Skip to main content
Log in

Combined Effect of Trehalose and Serendipita indica Inoculation Might Participate in Solanum lycopersicum Induced Cold Tolerance

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

The exploitation of symbiotic interactions between fungi and plants, coupled with the application of osmoprotectants such as trehalose (Tre), presents a promising strategy for mitigating environmental stress. To determine the mechanism of Serendipita indica and Tre-mediated cold stress tolerance, a comparative experiment was designed to study the impact of S. indica, Tre and their combination on tomato plants grown under cold stress. The results showed that cold stress significantly decreased biomass, relative water content, photosynthetic pigments and elements concomitantly with increasing antioxidant activities, malondialdehyde (MDA), electrolyte leakage, hydrogen peroxide and proline content. Meanwhile, S. indica and Tre treatments promoted biomass and enhanced carbohydrate, protein, proline, potassium, phosphorous, antioxidant enzymes and photosynthetic pigments content under cold stress. Furthermore, single or dual application of endophyte and Tre mitigated physiological disorders induced by cold stress and increased the integrity of cell membranes by decreasing hydrogen peroxide, MDA, and electrolyte leakage (EL). Our findings suggest that S. indica and Tre combination could significantly promote cold stress tolerance compared with single treatment. This study is novel in showing the cold adaptation of tomato plants by combination use of S. indica and Tre, which can be a promising strategy for improving cold tolerance. The underlying molecular mechanisms of sugar–fungus interaction must be further investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The data presented in this study are available upon request from the corresponding author.

Code Availability

Not applicable.

References

  1. Liu T et al (2020) H2O2 and NO are involved in trehalose-regulated oxidative stress tolerance in cold-stressed tomato plants. Environ Exp Bot 171:103961. https://doi.org/10.1016/j.envexpbot.2019.103961

    Article  CAS  Google Scholar 

  2. Dreyer A, Dietz K-J (2018) Reactive oxygen species and the redox-regulatory network in cold stress acclimation. Antioxidants 7(11):169

    Article  PubMed  PubMed Central  Google Scholar 

  3. Wang M, Zhang S, Ding F (2020) Melatonin mitigates chilling-induced oxidative stress and photosynthesis inhibition in tomato plants. Antioxidants 9(3):218. https://doi.org/10.3390/antiox9030218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Fernandez O et al (2010) Trehalose and plant stress responses: friend or foe? Trends Plant Sci 15(7):409–417

    Article  CAS  PubMed  Google Scholar 

  5. Kosar F et al (2019) Trehalose: a key organic osmolyte effectively involved in plant abiotic stress tolerance. J Plant Growth Regul 38(2):606–618. https://doi.org/10.1007/s00344-018-9876-x

    Article  CAS  Google Scholar 

  6. Ding F, Wang R (2018) Amelioration of postharvest chilling stress by trehalose in pepper. Sci Hortic 232:52–56. https://doi.org/10.1016/j.scienta.2017.12.053

    Article  CAS  Google Scholar 

  7. Paul MJ et al (2008) Trehalose metabolism and signaling. Annu Rev Plant Biol 59:417–441. https://doi.org/10.1146/annurev.arplant.59.032607.092945

    Article  CAS  PubMed  Google Scholar 

  8. Zhu X, Song F, Liu F (2017) Arbuscular mycorrhizal fungi and tolerance of temperature stress in plants. In: Wu Q-S (ed) Arbuscular mycorrhizas and stress tolerance of plants. Springer, Singapore, pp 163–194

    Chapter  Google Scholar 

  9. Jafari M et al (2018) Inoculation and co-inoculation of alfalfa seedlings with root growth promoting microorganisms (Piriformospora indica, Glomus intraradices and Sinorhizobium meliloti) affect molecular structures, nutrient profiles and availability of hay for ruminants. Anim Nutr 4(1):90–99. https://doi.org/10.1016/j.aninu.2017.08.008

    Article  PubMed  Google Scholar 

  10. Jangir P et al (2021) Role of Serendipita indica in enhancing drought tolerance in crops. Physiol Mol Plant Pathol 116:101691. https://doi.org/10.1016/j.pmpp.2021.101691

    Article  CAS  Google Scholar 

  11. Azizi M, Fard EM, Ghabooli M (2021) Piriformospora indica affect drought tolerance by regulation of genes expression and some morphophysiological parameters in tomato (Solanum lycopersicum L.). Sci Hortic 287:110260. https://doi.org/10.1016/j.scienta.2021.110260

    Article  CAS  Google Scholar 

  12. Abdelaziz ME et al (2019) Piriformospora indica alters Na+/K+ homeostasis, antioxidant enzymes and LeNHX1 expression of greenhouse tomato grown under salt stress. Sci Hortic 256:108532. https://doi.org/10.1016/j.scienta.2019.05.059

    Article  CAS  Google Scholar 

  13. Karimi R, Amini H, Ghabooli M (2022) Root endophytic fungus Piriformospora indica and zinc attenuate cold stress in grapevine by influencing leaf phytochemicals and minerals content. Sci Hortic 293:110665. https://doi.org/10.1016/j.scienta.2021.110665

    Article  CAS  Google Scholar 

  14. Ghabooli M, Kaboosi E (2022) Alleviation of the adverse effects of drought stress using a desert adapted endophytic fungus and glucose in tomato. Rhizosphere 21:100481. https://doi.org/10.1016/j.rhisph.2022.100481

    Article  Google Scholar 

  15. Barrs H, Weatherley P (1962) A re-examination of the relative turgidity technique for estimating water deficits in leaves. Aust J Biol Sci 15(3):413–428

    Article  Google Scholar 

  16. Arnon DI (1949) Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol 24(1):1. https://doi.org/10.1104/pp.24.1.1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Bao A-K et al (2009) Overexpression of the Arabidopsis H+-PPase enhanced resistance to salt and drought stress in transgenic alfalfa (Medicago sativa L.). Plant Sci 176(2):232–240. https://doi.org/10.1016/j.plantsci.2008.10.009

    Article  CAS  Google Scholar 

  18. Ershadi A, Karimi R, Mahdei KN (2016) Freezing tolerance and its relationship with soluble carbohydrates, proline and water content in 12 grapevine cultivars. Acta Physiol Plant 38(1):2

    Article  Google Scholar 

  19. Velikova V, Loreto F (2005) On the relationship between isoprene emission and thermotolerance in Phragmites australis leaves exposed to high temperatures and during the recovery from a heat stress. Plant Cell Environ 28(3):318–327

    Article  CAS  Google Scholar 

  20. Dubois M, Gilles KA, Hamilton JK, Smith RPA, F, (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356. https://doi.org/10.1021/ac60111a017

    Article  CAS  Google Scholar 

  21. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72(1):248–254. https://doi.org/10.1016/0003-2697(76)90527-3

    Article  CAS  PubMed  Google Scholar 

  22. Bates LS, Waldren RP, Teare I (1973) Rapid determination of free proline for water-stress studies. Plant Soil 39(1):205–207. https://doi.org/10.1007/BF00018060

    Article  CAS  Google Scholar 

  23. Giannopolitis CN, Ries SK (1977) Superoxide dismutases: I. Occurrence in higher plants. Plant Physiol 59(2):309–314. https://doi.org/10.1104/pp.59.2.309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol 22(5):867–880. https://doi.org/10.1093/oxfordjournals.pcp.a076232

    Article  CAS  Google Scholar 

  25. Chance B, Maehly A (1955) Assay of catalases and peroxidases. Elsevier, pp 764–775. https://doi.org/10.1016/S0076-6879(55)02300-8

  26. Ferreira LC et al (2010) Nitric oxide reduces oxidative stress generated by lactofen in soybean plants. Pestic Biochem Physiol 97(1):47–54. https://doi.org/10.1016/j.pestbp.2009.12.003

    Article  CAS  Google Scholar 

  27. Abdel-Shafy HI, Hegemann W, Teiner A (1994) Accumulation of metals by vascular plants. Environ Manag Health 5(2):21–24. https://doi.org/10.1108/09566169410057137

    Article  Google Scholar 

  28. Ahmadvand G, Hajinia S (2018) Effect of endophytic fungus Piriformospora indica on yield and some physiological traits of millet (Panicum miliaceum) under water stress. Crop Pasture Sci 69(6):594–605. https://doi.org/10.1071/CP17364

    Article  Google Scholar 

  29. Su Z-z et al (2017) Piriformospora indica promotes growth, seed yield and quality of Brassica napus L. Microbiol Res 199:29–39

    Article  CAS  PubMed  Google Scholar 

  30. Kovi MR, Ergon Å, Rognli OA (2016) Freezing tolerance revisited—effects of variable temperatures on gene regulation in temperate grasses and legumes. Curr Opin Plant Biol 33:140–146. https://doi.org/10.1016/j.pbi.2016.07.006

    Article  CAS  PubMed  Google Scholar 

  31. Liu T et al (2021) Trehalose triggers hydrogen peroxide and nitric oxide to participate in melon seedlings oxidative stress tolerance under cold stress. Environ Exp Bot 184:104379. https://doi.org/10.1016/j.envexpbot.2021.104379

    Article  CAS  Google Scholar 

  32. Paul MJ, Watson A, Griffiths CA (2020) Trehalose 6-phosphate signalling and impact on crop yield. Biochem Soc Trans 48(5):2127–2137. https://doi.org/10.1042/bst20200286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Prasad R et al (2013) Root endophyte Piriformospora indica DSM 11827 alters plant morphology, enhances biomass and antioxidant activity of medicinal plant Bacopa monniera. J Basic Microbiol 53(12):1016–1024. https://doi.org/10.1002/jobm.201200367

    Article  CAS  PubMed  Google Scholar 

  34. Saksena HB et al (2020) The versatile role of glucose signalling in regulating growth, development and stress responses in plants. J Plant Biochem Biotechnol. https://doi.org/10.1007/s13562-020-00614-4

    Article  Google Scholar 

  35. Akram NA et al (2016) Trehalose pretreatment induces drought tolerance in radish (Raphanus sativus L.) plants: some key physio-biochemical traits. Acta Physiol Plant 38(1):1–10. https://doi.org/10.1007/s11738-015-2018-1

    Article  CAS  Google Scholar 

  36. Ghabooli M et al (2020) Effect of Piriformospora indica inoculation on some morphophysiological parameters in licorice (Glycyrrhiza glabra L.) under drought stress. Iran J Plant Physiol 10(4):3379–3389. https://doi.org/10.30495/ijpp.2020.677198

    Article  Google Scholar 

  37. Ali Q, Ashraf M (2011) Induction of drought tolerance in maize (Zea mays L.) due to exogenous application of trehalose: growth, photosynthesis, water relations and oxidative defence mechanism. J Agron Crop Sci 197(4):258–271. https://doi.org/10.1111/j.1439-037X.2010.00463.x

    Article  CAS  Google Scholar 

  38. Abdallah MMS, Abdelgawad ZA, El-Bassiouny HMS (2016) Alleviation of the adverse effects of salinity stress using trehalose in two rice varieties. S Afr J Bot 103:275–282. https://doi.org/10.1016/j.sajb.2015.09.019

    Article  CAS  Google Scholar 

  39. Khalid M et al (2018) An endosymbiont Piriformospora indica reduces adverse effects of salinity by regulating cation transporter genes, phytohormones, and antioxidants in Brassica campestris ssp. chinensis. Environ Exp Bot 153:89–99. https://doi.org/10.1016/j.envexpbot.2018.05.007

    Article  CAS  Google Scholar 

  40. Nanda R, Agrawal V (2018) Piriformospora indica, an excellent system for heavy metal sequestration and amelioration of oxidative stress and DNA damage in Cassia angustifolia Vahl under copper stress. Ecotoxicol Environ Saf 156:409–419. https://doi.org/10.1016/j.ecoenv.2018.03.016

    Article  CAS  PubMed  Google Scholar 

  41. Sadak MS (2019) Physiological role of trehalose on enhancing salinity tolerance of wheat plant. Bull Natl Res Centre 43(1):1–10. https://doi.org/10.1186/s42269-019-0098-6

    Article  Google Scholar 

  42. Mitra D et al (2021) Amelioration of thermal stress in crops by plant growth-promoting rhizobacteria. Physiol Mol Plant Pathol 115:101679. https://doi.org/10.1016/j.pmpp.2021.101679

    Article  CAS  Google Scholar 

  43. Pradhan S et al (2019) Low temperature stress induced physiological and biochemical alterations in papaya genotypes. S Afr J Bot 123:133–141. https://doi.org/10.1016/j.sajb.2019.02.004

    Article  CAS  Google Scholar 

  44. Kaplan F et al (2007) Transcript and metabolite profiling during cold acclimation of Arabidopsis reveals an intricate relationship of cold-regulated gene expression with modifications in metabolite content. Plant J 50(6):967–981. https://doi.org/10.1111/j.1365-313X.2007.03100.x

    Article  CAS  PubMed  Google Scholar 

  45. Mesa T et al (2022) Differential physiological response to heat and cold stress of tomato plants and its implication on fruit quality. J Plant Physiol 268:153581. https://doi.org/10.1016/j.jplph.2021.153581

    Article  CAS  PubMed  Google Scholar 

  46. Tsai H-J et al (2020) Piriformospora indica symbiosis improves water stress tolerance of rice through regulating stomata behavior and ROS scavenging systems. Plant Signal Behav 15(2):1722447. https://doi.org/10.1080/15592324.2020.1722447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Luo Y et al (2010) Exogenously-supplied trehalose protects thylakoid membranes of winter wheat from heat-induced damage. Biol Plant 54(3):495–501. https://doi.org/10.1007/s10535-010-0087-y

    Article  CAS  Google Scholar 

  48. Sadak MS, El-Bassiouny HMS, Dawood MG (2019) Role of trehalose on antioxidant defense system and some osmolytes of quinoa plants under water deficit. Bull Natl Res Centre 43(1):5. https://doi.org/10.1186/s42269-018-0039-9

    Article  Google Scholar 

  49. Ngwene B et al (2016) Phosphate utilization by the fungal root endophyte Piriformospora indica. Plant Soil 405(1):231–241

    Article  CAS  Google Scholar 

  50. Yang L et al (2014) Exogenous trehalose largely alleviates ionic unbalance, ROS burst, and PCD occurrence induced by high salinity in Arabidopsis seedlings. Front Plant Sci. https://doi.org/10.3389/fpls.2014.00570

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

No funds, grants, or other support was received.

Author information

Authors and Affiliations

Authors

Contributions

MG and RK conceived and designed the main content. EK conducted the experiments. MG and EK wrote the manuscript. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Mehdi Ghabooli.

Ethics declarations

Conflict of interest

There are no conflicts of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed Consent

Not applicable.

Consent for Publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaboosi, E., Ghabooli, M. & Karimi, R. Combined Effect of Trehalose and Serendipita indica Inoculation Might Participate in Solanum lycopersicum Induced Cold Tolerance. Curr Microbiol 80, 224 (2023). https://doi.org/10.1007/s00284-023-03335-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00284-023-03335-8

Navigation