Skip to main content
Log in

Genome size in Dahlia Cav. (Asteraceae–Coreopsideae)

  • Original Article
  • Published:
Plant Systematics and Evolution Aims and scope Submit manuscript

Abstract

The genus Dahlia (Asteraceae–Coreopsideae) is monophyletic according to a recent DNA phylogeny (ETS and ITS of rDNA). Traditionally, the genus has been divided into sections, but these have been shown not to be monophyletic. We have studied variation in genome size (DNA C-values) in a sample of species to investigate the possible effects of secondary metabolites on flow cytometry and Feulgen densitometry, and to see whether genome size variation has any systematic or phylogenetic significance. Using a range of cultivars, secondary compounds from corollas were shown to have only minor effects on the Feulgen method; the floral pigments were found to be relatively inert and seemed to have been extracted on fixation with acetic methanol. Freshly expanded corollas showed apparent apoptotic DNA decay in epidermal cells, so need to be used with caution. Flow cytometric measurements with propidium iodide in some cultivars resulted in a very similar average genome size (2C = 8.62 pg) as compared with Feulgen densitometry (2C = 8.84 pg). Leaf cytosol of D. variabilis has a demonstrable inhibitory effect on propidium iodide fluorescence, which may explain some of the intraspecific variation of C-values observed. DNA 2C-values ranged from 3.30 pg in D. dissecta (2n = 34) to 9.62 pg in a D. variabilis cultivar (2n = 64). The D. variabilis cultivars had broadly similar C-values showing a 1.16-fold range between cultivars. Some of this variation probably results from technical variables and the extent of genuine variation is uncertain. The highest 2Cx-value occurred in one D. coccinea accession (2.47 pg, 2n = 32; x = 8). D. coccinea with 2n = 64 showed slightly reduced Cx-values compared to D. coccinea with 2n = 32. Artificially produced interspecific hybrids had C-values that corresponded closely with expectations from the measured values obtained from their parents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig 3
Fig. 4

Similar content being viewed by others

References

  • Baranyi M, Greilhuber J (1996) Flow cytometric and Feulgen densitometric analysis of genome size variation in Pisum. Theor Appl Genet 92:297–307

    Article  Google Scholar 

  • Baranyi M, Greilhuber J (1999) Genome size in Allium: in quest of reproducible data. Ann Bot 83:687–695

    Article  Google Scholar 

  • Bennett MD, Leitch IJ (2005) Plant DNA C-values database (release 4.0, October 2005) http://data.kew.org/cvalues/

  • Bennett MD, Price HJ, Johnston JS (2008) Anthocyanin inhibits propidium iodide DNA fluorescence in Euphorbia pulcherrima: implications for genome size variation and flow cytometry. Ann Bot 101:777–790

    Article  PubMed  Google Scholar 

  • Bureš P, Pavlíček T, Horová I, Nevo E (2004) Microgeographic genome size differentiation of the carob tree, Ceratonia siliqua, at ‘Evolution Canyon’, Israel. Ann Bot 93:529–535

    Article  PubMed  CAS  Google Scholar 

  • de Laat AMM, Göhde W, Vogelzang (1987) Determination of ploidy of single plants and plant populations by flow cytometry. Pl Breed 99:303–307

  • Dimitrova D, Ebert I, Greilhuber J, Kozhuharov S (1999) Karyotype constancy and genome size variation in Bulgarian Crepis foetida s.l. (Asteraceae). Pl Syst Evol 217:245–257

    Article  Google Scholar 

  • Doležel J, Bartoš J (2005) Plant DNA flow cytometry and estimation of nuclear genome size. Ann Bot 95:99–110

    Article  PubMed  CAS  Google Scholar 

  • Doležel J, Greilhuber J, Lucretti S, Meister A, Lysák MA, Nardi L, Obermayer R (1998) Plant genome size estimation by flow cytometry: inter-laboratory comparison. Ann Bot 82(Suppl A):17–26

    Article  Google Scholar 

  • Doležel J, Bartoš J, Voglmayr H, Greilhuber J (2003) Nuclear DNA content and genome size of trout and human. Cytometry 51A:127–128

    Article  Google Scholar 

  • Doležel J, Greilhuber J, Suda J (2007) Estimation of nuclear DNA content in plants using flow cytometry. Nat Protocols 2:2233–2244. doi:10.1038/nprot.2007.310

    Article  CAS  Google Scholar 

  • Galbraith DW, Harkins KR, Maddox JM, Ayres NM, Sharma DP, Firoozabady E (1983) Rapid flow cytometric analysis of the cell cycle in intact plant tissue. Science 220:1049–1051

    Article  PubMed  CAS  Google Scholar 

  • Gatt M, Ding H, Hammett K, Murray B (1998) Polyploidy and evolution in wild and cultivated Dahlia species. Ann Bot 81:647–656

    Article  Google Scholar 

  • Gatt M, Hammett K, Murray B (1999) Confirmation of ancient polyploidy in Dahlia (Asteraceae) species using genomic In situ hybridization. Ann Bot 84:39–48

    Article  Google Scholar 

  • Gatt MK, Hammett KRW, Murray BG (2000a) Molecular phylogeny of the genus Dahlia Cav. (Asteraceae, Heliantheae–Coreopsidinae) using sequences derived from the internal transcribed spacers of nuclear ribosomal DNA. Bot J Linn Soc 133:229–239

    Google Scholar 

  • Gatt M, Hammett K, Murray B (2000b) Interspecific hybridization and the analysis of meiotic chromosome pairing in Dahlia (Asteraceae–Heliantheae) species with x = 16. Pl Syst Evol 221:25–33

    Article  Google Scholar 

  • Giannasi DE (1975a) Flavonoid chemistry and evolution in Dahlia (Compositae). Bull Torrey Bot Club 102:404–412

    Article  Google Scholar 

  • Giannasi DE (1975b) The flavonoid systematics of the genus Dahlia (Compositae). Mem New York Bot Gard 26:1–125

    Google Scholar 

  • Greilhuber J (1986) Severely distorted Feulgen-DNA amounts in Pinus (Coniferophytina) after nonadditive fixations as a result of meristematic self-tanning with vacuole contents. Canad J Gen Cytol 28:409–415

    CAS  Google Scholar 

  • Greilhuber J (1988) “Self-tanning”—a new and important source of stoichiometric error in cytophotometric determination of nuclear DNA content in plants. Pl Syst Evol 158:87–96

    Article  CAS  Google Scholar 

  • Greilhuber J (1998) Intraspecific variation in genome size: a critical reassessment. Ann Bot 82(Suppl A):27–35

    Article  Google Scholar 

  • Greilhuber J (2005) Intraspecific variation in genome size in angiosperms: identifying its existence. Ann Bot 95:91–98

    Article  PubMed  CAS  Google Scholar 

  • Greilhuber J (2008) Cytochemistry and C-values: the less-well-known world of nuclear DNA amounts. Ann Bot 101:791–804. doi:10.1093/aob/mcm250

    Article  PubMed  CAS  Google Scholar 

  • Greilhuber J, Ebert I (1994) Genome size variation in Pisum sativum. Genome 37:646–655

    Article  PubMed  CAS  Google Scholar 

  • Greilhuber J, Temsch EM (2001) Feulgen densitometry: some observations relevant to best practice in quantitative nuclear DNA content determination. Acta Bot Croat 60:285–298

    Google Scholar 

  • Greilhuber J, Doležel J, Lysák MA, Bennett MD (2005) The origin, evolution and proposed stabilization of the terms ‘Genome Size’ and ‘C-value’ to describe nuclear DNA contents. Ann Bot 95:255–260

    Article  PubMed  CAS  Google Scholar 

  • Greilhuber J, Temsch EM, Loureiro J (2007) Nuclear DNA content measurement. In: Doležel J, Greilhuber J, Suda J (eds) Flow cytometry with plant cells. Analysis of genes, chromosomes and genomes. Wiley-VCH, Weinheim, pp 67–101

    Google Scholar 

  • Hansen HV, Hjerting JP (1996) Observations on chromosome numbers and biosystematics in Dahlia (Asteraceae, Heliantheae) with an account on the identity of D. pinnata, D. rosea, and D. coccinea. Nordic J Bot 16:445–455

    Article  Google Scholar 

  • Hansen HV, Sørensen PD (2003) A new species of Dahlia (Asteraceae, Coreopsideae) from Hidalgo state, Mexico. Rhodora 105:101–105

    Google Scholar 

  • Harborne JB, Mabry TJ, Mabry H (1975) The flavonoids. Chapman and Hall, London

    Google Scholar 

  • Hardie DC, Gregory TR, Hebert PDN (2002) From pixels to picograms: a beginner’s guide to genome quantification by Feulgen image analysis densitometry. J Histochem Cytochem 50:735–749

    PubMed  CAS  Google Scholar 

  • Ishikawa M (1911) Zytologische Studien von Dahlien. Bot Mag Tokyo 25:1–8

    Google Scholar 

  • Johnson MAT, Brandham PE (1997) New chromosome numbers in petaloid monocotyledons and in other miscellaneous angiosperms. Kew Bull 52:121–138

    Article  Google Scholar 

  • Keeler KH, Kwankin B, Barnes PW, Galbraith DW (1987) Polyploid polymorphism in Andropogon gerardii. Genome 29:374–379

    Google Scholar 

  • Kornerup A, Wanscher JH (1981) Taschenlexikon der Farben. Muster-Schmidt Verlag, Zürich

    Google Scholar 

  • Lawrence WJC (1929) The genetics and cytology of Dahlia species. J Genet 21:125–159

    Article  Google Scholar 

  • Leitch IJ, Bennett MD (2004) Genome downsizing in polyploid plants. Biol J Linn Soc 82:651–663

    Article  Google Scholar 

  • Leong-Škorničková J, Šida O, Jarolímová V, Sabu M, Fér T, Trávniček P, Suda J (2007) Chromosome numbers and genome size variation in Indian species of Curcuma (Zingiberaceae). Ann Bot 100:505–526

    Article  PubMed  Google Scholar 

  • Loureiro J, Rodriguez E, Doležel J, Santos C (2006) Flow cytometric and microscopic analysis of the effects of tannic acid on plant nuclei and estimation of DNA content. Ann Bot 98:515–527

    Article  PubMed  CAS  Google Scholar 

  • Lysák MA, Doležel J (1998) Estimation of nuclear DNA content in Sesleria (Poaceae). Caryologia 52:123–132

    Google Scholar 

  • Lysák MA, Rostková A, Dixon JM, Rossi G, Doležel J (2000) Limited genome size variation in Sesleria albicans. Ann Bot 86:399–403

    Article  CAS  Google Scholar 

  • Mabry TJ, Markham KR, Thomas MB (1970) The systematic identification of flavonoids. Springer, New York

    Google Scholar 

  • Mehra PN, Renanandan P (1974) Cytological investigations on the Indian compositae. II. Astereae, Heliantheae, Helenieae and Anthemideae. Caryologia 27:255–284

    Google Scholar 

  • Murray BG (2005) When does intraspecific C-value variation become taxonomically significant? Ann Bot 95:119–125

    Article  PubMed  CAS  Google Scholar 

  • Murray BG (2008) Dahlia: cytogenetics and evolution. In: Sharma AK, Sharma A (eds) Plant genome: biodiversity and evolution, vol 1E: Phanerogam–Angiosperm. Oxford and IBH Publishing, New Delhi, pp 347–364

    Google Scholar 

  • Nandini AV, Murray BG, O’Brien IEW, Hammett KRW (1997) Intra- and interspecific variation in genome size in Lathyrus (Leguminosae). Bot J Linn Soc 125:359–366

    Google Scholar 

  • Noirot M, Barre P, Duperray C, Louarn J, Hamon S (2003) Effects of caffeine and chlorogenic acid on propidium iodide accessibility to DNA: consequences on genome size evaluation in Coffee tree. Ann Bot 92:259–264

    Article  PubMed  CAS  Google Scholar 

  • Noirot M, Barre P, Duperray C, Hamon S, de Kochko A (2005) Investigation on the causes of stoichiometric error in genome size estimation using heat experiments: consequences on data interpretation. Ann Bot 95:111–118

    Article  PubMed  CAS  Google Scholar 

  • Price HJ, Hodnett G, Johnston JS (2000) Sunflower (Helianthus annuus) leaves contain compounds that reduce nuclear propidium iodide fluorescence. Ann Bot 86:929–934

    Article  CAS  Google Scholar 

  • Saar DE (2002) Dahlia neglecta (Asteraceae: Coreopsideae), a new species from Sierra Madre Oriental, Mexico. Sida 20:593–596

    Google Scholar 

  • Saar DE, Sørensen PD (2000) Dahlia parvibracteata (Asteraceae, Coreopsideae), a new species from Guerrero, Mexico. Novon 10:407–410

    Article  Google Scholar 

  • Saar DE, Sørensen PD (2005) Dahlia sublignosa (Asteraceae): a species in its own right. Sida 21:2161–2167

    Google Scholar 

  • Saar DE, Sørensen PD, Hjerting JP (2002) Dahlia spectabilis (Asteraceae, Coreopsideae), a new species from San Luis Potosi, Mexico. Brittonia 54:116–119

    Article  Google Scholar 

  • Saar DE, Sørensen PD, Hjerting JP (2003a) Dahlia campanulata and D. cuspidata (Asteraceae, Coreopsideae): two new species from Mexico. Acta Bot Mex 64:19–24

    Google Scholar 

  • Saar DE, Polans NO, Sørensen PD (2003b) A phylogenetic analysis of the genus Dahlia (Asteraceae) based on internal and external transcribed spacer regions of nuclear ribosomal DNA. Syst Bot 28:627–639

    Google Scholar 

  • Schmuths H, Meister A, Horres R, Bachmann K (2004) Genome size variation among accessions of Arabidopsis thaliana. Ann Bot 93:317–321

    Article  PubMed  CAS  Google Scholar 

  • Sherff EE (1955) Dahlia. North American Flora II, part W. New York Botanical Garden, New York, pp 45–59

    Google Scholar 

  • Šmarda P, Bureš P, Horová L (2007) Random distribution pattern and non-adaptivity of genome size in a highly variable population of Festuca pallens. Ann Bot 100:141–150

    Article  PubMed  Google Scholar 

  • Sørensen PD (1969) Revision of the genus Dahlia (Compositae, Heliantheae–Coreopsidinae). Rhodora 71:309–416

    Google Scholar 

  • Sørensen PD (1980) New taxa in the genus Dahlia (Asteraceae, Heliantheae–Coreopsidinae). Rhodora 82:353–360

    Google Scholar 

  • Strother JL, Panero JL (2001) Chromosome studies: Mexican Compositae. Amer J Bot 88:499–502

    Article  Google Scholar 

  • Suda J, Trávníček P (2006) Reliable DNA ploidy determination in dehydrated tissues of vascular plants by DAPI flow cytometry: new prospects for plant research. Cytometry 69A:273–280

    Article  Google Scholar 

  • Suda J, Krahulcová A, Trávníček P, Rosenbaumová R, Peckert T, Krahulec F (2007) Genome size variation and species relationships in Hieracium sub-genus Pilosella (Asteraceae) as inferred by flow cytometry. Ann Bot 100:1323–1335

    Article  PubMed  Google Scholar 

  • The International Register of Dahlia Names (1969 et seq.). Royal Horticultural Society, London

  • Vilhar B, Greilhuber J, Dolenc Koce J, Temsch EM, Dermastia M (2001) Plant genome size measurement with DNA image cytometry. Ann Bot 87:719–728

    Article  CAS  Google Scholar 

  • Walker DJ, Monino I, Correal E (2006) Genome size in Bituminaria bituminosa (L.) C·H. Stirton (Fabaceae) populations: separation of “true” differences from environmental effects on DNA determination. Env Exp Bot 55:258–265

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the Austrian Science Fund (FWF), project 14607B03.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eva M. Temsch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Temsch, E.M., Greilhuber, J., Hammett, K.R.W. et al. Genome size in Dahlia Cav. (Asteraceae–Coreopsideae). Plant Syst Evol 276, 157–166 (2008). https://doi.org/10.1007/s00606-008-0077-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00606-008-0077-0

Keywords

Navigation