Skip to main content

Advertisement

Log in

Preparing for an invasion: charting the pathway of adhesion proteins to Toxoplasma micronemes

  • Review
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

Toxoplasma gondii is an apicomplexan parasite capable of infecting a broad host range including humans. The tachyzoite lytic cycle begins with active invasion of host cells involving the release of adhesive proteins from apical secretory organelles called micronemes. A protein complex consisting of the transmembrane adhesin MIC2 and a tightly associated partner, M2AP, is abundantly released from the micronemes. Similar to many proteins in a regulated secretory pathway, T. gondii proteins destined for micronemes and rhoptries (another secretory organelle associated with invasion) undergo proteolytic maturation. M2AP contains a propeptide that is removed in a post-Golgi compartment. By expressing an M2AP propeptide deletion mutant in the M2AP knockout background, we show that the propeptide is required for the MIC2–M2AP complex to exit from the early endosome. Although a cleavage-resistant M2AP mutant was able to efficiently reach the micronemes, it was unable to rapidly mobilize from the micronemes to the parasite surface. Strikingly, both mutants were unable to support normal parasite invasion and were partially attenuated in virulence to a degree that is indistinguishable from M2AP knockout parasites. Conditional expression of MIC2 showed that it is also required for correct M2AP sorting to the micronemes. These parasites were severely impaired in invasion efficiency. They switched almost exclusively to a non-productive circular gliding motility and were incapable of establishing an infection in mice when inoculated at a normally lethal dose. These findings underscore the importance of correct trafficking of invasion-related proteins. Our results also serve as a basis for future studies aimed at defining the branch points of protein sorting in T. gondii and at a deeper understanding of the precise roles of M2AP propeptide and MIC2 targeting motifs in MIC protein trafficking.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Anderson RG, Pathak RK (1985) Vesicles and cisternae in the trans Golgi apparatus of human fibroblasts are acidic compartments. Cell 40:635–643

    Article  PubMed  CAS  Google Scholar 

  • Arvan P, Halban PA (2004) Sorting ourselves out: seeking consensus on trafficking in the beta-cell. Traffic 5:53–61

    Article  PubMed  CAS  Google Scholar 

  • Barragan A, Brossier F, Sibley LD (2005) Transepithelial migration of Toxoplasma gondii involves an interaction of intercellular adhesion molecule 1 (ICAM-1) with the parasite adhesin MIC2. Cell Microbiol 7:561–568

    Article  PubMed  CAS  Google Scholar 

  • Blazquez M, Shennan KI (2000) Basic mechanisms of secretion: sorting into the regulated secretory pathway. Biochem Cell Biol 78:181–191

    Article  PubMed  CAS  Google Scholar 

  • Bowers K, Stevens TH (2005) Protein transport from the late Golgi to the vacuole in the yeast Saccharomyces cerevisiae. Biochim Biophys Acta 1744:438–454

    Article  PubMed  CAS  Google Scholar 

  • Brossier F, Jewett TJ, Sibley LD, Urban S (2005) A spatially localized rhomboid protease cleaves cell surface adhesins essential for invasion by Toxoplasma. Proc Natl Acad Sci USA 102:4146–4151

    Article  PubMed  CAS  Google Scholar 

  • Burgess TL, Kelly RB (1987) Constitutive and regulated secretion of proteins. Annu Rev Cell Biol 3:243–293

    Article  PubMed  CAS  Google Scholar 

  • Carruthers VB, Hakansson S, Giddings OK, Sibley LD (2000a) Toxoplasma gondii uses sulfated proteoglycans for substrate and host cell attachment. Infect Immun 68:4005–4011

    Article  PubMed  CAS  Google Scholar 

  • Carruthers VB, Moreno SNJ, Sibley LD (1999) Ethanol and acetaldehyde elevate intracellular calcium and stimulate microneme discharge in Toxoplasma gondii. Biochem J 342:379–386

    Article  PubMed  CAS  Google Scholar 

  • Carruthers VB, Sherman GD, Sibley LD (2000b) The Toxoplasma adhesive protein MIC2 is proteolytically processed at multiple sites by two parasite-derived proteases. J Biol Chem 275:14346–14353

    Article  PubMed  CAS  Google Scholar 

  • Carruthers VB, Sibley LD (1997) Sequential protein secretion from three distinct organelles of Toxoplasma gondii accompanies invasion of human fibroblasts. Eur J Cell Biol 73:114–123

    PubMed  CAS  Google Scholar 

  • Castro-Fernandez C, Maya-Nunez G, Conn PM (2005) Beyond the signal sequence: protein routing in health and disease. Endocr Rev 26:479–503

    Article  PubMed  CAS  Google Scholar 

  • Cerede O, Dubremetz JF, Soete M, Deslee D, Vial H, Bout D, Lebrun M (2005) Synergistic role of micronemal proteins in Toxoplasma gondii virulence. J Exp Med 201:453–463

    Article  PubMed  CAS  Google Scholar 

  • Chanat E, Huttner WB (1991) Milieu-induced, selective aggregation of regulated secretory proteins in the trans-Golgi network. J Cell Biol 115:1505–1519

    Article  PubMed  CAS  Google Scholar 

  • Chance RE, Ellis RM, Bromer WW (1968) Porcine proinsulin: characterization and amino acid sequence. Science 161:165–167

    Article  PubMed  CAS  Google Scholar 

  • Chavrier P, Parton RG, Hauri HP, Simons K, Zerial M (1990) Localization of low molecular weight GTP binding proteins to exocytic and endocytic compartments. Cell 62:317–329

    Article  PubMed  CAS  Google Scholar 

  • Di Cristina M, Spaccapelo R, Soldati D, Bistoni F, Crisanti A (2000) Two conserved amino acid motifs mediate protein targeting to the micronemes of the apicomplexan parasite Toxoplasma gondii. Mol Cell Biol 20:7332–7341

    Article  PubMed  CAS  Google Scholar 

  • Dowse TJ, Pascall JC, Brown KD, Soldati D (2005) Apicomplexan rhomboids have a potential role in microneme protein cleavage during host cell invasion. Int J Parasitol 35:747–756

    Article  PubMed  CAS  Google Scholar 

  • Dubey JP, Beattie CP (1988) Toxoplasmosis of animals and man. CRC, Boca Raton, FL

    Google Scholar 

  • Fuller RS, Sterne RE, Thorner J (1988) Enzymes required for yeast prohormone processing. Annu Rev Physiol 50:345–362

    Article  PubMed  CAS  Google Scholar 

  • Furtado GC, Cao Y, Joiner KA (1992) Laminin on Toxoplasma gondii mediates parasite binding to the b1 integrin receptor a6/b1 on human foreskin fibroblasts and Chinese hamster ovary cells. Infect Immun 60:4925–4931

    PubMed  CAS  Google Scholar 

  • Furtado GC, Slowik M, Kleinman HK, Joiner KA (1992) Laminin enhances binding of Toxoplasma gondii tachyzoites to J774 murine macrophage cells. Infect Immun 60:2337–2342

    PubMed  CAS  Google Scholar 

  • Giraudo CG, Rosales Fritz VM, Maccioni HJ (1999) GA2/GM2/GD2 synthase localizes to the trans-golgi network of CHO-K1 cells. Biochem J 342(Pt 3):633–640

    Article  PubMed  CAS  Google Scholar 

  • Halban PA, Irminger JC (2003) Mutant proinsulin that cannot be converted is secreted efficiently from primary rat beta-cells via the regulated pathway. Mol Biol Cell 14:1195–1203

    Article  PubMed  CAS  Google Scholar 

  • Harper JM, Hoff EF, Carruthers VB (2004) Multimerization of the Toxoplasma gondii MIC2 integrin-like A-domain is required for binding to heparin and human cells. Mol Biochem Parasitol 134:201–212

    Article  PubMed  CAS  Google Scholar 

  • Huynh MH, Rabenau KE, Harper JM, Beatty WL, Sibley LD, Carruthers VB (2003) Rapid invasion of host cells by Toxoplasma requires secretion of the MIC2–M2AP adhesive protein complex. EMBO J 22:2082–2090

    Article  PubMed  CAS  Google Scholar 

  • Jewett TJ, Sibley LD (2003) Aldolase forms a bridge between cell surface adhesins and the actin cytoskeleton in apicomplexan parasites. Mol Cell 11:885–894

    Article  PubMed  CAS  Google Scholar 

  • Jewett TJ, Sibley LD (2004) The toxoplasma proteins MIC2 and M2AP form a hexameric complex necessary for intracellular survival. J Biol Chem 279:9362–9369

    Article  PubMed  CAS  Google Scholar 

  • Kravetz JD, Federman DG (2005) Toxoplasmosis in pregnancy. Am J Med 118:212–216

    Article  PubMed  Google Scholar 

  • Kuliawat R, Arvan P (1992) Protein targeting via the “constitutive-like” secretory pathway in isolated pancreatic islets: passive sorting in the immature granule compartment. J Cell Biol 118:521–529

    Article  PubMed  CAS  Google Scholar 

  • Kuliawat R, Arvan P (1994) Distinct molecular mechanisms for protein sorting within immature secretory granules of pancreatic beta-cells. J Cell Biol 126:77–86

    Article  PubMed  CAS  Google Scholar 

  • Luft BJ, Remington JS (1992) Toxoplasmic encephalitis in AIDS. Clin Infect Dis 15:211–222

    PubMed  CAS  Google Scholar 

  • Mital J, Meissner M, Soldati D, Ward GE (2005) Conditional expression of Toxoplasma gondii apical membrane antigen-1 (TgAMA1) demonstrates that TgAMA1 plays a critical role in host cell invasion. Mol Biol Cell 16:4341–4349

    Article  PubMed  CAS  Google Scholar 

  • Mogelsvang S, Marsh BJ, Ladinsky MS, Howell KE (2004) Predicting function from structure: 3D structure studies of the mammalian Golgi complex. Traffic 5:338–345

    Article  PubMed  CAS  Google Scholar 

  • Molinete M, Lilla V, Jain R, Joyce PB, Gorr SU, Ravazzola M, Halban PA (2000) Trafficking of non-regulated secretory proteins in insulin secreting (INS-1) cells. Diabetologia 43:1157–1164

    Article  PubMed  CAS  Google Scholar 

  • Molloy SS, Anderson ED, Jean F, Thomas G (1999) Bi-cycling the furin pathway: from TGN localization to pathogen activation and embryogenesis. Trends Cell Biol 9:28–35

    Article  PubMed  CAS  Google Scholar 

  • Nakayama K (1997) Furin: a mammalian subtilisin/Kex2p-like endoprotease involved in processing of a wide variety of precursor proteins. Biochem J 327(Pt 3):625–635

    PubMed  CAS  Google Scholar 

  • Ortega-Barria E, Boothroyd JC (1999) A Toxoplasma lectin-like activity specific for sulfated polysaccharides is involved in host cell infection. J Biol Chem 274:1267–1276

    Article  PubMed  CAS  Google Scholar 

  • Rabenau KE, Sohrabi A, Tripathy A, Reitter C, Ajioka JW, Tomley FM, Carruthers VB (2001) TgM2AP participates in Toxoplasma gondii invasion of host cells and is tightly associated with the adhesive protein TgMIC2. Mol Microbiol 41:1–12

    Article  PubMed  Google Scholar 

  • Robibaro B, Hoppe HC, Yang M, Coppens I, Ngo HM, Stedman TT, Paprotka K, Joiner KA (2001) Endocytosis in different lifestyles of protozoan parasitism: role in nutrient uptake with special reference to Toxoplasma gondii. Int J Parasitol 31:1343–2353

    Article  PubMed  CAS  Google Scholar 

  • Sibley LD (2004) Intracellular parasite invasion strategies. Science 304:248–253

    Article  PubMed  CAS  Google Scholar 

  • Soldati D, Foth BJ, Cowman AF (2004) Molecular and functional aspects of parasite invasion. Trends Parasitol 20:567–574

    Article  PubMed  CAS  Google Scholar 

  • Steinman RM, Mellman IS, Muller WA, Cohn ZA (1983) Endocytosis and the recycling of plasma membrane. J Cell Biol 96:1–27

    Article  PubMed  CAS  Google Scholar 

  • Thomas G, Thorne BA, Thomas L, Allen RG, Hruby DE, Fuller R, Thorner J (1988) Yeast KEX2 endopeptidase correctly cleaves a neuroendocrine prohormone in mammalian cells. Science 241:226–230

    Article  PubMed  CAS  Google Scholar 

  • Tooze SA, Flatmark T, Tooze J, Huttner WB (1991) Characterization of the immature secretory granule, an intermediate in granule biogenesis. J Cell Biol 115:1491–1503

    Article  PubMed  CAS  Google Scholar 

  • Wan KL, Carruthers VB, Sibley LD, Ajioka JW (1997) Molecular characterization of an expressed sequence tag locus of Toxoplasma gondii encoding the micronemal protein MIC2. Mol Biochem Parasitol 84:203–214

    Article  PubMed  CAS  Google Scholar 

  • Wetzel DM, Chen LA, Ruiz FA, Moreno SN, Sibley LD (2004) Calcium-mediated protein secretion potentiates motility in Toxoplasma gondii. J Cell Sci 117:5739–5748

    Article  PubMed  CAS  Google Scholar 

  • Wilcox CA, Redding K, Wright R, Fuller RS (1992) Mutation of a tyrosine localization signal in the cytosolic tail of yeast Kex2 protease disrupts Golgi retention and results in default transport to the vacuole. Mol Biol Cell 3:1353–1371

    PubMed  CAS  Google Scholar 

  • Zhang B, Chang A, Kjeldsen TB, Arvan P (2001) Intracellular retention of newly synthesized insulin in yeast is caused by endoproteolytic processing in the Golgi complex. J Cell Biol 153:1187–1198

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vern B. Carruthers.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huynh, MH., Harper, J.M. & Carruthers, V.B. Preparing for an invasion: charting the pathway of adhesion proteins to Toxoplasma micronemes. Parasitol Res 98, 389–395 (2006). https://doi.org/10.1007/s00436-005-0062-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-005-0062-2

Keywords

Navigation