Skip to main content

The Family Nocardiaceae

  • Reference work entry
  • First Online:
The Prokaryotes

Abstract

The family Nocardiaceae, a member of the order Corynebacteriales, encompasses eight phylogenetically closely related genera, that can be distinguished using a combination of chemotaxonomic, morphological, and physiological criteria. The genus “Prescottella” and, its constituent species, “Prescotella equi” (formerly Rhodococcus equi) have still to be validated though their taxonomic integrity is supported by genotypic and phenotypic data, including results from comparative genomic analyses. Nocardiaceae strains are widely distributed in aquatic and terrestrial habitats, notably soil and as constituents of foam and mixed liquors in activated sludge wastewater treatment plants. In general, members of the family are considered to have a saprophytic lifestyle though it is becoming increasingly evident that they should be seen as opportunistic pathogens when isolated from clinical material. Some Nocardia species are causal agents of two serious diseases, nocardiosis and actinomycetoma. These and other infections are probably underreported due to the lack of reliable selective isolation and identification procedures. “Prescottella equi” is a facultative intracellular pathogen that causes severe suppurative bronchopneumonia in foals, while Rhodococcus fascians is a soil-borne pathogen that induces the formation of differentiated galls in many herbaceous plants. The application of comparative genomic, genetic, and molecular biological studies show that Gordonia, Nocardia, and Rhodococcus strains exhibit remarkable metabolic diversity that can be exploited for a broad range of biotechnological purposes. It is also evident that these genera are grossly underspeciated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 699.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 799.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adachi K, Katsuta A, Matsuda S, Peng X, Misawa N, Shizuri Y, Kroppenstedt RM, Yokota A, Kasai H (2007) Smaragdicoccus niigatensis gen. nov., a novel member of the suborder Corynebacterineae. Int J Syst Evol Microbiol 57:297–301

    Article  CAS  PubMed  Google Scholar 

  • Ajello L, Roberts GD (1981) In: Hausler WJ (ed) Diagnostic procedures for bacterial, mycotic and parasitic interactions. American Public Health Association, Washington, DC, p 1033

    Google Scholar 

  • Alburquerque de Barros EVS, Manfio GP, Ribeiro Maitan V, Mendes Bataus LA, Kim SB, Maldonado LA, Goodfellow M (2003) Nocardia cerradoensis sp. nov., a novel isolate from Cerrado soil in Brazil. Int J Syst Evol Microbiol 53:29–33

    Article  CAS  Google Scholar 

  • Al-Diwany LJ, Cross T (1978) Ecological studies on nocardioforms and other actinomycetes in aquatic habitats. Zentralbl Bakteriol 6:153–160

    Google Scholar 

  • Alshamaony L, Goodfellow M, Minnikin DE (1976) Free mycolic acids as criteria in the classification of Nocardia and the ‘rhodochrous’ complex. J Gen Microbiol 92:188–199

    Article  CAS  Google Scholar 

  • Alvarez HM (2010a) Central metabolism of species of the genus Rhodococcus. In: Alvarez MM (ed) Biology of Rhodococcus. Springer, Berlin, pp 91–108

    Google Scholar 

  • Alvarez HM (ed) (2010b) Biology of Rhodococcus. Springer, Berlin, pp 1–365

    Google Scholar 

  • Aly HA, Huu NB, Wray V, Junca H, Pieper DH (2008) Two angular dioxygenases contribute to the metabolic versatility of dibenzofuron-degrading Rhodococcus sp. strain HA01. Appl Environ Microbiol 74:3812–3822

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Andrzejewski J, Müller G (1975) Ūber die Morphologie eines Nocardia asteroides— bacteriophage. Zentralbl Bakteriol [Orig A] 230:379–384

    CAS  Google Scholar 

  • Andrzejewski J, Pietkiewicz D (1972) Űbe die Isolierung von Bakteriophagen aus lysogenen Nocardia asteroides—Stämmen. Zentralbl Bakteriol [Orig A] A 219:366–369

    Google Scholar 

  • Andrzejewski J, Müller G, Rőhrscheidt E, Pielkiewicz D (1978) Isolation, characterization and classification of a Nocardia asteroides bacteriophage. Zentralbl Bakteriol 6:319–326

    Google Scholar 

  • Angeles AM, Sugar AM (1987) Rapid diagnosis of nocardiosis with enzyme immunoassay. J Infect Dis 155:292–296

    Article  CAS  PubMed  Google Scholar 

  • Aoki H, Sakai H, Kohsaka M, Kohomi T, Hosoda J, Kubochi Y (1976) Nocardicin A, a new monocyclic beta-lactam antibiotic. 1. Discovery, isolation and characterization. J Antibiot 29:492–500

    Article  CAS  PubMed  Google Scholar 

  • Apajalahti JHH, Käpänoja P, Salkinoja-Salonen MS (1986) Rhodococcus chlorophenolicus sp. nov. a chlorophenol-mineralizing actinomycete. Int J Syst Bacteriol 36:246–251

    Article  CAS  Google Scholar 

  • Arai T, Kuroda S, Mikami Y (1988) Classification of actinomycetes with reference to antibiotic production. In: Arai T (ed) Actinomycetes: the boundary microorganisms. University Park Press, Baltimore, pp 543–640

    Google Scholar 

  • Arenskőtter M, Brőker D, Steinbűchel A (2004) Biology of the metabolically diverse genus Gordonia. Appl Environ Microbiol 70:3195–3204

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Arenskőtter M, Linos A, Schumann P, Kropenstedt RM, Steinbűchel A (2005) Gordonia nitida Yoon et al. 2000 is a later synonym of Gordonia alkalivorans Kummer et al. 1999. Int J Syst Evol Microbiol 55:695–697

    Article  PubMed  Google Scholar 

  • Arriaga JM, Cohen ND, Derr JN, Chaffin MK, Martens RJ (2002) Detection of Rhodococcus equi by polymerase chain reaction using species specific nonproprietary primers. J Vet Diagn Invest 14:347–353

    Article  PubMed  Google Scholar 

  • Ashdown LR (1990) An improved screening technique for isolation of Nocardia species from sputum specimens. Pathology 22:157–161

    Article  CAS  PubMed  Google Scholar 

  • Atalan E, Manfio GP, Ward AC, Kroppenstedt RM, Goodfellow M (2000) Biosystematic studies on novel streptomycetes from soil. Antonie van Leeuwenhoek 77:337–353

    Article  CAS  PubMed  Google Scholar 

  • Baddour LM, Baselski VS, Herr MJ, Christensen CD, Bisn AL (1986) Nocardiosis in recipients of renal transplants: evidence for nosocomial acquisitioin. Am J Infect Control 14:214–219

    Article  CAS  PubMed  Google Scholar 

  • Bakker XR, Spauwen PH, Dolmans WM (2004) Mycetoma of the hand caused by Gordonia terrae: a case report. J Hand Surg 29:188–190

    Article  CAS  Google Scholar 

  • Barnaud G, Deschampes C, Manceron V, Mortier E, Laurent F, Bert F, Boiron P, Vinceeneux P, Branger C (2005) Brain abscess caused by Nocardia cyriacigeorgica in a patient with human immune-deficiency viral infection. J Clin Microbiol 43:4895–4897

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Barton MD, Hughes KL (1980) Corynebacerium equi: a review. Vet Bull 50:65–80

    Google Scholar 

  • Barton MD, Hughes KL (1981) Comparison of three techniques for isolation of Rhodococcus (Corynebacterium) equi from contaminated sources. J Clin Microbiol 13:219–221

    CAS  PubMed Central  PubMed  Google Scholar 

  • Barton MD, Goodfellow M, Minnikin DE (1989) Lipid composition in the classification of Rhodococcus equi. Zentralbl Bakteriol 272:154–170

    Article  CAS  PubMed  Google Scholar 

  • Battig U, Wegmann P, Meyer B, Penseyres JH (1990) Nocardia mastitis in cattle. 1. Clinical observations and diagnoses in 7 cases. Schweiz Arch Tierheilkd 172:315–322

    Google Scholar 

  • Beadles TA, Land GA, Knezek DJ (1980) An ultrastructure comparison of the cell envelope of selected strains of Nocardia asteroides and Nocardia brasiliensis. Mycopathologia 70:25–32

    Article  CAS  PubMed  Google Scholar 

  • Beaman BL (1973) An ultrastructural analysis of Nocardia during experimental infections in mice. Infect Immun 8:828–840

    CAS  PubMed Central  PubMed  Google Scholar 

  • Beaman BL (1981) Mechanisms of pathogenics and host resistance to the actinomycetes. Zentralbl Bakteriol Suppl 11:209–220

    Google Scholar 

  • Beaman BL (1984) Actinomycete pathogenicity. In: Goodfellow M, Mordarski M, Williams ST (eds) The biology of the actinomycetes. Academic, London, pp 457–479

    Google Scholar 

  • Beaman BL (1992) Nocardia as a pathogen of the brain: mechanisms of interactions in the murine brain—a review? Gene 113:213–217

    Article  Google Scholar 

  • Beaman BL (1993) Ultrastructural analysis of growth of Nocardia asteroides during invasion of the murine brain. Infect Immun 61:274–283

    CAS  PubMed Central  PubMed  Google Scholar 

  • Beaman B (2000) The pathogenesis of Nocardia. In: Fischetti VA, Novich RP, Ferreti JJ, Portnoy DA, Rood JI (eds) Gram-positive pathogens. ASM, Washington, DC, pp 594–606

    Google Scholar 

  • Beaman B, Beaman L (1994) Nocardia species host parasite relationships. Clin Microbiol Rev 7:213–264

    CAS  PubMed Central  PubMed  Google Scholar 

  • Beaman BL, Beaman L (1998) Filament tip-associated antigens involved in adherence to and invasion of murine pulmonary epithelial cells in vivo and HeLa cells in vitro by Nocardia asteroides. Infect Immun 66:4676–4689

    CAS  PubMed Central  PubMed  Google Scholar 

  • Beaman BL, Beaman L (2000) Nocardia asteroides as an invasive intracellular pathogen of the brain and lungs. Subcell Biochem 33:167–198

    Article  CAS  PubMed  Google Scholar 

  • Beaman BL, Maslam S (1977) Effect of cyclophosphamide on experimental Nocardia asteroides infection in mice. Infect Immun 16:995–1004

    CAS  PubMed Central  PubMed  Google Scholar 

  • Beaman BL, Moring SE (1988) Relationships amongst cell wall composition, stage of growth and virulence of Nocardia asteroides GUH 2. Infect Immun 56:557–563

    CAS  PubMed Central  PubMed  Google Scholar 

  • Beaman BL, Ogata SG (1993) Ultrastructural analysis of attachment to and penetration of capillaries in the murine pons, midbrain, thalamus and hypothalamus by Nocardia asteroides. Infect Immun 61:955–965

    CAS  PubMed Central  PubMed  Google Scholar 

  • Beaman BL, Sugar AM (1983) Interaction of Nocardia in natural and acquired infections in animals. J Hyg 91:393–419

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Beaman BL, Black CM, Doughty F, Beaman L (1985) Role of superoxide dismutase and catalase as determinants of pathogenicity of Nocardia asteroides: importance in resistance to microbiocidal activities of human polymorphonuclear neutrophils. Infect Immun 47:135–141

    CAS  PubMed Central  PubMed  Google Scholar 

  • Beard TM, Page MI (1998) Enantiaselective biotransformations using rhodococci. Antonie van Leeuwenhoek 74:99–106

    Article  CAS  PubMed  Google Scholar 

  • Bell KS, Philp JC, Aw DW, Christofi N (1998) The genus Rhodococcus. J Appl Microbiol 85:195–210

    Article  CAS  PubMed  Google Scholar 

  • Bell KS, Kuyukina MS, Heidbrink S, Philp JC, Aw DWJ, Ivshina IB, Christofi N (1999) Identification and environmental detection of Rhodococcus species by 16S rDNA-targeted PCR. J Appl Microbiol 87:472–480

    Article  CAS  PubMed  Google Scholar 

  • Bérdy J (2012) Thoughts and facts about antibiotics: where are we now and where are we heading? J Antibiot 65:385–395

    Article  PubMed  CAS  Google Scholar 

  • Berekaa MM (2006) Colonization and microbial degradation of polyisoprene rubber by nocardioform actinomycete Nocardia sp. strain-MBR. Biotechnology 5:234–239

    Article  CAS  Google Scholar 

  • Blackall LL, Harbers AE, Greenfield PE, Hayward AC (1988) Actinomycete scum problems in Australian activated sludge plants. Water Sci Technol 20:493–495

    CAS  Google Scholar 

  • Blackall LL, Parlett JH, Hayward AC, Minnikin DE, Greenfield PF, Harbers A (1989) Nocardia pinensis sp. nov., an actinomycete found in activated sludge foams in Australia. J Gen Microbiol 135:1547–1558

    CAS  Google Scholar 

  • Blaschke AJ, Bender J, Byington CL, Korgenski K, Daly J, Petti CA, Pavia AT, Ampofo K (2007) Gordonia species: emerging pathogens in pedriatrics that are identified by 16S ribosomal RNA gene sequencing. Clin Infect Dis 45:483–486

    Article  PubMed  Google Scholar 

  • Blümel J, Blümel E, Yassin AF, Schmidt-Rolte H, Schaal KP (1998) Typing of Nocardia farcinica by pulsed-field gel electrophoresis reveals the endemic strains as source of hospital infections. J Clin Microbiol 36:118–122

    PubMed Central  PubMed  Google Scholar 

  • Boiron P, Provost F (1988) In vitro susceptibility testing of Nocardia spp. and its taxonomic implication. J Antimicrob Chemother 22:623–629

    Article  CAS  PubMed  Google Scholar 

  • Boiron P, Provost F (1990a) Use of a partially purified 54-kilodalton antigen for diagnosis of nocardiosis by Western blot (immunoblot) assay. J Clin Microbiol 28:328–331

    CAS  PubMed Central  PubMed  Google Scholar 

  • Boiron P, Provost F (1990b) Characterization of Nocardia, Rhodococcus and Gordonia species by in vitro susceptibility testing. Zentralbl Bakteriol 274:203–213

    Article  CAS  PubMed  Google Scholar 

  • Boiron P, Stynen D (1992) Immunodiagnosis of nocardiosis. Gene 115:219–222

    Article  CAS  PubMed  Google Scholar 

  • Boiron P, Provost F, Dupont B (1993) Laboratory methods for the diagnosis of Nocardiosis. Institut Pasteur, Paris

    Google Scholar 

  • Boiron P, Locci R, Goodfellow M, Gumaa SA, Isik K, Kim B, McNeil MM, Salinas-Carmona MC, Shojaei H (1998) Nocardia, nocardiosis and mycetomas. Med Mycol Suppl 36:26–37

    Google Scholar 

  • Bordet C, Etémadi AH, Michel G, Lederer E (1965) Structures des acides nocardiques de Nocardia asteroides. Bull Soc Chem Fr 234–235

    Google Scholar 

  • Bradley SG, Anderson DL (1958) Taxonomic implications of actinophage host-range. Science (NY) 128:413–414

    Article  CAS  Google Scholar 

  • Bradley SG, Ritzi D (1967) Structure of actinophages for Streptomyces and Nocardia. Dev Ind Microbiol 6:206–213

    Google Scholar 

  • Bradley SG, Anderson DL, Jones LA (1961) Phylogeny of actinomycetes as revealed by susceptibility to actinophage. Dev Ind Microbiol 2:223–237

    Google Scholar 

  • Brady D, Beeton A, Zeevaart J, Kqaje C, van Rantwijk F, Sheldon RA (2004) Characterization of nitrilase and nitrile hydratase biocatalytic systems. Appl Microbiol Biotechnol 64:76–85

    Article  CAS  PubMed  Google Scholar 

  • Brandāo PEB, Maldonado LA, Ward AC, Bull AT, Goodfellow M (2001) Gordonia namibiensis sp. nov., a novel nitrile metabolising actinomycete recovered from an African sand. Syst Appl Microbiol 24:510–515

    Article  PubMed  Google Scholar 

  • Briglia M, Rainey FA, Stackebrandt E, Schraa G, Salkinoja-Salonen M (1996) Rhodococcus percolatus sp. nov., a bacterium degrading 2,4,6 tetrachlorophenol. Int J Bacteriol 46:23–30

    Article  CAS  Google Scholar 

  • Bringmann G, Noll TF, Gulder TAM, Grüne M, Dryer M, Wilde C, Pankewitz F, Hilker M, Payne GD, Jones AL, Goodfellow M, Fiedler H-P (2006) Different polyketide folding modes converge to an identical molecular architecture. Nat Chem Biol 2:429–433

    Article  CAS  PubMed  Google Scholar 

  • Bringmann G, Gulder TAM, Hamm A, Goodfellow M, Fiedler H-P (2009) Multiple convergence in polyketide biosynthesis: a third folding mode to the anthroquinone chrysophanol. Chem Commun 44:6810–6812

    Article  CAS  Google Scholar 

  • Britto EM, Guoneaud R, Giňi-Urriza M, Ranchou-Peyruse A, Yerbaere A, Crapez MA, Wasserman JC, Duran R (2006) Characterization of hydrocarbonoclastic bacterial communities from mangrove sediments in Guanabara Bay. Brazil Res Microbiol 157:752–762

    Article  CAS  Google Scholar 

  • Brőker D, Arenskőtter M, Legatzki A, Nies DH, Steinbűchel A (2004) Characterization of the 101-kilobase-pair megaplasmid pKB1, isolated from the rubber-degrading bacterium Gordonia westfalica Kb1. J Bacteriol 186:212–225

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Broughton RA, Wilson HD, Goodman NL, Hedrick JA (1981) Septic arthritis and osteomyelitis caused by an organism of the genus Rhodococcus. J Clin Microbiol 13:209–213

    CAS  PubMed Central  PubMed  Google Scholar 

  • Brownell GH, Crockett TK (1971) Inactivation of nocardiophage φC and φEC by extracts of phage attackable cells. J Virol 8:894–899

    CAS  PubMed Central  PubMed  Google Scholar 

  • Brownell GH, Denniston K (1984) Genetics of nocardioform bacteria. In: Goodfellow M, Mordarski M, Williams ST (eds) The biology of the actinomycetes. Academic, London, UK, pp 201–228

    Google Scholar 

  • Brownell GH, Adams JN, Bradley SG (1967) Growth and characterization of nocardiophages for Nocardia canicruria and Nocardia erythropolis mating types. J Gen Microbiol 47:247–256

    Article  CAS  PubMed  Google Scholar 

  • Brownell GH, Enquist LW, Denniston-Thompson K (1980) An analysis of the genome of actinophage φEC. Gene 12:211–214

    Article  Google Scholar 

  • Brown-Elliott BA, Brown JM, Conville PS, Wallace RJ Jr (2006) Clinical and laboratory features of the Nocardia spp. based on current molecular taxonomy. Clin Microbiol Rev 19:259–282

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bunch AW (1998) Biotransformation of nitriles by rhodococci. Antonie van Leeuwenhoek 74:89–97

    Article  CAS  PubMed  Google Scholar 

  • Buot G, Lavalle P, Mariat F, Suchil P (1987) Epidemiological studies of mycetomas in Mexico: a propos of 502 cases. Bull Soc Pathol Exot 3:329–339

    Google Scholar 

  • Bushnell RB, Pier AC, Fichtner RE, Beaman BL, Boos HA, Salman MD (1979) Clinical and diagnostic aspects of herd problems with nocardial and mycobacterial mastitis. J Vet Diagn Invest 22:1–12

    Google Scholar 

  • Cain RB (1981) Regulation of aromatic and hydroaromatic catabolic pathways in nocardioform actinomycetes. Zentralbl Bakteriol Mikrobiol Hyg 11:335–354

    CAS  Google Scholar 

  • Cargill JS, Boyd CJ, Weightman NC (2010) Nocardia cyriacigeorgica: a case of endocarditis with disseminated soft-tissue infection. J Med Microbiol 59:224–230

    Article  PubMed  Google Scholar 

  • Carr EL, Eales KL, Seviour RJ (2006) Substrate uptake by Gordonia amarae in activated sludge foams by FISH-MAR. Water Sci Technol 54:39–45

    Article  CAS  PubMed  Google Scholar 

  • Castellani A, Chalmers A (1919) Manual of tropical medicine, 3rd edn. Williams and Wood, New York, pp 959–960

    Book  Google Scholar 

  • Cha J-H, Cha C-J (2013) Gordonida alkaliphila sp. nov., an actinomycete isolated from tidal flat sediment. Int J Syst Evol Microbiol 63:327–3331

    Article  PubMed  Google Scholar 

  • Chaffin MK, Cohen ND, Martens RJ, Edwards RF, Nevill M, Smith R 3rd (2004) Hematologic and immunophenotypic factors associated with the development of Rhodococcus equi pneumonia of foals at equine breeding farms with endemic infection. Vet Immunol Immunopathol 100:33–48

    Article  CAS  PubMed  Google Scholar 

  • Chanchaya C, Fournous G, Chibani-Chennouli S, Dillmann ML, Brűssow H (2003) Phage as agents of gene transfer. Curr Opin Microbiol 6:417–424

    Article  CAS  Google Scholar 

  • Chang JH, Kim VJ, Lee BH, Cho KS, Ryu HW, Chang YK, Chang HN (2001) Production of a desulfurization biocatalyst by two stage fermentation and its application for the treatment of model and diesel oils. Biotechnol Prog 17:876–880

    Article  CAS  PubMed  Google Scholar 

  • Chaterjee S, Dutta TK (2003) Metabolism of butyl benzyl phthalate by Gordonia sp. strain MTCC 4818. Biochem Biophys Res Commun 309:36–43

    Article  CAS  Google Scholar 

  • Chen Y, Rosazza JP (1994) A bacterial nitric oxide synthase from Nocardia species. Biochem Biophys Res Commun 203:1251–1258

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Rosazza JPN (1995) Purification and characterization of nitric oxide synthase (NOS noc) from a Nocardia species. J Bacteriol 177:5122–5128

    CAS  PubMed Central  PubMed  Google Scholar 

  • Choi OK, Choi KS, Ryu HW, Chang YK (2003) Enhancement of phase separation by the addition of de-emulsifiers to three phase (diesel oil/biocatalyst/aqueous phase) emulsion on diesel biodesulfurization. Biotechnol Lett 25:73–77

    Article  CAS  PubMed  Google Scholar 

  • Choucino C, Goodman SA, Greer JP (1996) Nocardial infections in bone marrow transplant recipients. Clin Infect Dis 23:1012–1019

    Article  CAS  PubMed  Google Scholar 

  • Chun J, Blackall LL, Kang SO, Hah YC, Goodfellow M (1997) A proposal to reclassify Nocardia pinensis Blackall et al. as Skermania piniformis gen. nov. Int J Syst Bacteriol 47:127–131

    Article  CAS  PubMed  Google Scholar 

  • Cloud JL, Conville PS, Croft A, Harmsen D, Witebsky FG, Carroll KC (2004) Evaluation of partial 16S ribosomal DNA sequencing for identification of Nocardia species by using the microSeq 500 system with an expanded database. J Clin Microbiol 42:578–584

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cohen ND, Smith KE, Ficht TA, Takai S, Libal MC, West BR, Del Rosario LS, Becu T, Leadon DP, Buckley T, Chaffin MK, Martens RJ (2003) Epidemiological study of results of pulsed field gel electrophoresis of isolates of Rhodococcus equi obtained from horses and horse farms. Am J Vet Res 64:153–161

    Article  CAS  PubMed  Google Scholar 

  • Cole ST, Brosch R, Parkhill J, Garnier T, Churcher C, Harris D, Gordon SV, Eighmeier K, Gas S, Barry CE 3rd, Tekaia F, Badcock K, Basham D, Brown D, Chillingworth T, Conner R, Davies R, Devlin K, Feltwell T, Genttes S, Hamlin S, Holroyd S, Hornsby T, Jagels K, Krogh A, Mcclean J, Moule S, Murphy L, Oliver K, Osborne J, Quail MA, Ranjandream MA, Rogers J, Rutter S, Seeger K, Shelton J, Squares R, Squares S, Subston JE, Taylor K, Whitehead S, Burrell BG (1998) Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393:537–544

    Article  CAS  PubMed  Google Scholar 

  • Cole ST, Eighmeier K, Parkhill J, James KD, Thomson NR, Wheeler PR, Honore N, Garnier T, Churcher C, Harris D, Mungall K, Basham D, Brown D, Chillingworth T, Conner R, Davies RM, Devlin K, Duthoy S, Feltwell T, Fraser A, Hamlin H, Holroyd S, Hornsby T, Jagels K, Lacroix C, Maclean J, Moule S, Murphy L, Oliver K, Quail MA, Rajandrean MA, Rutherford KM, Rutter S, Seeger K, Simon S, Simmonds M, Skelton J, Squares R, Squares S, Stevens K, Taylor K, Whitehead S, Woodward JR, Barrell BG (2001) Massive gene decay in the leprosy bacillus. Nature 409:1007–1011

    Article  CAS  PubMed  Google Scholar 

  • Collins MD, Pirouz T, Goodfellow M, Minnikin DE (1977) Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 100:221–230

    Article  CAS  PubMed  Google Scholar 

  • Collins MD, Goodfellow M, Minnikin DE (1982a) Fatty acid composition of some mycolic acid-containing coryneform bacteria. J Gen Microbiol 128:2503–2509

    CAS  PubMed  Google Scholar 

  • Collins MD, Goodfellow M, Minnikin DE (1982b) A survey of the structures of mycolic acids in Corynebacterium and related taxa. J Gen Microbiol 128:129–149

    CAS  PubMed  Google Scholar 

  • Collins MD, Goodfellow M, Minnikin DE, Alderson G (1985) Menaquinone composition of mycolic acid-containing actinomycetes and some sporoactinomycetes. J Appl Bacteriol 58:77–86

    Article  CAS  PubMed  Google Scholar 

  • Collins MD, Howarth OW, Grund E, Kroppenstedt RM (1987) Isolation and structural determination of new members of the vitamin K series in Nocardia brasiliensis. FEMS Microbiol Lett 41:35–39

    Article  CAS  Google Scholar 

  • Colquhoun JA, Mexson J, Goodfellow M, Ward AC, Horikoshi K, Bull AT (1998) Novel rhodococci and other mycolate actinomycetes from the deep sea. Antonie van Leeuwenhoek 74:27–40

    Article  CAS  PubMed  Google Scholar 

  • Comeau AM, Krisch HM (2005) War is peace—dispatches from the bacterial and phage killing fields. Curr Opin Microbiol 8:488–494

    Article  CAS  PubMed  Google Scholar 

  • Conville PS, Witebsky FG (2005) Multiple copies of 16S rRNA gene in Nocardia nova isolates and implications for sequence based identification procedures. J Clin Microbiol 43:2881–2885

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Conville PS, Fischer SH, Cartwright CP, Witebsky FG (2000) Identification of Nocardia species by restriction endonuclease analysis of an amplified portion of the 16S rRNA gene. J Clin Microbiol 38:158–164

    CAS  PubMed Central  PubMed  Google Scholar 

  • Conville PS, Brown JM, Steigerwalt AG, Lee JW, Byrer DE, Anderson VL, Dorman SE, Holland SM, Cahill B, Carroll KC, Witebsky FG (2003) Nocardia veterana as a pathogen in North American patients. J Clin Microbiol 41:2560–2568

    Article  PubMed Central  PubMed  Google Scholar 

  • Conville PS, Zelazny AM, Witebsky FG (2006) Analysis of secA1 gene sequences for identification of Nocardia species. J Clin Microbiol 44:2760–2766

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Conville PS, Brown JM, Steigerwalt AG, Brown-Elliott BA, Witebsky FG (2008) Nocardia wallacei sp. nov., and Nocardia blacklockiae sp. nov., human pathogens and members of the “Nocardia transvalensis complex”. J Clin Microbiol 46:1178–1184

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cornelis K, Ritsema T, Nijsee J, Holsters M, Goethals K, Jaziri M (2001) The plant pathogen Rhodococcus fascians colonizes the exterior and interior of the aerial parts of plants. Mol Plant Microbe Interact 14:599–608

    Article  CAS  PubMed  Google Scholar 

  • Cornelis K, Maes T, Jaziri M, Holsters M, Goethals K (2002) Virulence genes of the phytopathogen Rhodococcus fascians show specific spatial and temporal expression patterns during plant infection. Mol Plant Microbe Interact 15:598–603

    Article  Google Scholar 

  • Couble A, Rodriguez-Nava V, de Montclos MP, Boiron P, Laurent F (2005) Direct detection of Nocardia spp. in clinical samples by a rapid molecular method. J Clin Microbiol 43:1921–1924

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cox F, Hughes WT (1975) Contagious and other aspects of nocardiosis in the compromised host. Pediatrics 55:135–138

    CAS  PubMed  Google Scholar 

  • Cragg GM, Newman DJ (2013) Natural products: a continuing source of novel drug leads. Biochem Biophys Acta. http://dx.doi.org/10.1016/j.bbagen.2013.02.008

  • Crespi M, Messens E, Caplan AB, van Montagu M, Desomer J (1992) Fasciation induction by the phytopathogen Rhodococcus fascians depends upon a linear plasmid encoding a cytokinon synthase gene. EMBO J 11:795–804

    CAS  PubMed Central  PubMed  Google Scholar 

  • Crespi M, Vereecke D, Temmperman W, Van Montagu M, Desomer J (1994) The fas operon of Rhodococcus fascians encodes new genes required for fasiation of host plants. J Bacteriol 176:2492–2501

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cross T, Rowbotham TJ, Mishustin EN, Tepper EZ, Antoine-Portaels F, Schaal KP, Bickenbach H (1976) The ecology of nocardioform actinomycetes. In: Goodfellow M, Brownell GH, Serrano JA (eds) The biology of the nocardiae. Academic, London, pp 337–371

    Google Scholar 

  • Cuello OH, Caorlin MJ, Reviglio VE, Carvajal L, Juarez CP, Palacio E, Luna JD (2002) Rhodococcus globerulus keratitis after laser in situ keratomilensis. J Cataract Refract Surg 28:2235–2237

    Article  PubMed  Google Scholar 

  • Cui Q, Wang L, Huang Y, Liu Z, Goodfellow M (2005) Nocardia jiangxiensis sp. nov. and Nocardia miyunensis sp. nov., isolated from acidic soils. Int J Syst Evol Microbiol 55:1921–1925

    Article  CAS  PubMed  Google Scholar 

  • Da Costa EO, Ribeiro AR, Watanabe ET, Pardo RB, Silva JB, Sanches RB (1996) An increased incidence of mastitis caused by Prototheca species and Nocardia species on a farm in São Paulo. Brazil Vet Res Commun 20:237–241

    Article  Google Scholar 

  • Darrah PA, Monaco MC, Jain S, Hondalus MK, Gollenbock DT, Mosser DM (2004) Innate immune responses in Rhodococcus equi. J Immunol 173:1914–1924

    Article  CAS  PubMed  Google Scholar 

  • Davenport RJ, Elliott JN, Curtis TP, Upton J (1998) In situ detection of rhodococci associated with activated sludge foams. Antonie van Leeuwenhoek 74:41–48

    Article  CAS  PubMed  Google Scholar 

  • Davenport RJ, Curtis TP, Goodfellow M, Stainsby FM, Bingley M (2000) Quantitative use of fluorescent in situ hybridization to examine relationships between mycolic acid-containing actinomycetes and foaming in activated sludge plants. Appl Environ Microbiol 66:1158–1166

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • De Carvalho CCCR, da Fonseca MMR (2005) Degradation of hydrocarbons and alcohols at different temperatures and salinities by Rhodococcus erythropolis DCL 14. FEMS Microbiol Ecol 51:389–399

    Article  PubMed  CAS  Google Scholar 

  • de los Reyes FL, Raskin L (2002) Role of filamentous microorganisms in activated sludge foaming: relationship of mycolate levels to foaming initiation and stability. Water Res 36:445–459

    Article  PubMed  Google Scholar 

  • de los Reyes FL, Retter W, Ruskin L (1997) Group-specific small-unit rRNA hybridization probes to characterize filamentous foaming in activated sludge systems. Appl Environ Microbiol 63:1107–1117

    PubMed Central  PubMed  Google Scholar 

  • de los Reyes FL III, Oerther DB, de los Reyes MF, Hernandez M, Raskin L (1998a) Characterization of filamentous in activated sludge systems using oligonucleotide hybridization probes and antibody probes. Water Sci Technol 37:485–493

    Article  Google Scholar 

  • de los Reyes MF, de los Reyer FL, Hernandez M, Raskin L (1998b) Quantification of Gordonia amarae strains in foaming activated sludge and anaerobic digester systems with oligonucleotide hybridization probes. Appl Environ Microbiol 64:2503–2512

    PubMed Central  PubMed  Google Scholar 

  • de los Reyes MF, de los Reyer FL, Hernandez M, Raskin L (1998c) Identification and quantification of Gordonia amarae strains in activated sludge schems using comparative rRNA sequence analysis and phylogenetic hybridization probes. Water Sci Technol 37:521–526

    Article  Google Scholar 

  • de los Reyes FL, Rothanszky D, Raskin L (2002) Microbial community structures in foaming and non-foaming full scale wastewater treatment plants. Water Environ Res 74:437–441

    Article  PubMed  Google Scholar 

  • De Miguel T, Sieiro C, Poza M, Villa TG (2000) Isolation and taxonomic study of a new canthaxanthine-containing bacterium, Gordonia jacobaea MV-1 sp. nov. Ind Microbiol 3:107–111

    Google Scholar 

  • De Miguel T, Sieiro C, Poza M, Villa TG (2001) Analysis of canthaxanthine and related pigments from Gordonia jacobaea mutants. J Agric Food Chem 49:1200

    Article  PubMed  CAS  Google Scholar 

  • De Mot R, Nagy I, De Schrijver A, Pattanapipitpaisal P, Vanderleyden J (1997) Structural analysis if the 6kb cryptic plasmid pFAJ 2600 from Rhodococcus erythropolis N1856/21 and construction of Escherichia coli—Rhodococcus shuttle vectors. Microbiology 143:3137–3147

    Article  PubMed  Google Scholar 

  • De O Manes C-L, Van Montagu M, Prinsen E, Goethals K, Holsters M (2001) De novo cortical wall division triggered by the phytopathogen Rhodococcus fascians in tobacco. Mol Plant Microbe Interact 14:189–195

    Article  CAS  Google Scholar 

  • Del Olmo CH, Santos VE, Alcon A, Garcia-Ochoa F (2005) Production of a Rhodococcus erythropolis IGTS8 biocatalyst for DBT biodesulfurization: influence of operational conditions. Biochem Eng J 22:229–237

    Article  CAS  Google Scholar 

  • Denis-Larose C, Labbé D, Bergeron H, Jones AM, Greer CW, Al-Hawari J, Grossman MJ, Sankey BM, Lau PC (1997) Conservation of plasmid-encoded dibenzothiophene desulfurisation genes in several rhodococci. Appl Environ Microbiol 63:2915–2919

    CAS  PubMed Central  PubMed  Google Scholar 

  • Depuydt S, Dolezal K, Van Lijsebettens M, Moritz T, Holsters M, Vereecke D (2008) Modulation of the hormone setting of Rhodococcus fascians results in ectopic KNOX activation in Arabidopsis. Plant Physiol 146:1267–1281

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Depuydt S, De Veylder L, Holsters M, Vereecke D (2009a) Eternal youth, the fate of developing Arabidopsis leaves upon Rhodococcus fascians infection. Plant Physiol 146:1387–1398

    Article  CAS  Google Scholar 

  • Depuydt S, Trenkamp S, Fernie AR, Elftieh S, Renou JP, Vuylsteke M, Holsters M, Vereecke D (2009b) An integrated genomic approach to define niche establishment by Rhodococcus fascians. Plant Physiol 149:1366–1386

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dhaliwal BS (1979) Nocardia amarae and activated sludge foaming. J Water Pollut Control Fed 51:344–350

    Google Scholar 

  • Dhar A, Lee K-S, Dhar K, Rosazzo JPN (2007) Nocardia sp. vanillic acid decarboxylase. Enzyme Microbiol Technol 41:271–277

    Article  CAS  Google Scholar 

  • Diego C, Ambrosioni JC, Abel G, Fernando B, Tomas O, Ricardo N, Jorge B (2005) Disseminated nocardiosis caused by Nocardia abscessus in an HIV-infected patient: first reported case. AIDS 19:1330–1331

    Article  PubMed  Google Scholar 

  • Donadio S, Maffiolo S, Monciardini P, Sosio M, Jabes D (2010) Antibiotic discovery in the twenty-first century: current trends and future prospects. J Antibiot 63:423–430

    Article  CAS  PubMed  Google Scholar 

  • Drancourt M, McNeil MM, Brown JM, Lasker BA, Maurin M, Choux M, Raoult D (1994) Brain abscess due to Gordonia terrae in an immunocompromised child: a case report and review of infections caused by Gordonia terrae. Clin Infect Dis 19:258–262

    Article  CAS  PubMed  Google Scholar 

  • Drancourt M, Pelletier J, Cherif AA, Raoult D (1997) Gordonia terrae central nervous system infection in an immune-compromised patient. J Clin Microbiol 35:379–382

    CAS  PubMed Central  PubMed  Google Scholar 

  • Drzyza O, Fernández de la Heras L, Merales V, Navarro Llorens JM, Perera J (2011) Cholesterol degradation by Gordonia cholesterolivorens. Appl Environ Microbiol 77:4802–4810

    Article  CAS  Google Scholar 

  • Drzyzga O (2012) The strengths and weaknesses of Gordonia: a review of an emerging genus with increasing biotechnological potential. Crit Rev Microbiol 38:300–316

    Article  CAS  PubMed  Google Scholar 

  • Drzyzga O, Navarro Llorens JM, Fernāndez de las Heras L, Garcia Fernández R, Perara J (2009) Gordonia cholesterolivorans sp. nov., a cholesterol-degrading actinomycete isolated from sewage sludge. Int J Syst Evol Microbiol 59:1011–1015

    Article  CAS  PubMed  Google Scholar 

  • Dufossé L, Mabon P, Bonet A (2001) Assessment of the coloring strength of Brevibacterium linens strains: spectrocolormetry versus total carotenoid extraction/quantification. J Dairy Sci 34:354–360

    Article  Google Scholar 

  • Eales K, Nielsen JL, Kragelund C, Seviour R, Nielsen PH (2005) The in situ physiology of pine tree like organisms (PTLO) in activated sludge foam. Acta Hydrochim Hydrobiol 33:203–209

    Article  CAS  Google Scholar 

  • Eales KL, Nielsen JL, Seviour EM, Nielsen PH, Seviour RJ (2006) The in situ physiology of Skermania piniformis in foams in Australian activated sludge plants. Environ Microbiol 8:1712–1720

    Article  CAS  PubMed  Google Scholar 

  • El-Gendy MM, Havas UW, Jaspars M (2008) Novel bioactive metabolites from a marine derived bacterium Nocardia sp. ALAA. 2000. J Antibiot 61:379–386

    Article  CAS  PubMed  Google Scholar 

  • Everest GJ, Cook AE, le Roes-Hill M, Meyers PR (2011) Nocardia rhamnosiphila sp. nov., isolated from soil. Int J Syst Evol Microbiol 34:508–512

    CAS  Google Scholar 

  • Exmelin L, Malbruny B, Vergmaud M, Provost F, Boiron P, Morel C (1996) Molecular study of nosocomial nocardiosis outbreak involving heart transplant recipients. J Clin Microbiol 34:1014–1016

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ezeoka I, Klenk H-P, Pőtter G, Schumann P, Moser BD, Lasker BA, Nicholson A, Brown JM (2013) Nocardia amikacinitolerans sp. nov., an amikacin resistant human pathogen. Int J Syst Evol Microbiol 63:1056–1061

    Article  CAS  Google Scholar 

  • Fahal AH (2004) Mycetoma: a thorn in the flesh. Trans R Soc Trop Med Hyg 98:3–11

    Article  CAS  PubMed  Google Scholar 

  • Fahal AH (2006) Mycetoma: clinicopathological monograph. Khartoum University Press, Khartoum

    Google Scholar 

  • Farina C, Boiron P, Ferrari I, Provost F, Goglio A (2001) Report of human nocardiosis in Italy between 1993 and 1997. Eur J Epidemiol 17:1019–1022

    Article  CAS  PubMed  Google Scholar 

  • Farina C, Andrini L, Bruno G, Sarti M, Tripodi MF, Utili R, Boiron P (2007) Nocardia brasiliensis in Italy: a nine year experience. Scand J Infect Dis 39:969–974

    Article  PubMed  Google Scholar 

  • Fernandez-Mora E, Polidori M, Lűhrmann A, Schaible UE, Hass A (2005) Maturation of Rhodococcus equi-containing vacuoles is arrested after completion of the early endosome stage. Traffic 6:635–653

    Article  CAS  PubMed  Google Scholar 

  • Finnerty WR (1992) The biology and genetics of the genus Rhodococcus. Annu Rev Microbiol 46:193–218

    Article  CAS  PubMed  Google Scholar 

  • Flaherty C, Sutcliffe IC (1999) Identification of a lipoarabinomannan-like lipoglycan in Gordonia rubropertincta. Syst Appl Microbiol 22:530–533

    Article  CAS  PubMed  Google Scholar 

  • Flaherty C, Minnikin DE, Sutcliffe IC (1996) A chemotaxonomic study of the lipoarabinomannan-like lipoglycan of Gordonia rubropertincta. Syst Appl Microbiol 285:11–19

    CAS  Google Scholar 

  • Franzetti A, Caredda P, Ruggeri C, La Colla P, Tamburini E, Papacchini M, Bestetti G (2009) Potential applications of surface active compounds by Gordonia sp. strain BS29 in soil remediation technologies. Chemosphere 75:801–807

    Article  CAS  PubMed  Google Scholar 

  • Friedman CS, Beaman BL, Chun J, Goodfellow M, Gee A, Hedrick RP (1998) Nocardia crassostreae sp. nov., the causal agent of nocardiosis in Pacific oysters. Int J Syst Bacteriol 48:237–246

    Article  PubMed  Google Scholar 

  • Fujii K, Takagi K, Hiradate S, Iwasaki A, Harada N (2007) Biodegradation of methylthio-s-triazines by Rhodococcus sp. strain FJ117YT, and production of the corresponding methylsulfinyl, methyllsulphonyl and hydroxy analogues. Pest Manag Sci 63:254–260

    Article  CAS  PubMed  Google Scholar 

  • Gabriels P, Joosen H, Put E, Verhaegen J, Magerman K, Cartuyvels R (2006) Recurrent Rhodococcus equi infection was fatal outcome in an immuno-competent person. Eur J Clin Microbiol Infect Dis 25:46–48

    Article  CAS  PubMed  Google Scholar 

  • Gallagher JR, Olsen ES, Stanley DC (1993) Microbial desulphurization of dibenzothiophene, a sulfur-specific pathway. FEMS Microbiol Lett 107:31–36

    Article  CAS  PubMed  Google Scholar 

  • Gallant JE, Ko AH (1996) Cavitary pulmonary lesions in patients infected with human immunodeficiency virus. Eur J Clin Microbiol Infect Dis 25:46–48

    Google Scholar 

  • Garrity GM, Bell JA, Lilburn I (2005) The revised roadmap to the manual. In: Brenner DJ, Krieg NR, Staley JT, Garrity GM (eds) Bergey’s manual of systematic bacteriology, vol 2, 2nd edn, The Proteobacteria, Part A, introductory essays. Springer, New York, pp 159–206

    Chapter  Google Scholar 

  • Ge F, Li W, Chen G, Liu Y, Zhang G, Yong B, Wang Q, Wang N, Huang Z, Li W, Wang J, Wu C, Xie Q, Liu G (2011) Draft genome sequence of Gordonia neofelifaecis NRRL B-59 395, a cholesterol-degrading actinomycete. J Bacteriol 193:5045–5046

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Geniloud O, González I, Salazar O, Martin J, Tormo JR, Vineete F (2011) Current approaches to exploit actinomycetes as a source of novel natural products. J Ind Microbiol Biotechnol 38:375–389

    Article  CAS  Google Scholar 

  • Ghosh A, Paul D, Prakash D, Mayiraj S, Jain RK (2006) Rhodococcus imtechensis sp. nov., a nitrophenol-degrading actinomycete. Int J Syst Evol Microbiol 56:1965–1969

    Article  CAS  PubMed  Google Scholar 

  • Ghosh A, Maity B, Chakrabarti K, Chattopadhyay D (2007) Bacterial diversity of East Calcutta wet land area: possible identification of potential for different biotechnological uses. Microb Ecol 54:452–459

    Article  PubMed  Google Scholar 

  • Gibson KJ, Gilleron M, Constant P, Puzo G, Nigoni J, Besra GS (2003) Structural and functional features of Rhodococcus ruber liparabinomannan. Microbiology 149:1437–1445

    Article  CAS  PubMed  Google Scholar 

  • Giguere S, Hondalus MK, Yager JA, Darrah P, Mosser DM, Prescott JF (1999) Role of the 85 kilobase plasmid and plasmid-encoded-virulence-associated protein A in intracellular survival and virulence of Rhodococcus equi. Infect Immun 67:3548–3557

    CAS  PubMed Central  PubMed  Google Scholar 

  • Giguere S, Cohen ND, Chaffin MK, Hines SA, Hondalus MK, Prescott JF, Slovis NM (2011) Rhodococcus equi: clinical manifestations, virulence and immunity. J Vet Intern Med 25:1221–1230

    Article  CAS  PubMed  Google Scholar 

  • Gilbert SC, Morton J, Buchanan S, Oldfield C, McRoberts A (1998) Isolation of a unique benzothiophene-desulphurizing bacterium. Gordonia sp. strain 213E (NCIMB 40816) and characterization of the desulphurization pathway. Microbiology 144:2545–2553

    Article  CAS  PubMed  Google Scholar 

  • Gil-Sande E, Brun-Otero M, Campo-Cerecedo F, Esteban E, Aguilar L, Garcia-de-Lomas J (2006) Etiological misidentification by routine biochemical tests of bacteria caused by Gordonia terrae infection in the course of an episode of acute cholecystitis. J Clin Microbiol 44:2645–2647

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Goethals K, Vereecke D, Jaziri M, Van Montagu M, Holsters M (2001) Leafy gall formation by Rhodococcus fascians. Annu Rev Plant Physiol Plant Mol Biol 79:27–52

    Google Scholar 

  • Golinska P, Wang D, Goodfellow M (2013) Nocardia aciditolerans sp. nov., isolated from a spruce forest soil. Antonie van Leeuwenhoek 103:1079–1088

    Article  PubMed Central  PubMed  Google Scholar 

  • Gonzalez-Ochoa A (1973) Virulence of nocardiae. Can J Microbiol 19:901–904

    Article  CAS  PubMed  Google Scholar 

  • Goodfellow M (1971) Numerical taxonomy of some nocardioform bacteria. J Gen Microbiol 69:33–80

    Article  CAS  PubMed  Google Scholar 

  • Goodfellow M (1992) The family Nocardiaceae. In: Balows A, Trüper HG, Dworkin M, Harder W, Schleifer KH (eds) The prokaryotes, 2nd edn. Springer, New York, pp 1188–1213

    Google Scholar 

  • Goodfellow M (1996) Actinomycetes: Actinomyces, Actinomadura, Nocardia, Streptomyces and related taxa. In: Collee JD, Duguid JP, Fraser AG, Marmion BP, Simmons A (eds) Mackie & McCartney practical medical microbiology. Churchill Livingston, Edinburgh, pp 343–359

    Google Scholar 

  • Goodfellow M (1998) Nocardia and related genera. In: Balows A, Duerden BI (eds) Topley and Wilson’s microbiology and microbial infections, vol 2, 9th edn. Arnold, London, pp 463–489

    Google Scholar 

  • Goodfellow M (2010) Selective isolation of actinobacteria. In: Baltz RH, Davies J, Demain AL (eds) Section 1: isolation and screening of secondary metabolites and enzymes, Bull AT, Davies JE (section eds). ASM Press, Washington, pp 3–27

    Google Scholar 

  • Goodfellow M, Alderson G (1977) The actinomycete genus Rhodococcus: a home for the “rhodochrous” complex. J Gen Microbiol 100:99–122

    Article  CAS  PubMed  Google Scholar 

  • Goodfellow M, Aubert E (1980) Characterization of rhodococci from the intestinal tract of Rapa Niu cockroaches. In: Nogrady GL (ed) Microbiology of Easter Island. Sovereign, Oakville, pp 231–240

    Google Scholar 

  • Goodfellow M, Fiedler H-P (2010) A guide to successful bioprospecting: informed by actinobacterial systematics. Antonie van Leeuwenhoek 98:119–142

    Article  PubMed  Google Scholar 

  • Goodfellow M, Jones AL (2012) Order V. Corynebacteriales ord. nov. In: Goodfellow M, Kämpfer P, Busse H-J, Trujillo ME, Suzuki K-I, Ludwig W, Whitman WB (eds) Bergey’s manual of systematic bacteriology, vol 5, 2nd edn, The Actinobacteria, Part A. Springer, New York, pp 235–243

    Chapter  Google Scholar 

  • Goodfellow M, Maldonado LA (2012) Genus 1. Nocardia Trevisan 1889AL. In: Goodfellow M, Kämpfer P, Busse H-J, Trujillo ME, Suzuki K-I, Ludwig W, Whitman WB (eds) Bergey’s manual of systematic bacteriology, vol 5, 2nd edn, The Actinobacteria, Part A. Springer, New York, pp 376–419

    Chapter  Google Scholar 

  • Goodfellow M, Orchard VA (1974) Antibiotic sensitivity of some nocardioform bacteria and its value as a criterion for taxonomy. J Gen Microbiol 83:375–387

    Article  CAS  PubMed  Google Scholar 

  • Goodfellow M, Williams ST (1983) Ecology of actinomycetes. Annu Rev Microbiol 37:189–216

    Article  CAS  PubMed  Google Scholar 

  • Goodfellow M, Zakrzewska-Czerwinska J, Thomas EG, Mordarski M, Ward AC, Jones AL (1991) Polyphasic taxconomic study of the genera Gordonia and Tsukamurella including the description of Tsukamurella wratislaviensis. Zentralbl Bakteriol 275:162–178

    Article  CAS  PubMed  Google Scholar 

  • Goodfellow M, Davenport R, Stainsby FM, Curtis TP (1996) Actinomycete diversity associated with foaming in activated sludge plants. J Ind Microbiol 17:268–280

    Article  CAS  Google Scholar 

  • Goodfellow M, Alderson G, Chun J (1998a) Rhodococcal systematics: problems and developments. Antonie van Leeuwenhoek 14:3–20

    Article  Google Scholar 

  • Goodfellow M, Stainsby FM, Davenport R, Chun J, Curtis T (1998b) Activated sludge foaming: the true extent of actinomycete diversity. Water Sci Technol 37:511–519

    Article  CAS  Google Scholar 

  • Goodfellow M, Isik K, Yates E (1999) Actinomycete systematics: an unfinished synthesis. Nova Acta Leopold NF80 312:47–82

    Google Scholar 

  • Goodfellow M, Jones AL, Maldonado LA, Salanitro J (2004) Rhodococcus aetherivorans sp. nov., a new species that contains methyl t-butyl ether-degrading actinomycetes. Syst Appl Microbiol 27:61–65

    Article  CAS  PubMed  Google Scholar 

  • Goodfellow M, Kumar Y, Maldonado LA (2012) Genus II. Gordonia (Tsukamura, 1971) Stackebrandt, Smida and Collins 1988, 345VP. In: Goodfellow M, Kämpfer P, Busse H-J, Trujillo ME, Suzuki K-I, Ludwig W, Whitman WB (eds) Bergey’s manual of systematic bacteriology, vol 5, The Actinobacteria, Part A. Springer, New York, pp 419–434

    Chapter  Google Scholar 

  • Gordon RE, Mihm JE (1962) Identification of Nocardia caviae (Erikson) comb. nov. Ann N Y Acad Sci 98:628–636

    Article  Google Scholar 

  • Gordon RE, Smith MM (1953) Rapidly growing acid fast bacteria. I. Species descriptions of Mycobacterium phlei Lehmann and Neumann and Mycobacterium smegmatis (Trevisan) Lehmann and Newmann. J Bacteriol 66:41–48

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gorontzy T, Drzyzga O, Kahl MW, Bruns-Nagal D, Breitung J, van Loew E, Blotevogel KH (1994) Microbial degradation of explosives and related compounds. Crit Rev Microbiol 20:265–284

    Article  CAS  PubMed  Google Scholar 

  • Gürtler V, Seviour RJ (2010) Systematics of members of the genus Rhodococcus (Zopf 1891) emend. Goodfellow et. al. 1998. In: Alvarez HM (ed) Biology of Rhodococcus. Springer, Berlin, pp 1–28

    Google Scholar 

  • Gürtler V, Mayall BC, Seviour R (2004) Can whole genome analysis refine the taxonomy of the genus Rhodococcus. FEMS Microbiol Rev 28:377–403

    Article  PubMed  CAS  Google Scholar 

  • Hamdad F, Vidal B, Douadi Y, Laurans G, Canarelli B, Choukroun G, Rodriguez-Nava V, Boiron P, Beaman B, Eb F (2007) Nocardia nova as the causative agent of spondylodiscitis and psoas abscess. J Clin Microbiol 45:262–265

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hamid ME, Maldonado L, Sharaf Eldin GS, Mohamed MF, Saeed NS, Goodfellow M (2001) Nocardia africana sp. nov., a new pathogen isolated from patients with pulmonary infections. J Clin Microbiol 39:625–630

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hashimoto Y, Nishiyama M, Ikehata O, Horinouchi S, Beppu T (1991) Cloning and characterization of an amidase gene from Rhodococcus species N-744 and its expression in Escherichia coli. Biochem Biophys Acta 1088:225–233

    CAS  PubMed  Google Scholar 

  • Hashimoto M, Johkura K, Ichikawa T, Shinonaga M (2008) Brain abscess caused by Nocardia nova. J Clin Neurosci 15:87–89

    Article  PubMed  Google Scholar 

  • Hattori Y, Kano R, Kunitani Y, Yanai T, Hasegawa A (2003) Nocardia africana isolated from a feline mycetoma. J Clin Microbiol 2:908–910

    Article  Google Scholar 

  • Heald SC, Brandão PFB, Hardicre R, Bull AT (2001) Physiology, biochemistry and taxonomy of deep-sea nitrile metabolizing Rhodococcus strains. Antonie van Leeuwenhoek 80:169–183

    Article  CAS  PubMed  Google Scholar 

  • Helmke E, Weyland H (1984) Rhodococcus marinonascens sp. nov. an actinomycete isolated from the sea. Int J Syst Bacteriol 34:127–138

    Article  Google Scholar 

  • Higgins ML, Lechevalier MP (1969) Poorly lytic bacteriophage from Dactylosporangium thailandensis (Actinomycetales). J Virol 3:210–216

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hirasawa K, Ishii Y, Kobayashi M, Koizami K, Maruhashi K (2001) Improvement of desulfurization activity in Rhodococcus erythropolis KA2-5-1 by genetic engineering. Biosci Biotechnol Biochem 65:239–246

    Article  CAS  PubMed  Google Scholar 

  • Hitti W, Wolff M (2005) Two cases of multi-drug resistant Nocardia farcinica infection in immunosuppressed patients and implications for empiric therapy. Eur J Clin Microbiol Infect Dis 24:142–144

    Article  CAS  PubMed  Google Scholar 

  • Holland HL, Brown EM, Kerridge A, Pienkos P, Arensidor J (2003) Biotransformation of sulphides in Rhodococcus erythropolis. J Mol Catal B: Enzym 22:219–223

    Article  CAS  Google Scholar 

  • Hondalus MK, Mosser DM (1994) Survival and replication of Rhodococcus equi in macrophages. Infect Immun 62:4167–4175

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hookey JV (1984) Selective isolation and classification and ecology of Nocardiae from soil, water and biodeteriorating rubber. PhD thesis, University of Newcastle, Newcastle upon Tyne

    Google Scholar 

  • Hooper-McGrevy KE, Giguere S, Wilkie BN, Prescott JF (2001) Evaluation of equine immunoglobin specific for Rhodococcus equi virulence-associated proteins A and C for use in protecting foals against Rhodococcus equi induced pneumonia. Am J Vet Res 62:1307–1313

    Article  CAS  PubMed  Google Scholar 

  • Hopkins DW, O’Donnell AG, MacNaughton SJ (1991a) Evaluation of a dispersion and elutriation technique for sampling microorganisms from soil. Soil Biol Biochem 23:227–232

    Article  Google Scholar 

  • Hopkins DW, MacNaughton SJ, O’Donnell AG (1991b) A dispersion and differential centrifugation technique for representatively sampling microorganisms from soil. Soil Biol Biochem 23:217–225

    Article  Google Scholar 

  • Hoshino Y, Mukai A, Yazawa K, Uno J, Ishikawa J, Ando A, Fukai T, Mikami Y (2004a) Transvalencin A, a thiazolidine zinc complex antibiotic produced by a clinical isolate of Nocardia transvalensis. I. Fermentation, isolation and biological activities. J Antibiot 57:797–802

    Article  CAS  PubMed  Google Scholar 

  • Hoshino Y, Mukai A, Yazawa K, Uno J, Ando A, Mikami Y, Fakai T, Ishihawa J, Yamaguchi K (2004b) Transvalencin A, a thiazolidine zinc complex antibiotic produced by a clinical isolate of Nocardia transvalensis. II. Structural elucidation. J Antibiot 57:803–807

    Article  CAS  PubMed  Google Scholar 

  • Hoshino Y, Watanabe K, Iida S, Suzuki S, Kudo T, Kogure T, Yazawa K, Ishikawa J, Kroppenstedt RM, Mikami Y (2007) Nocardia terpenica sp. nov., isolated from Japanese patients with nocardiosis. Int J Syst Evol Microbiol 57:1456–1460

    Article  PubMed  Google Scholar 

  • Hosny M, Johnson HA, Ueltschy AK, Rosazza JPN (2002) Oxidation, reduction and methylation of carnosic acid by Nocardia. J Nat Prod 65:1266–1269

    Article  CAS  PubMed  Google Scholar 

  • Houang ET, Lovett IS, Thompson FD, Harrison AR, Jockes AM, Goodfellow M (1980) Nocardia asteroides infection: a transmissible disease. J Hosp Infect 1:31–40

    Article  CAS  PubMed  Google Scholar 

  • Howarth OW, Grund E, Kroppenstedt RM, Collins MD (1986) Structural determination of a new naturally occurring cyclic vitamin K. Biochem Biophys Res Commun 140:916–923

    Article  CAS  PubMed  Google Scholar 

  • Hughes J, Armitage YC, Symes KC (1998) Application of whole-cell rhodococcal biocatalysts in acrylic polymer manufacture. Antonie van Leeuwenhoek 74:107–118

    Article  CAS  PubMed  Google Scholar 

  • Hutchinson M, Ridgway JW, Cross T (1975) Biodeterioration of rubber in contact with water, sewage and soil. In: Lovelock DW, Gilbert RJ (eds) Microbial aspects of the deterioration of materials. Academic, London, pp 187–202

    Google Scholar 

  • Igarashi M, Hayashi C, Homma Y, Hatori S, Kinoshita N, Hamada M, Takeuchi T (2000) Tubelactomicin A, a novel 16-membered lactone antibiotic from Nocardia sp. 1. Taxonomy, production, isolation and biological properties. J Antibiot 53:1096–1101

    Article  CAS  PubMed  Google Scholar 

  • Iida S, Tanguichi H, Kageyama A, Yazawa K, Chibana H, Murata S, Nomura F, Kroppenstedt RM, Mikami Y (2005) Gordonia otitidis sp. nov., isolated from a patient with external otitis. Int J Syst Evol Microbiol 55:1871–1876

    Article  CAS  PubMed  Google Scholar 

  • Iida S, Kageyama A, Yazawa K, Uchiyama N, Toyohara T, Chohnabayashi N, Suzuki S, Nomura F, Kroppenstedt RM, Mikami Y (2006) Nocardia exalbida sp. nov., isolated from Japanese patients with nocardiosis. Int J Syst Evol Microbiol 56:1193–1196

    Article  CAS  PubMed  Google Scholar 

  • Ikehata O, Nishiyana M, Horinouchi S, Beppu T (1989) Primary structure of nitrile hydratase deduced from the nucleotide sequence of a Rhodococcus species and its expression in Escherichia coli. Eur J Biochem 181:563–570

    Article  CAS  PubMed  Google Scholar 

  • Indest KJ, Jung CM, Chen HP, Hancock D, Florizone C, Eltis LD, Crocker FH (2010) Functional characterization of pGKT2, a 182-hilobase plasmid containing the xplAB genes, which are involved in the degradation of hexahydro-1,3,5-trinitro-1,3,5-triazine by Gordonia sp. strain KTR9. Appl Environ Microbiol 76:6329–6337

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ishikawa J, Yamashita A, Mikami Y, Yoshino Y, Kurita H, Hotta K, Shiba T, Hattori M (2004) The complete genome sequence of Nocardia farcinica IFM 10152. Proc Natl Acad Sci USA 101:14925–14930

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Isik K, Goodfellow M (2002) Differentiation of Nocardia species by PCR-randomly amplified polymorphic DNA fingerprinting. Syst Appl Microbiol 25:60–67

    Article  CAS  PubMed  Google Scholar 

  • Isik K, Chun J, Hah YC, Goodfellow M (1999) Nocardia salmonicida nom. rev., a fish pathogen. Int J Syst Bacteriol 49:833–837

    Article  PubMed  Google Scholar 

  • Ivanova N, Sikorski J, Jando M, Lapidus A, Nolan M, Lucas S, Glavina Del Rio T, Tice H, Copeland A, Cheng J-F, Chen F, Bruce D, Goodwin L, Pitluck S, Mavromatis K, Ovchinnikova G, Pati A, Chen A, Palaniappan K, Land M, Hauser L, Chang Y-J, Jeffries CD, Chain P, Saunders E, Han C, Detter JC, Brettin T, Rohde M, Gőker M, Bristow J, Eisen JA, Markowitz V, Hugenholtz P, Klenk H-P, Kyrpides NC (2010) Complete genome sequence of Gordonia bronchialis type strain (3410T). Stand Genomic Sci 2:19–28

    Article  PubMed Central  PubMed  Google Scholar 

  • Iwahori K, Miyata N, Takata N, Morisada S, Mochiyuki T (2001) Prodction of anti-Gordonia amarae mycolic acid polyclonal antibody for detection of mycolic acid-containing bacteria in activated sludge foam. J Biosci Bioeng 92:417–422

    Article  CAS  PubMed  Google Scholar 

  • Jannat-Khah D, Kroppenstedt RM, Klenk H-P, Sprőer C, Schumann P, Laskar BA, Steigerwalt AG, Henriksen HP, Brown JM (2010) Nocardia mikami sp. nov., isolated from human pulmonary infections in the USA. Int J Syst Evol Microbiol 60:2272–2276

    Article  CAS  PubMed  Google Scholar 

  • Jannat-Khan DP, Halsey ES, Lasker BA, Steigerwalt AG, Hinrikson HP, Brown JM (2009) Gordonia araii infection associated with an orthopedic device and review of the literature on medical device-associated Gordonia infections. J Clin Microbiol 47:499–502

    Article  Google Scholar 

  • Javaly K, Horowitz HW, Wormser GP (1992) Nocardiosis in patients with human immunodeficiency virus infection. Medicine (Baltimore) 71:128–138

    Article  CAS  Google Scholar 

  • Jiang CL, Xu L (1985) Actinomycetes of lakes on the Yunnan Plateau. Actinomycetes 14:211–222

    Google Scholar 

  • Jiang C, Xu L (1996) Diversity of aquatic actinomycetes in lakes of the Middle plateau, Yunnan, China. Appl Environ Microbiol 62:249–253

    CAS  PubMed Central  PubMed  Google Scholar 

  • Johnson JA, Onderdonk AB, Cosimi LA, Yawerz S, Lasker BA, Bolcen SJ, Brown JM, Marty FM (2011) Gordonia bronchialis bacteremia and pleural infection case report and review of literature. J Clin Microbiol 49:1662–1666

    Article  PubMed Central  PubMed  Google Scholar 

  • Jones KL (1949) Fresh isolates of actinomycetes in which the presence of sporogenous aerial mycelia is a fluctuating characteristic. J Bacteriol 57:141–145

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jones AL, Goodfellow M (2012) Genus IV. Rhodococcus (Zopf 1891) emend. Goodfellow, Alderson and Chun 1998. In: Goodfellow M, Kämpfer P, Busse H-J, Trujillo ME, Suzuki K-I, Ludwig W, Whitman WB (eds) Bergey’s manual of systematic bacteriology, vol 5, 2nd edn, The Actinobacteria, Part A. Springer, New York, pp 437–464

    Google Scholar 

  • Jones AL, Brown JM, Mishra V, Perry JD, Steigerwalt AG, Goodfellow M (2004) Rhodococus gordoniae sp. nov., an actinomycete isolated from clinical material and phenol-contaminated soil. Int J Syst Evol Microbiol 54:407–411

    Article  CAS  PubMed  Google Scholar 

  • Jones AL, Payne GD, Goodfellow M (2010) Williamsia faeni sp. nov., an actinomycete isolated from a hay meadow. Int J Syst Evol Microbiol 60:2548–2551

    Article  CAS  PubMed  Google Scholar 

  • Jones AL, Sutcliffe IC, Goodfellow M (2013a) Proposal to replace the illegitimate name Prescottia with the genus name Prescottella gen. nov. and to replace the illegitimate combination Prescottia equi Jones et al. 2013 with Prescotella equi comb. nov. Antoine van Leeuwenhoek 103:1405–1407

    Article  Google Scholar 

  • Jones AL, Sutcliffe IC, Goodfellow M (2013b) Prescottia equi gen. nov., comb. nov.: a new home for an old pathogen. Antonie van Leeuwenhoek 103:635–671

    Article  CAS  Google Scholar 

  • Jones AL, Davies J, Fakuda M, Brown R, Lim J, Goodfellow M (2013c) Rhodococcus jostii: a home for Rhodococcus strain RHA1. Antonie van Leeuwenhoek (in press)

    Google Scholar 

  • Jonsson S, Wallace RJ Jr, Hull SI, Musher DM (1986) Recurrent Nocardia pneumonia in an adult with chronic granulomatous disease. Am Rev Respir Dis 133:932–934

    CAS  PubMed  Google Scholar 

  • Jurado V, Boiron P, Kroppenstedt RM, Laurent F, Couble A, Laiz L, Klenk HP, Gonzalez JM, Saiz-Jimenez C, Mouniée D, Bergeron E, Rodriguez-Nava V (2008) Nocardia altamirensis sp. nov., from Altamira cave, Cantabria, Spain. Int J Syst Evol Microbiol 58:2210–2214

    Article  CAS  PubMed  Google Scholar 

  • Kabongo PN, Njiro SM, van Strijp MF, Putterill JF (2005) Caprine vertebral osteomyelitis caused by Rhodococcus equi. J S Afr Vet Assoc 76:163–164

    Article  CAS  PubMed  Google Scholar 

  • Kaewkla O, Franco CMM (2010) Nocardia callitridis sp. nov., an endophyte actinobacterium isolated from a surface-sterilized root of an Australian native pine tree. Int J Syst Evol Microbiol 60:1532–1536

    Article  CAS  PubMed  Google Scholar 

  • Kageyama A, Yazawa K, Ishikawa J, Hotta K, Nishimura K, Mikami Y (2001) Nocardial infections in Japan from 1992 to 2001, including the first report of an infection by Nocardia transvalensis. Eur J Epidemiol 19:383–389

    Article  Google Scholar 

  • Kageyama A, Yazawa K, Mukai A, Kohara T, Nishimura K, Kroppenstedt RM, Mikami Y (2004a) Nocardia araoensis sp. nov. and Nocardia pneumoniae sp. nov., isolated from patients in Japan. Int J Syst Evol Microbiol 54:2025–2029

    Article  CAS  PubMed  Google Scholar 

  • Kageyama A, Yazawa K, Mukai A, Kinoshita M, Takata N, Nishimura K, Kroppenstedt RM, Mikami Y (2004b) Nocardia shimofusensis sp. nov., isolated from soil and Nocardia higoensis sp. nov. isolated from a patient with lung nocardiosis in Japan. Int J Syst Evol Microbiol 54:1927–1931

    Article  CAS  PubMed  Google Scholar 

  • Kageyama A, Yazawa K, Nishimura K, Mikami Y (2004c) Nocardia inohanensis sp. nov., Nocardia yamanashiensis sp. nov. and Nocardia niigatensis sp. nov., isolated from clinical specimens. Int J Syst Evol Microbiol 54:563–569

    Article  CAS  PubMed  Google Scholar 

  • Kageyama A et al (2004d) Reference not provided

    Google Scholar 

  • Kageyama A, Poonwan N, Yazawa K, Mikami Y, Nishimura K (2004e) Nocardia asiatica sp. nov., isolated from patients with nocardiosis in Japan and clinical specimens from Thailand. Int J Syst Evol Microbiol 54:125–130

    Article  CAS  PubMed  Google Scholar 

  • Kageyama A, Poonwan N, Yazawa K, Suzuki S, Kroppenstedt RM, Mikami Y (2004f) Nocardia vermiculata sp. nov. and Nocardia thailandica sp. nov. isolated from clinical specimens. Actinomycetologica 18:27–33

    Article  Google Scholar 

  • Kageyama A, Torikoe K, Iwamoto M, Masuyama JI, Shibuya Y, Okazaki H, Yazawa K, Minota S, Kroppenstedt RM, Mikami Y (2004g) Nocardia arthritidis sp. nov., a new pathogen isolated from a patient with rheumatoid arthritis in Japan. J Clin Microbiol 42:2366–2371

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kageyama A, Yazawa K, Nishimura K, Mikami Y (2004h) Nocardia testaceus sp. nov. and Nocardia senatus sp. nov. isolated from patients in Japan. Microbiol Immunol 48:271–276

    Article  CAS  PubMed  Google Scholar 

  • Kageyama A, Yazawa K, Nishimura K, Mikami V (2005a) Nocardia anaemiae sp. nov. isolated from an immunocompromised patient and the first isolation report of Nocardia vinacea from humans. Jpn J Med Mycol 46:21–26

    Article  Google Scholar 

  • Kageyama A, Yazawa K, Taniguchi H, Chibana H, Nishimura K, Kroppenstedt RM, Mikami Y (2005b) Nocardia concava sp. nov., isolated from Japanese patients. Int J Syst Evol Microbiol 55:2081–2083

    Article  CAS  PubMed  Google Scholar 

  • Kageyama A, Iida S, Yazawa K, Kudo T, Suzuki S-I, Koga T, Saito H, Inagawa H, Wada A, Kroppenstedt RM, Mikami Y (2006) Gordonia araii sp. nov. and Gordonia effusa sp. nov., isolated from patients in Japan. Int J Syst Evol Microbiol 56:1817–1821

    Article  CAS  PubMed  Google Scholar 

  • Kalkus J, Reh M, Schlegel HG (1990) Hydrogen autotrophy of Nocardia opacus strains is encoded by linear megaplasmids. J Gen Microbiol 136:1445–1451

    Article  Google Scholar 

  • Kalkus J, Dorrie C, Fischer D, Reh M, Schlegel HG (1993) The giant linear plasmid pHG207 from Rhodococcus sp. encoding hydrogen autotrophy: characterization of the plasmid and its termini. J Gen Microbiol 139:2055–2065

    Article  CAS  PubMed  Google Scholar 

  • Kalscheuer R, Arenskőtter M, Steinbűchel A (1999) Establishment of a gene transfer system for Rhodococcus opacus PD630 based on electroporation and recombinant biosynthesis of (poly-3-hydroxyalkanoic acids). Appl Microbiol Biotechnol 52:508–515

    Article  CAS  PubMed  Google Scholar 

  • Kamboj J, Kabra A, Kak V (2008) Rhodococcus equi brain abscess in a patient without HIV. J Clin Pathol 58:423–425

    Article  Google Scholar 

  • Kämpfer P, Anderson MA, Rainey FA, Kroppenstedt RM, Salkinoja-Salonen M (1999) Williamsia muralis gen. nov. sp. nov. isolated from the indoor environment of a children’s day care centre. Int J Syst Bacteriol 49:681–687

    Article  PubMed  Google Scholar 

  • Kämpfer P, Buczolits S, Jäckel U, Grün-Wollny I, Busse HJ (2004) Nocardia tenerifensis sp. nov. Int J Syst Evol Microbiol 54:381–383

    Article  PubMed  CAS  Google Scholar 

  • Kämpfer P, Huber B, Buczolits S, Thummes K, Grün-Wollny I, Busse HJ (2007) Nocardia acidivorans sp. nov., isolated from the soil of the island of Stromboli. Int J Syst Evol Microbiol 57:1183–1187

    Article  PubMed  CAS  Google Scholar 

  • Kämpfer P, Young C-C, Chu JN, Frischmann A, Busse H-J, Arun AB, Shen FT, Rakha PD (2011a) Gordonia humi sp. nov., isolated from soil. Int J Syst Evol Microbiol 61:65–70

    Article  PubMed  CAS  Google Scholar 

  • Kämpfer P, Wellner S, Lohse K, Loders N, Martin K (2011b) Williamsia phyllosphaerae sp. nov., isolated from the surface of Trifolum repens leaves. Int J Syst Evol Microbiol 61:2702–2705

    Article  PubMed  CAS  Google Scholar 

  • Kämpfer P, Lodders N, Grűn-Wollny I, Martin K, Busse HJ (2012) Nocardia grenadensis sp. nov., isolated from sand oft he Caribbean Sea. Int J Syst Evol Microbiol 62:693–697

    Article  PubMed  CAS  Google Scholar 

  • Kämpfer P, Martin K, Dott W (2013a) Gordonia phosphorivorans sp. nov., isolated from wastwater bioreactor with phosphorus removal. Int J Syst Evol Microbiol 63:230–235

    Article  PubMed  Google Scholar 

  • Kämpfer P, Wellner S, Lohse K, Lodders N, Martin K (2013b) Rhodococcus cerastii sp. nov., and Rhodococcus trifolii sp. nov., two novel species from lead surfaces. Int J Syst Evol Microbiol 63:1024–1029

    Article  PubMed  CAS  Google Scholar 

  • Kano R, Hattori Y, Murakami N, Mine N, Kashima M, Kroppenstedt RM, Mizoguchi M, Hasegawa A (2002) The first isolation of Nocardia veterana from a human mycetoma. Microbiol Immunol 46:409–412

    Article  CAS  PubMed  Google Scholar 

  • Kasweck KL, Little ML (1982) Genetic recombination in Nocardia asteroides. J Bacteriol 149:403–406

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kasweck KL, Little ML, Bradley SG (1981) Characteristics of plasmids in Nocardia asteroides. Actinomycetes Relat Organ 16:57–63

    Google Scholar 

  • Kasweck KL, Little ML, Bradley SG (1982) Plasmids in mating strains of Nocardia asteroides. Dev Ind Microbiol 23:279–286

    CAS  Google Scholar 

  • Kedlaya I, Ing MB, Wong SS (2001) Rhodococcus infections in immunocompetent hosts: case report and review. Clin Infect Dis 32:E39–E46

    Article  CAS  PubMed  Google Scholar 

  • Kempf VA, Schmalzing M, Yassin AF, Schaal KP, Baumeister D, Arenskőtter M, Steinbűchel A, Autenrieth IB (2004) Gordonia polyisoprenivorans septicaemia in a bone marrow transplant patient. Eur J Clin Microbiol Infect Dis 23:226–228

    Article  CAS  PubMed  Google Scholar 

  • Khan ZU, Chandy LNR, Chugh TD, Al-Sayer H, Provost F, Boiron P (1997) Nocardia asteroides in the soil of Kuwait. Mycopathologia 137:159–163

    Article  CAS  PubMed  Google Scholar 

  • Kilbane JJ (2006) Microbial biocatalyst develoopments to upgrade fossil fuels. Curr Opin Biotechnol 17:305–314

    Article  CAS  PubMed  Google Scholar 

  • Kilbane JJ, Bielaga BA (1990) Toward sulphur-free fuels. CHEMTECH 20:747–751

    CAS  Google Scholar 

  • Kilbane JJ, Jackowzki K (1992) Biodesulphurisation of watersoluble coal-derived material by Rhodococcus rhodochrous IGTS8. Biotechnol Bioeng 40:1107–1114

    Article  CAS  PubMed  Google Scholar 

  • Kim JS, Powalla M, Lang S, Wagner F, Lunsdorf H, Wray V (1990) Microbial glycolipid production under nitrogen limitation and resting cell conditions. J Biotechnol 13:257–266

    Article  CAS  PubMed  Google Scholar 

  • Kim J, Minamoto GY, Hoy CD, Grieco MH (1991) Presumptive cerebral Nocardia asteroides infection in AIDS: treatment with ceftriaxone and minocycline. Am J Med 90:656–657

    CAS  PubMed  Google Scholar 

  • Kim SB, Brown R, Oldfield C, Gilbert SC, Goodfellow M (1999) Gordonia desulfuricoms sp. nov. a benzothiophene-desulphurizing actinomycete. Int J Syst Bacteriol 49:1845–1851

    Article  CAS  PubMed  Google Scholar 

  • Kim SB, Brown R, Oldfield C, Gilbert SC, Iiarionov S, Goodfellow M (2000) Gordonia amicalis sp. nov., a novel dibenzothiophene-desulphurizing actinomycete. Int J Syst Evol Microbiol 50:2031–2036

    Article  CAS  PubMed  Google Scholar 

  • Kim D, Kim YS, Kim SK, Kim SW, Zylstra GL, Kim YM, Kim E (2002) Monocyclic aromatic hydrocarbon degradation by Rhodococcus sp. strain DK7. Appl Environ Microbiol 68:3270–3278

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kim KK, Lee CS, Kroppenstedt RM, Stackebrandt E, Lee ST (2003) Gordonia sihwensis sp. nov., a novel nitrate reducing bacterium isolated from a wastewater treatment bioreactor. Int J Syst Evol Microbiol 53:1427–1433

    Article  CAS  PubMed  Google Scholar 

  • Kim Y, Engesser K, Kim S (2007) Physiological, numerical and molecular characterization of alkyl ether-utilizing rhodococci. Environ Microbiol 9:1497–1510

    Article  CAS  PubMed  Google Scholar 

  • Kim KK, Lee KC, Klenk H-P, H-M O, Lee JS (2009) Gordonia kroppenstedtii sp. nov., a phenol-degrading actinomycete isolated from a polluted stream. Int J Syst Evol Microbiol 59:1992–1996

    Article  CAS  PubMed  Google Scholar 

  • Kinoshita N, Homina Y, Igarashi M, Ikeno S, Hori M, Hamada M (2001) Nocardia vinacea sp. nov. Actinomycetologica 15:1–5

    Article  CAS  Google Scholar 

  • Klatte S, Jahnke KD, Kroppenstedt RM, Rainey F, Stackebrandt E (1994a) Rhodococcus luteus is a later subjective synonym of Rhodococcus fascians. Int J Syst Bacteriol 44:630–637

    Google Scholar 

  • Klatte S, Rainey FA, Kroppenstedt RM (1994b) Transfer of Rhodococcus aichiensis Tsukamura 1982 and Nocardia amarae Lecevalier and Lechevalier 1972 to the genus Gordonia as Gordonia aichiensis comb. nov. and Gordonia amarae comb. nov. Int J Syst Evol Microbiol 44:769–773

    CAS  Google Scholar 

  • Kobayashi M, Nashiyama M, Nagasawa T, Horinouchi S, Beppu T, Yamada H (1991) Cloning, nucleotide sequence and expression in Escherichia coli of two cobalt containing nitrile hydratase genes from Rhodococcus rhodochrous JL. Biochem Biophys Acta 1129:23–33

    CAS  PubMed  Google Scholar 

  • Kobayashi M, Nagasawa T, Yamada H (1992) Enzymatic synthesis of acrylamide: a success story not yet over. Trends Biotechnol 10:402–408

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi J, Tsuda M, Nemoto A, Tanaka Y, Yazawa K, Mikami Y (1997) Brasilidine A, a new cytotoxic isonitrile indole alkaloid from the actinomycetes Nocardia brasiliensis. J Nat Prod 60:719–720

    Article  CAS  PubMed  Google Scholar 

  • Koerner R, Goodfellow M, Jones AL (2009) The genus Dietzia: a new home for some known and emerging opportunistic pathogens. FEMS Immunol Med Microbiol 55:296–305

    Article  CAS  PubMed  Google Scholar 

  • Kohl O, Tillmanns HH (2002) Cerebral infection with Rhodococcus equi in a heart transplant recipient. J Heart Lung Transplant 21:1147–1149

    Article  PubMed  Google Scholar 

  • Komaki H, Nemoto A, Tanaka Y, Yazawa K, Tojo T, Takagi H, Kadowaki K, Mikami Y, Shigémori H, Kobayashi J (1998) Brasilicardin A, a new terpenoid antibiotic produced by Nocardia brasiliensis. Actinomycetologica 12:92–96

    Article  CAS  Google Scholar 

  • Komatsu K, Tsuda M, Shiro M, Tanaka M, Mikami Y, Kobayashi J (2004) Brasilicardins B-D, new tricyclic terpenoids from actinomycete Nocardia brasiliensis. Biorg Med Chem 12:5545–5551

    Article  CAS  Google Scholar 

  • Kondo T, Yamamoto D, Yakota A, Suzuki H, Nagasawa H, Sakuda S (2000) Girdman, an acid-polysacchoride with cell aggregation-inducing activity in insect BM-N4 cells, produced by Gordonia sp. Biosci Biotechnol Biochem 64:2388–2394

    Article  CAS  PubMed  Google Scholar 

  • Konig C, Eulberg D, Groning J, Lakner S, Siebert V, Kaschabek SR, Scholmann M (2004) A linear megaplasmid pICP, carrying the genes for chlorocatchol catabolism of Rhodococcus opacus ICP. Microbiology 150:3075–3087

    Article  PubMed  CAS  Google Scholar 

  • Kostichka K, Tao L, Bramucci M, Tomb JF, Nagarajan V, Cheng Q (2008) A small cryptic plasmid from Rhodococcus erythropolis: characterization and suitability for gene expression. Appl Microbiol Biotechnol 62:61–68

    Article  CAS  Google Scholar 

  • Kragelund C, Remesova Z, Nielsen JL, Thomsen TR, Eales K, Seviour R, Wanner J, Nielsen PH (2007) Ecophysiology of mycolic acid-containing Actinobacteria (mycolata) in activated sludge foams. FEMS Microbiol Ecol 61:174–184

    Article  CAS  PubMed  Google Scholar 

  • Kriszt B, Táncsics A, Cserhátl M, Tóth A, Nagy I, Horváth B, Nagy I, Tamura T, Kukolya J, Szoboszlay S (2012) De novo genome project for the aromatic degrader Rhodococcus pyridinivorans strain AK37. J Bacteriol 194:1247–1248

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kroppenstedt RM (1985) Fatty acid and menaquinone analysis of actinomycetes and related organisms. In: Goodfellow M, Minnikin DE (eds) Chemical methods in bacterial systematics. Academic, London, pp 173–199

    Google Scholar 

  • Kudo T, Hatai K, Seino A (1988) Nocardia seriolae sp. nov., causing nocardiosis in cultivated fish. Int J Syst Bacteriol 38:173–178

    Article  Google Scholar 

  • Kulakov LA, Chen S, Allen CC, Larkin MJ (2005) Web-type evolution of Rhodococcus gene clusters associated with utilization of naphthalene. Appl Environ Microbiol 71:1754–1764

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kulakova AN, Stafford TM, Larkin MJ, Kulakov LA (1995) Plasmid pKTL1 controlling 1-chloroalkane degradation by Rhodococcus rhodochrous NCIMB 13064. Plasmid 33:208–217

    Article  CAS  PubMed  Google Scholar 

  • Kummer C, Schumannn P, Stackebrandt E (1999) G. alkanivorans sp. nov., isolated from tar-contaminated soil. Int J Syst Evol Microbiol 49:1513–1522

    CAS  Google Scholar 

  • Kuyukina MS, Ivshina IB (2010) Application of Rhodococcus in bioremediation and contaminated environments. In: Alvarez HM (ed) Biology of Rhodococcus. Springer, Berlin, pp 291–313

    Google Scholar 

  • Labeda DP, Shearer MC (1991) Isolation of actinomycetes for biotechnological applications. In: Labeda DP (ed) Isolation of biotechnological organisms from nature. McGraw-Hill, New York, pp 1–19

    Google Scholar 

  • Ladrón L, Fernandez M, Aguero J, Gonzalez-Zorn B, Vasquez-Boland JA, Navas J (2003) Rapid identification of Rhodococcus equi by a PCR assay targeting the choE gene. J Clin Microbiol 41:3241–3245

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Lal CC, Wang CY, Liu CY, Tan CK, Lin SH, Liao CH, Chou CH, Huang YT, Lin HI, Hsuesh PR (2010) Infections caused by Gordonia species at a medical centre in Taiwan, 1997–1998. Clin Microbiol Infect 16:1448–1453

    Article  Google Scholar 

  • Lalitha P, Srinivasan M, Prajna V (2006) Rhodococcus ruber as a cause of keratitis. Cornea 25:238–239

    Article  PubMed  Google Scholar 

  • Lalitha P, Srinivasan M, Rajaraman R, Ravindran M, Mascarenhas J, Priya JL, Sy A, Oldenburg CE, Ray KJ, Zegans ME, McLeod SD, Lietman TM, Acharya NR (2012) Nocardia keratitis: clinical course and effect of corticosteroids. Am J Ophthamol 154:934–939

    Article  CAS  Google Scholar 

  • Lamm AS, Khare A, Conville P, Lau PCK, Bergeron H, Rosazzo JPN (2009) Nocardia iowensis sp. nov., an organism rich in biocatalytically important enzymes and nitric acid synthase. Int J Syst Evol Microbiol 59:2408–2414

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lanéelle MA, Asselineau J (1970) Caractérisation de glycolipids dans une souche de Nocardia brasiliensis. Fed Eur Biochem Soc Lett 7:64–67

    Article  Google Scholar 

  • Lang S, Philp JC (1998) Surface active lipids in rhodococci. Antoine van Leeuwenhoek 74:59–70

    Article  CAS  Google Scholar 

  • Larkin MJ, De Mot R, Kulakov LA, Nagy I (1998) Applied aspects of Rhodococcus genetics. Antonie van Leeuwenhoek 74:133–153

    Article  CAS  PubMed  Google Scholar 

  • Larkin MJ, Kulakov LA, Allen CC (2005) Biodegradation and Rhodococcus—masters of catabolic versatility. Curr Open Biotechnol 16:282–290

    Article  CAS  Google Scholar 

  • Larkin MJ, Kulakov LA, Allen CC (2006) Biodegradation and members of the genus Rhodococcus—biochemistry, physiology and genetic adaptation. Adv Appl Microbiol 59:1–29

    Article  CAS  PubMed  Google Scholar 

  • Larkin MJ, Kulakov LA, Allen CCR (2010) Genomes and plasmids in Rhodococcus. In: Alvarez HM (ed) Biology of Rhodococcus. Springer, Berlin, pp 73–90

    Google Scholar 

  • Laurent F, Carlotti A, Boiron P, Villard J, Freney J (1996) Ribotyping: a tool for taxonomy and identification of the Nocardia asteroides complex species. J Clin Microbiol 34:1079–1082

    CAS  PubMed Central  PubMed  Google Scholar 

  • Laurent F, Rodriguez-Nava V, Noussair L, Couble A, Nicolas-Chanoine MH, Boiron P (2007) Nocardia ninae sp. nov., isolated from a bronchial aspirate. Int J Syst Evol Microbiol 57:661–665

    Article  CAS  PubMed  Google Scholar 

  • Le Roes M, Goodwin CM, Meyers PR (2008) Gordonia lacunae sp. nov., isolated from an estuary. Appl Microbiol 31:17–23

    Article  CAS  Google Scholar 

  • Le TN, Mikolasch A, Awe S, Sheikhany H, Klenk HP, Schauer F (2010) Oxidation of aliphatic, branched chain and aromatic hydrocarbons by Nocardia cyriacigeorgica from oil-polluted sand samples collected in the Saudi Arabian desert. J Basic Microbiol 50:241–253

    Article  PubMed  CAS  Google Scholar 

  • Lechevalier MP, Lechevalier HA (1970) Chemical composition as a criterion in the classification of aerobic actinomycetes. Int J Syst Bacteriol 20:435–444

    Article  CAS  Google Scholar 

  • Lechevalier MP, Lechevalier HA (1974) Nocardia amarae sp. nov., an actinomycete common in foaming activated sludge. Int J Syst Bacteriol 24:278–288

    Article  Google Scholar 

  • Lechevalier HA, Solotorovsky M, McDurmont CI (1961) A new genus of the Actinomycetales, Micropolyspora gen. nov. J Gen Microbiol 26:11–18

    Article  CAS  PubMed  Google Scholar 

  • Lechevalier MP, De Bìévre C, Lechevalier HA (1977) Chemotaxonomy of aerobic actinomycetes: phospholipid composition. Biochem Syst Ecol 5:249–260

    Article  CAS  Google Scholar 

  • Lechevalier MP, Stern AE, Lechevalier HA (1981) Phospholipids in the taxonomy of actinomycetes. Zentralb Bakteriol Suppl 11:111–116

    CAS  Google Scholar 

  • Lee S, Rosazza JP (2004) Biocatalytic oxidation of 4-vinylphenol by Nocardia. Can J Chem 80:582–588

    Article  Google Scholar 

  • Leet JE, Li W, Ax HA, Matson JA, Huang S, Huang R, Cantone JL, Drexler D, Dalterio RA, Lam KS (2003) Nocathiacins, new thiazol peptide antibiotics from Nocardia sp. Part 2. Isolation, characterization and structural determination. J Antibiot 56:232–242

    Article  CAS  PubMed  Google Scholar 

  • Leigh MB, Prouzová P, Macková P, Nagle DP, Fletcher JS (2006) Polychlorinated biphenyl (PCB)-degrading bacteria associated with the trees in a PCB-contaminated site. Appl Environ Microbiol 72:2331–2342

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lemmer H, Kroppenstedt RM (1984) Chemotaxonomy and physiology of some actinomycetes isolated from scumming activated sludge. Syst Appl Microbiol 5:124–135

    Article  Google Scholar 

  • Lemmer H, Lind G, Schade M, Ziegelmayer B (1998) Autecology of scum producing bacteria. Water Sci Technol 37:527–530

    Article  CAS  Google Scholar 

  • Lesens O, Hansmann Y, Riegel P, Heller R, Beriaissa-Djelloulo M, Martinot M, Petit H, Christmann D (2000) Bacteremia and endocarditis caused by a Gordonia species in a patient with a central venous catheter. Emerg Infect Dis 6:382–385

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lessard PA, O’Brien XM, Currie DH, Sinskey AJ (2004) pB264, a small mobilizable temperature sensitive plasmid from Rhodococcus. BMC Microbiol 14:4–15

    Google Scholar 

  • Letek M, Ocampo-Sosa AA, Sanders M, Fogarty U, Buckley T, Leaden DP, Gonzalez P, Scortti M, Meijer WG, Parkhill J, Bentley S, Vasquez-Boland JA (2008) Evolution of the Rhodococcus equi vap pathogenicity island seen through comparison of host-associated vapA and vapB virulence plasmids. J Bacteriol 190:5797–5805

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Letek M, González P, MacArthur I, Rodriguez H, Freeman TC, Vallero-Rello A, Blanco M, Buckley T, Cherevach I, Fahey R, Hapeshi A, Holstock J, Leadon D, Navas J, Acampo A, Quail MA, Sanders M, Scortt MC, Prescott JF, Fogarty U, Meijer WG, Parkhill J, Bentley SD, Vazquez-Boland JA (2010) The genome of a pathogenic Rhodococcus: cooptive virulence underpinned by key gene acquisitions. PLoS Genet 6(9):e1001145

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Li W, Leet JE, Ax HA, Gustavson DR, Brown DM, Turner L, Brown K, Clark J, Yang H, Fung-Tome J, Lam KS (2003) Nocanthiocins, new thiozolyl peptide antibiotics from Nocardia sp. 1. Taxonomy, fermentation and biological activities. J Antibiot 56:226–231

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Kawamura Y, Fujiwara N, Naka T, Liu H, Huang X, Kobayashi K, Ezaki T (2004) Rothia aeria sp. nov., Rhodococcus baikonurensis sp. nov. and Arthrobacter russicus sp. nov., isolated from air in the Russian space laboratory Mir. Int J Syst Evol Microbiol 54:827–835

    Article  CAS  PubMed  Google Scholar 

  • Li J, Zhao G-Z, Chen H-J, Qin S, Xu L-H, Jiang C-L, Li W-J (2008) Rhodococcus cercidiphylli: sp. nov., a new endophyte actinobacterium isolated from a Cercidiphyllum japonicum leaf. Syst Appl Microbiol 31:108–113

    Article  CAS  PubMed  Google Scholar 

  • Lichtinger T, Reiss G, Benz R (2000) Biochemical identification and biophysical characterization of a channel-forming protein from Rhodococcus erythropolis. J Bacteriol 182:764–770

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Liese A, Seelbach K, Wandrey C (2000) Industrial biotransformations. Wiley-VCH, Weinheim, pp 317–321

    Book  Google Scholar 

  • Linos A, Steinbűchel A, Sprőer C, Kroppenstedt RM (1999) Gordonia polyisoprenivorans sp. nov., a rubber-degrading actinomycete isolated from an automobile tyre. Int J Syst Bacteriol 49:1785–1791

    Article  CAS  PubMed  Google Scholar 

  • Linos A, Berekaa MM, Steinbűchel A, Km KK, Sprőer C, Kroppenstedt RM (2002) Gordonia westfalica sp. nov., a novel rubber degrading actinomycete. Int J Syst Evol Microbiol 52:1133–1139

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Ge F, Chen G, Li W, Ma P, Zhang G, Zheng L (2011a) Gordonia neofelifaecis sp. nov. a cholesterol-side-chain-cleaving actinomycete isolated from the faeces of Neofelis nebulosa. Int J Syst Evol Microbiol 61:165–169

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Chen G, Ge F, Li W, Zeng L, Cao W (2011b) Efficient biotransformation of cholesterol to androsta-1,4-diene-3,17-diene by a newly isolated actinomycete Gordonia neofelifaecis. World J Microbiol Biotechnol 27:759–765

    Article  CAS  Google Scholar 

  • Liu Y, Chen G, Ge F, Li W, Zeng L, Cao W (2011c) Efficient biotransformation of cholesterol to androsta-1,4-diene-3,17-diene by a newly isolated actinomycete Gordonia neofelifaeces. World J Microbiol Biotechnol 37:759–765

    Article  CAS  Google Scholar 

  • Locci R (1976) Developmental micromorphology of actinomycetes. In: Arai T (ed) Actinomycetes: the boundary microorganisms. University Park Press, Baltimore, pp 249–297

    Google Scholar 

  • Locci R (1981) Morphology and development of actinomycetes. Zentralbl Bakteriol 11:119–130

    Google Scholar 

  • Locci R, Sharples GP (1984) Micromorphology. In: Goodfellow M, Mordarski M, Williams ST (eds) The biology of actinomycetes. Academic, London, pp 165–199

    Google Scholar 

  • Locci R, Goodfellow M, Pulverer G (1982) Micromorphological, morphogenic and chemical characters of rhodococci. Proceedings of the fifth international symposium on the biology of the actinomycetes, Oaxtepec, Mexico, pp 118–119

    Google Scholar 

  • Lopez-Martinez R, Mendez-Tovar LJ, Lavalle P, Welsh O, Saul A, Macotela-Ruiz E (1992) Epidemiology of mycetoma in Mexico: study of 2105 cases. Gac Med Mex 128:477–481

    CAS  PubMed  Google Scholar 

  • Lorian V (1968) Differentiation of Mycobacterium tuberculosis and Runyon Group 3 “V” strains on direct card-reading agar. Am Rev Respir Dis 97:1133–1135

    CAS  PubMed  Google Scholar 

  • Louie L, Louie M, Simor AE (1997) Investigation of a pseudo-outbreak of Nocardia asteroides infection by pulsed-field gel electrophoresis and randomly amplified polymorphic DNA PCR. J Clin Microbiol 35:1582–1584

    CAS  PubMed Central  PubMed  Google Scholar 

  • Luhrmann A, Mauder N, Syder T, Fernandez-Mera E, Schutze-Luermann J, Takai S, Haas A (2004) Necrotic death of Rhodococcus-infected macrophages is regulated by virulence-associated plasmids. Infect Immun 72:853–862

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Lum CA, Vadmal MS (2003) Case report. Nocardia asteroides mycetoma. Ann Clin Lab Sci 33:329–333

    PubMed  Google Scholar 

  • Luo H, Gu Q, Xie J, Hu C, Liu Z, Huang Y (2007) Gordonia shandongensis sp. nov., isolated from soil in China. Int J Syst Evol Microbiol 57:605–608

    Article  CAS  PubMed  Google Scholar 

  • Luo Q, Hiessl S, Steinbűchel A (2013a) Functional diversity of Nocardia in metabolism. Environ Microbiol. doi:10.1111/1462-2920.12221

    Google Scholar 

  • Luo Q, Hiessl S, Poehlein A, Steinbűchel A (2013b) Microbial gutta-percha degradation shares common steps with rubber degradation by Nocardia nova SH22a. Appl Environ Microbiol 79:1140–1149

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ma T (2010) The desulfurization pathway in Rhodococcus. In: Alvarez HM (ed) Biology of Rhodococcus. Springer, Berlin, pp 2007–2030

    Google Scholar 

  • Maatooq GT, Rosazza JPN (2005) Metabolism of daidzein by Nocardia species NRRL 5646 and Mortierella isabellina ATCC 38003. Phytochemistry 66:1007–1011

    Article  CAS  PubMed  Google Scholar 

  • MacNaughton SJ, O’Donnell AG (1994) Tuberculostearic acid as a means of estimating the recovery (using dispersal and differential centrifugation) of actinomycetes from soil. J Microbiol Methods 20:69–77

    Article  CAS  Google Scholar 

  • Maes T, Vereecke D, Ritsema T, Cornelis K, Thi Thu HN, Van Montagu M, Holsters M, Goethals K (2001) The alt locus of the phytopathogen Rhodococcus fascians D 138 is essential for the full virulence through the production of an autoregulatory compound. Mol Microbiol 42:13–29

    Article  CAS  PubMed  Google Scholar 

  • Magnusson M (1976) Sensitin tests in Nocardia taxonomy. In: Goodfellow M, Brownell GH, Serrano JA (eds) The biology of the Nocardiae. Academic, London, pp 236–265

    Google Scholar 

  • Makrai L, Fodor L, Vendez I, Szieti G, Denes B, Reiczigel J, Varga J (2005) Comparison of selective media for the isolation of Rhodococcus equi and a description of a new selective plating medium. Acta Veta Hung 53:275–285

    Article  CAS  Google Scholar 

  • Maldonado LA, Hookey JV, Ward AC, Goodfellow M (2000) The Nocardia salmonicida clade, including descriptions of Nocardia cummidelens sp. nov., Nocardia fluminea sp. nov. and Nocardia soli sp. nov. Antonie van Leeuwenhoek 78:367–377

    Article  CAS  PubMed  Google Scholar 

  • Maldonado LA, Stainsby FM, Ward AC, Goodfellow M (2003) Gordonia sinesedis sp. nov., a novel soil isolate. Antonie van Leeuwenhoek 83:75–80

    Article  CAS  PubMed  Google Scholar 

  • Maldonado LA, Hamid ME, Gamal El Din OA, Goodfellow M (2004) Nocardia farcinica—a significant cause of mastitis in goats in Sudan. J S Afr Vet Assoc 75:147–149

    Article  CAS  PubMed  Google Scholar 

  • Maldonado LA, Stach JEM, Pathom-aree W, Ward AC, Bull AT, Goodfellow M (2005) Diversity of cultivable actinobacteria in geographically widespread marine sediments. Antonie van Leeuwenhoek 37:11–18

    Article  Google Scholar 

  • Mangan MW, Byrne GA, Meijer WJ (2005) Versatile Rhodococcus equi–Escherichia coli shuttle vectors. Antonie van Leeuwenhoek 87:161–167

    Article  CAS  PubMed  Google Scholar 

  • Manninen KI, Smith RA, Kim LO (1993) Highly presumptive identification of bacterial isolates associated with the recent Canadian-wide mastitis epizootic as Nocardia farcinica. Can J Microbiol 39:635–641

    Article  CAS  PubMed  Google Scholar 

  • Mara DD, Oragui JI (1981) Occurrence of Rhodococcus coprophilus and associated actinomycetes in faeces, sewage and freshwater. Appl Environ Microbiol 42:1037–1042

    CAS  PubMed Central  PubMed  Google Scholar 

  • Maraki S, Choihilidaki S, Nioti E, Tselentis Y (2004) Primary lymphocutaneous nocardiosis in an immunocompetent patient. Ann Clin Microbiol Antimicrob 3:24–28

    Article  PubMed Central  PubMed  Google Scholar 

  • Maraki S, Panagiotaki E, Tsopanidis D, Scoulica E, Miari NM, Hainis K, Dotis G, Katsoula I, Tselentis Y (2006) Nocardia cyriacigeorgica pleural empysema in an immunocompromised patient. Diagn Microbiol Infect Dis 56:333–335

    Article  PubMed  Google Scholar 

  • Marchandin H, Eden A, Jean-Pierre H, Raynes J, Jumas-Bilak E, Boiron P, Laurent F (2006) Molecular diagnosis of culture-negative cerebral nocardiosis due to Nocardia abscessus. Diag Microbiol Infect Dis 55:237–240

    Article  CAS  Google Scholar 

  • Marqués AM, Pinzano Farfan AM, Aranda FJ, Teruel JA, Oriz A, Manresa A, Espuny MJ (2009) The physico-chemical properties and chemical composition of trehalose lipids produced by Rhodoccus erythropolis 51T7. Chem Phys Lipids 158:110–117

    Article  PubMed  CAS  Google Scholar 

  • Martinez R, Reyes S, Menéndez R (2008) Pulmonary nocardiosis: risk factors, clinical features, diagnosis and progress. Curr Opin Pulm Med 14:219–227

    Article  PubMed  Google Scholar 

  • Martínková L, Pátek M, Veselá AB, Kaplan O, Ukriákova B, Nĕsvera J (2010) Catabolism of nitriles in Rhodococcus. In: Alvarez HM (ed) Biology of Rhodococcus. Springer, Berlin, pp 171–206

    Google Scholar 

  • Masai E, Yamada A, Healy JM, Kimbara K, Fukuda M, Yano K (1995) Characterization of bipheyl catabolic genes of gram-positive polychlorinated biphenyl degrader Rhodococcus sp. RHA1. Appl Environ Microbiol 61:2079–2085

    CAS  PubMed Central  PubMed  Google Scholar 

  • Masai E, Sugiyama K, Iwashita N, Shimizu S, Hauschild JE, Hatta T, Kimbara K, Yano Y, Fukuda M (1997) The bph DEF meta-cleavage pathway genes involved in biphenyl/polychlorinated biphenyl degradation are located on a linear plasmid and separated from the initial bphACB genes in Rhodococcus sp. strain RHA 1. Gene 187:141–149

    Article  CAS  PubMed  Google Scholar 

  • Matsui T, Onaka T, Maruhashi K, Kurane R (2001a) Benzo [b] thiophene desulfurization by Gordonia rubropertinctus strain T08. Appl Microbiol Biotechnol 57:212–215

    Article  CAS  PubMed  Google Scholar 

  • Matsui T, Hirasawa K, Koizumi KI, Maruhashi K, Kurane R (2001b) Optimization of the copy number of dibenzothiophene desulfurization genes to increase the dsulfurization activity of recombinant Rhodococcus sp. Biotechnol Lett 23:1715–1718

    Article  CAS  Google Scholar 

  • Matsui T, Saeki H, Shinzato N, Matsuda H (2006) Characterization of Rhodococcus-E. coli shuttle vector pNC 9501 constructed from the cryptic plasmid of a propene-degrading bacterium. Curr Microbiol 52:445–448

    Article  CAS  PubMed  Google Scholar 

  • Matsui T, Saeki H, Shinzato N, Matsuda H (2007) Analysis of the 7.6-kb cryptic plasmid pNC500 from Rhodococcus rhodochrous B-276 and construction of Rhodococcus-E. coli shuttle vector. Appl Microbiol Biotechnol 74:169–175

    Article  PubMed  CAS  Google Scholar 

  • Matsuyama H, Yumoto I, Kudo T, Shida O (2003) Rhodococcus tukisamuensis sp. nov., isolated from soil. Int J Syst Evol Microbiol 53:1333–1337

    Article  CAS  PubMed  Google Scholar 

  • Mayilraj S, Krishnamurthi S, Saha P, Saini HS (2006) Rhodococcus kroppenstedttii sp. nov., a novel actinobacterium isolated from a cold desert of the Hamalayas, India. Int J Syst Evol Microbiol 56:979–982

    Article  CAS  PubMed  Google Scholar 

  • Mazellier P, Leroy E, De Laert J, Legube B (2003) Degradation of carbendizim by UV/H2O2 investigated by kinetic modeling. Chem Lett 1:68–72

    Article  CAS  Google Scholar 

  • McLeod MP, Warren RL, Hsiao WW, Araki N, Myhre M, Fernandez C, Miyazawa D, Wong W, Lillquist AL, Wang D, Dosanjh M, Hara H, Petrescu A, Morin RD, Yang G, Stott JM, Schein JF, Shin H, Smailus D, Siddiqui AS, Marra MA, Jones SJM, Holt R, Brinkman FS, Miyauchi K, Fukuda M, Davies JE, Mohn WW, Eltis LD (2006) The complete genome of Rhodococcus sp. RHA1 provides insights into a catabolic powerhouse. Proc Natl Acad Sci USA 103:15582–15587

    Article  PubMed Central  PubMed  Google Scholar 

  • McMinn EJ, Alderson G, Dodson HI, Goodfellow M, Ward AC (2000) Genomic and phenomic differentiation of Rhodococcus equi and related strains. Antonie van Leeuwenhoek 78:331–340

    Article  CAS  PubMed  Google Scholar 

  • McNeil MM, Brown JM (1994) The medically important aerobic actinomycetes: epidemiology and microbiology. Clin Microbiol Rev 7:357–417

    CAS  PubMed Central  PubMed  Google Scholar 

  • Meier-Kolthoff JP, Gőker M, Sprőer C, Klenk H-P (2013) When should DDH experiment be mandatory in microbial taxonomy? Arch Microbiol 195:413–418

    Article  CAS  PubMed  Google Scholar 

  • Meijer WG, Prescott JF (2004) Rhodococcus equi. Vet Res 35:383–396

    Article  CAS  PubMed  Google Scholar 

  • Mellmann A, Cloud JL, Andrees S, Blackwood K, Carroll KC, Kabani A, Roth A, Harmsen D (2003) Evaluation of RIDOM, Micro Seq and GenBank services in the molecular identification of Nocardia species. Int J Med Microbiol 293:359–370

    Article  CAS  PubMed  Google Scholar 

  • Michel G, Bordet C (1976) Cell walls of nocardiae. In: Goodfellow M, Brownell GH, Serrano JA (eds) The biology of the Nocardiae. Academic, London, pp 141–159

    Google Scholar 

  • Mikami Y, Yu SF, Yazawa K, Fakushima K, Maeda K, Uno J, Terao K, Saito N, Kubo A, Suzuki K (1990) A toxic substance produced by Nocardia otitidiscaviarum isolated from cutaneous nocardiosis. Mycopathologica 112:113–118

    Article  CAS  Google Scholar 

  • Mikami Y, Komaki H, Imai T, Yazawa K, Nemoto A, Tanaka Y, Gräfe U (2000) A new antifungal macrolide component, brasilinolide B. produced by Nocardia brasiliensis. J Antibiot (Tokyo) 53:70–74

    Article  CAS  Google Scholar 

  • Minero V, Marin M, Cercenado E, Rabadan PM, Bouza E, Munoz P (2009) Nocardiosis at the turn of the century. Medicine (Baltimore) 88:250–261

    Article  Google Scholar 

  • Minnikin DE (1982) Lipids: complex lipids, their chemistry, biosynthesis and roles. In: Ratledge C, Stanford JL (eds) The biology of the Mycobacteria. Academic, New York, pp 95–184

    Google Scholar 

  • Minnikin DE (1993) Mycolic acids. In: Mukherjee KD, Weber N (eds) CRC handbook of chromatography: analysis of lipids. CRC, Cleveland, pp 329–348

    Google Scholar 

  • Minnikin DE, Goodfellow M (1976) Lipid composition in the classification and identification of nocardiae and related taxa. In: Goodfellow M, Brownell GH, Serrano JA (eds) The biology of the Nocardiae. Academic, London, pp 160–219

    Google Scholar 

  • Minnikin DE, Goodfellow M (1980) Lipid composition in the classification and identification of acid-fast bacteria. In: Goodfellow M, Board RG (eds) Microbiological classification and Identification. Academic, London, pp 189–256

    Google Scholar 

  • Minnikin DE, Alshamaony L, Goodfellow M (1975) Differentiation of Mycobacterium, Nocardia and related taxa by thin-layer chromatographic analysis of whole-organism methanolysates. J Gen Microbiol 88:200–204

    Article  CAS  PubMed  Google Scholar 

  • Minnikin DE, Patel PV, Alshamaony L, Goodfellow M (1977) Polar lipid composition in the classification of Nocardia and related bacteria. Int J Syst Bacteriol 27:104–117

    Article  CAS  Google Scholar 

  • Minnikin DE, Goodfellow M, Collins MD (1978) Lipid composition in the classification and identification of coryneform and related taxa. In: Bousfield IJ, Callely AG (eds) Coryneform bacteria. Academic, London, pp 85–160

    Google Scholar 

  • Minnikin DE, Hutchinson IG, Caldicott AB, Goodfellow M (1980) Thin-layer chromatography of methanolysates of mycolic acid-containing bacteria. J Chromatogr 188:221–233

    Article  CAS  Google Scholar 

  • Mirza SH, Campbell C (1994) Mycetoma caused by Nocardia transvalensis. J Clin Pathol 4:85–86

    Article  Google Scholar 

  • Moorman M, Zahringer H, Moll H, Kaufmann R, Schmid R, Altendorf K (1997) A new glycosylated lysopeptide incorporated into the cell wall on a smooth variant of Gordonia hydrophobica. J Biol Chem 272:10729–10738

    Article  Google Scholar 

  • Mordarska H, Mordarski M, Goodfellow M (1972) Chemotaxonomic characters and classification of some nocardioform bacteria. J Gen Microbiol 71:77–86

    Article  CAS  PubMed  Google Scholar 

  • Mordarski M, Goodfellow M, Kaszen I, Tkacz A, Pulverer G, Schaal KP (1980) Deoxyribonucleic acid reassociation in the classification of the genus Rhodococcus Zopf 1891 (Approved Lists 1980). Int J Syst Bacteriol 30:521–527

    Article  Google Scholar 

  • Mordarski M, Kaszen I, Tkacz A, Goodfellow M, Alderson G, Schaal KP, Pulverer G (1981) Deoxyribonucleic acid pairing in the classification of the genus Rhodococcus. Zentralbl Bakteriol Suppl 11:25–31

    CAS  Google Scholar 

  • Morton AC, Begg AP, Anderson GA, Takai S, Lammler C, Browning GF (2001) Epidemiology of Rhodococcus equi strains in thoroughbred horse farms. Appl Environ Microbiol 67:2167–2175

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Moser BD, Klenk H-P, Schumann P, Pőtter G, Lasker BA, Steigerwalt AG, Hinrikson HP, Brown JM (2011) Nocardia niwae sp. nov. isolated from human pulmonary sources. Int J Syst Evol Microbiol 61:438–442

    Article  CAS  PubMed  Google Scholar 

  • Muscatello G, Gilkerson JR, Browning GF (2007) Comparison of two selective media for the recovery, isolation, enumeration and differentiation of Rhodococcus equi. Vet Microbiol 119:324–329

    Article  CAS  PubMed  Google Scholar 

  • Mutimer MD, Woolcock JB (1980) Corynebacterium equi in cattle and pigs. Tijdshr Diergeneskd 105:25–27

    CAS  Google Scholar 

  • Nagasawa T, Yamada H (1990) Application of nitrile converting enzymes for the production of useful compounds. Pure Appl Chem 62:1441–1444

    Article  CAS  Google Scholar 

  • Nagasawa T, Takeuchi K, Yamada H (1988) Occurrence of a cobalt-induced and cobalt-containing nitrile hydratase in Rhodococcus rhodochrous J1. Biochem Biophs Res Commun 155:1008–1016

    Article  CAS  Google Scholar 

  • Nagasawa T, Shimizu H, Yamada H (1993) The superiority of the third-generation catalyst, Rhodococcus rhodochrous J1 nitrile hydratase for the production of acrylamide. Appl Microbiol Biotechnol 40:189–195

    Article  CAS  Google Scholar 

  • Nakashima N, Tamura T (2003a) A novel system for expressing recombinant proteins over a wide temperature range from 4 to 35 °C. Biotechnol Bioeng 86:536–548

    Google Scholar 

  • Nakashima N, Tamura T (2003b) Isolation and characterization of a rolling-circular-type plasmid from Rhodococcus erythropolis and application of the plasmid to multiple-recombinant-protein expression. Appl Environ Microbiol 70:55557–55568

    Google Scholar 

  • Nasser AA, Bizri AR (2001) Chronic scalp wound infection due to Rhodococcus equi in an immunocompetent patient. J Infect 42:67–68

    Article  CAS  PubMed  Google Scholar 

  • Nemoto A, Tanaka Y, Karasaki Y, Komaki H, Yazawa K, Mikami Y, Tojo T, Kadowaki K, Tsuda M, Kobayashi J (1997) Brasiliquinones A, B and C, new benz [a] anthraquinone antibiotics from Nocardia brasiliensis. I. Producing strain, isolation and biological activities of the antibiotics. J Antibiot 50:18–21

    Article  CAS  PubMed  Google Scholar 

  • Nemoto A, Hoshino Y, Yazawa K, Ando A, Mikami Y, Komaki H, Tanaka Y, Gräfe U (2002) Asterobactin, a new siderophore group antibiotic from Nocardia asteroides. J Antibiot 55:593–597

    Article  CAS  PubMed  Google Scholar 

  • Nesterenko OA, Kvasnikov EI, Kusumova SA (1978) Properties and taxonomy of some spore-forming Nocardia. Zentralbl Bakteriol Suppl 6:253–260

    Google Scholar 

  • Nesterenko OA, Nogina TM, Kasunova MA, Kvasnikov EI, Batrakov SG (1982) Rhodococcus luteus com. nov. and Rhodococcus maris nom. nov. Int J Syst Bacteriol 32:1–14

    Article  Google Scholar 

  • Nimaichand S, Sanasam S, Zheng L-Q, Zhu W-Y, Yang L-L, Tang S-K, Ningthoujam DS, Li W-J (2013) Rhodococcus canchipurensis sp. nov., an actinomycete isolated from a limestone deposit site. Int J Syst Evol Microbiol 63:114–118

    Article  PubMed  Google Scholar 

  • O’Brien XM, Parker JA, Lessard PA, Sinskey AJ (2002) Engineering an indene bioconversion process for the production of cis-aminoindanol: a model system for the production of chiral synthesis. Appl Microbiol Biotechnol 59:389–399

    Article  PubMed  CAS  Google Scholar 

  • Ocampo-Sosa AA, Lewis DA, Navas J, Quigley F, Callejo R, Scortti M, Leadon M, Fogarty U, Vasquez-Boland JA (2007) Molecular epidemiology of Rhodococcus equi based on traA, vapA and vapB plasmid markers. J Infect Dis 196:763–769

    Article  CAS  PubMed  Google Scholar 

  • Oerther DB, de los Reyes FL III, Hernandez M, Raskin L (1999) Simultaneous oligonucleotide probe hybridization and immunostaining for in situ detection of Gordonia species in activated sludge. FEMS Microbiol Ecol 29:129–136

    Article  CAS  Google Scholar 

  • Oldfield C, Pogrebinsky O, Simmonds J, Olsen ES, Kulpa CF (1997) Elucidation of the metabolic pathway for dibenzothiophene desulphurization by Rhodococcus sp. Strain IGTS8 (ATCC 53968). Microbiology 143:2961–2973

    Article  CAS  PubMed  Google Scholar 

  • Oldfield C, Wood NT, Gilbert SC, Murray FD, Faure FR (1998) Desulphurization of benzothiophene and dibenzothiopene by actinomycete-like organisms beloning to the gene Rhodococcus and related organisms. Antonie van Leeuwenhoek 25:317–320

    Google Scholar 

  • Oldfield C, Bonella H, Renwick L, Dodson HI, Alderson G, Goodfellow M (2004) Rapid determination of vap A/vap B genotype in Rhodococcus equi using a differential polymerase chain reaction method. Antonie van Leeuwenhoek 85:317–326

    Article  CAS  PubMed  Google Scholar 

  • Oragui JI, Mara DD (1985) Fecal streptococci: Rhodococcus coprophilus and bifidobacteria as specific indicator organisms of fecal pollution. J Appl Bacteriol 59:5–6

    Google Scholar 

  • Orchard VA (1978) Effect of irrigation with municipal water or sewage effluent on the biology of soil cores. N Z J Agric Res 21:21–28

    Article  Google Scholar 

  • Orchard VA (1979) Effect of sewage sludge additions on Nocardia in soil. Soil Biol Biochem 11:217–220

    Article  Google Scholar 

  • Orchard VA (1981) The ecology of Nocardia and related taxa. Zentralbl Bakteriol Mikrobiol Hyg Suppl 11:167–180

    Google Scholar 

  • Orchard VA, Goodfellow M (1974) The selective isolation of Nocardia from soil using antibiotics. J Gen Microbiol 65:160–162

    Article  Google Scholar 

  • Orchard VA, Goodfellow M (1980) Numerical classification of some named strains of Nocardia asteroides and related isolates from soil. J Gen Microbiol 118:295–312

    CAS  PubMed  Google Scholar 

  • Orchard VAM, Goodfellow M, Williams ST (1977) Selective isolation and occurrence of nocardiae in soil. Soil Biol Biochem 9:233–238

    Article  Google Scholar 

  • Ortiz-Ortiz L, Melandro EI, Conde C (1984) Host-parasite relationships in infections due to Nocardia brasiliensis. In: Ortiz-Ortiz L, Bojalil JF, Yakoleff V (eds) Biological, biochemical and biomedical aspects of actinomycetes. Academic, Orlando, pp 119–133

    Chapter  Google Scholar 

  • Osoagbaka OU (1989) Evidence for the pathogenic role of Rhodococcus species in pulmonary diseases. J Appl Bacteriol 66:497–506

    Article  CAS  PubMed  Google Scholar 

  • Pagilla KR, Sood A, Kim H (2002) Gordonia (Nocardia) amarae foaming due to biosurfactant production. Water Sci Technol 46:519–524

    CAS  PubMed  Google Scholar 

  • Patel A (2002) Pyrogranulomatocus skin disease and cellulitis in a cat caused by Rhodococcus equi. J Small Anim Pract 43:129–132

    Article  CAS  PubMed  Google Scholar 

  • Patel R, Paya CV (1997) Infections in solid organ transplant recipients. Clin Microbiol Rev 10:86–124

    CAS  PubMed Central  PubMed  Google Scholar 

  • Patel JB, Wallace RJ Jr, Brown-Elliott BA, Taylor T, Imperatrice C, Leonard DGB, Wilson RW, Mann L, Just KJ, Nachamkin I (2004) Sequence-based identification of aerobic actinomycetes. J Clin Microbiol 42:2530–2540

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pathom-aree W, Nogi Y, Sutcliffe IC, Ward AC, Horikoshi K, Bull AT, Goodfellow M (2006) Williamsia marianensis sp. nov., a novel actinomycete isolated from the Mariana Trench. Int J Syst Evol Microbiol 56:1123–1126

    Article  CAS  PubMed  Google Scholar 

  • Patterson JE, Chapin-Robertson K, Waycott S, Farrel P, McGeer A, McNeal MM, Edberg SC (1992) Pseudoepidemic of Nocardia asteroides associated with a mycobacteria culture system. J Clin Microbiol 30:1357–1360

    CAS  PubMed Central  PubMed  Google Scholar 

  • Peczyńska-Czoch W, Mordarski M (1988) Actinomycete enzymes. In: Goodfellow M, Williams ST, Mordarski M (eds) Actinomycetes in biotechnology. Academic, San Diego, pp 219–283

    Chapter  Google Scholar 

  • Peng X, Misawa N, Harayama S (2003) Isolation and characterization of thermophilic bacilli degrading cinnamic, 4-coumaric and ferulic acids. Appl Environ Microbiol 69:1417–1427

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Petrovski S, Seviour RJ, Tillett D (2011a) Characterization of the genome of the polyvalent lytic bacteriophage GTE2, which has potential for biocontrol of Gordonia-, Rhodococcus -, and Nocardia- stabilized foams in activated sludge plants. Appl Environ Microbiol 77:3923–3929

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Petrovski S, Seviour RJ, Tillett D (2011b) Prevention of Gordonia and Nocardia- stabilized foam formation using bacteriophage GTE7. Appl Environ Microbiol 77:7864–7867

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Petrovski S, Dyson ZA, Quill ES, Tillett D, Seviour RJ (2011c) An examination of the mechanisms for stable foam formation in activated sludge systems. Water Res 45:2146–2154

    Article  CAS  PubMed  Google Scholar 

  • Petrovski S, Dyson ZA, Seviour RJ, Tillett D (2011d) Small but sufficient: the Rhodococcus phage RRH1 has the smallest known Siphoviridae genome at 14–2 kilo bases. J Virol 86:358–363

    Article  PubMed  CAS  Google Scholar 

  • Petrovski S, Seviour RJ, Tillett D (2011e) Genome sequence and characterization of the Tsukamurella bacteriophage TPA2. Appl Environ Microbiol 77:1329–1398

    Google Scholar 

  • Petrovski S, Tillett D, Seviour RJ (2012) Genome sequence and characterization of the related Gordonia phages GTE5 and GRU1 and their use as potential biocontrol agents. Appl Environ Microbiol 78:42–47

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Petrovski S, Seviour RJ, Tillett D (2013a) Characterization and whole-genome sequences of the Rhodococcus bacteriophages RGL3 and RER2. Arch Virol 158:601–609

    Article  CAS  PubMed  Google Scholar 

  • Petrovski S, Seviour RJ, Tillett D (2013b) Genome sequence and characterization of a Rhodococcus equi phage REQ1. Virus Genes 46:588–590

    Article  CAS  PubMed  Google Scholar 

  • Pham AS, Dél Rolsten KV, Tarrand JJ, Han XY (2003) Catheter-related bacteremia caused by the nocardioform actinomycete Gordonia terrae. Clin Infect Dis 36:524–527

    Article  PubMed  Google Scholar 

  • Pier AC, Fichtner RE (1971) Serologic typing of Nocardia asteroides by immunodiffusion. Am Rev Respir Dis 103:698–707

    CAS  PubMed  Google Scholar 

  • Pier AC, Fichtner RE (1981) Distribution of serotypes of Nocardia asteroides from animal, human and environmental sources. J Clin Microbiol 13:548–553

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pier AC, Thurston JR Jr, Larson AB (1968) A diagnostic antigen for nocardiosis: comparative tests in cattle with nocardiosis and mycobacteriosis. Am J Vet Res 29:397–403

    Google Scholar 

  • Pintado V, Gomez-Mampaso E, Fortun J, Meseguer MA, Cobo J, Navas E, Querada C, Martin-Davila P, Moreno S (2002) Infection with Nocardia species: clinical spectrum of disease and species distribution in Madrid, Spain, 1978–2001. Infection 30:338–340

    Article  CAS  PubMed  Google Scholar 

  • Poonwan N, Kusum M, Mikami Y, Yazawa K, Tanaka Y, Gonoi T, Hasegawa S, Konyama K (1995) Nocardia isolated from clinical specimens including those of AIDS patients in Thailand. Eur J Epidemiol 11:507–512

    Article  CAS  PubMed  Google Scholar 

  • Poonwan NN, Mekha K, Yazawa S, Thunyahara AY, Mikami Y (2005) Characterization of clinical isolates of pathogenic Nocardia strains and related actinomycetes in Thailand from 1996 to 2003. Mycopathologia 159:361–368

    Article  PubMed  Google Scholar 

  • Portaels F (1976) Isolation and distribution of nocardiae in the Bas-Zaire. Ann Soc Belg Med Trop 56:73–83

    CAS  PubMed  Google Scholar 

  • Pottumarthy S, Limaye AP, Prentice JL, Houze YB, Swanzy SR, Cookson BT (2003) Nocardia veterana, a new emerging pathogen. J Clin Microbiol 411:705–1709

    Google Scholar 

  • Prauser H (1976) Host-phage relationships in nocardioform organisms. In: Goodfellow M, Brownell GH, Serrano JA (eds) The biology of the Nocardiae. Academic, New York, pp 266–284

    Google Scholar 

  • Prauser H (1981) Taxon specificity of lytic actinophages that do not multiply in the cells affected. Zentralbl Bakteriol Mikrobiol Hyg Suppl 11:87–1192

    Google Scholar 

  • Prauser H, Falta R (1968) Phagensensibillat, Zellwant-Zusammensetzung und Taxonomie von Actinomyceten. Z Allg Mikrobiol 8:39–46

    Article  CAS  PubMed  Google Scholar 

  • Prauser H, Momirova S (1970) Phagessensibität. Zellwand-Zusammensetzung und Taxonomie einiger thermophiler Actinomyceten. Z Allg Mikrobiol 10:219–222

    Article  CAS  PubMed  Google Scholar 

  • Prescott JF (1991) Rhodococcus equi: an animal and human pathogen. Clin Microbiol Rev 4:20–34

    CAS  PubMed Central  PubMed  Google Scholar 

  • Priefert H, O’Brien XM, Lessard PA, Dexter AF, Choi EE, Tomic S, Nagpal G, Cho JJ, Agosto M, Yang L, Treadwag SL, Tamashiro L, Wallace M, Sinskey AJ (2004) Indene bioconversion by a toluene dioxygenase of Rhodococcus sp. 224. Appl Microbiol Biotechnol 65:168–176

    Article  CAS  PubMed  Google Scholar 

  • Provost F, Blanc MV, Beaman BL, Boiron P (1996) Occurrence of plasmids in pathogenic strains of Nocardia. J Med Microbiol 45:344–348

    Article  CAS  PubMed  Google Scholar 

  • Pulverer G, Schütt-Gerovitt H, Schaal KP (1974) Bacteriophages of Nocardia. In: Brownell GH (ed) Proceeding of the international conference on the biology of the Nocardiae, Merida, Venezuela. McGowan, Augusta, p 82

    Google Scholar 

  • Pulverer G, Schütt-Gerowitt H, Schaal KP (1975) Bacteriophages of Nocardia asteroids. Med Microbiol Immunol 161:113–122

    Article  CAS  PubMed  Google Scholar 

  • Putnam ML, Miller ML (2007) Rhodococcus fascians in herbaceous perennials. Plant Dis 91:1064–1076

    Article  Google Scholar 

  • Rainey FA, Burghardt J, Kroppenstedt RM, Klatte S, Stackebrandt E (1995) Phylogenetic analysis of the genera Rhodococcus and Nocardia with evidence for the evolutionary origin of the genus Nocardia from within the radiation of Rhodococcus species. Microbiology 141:523–528

    Article  CAS  Google Scholar 

  • Ramos-Vara JA, Wu CC, Lin TL, Miller MA (2007) Nocardia tenerifensis genome identification in a cutaneous granuloma of a cat. J Vet Diagn Invest 19:577–580

    Article  PubMed  Google Scholar 

  • Rapp P, Gabriel-Jűrgens LHE (2003) Degradation of alkanes and highly chlorinated benzenes and production of biosurfactants, by a psychrophilic Rhodococcus sp. and genetic characterization of its chlorobenzene dioxygenase. Microbiology 149:2879–2890

    Article  CAS  PubMed  Google Scholar 

  • Ratledge C, Patel PV (1976) Lipid soluble, iron-binding compounds in Nocardia and related organisms. In: Goodfellow M, Brownell GH, Serrano JA (eds) The biology of the Nocardiae. Academic, London, pp 372–385

    Google Scholar 

  • Renvoice A, Harle JR, Ravolt D, Roux V (2009) Gordonia sputi bactertemia. Emerg Infect Dis 15:1535–1537

    Article  Google Scholar 

  • Rhee SK, Chang JH, Chang YK, Chang HN (1998) Desulfurization of dibenzothiophene and diesel oils by a newly isolated Gordonia strain, CYKS1. Appl Environ Microbiol 64:2327–2331

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ribeiro MG, Seki I, Yasuoka K, Kakuda T, Sasaki Y, Tsubaki S, Takai S (2005) Molecular epidemiology of virulent Rhodococcus equi from foals in Brazil: virulence plasmids of 85-kb type 1, 87-kb type 1, and a new variant, 87-kb type III. Comp Immunol Microbiol Infect Dis 28:53–61

    Article  PubMed  Google Scholar 

  • Richet HM, Craven PC, Brown JM, Laskar BA, Cox CD, McNeil MM, Tice RD, Jarvis WR, Tablan OC (1991) A cluster of Rhodococcus (Gordonia) bronchialis sternal wound infections after coronary artery bypass surgery. N Engl J Med 324:104–109

    Article  CAS  PubMed  Google Scholar 

  • Riegel P, Ruimy R, de Briel D, Eicher F, Bergerat JP, Christen R, Monteil H (1996) Bacteremia due to Gordonia sputi in an immunocompromised patient. J Clin Microbiol 34:2045–2047

    CAS  PubMed Central  PubMed  Google Scholar 

  • Riess FG, Benz R (2000) Discovery of a novel channel-forming protein in the cell wall of the non-pathogenic Nocardia corynebacteroides. Biochem Biophys Acta 1509:485–495

    Article  CAS  PubMed  Google Scholar 

  • Riess FG, Lichtinger T, Csefi R, Yassin AF, Schaal KP, Benz R (1998) The cell wall channel of Nocardia farcinica: biochemical classification of the channel-forming protein and biophysical characterization of the chemical properties. Mol Microbiol 29:139–150

    Article  CAS  PubMed  Google Scholar 

  • Riess FG, Lichtinger T, Yassin AF, Schaal KP, Benz R (1999) The cell wall porin of the gram-positive bacterium Nocardia asteroides forms cation-selective channels that exhibit asymmetric voltage dependence. Arch Microbiol 171:173–182

    Article  CAS  PubMed  Google Scholar 

  • Ristau E, Wagner F (1983) Formation of novel anionic trehalose tetraesters from Rhodococcus erythropolis under growth-limiting conditions. Biotechnol Lett 5:95–100

    Article  CAS  Google Scholar 

  • Roberts GD, Koneman EW, Kim YK (1991) Mycobacterium. In: Balows A, Haisler WJ, Hermann KL, Isenberg HD, Shadomy HJ (eds) Manual of clinical microbiology. American Society of Microbiology, Washington, pp 304–309

    Google Scholar 

  • Rodrigues-Nava V, Couble A, Molinard C, Sandoval H, Boiron P, Laurent F (2004) Nocardia mexicana sp. nov., a new pathogen isolated from human mycetomas. J Clin Microbiol 42:4530–4535

    Article  CAS  Google Scholar 

  • Rodrigues-Nava V, Couble A, Devulder G, Flandrois J-P, Boiron P, Laurent F (2006) Use of PCR restriction enzyme pattern analysis and sequencing database for hsp65 gene-based identification of Nocardia species. J Clin Microbiol 44:536–546

    Article  CAS  Google Scholar 

  • Rodriguez-Nava V, Khan ZU, Pőtter G, Kroppenstedt RM, Boiron P, Laurent F (2007) Nocardia coubleae sp. nov., isolated from oil-contaminated Kuwaiti soil. Int J Syst Evol Microbiol 57:1482–1486

    Article  CAS  PubMed  Google Scholar 

  • Roth A, Andrees S, Kroppenstedt RM, Harmsen D, Mauch H (2003) Phylogeny of the genus Nocardia based on reassessed 16S rRNA gene sequences reveals underspeciation and division of strains classified as Nocardia asteroides into their established species and two unnamed taxons. J Clin Microbiol 41:851–856

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rowbotham TJ, Cross T (1977a) Rhodococcus coprophilus sp. nov., an aerobic nocardioform actinomycete belonging to the ‘rhodochrous’ complex. J Gen Microbiol 100:123–138

    Article  Google Scholar 

  • Rowbotham TJ, Cross T (1977b) Ecology of Rhodococcus coprophilus and associated actinomycetes in freshwater and agricultural habitats. J Gen Microbiol 100:231–240

    Article  Google Scholar 

  • Ruimy C, Riegel P, Boiron P, Monteil H, Christen RC (1995) Phylogeny of the genus Corynebacterium deduced from analyses of small-subunit ribosomal DNA sequences. Int J Syst Bacteriol 45:740–746

    Article  CAS  PubMed  Google Scholar 

  • Ruimy R, Riegel P, Carlotti A, Boiron P, Bernardin G, Monteil H, Wallace RJ Jr, Christen R (1996) Nocardia pseudobrasiliensis sp. nov., a new species of Nocardia which groups bacterial strains previously identified as Nocardia brasiliensis and associated with invasive diseases. Int J Syst Bacteriol 46:259–264

    Article  CAS  PubMed  Google Scholar 

  • Saeki H (1998) Molecular and functional analysis of genes involved in propene degradation of Nocardia corallina B-276. PhD thesis. University of Gottingen, Gottingen

    Google Scholar 

  • Saeki H, Akira M, Furuhashi K, Overhoff B, Gottschalk G (1999) Degradation of trichlorethene by a linear-plasmid-encoded alkene monooxyenase in Rhodococcus corallina (Nocardia corallina) B-276. Microbiology 145:1721–1730

    Article  CAS  PubMed  Google Scholar 

  • Sahathevan M, Harvey FAH, Forbes G, O’Grady J, Gimson A, Bragman S, Jensen R, Philport-Howard J, Williams R, Casewell MW (1991) Epidemiological, bacteriology and control of an outbreak of Nocardia asteroides infection in a liver unit. J Hosp Infect 18(Suppl A):472–480

    Google Scholar 

  • Saintpierre-Bonaccio D, Maldonado LA, Amir H, Pineau R, Goodfellow M (2004) Nocardia neocaledoniensis sp. nov., a novel actinomycete isolated from a New-Caledonian brown hypermagnesian ultramafic soil. Int J Syst Evol Microbiol 54:599–603

    Article  CAS  PubMed  Google Scholar 

  • Salanitro JP, Diaz LA, Williams MP, Wisniewski HL (1994) Isolation of bacterial culture that degrades methyl t-butyl ether. Appl Environ Microbiol 60:2493–2596

    Google Scholar 

  • Salifu SP, Campbell-Casey SA, Foley S (2013a) Isolation and characterization of soil borne virulent bacteriophages infecting the pathogen Rhodococcus equi. J Appl Microbiol 114:1625–1633

    Article  CAS  PubMed  Google Scholar 

  • Salifu SP, Valero-Rello A, Campbell SA, Inglis NF, Scortti M, Foley S, Vásquez-Boland JA (2013b) Genome and proteome analysis of phage E3 infecting the soil-borne actinomycete Rhodococcus equi. Environ Microbiol Rep 5:170–178

    Article  CAS  PubMed  Google Scholar 

  • Salinas-Carmona MC, Rocha-Pizańa MR (2011) Construction of a Nocardia brasiliensis plasmid to study actinomycetoma pathogenicity. Plasmid 65:25–31

    Article  CAS  PubMed  Google Scholar 

  • Salinas-Carmona MC, Welsh O, Casillas SM (1993) Enzyme-linked immunosorbent assay for serological diagnosis of Nocardia brasiliensis and clinical correlation with mycetoma infections. J Clin Microbiol 31:2901–2906

    CAS  PubMed Central  PubMed  Google Scholar 

  • Salinas-Carmona MC, Torres-Lopez E, Ramos AI, Licon-Trillo A, Gonzálex-Spencer D (2011) Immune response to Nocardia brasiliensis antigens in an experimental model of actinomycetoma in BALB/c mice. Infect Immun 67:2428–2432

    Google Scholar 

  • Sallis PJ, Armfield SJ, Bull AT, Hardman DJ (1990) Isolation and characterization of a haloalkane halidohydrase from Rhodococcus erythropolis Y2. J Gen Microbiol 136:115–120

    Article  CAS  PubMed  Google Scholar 

  • Sangal V, Jones AL, Goodfellow M, Sutcliffe IC, Hoskisson PA (2014) Comparative genomics analyses reveal a lack of signature of host jump by Prescotella equi (Rhodococcus equi) from foals to humans. Pathog Dis (submitted)

    Google Scholar 

  • Santos SC, Alviano DS, Alviano CS, Padula M, Leitão AC, Martins OB, Ribeiro CM, Sasaki MY, Matta CP, Bevilaqua J, Sebastian GV, Seldin L (2006) Characterization of Gordonia sp. strain F5.25.8 capable of dibenzothiophene desulfurization and carbazole utilization. Appl Microbiol Biotechnol 71:355–362

    Article  CAS  PubMed  Google Scholar 

  • Santos SC, Alviano DS, Alviano CS, Goulart FR, de Padula M, Leitao AC, Martins OB, Ribeiro CM, Sassaki MY, Matta CP, Bevilaqua J, Sebastian GV, Seldin L (2007) Comparative studies of phenotypic and genetic characteristics between two desulfurizing isolates of Rhodococcus erythropolis and well-characterized R. erythropolis IGTS8. J Ind Microbiol Biotechnol 34:423–431

    Article  CAS  PubMed  Google Scholar 

  • Saubolle MA, Sussland D (2003) Nocardiosis review of clinical and laboratory experience. J Clin Microbiol 41:4497–4501

    Article  PubMed Central  PubMed  Google Scholar 

  • Sazak A, Sahin N (2012) Williamsia limnetica sp. nov., isolated from a limnetic lake sediment. Int J Syst Evol Microbiol 62:1414–1418

    Article  CAS  PubMed  Google Scholar 

  • Sazak A, Sahin N, Camas M (2012) Nocardia goodfellowii sp. nov. and Nocardia thraciensis sp. nov., isolated from soil. Int J Syst Evol Microbiol 62:1228–1234

    Article  CAS  PubMed  Google Scholar 

  • Schaal KP (1977) Nocardia, Actinomadura and Streptomyces. In: Von Graevenitz A (ed) CRC handbook, vol 1, Series in chemical laboratory sciences, Section E: chemical microbiology. CRC, Cleveland, pp 131–158

    Google Scholar 

  • Schaal KP (1991) Medical and microbiological problems arising from airborne infection in hospitals. J Hosp Infect 18(Suppl A):451–459

    Article  PubMed  Google Scholar 

  • Schaal KP (1998) Actinomycoses, actinobacillosis and related diseases. In: Hauser WJ, Sussman M (eds) Topley and Wilson’s microbiology and microbial infections. Edward Arnold, London, pp 777–798

    Google Scholar 

  • Schaal KP, Beaman BL (1984) Clinical significance of actinomycetes. In: Goodfellow M, Mordarski M, Williams ST (eds) The biology of actinomycetes. Academic, London, pp 389–424

    Google Scholar 

  • Schaal KP, Bickenbach H (1978) Soil occurrence of pathogenic nocardiae. Zentralbl Bakteriol Suppl 6:429–434

    Google Scholar 

  • Schaal KP, Lee HJ (1992) Actinomycete infections in humans—a review. Gene 115:201–211

    Article  CAS  PubMed  Google Scholar 

  • Schleifer K-H, Kandler O (1972) Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev 36:407–477

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schmidt MG, Kiser KB (1999) SecA: the ubiquitous component of preprotein translocase in prokaryotes. Microbes Infect 1:993–1004

    Article  CAS  PubMed  Google Scholar 

  • Schneider K, Rose I, Vikneswary S, Jones AL, Goodfellow M, Nicholson G, Beil W, Sűssmuth RS, Fiedler HP (2007) Nocardichelins A and B siderophores from Nocardia strain Acta 3026. J Nat Prod 70:932–935

    Article  CAS  PubMed  Google Scholar 

  • Schneider K, Graf E, Irran E, Nicholson G, Stainsby FM, Goodfellow M, Borden SA, Keller S, Sűssmuth SD, Fiedler HP (2008) Bendigoles A ∼ C, new steroids from Gordonia australis Acta 2299. J Antibiot 6:356–364

    Article  Google Scholar 

  • Schreiner A, Fuchs K, Lottspeich F, Poth H, Lingens F (1991) Degradation of 2-methylaniline in Rhodococcus rhodochrous cloning and expression of two clustered catechol 2,3-dioxygenase genes from strain CTM. J Gen Microbiol 137:2041–2048

    Article  CAS  PubMed  Google Scholar 

  • Sekine M, Tanikawa S, Omata S, Saito M, Fujisawa T, Tsukatani N, Tajima T, Sekigawa T, Kostugi H, Matsuo Y, Nishiko R, Imamura K, Ito M, Narita H, Tago S, Fujita N, Harayama S (2006) Sequence analysis of three plasmids harboured in Rhodococcus erythropolis strain PR4. Environ Microbiol 8:334–346

    Article  CAS  PubMed  Google Scholar 

  • Sembiring L, Ward AC, Goodfellow M (2000) Selective isolation and characterisation of members of the Streptomyces violaceusniger clade associated with the roots of Paraserianthes falcatana. Antonie van Leeuwenhoek 78:353–366

    Article  CAS  PubMed  Google Scholar 

  • Seo JP, Lee SD (2006) Nocardia harenae sp. nov., an actinomycete isolated from beach sand. Int J Syst Evol Microbiol 56:2203–2207

    Article  CAS  PubMed  Google Scholar 

  • Serrano JA, Sandoval AH, Beaman BL (eds) (2007) Actinomicetoma. Plaza y Valdez, Mexico City

    Google Scholar 

  • Seto M, Kimbara K, Shimura M, Hatta T, Tukuda M, Yano K (1995) A novel transformation of polychlorinated biphenyls by Rhodococcus sp. strain RHA1. Appl Environ Microbiol 61:3353–3358

    CAS  PubMed Central  PubMed  Google Scholar 

  • Severo LC, Petrillo VF, Coutinho LM (1987) Actinomycetoma caused by Rhodococcus spp. Mycopathologica 98:129–131

    Article  CAS  Google Scholar 

  • Seviour RJ, Nielsen PH (2010) Microbial ecology of activated sludge. IWA, London

    Google Scholar 

  • Seviour EM, Williams CJ, Seviour RJ, Soddell JA, Lindrea KC (1990) A survey of filamentous bacterial populations from foaming activated sludge plants in eatern states of Australia. Water Res 24:493–498

    Article  CAS  Google Scholar 

  • Seviour RJ, Kragelund C, Kong Y, Eales K, Nielsen JL, Nielsen PH (2008) Ecophysiology of Actinobacteria in activated sludge systems. Antonie van Leeuwenhoek 94:21–33

    Article  PubMed  Google Scholar 

  • Sezgin M, Lechevalier MP, Carr PR (1988) Isolation and identification of actinomycetes present in activated sludge scum. Water Sci Technol 20:257–263

    CAS  Google Scholar 

  • Sfanos K, Harmody D, Dang P, Ledger A, Pomponi S, McCarthy P, Lopez J (2005) A molecular systematic survey of cultured microbial associates of deep-water marine invertebrates. Syst Appl Microbiol 28:242–264

    Article  CAS  PubMed  Google Scholar 

  • Shao Z, Dick WA, Benki RM (1995) An improved Escherichia coliRhodococcus shuttle vector and plasmid transformation in Rhodococcus spp. using electroporation. Lett Appl Microbiol 21:261–266

    Article  CAS  PubMed  Google Scholar 

  • Shaw Z, Dick WA, Benki RM (1999) An improved Esherichia coli-Rhodococcus shuttle vector and plasmid transformation in Rhodococcus spp. using electroporation. Lett Appl Microbiol 21:261–266

    Article  Google Scholar 

  • Shaw NM, Robins KT, Kiener A (2003) Lonza: 20 years of biotransformation. Adv Synth Catal 345:425–435

    Article  CAS  Google Scholar 

  • Shawar RM, Moore DG, Larocco MT (1990) Cultivation of Nocardia spp. on chemically defined media for selective recovery of isolates from clinical specimens. J Clin Microbiol 28:508–512

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shen FT, Lu HL, Lin JL, Huang WS, Arun AB, Young CC (2006a) Phylogenetic analysis of members of the metabolically diverse genus Gordonia based on proteins encoding the gyrB gene. Res Microbiol 157:367–375

    Article  CAS  PubMed  Google Scholar 

  • Shen F-T, Goodfellow M, Jones AL, Chen Y-P, Arun AB, Lai WA, Rekha PD, Young CC (2006b) Gordonia soli sp. nov., a novel actinomycete isolated from soil. Int J Syst Evol Microbiol 56:2597–2601

    Article  CAS  PubMed  Google Scholar 

  • Shen M, Fang P, Xu D, Zhang Y, Cao W, Zhu Y, Zhao J, Qin Z (2006c) Replication and inheritance of Nocardia plasmid pC1. FEMS Microbiol Lett 261:47–52

    Article  CAS  PubMed  Google Scholar 

  • Shibayama Y, Dabbs ER (2011) Phage as a source of antibacterial genes. Bacteriophage 14:195–197

    Article  Google Scholar 

  • Shibayama Y, Dabbs ER, Yazawa K, Mikami Y (2011) Functional analysis of a small cryptic plasmid p YS1 from Nocardia. Plasmid 66:26–37

    Article  CAS  PubMed  Google Scholar 

  • Shigemori H, Sato H, Tanaka H, Yazawa K, Mikami Y, Kobayashi J (1996) Brasilinolide A, a new immunosuppressive macrolide from actinomycete, Nocardia brasiliensis. Tetrahedron 52:9031–9034

    Article  CAS  Google Scholar 

  • Shigemori H, Komaki H, Yazawa K, Mikami T, Nemoto A, Tanaka Y, Sasaki T (1998) Brasilicardin A. A novel tricyclic metabolite with potent immunosuppressive activity from actinomycete Nocardia brasiliensis. J Org Chem 63:6900–6904

    Article  CAS  PubMed  Google Scholar 

  • Shirling EB, Gottlieb D (1966) Methods for characterization of Streptomyces species. Int J Syst Bacteriol 16:313–340

    Article  Google Scholar 

  • Skerman VBD (1968) A new type of micromanipulator and microforge. J Gen Microbiol 54:287–297

    Article  CAS  PubMed  Google Scholar 

  • Soddell JA, Seviour RJ (1990) Microbiology of foaming in activated sludge plants. J Appl Bacteriol 69:145–176

    Article  CAS  Google Scholar 

  • Soddell JA, Seviour RJ (1994) Incidence and morphological variability of Nocardia pinensis in Australian activated sludge plants. Water Res 28:2343–2351

    Article  Google Scholar 

  • Soddell JA, Seviour RJ (1996) Growth of an activated sludge foam forming bacterium, Nocardia pinensis on hydrophobic substrates. Water Sci Technol 34:113–118

    Article  CAS  Google Scholar 

  • Soddell JA, Seviour RJ (1998) Numerical taxonomy of Skermania piniformis and related isolates from activated sludge. J Appl Microbiol 84:272–284

    Article  Google Scholar 

  • Soddell JA, Knight G, Strachan W, Seviour R (1992) Nocardioforms not Nocardia foams. Water Sci Technol 26:455–460

    CAS  Google Scholar 

  • Soddell JA, Seviour RJ, Stratton HM (1993) Foaming in activated sludge systems. In: Jenkins D, Ranadori R, Angolani L (eds) Prevention and control of bulking activated sludge. Centro “Luigi Bazzucchi” Dipartmento di Studi Territoriali ed Ambientali, Perugia, pp 115–132

    Google Scholar 

  • Soddell JA, Stainsby FM, Eales KL, Kroppenstedt RM, Seviour RJ, Goodfellow M (2006a) Millisia brevis gen. nov., sp. nov., an actinomycete isolated from activated sludge foam. Int J Syst Evol Microbiol 56:739–744

    Article  CAS  PubMed  Google Scholar 

  • Soddell JA, Stainsby KL, Eales RJ, Seviour RJ, Goodfellow M (2006b) Gordonia defluvii sp. nov. an actinomycete from activated sludge foam. Int J Syst Evol Microbiol 56:2265–2269

    Article  CAS  PubMed  Google Scholar 

  • Soedarmanto I, Oliveira R, Lammler C, Durling H (1997) Identification and epidemiological relationship of Rhodococcus equi isolated from cases of lymphadenitis in cattle. Zentralb Bakteriol 286:457–467

    Article  CAS  Google Scholar 

  • Sőhngen NL (1913) Benzin, Petroleum, Paraffinől und Paraffin also Kohlenstoffund Energie quelle für Mikroben. Zentralbl Bakteriol 37:595–609

    Google Scholar 

  • Srinivasan S, Park G, Yang H, Bae Y, Jung Y-A, Kim MK, Lee M (2012) Gordonia caeni sp. nov., isolated from sludge from a sewage disposal plant. Int J Syst Evol Microbiol 62:2703–2709

    Article  CAS  PubMed  Google Scholar 

  • Stach JEM, Maldonado LA, Ward AC, Bull AT, Goodfellow M (2004) Williamsia maris sp. nov., a novel actinomycete isolated from the Sea of Japan. Int J Syst Evol Microbiol 54:191–194

    Article  CAS  PubMed  Google Scholar 

  • Stackebradnt E, Goebel BM (1994) Taxonomic note: a place for DNA:DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44:846–849

    Article  Google Scholar 

  • Stackebrandt E, Ebers J (2006) Taxonomic parameters revisited: tarnished gold standards. Microbiol Today 33:152–155

    Google Scholar 

  • Stackebrandt E, Smida J, Collins MD (1988) Evidence of phylogenetic heterogeneity within the genus Rhodococcus: revival of the genus Gordona Tsukamura. J Gen Appl Microbiol 34:341–348

    Article  Google Scholar 

  • Stackebrandt E, Rainey FA, Ward-Rainey NL (1997) Proposal for a new hierarchic classification system, Actinobacteria classis nov. Int J Syst Bacteriol 47:479–491

    Article  Google Scholar 

  • Stainsby FM, Soddell J, Seviour R, Upton J, Goodfellow M (2002) Dispelling the Nocardia amarae myth: a phylogenetic and phenotypic study of mycolic acid-containing actinomycetes isolated from activated sludge foam. Water Sci Technol 46:81–90

    CAS  PubMed  Google Scholar 

  • Stange PR, Jeffries D, Young C, Scott DB, Eason JR, Jameson PE (1996) PCR amplification of the fas-1 gene the detection of virulent strains of Rhodococcus fascians. Plant Pathol 45:407–417

    Article  CAS  Google Scholar 

  • Stark DA, Anderson NG (1990) A case control study of Nocardia mastitis in Ontario dairy herds. Can Vet J 31:197–201

    CAS  PubMed Central  PubMed  Google Scholar 

  • Steingrübe VA, Brown BA, Gibson JL, Wilson RW, Brown J, Blacklock Z, Jost K, Locke S, Ulrich RF, Wallace RJ Jr (1995) DNA amplification and restriction endonuclease analysis for the differentiation of 12 species of taxa of Nocardia, including recognition of four new taxa within the Nocardia asteroides complex. J Clin Microbiol 33:3096–3101

    PubMed Central  PubMed  Google Scholar 

  • Steingrübe VA, Wilson RW, Brown BA, Just KC Jr, Blacklock Z, Gilson JL, Wallace RC Jr (1997) Rapid identification of clinically significant species and taxa of aerobic actinomycetes, including Actinomadura, Gordonia, Nocardia, Rhodococcus, Streptomyces and Tsukamurella isolates by DNA amplification and restriction analysis. J Clin Microbiol 35:817–822

    PubMed Central  PubMed  Google Scholar 

  • Stevens DA, Pier AC, Beaman BL, Morozumi PA, Lovett IS, Huang E (1981) Laboratory evaluation of an outbreak of nocardiosis in immunocompromised hosts. Am J Med 71:928–934

    Article  CAS  PubMed  Google Scholar 

  • Stratton HN, Brooks PR, Seviour RJ (1999) Analysis of the structural diversity of mycolic acids of Rhodococcus and Gordonia (correction of Gordona) isolates from activated sludge foams by selective ion monitoring-gas-chromatography-mass spectrometry (SIM GC-MS). J Microbiol Methods 35:53–63

    Article  CAS  PubMed  Google Scholar 

  • Strecker C, Johann A, Herzberg C, Averhoff B, Gottschalk G (2003) Complete nucleotide sequence and genetic organization of the 210-kilobase linear plasmid of Rhodococcus erythropolis BD2. J Bacteriol 185:5269–5274

    Article  CAS  Google Scholar 

  • Summer EJ, Liu M, Gill JJ, Grant M, Chan-Cortes TN, Ferguson L, Janes C, Lange K, Bertoli M, Moore C, Orchard RC, Cohen ND, Young R (2011) Genome and functional analyses of Rhodococcus equi phages Req:Pepy6, Req:Poco6, Req:Pine5 and Req:DocB7. Appl Environ Microbiol 77:669–683

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sun W, Zhang YQ, Huang Y, Zhang YQ, Yang ZY, Lui ZH (2009) Nocardia jinanensis sp. nov., an amicoumacin β-producing actinomycete. Int J Syst Evol Microbiol 59:417–420

    Article  CAS  PubMed  Google Scholar 

  • Sutcliffe IC (1998) Cell envelope composition and organisation in the genus Rhodococcus. Antonie van Leeuwenhoek 74:49–58

    Article  CAS  PubMed  Google Scholar 

  • Sutcliffe IC, Brown AK, Dover LG (2010) The rhodococcal cell envelope: composition, organisation and biosynthesis. In: Alvarez HM (ed) Biology of Rhodococcus. Springer, Berlin, pp 23–71

    Google Scholar 

  • Ta-Chen L, Chang TS, Young CC (2008) Exopolysaccharides produced by Gordonia alkanivorans enhances bacterial degradation activity for diesel. Biotechnol Lett 30:1201–1206

    Article  PubMed  CAS  Google Scholar 

  • Takai S, Narita K, Ando K, Tsubaki S (1986) Ecology of Rhodococcus (Corynebacterium) equi in soil and a horse-breeding farm. Vet Microbiol 2:169–177

    Article  Google Scholar 

  • Takai S, Sekizaki T, Ozawa T, Sugawara T, Watanabe Y, Tsubaki S (1991a) An association between a large plasmid and 15- to 17- kilodalton antigens in virulent Rhodococcus equi. Infect Immun 59:4056–4060

    CAS  PubMed Central  PubMed  Google Scholar 

  • Takai S, Kocke K, Ohbushi S, Izuni C, Tsubaki S (1991b) Identification of 15-17-kilodalton antigens associated with virulent Rhodococcus equi. J Clin Microbiol 29:439–443

    CAS  PubMed Central  PubMed  Google Scholar 

  • Takai S, Sasak Y, Tsubaki S (1995) Rhodococcus equi infection in foals—current concepts and implications for future research. J Equine Sci 6:105–119

    Article  Google Scholar 

  • Takai S, Martens RJ, Julian A, Ribeiro MG, de Farias MR, Sasaki Y, Inuzuka K, Kakuda T, Tsubaki S, Prescott JF (2003) Virulence of Rhodococcus equi isolates from cats and dogs. J Clin Microbiol 41:4468–4471

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Takai S, Zhuang D, Huo XW, Madarane H, Gao MH, Tan ZT, Gao SC, Yan LJ, Guo M, Zhou XF, Hatori F, Sasaki Y, Kakuda T, Tsubaki S (2006) Rhodococcus equi in the soil environment of horses in Inner Mongolia, China. J Vet Med Sci 68:739–742

    Article  PubMed  Google Scholar 

  • Takaichi S, Maoka T, Akimoto N, Carmona ML, Yanaoka Y (2008) Carotenoids in a Corynebacteriaceae, Gordonia terrae A1ST-1: carotenoid glycosyl mycolyl esters. Biosci Biotechnol Biochem 72:2615–2622

    Article  CAS  PubMed  Google Scholar 

  • Takao S, Shoda M, Sasaki Y, Tsubaki S, Fortier G, Provost S, Rahal K, Begg T, Browning G, Nicholson VM, Prescott JF (1999) Restriction fragment length polymorphisms of virulence plasmids in Rhodococcus equi. J Clin Microbiol 37:3417–3420

    Google Scholar 

  • Takeuchi M, Hatano K, Sedlâcez I, Pácová Z (2002) Rhodococcus jostii sp. nov., isolated from a medieval grave. Int J Syst Evol Microbiol 52:409–412

    CAS  PubMed  Google Scholar 

  • Takeuchi S, Maoka T, Akimoto N, Carmona ML, Yamaoka Y (2008) Carotenoids in a Corynebacteriaceae Gordonia terrae AIST-3: carotenoid glycosyl mycolyl esters. Biosci Biotechnol Biochem 72:2615–2622

    Article  CAS  Google Scholar 

  • Taki H, Syutsubo K, Mattinson R, Harayana S (2007) Identification and characterization of o-xylene-degrading Rhodococcus spp. which were dominant species in the remediation of o-xylene-contaminated soils. Biodegration 18:17–26

    Article  CAS  Google Scholar 

  • Tan GYA, Goodfellow M (2012) Genus V. Amycolatopsis Lechevalier, Prauser, Labeda and Ruan 1986 34VP emend. Lee 2009, 1403. In: Goodfellow M, Kämpfer P, Busse HJ, Trujillo ME, Suzuki K-I, Ludwig W, Whitman WB (eds) Bergey’s manual of systematic bacteriology, vol 5, 2nd edn, The Actinobacteria, Part B. Springer, New York, pp 1334–1358

    Google Scholar 

  • Tanaka Y, Komaki H, Yazawa K, Mikami Y, Nemoto A, Kadowski K, Shigemori H, Kobayashi J (1997a) A new macrolide antibiotic produced by Nocardia brasiliensis producing strain, isolation and biological activity. J Antibiot 50:1036–1041

    Article  CAS  PubMed  Google Scholar 

  • Tanaka Y, Gráfe U, Yazawa K, Mikami Y, Ritzau M (1997b) Nocardicyclins A and B: new anthracycline antibiotics produced by Nocardia pseudobrasiliensis. J Antibiot 50:822–827

    Article  CAS  PubMed  Google Scholar 

  • Tao I, Picataggio S, Rouviere PE, Cheng Q (2004) Asymmetrically acting hycopene β-cyclases (Crt Lm) from non-photosynthetic bacteria. Mol Genet Genomics 271:18–188

    Article  CAS  Google Scholar 

  • Tao L, Wagner LW, Rouviere PE, Cheng Q (2006) Metabolic engineering for synthesis of aryl carotenoids in Rhodococcus. Appl Microbiol Biotechnol 70:222–228

    Article  CAS  PubMed  Google Scholar 

  • Tao F, Zhao P, Li O, Su F, Yu B, Ma C, Tang H, Tai C, Wu G, Xu P (2011) Genome sequence of Rhodococcus erythropolis XP, a biodesulfurizing bacterium with industrial potential. J Bacteriol 193:6422–6423

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tárnok I (1976) Metabolism in nocardiae and related bacteria. In: Goodfellow M, Brownell GH, Serrano JA (eds) Biology of Nocardiae. Academic, New York, pp 451–460

    Google Scholar 

  • Temmerman W, Vereecke D, Dreesen R, van Montagu M, Holsters M, Goethals K (2000) Leafy gall formation is controlled by fasR an AraC-type regulatory gene in Rhodococcus fascians. J Bacteriol 182:5832–5840

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Thomas JA, Soddell JA, Kurtbőke DI (2002) Fighting foams with phages. Water Sci Technol 46:511–518

    CAS  PubMed  Google Scholar 

  • Thompson KT, Rocker FH, Frederickson HL (2005) Mineralization of the cyclic nitramine explosive hexahydro-1,3,5-trinitro-1,3,5-trazine in Gordonia and Williamsia spp. Appl Environ Microbiol 71:8265–8272

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tiwari K, Gupta RK (2012a) Diversity and isolation of rare actinomycetes: an overview. Crit Rev Microbiol 39:256–294

    Article  PubMed  Google Scholar 

  • Tiwari K, Gupta RK (2012b) Rare actinomycetes: a potential storehouse for novel antibiotics. Crit Rev Biotechnol 32:108–132

    Article  CAS  PubMed  Google Scholar 

  • Tkachuk-Saad O, Prescott J (1991) Rhodococcus equi—plasmids: isolation and partial characterization. J Clin Microbiol 29:2696–2700

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tkachuk-Saad O, Lusis P, Welsh RD, Prescott JF (1998) Rhodococcus equi infections of goats. Vet Res 143:311–312

    CAS  Google Scholar 

  • Tomiyasu I (1982) Mycolic acid composition and thermally adaptive changes in Nocardia asteroides. J Bacteriol 151:828–837

    CAS  PubMed Central  PubMed  Google Scholar 

  • Torres OH, Domingo P, Pericas R, Boiron P, Montiel JA, Vesquez G (2000) Infection caused by Nocardia farcinica: case report and review. Eur J Clin Microbiol Infect Dis 19:205–212

    Article  CAS  PubMed  Google Scholar 

  • Toyooka K, Takai S, Korikae T (2005) Rhodococcus equi can survive a phagosomal environment in macrophages by suppressing acidification of the phagolysosome. J Med Microbiol 54:1007–1015

    Article  CAS  PubMed  Google Scholar 

  • Trevino-Villareal JH, Vera-Cabrera L, Valero-Guillén PL, Salinas-Carmona MC (2012) Nocardia brasiliensis cell wall lipids modulate macrophage and dendritic responses that favour development of experimental mycetoma in BALBc mice. Infect Immun 80:2587–3601

    Article  CAS  Google Scholar 

  • Trevisan V (1889) I Generi e le Specie delle Batteriacee. Zanaboni and Gabuzzi, Milano

    Google Scholar 

  • Tsuda M, Sato H, Tanaka Y, Yazawa G, Mikami V, Sasaki T, Kobayashi J (1996a) Brasiliquinones A-C, new cytotoxic benz [a] anthraquinones with an ethyl group at C-3 from actinomycete Nocadia brasiliensis. J Chem Soc Perkin Trans 1:1773–1775

    Article  Google Scholar 

  • Tsuda M, Sato H, Tanaka Y, Yazawa K, Mikami Y, Sasaki T, Kobayashi J (1996b) Brasiliquinones A C, new cytotoxic benz [a] anthraquinone with an ethyl group at C-3 from actinomycete Nocardia brasiliensis. J Chem Soc Perkin Trans 1:1773–1775

    Article  Google Scholar 

  • Tsuda M, Nemoto A, Komaki H, Tanaka Y, Yazawa K, Mikami Y, Kobayashi J (1999) Nocarasins A-C and brasiliquinone D, new metabolites from the actinomycete Nocardia brasiliensis. J Nat Prod 62:1640–1642

    Article  CAS  Google Scholar 

  • Tsuda M, Yamakawa M, Oka S, Tanaka Y, Hishino Y, Mikami Y, Sato A, Fujiwara T, Ohizumi Y, Kobayashi J (2005) Brasilibactin A, a cytotoxic compound from actinomycete Nocardia brasiliensis. J Nat Prod 68:462–464

    Article  CAS  PubMed  Google Scholar 

  • Tsukamura M (1971) Proposal of a new genus, Gordona, for slightly acid-fast organisms occurring in sputa of patients with pulmonary disease and in soil. J Gen Microbiol 68:15–26

    Article  CAS  PubMed  Google Scholar 

  • Tsukamura M, Komatsuzaki C, Sakai R, Kaneda K, Kudo T, Seino A (1988) Mesenteric lymphadenitis of swine caused by R. sputi. J Clin Microbiol 26:155–157

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tuleva B, Christova N, Cohen R, Stoev G, Stoineva I (2008) Production and structural elucidation of trehalose telraesters (biosurfactants) from a novel alkanothropic Rhodococcus wratislaviensis strain. J Appl Microbiol 104:1703–1710

    Article  CAS  PubMed  Google Scholar 

  • Uchida K, Aida K (1979a) Taxonomic significance of cell-wall acyl type in Corynebacterium. Mycobacterium, Nocardia group by a glycolate test. J Gen Appl Microbiol 25:169–183

    Article  CAS  Google Scholar 

  • Uchida K, Aida K (1979b) Intra- and intergenic relationships of various actinomycete strains based on the acyl types of the muramyl residue in cell wall peptidoglycans examined in a glycolate test. Int J Syst Bacteriol 47:182–190

    Article  Google Scholar 

  • Uchida K, Seino A (1997) Intra- and intergeneric relationships of various actinomycete strains based on the acyl types of the muramyl residue in cell wall peptidoglycans examined in the glycolate test. Int J Syst Bacteriol 47:182–190

    Article  CAS  Google Scholar 

  • Uchida K, Kudo T, Suzuki K, Nakase T (1999) A new rapid method of glycolate test by diethyl ether extraction which is applicable to a small amount of bacterial cells less than one milligram. J Gen Appl Microbiol 45:49–56

    Article  CAS  PubMed  Google Scholar 

  • Uz I, Duan YP, Ogram A (2000) Characterization of the naphthalene-degrading bacterium. Rhodococcus opacus M213. FEMS Microbiol Lett 185:231–238

    Article  CAS  PubMed  Google Scholar 

  • van de Sande WWJ (2013) Global burden of human mycetoma: a systemic review and meta-analysis. PloS Negl Trop Dis (submitted)

    Google Scholar 

  • van de Sande WWJ, Fahal AH, Goodfellow M, Maghoub ES, Welsh O, Zijistra E (2013a) The merits and pitfalls of the currently used diagnostic tools in mycetoma. PLoS Negl Trop Dis (submitted)

    Google Scholar 

  • van de Sande WWJ, Magoub ES, Fahal AH, Goodfellow M, Welsh O, Zijlstra E (2013b) The mycetoma knowledge gap. PLoS Negl Trop Dis (submitted)

    Google Scholar 

  • van der Geize R, Dijkhuizen L (2004) Harnessing the catabolic diversity of rhodococci in environmental biotechnological applications. Curr Opin Microbiol 7:255–261

    Article  PubMed  CAS  Google Scholar 

  • Vásquez-Boland JA, Letek M, Valero-Rello A, González P, Scortti M, Fogarty U (2010) Rhodococcus equi and the pathogenic mechanisms. In: Alvarez HM (ed) Biology of Rhodococcus. Springer, Berlin, pp 331–359

    Google Scholar 

  • Venner M, Heyers P, Strutzberg-Minder K, Lorenz W, Verspohl J, Klug E (2007) Detection of Rhodococcus equi by microbiological culture and by polymerase chain reaction in samples of tracheobronchial sections of foals. Berl Munch Tierarztl Wochenschr 120:126–133

    CAS  PubMed  Google Scholar 

  • Vera-Cabrera L, Gonzalez E, Choi SH, Welsh O (2004) In vitro activities of new antimicrobials against Nocardia brasiliensis. Antimicrob Agents Chemother 48:602–604

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Vera-Cabrera L, Ortiz-Lopez R, Elizando-Gonzalez R, Perez-Maya AA, Ocampo-Candiani J (2012) Complete genome sequence of Nocardia brasiliensis HUJEJ-1. J Bacteriol 94:2761–2762

    Article  CAS  Google Scholar 

  • Vera-Cabrera L, Ortiz-Lopez R, Elizando-Gonzalez R, Ocampo-Candiani J (2013) Complete genome sequence analysis of Nocardia brasiliensis HUJEG-1 reveals a saprobic lifestyle and the genes needed for human pathogenesis. PLoS One 8:c65425

    Article  CAS  Google Scholar 

  • Vereecke D (1997) Leafy gall induction by Rhodococcus fascians. PhD thesis, University of Ghent, Ghent

    Google Scholar 

  • Vereeke D, Burssens S, Simon-Mateo C, Inze D, Van Montague M, Goethals K, Jaziri M (2000) The Rhodococcus fascians interaction: morphological traits and biotechnological applications. Plant 210:241–251

    Article  Google Scholar 

  • Verma P, Brown JM, Nunez VH, Morey RE, Steigerwalt AG, Pellegrini GJ, Kessler HA (2006) Native valve endocarditis due to Gordonia polyisoprenivorans: case report and review of literature of blood stream infections caused by Gordonia species. J Clin Microbiol 44:1905–1908

    Article  PubMed Central  PubMed  Google Scholar 

  • Von Graevenitz A, Punter-Streit V (1995) Development of a new selective plating medium for Rhodococcus equi. Microbiol Immunol 39:284

    Google Scholar 

  • Wallace RJ Jr, Wiss K, Curvey R, Vance PH, Steadham J (1983) Differences among Nocardia spp. in susceptibility to aminoglycosides and β-lactam antibiotics and their potential use in taxonomy. Antimicrob Agents Chemother 23:19–21

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wang Y, Zhang Z, Ruan J, Wang Y, Ali S (1999) Investigations of actinomycete diversity in the tropical rainforests of Singapore. J Clin Microbiol 23:178–187

    CAS  Google Scholar 

  • Wang L, Zhang Y, Lu Z, Shi Y, Liu Z, Maldonado L, Goodfellow M (2001) Nocardia beijingensis sp. nov., a novel isolate from soil. Int J Syst Evol Microbiol 51:1783–1788

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Xu J, Li Y, Wang K, Wang Y, Lund WJ, Li S-P (2010) Rhodococcus jialingiae sp. nov., an actinobacterium isolated from sludge of a carbendazum wastewater treatment facility. Int J Syst Evol Microbiol 60:378–381

    Article  CAS  PubMed  Google Scholar 

  • Warhurst AM, Fewson CA (1994) Biotransformations catalyzed by the genus Rhodococcus. Crit Rev Biotechnol 14:29–73

    Article  CAS  PubMed  Google Scholar 

  • Warneke S, Arenskőtter M, Tanberge KB, Steinbűchel A (2007) Bacterial degradation of poly/trans-1,4-isoprene (gulta percha). Microbiology (SGM) 153:347–356

    Article  CAS  Google Scholar 

  • Warren R, Hsiao WWL, Kudo H, Myhre M, Dosanjh M, Petrescu A, Kobayashi H, Shimizu S, Miyauchi K, Masai E, Yang G, Stott JM, Schein JE, Shin H, Khattra J, Smailus D, Butterfield YS, Siddiqui A, Holt R, Marra MA, Jones SJM, Mohn WW, Brinkman FSL, Fukuda M, Davies J, Ellis LD (2004) Functional characterization of a catabolic plasmid from polychlorinated-biphenyl-degrading Rhodococcus sp. RHA1. J Bacteriol 186:7783–7795

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Watson A, French R, Wilson M (2001) Nocardia asteroides native valve endocarditis. Clin Infect Dis 32:660–661

    Article  CAS  PubMed  Google Scholar 

  • Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O, Krichevsky MI, Moore HH, Moore WEC, Murray RGE, Stackebrandt E, Starr MP, Trűper HG (1987) Report of the ad hoc committee on the reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464

    Article  Google Scholar 

  • Weinstock DM, Brown AE (2002) Rhodococcus equi an emerging pathogen. Clin Infect Dis 34:1379–1385

    Article  PubMed  Google Scholar 

  • Wellington EMH, Williams ST (1978) Preservation of actinomycete inoculum in frozen glycerol. Microbiol Lett 6:151–157

    Google Scholar 

  • Werno AM, Anderson TP, Chambers ST, Laird HM, Murdoch DR (2005) Recurrent breast abscess caused by Gordonia branchialis in an immunocompromised patient. J Clin Microbiol 43:3009–3010

    Article  PubMed Central  PubMed  Google Scholar 

  • Weyland H (1969) Actinomycetes in North Sea and Atlantic Ocean sediments. Nature 223:858

    Article  CAS  PubMed  Google Scholar 

  • Williams ST, Sharples GP, Serrano JA, Serrano AA, Lacey J (1976) The micromorphology and fine structure of nocardioform organisms. In: Goodfellow M, Brownell GH, Serrano JA (eds) The biology of Nocardiae. Academic, London, pp 102–140

    Google Scholar 

  • Williams ST, Wellington EMH, Tipler LS (1980) The taxonomic implications of the reactions of representative Nocardia strains to actinophage. J Gen Microbiol 119:173–178

    Google Scholar 

  • Wilson JW (2012) Nocardiosis: updates and clinical overview. Mayo Clin Proc 87:403–407

    Article  PubMed Central  PubMed  Google Scholar 

  • Wilson RW, Steingrűbe VA, Brown BA, Jr. Wallace RJ (1998) Clinical application of PCR-restriction enzyme pattern analysis for rapid identification of aerobic actinomycete isolates. J Clin Microbiol 36:148–152

    CAS  PubMed Central  PubMed  Google Scholar 

  • Withey SE, Cartmell E, Avery LM, Stephenson T (2005) Bacteriophages potential for application in wastewater treatment processes. Sci Total Environ 339:1–18

    Article  CAS  PubMed  Google Scholar 

  • Woolcock JB, Farmer AMT, Mutimer MD (1979) Selective medium for Corynebacterium equi isolation. J Clin Microbiol 9:640–642

    CAS  PubMed Central  PubMed  Google Scholar 

  • Xia H-Y, Tian T-Q, Zhang R, Lin K-C, Qin Z-J (2006) Characterization of Nocardia plasmid pXT107. Acta Biochim Biophys Sin 38:620–624

    Article  CAS  PubMed  Google Scholar 

  • Xing K, Qin S, Fei SM, Lin Q, Bian G-K, Miao Q, Wang Y, Cao C-L, Tang S-K, Jiang J-H, Li W-J (2011) Nocardia endophytica sp. nov., an endophytic actinomycete isolated from the oil-seed plant Jatropha curcas. Int J Syst Evol Microbiol 61:1854–1858

    Article  CAS  PubMed  Google Scholar 

  • Xu L-H, Li Q-R, Jiang C-L (1996) Diversity of soil actinomycetes in Yunnan, China. Appl Environ Microbiol 62:244–248

    CAS  PubMed Central  PubMed  Google Scholar 

  • Xu P, Li WJ, Tang SK, Jiang Y, Chen HH, Xu LH, Jiang CL (2005) Nocardia polyresistens sp. nov. Int J Syst Evol Microbiol 55:1465–1470

    Article  CAS  PubMed  Google Scholar 

  • Xu P, Li WJ, Tang SK, Jiang Y, Gao HY, Xu LH, Jiang CL (2006) Nocardia lijiangensis sp. nov., a novel actinomycete strain isolated from soil in China. Syst Appl Microbiol 29:308–314

    Article  PubMed  Google Scholar 

  • Xu J-L, He J, Wang Z-C, Wang K, Li W-J, Tang S-K, Li S-P (2007) Rhodococcus qingshengii sp. nov., a carbendazim-degrading bacterium. Int J Syst Evol Microbiol 57:2754–2757

    Article  CAS  PubMed  Google Scholar 

  • Xu L, Gao Z, Luo M, Cheng Y, Jin J (2011) Isolation and identification of a pyrene-degrading bacterium

    Google Scholar 

  • Xue Y, Sun X, Zhou P, Liu R, Liang F, Ma Y (2003) Gordonia parafinovorans sp. nov., a hydrocarbon-degrading actinomycete from an oil-producing well. Int J Syst Evol Microbiol 53:1643–1646

    Article  CAS  PubMed  Google Scholar 

  • Yam KE, van der Geize R, Ellis LD (2010) Catabolism of aromatic compounds and steroids by Rhodococcus. In: Alverez MM (ed) Biology of Rhodococcus. Springer, Berlin, pp 133–169

    Google Scholar 

  • Yamada H, Kobayashi M (1996) Nitrile hydratase and its applications to industrial production of acrylamide. Biosci Biotechnol Biochem 60:1391–4000

    Article  CAS  PubMed  Google Scholar 

  • Yamamura H, Hayakawa M, Iimura Y (2003a) Application of sucrose-gradient centrifugation for the selective isolation of Nocardia spp. from soil. J Appl Microbiol 95:677–685

    Article  CAS  PubMed  Google Scholar 

  • Yamamura H, Hayakawa M, Nakagawa Y, Iimura Y (2003b) Species diversity of nocardiae isolated from lake and moat sediment samples. Actinomycetologica 17:44–46

    Article  CAS  Google Scholar 

  • Yamamura H, Hayakawa M, Nakagawa Y, Tamura T, Kohno T, Komatsu T, Iimura Y (2005) Nocardia takedensis sp. nov., isolated from moat sediment and scumming activated sludge. Int J Syst Evol Microbiol 55:433–436

    Article  CAS  PubMed  Google Scholar 

  • Yamamura H, Tamura T, Sakiyama Y, Harayama S (2007) Nocardia amamiensis sp. nov., isolated from a sugar-cane field in Japan. Int J Syst Evol Microbiol 57:1599–1602

    Article  PubMed  Google Scholar 

  • Yang JC, Lessard PA, Sinskey AJ (2007a) Characterization of the mobilization determinents of pAN12, a small replicon from Rhodococcus erythropolis AN12. Plasmid 57:71–81

    Article  CAS  PubMed  Google Scholar 

  • Yang JC, Lessard PA, Sengupta N, Windsor SD, O’Brien XM, Bramucci M, Tomb JF, Nagarajan V, Sinskey AJ (2007b) TraA is required for megaplasmid conjugation in Rhodococcus erythropolis—AN12. Plasmid 57:55–70

    Article  CAS  PubMed  Google Scholar 

  • Yang X, Xue R, Shen C, Li S, Gao C, Wang Q, Zhao X (2011) Genome sequence of Rhodococcus sp. strain RO4, a polychlorinated-biphenyl biodegrader. J Bacteriol 193:5032–5033

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yano I, Imaeda T, Tsukamura M (1990) Characterization of Nocardia nova. Int J Syst Bacteriol 40:170–174

    Article  Google Scholar 

  • Yarza P, Wolfgang L, Euzéby J, Amann R, Schleifér KH, Glóckner FO, Roselló-Mora R (2010) Update of the all-species living tree project based on 16S and 23S rRNA sequence analyses. Syst Appl Microbiol 33:291–299

    Article  CAS  PubMed  Google Scholar 

  • Yassin AF (2005) Rhodococcus triatomae sp. nov., isolated from a blood-sucking bug. Int J Syst Evol Microbiol 55:1576–1579

    Google Scholar 

  • Yassin AF, Brenner S (2005) Nocardia elegans sp. nov., a member of the Nocardia vaccinii clade isolated from sputum. Int J Syst Evol Microbiol 55:1505–1509

    Article  CAS  PubMed  Google Scholar 

  • Yassin AF, Hupfer H (2006) Williamsia deligens sp. nov., isolated from human blood. Int J Syst Evol Microbiol 56:192–197

    Google Scholar 

  • Yassin AF, Rainey FA, Mendrock U, Brzezinka H, Schaal KP (2000) Nocardia abscessus sp. nov. Int J Syst Evol Microbiol 50:1487–1493

    Article  CAS  PubMed  Google Scholar 

  • Yassin AF, Rainey FA, Steiner U (2001a) Nocardia cyriacigeorgica sp. nov. Int J Syst Evol Microbiol 51:1419–1423

    Article  CAS  PubMed  Google Scholar 

  • Yassin AF, Rainey FA, Steiner U (2001b) Nocardia ignorata sp. nov. Int J Syst Evol Microbiol 51:2127–2131

    Article  CAS  PubMed  Google Scholar 

  • Yassin AF, Straubler B, Schumann P, Schaal KP (2003) Nocardia puris sp. nov. Int J Syst Evol Microbiol 53:1595–1599

    Article  CAS  PubMed  Google Scholar 

  • Yassin AF, Young CC, Lai WA, Hupfer H, Arun AB, Shen F-T, Rekka PD, Ho M-J (2007) Williamsia serinedens sp. nov., isolated from an oil contaminated soil. Int J Syst Evol Microbiol 57:558–561

    Article  CAS  PubMed  Google Scholar 

  • Yoon JH, Lee JJ, Kang SS, Takeuchi M, Shin YK, Lee ST, Kang KH, Park YH (2000a) Gordonia nitida sp. nov., a bacterium that degrades 3-ethylpyridine and 3-methylpyridine. Int J Syst Evol Microbiol 50:1203–1210

    Article  CAS  PubMed  Google Scholar 

  • Yoon J-H, Cho Y-G, Kang S-S, Kim SB, Lee ST, Park Y-H (2000b) Rhodococcus koreensis sp. nov., a 2, 4-dinitrophenol-degrading bacterium. Int J Syst Evol Microbiol 50:1193–1201

    Article  CAS  PubMed  Google Scholar 

  • Yoon JH, Kang S-S, Cho Y-G, Lee ST, Kho VH, Kim C-J, Park Y-H (2000c) Rhodococcus pyridenivorans sp. nov. a pyridine-degrading bacterium. Int J Syst Evol Microbiol 50:2173–2180

    Article  CAS  PubMed  Google Scholar 

  • Yoshimoto T, Nagai F, Fujomoto J, Watanabe K, Mizukoshi H, Makimo T, Kumura K, Saino H, Sawada H, Omura H (2004) Degradation of oestrogens by Rhodococcus zopfii and Rhodococcus equi isolates from activated sludge in water treatment plants. Appl Environ Microbiol 70:5283–5289

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Young LS, Armstrong D, Blevins A, Liberman P (1971) Nocardia asteroides infection complicating neoplastic disease. Am J Med 50:356–367

    Article  CAS  PubMed  Google Scholar 

  • Yu B, Xu P, Shi Q, Ma C (2006) Deep desulfurization of diesel oil and crude oils by a newly isolated Rhodococcus erythropolis strain. Appl Environ Microbiol 72:54–58

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zardawi IM, Jones F, Clark DA, Holland J (2004) Gordonia terrae-induced suppurative granulated mastitis following nipple piercing. Pathology 36:275–278

    Article  PubMed  Google Scholar 

  • Zhang J, Zhang Y, Xiao C, Liu Z, Goodfellow M (2002) Rhodococcus maanshanensis sp. nov., a novel actinomycete from soil. Int J Syst Evol Microbiol 52:2121–2126

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Liu Z, Goodfellow M (2003) Nocardia caishijensis sp. nov., a novel soil actinomycete. Int J Syst Evol Microbiol 53:999–1004

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Liu Z, Goodfellow M (2004) Nocardia xishanensis sp. nov., a novel actinomycete isolated from soil. Int J Syst Evol Microbiol 54:2301–2305

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y–Q, Li W-J, Kroppenstedt RM, Kim C-J, Chen G-Z, Park DJ, Xu L-H, Jiang C-L (2005) Rhodococcus yunnanensis sp. nov. actinobacterium isolated from forest soil. Int J Syst Evol Microbiol 55:1133–1137

    Article  CAS  PubMed  Google Scholar 

  • Zhang Q, Tong MY, Li YS, Gao HJ, Fang XC (2007) Extensive desulfurization of diesel by Rhodococcus erythropolis. Biotechnol Lett 29:123–127

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Qin F, Qiao J, Li G, Shen C, Huang T, Hu Z (2012) Draft genome sequence of Rhodococcus strain P14, a biodegrader of high-molecular-weight polycyclic aromatic hydrocarbons. J Bacteriol 194:3546

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhao G-Z, Li J, Zhu W-Y, Tian S-Z, Zhao L-X, Yang LL, L-H X, Li W-J (2011) Nocardia artemisiae sp. nov., an endophytic actinobacterium isolated from a surface sterilized stem of Artemesia annua L. Int J Syst Evol Microbiol 61:2933–2937

    Article  CAS  PubMed  Google Scholar 

  • Zhi X-Y, Li W-J, Stackebrandt E (2009) An update of the structure and 16S rRNA gene sequence-based definition of higher ranks of the class Actinobacteria, with the proposal of two new suborders and four new families and emended descriptions of the existing higher taxa. Int J Syst Evol Microbiol 59:588–608

    Article  CAS  Google Scholar 

  • Zlotnik H (2007) Reprodućion experimental del en animales de laboratorio. In: Serrano JA, Sandoval AH, Beaman BL (eds) Actinomictoma. Plazaz y Valdez, Mexico City, pp 113–123

    Google Scholar 

  • Zlotnik H, Buckley HR (1980) Experimental production of mycetoma in BALB/c mice. Infect Immun 29:1141–1145

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zopf W (1891) Űber Ausscheidung von Fettarbstoffen (Lipochromen) seitens gessier Spaltpilze. Ber Dt Bot Ges 9:22–28

    Google Scholar 

  • Zoropogui A, Pujic P, Normand P, Barbe V, Beaman B, Beaman L, Boiron P, Colinon C, Deredjian A, Graindorge A, Mangenot S, Nazaret S, Neto M, Petit S, Roche D, Vallanet D, Rodriguez-Nova V, Richard Y, Coumoyer B, Blaha D (2012) Genome sequence of the human—and animal—pathogenic strain Nocardia cyriacigeorgica GUH-2. J Bacteriol 194:2098–2099

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Goodfellow .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Goodfellow, M. (2014). The Family Nocardiaceae . In: Rosenberg, E., DeLong, E.F., Lory, S., Stackebrandt, E., Thompson, F. (eds) The Prokaryotes. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30138-4_404

Download citation

Publish with us

Policies and ethics