Skip to main content

Advertisement

Log in

An Insight into an Olive Scab on the “Istrska Belica” Variety: Host‐Pathogen Interactions and Phyllosphere Mycobiome

  • Host Microbe Interactions
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

The olive tree is one of the most important agricultural plants, affected by several pests and diseases that cause a severe decline in health status leading to crop losses. Olive leaf spot disease caused by the fungus Venturia oleaginea can result in complete tree defoliation and consequently lower yield. The aim of the study was to obtain new knowledge related to plant–pathogen interaction, reveal mechanisms of plant defense against the pathogen, and characterize fungal phyllosphere communities on infected and symptomless leaves that could contribute to the development of new plant breeding strategies and identification of novel biocontrol agents. The highly susceptible olive variety “Istrska Belica”' was selected for a detailed evaluation. Microscopy analyses led to the observation of raphides in the mesophyll and parenchyma cells of infected leaves and gave new insight into the complex V. oleaginea pathogenesis. Culturable and total phyllosphere mycobiota, obtained via metabarcoding approach, highlighted Didymella, Aureobasidium, Cladosporium, and Alternaria species as overlapping between infected and symptomless leaves. Only Venturia and Erythrobasidium in infected and Cladosporium in symptomless samples with higher abundance showed statistically significant differences. Based on the ecological role of identified taxa, it can be suggested that Cladosporium species might have potential antagonistic effects on V. oleaginea.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

All data supporting the findings of this study are available within the paper and published online. Data were deposited in the BioProject database (NCBI) as PRJNA779983 (under the accessions from SAMN23098178 to SAMN23098184 for infected samples (S01 to S07), and from SAMN23098185 to SAMN23098191 for symptomless samples (S08 to S14).

References

  1. Loumou A, Giourga C (2003) Olive groves: the life and identity of the Mediterranean. Agric Hum Values 20:87–95. https://doi.org/10.1023/A:1022444005336

    Article  Google Scholar 

  2. Şahin S, Bilgin M (2018) Olive tree (Olea europaea L.) leaf as a waste by-product of table olive and olive oil industry: a review. J Sci Food Agric 98:1271–1279. https://doi.org/10.1002/jsfa.8619

    Article  CAS  PubMed  Google Scholar 

  3. Espeso J, Isaza A, Lee JY, Sörensen PM, Jurado P, Avena-Bustillos RDJ, Olaizola M, Arboleya JC (2021) Olive leaf waste management. Front Sustain Food Syst 5:1–13. https://doi.org/10.3389/fsufs.2021.660582

    Article  Google Scholar 

  4. Clodoveo ML, Crupi P, Annunziato A, Corbo F (2022) Innovative extraction technologies for development of functional ingredients based on polyphenols from olive leaves. Foods 11(1):103. https://doi.org/10.3390/foods11010103

    Article  CAS  Google Scholar 

  5. Sergeeva V, Tesoriero L, Spooner-Hart R, Nair NG (2005) First report of Macrophomina phaseolina on olives (Olea europaea) in Australia. Plant Pathol 34:273–274. https://doi.org/10.1071/AP05001

    Article  Google Scholar 

  6. Sergeeva V, Nair NG, Spooner-Hart R (2008) First report of flower infection in olives (Olea europaea) by Colletotrichum acutatum and C. gloeosporioides causing anthracnose disease. Australas Plant Dis Notes 3:81–82

    Google Scholar 

  7. Bernès J (1923) Les parasites de l’olivier au congrès oleicole de Nice. Prog Agric Vitic 80:518–524

    Google Scholar 

  8. Graniti A (1993) Olive scab: a review. Bull 23:377–384. https://doi.org/10.1111/j.1365-2338.1993.tb01339.x

    Article  Google Scholar 

  9. González-Lamothe R, Segura R, Trapero A, Baldoni L, Botella MA, Valpuesta V (2002) Phylogeny of the fungus Spilocaea oleagina, the causal agent of peacock leaf spot in olive. FEMS Microbiol Lett 210:149–155. https://doi.org/10.1111/j.1574-6968.2002.tb11174.x

    Article  PubMed  Google Scholar 

  10. Viruega JR, Roca LF, Moral J, Trapero A (2011) Factors affecting infection and disease development on olive leaves inoculated with Fusicladium oleagineum. Plant Dis 95:1139–1146. https://doi.org/10.1094/PDIS-02-11-0126

    Article  PubMed  Google Scholar 

  11. Rongai D, Basti C, Di Marco C (2012) A natural product for the control of olive leaf spot caused by Fusicladium oleagineum (Cast.) Ritschel & Braun. Phytopathol Mediterr 51:276–282. https://www.jstor.org/stable/43871734

  12. Mekuria GT, Collins GG, Sedgley M, Lavee S (2001) Identification of genetic markers in olive linked to olive leaf-spot resistance and susceptibility. J Am Soc Hortic Sci 126:305308. https://doi.org/10.21273/JASHS.126.3.305

  13. Lanza B, Ragnelli AM, Priore M, Aimola P (2017) Morphological and histochemical investigation of the response of Olea europaea leaves to fungal attack by Spilocaea oleagina. Plant Pathol 66:1239–1247. https://doi.org/10.1111/ppa.12671

    Article  CAS  Google Scholar 

  14. Rahioui B, Aissam S, Messaouri H, Moukhli A, Khadari B, El Modafar C (2013) Role of phenolic metabolism in the defense of the olive-tree against leaf-spot disease caused by Spilocaea oleagina. Int J Agric Biol 15:273–278

    CAS  Google Scholar 

  15. Bosabalidis AM, Kofidis G (2002) Comparative effects of drought stress on leaf anatomy of two olive cultivars. Plant Sci 163:375–379. https://doi.org/10.1016/S0168-9452(02)00135-8

    Article  CAS  Google Scholar 

  16. Bacelar EA, Correia CM, Moutinho-Pereira JM, Gonçalves BC, Lopes JI, Torres-Pereira JM (2004) Sclerophylly and leaf anatomical traits of five field-grown olive cultivars growing under drought conditions. Tree Physiol 24:233–239. https://doi.org/10.1093/treephys/24.2.233

    Article  PubMed  Google Scholar 

  17. Larbi A, Vázquez S, El-Jendoubi H, Msallem M, Abadía J, Abadía A, Morales F (2015) Canopy light heterogeneity drives leaf anatomical, eco-physiological, and photosynthetic changes in olive trees grown in a high-density plantation. Photosynth Res 123:141–155. https://doi.org/10.1007/s11120-014-0052-2

    Article  CAS  PubMed  Google Scholar 

  18. Khalil HA, El-Ansary DO (2020) Morphological, physiological and anatomical responses of two olive cultivars to deficit irrigation and mycorrhizal inoculation. Eur J Hortic Sci 85:5162. https://doi.org/10.17660/eJHS.2020/85.1.6

  19. Brito C, Dinis LT, Ferreira H, Moutinho-Pereira J, Correia C (2018) The role of nighttime water balance on Olea europaea plants subjected to contrasting water regimes. J Plant Physiol 226:56–63. https://doi.org/10.1016/j.jplph.2018.04.004

    Article  CAS  PubMed  Google Scholar 

  20. Moreno-Alías I, León L, de la Rosa R, Rapoport HF (2009) Morphological and anatomical evaluation of adult and juvenile leaves of olive plants. Trees 23:181–187. https://doi.org/10.1007/s00468-008-0266-z

    Article  Google Scholar 

  21. Gao M, Xiong C, Gao C, Tsui CK, Wang MM, Zhou X, Zhang AM, Cai L (2021) Disease-induced changes in plant microbiome assembly and functional adaptation. Microbiome 9:1–18. https://doi.org/10.1186/s40168-021-01138-2

    Article  CAS  Google Scholar 

  22. Buonaurio R, Moretti C, da Silva DP, Cortese C, Ramos C, Venturi V (2015) The olive knot disease as a model to study the role of interspecies bacterial communities in plant disease. Front Plant Sci 6:434. https://doi.org/10.3389/fpls.2015.00434

    Article  PubMed  PubMed Central  Google Scholar 

  23. Vergine M, Meyer JB, Cardinale M, Sabella E, Hartmann M, Cherubini P, De Bellis L, Luvisi A (2020) The Xylella fastidiosa-resistant olive cultivar “Leccino’” has stable endophytic microbiota during the olive quick decline syndrome (OQDS). Pathogens 9:35. https://doi.org/10.3390/pathogens9010035

    Article  CAS  Google Scholar 

  24. Boutaj H, Chakhchar A, Meddich A, Wahbi S, Alaoui-Talibi E, Douira A et al (2020) Bioprotection of olive tree from Verticillium wilt by autochthonous endomycorrhizal fungi. J Plant Dis 127:349–357. https://doi.org/10.1007/s41348-020-00323-z

    Article  Google Scholar 

  25. Ogrin D (2004) Modern climate change in Slovenia. In: Orožen Adamič M (ed) Slovenia: a geographical overview. Association of the Geographical Societies of Slovenia, Ljubljana, pp 45–50

  26. Environmental Agency of the Republic of Slovenia (2006) Podnebne razmere v Sloveniji (obdobje 1971–2000) [Climate conditions in Slovenia (period 1971–2000)]. Ljubljana, https://meteo.arso.gov.si/uploads/probase/www/climate/text/sl/publications/podnebne_razmere_v_sloveniji_71_00.pdf. Accessed 17 Aug 2022

  27. Bandelj D, Darovec D, Kastelic M, Valenčič V (2012) Following olive footprints in Slovenia. In: El-Kholy M (ed) Following olive footprints (Olea europaea L.): cultivation and culture, folklore and history, tradition and uses, Scripta Horticulturae, N. 13. AARINENA, Cairo; IOC, Madrid; ISHS, Leuven, pp 339–350

  28. Lazović B, Klepo T, Adakalić M, Šatović Z, Arbeiter AB, Hladnik M, Strikić F, Liber Z, Bandelj D (2018) Intra-varietal variability and genetic relationships among the homonymic East Adriatic olive (Olea europaea L.) varieties. Sci Hortic 236:175–185. https://doi.org/10.1016/j.scienta.2018.02.053

    Article  CAS  Google Scholar 

  29. Ruzin SE (1999) Plant microtechnique and microscopy. Oxford University Press, Oxford

    Google Scholar 

  30. Wolf L (1950) Mikroskopická technika. Státní zdravotnické nakladatelství, Praha

  31. Pearse AGE (1980) Histochemistry theoretical and applied, 4th edn. Longman Group Limited, London

    Google Scholar 

  32. Al-Khatib M, Alhussaen K, El-Banna N, Zyadeh M (2010) Biological control of olive leaf spot (peacock spot disease) caused by Cycloconium oleaginum (Spilocea oleaginea). J Microbiol Antimicrob 2:64–67. https://doi.org/10.5897/JMA.9000018

    Article  Google Scholar 

  33. Salman M, Jawabreh M, Abu Rumaileh B (2014) The effect of local fungicides on conidial germination of Spilocaea oleagina in Palestine. PTURJ 2:26–28. https://doi.org/10.53671/pturj.v2i1.25

  34. Pitt JI (1979) The genus Penicillium and its teleomorphic state Eupenicillium and Talaromyces. Academic Press Inc., Ltd, London

    Google Scholar 

  35. Ellis MB, Ellis PJ (1997) Microfungi on land plants. An identification handbook. The Richmond Publishing Co., Ltd, Oxford

    Google Scholar 

  36. Samson RA, Houbraken J, Thrane U, Frisvad JC, Andersen B (2010) Food and indoor fungi. CBS-KNAW Fungal Biodiversity Centre, Utrecht

    Google Scholar 

  37. Bensch K, Braun U, Groenewald JZ, Crous PW (2012) The genus Cladosporium. Stud Mycol 72:1–401. https://doi.org/10.3114/sim0003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Woudenberg JHC, Groenewald JZ, Binder M, Crous PW (2013) Alternaria redefined. Stud Mycol 75:171–212. https://doi.org/10.3114/sim0015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. White TJ, Bruns T, Lee SJWT, Taylor JL (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols - a guide to methods and applications. Academic Press, London, p 482

    Google Scholar 

  40. Unković N, Erić S, Šarić K, Stupar M, Savković Ž, Stanković S, Stanojević O et al (2017) Biogenesis of secondary mycogenic minerals related to wall paintings deterioration process. Micron 100:1–9. https://doi.org/10.1016/j.micron.2017.04.004

    Article  CAS  PubMed  Google Scholar 

  41. Janakiev T, Dimkić I, Unković N, Ljaljević Grbić M, Opsenica D, Gašić U, Stanković S, Berić T (2019) Phyllosphere fungal communities of plum and antifungal activity of indigenous phenazine-producing Pseudomonas synxantha against Monilinia laxa. Front Microbiol 10:2287. https://doi.org/10.3389/fmicb.2019.02287

    Article  PubMed  PubMed Central  Google Scholar 

  42. Gardes M, Bruns TD (1993) ITS primers with enhanced specificity for basidiomycetes-application to the identification of mycorrhizae and rusts. Mol Ecol 2:113–118. https://doi.org/10.1111/j.1365-294X.1993.tb00005.x

    Article  CAS  PubMed  Google Scholar 

  43. Gilbert JA, Jansson JK, Knight R (2018) Earth microbiome project and global systems biology. MSystems 3:e00217-e317. https://doi.org/10.1128/mSystems.00217-17

    Article  PubMed  PubMed Central  Google Scholar 

  44. Hannon GJ (2010) FASTX-Toolkit: FASTQ/A short-reads pre-processing tools, http://hannonlab.cshl.edu/fastx_toolkit/. Accessed June 2021

  45. Abarenkov K, Zirk A, Piirmann T, Pöhönen R, Ivanov F, Nilsson RH, Kõljalg U (2020) UNITE QIIME release for Fungi. UNITE Community. https://doi.org/10.15156/BIO/786385. Accessed June 2021

  46. Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet CC, Al-Ghalith GA et al (2019) Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol 37:852–857. https://doi.org/10.1038/s41587-019-0209-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP (2016) DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods 13:581–583. https://doi.org/10.1038/nmeth.3869

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M et al (2011) Scikit-learn: machine learning in python. J Mach Learn Res 12:2825–2830

    Google Scholar 

  49. McMurdie PJ, Holmes S (2013) phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 8:e61217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Xu S, Yu G (2021) MicrobiotaProcess: an R package for analysis, visualization and biomarker discovery of microbiome. R package version 1.6.2, https://github.com/YuLab-SMU/MicrobiotaProcess/. Accessed June 2021

  51. Anderson MJ (2005) Permutational multivariate analysis of variance. Department of Statistics, University of Auckland, Auckland, 26:32–46

  52. Gu Z, Eils R, Schlesner M (2016) Complex heatmaps reveal patterns and correlations in multidimensional genomic data. Bioinformatics 32:2847–2849. https://doi.org/10.1093/bioinformatics/btw313

    Article  CAS  PubMed  Google Scholar 

  53. Mallick H, Rahnavard A, McIver LJ, Ma S, Zhang Y, Nguyen LH, Tickle TL et al (2021) Multivariable association discovery in population-scale meta-omics studies. PLoS Comput Biol 17:e1009442. https://doi.org/10.1371/journal.pcbi.1009442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Lakušić B, Popov V, Runjaić-Antić D (2007) Morpho-anatomical characteristics of the raw material of the herbal drug Olivae folium and its counterfeits. Arch Biol Sci 59:187–192. https://doi.org/10.2298/ABS0703187L

    Article  Google Scholar 

  55. Roka L, Koudounas K, Daras G, Zoidakis J, Vlahou A, Kalaitzis P, Hatzopoulos P (2018) Proteome of olive non-glandular trichomes reveals protective protein network against (a) biotic challenge. J Plant Physiol 231:210–218. https://doi.org/10.1016/j.jplph.2018.09.016

    Article  CAS  PubMed  Google Scholar 

  56. Tyree EL (1994) Phytolith analysis of olive oil and wine sediments for possible identification in archaeology. Can J Bot 72:499–504. https://doi.org/10.1139/b94-067

    Article  Google Scholar 

  57. Lersten NR, Horner HT (2009) Crystal diversity and macropatterns in leaves of Oleaceae. Plant Syst Evol 282:87–102. https://doi.org/10.1007/s00606-009-0209-1

    Article  CAS  Google Scholar 

  58. Alquati P (1906) Studi anatomici e morfologici sull’ulivo (Olea europaea). Atti della Societa` Lingustica di Scienze Naturali e Geografiche. Genova 17:124–148

    Google Scholar 

  59. Schneider G, Löbenberg L (1972) Zur Morphologie und anatomie der Olivenblätter. Planta Med 22:117–121. https://doi.org/10.1055/s-0028-1099592

    Article  CAS  PubMed  Google Scholar 

  60. Christodoulakis NS (1992) Structural diversity and adaptations in some Mediterranean evergreen sclerophyllous species. Environ Exp Bot 32:295–305. https://doi.org/10.1016/0098-8472(92)90012-Q

    Article  Google Scholar 

  61. Stefi AL, Vassilacopoulou D, Routsi E, Stathopoulos P, Argyropoulou A, Skaltsounis AL, Christodoulakis NS (2021) The combined environmental stress on the leaves of Olea europaea L. and the relief mechanism through biosynthesis of certain secondary metabolites. J Plant Growth Regul 40:1044–1059. https://doi.org/10.1007/s00344-020-10162-9

    Article  CAS  Google Scholar 

  62. Christodoulakis NS, Koutsogeorgopoulou L (1991) Air pollution effects on the leaf structure of two injury resistant species: Eucalyptus camaldulensis and Olea europaea L. Bull Environ Contam Toxicol 47:433–439

    Article  CAS  PubMed  Google Scholar 

  63. de Oliveira CG, Macêdo JNA, Santos TB, Alemanno L, da Silva GA, Micheli F, Mariano AC, Peres Gramacho K, da Costa SD, Meinhardt L, Mazzafera P, Guimaraes Pereira GA, de Mattos Cascardo JC (2007) Involvement of calcium oxalate degradation during programmed cell death in Theobroma cacao tissues triggered by the hemibiotrophic fungus Moniliophthora perniciosa. Plant Sci 173:106–117. https://doi.org/10.1016/j.plantsci.2007.04.006

    Article  CAS  Google Scholar 

  64. Hu X, Bidney DL, Yalpani N, Duvick JP, Crasta O, Folkerts O, Lu G (2003) Overexpression of a gene encoding hydrogen peroxide-generating oxalate oxidase evokes defense responses in sunflower. Plant Physiol 133:170–181. https://doi.org/10.1104/pp.103.024026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Jennings JM, Apel-Birkhold PC, Mock NM, Baker CJ, Anderson JD, Bailey BA (2001) Induction of defense responses in tobacco by the protein Nep 1 from Fusarium oxysporum. Plant Sci 161:891–899. https://doi.org/10.1016/S0168-9452(01)00483-6

    Article  CAS  Google Scholar 

  66. Novelli S, Gismondi A, Di Marco G, Canuti L, Nanni V, Canini A (2019) Plant defense factors involved in Olea europaea resistance against Xylella fastidiosa infection. J Plant Res 132:439–455. https://doi.org/10.1007/s10265-019-01108-8

    Article  CAS  PubMed  Google Scholar 

  67. Báidez AG, Gómez P, Del Río JA, Ortuño A (2007) Dysfunctionality of the xylem in Olea europaea L. plants associated with the infection process by Verticillium dahliae Kleb. Role of phenolic compounds in plant defense mechanism. J Agric Food Chem 55:3373–3377. https://doi.org/10.1021/jf063166d

    Article  CAS  PubMed  Google Scholar 

  68. Viruega JR, Moral J, Roca LF, Navarro N, Trapero A (2013) Spilocaea oleagina in olive groves of southern Spain: survival, inoculum production, and dispersal. Plant Dis 97:1549–1556. https://doi.org/10.1094/PDIS-12-12-1206-RE

    Article  CAS  PubMed  Google Scholar 

  69. Gomes T, Pereira JA, Benhadi J, Lino-Neto T, Baptista P (2018) Endophytic and epiphytic phyllosphere fungal communities are shaped by different environmental factors in a Mediterranean ecosystem. Microb Ecol 76:668–679. https://doi.org/10.1007/s00248-018-1161-9

    Article  PubMed  Google Scholar 

  70. Scibetta S, Agosteo GE, Abdelfattah A, Li Destri Nicosia MG, Cacciola SO, Schena L (2020) Development and application of a quantitative PCR detection method to quantify Venturia oleaginea in asymptomatic olive (Olea europaea) leaves. Phytopathology 110:547–555. https://doi.org/10.1094/PHYTO-07-19-0227-R

    Article  CAS  PubMed  Google Scholar 

  71. Abdelfattah A, Li Destri Nicosia MG, Cacciola SO, Droby S, Schena L (2015) Metabarcoding analysis of fungal diversity in the phyllosphere and carposphere of olive (Olea europaea). PLoS ONE 10:e0131069. https://doi.org/10.1371/journal.pone.0131069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Varanda CM, Materatski P, Landum M, Campos MD, Félix MDR (2019) Fungal communities associated with peacock and cercospora leaf spots in olive. Plants 8:169. https://doi.org/10.3390/plants8060169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Hudson HJ (1971) The development of the saprophytic fungal flora as leaves senesce and fall. In: Preece TF, Dickinson CH (eds) Ecology of leaf surface microorganisms. Academic Press, London, pp 447–455

    Google Scholar 

  74. Chliyeh M, Rhimini Y, Selmaoui K, Ouazzani Touhami A, Filali-Maltouf A, El Modafar CC, Moukhli A, Oukabli A, Benkirane R, Douira A (2014) Survey of the fungal species associated to olive-tree (Olea europaea L.) in Morocco. Int J Biotechnol 2:15–32

    Google Scholar 

  75. Landum MC, Félix MR, Alho J, Garcia R, Cabrita MJ, Rei F, Varanda CMR (2016) Antagonistic activity of fungi of Olea europaea L. against Colletotrichum acutatum. Microbiol Res 183:100–108. https://doi.org/10.1016/j.micres.2015.12.001

    Article  PubMed  Google Scholar 

  76. Sanei SJ, Razavi SE (2012) Survey of olive fungal disease in North of Iran. Annu. Res. Rev. Biol 2:27–36. https://journalarrb.com/index.php/ARRB/article/view/26473

  77. Moral J, de la Rosa R, León L, Barranco D, Michailides TJ, Trapero A (2008) High susceptibility of the olive cultivar FS-17 to Alternaria alternata in southern Spain. Plant Dis 92:1252. https://doi.org/10.1094/PDIS-92-8-1252A

    Article  CAS  PubMed  Google Scholar 

  78. Lagogianni CS, Tjamos EC, Antoniou PP, Tsitsigiannis DI (2017) First report of Alternaria alternata as the causal agent of Alternaria bud and blossom blight of olives. Plant Dis 101:2151. https://doi.org/10.1094/PDIS-04-17-0527-PDN

    Article  Google Scholar 

  79. Bottalico A, Logrieco A (2008) Mycotoxins in Alternaria alternata infected olive fruits and their possible transfer into oil. Bull 23:473–479. https://doi.org/10.1111/j.1365-2338.1993.tb01355.x

    Article  Google Scholar 

  80. Yamagishi N, Nishikawa J, Oshima Y, Eguchi N (2009) Black spot disease of alstroemeria caused by Alternaria alstroemeriae in Japan. J Gen Plant Pathol 75:401–403. https://doi.org/10.1007/s10327-009-0182-0

    Article  Google Scholar 

  81. Valdés I, Rodríguez J, Portela A, Jiménez P (2014) First report of Alternaria alstroemeriae on Alstroemeria sp. in Colombia. New Dis Rep 29:21–21. https://doi.org/10.5197/j.2044-0588.2014.029.021

    Article  Google Scholar 

  82. Malacrinò A, Schena L, Campolo O, Laudani F, Mosca S, Giunti G, Strano CP, Palmeri V (2017) A metabarcoding survey on the fungal microbiota associated to the olive fruit fly. Microb Ecol 73:677–684. https://doi.org/10.1007/s00248-016-0864-z

    Article  CAS  PubMed  Google Scholar 

  83. Preto G, Martins F, Pereira JA, Baptista P (2017) Fungal community in olive fruits of cultivars with different susceptibilities to anthracnose and selection of isolates to be used as biocontrol agents. Biol Control 110:1–9. https://doi.org/10.1016/j.biocontrol.2017.03.011

    Article  Google Scholar 

  84. Gomes T, Pereira JA, Lino-Neto T, Bennett AE, Baptista P (2019) Bacterial disease induced changes in fungal communities of olive tree twigs depend on host genotype. Sci Rep 9:1–10. https://doi.org/10.1038/s41598-019-42391-8

    Article  CAS  Google Scholar 

  85. Chliyeh M, Achbani E, Rhimini Y, Selmaoui K, Touhami AO, Filali-Maltouf A, El Modafar C, Moukhli A, Oukabli A, Benkirane R, Douira A (2014) Pathogenicity of four fungal species on fruits and leaves of the olive tree (Olea europaea L.). Int J Pure App Biosci 2:1–9

  86. Prior R, Feige A, Begerow D (2017) Antagonistic activity of the phyllosphere fungal community. Sydowia 69:183–198. https://doi.org/10.12905/0380.sydowia69-2017-0183

  87. Răut I, Călin M, Capră L, Gurban AM, Doni M, Radu N, Jecu L (2021) Cladosporium sp. isolate as fungal plant growth promoting agent. Agronomy 11:392. https://doi.org/10.3390/agronomy11020392

  88. Chaudhry V, Runge P, Sengupta P, Doehlemann G, Parker JE, Kemen E (2021) Shaping the leaf microbiota: plant–microbe–microbe interactions. J Exp Bot 72:36–56. https://doi.org/10.1093/jxb/eraa417

    Article  CAS  PubMed  Google Scholar 

  89. Zalar P, Gostinčar C, De Hoog GS, Uršič V, Sudhadham M, Gunde-Cimerman N (2008) Redefinition of Aureobasidium pullulans and its varieties. Stud Mycol 61:21–38. https://doi.org/10.3114/sim.2008.61.02

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Materatski P, Varanda C, Carvalho T, Dias AB, Campos MD, Rei F, do Rosário Félix M, (2019) Spatial and temporal variation of fungal endophytic richness and diversity associated to the phyllosphere of olive cultivars. Fungal Ecol 123:66–76. https://doi.org/10.1016/j.funbio.2018.11.004

    Article  Google Scholar 

  91. Nicoletti R, Di Vaio C, Cirillo C (2020) Endophytic fungi of olive tree. Microorganisms 8:1321. https://doi.org/10.3390/microorganisms8091321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Pihet M, Vandeputte P, Tronchin G, Renier G, Saulnier P, Georgeault S, Mallet R, Chabasse D, Symoens F, Bouchara JP (2009) Melanin is an essential component for the integrity of the cell wall of Aspergillus fumigatus conidia. BMC Microbiol 9:1–11. https://doi.org/10.1186/1471-2180-9-177

    Article  CAS  Google Scholar 

  93. Janisiewicz WJ, Jurick WM, Peter KA, Kurtzman CP, Buyer JS (2014) Yeasts associated with plums and their potential for controlling brown rot after harvest. Yeast 31:207–218. https://doi.org/10.1002/yea.3009

    Article  CAS  PubMed  Google Scholar 

  94. Kunz S (2004) Development of “Blossom-Protect” - a yeast preparation for the reduction of blossom infections by fire blight. In: Boos M (ed) Ecofruit - 11th International Conference on Cultivation Technique and Phytopathological Problems in Organic Fruit-Growing. Weinsberg, Germany, pp 108–112

    Google Scholar 

  95. de Jong H, Reglinski T, Elmer PA, Wurms K, Vanneste JL, Guo LF, Alavi M (2019) Integrated use of Aureobasidium pullulans strain CG163 and acibenzolar-S-methyl for management of bacterial canker in kiwifruit. Plants 8:287. https://doi.org/10.3390/plants8080287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. de Freitas SE, Marcon J, Mazzer Luvizotto D, Quecine MC, Tsui S, Pereira JO, Pizzirani-Kleiner AA, Azevedo JL (2013) Endophytic fungi from the Amazonian plant Paullinia cupana and from Olea europaea isolated using cassava as an alternative starch media source. Springerplus 2:579. https://doi.org/10.1186/2193-1801-2-579

    Article  CAS  Google Scholar 

  97. Giampetruzzi A, Baptista P, Morelli M, Cameirão C, Lino Neto T, Costa D, D’Attoma G, Abou Kubaa R, Altamura G, Saponari M, Pereira JA, Saldarelli P (2020) Differences in the endophytic microbiome of olive cultivars infected by Xylella fastidiosa across seasons. Pathogens 9:723. https://doi.org/10.3390/pathogens9090723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Arroyo-López FN, Querol A, Bautista-Gallego J, Garrido-Fernández A (2008) Role of yeasts in table olive production. Int J Food Microbiol 128:189–196. https://doi.org/10.1016/j.ijfoodmicro.2008.08.018

    Article  CAS  PubMed  Google Scholar 

  99. Dzoyem JP, Melong R, Tsamo AT, Maffo T, Kapche DG, Ngadjui BT, McGaw LJ, Eloff JN (2017) Cytotoxicity, antioxidant and antibacterial activity of four compounds produced by an endophytic fungus Epicoccum nigrum associated with Entada abyssinica. Rev Bras Farmacogn 27:251–253. https://doi.org/10.1016/j.bjp.2016.08.011

    Article  CAS  Google Scholar 

  100. Jouda JB, Mbazoa CD, Sarkar P, Bag PK, Wandji J (2016) Anticancer and antibacterial secondary metabolites from the endophytic fungus Penicillium sp. CAM64 against multi-drug resistant Gram-negative bacteria. Afr Health Sci 16:734–743. https://doi.org/10.4314/ahs.v16i3.13

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the Ministry of Education, Science, and Technological developments of the Republic of Serbia and by the Slovenian Research Agency, as well as by bilateral scientific-research cooperation between SRB and RS [Contracts Nos.: 451–03-68/2022–14/200178; P1-0386; SLO-SRB-2018/19-OAN].

Author information

Authors and Affiliations

Authors

Contributions

MH, DB, and ID—conceptualization of idea and data curation; MH, NU, TJ, ABA, MLG, PJ, MG, DR, and ID—methodology and formal analysis; DB, SS, and ID—funding acquisition; MH, and ID—supervision; MH, NU, TJ, MLG, PJ, MG, and ID—writing the original draft; MH, NU, TJ, MLG, ABA, SS, PJ, MG, DR, DB, and ID—review, editing, and approval of the final version of the manuscript.

Corresponding author

Correspondence to Ivica Dimkić.

Ethics declarations

Ethics Approval

A study was not required ethics approval.

Conflict of Interests

The authors declare no competing interests.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 6538 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hladnik, M., Unković, N., Janakiev, T. et al. An Insight into an Olive Scab on the “Istrska Belica” Variety: Host‐Pathogen Interactions and Phyllosphere Mycobiome. Microb Ecol 86, 1343–1363 (2023). https://doi.org/10.1007/s00248-022-02131-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-022-02131-4

Keywords

Navigation