Skip to main content
Log in

The co-crystal of copper(II) phenanthroline chloride complex hydrate with p-aminobenzoic acid: structure, cytotoxicity, thermal analysis, and DFT calculation

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

Complex [Cu(phen)2Cl]Cl∙2PABA∙4H2O has been isolated, where phen ligand is 1,10-phenanthroline and PABA is p-aminobenzoic acid. The complex crystallizes in the centrosymetric (monoclinic) space group P2(1)/n. The unit cell dimensions are a = 10.479(4) Å, b = 22.396(7) Å, and c = 16.212(6) Å. The basic unit structure of complex is distorted trigonal bipyramidal. Two hydrogen-bonded PABA molecules are enclosed through ππ interactions in filled aryl box FAB motif made by juxtaposition of four phen from two opposing cations. While ππ interaction between phen causes the formation of offset face-to-face overlap OFF primary motif. The result is formation of extended (OFF-FAB)n chains. Cyclic voltammetry showed one reversible oxidation reduction process followed by one irreversible oxidation process. Thermal analysis indicated successive loss of crystalline water and crystalline PABA molecules, chloride ions, and phen ligands. DFT study indicates that PABA interacts with phen with binding energy 68.87 kJ mol−1 reflecting strong π-stacking. The charge density in HOMO is localized on the metal halogen bond, whereas in LUMO, it is spread over two phen. The vibrational spectrum of complex was calculated at M05-2X/6-31G(d) and compared with the experimental vibrational spectrum data. The inhibitory concentrations IC50 against carcinoma cells A549 (lung adenocarcinoma) and MDA-MB-231 (breast adenocarcinoma) are 3.4 and 4.5 µM, respectively. IC50 values of new complex are comparable to those of cisplatin and smaller than the values for [Cu(phen)2Cl]Cl∙6.5H2O.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Gandra RM, Mc Carron P, Fernandes MF, Ramos LS, Mello TP, Aor AC, Branquinha MH, McCann M, Devereux M, Santos ALS (2017) Front Microbiol 8:1257

    Article  PubMed  PubMed Central  Google Scholar 

  2. Coyle B, Kinsella P, McCann M, Devereux M, O’Connor R, Clynes M, Kavanagh K (2004) Toxicol In Vitro 18:63

    Article  CAS  PubMed  Google Scholar 

  3. Coyle B, Kavanagh K, McCann M, Devereux M, Geraghty M (2003) Biometals 16:321

    Article  CAS  PubMed  Google Scholar 

  4. Viganor L, Howe O, McCarron P, McCann M, Devereux M (2017) Curr Top Med Chem 17:1280

    Article  CAS  PubMed  Google Scholar 

  5. Turel I, Golobič A, Kljun J, Samastur P, Batista U, Sepčić K (2015) Acta Chim Slov 62:337

    Article  CAS  PubMed  Google Scholar 

  6. Raman N, Raja J (2007) Indian J Chem Sect A 46:1611

    Google Scholar 

  7. Chandraleka S, Ramya K, Chandramohan G, Dhanasekaran D, Priyadharshini A, Panneerselvam A (2014) J Saudi Chem Soc 18:953

    Article  Google Scholar 

  8. Byrnes R, Antholine W, Petering D (1992) Free Radical Bio Med 12:457

    Article  CAS  Google Scholar 

  9. Devereux M, O’Shea D, O’Connor M, Grehan H, Connor G, McCann M, Rosair G, Lyng F, Kellett A, Walsh M, Thati EB (2007) Polyhedron 26:4073

    Article  CAS  Google Scholar 

  10. De Vizcaya-Ruiz A, Rivero-Mueller A, Ruiz-Ramirez L, Kass G, Kelland L, Or R, Dobrota M (2000) Toxicol In Vitro 14:1

    Article  PubMed  Google Scholar 

  11. Allardyce CS, Dyson PJ (2016) Dalton Trans 45:3201

    Article  CAS  PubMed  Google Scholar 

  12. Santini C, Pellei M, Gandin V, Porchia M, Tisato F, Marzano C (2014) Chem Rev 114:815

    Article  CAS  PubMed  Google Scholar 

  13. Hussain A, AlAjmi MF, Rehman MT, Amir S, Husain FM, Alsalme A, Siddiqui MA, AlKhedhairy AA, Khan RA (2019) Sci Rep 9:5237

    Article  PubMed  PubMed Central  Google Scholar 

  14. Wehbe M, Lo C, Leung AWY, Dragowska WH, Ryan GM, Bally MB (2017) Invest New Drugs 35:682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. de Souza ÍP (2019) Drug Des Int Prop Int J 3:333

    Google Scholar 

  16. Ndagi U, Mhlongo N, Soliman ME (2017) Drug Des Devel Ther 11:599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hammud HH, Kortz U, Bhattacharya S, Demirdjian S, Hariri E, Isber S, Choi ES, Mirtamizdoust B, Mroueh M, Daher CF (2020) Inorg Chim Acta 506:119533

    Article  CAS  Google Scholar 

  18. Lu X, Zhang B, Zhang W, Cheng Y, Sun X (2016) Preparation, crystal structure, and antitumor activity of copper complexes of amino acid and o-​phenanthroline or derivatives. Patent CN 105440059, Mar 30, 2016; (2016) Chem Abstr 164: 501169

  19. Saha R, Sengupta S, Dey SK, Steele IM, Bhattacharyya A, Biswas S, Kumar S (2014) RSC Adv 4:49070

    Article  CAS  Google Scholar 

  20. Bond AD (2007) CrystEngComm 9:833

    Article  CAS  Google Scholar 

  21. Zaworotko M, Hammud H, Kravtsov V (2007) Chem Crystallogr 27:219

    Article  Google Scholar 

  22. Abraham RJ, Eivazi F, Pearson H, Smith KMJ (1976) Chem Soc Chem Commun 698–699

  23. Abraham RJ, Eivazi F, Pearson H, Smith KM (1976) J Chem Soc Chem Commun 699–701

  24. Hunter CA, Sanders JKM (1990) J Am Chem Soc 112:5525

    Article  CAS  Google Scholar 

  25. Shao Y, Yin G-Z, Ren X, Zhang X, Wang J, Guo K, Li X, Wesdemiotis C, Zhang W-B, Yang S, Zhu M, Sun B (2017) RSC Adv 7:6530

    Article  CAS  Google Scholar 

  26. Shao C, Grune M, Stolte M, Wurthner F (2012) Chem Eur J 18:13665

    Article  CAS  PubMed  Google Scholar 

  27. Hammud HH, El Hamaoui B, Noubani NH, Feng X, Wu Z-S, Müllen K, Ayub K (2018) Nanosci Nanotechnol-Asia 8:263

    Article  CAS  Google Scholar 

  28. Onawumi OO, Adekunle FA, Ibrahim AO, Rajasekharan MV, Odunola OA (2010) Synth React Inorg Met-Org Chem 40:78

    CAS  Google Scholar 

  29. Liping L, Shidong Q, Pin Y, Miaoli Z (2004) Acta Cryst E60:m574

    Google Scholar 

  30. Sundholm D, Sundberg M, Uggla R (1998) J Phys Chem A 102:137

    Article  Google Scholar 

  31. Suezawa H, Yoshida T, Umezawa Y, Tsuboyama S, Nishio M (2002) Eur J Inorg Chem 12:3148–3155

    Article  Google Scholar 

  32. Bogdanovic G, Spasojevic-de Brie A, Zaric S (2002) Eur J Inorg Chem 7:1599–1602

    Article  Google Scholar 

  33. Janiak C (2000) J Chem Soc Dalton Trans 21:3885–3896

    Article  Google Scholar 

  34. Kabbani A, Zaworotko M, Abourahma H, Walsh R, Hammud H (2004) J Chem Crystallogr 34:749

    Article  CAS  Google Scholar 

  35. Horn C, Berben L, Chow H, Scudder M, Dance I (2002) Cryst Eng Comm 4:7

    Article  Google Scholar 

  36. Russell V, Scudder M, Dance I (2001) J Chem Soc. Dalton Trans 6:789–799

    Article  Google Scholar 

  37. Horn C, Scudder M, Dance I (2000) Cryst Eng Comm 2:196

    Article  Google Scholar 

  38. Shaabani B, Mirtamizdoust B, Viterbo D, Croce G, Hammud H, Hojati-lalemi P, Khandar A (2011) Z Anorg Allg Chem 637:713

    Article  CAS  Google Scholar 

  39. Zaworotko M, Hammud H, Kabbani A, McManus G, Ghannoum A, Masoud M (2009) J Chem Crystallogr 39:853

    Article  CAS  Google Scholar 

  40. Mirtamizdoust B, Trávnícˇek Z, Hanifehpour Y, Talemi P, Hammud H, Joo SW (2017) Ultrason Sonochem 34:255

    Article  CAS  PubMed  Google Scholar 

  41. Chai J-D, Head-Gordon M (2008) Phys Chem Chem Phys 10:6615

    Article  CAS  PubMed  Google Scholar 

  42. Becke AD (1993) J Chem Phys 98:5648

    Article  CAS  Google Scholar 

  43. Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865

    Article  CAS  PubMed  Google Scholar 

  44. Perdew JP, Burke K, Ernzerhof M (1997) Phys Rev Lett 78:1396

    Article  CAS  Google Scholar 

  45. Zhao Y, Schultz NE, Truhlar DG (2006) J Chem Theory Comput 2:364

    Article  PubMed  Google Scholar 

  46. Lakshmipraba J, Arunachalam S, Gandi DA, Thirunalasundari T (2011) Eur J Med Chem 46:3013

    Article  CAS  PubMed  Google Scholar 

  47. Low ML, Cheang CW, Ng PY, Ooi IH, Maah MJ, Chye SM, Tan KW, Ng SW, Ng CH (2017) J Coord Chem 70:223

    Article  CAS  Google Scholar 

  48. Mejia C, Ruiz-Azuara L (2008) Pathol Oncol Res 14:467

    Article  PubMed  Google Scholar 

  49. Kumar V, Mudgal MM, Rani N, Jha A, Jaggi M, Singh AT, Sanna VK, Singh P, Sharma PK, Irchhaiya R, Burman AC (2009) J Enzym Inhib Med Chem 24:763

    Article  CAS  Google Scholar 

  50. Al-Omair MA (2019) Arab J Chem 12:1061

    Article  CAS  Google Scholar 

  51. Mroueh M, Daher C, Hariri E, Demirdjian S, Isber S, Choi ES, Mirtamizdoust B, Hammud HH (2015) Chem Biol Interact 231:53

    Article  CAS  PubMed  Google Scholar 

  52. Hammud HH, Nemer G, Sawma W, Touma J, Barnabe P, Bou-Mouglabey Y, Ghannoum A, El-Hajjar J, Usta J (2008) Chem Biol Interact 173:84

    Article  CAS  PubMed  Google Scholar 

  53. Iglesias S, Alvarez N, Torre MH, Kremer E, Ellena J, Ribeiro RR, Barroso RP, Costa-Filho AJ, Kramer MG, Facchin G (2014) J Inorg Biochem 139:117

    Article  CAS  PubMed  Google Scholar 

  54. Alvarez N, Noble C, Torre MH, Kremer E, Ellena J, de Araujo MP, Costa-Filho AJ, Mendes LF, Kramer MG, Facchin G (2017) Inorg Chim Acta 466:559

    Article  CAS  Google Scholar 

  55. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H, Li X, Caricato M, Marenich AV, Bloino J, Janesko BG, Gomperts R, Mennucci B, Hratchian HP, Ortiz JV, Izmaylov AF, Sonnenberg JL, Williams-Young D, Ding F, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski VG, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark MJ, Heyd JJ, Brothers EN, Kudin KN, Staroverov VN, Keith TA, Kobayashi R, Normand J, Raghavachari K, Rendell AP, Burant JC, Iyengar SS, Tomasi J, Cossi M, Millam JM, Klene M, Adamo C, Cammi R, Ochterski JW, Martin RL, Morokuma K, Farkas O, Foresman JB, Fox DJ (2016) Gaussian 09, Revision C.01. Gaussian Inc, Wallingford

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Deanship of Scientific Research at King Faisal University, Kingdom of Saudi Arabia for the financial support under Nasher Track (Grant No. 186060).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hassan H. Hammud.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (CIF 32 KB)

Supplementary file2 (DOCX 1735 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hammud, H.H., McManus, G.J., Zaworotko, M.J. et al. The co-crystal of copper(II) phenanthroline chloride complex hydrate with p-aminobenzoic acid: structure, cytotoxicity, thermal analysis, and DFT calculation. Monatsh Chem 152, 323–336 (2021). https://doi.org/10.1007/s00706-021-02742-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-021-02742-6

Keywords

Navigation