Skip to main content
Log in

Floral ontogeny of Schisandra chinensis (Schisandraceae): implications for androecial evolution within Schisandra and Kadsura

  • Original Article
  • Published:
Plant Systematics and Evolution Aims and scope Submit manuscript

Abstract

The organogenesis of staminate and carpellate flowers of Schisandra chinensis (Schisandraceae) was investigated with scanning electron microscopy, with observations on the development of tepals reported for the first time. The results showed that there is no interval between the initiation of the last tepal and that of the first stamen or carpel, and that the shapes of tepal, stamen, and carpel primordia are similar. The tepals and stamens of staminate flowers are initiated acropetally in a continuous spiral Fibonacci phyllotaxis, with no carpel structures observed; the filaments are not connate. The organogenesis of the carpellate flowers is similar to that of the staminate flowers, but with no evidence of stamen development. The carpels are ascidiate without postgenital fusion. Three androecial characters of Schisandra and Kadsura are discussed in a phylogenetic context. The subglobose or obovoid androecium of Schisandra propinqua and Schisandra plena may be homologous with that in sections Kadsura and Sarcocarpon. The plesiomorphic form of the androecium within the two genera is likely to be elongate with more than ten free stamens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • APG II [Angiosperm Phylogeny Group] (2003) An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants. Bot J Linn Soc 141:399–436

    Article  Google Scholar 

  • APG III [Angiosperm Phylogeny Group] (2009) An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG III. Bot J Linn Soc 161:105–121

    Article  Google Scholar 

  • Bailey IW, Swamy BGL (1951) The conduplicate carpel of dicotyledons and its initial trends of specialization. Am J Bot 38:373–379

    Article  Google Scholar 

  • Endress PK (1994) Diversity and evolutionary biology of tropical flowers. Cambridge University Press, Cambridge

    Google Scholar 

  • Endress PK (2001) The flowers in extant basal angiosperms and inferences on ancestral flowers. Int J Plant Sci 162:1111–1140

    Article  Google Scholar 

  • Endress PK (2008) Perianth biology in the basal grade of extant angiosperms. Int J Plant Sci 169:844–862

    Article  Google Scholar 

  • Endress PK (2010) The evolution of floral biology in basal angiosperms. Philos Trans R Soc Lond B Biol Sci 365:411–421

    Article  PubMed  Google Scholar 

  • Endress PK, Doyle JA (2007) Floral phyllotaxis in basal angiosperms: development and evolution. Curr Opin Plant Biol 10:52–57

    Article  PubMed  Google Scholar 

  • Endress PK, Igersheim A (2000) Gynoecium structure and evolution in basal angiosperms. Int J Plant Sci 161:S211–S223

    Article  Google Scholar 

  • Fan JH, Thien LB, Luo YB (2011) Pollination systems, biogeography, and divergence times of three allopatric species of Schisandra in North America, China, and Japan. J Syst Evol 49:330–338

    Article  Google Scholar 

  • Friedman WE (2008) Hydatellaceae are water lilies with gymnospermous tendencies. Nature 453:94–97

    Article  PubMed  CAS  Google Scholar 

  • Hao G, Chye M-L, Saunders RMK (2001) A phylogenetic analysis of the Schisandraceae based on morphology and nuclear ribosomal ITS sequences. Bot J Linn Soc 135:401–411

    Article  Google Scholar 

  • Igersheim A, Endress PK (1997) Gynoecium diversity and systematics of the Magnoliales and winteroids. Bot J Linn Soc 124:213–271

    Article  Google Scholar 

  • Jalan S (1966) Carpellary and ovular vascularization in two species of Schisandra Michaux. Sci Cult 32:372–373

    Google Scholar 

  • Law YW (1996) Schisandreae (Magnoliaceae). In: Law YW (ed) Flora Reipublicae Popularis Sinicae, vol 30(1), 1st edn. Science Press, Beijing, pp 231–269

    Google Scholar 

  • Liu Z, Lu A-M (1999) Ontogeny of staminate and carpellate flowers of Schisandra sphenanthera (Schisandraceae). Acta Bot Sin 41:1255–1258

    Google Scholar 

  • Liu Z, Wang X-Q, Chen Z-D, Lin Q, Lu A-M (2000) The phylogeny of Schisandraceae inferred from sequence analysis of the nrDNA ITS region. Acta Bot Sin 42:758–761

    CAS  Google Scholar 

  • Liu Z, Lu A-M, Lin Q, Pan K-Y (2001) Organogenesis of staminate flowers in the genus Schisandra and its systematic significance. Acta Bot Sin 43:169–177

    Google Scholar 

  • Liu Z, Hao G, Luo Y-B, Thien LB, Rosso SW, Lu A-M, Chen Z-D (2006) Phylogeny and androecial evolution in Schisandraceae, inferred from sequences of nuclear ribosomal DNA its and chloroplast DNA trnL-F regions. Int J Plant Sci 167:539–550

    Article  CAS  Google Scholar 

  • Lyew J, Li Z, Yuan L-C, Luo Y-B, Sage TL (2007) Pollen tube growth in association with a dry-type stigmatic transmitting tissue and extragynoecial compitum in the basal angiosperm Kadsura longipedunculata (Schisandraceae). Am J Bot 94:1170–1182

    Article  PubMed  Google Scholar 

  • Melville R (1969) Studies in floral structure and evolution. I. The Magnoliales. Kew Bull 23:133–180

    Article  Google Scholar 

  • Ozenda P (1946) Sur l’anatomie libéroligneuse des Schizandracées. Compt Rend Acad Sci 223:207–209

    Google Scholar 

  • Ozenda P (1949) Recherches sur les Dicotylédones apocarpiques. Contribution a l’étude des Angiospermes dites primitives. Publ Lab École Norm Supér 2:i–viii + 1–183 + pl 1–5

  • Qiu YL, Lee J, Bernasconi-Quadroni F, Soltis DE, Soltis PS, Zanis M, Zimmer EA, Chen Z, Savolainen V, Chase MW (1999) The earliest angiosperms: evidence from mitochondrial, plastid and nuclear genomes. Nature 402:404–407

    Article  PubMed  CAS  Google Scholar 

  • Qiu YL, Lee J, Bernasconi-Quadroni F, Soltis DE, Soltis PS, Zanis M, Zimmer EA, Chen Z, Savolainen V, Chase MW (2000) Phylogeny of basal angiosperms: analyses of five genes from three genomes. Int J Plant Sci 161:S3–S27

    Article  CAS  Google Scholar 

  • Qiu YL, Lee J, Whitlock BA, Bernasconi-Quadroni F, Dombrovska O (2001) Was the ANITA rooting of the angiosperm phylogeny affected by long-branch attraction? Mol Biol Evol 18:1745–1753

    Article  PubMed  CAS  Google Scholar 

  • Rudall PJ, Sokoloff DD, Remizowa MV, Conran JG, Davis JI, Macfarlane TD, Stevenson DW (2007) Morphology of Hydatellaceae, an anomalous aquatic family recently recognized as an early-divergent angiosperm lineage. Am J Bot 94:1073–1092

    Article  PubMed  Google Scholar 

  • Rudall PJ, Remizowa MV, Beer AS, Bradshaw E, Stevenson DW, Macfarlane TD, Tuckett RE, Yadav SR, Sokoloff DD (2008) Comparative ovule and megagametophyte development in Hydatellaceae and water lilies reveal a mosaic of features among the earliest angiosperms. Ann Bot 101:941–956

    Article  PubMed  Google Scholar 

  • Saunders RMK (1998) Monograph of Kadsura (Schisandraceae). Syst Bot Monogr 54:1–106

    Article  Google Scholar 

  • Saunders RMK (2000) Monograph of Schisandra (Schisandraceae). Syst Bot Monogr 58:1–146

    Article  Google Scholar 

  • Smith AC (1947) The families Illiciaceae and Schisandraceae. Sargentia 7:1–224

    Google Scholar 

  • Tucker SC, Bourland JA (1994) Ontogeny of staminate and carpellate flowers of Schisandra glabra (Schisandra). Plant Syst Evol (Suppl) 8:137–158

    Google Scholar 

  • Ueda K (1988) Sex change in a woody vine species, Schisandra chinensis, a preliminary note. J Jap Bot 63:319–321

    Google Scholar 

  • Williams EG, Sage TL, Thien LB (1993) Functional syncarpy by intercarpellary growth of pollen tubes in a primitive apocarpous angiosperm, Illicium floridanum (Illiciaceae). Am J Bot 80:137–142

    Article  Google Scholar 

Download references

Acknowledgments

This research was financially supported by the Chinese Academy of Sciences, No. KSCX2-EW-Z-2, and the National Natural Science Foundation of China, Grant Nos. 40830209 and 31100171. We thank Peter K. Endress and an anonymous reviewer for their constructive suggestions. We thank Yin-Hou Xiao and Jie Wen for assistance with SEM observations, Jian-Hua Fan for collecting materials and taking photographs, and Joe Miller and David L. Dilcher for their comments and suggestions on earlier versions of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi-Duan Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dong, XY., Liu, Z., Saunders, R.M.K. et al. Floral ontogeny of Schisandra chinensis (Schisandraceae): implications for androecial evolution within Schisandra and Kadsura . Plant Syst Evol 298, 713–722 (2012). https://doi.org/10.1007/s00606-011-0581-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00606-011-0581-5

Keywords

Navigation