Skip to main content

Pest Management in Tropical Forestry

  • Living reference work entry
  • Latest version View entry history
  • First Online:
Tropical Forestry Handbook

Abstract

The term “Pest” is used in the heading for this chapter in a broad sense to encompass all the living and nonliving agencies which damage living plants. In the text, however, it is mostly used in a narrower sense to include only various animals; while the terms “Diseases” and “Disorders” are used for damage caused by various groups of living plants (pathogens) and various nonliving agencies, respectively. In natural ecosystems, plants have evolved gradually over many years and have therefore become adapted to the environment and all the other components of their own ecosystem. Damage from pests and diseases does occur in natural ecosystems, but it is often greatly exacerbated in the unnatural conditions of managed and plantation forests. Natural ecosystems have also become changed by the international movement of plants, and inadvertently their pests and diseases, and by man-made changes to the environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Agrios GN (2005) Plant pathology, 5th edn. Academic, New York

    Google Scholar 

  • Agustini L, Wahyuno D, Indrayadi H, Glen M (2014) In vitro interactions between Phlebiopsis sp and Ganoderma philippii. For Pathol. doi:10.1111/efp.12145

    Google Scholar 

  • Al Adawi AO, Barnes I, Khan IA, Al Subhi AM, Al Jahwari AA, Deadman ML, Wingfield BD, Wingfield MJ (2013) Ceratocystis manginecans associated with a serious wilt disease of two native legume trees in Oman and Pakistan. Australas Plant Pathol 42:179–193

    Article  CAS  Google Scholar 

  • Anonymous (1985) Forest diseases of China. Forestry Publication of China, Beijing, 245pp

    Google Scholar 

  • Anonymous (1988) Biological breakdown of pine stumps. Annu Rep 1987–1988. Department of Forestry, Queensland, p 27

    Google Scholar 

  • Arriel DAA, Fonseca NR, Guimarães LMS, Hermenegildo PS, Mafia RG, Borges Júnior N, de Souza HP, Alfenas AC, Kim M-S (2014) Wilt and die-back of Eucalyptus spp. caused by Erwinia psidii in Brazil. For Pathol 44:255–265

    Article  Google Scholar 

  • Arrifin D, Idris AS, Singh G (2000) Status of Ganoderma in oil palm. In: Flood J, Bridge PD, Holderness M (eds) Ganoderma diseases of perennial crops. CABI, Wallingford, London, pp. 49–69

    Google Scholar 

  • Bakshi BK (1976) Forest pathology principles and practice in forestry. Forest Research Institute, Dehradun, 400 pp

    Google Scholar 

  • Barnard EL (1994) The nursery to field carryover and post outplanting impact of Macrophomina phaseolina on loblolly pine on a cutover forest site in North Central Florida. Tree Planter’s Notes 45:68–71

    Google Scholar 

  • Barrett DR, Fox JED (1995) Geographical distribution of Santalaceae and botanical characteristics of species in the genus Santalum. In: Cjerum L, Fox JED, Ehrhart Y (eds) Sandalwood seed nursery and plantation technology. Proceedings of a regional workshop for Pacific Island countries, 1994, New Caledonia, pp 3–23. RAS Field Document 8. South Pacific Forestry Development Programme, Suva

    Google Scholar 

  • Bednářová M, Dvořác M, Janoušek J, Jankowský L (2013) Other foliar diseases of coniferous trees. In: Gonthier P, Nicolotti G (eds) Infectious forest diseases. CABI, Wallingford, pp 458–487

    Chapter  Google Scholar 

  • Bigger M (1988) The insect pests of forest plantation trees in the Solomon Islands. Overseas Development Natural Resources Institute, Chatham, 190 pp

    Google Scholar 

  • Bloomberg WJ (1985) The epidemiology of forest nursery diseases. Ann Rev Phytopathol 23:83–96

    Article  Google Scholar 

  • Boddy L, Rayner ADM (1983) Origins of decay in living deciduous trees: the role of moisture content and a re-appraisal of the expanded concept of tree decay. New Phytol 94:623–641

    Article  Google Scholar 

  • Boddy L, Watkinson SC (1995) Wood decomposition, higher fungi, and their role in nutrient redistribution. Can J Bot 73:S1377–S1383

    Article  Google Scholar 

  • Boerboom JHA, Maas PWT (1970) Canker of Eucalyptus grandis and E. saligna in Surinam caused by Endothia havanensis. Turrialba 20:94–99

    Google Scholar 

  • Bradshaw RE (2004) Dothistroma (red-band) needle blight of pines and the dothistromin toxin: a review. For Pathol 34:163–185

    Article  Google Scholar 

  • Brooks FT (1953) Plant diseases, 2nd edn. Oxford University Press, Oxford, 457 pp

    Google Scholar 

  • Browne FG (1968) Pests and diseases of forest plantation trees. Clarendon, Oxford, 1330 pp

    Google Scholar 

  • Bulman LS, Dick MA, Ganley RJ, McDougal RL, Schwelm A, Bradshaw RE (2013) Dothistroma needle blight. In: Gonthier P, Nicolotti G (eds) Infectious forest diseases. CABI, Wallingford, pp 436–457

    Chapter  Google Scholar 

  • Büttner C, van Barge S, Bandte M, Muhlbach H-P (2013) Forest diseases caused by viruses. In: Gonthier P, Nicolotti G (eds) Infectious forest diseases. CABI, Wallingford, pp 50–75

    Chapter  Google Scholar 

  • Cambra M, Boscia D, Myrta A, Palkocivs L, Navrátil M, Barba M, Gorris MT, Capote N (2006) Detection and characterization of plum pox virus: serological methods. EPPO Bull 36:254–261

    Article  Google Scholar 

  • Capretti P, Santini A, Solheim H (2013) Branch and tip blights. In: Gonthier P, Nicolotti G (eds) Infectious forest diseases. CABI, Wallingford, pp 420–435

    Chapter  Google Scholar 

  • Cheng J, Smith-Becker J, Keen NT (1998) Genetics of plant-pathogen interactions. Curr Opin Biotechnol 9:202–207

    Article  Google Scholar 

  • Conradie E, Swart WJ, Wingfield MJ (1990) Cryphonectria Canker of Eucalyptus, an important disease in plantation forestry in South Africa. S Afr For J 152:43–49

    Google Scholar 

  • Cooper JI (1993) Virus diseases of trees and shrubs. Chapman & Hall, London

    Google Scholar 

  • Costello R (2003) Abiotic disorders of landscape plants: a diagnostic guide. Agriculture and Natural Resources Communications Services, University of California, Oakland

    Google Scholar 

  • Coutinho TA, Preisig O, Mergaert J, Cnockaert MC, Riedel K-H, Swings J, Wingfield MJ (2002) Bacterial blight and dieback of Eucalyptus species, hybrids, and clones in South Africa. Plant Dis 86:20–25

    Article  Google Scholar 

  • Crous PJ (1998) Mycosphaerella spp. and their anamorphs associated with leaf spot diseases of Eucalyptus. APS Press, St. Paul

    Google Scholar 

  • Crous PJ (2002) Taxonomy and pathology of Cylindrocladium (Calonectria) and allied genera. APS Press, St. Paul

    Google Scholar 

  • Crous PJ, Summerell BA, Carnegie AJ, Mohammed C, Himaman W, Groenewald JZ (2007) Foliicolous Mycosphaerella spp. and their anamorphs on Corymbia and Eucalyptus. Fungal Divers 26:143–185

    Google Scholar 

  • Da Cruz AP, Dianese JC (1986) Tolerance to bacterial wilt in eucalypt species. Fitopatol Bras 11:396

    Google Scholar 

  • Daly AM, Shivas RG, Pegg GS, Mackie AE (2006) First record of teak leaf rust (Olivea tectonae) in Australia. Australas Plant Dis Notes 1:25–26

    Article  Google Scholar 

  • de Wet J, Burgess T, Slippers B, Presig O, Wingfield BD, Wingfield MJ (2003) Multiple gene genealogies and microsatellite markers reflect relationships between morphotypes of Sphaeropsis sapinea and identify a new species of Diplodia. Mycol Res 107:557–566

    Article  PubMed  CAS  Google Scholar 

  • Dingley JM, Gilmour JW (1972) Colletotrichum acutatum: Simmds. f. sp. pinea associated with “terminal crook” disease of Pinus spp. NZ J For Sci 2:192–201

    Google Scholar 

  • Dublin HT (1995) Vegetation dynamics in the Serengeti-Mara ecosystem: the role of elephants, fire and other factors. In: Sinclair ARE, Arcese P (eds) Serengeti II: dynamics, management, and conservation of an ecosystem. University of Chicago Press, Chicago, pp 71–90

    Google Scholar 

  • Evans HC (1984) The genus Mycosphaerella and its anamorphs Cercoseptoria, Dothistroma and Lecanosticta on pines. Mycol Papers 153, Commonwealth Mycological Institute, Kew.

    Google Scholar 

  • Firmino AC, Tozze HJ Jr, Furtado EL (2012) First report of Ceratocystis fimbriata causing wilt in Tectona grandis in Brazil. New Dis Rep 25:24

    Article  Google Scholar 

  • Fraser S, Martin-Garcia J, Perry A, Kabir MS, Owen T, Solla A, Doğmuş HT, Brown AV, Bulman L, Barnes I, Hale MD, Vasconcelos MW, Lewis KJ, Woodward S, Bradshaw RE (2015) A review of Pinaceae resistance mechanisms against needle and shoot pathogens with a focus on the Dothistroma-Pinus interaction. Forest Pathology 45 doi: 10.1111/efp.12201

    Google Scholar 

  • Gibson IAS (1974) Impact and control of Dothistroma blight of pines. Eur J Pathol 4:89–100

    Article  Google Scholar 

  • Gibson lAS (1975) Diseases of forest trees widely planted as exotics in the tropics and southern hemisphere. Part 1. Important members of the Myrtaceae, Leguminosae, Verbenaceae and Meliaceae. CMI, Kew/CFI, Oxford, 51 pp

    Google Scholar 

  • Gibson lAS (1979) Diseases of forest trees widely planted as exotics in the tropics and southern hemisphere. Part 11. The genus Pinus. CMI, Kew/CFI, Oxford

    Google Scholar 

  • Gilbert GS (2002) Evolutionary ecology of plant diseases in natural ecosystems. Ann Rev Plant Pathol 40:13–43

    CAS  Google Scholar 

  • Glen M, Alfenas AC, Zauza EAV, Wingfield MJ, Mohammed C (2007) Puccinia psidii: a threat to the Australian environment and economy – a review. Australas Plant Pathol 36:1–16

    Article  Google Scholar 

  • Greaves A, McCarter PS (1990) Cordia alliodora: a promising tree for tropical agroforestry, Tropical forestry papers. Oxford Forestry Institute, Oxford, UK, 43 pp

    Google Scholar 

  • Griffiths HM (2013) Forest diseases caused by Prokayotes: phytoplasmal and bacterial diseases. In: Gonthier P, Nicolotti G (eds) Infectious forest diseases. CABI, Wallingford, pp 76–96

    Chapter  Google Scholar 

  • Grosclaude C, Ricard JC, Dubos B (1973) Inoculation of Trichoderma viride spores via pruning shears for biological; control of Stereum purpureum on Plum trees wounds. Plant Dis Rep 57:25–28

    Google Scholar 

  • Hamelin R (2013) Tree rusts. In: Gonthier P, Nicolotti G (eds) Infectious forest diseases. CABI, Wallingford, pp 547–566

    Chapter  Google Scholar 

  • Harrington TC (2013) Ceratocystis diseases. In: Gonthier P, Nicolotti G (eds) Infectious forest diseases. CABI, Wallingford, pp 230–255

    Chapter  Google Scholar 

  • Hawksworth FG, Wiens D (1996) Dwarf mistletoes: Biology, pathology and systematics. Agricultural handbook 709. Forest Service, USDA, Washington DC

    Google Scholar 

  • Hayden KJ, Hardy GES, Garbelotto M (2013) Oomycete diseases. In: Gonthier P, Nicolotti G (eds) Infectious forest diseases. CABI, Wallingford, pp 519–546

    Chapter  Google Scholar 

  • Hodges CS (1980) The taxonomy of Diaporthe cubensis. Mycologia 72:542–548

    Article  Google Scholar 

  • Holdenrieder O, Greig BJW (1998) Biological control. In: Woodward S, Stenlid J, Karjalainen R, Huttermann A (eds) Heterobasidion annosum: biology, ecology, impact and control. CAB International, Wallingford, pp 235–258

    Google Scholar 

  • Hollings M (1983) Virus diseases. In: Johnston A, Booth C (eds) Plant pathologist’s pocket book, 2nd edn. Commonwealth Mycological Institute, Kew, pp 46–77

    Google Scholar 

  • Ivory MH (1967) Spore germination and growth in culture of Dothistroma pini var. Keniensis. Trans Br Mycol Soc 50:563–572

    Article  Google Scholar 

  • Ivory MH, Paterson DN (1970) Progress in breeding Pinus radiata resistant to Dothistroma needle blight in East Africa. Silvae Genet 19:38–42

    Google Scholar 

  • Jacobs K, Wingfield MJ (2001) Leptographium species: tree pathogens, insect associates, and agents of blue-stain. APS Press, St. Paul, 207 pp

    Google Scholar 

  • Jones JDG, Dangl JL (2006) The plant immune system. Nature 444:323–329

    Article  CAS  PubMed  Google Scholar 

  • Kairu GM, Nyangena CMS, Javed ZUR, Crosse JE (1984) latrogenic effects of captafol on bacterial blight of coffee. Plant Pathol 33:131–132

    Article  CAS  Google Scholar 

  • Kamata N, Takeuchi Y (2013) Pine wilt and other nematode diseases. In: Gonthier P, Nicolotti G (eds) Infectious forest diseases. CABI, Wallingford, pp 115–127

    Chapter  Google Scholar 

  • Kayihan GC, Huber DA, Morse AM, White TL, David JM (2005) Genetic dissection of fusiform rust and pitch canker disease traits in loblolly pine. Theor Appl Genet 110:948–958

    Article  PubMed  Google Scholar 

  • Keane PJ, Kyle KA, Podger FD, Brown BN (2001) Diseases and pathogens of eucalypts. CSIRO Publishing, Collingwood

    Google Scholar 

  • Kearns HSJ, Jacobi WR, Reich RM, Flynn RL, Burns KS, Geils BW (2014) Risk of white pine blister rust to limber pine in Colorado and Wyoming, USA. For Pathol 44:21–38

    Article  Google Scholar 

  • Kirisits T (2013) Dutch elm disease and other Ophiostoma diseases. In: Gonthier P, Nicolotti G (eds) Infectious forest diseases. CABI, Wallingford, pp 256–282

    Chapter  Google Scholar 

  • Kirk PM , Cannon PF, Minter DW, Stalpers JA (2008) Dictionary of the Fungi. CABI, Wallingford, London, 10th Edition

    Google Scholar 

  • Koch R (1882) Uber die Milzbrandimpfung, eine Entgegnung auf den von Pasteur in Genf gehalten Vortrag. Fischer, Berlin

    Google Scholar 

  • Krugner TL (1980a) Doencas do eucalipto – Eucalyptus spp. In: Manual de fitopatologia, vol 11. Doencas das plantas cultivadas. Editora Agronomica Ceres Ltda, Sao Paulo, pp 275–296

    Google Scholar 

  • Krugner TL (1980b) Doencas do Pinus – Pinus spp. In: Manual de fitopatologia, vol 11. Doencas das plantas cultivadas. Editora Agronomica Ceres Ltda, Sao Paulo, pp 404–417

    Google Scholar 

  • Langridge YN, Dye DW (1982) A bacterial disease of Pinus radiata seedlings caused by Pseudomonas syringae. N Z J Agric Res 25:273–276

    Article  Google Scholar 

  • Lee SS (2004) Diseases and potential threats to Acacia mangium plantations in Malaysia. Unasylva 217:31–35

    Google Scholar 

  • Lilja A, Poteri M (2013) Seed, seedling and nursery diseases. In: Gonthier P, Nicolotti G (eds) Infectious forest diseases. CABI, Wallingford, pp 567–591

    Chapter  Google Scholar 

  • Limkaisang S, Cunnington JH, Liew KW, Salleh B, Sato Y, Divarangkoon R, Fangfuk W, To-anun C, Takamatsu S (2006) Molecular phylogenetic analyses reveal close relationship of powdery mildew fungi on some tropical trees with Erysiphe alphitoides, an oak powdery mildew. Mycoscience 47:327–335

    Article  CAS  Google Scholar 

  • Loconsole G, Potere O, Boscia D, Altamura G, Djelouah K, Elbeaino T, Frasheri D, Lorusso D, Palmisano F, Pollastro P, Silletti MR, Trisciuzzi N, Valentini F, Savino V, Saponari M (2014) Detection of Xylella fastidiosa in olive trees by molecular and serological methods. J Plant Pathol 96:7–14

    CAS  Google Scholar 

  • Lundquist JE (1987) A history of five forest diseases in South Africa. South African Forestry Journal 140:51–59

    Google Scholar 

  • Madden LV, Hughes G, van den Bosch F (2007) The study of plant disease epidemics. APS Press, St. Paul, 432 pp

    Google Scholar 

  • Manners JG (1982) Principles of plant pathology. Cambridge University Press, Cambridge, 264 pp

    Google Scholar 

  • Maramorosch K (1979) Present status of mycoplasma and spiroplasma diseases of trees. In: Raychaudhuri SP (ed) Mycoplasma diseases of trees. Assoc Publishing, New Delhi, pp 1–7

    Google Scholar 

  • Mohammed CL, Rimbawanto A, Page DE (2014) Management of basidiomycete root- and stem-rot diseases in oil palm, rubber and tropical hardwood plantation crops. For Pathol 44:428–446

    Article  Google Scholar 

  • Möykkynen T, Capretti P, Pukkala T (2014) Modelling the potential spread of Fusarium circinatum, the causal agent of pitch canker in Europe. Ann For Sci. doi:10.1007/s13595-014-0412-2

    Google Scholar 

  • Möykkynen T, Woodward S, Fraser S, Pukkala T, Brown AV (2015) Modelling the spread of Dothistroma needle blight (Dothistroma septosporum) in Europe. For Pathol (submitted)

    Google Scholar 

  • Mulder JL, Gibson IAS (1973) Olivea tectonae. CMI descriptions of pathogenic fungi and bacteria, no 365. Commonwealth Mycological Institute, Kew

    Google Scholar 

  • Ofong AU (1978) Studies on the smut infection of Triplochiton scleroxylon in Nigeria. Plant Dis Rep 62:492–496

    Google Scholar 

  • Old KM, Lee SS, Sharma JK, Qing Juan Z (2000) A manual of diseases of tropical acacias in Australia, South-east Asia and India. Centre for International Forest Research, Jakarta

    Google Scholar 

  • Old KM, Santos Cristovao CD (2003) A rust epidemic of the coffee shade tree (Paraserianthes falcataria) in East Timor. In: da Costa H, Piggin C, da Cruz CJ, Fox JJ (eds) Agriculture: New Directions for a New Nation — East Timor (Timor-Leste). ACIAR Proceedings No. 113, Canberra, Australia, pp. 139–145

    Google Scholar 

  • Paoletti E (2000) Physiological aspects of oak decline. In: Ragazzi A, Dellavalle I, MOrricca S, Capretti P, Raddi P (eds) Decline of Oak Species in Italy: problems and perspectives. Accademica Italiana di Scienzia Forestali, Firenze, pp 23–37

    Google Scholar 

  • Pardo Cardona VM (1998) Uredinales (Royas) de Cordia L. (Boraginaceae) en Colombia. Rev Fac Nal Agr Medellin 51:277–283

    Google Scholar 

  • Parfitt D, Hunt J, Dockrell D, Rogers HJ, Boddy L (2010) Do all trees carry the seeds of their own destruction? PCR reveals numerous wood decay fungi latently present in sapwood of a wide range of angiosperm trees. Fungal Ecol 3:338–346

    Article  Google Scholar 

  • Parker C, Riches CR (1993) Parasitic weeds of the world: biology and control. CABI, Wallingford/Oxford

    Google Scholar 

  • Passos de Carvalho J (1971) Introducao & Entomologia Florestal de Angola. Univ de Luanda, Nova Lisboa, 314 pp

    Google Scholar 

  • Pearce RB (1996) Antimicrobial defences in the wood of living trees. New Phytol 132:203–233

    Article  CAS  Google Scholar 

  • Petersen JH (2013) The Kingdom of Fungi. Princeton University Press, Princeton

    Google Scholar 

  • Pinon J, Frey P (2005) Interactions between poplar clones and Melampsora populations and their implications for breeding for durable resistance. In: Pei MH, McCracken AR (eds) Rust diseases of willow and poplar. CABI, Wallingford, pp 139–154

    Chapter  Google Scholar 

  • Pirc M, Ravnikar M, Tomlinson J, Dreo T (2009) Improved fireblight diagnostics using quantitative real-time PCR detection of Erwinia amylovora chromosomal DNA. Plant Pathol 58:872–881

    Article  CAS  Google Scholar 

  • Poland JE, Balint-Kurti PJ, Wisser RJ, Pratt RC, Nelson RJ (2009) Shades of gray: the world of quantitative disease resistance. Trends Plant Sci 14:21–29

    Article  CAS  PubMed  Google Scholar 

  • Powers H, Kuhlman EG (1997) Fusiform rust. In: Hansen EM, Lewis KJ (eds) Compendium of conifer diseases. APS Press, St. Paul, pp 27–29

    Google Scholar 

  • Prasad M, Naik ST (2002) Management of root rot and heart rot of Acacia mangium Wild. Karnataka J Agric Sci 15:321–326

    Google Scholar 

  • Pukkala T, Möykkynen T, Thor M, Rönnberg Stenlid J (2005) Modeling infection and spread of Heterobasidion annosum in even-aged Fennoscandian conifer stands. Can J For Res 35:74–84

    Article  Google Scholar 

  • Punithalingam E, Jones D (1971) Aecidium species on Agathis. Trans Br Mycol Soc 57:325–333

    Article  Google Scholar 

  • Richardson DM, Rundel PW, Jackson ST, Teskey RO, Aronson J, Bytnerowicz A, Wingfield MJ, Proches S (2007) Human impacts in pine forests: past, present, and future. Ann Rev Ecol Evol Syst 38:275–297

    Article  Google Scholar 

  • Roberts SJ, Eden-Green SJ, Jones P, Ambler DJ (1990) Pseudomonas syzygii, sp. nov., the cause of Sumatra disease of cloves. Syst Appl Microbiol 13:34–43

    Article  Google Scholar 

  • Roux J, Coetzee MPA (2005) First report of pink disease on native trees in South Africa and phylogenetic placement of Erythricium salmonicolor in the Homobasidiomycetes. Plant Dis 89:1158–1163

    Article  CAS  Google Scholar 

  • Roux J, Meke G, Kanyi B, Mwangi L, Mbaga A, Hunter GC, Nakabonge G, Heath RN, Wingfield MJ (2005) Diseases of plantation forestry trees in eastern and southern Africa. S Afr J Sci 101:409–413

    Google Scholar 

  • Santini A, Ghelardini L, De Pace C, Desprez-Loustau M-L, Capretti P, Chandelier A, Cech T, Chira D, Diamandis S, Gaitniekis T, Hantula J, Holdenrieder O, Jankovsky L, Jung T, Jurc D, Kirisits T, Kunca A, Lygis V, Malecka M, Marçais B, Schmitz S, Schumacher J, Solheim H, Solla A, Szabò I, Tsopelas P, Vannini A, Vettraino AM, Webber J, Woodward S, Stenlid J (2013) Biogeographic patterns and determinants of invasion by alien forest pathogenic fungi in Europe. New Phytol 197:238–250

    Article  CAS  PubMed  Google Scholar 

  • Sariah M (2003) The potential of biological management of basal stem rot of oil palm: issues, challenges and constraints. Oil Palm Bull 47:1–5

    Google Scholar 

  • Schwarze FWMR, Engels J, Mattheck C (2000) Fungal strategies of wood decay in trees. Springer, Heidelberg/Berlin, 185 pp

    Book  Google Scholar 

  • Semancik JS, Garnsey SM, Robertson HD, Symons RH (1987) Viroids and viroid-like pathogens. CRC Press, Boca Raton, 192 pp

    Google Scholar 

  • Sharma JK, Sankaran KV (1987) Diseases of Albizia falcataria in Kerala and their possible control measures. Research Report 47. Kerala Forest Research Institute, India

    Google Scholar 

  • Shaw DC, Mathiasen RL (2013) Forest disease caused by higher plants: mistletoes. In: Gonthier P, Nicolotti G (eds) Infectious forest diseases. CABI, Wallingford, pp 97–114

    Chapter  Google Scholar 

  • Shearer BL, Crane CE, Cochrane A (2004) Quantification of the susceptibility of the native flora of the South-West Botanical Province, Western Australia, to Phytophthora cinnamomi. Aust J Bot 52:435–443

    Article  Google Scholar 

  • Shigo AL, Marx HG (1977) Compartmentalization of decay in tress. USDA Forest Service Agriculture Information Bulletin USDA Forest Service, Washington, 73 pp

    Google Scholar 

  • Singh P, Singh S (1986) Insect pests and diseases of poplars. Forest Research Institute and Colleges, Dehradun, 74 pp

    Google Scholar 

  • Spaulding P (1961) Foreign diseases of forest trees of the world. Agricultural handbook 197. US Department of Agriculture Washington, Washington, DC

    Google Scholar 

  • Strange RN (2003) Introduction to plant pathology. Wiley, London/New York

    Google Scholar 

  • Su See L (1999) Forest health in plantation forests in South-East Asia. Aust Plant Pathol 28:283–291

    Article  Google Scholar 

  • Supriadi MK, Sitepu D (2001) Bacterial wilt disease of woody trees caused by Ralstonia solanacearum: a review. J Penelitian dan Pengembangan Pertanian 20:106–112

    Google Scholar 

  • Waller JM, Lenne JM, Waller SJ (2001) Plant pathologist’s handbook. CABI, Wallingford/London, 528 pp

    Google Scholar 

  • Wasternack C (2007) Jasmonates: an update on biosynthesis, signal transduction and action in plant stress response, growth and development. Ann Bot 100:681–697

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Watson DM (2001) Mistletoe – a keystone resource in forests and woodlands worldwide. Ann Rev Ecol Syst 32:219–249

    Article  Google Scholar 

  • Weste G (2003) The dieback cycle in Victorian Forests: a 30-year study of changes caused by Phytophthora cinnamomi in Victorian open forests, woodlands and heathlands. Australas Plant Pathol 32:247–256

    Article  Google Scholar 

  • Widyastuti SM (2006) The biological control of Ganoderma root rot by Trichoderma. In: Potter K, Rimbawanto A, Beadle C (eds) Heart rot and root rot in tropical Acacia plantations. ACIAR, Canberra, pp 67–74

    Google Scholar 

  • Wingfield MJ (2003) Increasing threat of diseases to exotic plantation forests in the Southern hemisphere: lessons from Cryphonecteria canker. Aust Plant Pathol 32:133–2139

    Article  Google Scholar 

  • Wingfield MJ, Slippers B, Hurley BP, Coutinho TA, Wingfield BD, Roux J (2008a) Eucalypt pests and diseases: growing threats to plantation productivity. South For 70:139–144

    Google Scholar 

  • Wingfield MR, Hammerbacher A, Ganley RJ, Steenkamp ET, Gordon TR, Wingfield BD, Coutinho TA (2008b) Pitch canker caused by Fusarium circinatum – a growing threat to pine plantations and forests worldwide. Australas Plant Pathol 37:319–334

    Article  Google Scholar 

  • Yirgu A, Gezahgne A, Kassa H, Tsega M (2014) Parasitic plant in natural Boswellia papyrifera stands at Humera, Northern Ethiopia. J For Res 25:923–928

    Article  CAS  Google Scholar 

  • Zwolinski JB, Swart WJ, Wingfield MJ (1990) Economic impact of post hail outbreak of die-back induced by Sphaeropsis sapinea. Eur J For Pathol 20:405–411

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. R. Speight .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Speight, M.R., Woodward, S. (2015). Pest Management in Tropical Forestry. In: Pancel, L., Köhl, M. (eds) Tropical Forestry Handbook. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41554-8_199-2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-41554-8_199-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Online ISBN: 978-3-642-41554-8

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Pest Management in Tropical Forestry
    Published:
    23 October 2015

    DOI: https://doi.org/10.1007/978-3-642-41554-8_199-2

  2. Original

    Introduction to Pest Management in Tropical Forestry
    Published:
    10 July 2015

    DOI: https://doi.org/10.1007/978-3-642-41554-8_199-1