Skip to main content
Log in

Phylogenetic positions of Mn2+-oxidizing bacteria and fungi isolated from Mn nodules in rice field subsoils

  • Original Paper
  • Published:
Biology and Fertility of Soils Aims and scope Submit manuscript

Abstract

We isolated manganous ion (Mn2+) oxidizing bacteria and fungi from Mn nodules collected from two Japanese rice fields. The phylogenetic position of the Mn-oxidizing bacteria and fungi was determined based on their 16S rDNA and 18S rDNA sequences, respectively. Among 39 bacterial and 25 fungal isolates, Burkholderia and Acremonium strains were the most common and dominant Mn2+-oxidizing bacteria and fungi, respectively. Majority of the Mn-oxidizing bacteria and fungi isolated from the Mn nodules belonged to the genera that had been isolated earlier from various environments. Manganese oxide depositions on Mn2+-containing agar media by these microorganisms proceeded after their colony developments, indicating that the energy produced from Mn2+ oxidation is poorly used for microbial growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Beijerinck MW (1913) Oxidation des Mangan carbonates durch Bacterien und Schimmelpilze. Folia Mikrobiol Delft 2:123–135

    Google Scholar 

  • Bromfield SM (1956) Oxidation of manganese by soil microorganisms. Aust J Biol Sci 9:238–252

    CAS  Google Scholar 

  • Bromfield SM (1974) Bacterial oxidation of manganeous ions as affected by organic substrate concentration and composition. Soil Biol Biochem 6:383–392 doi:10.1016/0038-0717(74)90048-0

    Article  CAS  Google Scholar 

  • Bromfield SM (1979) Manganous ion oxidation at pH values below 5.0 by cell-free substances from Streptomyces sp. cultures. Soil Biol Biochem 11:115–118 doi:10.1016/0038-0717(79)90086-5

    Article  CAS  Google Scholar 

  • Bromfield SM, Skerman VBD (1950) Biological oxidation of manganese in soils. Soil Sci 69:337–347 doi:10.1097/00010694-195005000-00019

    Article  CAS  Google Scholar 

  • Bromfield SM, David DJ (1976) Sorption and oxidation of manganous ions and reduction of manganese oxide by cell suspensions of a manganese oxidizing bacterium. Soil Biol Biochem 8:37–43 doi:10.1016/0038-0717(76)90019-5

    Article  CAS  Google Scholar 

  • Cahyani VR, Matsuya K, Asakawa S, Kimura M (2003) Succession and phylogenetic composition of bacterial communities responsible for the composting process of rice straw estimated by PCR-DGGE analysis. Soil Sci Plant Nutr 49:619–630

    CAS  Google Scholar 

  • Cahyani VR, Murase J, Ishibashi E, Asakawa S, Kimura M (2007) Bacterial communities in manganese nodules in rice field subsoils: estimation by PCR-DGGE and sequencing analyses. Soil Sci Plant Nutr 53:575–584 doi:10.1111/j.1747-0765.2007.00176.x

    Article  CAS  Google Scholar 

  • Casamayor EO, Massana R, Benlloch S, Øvreås L, Díez B, Goddard VJ, Gasol JM, Joint I, Rodríguez-Valera F, Pedrós-Alió C (2002) Changes in archaeal, bacterial and eukaryal assemblages along a salinity gradient by comparison of genetic fingerprinting methods in a multipond solar saltern. Environ Microbiol 4:338–348 doi:10.1046/j.1462-2920.2002.00297.x

    Article  PubMed  Google Scholar 

  • De La Torre MA, Gomez-Alarcon G (1994) Manganese and Iron oxidation by fungi isolated from building stone. Microb Ecol 27:177–188 doi:10.1007/BF00165816

    Article  Google Scholar 

  • Douka CE (1977) Study of bacteria from manganese concretions, precipitation of manganese by whole cells and cell-free extracts of isolated bacteria. Soil Biol Biochem 9:89–97 doi:10.1016/0038-0717(77)90043-8

    Article  CAS  Google Scholar 

  • Ehrlich HL (1963) Bacteriology of manganese nodules. I. Bacterial action on manganese in nodule enrichments. Appl Environ Microbiol 11:15–19

    CAS  Google Scholar 

  • Emerson D, Ghiorse WC (1992) Isolation, cultural maintenance, and taxonomy of sheath-forming strain of Leptothrix discophora and characterization of manganese-oxidizing activity associated with the sheath. Appl Environ Microbiol 58:4001–4010

    PubMed  CAS  Google Scholar 

  • Falamin AA, Pinevich AV (2006) Isolation and characterization of a unicellular manganese-oxidizing bacterium from a freshwater lake in Northwestern Russia. Microbiology 75:180–185 doi:10.1134/S0026261706020111

    Article  CAS  Google Scholar 

  • Francis CA, Tebo BM (2001) cumA multicopper oxidase genes from diverse Mn(II)-oxidizing and non-Mn(II)-oxidizing Pseudomonas strains. Appl Environ Microbiol 67:4272–4278 doi:10.1128/AEM.67.9.4272-4278.2001

    Article  PubMed  CAS  Google Scholar 

  • Francis CA, Tebo BM (2002) Enzymatic manganese (II) oxidation by metabolically dormant spores of diverse Bacillus species. Appl Environ Microbiol 68:874–880 doi:10.1128/AEM.68.2.874-880.2002

    Article  PubMed  CAS  Google Scholar 

  • Gounot AM (1994) Microbial oxidation and reduction of manganese: consequences in groundwater and applications. FEMS Microbiol Rev 14:339–350 doi:10.1111/j.1574-6976.1994.tb00108.x

    Article  PubMed  CAS  Google Scholar 

  • Gregory E, Staley JT (1982) Widespread distribution of ability to oxidize manganese among freshwater bacteria. Appl Environ Microbiol 44:509–511

    PubMed  Google Scholar 

  • Katsoyiannis IA, Zouboulis AI (2004) Biological treatment of Mn (II) and Fe (II) containing groundwater: kinetic considerations and product characterization. Water Res 38:1922–1932 doi:10.1016/j.watres.2004.01.014

    Article  PubMed  CAS  Google Scholar 

  • Kimura M (2000) Anaerobic microbiology in waterlogged rice fields. In: Bollag JM, Stotzky G (eds) Soil biochemistry, vol. 10. Marcel Dekker, New York, pp 35–138

    Google Scholar 

  • Kirk PM, Cannon PF, David JC, Stalpers JA (2001) Ainsworth and Bisby’s Dictionary of the fungi, 9th edition. CAB International, Wallingford

    Google Scholar 

  • Kyuma K (2004) Paddy soil science. Kyoto University Press, Kyoto, p 280

    Google Scholar 

  • Lane DJ (1991) 16S/23S rRNA sequencing. In: Stackebrandt E, M Goodfellow (eds) Nucleic acid technology in bacterial systematics. Wiley, New York, pp 115–175

  • Miyata N, Tani Y, Iwahori K, Soma M (2004) Enzymatic formation of manganese oxides by an Acremonium-like hyphomycete fungus, strain KR21–2. FEMS Microbiol Ecol 47:101–109 doi:10.1016/S0168-6496(03)00251-4

    Article  CAS  PubMed  Google Scholar 

  • Miyata N, Maruo K, Tani Y, Tsuno H, Seyama H, Soma M, Iwahori K (2006a) Production of biogenic manganese oxides by anamorphic Ascomycete fungi isolated from streambed pebbles. Geomicrobiol J 23:63–73 doi:10.1080/01490450500533809

    Article  CAS  Google Scholar 

  • Miyata N, Tani Y, Maruo K, Tsuno H, Sakata M, Iwahori K (2006b) Manganese (IV) oxide production by Acremonium sp. Strain KR21-2 and extracellular Mn (II) oxidase activity. Appl Environ Microbiol 72:6467–6473 doi:10.1128/AEM.00417-06

    Article  PubMed  CAS  Google Scholar 

  • Muyzer G, Waal ECD, Uitterlinden AG (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol 59:695–700

    PubMed  CAS  Google Scholar 

  • Nealson KH, Ford J (1980) Surface enhancement of bacterial manganese oxidation: implications for aquatic environments. Geomicrobiol J 2:21–37

    Article  CAS  Google Scholar 

  • Nealson KH, Tebo BM, Rosson RA (1988) Occurrence and mechanisms of microbial oxidation of manganese. Adv Appl Microbiol 33:279–318 doi:10.1016/S0065-2164(08)70209-0

    Article  CAS  Google Scholar 

  • Nonaka L, Connel SR, Taylor DE (2005) 16S rRNA mutations that confer tetracycline resistance in Helicobacter pylori decrease drug binding in Escherichia coli ribosomes. J Bacteriol 187:3708–3712 doi:10.1128/JB.187.11.3708-3712.2005

    Article  PubMed  CAS  Google Scholar 

  • Northup DE, Barns SM, Yu LE, Spilde MN, Schelble RT, Dano KE, Crossey LJ, Connolly CA, Boston PJ, Natvig DO, Dahm CN (2003) Diverse microbial communities inhabiting ferromanganese deposits in Lechuguilla and Spider Caves. Environ Microbiol 5:1071–1086 doi:10.1046/j.1462-2920.2003.00500.x

    Article  PubMed  Google Scholar 

  • Palleroni NJ (2005) Genus Burkholderia. The Proteobacteria. Part C The Alpha-, Beta-, Delta-, and Epsilonproteobacteria. In: Garrity GM (ed) Bergey’s manual of systematic bacteriology, 2nd edition. Springer, New York, pp 575–600

    Chapter  Google Scholar 

  • Parikh SJ, Chorover J (2005) FTIR spectroscopic study of biogenic Mn-oxide formation by Pseudomonas putida GB-1. Geomicrobiol J 22:207–218 doi:10.1080/01490450590947724

    Article  CAS  Google Scholar 

  • Poulsen H, Nilsson J, Damgaard CK, Egebjerg J, Kjems J (2001) CRM1 mediates the export of ADAR1 through a nuclear export signal within the Z-DNA binding domain. Mol Cell Biol 21:7862–7871 doi:10.1128/MCB.21.22.7862-7871.2001

    Article  PubMed  CAS  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    PubMed  CAS  Google Scholar 

  • Smit E, Leeflang P, Glandorf B, Van Elsas JD, Wernars K (1999) Analysis of fungal diversity in the wheat rhizosphere by sequencing of cloned PCR-amplified genes encoding 18S rRNA and temperature gradient gel electrophoresis. Appl Environ Microbiol 65:2614–2621

    PubMed  CAS  Google Scholar 

  • Stein LY, La Duc MT, Grundl TJ, Nealson KH (2001) Bacterial and archaeal populations associated with freshwater ferromanganous micronodules and sediments. Environ Microbiol 3:10–18 doi:10.1046/j.1462-2920.2001.00154.x

    Article  PubMed  CAS  Google Scholar 

  • Takano K, Itoh Y, Ogino T, Kurosawa K, Sasaki K (2006) Phylogenetic analysis of manganese-oxidizing fungi isolated from manganese-rich aquatic environments in Hokkaido, Japan. Limnology 7:219–223 doi:10.1007/s10201-006-0177-x

    Article  CAS  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882 doi:10.1093/nar/25.24.4876

    Article  PubMed  CAS  Google Scholar 

  • Thompson AI, Huber DM, Guest CA, Schulze DG (2005) Fungal manganese oxidation in a reduced soil. Environ Microbiol 7:1480–1487 doi:10.1111/j.1462-2920.2005.00842.x

    Article  PubMed  CAS  Google Scholar 

  • Timonin MI, Illman WI, Hartgerink T (1972) Oxidation of manganous salts of manganese by soil fungi. Can J Microbiol 18:793–799

    Article  PubMed  CAS  Google Scholar 

  • Trimble RB, Ehrlich HL (1968) Bacteriology of manganese nodules. III. Reduction of MnO2 by two strains of nodule bacteria. Appl Microbiol 16:695–702

    PubMed  CAS  Google Scholar 

  • Wada H, Seirayosakol A, Kimura M, Takai Y (1978a) The process of manganese deposition in paddy soils. I. A hyphothesis and its verification. Soil Sci Plant Nutr 24:55–62

    CAS  Google Scholar 

  • Wada H, Seirayosakol A, Kimura M, Takai Y (1978b) The process of manganese deposition in paddy soils. II. The microorganisms responsible for manganese deposition. Soil Sci Plant Nutr 24:319–325

    CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the JSPS Postdoctoral Fellowship Program for Foreign Researchers and the JSPS Grant-in-Aid for Scientific Research. We thank Dr. Takeshi Watanabe and Dr. Natsuko Nakayama in our laboratory for their help in collection of samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Makoto Kimura.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cahyani, V.R., Murase, J., Ishibashi, E. et al. Phylogenetic positions of Mn2+-oxidizing bacteria and fungi isolated from Mn nodules in rice field subsoils. Biol Fertil Soils 45, 337–346 (2009). https://doi.org/10.1007/s00374-008-0337-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00374-008-0337-8

Keywords

Navigation