS  Google Scholar 

  273. Klemsdal SS, Clarke JL, Elen O (2004) Chitinase gene from Trichoderma atroviride confers Fusarium resistance to GM-barley. In: McIntyre M, Nielsen J, Arnau J, van der Brink H, Hansen K, Madrid S (eds) Proceedings of the 7th European conference on fungal genetics. DTU, Copenhagen, p p68

    Google Scholar 

  274. Dana MD, Limón MC, Mejías R, Mach R, Benítez T, Pintor-Toro J, Kubicek CP (2001) Regulation of chitinase 33 (chit33) gene expression in Trichoderma harzianum. Curr Genet 38:335–342

    Article  Google Scholar 

  275. de la Cruz J, Hidalgo-Gallego A, Lora JM, Benitez T, Pintor-Toro JA, Llobell A (1992) Isolation and characterization of three chitinases from Trichoderma harzianum. Eur J Biochem 206:859–867

    Article  Google Scholar 

  276. Matroudi S, Zamani MR, Motallebi M (2008) Molecular cloning of chitinase 33 (chit33) gene from Trichoderma atroviride. Braz J Microbiol 39:433–437

    Article  CAS  Google Scholar 

  277. Troian RF, Steindorff AS, Ramada MHS, Arruda W, Ulhoa CJ (2014) Mycoparasitism studies of Trichoderma harzianum against Sclerotinia sclerotiorum: evaluation of antagonism and expression of cell wall-degrading enzymes genes. Biotechnol Lett 36:2095–2101

    Article  CAS  Google Scholar 

  278. Kim D-J, Baek J-M, Uribe P, Kenerley CM, Cook DR (2002) Cloning and characterization of multiple glycosyl hydrolase genes from Trichoderma virens. Curr Genet 40:374–384

    Article  CAS  Google Scholar 

  279. Viterbo A, Haran S, Friesem D, Ramot O, Chet I (2001) Antifungal activity of a novel endochitinase gene (chit36) from Trichoderma harzianum Rifai TM. FEMS Microbiol Lett 200:169–174

    Article  CAS  Google Scholar 

  280. Viterbo A, Montero M, Ramot O, Friesem D, Monte E, Llobell A, Chet I (2002) Expression regulation of the endochitinase chit36 from Trichoderma asperellum (T. harzianum T-203). Curr Genet 42:114–122

    Article  CAS  Google Scholar 

  281. Mamarabadi M, Jensen B, Jensen DF, Lübeck M (2008) Real-time RT-PCR expression analysis of chitinase and endoglucanase genes in the three-way interaction between the biocontrol strain Clonostachys rosea IK726, Botrytis cinerea and strawberry. FEMS Microbiol Lett 285:101–110

    Article  CAS  Google Scholar 

  282. Mamarabadi M, Jensen B, Lübeck M (2008) Three endochitinase-encoding genes identified in the biocontrol fungus Clonostachys rosea are differentially expressed. Curr Genet 54:57–70

    Article  CAS  Google Scholar 

  283. Deng S, Lorito M, Penttila M, Harman GE (2007) Overexpression of an endochitinase gene (ThEn-42) in Trichoderma atroviride for increased production of antifungal enzymes and enhanced antagonist action against pathogenic fungi. Appl Biochem Biotechnol 142:81–94

    Article  CAS  Google Scholar 

  284. Kullnig C, Mach RL, Lorito M, Kubicek CP (2000) Enzyme diffusion from Trichoderma atroviride (= T. harzianum P1) to Rhizoctonia solani is a prerequisite for triggering of Trichoderma ech42 gene expression before mycoparasitic contact. Appl Environ Microbiol 66:2232–2234

    Article  CAS  Google Scholar 

  285. Mach RL, Peterbauer CK, Payer K, Jaksits S, Woo SL, Zeilinger S, Kullnig CM, Lorito M, Kubicek CP (1999) Expression of two major chitinase genes of Trichoderma atroviride (T. harzianum P1) is triggered by different regulatory signals. Appl Environ Microbiol 65:1858–1863

    CAS  Google Scholar 

  286. Pérez-Martínez AS, De León-Rodríguez A, Harris LJ, Herrera-Estrella A, Barba de la Rosa AP (2007) Overexpression, purification and characterization of the Trichoderma atroviride endochitinase, Ech42, in Pichia pastoris. Protein Expr Purif 55:183–188

    Article  CAS  Google Scholar 

  287. Steyaert JM, Stewart A, Jaspers MV, Carpenter M, Ridgway HJ (2004) Co-expression of two genes, a chitinase (chit42) and proteinase (prb1), implicated in mycoparasitism by Trichoderma hamatum. Mycologia 96:1245–1252

    Article  CAS  Google Scholar 

  288. Carsolio C, Benhamou N, Haran S, Cortés C, Gutiérrez A, Chet I, Herrera-Estrella A (1999) Role of the Trichoderma harzianum endochitinase gene, ech42, in mycoparasitism. Appl Environ Microbiol 65:929–935

    CAS  Google Scholar 

  289. García I, Lora JM, de la Cruz J, Benítez T, Llobell A, Pintor-Toro JA (1994) Cloning and characterization of a chitinase (chit42) cDNA from the mycoparasitic fungus Trichoderma harzianum. Curr Genet 27:83–89

    Article  Google Scholar 

  290. Hayes CK, Klemsdal S, Lorito M, Di Pietro A, Peterbauer C, Nakas JP, Tronsmo A, Harman GE (1994) Isolation and sequence of an endochitinase-encoding gene from a cDNA library of Trichoderma harzianum. Gene 138:143–148

    Article  CAS  Google Scholar 

  291. Baek JM, Howell CR, Kenerley CM (1999) The role of an extracellular chitinase from Trichoderma virens Gv29-8 in the biocontrol of Rhizoctonia solani. Curr Genet 35:41–50

    Article  CAS  Google Scholar 

  292. El-Katatny MH, Gudelj M, Robra KH, Elnaghy MA, Gübitz GM (2001) Characterization of a chitinase and an endo-beta-1,3-glucanase from Trichoderma harzianum Rifai T24 involved in control of the phytopathogen Sclerotium rolfsii. Appl Microbiol Biotechnol 56:137–143

    Article  CAS  Google Scholar 

  293. Morissette DC, Driscoll BT, Jabaji-Hare S (2003) Molecular cloning, characterization, and expression of a cDNA encoding an endochitinase gene from the mycoparasite Stachybotrys elegans. Fungal Genet Biol 39:276–285

    Article  CAS  Google Scholar 

  294. Ike M, Nagamatsu K, Shioya A, Nogawa M, Ogasawara W, Okada H, Morikawa Y (2006) Purification, characterization, and gene cloning of 46 kDa chitinase (Chi46) from Trichoderma reesei PC-3-7 and its expression in Escherichia coli. Appl Microbiol Biotechnol 71:294–303

    Article  CAS  Google Scholar 

  295. Lima LH, Ulhoa CJ, Fernandes AP, Felix CR (1997) Purification of a chitinase from Trichoderma sp. and its action on Sclerotium rolfsii and Rhizoctonia solani cell walls. J Gen Appl Microbiol 43:31–37

    Article  CAS  Google Scholar 

  296. Lima LH, De Marco JL, Ulhoa CJ, Felix CR (1999) Synthesis of a Trichoderma chitinase which affects the Sclerotium rolfsii and Rhizoctonia solani cell walls. Folia Microbiol (Praha) 44:45–49

    Article  CAS  Google Scholar 

  297. Liu ZH, Yang Q, Hu S, Zhang JD, Ma J (2008) Cloning and characterization of a novel chitinase gene (chi46) from Chaetomium globosum and identification of its biological activity. Appl Microbiol Biotechnol 80:241–252

    Article  CAS  Google Scholar 

  298. Gan Z, Yang J, Tao N, Yu Z, Zhang K-Q (2007) Cloning and expression analysis of a chitinase gene Crchi1 from the mycoparasitic fungus Clonostachys rosea (syn. Gliocladium roseum). J Microbiol 45:422–430

    CAS  Google Scholar 

  299. Limón MC, Lora JM, García I, de la Cruz J, Llobell A, Benítez T, Pintor-Toro JA (1995) Primary structure and expression pattern of the 33-kDa chitinase gene from the mycoparasitic fungus Trichoderma harzianum. Curr Genet 28:478–483

    Article  Google Scholar 

  300. Xian H, Li J, Zhang L, Li D (2012) Cloning and functional analysis of a novel chitinase gene Trchi1 from Trichothecium roseum. Biotechnol Lett 34:1921–1928

    Article  Google Scholar 

  301. Guigon-Lopez C, Vargas-Albores F, Guerrero-Prieto V, Ruocco M, Lorito M (2015) Changes in Trichoderma asperellum enzyme expression during parasitism of the cotton root rot pathogen Phymatotrichopsis omnivora. Fungal Biol 119:264–273

    Article  CAS  Google Scholar 

  302. Mamarabadi M (2007) Characterization of genes encoding chitinolytic enzymes and their expression pattern in the biocontrol strain Clonostachys rosea IK726. PhD thesis, Faculty of Life Sciences, University of Copenhagen, Denmark

    Google Scholar 

  303. Dubey MK, Ubhayasekera W, Sandgren M, Jensen DF, Karlsson M (2012) Disruption of the Eng18B ENGase gene in the fungal biocontrol agent Trichoderma atroviride affects growth, conidiation and antagonistic ability. PLoS One 7:e36152

    Article  CAS  Google Scholar 

  304. Draborg H, Kauppinen S, Dalbøge H, Christgau S (1995) Molecular cloning and expression in S. cerevisiae of two exochitinases from Trichoderma harzianum. Biochem Mol Biol Int 36:781–791

    CAS  Google Scholar 

  305. Ramot O, Viterbo A, Friesem D, Oppenheim A, Chet I (2004) Regulation of two homodimer hexosaminidases in the mycoparasitic fungus Trichoderma asperellum by glucosamine. Curr Genet 45:205–213

    Article  CAS  Google Scholar 

  306. Brunner K, Peterbauer CK, Mach RL, Lorito M, Zeilinger S, Kubicek CP (2003) The Nag1 N-acetylglucosaminidase of Trichoderma atroviride is essential for chitinase induction by chitin and of major relevance to biocontrol. Curr Genet 43:289–295

    Article  CAS  Google Scholar 

  307. Peterbauer CK, Lorito M, Hayes CK, Harman GE, Kubicek CP (1996) Molecular cloning and expression of the nag1 gene (N-acetyl-β-d-glucosaminidase-encoding gene) from Trichoderma harzianum P1. Curr Genet 30:325–331

    Article  CAS  Google Scholar 

  308. Taylor G, Jabaji-Hare S, Charest PM, Khan W (2002) Purification and characterization of an extracellular exochitinase, beta-N-acetylhexosaminidase, from the fungal mycoparasite Stachybotrys elegans. Can J Microbiol 48:311–319

    Article  CAS  Google Scholar 

  309. Lisboa De Marco J, Valadares-Inglis MC, Felix CR (2004) Purification and characterization of an N-acetylglucosaminidase produced by a Trichoderma harzianum strain which controls Crinipellis perniciosa. Appl Microbiol Biotechnol 64:70–75

    Article  CAS  Google Scholar 

  310. Ait-Lahsen H, Soler A, Rey M, De la Cruz J, Monte E, Llobell A, Soler S (2001) An antifungal exo-α-1,3-glucanase (AGN13.1) from the biocontrol fungus Trichoderma harzianum. Appl Environ Microbiol 67:5833–5839

    Article  CAS  Google Scholar 

  311. Sanz L, Montero M, Redondo J, Llobell A, Monte E (2005) Expression of an alpha-1,3-glucanase during mycoparasitic interaction of Trichoderma asperellum. FEBS J 272:493–499

    Article  CAS  Google Scholar 

  312. Giczey G, Kerényi Z, Fülöp L, Hornok L (2001) Expression of cmg1, an exo-beta-1,3-glucanase gene from Coniothyrium minitans, increases during sclerotial parasitism. Appl Environ Microbiol 67:865–871

    Article  CAS  Google Scholar 

  313. Rotem Y, Yarden O, Sztejnberg A (1999) The Mycoparasite Ampelomyces quisqualis expresses exgA encoding an exo-beta-1,3-glucanase in culture and during mycoparasitism. Phytopathology 89:631–638

    Article  CAS  Google Scholar 

  314. Cohen-Kupiec R, Broglie KE, Friesem D, Broglie RM, Chet I (1999) Molecular characterization of a novel beta-1,3-exoglucanase related to mycoparasitism of Trichoderma harzianum. Gene 226:147–154

    Article  CAS  Google Scholar 

  315. Bara MT, Lima AL, Ulhoa CJ (2003) Purification and characterization of an exo-beta-1,3-glucanase produced by Trichoderma asperellum. FEMS Microbiol Lett 219:81–85

    Article  CAS  Google Scholar 

  316. Marcello CM, Steindorff AS, da Silva SP, Silva Rdo N, Mendes Bataus LA, Ulhoa CJ (2010) Expression analysis of the exo-beta-1,3-glucanase from the mycoparasitic fungus Trichoderma asperellum. Microbiol Res 165:75–81

    Article  CAS  Google Scholar 

  317. Archambault C, Coloccia G, Kermasha S, Jabaji-Hare S (1998) Characterization of an endo-1,3-beta-d-glucanase produced during the interaction between the mycoparasite Stachybotrys elegans and its host Rhizoctonia solani. Can J Microbiol 44:989–997

    CAS  Google Scholar 

  318. Noronha EF, Kipnis A, Junqueira-Kipnis AP, Ulhoa CJ (2000) Regulation of 36-kDa beta-1,3-glucanase synthesis in Trichoderma harzianum. FEMS Microbiol Lett 188:19–22

    CAS  Google Scholar 

  319. Noronha EF, Ulhoa CJ (2000) Characterization of a 29-kDa beta-1,3-glucanase from Trichoderma harzianum. FEMS Microbiol Lett 183:119–123

    CAS  Google Scholar 

  320. Djonović S, Vittone G, Mendoza-Herrera A, Kenerley CM (2007) Enhanced biocontrol activity of Trichoderma virens transformants constitutively coexpressing beta-1,3- and beta-1,6-glucanase genes. Mol Plant Pathol 8:469–480

    Article  Google Scholar 

  321. Monteiro VN, Ulhoa CJ (2006) Biochemical characterization of a beta-1,3-glucanase from Trichoderma koningii induced by cell wall of Rhizoctonia solani. Curr Microbiol 52:92–96

    Article  CAS  Google Scholar 

  322. Parafati L, Vitale A, Restuccia C, Cirvilleri G (2015) Biocontrol ability and action mechanism of food-isolated yeast strains against Botrytis cinerea causing post-harvest bunch rot of table grape. Food Microbiol 47:85–92

    Article  CAS  Google Scholar 

  323. Friel D, Pessoa NMG, Vandenbol M, Jijakli MH (2007) Separate and combined disruptions of two exo-beta-1,3-glucanase genes decrease the efficiency of Pichia anomala (strain K) biocontrol against Botrytis cinerea on apple. Mol Plant Microbe Interact 20:371–379

    Article  CAS  Google Scholar 

  324. de la Cruz J, Llobell A (1999) Purification and properties of a basic endo-β-1,6-glucanase (BGN16.1) from the antagonistic fungus Trichoderma harzianum. Eur J Biochem 265:145–151

    Article  Google Scholar 

  325. de la Cruz J, Pintor-Toro JA, Benítez T, Llobell A (1995) Purification and characterization of an endo-beta-1,6-glucanase from Trichoderma harzianum that is related to its mycoparasitism. J Bacteriol 177:1864–1871

    Article  Google Scholar 

  326. Djonović S, Pozo MJ, Kenerley CM (2006) Tvbgn3, a beta-1,6-glucanase from the biocontrol fungus Trichoderma virens, is involved in mycoparasitism and control of Pythium ultimum. Appl Environ Microbiol 72:7661–7670

    Article  CAS  Google Scholar 

  327. Suárez MB, Sanz L, Chamorro MI, Rey M, González FJ, Llobell A, Monte E (2005) Proteomic analysis of secreted proteins from Trichoderma harzianum identification of a fungal cell wall-induced aspartic protease. Fungal Genet Biol 42:924–934

    Article  CAS  Google Scholar 

  328. Liu Y, Yang Q (2007) Cloning and heterologous expression of aspartic protease SA76 related to biocontrol in Trichoderma harzianum. FEMS Microbiol Lett 277:173–181

    Article  CAS  Google Scholar 

  329. Yang X, Cong H, Song J, Zhang J (2013) Heterologous expression of an aspartic protease gene from biocontrol fungus Trichoderma asperellum in Pichia pastoris. World J Microbiol Biotechnol 29:2087–2094

    Article  CAS  Google Scholar 

  330. Dou K, Wang ZY, Zhang RS, Wang N, Fan HJ, Diao GP, Liu ZH (2014) Cloning and characteristic analysis of a novel aspartic protease gene Asp55 from Trichoderma asperellum ACCC30536. Microbiol Res 169:915–923

    Article  CAS  Google Scholar 

  331. Delgado-Jarana J, Rincón AM, Benítez T (2002) Aspartyl protease from Trichoderma harzianum CECT 2413: cloning and characterization. Microbiology 148:1305–1315

    Article  CAS  Google Scholar 

  332. Carpenter MA, Stewart A, Ridgway HJ (2005) Identification of novel Trichoderma hamatum genes expressed during mycoparasitism using subtractive hybridisation. FEMS Microbiol Lett 251:105–112

    Article  CAS  Google Scholar 

  333. Haggag WM, Kansoh AL, Aly AM (2006) Proteases from Talaromyces flavus and Trichoderma harzianum: purification, characterization and antifungal activity against brown spot disease on faba bean. Plant Pathol Bull 15:231–239

    CAS  Google Scholar 

  334. Cortes C, Gutierrez A, Olmedo V, Inbar J, Chet I, Herrera-Estrella A (1998) The expression of genes involved in parasitism by Trichoderma harzianum is triggered by a diffusible factor. Mol Gen Genet 260:218–225

    Article  CAS  Google Scholar 

  335. Geremia RA, Goldman GH, Jacobs D, Ardiles W, Vila SB, Van Montagu M, Herrera-Estrella A (1993) Molecular characterization of the proteinase-encoding gene, prb1, related to mycoparasitism by Trichoderma harzianum. Mol Microbiol 8:603–613

    Article  CAS  Google Scholar 

  336. Liu Y, Yang Q (2013) Cloning and heterologous expression of serine protease SL41 related to biocontrol in Trichoderma harzianum. J Mol Microbiol Biotechnol 23:431–439

    Article  CAS  Google Scholar 

  337. Yan L, Qian Y (2009) Cloning and heterologous expression of SS10, a subtilisin-like protease displaying antifungal activity from Trichoderma harzianum. FEMS Microbiol Lett 290:54–61

    Article  CAS  Google Scholar 

  338. Fan HJ, Liu ZH, Zhang RS, Wang N, Dou K, Mijiti G, Diao GP, Wang ZY (2014) Functional analysis of a subtilisin-like serine protease gene from biocontrol fungus Trichoderma harzianum. J Microbiol 52:129–138

    Article  CAS  Google Scholar 

  339. Pozo MJ, Baek J-M, García JM, Kenerley CM (2004) Functional analysis of tvsp1, a serine protease-encoding gene in the biocontrol agent Trichoderma virens. Fungal Genet Biol 41:336–348

    Article  CAS  Google Scholar 

  340. Whipps JM, Sreenivasaprasad S, Muthumeenakshi S, Rogers CW, Challen MP (2008) Use of Coniothyrium minitans as a biocontrol agent and some molecular aspects of sclerotial mycoparasitism. Eur J Plant Pathol 121:323–330

    Article  Google Scholar 

  341. del Rio LE, Martinson CA, Yang XB (2002) Biological control of Sclerotinia stem rot of soybean with Sporidesmium sclerotivorum. Plant Dis 86:999–1004

    Article  Google Scholar 

  342. Mata-Essayag S, Magaldi S, Hartung de Capriles C, Deibis L, Verde G, Perez C (2001) In vitro antifungal activity of protease inhibitors. Mycopathologia 152:135–142

    Article  CAS  Google Scholar 

  343. Elad Y, Kapat A (1999) The role of Trichoderma harzianum protease in the biocontrol of Botrytis cinerea. Eur J Plant Pathol 105:177–189

    Article  CAS  Google Scholar 

  344. Suárez B, Rey M, Castillo P, Monte E, Llobell A (2004) Isolation and characterization of PRA1, a trypsin-like protease from the biocontrol agent Trichoderma harzianum CECT 2413 displaying nematicidal activity. Appl Microbiol Biotechnol 65:46–55

    Article  CAS  Google Scholar 

  345. Kaziro Y, Itoh H, Kozasa T, Satoh T (1991) Structure and function of signal-transducing GTP-binding proteins. Annu Rev Biochem 60:349–400

    Article  CAS  Google Scholar 

  346. Omann MR, Lehner S, Escobar Rodríguez C, Brunner K, Zeilinger S (2012) The seven-transmembrane receptor Gpr1 governs processes relevant for the antagonistic interaction of Trichoderma atroviride with its host. Microbiology 158:107–118

    Article  CAS  Google Scholar 

  347. Rocha-Ramírez V, Omero C, Chet I, Horwitz BA, Herrera-Estrella A (2002) Trichoderma atroviride G-protein α-subunit gene tga1 is involved in mycoparasitic coiling and conidiation. Eukaryot Cell 1:594–605

    Article  CAS  Google Scholar 

  348. Reithner B, Brunner K, Schuhmacher R, Peissl I, Seidl V, Krska R, Zeilinger S (2005) The G protein alpha subunit Tga1 of Trichoderma atroviride is involved in chitinase formation and differential production of antifungal metabolites. Fungal Genet Biol 42:749–760

    Article  CAS  Google Scholar 

  349. Zeilinger S, Reithner B, Scala V, Peissl I, Lorito M, Mach RL (2005) Signal transduction by Tga3, a novel g protein subunit alpha of Trichoderma atroviride. Appl Environ Microbiol 71(3):1591–1597

    Article  CAS  Google Scholar 

  350. Silva RD, Steindorff AS, Ulhoa CJ, Félix CR (2009) Involvement of G-alpha protein GNA3 in production of cell wall-degrading enzymes by Trichoderma reesei (Hypocrea jecorina) during mycoparasitism against Pythium ultimum. Biotechnol Lett 31:531–536

    Article  CAS  Google Scholar 

  351. Mukherjee PK, Latha J, Hadar R, Horwitz BA (2004) Role of two G-protein alpha subunits, TgaA and TgaB, in the antagonism of plant pathogens by Trichoderma virens. Appl Environ Microbiol 70:542–549

    Article  CAS  Google Scholar 

  352. Chamoun R, Aliferis KA, Jabaji SH (2013) Characterization and transcriptional regulation of Stachybotrys elegans mitogen-activated-protein kinase gene smkA following mycoparasitism and starvation conditions. Curr Genet 59:43–54

    Article  CAS  Google Scholar 

  353. Mukherjee PK, Latha J, Hadar R, Horwitz BA (2003) TmkA, a mitogen-activated protein kinase of Trichoderma virens, is involved in biocontrol properties and repression of conidiation in the dark. Eukaryot Cell 2:446–455

    Article  CAS  Google Scholar 

  354. Reithner B, Schuhmacher R, Stoppacher N, Pucher M, Brunner K, Zeilinger S (2007) Signaling via the Trichoderma atroviride mitogen-activated protein kinase Tmk 1 differentially affects mycoparasitism and plant protection. Fungal Genet Biol 44:1123–1133

    Article  CAS  Google Scholar 

  355. Delgado-Jarana J, Sousa S, González F, Rey M, Llobell A (2006) ThHog1 controls the hyperosmotic stress response in Trichoderma harzianum. Microbiology 152:1687–1700

    Article  CAS  Google Scholar 

  356. Mendoza-Mendoza A, Pozo MJ, Grzegorski D, Martínez P, García JM, Olmedo-Monfil V, Cortés C, Kenerley C, Herrera-Estrella A (2003) Enhanced biocontrol activity of Trichoderma through inactivation of a mitogen-activated protein kinase. Proc Natl Acad Sci U S A 100:15965–15970

    Article  CAS  Google Scholar 

  357. Zeng F, Gong X, Hamid MI, Fu Y, Jiatao X, Cheng J, Li G, Jiang D (2012) A fungal cell wall integrity-associated MAP kinase cascade in Coniothyrium minitans is required for conidiation and mycoparasitism. Fungal Genet Biol 49:347–357

    Article  CAS  Google Scholar 

  358. Mukherjee M, Mukherjee PK, Kale SP (2007) cAMP signalling is involved in growth, germination, mycoparasitism and secondary metabolism in Trichoderma virens. Microbiology 153:1734–1742

    Article  CAS  Google Scholar 

  359. Lorito M, Mach RL, Sposato P, Strauss J, Peterbauer CK, Kubicek CP (1996) Mycoparasitic interaction relieves binding of the Cre1 carbon catabolite repressor protein to promoter sequences of the ech42 (endochitinase-encoding) gene in Trichoderma harzianum. Proc Natl Acad Sci U S A 93:14868–14872

    Article  CAS  Google Scholar 

  360. Hamid MI, Zeng F, Cheng J, Jiang D, Fu Y (2013) Disruption of heat shock factor 1 reduces the formation of conidia and thermotolerance in the mycoparasitic fungus Coniothyrium minitans. Fungal Genet Biol 53:42–49

    Article  CAS  Google Scholar 

  361. Karimi-Aghcheh R, Druzhinina IS, Kubicek CP (2013) The putative protein methyltransferase LAE1 of Trichoderma atroviride is a key regulator of asexual development and mycoparasitism. PLoS One 8:e67144

    Article  CAS  Google Scholar 

  362. Han YC, Li GQ, Yang L, Jiang DH (2011) Molecular cloning, characterization and expression analysis of a pacC homolog in the mycoparasite Coniothyrium minitans. World J Microbiol Biotechnol 27:381–391

    Article  CAS  Google Scholar 

  363. Trushina N, Levin M, Mukherjee PK, Horwitz BA (2013) PacC and pH-dependent transcriptome of the mycotrophic fungus Trichoderma virens. BMC Genomics 14:138

    Article  CAS  Google Scholar 

  364. Moreno-Mateos MA, Delgado-Jarana J, Codón AC, Benítez T (2007) pH and Pac1 control development and antifungal activity in Trichoderma harzianum. Fungal Genet Biol 44:1355–1367

    Article  CAS  Google Scholar 

  365. Lou Y, Han Y, Yang L, Wu M, Zhang J, Cheng J, Wang M, Jiang D, Chen W, Li G (2015) CmpacC regulates mycoparasitism, oxalate degradation and antifungal activity in the mycoparasitic fungus Coniothyrium minitans. Environ Microbiol 11:4711–4729

    Article  CAS  Google Scholar 

  366. Rubio MB, Hermosa R, Reino JL, Collado IG, Monte E (2009) Thctf1 transcription factor of Trichoderma harzianum is involved in 6-pentyl-2H-pyran-2-one production and antifungal activity. Fungal Genet Biol 46:17–27

    Article  CAS  Google Scholar 

  367. Mukherjee PK, Kenerley CM (2010) Regulation of morphogenesis and biocontrol properties in Trichoderma virens by a VELVET protein, Vel1. Appl Environ Microbiol 76:2345–2352

    Article  CAS  Google Scholar 

  368. Niones JT, Takemoto D (2015) VibA, a homologue of a transcription factor for fungal heterokaryon incompatibility, is involved in antifungal compound production in the plant-symbiotic fungus Epichloe festucae. Eukaryot Cell 14:13–24

    Article  CAS  Google Scholar 

  369. Gruber S, Zeilinger S (2014) The transcription factor Ste12 mediates the regulatory role of the Tmk1 MAP kinase in mycoparasitism and vegetative hyphal fusion in the filamentous fungus Trichoderma atroviride. PLoS One 9:e111636

    Article  CAS  Google Scholar 

  370. Choi W, Dean R (1997) The adenylate cyclase gene MAC1 of Magnaporthe grisea controls appressorium formation and other aspects of growth and development. Plant Cell 9:1973–1983

    Article  CAS  Google Scholar 

  371. Adachi K, Hamer JE (1998) Divergent cAMP signaling pathways regulate growth and pathogenesis in the rice blast fungus Magnaporthe grisea. Plant Cell 10:1361–1374

    Article  CAS  Google Scholar 

  372. Fillinger S, Chaveroche M-K, Shimizu K, Keller N, d’Enfert C (2002) cAMP and ras signalling independently control spore germination in the filamentous fungus Aspergillus nidulans. Mol Microbiol 44:1001–1016

    Article  CAS  Google Scholar 

  373. Klimpel A, Gronover CS, Williamson B, Stewart JA, Tudzynski B (2002) The adenylate cyclase (BAC) in Botrytis cinerea is required for full pathogenicity. Mol Plant Pathol 3:439–450

    Article  CAS  Google Scholar 

  374. Liebmann B, Gattung S, Jahn B, Brakhage AA (2003) cAMP signaling in Aspergillus fumigatus is involved in the regulation of the virulence gene pksP and in defense against killing by macrophages. Mol Genet Genomics 269:420–435

    Article  CAS  Google Scholar 

  375. Dickman M, Yarden O (1999) Serine/Threonine protein kinases and phosphatases in filamentous fungi. Fungal Genet Boil 26:99–117

    Article  CAS  Google Scholar 

  376. Schmoll M, Schuster A, Silva Rdo N, Kubicek CP (2009) The G-alpha protein GNA3 of Hypocrea jecorina (Anamorph Trichoderma reesei) regulates cellulase gene expression in the presence of light. Eukaryot Cell 8:410–420

    Article  CAS  Google Scholar 

  377. Calvo AM, Bok J, Brooks W, Keller NP (2004) VeA is required for toxin and sclerotial production in Aspergillus parasiticus. Appl Environ Microbiol 70:4733–4739

    Article  CAS  Google Scholar 

  378. Li S, Myung K, Guse D, Donkin B, Proctor RH, Grayburn WS, Calvo AM (2006) FvVE1 regulates filamentous growth, the ratio of microconidia to macroconidia and cell wall formation in Fusarium verticillioides. Mol Microbiol 62:1418–1432

    Article  CAS  Google Scholar 

  379. Dreyer J, Eichhorn H, Friedlin E, Kürnsteiner H, Kück U (2007) A homologue of the Aspergillus velvet gene regulates both cephalosporin C biosynthesis and hyphal fragmentation in Acremonium chrysogenum. Appl Environ Microbiol 73:3412–3422

    Article  CAS  Google Scholar 

  380. Bayram O, Krappmann S, Ni M, Bok JW, Helmstaedt K, Valerius O, Braus-Stromeyer S, Kwon NJ, Keller NP, Yu JH, Braus GH (2008) VelB/VeA/LaeA complex coordinates light signal with fungal development and secondary metabolism. Science 320:1504–1506

    Article  CAS  Google Scholar 

  381. Bayram O, Krappmann S, Seiler S, Vogt N, Braus GH (2008) Neurospora crassa ve-1 affects asexual conidiation. Fungal Genet Biol 45:127–138

    Article  CAS  Google Scholar 

  382. Calvo AM (2008) The VeA regulatory system and its role in morphological and chemical development in fungi. Fungal Genet Biol 45:1053–1061

    Article  CAS  Google Scholar 

  383. Myung K, Li S, Butchko RA, Busman M, Proctor RH, Abbas HK, Calvo AM (2009) FvVE1 regulates biosynthesis of the mycotoxins fumonisins and fusarins in Fusarium verticillioides. J Agric Food Chem 57:5089–5094

    Article  CAS  Google Scholar 

  384. Lorito M, Woo SL, Garcia I, Colucci G, Harman GE, Pintor-Toro JA, Filippone E, Muccifora S, Lawrence CB, Zoina A, Tuzun S, Scala F (1998) Genes from mycoparasitic fungi as a source for improving plant resistance to fungal pathogens. Proc Natl Acad Sci U S A 95:7860–7865

    Article  CAS  Google Scholar 

  385. Seidl V, Marchetti M, Schandl R, Allmaier G, Kubicek CP (2006) EPL1, the major secreted protein of Hypocrea atroviridis on glucose is a member of a strongly conserved protein family comprising plant defense response elicitors. FEBS J 273:4346–4359

    Article  CAS  Google Scholar 

  386. Gaderer R, Lamdan NL, Frischmann A, Sulyok M, Krska R, Horwitz BA, Seidl-Seiboth V (2015) Sm2, a paralog of the Trichoderma cerato-platanin elicitor Sm1, is also highly important for plant protection conferred by the fungal-root interaction of Trichoderma with maize. BMC Microbiol 15:2

    Article  CAS  Google Scholar 

  387. Wang Y, Song JZ, Wu YJ, Odeph M, Liu Z, Howlett BJ, Wang S, Yang P, Yao L, Zhao L, Yang Q (2013) Eplt4 proteinaceous elicitor produced in Pichia pastoris has a protective effect against Cercosporidium sofinum infections of soybean leaves. Appl Biochem Biotechnol 169:722–737

    Article  CAS  Google Scholar 

  388. Viterbo A, Harel M, Horwitz BA, Chet I, Mukherjee PK (2005) Trichoderma mitogen-activated protein kinase signaling is involved in induction of plant systemic resistance. Appl Environ Microbiol 71:6241–6246

    Article  CAS  Google Scholar 

  389. Masunaka A, Sekiguchi H, Takahashi H, Takenaka S (2010) Distribution and expression of elicitin-like protein genes of the biocontrol agent Pythium oligandrum. J Phytopathol 158:417–426

    Article  CAS  Google Scholar 

  390. Ouyang ZG, Li XH, Huang L, Hong YB, Zhang YF, Zhang HJ, Li DY, Song FM (2015) Elicitin-like proteins Oli-D1 and Oli-D2 from Pythium oligandrum trigger hypersensitive response in Nicotiana benthamiana and induce resistance against Botrytis cinerea in tomato. Mol Plant Pathol 16(3):238–250

    Article  CAS  Google Scholar 

  391. Benhamou N, Bélanger RR, Rey P, Tirilly Y (2001) Oligandrin, the elicitin-like protein produced by the mycoparasite Pythium oligandrum, induces systemic resistance to Fusarium crown and root rot in tomato plants. Plant Physiol Biochem 39:681–696

    Article  CAS  Google Scholar 

  392. Mohamed N, Lherminier J, Farmer MJ, Fromentin J, Béno N, Houot V, Milat ML, Blein JP (2007) Defense responses in grapevine leaves against Botrytis cinerea induced by application of a Pythium oligandrum strain or its elicitin, oligandrin, to roots. Phytopathology 97:611–620

    Article  CAS  Google Scholar 

  393. Picard K, Tirilly Y, Benhamou N (2000) Cytological effects of cellulases in the parasitism of Phytophthora parasitica by Pythium oligandrum. Appl Environ Microbiol 66:4305–4314

    Article  CAS  Google Scholar 

  394. Djonović S, Pozo MJ, Dangott LJ, Howell CR, Kenerley CM (2006) Sm1, a proteinaceous elicitor secreted by the biocontrol fungus Trichoderma virens induces plant defense responses and systemic resistance. Mol Plant Microbe Interact 19:838–853

    Article  CAS  Google Scholar 

  395. Fan LL, Fu KH, Yu CJ, Li YY, Li YQ, Chen J (2015) Thc6 protein, isolated from Trichoderma harzianum, can induce maize defense response against Curvularia lunata. J Basic Microbiol 55:591–600

    Article  CAS  Google Scholar 

  396. Rotblat B, Enshell-Seijffers D, Gershoni JM, Schuster S, Avni A (2002) Identification of an essential component of the elicitation active site of the EIX protein elicitor. Plant J 32:1049–1055

    Article  CAS  Google Scholar 

  397. Engelberth J, Koch T, Schüler G, Bachmann N, Rechtenbach J, Boland W (2001) Ion channel-forming alamethicin is a potent elicitor of volatile biosynthesis and tendril coiling. Cross talk between jasmonate and salicylate signaling in lima bean. Plant Physiol 125:369–377

    Article  CAS  Google Scholar 

  398. Cai F, Yu G, Wang P, Wei Z, Fu L, Shen Q, Chen W (2013) Harzianolide, a novel plant growth regulator and systemic resistance elicitor from Trichoderma harzianum. Plant Physiol Biochem 73:106–113

    Article  CAS  Google Scholar 

  399. Martinez C, Blanc F, Le Claire E, Besnard O, Nicole M, Baccou JC (2001) Salicylic acid and ethylene pathways are differentially activated in melon cotyledons by active or heat-denatured cellulase from Trichoderma longibrachiatum. Plant Physiol 127:334–344

    Article  CAS  Google Scholar 

  400. Yang CA, Cheng CH, Lo CT, Liu SY, Lee JW, Peng KC (2011) A novel L-amino acid oxidase from Trichoderma harzianum ETS 323 associated with antagonism of Rhizoctonia solani. J Agric Food Chem 59:4519–4526

    Article  CAS  Google Scholar 

  401. de la Cruz J, Pintor-Toro JA, Benitez T, Llobell A, Romero LC (1995) A novel endo-β-1,3-glucanase, BGN13.1, involved in the mycoparasitism of Trichoderma harzianum. J Bacteriol 177:6937–6945

    Article  Google Scholar 

  402. Shimizu K, Hossain MM, Kato K, Kubota M, Hyakumachi M (2013) Induction of defense responses in cucumber plants by using the cell-free filtrate of the plant growth-promoting fungus Penicillium simplicissimum GP17-2. J Oleo Sci 62:613–621

    Article  CAS  Google Scholar 

  403. Cameron DD, Neal A, van Wees SC, Ton J (2013) Mycorrhiza-induced resistance: more than the sum of its parts? Trends Plant Sci 18:539–545

    Article  CAS  Google Scholar 

  404. Campos-Soriano L, García-Martínez J, San Segundo B (2012) The arbuscular mycorrhizal symbiosis promotes the systemic induction of regulatory defence-related genes in rice leaves and confers resistance to pathogen infection. Mol Plant Pathol 13:579–592

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Steinberg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this entry

Cite this entry

Daguerre, Y., Edel-Hermann, V., Steinberg, C. (2017). Fungal Genes and Metabolites Associated with the Biocontrol of Soil-borne Plant Pathogenic Fungi. In: Mérillon, JM., Ramawat, K. (eds) Fungal Metabolites. Reference Series in Phytochemistry. Springer, Cham. https://doi.org/10.1007/978-3-319-25001-4_27

Download citation

Publish with us

Policies and ethics