Skip to main content

Advertisement

Log in

Phytochemistry of Prunus africana and its therapeutic effect against prostate cancer

  • Review Article
  • Published:
Comparative Clinical Pathology Aims and scope Submit manuscript

Abstract

Prostate cancer is still one of the world’s top triggers of mortality. In light of the restricted therapy choices for people with prostate cancer, natural substance-based prevention and therapeutic techniques can contribute significantly to combating this illness. P. africana, a Rosaceae-family evergreen shrub native to Sub-Saharan Africa, has traditionally been used to cure prostate cancer. The focus of this research was therefore to review the phytochemistry of P. africana against prostate cancer. P. africana extracts produced from various plant sections have been reported to constitute a number of phytochemical components. Triterpenoids, phenols, sterols, and fatty acids are the most important. In vitro and in vivo experiments have shown that phytochemicals obtained from P. africana have antiprostate cancer characteristics. P. africana extracts have been shown to have powerful antiangiogenic and antiandrogenic properties, which have been partly attributed to synergistic effects of the constituent compounds. The extracts exert anticancer effect in prostate cancer cells by inducing apoptosis, inhibiting cell growth and proliferation, and suppressing signaling factors that promotes invasion, migration, and metastasis of cancer cells. Although, further preclinical and clinical studies are still needed to provide a more reliable scientific validation on the use of P. africana in cancer treatment. The qualitative synthesis from this review provides an evidence-based platform that will stimulate future studies, with prospects of developing safe, affordable, and effective pharmaceuticals for treating prostate cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alemozaffar M et al (2014) Prediction of erectile function following. JAMA 306(11):1205–1214

    Google Scholar 

  • Allkanjari O, Vitalone TC (2015) What do we know about phytotherapy of benign prostatic hyperplasia? Life Sci 126:42–56

    CAS  PubMed  Google Scholar 

  • Argalef F, Genovese S, Menghini L, Curini M (2003) Chemistry and pharmacology of oxyprenylated secondary plant metabolites. Phytochemistry 68(7):939–953. https://doi.org/10.1016/j.phytochem.2007.01.019

  • Aryee A (2021) In vitro assessment of efficacy and cytotoxicity of Prunus africana extracts on prostate cancer C4–2 cells. 1–24

  • Baniahmad A, Roell D (2011) ‘The natural compounds atraric acid and N-butylbenzene-sulfonamide as antagonists of the human androgen receptor and inhibitors of prostate cancer cell growth molecular. Cellular Endocrinology 332:1–8

    Google Scholar 

  • Barken I, Geller J, Rogosnitzky M (2010) Prophylactic noscapine therapy inhibits human prostate cancer progression and metastasis in a mouse model. Anticancer Res 30(2):399–401

    CAS  PubMed  Google Scholar 

  • Begeno TA (2020) Phytochemical investigation and characterization on the root bark extract of Prunus africana. Chemistry and Materials Research 12(6):8–14

    Google Scholar 

  • Begeno TA, Ashenafi ET, Temesgen AB, Wollela BN (2020) Phytochemical investigation and characterization on the leaf extract of Prunus africana. Int Res J Pure Appl Chem (September):47–57

  • Bektic J, Berger AP, Pfeil K, Dobler G, Bartsch G, Klocker H (2004) Androgen receptor regulation by physiological concentrations of the isoflavonoid genistein in androgen-dependent LNCaP cells is mediated by estrogen receptor. Eur Urol 24:245–251

  • Benitez DA, Hermoso MA, Pozo-Guisado E, Fernández-Salguero PM, Castellón EAR (2009) Regulation of cell survival by resveratrol involves inhibition of NFkB-regulated gene expression in prostate cancer cells. Prostate 69:1045–1054

    CAS  PubMed  Google Scholar 

  • Betti JL (2008) Non-detriment finding report on Prunus africana (Rosaceae) in cameroon. International Expert Workshop on CITES Non-Detriment Findings, projected in Mexico, November 17th-22th, 2008: 41. http://www.conabio.gob.mx/institucion/cooperacion_internacional/TallerNDF/Links-Documentos/CasosdeEstudio/Trees/WG1CS9.pdf

  • Bhanot A, Sharma R, Noolvi MN (2011) ‘Natural sources as potential anti-cancer agents: a review,.’ International Journal of Phytomedicine 3:9–26

    Google Scholar 

  • Bishayee A, Perloff AS, Brankov NM (2011) ‘Triter_penoids as potential agents for the chemoprevention and therapy of breast cancer.’ Front Biosci 6(3):980–996

    Google Scholar 

  • Boderker G, Klooster CV, Weisbord E (2014) Prunus Africana (Hook.F.) Kalkman: the overexploitation of a medicinal plant species and its legal contex. J Altern Complement Med 20:810–822

    Google Scholar 

  • Chang J et al (2018) Matrine inhibits prostate cancer via activation of the unfolded protein response/endoplasmic reticulum stress signaling and reversal of epithelial to mesenchymal transition. Mol Med Rep 18(1):945–957

  • Chaudhary LR, Hruska KA (2003) Inhibition of cell survival signal protein kinase B/Akt by curcumin in human prostate cancer cells. J Cell Biochem 89:1–5

    CAS  PubMed  Google Scholar 

  • Chiu FL, Lin JK (2008) Downregulation of androgen receptor expression by luteolin causes inhibition of cell proliferation and induction of apoptosis in human prostate cancer cells and xenografts. Prostate 68 Prostate 68:61–71

  • Cho HD et al (2018) Auriculasin-induced ROS causes prostate cancer cell death via induction of apoptosis. Food Chem Toxic 111(Dec 2017):660–69. https://doi.org/10.1016/j.fct.2017.12.007

  • Czabotar E, Lessene G, Strasser A, Adams MJ (2014) ‘Control of apoptosis by the BCL-2 protein family: implications for physiology and therapy.’ Nature Reviews. Mol Cell Biol 15:49–63

    Google Scholar 

  • Dai Y, Desano J, Tang W, Meng X, Meng Y, Burstein E, Lawrence TS, Xu L (2010) Natural proteasome inhibitor celastrol suppresses androgen-independent prostate cancer progression by modulating apoptotic proteins and NF-KappaB. PLoS ONE 4:e14153

    Google Scholar 

  • Deep G et al (2017) Silibinin inhibits hypoxia-induced HIF-1α-mediated signaling, angiogenesis and lipogenesis in prostate cancer cells: in vitro evidence and in vivo functional imaging and metabolomics. Mol Carcinog 56(3):833–848

  • Dhar S, Kumar A, Rimando AM, Zhang X, Levenson AS (2015) Resveratrol and pterostilbene epigenetically restore PTEN expression by targeting OncomiRs of the MiR-17 family in prostate cancer. Oncotarget 6:27214–27226

    PubMed  PubMed Central  Google Scholar 

  • Elo JP, Visakorpi T (2001) Molecular genetics of prostate cancer. Ann Med 33(2):130–141

    CAS  PubMed  Google Scholar 

  • El Touny LH, Banerjee PP (2007) Akt–GSK-3 pathway as a target in genistein-induced inhibition of TRAMP prostate cancer progression toward a poorly differentiated phenotype. Carcinogenesis 28:1710–1717

    PubMed  Google Scholar 

  • Erdogan S, Turkekul K, Dibirdik I, Doganlar O, Doganlar ZB, Bilir A, Midkine OG (2018) Downregulation increases the efficacy of quercetin on prostate cancer stem cell survival and migration through PI3K/AKT and MAPK/ERK pathway. Biomed Pharmacother 107:793–805

    CAS  PubMed  Google Scholar 

  • Erdogan S, Turkekul K, Serttas R, Erdogan Z (2017) The natural flavonoid apigenin sensitizes human CD44+prostate cancer stem cells to cisplatin therapy. Biomed Pharmacother 88:210–217

    CAS  PubMed  Google Scholar 

  • Eroglu C, Sec M, Dodurga Y (2015) ‘Assessment of the anticancer mechanism of ferulic acid via cell cycle and apoptotic pathways in human prostate cancer cell lines.’ Tumor Biology 36(12):9437–9446

    CAS  PubMed  Google Scholar 

  • Fang J, Zhou Q, Shi XL, Jiang BH (2007) Luteolin inhibits insulin-like growth factor 1 receptor signaling in prostate cancer cells. Carcinogenesis 28:713–723

    CAS  PubMed  Google Scholar 

  • Feher JM, Nagy A, Flasko T (1994) Epidemiology of prostate cancer. Magyar Urologia 6(3):229–232

    Google Scholar 

  • Ferguson LR, Zhu ST, Harris PJ (2005) Antioxidant and antigenotoxic effects of plant cell wall hydroxycinnamic acids in cultured HT-29 cells. Mol Nutr Food Res 49:585–593

    CAS  PubMed  Google Scholar 

  • Fontana F et al (2020) Natural compounds in prostate cancer prevention and treatment : mechanisms of action and molecular targets

  • Fourneau C, Hocquemiller R, Cavé A (1996) Triterpenes from Prunus africana bark. Phytochemistry 42(5):1387–1389

    CAS  Google Scholar 

  • Freeman MR, Kim J, Lisanti MP, Di Vizio D (2011) A metabolic perturbation by U0126 identifies a role for glutamine in resveratrol-induced cell death. Cancer Biol Ther 12:966–977

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gao S, Liu G-Z, Wang Z (2004) Modulation of androgen receptor-dependent transcription by resveratrol and genistein in prostate cancer cells. Prostate 2004, 59, 214–225. Prostate 59:214–225

    CAS  PubMed  Google Scholar 

  • Garth O, Schouboe J, Nelson A (1960) Oral toxicities of laurie acid and certain laurie acid derivatives

  • Gathumbi PK, Mwangi JW, Mugera GM, Njiro SM (2002) Toxicity of chloroform extract of Prunus africana stem bark in rats: gross and histological lesions. Phytother Res 16(3):244–247

    CAS  PubMed  Google Scholar 

  • Geerlofs L, He Z, Xiao Sa, Xiao ZC (2020) Repeated dose (90 days) oral toxicity study of ursolic acid in Han-Wistar rats. Toxicol Rep 7(March):610–623. https://doi.org/10.1016/j.toxrep.2020.04.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghosh S et al (2021) Current research in pharmacology and drug discovery prostate cancer : therapeutic prospect with herbal medicine. Current Research in Pharmacology and Drug Discovery 2(May):100034. https://doi.org/10.1016/j.crphar.2021.100034

    Article  PubMed  PubMed Central  Google Scholar 

  • Giovannucci E et al (1998) Diabetes mellitus and risk of prostate cancer (United States). Cancer Causes Control 9(1):3–9

    CAS  PubMed  Google Scholar 

  • Grace OM, Prendergast HDV, Jager AK, Van Staden J, Van Wyk AE (2003) Bark medicines used in traditional healthcare in KwaZulu-Natal, South Africa: an inventory. S Afr J Bot 69:301–363

  • Hafeez BB et al (2008) A dietary anthocyanidin delphinidin induces apoptosis of human prostate cancer PC3 cells in vitro and in vivo: involvement of nuclear factor- ΚB signaling. Canc Res 68(20):8564–8572

    Google Scholar 

  • Han K, Lang T, Zhang Z, Zhang Y, Sun Y, Shen Z, Beuerman RW, Zhou L, Min D (2018) Luteolin attenuates wnt signaling via upregulation of FZD6 to suppress prostate cancer stemness revealed by comparative proteomics. Sci Rep 8:8537

    PubMed  PubMed Central  Google Scholar 

  • Hass MA, Nowak DM, Leonova E, Levin RM, Longhurst PA (1999) Identification of components of Prunus africana extract that inhibit lipid peroxidation. Phytomedicine 6(5):379–388

  • Huang Y et al (2019) Ginsenoside Rh2 inhibits angiogenesis in prostate cancer by targeting CNNM1. J Nanosci Nanotechnol 19(4):1942–1950

  • Ide H, Lu Y, Noguchi T, Muto S, Okada H, Kawato S, Horie S (2018) Modulation of AKR1C2 by curcumin decreases testosterone production in prostate cancer. Cancer Sci 109:1230–1238

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jena AK, Vasisht K, Sharma N, Kaur R, Dhingra MS, Karan M (2016) ‘Amelioration of testosterone induced benign prostatic hyperplasia by Prunus species.’ J Ethnopharmacol 190:33–45

    CAS  PubMed  Google Scholar 

  • Jie L (1995) Pharmacology of oleanolic acid and ursolic acid. J Ethnopharmacol 49(2–1):57–68

    Google Scholar 

  • Jiofack T, Fokunang C, Kemeuze V, Fongnzossie E, Tsabang N, Nkuinkeu R, Mapongmetsem PM, Nkongmeneck BA (2008) Ethnobotany and phytopharmacopoea of the south-west ethnoecolological region of cameroon. J Med Plants Res 2:1997–2006

    Google Scholar 

  • Kadu AC, Parich A, Schueler S et al (2012) ‘Bioactive constituents in Prunus africana: geographical variation throughout Africa and associations with environmental and genetic parameters,.’ Phytochemistry 83:70–78

    CAS  PubMed  Google Scholar 

  • Kang H, Lee M, Jang SW (2013) Celastrol inhibits TGF-1-induced epithelial–mesenchymal transition by inhibiting snail and regulating E-cadherin expression. Biochem Biophys Res Commun Biochem 437:550–556

  • Karani LW, Tolo FM, Karanja SM, Khayeka C, Wandabwa. (2013) South African journal of botany safety of Prunus africana and Warburgia ugandensis in asthma treatment. S Afr J Bot 88:183–190. https://doi.org/10.1016/j.sajb.2013.07.007

    Article  Google Scholar 

  • Kashyap D, Sharma A, Tuli HS, Sak K, Mukherjee T, Bishayee A (2018) Molecular targets of celastrol in cancer: recent trends and advancements. Crit Rev Oncol Hematol 128:70–81

    PubMed  Google Scholar 

  • Khan N, Asim M, Afaq F, Zaid MA, Mukhtar H (2008) A novel dietary flavonoid fisetin inhibits androgen receptor signaling and tumor growth in athymic nude mice. Cancer Res 68: 8555–8563

  • Khan HU et al (2020) Food additive ‘lauric acid’ possess non-toxic profile on biochemical, haematological and histopathological studies in female Sprague Dawley (SD) Rats. Peer J(3)

  • Kim SM et al (2010) Combination of ginsenoside Rg3 with docetaxel enhances the susceptibility of prostate cancer cells via inhibition of NF-KappaB. European. J Pharmacol 631(1–3):1–9

  • Kipkore W, Wanjohi B, Rono H, Kigen G (2014) A study of the medicinal plants used by the Marakwet Community in Kenya. J Ethnobiol Ethnomed 10:10–24

    Google Scholar 

  • Komakech R et al (2022) Root extract of a micropropagated Prunus africana medicinal plant induced apoptosis in human prostate cancer cells ( PC-3 ) via caspase-3 activation

  • Komakech R, Kang Y (2019) Ethnopharmacological potential of African cherry [Prunus africana]. Journal of Herbal Medicine 17–18(April):100283. https://doi.org/10.1016/j.hermed.2019.100283

    Article  Google Scholar 

  • Komakech R, Youngmin K, Jun-hwan L, Francis O (2017) A review of the potential of phytochemicals from Prunus africana ( Hook f .) Kalkman stem bark for chemoprevention and chemotherapy of prostate cancer

  • Koros KH, Konje MM, Wambua MM, Chesire KC, Odeny D, Malombe BI (2016) Population status and conservation hotspots of Prunus africana (Hook. F.) Kalkman in South Nandi Forest, Western Kenya. R J Forestry 3

  • Kuchta K, Xiang Y, Huang S, Tang Y, Peng X, Wang X, Zhu Y, Li J, Xu J, Lin Z et al (2017) Celastrol, an active constituent of the TCM plant Tripterygium wilfordii Hook.f., inhibits prostate cancer bone metastasis. Prostate Cancer Prostatic Dis 20: Prostate Cancer Prostatic Dis 20:156–164

  • Lall RK, Syed DN, Khan MI, Adhami VM, Gong Y, Lucey JA, Mukhtar H (2016) Dietary flavonoid fisetin increases abundance of high-molecular-mass hyaluronan conferring resistance to prostate oncogenesis. Carcinogenesis 37:918–928

  • Landis-Piwowar KR, Iyer NR (2014) Cancer chemoprevention: current state of the art. Cancer Growth And Metastasis 7:19–25

  • Li J et al (2011) Berberine suppresses androgen receptor signaling in prostate cancer. Mol Canc Therapeut 10(8):1346–1356

    CAS  Google Scholar 

  • Li X, Song Y, Zhang P et al (2016) ‘Oleanolic acid inhibits cell survival and proliferation of prostate cancer cells in vitro and in vivo through the PI3K/Akt pathway.’ Tumor Biology 37(6):7599–7613

    CAS  PubMed  Google Scholar 

  • Liu C-H, Tang W-C, Sia P, Huang C-C, Yang P-M, Wu M-H, Lai I-L, Lee K-H (2015) Berberine inhibits the metastatic ability of prostate cancer cells by suppressing epithelial-to-mesenchymal transition (EMT)-associated genes with predictive and prognostic relevance. Int J Med Sci 12:63–71

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu J, Wu N et al (2014) Oleanolic acid induces metabolic adaptation in cancer cells by activating the amp-activated protein kinase pathway. J Agric Food Chem 62(24):5528–5537

  • Liu Y, Karaca M, Zhang Z, Gioeli D, Earp HS, Whang YE (2010) Dasatinib inhibits site-specific tyrosine phosphorylation of androgen receptor by Ack1 and Src kinases. Oncogene 29:3208–3216

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lodi A, Saha A, Lu X, Wang B, Sentandreu E, Collins M, Kolonin MG, DiGiovanni J, Tiziani S (2017) Combinatorial treatment with natural compounds in prostate cancer inhibits prostate tumor growth and leads to key modulations of cancer cell metabolism. NPJ Precis Oncol 1

  • Lu YF, Wan XL, Yasha Xu, Liu J (2013) Repeated oral administration of oleanolic acid produces cholestatic liver injury in mice. Molecules 18(3):3060–3071

    CAS  PubMed  PubMed Central  Google Scholar 

  • MacDonald RS, Lubahn DB (2007) Common botanical compounds inhibit the Hedgehog signaling pathway in prostate cancer. Cancer Res 70:3382–3390

  • Maina JK, Kareru PG, Gatebe EG, Rotich H, Githira PN, Njonge F, Kimani D, Mutembei JK (2014) Hypoglycemic effects of selected herbal drug formulations from the Kenyan Market. J Nat Prod Plant Res 4:10–17

    Google Scholar 

  • Maiyo F, Moodley R, Singh M (2016) Phytochemistry, cytotoxicity and apoptosis studies of Β-sitosterol-3-oglucoside and Β -amyrin from Prunus africana. Afr J Tradit Complement Altern Med 13(4):105–112

    CAS  PubMed  PubMed Central  Google Scholar 

  • Markaverich BM, Vijjeswarapu M, Shoulars K, Rodriguez M (2010) Luteolin and gefitinib regulation of EGF signaling pathway and cell cycle pathway genes in PC-3 human prostate cancer cells. J Steroid Biochem Mol Biol 122:219–231

    CAS  PubMed  PubMed Central  Google Scholar 

  • Med H (1972) Pharmacological studied of hepatoprotective compounds from Swertia mileensis. Traditional Med (Zhong Chao Yao) 6:T47–62

  • Meng Y et al (2015) Ursolic acid induces apoptosis of prostate cancer cells via the PI3K/ Akt/MTOR pathway. Am J Chin Med 43(7):1471–1486

    CAS  PubMed  Google Scholar 

  • Morgentaler A (2006) Testosterone and prostate cancer: an historical perspective on a modern myth. Eur Urol 50(5):935–939

    CAS  PubMed  Google Scholar 

  • Mori A et al (2006) Capsaicin, a component of red peppers, inhibits the growth of androgen-independent, P53 mutant prostate cancer cells. Canc Res 66(6):3222–3229

    CAS  Google Scholar 

  • Mottet N et al (2015) Guidelines on prostate cancer. Update 53(February): 31–45. http://www.uroweb.org/fileadmin/tx_eauguidelines/2005/Pocket/Prostate_Cancer.pdf

  • Mukherji D, Temraz S, Wehbe D, Shamseddine A (2013) ‘Angiogenesis and anti-angiogenic therapy in prostate cancer.’ Crit Rev Oncol Hematol 87(2):122–131

    PubMed  Google Scholar 

  • Kanyoni JM, Kariuki KJ, Reuben T, Kibe KG (2019) The phytochemical components and acute toxicity of methanolic stem bark extract of Prunus africana the phytochemical components and acute toxicity of methanolic stem bark extract of Prunus africana. (February)

  • Nabende NPN, Karanja S, Mwatha J, Wachira SW (2015) Anti-proliferative activity of Prunus africana, Warburgia stuhlmannii and Maytenus senegalensis extracts in breast and colon cancer cell lines. Eur J Med Plants 5(4):366–376

    Google Scholar 

  • Nakamura K, Yasunaga Y, Segawa T, Ko D, Moul J, Srivastava S, Rhim J (2002) Curcumin down-regulates AR gene expression and activation in prostate cancer cell lines. Int J Oncol 21:825–830

    CAS  PubMed  Google Scholar 

  • Nasri H, Hedayatollah S (2013) Toxicity and safety of medicinal plants. 2(2):21–22

  • Niederprum HJ, Schweikert HU, Thuroff JW, Zanker KS (1995) Inhibition of steroid 5?−reductase activity by aliphatic fatty acids: candidates for chemoprevention of prostate cancer. Ann N Y Acad Sci 768(1):227–230

    PubMed  Google Scholar 

  • Nyamai D, Mawia AM, Wanbua FK, Njorog A, Matheri F (2015) Phytochemical profile of Prunus africana stem bark from Kenya. J Pharmacognd Natural Produc 1:110

  • Nyamai DW, Arika WM, Rachuonyo HO, Wambani JR, Ngugi MP (2016) ‘Herbal management of benign prostatic hyperplasia,.’ Journal of Cancer Science & Therapy 8(5):130–134

    Google Scholar 

  • Ochwang’i CN, Kimwele JA, Oduma PK Gathumbi SG, Kiama JM (2014) ‘Medicinal plants used in treatment and management of cancer in Kakamega County, Kenya.’ J Ethnopharmacol 151(3):1040–1055

    Google Scholar 

  • Ou S, Kwok KC (2004) Ferulic acid: pharmaceutical functions, preparation and applications in food. J Sci Food Agric 84:1261–1269

    CAS  Google Scholar 

  • Pagano E, Laudato M, Griffo M et al (2014) Phytotherapy of benign prostatic hyperplasia. a mini review. Phytother Res 28:949–955

    CAS  PubMed  Google Scholar 

  • Papaioanno M, Schleich S, Roel D et al (2010) ‘NBBS isolated from Pygeum africanum bark exhibits androgen antagonistic activity, inhibits AR nuclear translocation and prostate cancer cell growth.’ Invest New Drugs 28(6):729–743

    Google Scholar 

  • Papaioannou M, Schleich S, Roell D et al (2019) ‘NBBS isolated from Pygeum africanum bark exhibits androgen antagonistic activity, inhibits AR nuclear translocation and prostate cancer cell growth.’ Invest New Drugs 28(6):729–743

    Google Scholar 

  • Papaioannoua M, Soderholma A, Honge A et al (2013) ‘Computational and functional analysis of the androgen receptor antagonist atraric acid and its derivatives.’ Anticancer Agents Med Chem 13(5):801–810

    Google Scholar 

  • Pernar CH, Ericka ME, Kathryn, KM, Lorelei AM (2018) The epidemiology of prostate cancer. Cold Spring Harbor Perspect Med 8(12)

  • Rabzia A et al (2017) Synergistic anticancer effect of paclitaxel and noscapine on human prostate cancer cell lines. Iran. J Pharm Res (IJPR) 16(4):1432–1442

    CAS  Google Scholar 

  • Ren F, Zhang S, Mitchell SH, Butler R, Young CY (2000) Tea polyphenols down-regulate the expression of the androgen receptor in LNCaP prostate cancer cells. Oncogene 19:1924–1932

  • Ride CV, Janardhan KS, Rao D, Morrison JP, Harry GJ, Mc Pherson CP (2012) Evaluation of N-butylbenzenesulfonamide (NBBS) neurotoxicity in Sprague-Dawley male rats following 27-day oral exposure. Neurotoxicology 33(6):1528–1535

    Google Scholar 

  • Safe SH, Prather PL, Brents LK, Chadalapaka G, Jutooru I (2012) ‘Unifying mechanisms of action of the anticancer activities of triterpenoids and synthetic analogs’. Anticancer Agents Med Chem 12(10):1211–1220

    PubMed  Google Scholar 

  • Schleich S, Papaioannou M, Baniahmad A, Matusch R (2006) ‘Activity-guided isolation of an antiandrogenic compound of Pygeum africanum.’ Planta Med 72:547–551

    Google Scholar 

  • Shao L, Zhou Z, Cai Y, Castro P, Dakhov O, Shi P, Bai Y, Ji H, Shen W, Wang J (2013) Celastrol suppresses tumor cell growth through targeting an AR-ERG-NF-ΚB pathway in TMPRSS2/ERG fusion gene expressing prostate cancer. PLoS ONE 8:e58391

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shenouda NS, Sakla MS, Newton LG, Besch-Williford C, Greenberg NM, MacDonald RS, Lubahn DB (2007) Phytosterol Pygeum africanum regulates prostate cancer in vitro and in vivo. Endocrine 31:72–81

  • Simbo DJ (2010) An ethnobotanical survey of medicinal plants in Babungo, Northwest Region, Cameroon. J Ethnobiol Ethnomed 6:8

    PubMed  PubMed Central  Google Scholar 

  • Singh GB, Singh S, Bani S, Gupta BD, Banerjee SK (1992) Anti-inflammatory activity of oleanolic acid in rats and mice. J Pharm Pharmacol 44:456–458

    CAS  PubMed  Google Scholar 

  • Slusarz A, Shenouda NS, Sakla MS, Drenkhahn SK, Narula AS, MacDonald RS, Besch-Williford CL, Lubahn DB (2010) Common botanical compounds inhibit the hedgehog signaling pathway in prostate cancer. Cancer Res 70:3382–3390

    CAS  PubMed  Google Scholar 

  • Stanford JL et al (1999) Prostate cancer trends 1973–1995. 4543. http://seer.cancer.gov/publications/prostate/

  • Stark DT, Mtui JD, Balemba OB (2013) Review ethnopharmacological survey of plants used in the traditional treatment of diarrhea in Africa: future perspectives for integration into modern medicine. Gastrointestinal pain, inflammation and. Animals 3:158–227

    PubMed  PubMed Central  Google Scholar 

  • Stewart KM (2003) The African cherry (Prunus africana): can lessons be learned from an over-exploited tree? J Ethnopharmacol 89:3–13

    CAS  PubMed  Google Scholar 

  • Strong MJ, Garruto MR, Wolff V, Chou SM, Fox SD, Yanagihara R (1991) ‘N-butyl benzenesulfonamide: a neurotoxic plasticizer inducing a spasticmyelopathy in rabbits.’ Acta Neuropathol 81(3):235–241

    Google Scholar 

  • Suh Y, Afaq F, Khan N, Johnson JJ, Khusro FH, Mukhtar H (2010) Fisetin induces autophagic cell death through suppression of MTOR signaling pathway in prostate cancer cells. Carcinogenesis 31:1424–1433

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tada Y, Tayama K, Aoki N (1999) Acute oral toxicity of ferulic acid, natural food additive, in rats. Ann Rep Tokyo Metr Lab P.H 50:311–313

  • Ting H, Deep G, Agarwal C, Agarwal R (2014) ‘The strategies to control prostate cancer by chemoprevention approaches,.’ Mutat Res 760:1–15

    CAS  PubMed  PubMed Central  Google Scholar 

  • van der Logt EM, Roelofs HM, Nagengast FM, Peters WH (2003) Induction of rat hepatic and intestinal UDP-glucuronosyltransferases by naturally occurring dietary anticarcinogens. Carcinogenesis 24:1651–1656

    PubMed  Google Scholar 

  • Von Holtz RL, Fink CS, Awad AB (1998) Beta-Sitosterol activates the sphingomyelin cycle and induces apoptosis in LNCaP human prostate cancer cells. Nutr Cancer 32(1):8–12

  • Vijayababu MR, Kanagaraj P, Arunkumar A, Ilangovan R, Dharmarajan A, Arunakaran J (2006) Quercetin induces P53-independent apoptosis in human prostate cancer cells by modulating Bcl-2-related proteins: a possible mediation by IGFBP-3. Oncol Res 16:67–74

    CAS  PubMed  Google Scholar 

  • Wang WB, Feng LX, Yue QX, Wu WY, Guan SH, Jiang BH, Yang M, Liu X, Guo DA (2012) Paraptosis accompanied by autophagy and apoptosis was induced by celastrol, a natural compound with influence on proteasome, ER stress and Hsp90. J Cell Physiol 227:2196–2206

    CAS  PubMed  Google Scholar 

  • Wirth MP, Hakenberg OW, Froehner M (2007) Antiandrogens in the treatment of prostate cancer. Eur Urol 51(2):306–314

    CAS  PubMed  Google Scholar 

  • Xiao D, Powolny AA, Antosiewicz J, Hahm ER, Bommareddy A, Zeng Y, Desai D, Amin S, Herman-Antosiewicz SV, Singh A (2009) Cellular responses to cancer chemopreventive agent D, L-sulforaphane in human prostate cancer cells are initiated by mitochondrial reactive oxygen species. Pharm Res 26:1729–1738

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xu LZ, Wan ZX (1980) The effect of oleanolic acid on acute hepatitis (70 cases). Human Medicine 7:50–52

    Google Scholar 

  • Xu SL (1985) Effects of oleanolic acid on chronic hepatitis: 188 case reports. Symposium on Oeanolic Acid 23–25

  • Yadav VR, Prasad S, Sung B, Kannappan R, Aggarwal BB (2010) ‘Targeting inflammatory pathways by triterpenoids for prevention and treatment of cancer,.’ Toxins 2(10):2428–2466

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yang GW, Jiang JS, Lu WQ (2015) ‘Ferulic acid exerts anti-angiogenic and anti-tumor activity by targeting fibroblast growth factor receptor 1-mediated angiogenesis’. Int J Mol Sci 16(10):24011–24031

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yang H, Dou PQ (2010) ‘Targeting apoptosis pathway with natural terpenoids: implications for treatment of breast and prostate cancer.’ Curr Drug Targets 11(6):733–744

    Google Scholar 

  • Youn D-H et al (2018) Berberine improves benign prostatic hyperplasia via suppression of 5 alpha reductase and extracellular signal-regulated kinase in vivo and in vitro. Front Pharmacol 9:773

    PubMed  PubMed Central  Google Scholar 

  • Zhang C, Sheng J, Li G, Zhao L, Wang Y, Yang W, Yao X, Sun L, Zhang Z, Cui R (2019) Effects of berberine and its derivatives on cancer: a systems pharmacology review. Front Pharmacol 10:1461

  • Zhang H, Zheng J, Shen H, Huang Y, Liu T, Xi H, Chen C (2018) Curcumin suppresses in vitro proliferation and invasion of human prostate cancer stem cells by modulating DLK1-DIO3 imprinted gene cluster microRNAs. Genet Test Mol Biomarkers 22:43–50

    CAS  PubMed  Google Scholar 

  • Zhang LY, Wu YL, Gao XH, Guo F (2014) Mitochondrialproteincyclophilin-D-mediatedprogrammednecrosis attributes to berberine-induced cytotoxicity in cultured prostate cancer cells. Biochem Biophys Res Commun 450:697–703

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Jennifer Nambooze acknowledges the Organization for Women in Science for the Developing World (OWSD) and Swedish International Development Cooperation Agency (SIDA).

Funding

This was research supported by the University of the Free state, Bloemfontein, South Africa.

Author information

Authors and Affiliations

Authors

Contributions

The article’s preparation was done collaboratively by all the authors.

Corresponding author

Correspondence to Jennifer Nambooze.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nambooze, J., Erukainure, O.L. & Chukwuma, C.I. Phytochemistry of Prunus africana and its therapeutic effect against prostate cancer. Comp Clin Pathol 31, 875–893 (2022). https://doi.org/10.1007/s00580-022-03382-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00580-022-03382-w

Keywords

Navigation