Skip to main content

Advertisement

Log in

Fungus-based bioherbicides on circular economy

  • Critical Review
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

This review aimed to show that bioherbicides are possible in organic agriculture as natural compounds from fungi and metabolites produced by them. It is discussed that new formulations must be developed to improve field stability and enable the commercialization of microbial herbicides. Due to these bottlenecks, it is crucial to advance the bioprocesses behind the formulation and fermentation of bio-based herbicides, scaling up, strategies for field application, and the potential of bioherbicides in the global market. In this sense, it proposed insights for modern agriculture based on sustainable development and circular economy, precisely the formulation, scale-up, and field application of microbial bioherbicides.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Availability of data and materials

The datasets generated for this study are available on request to the corresponding author.

References

  1. FAO (2023) Why is sustainable food and agriculture important? https://www.fao.org/sustainability/background/en/

  2. ONU (2023) Os Objetivos de Desenvolvimento Sustentável no Brasil. Fome zero e agricultura sustentável

  3. Fernandes SY, de Araújo D, Pontes MS et al (2023) Pre-emergent bioherbicide potential of Schinus terebinthifolia Raddi essential oil nanoemulsion for Urochloa brizantha. Biocatal Agric Biotechnol 47:102598. https://doi.org/10.1016/j.bcab.2022.102598

    Article  CAS  Google Scholar 

  4. Reganold JP, Wachter JM (2016) Organic agriculture in the twenty-first century. Nat Plants 2:15221. https://doi.org/10.1038/nplants.2015.221

    Article  PubMed  Google Scholar 

  5. Canwat V, Onakuse S (2022) Organic agriculture: a fountain of alternative innovations for social, economic, and environmental challenges of conventional agriculture in a developing country context. Clean Circular Bioecon 3:100025. https://doi.org/10.1016/j.clcb.2022.100025

    Article  Google Scholar 

  6. Nikol LJ, Jansen K (2021) Rethinking conventionalisation: a view from organic agriculture in the Global South. J Rural Stud 86:420–429. https://doi.org/10.1016/j.jrurstud.2021.07.001

    Article  Google Scholar 

  7. Siegrist S, Schaub D, Pfiffner L, Mäder P (1998) Does organic agriculture reduce soil erodibility? The results of a long-term field study on loess in Switzerland. Agric Ecosyst Environ 69:253–264. https://doi.org/10.1016/S0167-8809(98)00113-3

    Article  Google Scholar 

  8. Lockeretz W, Shearer G, Kohl DH (1981) Organic farming in the corn belt. Science 211:540–547. https://doi.org/10.1126/science.211.4482.540

    Article  PubMed  CAS  Google Scholar 

  9. Lotter DW, Seidel R, Liebhardt W (2003) The performance of organic and conventional cropping systems in an extreme climate year. Am J Altern Agric 18:146–154. https://doi.org/10.1079/AJAA200345

    Article  Google Scholar 

  10. Ulrich A, Lerin LA, Camargo AF et al (2021) Alternative bioherbicide based on Trichoderma koningiopsis: enzymatic characterization and its effect on cucumber plants and soil organism. Biocatal Agric Biotechnol 36:102127. https://doi.org/10.1016/j.bcab.2021.102127

    Article  CAS  Google Scholar 

  11. Hoagland RE, Boyette CD, Weaver MA, Abbas HK (2007) Bioherbicides: research and risks. Toxin Rev 26:313–342. https://doi.org/10.1080/15569540701603991

    Article  CAS  Google Scholar 

  12. Bailey KL, Falk S (2011) Turning research on microbial bioherbicides into commercial products a phoma story. Pest Technol 5:73–79

    Google Scholar 

  13. Soltys D, Krasuska U, Bogatek R, Gniazdowsk A (2013) Allelochemicals as bioherbicides—present and perspectives. In: Price A (ed) Herbicides: current research and case studies in use. InTech, London

    Google Scholar 

  14. Cai X, Gu M (2016) Bioherbicides in organic horticulture. Horticulturae 2:3. https://doi.org/10.3390/horticulturae2020003

    Article  Google Scholar 

  15. Cordeau S, Triolet M, Wayman S et al (2016) Bioherbicides: dead in the water? A review of the existing products for integrated weed management. Crop Prot 87:44–49. https://doi.org/10.1016/j.cropro.2016.04.016

    Article  CAS  Google Scholar 

  16. Harding DP, Raizada MN (2015) Controlling weeds with fungi, bacteria and viruses: a review. Front Plant Sci. https://doi.org/10.3389/fpls.2015.00659

    Article  PubMed  PubMed Central  Google Scholar 

  17. Klaic R, Kuhn RC, Foletto EL et al (2015) An overview regarding bioherbicide and their production methods by fermentation. In: Gupta VK, Mach RL, Sreenivasaprasad S (eds) Fungal biomolecules. Wiley, Chichester, pp 183–199

    Chapter  Google Scholar 

  18. Cavalcante BDM, Scapini T, Camargo AF et al (2021) Orange peels and shrimp shell used in a fermentation process to produce an aqueous extract with bioherbicide potential to weed control. Biocatal Agric Biotechnol 32:101947. https://doi.org/10.1016/j.bcab.2021.101947

    Article  CAS  Google Scholar 

  19. de la Torre I, Martin-Dominguez V, Acedos MG et al (2019) Utilisation/upgrading of orange peel waste from a biological biorefinery perspective. Appl Microbiol Biotechnol 103:5975–5991. https://doi.org/10.1007/s00253-019-09929-2

    Article  PubMed  CAS  Google Scholar 

  20. Lao S-B, Zhang Z-X, Xu H-H, Jiang G-B (2010) Novel amphiphilic chitosan derivatives: synthesis, characterization and micellar solubilization of rotenone. Carbohydr Polym 82:1136–1142. https://doi.org/10.1016/j.carbpol.2010.06.044

    Article  CAS  Google Scholar 

  21. Hossen K, Kato-Noguchi H (2022) Evaluation of the allelopathic activity of albizia procera (Roxb.) benth. as a potential source of bioherbicide to control weeds. Int J Plant Biol 13:523–534. https://doi.org/10.3390/ijpb13040042

    Article  CAS  Google Scholar 

  22. Mendes IDS, Rezende MOO (2014) Assessment of the allelopathic effect of leaf and seed extracts of Canavalia ensiformis as postemergent bioherbicides: a green alternative for sustainable agriculture. J Environ Sci Health B 49:374–380. https://doi.org/10.1080/03601234.2014.882179

    Article  CAS  Google Scholar 

  23. Michelon W, Da Silva MLB, Mezzari MP et al (2016) Effects of nitrogen and phosphorus on biochemical composition of microalgae polyculture harvested from phycoremediation of piggery wastewater digestate. Appl Biochem Biotechnol 178:1407–1419. https://doi.org/10.1007/s12010-015-1955-x

    Article  PubMed  CAS  Google Scholar 

  24. Stefanski FS, Camargo AF, Scapini T et al (2020) Potential use of biological herbicides in a circular economy context: a sustainable approach. Front Sustain Food Syst. https://doi.org/10.3389/fsufs.2020.521102

    Article  Google Scholar 

  25. Abu-Ghosh S, Dubinsky Z, Verdelho V, Iluz D (2021) Unconventional high-value products from microalgae: a review. Bioresour Technol 329:124895. https://doi.org/10.1016/j.biortech.2021.124895

    Article  PubMed  CAS  Google Scholar 

  26. Mastropetros SG, Pispas K, Zagklis D et al (2022) Biopolymers production from microalgae and cyanobacteria cultivated in wastewater: recent advances. Biotechnol Adv 60:107999. https://doi.org/10.1016/j.biotechadv.2022.107999

    Article  PubMed  CAS  Google Scholar 

  27. Alsenani F, Tupally KR, Chua ET et al (2020) Evaluation of microalgae and cyanobacteria as potential sources of antimicrobial compounds. Saudi Pharm J 28:1834–1841. https://doi.org/10.1016/j.jsps.2020.11.010

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Bajwa AA, Mahajan G, Chauhan BS (2015) Nonconventional weed management strategies for modern agriculture. Weed Sci 63:723–747. https://doi.org/10.1614/WS-D-15-00064.1

    Article  Google Scholar 

  29. Fontes JRA, Shiratsuchi LS, Neves JL et al (2003) Manejo integrado de plantas daninhas. Embrapa Cerrados 1:24–25

    Google Scholar 

  30. de Souza ARC, Baldoni DB, Lima J et al (2017) Selection, isolation, and identification of fungi for bioherbicide production. Braz J Microbiol 48:101–108. https://doi.org/10.1016/j.bjm.2016.09.004

    Article  PubMed  CAS  Google Scholar 

  31. Moore RT (1980) Taxonomic proposals for the classification of marine yeasts and other yeast-like fungi including the smuts. In: Botanica Marine. https://agris.fao.org/agris-search/search.do?recordID=US201301365072. Accessed 11 Feb 2023

  32. Cloete KJ, Valentine AJ, Stander MA et al (2009) Evidence of symbiosis between the soil yeast cryptococcus laurentii and a sclerophyllous medicinal shrub, agathosma betulina (berg.) pillans. Microb Ecol 57:624–632. https://doi.org/10.1007/S00248-008-9457-9/METRICS

    Article  PubMed  Google Scholar 

  33. Puig S, Ramos-Alonso L, Romero AM, Martínez-Pastor MT (2017) The elemental role of iron in DNA synthesis and repair. Metallomics 9:1483–1500. https://doi.org/10.1039/C7MT00116A

    Article  PubMed  Google Scholar 

  34. Cimmino A, Masi M, Evidente M et al (2015) Fungal phytotoxins with potential herbicidal activity: chemical and biological characterization. Nat Prod Rep 32:1629–1653. https://doi.org/10.1039/C5NP00081E

    Article  PubMed  CAS  Google Scholar 

  35. Varejão EVV, Demuner AJ, Barbosa LCA, Barreto RW (2013) Phytotoxic effects of metabolites from Alternaria euphorbiicola against its host plant Euphorbia heterophylla. Quim Nova 36:1004–1007. https://doi.org/10.1590/S0100-40422013000700014

    Article  Google Scholar 

  36. Mueller L (ed) (2020) 1930 The fundamental theorem of natural selection. In: Conceptual breakthroughs in evolutionary ecology. Elsevier, Amsterdam, pp 11–13

  37. Drott MT, Lazzaro BP, Brown DL et al (2017) Balancing selection for aflatoxin in Aspergillus flavus is maintained through interference competition with, and fungivory by insects. Proc R Soc B Biol Sci 284:20172408. https://doi.org/10.1098/rspb.2017.2408

    Article  CAS  Google Scholar 

  38. Wisecaver JH, Slot JC, Rokas A (2014) The evolution of fungal metabolic pathways. PLoS Genet 10:e1004816. https://doi.org/10.1371/journal.pgen.1004816

    Article  PubMed  PubMed Central  Google Scholar 

  39. El-Gendy MMAA, Al-Zahrani SHM, El-Bondkly AMA (2017) Construction of potent recombinant strain through intergeneric protoplast fusion in endophytic fungi for anticancerous enzymes production using rice straw. Appl Biochem Biotechnol 183:30–50. https://doi.org/10.1007/s12010-017-2429-0

    Article  PubMed  CAS  Google Scholar 

  40. Dastogeer KMG, Li H, Sivasithamparam K et al (2018) Host specificity of endophytic mycobiota of wild nicotiana plants from arid regions of Northern Australia. Microb Ecol 75:74–87. https://doi.org/10.1007/s00248-017-1020-0

    Article  PubMed  Google Scholar 

  41. Kamat S, Kumari M, Taritla S, Jayabaskaran C (2020) Endophytic Fungi Of Marine Alga From Konkan Coast, India—a rich source of bioactive material. Front Mar Sci. https://doi.org/10.3389/fmars.2020.00031

    Article  Google Scholar 

  42. Jeewon R, Luckhun AB, Bhoyroo V et al (2019) Pharmaceutical potential of marine fungal endophytes. In: Jha S (ed) Endophytes and secondary metabolites. Reference series in phytochemistry, Springer, Cham, pp 1–23

    Google Scholar 

  43. Handayani D, Ananda N, MuhA A et al (2019) Antimicrobial activity screening of endophytic fungi extracts isolated from brown algae Padina sp. J Appl Pharm Sci 9:9–13. https://doi.org/10.7324/JAPS.2019.90302

    Article  CAS  Google Scholar 

  44. Sandrawati N, Hati SP, Yunita F et al (2020) Antimicrobial and cytotoxic activities of marine sponge-derived fungal extracts isolated from Dactylospongia sp. J Appl Pharm Sci 10:28–33. https://doi.org/10.7324/JAPS.2020.104005

    Article  CAS  Google Scholar 

  45. Baron NC, Rigobelo EC (2022) Endophytic fungi: a tool for plant growth promotion and sustainable agriculture. Mycology 13:39–55. https://doi.org/10.1080/21501203.2021.1945699

    Article  PubMed  Google Scholar 

  46. Fleming A (1929) On the antibacterial action of cultures of Penicillium, with special reference to their use in the isolation of B. influenza. Br J Exp Pathol 10(3):226–236

    PubMed Central  CAS  Google Scholar 

  47. Cadamuro RD, da Silveira Bastos IMA, Silva IT et al (2021) Bioactive compounds from mangrove endophytic fungus and their uses for microorganism control. J Fungi 7:455. https://doi.org/10.3390/jof7060455

    Article  CAS  Google Scholar 

  48. Strobel G (2018) The emergence of endophytic microbes and their biological promise. J Fungi 4:57. https://doi.org/10.3390/jof4020057

    Article  CAS  Google Scholar 

  49. Oses R, Valenzuela S, Freer J et al (2006) Evaluation of fungal endophytes for lignocellulolytic enzyme production and wood biodegradation. Int Biodeterior Biodegrad 57:129–135. https://doi.org/10.1016/j.ibiod.2006.01.002

    Article  CAS  Google Scholar 

  50. Johannessen OM, Shalina EV (2022) Population increase impacts the climate, using the sensitive Arctic as an example. Atmos Ocean Sci Lett 15:100192. https://doi.org/10.1016/j.aosl.2022.100192

    Article  Google Scholar 

  51. Hemathilake DMKS, Gunathilake DMCC (2022) Agricultural productivity and food supply to meet increased demands. In: Bhat R (ed) Future foods. Elsevier, Amsterdam, pp 539–553

    Chapter  Google Scholar 

  52. Omomowo B (2019) Bacterial and fungal endophytes: tiny giants with immense beneficial potential for plant growth and sustainable agricultural productivity. Microorganisms 7:481. https://doi.org/10.3390/microorganisms7110481

    Article  PubMed  PubMed Central  Google Scholar 

  53. Cullen MG, Thompson LJ, JamesC C et al (2019) Fungicides, herbicides and bees: a systematic review of existing research and methods. PLoS ONE 14:e0225743. https://doi.org/10.1371/journal.pone.0225743

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Suryanarayanan TS (2019) Endophytes and weed management: a commentary. Plant Physiol Rep 24:576–579. https://doi.org/10.1007/s40502-019-00488-2

    Article  Google Scholar 

  55. Peterson MA, Collavo A, Ovejero R et al (2018) The challenge of herbicide resistance around the world: a current summary. Pest Manag Sci 74:2246–2259. https://doi.org/10.1002/ps.4821

    Article  PubMed  CAS  Google Scholar 

  56. Radhakrishnan R, Alqarawi AA, Abd Allah EF (2018) Bioherbicides: current knowledge on weed control mechanism. Ecotoxicol Environ Saf 158:131–138. https://doi.org/10.1016/j.ecoenv.2018.04.018

    Article  PubMed  CAS  Google Scholar 

  57. Zhang Q, Xiao J, Sun Q-Q et al (2014) Characterization of cytochalasins from the endophytic Xylaria sp. and their biological functions. J Agric Food Chem 62:10962–10969. https://doi.org/10.1021/jf503846z

    Article  PubMed  CAS  Google Scholar 

  58. Han W-B, Zhai Y-J, Gao Y et al (2019) Cytochalasins and an abietane-type diterpenoid with allelopathic activities from the endophytic fungus Xylaria species. J Agric Food Chem 67:3643–3650. https://doi.org/10.1021/acs.jafc.9b00273

    Article  PubMed  CAS  Google Scholar 

  59. Yang Z, Ge M, Yin Y et al (2012) A novel phytotoxic nonenolide from phomopsis sp. HCCB03520. Chem Biodivers 9:403–408. https://doi.org/10.1002/cbdv.201100080

    Article  PubMed  CAS  Google Scholar 

  60. Zhang Y, Zhang A, Li X, Lu C (2020) The role of chloroplast gene expression in plant responses to environmental stress. Int J Mol Sci 21:6082. https://doi.org/10.3390/ijms21176082

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Macías-Rubalcava ML, García-Méndez MC, King-Díaz B, Macías-Ruvalcaba NA (2017) Effect of phytotoxic secondary metabolites and semisynthetic compounds from endophytic fungus Xylaria feejeensis strain SM3e-1b on spinach chloroplast photosynthesis. J Photochem Photobiol B 166:35–43. https://doi.org/10.1016/j.jphotobiol.2016.11.002

    Article  PubMed  CAS  Google Scholar 

  62. Dahiya A, Sharma R, Sindhu S, Sindhu SS (2019) Resource partitioning in the rhizosphere by inoculated Bacillus spp. towards growth stimulation of wheat and suppression of wild oat (Avena fatua L.) weed. Physiol Mol Biol Plants 25:1483–1495. https://doi.org/10.1007/s12298-019-00710-3

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Asim S, Hussain A, Murad W et al (2022) Endophytic Fusarium oxysporum GW controlling weed and an effective biostimulant for wheat growth. Front Plant Sci. https://doi.org/10.3389/fpls.2022.922343

    Article  PubMed  PubMed Central  Google Scholar 

  64. Yandoc CB, Charudattan R, Shilling DG (2005) evaluation of fungal pathogens as biological control agents for cogongrass (Imperata cylindrica). Weed Technol 19:19–26. https://doi.org/10.1614/WT-03-104R1

    Article  Google Scholar 

  65. Lynn Walker H, Tilley AM (1997) Evaluation of an isolate of Myrothecium verrucaria from sicklepod (Senna obtusifolia) as a potential mycoherbicide agent. Biol Control 10:104–112. https://doi.org/10.1006/BCON.1997.0559

    Article  Google Scholar 

  66. Ash GJ, Stodart B, Sakuanrungsirikul S et al (2017) Genetic characterization of a novel Phomopsis sp., a putative biocontrol agent for Carthamus lanatus. Mycologia 102:54–61. https://doi.org/10.3852/08-198

    Article  CAS  Google Scholar 

  67. Gomes RR, Glienke C, Videira SIR, et al (2013) Diaporthe: a genus of endophytic, saprobic and plant pathogenic fungi. Persoonia Mol Phylogeny Evol Fungi 31:1–41. https://doi.org/10.3767/003158513X666844

  68. Hasan M, Ahmad-Hamdani MS, Rosli AM, Hamdan H (2021) Bioherbicides: an eco-friendly tool for sustainable weed management. Plants 10:1212. https://doi.org/10.3390/plants10061212

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Andolfi A, Boari A, Evidente M et al (2015) Gulypyrones A and B and phomentrioloxins B and C produced by diaporthe gulyae, a potential mycoherbicide for saffron thistle (Carthamus lanatus). J Nat Prod 78:623–629. https://doi.org/10.1021/NP500570H/SUPPL_FILE/NP500570H_SI_001.PDF

    Article  PubMed  CAS  Google Scholar 

  70. Cimmino A, Andolfi A, Zonno MC et al (2013) Phomentrioloxin, a fungal phytotoxin with potential herbicidal activity, and its derivatives: a structure-activity relationship study. J Agric Food Chem 61:9645–9649. https://doi.org/10.1021/JF4030618/SUPPL_FILE/JF4030618_SI_001.PDF

    Article  PubMed  CAS  Google Scholar 

  71. Zin NA, Badaluddin NA (2020) Biological functions of Trichoderma spp. for agriculture applications. Ann Agric Sci 65:168–178. https://doi.org/10.1016/j.aoas.2020.09.003

    Article  Google Scholar 

  72. Schuster A, Schmoll M (2010) Biology and biotechnology of trichoderma. Appl Microbiol Biotechnol 87:787–799. https://doi.org/10.1007/s00253-010-2632-1

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Harman GE (2000) Myths and dogmas of biocontrol changes in perceptions derived from research on Trichoderma harzinum T-22. Plant Dis 84:377–393. https://doi.org/10.1094/PDIS.2000.84.4.377

    Article  PubMed  CAS  Google Scholar 

  74. Friedl MA, Kubicek CP, Druzhinina IS (2008) Carbon source dependence and photostimulation of conidiation in Hypocrea atroviridis. Appl Environ Microbiol 74:245–250. https://doi.org/10.1128/AEM.02068-07

    Article  PubMed  CAS  Google Scholar 

  75. TariqJaveed M, Farooq T, Al-Hazmi AS et al (2021) Role of trichoderma as a biocontrol agent (BCA) of phytoparasitic nematodes and plant growth inducer. J Invertebr Pathol 183:107626. https://doi.org/10.1016/j.jip.2021.107626

    Article  PubMed  CAS  Google Scholar 

  76. Bhat KA (2017) A new agar plate assisted slide culture technique to study mycoparasitism of Trichoderma sp. on Rhizoctonia solani and Fusarium oxysporium. Int J Curr Microbiol Appl Sci 6:3176–3180. https://doi.org/10.20546/ijcmas.2017.608.378

  77. Kumar R, Kumari K, Hembram KC et al (2019) Expression of an endo α-1, 3-glucanase gene from Trichoderma harzianum in rice induces resistance against sheath blight. J Plant Biochem Biotechnol 28:84–90. https://doi.org/10.1007/s13562-018-0465-7

    Article  CAS  Google Scholar 

  78. Reichert Júnior FW, Scariot MA, Forte CT et al (2019) New perspectives for weeds control using autochthonous fungi with selective bioherbicide potential. Heliyon 5:e01676. https://doi.org/10.1016/j.heliyon.2019.e01676

    Article  PubMed  PubMed Central  Google Scholar 

  79. Zhu H, Ma Y, Guo Q, Xu B (2020) Biological weed control using Trichoderma polysporum strain HZ-31. Crop Prot 134:105161. https://doi.org/10.1016/j.cropro.2020.105161

    Article  CAS  Google Scholar 

  80. Zehra A, Aamir M, Dubey MK et al (2023) Enhanced protection of tomato against Fusarium wilt through biopriming with Trichoderma harzianum. J King Saud Univ Sci 35:102466. https://doi.org/10.1016/j.jksus.2022.102466

    Article  Google Scholar 

  81. Mergulhão AC do ES, Silva MV da, Lyra M do CCP de, et al (2014) Morphological and molecular characterization of arbuscular mycorrhizal fungi isolated from gypsum mining areas, Araripina, Pernambuco state, Brazil. Hoehnea 41:393–400. Doi: https://doi.org/10.1590/S2236-89062014000300006

  82. Fuwa H (1954) A new method for microdetermination of amylase activity by the use of amylose as the substrate. J Biochem 41:583–603. https://doi.org/10.1093/oxfordjournals.jbchem.a126476

    Article  CAS  Google Scholar 

  83. Pongsawadi P, Yagisawa M (1987) Screening and identification of a cyclomaltoxtrinv glucanotransferase-producing bacteria. J Ferment Technol 65:463–467. https://doi.org/10.1016/0385-6380(87)90144-0

    Article  Google Scholar 

  84. Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31:426–428. https://doi.org/10.1021/ac60147a030

    Article  CAS  Google Scholar 

  85. Ghose TK (1987) Measurement of cellulase activities. Pure Appl Chem 59:257–268. https://doi.org/10.1351/pac198759020257

    Article  CAS  Google Scholar 

  86. Hou H, Zhou J, Wang J et al (2004) Enhancement of laccase production by Pleurotus ostreatus and its use for the decolorization of anthraquinone dye. Process Biochem 39:1415–1419. https://doi.org/10.1016/S0032-9592(03)00267-X

    Article  CAS  Google Scholar 

  87. Treichel H, Sbardelotto M, Venturin B et al (2017) Lipase production from a newly isolated Aspergillus niger by solid state fermentation using canola cake as substrate. Curr Biotechnol. https://doi.org/10.2174/2211550105666151124193225

    Article  Google Scholar 

  88. Khan AA, Robinson DS (1994) Hydrogen donor specificity of mango isoperoxidases. Food Chem 49:407–410. https://doi.org/10.1016/0308-8146(94)90013-2

    Article  CAS  Google Scholar 

  89. Devaiah SP, Shetty HS (2009) Purification of an infection-related acidic peroxidase from pearl millet seedlings. Pestic Biochem Physiol 94:119–126. https://doi.org/10.1016/j.pestbp.2009.04.010

    Article  CAS  Google Scholar 

  90. Qureshi AS, Khushk I, Ali CH et al (2016) Coproduction of protease and amylase by thermophilic Bacillus sp. BBXS-2 using open solid-state fermentation of lignocellulosic biomass. Biocatal Agric Biotechnol 8:146–151. https://doi.org/10.1016/j.bcab.2016.09.006

    Article  Google Scholar 

  91. Chance B, Maehly AC (1955) Assay of Catalase and Peroxidase. Methods Enzymol 2:764–775

    Article  Google Scholar 

  92. Adetunji CO, Adejumo IO, Oloke JK, Akpor OB (2018) Production of phytotoxic metabolites with bioherbicidal activities from lasiodiplodia pseudotheobromae produced on different agricultural wastes using solid-state fermentation. Iran J Sci Technol Trans A Sci 42:1163–1175. https://doi.org/10.1007/s40995-017-0369-8

    Article  Google Scholar 

  93. de Castro AM, de Andréa TV, dos Reis CL, Freire DMG (2010) Use of mesophilic fungal amylases produced by solid-state fermentation in the cold hydrolysis of raw babassu cake starch. Appl Biochem Biotechnol 162:1612–1625. https://doi.org/10.1007/s12010-010-8942-z

    Article  PubMed  CAS  Google Scholar 

  94. Camargo AF, Dalastra C, Ulrich A et al (2023) The bioherbicidal potential of isolated fungi cultivated in microalgal biomass. Bioprocess Biosyst Eng. https://doi.org/10.1007/s00449-023-02852-x

    Article  PubMed  Google Scholar 

  95. Zhang Y, Yang X, Zhu Y et al (2019) Biological control of Solidago canadensis using a bioherbicide isolate of Sclerotium rolfsii SC64 increased the biodiversity in invaded habitats. Biol Control 139:104093. https://doi.org/10.1016/J.BIOCONTROL.2019.104093

    Article  CAS  Google Scholar 

  96. Frumi Camargo A, Venturin B, Bordin ER et al (2020) A low-genotoxicity bioherbicide obtained from Trichoderma koningiopsis fermentation in a stirred-tank bioreactor. Ind Biotechnol 16:176–181. https://doi.org/10.1089/ind.2019.0024

    Article  CAS  Google Scholar 

  97. Daniel JJ, Zabot GL, Tres MV et al (2018) Fusarium fujikuroi: a novel source of metabolites with herbicidal activity. Biocatal Agric Biotechnol 14:314–320. https://doi.org/10.1016/j.bcab.2018.04.001

    Article  Google Scholar 

  98. Chaves Neto JR, Nascimento dos Santos MS, Mazutti MA et al (2021) Phoma dimorpha phytotoxic activity potentialization for bioherbicide production. Biocatal Agric Biotechnol 33:101986. https://doi.org/10.1016/j.bcab.2021.101986

    Article  CAS  Google Scholar 

  99. Brun T, Rabuske JE, Luft L et al (2022) Powder containing biomolecules from Diaporthe schini for weed control. Environ Technol 43:2135–2144. https://doi.org/10.1080/09593330.2020.1867651

    Article  PubMed  CAS  Google Scholar 

  100. Portela VO, Moro A, Santana NA et al (2022) First report on the production of phytotoxic metabolites by Mycoleptodiscus indicus under optimized conditions of submerged fermentation. Environ Technol 43:1458–1470. https://doi.org/10.1080/09593330.2020.1836030

    Article  PubMed  CAS  Google Scholar 

  101. Boyette C, Hoagland R, Stetina K (2014) Biological control of the weed hemp sesbania (Sesbania exaltata) in Rice (Oryza sativa) by the fungus myrothecium verrucaria. Agronomy 4:74–89. https://doi.org/10.3390/agronomy4010074

    Article  Google Scholar 

  102. Haque A, van Klinken RD, Goulter K, Galea VJ (2019) Assessing the potential of fungi isolated from dieback-affected trees as biological control agents for prickly acacia (Vachellia nilotica subsp. indica). Biocontrol 64:197–208. https://doi.org/10.1007/s10526-018-09919-9

    Article  Google Scholar 

  103. de Oliveira CT, Alves EA, Todero I et al (2019) Production of cutinase by solid-state fermentation and its use as adjuvant in bioherbicide formulation. Bioprocess Biosyst Eng 42:829–838. https://doi.org/10.1007/s00449-019-02086-w

    Article  PubMed  CAS  Google Scholar 

  104. Bordin ER, Frumi Camargo A, Rossetto V et al (2018) Non-toxic bioherbicides obtained from Trichoderma koningiopsis can be applied to the control of weeds in agriculture crops. Ind Biotechnol 14:157–163. https://doi.org/10.1089/ind.2018.0007

    Article  CAS  Google Scholar 

  105. Sala A, Vittone S, Barrena R et al (2021) Scanning agro-industrial wastes as substrates for fungal biopesticide production: use of Beauveria bassiana and Trichoderma harzianum in solid-state fermentation. J Environ Manage 295:113113. https://doi.org/10.1016/j.jenvman.2021.113113

    Article  PubMed  Google Scholar 

  106. Shabana YM, Charudattan R, Abou Tabl AH et al (2010) Production and application of the bioherbicide agent Dactylaria higginsii on organic solid substrates. Biol Control 54:159–165. https://doi.org/10.1016/j.biocontrol.2010.05.002

    Article  Google Scholar 

  107. Luft L, Confortin TC, Todero I et al (2021) Production of bioemulsifying compounds from Phoma dimorpha using agroindustrial residues as additional carbon sources. Biocatal Agric Biotechnol 35:102079. https://doi.org/10.1016/j.bcab.2021.102079

    Article  CAS  Google Scholar 

  108. Groff MC, Scaglia G, Gaido M et al (2022) Kinetic modeling of fungal biomass growth and lactic acid production in Rhizopus oryzae fermentation by using grape stalk as a solid substrate. Biocatal Agric Biotechnol 39:102255. https://doi.org/10.1016/j.bcab.2021.102255

    Article  CAS  Google Scholar 

  109. Portela VO, Santana NA, Balbinot ML et al (2022) Phytotoxicity optimization of fungal metabolites produced by solid and submerged fermentation and its ecotoxicological effects. Appl Biochem Biotechnol 194:2980–3000. https://doi.org/10.1007/s12010-022-03884-x

    Article  PubMed  CAS  Google Scholar 

  110. Intasit R, Cheirsilp B, Suyotha W, Boonsawang P (2021) Synergistic production of highly active enzymatic cocktails from lignocellulosic palm wastes by sequential solid state-submerged fermentation and co-cultivation of different filamentous fungi. Biochem Eng J 173:108086. https://doi.org/10.1016/j.bej.2021.108086

    Article  CAS  Google Scholar 

  111. Singhania RR, Patel AK, Soccol CR, Pandey A (2009) Recent advances in solid-state fermentation. Biochem Eng J 44:13–18. https://doi.org/10.1016/j.bej.2008.10.019

    Article  CAS  Google Scholar 

  112. Gmoser R, Sintca C, Taherzadeh MJ, Lennartsson PR (2019) Combining submerged and solid state fermentation to convert waste bread into protein and pigment using the edible filamentous fungus N. intermedia. Waste Manage 97:63–70. https://doi.org/10.1016/j.wasman.2019.07.039

    Article  CAS  Google Scholar 

  113. Bastos B de O, Deobald GA, Brun T, et al (2017) Solid-state fermentation for production of a bioherbicide from Diaporthe sp. and its formulation to enhance the efficacy. 3 Biotech 7:135. https://doi.org/10.1007/s13205-017-0751-4

  114. Sankar M, Mathew RM, Puthiyamadam A et al (2023) Comparison of the solid-state and submerged fermentation derived secretomes of hyper-cellulolytic Penicillium janthinellum NCIM 1366 reveals the changes responsible for differences in hydrolytic performance. Bioresour Technol 371:128602. https://doi.org/10.1016/j.biortech.2023.128602

    Article  PubMed  CAS  Google Scholar 

  115. Kulkarni SS, Nene SN, Joshi KS (2020) A comparative study of production of hydrophobin like proteins (HYD-LPs) in submerged liquid and solid state fermentation from white rot fungus Pleurotus ostreatus. Biocatal Agric Biotechnol 23:101440. https://doi.org/10.1016/j.bcab.2019.101440

    Article  Google Scholar 

  116. Ncube T, Howard RL, Abotsi EK et al (2012) Jatropha curcas seed cake as substrate for production of xylanase and cellulase by Aspergillus niger FGSCA733 in solid-state fermentation. Ind Crops Prod 37:118–123. https://doi.org/10.1016/j.indcrop.2011.11.024

    Article  CAS  Google Scholar 

  117. Schein D, Santos MSN, Schmaltz S et al (2022) Microbial prospection for bioherbicide production and evaluation of methodologies for maximizing phytotoxic activity. Processes 10:2001. https://doi.org/10.3390/pr10102001

    Article  CAS  Google Scholar 

  118. Doran PM (2013) Bioprocess engineering principles. Elsevier, Amsterdam

    Google Scholar 

  119. Heinzle E, Biwer AP, Cooney CL (2006) Development of sustainable bioprocesses. Wiley, New York

    Book  Google Scholar 

  120. Bordin ER, Frumi Camargo A, Stefanski FS et al (2021) Current production of bioherbicides: mechanisms of action and technical and scientific challenges to improve food and environmental security. Biocatal Biotransformation 39:346–359. https://doi.org/10.1080/10242422.2020.1833864

    Article  CAS  Google Scholar 

  121. Jackson MA (1997) Optimizing nutritional conditions for the liquid culture production of effective fungal biological control agents. J Ind Microbiol Biotechnol 19:180–187. https://doi.org/10.1038/sj.jim.2900426

    Article  CAS  Google Scholar 

  122. Gupta VKZSSHBDI (2020) New and future developments in microbial biotechnology and bioengineering. Elsevier, Amsterdam

    Google Scholar 

  123. Schmoll M, Esquivel-Naranjo EU, Herrera-Estrella A (2010) Trichoderma in the light of day—physiology and development. Fungal Genet Biol 47:909–916. https://doi.org/10.1016/j.fgb.2010.04.010

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  124. Steyaert JM, Weld RJ, Mendoza-Mendoza A et al (2013) Asexual development in Trichoderma: from conidia to chlamydospores. Trichoderma: biology and applications. CABI, England, pp 87–109

    Chapter  Google Scholar 

  125. Sandhya C, Sumantha A, Szakacs G, Pandey A (2005) Comparative evaluation of neutral protease production by Aspergillus oryzae in submerged and solid-state fermentation. Process Biochem 40:2689–2694. https://doi.org/10.1016/j.procbio.2004.12.001

    Article  CAS  Google Scholar 

  126. Manan MA, Webb C (2017) Design aspects of solid state fermentation as applied to microbial bioprocessing. J Appl Biotechnol Bioeng. https://doi.org/10.15406/jabb.2017.04.00094

    Article  Google Scholar 

  127. Ge X, Vasco-Correa J, Li Y (2017) Solid-state fermentation bioreactors and fundamentals. Current developments in biotechnology and bioengineering. Elsevier, Amsterdam, pp 381–402

    Chapter  Google Scholar 

  128. Ferreira A, Rocha F, Mota A, Teixeira JA (2017) Characterization of industrial bioreactors (mixing, heat, and mass transfer). In: Larroche C, Sanromán MÁ, Du G, Pandey A (eds) Current developments in biotechnology and bioengineering. Elsevier, Amsterdam, pp 563–592

    Chapter  Google Scholar 

  129. Sindhu R, Pandey A, Binod P (2017) Design and types of bioprocesses. In: Larroche C, Sanromán MÁ, Du G, Pandey A (eds) Current developments in biotechnology and bioengineering. Elsevier, Amsterdam, pp 29–43

    Chapter  Google Scholar 

  130. Nath S (2015) Product recovery from the cultures. Fundamental bioengineering. Wiley, Weinheim, pp 379–392

    Chapter  Google Scholar 

  131. Healthcare GE (2010) Strategies for protein purification handbook. Uppsala GE Healthcare, pp 39–40

    Google Scholar 

  132. de Almeida TC, Spannemberg SS, Brun T et al (2020) Development of a solid bioherbicide formulation by spray drying technology. Agriculture 10:215. https://doi.org/10.3390/agriculture10060215

    Article  CAS  Google Scholar 

  133. Dalastra C, Klanovicz N, Kubeneck S et al (2023) Carbohydrate-based economy: perspectives and challenges. In: Goldbeck R, Poletto P (eds) Polysaccharide-degrading biocatalysts. Elsevier, Amsterdam, pp 409–434

    Chapter  Google Scholar 

  134. Morchain J (2017) Numerical tools for scaling up bioreactors. In: Larroche C, Sanromán MÁ, Du G, Pandey A (eds) Current developments in biotechnology and bioengineering. Elsevier, Amsterdam, pp 495–523

    Chapter  Google Scholar 

  135. Delvigne F, Takors R, Mudde R et al (2017) Bioprocess scale-up/down as integrative enabling technology: from fluid mechanics to systems biology and beyond. Microb Biotechnol 10:1267–1274. https://doi.org/10.1111/1751-7915.12803

    Article  PubMed  PubMed Central  Google Scholar 

  136. Ladner T, Grünberger A, Probst C et al (2017) Application of mini- and micro-bioreactors for microbial bioprocesses. In: Larroche C, Sanromán MÁ, Du G, Pandey A (eds) Current developments in biotechnology and bioengineering. Elsevier, Amsterdam, pp 433–461

    Chapter  Google Scholar 

  137. Mupondwa E, Li X, Boyetchko S et al (2015) Technoeconomic analysis of large scale production of pre-emergent Pseudomonas fluorescens microbial bioherbicide in Canada. Bioresour Technol 175:517–528. https://doi.org/10.1016/j.biortech.2014.10.130

    Article  PubMed  CAS  Google Scholar 

  138. Schnick PJ, Boland GJ (2004) 2,4-D and Phoma herbarum to control dandelion (Taraxacum officinale). Weed Sci 52:808–814. https://doi.org/10.1614/WS-03-085R

    Article  CAS  Google Scholar 

  139. Todero I, Confortin TC, Soares JF et al (2019) Concentration of metabolites from Phoma sp. using microfiltration membrane for increasing bioherbicidal activity. Environ Technol 40:2364–2372. https://doi.org/10.1080/09593330.2018.1441330

    Article  PubMed  CAS  Google Scholar 

  140. Tan M, Ding R, Huang Q, Qiang S (2022) Evaluation of Bipolaris panici-miliacei as a bioherbicide against Microstegium vimineum. Biocontrol Sci Technol 32:178–195. https://doi.org/10.1080/09583157.2021.1977240

    Article  Google Scholar 

  141. Bailey KL, Carisse O, Leggett M et al (2007) Effect of spraying adjuvants with the biocontrol fungus Microsphaeropsis ochracea at different water volumes on the colonization of apple leaves. Biocontrol Sci Technol 17:1021–1036. https://doi.org/10.1080/09583150701710062

    Article  Google Scholar 

  142. Thapa Magar R, Lee SY, Kim HJ, Lee S-W (2022) Biocontrol of bacterial wilt in tomato with a cocktail of lytic bacteriophages. Appl Microbiol Biotechnol 106:3837–3848. https://doi.org/10.1007/s00253-022-11962-7

    Article  PubMed  CAS  Google Scholar 

  143. Brun T, Rabuske JE, Confortin TC et al (2022) Weed control by metabolites produced from Diaporthe schini. Environ Technol 43:139–148. https://doi.org/10.1080/09593330.2020.1780477

    Article  PubMed  CAS  Google Scholar 

  144. Galea VJ (2021) Use of stem implanted bioherbicide capsules to manage an infestation of parkinsonia aculeata in Northern Australia. Plants 10:1909. https://doi.org/10.3390/plants10091909

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  145. Bailey K, Derby J-A, Bourdôt G et al (2017) Plectosphaerella cucumerina as a bioherbicide for Cirsium arvense: proof of concept. Biocontrol 62:693–704. https://doi.org/10.1007/s10526-017-9819-7

    Article  Google Scholar 

  146. Boyette CD, Hoagland RE (2013) Adjuvant and refined corn oil formulation effects on conidial germination, appressorial formation and virulence of the bioherbicide, colletotrichum truncatum. Plant Pathol J (Faisalabad) 12:50–60. https://doi.org/10.3923/ppj.2013.50.60

    Article  CAS  Google Scholar 

  147. Hess FDFCL (2000) Interaction of surfactants with plant cuticles. Weed Technol 14:807–813

    Article  CAS  Google Scholar 

  148. Weaver MA, Jin X, Hoagland RE, Boyette CD (2009) Improved bioherbicidal efficacy by Myrothecium verrucaria via spray adjuvants or herbicide mixtures. Biol Control 50:150–156. https://doi.org/10.1016/j.biocontrol.2009.03.007

    Article  CAS  Google Scholar 

  149. Srisuksam C, Yodpanan P, Suntivich R et al (2022) The fungus Phoma multirostrata is a host-specific pathogen and a potential biocontrol agent for a broadleaf weed. Fungal Biol 126:162–173. https://doi.org/10.1016/j.funbio.2021.11.008

    Article  PubMed  CAS  Google Scholar 

  150. Zhang W, Wolf TM, Bailey KL et al (2003) Screening of adjuvants for bioherbicide formulations with Colletotrichum spp. and Phoma spp. Biol Control 26:95–108. https://doi.org/10.1016/S1049-9644(02)00133-0

    Article  Google Scholar 

  151. Alvarez Gaona IJ, Fanzone ML, Galmarini MV et al (2022) Encapsulation of phenolic compounds by spray drying of ancellotta and aspirant bouchet wines to produce powders with potential use as natural food colorants. Food Biosci 50:102093. https://doi.org/10.1016/j.fbio.2022.102093

    Article  CAS  Google Scholar 

  152. Gervasi C, Pellizzeri V, Lo VG et al (2022) From by-product to functional food: the survival of L. casei shirota, L. casei immunitas and L. acidophilus johnsonii, during spray drying in orange juice using a maltodextrin/pectin mixture as carrier. Nat Prod Res 36:6393–6400. https://doi.org/10.1080/14786419.2022.2032049

    Article  PubMed  CAS  Google Scholar 

  153. Jayaprakash P, Maudhuit A, Gaiani C, Desobry S (2023) Encapsulation of bioactive compounds using competitive emerging techniques: electrospraying, nano spray drying, and electrostatic spray drying. J Food Eng 339:111260. https://doi.org/10.1016/j.jfoodeng.2022.111260

    Article  CAS  Google Scholar 

  154. de Jesus SS, Maciel Filho R (2014) Drying of α-amylase by spray drying and freeze-drying—a comparative study. Braz J Chem Eng 31:625–631. https://doi.org/10.1590/0104-6632.20140313s00002642

    Article  Google Scholar 

  155. Sellami-Kamoun A, Haddar A, Ali NE-H et al (2008) Stability of thermostable alkaline protease from Bacillus licheniformis RP1 in commercial solid laundry detergent formulations. Microbiol Res 163:299–306. https://doi.org/10.1016/j.micres.2006.06.001

    Article  PubMed  CAS  Google Scholar 

  156. Aita BC, Schmaltz S, Fochi A et al (2022) Spray-dried powder containing chitinase and β-1,3-glucanase with insecticidal activity against ceratitis capitata (Diptera: Tephritidae). Processes 10:587. https://doi.org/10.3390/pr10030587

    Article  CAS  Google Scholar 

  157. Meng X, Yu J, Yu M et al (2015) Dry flowable formulations of antagonistic Bacillus subtilis strain T429 by spray drying to control rice blast disease. Biol Control 85:46–51. https://doi.org/10.1016/j.biocontrol.2015.03.004

    Article  CAS  Google Scholar 

  158. Felizatti AP, Manzano RM, Rodrigues IMW et al (2021) Encapsulation of B. bassiana in biopolymers: improving microbiology of insect pest control. Front Microbiol. https://doi.org/10.3389/fmicb.2021.704812

    Article  PubMed  PubMed Central  Google Scholar 

  159. Oancea F, Raut I, Şesan TE, Cornea PC (2016) Dry flowable formulation of biostimulants trichoderma strains. Agric Agric Sci Procedia 10:494–502. https://doi.org/10.1016/j.aaspro.2016.09.022

    Article  Google Scholar 

  160. Klanovicz N, Stefanski FS, Camargo AF et al (2022) Complete wastewater discoloration by a novel peroxidase source with promising bioxidative properties. J Chem Technol Biotechnol 97:2613–2625. https://doi.org/10.1002/jctb.7134

    Article  CAS  Google Scholar 

  161. Todero I, Confortin TC, Luft L et al (2020) Concentration of exopolysaccharides produced by Fusarium fujikuroi and application of bioproduct as an effective bioherbicide. Environ Technol 41:2742–2749. https://doi.org/10.1080/09593330.2019.1580775

    Article  PubMed  CAS  Google Scholar 

  162. Campos EVR, de Oliveira JL, Fraceto LF, Singh B (2015) Polysaccharides as safer release systems for agrochemicals. Agron Sustain Dev 35:47–66. https://doi.org/10.1007/s13593-014-0263-0

    Article  CAS  Google Scholar 

  163. Maruyama CR, Bilesky-José N, de Lima R, Fraceto LF (2020) Encapsulation of Trichoderma harzianum preserves enzymatic activity and enhances the potential for biological control. Front Bioeng Biotechnol. https://doi.org/10.3389/fbioe.2020.00225

    Article  PubMed  PubMed Central  Google Scholar 

  164. Vemmer M, Patel AV (2013) Review of encapsulation methods suitable for microbial biological control agents. Biol Control 67:380–389. https://doi.org/10.1016/j.biocontrol.2013.09.003

    Article  CAS  Google Scholar 

  165. Muñoz-Celaya AL, Ortiz-García M, Vernon-Carter EJ et al (2012) Spray-drying microencapsulation of Trichoderma harzianum conidias in carbohydrate polymers matrices. Carbohydr Polym 88:1141–1148. https://doi.org/10.1016/j.carbpol.2011.12.030

    Article  CAS  Google Scholar 

  166. Saberi Riseh R, Hassanisaadi M, Vatankhah M et al (2022) Nano/microencapsulation of plant biocontrol agents by chitosan, alginate, and other important biopolymers as a novel strategy for alleviating plant biotic stresses. Int J Biol Macromol 222:1589–1604. https://doi.org/10.1016/j.ijbiomac.2022.09.278

    Article  PubMed  CAS  Google Scholar 

  167. Alipour M, Saharkhiz MJ, Niakousari M, Seidi Damyeh M (2019) Phytotoxicity of encapsulated essential oil of rosemary on germination and morphophysiological features of amaranth and radish seedlings. Sci Hortic 243:131–139. https://doi.org/10.1016/j.scienta.2018.08.023

    Article  CAS  Google Scholar 

  168. Taban A, Saharkhiz MJ, Naderi R (2020) A natural post-emergence herbicide based on essential oil encapsulation by cross-linked biopolymers: characterization and herbicidal activity. Environ Sci Pollut Res 27:45844–45858. https://doi.org/10.1007/s11356-020-10405-y

    Article  CAS  Google Scholar 

  169. Bhatia M (2020) A review on application of encapsulation in agricultural processes. In: Sonawane SH, Bhanvase BA, Sivakumar M (eds) Encapsulation of active molecules and their delivery system. Elsevier, Amsterdam, pp 131–140

    Chapter  Google Scholar 

  170. Pour MM, Saberi-Riseh R, Mohammadinejad R, Hosseini A (2019) Investigating the formulation of alginate- gelatin encapsulated Pseudomonas fluorescens (VUPF5 and T17–4 strains) for controlling Fusarium solani on potato. Int J Biol Macromol 133:603–613. https://doi.org/10.1016/j.ijbiomac.2019.04.071

    Article  PubMed  CAS  Google Scholar 

  171. Fernández-Sandoval MT, Ortiz-García M, Galindo E, Serrano-Carreón L (2012) Cellular damage during drying and storage of Trichoderma harzianum spores. Process Biochem 47:186–194. https://doi.org/10.1016/j.procbio.2011.10.006

    Article  CAS  Google Scholar 

  172. Schilder A (2008) Effect of water pH on the stability of pesticides. Michigan State University Extension, East Lansing

    Google Scholar 

  173. Boyette CD, Hoagland RE, Stetina KC (2016) Efficacy improvement of a bioherbicidal fungus using a formulation-based approach. Am J Plant Sci 07:2349–2358. https://doi.org/10.4236/ajps.2016.716206

    Article  Google Scholar 

  174. Doll DA, Sojka PE, Hallett SG (2005) Effect of nozzle type and pressure on the efficacy of spray applications of the bioherbicidal fungus Microsphaeropsis amaranthi. Weed Technol 19:918–923. https://doi.org/10.1614/WT-04-352R2.1

    Article  Google Scholar 

  175. Lawrie J, Greaves MP, Down VM, Western NM, Jaques SJ (2002) Investigation of spray application of microbial herbicides using Alternaria alternata on Amaranthus retroflexus. Biocontrol Sci Technol 12:469–479

    Article  Google Scholar 

  176. Amsellem Z et al (1990) Complete abolition of high inoculum threshold of two mycoherbicides (Alternaria cassiae and Alternaria crassa) when applied in inverse emulsion. Phytopathology 80:925–929

    Article  Google Scholar 

  177. Egley GH, Hanks JE, Boyette CD (1993) Invert emulsion droplet size and mycoherbicidal activity of Colletotrichum truncatum. Weed Technol 7:417–424. https://doi.org/10.1017/S0890037X00027822

    Article  Google Scholar 

  178. IMARC Group (2022) Bioherbicides market: global industry trends, share, size, growth, opportunity and forecast 2023–2028. https://www.imarcgroup.com/bioherbicides-market

  179. Bailey KL, Boyetchko SM, Längle T (2010) Social and economic drivers shaping the future of biological control: a Canadian perspective on the factors affecting the development and use of microbial biopesticides. Biol Control 52:221–229. https://doi.org/10.1016/j.biocontrol.2009.05.003

    Article  Google Scholar 

  180. AGROFIT (2023) Consulta a Produtos Agrotóxicos Fitossanitários. In: https://agrofit.agricultura.gov.br/agrofit_cons/principal_agrofit_cons

  181. Triolet M, Guillemin J, Andre O, Steinberg C (2020) Fungal-based bioherbicides for weed control: a myth or a reality? Weed Res 60:60–77. https://doi.org/10.1111/wre.12389

    Article  Google Scholar 

  182. Hintz W (2007) Development of Chondrostereum purpureum as a mycoherbicide for deciduous brush control. Biological control: a global perspective. CABI, England, pp 284–290

    Chapter  Google Scholar 

  183. Chandramohan S, Charudattan R (2003) A multiple-pathogen system for bioherbicidal control of several weeds. Biocontrol Sci Technol 13:199–205. https://doi.org/10.1080/0958315021000073466

    Article  Google Scholar 

  184. Roberts J, Florentine S, Fernando WGD, Tennakoon KU (2022) Achievements, developments and future challenges in the field of bioherbicides for weed control: a global review. Plants 11:2242. https://doi.org/10.3390/plants11172242

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  185. Ben-Othman S, Jõudu I, Bhat R (2020) Bioactives from agri-food wastes: present insights and future challenges. Molecules 25:510. https://doi.org/10.3390/molecules25030510

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  186. Chaparro ML, Sanabria PJ, Jiménez AM et al (2021) A circular economy approach for producing a fungal-based biopesticide employing pearl millet as a substrate and its economic evaluation. Bioresour Technol Rep 16:100869. https://doi.org/10.1016/j.biteb.2021.100869

    Article  CAS  Google Scholar 

  187. Zhang W, Qiu L, Gong A et al (2013) Solid-state fermentation of kitchen waste for production of bacillus thuringiensis-based bio-pesticide. BioResources. https://doi.org/10.15376/biores.8.1.1124-1135

    Article  Google Scholar 

  188. Asimakis E, Shehata AA, Eisenreich W et al (2022) Algae and their metabolites as potential bio-pesticides. Microorganisms 10:307. https://doi.org/10.3390/microorganisms10020307

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  189. Duarte B, Carreiras J, Feijão E et al (2021) Potential of Asparagopsis armata as a biopesticide for weed control under an invasive seaweed circular-economy framework. Biology (Basel) 10:1321. https://doi.org/10.3390/biology10121321

    Article  PubMed  CAS  Google Scholar 

  190. Bhatt P, Bhandari G, Bhatt K, Simsek H (2022) Microalgae-based removal of pollutants from wastewaters: occurrence, toxicity and circular economy. Chemosphere 306:135576. https://doi.org/10.1016/j.chemosphere.2022.135576

    Article  PubMed  CAS  Google Scholar 

  191. Olabi AG, Shehata N, Sayed ET et al (2023) Role of microalgae in achieving sustainable development goals and circular economy. Sci Tot Environ 854:158689. https://doi.org/10.1016/j.scitotenv.2022.158689

    Article  CAS  Google Scholar 

  192. Stiles WAV, Styles D, Chapman SP et al (2018) Using microalgae in the circular economy to valorise anaerobic digestate: challenges and opportunities. Bioresour Technol 267:732–742. https://doi.org/10.1016/j.biortech.2018.07.100

    Article  PubMed  CAS  Google Scholar 

  193. Cheng SY, Tan X, Show PL et al (2020) Incorporating biowaste into circular bioeconomy: a critical review of current trend and scaling up feasibility. Environ Technol Innov 19:101034. https://doi.org/10.1016/j.eti.2020.101034

    Article  Google Scholar 

  194. Jain A, Sarsaiya S, Kumar Awasthi M et al (2022) Bioenergy and bio-products from bio-waste and its associated modern circular economy: current research trends, challenges, and future outlooks. Fuel 307:121859. https://doi.org/10.1016/j.fuel.2021.121859

    Article  CAS  Google Scholar 

  195. Khadse A, Rosset PM, Morales H, Ferguson BG (2018) Taking agroecology to scale: the zero budget natural farming peasant movement in Karnataka, India. J Peasant Stud 45:192–219. https://doi.org/10.1080/03066150.2016.1276450

    Article  Google Scholar 

  196. Mohite BV, Koli SH, Borase HP et al (2019) New age agricultural bioinputs. In: Singh DP, Gupta VK, Prabha R (eds) Microbial interventions in agriculture and environment. Springer, Singapore, pp 353–380

    Chapter  Google Scholar 

  197. Thakur N, Nigam M, Mann NA et al (2023) Host-mediated gene engineering and microbiome-based technology optimization for sustainable agriculture and environment. Funct Integr Genom 23:57. https://doi.org/10.1007/s10142-023-00982-9

    Article  CAS  Google Scholar 

  198. Gabardo G, Da Silva HL, Clock DC (2021) “On Farm” production of microorganisms in Brazil. Sci Agrar Parana. Doi: https://doi.org/10.18188/sap.v20i4.28587

  199. Bernardo ERA, Bettiol W (2010) Controle da pinta preta dos frutos cítricos em cultivo orgânico com agentes de biocontrole e produtos alternativos. Trop Plant Pathol 35:037–042. https://doi.org/10.1590/S1982-56762010000100006

    Article  Google Scholar 

  200. Emerson FL, Mikunthan G (2015) Small scale production of trichoderma viride on locally available liquid waste and other substrates. J Agric Environ Sci 15:1666–1671. https://doi.org/10.5829/idosi.aejaes.2015.15.8.1860

    Article  CAS  Google Scholar 

  201. Oliveira KCL, Araújo DV, Meneses AC et al (2019) Biological management of Pratylenchus brachyurus in soybean crops. Revista Caatinga 32:41–51. https://doi.org/10.1590/1983-21252019v32n105rc

    Article  Google Scholar 

  202. De Corato U (2020) Agricultural waste recycling in horticultural intensive farming systems by on-farm composting and compost-based tea application improves soil quality and plant health: a review under the perspective of a circular economy. Sci Tot Environ 738:139840. https://doi.org/10.1016/j.scitotenv.2020.139840

    Article  CAS  Google Scholar 

  203. Viaene J, Van Lancker J, Vandecasteele B et al (2016) Opportunities and barriers to on-farm composting and compost application: a case study from northwestern Europe. Waste Manage 48:181–192. https://doi.org/10.1016/j.wasman.2015.09.021

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the Brazilian Funding Agencies: Brazilian National Council for Scientific and Technological Development (CNPq—302484/2022-1), Coordination of the Superior Level Staff Improvement (CAPES), the support of the Bioprocess and Biotechnology for Food Research Center (Biofood), which is funded through the Research Support Foundation of Rio Grande do Sul (FAPERGS-22/2551-0000397-4), Federal University of Fronteira Sul (UFFS) and Federal University of Santa Catarina (UFSC) for the financial support.

Funding

This study was supported by CAPES, CNPq and FAPERGS.

Author information

Authors and Affiliations

Authors

Contributions

AFC, GF, and HT conceived and designed the study. AFC analyzed the data and drafted the manuscript. TS, CB, NK, VT, RDC, SFB, SK, WM, and FWRJ helped with writing and carefully revising the manuscript. AFC, SLAJ, AJM, GF, and HT critically reviewed and supervised the development of the paper. All authors reviewed and approved the final manuscript.

Corresponding author

Correspondence to Helen Treichel.

Ethics declarations

Conflict of interest

There are no competing interests.

Consent for publication

All authors agreed with this publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Camargo, A.F., Bonatto, C., Scapini, T. et al. Fungus-based bioherbicides on circular economy. Bioprocess Biosyst Eng 46, 1729–1754 (2023). https://doi.org/10.1007/s00449-023-02926-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-023-02926-w

Keywords

Navigation