Skip to main content
Log in

Patterns of Group I Intron Presence in Nuclear SSU rDNA of the Lichen Family Parmeliaceae

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

Group I introns are commonly reported within nuclear SSU ribosomal DNA of eukaryotic micro-organisms, especially in lichen-forming fungi. We have studied the primary and secondary structure of 70 new nuclear SSU rDNA group I introns of Parmeliaceae (Ascomycota: Lecanorales) and compared them with those available in databases, covering more than 60 species. The analyzed samples of Parmeliaceae fell into two groups, one having an intron at the 1506 site and another lacking this one but having another at the 1516 or 1521 position. Introns at the 1521 position seem to be transposed from 1516 sites. Introns at the 1516 position were similar in structure to ones previously reported at this site and known from other lecanoralean fungi, while those at the 1506 position showed structural differences and no similar introns are known from related fungi. The study of the distribution of group I introns within a large monophyletic ensemble of fungi has revealed an unexpected correlation between intron types and ecological and geographical parameters. The introns at the 1516 position occurred in mainly arctic, boreal, and temperate lichens, while those at position 1506 were present in mainly tropical and subtropical to oceanic mild-temperate taxa. Further, the 1516 introns occurred in genera with few distributed species that could represent older taxa, while the 1506 ones were mainly in species-rich genera that could be of recent speciation, as many species have wide distribution areas. The transition between two different environments has been accompanied by a change in introns gained and lost.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

References

  • Alfaro ME, Zoller S, Lutzoni F (2003) Bayes or bootstrap? A simulation study comparing the performance of Bayesian Markov chains Monte Carlo sampling and bootstrapping in assessing phylogenetic confidence. Mol Biol Evol 20:255–266

    Article  PubMed  CAS  Google Scholar 

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    Article  PubMed  CAS  Google Scholar 

  • Belfort M, Perlman PS (1995) Mechanisms of intron mobility. J Biol Chem 270:30237–30240

    Article  PubMed  CAS  Google Scholar 

  • Bhattacharya D, Surek B, Rüsing M, Damberger S, Melkonian M (1994) Group-I introns are inherited through common ancestry in the nuclear-encoded rRNA of Zygnematales (Charophyceae). Proc Natl Acad Sci USA 91:9916–9920

    Article  PubMed  CAS  Google Scholar 

  • Bhattacharya D, Friedl T, Damberger S (1996) Nuclear-encoded rDNA group-I introns:origin and phylogenetic relationship of insertion-site lineages in the green algae Mol Biol Evol 13:978–989

    PubMed  CAS  Google Scholar 

  • Bhattacharya D, Cannone JJ, Gutell RR (2001) Group I intron lateral transfer between red and brown algal ribosomal RNA. Curr Genet 40:82–90

    Article  CAS  Google Scholar 

  • Bhattacharya D, Friedl T, Helms G (2002) Vertical evolution and intragenic spread of lichen-fungal group I introns. J Mol Evol 55:74–84

    Article  PubMed  CAS  Google Scholar 

  • Bhattacharya D, Reeb V, Simon D, Lutzoni F (2005) Phylogenetic analyses suggest reverse splicing spread of group I introns in fungal ribosomal DNA. BMC Evol Biol 5:68

    Article  PubMed  CAS  Google Scholar 

  • Blanco O, Crespo A, Divakar PK, Esslinger T, Lumbsch HT (2004a) Melanelixia and Melanohalea, two new genera segregated from Melanelia (Parmeliaceae) based on molecular and morphological data. Mycol Res 108:873–884

    Article  CAS  Google Scholar 

  • Blanco O, Crespo A, Elix JA, Hawksworth DL, Lumbsch HT (2004b) A molecular phylogeny and a new classification of parmelioid lichens containing Xanthoparmelia-type lichenan (Ascomycota:Lecanorales). Taxon 53:959–975

    Article  Google Scholar 

  • Blanco O, Crespo A, Divakar PK, Elix JA, Lumbsch HT (2005) Phylogeny of parmotremoid lichens (Ascomycotina, Lecanorales). Mycologia 97:150–159

    Article  PubMed  CAS  Google Scholar 

  • Blanco O, Crespo A, Ree R, Lumbsch HT (2006) Major clades of parmelioid lichens (Parmeliaceae, Ascomycota) and the evolution of their morphological and chemical diversity. Mol Phylogenet Evol 39:52–69

    Article  PubMed  CAS  Google Scholar 

  • Burke JM, Belfort M, Cech TR, Davies RW, Schweyen RJ, Shub DA, Szostak JW, Tabak HF (1987) Structural conventions for group I introns. Nucleic Acids Res 15:7217–7221

    Article  PubMed  CAS  Google Scholar 

  • Cannone JJ, Subramanian S, Schnare M N, Collett JR, D’Souza LM, Du Y, Feng B, Lin N, Madabusi LV, Muller KM, Pande N, Shang Z, Yu N, Gutell RR (2002) The Comparative RNA Web (CRW) site: an online database of comparative sequence and structure information for ribosomal, intron, and other RNAs. BioMed Central Bioinform 3:2

    Google Scholar 

  • Cech TR (1990) Self-splicing of group I introns. Annu Rev Biochem 59:543–568

    Article  PubMed  CAS  Google Scholar 

  • Crespo A, Bridge PD, Cubero OF, Hawksworth DL (1997) Determination of genotypic variability in the lichen-forming fungus Parmelia sulcata. In: Türk R, Zorer R (eds) Progress and problems in lichenology in the nineties Bibliotheca Lichenologica. J. Cramer, Berlin/Stuttgart, pp 73–79

    Google Scholar 

  • Crespo A, Bridge PD, Hawksworth DL, Grube M, Cubero O (1999) Comparison of rRNA genotype frequencies of Parmelia sulcata from long established and recolonizing sites following sulphur dioxide amelioration. Plant Syst Evol 217:177–183

    Article  CAS  Google Scholar 

  • Crespo A, Blanco O, Hawksworth DL (2001) The potential of mitochondrial DNA for establishing phylogeny and stabilising generic concepts in the parmelioid lichens Taxon 50:807–819

    Article  Google Scholar 

  • Crespo A, Molina MC, Blanco O, Schroeter B, Sancho LG, Hawksworth DL (2002) Molecular variation within the cosmopolitan lichen Parmelia saxatilis revealed by rDNA ITS and β-tubulin gene sequence analyses. Mycol Res 106:788–795

    Article  CAS  Google Scholar 

  • Crespo A, Divakar PK, Argüello A, Gasca C, Hawksworth DL (2004) Molecular studies on Punctelia species of the Iberian Peninsula, with an emphasis on specimens newly colonizing Madrid. Lichenologist 36:299–308

    Article  Google Scholar 

  • Chevalier BS, Stoddard BL (2001) Homing endonucleases: structural and functional insight into the catalysts of intron/intein mobility. Nucleic Acids Res 29:3757–3774

    Article  PubMed  CAS  Google Scholar 

  • DePriest PT (1993) Samll subunit rDNA variation in a population of lichen fungi due to optional group-I introns. Gene 134:67–74

    Article  PubMed  CAS  Google Scholar 

  • DePriest PT, Been MD (1992) Numerous group I introns with variable distributions in the ribosomal DNA of a lichen fungus. J Mol Biol 228:315–321

    Article  PubMed  CAS  Google Scholar 

  • De Wachter R, Neefs JM, Goris A, Van de Peer Y (1992) The gene coding for small ribosomal subunit RNA in the basidiomycete Ustilago maydis contains a group I intron. Nucleic Acids Res 20:1251–1257

    Article  PubMed  Google Scholar 

  • Divakar PK, Blanco O, Hawksworth DL, Crespo A (2005) Molecular phylogenetic studies on Parmotrema reticulatum (syn. Rimelia reticulata) complex, including the confirmation of P. pseudoreticulatum as a distint species. Lichenologist 37:55–65

    Article  Google Scholar 

  • Douady CJ, Delsuc F, Boucher Y, Doolittle WF, Douzery EJ (2003) Comparison of Bayesian and maximum likelihood bootstrap measures of phylogenetic reliability. Mol Biol Evol 20:248–254

    Article  PubMed  CAS  Google Scholar 

  • Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughtput. Nucleic Acids Res 32:1972–1797

    Google Scholar 

  • Elix JA (1993) Progress in the generic delimitation of Parmelia sensu lato lichens (Ascomycotina: Parmeliaceae) and a synoptic key to the Parmeliaceae. Bryologist 96:359–383

    Article  Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Article  Google Scholar 

  • Friedl T, Besendahl A, Pfeiffer P, Bhattacharya D (2002) The distribution of group I introns in lichen algae suggests that lichenization facilitates intron lateral transfer. Mol Phylogenet Evol 14:342–352

    Article  CAS  Google Scholar 

  • Gardes M, Bruns TD (1993) ITS primers with enhanced specificity for basidiomycetes—application to the identification of micorrhizae and rust. Mol Ecol 2:113–118

    PubMed  CAS  Google Scholar 

  • Gargas A, DePriest PT, Taylor JW (1995) Positions of multiple insertions in SSU rDNA of lichen-forming fungi. Mol Biol Evol 12:208–218

    PubMed  CAS  Google Scholar 

  • Grube M, Gutmann B, Arup U, de los Rios A, Mattsson JE, Wedin M (1999) An exceptional group-I intron-like insertion in the SSU rDNA of lichen mycobionts. Curr Genet 35:536–41

    Article  PubMed  CAS  Google Scholar 

  • Gutell RR, Larsen N, Woese CR (1994) Lessons from an evolving rRNA: 16S and 23S rRNA structures from a comparative perspective. Microbiol Rev 58:10–26

    PubMed  CAS  Google Scholar 

  • Haugen P, Reeb V, Lutzoni F, Bhattacharya D (2004) The evolution of homing endonuclease genes and group I introns in nuclear rDNA. Mol Biol Evol 21:129–140

    Article  PubMed  CAS  Google Scholar 

  • Haugen P, Simon D, Bhattacharya D (2005) The natural history of group I introns. Trends Genet 21:129–140

    Article  CAS  Google Scholar 

  • Hibbett DS (1996) Phylogenetic evidence for horizontal transmission of group I introns in the nuclear ribosomal DNA of mushroom-forming fungi. Mol Biol Evol 13:903–917

    PubMed  CAS  Google Scholar 

  • Holst-Jensen A, Vaage M, Schumacher T, Johansen S (1999) Structural characteristics and possible horizontal transfer of group I introns between closely related plant pathogenic fungi. Mol Biol Evol 16:114–126

    PubMed  CAS  Google Scholar 

  • Huelsenbeck JP, Ronquist F (2001) MrBayes: Bayesian inference of phylogeny. Bioinformatics 17:754–755

    Article  PubMed  CAS  Google Scholar 

  • Huelsenbeck JP, Ronquist F, Nielsen R, Bollback JP (2001) Bayesian inference of phylogeny and its impact on evolutionary biology. Science 294:2310–2314

    Article  PubMed  CAS  Google Scholar 

  • Insarov G, Schroeter B (2002) Lichen monitoring and climate change. In: Nimis PL Sheidegger C, Wolseley PA (eds) Monitoring with lichens—monitoring lichens. NATO Science Series. Earth and Environmental Sciences Vol 7. Kluwer Academic, Dordrecht, pp 5–37

    Google Scholar 

  • Johansen S, Vogt VM (1994) An intron in the nuclear ribosomal DNA of Didymium iridis codes for a group I ribozyme and a novel ribozyme that cooperate in splicing. Cell 76:725–734

    Article  PubMed  CAS  Google Scholar 

  • Karplus K, Barrett C, Hughey R (1998) Hidden Markov models for detecting remote protein homologies. Bioinformatics 14:846–856

    Article  PubMed  CAS  Google Scholar 

  • Kirk PM, Cannon PF, David JC, Stalpers JA (2001) Dictionary of the fungi, 9th ed. CAB International, Wallingford, UK

    Google Scholar 

  • Larget B, Simon DL (1999) Markov chain Monte Carlo algorithms for the Bayesian analysis of phylogenetic trees. Mol Biol Evol 16:750–759

    CAS  Google Scholar 

  • Lisacek F, Diaz Y, Michel F (1994) Automatic identification of group I intron cores in genomic DNA sequences. J Mol Biol 235:1206–1217

    Article  PubMed  CAS  Google Scholar 

  • Mattsson J-E, Articus K, Wiklund E, Wedin M (2004) The monophyletic groups within the Parmeliaceae. In: Phylogenetic studies in Usnea (Parmeliaceae) and allied genera (K. Articus). Acta Univ Upsalla 931:sine pagin

    Google Scholar 

  • Matzura O, Wennborg A (1996) RNAdraw: an integrated program for RNA secondary structure calculation and analysis under 32-bit Microsoft Windows. Comput Appl Biosci 12:247–249

    PubMed  CAS  Google Scholar 

  • Michel F, Westhof E (1990) Modelling of the three-dimensional architecture of group I catalytic introns based on comparative sequence analysis. J Mol Biol 216:585–610

    Article  PubMed  CAS  Google Scholar 

  • Nishida H, Sugiyama J (1995) A common group I intron between a plant parasitic fungus and its host. Mol Biol Evol 12:883–886

    PubMed  CAS  Google Scholar 

  • Nishida H, Tajiri Y, Sugiyama J (1998) Multiple origins of fungal group I introns located in the same position of nuclear SSU rRNA gene. J Mol Evol 46:442–448

    Article  PubMed  CAS  Google Scholar 

  • Pearson WR, Lipman DJ (1988) Improved tools for biological sequence comparison. Proc Natl Acad Sci USA 85:2444–2448

    Article  PubMed  CAS  Google Scholar 

  • Perotto S, Nepote-Fus P, Saletta L, Bandi C, Young JP (2000) A diverse population of introns in the nuclear ribosomal genes of ericoid mycorrhizal fungi includes elements with sequence similarity to endonuclease-coding genes. Mol Biol Evol 17:44–59

    PubMed  CAS  Google Scholar 

  • Posada D, Crandall KA (1998) MODELTEST: testing the model of DNA substitution Bioinformatics 14:817–818

    Article  PubMed  CAS  Google Scholar 

  • Rice P, Longden I, Bleasby A (2000) EMBOSS: the European Molecular Biology Open Software Suite. Trends Genet 16:276–277

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez F, Oliver JL, Marin A, Medina JR (1990) The general stochastic model of nucleotide substitution. J Theor Biol 142:485–501

    PubMed  CAS  Google Scholar 

  • Rosewich U, Kistler HC (2000) Role of horizontal gene transfer in the evolution of fungi. Annu Rev Phytopathol 38:325–363

    Article  PubMed  CAS  Google Scholar 

  • Simmons MP, Pickett KM, Miya M (2004) How meaningful are Bayesian support values? Mol Biol Evol 21:188–199

    Article  PubMed  CAS  Google Scholar 

  • Simon D, Moline J, Helms G, Friedl T, Bhattacharya D (2005a) Divergent histories of rDNA group I introns in the lichen family Physciaceae. J Mol Evol 64:434–446

    Article  CAS  Google Scholar 

  • Simon D, Hummel CL, Sheeley SL, Bhattacharya D (2005b) Heterogeneity of intron presence or absence in rDNA genes of the lichen species Physcia aipolia and P. stellaris. Curr Genet 47:389–399

    Article  CAS  Google Scholar 

  • Suzuki Y, Glazko GV, Nei M (2002) Overcredibility of molecular phylogenies obtained by Bayesian phylogenetics. Proc Natl Acad Sci USA 99:16138–16143

    Article  PubMed  CAS  Google Scholar 

  • Swofford DL (2002) PAUP*: Phylogenetic Analysis Using Parsimony (*and other methods). Version 4.0b8. Sinauer Associates, Sunderland, MA

    Google Scholar 

  • Thell A (1999) Group I intron versus ITS sequences in phylogeny of cetrarioid lichens. Lichenologist 31:441–449

    Article  Google Scholar 

  • Thell A, Miao V (1999) Phylogenetic analysis of ITS and group I intron sequences from European and North American samples of cetrarioid lichens. Ann Bot Fennici 35:275–286

    Google Scholar 

  • Thell A, Feuerer T, Kärnefelt I, Myllys L, Stenroos S (2004) Monophyletic groups within the Parmeliaceae identified by ITS rDNA, ß-tubulin and GAPDH sequences. Mycol Prog 3:297–314

    Article  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 24:4876–4882

    Article  Google Scholar 

  • White TJ, Bruns TD, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols. Academic Press, San Diego, CA, pp 315–322

    Google Scholar 

  • Wilcox TP, Zwickl DJ, Heath TA, Hillis DM (2002) Phylogenetic relationships of the dwarf boas and a comparison of Bayesian and bootstrapping measures of phylogenetic support. Mol Phylogenet Evol 25:361–371

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Ministry of Education and Science of Spain (CGL 2004-01848/BOS, CGL 2004-20423-E). G.G. acknowledges the support of the Programa Ramón y Cajal of the same ministry. Sequencing was carried out at the Unidad de Genómica (Parque Científico de Madrid). We are indebted to Dra. M. C. Molina and A. Argüello, who supplied some additional DNA sequences for this research. We also thank Prof. D. L. Hawksworth and Dr. A. Marín for helpful comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriel Gutiérrez.

Additional information

[Reviewing Editor: Dr. Debashish Bhattacharya]

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gutiérrez, G., Blanco, O., Divakar, P.K. et al. Patterns of Group I Intron Presence in Nuclear SSU rDNA of the Lichen Family Parmeliaceae. J Mol Evol 64, 181–195 (2007). https://doi.org/10.1007/s00239-005-0313-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00239-005-0313-y

Keywords

Navigation