Skip to main content

Lichen Metabolites: An Overview of Some Secondary Metabolites and Their Biological Potential

  • Reference work entry
  • First Online:
Co-Evolution of Secondary Metabolites

Abstract

Lichens present a symbiotic association between two or more organisms. These unique organisms produce many chemical compounds, known as secondary metabolites or lichen acids. Most of them are localized in the cortex and form specific crystals on the surface of the fungal hyphae. Approximately 1000 secondary metabolites were discovered so far and most of them are specific for lichens. Lichen secondary metabolites showed many pharmaceutical activities, including antimicrobial, antiproliferative, antioxidant, antiviral, anti-inflammatory, and further allelopathic, antiherbivore, photoprotective activities. Lichens are important source of bioactive compounds, and despite a lot of studies dealing with activity of lichen secondary metabolites, their production in lichens and their role is still very enigmatic. In this chapter, we demonstrated all three main pathways of how secondary compounds originate and chose most characteristic acids with their proposed biological and ecological activities. This chapter gives a basic overview of lichens, secondary metabolites, and their properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Taylor TN, Taylor EL (1993) The biology and evolution of fossil plants. Prentice Hall, Englewood Cliffs

    Google Scholar 

  2. Atsatt PR (1991) Fungi and the origin of land plants. In: Margulis L, Fester R (eds) Symbiosis as a source of evolutionary innovation. The MIT Press, Cambridge, MA/London

    Google Scholar 

  3. Newsham KK, Fitter AH, Watkinson AR (1995) Arbuscular mycorrhiza protect an annual grass from root pathogenic fungi in the field. J Ecol 83:991–1000

    Article  Google Scholar 

  4. Selosse MA, Le Tacon F (1998) The land flora: a phototroph-fungus partnership? Trees 13:5–20

    Google Scholar 

  5. Hawksworth DL, Kirk PM, Sutton BC, Pegler DN (1995) Ainsworth and Bisby’s dictionary of the fungi, 8th edn. CAB International, Wallingford

    Google Scholar 

  6. Kosanić M, Ranković B (2015) Lichen secondary metabolites as potential antibiotic agents. In: Ranković B (ed) Lichen secondary metabolites bioactive properties and pharmaceutical potential. Springer International Publishing, Springer Cham Heidelberg New York Dordrecht London, pp. 81–104

    Google Scholar 

  7. Larson DW (1987) The absorption and release of water by lichens. Bibl Lichenologica 25:351–360

    Google Scholar 

  8. Nash TH (2008) Lichen biology, 2nd edn. Cambridge University Press, Cambridge

    Book  Google Scholar 

  9. Spribille T, Tuovinen V, Resl P, Vanderpool D, Wolinski H, Aime MC, Schneider K, Stabentheiner E, Toome-Heller M, Thor G, Mayrhofer H, Johannesson H, McCutcheon JP (2016) Basidiomycete yeasts in the cortex of ascomycete macrolichens. Science 353:488–492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Yuan X, Xiao S, Taylor TN (2005) Lichen-like symbiosis 600 million years ago. Science 308:1017–1020

    Article  CAS  PubMed  Google Scholar 

  11. Gargas A, DePriest PT, Grube M, Tehler A (1995) Multiple origins of lichen symbiosis in fungi suggested by SSU rDNA phylogeny. Science 268:1492–1495

    Article  CAS  PubMed  Google Scholar 

  12. Lutzoni F, Pagel M, Reeb V (2001) Major fungal lineages are derived from lichen symbiotic ancestors. Nature 411:937–940

    Article  CAS  PubMed  Google Scholar 

  13. Palice Z, Halda JP (2005) Neviditelný svět mikrolišejníků. Živa 2:57–59

    Google Scholar 

  14. Aschenbrenner IA, Cernava T, Berg G, Grube M (2016) Understanding microbial multi-species symbioses. Front Microbiol 7:180

    Article  PubMed  PubMed Central  Google Scholar 

  15. Honegger R (1991) Functional aspects of the lichens symbiosis. Annu Rev Plant Physiol 42:553–578

    Article  CAS  Google Scholar 

  16. Gilbert OL (2000) Lichens. Harper Collins Publishers, London

    Google Scholar 

  17. Purvis OW, Pawlik-Skowrońska B (2008) Lichens and metals. Br Mycol Symp 27:175–200

    Article  Google Scholar 

  18. Tschermak-Woess E (1988) The algal partner. In: Galun M (ed) CRC handbook of lichenology. CRC Press, Boca Raton

    Google Scholar 

  19. Büdel B (1992) Taxonomy of lichenized procaryotic blue-green algae. In: Reisser W (ed) Algae and symbioses. Biopress Limited, Bristol

    Google Scholar 

  20. Bold H, Wynne MJ (1958) Introduction to the algae and reproduction. Englewood Cliffs, Prentice Hall

    Google Scholar 

  21. Van de Hoek C, Mann DG, Jahns HM (1993) Algen. Einfühtung in die Phykologie. Thieme, Stuttgart

    Google Scholar 

  22. Hawksworth DL (1988) The variety of fungal-algal symbioses, their evolutionary significance, and the nature of lichens. Bot J Linn Soc 96:3–20

    Article  Google Scholar 

  23. Margulis L, Fester R (1991) Symbiosis as a source of evolutionary innovation: speciasion and morphogenesis. MIT Press, Cambridge

    Google Scholar 

  24. Jahns HM (1988) The lichen thallus. In: Galun M (ed) CRC handbook of lichenology. CRC Press, Boca Raton

    Google Scholar 

  25. Büdel B, Scheidegger C (2008) Thallus morphology and anatomy. In: Nash TH (ed) Lichen biology, 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  26. Bačkor M (2011) Lichens and heavy metals: toxicity and tolerance. Pavol Jozef Šafárik University in Košice, Košice

    Google Scholar 

  27. Mitrović T, Stamenković S, Cvetković V, Tošić S, Stanković M, Radojević I, Stefanović O, Comić L, Dačić D, Curčić M, Marković S (2011) Antioxidant, antimicrobial and antiproliferative activities of five lichen species. Int J Mol Sci 12:5428–5448

    Article  PubMed  PubMed Central  Google Scholar 

  28. Lawrey JD (1986) Biological role of lichen substances. Bryologist 89:111–122

    Article  CAS  Google Scholar 

  29. Huneck S, Yoshimura I (1996) Identification of lichen substances. Springer, Berlin

    Book  Google Scholar 

  30. Fahselt D (1994) Carbon metabolism in lichens. Symbiosis 17:127–182

    CAS  Google Scholar 

  31. Hale ME (1983) The biology of lichens, 3rd edn. Edward Arnold, London

    Google Scholar 

  32. Culberson WL (1970) Chemosystematics and ecology of lichen-forming fungi. Annu Rev Ecol Syst 1:153–170

    Article  CAS  Google Scholar 

  33. Galun M, Shomer-Ilan A (1988) Secondary metabolic products. In: Galun M (ed) CRC handbook of lichenology. CRC Press, Boca Raton

    Google Scholar 

  34. Stocker-Wörgötter E (2008) Metabolic diversity of lichen-forming ascomycetous fungi: culturing polyketide and shikimate metabolite production and PKS genes. Nat Prod Rep 25:188–200

    Article  PubMed  Google Scholar 

  35. Solhaug KA, Lind M, Nybakken L, Gauslaa Y (2009) Possible functional roles of cortical depsides and medullary depsidones in the foliose lichen Hypogymnia physodes. Flora 204:40–48

    Article  Google Scholar 

  36. Rundel PW (1978) The ecological role of secondary lichen substances. Biochem Syst Ecol 6:157–170

    Article  CAS  Google Scholar 

  37. Culberson CF, Elix JA (1989) Lichen substances. In: Dey PM, Harborne JB (eds) Methods in plant biochemistry: plant Phenolics. Academic, London

    Google Scholar 

  38. Molnar K, Farkas E (2010) Current results on biological activities of lichen secondary metabolites: a review. Z Naturforsch C 65:157–173

    Article  CAS  PubMed  Google Scholar 

  39. Kosanić M, Monojlović N, Janković S, Stanojković T, Ranković B (2013) Evernia prunastri and Pseudoevernia furfuraceae lichens and their major metabolites as antioxidant, antimicrobial and anticancer agents. Food Chem Toxicol 53:112–118

    Article  PubMed  CAS  Google Scholar 

  40. Kizil HE, Ağar G, Mustafa A (2014) Cytotoxic and antiproliferative effects of evernic acid on HeLa cell lines: a candidate anticancer drug. J Biotechnol 185:S29

    Article  Google Scholar 

  41. Endo T, Takahagi T, Kinoshida Y, Yamamoto Y, Sato F (1998) Inhibition of photosystem II on spinach by lichen-derived depsides. Biosci Biotechnol Biochem 62:2023–2027

    Article  CAS  PubMed  Google Scholar 

  42. Bogo D, Matos MFC, Honda NK, Pontes EC, Oguma PM, da Santos EC, de Carvalho JE, Nomizo A (2010) In vitro antitumor activity of orsellinates. Z Naturforsch C 65:43–48

    Article  CAS  PubMed  Google Scholar 

  43. Thadhani VM, Choudhary MI, Ali S, Omar I, Siddique H, Karunaratne V (2011) Antioxidant activity of some lichen metabolites. Nat Prod Res 25:1827–1837

    Article  CAS  PubMed  Google Scholar 

  44. Ranković B, Mišić M (2008) The antimicrobial activity of the lichen substances of the lichens Cladonia furcata, Ochrolechia androgyna, Parmelia caperata and Parmelia conspersa. Biotechnol Equip 22:1013–1016

    Article  Google Scholar 

  45. Ranković B, Mišić M, Sukdolak S (2008) The antimicrobial activity of substances derived from the lichens Physcia aipolia, Umbilicaria polyphylla, Parmelia caperata and Hypogymnia physodes. World J Michrobiol Biotechnol 24:1239–1242

    Article  Google Scholar 

  46. Gomes AT, Honda NK, Roese FM, Muzzi RM, Marques MR (2002) Bioactive derivates obtained from lecanoric acid, a constituent of the lichen Parmotrema tinctorum (Nyl.) Hale (Parmeliaceae). Rev Bras Farm 12:74–75

    Article  Google Scholar 

  47. Buçukoglu TZ, Albayrak S, Halici MG, Tay T (2012) Antimicrobial and antioxidant activities of extracts and lichen acids obtained from some Umbilicaria species from Central Anatolia, Turkey. J Food Process Preserv 37:1103–1110

    Article  CAS  Google Scholar 

  48. Candan M, Yilmaz M, Tay T, Kivanç M, Türk H (2006) Antimicrobial activity of extracts of the lichen Xanthoparmelia pokornyi and its gyrophoric and stenosporic acid constituents. Z Naturforsch C 61:319–323

    Article  CAS  PubMed  Google Scholar 

  49. Bačkorová M, Bačkor M, Mikeš J, Jendželovský R, Fedoročko P (2011) Variable responses of different human cancer cells to the lichen compounds parietin, atranorin, usnic acid and gyrophoric acid. Toxicol In Vitro 25:37–44

    Article  PubMed  CAS  Google Scholar 

  50. Kosanić M, Ranković B, Stanojković T, Rančić A, Manojlović N (2014) Cladonia lichens and their major metabolites as possible natural antioxidant, antimicrobial and anticancer agents. Food Sci Technol 59:518–525

    Google Scholar 

  51. Bačkorová M, Jendželovský R, Kello M, Bačkor M, Mikeš J, Fedoročko P (2012) Lichen secondary metabolites are responsible for induction of apoptosis in HT-29 and A2780 human cancer cell lines. Toxicol In Vitro 26:462–468

    Article  PubMed  CAS  Google Scholar 

  52. Correché ER, Enriz RD, Piovano M, Garbarino J, Gómez-Lechón MJ (2004) Cytotoxic and apoptotic effects on hepatocytes of secondary metabolites obtained from lichens. Altern Lab Anim 32:605–615

    Article  PubMed  Google Scholar 

  53. Cankılıç MY, Sarıözlü NY, Candan MC, Tay F (2017) Screening of antibacterial, antituberculosis and antifungal effects of lichen Usnea florida and its thamnolic acid constituent. Biomed Res 28:3108–3113

    Google Scholar 

  54. Nishanth KS, Sreerag RS, Deepa I, Mohandas C, Nambisan B (2015) Protocetraric acid: an excellent broad spectrum compound from the lichen Usnea albopuncta against medically important microbes. Nat Prod Res 29:574–577

    Article  CAS  PubMed  Google Scholar 

  55. Honda NK, Pavan FR, Coelho RG, de Andrade Leite SR, Micheletti AC, Lopes TI, Misutsu MY, Beatriz A, Brum RL, Leite CQ (2010) Antimycobacterial activity of lichen substances. Phytomedicine 17:328–332

    Article  CAS  PubMed  Google Scholar 

  56. de Barros Alves GM, de Sousa Maia MB, de Souza FE et al (2014) Expectorant and antioxidant activities of purified fumarprotocetraric acid from Cladonia verticillaris lichen in mice. Pulm Pharmacol Ther 27:139–143

    Article  PubMed  CAS  Google Scholar 

  57. Yilmaz M, Türk AO, Tay T, Kivanç M (2004) The antimicrobial activity of extracts of the lichen Cladonia foliacea and its (−)-usnic acid, atranorin, and fumarprotocetraric acid constituents. Z Naturforsch C 59:249–254

    Article  CAS  PubMed  Google Scholar 

  58. Cardile V, Graziano ACE, Avola R, Piovano M, Russo A (2017) Potential anticancer activity of lichen secondary metabolite physodic acid. Chem Biol Interact 263:36–45

    Article  CAS  PubMed  Google Scholar 

  59. Türk H, Yilmaz M, Tay T, Türk AO, Kivanç M (2006) Antimicrobial activity of extracts of chemical races of the lichen Pseudevernia furfuracea and their physodic acid, chloroatranorin, atranorin, and olivetoric acid constituents. Z Naturforsch C 61:499–507

    Article  Google Scholar 

  60. Amo de Paz G, Gomez-Serranillos MP, Palomino OM, González-Burgos E, Carretero ME, Crespo A (2010) HPLC isolation of antioxidant constituents from Xanthoparmelia spp. J Pharm Biomed 53:165–171

    Article  CAS  Google Scholar 

  61. Papadopoulou P, Tzakou O, Vagias C, Kefalas P, Roussis V (2007) Beta-orcinol metabolites from the lichen Hypotrachyna revolute. Molecules 12:997–1005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Pejin B, Iodice C, Bogdanović G, Kojić V, Tešević V (2017) Stictic acid inhibits cell growth of human colon adenocarcinoma HT-29 cells. Arab J Chem 10:1240–1242

    Article  CAS  Google Scholar 

  63. Ranković B (2015) Lichen secondary metabolites. Springer, London

    Google Scholar 

  64. Goga M, Pöykkö H, Adlassnig W, Bačkor M (2016) Response of the lichen-eating moth Cleorodes lichenaria larvae to varying amounts of usnic acid in the lichens. Arthropod Plant Interact 10:71–77

    Article  Google Scholar 

  65. Waring B (2008) Light exposure affects secondary compound diversity in lichen communities in Monteverde, Costa Rica. Penn Sci J 6:11–13

    Google Scholar 

  66. Mayer M, O’Neill MA, Murray KE, antos-Magalhaes NS, Carneiro-Leao AM, Thompson AM, Appleyard VC (2005) Usnic acid: a non-genotoxic compound with anticancer properties. Anti-Cancer Drugs 16:805–809

    Article  CAS  PubMed  Google Scholar 

  67. Han D, Matsumaru K, Rettori D, Kaplowitz N (2004) Usnic acid-induced necrosis of cultured mouse hepatocytes: inhibition of mitochondrial function and oxidative stress. Biochem Pharmacol 67:439–451

    Article  CAS  PubMed  Google Scholar 

  68. Goga M, Antreich SJ, Bačkor M, Weckwerth W, Lang I (2017) Lichen secondary metabolites affect growth of Physcomitrella patens by allelopathy. Protoplasma 254:1307–1315

    Article  CAS  PubMed  Google Scholar 

  69. Goga M, Ručová D, Kolarčik V, Sabovljević M, Bačkor M, Lang I (2018) Usnic acid, as a biotic factor, changes the ploidy level in mosses. Ecol Evol 8:2781–2787

    Article  PubMed  PubMed Central  Google Scholar 

  70. Gollapudi SR, Telikepalli H, Jampani HB, Mirhom YW, Drake SD, Bhattiprolu KR, Vander Velde D, Mitscher LA (1994) Alectosarmentin, a new antimicrobial dibenzofuranoid lactol from the lichen, Alectoria sarmentosa. J Nat Prod 57:934–938

    Article  CAS  PubMed  Google Scholar 

  71. Læssøe T, Srikitikulchai P, Fournier J, Köpcke B, Stadler M (2010) Lepraric acid derivates as chemotaxic markers in Hypoxylon aeruginosum, Chlorostroma subcubisporum and C. cyaninum, sp. nov. Fungal Biol 114:481–489

    Article  PubMed  CAS  Google Scholar 

  72. Abdel-Lateff A, Fisch K, Wright AD (2003) Two new xanthone derivates from the algicolous marine fungus Wardomyces anomalus. J Nat Prod 66:706–708

    Article  CAS  PubMed  Google Scholar 

  73. Ebada SS, Schultz B, Wray V, Totzke F, Kubbutat MH, Müller WE, Hamacher A, Kassack MU, Lin W, Proksch P (2011) Arthrinins A-D: novel diterpenoids and further constituents from the sponge derived fungus Arthrinium sp. Bioorg Med Chem 19:4644–4651

    Article  CAS  PubMed  Google Scholar 

  74. Huneck S, Schreiber K (1972) Wachstumsregulatorische eigenschaften von flechten-und moos-inhaltsstoffen. Phytochemistry 11:2429–2434

    Article  CAS  Google Scholar 

  75. Dayan FE, Romagni JG (2001) Lichens as a potential source of pesticides. Pestic Outlook 12:229–232

    Article  CAS  Google Scholar 

  76. Manojlovic NT, Solujic S, Sukdolak S, Krstic LJ (2000) Isolation and antimicrobial activity of anthraquinones from some species of the lichen genus Xanthoria. J Serb Chem Soc 65:555–560

    Article  CAS  Google Scholar 

  77. Lin L, Chou C, Kuo Y (2001) Cytotoxic principles from Ventilago leiocarpa. J Nat Prod 64(5):674–676

    Article  CAS  PubMed  Google Scholar 

  78. Muzychkina RA (1998) Natural anthraquinones, biological and physicochemical properties. House Phasis, Moscow

    Google Scholar 

  79. Manojlovic NT, Solujic S, Sukdolak S (2002) Antimicrobial activity of an extract and anthraquinones from Caloplaca schaereri. Lichenologist 34:83–85

    Article  Google Scholar 

  80. Schinazi RF, Chu CK, Babu JR, Oswald BJ, Saalmann V, Cannon DL, Eriksson BFH, Nasr M (1990) Anthraquinones as a new class of antiviral agents against human immunodeficiency virus. Antivir Res 13:265–272

    Article  CAS  PubMed  Google Scholar 

  81. Cohen PA, Hudson JB, Towers GHN (1996) Antiviral activities of anthraquinones, bianthrones and hypericin derivatives from lichens. Experientia 52:180–183

    Article  CAS  PubMed  Google Scholar 

  82. Koyama M, Takahashi K, Chou TC, Darzynkiewicz Z, Kapuscinski J, Kelly TR, Watanabe KA (1989) Intercalating agents with covalent bond forming capability. A novel type of potential anticancer agents. 2. Derivatives of chrysophanol and emodin. J Med Chem 32:1594–1599

    Article  CAS  PubMed  Google Scholar 

  83. Hill DJ, Woolhouse HW (1966) Aspects of the antecology of Xanthoria parietina agg. Lichenologist 3:207–214

    Article  Google Scholar 

  84. Fahselt D (1994) Secondary biochemistry of lichens. Symbiosis 16:117–165

    CAS  Google Scholar 

  85. Solhaug KA, Gauslaa Y (2004) Photosynthates stimulate the UV-B induced fungal anthraquinone synthesis in the foliose lichen Xanthoria parietina. Plant Cell Environ 27:167–176

    Article  CAS  Google Scholar 

  86. Gauslaa Y, Ustvedt EM (2003) Is parietin a UV-B or a bluelight screening pigment in the lichen Xanthoria parietina? Photochem Photobiol Sci 2:424–432

    Article  CAS  Google Scholar 

  87. Silberstein L, Siegel BZ, Siegel SM, Mukhtar A, Galun M (1996) Comparative studies on Xanthoria parietina, a pollution-resistant lichen, and Ramalina duriaei, a sensitive species. I. Effects of air pollution on physiological processes. Lichenologist 28:355–365

    Article  Google Scholar 

  88. Kahriman N, Yazici K, Arslan T, Aslan A, Karaoglu SA, Yayli N (2011) Chemical composition and antimicrobial activity of the essential oils from Evernia prunastri (L.) ach. and Evernia divaricata (L.) ach. Asian J Chem 23:1937–1939

    CAS  Google Scholar 

  89. Rajab MS, Cantrell CL, Franzblau SG, Fischer NH (1998) Antimycobacterial activity of (E)-phytol and derivates: a preliminary structure-activity study. Planta Med 64:2–4

    Article  CAS  PubMed  Google Scholar 

  90. Shukla V, Joshi G, Rawat M (2010) Lichens as a potential natural source of bioactive compounds: a review. Phytochem Rev 9:303–314

    Article  CAS  Google Scholar 

  91. Kosanić M, Ranković B, Sukdolak S (2010) Antimicrobial activity of the lichen Lecanora frustulosa and Parmeliopsis hyperopta and their divaricatic acid and zeorin constituents. Afr J Microbiol Res 4:885–890

    Google Scholar 

  92. Gonzalez AG, Rodrigues Perez EM, Hernandez PCE, Barrera JB (1992) Chemical constituents of the lichen Stereocaulon azorerum. Z Naturforsch C 47:503–507

    Article  CAS  Google Scholar 

  93. Dahlman L, Näsholm T, Palmqwist K (2001) Growth, nitrogen uptake and resource allocation in the two tripartite lichens Nephroma arctucim and Peltigera aphthosa during nitrogen stress. New Phytol 153:307–315

    Article  CAS  Google Scholar 

  94. Safe S, Safe LM, Maass WSG (1975) Sterols of three lichen species: Lobaria pulmonaria, Lobaria scrobiculata and Usnea longissima. Phytochemistry 14:1821–1823

    Article  CAS  Google Scholar 

  95. Shukla V, Negi S, Rawat MSM, Pant G, Nagatsu A (2004) Chemical study of Ramalina africana (Ramaliniaceae) from Garhwal Himalayas. Biochem Syst Ecol 32:449–453

    Article  CAS  Google Scholar 

  96. Goodwin TW (1980) Algae. In: Goodwin TW (ed) The biochemistry of the carotenoids, vol 1, 2nd edn. Chapmann and Hall, London/New York

    Chapter  Google Scholar 

  97. Goodwin TW, Britton G (1988) Distribution and analysis of carotenoids. In: Goodwin TW (ed) Plant pigments. Academic, London/San Diego

    Google Scholar 

  98. Czeczuga B (1980) Investigation on carotenoids in Embryophyta. I Bryophyta Bryologist 83:21–28

    Article  CAS  Google Scholar 

  99. Edwards HGM, Rull Perez F (1999) Lichen biodeteriorarion of the Convento de la Peregrina, Sahagun, Spain. Biospectroscopy 5:47–52

    Article  CAS  PubMed  Google Scholar 

  100. Czeczuga B (1987) The effect of light on the content of photosynthetically active pigments in plants. VII. Chromatic adaptation in the lichens Peltigera polydactyla and Peltigera rufescens. Phyton 26:201–208

    Google Scholar 

  101. Taiz L, Zeiger E (2010) Plant physiology, 5th edn. Sinauer Associates Inc, Sunderland

    Google Scholar 

  102. Knecht W, Henseling J, Löffler M (2000) Kinetics of inhibition of human and rat dihydroorotate dehydrogenase by atovaquone, lawsone derivates, brequinar sodium and polyporic acid. Chem Biol Interact 124:61–76

    Article  CAS  PubMed  Google Scholar 

  103. Kraft J, Bauer S, Keilhoff G, Miersch J, Wend D, Riemann D, Hirschelmann R, Holzhausen HJ, Langner J (1998) Biological effects of the dihydroorotate dehydrogenase inhibitor polyporic acid, a toxic constituent of the mushroom Hapalopilus rutilans, in rats and humans. Arch Toxicol 72:711–721

    Article  CAS  PubMed  Google Scholar 

  104. Burton JF, Cain BF (1959) Antileukaemic activity of polyporic acid. Nature 184:1326–1327

    Article  CAS  PubMed  Google Scholar 

  105. Kwak JY, Rhee IK, Lee KB, Hwang JS, Yoo ID, Song KS (1999) Thelephoric acid and kynapcin-9 in mushroom Polyozellus multiflex inhibit prolyl endopeptidase in vitro. J Microbiol Biotechnol 9:798–803

    CAS  Google Scholar 

  106. Chung SK, Jeon SY, Kim SK, Kim SI, Kim GS, Kwon SH (2004) Antioxidative effects of polyozellin and thelephoric acid isolated from Polyzellus multiplex. J Korean Soc Appl Biol Chem 47:283–286

    CAS  Google Scholar 

  107. Rao PS, Sarma KG, Seshadri TR (1965) Chemical components of the Lobaria lichens from the Western Himalayas. Curr Sci India 34:9–11

    CAS  Google Scholar 

  108. Abo-Khatwa AN, al-Robai AA, al-Jawhari DA (1996) Lichen acids as uncouplers of oxidative phosphorylation of mouse-liver mitochondria. Nat Toxins 4:96–102

    Article  CAS  PubMed  Google Scholar 

  109. Legouin B, Le Dévéhat FL, Ferron S, Rouaud I, Le Pogam P, Cornevin L, Bertrand M, Boustie J (2017) Specialized metabolites of the lichen Vulpicida pinastri act as photoprotective agents. Molecules 22:1162

    Article  PubMed Central  CAS  Google Scholar 

  110. Varol M, Turk A, Candan M, Tay T, Koparal AT (2016) Photoprotective activity of vulpinic and gyrophoric acids toward ultraviolet B-induced damage in human keratinocytes. Phytother Res 30:9–15

    Article  CAS  PubMed  Google Scholar 

  111. Bačkor M, Hudá J, Repčák M, Ziegler W, Bačkorová M (1992) The influence of pH and lichen metabolites (Vulpinic acid and (+) usnic acid) on the growth of the lichen photobiont Trebouxia irregularis. Lichenologist 30:577–582

    Article  Google Scholar 

  112. Emmerich R, Giez I, Lange OL, Proksch P (1993) Toxicity and antifeedant activity of lichen compounds against the polyphagous herbivorous insect Spodoptera littoralis. Phytochemistry 33:1389–1394

    Article  CAS  Google Scholar 

  113. Koparal AT (2015) Anti-angiogenic and antiproliferative properties of the lichen substances (−)-usnic acid and vulpinic acid. Z Naturforsch C 70:159–164

    Article  CAS  PubMed  Google Scholar 

  114. Nadal B, Thetiot-Laurent S, Pin S, Renault JP, Cressier D, Rima G, Le Roux A, Meunier S, Wagner A, Lion C, Le Gall T (2010) Synthesis and antioxidant properties of pulvinic acids analogoues. Bioorg Med Chem 18:7931–7939

    Article  CAS  PubMed  Google Scholar 

  115. Huang YT, Onose J, Abe N, Yoshikawa K (2009) In vitro inhibitory effects of pulvinic acid derivates isolated from Chinese edible mushrooms, Boletus calopus and Suillus bovinus, on cytochrome P450 activity. Biosci Biotechnol Biochem 23:855–860

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank to Irene Lichtscheidl for providing the imaging equipment at Core Facility Cell Imaging and Ultrastructure Research and Marianna Gazdíková for critical reading and reviewing this manuscript. This work was supported by Aktion Österreich – Slowakei, grant from Slovak Grant Agency VEGA 1/0792/16, grant KEGA- 012UPJŠ-4/2016, and grant VVGS-PF-2018-765.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michal Goga .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Goga, M., Elečko, J., Marcinčinová, M., Ručová, D., Bačkorová, M., Bačkor, M. (2020). Lichen Metabolites: An Overview of Some Secondary Metabolites and Their Biological Potential. In: Mérillon, JM., Ramawat, K. (eds) Co-Evolution of Secondary Metabolites. Reference Series in Phytochemistry. Springer, Cham. https://doi.org/10.1007/978-3-319-96397-6_57

Download citation

Publish with us

Policies and ethics