Skip to main content

The Family Polyangiaceae

  • Reference work entry
  • First Online:
The Prokaryotes

Abstract

Polyangiaceae belong to the suborder Sorangiineae in the order Myxococcales and comprise the genera Polyangium, Sorangium, Byssovorax, Chondromyces, and Jahnella. Members of the Polyangiaceae family are commonly terrestrial isolates, mainly from soil and decaying plant material. So far, this is the only family of myxobacteria which include cellulose-degrading strains. They are recognized by distinct morphological and chemo-physiological features, from which genus and species can be delineated. Some members of the family produce most sophisticated and complex fruiting bodies resembling treelike structure. The genomes of representatives belong to the largest in the prokaryotes and contain a high percent of G+C. All genera within the family are coherent in the 16S rRNA gene phylogeny, which appears to be correlated with phenotypic characteristics. Cellular fatty acid analysis revealed strong support for each strain’s affiliation to the corresponding taxon. Polyangiaceae are of interest for a wide range of applications. The microbial predatory lifestyle exhibited by most members has implications for environmental biocontrol. In addition, diverse novel antimicrobial and cytotoxic secondary metabolites are produced by this group. Further compounds act as anti-inflammatory, antitumor, and antiviral agents (e.g., anti-HIV). The anticancer agent epothilone was isolated from this family and is currently considered as the most successful pharmaceutical derived from the entire myxobacterial order. Recently, in some novel isolates of the Polyangiaceae, steroids and commercially valuable omega-3 and omega-6 polyunsaturated fatty acids were found.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 699.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 799.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aicher B, Schuster T, Blumenstein L, Schmidt P, Irschik H, Jansen R, Müller R, Guenther E, Gerlach M, Tiefel M (2012) Highly potent cytotoxic conjugates of Disorazol Z linked to a LHRH receptor targeting peptide, such as AEZS-125, interfere with cell cycle progression in human cancer cell lines and suppress tumor growth in a LHRH receptor positive ovarian cancer xenograft model. Poster presented in the 24th EORTC-NCI-AACR (ENA). Symposium on molecular targets and cancer therapeutics, Dublin

    Google Scholar 

  • Behrens J, Flossdorf J, Reichenbach H (1976) Base composition of deoxyribonucleic acid from Nannocystis exedens (Myxobacterales). Int J Syst Bacteriol 26:561–562

    Google Scholar 

  • Berkely MJ, Curtis MA (1874) Notices of north american fungi. In: Cooke MC (ed) Grevillea, a quarterly record of cryptogamic botany and its literature, vol 33(26). Williams and Norgate, London, pp 49–64

    Google Scholar 

  • Bode H, Müller R (2006) Analysis of myxobacterial secondary metabolism goes molecular. J Ind Microbiol Biotechnol 33:577–588

    CAS  PubMed  Google Scholar 

  • Bode H, Müller R (2008) Secondary metabolism in myxobacteria. In: Whitworth DE (ed) Myxobacteria: multicellularity and differentiation. ASM Press, Washington, DC, pp 259–282

    Google Scholar 

  • Bode HB, Zeggel B, Silakowski B, Wenzel SC, Reichenbach H, Müller R (2003) Steroid biosynthesis in prokaryotes: identification of myxobacterial steroids and cloning of the first bacterial 2,3(S)-oxidosqualene cyclase from the myxobacterium Stigmatella aurantiaca. Mol Microbiol 47:471–481

    CAS  PubMed  Google Scholar 

  • Bollag D, McQueney PA, Zhu J, Hensens O, Koupal L, Liesch J, Goetz M, Lazarides E, Woods CM (1995) Epothilones, a new class of microtubule-stabilizing agents with a taxol-like mechanism of action. Cancer Res 55:2325–2333

    CAS  PubMed  Google Scholar 

  • Brinkhoff T, Fischer D, Vollmers J, Voget S, Beardsley C, Thole S, Mussmann M, Kunze B, Wagner-Döbler I, Daniel R, Simon M (2012) Biogeography and phylogenetic diversity of a cluster of exclusively marine myxobacteria. ISME J 6:1260–1272

    PubMed Central  CAS  PubMed  Google Scholar 

  • Brock Neil R, Hite D, Kelrick MI, Lockhart ML, Lee K (2005) Myxobacterial biodiversity in an established oak-hickory forest and a savanna restoration site. Curr Microbiol 50:88–95

    PubMed  Google Scholar 

  • Brockman ER (1967) Fruiting myxobacteria from South Carolina coast. J Bacteriol 94:1253–1254

    PubMed Central  CAS  PubMed  Google Scholar 

  • Brockman ER, Boyd WL (1963) Myxobacteria from soils of the Alaskan and Canadian arctic. J Bacteriol 86:605–606

    PubMed Central  CAS  PubMed  Google Scholar 

  • Crews P, Manes LV, Boehler M (1986) Jasplakinolide, a cyclodepsipeptide from the marine sponge, Jaspis sp. Tetrahedron Lett 27:2797–2800

    CAS  Google Scholar 

  • Dawid W (2000) Biology and global distribution of myxobacteria in soils. FEMS Microbiol Rev 24:403–427

    CAS  PubMed  Google Scholar 

  • Dawid W, Gallikowski CA, Hirsch P (1988) Psychrophilic myxobacteria from Antarctic soils. Polarforschung 58:271–278

    Google Scholar 

  • DeLong EF, Yayanos AA (1986) Biochemical function and ecological significance of novel bacterial lipids in deep-sea prokaryotes. Appl Environ Microbiol 51:730–737

    PubMed Central  CAS  PubMed  Google Scholar 

  • Drews G (1974) Mikrobiologisches Praktikum, 2nd edn. Springer, Berlin

    Google Scholar 

  • Dworkin M (1996) Recent advances in the social and developmental biology of myxobacteria. Microbiol Rev 60:70–102

    PubMed Central  CAS  PubMed  Google Scholar 

  • Erwin J, Bloch K (1964) Biosynthesis of unsaturated fatty acids in microorganisms. Science 143:1006–1012

    CAS  PubMed  Google Scholar 

  • Euzéby J (2007) List of new names and new combinations previously effectively, but not validly, published. Int J Syst Evol Microbiol 57:893–897

    PubMed  Google Scholar 

  • Faull JH (1916) Chondromyces thaxteri: a new myxobacterium. Bot Gaz 62:226–232

    Google Scholar 

  • Fudou R, Jojima Y, Iizuka T, Yamanaka S (2002) Haliangium ochraceum gen. nov., sp. nov. and Haliangium tepidum sp. nov.: novel moderately halophilic myxobacteria isolated from coastal saline environments. J Gen Appl Microbiol 48:109–116

    CAS  PubMed  Google Scholar 

  • Garcia RO, Krug D, Müller R (2009a) Discovering natural products from myxobacteria with emphasis on rare producer strains in combination with improved analytical methods. In: Hopwood D (ed) Methods in enzymology: complex enzymes in microbial natural product biosynthesis, vol 458, part A. Academic, Burlington, pp 59–91

    Google Scholar 

  • Garcia RO, Reichenbach H, Ring MW, Müller R (2009b) Phaselicystis flava gen. nov., sp. nov., an arachidonic acid-containing soil myxobacterium, and the description of Phaselicystidaceae fam. nov. Int J Syst Evol Microbiol 59:1524–1530

    CAS  PubMed  Google Scholar 

  • Garcia R, Gerth K, Stadler M, Dogma IJ Jr, Müller R (2010) Expanded phylogeny of myxobacteria and evidence for cultivation of the ‘unculturables’. Mol Phylogenet Evol 57:878–887

    PubMed  Google Scholar 

  • Garcia R, Pistorius D, Stadler M, Müller R (2011) Fatty acid-related phylogeny of myxobacteria as an approach to discover polyunsaturated omega-3/6 fatty acids. J Bacteriol 193:1930–1942

    PubMed Central  CAS  PubMed  Google Scholar 

  • Gawas D, Garcia R, Huch V, Müller R (2011) A highly conjugated dihydroxylated C28 steroid from a myxobacterium. J Nat Prod 74:1281–1283

    CAS  PubMed  Google Scholar 

  • Geitler L (1924) Über Polyangium parasiticum n. sp., eine submerse, parasitische Myxobacteriaceae. Arch Protistenk 50:67–88

    Google Scholar 

  • Geitler L (1925) Über Polyangium parasiticum n. sp., eine submerse, parasitische Myxobacteriaceae. Zeit Botan 17:600–603

    Google Scholar 

  • Gerth K, Müller R (2005) Moderately thermophilic myxobacteria: novel potential for production of natural products. Environ Microbiol 7:874–880

    CAS  PubMed  Google Scholar 

  • Gerth K, Bedorf N, Höfle G, Irschik H, Reichenbach H (1994) The soraphens: a family of novel antifungal compounds from Sorangium cellulosum (Myxobacteria). I. Soraphen A1: fermentation, isolation, biological properties. J Antibiot 47:23–31

    CAS  PubMed  Google Scholar 

  • Gerth K, Bedorf N, Höfle G, Irschik H, Reichenbach H (1996) Epothilons A and B: Antifungal and cytotoxic compounds from Sorangium cellulosum (Myxobacteria): production, physico-chemical and biological properties. J Antibiot 49:560–563

    CAS  PubMed  Google Scholar 

  • Gerth K, Pradella S, Perlova O, Beyer S, Müller R (2003) Myxobacteria: proficient producers of novel natural products with various biological activities—past and future biotechnological aspects with the focus on the genus Sorangium. J Biotechnol 106:233–253

    CAS  PubMed  Google Scholar 

  • Herrmann M, Bohlendorf B, Irschik H, Reichenbach H, Höfle G (1998) Maracin and maracen: new types of ethynyl vinyl ether and α-chloro divinyl ether antibiotics from Sorangium cellulosum with specific activity against mycobacteria. Angew Chem Int Ed 37:1253–1255

    CAS  Google Scholar 

  • Höfle G (2009) General aspects. In: Kinghorn AD, Falk H, Kobayashi J (eds) The epothilones—an outstanding family of anti-tumour agents: from soil to the clinic. Springer, Wien/New York, pp 5–16

    Google Scholar 

  • Iizuka T, Jojima Y, Fudou R, Yamanaka S (1998) Isolation of myxobacteria from the marine environment. FEMS Microbiol Lett 169:317–322

    CAS  PubMed  Google Scholar 

  • Iizuka T, Jojima Y, Fudou R, Hiraishi A, Ahn JW, Yamanaka S (2003a) Plesiocystis pacifica gen. nov., sp. nov., a marine myxobacterium that contains dihydrogenated menaquinone, isolated from the pacific coasts of Japan. Int J Syst Evol Microbiol 53:189–195

    CAS  PubMed  Google Scholar 

  • Iizuka T, Jojima Y, Fudou R, Tokura M, Hiraishi A, Yamanaka S (2003b) Enhygromyxa salina gen. nov., sp. nov., a slightly halophilic myxobacterium isolated from the coastal areas of Japan. Syst Appl Microbiol 26:189–196

    PubMed  Google Scholar 

  • Iizuka T, Tokura M, Jojima Y, Hiraishi A, Yamanaka S, Fudou R (2006) Enrichment and phylogenetic analysis of moderately thermophilic myxobacteria from hot springs in Japan. Microb Environ 21:189–1999

    Google Scholar 

  • Iizuka T, Jojima Y, Hayakawa A, Fujii T, Yamanaka S, Fudou R (2013) Pseudenhygromyxa salsuginis gen. nov., sp. nov., a myxobacterium isolated from an estuarine marsh. Int J Syst Evol Microbiol 63:1360–1369

    CAS  PubMed  Google Scholar 

  • Irschik H, Jansen R, Gerth K, Höfle G, Reichenbach H (1995) Chivosazol A, a new inhibitor of eukaryotic organisms isolated from myxobacteria. J Antibiot 48:962–966

    CAS  PubMed  Google Scholar 

  • Irschik H, Reichenbach H, Höfle G, Jansen R (2007a) The thuggacins, novel antibacterial macrolides from Sorangium cellulosum acting against selected Gram-positive bacteria. J Antibiot 60:733–738

    CAS  PubMed  Google Scholar 

  • Irschik H, Schummer D, Hofle G, Reichenbach H, Steinmez H, Jansen R (2007b) Etnangien, a macrolide-polyene antibiotic from Sorangium cellulosum that inhibits nucleic acid polymerases. J Nat Prod 70:1060–1063

    CAS  PubMed  Google Scholar 

  • Jacobi C, Reichenbach H, Tindall B, Stackerbrandt E (1996) “Candidatus comitans”, a bacterium living in coculture with Chondromyces crocatus (Myxobacteria). Int J Syst Bacteriol 46:119–122

    CAS  PubMed  Google Scholar 

  • Jacobi C, Assmus B, Reichenbach H, Stackerbrandt E (1997) Molecular evidence for association between the sphingobacterium-like organism “Candidatus comitans” and the myxobacterium Chondromyces crocatus. Appl Environ Microbiol 63:719–723

    PubMed Central  CAS  PubMed  Google Scholar 

  • Jahn E (1924) Beitrage zur Botanischen Protistologie. I. Die Polyangiden. Gebrüder Borntraeger, Leipzig

    Google Scholar 

  • Jansen R, Kunze B, Wray V, Reichenbach H, Jurkiewicz E, Hunsmann G, Höfle G (1991) Phenoxan: a novel inhibitor of HIV-1 infection in cell cultures from Polyangium sp., strain Pl vo19 (Myxobacteria). Liebigs Ann Chem 1991:707–708

    Google Scholar 

  • Jansen R, Nowak A, Kunze B, Reichenbach H, Höfle G (1995) Four new carotenoids from Polyangium fumosum (myxobacteria): 3,3′,4,4′-tetradehydro-1,1′,2,2′-tetrahydro-1,1′-dihydroxy-Ψ, Ψ-carotene (di-O-demethylspirilloxanthin), its β-glucoside and glucoside fatty acid esters. Liebigs Ann 1995:873–876

    Google Scholar 

  • Jiang D-M, Wu Z-H, Zhao J-Y, Li Y-Z (2007) Fruiting and non-fruiting myxobacteria: a phylogenetic perspective of cultured and uncultured members of this group. Mol Phylogenet Evol 44:545–552

    CAS  PubMed  Google Scholar 

  • Jiang D-M, Kato C, Zhou X-W, Wu Z-H, Sato T, Li Y-Z (2010) Phylogeographic separation of marine and soil myxobacteria at high levels of classification. Int Soc Microb Ecol 4:1520–1530

    Google Scholar 

  • Kaiser D (1993) Roland thaxter’s legacy and the origins of multicellular development. Genetics 135:249–254

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kannan N, Taylor S, Yufeng Zhai J, Venter C, Manning G (2007) Structural and functional diversity of the microbial kinome. PLoS Biol 5:0467–0478

    CAS  Google Scholar 

  • King D, Chen C-I, Blanchard M, Aldrige B, Anderson M, Walker R, Maas J, Hanks D, Hall M, Scott J (2005) Molecular identification of a novel deltaproteobacterium as the etiologic agent of epizootic bovine abortion (foothill abortion). J Clin Microbiol 43:604–609

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kleinig H, Reichenbach H, Achenbach H, Stadler J (1971) Carotenoid pigments of Sorangium cellulosum (Myxobacterales) including two new carotenoid glycoside esters and two new carotenoid rhamnoside. Arch Mikrobiol 78:224–233

    CAS  PubMed  Google Scholar 

  • Kofler L (1913) Die Myxobakterien der Umgebung von Wien. Sitzber kais Akad Wiss Wien math Naturw Klasse Abt 1 122:845–876

    Google Scholar 

  • Kopp M, Irschik H, Gross F, Perlova O, Sandmann A, Gerth K, Müller R (2004) Critical variations of conjugational DNA transfer into secondary metabolite multiproducing Sorangium cellulosum strains So ce12 and So ce56: development of a mariner-based transposon mutagenesis system. J Biotechnol 107:29–40

    CAS  PubMed  Google Scholar 

  • Krzemieniewska H, Krzemieniewski S (1946) Myxobacteria of the species Chondromyces Berkeley and Curtis. Bull Acad Polon Sci Lettr Classe Sci Math Nat Sér B 1:31–48

    Google Scholar 

  • Kühlwein H, Schlicke B (1971) Polyangium luteum krzemieniewski in pure culture. J Appl Microbiol 34:515–519

    Google Scholar 

  • Kunze B, Jansen R, Pridzun L, Jurkiewicz E, Hunsmann G, Höfle G, Reichenbach H (1992) Phenoxan, a new oxazole-pyrone from myxobacteria: production, antimicrobial activity and its inhibition of the electron transport in complex I of the respiratory chain. J Antibiot 45:1549–1552

    CAS  PubMed  Google Scholar 

  • Kunze B, Jansen R, Pridzun L, Jurkiewicz E, Hunsmann G, Höfle G, Reichenbach H (1993) Thiangazole, a new thiazoline antibiotic from Polyangium sp. (Myxobacteria): production, antimicrobial activity and mechanism of action. J Antibiot 46:1752–1755

    CAS  PubMed  Google Scholar 

  • Kunze B, Jansen R, Sasse F, Höfle G, Reichenbach H (1995) Chondramides A D, new antifungal and cytostatic depsipeptides from Chondromyces crocatus (Myxobacteria): production, physico-chemical and biological properties. J Antibiot 48:1262–1266

    CAS  PubMed  Google Scholar 

  • Lavelle F (1995) What’s new about new tubulin/microtubules binding agents? Exp Opin Invest Drug 4:771–775

    CAS  Google Scholar 

  • Leinenbach A, Hartmer R, Lubeck M, Kneissl B, Elnakady Y, Baessmann C, Müller R, Huber C (2009) Proteome analysis of Sorangium cellulosum employing 2D-HPLC-MS/MS and improved database searching strategies for CID and ETD fragment spectra. J Proteome Res 8:4350–4361

    CAS  PubMed  Google Scholar 

  • Li YZ, Hu W, Zhang YQ, Qiu ZJ, Zhang Y, Wu BH (2002) A simple method to isolate salt-tolerant myxobacteria from marine samples. J Microbiol Method 50:205–209

    CAS  Google Scholar 

  • Ludwig W, Schleifer KH, Reichenbach H, Stackerbrandt E (1983) A phylogenetic analysis of the myxobacteria Myxococcus fulvus, Stigmatella aurantiaca, Cystobacter fuscus, Sorangium cellulosum and Nannocystis exedens. Arch Microbiol 135:58–62

    CAS  Google Scholar 

  • MacRae TH, McCurdy HD (1975) Ultrastructural studies of Chondromyces crocatus vegetative cells. Can J Microbiol 21:1815–1826

    CAS  PubMed  Google Scholar 

  • McCurdy HD (1969) Light and electron microscope studies on the fruiting bodies of Chondromyces crocatus. Arch Microbiol 65:380–390

    Google Scholar 

  • McNeil KE, Skerman VBD (1972) Examination of myxobacteria by scanning electron microscopy. Int J Syst Evol Microbiol 22:243–250

    Google Scholar 

  • Menne B, Ruckert G (1988) Myxobakterien (Myxobacterales) in Höhlensedimenten des Hagengebirges (Nördliche Kalkalpen). Die Höhle 4:120–131

    Google Scholar 

  • Mohr KI, Garcia R, Gerth K, Irschik H, Müller R (2012) Sandaracinus amylolyticus gen. nov., sp. nov., a starch-degrading soil myxobacterium, and description of Sandaracinaceae fam. nov. Int J Syst Evol Microbiol 62:1191–1198

    CAS  PubMed  Google Scholar 

  • Moyer CL, Dobbs FC, Karl DM (1995) Phylogenetic diversity of the bacterial community from a microbial mat at an active, hydrothermal vent system, Loihi Seamount, Hawaii. Appl Environ Microbiol 61:1555–1562

    PubMed Central  CAS  PubMed  Google Scholar 

  • Müller R, Gerth K (2006) Development of simple media which allow investigations into the global regulation of chivosazol biosynthesis with Sorangium cellulosum So ce56. J Biotechnol 121:192–200

    PubMed  Google Scholar 

  • Mulzer J (2009) The epothilones—an outstanding family of anti-tumour agents: from soil to the clinic. Springer, Wien/New York

    Google Scholar 

  • Nichols D, McMeekin T (2002) Biomarker techniques to screen bacteria that produce polyunsaturated fatty acids. J Microbiol Methods 48:161–170

    CAS  PubMed  Google Scholar 

  • Nichols DS, Nichols P, McMeekin TA (1993) Polyunsaturated fatty acids in Antarctic bacteria. Antarctic Sci 2:149–160

    Google Scholar 

  • Nichols D, Bowman J, Sanderson K, Nichols CM, Lewis T, McMeekin T, Nichols P (1999) Developments with Antarctic microorganisms: culture collections, bioactivity screening, taxonomy, PUFA production and cold-adapted enzymes. Curr Opin Biotechnol 10:240–246

    CAS  PubMed  Google Scholar 

  • Ojika M, Inukai Y, Kito Y, Hirata M, Iizuka T, Fudou R (2008) Miuraenamides: antimicrobial cyclic depsipeptides isolated from a rare and slightly halophilic myxobacterium. Chem Asian J 3:126–133

    CAS  PubMed  Google Scholar 

  • Pérez J, Castañeda-García A, Jenke-Kodama H, Müller R, Muñoz-Dorado J (2008) Eukaryotic-like protein kinases in the prokaryotes and the myxobacterial kinome. Proc Natl Acad Sci USA 105:15950–15955

    PubMed Central  PubMed  Google Scholar 

  • Peterson J (1959) New species of myxobacteria from the bark of living trees. Mycologia 51:163–172

    Google Scholar 

  • Peterson JE (1969) Isolation, cultivation and maintenance of the myxobacteria. In: Norris JR, Ribbons DW (eds) Methods in microbiology, vol 3B. Academic, London, UK, pp 185–210

    Google Scholar 

  • Plaza A, Garcia R, Bifulco G, Martinez JP, Hüttel S, Sasse F, Meyerhans A, Stadler M, Müller R (2012) Aetheramides A and B, potent HIV-inhibitory depsipeptides from a myxobacterium of the new genus “Aetherobacter”. Org Lett 14:2854–2857

    CAS  PubMed  Google Scholar 

  • Pradella S, Hans A, Spröer C, Reichenbach H, Gerth K, Beyer S (2002) Characterisation, genome size, and genetic manipulation of the myxobacterium Sorangium cellulosum So ce56. Arch Microbiol 178:484–492

    CAS  PubMed  Google Scholar 

  • Rachid S, Krug D, Kunze B, Kochems I, Scharfe M, Zabriskie M, Blöcker H, Müller R (2006) Molecular and biochemical studies of Chondramide formation—highly cytotoxic natural products from Chondromyces crocatus Cm c5. Chem Biol 13:667–681

    CAS  PubMed  Google Scholar 

  • Reichenbach H (1984) Myxobacteria: a most peculiar group of social prokaryotes. In: Rosenberg E (ed) Myxobacteria: development and cell interactions. Springer, New York, pp 1–50

    Google Scholar 

  • Reichenbach H (1999a) Myxobacteria. In: Flickinger MC, Drew SW (eds) Encyclopedia of bioprocess technology: fermentation, biocatalysis, and bioseparation. Wiley, New York, pp 1823–1832

    Google Scholar 

  • Reichenbach H (1999b) The ecology of myxobacteria. Environ Microbiol 1:15–21

    CAS  PubMed  Google Scholar 

  • Reichenbach H (2001) Myxobacteria, producers of novel bioactive substances. J Ind Microbiol Biotechnol 27:149–156

    CAS  PubMed  Google Scholar 

  • Reichenbach H (2005) Order VIII. Myxococcales. In: Brenner DJ, Krieg NR, Staley JT, Garrity GM (eds) Bergey’s manual of systematic bacteriology, vol 2, part C. Springer, New York, pp 1059–1144

    Google Scholar 

  • Reichenbach H, Dworkin M (1981) Introduction to the gliding bacteria. In: Starr MP, Stolp H, Trüper HG, Balows A, Schlegel H (eds) The procaryotes, a handbook on habitats, isolation, and identification of bacteria, vol 1. Springer, Berlin, pp 315–327

    Google Scholar 

  • Reichenbach H, Dworkin M (1992) The myxobacteria. In: Balows A, Trüper HG, Dworkin M, Harder W, Schleifer KH (eds) The procaryotes, 2nd edn. Springer, Berlin, pp 3416–3487

    Google Scholar 

  • Reichenbach H, Höfle G (1993) Biologically active secondary metabolites from myxobacteria. Biotechnol Adv 11:219–277

    CAS  PubMed  Google Scholar 

  • Reichenbach H, Höfle G (1999) Myxobacteria as producers of secondary metabolites. In: Grabley S, Thiericke R (eds) Drug discovery from nature. Springer, Berlin, pp 149–179

    Google Scholar 

  • Reichenbach H, Kleinig H (1984) Pigments of myxobacteria. In: Rosenberg E (ed) Myxobacteria: development and cell interactions. Springer, New York, pp 127–137

    Google Scholar 

  • Reichenbach H, Lang E, Schumann P, Spröer C (2006) Byssovorax cruenta gen. nov., sp nov., nom. rev., a cellulose-degrading myxobacterium: rediscovery of ‘Myxococcus cruentus’ Thaxter 1897. Int J Syst Evol Microbiol 56:2357–2363

    CAS  PubMed  Google Scholar 

  • Ringel SM, Greenough RC, Roemer S, Connor D, von Strandtmann M (1977) Abruticin (W7783), a new antifungal antibiotic. J Antibiot 30:371–375

    CAS  PubMed  Google Scholar 

  • Sanford R, Cole J, Tiedje J (2002) Characterization and description of Anaeromyxobacter dehalogenans gen. nov., sp. nov., an aryl-halorespiring facultative anaerobic myxobacterium. Appl Environ Microbiol 68:893–900

    PubMed Central  CAS  PubMed  Google Scholar 

  • Sarao R, McCurdy HD, Passador L (1985) Enzymes of the intermediary carbohydrate metabolism of Polyangium cellulosum. Can J Microbiol 31:1142–1146

    CAS  Google Scholar 

  • Sasse F, Kunze B, Gronewold TM, Reichenbach H (1998) The chondramides: cytostatic agents from myxobacteria acting on the actin cytoskeleton. J Natl Cancer Inst 90:1559–1563

    CAS  PubMed  Google Scholar 

  • Schäberle TF, Goralski E, Neu E, Özlem E, Hölzl G, Dörmann P, Bierbaum G, König GM (2010) Marine myxobacteria as a source of antibiotics—comparison of physiology, polyketide-type genes and antibiotic production of three new isolates of Enhygromyxa salina. Mar Drugs 8:2466–2479

    PubMed Central  PubMed  Google Scholar 

  • Schneiker S, Perlova O, Kaiser O, Gerth K, Alici A et al (2007) Complete genome sequence of the myxobacterium Sorangium cellulosum. Nat Biotechnol 25:1281–1289

    CAS  PubMed  Google Scholar 

  • Schulz S, Fuhlendorff J, Reichenbach H (2004) Identification and synthesis of volatiles released by the myxobacterium Chondromyces crocatus. Tetrahedron 60:3863–3872

    CAS  Google Scholar 

  • Shimkets L, Woese CR (1992) A phylogenetic analysis of the myxobacteria: basis for their classification. Proc Natl Acad Sci USA 89:9459–9463

    PubMed Central  CAS  PubMed  Google Scholar 

  • Shimkets L, Dworkin M, Reichenbach H (2006) The myxobacteria. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E (eds) The prokaryotes, vol 7, 3rd edn. Springer, Berlin, pp 31–115

    Google Scholar 

  • Singh BN (1947) Myxobacteria in soils and compost: their distribution, number and lytic action on bacteria. J Gen Microbiol 1:1–10

    CAS  PubMed  Google Scholar 

  • Singh A, Wilson S, Ward OP (1996) Docosahexaenoic acid (DHA) production by Thraustochytrium sp., ATCC 20892. World J Microbiol Biotechnol 12:76–81

    CAS  PubMed  Google Scholar 

  • Skerman VBD, McGowan V, Sneath PHA (1980) Approved lists of bacterial names. Int J Syst Bacteriol 30:225–420

    Google Scholar 

  • Spröer C, Reichenbach H, Stackebrandt E (1999) The correlation between morphological and phylogenetic classification of myxobacteria. Int J Syst Bacteriol 49:1255–1262

    PubMed  Google Scholar 

  • Stadler M, Roemer E, Müller R, Garcia RO, Pistorius D, Brachmann A (2010) Production of omega-3 fatty acids by myxobacteria. International Patent WO 2010, 063451A2

    Google Scholar 

  • Steinmetz H, Irschik H, Kunze B, Reichenbach H, Höfle G, Jansen R (2007) Thuggacins, macrolide antibiotics active against Mycobacterium tuberculosis: isolation from myxobacteria, structure elucidation, conformation analysis and biosynthesis. Chem Eur J 13:5822–5832

    CAS  PubMed  Google Scholar 

  • Thaxter R (1897) Further observations on the Myxobacteriaceae. Bot Gaz 23:395–411

    Google Scholar 

  • Thaxter R (1904) Contributions from the cryptogamic laboratory of Harvard University LVI. Notes on the Myxobacteriaceae. Bot Gaz 37:405–416

    Google Scholar 

  • Trowitzsch W, Witte L, Reichenbach H (1981) Geosmin from earthy smelling cultures of Nannocystis exedens (Myxobacterales). FEMS Microbiol Lett 12:257–260

    CAS  Google Scholar 

  • Tu Y, Chen GP, Wang YL (2007) Autonomously replicating plasmid transforms Sorangium cellulosum So ce90 and induces expression of green fluorescent protein. J Biosci Bioeng 104:385–390

    CAS  PubMed  Google Scholar 

  • Ward O, Singh A (2005) Omega-3/6 fatty acids: alternative sources of production. Process Biochem 40:3627–3652

    CAS  Google Scholar 

  • Warude D, Joshi K, Harsulkar A (2006) Polyunsaturated fatty acids: biotechnology. Crit Rev Biotechnol 26:83–93

    CAS  PubMed  Google Scholar 

  • Weissman KJ, Müller R (2009) A brief tour of myxobacterial secondary metabolism. Bioorg Med Chem 17:2121–2135

    CAS  PubMed  Google Scholar 

  • Weissman KJ, Müller R (2010) Myxobacterial secondary metabolites: bioactivities and modes-of-action. Nat Prod Rep 27:1276–1295

    CAS  PubMed  Google Scholar 

  • Wenzel SC, Müller R (2009) The biosynthetic potential of myxobacteria and their impact on drug discovery. Curr Opin Drug Discov Devel 12:220–230

    CAS  PubMed  Google Scholar 

  • Yan ZC, Wang B, Li YZ, Gong X, Zhang HQ, Gao PJ (2003) Morphologies and phylogenetic classification of cellulolytic myxobacteria. Syst Appl Microbiol 26:104–109

    PubMed  Google Scholar 

  • Yano Y, Nakayama A, Yoshida K (1997) Distribution of polyunsaturated fatty acids in bacteria present in intestines of deep-sea fish and shallow-sea poikilothermic animals. Appl Environ Microbiol 63:2572–2577

    PubMed Central  CAS  PubMed  Google Scholar 

  • Yarza P, Ludwig W, Euzéby J, Amann R, Schleifer K-H, Glöckner FO, Rosselló-Móra R (2010) Update of the all-species living-tree project based on 16S and 23S rRNA sequence analyses. Syst Appl Microbiol 33:291–299

    CAS  PubMed  Google Scholar 

  • Zabriskie TM, Klocke JE, Ireland CM, Marcus AH, Molinski TF, Faulkner DJ, Xu C, Clardy JC (1986) Jaspamide, a modified peptide from a jaspis sponge with insecticidal and antifungal activity. J Am Chem Soc 108:3123–3124

    CAS  Google Scholar 

  • Zeggel B (1993) Steroids bei Myxobakteria. Doctoral thesis, Technical University Braunschweig, Braunschweig, p 134

    Google Scholar 

  • Zhukova RA (1963) Aerobic cellulose bacteria of northern soils. Microbiology (Trans: Mikrobiologiya) 31:855–860

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ronald Garcia .

Editor information

Editors and Affiliations

Electronic supplementary material

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Garcia, R., Müller, R. (2014). The Family Polyangiaceae. In: Rosenberg, E., DeLong, E.F., Lory, S., Stackebrandt, E., Thompson, F. (eds) The Prokaryotes. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39044-9_308

Download citation

Publish with us

Policies and ethics