Skip to main content

The Family Francisellaceae

  • Reference work entry
  • First Online:
The Prokaryotes

Abstract

The family Francisellaceae Sjöstedt (The proteobacteria, part B. Bergey’s Manual of Systematic Bacteriology. Springer-Verlag, New York, 2005, pp. 200–210), most closely related to Caedibacter taeniospiralis and Fangia hongkongensis, within the Gammaproteobacteria, comprises the single type genus Francisella Olsufjev (J Hyg Epidemiol Microbiol Immunol, 14:67–74, 1970). The genus consists of small (0.7–1.7 μm), nonmotile, Gram-negative (staining faintly), aerobic coccobacilli, which may or may not require additional cysteine (or cystine) for culture, weakly catalase positive, and most (but not all) produce H2S when cultured in cysteine-containing media. Members of the Francisella grow with entire, slightly convex pale white or gray, semitranslucent, mucoid colonies. Incubation time and temperature is dependent on species and strain, but they are relatively slowly growing. Many are capable of facultative intracellular growth. The Francisella have a trans-global distribution, although most isolates have been recovered in the Northern Hemisphere. The type species is F. tularensis, which is further divided into four subspecies, i.e., tularensis, holarctica, mediasiatica, and novicida. Subspecies tularensis and holarctica commonly called biotypes A and B, respectively, can in turn be further divided into several subpopulations based on genetic analysis. F. tularensis causes the disease tularemia in mammalian species and represents a potential category A bioterror weapon. Several members of the genus, e.g., F. noatunensis (subspecies noatunensis and orientalis) and F. halioticida, are highly virulent pathogens of fish and molluscs. These species can be readily distinguished from the remainder of the genus by their lower optimal and cardinal growth temperatures. Despite the relatively small number of described species, an increasing body of evidence exists for the existence of a large and diverse environmental population of as-yet undescribed Francisella species.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 699.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 799.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abd H et al (2003) Survival and growth of Francisella tularensis in Acanthamoeba castellanii. Society 69(1):600–606

    CAS  Google Scholar 

  • Ahlinder J et al (2012) Increased knowledge of Francisella genus diversity highlights the benefits of optimised DNA-based assays. BMC Microbiol 12:220

    PubMed  CAS  PubMed Central  Google Scholar 

  • Ahlund MK et al (2010) Directed screen of Francisella novicida virulence determinants using Drosophila melanogaster. Infect Immun 78(7):3118–3128

    PubMed  PubMed Central  Google Scholar 

  • Aikimbaev M (1966) Taxonomy of Genus Francisella. Rep Acad Sci Kaz SSR Ser Biol 5:42–44

    Google Scholar 

  • Alfjorden A, Jansson E, Johansson K (2006) A systemic granulomatous inflammatory disease in wild Atlantic cod, Gadus morhua associated with a bacterium of the genus Francisella. Dipnet Newslett 44:44, Available at: http://www.revistaaquatic.com/dipnet/newsletters/doc.asp?id=47

  • Alkhuder K et al (2009) Glutathione provides a source of cysteine essential for intracellular multiplication of Francisella tularensis. PLoS Pathog 5(1):e1000284

    PubMed  PubMed Central  Google Scholar 

  • Anthony LD, Burke RD, Nano FE (1991) Growth of Francisella spp. in rodent macrophages. Infect Immun 59(9):3291–3296

    PubMed  CAS  PubMed Central  Google Scholar 

  • Apicella MA et al (2010) Identification, characterization and immunogenicity of an O-antigen capsular polysaccharide of Francisella tularensis. PLoS One 5(7):e11060

    PubMed  PubMed Central  Google Scholar 

  • Arata A et al (1973) First detection of tularaemia in domestic and wild mammals in Iran. Bull World Health Organ 49(6):597–603

    PubMed  CAS  PubMed Central  Google Scholar 

  • Baker CN, Hollis DG, Thornsberry C (1985) Antimicrobial susceptibility testing of Francisella tularensis with a modified Mueller-Hinton broth. J Clin Microbiol 22(2):212–215

    PubMed  CAS  PubMed Central  Google Scholar 

  • Bandara AB et al (2011) Isolation and mutagenesis of a capsule-like complex (CLC) from Francisella tularensis, and contribution of the CLC to F. tularensis virulence in mice. PLoS One 6(4):e19003

    PubMed  CAS  PubMed Central  Google Scholar 

  • Barabote RD et al (2009) Complete genome sequence of Francisella tularensis subspecies holarctica FTNF002-00. PloS one 4(9):e7041, Available at: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2737636&tool=pmcentrez&rendertype=abstract. Accessed 28 Dec 2012

  • Barabote RD et al (2009) Complete genome sequence of Francisella tularensis subspecies holarctica FTNF002-00. PloS one 4(9):e7041, Available at: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3479022&tool=pmcentrez&rendertype=abstract

  • Barns SM et al (2005) Detection of diverse new Francisella-like bacteria in environmental samples. Appl Environ Microbiol 71(9):5494–5500

    PubMed  CAS  PubMed Central  Google Scholar 

  • Baron GS, Nano FE (1998) MglA and MglB are required for the intramacrophage growth of Francisella novicida. Mol Microbiol 29(1):247–259

    PubMed  CAS  Google Scholar 

  • Beckstrom-Sternberg SM et al (2007) Complete genomic characterization of a pathogenic A.II strain of Francisella tularensis subspecies tularensis. PloS one 2(9):e947, Available at: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1978527&tool=pmcentrez&rendertype=abstract. Accessed 21 March 2012

  • Beier CL et al (2002) The genus Caedibacter comprises endosymbionts of Paramecium spp. related to the Rickettsiales (Alphaproteobacteria) and to Francisella tularensis (Gammaproteobacteria). Appl Environ Microbiol 68(12):6043–6050

    PubMed  CAS  PubMed Central  Google Scholar 

  • Berdal BP, Mehl R, Meidell NK, Lorentzen-Styr AM, Scheel O (1996) Field investigations of tularemia in Norway. FEMS Immunol Med Microbiol 3:191–195

    Google Scholar 

  • Bergey DH, Harrison FC, Breed RS, Hammer BW, Huntoon F (1923) Bergey’s manual of determinative bacteriology. A key for the identification of organisms of the class Schizomycetes, 1st edn. Williams & Wilkins, Baltimore

    Google Scholar 

  • Bernard K et al (1994) Early recognition of atypical Francisella tularensis strains lacking a cysteine requirement. J Clin Microbiol 32(2):551–3

    PubMed  CAS  PubMed Central  Google Scholar 

  • Berrada ZL, Telford SR (2010) Diversity of Francisella species in environmental samples from Martha’s Vineyard, Massachusetts. Microb Ecol 59(2):277–283

    PubMed  PubMed Central  Google Scholar 

  • Berrada ZL, Telford Iii SR (2011) Survival of Francisella tularensis type A in brackish-water. Arch Microbiol 193(3):223–226

    PubMed  CAS  PubMed Central  Google Scholar 

  • Bingle LE, Bailey CM, Pallen MJ (2008) Type VI secretion: a beginner’s guide. Curr Opin Microbiol 11(1):3–8

    PubMed  CAS  Google Scholar 

  • Birkbeck TH, Bordevik M, Frøystad MK, Baklien A (2007) Identification of Francisella sp. from Atlantic salmon, Salmo salar L., in Chile. J Fish Dis 30(8):505–507

    PubMed  CAS  Google Scholar 

  • Birkbeck TH, Feist SW, Verner-Jeffreys DW (2011) Francisella infections in fish and shellfish. J Fish Dis 34(3):173–187

    PubMed  CAS  Google Scholar 

  • Biswas S, Raoult D, Rolain J (2008) A bioinformatic approach to understanding antibiotic resistance in intracellular bacteria through whole genome analysis. Int J Antimicrob Agents 32:207–220

    PubMed  CAS  Google Scholar 

  • Bohle H, Tapia E, Martínez A, Rozas M, Figueroa A, Bustos P (2009) Francisella philomiragia, a bacteria associated with high mortalities in Atlantic salmon (Salmo salar) cage-farmed in Llanquihue lake. Arch Med Vet 41:237–244

    CAS  Google Scholar 

  • Brett M, Doppalapudi A, Respicio-Kingry LB et al (2012) Francisella novicida bacteremia after a near-drowning accident. J Clin Microbiol 50(8):2826–2829

    PubMed  PubMed Central  Google Scholar 

  • Brevik OJ et al (2011a) Francisella halioticida sp. nov., a pathogen of farmed giant abalone (Haliotis gigantea) in Japan. J Appl Microbiol 111(5):1044–1056

    PubMed  CAS  Google Scholar 

  • Brevik ØJ, Ottem KF, Nylund A (2011b) Multiple-locus, variable number of tandem repeat analysis (MLVA) of the fish-pathogen Francisella noatunensis. BMC Vet Res 7(1):5

    PubMed  CAS  PubMed Central  Google Scholar 

  • Brittnacher MJ et al (2011) PGAT: a multistrain analysis resource for microbial genomes. Bioinformatics 27(17):2429–2430 (Oxford, England)

    PubMed  CAS  PubMed Central  Google Scholar 

  • Broekhuijsen M et al (2003) Genome-wide DNA microarray analysis of Francisella tularensis strains demonstrates extensive genetic conservation within the species but identifies regions that are unique to the highly virulent F. tularensis subsp. tularensis. J Clin Microbiol 41(7):2924–2931

    PubMed  CAS  PubMed Central  Google Scholar 

  • Broman T et al. (2011) Molecular detection of persistent Francisella tularensis subspecies holarctica in natural waters. Int J Microbiol (5):1–26

    Google Scholar 

  • Bröms JE, Lavander M, Sjöstedt A (2009) A conserved alpha-helix essential for a type VI secretion-like system of Francisella tularensis. J Bacteriol 191(8):2431–2446

    PubMed  PubMed Central  Google Scholar 

  • Bröms JE, Sjöstedt A, Lavander M (2010) The role of the Francisella tularensis pathogenicity island in type VI secretion, intracellular survival, and modulation of host cell signaling. Front Microbiol 1:136

    PubMed  PubMed Central  Google Scholar 

  • Brotcke A, Monack DM (2008) Identification of fevR, a novel regulator of virulence gene expression in Francisella novicida. Infect Immun 76(8):3473–3480

    PubMed  CAS  PubMed Central  Google Scholar 

  • Brotcke A et al (2006) Identification of MglA-regulated genes reveals novel virulence factors in Francisella tularensis. Infect Immun 74(12):6642–6655

    PubMed  CAS  PubMed Central  Google Scholar 

  • Buchan BW, McCaffrey R, Lindemann SR, Allen LA, Jones BD (2009) Identification of migR, a regulatory element of the Francisella tularensis live vaccine strain iglABCD virulence operon required for normal replication and trafficking in macrophages. Infect Immun 77:2517–2529

    PubMed  CAS  PubMed Central  Google Scholar 

  • Buddingh GJ, Womack FC (1941) Observations on the infection of chick embryos with bacterium Tularense, Brucella, and Pasteurella pestis. J Exp Med 74(3):213–222

    PubMed  CAS  PubMed Central  Google Scholar 

  • Burge SW et al (2012) Rfam 11.0: 10 years of RNA families. Nucl Acids Res 41(D1):D226–D232, doi:10.1093/nar/gks1005. Epub 2012 Nov 3

    PubMed  PubMed Central  Google Scholar 

  • Busse H-J et al (2010) Objections to the transfer of Francisella novicida to the subspecies rank of Francisella tularensis—response to Johansson et al. Int J Syst Evol Microbiol 60(Pt 8):1718–1720

    PubMed  Google Scholar 

  • Cabelli VJ, Hodapp FA, Ferguson EW, Peacock M (1964) Tularemia: potential for transmission by birds. Zoonoses Res 3:99–124

    PubMed  CAS  Google Scholar 

  • Caipang CM, Kulkarni A et al (2010) Detection of Francisella piscicida in Atlantic cod (Gadus morhua L) by the loop-mediated isothermal amplification (LAMP) reaction. Vet J 184(3):357–361

    PubMed  CAS  Google Scholar 

  • Carlson PE et al (2007) Modulation of virulence factors in Francisella tularensis determines human macrophage responses. Microbial Pathog 42(5–6):204–214

    CAS  Google Scholar 

  • Cerny Z (2001) Changes of the epidemiology and the clinical picture of tularemia in Southern Moravia (the Czech Republic) during the period 1936–1999. Eur J Epidemiol 17(7):637–642

    PubMed  CAS  Google Scholar 

  • Chakraborty S et al (2008) Type IV pili in Francisella tularensis: roles of pilF and pilT in fiber assembly, host cell adherence, and virulence. Infect Immun 76(7):2852–2861

    PubMed  CAS  PubMed Central  Google Scholar 

  • Chambers J, Bender K (2011) The RNA Chaperone Hfq is important for growth and stress tolerance in Francisella novicida. PLoS One 6:e19797

    PubMed  CAS  PubMed Central  Google Scholar 

  • Champion MD et al (2009) Comparative genomic characterization of Francisella tularensis strains belonging to low and high virulence subspecies. PLoS Pathog 5(5):e1000459

    PubMed  PubMed Central  Google Scholar 

  • Chanturia G et al (2011) Phylogeography of Francisella tularensis subspecies holarctica from the country of Georgia. BMC Microbiol 11:139

    PubMed  PubMed Central  Google Scholar 

  • Chaudhuri RR et al (2007) Genome sequencing shows that European isolates of Francisella tularensis subspecies tularensis are almost identical to US laboratory strain Schu S4. PLoS One 2(4):e352, Available at: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1832225&tool=pmcentrez&rendertype=abstract (Accessed 11 Aug 2012)

  • Checroun C, Wehrly TD, Fischer ER, Hayes SF, Celli J (2006) Autophagy-mediated reentry of Francisella tularensis into the endocytic compartment after cytoplasmic replication. Proc Natl Acad Sci USA 103:14578–14583

    PubMed  CAS  PubMed Central  Google Scholar 

  • Chen SC, Tung MC, Chen SP, Tsai JF, Wang PC, Chen RS, Lin SC, Adams A (1994) Systematic granulomas caused by a rickettsia-like organism in Nile tilapia, Oreochromis niloticus (L), from Southern Taiwan. J Fish Dis 17:591–599

    Google Scholar 

  • Chern R, Chao C (1994) Outbreaks of a disease caused by rickettsia-like organism in cultured tilapias in Taiwan. Fish Pathol 29:61–71

    Google Scholar 

  • Cherwonogrodzky JW, Knodel MH, Spence MR (1994) Increased encapsulation and virulence of Francisella tularensis live vaccine strain (LVS) by subculturing on synthetic medium. Vaccine 12(9):773–775

    PubMed  CAS  Google Scholar 

  • Child R et al (2010) Acid phosphatases do not contribute to the pathogenesis of type A Francisella tularensis. Infect Immun 78(1):59–67

    PubMed  CAS  PubMed Central  Google Scholar 

  • Colquhoun DJ, Duodu S (2011) Francisella infections in farmed and wild aquatic organisms. Vet Res 42(1):47

    PubMed  PubMed Central  Google Scholar 

  • Conlan J (2011) Tularemia vaccines: recent development and remaining hurdles. Future Microbiol 6:391–405

    PubMed  Google Scholar 

  • Conlan JW, North RJ (1992) Early pathogenesis of infection in the liver with the facultative intracellular bacteria Listeria monocytogenes, Francisella tularensis, and Salmonella typhimurium involves lysis of infected hepatocytes by leukocytes. Infect Immun 60(12):5164–5171

    PubMed  CAS  PubMed Central  Google Scholar 

  • Costante-Hamm MM et al (2007) Twin RNA polymerase-associated proteins control virulence gene expression in Francisella tularensis. PLoS Pathog 3(6):e84

    PubMed  PubMed Central  Google Scholar 

  • Cox C (1971) Aerosol survival of Pasteurella tularensis disseminated from the wet and dry states. Appl Microbiol 21:482–486

    PubMed  CAS  PubMed Central  Google Scholar 

  • Craven RR et al (2008) Francisella tularensis invasion of lung epithelial cells. Infect Immun 76(7):2833–2842

    PubMed  CAS  PubMed Central  Google Scholar 

  • Crosa LM, Crosa JH, Heffron F (2009) Iron transport in Francisella in the absence of a recognizable TonB protein still requires energy generated by the proton motive force. Biometals 22(2):337–344

    PubMed  CAS  Google Scholar 

  • Dahlstrand S, Ringertz O, Zetterherg B (1971) Airborne tularemia in Sweden, Scand J Infect Dis 3:7–16.

    Google Scholar 

  • Darling AE, Mau B, Perna NT (2010) Progressive Mauve: multiple genome alignment with gene gain, loss and rearrangement. PLoS ONE 5(6):e11147. doi:10.1371/journal.pone.0011147

    PubMed  PubMed Central  Google Scholar 

  • Davis C (1999) Nuclear blindness: an overview of the biological weapons programs of the former Soviet Union and Iraq. Emerg Infect Dis 5:509–512

    PubMed  CAS  PubMed Central  Google Scholar 

  • De la Puente-Redondo VA, del Blanco NG, Gutiérrez-Martín CB, García-Peña FJ, Rodríguez Ferri E (2000) Comparison of different PCR approaches for typing of Francisella tularensis strains. J Clin Microbiol 38:1016–1022

    PubMed  PubMed Central  Google Scholar 

  • Dempsey MP et al (2006) Paired-end sequence mapping detects extensive genomic rearrangement and translocation during divergence of Francisella tularensis subsp. tularensis and Francisella tularensis subsp. holarctica populations. J Bacteriol 188(16):5904–5914

    PubMed  CAS  PubMed Central  Google Scholar 

  • Dempsey MP et al (2007) Genomic deletion marking an emerging subclone of Francisella tularensis subsp. holarctica in France and the Iberian Peninsula. Appl Environ Microbiol 73(22):7465–7470

    PubMed  CAS  PubMed Central  Google Scholar 

  • Dennis DT et al (2001) Tularemia as a biological weapon: medical and public health management. JAMA 285(21):2763–2773

    PubMed  CAS  Google Scholar 

  • Dorofeev K (1947) Classification of the causative agent of tularemia. Symp Res Works Inst Epidem Microbiol Chita 1:170–180

    Google Scholar 

  • Duodu S, Colquhoun D (2010) Monitoring the survival of fish-pathogenic Francisella in water microcosms. FEMS Microbiol Ecol 74:534–541

    PubMed  CAS  Google Scholar 

  • Duodu S et al (2012a) The distribution of Francisella-like bacteria associated with coastal waters in Norway. Microbial Ecol 1–8

    Google Scholar 

  • Duodu S et al (2012b) Development of real time PCR assays for specific detection of fish pathogenic Francisella noatunensis subspecies -noatunensis and -orientalis targeting unique DNA sequences. Dis Aquat Organ 101:225–234

    PubMed  CAS  Google Scholar 

  • Ebright JR, Altantsetseg T, Oyungerel R (2003) Emerging infectious diseases in Mongolia. Emerg Infect Dis 9(12):1509–1515

    PubMed  PubMed Central  Google Scholar 

  • Edgar RC (2004) MUSCLE: multiple sequence analysis with high accuracy and high throughput. Nucl Acids Res 32(5):1792–1797. doi:10.1093/nar/gkh340

    PubMed  CAS  PubMed Central  Google Scholar 

  • Egan JR, Hall IM, Leach S (2011) Modeling inhalational tularemia: deliberate release and public health response. Biosecur Bioterror 9:331–343

    PubMed  PubMed Central  Google Scholar 

  • Ehrlich R, Miller S (1973) Survival of airborne Pasteurella–Tularensis at different atmospheric temperatures. Appl Microbiol 25:369–372

    PubMed  CAS  PubMed Central  Google Scholar 

  • Eigelsbach H, Braun W, Herring R (1951) Studies on the variation of bacterium tularense. J Bacteriol 61(5):557–569

    PubMed  CAS  PubMed Central  Google Scholar 

  • El-Etr SH et al (2009) Francisella tularensis type A strains cause the rapid encystment of Acanthamoeba castellanii and survive in amoebal cysts for three weeks postinfection. Appl Environ Microbiol 75(23):7488–7500

    PubMed  CAS  PubMed Central  Google Scholar 

  • Eliasson H et al (2002) The 2000 tularemia outbreak: a case–control study of risk factors in disease-endemic and emergent areas, Sweden. Emerg Infect Dis 8(9):956–960

    PubMed  PubMed Central  Google Scholar 

  • Enderlin G, Morales L, Jacobs RF, Cross JT (1994) Streptomycin and alternative agents for the treatment of tularemia: review of the literature. Clin Infect Dis 19:42–47

    PubMed  CAS  Google Scholar 

  • Enstrom M, Held K, Ramage B (2012) Genotype-phenotype associations in a nonmodel prokaryote Mbio 2012 Mar 20;3(2): pii: e00001-12. doi:10.1128/mBio.00001-12. Print 2012.

    Google Scholar 

  • Farlow J et al (2005) Francisella tularensis in the United States. Emerg Infect Dis 11(12):1835–1841

    PubMed  PubMed Central  Google Scholar 

  • Forslund A-L et al (2006) Direct repeat-mediated deletion of a type IV pilin gene results in major virulence attenuation of Francisella tularensis. Mol Microbiol 59(6):1818–1830

    PubMed  CAS  Google Scholar 

  • Forslund A-L et al (2010) The type IV pilin, PilA, is required for full virulence of Francisella tularensis subspecies tularensis. BMC Microbiol 10:227

    PubMed  PubMed Central  Google Scholar 

  • Forsman M, Sandström G, Sjöstedt A (1994) Analysis of 16S ribosomal DNA sequences of Francisella strains and utilization for determination of the phylogeny of the genus and for identification of strains by PCR. Int J Syst Bacteriol 44(1):38–46

    PubMed  CAS  Google Scholar 

  • Forsman M et al (2000) Francisella tularensis does not manifest virulence in viable but non-culturable state. FEMS Microbiol Ecol 31(3):217–224

    PubMed  CAS  Google Scholar 

  • Fortier AH et al (1995) Growth of Francisella tularensis LVS in macrophages: the acidic intracellular compartment provides essential iron required for growth. Infect Immun 63(4):1478–1483

    PubMed  CAS  PubMed Central  Google Scholar 

  • Francis E, Evans A (1926) Agglutination, cross-agglutination, and agglutinin absorption in tularaemia. Public Health Rep 41:1273–1295

    Google Scholar 

  • Friend M (2006) Tularemia. U.S. Geological Survey, Circular 1297, Reston, 68p

    Google Scholar 

  • Fujita O et al (2006) Development of a real-time PCR assay for detection and quantification of Francisella tularensis. Jpn J Infect Dis 59(1):46–51

    PubMed  CAS  Google Scholar 

  • Fujita O et al (2008) Genetic diversity of Francisella tularensis subspecies holarctica strains isolated in Japan. Microbiol Immunol 52(5):270–276

    PubMed  CAS  Google Scholar 

  • Fulop M, Leslie D, Rlchard T (1996) A rapid, highly sensitive method for the detection of Francisella tularensis in clinical samples using the polymerase chain reaction. Am J Trop Med Hyg 54(4):364–366

    PubMed  CAS  Google Scholar 

  • Gehringer H et al (2012) Presence of an emerging subclone of Francisella tularensis holarctica in Ixodes ricinus ticks from south-western Germany. Ticks Tick Borne Dis, pp 1–8

    Google Scholar 

  • Georgi E et al (2012) Standardized broth microdilution antimicrobial susceptibility testing of Francisella tularensis subsp. holarctica strains from Europe and rare Francisella species. J Antimicrob Chemother 67(10):2429–2433

    PubMed  CAS  Google Scholar 

  • Gil H, Benach JL, Thanassi DG (2004) Presence of pili on the surface of Francisella tularensis. Infect Immun 72(5):3042–3047

    PubMed  CAS  PubMed Central  Google Scholar 

  • Goethert HK, Telford SR (2009) Nonrandom distribution of vector ticks (Dermacentor variabilis) infected by Francisella tularensis. PLoS Pathog 5(2):e1000319

    PubMed  PubMed Central  Google Scholar 

  • Goethert HK, Telford SR (2011) Differential mortality of dog tick vectors due to infection by diverse Francisella tularensis tularensis genotypes. Vector Borne Zoonotic Dis 11(9):1263–1268 (Larchmont, NY)

    PubMed  PubMed Central  Google Scholar 

  • Goethert HK, Shani I, Telford SR (2004) Genotypic diversity of Francisella tularensis infecting dermacentor variabilis ticks on Martha’ s Vineyard, Massachusetts. Society 42(11):4968–4973

    Google Scholar 

  • Gyuranecz M et al (2011) Investigation of the Ecology of Francisella tularensis during an inter-epizootic period. Vector Borne Zoonotic Dis 11:1–5 (Larchmont, NY)

    Google Scholar 

  • Golovliov I, Baranov V, Krocova Z, Kovarova H, Sjöstedt A (2003) An attenuated strain of the facultative intracellular bacterium Francisella tularensis can escape the phagosome of monocytic cells. Infect Immun 71:5940–5950

    PubMed  CAS  PubMed Central  Google Scholar 

  • Gunn JS, Ernst RK (2007) The structure and function of Francisella lipopolysaccharide. Ann N Y Acad Sci 1105:202–218

    PubMed  CAS  PubMed Central  Google Scholar 

  • Gunnell MK et al (2012) A multiplex real-time PCR assay for the detection and differentiation of Francisella tularensis subspecies. J Med Microbiol 61(Pt 11):1525–1531

    PubMed  CAS  Google Scholar 

  • Guryčová D (1998) First isolation of Francisella tularensis subsp. tularensis in Europe. Eur J Epidemiol 14(8):797–802

    PubMed  Google Scholar 

  • Gyuranecz M, Reiczigel J et al (2012a) Factors influencing emergence of tularemia, hungary, 1984–2010. Emerg Infect Dis 18(8):1379–1381

    PubMed  PubMed Central  Google Scholar 

  • Gyuranecz M, Birdsell DN et al (2012b) Phylogeography of Francisella tularensis subsp. holarctica, Europe. Emerg Infect Dis 18(2):290–293

    PubMed  CAS  PubMed Central  Google Scholar 

  • Hager AJ et al (2006) Type IV pili-mediated secretion modulates Francisella virulence. Mol Microbiol 62(1):227–237

    PubMed  CAS  Google Scholar 

  • Hajjar AM et al (2006) Lack of in vitro and in vivo recognition of Francisella tularensis subspecies lipopolysaccharide by Toll-like receptors. Infect Immun 74(12):6730–6738

    PubMed  CAS  PubMed Central  Google Scholar 

  • Hansen CM et al (2011) Tularemia in Alaska, 1938–2010. Acta Vet Scand 53:61

    PubMed  PubMed Central  Google Scholar 

  • Hodges LS, Penn RL (2010) Francisella tularensis (Tularemia) as an agent of bioterrorism. In: Mandell GL, Bennet JE, Dolin R (eds) Mandell, Douglas and Bennett´s principles and practice of infectious diseases. Elsevier/Churchill Livingston, Philadelphia, pp 3971–3976

    Google Scholar 

  • Hollis DG et al. (1989) Francisella philomiragia comb. nov. (formerly Yersinia philomiragia) and Francisella tularensis biogroup novicida (formerly Francisella novicida) associated with human disease. J Clin Microbiol 27(7):1601–1608

    PubMed  CAS  PubMed Central  Google Scholar 

  • Hood AM (1977) Virulence factors of Francisella tularensis. J Hyg 79(1):47–60

    PubMed  CAS  PubMed Central  Google Scholar 

  • Hopla CE (1974) The ecology of tularemia. Adv Vet Sci Comp Med 18:25–53

    PubMed  CAS  Google Scholar 

  • Hopla CA, Hopla A (1994) Tularemia. In: Beren G, Steele J (eds) Handbook of zoonoses. CRC Press, Boca Raton, pp 113–126

    Google Scholar 

  • Horzempa J et al (2011) Invasion of erythrocytes by Francisella tularensis. J Infect Dis 204(1):51–59

    PubMed  PubMed Central  Google Scholar 

  • Hsieh CY, Tung MC, Tu C, Chang CD, Tsang S (2006) Enzootics of visceral granulomas associated with Francisella-like organism infection in tilapia (Oreochromis spp.). Aquaculture 254:129–138

    Google Scholar 

  • Hsieh C-Y et al (2007) PCR and in situ hybridization for the detection and localization of a new pathogen Francisella-like bacterium (FLB) in ornamental cichlids. Dis Aquat Organ 75(1):29–36

    PubMed  CAS  Google Scholar 

  • Huber B, Escudero R, Busse H-J, Seibold E, Scholz HC, Anda P, Kämpfer P, Splettstoesser WD et al (2010) Description of Francisella hispaniensis sp. nov., isolated from human blood, reclassification of Francisella novicida (Larson et al. 1955) Olsufiev et al. 1959 as Francisella tularensis subsp. novicida comb. nov. and emended description of the genus Franc. Int J Syst Evol Microbiol 60(Pt 8):1718–1720

    PubMed  Google Scholar 

  • Huson DH, Bryant D (2006) Application of phylogenetic networks in evolutionary studies. Mol Biol Evol 23(2):254–267

    PubMed  CAS  Google Scholar 

  • IJSEM (2008) Validation List N° 119, List of new names and new combinations previously effectively, but not validly published. Int J Syst Evol Microbiol 58:1–2

    Google Scholar 

  • Ikaheimo I, Syrjala H, Karhukorpi J, Schildt R, Koskela M (2000) In vitro antibiotic susceptibility of Francisella tularensis isolated from humans and animals. J Antimicrob Chemother 46:287–290

    PubMed  CAS  Google Scholar 

  • Isachsen CH et al (2012) Antimicrobial susceptibility of Francisella noatunensis subsp. noatunensis strains isolated from Atlantic cod Gadus morhua in Norway. Dis Aquat Organ 98(1):57–62

    PubMed  CAS  Google Scholar 

  • Jackson J, McGregor A, Cooley L (2012) Francisella tularensis subspecies holarctica, Tasmania, Australia, 2011. Emerg Infect Dis 18(9):2011–2013

    Google Scholar 

  • Jantzen E, Berdal BP, Omland T (1979) Cellular fatty acid composition of Francisella tularensis. J Clin Microbiol 10(6):928–930

    PubMed  CAS  PubMed Central  Google Scholar 

  • Jeffery KR, Stone D, Feist SW, Verner-Jeffreys D (2010) An outbreak of disease caused by Francisella sp. in Nile tilapia Oreochromis niloticus at a recirculation fish farm in the UK. Dis Aquat Organ 91:161–165

    PubMed  CAS  Google Scholar 

  • Jellison W (1974) Tularemia in North America, 1930–1974. University of Montana, Missoula

    Google Scholar 

  • Jellison WL, Owen CR, Bell JF, Kohls GM (1961) Tularemia and animal populations: ecology and epizoology. Wildl Dis 17:22

    Google Scholar 

  • Jensen WI, Owen CR, Jellison WL (1969) Yersinia philomiragia sp. n., a new member of the Pasteurella group of bacteria, naturally pathogenic for the Muskrat (Ondatra zibethica). J Bacteriol 100(3):1237–1241

    PubMed  CAS  PubMed Central  Google Scholar 

  • Johansson A, Petersen JM (2010) Genotyping of Francisella tularensis, the causative agent of tularemia. J AOAC Int 93(6):1930–1943

    PubMed  CAS  Google Scholar 

  • Johansson A, Berglund L, Gothefors L, Sjöstedt A, Tärnvik A (2000a) Ciprofloxacin for treatment of tularemia in children. Pediatr Infect Dis J 19:449–453

    PubMed  CAS  Google Scholar 

  • Johansson A, Berglund L et al (2000b) Comparative analysis of PCR versus culture for diagnosis of ulceroglandular tularemia. J Clin Microbiol 38(1):22–26

    PubMed  CAS  PubMed Central  Google Scholar 

  • Johansson A, Ibrahim A et al (2000c) Evaluation of PCR-based methods for discrimination of Francisella species and subspecies and development of a specific PCR that distinguishes the two major subspecies of Francisella tularensis. J Clin Microbiol 38(11):4180–4185

    PubMed  CAS  PubMed Central  Google Scholar 

  • Johansson A, Urich SK, Chu MC, Sjöstedt A, Tärnvik A (2002) In vitro susceptibility to quinolones of Francisella tularensis subspecies tularensis. Scand J Infect Dis 34:327–330

    PubMed  CAS  Google Scholar 

  • Johansson A, Farlow J et al (2004a) Worldwide genetic relationships among Francisella tularensis isolates determined by multiple-locus variable-number tandem repeat analysis. Society 186(17):5808–5818

    CAS  Google Scholar 

  • Johansson A, Forsman M, Sjöstedt A (2004b) The development of tools for diagnosis of tularemia and typing of Francisella tularensis. APMIS 112(11–12): 898–907

    PubMed  CAS  Google Scholar 

  • Johansson A et al (2010) Objections to the transfer of Francisella novicida to the subspecies rank of Francisella tularensis. Int J Syst Evol Microbiol 60(Pt 8): 1717–1718; author reply 1718–2

    PubMed  Google Scholar 

  • Jones RM, Nicas M, Hubbard A, Sylvester MD, Reingold A (2005) The infectious dose of Francisella tularensis (Tularemia). Appl Biosafety 10:227–239

    Google Scholar 

  • Kamaishi T, Fukuda Y, Nishiyama M, Kawakami H, Matsuyama T, Yoshinaga T, Oseko N (2005) Identification and pathogenicity of intracellular Francisella bacterium in three-line Grunt Parapristipoma trilineatum. Fish Pathol 40:67–71

    CAS  Google Scholar 

  • Kamaishi T et al (2010) Mass mortality of giant abalone Haliotis gigantea caused by a Francisella sp. bacterium. Dis Aquat Organ 89(2):145–154

    PubMed  CAS  Google Scholar 

  • Kanistanon D et al (2008) A Francisella mutant in lipid A carbohydrate modification elicits protective immunity. PLoS Pathog 4(2):e24

    PubMed  PubMed Central  Google Scholar 

  • Kantardjiev T et al (2006) Tularemia outbreak, Bulgaria, 1997–2005. Emerg Infect Dis 12(4):678–680

    PubMed  PubMed Central  Google Scholar 

  • Karlsson J, Prior RG, Williams K, Lindler L, Brown KA, Chatwell N, Hjalmarsson K, Loman N, Mack KA, Pallen M, Popek M, Sandström G, Sjöstedt A, Svensson T, Tamas I, Andersson SG, Wren BW, Oyston PC, Titball R (2000) Sequencing of the Francisella tularensis strain Schu 4 genome reveals the shikimate and purine metabolic pathways, targets for the construction of a rationally attenuated auxotrophic vaccine. Microb Comp Genomics 5:25–39

    PubMed  CAS  Google Scholar 

  • Karlsson E et al (2012) The phylogeographic pattern of Francisella tularensis in Sweden indicates a Scandinavian origin of Eurosiberian tularaemia. Environ Microbiol 15(2):634–645. doi:10.1111/1462-2920.12052

    PubMed  Google Scholar 

  • Kaufmann AF, Meltzer MI, Schmid G (1997) The economic impact of a bioterrorist attack: are prevention and postattack intervention programs justifiable? Emerg Infect Dis 3(2):83–94

    PubMed  CAS  PubMed Central  Google Scholar 

  • Kay W et al (2006) Characterization of the lipopolysaccharide and beta-glucan of the fish pathogen Francisella victoria. FEBS J 273(13):3002–3013

    PubMed  CAS  Google Scholar 

  • Kaysser P et al (2008) Re-emergence of tularemia in Germany: presence of Francisella tularensis in different rodent species in endemic areas. BMC Infect Dis 8:157

    PubMed  PubMed Central  Google Scholar 

  • Keim P, Johansson A, Wagner DM (2007) Molecular epidemiology, evolution, and ecology of Francisella. Ann N Y Acad Sci 1105:30–66

    PubMed  CAS  Google Scholar 

  • Kiliç S, Celebi B, Acar B, Ataş M (2013) In vitro susceptibility of isolates of Francisella tularensis from Turkey. Scand J Infect Dis 45(5):337–341. doi:10.3109/00365548.2012.751125

    PubMed  Google Scholar 

  • Kman N, Bachmann D (2012) Biosurveillance: a review and update. Adv Prev Med 301408

    Google Scholar 

  • Konstantinidis KT, Tiedje JM (2005) Genomic insights that advance the species definition for prokaryotes. Proc Natl Acad Sci USA 102(7):2567–2572

    PubMed  CAS  PubMed Central  Google Scholar 

  • Kraemer PS et al (2009) Genome-wide screen in Francisella novicida for genes required for pulmonary and systemic infection in mice. Infect Immun 77(1):232–244

    PubMed  CAS  PubMed Central  Google Scholar 

  • Kreizinger Z et al (2013) Antimicrobial susceptibility of Francisella tularensis subsp. holarctica strains from Hungary, Central Europe. J Antimicrob Chemother 68(2):370–373

    PubMed  CAS  Google Scholar 

  • Kudelina RI, Olsufiev NG (1980) Sensitivity to macrolide antibiotics and lincomycin in Francisella tularensis holarctica. J Hyg Epidemiol Microbiol Immunol 24(1):84–91

    PubMed  CAS  Google Scholar 

  • Kugeler KJ, Pappert R, Zhou Y, Petersen J (2006) Real-time PCR for Francisella tularensis types A and B. Emerg Infect Dis 12:1799–1801

    PubMed  PubMed Central  Google Scholar 

  • Kugeler KJ et al (2008) Isolation and characterization of a novel Francisella sp. from human cerebrospinal fluid and blood. J Clin Microbiol 46(7):2428–2431

    PubMed  CAS  PubMed Central  Google Scholar 

  • Kugeler KJ, Mead PS, Janusz AM, Staples JE, Kubota KA et al (2009) Molecular epidemiology of Francisella tularensis in the United States. Clin Infect Dis 48(7):863–870

    PubMed  CAS  Google Scholar 

  • Kunitsa TN, Meka-Mechenko UV, Izbanova UA, Abdirasilova AA, Belonozhkina BL (2012) Properties of the tularemia microbe strains isolated from natural tularemia foci in Kazakhstan. In: 7th international conference on Tularemia. Breckenridge, p 70

    Google Scholar 

  • Kuroda M, Sekizuka T, Shinya F, Takeuchi F, Kanno T, Sata T, Asano S (2012) Detection of a possible bioterrorism agent, Francisella sp., in a clinical specimen by use of next-generation direct DNA sequencing. J Clin Microbiol 50:1810–1812

    PubMed  CAS  PubMed Central  Google Scholar 

  • Lai X-H et al (2010) Mutations of Francisella novicida that alter the mechanism of its phagocytosis by murine macrophages. PLoS One 5(7):e11857 (L. Tailleux, ed.)

    PubMed  PubMed Central  Google Scholar 

  • Lang S, Kleines M (2012) Two at one blow: reemergence of tularemia in Upper Austria. New Microbiol 35(3):349–352

    PubMed  Google Scholar 

  • Larson C, Wicht W, Jellison W (1955) A new organism resembling P. tularensis isolated from water. Public Health Rep 70(3):253–258

    PubMed  CAS  PubMed Central  Google Scholar 

  • Larssen KW et al (2011) Outbreak of Tularaemia in central Norway, January to March 2011. Euro Surveill 16(13):10–12

    Google Scholar 

  • Larsson P et al (2005) The complete genome sequence of Francisella tularensis, the causative agent of tularemia. Nat Genet 37(2):153–159, Available at: http://www.ncbi.nlm.nih.gov/pubmed/15640799 [Accessed November 13, 2012]

  • Larsson P et al (2007) Canonical insertion-deletion markers for rapid DNA typing of Francisella tularensis. Emerg Infect Dis 13(11):1725–1732

    PubMed  CAS  PubMed Central  Google Scholar 

  • Larsson P et al (2009) Molecular evolutionary consequences of niche restriction in Francisella tularensis, a facultative intracellular pathogen. PLoS Pathog 5(6):e1000472, Available at: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2688086&tool=pmcentrez&rendertype=abstract. Accessed 24 July 2012

  • Lau KWK et al (2007) Fangia hongkongensis gen. nov., sp. nov., a novel gammaproteobacterium of the order Thiotrichales isolated from coastal seawater of Hong Kong. Int J Syst Evol Microbiol 57(Pt 11):2665–2669

    PubMed  CAS  Google Scholar 

  • Lauriano CM et al (2004) MglA regulates transcription of virulence factors necessary for Francisella tularensis intraamoebae and intramacrophage survival. Proc Natl Acad Sci USA 101(12):4246–4249

    PubMed  CAS  PubMed Central  Google Scholar 

  • Le Pihive E et al (2009) Description of two new plasmids isolated from Francisella philomiragia strains and construction of shuttle vectors for the study of Francisella tularensis. Plasmid 62(3):147–157

    PubMed  Google Scholar 

  • Leblebicioglu H et al (2008) Outbreak of tularemia: a case–control study and environmental investigation in Turkey. Int J Infect Dis 12(3):265–269

    PubMed  Google Scholar 

  • Leelaporn A et al (2008) Francisella novicida bacteremia, Thailand. Emerg Infect Dis 14(12):1935–1937

    PubMed  PubMed Central  Google Scholar 

  • Li J et al (2007) Attenuation and protective efficacy of an O-antigen-deficient mutant of Francisella tularensis LVS. Microbiology 153(Pt 9):3141–3153

    PubMed  CAS  Google Scholar 

  • Llewellyn AC et al (2012) NaxD is a deacetylase required for lipid A modification and Francisella pathogenesis. Mol Microbiol 86(3):611–627

    PubMed  CAS  Google Scholar 

  • Long GW et al (1993) Detection of Francisella tularensis in blood by polymerase chain reaction. J Clin Microbiol 31(1):152–154

    PubMed  CAS  PubMed Central  Google Scholar 

  • Lopes de Carvalho I et al. (2012) Borrelia garinii and Francisella tularensis subsp. holarctica detected in migratory shorebirds in Portugal. Eur J Wildlife Res 58(5):857–861

    Google Scholar 

  • Ludu JS et al (2008) The Francisella pathogenicity island protein PdpD is required for full virulence and associates with homologues of the type VI secretion system. J Bacteriol 190(13):4584–4595

    PubMed  CAS  PubMed Central  Google Scholar 

  • Lundström JO et al (2011) Detection of Francisella tularensis holarctica in adult mosquitoes hatched from field-collected larvae, suggest a novel transmission cycle originating in aquatic larval habitats. Emerg Infect Dis 17(5)

    Google Scholar 

  • Mahajan UV et al (2011) Larval exposure to Francisella tularensis LVS affects fitness of the mosquito Culex quinquefasciatus. FEMS Microbiol Ecol 78(3):520–530

    PubMed  CAS  Google Scholar 

  • Maier TM et al (2007) Identification of Francisella tularensis Himar1-based transposon mutants defective for replication in macrophages. Infect Immun 75(11):5376–5389

    PubMed  CAS  PubMed Central  Google Scholar 

  • Mani RJ et al (2012) Biology of Francisella tularensis subspecies holarctica live vaccine strain in the tick vector Dermacentor variabilis. PLoS One 7(4)

    Google Scholar 

  • Matyas BT, Nieder HS, Telford SR (2007) Pneumonic tularemia on Martha’s Vineyard: clinical, epidemiologic, and ecological characteristics. Ann N Y Acad Sci 1105:351–377

    PubMed  CAS  Google Scholar 

  • Mauel MJ, Miller DL, Styer E, Pouder DB, Yanong RP, Goodwin AE, Schwedler TE (2005) Occurrence of Piscirickettsiosis-like syndrome in tilapia in the continental United States. J Vet Diagn Invest 17:601–605

    PubMed  Google Scholar 

  • Mauel MJ et al (2007) A piscirickettsiosis-like syndrome in cultured Nile tilapia in Latin America with Francisella spp. as the pathogenic agent. J Aquat Anim Health 19(1):27–34

    PubMed  CAS  Google Scholar 

  • McCaffrey RL, Allen L-AH (2006) Francisella tularensis LVS evades killing by human neutrophils via inhibition of the respiratory burst and phagosome escape. J Leukoc Biol 80(6):1224–1230

    PubMed  CAS  PubMed Central  Google Scholar 

  • McCaffrey RL et al (2010) Multiple mechanisms of NADPH oxidase inhibition by type A and type B Francisella tularensis. J Leukoc Biol 88(4):791–805

    PubMed  CAS  PubMed Central  Google Scholar 

  • McChesney T, Narain J (1983) A five-year evaluation of tularemia in Arkansas. J Ark Med Soc 80:257–262

    PubMed  CAS  Google Scholar 

  • McCoy G, Chapin V (1912) Bacterium tularense the cause of a plague like disease of rodents. Publ Health Bull 53:17–23

    Google Scholar 

  • McGann P, Rozak DA, Nikolich MP, Bowden RA, Lindler LE, Wolcott MJ, Lathigra R (2009) A novel brain heart infusion broth supports the study of common Francisella tularensis serotypes. J Microbiol Methods 164–171:80

    Google Scholar 

  • Meibom KL et al (2009) Hfq, a novel pleiotropic regulator of virulence-associated genes in Francisella tularensis. Infect Immun 77(5):1866–1880

    PubMed  CAS  PubMed Central  Google Scholar 

  • Michell SL et al (2010) Deletion of the Bacillus anthracis capB homologue in Francisella tularensis subspecies tularensis generates an attenuated strain that protects mice against virulent tularaemia. J Med Microbiol 59(Pt 11):1275–1284

    PubMed  CAS  Google Scholar 

  • Mikalsen J, Colquhoun DJ (2009) Francisella asiatica sp. nov. isolated from farmed tilapia (Oreochromis sp.) and elevation of Francisella philomiragia subsp. noatunensis to species rank as Francisella noatunensis comb. nov., sp. nov. Int J Syst Evol Microbiol (Epub ahead of print)

    Google Scholar 

  • Mikalsen J, Olsen AB, Tengs T, Colquhoun D (2007) Francisella philomiragia subsp. noatunensis subsp. nov., isolated from farmed Atlantic cod (Gadus morhua L.). Int J Syst Evol Microbiol 57:1960–1965

    PubMed  CAS  Google Scholar 

  • Mikalsen J, Olsen AB, Rudra H, Moldal T, Lund H, Djønne B, Bergh O, Colquhoun D (2009) Virulence and pathogenicity of Francisella philomiragia subsp. noatunensis for Atlantic cod, Gadus morhua L., and laboratory mice. J Fish Dis 4:377–381

    Google Scholar 

  • Mitchell JL et al (2010) Development of real-time PCR assays for the specific detection of Francisella tularensis ssp. tularensis, holarctica and mediasiatica. Mol Cell Probes 24(2):72–76

    PubMed  CAS  Google Scholar 

  • Modise T et al (2012) Genomic comparison between a virulent type A1 strain of Francisella tularensis and its attenuated O-antigen mutant. J Bacteriol 194(10):2775–2776, Available at: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3347185&tool=pmcentrez&rendertype=abstract. Accessed 30 Dec 2012

  • Mohapatra NP et al (2007) Identification of an orphan response regulator required for the virulence of Francisella spp. and transcription of pathogenicity island genes. Infect Immun 75(7):3305–3314

    PubMed  CAS  PubMed Central  Google Scholar 

  • Mohapatra NP et al (2008) Combined deletion of four Francisella novicida acid phosphatases attenuates virulence and macrophage vacuolar escape. Infect Immun 76(8):3690–3699

    PubMed  CAS  PubMed Central  Google Scholar 

  • Mohapatra NP et al (2010) Francisella acid phosphatases inactivate the NADPH oxidase in human phagocytes. J Immunol 184(9):5141–5150 (Baltimore, Md.: 1950)

    PubMed  CAS  PubMed Central  Google Scholar 

  • Molins CR et al (2009) Identification of Francisella tularensis subsp. tularensis A1 and A2 infections by real-time polymerase chain reaction. Diagn Microbiol Infect Dis 64(1):6–12

    PubMed  CAS  Google Scholar 

  • Molins CR et al (2010) Virulence differences among Francisella tularensis subsp tularensis clades in mice. PLoS One 5(4):e10205

    PubMed  PubMed Central  Google Scholar 

  • Molins-Schneekloth CR, Belisle JT, Petersen JM (2008) Genomic markers for differentiation of Francisella tularensis subsp. tularensis A.I and A.II strains. Appl Environ Microbiol 74(1):336–341

    PubMed  CAS  PubMed Central  Google Scholar 

  • Moore RA et al (2004) Contribution of gene loss to the pathogenic evolution of Burkholderia pseudomallei and Burkholderia mallei. Infect Immun 72(7):4172–4187

    PubMed  CAS  PubMed Central  Google Scholar 

  • Moran NA, Plague GR (2004) Genomic changes following host restriction in bacteria. Curr Opin Genet Dev 14(6):627–633

    PubMed  CAS  Google Scholar 

  • Mörner T, Addison E (2001) Tularemia. In: Williams E, Barker IK (eds) Infectious diseases of wild animals. Iowa State University, Ames, pp 303–312

    Google Scholar 

  • Mörner T, Krogh G (1984) An endemic case of tularemia in the mountain hare (Lepus timidus) on the island of Stora Karlsö. Nord Vet Med 36:310–313

    PubMed  Google Scholar 

  • Mörner T et al (1988) Infections with Francisella tularensis biovar palaearctica in hares (Lepus timidus, Lepus europaeus) from Sweden. J Wildl Dis 24(3):422–433

    PubMed  Google Scholar 

  • Müller W, Hotzel H, Otto P, Karger A, Bettin B, Bocklisch H, Tomaso H, et al (2013) German Francisella tularensis isolates from European brown hares (Lepus europaeus) reveal genetic and phenotypic diversity. BMC Microbiol 13(1):61. doi:10.1186/1471-2180-13-61

    PubMed  PubMed Central  Google Scholar 

  • Nagle SJ, Anderson R, Gary N (1960) Chemically defined medium for the growth of Pasteurella tularensis. J Bacteriol 79:566–571

    PubMed  CAS  PubMed Central  Google Scholar 

  • Nakazawa Y et al (2010) Ecological niche modeling of Francisella tularensis subspecies and clades in the United States. Am J Trop Med Hyg 82(5):912–918

    PubMed  PubMed Central  Google Scholar 

  • Nalbantoglu U et al (2010) Large direct repeats flank genomic rearrangements between a new clinical isolate of Francisella tularensis subsp. tularensis A1 and Schu S4. PloS One 5(2):e9007, (Ahmed N, ed). Available at: http://dx.plos.org/10.1371/journal.pone.0009007. Accessed 28 Dec 2012

  • Nano FE et al (2004) A Francisella tularensis pathogenicity island required for intramacrophage growth. J Bacteriol 186(19):6430–6436

    PubMed  CAS  PubMed Central  Google Scholar 

  • Nawrocki EP, Kolbe DL, Eddy SR (2009) Infernal 1.0: inference of RNA alignments. Bioinformatics 25(10):1335–1337 (Oxford, England)

    PubMed  CAS  PubMed Central  Google Scholar 

  • Neary J et al (2007) Metabolic pathway complements of Five Francisella Strains. In Biocomp 2007: Las Vegas, Nevada, USA pp 528–532

    Google Scholar 

  • Niebylski ML et al (1997) Characterization of an endosymbiont infecting wood ticks, Dermacentor andersoni, as a member of the genus Francisella. Appl Environ Microbiol 63(10):3933–3940

    PubMed  CAS  PubMed Central  Google Scholar 

  • Noda H, Munderloh UG, Kurtti TJ (1997) Endosymbionts of ticks and their relationship to Wolbachia spp. and tick-borne pathogens of humans and animals. Appl Environ Microbiol 63(10):3926–3932

    PubMed  CAS  PubMed Central  Google Scholar 

  • Nübel U et al (2006) Population structure of Francisella tularensis. J Bacteriol 188(14):5319–5324

    PubMed  PubMed Central  Google Scholar 

  • Nylund A et al (2006) Francisella sp. (Family Francisellaceae) causing mortality in Norwegian cod (Gadus morhua) farming. Arch Microbiol 185(5):383–392

    PubMed  CAS  Google Scholar 

  • Ohara S, Sato T, Homma M (1974) Serological studies on Francisella tularensis, Francisella novicida, Yersinia philomiragia and Brucella abortus. Int J Syst Bacteriol 24(191–196):191–196

    Google Scholar 

  • Ohara Y et al (1991) Brief communication. Infection 19(1):18–21

    Google Scholar 

  • Olsen AB et al (2006) Short communication A novel systemic granulomatous inflammatory disease in farmed Atlantic cod, Gadus morhua L., associated with a bacterium belonging to the genus Francisella. J Fish Dis, 307–311

    Google Scholar 

  • Olsufjev N (1970) Taxonomy and characteristic of the genus Francisella Dorofeev, 1947. J Hyg Epidemiol Microbiol Immunol 14:67–74

    PubMed  CAS  Google Scholar 

  • Olsufjev NG, Meshcheryakova I (1982) Intraspecific taxonomy of tularemia agent Francisella tularensis McCoy et Chapin. J Hyg Epidemiol Microbiol Immunol 20:291–299

    Google Scholar 

  • Olsufjev N, Meshcheryakova I (1982) Infraspecific taxonomy of tularemia agent Francisella tularensis McCoy et Chapin. J Hyg Epidemiol Microbiol Immunol 26:291–299

    PubMed  CAS  Google Scholar 

  • Olsufjev N, Meshcheryakova I (1983) Subspecific Taxonomy of Francisella tularensis McCoy and Chapin 1912. Int J Syst Bacteriol 33:872–874

    Google Scholar 

  • Olsufjev N, Emelyanova O, Dunaeva T (1959) Comparative study of strains of B. tularense in the Old andNew World and their taxonomy. J Hyg Epidemiol Microbiol Immunol 3:138–149

    Google Scholar 

  • Ostland VE et al (2006) Aquatic Francisella-like bacterium associated with mortality of intensively cultured hybrid striped bass Morone chrysops × M. saxatilis. Dis Aquat Organ 72(2):135–145

    PubMed  CAS  Google Scholar 

  • Ottem KF, Nylund A, Karlsbakk E, Friis-Møller A, Krossøy B et al (2007a) New species in the genus Francisella (Gammaproteobacteria; Francisellaceae); Francisella piscicida sp. nov. isolated from cod (Gadus morhua). Arch Microbiol 188(5):547–550

    PubMed  CAS  Google Scholar 

  • Ottem KF, Nylund A, Karlsbakk E, Friis-Møller A, Krossøy B (2007b) Characterization of Francisella sp., GM2212, the first Francisella isolate from marine fish, Atlantic cod (Gadus morhua). Arch Microbiol 187(5):343–350

    PubMed  CAS  Google Scholar 

  • Ottem KF et al (2008) Occurrence of Francisella piscicida in farmed and wild Atlantic cod, Gadus morhua L., in Norway. J Fish Dis 31(7):525–534

    PubMed  CAS  Google Scholar 

  • Ottem KF et al (2009) Elevation of Francisella philomiragia subsp. noatunensis Mikalsen et al (2007) to Francisella noatunensis comb. nov. [syn. Francisella piscicida Ottem et al (2008) syn. nov.] and characterization of Francisella noatunensis subsp. orientalis subsp. nov. J Appl Microbiol 106(4):1231–1243

    PubMed  CAS  Google Scholar 

  • Owen CR et al (1964) Comparative studies of Francisella tularensis and Francisella novicida. J Bacteriol 87(3):676–683

    PubMed  CAS  PubMed Central  Google Scholar 

  • Padeshki PI et al (2010) The role of birds in dissemination of Francisella tularensis: first direct molecular evidence for bird-to-human transmission. Epidemiol Infect 138(3):376–379

    PubMed  CAS  Google Scholar 

  • Parker RR et al (1951) Contamination of natural waters and mud with Pasteurella tularensis and tularemia in beavers and muskrats in the northwestern United States. Bull Natl Inst Health 193:1–161

    PubMed  CAS  Google Scholar 

  • Parkhill J et al (2003) Comparative analysis of the genome sequences of Bordetella pertussis, Bordetella parapertussis and Bordetella bronchiseptica. Nat Genet 35(1):32–40

    PubMed  Google Scholar 

  • Pavlov VM, Mokrievich AN, Volkovoy K (1996) Cryptic plasmid pFNL10 from Francisella novicida-like F6168: the base of plasmid vectors for Francisella tularensis. FEMS Immunol Med Microbiol 13(3):253–256

    PubMed  CAS  Google Scholar 

  • Pechous RD, McCarthy TR, Zahrt TC (2009) Working toward the future: insights into Francisella tularensis pathogenesis and vaccine development. Microbiol Mol Biol Rev 73(4):684–711

    PubMed  CAS  PubMed Central  Google Scholar 

  • Penn R (2010) Francisella tularensis (Tularemia). In: Mandell GL, Bennet JE, Dolin R (eds) Francisella tularensis (Tularemia) Mandell, Douglas and Bennett´s principles and practice of infectious diseases. Elsevier/Churchill Livingstone, Philadelphia, pp 2927–2937

    Google Scholar 

  • Petersen JM, Molins C (2010) Subpopulations of Francisella tularensis ssp. tularensis and holarctica: identification and associated epidemiology. Future Microbiol 5:649–661

    PubMed  Google Scholar 

  • Petersen JM, Schriefer ME, Gage KL et al (2004) Methods for enhanced culture recovery of Francisella tularensis. Appl Environ Microbiol 70(6):3733–3735

    PubMed  CAS  PubMed Central  Google Scholar 

  • Petersen JM et al (2009a) Direct isolation of Francisella spp. from environmental samples. Lett Appl Microbiol 48(6):663–667

    PubMed  CAS  Google Scholar 

  • Petersen JM, Mead PS, Schriefer ME (2009b) Francisella tularensis: an arthropod-borne pathogen. Vet Res 40(2):7

    PubMed  Google Scholar 

  • Petrisheva P (1965) Vectors of diseases of natural foci. Israel Program for Scientific translations, Jerusalem

    Google Scholar 

  • Petrosino JF et al (2006) Chromosome rearrangement and diversification of Francisella tularensis revealed by the type B (OSU18) genome sequence. J Bacteriol 188(19):6977–6985, Available at: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1595524&tool=pmcentrez&rendertype=abstract. Accessed 12 Apr 2012

  • Pierson T et al (2011) Proteomic characterization and functional analysis of outer membrane vesicles of Francisella novicida suggests possible role in virulence and use as a vaccine. J Proteome Res 10(3):954–967

    PubMed  CAS  Google Scholar 

  • Pike RM (1976) Laboratory-associated infections: summary and analysis of 3921 cases. Health Lab Sci 13:105–114

    PubMed  CAS  Google Scholar 

  • Pilo P, Johansson A, Frey J (2009) Identification of Francisella tularensis cluster in central and western Europe. Emerg Infect Dis 15(12):2049–2051

    PubMed  PubMed Central  Google Scholar 

  • Pollitzer R (1967) History and incidence of Tularaemia in the Soviet Union: a review. Fordham University, Bronx

    Google Scholar 

  • Pomerantsev AP et al (2001) Genetic organization of the Francisella plasmid pFNL10. Plasmid 46(3):210–222

    PubMed  CAS  Google Scholar 

  • Postic G et al (2010) Identification of small RNAs in Francisella tularensis. BMC Genomics 11:625

    PubMed  PubMed Central  Google Scholar 

  • Postic G et al (2012) Identification of a novel small RNA modulating Francisella tularensis pathogenicity. PLoS One 7(7):e41999

    PubMed  CAS  PubMed Central  Google Scholar 

  • Qu P et al (2009) Identification and characterization of the Francisella sp. strain 08HL01032 isolated in air condition systems. Wei sheng wu xue bao = Acta Microbiologica Sinica 49(8):1003–1010

    PubMed  CAS  Google Scholar 

  • Qu P-H, Chen S-Y, Scholz HC, Busse H-J, Gu Q, Kämpfer P, Yang Z-C, et al (2013) Francisella guangzhouensis sp. nov., isolated from air conditioning systems. Int J Syst Evol Microbiol. doi:10.1099/ijs.0.049916-0

    Google Scholar 

  • Raghunathan A, Shin S, Daefler S (2010) Systems approach to investigating host-pathogen interactions in infections with the biothreat agent Francisella. Constraints-based model of Francisella tularensis. BMC Syst Biol 4:118

    PubMed  PubMed Central  Google Scholar 

  • Ramakrishnan G, Sen B, Johnson R (2012) Paralogous outer membrane proteins mediate uptake of different forms of iron and synergistically govern virulence in Francisella tularensis tularensis. J Biol Chem 287(30):25191–25202

    PubMed  CAS  PubMed Central  Google Scholar 

  • Raynaud C et al (2007) Role of the wbt locus of Francisella tularensis in lipopolysaccharide O-antigen biogenesis and pathogenicity. Infect Immun 75(1):536–541

    PubMed  CAS  PubMed Central  Google Scholar 

  • Reese SM, Petersen JM, Sheldon SW, Dolan MC, Dietrich G, Piesman J, Eisen RJ (2011) Transmission efficiency of Francisella tularensis by adult American dog ticks (Acari: Ixodidae). J Med Entomol 48(4):884–890

    PubMed  Google Scholar 

  • Reif KE et al (2011) Dermacentor andersoni transmission of Francisella tularensis subsp. novicida reflects bacterial colonization, dissemination, and replication coordinated with tick feeding. Infect Immun 79(12):4941–4946

    PubMed  CAS  PubMed Central  Google Scholar 

  • Reintjes R et al (2002) Tularemia outbreak investigation in Kosovo: case control and environmental studies. Emerg Infect Dis 8(1):69–73

    PubMed  PubMed Central  Google Scholar 

  • Richter M, Rosselló-Móra R (2009) Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 106(45):19126–19131

    PubMed  CAS  PubMed Central  Google Scholar 

  • Rohmer L, Fong C, Abmayr S, Wasnick M, Larson Freeman TJ, Radey M, Guina T, Svensson K, Hayden HS, Jacobs M, Gallagher LA, Manoil C, Ernst RK, Drees B, Buckley D, Haugen E, Bovee D, Zhou Y, Chang J, Levy R, Lim R, Gillett W, Guenthener D, Kang A, Shaffer SA, Taylor G, Chen J, Gallis B, D’Argenio DA, Forsman M, Olson MV, Goodlett DR, Kaul R, Miller SI, Brittnacher MJ (2007) Comparison of Francisella tularensis genomes reveals evolutionary events associated with the emergence of human pathogenic strains. Genome Biol 8(6):R102

    PubMed  PubMed Central  Google Scholar 

  • Rotz LD et al (2002) Public health assessment of potential biological terrorism agents. Emerg Infect Dis 8(2):225–230

    PubMed  PubMed Central  Google Scholar 

  • Rydén P et al (2012) Outbreaks of tularemia in a boreal forest region depends on mosquito prevalence. J Infect Dis 205(2):297–304

    PubMed  PubMed Central  Google Scholar 

  • Salomonsson EN, Forslund A-L, Forsberg A (2011) Type IV pili in Francisella—a virulence trait in an intracellular pathogen. Front Microbiol 2:29

    PubMed  CAS  PubMed Central  Google Scholar 

  • Sandström G (1994) The tularaemia vaccine. J Chem Technol Biotechnol 59:315–320

    PubMed  Google Scholar 

  • Sandström G, Löfgren S, Tärnvik A (1988) A capsule-deficient mutant of Francisella tularensis LVS exhibits enhanced sensitivity to killing by serum but diminished sensitivity to killing by polymorphonuclear leukocytes. Infect Immun 56(5):1194–1202

    PubMed  PubMed Central  Google Scholar 

  • Sandström G et al (1992) Characterization and classification of strains of Francisella tularensis isolated in the central Asian focus of the Soviet Union and in Japan. J Clin Microbiol 30(1):172–175

    PubMed  PubMed Central  Google Scholar 

  • Santic M, Molmeret M, Abu Kwaik Y (2005) Modulation of biogenesis of the Francisella tularensis subsp. novicida-containing phagosome in quiescent human macrophages and its maturation into a phagolysosome upon activation by IFN-gamma. Cell Microbiol 7:957–967

    PubMed  CAS  Google Scholar 

  • Santic M et al (2007) A Francisella tularensis pathogenicity island protein essential for bacterial proliferation within the host cell cytosol. Cell Microbiol 9(10):2391–2403

    PubMed  CAS  Google Scholar 

  • Santic M, Ozanic M, Semic V, Pavokovic G, Mrvcic V, Kwaik YA (2011) Intra-vacuolar proliferation of F. Novicida within H. vermiformis. Front Microbiol 2:78. doi:10.3389/fmicb.2011.00078

    PubMed  PubMed Central  Google Scholar 

  • Saslaw S, Eigelsbach HT, Prior JA, Wilson HE, Carhart S (1961) Tularemia vaccine study. II. Respiratory challenge. Arch Intern Med 107:702–714

    PubMed  CAS  Google Scholar 

  • Schrallhammer M et al (2011) Detection of a novel subspecies of Francisella noatunensis as endosymbiont of the ciliate Euplotes raikovi. Microb Ecol 61(2):455–464

    PubMed  Google Scholar 

  • Schulert GS et al (2009) Francisella tularensis genes required for inhibition of the neutrophil respiratory burst and intramacrophage growth identified by random transposon mutagenesis of strain LVS. Infect Immun 77(4):1324–1336

    PubMed  CAS  PubMed Central  Google Scholar 

  • Shapiro DS, Schwartz DR (2002) Exposure of laboratory workers to Francisella tularensis despite a bioterrorism procedure. J Clin Microbiol 40:2278–2281

    PubMed  PubMed Central  Google Scholar 

  • Shea D, Lister S (2012) The BioWatch program: detection of bioterrorism, congressional research service. Library of Congress, Washington, DC

    Google Scholar 

  • Shepard CC (1959) Nonacid-fast bacteria and HeLa cells: their uptake and subsequent intracellular growth. J Bacteriol 77(6):701–714

    PubMed  CAS  PubMed Central  Google Scholar 

  • Siddaramappa S et al (2011) Common ancestry and novel genetic traits of Francisella novicida-like isolates from North America and Australia as revealed by comparative genomic analyses. Appl Environ Microbiol 77(15):5110–5122, Available at: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3147475&tool=pmcentrez&rendertype=abstract. Accessed 25 Nov 2011

  • Simşek H et al (2012) Identification of Francisella tularensis by both culture and real-time TaqMan PCR methods from environmental water specimens in outbreak areas where tularemia cases were not previously reported. Eur J Clin Microbiol Infect Dis 31(9):2353–2357

    PubMed  Google Scholar 

  • Sjödin A et al (2010) Whole-genome sequencing reveals distinct mutational patterns in closely related laboratory and naturally propagated Francisella tularensis strains. PLoS One 5(7):e11556

    PubMed  PubMed Central  Google Scholar 

  • Sjödin A et al (2012) Genome characterisation of the genus Francisella reveals insight into similar evolutionary paths in pathogens of mammals and fish. BMC Genomics 13(1):268

    PubMed  PubMed Central  Google Scholar 

  • Sjöstedt A (2007) Tularemia: history, epidemiology, pathogen physiology, and clinical manifestations. Ann N Y Acad Sci 1105:1–29

    PubMed  Google Scholar 

  • Sjöstedt AB (2005) Francisella. In: Brenner DJ, Krieg NR, Staley JT, Garrity GM (eds) The proteobacteria, part B. Bergey’s manual of systematic bacteriology. Springer, New York, pp 200–210

    Google Scholar 

  • Sjöstedt A, Eriksson U, Berglund L, Tärnvik A (1997) Detection of Francisella tularensis in ulcers of patients with tularemia by PCR. J Clin Microbiol 35:1045–1048

    PubMed  PubMed Central  Google Scholar 

  • Sorokin VM, Pavlovich NV, Prozorova LA (1996) Francisella tularensis resistance to bactericidal action of normal human serum. FEMS Immunol Med Microbiol 13(3):249–252

    PubMed  CAS  Google Scholar 

  • Soto E, Revan F (2012) Culturability and persistence of Francisella noatunensis subsp. orientalis (syn. Francisella asiatica) in sea- and freshwater microcosms. Microbiol Ecol 63(2):398–404

    Google Scholar 

  • Soto E et al (2009a) Francisella sp., an emerging pathogen of tilapia, Oreochromis niloticus (L.), in Costa Rica. J Fish Dis 32(8):713–722

    PubMed  CAS  Google Scholar 

  • Soto E, Fernandez D, Hawke JP (2009b) Attenuation of the fish pathogen Francisella sp. by mutation of the iglC* gene. J Aquat Anim Health 21(3):140–149

    PubMed  Google Scholar 

  • Soto E, Fernandez D et al (2010) Interaction of Francisella asiatica with tilapia (Oreochromis niloticus) innate immunity. Infect Immun 78(5):2070–2078

    PubMed  CAS  PubMed Central  Google Scholar 

  • Soto E, Baumgartner W, Wiles J, Hawke J (2011a) Francisella asiatica as the causative agent of piscine francisellosis in culture tilapia (Oreochromis sp.) in the USA. J Vet Diagn Invest 23:821–825

    PubMed  Google Scholar 

  • Soto E, Wiles J, Elzer P, Macaluso K, Hawke J (2011b) Attenuated Francisella asiatica iglC mutant induces protective immunity to francisellosis in tilapia. Vaccine 29:593–598

    PubMed  CAS  Google Scholar 

  • Soto E, Kidd S, Gaunt PS, Endris R (2012) Efficacy of florfenicol for control of mortality associated with Francisella noatunensis subsp. orientalis in Nile tilapia, Oreochromis niloticus (L.). J Fish Dis 36(4):411–418

    PubMed  Google Scholar 

  • Splettstoesser WD et al (2009) Tularemia in Germany: the tip of the iceberg? Epidemiol Infect 137(5):736–743

    PubMed  CAS  Google Scholar 

  • Splettstoesser WD et al (2010) Rapid differentiation of Francisella species and subspecies by fluorescent in situ hybridization targeting the 23S rRNA. BMC Microbiol 10:72

    PubMed  PubMed Central  Google Scholar 

  • Sridhar S et al (2012) Whole genome sequencing of the fish pathogen Francisella noatunensis subsp. orientalis Toba04 gives novel insights into Francisella evolution and pathogenicity. BMC Genomics 13(1):598, Available at: http://www.ncbi.nlm.nih.gov/pubmed/23131096. Accessed 13 Nov 13 2012

  • Staples JE et al (2006) Epidemiologic and molecular analysis of human tularemia, United States, 1964–2004. Emerg Infect Dis 12(7):1113–1118

    PubMed  CAS  PubMed Central  Google Scholar 

  • Stockholm International Peace Research Institute (SIPRI) (1973) The problem of chemical and biological warfare. Humanities Press, New York

    Google Scholar 

  • Su J et al (2007) Genome-wide identification of Francisella tularensis virulence determinants. Infect Immun 75(6):3089–3101

    PubMed  CAS  PubMed Central  Google Scholar 

  • Su J et al (2011) The capBCA locus is required for intracellular growth of Francisella tularensis LVS. Front Microbiol 2:83

    PubMed  PubMed Central  Google Scholar 

  • Sullivan JT et al (2006) Characterization of the siderophore of Francisella tularensis and role of fslA in siderophore production. J Bacteriol 188(11):3785–3795

    PubMed  CAS  PubMed Central  Google Scholar 

  • Svensson K et al (2005) Evolution of subspecies of Francisella tularensis. Society 187(11):3903–3908

    CAS  Google Scholar 

  • Svensson K, Bäck E et al (2009a) Landscape epidemiology of tularemia outbreaks in Sweden. Emerg Infect Dis 15(12):1937–1947

    PubMed  CAS  PubMed Central  Google Scholar 

  • Svensson K, Granberg M et al (2009b) A real-time PCR array for hierarchical identification of Francisella isolates. PLoS One 4(12):e8360

    PubMed  PubMed Central  Google Scholar 

  • Svensson K et al (2012) Genome sequence of Francisella tularensis subspecies holarctica strain FSC200, isolated from a child with Tularemia. J Bacteriol 194(24):6965–6966, Available at: http://www.ncbi.nlm.nih.gov/pubmed/23209222. Accessed 4 Dec 2012

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    PubMed  CAS  PubMed Central  Google Scholar 

  • Tärnvik A, Chu MC (2007) New approaches to diagnosis and therapy of tularemia. Ann N Y Acad Sci 1105:378–404

    PubMed  Google Scholar 

  • Tärnvik A, Priebe H-SS, Grunow R (2004) Tularaemia in Europe: an epidemiological overview. Scand J Infect Dis 36(5):350–355

    PubMed  Google Scholar 

  • Thelaus J et al (2009) Influence of nutrient status and grazing pressure on the fate of Francisella tularensis in lake water. FEMS Microbiol Ecol 67(1):69–80

    PubMed  CAS  Google Scholar 

  • Thomas R, Johansson A, Neeson B, Isherwood K, Sjöstedt A, Ellis J, Titball R (2003) Discrimination of human pathogenic subspecies of Francisella tularensis by using restriction fragment length polymorphism. J Clin Microbiol 41:50–57

    PubMed  CAS  PubMed Central  Google Scholar 

  • Tigertt WD (1962) Soviet viable Pasteurella tularensis vaccines: a review of selected articles. Bacteriol Rev 26:354–373

    PubMed  CAS  PubMed Central  Google Scholar 

  • Tomaso H, Scholz HC, Neubauer H, Al Dahouk S, Seibold E et al (2007) Real-time PCR using hybridization probes for the rapid and specific identification of Francisella tularensis subspecies tularensis. Mol Cell Probes 21:12–16

    PubMed  CAS  Google Scholar 

  • Topley WWC, Wilson GS (1929) Principles of bacteriology and immunity, 1st edn. William Wood, New York

    Google Scholar 

  • Traub A, Mager J, Grossowicz N (1955) Studies on the nutrition of Pasteurella tularensis. J Bacteriol 70:60–69

    PubMed  CAS  PubMed Central  Google Scholar 

  • Tresselt H, Ward M (1964) Blood-free medium for the rapid growth of Pasteurella tularensis. Appl Microbiol 12:504–507

    PubMed  CAS  PubMed Central  Google Scholar 

  • Triebenbach AN et al (2010) Detection of Francisella tularensis in Alaskan mosquitoes (Diptera: Culicidae) and assessment of a laboratory model for transmission. J Med Entomol 47(4):639–648

    PubMed  CAS  PubMed Central  Google Scholar 

  • Twine S et al (2005) A mutant of Francisella tularensis strain SCHU S4 lacking the ability to express a 58-kilodalton protein is attenuated for virulence and is an effective live vaccine. Infect Immun 73(12):8345–8352

    PubMed  CAS  PubMed Central  Google Scholar 

  • Ulu Kılıç A, Kılıç S, Sencan I, Ciçek Şentürk G, Gürbüz Y, Tütüncü EE, Celebi B, Kıcıman Ö, Ergönül Ö (2011) A water-borne tularemia outbreak caused by Francisella tularensis subspecies holarctica in Central Anatolia region. Mikrobiyol Bul 45:234–247

    PubMed  Google Scholar 

  • Ulu-Kilic A et al. (2012) Tularemia in central Anatolia. Infection 2013 41(2):391–9

    Google Scholar 

  • Van Banning P (1987) Long-term recording of some fish-diseases using general fishery research surveys southeast part of the North Sea. Dis Aquat Organ 3:1–11

    Google Scholar 

  • Versage JL et al (2003) Development of a multitarget real-time TaqMan PCR assay for enhanced detection of Francisella tularensis in complex specimens. J Clin Microbiol 41(12):5492–5499

    PubMed  CAS  PubMed Central  Google Scholar 

  • Vinogradov E, Perry MB (2004) Characterisation of the core part of the lipopolysaccharide O-antigen of Francisella novicida (U112). Carbohydr Res 339(9):1643–1648

    PubMed  CAS  Google Scholar 

  • Vinogradov E, Perry MB, Conlan JW (2002) Structural analysis of Francisella tularensis lipopolysaccharide. Eur J Biochem 269(24):6112–6118

    PubMed  CAS  Google Scholar 

  • Vogler AJ et al (2009) Phylogeography of Francisella tularensis: global expansion of a highly fit clone. J Bacteriol 191(8):2474–2484

    PubMed  CAS  PubMed Central  Google Scholar 

  • Vogler AJ et al (2011) Phylogeography of Francisella tularensis ssp. holarctica in France. Lett Appl Microbiol 52(2):177–180

    PubMed  CAS  Google Scholar 

  • Vonkavaara M et al (2008) Drosophila melanogaster as a model for elucidating the pathogenicity of Francisella tularensis. Cell Microbiol 10(6):1327–1338

    PubMed  CAS  Google Scholar 

  • Vonkavaara M et al (2012) Francisella is sensitive to insect antimicrobial peptides. J Innate Immun 90187

    Google Scholar 

  • Wang X et al (2006) Structure and biosynthesis of free lipid A molecules that replace lipopolysaccharide in Francisella tularensis subsp. novicida. Biochemistry 45(48):14427–14440

    PubMed  CAS  PubMed Central  Google Scholar 

  • Wang X et al (2007) Attenuated virulence of a Francisella mutant lacking the lipid A 4’-phosphatase. Proc Natl Acad Sci USA 104(10):4136–4141

    PubMed  CAS  PubMed Central  Google Scholar 

  • Wang Y et al (2011) Genetic relationship between Francisella tularensis strains from China and from other countries. Biomed Environ Sci 24(3):310–314

    PubMed  CAS  Google Scholar 

  • Wehrly TD et al (2009) Intracellular biology and virulence determinants of Francisella tularensis revealed by transcriptional profiling inside macrophages. Cell Microbiol 11(7):1128–1150

    PubMed  CAS  PubMed Central  Google Scholar 

  • Weiss DS et al (2007) In vivo negative selection screen identifies genes required for Francisella virulence. Proc Natl Acad Sci USA 104(14):6037–6042

    PubMed  CAS  PubMed Central  Google Scholar 

  • Wenger JD et al (1989) Infection caused by Francisella philomiragia (formerly Yersinia philomiragia). A newly recognised pathogen. Ann Intern Med 110(11):888–892

    PubMed  CAS  Google Scholar 

  • Whipp MJ (2003) Characterization of a novicida-like subspecies of Francisella tularensis isolated in Australia. J Med Microbiol 52(9):839–842

    PubMed  Google Scholar 

  • WHO (2007) WHO guidelines on tularemia. WHO, Geneva

    Google Scholar 

  • World Health Organization (2007) WHO guidelines on tularaemia: epidemic and pandemic alert and response. World Health Organization, Geneva

    Google Scholar 

  • Yang F et al (2005) Genome dynamics and diversity of Shigella species, the etiologic agents of bacillary dysentery. Nucleic Acids Res 33(19):6445–6458

    PubMed  PubMed Central  Google Scholar 

  • Yarza P, Ludwig W, Euzéby J, Amann R, Schleifer KH, Glöckner FO, Rosselló-Mòra R (2010) Update of the All Species Living Tree project based on 16S and 23S rRNA sequence analyses. Syst Appl Microbiol 33(6):291–299

    PubMed  CAS  Google Scholar 

  • Yesilyurt M et al (2011) Antimicrobial susceptibilities of Francisella tularensis subsp. holarctica strains isolated from humans in the Central Anatolia region of Turkey. J Antimicrob Chemother 66(11):2588–2592

    PubMed  CAS  Google Scholar 

  • Zarrella TM et al (2011) Host-adaptation of Francisella tularensis alters the bacterium’s surface-carbohydrates to hinder effectors of innate and adaptive immunity. PLoS One 6(7):e22335

    PubMed  CAS  PubMed Central  Google Scholar 

  • Zerihun MA, Feist SW, Bucke D, Olsen AB, Tandstad NM, Colquhoun D (2011) Identification of Francisella noatunensis subsp. noatunensis as the aetiological agent of “visceral granulomatosis” in Atlantic cod Gadus morhua, sampled from the southern North sea during the 1980s. Dis Aquat Organ 95:65–71

    PubMed  Google Scholar 

  • Zeytun A et al (2012) Complete genome sequence of Francisella philomiragia ATCC 25017. J Bacteriol 194(12):3266, Available at: http://www.ncbi.nlm.nih.gov/pubmed/22628499. Accessed 29 Oct 2012

  • Zhang F et al (2006) Francisella tularensis in rodents, China. Emerg Infect Dis 12(6):994–996

    PubMed  PubMed Central  Google Scholar 

  • Zhang F et al (2008) Detection of Francisella tularensis in ticks and identification of their genotypes using multiple-locus variable-number tandem repeat analysis. BMC Microbiol 8:152

    PubMed  PubMed Central  Google Scholar 

  • Zhao J, Raetz CRH (2010) A two-component Kdo hydrolase in the inner membrane of Francisella novicida. Mol Microbiol 78(4):820–836

    PubMed  CAS  PubMed Central  Google Scholar 

  • Zogaj X, Wyatt GC, Klose KE (2012) Cyclic di-GMP stimulates biofilm formation and inhibits virulence of Francisella novicida. Infect Immun 80(12):4239–47, doi:10.1128/IAI.00702-12

    PubMed  CAS  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Duncan J. Colquhoun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Colquhoun, D.J., Larsson, P., Duodu, S., Forsman, M. (2014). The Family Francisellaceae . In: Rosenberg, E., DeLong, E.F., Lory, S., Stackebrandt, E., Thompson, F. (eds) The Prokaryotes. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38922-1_236

Download citation

Publish with us

Policies and ethics