Skip to main content
Log in

Genomic Determinants of Entomopathogenic Fungi and Their Involvement in Pathogenesis

  • Fungal Microbiology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Entomopathogenic fungi offer an effective and eco-friendly alternative to curb insect populations in biocontrol strategy. The evolutionary history of selected entomopathogenic fungi indicates their ancestral relationship with plant endophytes. During this host shifting, entomopathogenic fungi must have acquired multiple mechanisms, including a combination of various biomolecules that make them distinguishable from other fungi. In this review, we focus on understanding various biochemical and molecular mechanisms involved in entomopathogenesis. In particular, we attempt to explain the indispensable role of enlarged gene families of various virulent factors, viz. chitinases, proteases, lipases, specialized metabolites, and cytochrome P450, in entomopathogenesis. Our analysis suggests that entomopathogenic fungi recruit a different set of gene products during the progression of pathogenesis. Knowledge of these bio-molecular interactions between fungi and insect hosts will allow researchers to execute pointed efforts towards the development of improved entomopathogenic fungal strains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Vega E, Blackwell M (2005) Insect-fungal associations: ecology and evolution. Oxford University Press, New York

    Google Scholar 

  2. Blackwell M (2010) Fungal evolution and taxonomy. Bio. Control 55:7–16. https://doi.org/10.1007/s10526-009-9243-8

    Article  Google Scholar 

  3. Humber RA (2008) Evolution of entomopathogenicity in fungi. J Invertebr Pathol 98:262–266. https://doi.org/10.1016/j.jip.2008.02.017

    Article  Google Scholar 

  4. Wang C, Wang S (2017) Insect pathogenic fungi: genomics, molecular interactions, and genetic improvements. Annu Rev Entomol 62:73–90. https://doi.org/10.1146/annurev-ento-031616-035509

    Article  CAS  Google Scholar 

  5. Moonjely S, Barelli L, Bidochka MJ (2016) Insect pathogenic fungi as endophytes. Adv Genet 94:107–135. https://doi.org/10.1016/bs.adgen.2015.12.004

    Article  CAS  Google Scholar 

  6. Boomsma JJ, Jensen AB, Meyling NV, Eilenberg J (2014) Evolutionary interaction networks of insect pathogenic fungi. Ann Rev Entomol 59:467–485. https://doi.org/10.1146/annurev-ento-011613-162054

    Article  CAS  Google Scholar 

  7. Spatafora JW, Sung GH, Sung JM et al (2007) Phylogenetic evidence for an animal pathogen origin of ergot and the grass endophytes. Mol Ecol 16:1701–1711. https://doi.org/10.1111/j.1365-294X.2007.03225.x

    Article  CAS  Google Scholar 

  8. Gao Q, Jin K, Ying SH, Zhang Y et al (2011) Genome sequencing and comparative transcriptomics of the model entomopathogenic fungi Metarhizium anisopliae and M. acridum. PLOS Genet 7:1–18. https://doi.org/10.1371/journal.pgen.1001264

    Article  CAS  Google Scholar 

  9. Moraga E (2020) Entomopathogenic fungi as endophytes: their broader contribution to IPM and crop production. Biocontrol Sci Tech 30:864–877. https://doi.org/10.1080/09583157.2020.1771279

    Article  Google Scholar 

  10. Behie SW, Padilla-Guerrero IE, Bidochka MJ (2013) Nutrient transfer to plants by phylogenetically diverse fungi suggests convergent evolutionary strategies in rhizospheric symbionts. Commun Integr Bio l 6:e22321. https://doi.org/10.4161/cib.22321

    Article  Google Scholar 

  11. Behie SW, Bidochka MJ (2014) Ubiquity of insect-derived nitrogen transfer to plants by endophytic insect-pathogenic fungi: an additional branch of the soil nitrogen cycle. Appl Environ Microbiol 80:1553–1560. https://doi.org/10.1128/AEM.03338-13

    Article  CAS  Google Scholar 

  12. Hu X, Xiao G, Zheng P et al (2014) Trajectory and genomic determinants of fungal-pathogen speciation and host adaptation. Proc Natl Acad Sci U S A 111:16796–16801. https://doi.org/10.1073/pnas.1412662111

    Article  CAS  Google Scholar 

  13. St Leger RJ, Joshi L, Roberts D (1997) Adaptation of proteases and carbohydrates of saprophytic, phytopathogenic and entomopathogenic fungi to the requirements of their ecological niches. Microbiology 143:1983–1992. https://doi.org/10.1099/00221287-143-6-1983

    Article  CAS  Google Scholar 

  14. Screen SE, St Leger RJ (2000) Cloning, expression, and substrate specificity of a fungal chymotrypsin. Evidence for lateral gene transfer from an Actinomycete bacterium. J Biol Chem 279:6689–6694. https://doi.org/10.1074/jbc.275.9.6689

    Article  Google Scholar 

  15. Vega F, Meyling N, Luangsa-ard J, Blackwell M (2012) Fungal entomopathogens. In. Vega F, Kaya H (ed) Insect pathology, Elsevier, pp 171–220

  16. Sung G, Hywel-jones NL, Sung J et al (2007) Phylogenetic classification of Cordyceps and the clavicipitaceous fungi. Stud Mycol 57:5–59

    Article  Google Scholar 

  17. Xiao G, Ying SH, Zheng P et al (2012) Genomic perspectives on the evolution of fungal entomopathogenicity in Beauveria bassiana. Sci Rep 2:483. https://doi.org/10.1038/srep00483

    Article  CAS  Google Scholar 

  18. Wang JB, St Leger RJ, Wang C (2016) Advances in genomics of entomopathogenic fungi. In: Lovett B, St Leger RJ (ed) Advances in genetics, Academic Press Inc. U.S. 94, pp 67–105. https://doi.org/10.1016/bs.adgen.2016.01.002

  19. Agrawal Y, Khatri I, Subramanian S, Shenoy BD (2015) Genome sequence, comparative analysis, and evolutionary insights into chitinases of entomopathogenic fungus Hirsutella thompsonii. Genome Biol Evol 7:916–930. https://doi.org/10.1093/gbe/evv037

    Article  CAS  Google Scholar 

  20. Shang Y, Xiao G, Zheng P et al (2016) Divergent and convergent evolution of fungal pathogenicity. Genome Biol Evol 8:1374–1387. https://doi.org/10.1093/gbe/evw082

    Article  Google Scholar 

  21. Zhang S, Xia YX, Kim B, Keyhani NO (2011) Two hydrophobins are involved in fungal spore coat rodlet layer assembly and each play distinct roles in surface interactions, development and pathogenesis in the entomopathogenic fungus, Beauveria bassiana. Mol Microbiol 80:811–826. https://doi.org/10.1111/j.1365-2958.2011.07613.x

    Article  CAS  Google Scholar 

  22. Wang ZL, Zhang LB, Ying SH, Feng MG (2013) Catalases play differentiated roles in the adaptation of a fungal entomopathogen to environmental stresses. Environ Microbiol 15:409–418. https://doi.org/10.1111/j.1462-2920.2012.02848.x

    Article  CAS  Google Scholar 

  23. Stergiopoulos I, de Wit PJGM (2009) Fungal effector proteins. Annu Rev Phytopathol 47:233–263. https://doi.org/10.1146/annurev.phyto.112408.132637

    Article  CAS  Google Scholar 

  24. Ortiz-Urquiza A, Keyhani NO (2013) Action on the Surface: Entomopathogenic fungi. Insects 4:357–374. https://doi.org/10.3390/insects4030357

    Article  Google Scholar 

  25. Lai Y, Chen H, Wei G et al (2017) In vivo gene expression profiling of the entomopathogenic fungus Beauveria bassiana elucidates its infection stratagems in Anopheles mosquito. Sci China Life Sci 60:839–851. https://doi.org/10.1007/s11427-017-9101-3

    Article  CAS  Google Scholar 

  26. Xin C, Xing X, Wang F et al (2020) MrMid2, encoding a cell wall stress sensor protein, is required for conidium production, stress tolerance, microsclerotium formation and virulence in the entomopathogenic fungus Metarhizium rileyi. Fungal Genet Biol 134:103278. https://doi.org/10.1016/j.fgb.2019.103278

    Article  CAS  Google Scholar 

  27. Tseng M, Chung C, Tzean S (2014) Mechanisms relevant to the enhanced virulence of a dihydroxynaphthalene-melanin metabolically engineered entomopathogen. PLoS ONE 9:e90473. https://doi.org/10.1371/journal.pone.0090473

    Article  Google Scholar 

  28. Wang C, St Leger RJ (2007) The MAD1 Adhesin of Metarhizium anisopliae links adhesion with blastospore production and virulence to insects, and the MAD2 adhesin enables attachment to plants. Eukaryot Cell 6:808–816. https://doi.org/10.1128/EC.00409-06

    Article  CAS  Google Scholar 

  29. Zhou Q, Yu l, Ying S, Feng M (2021) Comparative roles of three adhesin genes (adh1-3) in insect-pathogenic lifecycle of Beauveria bassiana. Appl Microbiol Biotechnol 105:5491–5502. https://doi.org/10.1007/s00253-021-11420-w

    Article  CAS  Google Scholar 

  30. Nahar PB, Kulkarni SA, Kulye MS et al (2008) Effect of repeated in vitro sub-culturing on the virulence of Metarhiziumanisopliae against Helicoverpa armigera (Lepidoptera: Noctuidae). Biocontrol Sci Technol 18:337–355. https://doi.org/10.1080/09583150801935650

    Article  Google Scholar 

  31. Fang W, Pava-ripoll M, Wang S, St Leger R (2009) Protein kinase A regulates production of virulence determinants by the entomopathogenic fungus, Metarhizium anisopliae. Fungal Genet Biol 46:277–285. https://doi.org/10.1016/j.fgb.2008.12.001

    Article  CAS  Google Scholar 

  32. Wei Q, Du Y, JinK XY (2017) The Ste12-like transcription factor MaSte12 is involved in pathogenicity by regulating the appressorium formation in the entomopathogenic fungus, Metarhizium acridum. App Microbiol Biotechnol 101:8571–8584. https://doi.org/10.1007/s00253-017-8569-x

    Article  CAS  Google Scholar 

  33. Wang L, Wang J, Zhang X (2021) Pathogenicity of Metarhizium rileyi against Spodoptera litura larvae: appressorium differentiation, proliferation in hemolymph, immune interaction, and reemergence of mycelium. Fungal Genet Biol 150:103508. https://doi.org/10.1016/j.fgb.2020.103508

    Article  CAS  Google Scholar 

  34. Wang J, LovettSt Leger BJ (2019) The secretome and chemistry of Metarhizium; a genus of entomopathogenic fungi. Fungal Biol 38:7–11. https://doi.org/10.1016/j.funeco.2018.04.001

    Article  CAS  Google Scholar 

  35. Rocha RO, Elowsky C, Pham N et al (2020) Spermine-mediated tight sealing of the Magnaporthe oryzae appressorial pore-rice leaf surface interface. Nat Microbiol 5:1472–1480. https://doi.org/10.1038/s41564-020-0786-x

    Article  CAS  Google Scholar 

  36. Mei L, Wang X, Yin Y et al (2021) Conservative production of galactosaminogalactan in Metarhizium is responsible for appressorium mucilage production and topical infection of insect hosts. PLoS Pathog 17:e1009656. https://doi.org/10.1371/journal.ppat.1009656

    Article  CAS  Google Scholar 

  37. Xin C, Zhang J, Nian S et al (2020) Analogous and diverse functions of APSES-type transcription factors in the morphogenesis of the entomopathogenic fungus Metarhizium rileyi. App Environ Microbiol 86:e02928-e3019. https://doi.org/10.1128/AEM.02928-19

    Article  CAS  Google Scholar 

  38. Shang J, Shang Y, Tang G, Wang C (2021) Identification of a key G-protein coupled receptor in mediating appressorium formation and fungal virulence against insects. Sci China Life Sci 64:466–477. https://doi.org/10.1007/s11427-020-1763-1

    Article  CAS  Google Scholar 

  39. Wagner B, Lewis L (2020) Colonization of corn, Zea mays, by the entomopathogenic fungus Beauveria bassiana. App Environ Microbiol 66:3468–3473. https://doi.org/10.1128/aem.66.8.3468-3473.2000

    Article  Google Scholar 

  40. Valero-Jiménez C, Wiegers H, Zwaan B et al (2016) Genes involved in virulence of the entomopathogenic fungus Beauveria bassiana. J Invertebr Pathol 133:41–49. https://doi.org/10.1016/j.jip.2015.11.011

    Article  CAS  Google Scholar 

  41. Muniz E, Ribeiro-Silva C, Arruda W et al (2021) The Msn2 transcription factor regulates Acaricidal virulence in the fungal pathogen Beauveria bassiana. Front Cell Infect Microbiol 11:690731. https://doi.org/10.3389/fcimb.2021.690731

    Article  CAS  Google Scholar 

  42. Gryganski A, Mullens B, Gajdeczka M et al (2017) Hijacked: co-option of host behavior by entomophthoralean fungi. PLoS Pathog 13(5):e1006274. https://doi.org/10.1371/journal.ppat.1006274

    Article  CAS  Google Scholar 

  43. Muthukrishnan S, Arakane Y, Yang Q et al (2018) Future questions in insect chitin biology: a microreview. Arch Insect Biochem Physiol 98:e21454. https://doi.org/10.1002/arch.21454

    Article  CAS  Google Scholar 

  44. Seidl V (2008) Chitinases of filamentous fungi: a large group of diverse proteins with multiple physiological functions. Fungal Biol Rev 22:36–42. https://doi.org/10.1016/j.fbr.2008.03.002

    Article  Google Scholar 

  45. Fang W, Leng B, Xiao Y et al (2005) Cloning of Beauveria bassiana chitinase gene Bbchit1 and its application to improve fungal strain virulence. App Environ Microbiol 71:363–370. https://doi.org/10.1128/AEM.71.1.363-370.2005

    Article  CAS  Google Scholar 

  46. Huang Z, Hao Y, Gao T et al (2016) The Ifchit1 chitinase gene acts as a critical virulence factor in the insect pathogenic fungus Isaria fumosorosea. App Microbiol Biotechnol 100:5491–5503. https://doi.org/10.1007/s00253-016-7308-z

    Article  CAS  Google Scholar 

  47. Berini F, Katz C, Gruzdev N et al (2018) Microbial and viral chitinases: attractive biopesticides for integrated pest management. Biotechnol Adv 36:818–838. https://doi.org/10.1016/j.biotechadv.2018.01.002

    Article  CAS  Google Scholar 

  48. St. Leger RJ, Charnley AK, Cooper RM (1986) Cuticle-degrading enzymes of entomopathogenic fungi: synthesis in culture on cuticle. J Inver Pathol 48:85–95. https://doi.org/10.1016/0022-2011(86)90146-1

    Article  CAS  Google Scholar 

  49. Mustafa U, Kaur G (2009) Extracellular enzyme production in Metarhizium anisopliae isolates. Folia Microbiol 54:499–504. https://doi.org/10.1007/s12223-009-0071-0

    Article  CAS  Google Scholar 

  50. Tzelepisa G, Karlsson M (2018) Killer toxin-like chitinases in filamentous fungi: structure, regulation and potential roles in fungal biology. Fungal Biol Rev 33:123-e132. https://doi.org/10.1016/j.fbr.2018.11.001

    Article  Google Scholar 

  51. Lovett B, St Leger RJ (2018) Genetically engineering better fungal biopesticides. Pest Manage Sci 74:781–789. https://doi.org/10.1002/ps.4734

    Article  CAS  Google Scholar 

  52. Fan Y, Fang W, Guo S et al (2007) Increased insect virulence in Beauveria bassiana strains over expressing an engineered chitinase. App Environ Microbiol 73:295–302. https://doi.org/10.1128/AEM.01974-06

    Article  CAS  Google Scholar 

  53. Huang W, Huang Y, Hao Y et al (2020) Host-dependent contributions of the Cfcdp1 protease gene to virulence in the entomopathogenic fungus Cordyceps fumosorosea. Pest Manag Sci 76:575–588. https://doi.org/10.1002/ps.5549

    Article  CAS  Google Scholar 

  54. Semenova T, Dunaevsky Y, Beljakova G, Belozersky M (2020) Extracellular peptidases of insect-associated fungi and their possible use in biological control programs and as pathogenicity markers. Fungal Biol 124:65–72. https://doi.org/10.1016/j.funbio.2019.11.005

    Article  CAS  Google Scholar 

  55. Khachatourians G, Qazi S (2008) Entomopathogenic fungi: biochemistry and molecular biology. In: Brakhage AA and Zipfel PF (ed) Human and animal relationships, 2nd edn. The Mycota VI, Springer-Verlag, Berlin, Heidelberg, pp 33–61. https://doi.org/10.1007/978-3-540-79307-6_3

  56. Bidochka M, Melzer M (2000) Genetic polymorphisms in three subtilisin-like protease isoforms (Pr1A, Pr1B, and Pr1C) from Metarhizium strains. Can J Microbiol 46:1138–1144. https://doi.org/10.1139/w00-112

    Article  CAS  Google Scholar 

  57. Small C, Bidochka M (2005) Up-regulation of Pr1, a subtilisin-like protease, during conidiation in the insect pathogen Metarhizium anisopliae. Mycol Res 109:307–313. https://doi.org/10.1017/S0953756204001856

    Article  CAS  Google Scholar 

  58. St. Leger R, Joshi L, Bidochka M, et al (1996) Characterization and ultrastructural localization of chitinases from Metarhizium anisopliae, M. flavoviride, and Beauveria bassiana during fungal invasion of host (Manducasexta) cuticle. App Environ Microbiol 62:907–912. https://doi.org/10.1128/aem.62.3.907-912.1996

    Article  Google Scholar 

  59. Huang A, Lu M, Li P et al (2020) A M35 family metalloprotease is required for fungal virulence against insects by inactivating host prophenoloxidases and beyond. Virulence 11:222–237. https://doi.org/10.1080/21505594.2020.1731126

    Article  CAS  Google Scholar 

  60. Beys da Silva WO, Santi L, Schrank A, Vainstein MH (2010) Metarhizium anisopliae lipolytic activity plays a pivotal role in Rhipicephalus (Boophilus) microplus infection. Fungal Biol 114:10–15. https://doi.org/10.1016/j.mycres.2009.08.003

    Article  CAS  Google Scholar 

  61. Pedrini N, Zhang S, Juárez MP, Keyhani NO (2010) Molecular characterization and expression analysis of a suite of cytochrome P450 enzymes implicated in insect hydrocarbon degradation in the entomopathogenic fungus Beauveria bassiana. Microbiology 156:2549–2557. https://doi.org/10.1099/mic.0.039735-0

    Article  CAS  Google Scholar 

  62. Shin T, Lee M, Park M et al (2020) Pathogenesis-related genes of entomopathogenic fungi. Arch Insect Biochem Physiol 105:e21747. https://doi.org/10.1002/arch.21747

    Article  CAS  Google Scholar 

  63. Zhang S, Widemann E, Bernard G et al (2012) CYP52X1, representing new cytochrome P450 subfamily, displays fatty acid hydroxylase activity and contributes to virulence and growth on insect cuticular substrates in entomopathogenic fungus Beauveria bassiana. J Biol Chem 287:13477–13486. https://doi.org/10.1074/jbc.M111.338947

    Article  CAS  Google Scholar 

  64. Supakdamrongkul P, Bhumiratana A, Wiwat C (2010) Characterization of an extracellular lipase from the biocontrol fungus, Nomuraea rileyi MJ, and its toxicity toward Spodoptera litura. J Invert Pathol 105:228–235. https://doi.org/10.1016/j.jip.2010.06.011

    Article  CAS  Google Scholar 

  65. Hegedus DD, Khachatourians GG (1988) Production of an extracellular lipase by Beauveria bassiana. Biotechnol Lett 10:637–642. https://doi.org/10.1007/BF01024716

    Article  CAS  Google Scholar 

  66. Gibson DM, Donzelli BGG, Krasnoff SB, Keyhani NO (2014) Discovering the secondary metabolite potential encoded within entomopathogenic fungi. Nat Prod Rep 31:1287–1305. https://doi.org/10.1039/c4np00054d

    Article  CAS  Google Scholar 

  67. Zhang L, Yue Q, Wang C et al (2020) Secondary metabolites from hypocrealean entomopathogenic fungi: genomics as a tool to elucidate the encoded parvome. Nat Prod Rep 37:1164–1180. https://doi.org/10.1039/D0NP00007H

    Article  CAS  Google Scholar 

  68. Chen Y, Feng P, Shang Y et al (2015) Biosynthesis of non-melanin pigment by a divergent polyketide synthase in Metarhizium robertsii. Fungal Genet Biol 81:142–149. https://doi.org/10.1016/j.fgb.2014.10.018

    Article  CAS  Google Scholar 

  69. Kulkarni RD, Thon MR, Pan H, Dean RA (2005) Novel G-protein-coupled receptor-like proteins in the plant pathogenic fungus Magnaporthe grisea. Genome Biol 6:R24. https://doi.org/10.1186/gb-2005-6-3-r24

    Article  Google Scholar 

  70. Wang B, Kang Q, Lu Y et al (2012) Unveiling the biosynthetic puzzle of destruxins in Metarhizium species. Proc Natl Acad Sci U S A 109:1287–1292. https://doi.org/10.1073/pnas.1115983109

    Article  Google Scholar 

  71. Qu S, Wang S (2018) Interaction of entomopathogenic fungi with the host immune system. Dev Comp Immunol 83:96–103. https://doi.org/10.1016/j.dci.2018.01.010

    Article  CAS  Google Scholar 

  72. Shakeel M, Xu X, Mandal S, Jin F (2019) Role of serine protease inhibitors in insect-host-pathogen interactions. Arch Insect Biochem Physiol 102:e21556. https://doi.org/10.1002/arch.21556

    Article  CAS  Google Scholar 

  73. Feng P, Shang Y, Cen K, Wang C (2015) Fungal biosynthesis of the bibenzoquinone oosporein to evade insect immunity. Proc Natl Acad Sci U S A 112:11365–11370. https://doi.org/10.1073/pnas.1503200112

    Article  CAS  Google Scholar 

  74. Pathan EK, Deshpande MV (2019) The puzzle of highly virulent Metarhizium anisopliae strains from Annona squamosa fields against Helicoverpa armigera. J Basic Microbiol 59:392–401. https://doi.org/10.1002/jobm.201800631

    Article  CAS  Google Scholar 

  75. Vega FE, Posada F, Catherine M et al (2008) Entomopathogenic fungal endophytes. Biol Control 46:72–82. https://doi.org/10.1016/j.biocontrol.2008.01.008

    Article  Google Scholar 

  76. Butt TM, Coates CJ, Dubovskiy IM, Ratcliffe NA (2016) Entomopathogenic fungi: new insights into host-pathogen interactions. In: Lovett B and St. Leger R (ed), Advances in genetics, Academic Press, Oxford, UK, pp 307–364. https://doi.org/10.1016/bs.adgen.2016.01.006

  77. St. Leger RJ, Joshi L, Bidochka MJ, Roberts D (1996) Construction of an improved mycoinsecticide overexpressing a toxic protease. Proc Natl Acad Sci U S A 93:6349–6354. https://doi.org/10.1073/pnas.93.13.6349

    Article  CAS  Google Scholar 

  78. Boldo JT, Jungesdo Amaral AKB et al (2009) Endochitinase CHI2 of the biocontrol fungus Metarhizium anisopliae affects its virulence toward the cotton stainer bug Dysdercus peruvianus. Curr Genet 55:551–560. https://doi.org/10.1007/s00294-009-0267-5

    Article  CAS  Google Scholar 

  79. WangSt Leger CRJ (2007) A scorpion neurotoxin increases the potency of a fungal insecticide. Nat Biotechnol 25:1455–1456. https://doi.org/10.1038/nbt1357

    Article  CAS  Google Scholar 

  80. Bilgo E, Lovett B, Fang W et al (2017) Improved efficacy of an arthropod toxin expressing fungus against insecticide-resistant malaria-vector mosquitoes. Sci Rep 7:3433. https://doi.org/10.1038/s41598-017-03399-0

    Article  CAS  Google Scholar 

  81. Tong X, Wang Y, Yang P et al (2020) Tryptamine accumulation caused by deletion of MrMao-1 in Metarhizium genome significantly enhances insecticidal virulence. PLoS Genet 9:e1008675. https://doi.org/10.1371/journal.pgen.1008675

    Article  CAS  Google Scholar 

  82. Liu Z, Zhou L, Wang J, Liu X (2021) Expression of a phenoloxidase cascade inhibitor enhances the virulence of the fungus Beauveria bassiana against the insect Helicoverpa armigera. Dev Comp Immunol 117:103986. https://doi.org/10.1016/j.dci.2020.103986

    Article  CAS  Google Scholar 

  83. Fan Y, Pereira RM, Kilic E et al (2012) Pyrokinin β-neuropeptide affects necrophoretic behavior in fire ants (S. invicta), and expression of β-NP in a mycoinsecticide increases its virulence. PLoS ONE 7:e26924. https://doi.org/10.1371/journal.pone.0026924

    Article  CAS  Google Scholar 

  84. Chen X, Li L, Hu Q et al (2015) Expression of dsRNA in recombinant Isaria fumosorosea strain targets the TLR7 gene in Bemisia tabaci. BMC Biotechnol 15:64. https://doi.org/10.1186/s12896-015-0170-8

    Article  CAS  Google Scholar 

  85. Kamareddine L, Fan Y, Osta MA et al (2013) Expression of trypsin modulating oostatic factor (TMOF) in an entomopathogenic fungus increases its virulence towards Anopheles gambiae and reduces fecundity in the target mosquito. Parasites Vectors 6:22. https://doi.org/10.1186/1756-3305-6-22

    Article  CAS  Google Scholar 

  86. Fang W, St. Leger RJ (2012) Enhanced UV resistance and improved killing of malaria mosquitoes by photolyase transgenic entomopathogenic fungi. PLoS ONE 7:e43069. https://doi.org/10.1371/journal.pone.0043069

    Article  CAS  Google Scholar 

  87. Brancini G, Rangel D, Braga G (2016) Exposure of Metarhizium acridum mycelium to light induces tolerance to UV-B radiation. FEMS Microbio lLett 363:1–10. https://doi.org/10.1093/femsle/fnw036

    Article  CAS  Google Scholar 

  88. Shang Y, Duan Z, Huang W et al (2012) Improving UV resistance and virulence of Beauveria bassiana by genetic engineering with an exogenous tyrosinase gene. J Invertebr Pathol 109:105–109. https://doi.org/10.1016/j.jip.2011.10.004

    Article  CAS  Google Scholar 

  89. Liao X, Lu HL, Fang W et al (2014) Overexpression of a Metarhizium robertsii HSP25 gene increases thermo tolerance and survival in soil. Appl Microbiol Biotechnol 98:777–783. https://doi.org/10.1007/s00253-013-5360-5

    Article  CAS  Google Scholar 

  90. Wu C, Zhang X, Fang W (2019) Increasing pyruvate concentration enhances conidial thermo tolerance in the entomopathogenic fungus Metarhizium robertsii. Front Microbiol 10:519. https://doi.org/10.3389/fmicb.2019.00519

    Article  Google Scholar 

  91. Han J, Naeger N, Hopkins B et al (2021) Directed evolution of Metarhizium fungus improves its biocontrol efficacy against Varroa mites in honey bee colonies. Sci Rep 11:10582. https://doi.org/10.1038/s41598-021-89811-2

    Article  CAS  Google Scholar 

  92. Jordan C, Santos P, Oliveira L et al (2021) Entomopathogenic fungi as the microbial frontline against the alien Eucalyptus pest Gonipterus platensis in Brazil. Sci Rep 11:7233. https://doi.org/10.1038/s41598-021-86638-9

    Article  CAS  Google Scholar 

  93. Gebremariam A, Chekol Y, Assefa F (2021) Phenotypic, molecular, and virulence characterization of entomopathogenic fungi, Beauveria bassiana (Balsam) Vuillemin, and Metarhizium anisopliae (Metschn.) Sorokin from soil samples of Ethiopia for the development of mycoinsecticide. Heliyon 7:e07091. https://doi.org/10.1016/j.heliyon.2021.e07091

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to Dr. Mukund Deshpande, Greenvention Biotech Pvt. Pune, for valuable discussions and encouragement to pursue work on entomopathogenic fungi.

Funding

RPV is thankful to Council of Scientific and Industrial Research (CSIR), New Delhi, India, and Chhatrapati Shahu Maharaj Research Training and Human Development Institute (SARTHI), Government of Maharashtra, India, for providing Senior Research Fellowship (SRF).

Author information

Authors and Affiliations

Authors

Contributions

RPV, VVD, and APG conceived the review idea and plan. RPV, VVD, SAP, and APG finalize the outline and prepare schematics. RPV, APG, and VVD prepared the manuscript along with inputs from SAP. Subsequently, all the authors read and approved the final manuscript.

Corresponding author

Correspondence to Ashok P. Giri.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vidhate, R.P., Dawkar, V.V., Punekar, S.A. et al. Genomic Determinants of Entomopathogenic Fungi and Their Involvement in Pathogenesis. Microb Ecol 85, 49–60 (2023). https://doi.org/10.1007/s00248-021-01936-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-021-01936-z

Keywords

Navigation