Skip to main content

Advertisement

Log in

Penicillium citrinum, a Drought-Tolerant Endophytic Fungus Isolated from Wheat (Triticum aestivum L.) Leaves with Plant Growth-Promoting Abilities

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Endophytic fungi have recently garnered significant attention as next-generation bioinoculants due to their plausible role in ameliorating abiotic and biotic stresses. This adaptation is achieved via various signalling molecules and mechanisms established by these symbionts with their hosts. The present study screened 61 endophytic isolates of culturable mycobiome associated with wheat variety PBW725 during their crop cycle. Three endophytic isolates exhibited a minimum reduction in their growth and maximum biomass production during the drought stress developed using polyethylene glycol 6000. Further, these isolates also exhibited plant growth promoting properties by virtue of the production of indole acetic acid, gibberellic acid and ammonia. These isolates also exhibited the propensity to solubilise phosphate and zinc, produce siderophores and further exhibit extracellular enzymatic activities, contributing to plants’ adaptability to abiotic stresses. The best isolate amongst the three was #5TAKL-3a, identified as Penicillium citrinum based on multilocus phylogenetic analysis. The isolate as a bioinoculant enhances various biochemical and physiological properties in planta. Hence our studies indicate that Penicillium citrinum #5TAKL-3a is a potential candidate bioinoculant for field trials to improve the adaptability of the wheat plant under drought stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The datasets generated during the current study are available in the supplementary File.

Code Availability

Not applicable.

References

  1. Chowdhury MK, Hasan MA, Bahadur MM, Islam MR, Hakim MA, Iqbal MA, Javed T, Raza A, Shabbir R, Sorour S, Elsanafawy NE (2021) Evaluation of drought tolerance of some wheat (Triticum aestivum L.) genotypes through phenology, growth, and physiological indices. Agronomy 11(9):1792. https://doi.org/10.3390/agronomy11091792

    Article  CAS  Google Scholar 

  2. Adhikari S, Kumari J, Jacob SR et al (2022) Landraces-potential treasure for sustainable wheat improvement. Genet Resour Crop Evol 18:1–25. https://doi.org/10.1007/s10722-021-01310-5

    Article  Google Scholar 

  3. Hu Z, Wu Z, Islam AR, You X, Liu C, Li Q, Zhang X (2021) Spatiotemporal characteristics and risk assessment of agricultural drought disasters during the winter wheat-growing season on the Huang-Huai-Hai Plain. China Theor Appl Climatol 143(3):1393–1407

    Article  Google Scholar 

  4. Cheuk A, Ouellet F, Houde M (2020) The barley stripe mosaic virus expression system reveals the wheat C2H2 zinc finger protein TaZFP1B as a key regulator of drought tolerance. BMC Plant Biol 20(1):1–34. https://doi.org/10.1186/s12870-020-02355-x

    Article  CAS  Google Scholar 

  5. Muhae-Ud-Din G, Ali MA, Naveed M et al (2018) Consortium application of endophytic bacteria and fungi improve grain yield and physiological attributes in advanced lines of bread wheat. Turkish J Agri Food Sci Technol 6(2):136–144

    Article  Google Scholar 

  6. Brinton J, Uauy C (2019) A reductionist approach to dissecting grain weight and yield in wheat. J Integ Plant Biol 61(3):337–358. https://doi.org/10.1111/jipb.12741

    Article  Google Scholar 

  7. Al Atalah BF, Mohsen WI, Kountar EK, Albiski FI, Murshed RF (2019) Evaluating the tolerance of some wheat varieties towards water stress induced by sorbitol. Palestinian J Technol Appl Sci. https://doi.org/10.5281/zenodo.2582903

  8. Ali S, Khan N (2021) Delineation of mechanistic approaches employed by plant growth promoting microorganisms for improving drought stress tolerance in plants. Microbiol Res 1(249):126771. https://doi.org/10.1016/j.micres.2021.126771

    Article  CAS  Google Scholar 

  9. de Rossi S, di Marco G, Bruno L, Gismondi A, Canini A (2020) Investigating the drought and salinity effect on the redox components of sulla coronaria (L) medik. Antioxidants 10(7):1048. https://doi.org/10.3390/antiox10071048

    Article  CAS  Google Scholar 

  10. Bilal S, Shahzad R, Imran M, Jan R, Kim KM, Lee IJ (2020) Synergistic association of endophytic fungi enhances Glycine max L. resilience to combined abiotic stresses: heavy metals, high temperature and drought stress. Ind Crop Prod. https://doi.org/10.1016/j.indcrop.2019.111931

    Article  Google Scholar 

  11. Razavizadeh R, Farahzadianpoor F, Adabavazeh F, Komatsu S (2019) Physiological and morphological analyses of Thymus vulgaris L. in vitro cultures under polyethylene glycol (PEG)-induced osmotic stress. In Vitro Cell Dev Biol—Plant 55(3):342–357. https://doi.org/10.1007/s11627-019-09979-1

    Article  CAS  Google Scholar 

  12. Chand K, Shah S, Sharma J, Paudel MR, Pant B (2020) Isolation, characterisation, and plant growth-promoting activities of endophytic fungi from a wild orchid Vanda cristata. Plant Signal Behav 15(5):1744294. https://doi.org/10.1080/15592324.2020.1744294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Tandon A, Fatima T, Anshu, et al (2020) Phosphate solubilisation by Trichoderma koningiopsis (NBRI-PR5) under abiotic stress conditions. J King Saud Uni Sci 32(1):791–798. https://doi.org/10.1016/j.jksus.2019.02.001

    Article  Google Scholar 

  14. Khatabi B, Gharechahi J, Ghaffari MR et al (2019) Plant–microbe symbiosis: what has proteomics taught us? Proteomics. https://doi.org/10.1002/pmic.201800105

    Article  PubMed  Google Scholar 

  15. Malinich EA, Bauer CE (2018) The plant growth promoting bacterium Azospirillum brasilense is vertically transmitted in Phaseolus vulgaris (common bean). Symbiosis 76(2):97–108. https://doi.org/10.1007/s13199-018-0539-2

    Article  CAS  Google Scholar 

  16. Salwan R, Sharma V (2020) Molecular and biotechnological aspects of secondary metabolites in actinobacteria. Microbiol Res 231:126374. https://doi.org/10.1016/j.micres.2019.126374

    Article  CAS  PubMed  Google Scholar 

  17. Anwar S, Khalilzadeh R, Khan S et al (2021) Mitigation of drought stress and yield improvement in wheat by zinc foliar spray relates to enhanced water use efficiency and zinc contents. Int J Plant Prod 15(3):377–389. https://doi.org/10.1007/s42106-021-00136-6

    Article  Google Scholar 

  18. Kumar Panda S. Endophytic Fungi with Great Promises: A Review. www.japer.in

  19. Maulana AF, Turjaman M, Sato T, Hashimoto Y, Cheng W, Tawaraya K (2018) Isolation of endophytic fungi from tropical forest in Indonesia. Symbiosis 76(2):151–162. https://doi.org/10.1007/s13199-018-0542-7

    Article  CAS  Google Scholar 

  20. Mehmood A, Hussain A, Irshad M, Hamayun M, Iqbal A, Khan N (2019) In vitro production of IAA by endophytic fungus Aspergillus awamori and its growth promoting activities in Zea mays. Symbiosis 77(3):225–235. https://doi.org/10.1007/s13199-018-0583-y

    Article  CAS  Google Scholar 

  21. Ripa FA, Cao WD, Tong S, Sun JG (2019) Assessment of plant growth promoting and abiotic stress tolerance properties of wheat endophytic fungi. BioMed Res Int. https://doi.org/10.1155/2019/6105865

    Article  PubMed  PubMed Central  Google Scholar 

  22. Bilal L, Asaf S, Hamayun M et al (2018) Plant growth promoting endophytic fungi Aspergillus fumigatus TS1 and Fusarium proliferatum BRL1 produce gibberellins and regulates plant endogenous hormones. Symbiosis 76(2):117–127. https://doi.org/10.1007/s13199-018-0545-4

    Article  CAS  Google Scholar 

  23. Adhikari P, Pandey A (2019) Phosphate solubilisation potential of endophytic fungi isolated from Taxus wallichiana Zucc. roots. Rhizosphere 9:2–9. https://doi.org/10.1016/j.rhisph.2018.11.002

    Article  Google Scholar 

  24. Gontia-Mishra I, Sapre S, Tiwari S (2017) Zinc solubilising bacteria from the rhizosphere of rice as a prospective modulator of zinc biofortification in rice. Rhizosphere 3:185–190. https://doi.org/10.1016/j.rhisph.2017.04.013

    Article  Google Scholar 

  25. Sopalun K, Laosripaiboon W, Wachirachaikarn A, Iamtham S (2021) Biological potential and chemical composition of bioactive compounds from endophytic fungi associated with thai mangrove plants. South Afr J Bot 141:66–76. https://doi.org/10.1016/j.sajb.2021.04.031

    Article  CAS  Google Scholar 

  26. Jouda JB, Tamokou J, Mbazoa CD et al (2016) Antibacterial and cytotoxic cytochalasins from the endophytic fungus Phomopsis sp. harboured in Garcinia kola (Heckel) nut. BMC Complement Altern Med. https://doi.org/10.1186/s12906-016-1454-9

    Article  PubMed  PubMed Central  Google Scholar 

  27. Qiang X, Ding J, Lin W et al (2019) Alleviation of the detrimental effect of water deficit on wheat (Triticum aestivum L.) growth by an indole acetic acid-producing endophytic fungus. Plant Soil 439(1):373–391. https://doi.org/10.1007/s11104-019-04028-7

    Article  CAS  Google Scholar 

  28. Gond SK, Verma VC, Kumar A et al (2007) Study of endophytic fungal community from different parts of Aegle marmelos Correae (Rutaceae) from Varanasi (India)’. World J Microbiol Biotechnol. https://doi.org/10.1007/s11274-007-9375-x

    Article  Google Scholar 

  29. Samarakoon MC, Thongbai B, Hyde KD et al (2020) Elucidation of the life cycle of the endophytic genus Muscodor and its transfer to Induratia in Induratiaceae fam. Nov., based on a polyphasic taxonomic approach. Fungal Divers. https://doi.org/10.1007/s13225-020-00443-9

    Article  Google Scholar 

  30. Li J, Zheng H, Yu ZF et al (2022) Colletotrichum litangense sp. Nov., isolated as an endophyte of Hippuris vulgaris, an aquatic plant in Sichuan. China. Curr Microbiol 79(6):1–10. https://doi.org/10.1007/s00284-022-02846-0

    Article  CAS  Google Scholar 

  31. Nuangmek W, Aiduang W, Kumla J et al (2021) Evaluation of a newly identified endophytic fungus, Trichoderma phayaoense, for plant growth promotion and biological control of gummy stem blight and wilt of muskmelon. Front microbiol. https://doi.org/10.3389/fmicb.2021.634772

    Article  PubMed  PubMed Central  Google Scholar 

  32. Arefi M, Karparvarfard SH, Azimi-Nejadian H, Naderi-Boldaji M (2022) Draught force prediction from soil relative density and relative water content for a non-winged chisel blade using finite element modelling. J Terramechanics 100:73–80. https://doi.org/10.1016/j.jterra.2022.01.001

    Article  Google Scholar 

  33. Punam K, Chandra S, Rajpoot S, Maurya M, Kumar R, Ghosh UK (2021) Effect of post-harvest treatments on quality attributes like total soluble solids, total sugar and reducing sugar of langra mangoes (Mangifera indica L.) during storage. Int J Chem Stud. https://doi.org/10.22271/chemi.2021.v9.i1d.11581

    Article  Google Scholar 

  34. Pan X, Qin Y, Yuan Z (2018) Potential of a halophyte-associated endophytic fungus for sustaining Chinese white poplar growth under salinity. Symbiosis 76(2):109–116. https://doi.org/10.1007/s13199-018-0541-8

    Article  CAS  Google Scholar 

  35. Singh RP, Jha P, Jha PN (2017) Bio-inoculation of plant growth-promoting rhizobacterium Enterobacter cloacae ZNP-3 increased resistance against salt and temperature stresses in wheat plant (Triticum aestivum L.). J Plant Growth Regul 36(3):783–798. https://doi.org/10.1007/s00344-017-9683-9

    Article  CAS  Google Scholar 

  36. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol. https://doi.org/10.1093/molbev/mst197

    Article  PubMed  PubMed Central  Google Scholar 

  37. Gul SL, Moon YS, Hamayun M, Khan SA, Iqbal A, Khan MA, Hussain A, Shafique M, Kim YH, Ali S (2022) Porostereum spadiceum-AGH786 regulates the growth and metabolites production in Triticum aestivum L. Under Salt Stress Curr Microbiol 79(6):1–1

    Google Scholar 

  38. Sun Y, Wang Q, Lu X, Okane I, Kakishima M (2012) Endophytic fungal community in stems and leaves of plants from desert areas in China. Mycol Prog 11(3):781–790. https://doi.org/10.1007/s11557-011-0790-x

    Article  Google Scholar 

  39. Larran S, Perelló A, Simón MR, Moreno V (2007) The endophytic fungi from wheat (Triticum aestivum L.). World J Microbiol Biotechnol 23(4):565–572. https://doi.org/10.1007/s11274-006-9266-6

    Article  Google Scholar 

  40. Zahra N, Wahid A, Hafeez MB et al (2021) Plant growth promoters alleviate oxidative damages and improve the growth of milk thistle (Silybum marianum L.) under salinity stress. J Plant Growth Regul 20:1–26. https://doi.org/10.1007/s00344-021-10498-w

    Article  CAS  Google Scholar 

  41. Sati SC, Pant P (2019) evaluation of phosphate solubilisation by root endophytic aquatic hyphomycete Tetracladium setigerum. Symbiosis 77(2):141–145. https://doi.org/10.1007/s13199-018-0575-y

    Article  Google Scholar 

  42. Faran M, Farooq M, Rehman A et al (2019) High intrinsic seed Zn concentration improves abiotic stress tolerance in wheat. Plant Soil 437(1):195–213. https://doi.org/10.1007/s11104-019-03977-3

    Article  CAS  Google Scholar 

  43. Pandya ND, Desai PV, Jadhav HP, Sayyed RZ (2018) Plant growth promoting potential of Aspergillus sp. NPF7, isolated from wheat rhizosphere in South Gujarat. India. Environ Sustain 1(3):245–252. https://doi.org/10.1007/s42398-018-0025-z

    Article  Google Scholar 

Download references

Acknowledgements

RK is thankful to the Council of Scientific & Industrial Research (CSIR), New Delhi, for the award of Junior Research Fellowship (No. 09/677(0041)/2019-EMR1) and department of Biotechnology, Thapar Institute of Engineering & Technology (T.I.E.T.), Patiala, Punjab, for providing the necessary infrastructure to perform the research work.

Funding

This study was supported by the Council of Scientific & Industrial Research (CSIR), New Delhi, for financial assistance through the award of Junior Research Fellowship No. 09/677(0041)/2019-EMR1.

Author information

Authors and Affiliations

Authors

Contributions

The present work was conceived and designed by SS and RK. RK performed all experiments and analysed the data. RK prepared the manuscript under the supervision of SS.

Corresponding author

Correspondence to Sanjai Saxena.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical Approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 38 KB)

Supplementary file2 (DOCX 192 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaur, R., Saxena, S. Penicillium citrinum, a Drought-Tolerant Endophytic Fungus Isolated from Wheat (Triticum aestivum L.) Leaves with Plant Growth-Promoting Abilities. Curr Microbiol 80, 184 (2023). https://doi.org/10.1007/s00284-023-03283-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00284-023-03283-3

Navigation