Skip to main content
Log in

Exopolysaccharide from surface-liquid culture of Clonostachys rosea originates from autolysis of the biomass

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

We describe the purification and chemical characterization of galactomannans that appear both in the biomass and the culture broth during surface-liquid culture of the fungus Clonostachys rosea, a common facultative saprophyte that has potential to be used as a biological control agent against several plant pathogenic fungi, insects and nematodes. The galactomannans from both sources had comparable ratios of Man, Gal and Glc and the similarity were confirmed by 1H, 13C NMR, HMQC, and COSY spectra. We propose that the galactomannan in the culture broth originates from autolysis of the biomass, based not only on the similarity that it has with the galactomannan extracted from the biomass but also on the fact that its concentration increased rapidly after glucose depletion from the medium, when biomass concentration was falling. Polysaccharides from C. rosea have not previously been characterized; we show that the characteristics of the galactomannans are consistent with those that have been reported for other members of the Bionectriaceae, the family to which C. rosea belongs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ahrazem O, Prieto A, Leal JA, Gómez-Miranda B, Domenech J, Jiménez-Barbero J, Bernabé M (1997) Structural elucidation of acidic fungal polysaccharides isolated from the cell-wall of genera Cylindrocladium and Calonectria. Carbohydr Res 303:67–72. doi:10.1016/S0008-6215(97)00145-6

    Article  PubMed  CAS  Google Scholar 

  • Ahrazem O, Leal JA, Prieto A, Jiménez-Barbero J, Bernabé M (2001a) Chemical structure of a polysaccharide isolated from the cell wall of Arachniotus erruculosus and A. rubber. Carbohydr Res 336:325–328. doi:10.1016/S0008-6215(01)00273-7

    Article  PubMed  CAS  Google Scholar 

  • Ahrazem O, Prieto A, Gómez-Miranda B, Bernabé M, Leal JA (2001b) Comparison of cell-wall polysaccharides from Nectria cinnabarina with those from the group of Nectria with Sesquicillium anamorphs. Microbiology 147:1839–1849

    PubMed  CAS  Google Scholar 

  • Ahrazem O, Prieto A, Giménez-Abián MA, Leal JA, Jiménez-Barbero J, Bernabé M (2006) Structural elucidation of fungal polysaccharides isolated from the cell wall of Plectosphaerella cucumerina and Verticillium spp. Carbohydr Res 341:246–252. doi:10.1016/j.carres.2005.10.021

    Article  PubMed  CAS  Google Scholar 

  • Barnett HL, Lilly VG (1962) A destructive mycoparasite, Gliocladium roseum. Mycologia 54:72–79

    Article  Google Scholar 

  • Ciucanu I, Kerek F (1984) A simple and rapid method for the permethylation of carbohydrates. Carbohydr Res 131:209–217. doi:10.1016/0008-6215(84)85242-8

    Article  CAS  Google Scholar 

  • Cordeiro LMC, Carbonero ER, Sassaki GL, Reis RA, Wörgötter ES, Gorin PAJ, Iacomini M (2005) A fungus-type β-galactofuranan in the cultivated Trebouxia photobiont of the lichen Ramalina gracilis. FEMS Microbiol Lett 244:193–198. doi:10.1016/j.femsle.2005.01.040

    Article  PubMed  CAS  Google Scholar 

  • Dugan FM, Lupien SL, Hernandez-Bello M, Peever TL, Chen W (2005) Fungi resident in chickpea debris and their suppression of growth and reproduction of Didymella rabiei under laboratory conditions. J Phytopathol 153:431–439. doi:10.1111/j.1439-0434.2005.00996.x

    Article  Google Scholar 

  • Gander JE, Fang F (1976) The occurrence of ethanolamine and galactofuranosyl residues attached to Penicillium charlesii cell wall saccharides. Biochem Biophys Res Commun 71:719–725. doi:10.1016/0006-291X(76)90890-1

    Article  PubMed  CAS  Google Scholar 

  • Gander JE, Jentoft NH, Drewes LR, Rick PD (1974) The 5-O-β-D-galactofuranosyl-containing exocellular glycopeptide of Penicillium charlesii. J Biol Chem 249:2063–2072

    PubMed  CAS  Google Scholar 

  • Goedegebuur F, Fowler T, Phillips J, Van der Kley P, Van Solingen P, Dankmeyer L, Power SD (2002) Cloning and relational analysis of 15 novel fungal endoglucanases from family 12 glycosyl hydrolase. Curr Genet 41:89–98. doi:10.1007/s00294-002-0290-2

    Article  PubMed  CAS  Google Scholar 

  • Gómez-Miranda B, Prieto A, Leal JA, Ahrazem O, Jiménez-Barbero J, Bernabé M (2004) Differences among the cell wall galactomannans from Aspergillus wentii and Chaetosartorya chrysella and that of Aspergillus fumigatus. Glycoconjugate J 20:239–246. doi:10.1023/B:GLYC.0000025818.83019.e4

    Article  Google Scholar 

  • Gorin PAJ, Iacomini M (1985) Structural diversity of D-galacto-D-mannan components isolated from lichens having ascomycetous mycosymbionts. Carbohydr Res 142:253–267. doi:10.1016/0008-6215(85)85027-8

    Article  CAS  Google Scholar 

  • Gorin PAJ, Mazurek M (1975) Further studies on the assignment of signals in 13C magnetic resonance spectra of aldoses and derived methyl glycosides. Can J Chem 53:1212–1223. doi:10.1139/v75-168

    Article  CAS  Google Scholar 

  • Inglis GD, Kawchuk LM (2002) Comparative degradation of oomycete, ascomycete, and basidiomycete cell walls by mycoparasitic and biocontrol fungi. Can J Microbiol 48:60–70. doi:10.1139/w01-130

    Article  PubMed  CAS  Google Scholar 

  • Jansson PE, Lindberg B (1980) Structural studies of varianose. Carbohydr Res 82:97–102. doi:10.1016/S0008-6215(00)85523-8

    Article  CAS  Google Scholar 

  • Jensen B, Knudsen IMB, Madsen M, Jensen DF (2004) Biopriming of infected carrot seed with an antagonist, Clonostachys rosea, selected for control of seedborne Alternaria spp. Phytopathology 94:551–560. doi:10.1094/PHYTO.2004.94.6.551

    Article  PubMed  Google Scholar 

  • Klis FM, Mol P, Hellingwerf K, Brul S (2002) Dynamics of cell wall structure in Saccharomyces cerevisiae. FEMS Microbiol Rev 26:239–256. doi:10.1111/j.1574-6976.2002.tb00613.x

    Article  PubMed  CAS  Google Scholar 

  • Leal JA, Jiménez-Barbero J, Gómez-Miranda B, Prieto A, Domenech J, Bernabé M (1996) Structural investigation of a cell-wall galactomannan from Neurospora crassa and N. sitophila. Carbohydr Res 283:215–222. doi:10.1016/0008-6215(95)00400-9

    Article  PubMed  CAS  Google Scholar 

  • Leal JA, Gómez-Miranda B, Prieto A, Domenech J, Ahrazem O, Bernabé M (1997) Possible chemotypes from cell wall polysaccharides, as an aid in the systematics of Penicillium and its teleomorphic states Eupenicillium and Talaromyces. Mycol Res 101:1259–1264. doi:10.1017/S0953756297004012

    Article  CAS  Google Scholar 

  • Levery SB, Toledo MS, Straus AH, Takahashi HK (1998) Structure elucidation of sphingolipids from the mycopathogen Paracoccidioides brasiliensis: an immunodominant β-galactofuranose residue is carried by a novel glycosylinositol phosphorylceramide antigen. Biochemistry 37:8764–8775. doi:10.1021/bi9730083

    Article  PubMed  CAS  Google Scholar 

  • Li GQ, Huang HC, Kokko EG, Acharya SN (2002) Ultrastructural study of mycoparasitism of Gliocladium roseum on Botrytis cinerea. Bot Bull Acad Sin 43:211–218

    CAS  Google Scholar 

  • Li GQ, Huang HC, Acharya SN, Erickson RS (2004) Biological control of blossom blight of alfalfa caused by Botrytis cinerea under environmentally controlled and field conditions. Plant Dis 88:1246–1251. doi:10.1094/PDIS.2004.88.11.1246

    Article  Google Scholar 

  • Li J, Yang J, Huang X, Zhang K (2006) Purification and characterization of an extracellular serine protease from Clonostachys rosea and its potential as a pathogenic factor. Process Biochem 41:925–929. doi:10.1016/j.procbio.2005.10.006

    Article  CAS  Google Scholar 

  • Lübeck M, Knudsen IMB, Jensen B, Thrane U, Janvier C, Jensen DF (2002) GUS and GFP transformation of the biocontrol strain Clonostachys rosea IK726 and the use of these marker genes in ecological studies. Mycol Res 106:815–826. doi:10.1017/S095375620200607X

    Article  Google Scholar 

  • Morandi MAB, Maffia LA, Mizubuti ESG, Alfenas AC, Barbosa JG (2003) Suppression of Botrytis cinerea sporulation by Clonostachys rosea on rose debris: a valuable component in Botrytis blight management in commercial greenhouses. Biol Control 26:311–317. doi:10.1016/S1049-9644(02)00134-2

    Article  Google Scholar 

  • Morandi MAB, Mattos LPV, Santos ER, Bonugli RC (2008) Influence of application time on the establishment, survival, and ability of Clonostachys rosea to suppress Botrytis cinerea sporulation on rose debris. Crop Prot 27:77–83. doi:10.1016/j.cropro.2007.04.008

    Article  Google Scholar 

  • Odds FC, Brown AJP, Gow NAR (2003) Antifungal agents: mechanisms of action. TRENDS Microbiol 11:272–279. doi:10.1016/S0966-842X(03)00117-3

    Article  PubMed  CAS  Google Scholar 

  • Parra E, Jiménez-Barbero J, Bernabé M, Leal JA, Prieto A, Gómez-Miranda B (1994) Structural studies of fungal cell-wall polysaccharides from two strains of Talaromyces flavus. Carbohydr Res 251:315–325. doi:10.1016/0008-6215(94)84294-9

    Article  PubMed  CAS  Google Scholar 

  • Perlin AS, Casu B (1969) Carbon-13 and proton magnetic resonance spectra of D-glucose-13C. Tetrahedron Lett 10:2921–2924. doi:10.1016/S0040-4039(01)88308-8

    Article  Google Scholar 

  • Prieto A, Leal JA, Poveda A, Jiménez-Barbero J, Gómez-Miranda B, Domenech J, Ahrazem O, Bernabé M (1997) Structure of complex cell wall polysaccharides isolated from Trichoderma and Hypocrea species. Carbohydr Res 304:281–291. doi:10.1016/S0008-6215(97)00239-5

    Article  PubMed  CAS  Google Scholar 

  • Prieto A, Leal JA, Giménez-Abián MI, Canales A, Jiménez-Barbero J, Bernabé M (2007) Isolation and structural determination of a unique polysaccharide containing mannofuranose from the cell wall of the fungus Acrospermum compressum. Glycoconjugate J 24:421–428. doi:10.1007/s10719-007-9032-5

    Article  CAS  Google Scholar 

  • Prieto A, Leal JA, Bernabé M, Hawksworth DA (2008) A polysaccharide from Lichina pygmaea and L. confines supports the recognition of Lichinomycetes. Mycol Res 112:381–388. doi:10.1016/j.mycres.2007.10.013

    Article  PubMed  CAS  Google Scholar 

  • Rosado IV, Codón Rey M, AC Govantes J, Moreno-Mateos MA, Benítez T (2007) QID74 cell wall protein of Trichoderma harzianum is involved in cell protection and adherence to hydrophobic surfaces. Fungal Genetics Biol 44:950–964. doi:10.1016/j.fgb.2007.01.001

    Article  CAS  Google Scholar 

  • Saeman JF, Moore WE, Mitchell RL, Millet MA (1954) Techniques for the determination of pulp constituents by quantitative paper chromatography. Tappi J 37:336–343

    CAS  Google Scholar 

  • Sassaki GL, Gorin PAJ, Souza LM, Czelusniak PA, Iacomini M (2005a) Rapid synthesis of partially O-methylated alditol acetate standards for GC–MS: some relative activities of hydroxyl groups of methyl glycopyranosides on Purdie methylation. Carbohydr Res 340:731–739. doi:10.1016/j.carres.2005.01.020

    Article  PubMed  CAS  Google Scholar 

  • Sassaki GL, Iacomini M, Gorin PAJ (2005b) Methylation-GC-MS analysis of arabinofuranose- and galactofuranose-containing structures: rapid synthesis of partially O-methylated alditol acetate standards. An Acad Bras Cienc 77:223–234

    CAS  Google Scholar 

  • Sassaki GL, Souza LM, Serrato RV, Cipriani TR, Gorin PAJ, Iacomini M (2008) Application of acetate derivatives for gas chromatography-mass spectrometry: novel approaches on carbohydrates, lipids and amino acids analysis. J Chromatogr A 1208:215–222. doi:10.1016/j.chroma.2008.08.083

    Article  PubMed  CAS  Google Scholar 

  • Schmalhorst PS, Krappmann S, Vervecken W, Rohde M, Müller M, Braus GH, Contreras R, Braun A, Bakker H, Routier FH (2008) Contribution of galactofuranose to the virulence of the opportunistic pathogen Aspergillus fumigatus. Eukaryotic Cell 7:1268–1277. doi:10.1128/EC.00109-08

    Article  PubMed  CAS  Google Scholar 

  • Schroers HJ, Samuels GJ, Seifert KA, Gams W (1999) Classification of the mycoparasite Gliocladium roseum in Clonostachys as G. rosea, its relationship to Bionectria ochroleuca, and notes on other Gliocladium-like fungi. Mycologia 91:365–385

    Article  Google Scholar 

  • Smits GJ, Van den Ende H, Klis FM (2001) Differential regulation of cell wall biogenesis during growth and development in yeast. Microbiology 147:781–794

    PubMed  CAS  Google Scholar 

  • Stynen D, Sarfati J, Goris A, Prévost MC, Lesourd M, Kamphuis H, Darras V, Latgé JP (1992) Rat monoclonal antibodies against Aspergillus Galactomannan. Infect Immun 60:2237–2245

    PubMed  CAS  Google Scholar 

  • Sutton JC, Peng G (1993) Biocontrol of Botrytis cinerea in strawberry leaves. Phytopathology 83:615–621

    Article  Google Scholar 

  • Sutton JC, Li D, Peng G, Yu H, Zhang P, Valdebenito-Sanhueza RM (1997) Gliocladium roseum: a versatile adversary of Botrytis cinerea in crops. Plant Dis 81:316–328. doi:10.1094/PDIS.1997.81.4.316

    Article  Google Scholar 

  • Suzuki E, Toledo MS, Takahashi HK, Straus AH (1997) A monoclonal antibody directed to terminal residue of β-galactofuranose of glycolipid antigen isolated from Paracoccidioides brasiliensis: cross-reactivity with Leishmania major and Trypanosoma cruzi. Glycobiology 7:463–468. doi:10.1093/glycob/7.4.463

    Article  PubMed  CAS  Google Scholar 

  • Toledo AV, Virla E, Humber RA, Paradell SL, Lastra CCL (2006) First record of Clonostachys rosea (Ascomycota: Hypocreales) as an entomopathogenic fungus of Oncometopia tucumana and Sonesimia grossa (Hemiptera: Cicadellidae) in Argentina. J Invertebr Pathol 92:7–10. doi:10.1016/j.jip.2005.10.005

    Article  PubMed  CAS  Google Scholar 

  • Wolfrom ML, Thompson A (1963a) Reduction with sodium borohydride. Meth Carbohydr Chem 2:65–68

    CAS  Google Scholar 

  • Wolfrom ML, Thompson A (1963b) Acetylation. Meth Carbohydr Chem 2:211–215

    Google Scholar 

  • Xue AG (2003) Biological control of pathogens causing root rot complex in field pea using Clonostachys rosea strain ACM941. Phytopathology 93:329–335. doi:10.1094/PHYTO.2003.93.3.329

    Article  PubMed  Google Scholar 

  • Yu H, Sutton JC (1997) Effectiveness of Bumblebees and Honeybees for delivering inoculum of Gliocladium roseum to raspberry flowers to control Botrytis cinerea. Biol Control 10:113–122. doi:10.1006/bcon.1997.0562

    Article  Google Scholar 

  • Zhao ML, Huang JS, Mo MH, Zhang KQ (2005) A potential virulence factor involved in fungal pathogenicity: serine-like protease activity of nematophagous fungus Clonostachys rosea. Fungal Divers 19:217–234

    Google Scholar 

Download references

Acknowledgments

The work was supported financially by PRONEX-Carboidratos and CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico, Brasil), a Brazilian government agency for the advancement of science and technology. Research scholarships were granted to Graciele Viccini, Thalita Romano Martinelli, Rodrigo Otávio de Faria, Guilherme Lanzi Sassaki, and David Alexander Mitchell by CNPq and to Elaine Rosechrer Carbonero by CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, Brazil).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Alexander Mitchell.

Additional information

Communicated by Geoffrey Turner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Viccini, G., Martinelli, T.R., Cognialli, R.C.R. et al. Exopolysaccharide from surface-liquid culture of Clonostachys rosea originates from autolysis of the biomass. Arch Microbiol 191, 369–378 (2009). https://doi.org/10.1007/s00203-009-0464-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-009-0464-0

Keywords

Navigation