Skip to main content
Log in

Microbial Volatile Compounds: Prospects for Fungal Phytopathogens Management, Mechanisms and Challenges

  • Review Article / Übersichtsbeitrag
  • Published:
Journal of Crop Health Aims and scope Submit manuscript

Abstract

Substantial economic losses of crops occur annually because of abiotic and biotic stresses that affect crop plants. Microbial volatile compounds (MVCs) are promising candidates for use in agriculture owing to their ability to constrain phytopathogens, induce resistance, and promote plant growth. Application of commercial synthetic insecticides and fungicides can damage the environment and adversely affect human health. In recent years, the use of MVCs to control plant diseases in vegetables and fruits has become an attractive alternative to synthetic chemicals. MVCs possess antifungal and insecticidal properties, which can be used to control plant diseases caused by phytopathogenic fungi and insects. MVCs also promote plant growth and help plants to combat adverse stress conditions. This review summarizes the importance of volatiles emitted by various microorganisms as well as recent advances in understanding the antifungal mechanisms adopted by MVCs and their use in agriculture to promote crop productivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Banerjee D, Strobel GA, Booth B, Sears J, Spakowicz D, Busse, S (2010) An endophytic Myrothecium inundatum producing volatile organic compounds. Mycosphere 1(3):241–247

  • Belghit S, Driche EH, Bijani C, Zitouni A, Sabaou N, Badji B, Mathieu F (2016) Activity of 2,4-Di-tert-butylphenol produced by a strain of Streptomyces mutabilis isolated from a Saharan soil against Candida albicans and other pathogenic fungi. J Med Mycol 26:160–169

    Article  CAS  Google Scholar 

  • Bitas V, Kim HS, Bennett JW, Kang S (2013) Sniffing on microbes: diverse roles of microbial volatile organic compounds in plant health. Mol Plant Microbe Interact 26:835–843

    Article  CAS  PubMed  Google Scholar 

  • Calvo H, Mendiara I, Arias E, Gracia AP, Blanco D, Venturini ME (2020) Antifungal activity of the volatile organic compounds produced by Bacillus velezensis strains against postharvest fungal pathogens. Postharv Biol Technol. https://doi.org/10.1016/j.postharvbio.2020.111208

    Article  CAS  Google Scholar 

  • Chen JL, Sun SZ, Miao CP, Wu K, Chen YW, Xu LH, Guan HL, Zhao LX (2016) Endophytic Trichoderma gamsii YIM PH30019: a promising biocontrol agent with hyperosmolar, mycoparasitism, and antagonistic activities of induced volatile organic compounds on root-rot pathogenic fungi of Panax notoginseng. J Ginseng Res 40:315–324

    Article  PubMed  Google Scholar 

  • Cheng JC, Cui T, He WQ, Nie L, Wang JL, Pan T (2015) Pollution characteristics of aldehydes and ketones compounds in the exhaust of Beijing typical restaurants. Huan JKX 36:2743–2749

  • Cheng X, Cordovez V, Etalo DW, Van der Voort M, Raaijmakers JM (2016) Role of the GacS sensor kinase in the regulation of volatile production by plant growth-promoting Pseudomonas fluorescens SBW25. Front Plant Sci 7:1706

    Article  PubMed  PubMed Central  Google Scholar 

  • Cho G, Kim J, Park CG, Nislow C, Weller DM, Kwak YS (2017) Caryolan-1-ol, an antifungal volatile produced by Streptomyces spp., inhibits the endomembrane system of fungi. Open Biol 7(7):170075

    Article  PubMed  PubMed Central  Google Scholar 

  • Cordovez V, Carrion VJ, Etalo DW, Mumm R, Zhu H, Van Wezel GP, Raaijmakers JM (2015) Diversity and functions of volatile organic compounds produced by Streptomyces from a disease-suppressive soil. Front Microbiol 6:1081

    Article  PubMed  PubMed Central  Google Scholar 

  • Dalilla CR, Mauricio BF, Simone CB, Silvia B, Sergio FP (2015) Antimicrobial activity of volatile organic compounds and their effect on lipid peroxidation and electrolyte loss in Colletotrichum gloeosporioides and Colletotrichum acutatum mycelia. Afr J Microbiol Res 9:1527–1535

    Article  Google Scholar 

  • Dharni S, Maurya A, Samad A, Srivastava SK, Sharma A, Patra DD (2014) Purification, characterization, and in vitro activity of 2,4-di-tert-butylphenol from Pseudomonas monteilii PsF84: conformational and molecular docking studies. J Agric Food Chem 62:6138–6146

    Article  CAS  PubMed  Google Scholar 

  • Dhouib H, Zouari I, Abdallah DB, Belbahri L, Taktak W, Triki MA, Tounsi S (2019) Potential of a novel endophytic Bacillus velezensis in tomato growth promotion and protection against Verticillium wilt disease. Biol Control 139:104092

    Article  CAS  Google Scholar 

  • Di Francesco A, Ugolini L, Lazzeri L, Mari M (2015) Production of volatile organic compounds by Aureobasidium pullulans as a potential mechanism of action against postharvest fruit pathogens. Biol Control 81:8–14

    Article  Google Scholar 

  • Di Francesco A, Di Foggia M, Baraldi E (2020) Aureobasidium pullulans volatile organic compounds as alternative postharvest method to control brown rot of stone fruits. Food Microbiol 87:103395

    Article  PubMed  Google Scholar 

  • Dickschat SSJS (2007) Bacterial volatiles: the smell of small organisms. Nat Prod Rep 24:814–842

    Article  PubMed  Google Scholar 

  • Don SMY, Schmidtke LM, Gambetta JM, Steel CC (2021) Volatile organic compounds produced by Aureobasidium pullulans induce electrolyte loss and oxidative stress in Botrytis cinerea and Alternaria alternata. Res Microbiol 172:103788

    Article  Google Scholar 

  • Du J, Ji Y, Li Y, Liu B, Yu Y, Chen D, Li Z, Zhao T, Xu X, Chang Q, Li Z (2022) Microbial volatile organic compounds 2‑heptanol and acetoin control Fusarium crown and root rot of tomato. J Cell Physiol. https://doi.org/10.1002/jcp.30889

    Article  PubMed  PubMed Central  Google Scholar 

  • Ezra D, Hess WM, Strobel GA (2004) New endophytic isolates of Muscodor albus, a volatile-antibiotic-producing fungus. Microbiology 150:4023–4031

    Article  CAS  PubMed  Google Scholar 

  • Fialho MB, de Andrade A, Bonatto JMC, Salvato F, Labate CA, Pascholati SF (2016) Proteomic response of the phytopathogen Phyllosticta citricarpa to antimicrobial volatile organic compounds from Saccharomyces cerevisiae. Microbiol Res 183:1–7

    Article  CAS  PubMed  Google Scholar 

  • Fincheira P, Quiroz A, Tortella G, Diez MC, Rubilar O (2021) Current advances in plant-microbe communication via volatile organic compounds as an innovative strategy to improve plant growth. Microbiol Res 247:126726

    Article  CAS  PubMed  Google Scholar 

  • Freitas CSA, Maciel LF, Corrêa dos Santos RA, Costa OMMM, Maia FCB, Rabelo RS, Franco HCJ, Alves E, Consonni SR, Freitas RO, Persinoti GF (2022) Bacterial volatile organic compounds induce adverse ultrastructural changes and DNA damage to the sugarcane pathogenic fungus Thielaviopsis ethacetica. Environ Microbiol 24(3):1430–1453

    Article  CAS  PubMed  Google Scholar 

  • Gao H, Li P, Xu X, Zeng Q, Guan W (2018) Research on volatile organic compounds from Bacillus subtilis CF-3: biocontrol effects on fruit fungal pathogens and dynamic changes during fermentation. Front Microbiol 9:456

    Article  PubMed  PubMed Central  Google Scholar 

  • Gao Z, Zhang B, Liu H, Han J, Zhang Y (2017) Identification of endophytic Bacillus velezensis ZSY‑1 strain and antifungal activity of its volatile compounds against Alternaria solani and Botrytis cinerea. Biol Control 105:27–39

    Article  Google Scholar 

  • Garcia-Rubio R, de Oliveira HC, Rivera J, Trevijano-Contador N (2020) The fungal cell wall: Candida, Cryptococcus, and Aspergillus species. Front Microbiol 10:2993

    Article  PubMed  PubMed Central  Google Scholar 

  • Giorgio A, De Stradis A, Cantore LP, Iacobellis NS (2015) Biocide effects of volatile organic compounds produced by potential biocontrol rhizobacteria on Sclerotinia sclerotiorum. Front Microbiol 6:1056

    Article  PubMed  PubMed Central  Google Scholar 

  • Gotor-Vila A, Teixidó N, Di Francesco A, Usall J, Ugolini L, Torres R, Mari M (2017) Antifungal effect of volatile organic compounds produced by Bacillus amyloliquefaciens CPA‑8 against fruit pathogen decays of cherry. Food Microbiol 64:219–225

    Article  CAS  PubMed  Google Scholar 

  • Guevara-Avendaño E, Bejarano-Bolívar AA, Kiel-Martínez AL, Ramírez-Vázquez M, Méndez-Bravo A, von Wobeser EA, Sánchez-Rangel D, Guerrero-Analco JA, Eskalen A, Reverchon F (2019) Avocado rhizobacteria emit volatile organic compounds with antifungal activity against Fusarium solani, Fusarium sp. associated with Kuroshio shot hole borer, and Colletotrichum gloeosporioides. Microbiol Res 219:74–83

    Article  PubMed  Google Scholar 

  • Guo H, Qin X, Wu Y, Yu W, Liu J, Xi Y, Dou G, Wang L, Xiao H (2019) Biocontrol of gray mold of cherry tomatoes with the volatile organic monomer from Hanseniaspora uvarum, trans-cinnamaldehyde. Food Bioprocess Technol 12:1809–1820

    Article  CAS  Google Scholar 

  • Huang R, Li GQ, Zhang J, Yang L, Che HJ, Jiang DH, Huang HC (2011) Control of postharvest Botrytis fruit rot of strawberry by volatile organic compounds of Candida intermedia. Phytopathology 101:859–869

    Article  CAS  PubMed  Google Scholar 

  • Humphris SN, Wheatley RE, Bruce A (2001) The effects of specific volatile organic compounds produced by Trichoderma spp. on the growth of wood decay basidiomycetes. Holzforschung 55:233–237

    Article  CAS  Google Scholar 

  • Kai M, Effmert U, Berg G, Piechulla B (2007) Volatiles of bacterial antagonists inhibit mycelial growth of the plant pathogen Rhizoctonia solani. Arch Microbiol 187:351–360

    Article  CAS  PubMed  Google Scholar 

  • Lemfack MC, Gohlke BO, Toguem SMT, Preissner S, Piechulla B, Preissner R (2018) mVOC 2.0: a database of microbial volatiles. Nucleic Acids Res 46:1261–1265

    Article  Google Scholar 

  • Li N, Alfiky A, Wang W, Islam M, Nourollahi K, Liu X, Kang S (2018) Volatile compound-mediated recognition and inhibition between Trichoderma biocontrol agents and Fusarium oxysporum. Front Microbiol 9:2614

    Article  PubMed  PubMed Central  Google Scholar 

  • Ling L, Zhao Y, Tu Y, Yang C, Ma W, Feng S, Lu L, Zhang J (2021) The inhibitory effect of volatile organic compounds produced by Bacillus subtilis CL2 on pathogenic fungi of wolfberry. J Basic Microbiol 61:110–121

    Article  CAS  PubMed  Google Scholar 

  • Lyu A, Yang L, Wu M, Zhang J, Li G (2020) High efficacy of the volatile organic compounds of Streptomyces yanglinensis 3‑10 in suppression of Aspergillus contamination on peanut kernels. Front Microbiol 11:142

    Article  PubMed  PubMed Central  Google Scholar 

  • Macías-Rubalcava ML, Sánchez-Fernández RE, Roque-Flores G, Lappe-Oliveras P, Medina-Romero YM (2018) Volatile organic compounds from Hypoxylon anthochroum endophytic strains as postharvest mycofumigation alternative for cherry tomatoes. Food Microbiol 76:363–373

    Article  PubMed  Google Scholar 

  • Martín-Sánchez L, Ariotti C, Garbeva P, Vigani G (2020) Investigating the effect of belowground microbial volatiles on plant nutrient status: perspective and limitations. J Plant Interact 15:188–195

    Article  Google Scholar 

  • Martins SJ, Faria AF, Pedroso MP, Cunha MG, Rocha MR, Medeiros FHV (2019) Microbial volatiles organic compounds control anthracnose (Colletotrichum lindemuthianum) in common bean (Phaseolus vulgaris L.). Biol Control 131:36–42

    Article  CAS  Google Scholar 

  • Massawe VC, Hanif A, Farzand A, Mburu DK, Ochola SO, Wu L, Tahir HAS, Gu Q, Wu H, Gao X (2018) Volatile compounds of endophytic Bacillus spp. have biocontrol activity against Sclerotinia sclerotiorum. Phytopathology 108:1373–1385

    Article  CAS  PubMed  Google Scholar 

  • Mauricio BF, Giselle C, Paula FM, Ricardo AA, Srgio FP (2014) Antioxidative response of the fungal plant pathogen Guignardia citricarpa to antimicrobial volatile organic compounds. Afr J Microbiol Res 8:2077–2084

    Article  Google Scholar 

  • Medina-Romero YM, Roque-Flores G, Macías-Rubalcava ML (2017) Volatile organic compounds from endophytic fungi as innovative postharvest control of Fusarium oxysporum in cherry tomato fruits. Appl Microbiol Biotechnol 101:8209–8222

    Article  CAS  PubMed  Google Scholar 

  • Mookherjee A, Bera P, Mitra A, Maiti MK (2018) Characterization and synergistic effect of antifungal volatile organic compounds emitted by the Geotrichum candidum PF005, an endophytic fungus from the eggplant. Microb Ecol 75:647–661

    Article  CAS  PubMed  Google Scholar 

  • Morath SU, Hung R, Bennett JW (2012) Fungal volatile organic compounds: a review with emphasis on their biotechnological potential. Fungal Biol Rev 26:73–83

    Article  Google Scholar 

  • Morita T, Tanaka I, Ryuda N, Ikari M, Ueno D, Someya T (2019) Antifungal spectrum characterization and identification of strong volatile organic compounds produced by Bacillus pumilus TM‑R. Heliyon 5:1817

    Article  Google Scholar 

  • Mulero-Aparicio A, Cernava T, Turrà D, Schaefer A, Di Pietro A, López-Escudero FJ, Trapero A, Berg G (2019) The role of volatile organic compounds and rhizosphere competence in mode of action of the non-pathogenic Fusarium oxysporum FO12 toward Verticillium wilt. Front Microbiol 10:1808

    Article  PubMed  PubMed Central  Google Scholar 

  • Naznin HA, Kiyohara D, Kimura M, Miyazawa M, Shimizu M, Hyakumachi M (2014) Systemic resistance induced by volatile organic compounds emitted by plant growth-promoting fungi in Arabidopsis thaliana. Plos One 9:86882

    Article  Google Scholar 

  • Oro L, Feliziani E, Ciani M, Romanazzi G, Comitini F (2018) Volatile organic compounds from Wickerhamomyces anomalus, Metschnikowia pulcherrima and Saccharomyces cerevisiae inhibit growth of decay causing fungi and control postharvest diseases of strawberries. Int J Food Microbiol 265:18–22

    Article  CAS  PubMed  Google Scholar 

  • Ossowicki A, Jafra S, Garbeva P (2017) The antimicrobial volatile power of the rhizospheric isolate Pseudomonas donghuensis P482. PLoS ONE 12:174362

    Article  Google Scholar 

  • Pandey A, Banerjee D (2014) Daldinia bambusicola Ch4/11 an endophytic fungus producing volatile organic compounds having antimicrobial and olio chemical potential. J Adv Microbiol 1:330–337

    Article  Google Scholar 

  • Pena LC, Jungklaus GH, Savi DC, Ferreira-Maba L, Servienski A, Maia BH, Annies V, Galli-Terasawa LV, Glienke C, Kava V (2019) Muscodor brasiliensis sp. nov. produces volatile organic compounds with activity against Penicillium digitatum. Microbiol Res 221:28–35

    Article  CAS  PubMed  Google Scholar 

  • Poveda J (2021) Beneficial effects of microbial volatile organic compounds (MVOCs) in plants. Appl Soil Ecol 168:104118

    Article  Google Scholar 

  • Rajaofera MJN, Wang Y, Dahar GY, Jin P, Fan L, Xu L, Liu W, Miao W (2019) Volatile organic compounds of Bacillus atrophaeus HAB‑5 inhibit the growth of Colletotrichum gloeosporioides. Pestic Biochem Physiol 156:170–176

    Article  CAS  PubMed  Google Scholar 

  • Raza W, Ling N, Liu D, Wei Z, Huang Q, Shen Q (2016) Volatile organic compounds produced by Pseudomonas fluorescens WR‑1 restrict the growth virulence traits of Ralstonia solanacearum. Microbiol Res 192:103–113

    Article  CAS  PubMed  Google Scholar 

  • Rojas-Solís D, Zetter-Salmón E, Contreras-Pérez M, del Carmen Rocha-Granados M, Macías-Rodríguez L, Santoyo G (2018) Pseudomonas stutzeri E25 Stenotrophomonas maltophilia CR71 endophytes produce antifungal volatile organic compounds exhibit additive plant growth-promoting effects. Biocatal Agric Biotechnol 13:46–52

    Article  Google Scholar 

  • Ruiz-Moyano S, Hernández A, Galvan AI, Córdoba MG, Casquete R, Serradilla MJ, Martín A (2020) Selection application of antifungal VOCs-producing yeasts as biocontrol agents of grey mould in fruits. Food Microbiol 92:103556

    Article  CAS  PubMed  Google Scholar 

  • Rybakova D, Rack-Wetzlinger U, Cernava T, Schaefer A, Schmuck M, Berg G (2017) Aerial warfare: a volatile dialogue between the plant pathogen Verticillium longisporum its antagonist Paenibacillus polymyxa. Front Plant Sci 8:1294

    Article  PubMed  PubMed Central  Google Scholar 

  • Sant DG, Tupe SG, Ramana CV, Deshpe MV (2016) Fungal cell membrane-promising drug target for antifungal therapy. J Appl Microbiol 121:1498–1510

    Article  CAS  PubMed  Google Scholar 

  • Schalchli H, Tortella GR, Rubilar O, Parra L, Hormazabal E, Quiroz A (2016) Fungal volatiles: an environmentally friendly tool to control pathogenic microorganisms in plants. Crit Rev Biotechnol 36:144–152

    Article  CAS  PubMed  Google Scholar 

  • Schmidt R, Cordovez V, De Boer W, Raaijmakers J, Garbeva P (2015) Volatile affairs in microbial interactions. J ISME 9:2329–2335

    Article  CAS  Google Scholar 

  • Schulz-Bohm K, Zweers H, De Boer W, Garbeva P (2015) A fragrant neighborhood: volatile mediated bacterial interactions in soil. Front Microbiol 6:1212

    Article  PubMed  PubMed Central  Google Scholar 

  • Sharifi R, Ryu CM (2018a) Revisiting bacterial volatile-mediated plant growth promotion: lessons from the past objectives for the future. Ann Bot 122:349–358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharifi R, Ryu CM (2018b) Sniffing bacterial volatile compounds for healthier plants. Curr Opin Plant Biol 44:88–97

    Article  CAS  PubMed  Google Scholar 

  • Song XY, Wang H, Ren F, Wang K, Dou G, Lv X, Yan DH, Strobel G (2019) An endophytic Diaporthe apiculatum produces monoterpenes with inhibitory activity against phytopathogenic fungi. Antibiotics 8:231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sridharan AP, Thankappan S, Karthikeyan G, Uthi S (2020) Comprehensive profiling of the VOCs of Trichoderma longibrachiatum EF5 while interacting with Sclerotium rolfsii Macrophomina phaseolina. Microbiol Res 236:126436

    Article  CAS  Google Scholar 

  • Stinson M, Ezra D, Hess WM, Sears J, Strobel G (2003) An endophytic Gliocladium sp. of Eucryphia cordifolia producing selective volatile antimicrobial compounds. Plant Sci 165:913–922

    Article  CAS  Google Scholar 

  • Sun L, Cao M, Liu F, Wang Y, Wan J, Wang R, Zhou H, Wang W, Xu J (2020) The volatile organic compounds of Floccularia luteovirens modulate plant growth metabolism in Arabidopsis thaliana. Plant Soil 456:207–221

    Article  CAS  Google Scholar 

  • Toffano L, Fialho MB, Pascholati SF (2017) Potential of fumigation of orange fruits with volatile organic compounds produced by Saccharomyces cerevisiae to control citrus black spot disease at postharvest. Biol Control 108:77–82

    Article  CAS  Google Scholar 

  • Tyagi S, Mulla SI, Lee KJ, Chae JC, Shukla P (2018) VOCs-mediated hormonal signaling crosstalk with plant growth promoting microbes. Crit Rev Biotechnol 38:1277–1296

    Article  CAS  PubMed  Google Scholar 

  • Varsha KK, Devendra L, Shilpa G, Priya S, Pey A, Nampoothiri KM (2015) 2,4-Di-tert-butyl phenol as the antifungal, antioxidant bioactive purified from a newly isolated Lactococcus sp. Int J Food Microbiol 211:44–50

    Article  CAS  PubMed  Google Scholar 

  • Vázquez J, Grillitsch K, Daum G, Mas A, Beltran G, Torija MJ (2019) The role of the membrane lipid composition in the oxidative stress tolerance of different wine yeasts. Food Microbiol 78:143–154

    Article  PubMed  Google Scholar 

  • Veselova MA, Plyuta VA, Khmel IA (2019) Volatile compounds of bacterial origin: structure, biosynthesis, biological activity. Microbiology 88:261–274

    Article  CAS  Google Scholar 

  • Wang E, Liu X, Si Z, Li X, Bi J, Dong W, Chen M, Wang S, Zhang J, Song A, Fan F (2021) Volatile organic compounds from rice Rhizosphere bacteria inhibit growth of the pathogen Rhizoctonia solani. Agriculture 11:368

    Article  CAS  Google Scholar 

  • Xie S, Liu J, Gu S, Chen X, Jiang H, Ding T (2020) Antifungal activity of volatile compounds produced by endophytic Bacillus subtilis DZSY21 against Curvularia lunata. Ann Microbiol 70:1–10

    Article  Google Scholar 

  • Yalage Don SM, Schmidtke LM, Gambetta JM, Steel CC (2020) Aureobasidium pullulans volatilome identified by a novel, quantitative approach employing SPME-GC-MS, suppressed Botrytis cinereal, Alternaria alternata in vitro. Sci Rep 10:1–13

    Article  Google Scholar 

  • Yang M, Lu L, Pang J, Hu Y, Guo Q, Li Z, Wu S, Liu H, Wang C (2019) Biocontrol activity of volatile organic compounds from Streptomyces alboflavus TD‑1 against Aspergillus flavus growth aflatoxin production. J Microbiol 57:396–404

    Article  CAS  PubMed  Google Scholar 

  • Ye X, Chen Y, Ma S, Yuan T, Wu Y, Li Y, Zhao Y, Chen S, Zhang Y, Li L, Li Z (2020) Biocidal effects of volatile organic compounds produced by the Myxobacterium Corrallococcus sp. EGB against fungal phytopathogens. Food Microbiol 91:103502

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Du H, Xu Y (2021) Volatile organic compound-mediated antifungal activity of Pichia spp. Its effect on the metabolic profiles of fermentation communities. Appl Environ Microbiol 87:2992–2920

    Article  Google Scholar 

  • Zhang Y, Li T, Liu Y, Li X, Zhang C, Feng Z, Peng X, Li Z, Qin XK (2019) Volatile organic compounds produced by Pseudomonas chlororaphis subsp. aureofaciens SPS-41 as biological fumigants to control Ceratocystis fimbriata in postharvest sweet potatoes. J Agric Food Chem 67:3702–3710

    Article  CAS  PubMed  Google Scholar 

  • Zhao X, Zhou J, Tian R, Liu Y (2022) Microbial volatile organic compounds: Antifungal mechanisms, applications, challenges. Front Microbiol. https://doi.org/10.3389/fmicb.2022.922450

    Article  PubMed  PubMed Central  Google Scholar 

  • Zheng L, Situ JJ, Zhu QF, Xi PG, Zheng Y, Liu HX, Zhou X (2019) Identification of volatile organic compounds for the biocontrol of postharvest litchi fruit pathogen Peronophythora litchii. Postharv Biol Technol 155:37–46

    Article  CAS  Google Scholar 

  • Zhong T, Wang Z, Zhang M, Wei X, Kan J, Zalán Z, Wang K, Du M (2021) Volatile organic compounds produced by Pseudomonas fluorescens ZX as potential biological fumigants against gray mold on postharvest grapes. Biol Control 163:104754

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank UTU Management and Director, CGBIBT, for their constant support and rendering the necessary facilities.

Author information

Authors and Affiliations

Authors

Contributions

NA designed the study and edited the final manuscript; HN, KAC, HAG, and SC collected the data; HN wrote the initial manuscript.

Corresponding author

Correspondence to Natarajan Amaresan.

Ethics declarations

Conflict of interest

H. Naik, K.A. Chandarana, H.A. Gamit, S. Chandwani and N. Amaresan declare that they have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Data Availability Statement

All data generated or analyzed during this study are included in this published article

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naik, H., Chandarana, K.A., Gamit, H.A. et al. Microbial Volatile Compounds: Prospects for Fungal Phytopathogens Management, Mechanisms and Challenges. Journal of Crop Health 76, 371–383 (2024). https://doi.org/10.1007/s10343-023-00951-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10343-023-00951-z

Keywords

Navigation