Skip to main content
Log in

How to get off the mismatch at the generic rank in African Podostemaceae?

  • Original Article
  • Published:
Plant Systematics and Evolution Aims and scope Submit manuscript

Abstract

The Podostemaceae are highly enigmatic plants which are restricted to submerged river-rock habitats. The availability of new material of nine taxa from continental Africa prompted this new study. Five species belonging to the genera Dicraeanthus, Leiothylax, Letestuella, Macropodiella, and Stonesia and another four species of the large genera Inversodicraea sensu stricto and Ledermanniella sensu stricto have been analysed for the first time. New anatomical and developmental data are described and illustrated by use of microtome sections and scanning electron microscopy. In parallel, phylogenetic analyses of all available sequence data of African Podostemaceae have been conducted using three plastid markers (matK, trnD-trnT, rpoB-trnC). Inversodicraea cf. bosii appears basal within the continental African clade. The remaining taxa are distributed in three, rather poorly supported, major clades which are consistent with their morphology: (1) the Inversodicraea clade is characterised by stem scales and contains members of the former Ledermanniella subg. Phyllosoma with either pollen-monads or dyads; (2) the Ledermanniella-Monad group consisting of Leiothylax, Letestuella, Macropodiella, Stonesia, and Ledermanniella species—all taxa without stem scales but showing pollen as single grains, with Monandriella linearifolia being basal to this clade; (3) the Ledermanniella-Dyad clade including Djinga, Dicraeanthus, and Ledermanniella species without stem scales but with pollen dyads. To reduce the polyphyly of Ledermanniella sensu lato (i.e. sensu C. Cusset) we propose restricting Ledermanniella to the species of the former subgenus Ledermanniella, resurrecting Monandriella as monotypic genus, and accepting the genus name Inversodicraea for members of Ledermanniella subg. Phyllosoma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ameka GK, Pfeifer E, Rutishauser R (2002) Developmental morphology of Saxicolella amicorum and S. submersa (Podostemaceae: Podostemoideae) from Ghana. Bot J Linn Soc Lond 139:255–273

    Article  Google Scholar 

  • Ameka GK, Clerk CG, Pfeifer E et al (2003) Developmental morphology of Ledermanniella bowlingii (Podostemaceae) from Ghana. Plant Syst Evol 237:165–183

    Article  Google Scholar 

  • Ameka GK, Ghogue J-P, Rutishauser R (2009) Podostemaceae research in Africa—state of the art and open questions. In: Proceedings XVIII AETFAT congress Yaoundé, Cameroon (in press)

  • APG II (Bremer B, Bremer K, Chase MW et al) (2003) An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants. Bot J Linn Soc 141:399–436

    Article  Google Scholar 

  • Bezuidenhout A (1964) The pollen of the African Podostemaceae. Pollen Spores 6:463–478

    Google Scholar 

  • Bininda-Emonds ORP (2004) The evolution of supertrees. Trends Ecol Evol 19:315–323

    Article  PubMed  Google Scholar 

  • Cook CDK, Rutishauser R (2007) Podostemaceae. In: Kubitzki K (ed) The families and genera of vascular plants, vol 9. Springer, Berlin, pp 304–344

    Google Scholar 

  • Cusset C (1974) Contribution à l’étude des Podostemaceae. 4. Les genres Ledermanniella, Monandriella et Inversodicraea. Adansonia Sér 2 14(2):271–275

    Google Scholar 

  • Cusset C (1984a) Contribution à l’étude des Podostemaceae. 7. Ledermanniella Engl. sous-genre Phyllosoma C. Cusset. Bull Mus Natl Hist Nat Paris Sér 5 (Sect B Adansonia) 4:361–390

    Google Scholar 

  • Cusset C (1984b) Contribution à l’étude des Podostemaceae. 8. Ledermanniella Engl. sous-genre Ledermanniella. Bull Mus Natl Hist Nat Paris Sér 6 (Sect B Adansonia) 3:249–278

    Google Scholar 

  • Cusset C (1987) Podostemaceae and Tristichaceae. In: Satabié B, Morat Ph (eds) Flore du Cameroun, vol 30. Ceper, Yaoundé, pp 51–99

    Google Scholar 

  • Davis CC, Webb CO, Wurdack KJ et al (2005) Explosive radiation of Malpighiales supports a mid-Cretaceous origin of modern tropical rain forests. Am Nat 165:E36–E65

    Article  PubMed  Google Scholar 

  • De Queiroz A, Gatesy J (2007) The supermatrix approach to systematics. Trends Ecol Evol 22:34–41

    Article  PubMed  Google Scholar 

  • Engler A (1909) Podostemonaceae Africanae III. Ledermanniella nov. gen. Bot Jahrb Syst 43:378–381

    Google Scholar 

  • Engler A (1926) Podostemonaceae Africanae IV. Monandriella nov. gen. Bot Jahrb Syst 60:451–467

    Google Scholar 

  • Engler A (1928) Reihe Podostemales. In: Engler A, Prantl K (eds) Die natürlichen Pflanzenfamilien. Engelmann, Leipzig, pp 1–68, 483–484

  • Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376

    Article  CAS  PubMed  Google Scholar 

  • Fries RE (1914) Podostemonaceae. Wissenschaftliche Ergebnisse der Schwedischen Rhodesia-Kongo-Expedition 1911–1912, vol 1. Aftonbladets, Stockholm, pp 56–58

  • Ghogue JP, Imaïchi R, Kita Y et al (2009) River ecology and distribution of Podostemaceae (river-weeds) in Cameroon, especially its West Province. In: Proceedings XVIII AETFAT congress Yaoundé, Cameroon (in press)

  • Ghogue JP, Ameka GK, Grob V et al (2009b) Enigmatic morphology of Djinga felicis (Podostemaceae–Podostemoideae), a badly known endemic from northwestern Cameroon. Bot J Linn Soc 160:64–81

    Article  Google Scholar 

  • Grob V, Pfeifer E, Rutishauser R (2007) Morphology, development and regeneration of Thelethylax minutiflora, a Madagascan riverweed (Podostemaceae). Phyton 47:205–229

    Google Scholar 

  • Gustafsson MHG, Bittrich V, Stevens P (2002) Phylogeny of Clusiaceae based on rbcL sequences. Int J Plant Sci 163:1045–1054

    Article  CAS  Google Scholar 

  • Higgins DG, Sharp PM (1988) CLUSTAL: a package for performing multiple sequence alignment on a microcomputer. Gene 73:237–244

    Article  CAS  PubMed  Google Scholar 

  • Imaichi R (2007) Elaborate floral development of African Dicraeanthus africanus. In: Abstracts XVIII AETFAT congress Yaoundé, Cameroon, p 137

  • Imaichi R, Hiyama Y, Kato M (2005) Leaf development in absence of a shoot apical meristem in Zeylanidium subulatum (Podostemaceae): evolutionary implications. Ann Bot 96:51–58

    Article  PubMed  PubMed Central  Google Scholar 

  • Jäger-Zürn I (1999) Developmental morphology of the shoot system of Podostemum subulatum (Podostemaceae–Podostemoideae). Beitr Biol Pflanzen 71:281–334

    Google Scholar 

  • Jäger-Zürn I (2000) The unusual ramification mode of Sphaerothylax abyssinica (Wedd.) Warm. (Podostemaceae–Podostemoideae). Flora 195:200–227

    Article  Google Scholar 

  • Jäger-Zürn I (2008) Morphological analysis of shoots and roots in Thelethylax minutiflora and T. insolata (Podostemaceae–Podostemoideae): taxonomic and evolutionary implications. Bot Jahrb Syst 127:245–272

    Article  Google Scholar 

  • Jäger-Zürn I, Novelo AR, Philbrick CT (2006) Microspore development in Podostemaceae–Podostemoideae, with implications on the characterization of the subfamilies. Plant Syst Evol 256:209–216

    Article  Google Scholar 

  • Kelly LJ, Ameka GK, Chase MW (2009) DNA barcoding of African Podostemaceae (river-weeds): a test of proposed barcode regions. Plant Syst Evol (in press)

  • Kita Y, Kato M (2001) Infrafamilial phylogeny of the aquatic angiosperm Podostemaceae inferred from the nucleotide sequence of the matK gene. Plant Biol 3:156–163

    Article  CAS  Google Scholar 

  • Kita Y, Imaichi R, Ghogue J-P et al (2005) Molecular phylogeny of Cameroonian and Ghanaian Podostemaceae. In: Abstract poster, international botanical congress, Vienna

  • Kita Y, Koi S, Rutishauser R et al (2008) A new species of Ledermanniella (Podostemaceae) from Cameroon. Acta Phytotaxon Geobot 59:223–227

    Google Scholar 

  • Koi S, Kato M (2007) Developmental morphology of the shoot in Weddellina squamulosa and implications for shoot evolution in the Podostemaceae. Ann Bot 99:1121–1130

    Article  PubMed  PubMed Central  Google Scholar 

  • Koi S, Fujinami R, Kubo N et al (2006) Comparative anatomy of root meristem and root cap in some species of Podostemaceae and the evolution of root dorsiventrality. Am J Bot 93:682–692

    Article  PubMed  Google Scholar 

  • Korotkova N, Schneider JV, Quandt D et al (2009) Phylogeny of the eudicot order Malpighiales—analysis of a recalcitrant clade with sequences of the petD group II intron. Plant Syst Evol 257(3–4):189–203

    Google Scholar 

  • Leaché AD, Reeder TW (2002) Molecular systematics of the Eastern fence lizard (Sceloporus undulatus): a comparison of parsimony, likelihood, and Bayesian approaches. Syst Biol 51:44–68

    Article  PubMed  Google Scholar 

  • Lebrun JP, Stork AL (1991). Enumeration des plantes à fleurs d’Afrique tropicale, 1. Généralités et Annonaceae à Pandaceae. Conservatoire et Jardin botaniques de Geneve, Geneva

  • Maddison DR, Maddison WP (2002) MacClade. Version 4. Sinauer, Sunderland

    Google Scholar 

  • Maddison WP, Maddison DR (2007) Mesquite: a modular system for evolutionary analysis. Version 1.12, pp 315–319. http://mesquiteproject.org

  • Mason-Gamer RJ, Kellogg EA (1996) Testing for phylogenetic conflict among molecular data sets in the tribe Triticeae (Gramineae). Syst Biol 45:524–545

    Article  Google Scholar 

  • Moline PM, Don L, Philbrick CT et al (2006) Comparative morphology and molecular systematics of Podostemum (including Crenias)–American river-weeds (Podostemaceae). Bot Jahrb Syst 126:427–476

    Article  Google Scholar 

  • Moline PM, Thiv M, Ameka GK et al (2007) Comparative morphology and molecular systematics of African Podostemaceae–Podostemoideae, with emphasis on Dicraeanthus and Ledermanniella from Cameroon. Int J Plant Sci 168:159–180

    Article  CAS  Google Scholar 

  • Pfeifer E, Grob V, Thiv M et al (2009) Stonesia ghoguei—peculiar morphology of a new Cameroonian species (Podostemaceae–Podostemoideae). Novon 19:102–116

    Article  Google Scholar 

  • Philbrick CT, Novelo RA (2004) Monograph of Podostemum (Podostemaceae). Syst Bot Monogr 70:1–106

    Article  Google Scholar 

  • Posada D, Crandall KA (1998) MODELTEST: testing the model of DNA substitution. Bioinformatics 14:817–818

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez F, Rodriguez JF, Oliver A et al (1990) The general stochastic model of nucleotide substitution. J Theor Biol 142:485–501

    Article  CAS  PubMed  Google Scholar 

  • Rutishauser R, Grubert M (2000) Developmental morphology of Apinagia multibranchiata (Podostemaceae) from the Venezuelan Guyanas. Bot J Linn Soc 132:299–323

    Article  Google Scholar 

  • Rutishauser R, Pfeifer E, Novelo RA et al (2005) Diamantina lombardii—an odd Brazilian member of the Podostemaceae. Flora 200:245–255

    Article  Google Scholar 

  • Rutishauser R, Pfeifer E, Bernhard A (2007) Podostemaceae of Africa and Madagascar: keys to genera and species, including genera descriptions, illustrations to all species known, synonyms, and literature list. Revised version 20-07-2007 (first version 2004). http://www.systbot.uzh.ch/podostemaceae

  • Rutishauser R, Grob V, Pfeifer E (2008) Plants are used to having identity crises. In: Minelli A, Fusco G (eds) Key themes in evolutionary developmental biology. Cambridge University Press, Cambridge, pp 194–213

    Google Scholar 

  • Sanderson MJ, Purvis A, Henze C (1998) Phylogenetic supertrees: assembling the trees of life. Tree 13:105–109

    CAS  PubMed  Google Scholar 

  • Schnell R (1998) Anatomie des Podostémacées. In: Carlquist S, Cutler DF, Fink S, Ozenda P, Roth I, Ziegler H (eds) Encyclopedia of plant anatomy: extreme adaptations in angiospermous hydrophytes. Borntraeger, Berlin, pp 197–283

    Google Scholar 

  • Sehgal A, Sethi M, Mohan Ram HY (2002) Origin, structure and interpretation of thallus in Hydrobryopsis sessilis (Podostemaceae). Int J Plant Sci 163:891–905

    Article  Google Scholar 

  • Sehgal A, Khurana JP, Sethi M et al (2007) Organ identity of the thalloid plant body of Griffithella hookeriana and Polypleurum stylosum—Podostemoideae (Podostemaceae). Plant Syst Evol 267:93–104

    Article  Google Scholar 

  • Shaw J, Lickey E, Beck J et al (2005) The tortoise and the hare II: relative utility of 21 noncoding chloroplast DNA. Am J Bot 92:142–166

    Article  CAS  PubMed  Google Scholar 

  • Sober E (2004) The contest between parsimony and likelihood. Syst Biol 53:644–653

    Article  PubMed  Google Scholar 

  • Taberlet P, Gielly L, Pautou G et al (1991) Universal primers for amplification of three non-coding regions of chloroplast DNA. Plant Mol Biol 17:1105–1109

    Article  CAS  PubMed  Google Scholar 

  • Warming E (1881) Familien Podostemaceae I. Kgl Danske Vidensk Selsk Nat Math Afd 2:1–34

    Google Scholar 

  • Warming E (1891) Familien Podostemaceae IV. Kgl Danske Vidensk Selsk Nat Math Afd 7:133–179

    Google Scholar 

  • Warming E (1899) Familien Podostemaceae V. Kgl Danske Vidensk Selsk Nat Math Afd 9:105–154

    Google Scholar 

  • Wiens JJ (2006) Missing data and the design of phylogenetic analyses. J Biomed Inform 39:34–42

    Article  CAS  PubMed  Google Scholar 

  • Wurdack KJ, Davis CC (2009) Malpighiales phylogenetics: gaining ground on one of the most recalcitrant clades in the angiosperm tree of life. Am J Bot 96:1551–1570

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to express our thanks to G. Ameka (Legon, Ghana) for his help with the field work, U. Jauch (Institute of Plant Biology, University of Zurich) for his technical assistance with scanning electron microscopy, K. Esfeld (University of Bern) for her DNA laboratory work, and P. K. Endress (University of Zurich) as reviewer for his precious comments on the manuscript. This paper is part of a research project supported by the Swiss National Science Foundation (grant No. 3100AO-105974 to R. Rutishauser).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mike Thiv.

Electronic supplementary material

This file is unfortunately not in the Publisher's archive anymore: Supplementary doc S1 (NEX 69 kb)

Appendix 1: Morphological characters

Appendix 1: Morphological characters

Morphological characters and characters states used for African Podostemaceae modified and supplemented after Moline et al. (2007) and Philbrick and Novelo (2004).

  1. 1.

    Maximum stamen number: 0 = two (or three but never more), 1 = one.

  2. 2.

    Third tepal on andropodium: 0 = absent, 1 = present.

  3. 3.

    Pollen union: 0 = monads, 1 = dyads, write (01) if loose dyads present or a mixture of monads to dyads with a ratio from 1:4 to 4:1 (as found in Djinga and Stonesia pro parte).

  4. 4.

    Ovary position of flower buds in spathella: 0 = erect, 1 = oblique-inclined, 2 = inverted (hanging). Important here is the maximum degree of floral inversion in the spathella. Certain African taxa with completely inverted floral buds such as Inversodicraea ledermannii (Moline et al. 2007) show partial reversal before anthesis to an oblique-inclined position inside the elongating but still closed spathella.

  5. 5.

    Ovary and capsule shape: 0 = spindle-shaped (fusiform) to obovoid and ellipsoidal (at least twice as long as thick), but not flattened, 1 = globose to subglobose (less than twice as long as thick), ellipsoidal and laterally flattened.

  6. 6.

    Gynophore: 0 = absent, 1 = present (at least 1/6 of ovary length).

  7. 7.

    Shape of stigma lobes: 0 = each lobe entire, linear, 1 = lobes branched (multilobed), 2 = each lobe entire, conical (as typical for Dicraeanthus), 3 = each lobe entire, club-shaped.

  8. 8.

    Ribs of mature capsule: 0 = absent, 1 = present.

  9. 9.

    Number of ribs per capsule valve: 0 = none observable, 1 = three ribs per valve, 2 = five or more ribs per valve.

  10. 10.

    Septa in ovary and capsule: 0 = absent (unilocular ovary), 1 = present (bilocular or trilocular ovary).

  11. 11.

    Valve symmetry: 0 = two equal valves (isolobous), 1 = two unequal valves, one persistent.

  12. 12.

    Vegetative stem length: 0 = lacking or <1 cm, 1 = 1–10 cm, 2 = 10–30 cm.

  13. 13.

    Double-sheathed leaves: 0 = absent (or not yet observed), 1 = present.

  14. 14.

    Flower bud origin along stem: 0 = exogenous, usually protected by leaf sheaths in addition to spathella, 1 = endogenous origin in stem cortex (with or without preformed keyholes). Use (01) when intermediacy obvious, as in Djinga.

  15. 15.

    Epiphylly: Additional flowers arising from the clefts of (on) forked leaves: 0 = no epiphyllous flowers observable, 1 = epiphyllous flowers usually observable (as in Ledermanniella letouzeyi and Stonesia ghoguei), (01 if epiphyllous flowers only rarely seen such as in special form of L. bowlingii, shown in Ameka et al. 2009).

  16. 16.

    Maximum leaf length: 0 = <1 cm, 1 = 1–5 cm, 2 = always > 6 cm (often > 20 cm).

  17. 17.

    Blade division of foliage leaves: 0 = forked (at least once, usually several times), 1 = simple and usually filamentous.

  18. 18.

    Stipules: 0 = absent (sheath only), 1 = present (any type, usually two in lateral position, some leaves within same shoot may lack them).

  19. 19.

    Stem scales in addition to foliage leaves (as typical for Inversodicraea): 0 = absent, 1 = present.

  20. 20.

    Shape of stem scales (if present at all): 0 = subulate (entire or with 1 or 2 lateral teeth), 1 = broad and dentate to cristate (with up to 10 teeth). Notice: I. cristata has subulate stem scales just below flowers (Fig. 2b).

  21. 21.

    Root shape: 0 = narrow to broad ribbons with outgrowth of endogenous shoots (flowers) only along flanks, 1 = crustose (disk-like) with outgrowth of endogenous shoots (flowers) on upper surface.

  22. 22.

    Root cap: 0 = absent, 1 = present (at least rudimentary).

  23. 23.

    Root branching: 0 = endogenous, 1 = exogenous outgrowth of daughter roots (lobes).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thiv, M., Ghogue, JP., Grob, V. et al. How to get off the mismatch at the generic rank in African Podostemaceae?. Plant Syst Evol 283, 57–77 (2009). https://doi.org/10.1007/s00606-009-0214-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00606-009-0214-4

Keywords

Navigation