Skip to main content

Advertisement

Log in

Phoma spp. an untapped treasure of cytotoxic compounds: current status and perspectives

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The genus Phoma has been explored for a wide range of secondary metabolites signifying a huge range of bioactivities. Phoma sensu lato is a major group that secretes several secondary metabolites. The genus Phoma mainly includes Phoma macrostoma, P. multirostrata, P. exigua, P. herbarum, P. betae, P. bellidis, P. medicaginis, P. tropica, and many more species from the genus that are continuously being identified for their potential secondary metabolites. The metabolite spectrum includes bioactive compounds like phomenon, phomin, phomodione, cytochalasins, cercosporamide, phomazines, and phomapyrone reported from various Phoma spp. These secondary metabolites show a broad range of activities including antimicrobial, antiviral, antinematode, and anticancer. The present review is aimed to emphasize the importance of Phoma sensu lato fungi, as a natural source of biologically active secondary metabolites, and their cytotoxic activities. So far, cytotoxic activities of Phoma spp. have not been reviewed; hence, this review will be novel and useful for the readers to develop Phoma-derived anticancer agents.

Key points

Different Phoma spp. contain a wide variety of bioactive metabolites.

These Phoma spp. also secrete cytotoxic and antitumor compounds.

The secondary metabolites can be used for the development of anticancer agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • ASM (2019) One Health: fungal pathogens of humans, animals, and plants: report on an American Academy of Microbiology Colloquium held in Washington, DC, on October 18, 2017. Washington (DC): American Society for Microbiology. Available from: https://www.ncbi.nlm.nih.gov/books/NBK549988/doi:10.1128/AAMCol.18Oct.2017.

  • Avila-Quezada GD, Rai M (2022) Diseases of fruits, tubers, and seeds caused by Phoma sensu lato species complex. In: Rai M, Zimowska B, Kövics GJ (eds) Phoma: diversity, taxonomy, bioactivities, and nanotechnology. Springer, Cham. https://doi.org/10.1007/978-3-030-81218-8_4

    Chapter  Google Scholar 

  • Ayers S, Graf TN, Adcock AF, Kroll DJ, Matthew S, Carcache de Blanco EJ, Shen Q, Swanson SM, Wani MC, Pearce CJ, Oberlies NH (2011) Resorcylic acid lactones with cytotoxic and NF-κB inhibitory activities and their structure-activity relationships. J Nat Prod 74(5):1126–1131. https://doi.org/10.1021/np200062x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bennett A, Ponder MM, Garcia-Diaz J (2018) Phoma infections: classification, potential food sources, and its clinical impact. Microorganisms 6(3):58. https://doi.org/10.3390/microorganisms6030058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhimba BV, Pushpam AC, Arumugam P, Prakash S (2012) Phtalate derivatives from the marine fungi Phoma herbarum VB7. Int J Biol Pharma Res 3(4):507–512

    Google Scholar 

  • Bhunjun CS, Niskanen T, Suwannarach N et al (2022) The numbers of fungi: are the most speciose genera truly diverse? Fungal Divers 114:387–462. https://doi.org/10.1007/s13225-022-00501-4

  • Blondelle MM, Treiber L, Zeng H, Schrey H, Schobert R, Stadler M (2020) Macrooxazoles A-D, New 2,5-disubstituted oxazole-4-carboxylic acid derivatives from the plant pathogenic fungus Phoma macrostoma. Molecules 25(23):5497. https://doi.org/10.3390/molecules25235497

    Article  CAS  Google Scholar 

  • Boerema GH, de Gruytere J, Noordeloos ME, Hamers MEC (eds) (2004) Phoma identification manual. Differentiation of specific and infra-specific taxa in culture. https://doi.org/10.1079/9780851997438.0000

  • Carriere J, Bagnis C, Gueho E, Bitker MO, Danis M, Datry A (1997) Subcutaneous phaeohyphomycosis caused by Phoma cruris-hominis in renal transplant patient, abstr. 057 Abstracts of the 13th Congress of the International Society for Human and Animal Mycology

  • Chen Q, Zhang K, Zhang G, Cai L (2015) A polyphasic approach to characterise two novel species of Phoma (Didymellaceae) from China. Phytotaxa 197:267–281

    Article  Google Scholar 

  • Chen Q, Hou L, Duan W, Crous P, Cai L (2017) Didymellaceae revisited. Stud Mycol 87:105–159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Y, Yang W, Zou G, Chen S, Pang J, She Z (2019) Bioactive polyketides from the mangrove endophytic fungi Phoma sp. SYSU-SK-7. Fitoterapia 139:104369

    Article  CAS  PubMed  Google Scholar 

  • Cheng T, Kolařík M, Quijada L, Stadler M (2022) A re-assessment of Taxomyces andreanae, the alleged taxol-producing fungus, using comparative genomics. IMA Fungus 13:17. https://doi.org/10.1186/s43008-022-00103-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Conrado R, Gomes TC, Roque GSC, De Souza AO (2022) Overview of bioactive fungal secondary metabolites: cytotoxic and antimicrobial compounds. Antibiotics 11:1604. https://doi.org/10.3390/antibiotics11111604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deb D, Khan A, Dey N (2020) Phoma diseases: epidemiology and control. Plant Pathol 69(7):1203–1217. https://doi.org/10.1111/ppa.13221

    Article  CAS  Google Scholar 

  • Deshmukh SK, Prakash V, Ranjan N (2018) Marine fungi: a source of potential anticancer compounds. Front Microbiol Front Microbiol 8:2536. https://doi.org/10.3389/fmicb.2017.02536

    Article  PubMed  Google Scholar 

  • Fang MJ, Fang H, Li WJ, Huang DM, Wu Z, Zhao YF (2012) A new diphenyl ether from Phoma sp. strain, SHZK-2. Nat Prod Res 26(13):1224–1228. https://doi.org/10.1080/14786419.2011.559947

    Article  CAS  PubMed  Google Scholar 

  • Hawksworth DL (2012) Global species numbers of fungi: are tropical studies and molecular approaches contributing to a more robust estimate? Biodivers Conserv 21:2425–2433

    Article  Google Scholar 

  • Hemamalini V, Kumar DM, Rebecca AIN, Srimathi S, Muthumary J, Kalaichelvan P (2015) Isolation and characterization of taxol-producing endophytic Phoma sp. from Calotropis gigantea and its anti-proliferative studies. J Acad Ind Res 3:645–649

    CAS  Google Scholar 

  • Hou LW, Groenewald JZ, Pfenning LH, Yarden O, Crous PW, Cai L (2020) The Phoma-like dilemma. Stud Mycol 96:309–396. https://doi.org/10.1016/j.simyco.2020.05.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang M, Lu JJ, Ding J (2021) Natural products in cancer therapy: past, present and future. Nat Prod Bioprospect 11:5–13. https://doi.org/10.1007/s13659-020-00293-7

    Article  PubMed  PubMed Central  Google Scholar 

  • Hussain H, Elizbit Ali I, Mamadalieva NZ, Abbas G, Ali M, Zaman G, Khan A, Hassan U, Green IR (2022) Fruitful decade of Phoma secondary metabolites from 2011 to 2020: chemistry, chemical diversity, and biological activities. In: Rai M, Zimowska B, Kövics GJ (eds) Phoma: diversity, taxonomy, bioactivities, and nanotechnology. Springer, Cham. https://doi.org/10.1007/978-3-030-81218-8_10

    Chapter  Google Scholar 

  • Jakubczyk D, Dussart F (2020) Selected fungal natural products with antimicrobial properties. Molecules 25(4):911. https://doi.org/10.3390/molecules25040911

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kanai Y, Ishiyama D, Senda H, Iwatani W, Takahashi H, Konno H, Kanazawa S (2000) Novel human topoisomerase I inhibitors, topopyrones A, B, C and D. II. structure elucidation. J Antibiot 53(9):873–878. https://doi.org/10.7164/antibiotics.53.873

    Article  Google Scholar 

  • Kashyap S (2018) Isolation, structure elucidation and functional characterization of a novel cytotoxic secondary metabolite phomafuranone, 2-hydroxy-2, 4-dimethyl-5-[-1-propen-1-yl]-3 (2H)-furanone, from Phoma tropica an endophytic fungus isolated from Mappia foetida (doctoral dissertation), Indian Institute of Science, Bengaluru, etd@IISc

  • Kharwar RN, Mishra A, Gond SK, Stierle A, Stierle D (2011) Anticancer compounds derived from fungal endophytes: their importance and future challenges. Nat Prod Rep 28(7):1208–1228

    Article  CAS  PubMed  Google Scholar 

  • Kim E, Li JL, Xiao B, Hong J, Yoo ES, Yoon WD, Jung JH (2012a) A new cyclic tetrapeptide from the jellyfish-derived fungus Phoma sp. Chem Pharm Bull 60(12):1590–1593

    Article  CAS  Google Scholar 

  • Kim EL, Li JL, Dang HT, Hong J, Lee CO, Kim DK, Yoon WD, Kim E, Liu Y, Jung JH (2012) Cytotoxic cytochalasins from the endozoic fungus Phoma sp. of the giant jellyfish Nemopilema nomurai. Bioorg Med Chem Lett 22(9):3126–3129. https://doi.org/10.1016/j.bmcl.2012.03.058

    Article  CAS  PubMed  Google Scholar 

  • Kim JW, Chori HG, Song JH, Kang KS, Shim SH (2019) Bioactive secondary metabolites from an endophytes fungus Phoma sp PF2 derived from Artemisia princeps Pamp. J Antibiot 72:174–177

    Article  CAS  Google Scholar 

  • Kong F, Wang Y, Liu P, Dong T, Zhu W (2013) Thiodiketopiperazines from the marine-derived fungus Phoma sp. OUCMDZ-1847. J Nat Prod 77(1):132–137. https://doi.org/10.1021/np400802d

    Article  CAS  PubMed  Google Scholar 

  • Kövics GJ, Irinyi L, Rai M (2022) Overview of Phoma-like fungi on important legumes (Papilionaceous Plants). In: Rai M, Zimowska B, Kövics GJ (eds) Phoma: diversity, taxonomy, bioactivities, and nanotechnology. Springer, Cham. https://doi.org/10.1007/978-3-030-81218-8_5

    Chapter  Google Scholar 

  • Kumaran RS, Choi YK, Lee S, Jeon HJ, Jung H, Kim HJ (2012) Isolation of taxol, an anticancer drug produced by the endophytic fungus, Phoma Betae. Afr J Biotechnol 11(4):950–960

    CAS  Google Scholar 

  • Li T-X, Meng D-D, Guo Y-X, Bai B, Xu G-G, Yang Y-N, Xie XY, Wang Y, Xu C-P (2019) Antioxidant epoxydon and benzolactone derivatives from the insect-associated fungus Phoma sp. J Asian Nat Prod Res 22(7):647–654. https://doi.org/10.1080/10286020.2019.1612380

    Article  CAS  PubMed  Google Scholar 

  • Lin F, Morifumi H, Kodama O (2003) Purification and identification of antimicrobial sesquiterpene lactones from Yacon (Smallanthus sonchifolius) leaves. Biosci Biotechnol Biochem 67:2154–2159

    Article  CAS  PubMed  Google Scholar 

  • Liu SS, Jiang JX, Huang R, Wang YT, Jiang BG, Zheng KX, Wu SH (2019) A new antiviral 14-nordrimane sesquiterpenoid from an endophytic fungus Phoma sp. Phytochem Lett 29:75–78

    Article  CAS  Google Scholar 

  • Maha A, Rukachaisirikul V, Saithong S, Phongpaichit S, Poonsuwan W, Sakayaroj J, Saparpakorn P, Hannongbua S (2016) Terezine derivatives from the fungus Phoma herbarum PSU-H256. Phytochemistry 122:223–229. https://doi.org/10.1016/j.phytochem.2015.11.009

    Article  CAS  PubMed  Google Scholar 

  • Mahish PK, Singh S, Chauhan R. Bioactive secondary metabolites from endophytic Phoma spp. (2022) In: Rai M, Zimowska B, Kövics GJ (eds) ‘Phoma: diversity, taxonomy, bioactivities, and nanotechnology, pp. 205-219. Springer Nature Switzerland AG. https://doi.org/10.1007/978-3-030-81218-8_11

  • Majoumouo MS, Tincho MB, Kouipou Toghueo RM, Morris T, Hiss DC, Boyom FF, Mandal C (2020) Cytotoxicity potential of endophytic fungi extracts from Terminalia catappa against human cervical cancer cells. J Toxicol 2020:1–9. https://doi.org/10.1155/2020/8871152

    Article  CAS  Google Scholar 

  • Matio Kemkuignou B, Treiber L, Zeng H, Schrey H, Schobert R, Stadler M (2020) Macrooxazoles A-D, new 2, 5-disubstituted oxazole-4-carboxylic acid derivatives from the plant pathogenic fungus Phoma macrostoma. Molecules 25(23):5497

    Article  PubMed  PubMed Central  Google Scholar 

  • Mohamed IE, Gross H, Pontius A, Kehraus S, Krick A, Kelter G, Maier A, Fiebig HH, Kӧnig M (2009) Epoxyphomalin A and B, prenylated polyketides with potent cytotoxicity from the marine-derived fungus Phoma sp. Org Lett 11(21):5014–5017

    Article  CAS  PubMed  Google Scholar 

  • Mohamed H, Ebrahim W, Peterson A, Proksch P (2017) Production of phytotoxic polyketide spiciferone A by Phoma fungicola. Mikol Fitopatol 51(1):41–46

    Google Scholar 

  • Monte E, Bridge PD, Sutton BC (1991) An integrated approach to Phoma systematics. Mycopathologia 115:89–103

    Article  Google Scholar 

  • Morris JT, Beckius ML, Jeffery BS, Longfeld RN, Heaven RF, Baker WJ (1995) Lung mass caused by Phoma species. Infec Dis Clin Pract 4:58–59

    Article  Google Scholar 

  • Nalli Y, Arora P, Khan S, Malik F, Riyaz-Ul-Hassan S, Gupta V, Ali A (2019) Isolation, structural modification of macrophin from endophytic fungus Phoma macrostoma and their cytotoxic potential. Med Chem Res 28(3):260–266

    Article  CAS  Google Scholar 

  • Noordeloos ME, De Gruyter J, van Eijk GW, Roeijmans HJ (1993) Production of dendritic crystals in pure cultures of Phoma and Ascochyta and its value as a taxonomic character relative to morphology, pathology and cultural characteristics. Mycol Res 97:1343–1350

    Article  Google Scholar 

  • Osterhage C, Konig GM, Jones PG, Wright AD (2002) 5-hydroxyramulosin, a new natural product produced by Phoma tropica, a marine-derived fungus isolated from alga Fucus spiralis. Planta Med 68:1052–1054

    Article  CAS  PubMed  Google Scholar 

  • Pan JH, Deng JJ, Chen YG, Gao JP, Lin YC, She ZG, Gu YC (2010) New lactone and xanthone derivatives produced by a mangrove endophytic fungus Phoma sp. SK3RW1M from the South China Sea. Helvetica Chimica Acta 93(7):1369–1374

    Article  CAS  Google Scholar 

  • Peng X, Duan F, He Y, Gao Y, Chen J, Chang J, Ruan H (2020) Ergocytochalasin A, a polycyclic merocytochalasan from an endophytic fungus Phoma multirostrata XJ-2-1. Org Biomol Chem 18(21):4056–4062

    Article  CAS  PubMed  Google Scholar 

  • Rai MK (1989) Phoma sorghina infection in human being. Mycopathologia (Den Haag) 105:167–170

    Article  CAS  Google Scholar 

  • Rai MK, Rajak RC (1993) Distinguishing characteristics of some Phoma species. Mycotaxon 48:389–414

    Google Scholar 

  • Rai MK, Deshmukh P, Gade A, Ingle A, Kövics GJ, Irinyi L (2009) Phoma Saccardo: distribution, secondary metabolite production and biotechnological applications. Crit Rev Microbiol 35:182–196

    Article  CAS  PubMed  Google Scholar 

  • Rai MK, Tiwari VV, Irinyi L, Kövics GJ (2014) Advances in taxonomy of genus Phoma: polyphyletic nature and role of phenotypic traits and molecular systematics. Indian J Microbiol 54(2):123–128. https://doi.org/10.1007/s12088-013-0442-8

    Article  CAS  PubMed  Google Scholar 

  • Rai M, Gade A, Zimowska B, Ingle AP, Ingle P (2018) Marine-derived Phoma—the gold mine of bioactive compounds. Appl Microbiol Biotechnol 102(21):9053–9066. https://doi.org/10.1007/s00253-018-9329-2

    Article  CAS  PubMed  Google Scholar 

  • Rai M, Gade A, Zimowska B, Ingle AP, Ingle P (2020) Harnessing the potential of novel bioactive compounds produced by endophytic Phoma spp. – biomedical and agricultural applications. Acta Sci Pol Hortorum Cultus 19(6):31–45. https://doi.org/10.24326/asphc.2020.6.3

    Article  Google Scholar 

  • Rai M, Zimowska B, Shinde S, Tres MV (2021) Bioherbicidal potential of different species of Phoma: opportunities and challenges. Appl Microbiol Biotechnol 105(8):3009–3018. https://doi.org/10.1007/s00253-021-11234-w

    Article  CAS  PubMed  Google Scholar 

  • Rai M, Zimowska B, Gade A, Ingle P (2022) Promising antimicrobials from Phoma spp.: progress and prospects. AMB Expr 12:60. https://doi.org/10.1186/s13568-022-01404-y

    Article  CAS  Google Scholar 

  • Rai M, Zimowska B, Kövics GJ (2022) The genus Phoma: what we know and what we need to know? In: Rai M, Zimowska B, Kövics GJ (eds) Phoma: diversity, taxonomy, bioactivities, and nanotechnology. Springer, Cham. https://doi.org/10.1007/978-3-030-81218-8_1

    Chapter  Google Scholar 

  • Rivero-Cruz JF, Macias M, Cerda-Garcia-Rojas CM, Mata R (2003) A new phytotoxic nonenolide from Phoma herbarum. J Nat Prod 66:511–514

    Article  CAS  PubMed  Google Scholar 

  • Sanchez S, Demain AL (2011) Secondary metabolites In Comprehensive biotechnology. Academic Press, 2nd edn, pp 155–167. https://doi.org/10.1016/B978-0-08-088504-9.00018-0

  • Sang XN, Chen SF, Chen G, An X, Li SG, Li XN, Pei YH (2016) Phomeketales A-F, six unique metabolites from the endophytic fungus Phoma sp. YN02-P-3. Rsc Adv 6(69):64890–64894

    Article  CAS  Google Scholar 

  • Sang XN, Chen SF, An X, Chen G, Wang HF, Pei YH (2017) A novel 3, 4-dihydronaphthalen-1 (2 H)-one with spiro-butyrolactone and a new isocoumarin isolated from the endophytic fungus Phoma sp. YN02-P-3. J Asian Nat Prod Res 19(5):436–443

    Article  CAS  PubMed  Google Scholar 

  • Sang XN, Chen SF, Tang MX, Wang HF, An X, Lu XJ, Pei YH (2017) α-Pyrone derivatives with cytotoxic activities, from the endophytic fungus Phoma sp. YN02-P-3. Bioorg Med Chem Lett 27(16):3723–3725

    Article  CAS  PubMed  Google Scholar 

  • Santiago C, Fitchett C, Munro MHG, Jalil J, Santhanam J (2012) Cytotoxic and antifungal activities of 5-hydroxyramulosin, a compound produced by an endophytic fungus isolated from Cinnamomum mollisimum. Evid-Based Complement Alternat Med 1–6. https://doi.org/10.1155/2012/689310

  • Shevkar C, Pradhan P, Armarkar A, Pandey K, Kalia K, Paranagama P, Kate AS (2022) Exploration of potent cytotoxic molecules from fungi in recent past to discover plausible anticancer scaffolds. Chem Biodivers 19(4):e202100976. https://doi.org/10.1002/cbdv.202100976

    Article  CAS  PubMed  Google Scholar 

  • Shiels MS, Haque AT, Berrington de González A, Freedman ND (2022) Leading causes of death in the US during the COVID-19 pandemic, March 2020 to October 2021. JAMA Intern Med 182(8):883–886. https://doi.org/10.1001/jamainternmed.2022.2476

    Article  PubMed  PubMed Central  Google Scholar 

  • Stergiopoulos I, Collemare J, Mehrabi R, De Wit PJ (2013) Phytotoxic secondary metabolites and peptides produced by plant pathogenic Dothideomycete fungi. FEMS Microbiol Rev 37(1):67–93. https://doi.org/10.1111/j.1574-6976.2012.00349.x

  • Sultana F, Hossain MM (2022) Diseases of vegetables caused by Phoma spp. In: Rai M, Zimowska B, Kövics GJ (eds) Phoma: diversity, taxonomy, bioactivities, and nanotechnology. Springer, Cham. https://doi.org/10.1007/978-3-030-81218-8_6

    Chapter  Google Scholar 

  • Tan XM, Li LY, Sun LY, Sun BD, Niu SB, Wang MH, Zhang XY, Sun WS, Zhang GS, Deng H, Xing XK, Zou ZM, Ding G (2018) Spiciferone analogs from an endophytic fungus Phoma betae collected from desert plants in West China. J Antibiot 71(6):613–617. https://doi.org/10.1038/s41429-018-0037-z

    Article  CAS  Google Scholar 

  • Tan Y, Wang YD, Li Q, Xing XK, Niu SB, Sun BD, Ding G (2022) Undescribed diphenyl ethers betaethrins AI from a desert plant endophytic strain of the fungus Phoma betae AB Frank (Didymellaceae). Phytochemistry 201:113264

    Article  CAS  PubMed  Google Scholar 

  • Venkatasubbaiah P, Van Dyke CG, Chilton WS (1992) Phytotoxic metabolites of Phoma sorghina a new foliar blight pathogen pokeweed. Mycol 84:19–23

    Article  Google Scholar 

  • Wang LW, Zhang YL, Lin FC, Hu YZ, Zhang CL (2011) Natural products with antitumor activity from endophytic fungi. Mini Rev Med Chem 11(12):1056–1074

    Article  CAS  PubMed  Google Scholar 

  • Wang LW, Xu BG, Wang JY, Su ZZ, Lin FC, Zhang CL, Kubicek CP (2012) Bioactive metabolites from Phoma species, an endophytic fungus from the Chinese medicinal plant Arisaema erubescens. Appl Microbiol Biotechnol 93:1231–1239

    Article  CAS  PubMed  Google Scholar 

  • Wu H.-Y, Yang F.-L, Li L.-H, Rao YK, Ju T.-C, Wong W.-T, Hsieh CY, Pivkin MV, Hua KF., Wu S.-H (2018) Ergosterol peroxide from marine fungus Phoma sp. induces ROS-dependent apoptosis and autophagy in human lung adenocarcinoma cells. Sci Rep 8(1). https://doi.org/10.1038/s41598-018-36411-2

  • Yang X, Strobel GA, Stierle A, Hess WM, Lee J, Clardy J (1994) A fungal endophyte-tree relationship: Phoma sp. in Taxus wallichiana. Plant Sci 102:1–9

    Article  CAS  Google Scholar 

  • Yu C, Nian Y, Chen H, Liang S, Sun M, Pei Y, Wang H (2022) Pyranone derivatives with antitumor activities, from the endophytic fungus Phoma sp. YN02-P-3. Front Chem 10:950726. https://doi.org/10.3389/fchem.2022.950726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu C, Nian Y, Chen H, Liang S, Sun M, Pei Y, Wang H (2022) Pyranone derivatives with antitumor activities, from the endophytic fungus Phoma sp. YN02-P-3. Front Chem 10:950726. https://doi.org/10.3389/fchem.2022.950726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zaiyou J, Li M, Xiqiao H (2017) An endophytic fungus efficiently producing paclitaxel isolated from Taxus wallichiana var. mairei. Medicine 96(27):e7406. https://doi.org/10.1097/MD.0000000000007406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang X, Yang HX, Ye K, Wei PP, Lv X, Fan YZ, Liu JK (2022) Oblongolides from endophytic fungus Phoma bellidis Neerg. harbored in Tricyrtis maculata (D. Don) JF Macbr. Phytochemistry 198:113126

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Mahendra Rai wishes to acknowledge financial support from the Polish National Agency for Academic Exchange (NAWA) (Project No. PPN/ ULM/2019/1/00117/U/00001) to visit the Department of Microbiology, Nicolaus Copernicus University, Toruń, Poland.

Author information

Authors and Affiliations

Authors

Contributions

MR conceived and designed the review. BZ contributed substantially, and AG and PI co-wrote the manuscript. MR critically revised the mss. All authors read and approved the manuscript.

Corresponding author

Correspondence to Mahendra Rai.

Ethics declarations

Ethical statement

This article does not contain any studies with human participants performed by any of the authors.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rai, M., Zimowska, B., Gade, A. et al. Phoma spp. an untapped treasure of cytotoxic compounds: current status and perspectives. Appl Microbiol Biotechnol 107, 4991–5001 (2023). https://doi.org/10.1007/s00253-023-12635-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-023-12635-9

Keywords

Navigation