Skip to main content

Labyrinthulomycota

  • Reference work entry
  • First Online:
Handbook of the Protists

Abstract

The Straminipila are characterized by their anterior flagellum with tripartite hairs and form a well-supported monophyletic branch of the larger Straminipila/Alveolata/Rhizaria (SAR) superkingdom. This is an account of the molecular systematics and phylogeny of osmotrophic and phagotrophic lineages of the Straminipila, comprising the slime nets and their thraustochytrid allies, as well as some lesser known lineages. The phylum Labyrinthulomycota s. lat. contains two main clades, one of which approximates to holocarpic thraustochytrids and the other to the labyrinthulids and aplanochytrids. Together with the flagellate bicosoecids and the protermonads and opalinids, they form a monophyletic clade that is sister to the golden-brown algae and Oomycota. The systematics of the Labyrinthulomycota s. lat. is still in flux as recent studies employing environmental barcoding have revealed the presence of diverse lineages not branching within genera characterized in terms of their morphology. The current review deals primarily with the two major lineages of the Labyrinthulomycota s. lat. and discusses other lineages only briefly, due to the scarce knowledge about these organisms. Characteristics associated with zoosporogenesis and sexual reproduction are discussed in relation to other members of the Straminipila.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 999.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,099.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adl, S. M., Simpson, A. G., Farmer, M. A., Andersen, R. A., Andersen, O. R., Barta, J. R., Bowser, S. S., Brugerolle, G., Fensome, R. A., Frederico, S., James, T. Y., Karpov, S., Kurgens, P., Krug, J., Lane, C. E., Lewis, L. A., Lodge, J., Lynn, D. H., Mann, D. G., McCourt, R. M., Mendoza, L., Moestrup, Ø., Mozley-Standridge, S. E., Nerad, T. A., Shearer, C. A., Smirnov, A. V., Spiegel, F. W., & Taylor, M. F. J. R. (2005). The new higher level classification of the eukaryotes with emphasis on the taxonomy of protists. Journal of Eukaryotic Microbiology, 52, 399–451.

    Article  PubMed  Google Scholar 

  • Amon, J. P. (1978). Thraustochytrids and labyrinthulids of terrestrial, aquatic and hypersaline environments of the great salt lake, USA. Mycologia, 70, 1299–1301.

    Article  Google Scholar 

  • Andersen, R. A., Barr, D. J. S., Lynn, D. H., Melkonian, M., Moestrup, O., & Sleigh, M. A. (1991). Terminology and nomenclature of the cytoskeletal elements associated with the flagellar/ciliary apparatus in protists. Protoplasma, 164, 1–8.

    Article  Google Scholar 

  • Anderson, O. R., & Cavalier-Smith, T. (2012). Ultrastructure of Diplophrys parva, a new small freshwater species, and a revised analysis of Labyrinthulea (Heterokonta). Acta Protozoologica, 51, 291–304.

    Google Scholar 

  • Armiger, L. C. (1964). An occurrence of Labyrinthula in New Zealand Zostera. New Zealand Journal of Botany, 2, 3–9.

    Article  Google Scholar 

  • Aschner, M. (1958). Isolation of Labyrinthula macrocystis from soil. Bulletin of the Research Council of Israel, 6D, 174–179.

    Google Scholar 

  • Azevedo, C., & Corral, L. (1997). Some ultrastructural observations of a thraustochytrid (Protoctista, Labyrinthulomycota) from clam Ruditapes descussatus (Mollusca, Bivalva). Diseases of Aquatic Organisms, 31, 73–78.

    Google Scholar 

  • Bahnweg, G. (1979a). Studies on the physiology of Thraustochytriales. I. Carbon nutrition of Thraustochytrium spp., ecology of thraustochytrids and labyrinthulids 141 Schizochytrium sp., Japonochytrium sp., Ulkenia spp. and Labyrinthuloides spp. Veröffentlichungen des Instituts für Meeresforschung in Bremerhaven, 17, 269–273.

    CAS  Google Scholar 

  • Bahnweg, G. (1979b). Studies on the physiology of Thraustochytriales. II. Growth requirements and nitrogen nutrition of Thraustochytrium spp., Schizochytrium sp., Japonochytrium sp., Ulkenia spp. and Labyrinthuloides spp. Veröffentlichungen des Instituts für Meeresforschung in Bremerhaven, 17, 245–268.

    CAS  Google Scholar 

  • Bahnweg, G., & Jäckle, I. (1986). A new approach to taxonomy of the Thraustochytriales and Labyrinthulales. In S. T. Moss (Ed.), The biology of marine fungi (pp. 131–140). Cambridge: Cambridge University Press.

    Google Scholar 

  • Bahnweg, G., & Sparrow, F. K. (1974). Occurrence, distribution and kinds of zoosporic fungi in subantartic and Antarctic waters. Veröffentlichungen des Instituts für Meeresforschung in Bremerhaven, 5, 149–157.

    Google Scholar 

  • Barr, D. J. S. (1981). The phylogenetic and taxonomic implications of flagellar rootlet morphology among zoosporic fungi. Biosystems, 14, 359–370.

    Article  CAS  PubMed  Google Scholar 

  • Barr, D. J. S., & Allan, P. M. E. (1985). A comparison of the flagellar apparatus in Phytophthora, Saprolegnia, Thraustochytrium, and Rhizidiomyces. Canadian Journal of Botany, 63, 138–154.

    Article  Google Scholar 

  • Barr, D. J. S., & Désaulniers, N. L. (1989). The flagellar apparatus of the oomycetes and hyphochytriomycetes. In J. C. Green, B. S. C. Leadbeater, & W. L. Diver (Eds.), The chromophyte algae, problems and perspectives (pp. 343–355). Oxford: Oxford University Press.

    Google Scholar 

  • Baurain, D., Brinkman, H., Petersen, J., Rodriguez-Ezpeleta, N., Stechman, A., Demoulin, V., Roger, A. J., Burger, G., Lang, B. F., & Philippe, H. (2010). Phylogenomic evidence for separate acquisition of plastids in cryptophytes, haptophytes and stramenopiles. Molecular Biology and Evolution, 27, 1698–1709.

    Article  CAS  PubMed  Google Scholar 

  • Beakes, G. W., Glockling, S. L., & Sekimoto, S. (2012). The evolutionary phylogeny of the oomycete “fungi”. Protoplasma, 249, 3–19.

    Article  PubMed  Google Scholar 

  • Beakes, G. W., Honda, D., & Thines, M. (2014). Systematics of Straminipila, Labyrinthulomycota, Hyphochytriomycota, and Oomycota. In D. J. McLaughlin & J. W. Spatafora (Eds.), The Mycota – Systematics and evolution Part A VII (pp. 39–97). Heidelberg: Springer.

    Google Scholar 

  • Bigelow, D. M., Olsen, M. W., & Gilbertson, R. L. (2005). Labyrinthula terrestris sp. nov., a new pathogen of turf grass. Mycologia, 97, 185–190.

    Article  CAS  PubMed  Google Scholar 

  • Bockelmann, A. C., Beining, K., & Reusch, T. B. (2012). Widespread occurrence of endophytic Labyrinthula spp. in northern European eelgrass Zostera marina beds. Marine Ecology Progress Series, 445, 109–116.

    Article  CAS  Google Scholar 

  • Bongiorni, L. (2012). Thraustochytrids, a neglected component of oganic matter descompsition and food webs in marine sediments. In C. Raghukumar (Ed.), Biology of marine fungi, Progress in molecular and subcellular biology (Vol. 53, pp. 1–13).

    Chapter  Google Scholar 

  • Booth, T. (1971). Occurrence and distribution of some zoosporic fungi from soils of hibben and Moresby Islands, Queen Charlotte Islands. Canadian Journal of Botany, 49, 951–965.

    Article  Google Scholar 

  • Bower, S. M. (1987a). Labyrinthuloides haliotidis n. sp. (Protozoa, Layrinthulomorpha), a pathogenic parasite of of small juvenile abalone in a British Columbia mariculture facility. Canadian Journal of Zoology, 65, 2013–2020.

    Article  Google Scholar 

  • Bower, S. M. (1987b). Artificial culture of Labyrinthuloides haliotidis (Protozoa, Labyrinthomorpha), a pathogenic parasite of abalone. Canadian Journal of Botany, 65, 2013–2020.

    Google Scholar 

  • Bower, S. M., McLean, N., & Whitaker, D. J. (1989). Mechanism of infection by Labyrinthuloides haliotidis (Protozoa, Labyrinthomorpha), a parasite of abalone (Haliotis kamtschatka) (Mollusca, Gastropoda). Journal of Invertebrate Pathology, 53, 401–409.

    Google Scholar 

  • Bowler, C., Allen, A. E., Badger, J. H., Grimwood, J., Jabbari, K., Kuo, A., Maheswari, U., Martens, C., Maumus, F., Otillar, R. P., Rayko, E., Salamov, A., Vandepoele, K., Beszteri, B., Gruber, A., Heijde, M., Katinka, M., Mock, T., Valentin, K., Verret, F., Berges, J. A., Brownlee, C., Cadoret, J.-P., Chiovitti, A., Choi, C. J., Coesel, S., De Martino, A., Detter, J. C., Durkin, C., Falciatore, A., Fournet, J., Haruta, M., Huysman, M. J. J., Jenkins, B. D., Jiroutova, K., Jorgensen, R. E., Joubert, Y., Kaplan, A., Kröger, N., Kroth, P. G., La Roche, J., Lindquist, E., Lommer, M., Martin-Jézéque, V., Lopez, P. J., Lucas, S., Mangogna, M., McGinnis, K., Medlin, L. K., Montsant, A., Oudot-Le Secq, M.-P., Napoli, C., Obornik, M., Parker, M. S., Petit, J. L., Porcel, B. M., Poulsen, N., Robison, M., Rychlewski, L., Rynearson, T. A., Schmutz, J., Shapiro, H., Siaut, M., Stanley, M., Sussman, M. R., Taylor, A. R., Vardi, A., von Dassow, P., Vyverman, W., Willis, A., Wyrwicz, L. S., Rokhsar, D. S., Weissenbach, J., Armbrust, E. V., Green, B. R., de Peer, Y. V., & Grigoriev, I. V. (2008). The Phaeodactylum genome reveals the evolutionary history of diatom genomes. Nature, 456, 239–244.

    Article  CAS  PubMed  Google Scholar 

  • Bremer, G. B. (1976). The ecology of marine lower fungi. In E. B. G. Jones (Ed.), Advances in aquatic mycology (pp. 313–333). London: Elek Science.

    Google Scholar 

  • Brown, J. W., & Sorhannus, U. (2010). A molecular genetic timescale for the diversification of autotrophic stramenopiles (Ochrophyta), substantive underestimation of putative fossil ages. PloS One, 5, e12759. doi:10.1371/journal.pone.0012759.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Burki, F., Shalchian-Tabrizi, K., & Pawlowski, J. (2008). Phylogenomics reveals a new ‘megagroup’ including most photosynthetic eukaryotes. Biology Letters, 4, 366–369.

    Article  PubMed  PubMed Central  Google Scholar 

  • Cavalier-Smith, T., & Chao, E. E. Y. (2006). Phylogeny and megasystematics of phagotrophic heterokonts (Kingdom Chromista). Journal of Molecular Evolution, 62, 388–420.

    Article  CAS  PubMed  Google Scholar 

  • Chang, K. J. L., Dunstan, G. A., Abell, G. C., Clementson, L. A., Blackburn, S. I., Nichols, P. D., & Koutoulis, A. (2012). Biodiscovery of new Australian thraustochytrids for production of biodiesel and long-chain omega-3 oils. Applied Microbiology and Biotechnology, 93, 2215–2231.

    Article  CAS  Google Scholar 

  • Cienkowski, L. (1867). Ueber den Bau und die Entwickelung der Labyrinthuleen. Archiv für Mikroskopishce Anatomie, 3, 274–310.

    Article  Google Scholar 

  • Colaco, A., Raghukumar, C., Mohandass, C., Cardigos, F., & Santos, R. S. (2006). Effect of shallow water venting in Azores on a few marine biota. Cahiers de Biologie Marine, 47, 359–364.

    Google Scholar 

  • Collado-Mercado, E., Radway, J. C., & Collier, J. L. (2010). Novel uncultivated labyrinthulomycetes reveales by 18S rDNA sequences from seawater and sediment samples. Aquatic Microbial Ecology, 58, 215–228.

    Article  Google Scholar 

  • Collier, J. (2012). Why sequence four Labrinthulomycete species? JGI DOE Joint Genome Institute. http://www.jgi.doe.gov/sequencing/why/labrinthulomycete.html. Accessed 23 Sept 2012.

  • Craven, K. D., Peterson, P. D., Windham, D. E., Mitchell, T. K., & Martin, S. B. (2005). Molecular identification of the turf grass rapid blight pathogen. Mycologia, 97, 160–166.

    Article  CAS  PubMed  Google Scholar 

  • Damare, V., & Raghukumar, S. (2008). Abundance of thraustochytrids and bacteria in the equatorial Indian Ocean, in relation to transparent exopolymreic particles (TEPs). FEMS Microbiology Ecology, 65, 40–49.

    Article  CAS  PubMed  Google Scholar 

  • Damare, V., & Raghukumar, S. (2010). Association of the stramenopilan proitst, the aplanochytrids, with zooplankton of the equatorial Indian Ocean. Marine Ecology Progress Series, 399, 53–68.

    Article  CAS  Google Scholar 

  • Dick, M. W. (2001). Straminipilous fungi (670 pp). Dordrecht: Kluwer.

    Book  Google Scholar 

  • Diéz, B., Pedrós-Alió, C., & Massana, R. (2001). Study of genetic diversity of eukaryotic picoplankton in different oceanic regions by small-subunit rRNA gene cloning and sequencing. Applied and Environmental Microbiology, 67, 2932–2941.

    Article  PubMed  PubMed Central  Google Scholar 

  • Doenoeud, F., Roussel, M., Noel, B., Wawrzyniak, I., Da Silva, C., Diogon, M., Viscogliosi, E., Brochier-Armanet, C., Couloux, A., Poulain, J., Segurens, B., Anthouard, V., Texier, C., Blot, N., Poirier, P., Ng, G. C., Tan, K. S., Artiguenave, F., Jaillon, O., Aury, J. M., Delbac, F., Wincker, P., Vivarès, C. P., & El Alaoui, H. (2011). Genome sequence of the stramenopile Blastocystis, a human anaerobic parasite. Genome Biology, 12, R29. doi:10.1186/gb-2011-12-3-r29.

    Article  CAS  Google Scholar 

  • Dorrell, R. G., & Smith, A. G. (2011). Do red and green make brown? Perspectives on plastid acquisitions within chromalveolates. Eukaryotic Cell, 10, 856–868. doi:10.1128/EC.00326-10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Douhan, G. W., Olsen, M. W., Herrell, A., Winder, C., Wong, F., & Entwistle, K. (2009). Genetic diversity in Labyrinthula terrestris, a newly emergent plant pathogen, and the discovery of new Labyrinthulid organism. Mycological Research, 113, 1192–1199.

    Article  CAS  PubMed  Google Scholar 

  • Dykova, I., Fiala, I., Dvorakova, H., & Peckova, H. (2008). Living together, the marine amoeba Thecamoeba hilla Shaeffer, 1926 and its endosymbiont Labyrinthula sp. European Journal of Protistology, 44, 308–316.

    Article  PubMed  Google Scholar 

  • Dykstra, M. J., & Porter, D. (1984). Diplophrys marina, a new scale-forming marine protist with labyrinthulid affinities. Mycologia, 76, 626–632.

    Article  Google Scholar 

  • Evans, O., Paul-Pont, I., & Whittington, R. J. (2017). Detection of ostreid herpesvirus 1 microvariant DNA in aquatic invertebrate species, sediment and other samples collected from the Georges River estuary, New South Wales, Australia. Diseases of Aquatic Organisms, 122, 247–255.

    Article  PubMed  Google Scholar 

  • Fan, K. W., & Chen, F. (2006). Production of high value products by marine microalgae thraustochytrids. In S. T. Yang (Ed.), Bioprocessing for value-added products from renewable resources (pp. 293–323). Amsterdam: Elsevier BV.

    Google Scholar 

  • Fan, K. W., Vrijmoed, L. L. P., & Jones, E. B. G. (2002). Physiological studies of subtropical mangrove thraustochytrids. Botanica Marina, 45, 50–57.

    Article  Google Scholar 

  • Fan, K. W., Tsunchiro, A., Chen, F., & Jiang, Y. (2010). Enhanced production of squalene in the thraustochytrid Aurantiochytrium mangrovei by medium optimization and treatment with terbinafine. World Journal of Microbiology and Biotechnology, 26, 1303–1309.

    Google Scholar 

  • FioRito, R., Leander, C., & Leander, B. (2016). Characterization of three novel species of Labyrinthulomycota isolated from ochre sea stars (Pisaster ochraceus). Marine Biology, 163, 170. doi:10.1007/s00227-016-2944-5.

    Article  Google Scholar 

  • Gaertner, A. (1968). Eine method des quantitativen Nachweises niederer mit pollen koderbarer pilze in meerwasser und im sediment. Veröffentlichungen des Instituts für Meeresforschung in Bremerhaven, 3, 75–92.

    Google Scholar 

  • Gaertner, A. (1979). Some fungal parasites found in the diatom populations of the Rosfjord area (South Norway) during March 1979. Veröffentlichungen des Instituts für Meeresforschung in Bremerhaven, 18, 92–33.

    Google Scholar 

  • Garcia-Verdrenne, A. E., Groner, M., Page-Karjian, A., Siegmund, G. F., Singhal, S., Sziklay, J., & Robert, S. (2013). Development of genomic resources for a thraustochytrid pathogen and investigation of temperature influences on gene expression. PloS One, 8, e74196. doi:10.1371/journal.pone.0074196.

    Article  CAS  Google Scholar 

  • Garcias-Bonet, N., Sherman, T. D., Duarte, C. M., & Marba, N. (2011). Distribution and pathogenicity of the protist Labyrinthula sp. in western Mediterranean seagrass meadows. Estauries and Coasts, 34, 1161. doi:10.1007/s12237-011-9416-4.

    Article  Google Scholar 

  • Goldstein, S. (1973). Zoosporic marine fungi (Thraustochytriaceae and Dermocystidiaceae). Annual Review of Microbiology, 27, 13–25.

    Article  CAS  PubMed  Google Scholar 

  • Gomaa, F., Mitchell, E. A. D., & Lara, E. (2013). Amphitremida (Poche, 2013) is a new major, ubiquitous Labyrinthulomycete clade. PloS One, 8, e53046. doi:10.1371/journal.pone.0053046.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hackett, J. D., Yoon, H. S., Li, S., Reyes-Prieto, A., Rümmele, S. E., & Bhattacharya, D. (2007). Phylogenomic analysis supports the monophyly of cryptophytes and haptophytes and the association of Rhizaria with chromalveolates. Molecular Biology and Evolution, 24, 1702–1713.

    Article  CAS  PubMed  Google Scholar 

  • Harel, M., Ben-Dov, E., Rasoulouniriana, D., Siboni, N., Kramarsky-Winter, E., Loya, Y., Barak, Z., Wiesman, Z., & Kushmaro, A. (2008). A new thraustochytrid, strain Fng1, isolated from the surface mucus of the hermatypic coral Fungia granulosa. FEMS Microbiology Ecology, 64, 378–387.

    Google Scholar 

  • Hatai, K. (2012). Diseases of fish and shellfish caused by marine fungi. In C. Raghukumar (Ed.), Biology of marine fungi, Progress in molecular and subcellular biology (Vol. 53, pp. 15–52). Berlin/Heidelberg: Springer.

    Chapter  Google Scholar 

  • Höhnk, W., & Ulken, A. (1979). Pilze aus marinen schwämmen. Veröffentlichungen des Instituts für Meeresforschung in Bremerhaven, 17, 199–204.

    Google Scholar 

  • Honda, D., Yokochi, T., Nakahara, T., Ragukumar, S., Nakagiri, A., Schaimann, K., & Higashirhara, T. (1999). Molecular phylogeny of labyrinthulids and thraustochytrids based on the sequencing of the 18S ribosomal RNA gene. Journal of Eukaryotic Microbiology, 46, 637–647.

    Article  CAS  PubMed  Google Scholar 

  • Iwata, I., Kimura, K., Tomaru, Y., Motomura, T., Koike, K., Koike, K., & Honda, D. (2016). Bothrosome formation in Schizochytrium aggregatum (Labyrinthulomycetes, stramenopiles) during zoospore settlement. Protist. doi:10.1016/j.protis.2016.12.002.

    PubMed  Google Scholar 

  • Jain, R., Raghukumar, S., Tharanathan, R., & Bhosle, N. B. (2005). Extracellular polysaccharide production by thraustochytrid protists. Marine Biotechnology, 7, 184–192.

    Article  CAS  PubMed  Google Scholar 

  • Jiang, R. H. Y., & Tyler, B. M. (2012). Mechanisms and evolution of virulence in oomycetes. Annual Review of Phytopathology, 50, 295–318. doi:10.1146/annrev-phyto-081211-172912.

    Article  CAS  PubMed  Google Scholar 

  • Jones, E. B. G., & Harrison, J. L. (1976). Physiology of marine phycomycetes. In E. B. G. Jones (Ed.), Recent advances in aquatic mycology (pp. 261–278). London: Elek Science.

    Google Scholar 

  • Jones, G. M., & O’Dor, R. K. (1983). Ultrastructual observations on a thraustochytrid fungus parasitic in the gills of squid (Illex illecebrosus Lesueur). Journal of Parasitology, 69, 903–911.

    Article  Google Scholar 

  • Jones, M. D. M., Forn, I., Gadelha, C., Egan, M. J., Bass, D., Masana, R., & Richards, T. A. (2011). Discovery of novel intermediate forms redefines the fungal tree of life. Nature, 474, 200–203.

    Article  CAS  PubMed  Google Scholar 

  • Karling, J. S. (1981). Predominantly holocarpic and eucarpic simple biflagellate phycomycetes. Vaduz: J. Cramer.

    Google Scholar 

  • Kazama, F. Y. (1974). The ultrastructure of nuclear division in Thraustochytrium sp. Protoplasma, 82, 155–175.

    Article  Google Scholar 

  • Kazama, F. Y. (1980). The zoospore of Schizochytrium aggregatum. Canadian Journal of Botany, 58, 2434–2446.

    Article  Google Scholar 

  • Kazama, F. Y., & Schornstein, K. L. (1973). Ultrastructure of a fungus herpes-type virus. Virology, 52, 478–487.

    Article  CAS  PubMed  Google Scholar 

  • Keeling, P. J. (2009). Chromalveolates and the evolution of plastids by secondary endosymbiosis. Journal of Eukaryotic Microbiology, 56, 1–8.

    Article  CAS  PubMed  Google Scholar 

  • Kimura, H., Sato, M., Sugiyama, C., & Naganuma, T. (2001). Coupling of thraustochytrids and POM, and of bacterio- and phytoplankton in a semi-enclosed coastal area, implication for different substrate preference by the planktonic decomposers. Aquatic Microbial Ecology, 25, 293–300.

    Article  Google Scholar 

  • Kobayashi, T., Sakaguchi, K., Matsuda, T., Abe, E., Hama, Y., Hayashi, M., Honda, D., Okita, Y., Sugimoto, S., Okino, N., & Ito, M. (2011). Increase of eicosapentaenoic acid in thraustochytrids through thraustochytrids ubiquitin promoter-driven expression of a fatty acid Δ5 desaturase gene. Applied and Environmental Microbiology, 77, 3870–3876.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koske, R. E. (1981). Labyrinthula inside the spores of a vesicular-arbuscular mycorrhizal fungus. Mycologia, 73, 1175–1180.

    Article  Google Scholar 

  • Kramarsky-Winter, E., Harel, M., Siboni, N., Ben Dov, E., & Brickner, I. (2006). Identification of a protist-coral association and its possible ecological role. Marine Ecology Progress Series, 317, 67–73.

    Article  Google Scholar 

  • Kuznetsov, E. A. (1981). Anabiosis in lower aquatic fungi. Mikologiya i Fitopatologiya, 15, 526–531.

    Google Scholar 

  • Leander, C. A., & Porter, D. (2001). The Labyrinthulomycota is comprised of three distinct lineages. Mycologia, 93, 459–464.

    Article  Google Scholar 

  • Leander, C. A., Porter, D., & Leander, B. S. (2004). Comparative morphology and molecular phylogeny of aplanochytrids (Labryrinthulomycota). European Journal of Protistology, 40, 317–328.

    Article  Google Scholar 

  • Leaño, E. M. (2001). Straminipilous organisms from fallen mangrove leaves from Panay Island, Philippines. Fungal Diversity, 6, 75–81.

    Google Scholar 

  • Leipe, D. D., Tong, S. M., Goggin, C. L., Slemenda, S. B., Pieniazek, N. J., & Sogin, M. L. (1994). 16S–like rDNA sequences from Developayella elegans, Labyrinthuloides haliotidis, and Proteromonas lacertae confirm that the stramenopiles are a primarily heterotrophic group. European Journal of Protistology, 33, 369–377.

    Google Scholar 

  • Lévesque, C. A. (2011). Fifty years of oomycetes – From consolidation to evolutionary and genomic exploration. Fungal Diversity, 50, 35–46.

    Article  Google Scholar 

  • Lévesque, C. A., Brouwer, H., Cano, L., Hamilton, J. P., Holt, C., Huitema, E., Raffaele, S., Robideau, G. P., Thines, M., Win, J., Zerillo, M. M., Beakes, G. W., Boore, J. L., Busam, D., Dumas, B., Ferriera, S., Fuerstenberg, S. I., Gachon, C. M. M., Gaulin, E., Govers, F., Grenville-Briggs, L., Horner, N., Hostetler, J., Jiang, R. H. Y., Johnson, J., Krajaejun, T., Lin, H., Meijer, H. J. G., Moore, B., Morris, P., Phuntmart, V., Puiu, D., Shetty, J., Stajich, J. E., Tripathy, S., Wawra, S., van West, P., Whitty, B. R., Coutinho, P. M., Henrissat, B., Martin, F., Thomas, P. D., Tyler, B. M., De Vries, R. P., Kamoun, S., Yandell, M., Tisserat, N., & Buell, C. R. (2010). Genome sequence of the necrotrophic plant pathogen Pythium ultimum reveals original pathogenicity mechanisms and effector repertoire. Genome Biology, 11, R73. doi:10.1186/gb-2010-11-7-r73.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu, B., Ertesvåg, H., Aasen, I. M., Vadstein, O., Brautaset, T., & Heggeset, T. M. B. (2016). Draft genome sequence of the docosahexaenoic acid producing thraustochytrid Aurantiochytrium sp. T66. Genomics Data, 8, 115–116. doi:10.1016/j.gdata.2016.04.013.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lyons, M. M., Ward, J. E., Smolowitz, R., Uhlinger, K. R., & Gast, R. J. (2005). Lethal marine snow, pathogen of bivalve mollusc conceales in marine aggregates. Limnology and Oceanography, 50, 1983–1988.

    Article  Google Scholar 

  • Lyons, M. M., Smolowitz, R., Gomez-Chiarri, M., & Ward, E. (2007). Epizootiology of Quahog parasite unknown (QPX) disease in northern quahogs ( = hard clams) Mercenaria mercenaria. Journal of Shellfish Research, 26, 371–381.

    Article  Google Scholar 

  • Marano, A. V., Jesus, A. L., De Souza, J. I., Jerônimo, G. H., Gonçalves, D. R., Boro, M. C., Rocha, S. C. O., & Pires-Zottarelli, C. L. A. (2016). Ecological roles of saprotrophic Peronosporales (Oomycetes, Straminipila) in natural environments. Fungal Ecology, 19, 77–88.

    Article  Google Scholar 

  • Martens, C., Vandepoele, K., & van de Peer, Y. (2008). Whole-genome analysis reveals molecular innovations and evolutionary transitions in chromalveolate species. Proceedings of the National Academy of Sciences, 105, 3427–3432.

    Article  CAS  Google Scholar 

  • Maruyama, S., Matsuzaki, M., Misawa, K., & Nozaki, H. (2009). Cyanobacterial contribution to the genomes of the plastid lacking protists. BMC Evolutionary Biology, 9, 197. doi:10.1186/1471-2148-9-197.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Massana, R., & Pedró-Alió, C. (2008). Unveiling new microbial eukaryotes in the surface ocean. Current Opinion in Microbiology, 11, 213–218.

    Article  PubMed  Google Scholar 

  • Massana, R., Guillou, L., Diez, B., & Pedró-Alió, C. (2002). Unveiling the organisms behind novel eukaryotic ribosomal DNA sequences from the ocean. Applied and Environmental Microbiology, 68, 4554–4558.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Massana, R., Castresana, J., Balagué, V., Guillou, L., Romari, K., Groisillier, A., Valentin, K., & Pedró-Alió, C. (2004). Phylogenetic and ecological analysis of novel marine stramenopiles. Applied and Environmental Microbiology, 70, 3528–3534.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Massana, R., Terrado, R., Forn, I., Lovejoy, C., & Pedró-Alió, C. (2006). Distribution and abundance of uncultured heterotrophic flagellates in the world oceans. Environmental Microbiology, 8, 1515–1522.

    Article  CAS  PubMed  Google Scholar 

  • McLean, I. N., & Porter, D. (1987). Lesions produced by a thraustochytrids in Tritonia diomedea (Mollusca, Gastropoda, Nudibranchia). Journal of Invertebrate Pathology, 49, 223–225.

    Article  Google Scholar 

  • Miller, J. D., & Jones, E. B. G. (1983). Observations on the association of thraustochytrids marine fungi with decaying seaweed. Botanica Marina, 26, 345–351.

    Article  Google Scholar 

  • Miller, M. R., Nichols, P. D., & Carter, C. G. (2007). Replacement of fish oil with thraustochytrid Schizochytrium sp. L oil in Atlantic salmon parr (Salmo salar L) diets. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 148, 382–392.

    Article  CAS  Google Scholar 

  • Moreira, D., & Lopez-Garcia, P. (2002). The molecular ecology of microbial eukaryotes unveils a hidden world. Trends in Microbiology, 10, 31–38.

    Article  CAS  PubMed  Google Scholar 

  • Moro, I., Negrisolo, E., Callegaro, A., & Andreoli, C. (2003). Aplanochytrium stocchinoi, a new Labyrinthulomycota from the Southern Ocean (Ross Sea, Antarctica). Protist, 154, 331–340.

    Google Scholar 

  • Moss, S. T. (1985). An ultrastructural study of taxonomically significant characters of the Thraustochytriales and Labyrinthulales. Botanical Journal of the Linnean Society, 91, 329–357.

    Article  Google Scholar 

  • Moss, S. T. (1986). Biology and phylogeny of the Labyrinthulales and Thraustochytriales. In S. T. Moss (Ed.), The biology of marine fungi (pp. 105–129). Cambridge: Cambridge University Press.

    Google Scholar 

  • Moustafa, A., Beszteri, B., Maier, U. G., Bowler, C., Valentin, K., & Bhattacharya, D. (2011). Genomic footprints of a cryptic plastid endosymbiosis in diatoms. Science, 324, 1724–1726.

    Article  CAS  Google Scholar 

  • Muehlstein, L. K., & Porter, D. (1991). Labyrinthula zosterae sp. nov., the causative agent of wasting disease of eelgrass, Zostera marina. Mycologia, 83, 180–191.

    Google Scholar 

  • Muehlstein, L. K., Porter, D., & Short, F. T. (1988). Labyrinthula sp., a marine slime mold producing the symptoms of wasting disease in eelgrass, Zostera marina. Marine Biology, 99, 465–472.

    Article  Google Scholar 

  • Naganuma, T., Kimura, H., Karimoto, R., & Pimenov, N. V. (2006). Abundance of planktonic thraustochytrids and bacteria and the concentration of particulate ATP in the Greenland and Norwegian seas. Polar Bioscience, 20, 37–45.

    CAS  Google Scholar 

  • Nakatsuji, N., & Bell, E. (1980). Control by calcium of the contractility of Labyrinthula slimeways and of the translocation of Labyrinthula cells. Cell Motility, 1, 17–29.

    Article  CAS  Google Scholar 

  • Olsen, M. W. (2007). Labyrinthula terrestris, a new pathogen of cool-season turfgrasses. Molecular Plant Pathology, 8, 817–820.

    Article  PubMed  Google Scholar 

  • Pan, J., del Campo, J., & Keeling, P. J. (2017). Reference tree and environmental sequence diversity of Labyrinthulomycetes. Journal of Eukaryotic Microbiology, 64, 88–96.

    Article  PubMed  Google Scholar 

  • Patterson, D. J. (1989). Chromophytes from a protistan perspective. In J. P. Green, B. S. C. Leadbeater, & W. L. Diver (Eds.), The chromophyte algae, problems and perspectives (pp. 357–379). Oxford: Clarendon Press.

    Google Scholar 

  • Perkins, F. O. (1970). Formation of centriole and centriole-like structures during meiosis and mitosis in Labyrinthula sp. (rhizopodea, Labyrinthulida). Journal of Cell Science, 6, 629–653.

    CAS  PubMed  Google Scholar 

  • Perkins, F. O. (1973). Observations of thraustochytriaceous (phycomycetes) and labyrinthulid (rhizopodea) ectoplasmic nets on natural and artificial substrates – An electron microscope study. Canadian Journal of Botany, 51, 485–491.

    Article  Google Scholar 

  • Perkins, F. O. (1976). Fine structure of lower marine and estuarine fungi. In E. B. G. Jones (Ed.), Recent advances in aquatic mycology (pp. 513–542). London: Elek Press.

    Google Scholar 

  • Perkins, F. O., & Amon, J. P. (1969). Zoosporulation in Labyrinthula sp., an electron microscope study. Journal of Protozoology, 16, 235–256.

    Article  Google Scholar 

  • Polglase, J. L. (1980). A preliminary report on the thraustochytrid(s) and labyrinthulid(s) associated with a pathological condition in the lesser octopus Eledone cirrhosa. Botanica Marina, 23, 699–706.

    Article  Google Scholar 

  • Porter, D. (1990). Phylum Labyrinthulomycota. In L. Margulis, J. O. Corliss, M. Melkonian, & D. J. Chapman (Eds.), Handbook of Protoctista (pp. 388–398). Boston: Jones and Bartlett.

    Google Scholar 

  • Quick, J. A. (1974). Labyrinthuloides schizochytrops n. sp., a new marine Labyrinthula with spheroid “spindle” cells. Transactions of the American Microscopical Society, 93, 344–365.

    Article  Google Scholar 

  • Raghukumar, C. (1987a). Fungal parasites of marine algae from Mandapam (South India). Diseases of Aquatic Organisms, 3, 137–145.

    Article  Google Scholar 

  • Raghukumar, C. (1987b). Fungal parasites of the marine alga, Cladophora and Rhizoclonium. Botanica Marina, 29, 289–297.

    Google Scholar 

  • Raghukumar, S. (1992). Bacterivory, a novel dual role for thraustochytrids in the sea. Marine Biology, 113, 165–169.

    Article  Google Scholar 

  • Raghukumar, S. (2002). Ecology of marine protists, the Labrinthulomycetes (thraustochytrids and Labyrinthulids). European Journal of Protistology, 38, 127–145.

    Article  Google Scholar 

  • Raghukumar, C. (2006). Algal-fungal interactions in the marine ecosystem, symbiosis to parasitism. In A. Tewari (Ed.), Recent advances on applied aspects of Indian marine algae with reference to global scenario (Vol. 1, pp. 366–385). Bhavnagar: Central Salt and Marine Chemicals Research Institute.

    Google Scholar 

  • Raghukumar, S. (2008). Thraustochytrid marine protists, production of PUFAs and other emerging technologies. Marine Biotechnology, 10, 631–640.

    Article  CAS  PubMed  Google Scholar 

  • Raghukumar, S., & Balasubramanian, R. (1991). Occurrence of thraustochtrid fungi in corals and mucus. Indian Journal of Marine Science, 20, 176–181.

    Google Scholar 

  • Raghukumar, S., & Damare, V. S. (2011). Increasing evidence for the important role of Labyrinthulomycetes in marine ecosystems. Botanica Marina, 54, 3–11.

    Article  Google Scholar 

  • Raghukumar, S., & Schaumann, K. (1993). An epifluorescence microscopy method for direct detection and enumeration of the fungi like marine protist, the thraustochytrids. Limnology and Oceanography, 38, 182–187.

    Article  Google Scholar 

  • Raghukumar, S., Sharma, S., Raghukumar, C., & Sathe-Pathak, V. (1994). Thraustochytrid and fungal component of marine detritus. IV. Laboratory studies on decomposition of leaves of Rhizophora apiculata Blume. Journal of Experimental Marine Biology and Ecology, 183, 113–131.

    Google Scholar 

  • Raghukumar, S., Sathe-Pathak, V., Sharma, S., & Raghukumar, C. (1995). Thraustochytrid and fungal component of marine detritus. III, Field studies on decomposition of leaves of the mangrove Rhizophora apiculata Blume. Aquatic Microbial Ecology, 9, 117–125.

    Article  Google Scholar 

  • Raghukumar, S., Ramaiah, N., & Raghukumar, C. (2001). Dynamics of thraustochytrid protists in the water column of the Arabian Sea. Aquatic Microbial Ecology, 24, 175–186.

    Article  Google Scholar 

  • Reeb, V. C., Peglaer, M. T., Yoon, H. S., Bai, J. R., Wu, M., Shiu, P., Grafenberg, J. L., Reyes-Prieto, A., Rümmele, S. E., Gross, J., & Bhattacharya, D. (2009). Interrelationships of chromalveolates within a broadly sampled tree of photosynthetic protists. Molecular Phylogenetics and Evolution, 53, 202–211.

    Article  PubMed  Google Scholar 

  • Richards, T. A., Soanes, D. M., Jones, M. D. M., Vasieva, O., Leonard, G., Paszkiewicz, K., Foster, P. G., Hall, N., & Talbot, N. J. (2011). Horizontal gene transfer facilitated the evolution of plant parasitic mechanisms in the oomycetes. Proceedings of the National Academy of Sciences, 108, 15258–15263.

    Article  CAS  Google Scholar 

  • Richards, T. A., Jones, M. D., Leonard, G., & Bass, G. (2012). Marine fungi, their ecology and molecular diversity. Annual Review of Marine Science, 4, 495–522.

    Article  PubMed  Google Scholar 

  • Riemann, F., & Schrage, M. (1983). On a mass occurrence of a thraustochytrioid protist (fungi or rhizopodan protozoa) in an Antarctic anaerobic marine sediment. Veröffentlichungen des Instituts für Meeresforschung in Bremerhaven, 19, 191–202.

    Google Scholar 

  • Riisberg, I., Orr, R. J., Kluge, R., Shalchian-Tabrizi, K., Bowers, H. A., Patil, V., Edvardsen, B., & Jakobsen, K. S. (2009). Seven gene phylogeny of heterokonts. Protist, 160, 191–204.

    Article  CAS  PubMed  Google Scholar 

  • Sargent, J. R., Bell, M. V., Bell, J. G., Henderson, R. J., & Tocher, D. R. (1995). Origins and functions of (n-3) polyunsaturated fatty acids in marine oranisms. In G. Cevc & F. Paltauf (Eds.), Phospolipids, characterization, metabolism and novel biological applications (pp. 248–259). Champaign: AOCS Press.

    Google Scholar 

  • Sathe-Pathak, V., Raghukumar, S., Raghukumar, C., & Sharma, S. (1993). Thraustochytrid and fungal component of marine detritus. I. Field studies on decomposition of the brown alga Sargassum cinereum J Ag. Indian Journal of Marine Science, 22, 159–167.

    CAS  Google Scholar 

  • Schärer, L., Knoflach, D., Vizoso, D. B., Rieger, G., & Peintner, U. (2007). Thraustochytrids as novel parasitic protists of marine free-living flatworms, Thraustochytrium caudivorum sp. nov. parasitizes Macrostomum lignano. Marine Biology, 152, 1095–1104.

    Article  Google Scholar 

  • Schneider, J. (1981). Ein ökologischer vergleich aquatischer niederer pilze (Thraustochytrium sp.) von meeres- und binnenlandstandorten. Botanica Marina, 24, 475–484.

    Article  Google Scholar 

  • Segarra, A., Pépin, J. F., Arzul, I., Morga, B., Faury, N., & Renault, T. (2010). Detection and description of a particular ostreid herpesvirus 1 genotype associated with massive mortality outbreaks of Pacific oysters, Crassostrea gigas, in France in 2008. Virus Research, 153, 92–99.

    Article  CAS  PubMed  Google Scholar 

  • Short, F. T., Porter, D., Iizumi, H., & Aioi, K. (1993). Occurrence of the eelgrass pathogen Labyrinthula zosterae in Japan. Diseases of Aquatic Organisms, 16, 73–77.

    Article  Google Scholar 

  • Sims, P. A., Mann, D. G., & Medlin, L. K. (2006). Evolution of the diatoms, insights from fossil, biological and molecular data. Phycologia, 45, 361–402.

    Article  Google Scholar 

  • Sparrow, F. K. (1936). Biological observation on the marine fungi of Woods Hole waters. Biological Bulletin of the Marine Biological Laboratory, 70, 236–263.

    Article  Google Scholar 

  • Sparrow, F. K. (1960). Aquatic Phycomycetes (2nd revised ed.). Ann Arbor: University of Michigan Press.

    Google Scholar 

  • Sparrow, F. K. (1973). Mastigomycotina. In G. C. Ainsworth, F. K. Sparrow FK, & A. S. Sussman (Eds.), The fungi (Vol. 4b, pp. 61–73). New York/London: Academic Press.

    Google Scholar 

  • Sparrow, F. K. (1976). The present status of classification in biflagellate fungi. In E. B. Gareth-Jones (Ed.), Recent advances in aquatic mycology (pp. 213–222). London: Elek Science.

    Google Scholar 

  • Stiller, J. W., Huang, J., Ding, W., Trian, J., & Goodwillie, C. (2009). Are algal genes in nonphotosynthetic protists evidence of historical plastid endosymbioses. BMS Genomics, 10, 484. doi:10.1186/1471-2164-10-484.

    Article  CAS  Google Scholar 

  • Stoeck, T., Taylor, G., & Epstein, S. S. (2003). Novel eukaryotes frm a permanently anoxic Cariaco Basin (Carribean Sea). Applied and Environmental Microbiology, 69, 5656–5663.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stoeck, T., Hayward, B., Taylor, G. T., Valera, R., & Epstein, S. S. (2006). A multiple PCR-primer approach to access the microeukaryotic diversity in the anoxic Cariaco Basin (Caribbean Sea). Protist, 157, 31–43.

    Article  CAS  PubMed  Google Scholar 

  • Stoeck, T., Kasper, J., Bunge, J., Leslin, C., Ilyin, V., & Epstein, S. (2007). Protistan diversity in the arctic, a case of paleoclimate shaping modern biodiversity. PloS One, 8, e728. doi:10.1371/journal.pone.0000728.

    Article  CAS  Google Scholar 

  • Stowell, L. J., Martin, S. B., Olsen, M., Bigelow, D., Kohout, M., Peterson, P. D., Camberto, J., & Gelernter, W. D. (2005). Rapid blight, a new plant disease. APSnet Features. doi:10.1094/APSnetFeature/2005-0705.

    Google Scholar 

  • Takahashi, Y., Yoshida, M., Inouye, I., & Watanabe, M. M. (2014). Diplophrys mutabilis sp. nov., a new member of Labyrinthulomycetes from freshwater habitats. Protist, 165, 50–65.

    Article  PubMed  Google Scholar 

  • Takao, Y., Nagasaki, K., Mise, K., Okuno, T., & Honda, D. (2005). Isolation and characterization of a novel single-stranded RNA virus infectious to a marine fungoid protist, Schizochytrium sp.(Thraustochytriaceae, Labyrinthulea). Applied and Environmental Microbiology, 71, 4516–4522.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thines, M. (2014). Phylogeny and evolution of plant pathogenic oomycetes – A global overview. European Journal of Plant Pathology, 138, 431–447.

    Article  Google Scholar 

  • Tice, A. K., Silberman, J. D., Walthall, A. C., Le, K. N. D., Spiegel, F. W., & Brown, M. W. (2016). Sorodiplophrys stercorea, another novel lineage of sorocarpic multicellularity. Journal of Eurkaryotic Microbiology, 63, 623–628.

    Article  Google Scholar 

  • Tsui, C. K., & Vrijmoed, L. L. (2012). A re-visit to the evolution and ecophysiology of the labyrinthulomycetes. Rijeka/Shanghai: INTECH Open Access Publisher.

    Google Scholar 

  • Tsui, C. K. M., Marshall, W., Yokoyama, R., Honda, D., Lippmeier, J. C., Craven, K. D., & Berbee, M. L. (2009). Labryinthulomycetes phylogeny and its implications for the evolutionary loss of chloroplasts and gain of ectoplasmic gliding. Molecular Phylogenetics and Evolution, 50, 129–140.

    Article  CAS  PubMed  Google Scholar 

  • Ueda, M., Nomura, Y., Doi, K., & Nakajima, M. (2015). Seasonal dynamics of culturable thraustochytrids (Labyrinthulomycetes, stramenopiles) in estuarine and coastal waters. Aquatic Microbial Ecology, 74, 187–204.

    Article  Google Scholar 

  • Vergeer, L. H. T., & den Hartog, C. (1991). Occurrence of wasting disease in Zostera noltii. Aquatic Botany, 40, 155–163.

    Article  Google Scholar 

  • Vergeer, L. H. T., & den Hartog, C. (1994). Omnipresence of Labyrinthulaceae in seagrasses. Aquatic Botany, 48, 1–20.

    Article  Google Scholar 

  • Wagner-Merner, B. T., Duncan, W. R., & Lawrence, J. M. (1980). Preliminary comparison of Thraustochytriaceae in the guts of a regular and irregular echinoid. Botanica Marina, 23, 95–97.

    Google Scholar 

  • Winwood, R. J. (2013). Recent developments in the commercial production of DHA and EPA rich oils from micro-algae. OCL, 20(6), D604.

    Article  Google Scholar 

  • Worden, A. Z., & Not, F. (2008). Ecology and diversity of piceukaryotes. In D. L. Kirchman (Ed.), Microbial ecology of the oceans (2nd ed., pp. 159–205). New York: Wiley.

    Chapter  Google Scholar 

  • Yokochi, T., Nakahara, T., Higashihara, T., Yamaoka, M., & Kurane, R. (2001). A new isolation method for labyrinthulids using a bacterium, Psychrobacter phenylpyruvicus. Marine Biotechnology, 3, 68–73.

    Article  CAS  PubMed  Google Scholar 

  • Yokoyama, R., & Honda, D. (2007). Taxonomic rearrangement of the genus Schizochytrium sensu lato based on morphology, chemotaxonomical characteristics, and 18S rRNA gene phylogeny (Thraustochytriaceae, Labyrinthulomycetes), emendation for Schizochytrium and erection of Aurantiochytrium and Oblongichytrium gen. nov. Mycoscience, 48, 199–211.

    Article  CAS  Google Scholar 

  • Yokoyama, R., Salleh, B., & Honda, D. (2007). Taxonomic rearrangement of the genus Ulkenia sensu lato based on morphology, chemotaxonomical characteristics, and 18S rRNA gene phylogeny (Thraustochytriaceae, Labyrinthulomycetes), emmedation for Ulkenia and erection of Botryochytrium, Parietichytrium, and Sicyoidochytrium gen. nov. Mycoscience, 48, 329–341.

    Google Scholar 

  • Yubuki, N., Leander, B. S., & Silberan, J. D. (2010). Ultrastructure and molecular phylogenetic position of a novel phagotrophic position of a novel phagotrophic stramenopile from low oxygen environments, Rictus lutensis gen. et sp. nov. (Biocoecida, incertae sedis). Protist, 161, 264–278.

    Article  CAS  PubMed  Google Scholar 

  • Zopf, F. W. (1892). Zur Kenntniss der Labyrinthuleen, einer Familie der Mycetozoen. Beiträge zur Physiologie und Morphologie niederer Organismen, 2, 36–48.

    Google Scholar 

Download references

Acknowledgments

We thank various publishers for allowing the inclusion of their illustrative material. M. Thines has been supported by the excellent initiative of the federal state of Hessen (LOEWE), in the framework of the research cluster for Integrative Fungal Research (IPF). R. M. Bennett has been supported by a fellowship from KAAD and the Studienstiftung Mykologie.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gordon W. Beakes or Marco Thines .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this entry

Cite this entry

Bennett, R.M., Honda, D., Beakes, G.W., Thines, M. (2017). Labyrinthulomycota. In: Archibald, J., Simpson, A., Slamovits, C. (eds) Handbook of the Protists. Springer, Cham. https://doi.org/10.1007/978-3-319-28149-0_25

Download citation

Publish with us

Policies and ethics