Skip to main content

Advertisement

Log in

Contrasting Patterns of Soil Chemistry and Vegetation Cover Determine Diversity Changes of Soil Phototrophs Along an Afrotropical Elevation Gradient

  • Published:
Ecosystems Aims and scope Submit manuscript

Abstract

Soil phototrophic microbes play key roles in many ecosystem functions, including nutrient cycling, water absorption and retention, substrate weathering and soil stabilization, as well as colonization and persistence of other organisms. Knowledge about the diversity and biomass of soil phototrophs remains limited, especially in tropical forests and savannas. Here, we investigate changes in the diversity and abundance of soil phototrophs across the 4-km elevation gradient on Mt. Cameroon, Africa, from tropical forests (0–2300 m) to treeless savanna (2300–3600 m) and afroalpine vegetation (3600–4000 m). We evaluated the role of soil chemistry and vegetation cover in shaping phototrophic diversity patterns using soil, tree and herb census data from 224 permanent plots. Cyanobacteria from Chroococcales accounted for 65% of the species richness and > 70% of the biovolume. The highest phototrophic diversity and biovolume were recorded in treeless savanna and afroalpine vegetation, and lowest values in mid-elevation tropical forests with dense understory vegetation and hence limited light availability. Higher diversity and biovolume of soil phototrophs were associated with less productive, well-illuminated soils with lower organic matter and nitrogen content and higher pH, phosphorus and cation content. Changes in microbial richness and biovolume across tropical forests showed a U-shaped elevation pattern, with higher values recorded in coastal and lowland forests up to 1000 m elevation, the lowest values in the mid-elevation open-canopy forests with dense understory vegetation caused by disturbances of forest elephants and higher values again in montane forests between 1800 and 2200 m. Above the tree line, soil phototrophic biovolume also showed a U-shaped elevation pattern, with lower richness recorded in compact grasslands between 2700 and 3400 m. At lower-elevation savanna, soil phototrophs are indirectly supported by regular fires during the dry season, which reduces plant cover and increases soil phosphorus and cations, while barren lava fields at higher elevations around the summit support soil phototrophs directly via increased soil P and K content and indirectly by inhibiting plant growth and vegetation cover. Our results shed light on an overlooked part of soil biodiversity in major tropical ecosystems and uncover the role of various ecological filters in structuring phototrophic microbial communities in tropical soils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • Andersen, R.A. [ed.] 2005. Algal culturing techniques. Elsevier, Amsterdam, p. 578

  • Angel, R., Matthies, D., & Conrad, R., 2011. Activation of methanogenesis in arid biological soil crusts despite the presence of oxygen. PLoS ONE, 6(5), e20453.

  • Angel C.-C., Macias-Rodriguez, L., del-Val, E., Larsen, J., 2016. Ecological functions of Trichoderma spp. and their secondary metabolites in the rhizosphere: interactions with plants. FEMS Microbiology Ecology 92(4), fiw036. DOI: https://doi.org/10.1093/femsec/fiw036.

  • Aschenbach K, Conrad R, Rehakova K, Dolezal J, Janatkova K, Angel R. 2013. Methanogens at the top of the world: occurrence and potential activity of methanogens in newly deglaciated soils in high-altitude cold deserts in the Western Himalayas. Frontiers in Microbiology 4:359. https://doi.org/10.3389/fmicb.2013.00359.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bååth E., Anderson T.H., 2003. Comparison of soil fungal/bacterial ratios in a pH gradient using physiological and PLFA-based techniques. Soil Biology and Biochemistry 35, 955e963.

  • Bachar A, Soares MIM, Gillor O. 2012. The effect of resource islands on abundance and diversity of bacteria in arid soils. Microbial Ecology 63(3):694–700.

    Article  PubMed  Google Scholar 

  • Bahram M, Hildebrand F, Forslund SK, Anderson JL, Soudzilovskaia NA, Bodegom PM, Bengtsson-Palme J, Anslan S, Coelho LP, Harend H, Huerta-Cepas J, Medema MH, Maltz MR, Mundra S, Olsson PA, Pent M, Polme S, Sunagawa S, Ryberg M, Tedersoo L, Bork P. 2018. Structure and function of the global topsoil microbiome. Nature 560:233–237. https://doi.org/10.1038/s41586-018-0386-6.

    Article  CAS  PubMed  Google Scholar 

  • Banoho LPRK, Zapfack L, Weladji RB, Djomo CCh, Nyako MCh, Nasang JM, Tagnang MN, Mbobda RBT. 2020. Biodiversity and carbon sequestration potential in two types of tropical rainforest. Cameroon. Acta Oecologica 105:103562. https://doi.org/10.1016/j.actao.2020.103562.

    Article  Google Scholar 

  • Barberán A, Casamayor OE, Fierer N. 2014. The microbial contribution to macroecology. Frontiers in Microbiology 5:203. https://doi.org/10.3389/fmicb.2014.00203.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bardgett R.D., Jones, A.C., Jones, D.L., Kemmitt, S.J., Cook, R., Hobbs, P.J., 2001.Soil microbial community patterns related to the history and intensity of grazing in sub-montane ecosystems. Soil Biology and Biochemistry 33, 1653e1664.

  • Bataeva YuV, Dzerzhinskaya IS, Yakovleva LV. 2017. Composition of Phototrophs in Different Soil Types of Astrakhan Oblast. Eurasian Soil Science 50(8):943–951.

    Article  CAS  Google Scholar 

  • Belnap J. 2003. The world at your feet: desert biological soil crusts. Frontiers in Ecology and the Environment 1(4):181–189.

    Article  Google Scholar 

  • Belnap, J., Lange, O.L., 2003. Biological Soil Crusts: Structure, Function, and Management, 2nd print. Rev, Berlin.

  • Bonan GB. 2008. Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science 320:1444–1449.

    Article  CAS  PubMed  Google Scholar 

  • ter Braak, C.J.F., Smilauer, P., 2012. Canoco reference manual and users’s guide: sofware for ordination (version 5.0). Ithaca, NY, USA: (Microcomputer Power).

  • Budel B. 1999. Ecology and diversity of rock-inhabiting cyanobacteria in tropical regions. European Journal of Phycology 34(4):361–370.

    Article  Google Scholar 

  • Budel B, Luttge U, Stelzer R, Huber O, Medina E. 1994. Cyanobacteria of Rocks and Soils of the Orinoco Lowlands and the Guayana Uplands, Venezuela. Botanica Acta 107:422–431.

    Article  Google Scholar 

  • Cable, S., Cheek, M., 1998. The plants of Mt Cameroon: a conservation checklist. Royal Botanic Gardens, Kew London.

  • Cardinale BJ, Matulich KL, Hooper DU, Byrnes JE, Duffy E, Gamfeldt L, Balvanera P, O’Connor MI, Gonzalez A. 2011. The functional role of producer diversity in ecosystems. American Journal of Botany 98(3):572–592.

    Article  PubMed  Google Scholar 

  • Casamatta DA, Villanueva ChD, Garvey AD, Stocks HS, Vaccarino M, Dvorak P, Hasler P, Johansen JR. 2020. Reptodigitus chapmanii (nostocales, hapalosiphonaceae) gen. Nov.: a Unique nostocalean (cyanobacteria) genus based on a polyphasic Approach. Journal of Phycology 56:425–436.

    Article  PubMed  Google Scholar 

  • Cheek, M., Cable, S., Heppe, F., Ndam,N., Watts, J., 1996. Mapping plant biodiversity on Mount Cameroon. In: Van der Maesen, L.J.G., van der Burgt, X.M., van Medenbach de Rooy, J.M. (Eds), The biodiversity of African plants. pp 110–120.

  • Cox ER, Hightower J. 1972. Some corticolous algae of McMinn county, Tennessee, U.S.A. Journal of Phycology 8:203–205.

    Article  Google Scholar 

  • Deruelle B, N’ni J, Kambou R. 1987. Mount Cameroon: an active volcano of the Cam-eroon line. Journal of African Earth Sciences 6:197–214.

    CAS  Google Scholar 

  • Djomo Nana E, Sedláček O, Doležal J, Dančák M, Altman J, Svoboda M, Majeský Ľ, Hořák D. 2015. Relationship between Survival Rate of Avian Artificial Nests and Forest Vegetation Structure along a Tropical Altitudinal Gradient on Mount Cameroon. Biotropica 47:758–764.

    Article  Google Scholar 

  • Djomo AN, Grant JA, Lucha CF-B, Gagoe JT, Fonton NH, Scott N, Sonwa DJ. 2017. Forest governance and REDD+ in Central Africa: towards a participatory model to increase stakeholder involvement in carbon markets. International Journal of Environmental Studies 75(2):251–266.

    Article  CAS  Google Scholar 

  • Ferenc M, Fjeldsa J, Sedlacek O, Motombi FN, Nana ED, Mudrova K, Horak D. 2016. Abundance-area relationships in bird assemblages along an Afrotropical elevational gradient: space limitation in montane forest selects for higher population densities. Oecologia 181(1):225–233.

    Article  PubMed  Google Scholar 

  • Ferenc M, Sedláček O, Tropek R, Albrecht T, Altman J, Dančák M, Dolezal J, Janecek S, Maicher V, Majesky L, Motombi FN, Murkwe M, Safian S, Svoboda M, Hořák D. 2018. Something is missing at the bottom: Importance of coastal rainforests for conservation of trees, birds and butterflies in the Mount Cameroon area. African Journal of Ecology 56:679–683.

    Article  Google Scholar 

  • Finkel OM, Burch AY, Lindow SE, Post AF, Belkin S. 2011. Geographical location determines the population structurein phyllosphere microbial communities of asalt-excreting desert tree. Applied and Environmental Microbiology 77(21):7647–7765.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Finkel OM, Burch AY, Elad T, Huse SM, Lindow SE, Post AF, Belkin S. 2012. Distance-decay relationships partially determine diversity patterns of phyllosphere bacteria on Tamarix trees across the Sonoran Desert [corrected]. Applied and Environmental Microbiology 78(17):6187–6193.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Franco, A.L.C., Sobral B.W., Silva A.L.C., Wall, D.H., 2019. Amazonian deforestation and soil biodiversity.Conservation Biology 33(3): 590–600.

  • Fraser P, Hall JB, Healey JR. 1998. Climate of the Mount Cameroon Region: Long and medium term rainfall, temperature and sunshine data. Bangor: School of Agricultural and Forest Sciences, University of Wales, Bangor.

    Google Scholar 

  • Gama WA, Laughinghouse HD, St Anna CL. 2014. How diverse are coccoid cyanobacteria? A case study of terrestrial habitats from the Atlantic rainforest (São Paulo, Brazil). Phytotaxa 178(2):061–097.

    Article  Google Scholar 

  • Gomez-Alvarez V, King GM, Nusslein K. 2007. Comparative bacterial diversity in recent Hawaiian volcanic deposits of different ages. FEMS Microbiology Ecology 60:60–73.

    Article  CAS  PubMed  Google Scholar 

  • Gorbushina AA. 2007. Life on the rocks. Environmental Microbiology 9:1613–1631.

    Article  CAS  PubMed  Google Scholar 

  • Grace J, San Jose J, Meir P, Miranda HS, Montes RA. 2006. Productivity and carbon fluxes of tropical savannas. Journal of Biogeography 33(3):387–400.

    Article  Google Scholar 

  • Graham, J. E., Wilcox, L. W., Graham, L. E., 2008. Algae, 2nd Ed. Benjamin Cummings, San Francisco, CA, USA, 720 pp.

  • Gugger M, Molica R, Le Berre B, Dufour P, Bernard C, Humbert J-F. 2005. Genetic diversity of Cylindrospermopsis strains (Cyanobacteria) isolated from four continents. Applied and Environment Microbiology 71(2):1097–1100.

    Article  CAS  Google Scholar 

  • Hentschke, G.S., Johansen, J.R., Pietrasiak, N., Rigonato, J., Fiore, M.F., Sant’Anna, C.L., 2017. Komarekiella atlantica gen. et sp. nov. (Nostocaceae, Cyanobacteria): a new subaerial taxon from the Atlantic Rainforest and Kauai, Hawaii. Fottea, Olomouc, 17(2), 178–190.

  • Hindak, F., 1978. Sladkovodne riasy, Slovenské pedagogické nakladatel'stvo, Bratislava, pp. 728

  • Hoasain, M., Sugiyama, S., 2011. Influences of plant litter diversity on decomposition, nutrient mineralization and soil microbial community structure. Grassland Science 57 (2) https://doi.org/10.1111/j.1744-697X.2011.00211.x.

  • Hodač, L., Hallmann, Ch., Spitzer, K., Elster, J., Fashauer, F., Brinkmann, N., Lepka, D., Diwan, V., Friedl, T., 2016. Widespread green algae Chlorella and Stichococcus exhibit polar-temperate and tropical-temperate biogeography. FEMS Microbiology Ecology, 92, fiw122. doi: https://doi.org/10.1093/femsec/fiw122.

  • Hoffmann L. 1989. Algae of terrestrial habitats. Botanical Review 55:77–105.

    Article  Google Scholar 

  • Horak D, Ferenc M, Sedláček O, Motombi FN, Svoboda M, Altman J, Albrecht T, Nana ED, Janeček Š, Dančák M, Majeský L, Lltonga EN, Doležal J. 2019. Forest structure determines spatial changes in avian community along an elevational gradient in tropical Africa. Journal of Biogeography 46(11):2466–2478.

    Article  Google Scholar 

  • Hothorn T, Hornik K, Zeileis A. 2006. Unbiased recursive partitioning: a conditional inference framework. Journal of Computational and Graphical Statistics 15:651–674.

    Article  Google Scholar 

  • Janatková K, Řeháková K, Doležal J, Šimek M, Chlumská Z, Dvorský M, Kopecký M. 2013. Community structure of soil phototrophs along environmental gradients in arid Himalaya. Environmental Microbiology 15:2505–2516.

    Article  PubMed  CAS  Google Scholar 

  • Johansen JR, Schubert LE. 2001. Algae in soils. Nova Hedwigia 123:297–306.

    Google Scholar 

  • Juneja A, Ceballos RM, Murthy GS. 2013. Effects of Environmental Factors and Nutrient Availability on the Biochemical Composition of Algae for Biofuels Production: A Review. Energies 6:4607–4638.

    Article  CAS  Google Scholar 

  • Kastovska K, Elster J, Stibal M, Santruckova H. 2005. Microbial assemblages in soil microbial succession after glacial retreat in Svalbard (high Arctic). Microbial Ecology 50(3):396–407.

    Article  PubMed  Google Scholar 

  • Kemka N, Njiné T, Zébazé Togouet SH, Niyitegeka D, Monkiedje A, Foto Menbohan S, Nola M, Compère P. 2003. Quantitative importance of Cyanobacteria populations in a hypertrophic shallow lake in the subequatorial African region (Yaounde Municipal Lake, Cameroon). Archiv Für Hydrobiology 156(4):495–510.

    Article  Google Scholar 

  • Komárek J. 2013. Cyanoprokaryota - 3. Teil / 3rd part: Heterocytous Genera. In: Büdel B, Gärtner G, Krienitz L, Schagerl M, Eds. Süswasserflora von Mitteleuropa (Freshwater Flora of Central Europe) 19/3, . Heidelberg: Springer Spektrum Berlin. p 1130.

    Google Scholar 

  • Komárek, J., Anagnostidis, K., 1998. Cyanoprokaryota 1.Teil: Chroococcales. In: Ettl, H., Gärtner, G., Heynig, H., Mollenhauer, D. (Eds.), Süsswasserflora von Mitteleuropa 19/1, Gustav Fischer, Jena-Stuttgart-Lübeck-Ulm, 548 pp.

  • Komárek, J., Sant´Anna, C.L., Bohunická, M., Mareš, J., Hentschke, G.S., Rigonato, J., Fiore, M.F., 2013. Phenotype diversity and phylogeny of selected Scytonema–species (Cyanoprokaryota) from SE Brazil. Fottea, Olomouc, 13(2), 173–200

  • Kubečková K, Johansen JR, Warren SD, Sparks R. 2003. Development of immobilized cyanobacterial amendments for reclamation of microbiotic soil crusts. Algological Studies 109:341–362.

    Google Scholar 

  • Levy, J., 2008. Discovering the tropical savanna. NY. pp. 32.

  • Lopez D, Fischbach MA, Chu F, Losick R, Kolter R. 2009. Structurally diverse natural products that cause potassium leakage trigger multicellularity in Bacillus subtilis. Proceedings of the National Academy of Sciences of the United States of America 106:280–285.

    Article  CAS  PubMed  Google Scholar 

  • López D, Gontang E, Kolter R. 2010. Potassium sensing histidine kinase in Bacillus subtilis. Methods in Enzymology 471:229–251. https://doi.org/10.1016/S0076-6879(10)71013-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Machado-de-Lima NM, Fernandes VMC, Roush D, Ayuso SV, Rigonato J, Garcia-Pichel F, Branco LHZ. 2019. The compositionally distinct cyanobacterial biocrusts from Brazilian savanna and their environmental drivers of community diversity. Frontier in Microbiology 10:2798. https://doi.org/10.3389/fmicb.2019.02798.

    Article  Google Scholar 

  • Maicher V, Sáfián S, Murkwe M, Delabye S, Przybyłowicz Ł, Potocký P, Kobe IN, Janeček Š, Mertens JEJ, Fokam EB, Pyrcz T, Doležal J, Altman J, Hořák D, Fiedler K, Tropek R. 2020. Seasonal shifts of biodiversity patterns and species elevation ranges of butterflies and moths along a complete rainforest elevational gradient on Mount Cameroon. Journal of Biogeography 47:342–354.

    Article  Google Scholar 

  • Makhalanyane, T.P., Valverde, A., Lacap, D.C., Pointing, S.B., Tuffin, M.I., Cowan D.A., 2013. Evidence of species recruitment and development of hot desert hypolithic communities. 1036 Environmental Microbiology Reports 5: 219–224.

  • Maley J, Brenac P. 1998. Vegetation dynamics, palaeoenvironmentsand climatic changes in the forests of western Cameroon during thelast 28,000 years B.P. Review of Palaeobotany and Palynology 99:157–187.

    Article  Google Scholar 

  • Mathieu L, Kervyn M, Ernst GGJ. 2011. Field evidence for summit subsidence, flank instability and basal spreading at Mt Cameroon volcano West Africa. Bulletin of Volcanology. 73(7):851–867.

    Article  Google Scholar 

  • McCullagh P, Nelder JA. 1989. Generalized linear models, 2nd edn. London, United Kingdom: Chapman and Hall.

    Book  Google Scholar 

  • MINFOF 2014. The management plan of the Mount Cameroon National Park and its peripheral 581zone. Action plan. pp 108.

  • Mitchell RJ, Hester AJ, Campbell CD, Chapman SJ, Cameron CM, Hewison RL, Potts JM. 2012. Explaining the variation in the soil microbial community: do vegetation composition and soil chemistry explain the same or different parts of the microbial variation? Plant & Soil 351:355–362.

    Article  CAS  Google Scholar 

  • Morales SE, Trouche B, Wakelin S, Banabas M, Nelson PN. 2018. Shifts in prokaryotic communities under forest and grassland within a tropical mosaic landscape. Applied Soil Ecology 125:156–161.

    Article  Google Scholar 

  • Morita RY. 1997. Survival of bacteria in energy-deficient systems. In: Morita RY, Ed. Bacteria in Oligotrophic Environments: Starvation- Survival Lifestyle, . New York, NY, USA: Chapman & Hall. pp 36–68.

    Google Scholar 

  • Muhlsteinova R, Hauer T. 2013. Pilot survey of cyanobacterial diversity from the neighborhood of San Gerardo de Rivas, Costa Rica with a brief summary of current knowledge of terrestrial cyanobacteria in Central America. Brazilian Journal of Botany 36(4):299–307.

    Article  Google Scholar 

  • Naeem, S., Bunker, D.E., Hector, A., Loreau, M., Perrings, C., 2009. Biodiversity, Ecosystem Functioning, and Human Wellbeing. An Ecological and Economic Perspective. Oxford University Press, Oxford 87pp.

  • Neustupa J, Škaloud P. 2008. Diversity of subaerial algae and cyanobacteria on tree bark in tropical mountain habitats. Biologia 63(6):806–812.

    Article  Google Scholar 

  • Neustupa J, Skaloud P. 2010. Diversity of subaerial algae and cyanobacteria growing on bark and wood in the lowland tropical forests of Singapore. Plant Ecology and Evolution 143(1):51–62.

    Article  Google Scholar 

  • Nielsen NS. 2006. Size-dependent growth rates in eukaryotic and prokaryotic algae. Palaeogeography Palaeoclimatology 73:25–38.

    Google Scholar 

  • Oben PM, Oben BO. 2006. Influence of nutrient concentrations on the seasonal abundance and distribution of Cyanophyceae in the coastal region of Mount Cameroon. African Journal of Marine Science 28(1):25–31.

    Article  Google Scholar 

  • Pernthaler J, Alfreider A, Posch T, Andretta S, Psenner R. 1997. In situ classi¢cation and image cytometry of pelagic bacteria of pelagic bacteria from a high mountain lake (Gossenko«llesee, Austria). Appl. Environ. Microbiol. 63:4778–4783.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Piatek J. 2017. A morphotype-rich assemblage of chrysophycean stomatocysts in mountain lakes in the Cameroon Highlands, Africa. Cryptogamie, Algologie 38(2):159–180.

    Article  Google Scholar 

  • Proctor J, Edwards ID, Payton RW, Nagy L. 2007. Zonation of forest vegetation and soils of Mount Cameroon, West Africa. Plant Ecology 192:251–269.

    Article  Google Scholar 

  • Řeháková K, Stibal M, Šabacká M, Řehák J. 2010. Survival and colonisation potential of photoautotrophic microorganisms within a glacierised catchment on Svalbard, High Arctic. Polar Biology 33:737–745.

    Article  Google Scholar 

  • Rehakova K, Chronakova A, Kristufek V, Kuchtova B, Capkova K, Scharfen J, Capek P, Dolezal J. 2015. Bacterial community of cushion plant Thylacospermum ceaspitosum on elevational gradient in the Himalayan cold desert. Frontiers in Microbiology 6:304. https://doi.org/10.3389/fmicb.2015.00304.

    Article  PubMed  PubMed Central  Google Scholar 

  • Rehakova K, Capkova K, Dvorsky M, Kopecky M, Altman J, Smilauer P, Dolezal J. 2017. Interactions between soil phototrophs and vascular plants in Himalayan cold desert. Soil Biology and Biochemistry 115:568–578.

    Article  CAS  Google Scholar 

  • Rehakova, K., Chlumska, Z., Dolezal, J., 2011. Soil cyanobacterial and microalgal diversity in dry mountains of Ladakh, NW Himalaya, as related to site, altitude, and vegetation. Microbial Ecology 6, 337e346.

  • Ribeiro KF, Ferrero AP, Duarte L, Turchetto-Zolet AC, Crossetti LO. 2020. Comparative phylogeography of two free-living cosmopolitan cyanobacteria: Insights on biogeographic and latitudinal distribution. Journal of Biogeography 47:1106–1118.

    Article  Google Scholar 

  • Romero, A.L.N., Moratta, M.A.H., Carretero, E.M., Rodriguez, R.A., Vento, B., 2020. Spatial distribution of biological soil crusts along an aridity gradient in the central-west of Argentina. Journal of Arid Environments 176, 104099.

  • Starke, R., Kermer, R., Ullmann-Zeunert, L., Baldwin, I.T., Seifert, J., Bastida, F., von Bergen, M., Jehmlich, N., 2016. Bacteria dominate the short-term assimilation of plant-derived N in soil. Soil Biology & Biochemistry 96, 30e38.

  • Suh CE, Stansfield SA, Sparks RSJ, Njome MS, Wantim MN, Ernst GGJ. 2010. Morphology and structure of the 1999 lavaflows at Mount Cameroon Volcano (West Africa) and their bearing on the emplacement dynamics of volume-limitedflows. Geological Magazine 148(1):22–34.

    Article  Google Scholar 

  • Tchan YT, Whitehouse JA. 1953. Study of soil algae. II. The variation of the algal population in sandy soils. Proceedings of the Linnean Society of New South Wales 78:160–170.

    Google Scholar 

  • Terborgh J, Davenport LC, Niangadouma R, Dimoto E, Mouandza JC, Scholtz O, Jaen MR. 2016. Megafaunal influences on tree recruitment in African equatorial forests. Ecography (cop.) 39:180–186. https://doi.org/10.1111/ecog.01641.

    Article  Google Scholar 

  • Wall DH, Virginia RA. 1999. Controls on soil biodiversity: insights from extreme environments. Applied Soil Ecology 13:137–150.

    Article  Google Scholar 

  • Warth, A.D., 1979. Molecular structure of the bacterial spore. Advances in Microbial Physiology 17, 1e45.

  • Whitton, B.A., 2012. Ecology of Cyanobacteria II.Their Diversity in Space and Time.

  • Zhang X, Chen Q, Han X. 2013. Soil Bacterial Communities Respond to Mowing and Nutrient Addition in a Steppe Ecosystem. PLoS ONE 8(12):e84210. https://doi.org/10.1371/journal.pone.0084210.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zinger L, Taberlet P, Schimann H, Bonin A, Boyer F, De Barba M, Gaucher P, Gielly L, Giguet-Covex C, Iribar A, Réjou-Méchain M, Rayé G, Rioux D, Schilling V, Tymen B, Viers J, Zouiten C, Thuiller W, Coissac E, Chave J. 2019. Body size determines soil community assembly in a tropical Forest. Molecular Ecology 28:528–543.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to the communities of Bokwango and Bakingili villages. We are thankful to Francis Luma for assisting with fieldwork. The project was authorized by the Ministries of Scientific Research and Innovations and Forestry and Wildlife of the Republic of Cameroon. The project was funded by the Czech Science Foundation (projects no. 21-26883S, 21-04987S, RVO 471 67985939), MŠMT INTER470 EXCELLENCE project (LTAUSA18007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klára Řeháková.

Additional information

Author contributions

All authors participated in the conception and the design of the study. J.D., J.A., M.D., and L.M. collected the data. K.R. and K.C. analyzed the soil microbial and chemistry data. K.R. and J.D. wrote the manuscript. All authors reviewed and approved the final manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Řeháková, K., Čapková, K., Altman, J. et al. Contrasting Patterns of Soil Chemistry and Vegetation Cover Determine Diversity Changes of Soil Phototrophs Along an Afrotropical Elevation Gradient. Ecosystems 25, 1020–1036 (2022). https://doi.org/10.1007/s10021-021-00698-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10021-021-00698-6

Keywords

Navigation