Skip to main content
Log in

Mapping of Alternaria and Pleospora concentrations in Central Italy using meteorological forecast and neural network estimator

  • Original Paper
  • Published:
Aerobiologia Aims and scope Submit manuscript

Abstract

Airborne particles (pollens and fungal spores) are recognized as important causes of allergies and many other pathologies whose main symptoms are usually associated with respiratory problems. In addition, these particles seem to be responsible for clinical symptoms of oculorhinitis and bronchial asthma. Many authors showed how pollen and spore concentrations are critically linked to meteorological conditions, while other studies investigated the possibility to estimate these concentrations through meteorological parameters. So, many different approaches have been proposed, and one of the most sophisticated is based on the use of a complex artificial neural network architecture. Once the neural device is calibrated using simultaneous time series of observed meteorological parameters and airborne biological particles, it is straightforward to use the Neural Network to predict spore concentrations using operational Limited Area Meteorological Model. In a previous work, it has been shown that the MM5 meteorological model developed by National Center for Atmospheric Research and Pennsylvania State University can be coupled with the above-cited neural predictor to provide a good prediction of Alternaria and Pleospora spore in the location of L’Aquila (Central Italy). Following the same approach, this work aims to provide the mapping of spore concentration over a wide area covered by high-resolution meteorological prediction in Central Italy. The complex patterns of fungal spore concentrations in selected areas will be described, and the high temporal variability of such fields will be discussed as well. The possibility to infer useful information from the predicted pattern of spore concentrations is discussed, as an example it appears that for people suffering from allergy to fungal spores is more comfortable to spend summertime close to the east coast of Italian Peninsula respect to the west coast. A further step of this work may easily lead to an operational use of the model for supporting the clinical management of allergies and for establishing a preventive strategy in agriculture to avoid unsafe and useless pollution of atmosphere, crops and fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abdel Hameed, A. A. (2005). Vegetation: A source of air fungal bio-contaminant. Aerobiologia, 21, 53–61.

    Article  Google Scholar 

  • Angelosante Bruno, A., Pace, L., Tomassetti, B., Coppola, E., Verdecchia, M., Pacioni, G., et al. (2007). Estimation of fungal spore concentrations associated to meteorological variables. Aerobiologia, 23, 221–228.

    Article  Google Scholar 

  • Astray, G., Rodríguez-Rajo, F. J., Ferreiro-Lage, J. A., Fernández-González, M., Jato, V., & Mejuto, J. C. (2010). The use of artificial neural networks to forecast biological atmospheric allergens or pathogens only as Alternaria spores. Journal of Environmental Monitoring, 12(11), 2145–2152.

    Article  CAS  Google Scholar 

  • Bartra, J., Belmonte, J., Torres-Rodríguez, J. M., & Cistero-Bahima, A. (2009). Sensitization to Alternaria in patients with respiratory allergy. Front Bioscience, 14, 3372–3379.

    Article  Google Scholar 

  • Beggs, P. J. (2009). Plant food allergens: Another climate change–public health link. Environ Health Perspect, 117, A191–A191. http://dx.doi.org/10.1289/ehp.0900670.

  • Bernard, S. M., Samet, J. M., Grambsch, A., Ebi, K. L., Romieu, I. (2001). The potential impacts of climate variability and change on air pollution-related health effects in the United States. Environmental Health Perspectives, 109(Suppl 2), 199–209.

    Google Scholar 

  • Bianco, L., Tomassetti, B., Coppola, E., Fracassi, A., Verdecchia, M., & Visconti, G. (2006). Thermally driven circulation in a region of complex topography: Comparison of wind-profiling radar measurements and MM5 numerical predictions. Annales Geophysicae, 24, 1537–1549.

    Article  Google Scholar 

  • Burch, M., & Levetin, E. (2002). Effects of meteorological conditions on spore plumes. International Journal of Biometeorology, 46, 107–117.

    Article  CAS  Google Scholar 

  • Corden, J. M., Millington, W. M., & Mullins, J. (2003). Long-term trends and regional variation in the aeroallergen Alternaria in Cardiff and Derby UK – are differences in climate and cereal production having an effect? Aerobiologia, 19(3–4), 191–199. doi:10.1023/B:AERO.0000006529.51252.2f.

  • Dudhia, J. (1993). A non-hydrostatic version of the Penn State/NCAR mesoscale model: Validation test and simulation of an Atlantic cyclone and cold front. Monthly Weather Review, 121, 1493–1513.

    Article  Google Scholar 

  • Elman, L. J. (1990). Finding structure in time. Cognitive Science, 14, 179–211.

    Article  Google Scholar 

  • Escuredo, O., Seijo, M. C., Fernández-González, M., & Iglesias, I. (2011). Effects of meteorological factors on the levels of Alternaria spores on a potato crop. International Journal of Biometeorology, 55(2), 243–252. doi:10.1007/s00484-010-0330-4.

    Google Scholar 

  • Frenguelli, G. (1998). The contribution of aerobiology to agriculture. Aerobiologia, 14, 95–100.

    Article  Google Scholar 

  • Giner, M. M., & Carrión-García, J. S. (1995). Daily variations of Alternaria spores in the city of Murcia (semi-arid south eastern of Spain). International Journal of Biometeorology, 38, 176–179.

    Article  Google Scholar 

  • Gioulekas, D., Damialis, A., Papakosta, D., Spieksma, F., Giouleka, P., & Patakas, D. (2004). Allergenic fungi spore records (15 years) and sensitization in patients with respiratory allergy in Thessaloniki-Greece. Journal of Investigational Allergology and Clinical Immunology, 14(3), 225–231.

    CAS  Google Scholar 

  • Grell, G. A., Dudhia, J., & Stauffer, D. R. (1994). A description of the fifth generation Penn State/NCAR Mesoscale Model (MM5). NCAR Technical Note, NCAR/TN-398 + STR, 121.

  • Grinn-Gofroń, A., & Mika, A. (2008). Selected airborne allergenic fungal spores and meteorological factors in Szczecin, Poland, 2004–2006. Aerobiologia, 23(2), 89–97. doi:10.1007/s10453-008-9088-0.

  • Grinn-Gofroń, A., Strzelczak, A., & Wolski, T. (2011). The relationships between air pollutants, meteorological parameters and concentration of airborne fungal spores. Environmental Pollution, 159(2), 602–608.

    Article  Google Scholar 

  • Hanlin, R. T. (1990). Illustrated genera of Ascomycetes (pp. 226–227). St. Paul, Minnesota: The American Phytopathological Society.

    Google Scholar 

  • Hecht-Nielsen, R. (1991). Neurocomputing. Reading: Addison Wesley Publishing Company.

  • Herrero, B., Fombella-Blanco, M. A., Fernández-González, D., & Valencia-Barrera, R. M. (1996). The role of meteorological factors in determining the annual variation of Alternaria and Cladosporium spores in the atmosphere of Palencia, 1990–1992. International Journal of Biometeorology, 39, 139–142.

    Article  Google Scholar 

  • Hirst, J. M. (1952). An automatic volumetric spore trap. Annals of Applied Biology, 39, 257–265.

    Article  Google Scholar 

  • Hjelmroos, M. (1993). Relationship between airborne fungal spore presence and weather variables. Grana, 32, 40–47.

    Article  Google Scholar 

  • Hollins, P. D., Kettlewell, P. S., Atkinson, M. D., Stephenson, D. B., Corden, J. M., Millington, W. M., et al. (2004). Relationships between airborne fungal spore concentration of Cladosporium and the summer climate at two sites in Britain. International Journal of Biometeorology, 48, 137–141.

    Article  CAS  Google Scholar 

  • Kain, J. S., & Fritsch, J. M. (1990). A one-dimensional entraining/detraining plume model and its application in convective parameterization. Journal of Atmospheric Science, 47, 2784–2802.

    Article  Google Scholar 

  • Lombladd, L., Peterson, C., & Röngvaldsson, T. (1992). Pattern recognition in high energy physics with artificial neural network—Jetnet 2.0. Computer Physics Communications, 70, 167–182.

    Article  Google Scholar 

  • Mandrioli, P., Comtois, P., & Levizzani, V. (1998). Methods in aerobiology. Bologna: Pitagora Editrice.

    Google Scholar 

  • Mari, A., Shneider, P., Wally, V., Breitenbach, M., & Simon-Nobbe, B. (2003). Sensitization to fungi: Epidemiology, comparative skin tests, and IgE reactivity of fungal extracts. Clinical and Experimental Allergy, 33, 1429–1438.

    Article  CAS  Google Scholar 

  • Mitakakis, T. Z., & Guest, D. I. (2001). A fungal spore calendar for the atmosphere of Melbourne, Australia, for the year 1993. Aerobiologia, 17, 171–176.

    Article  Google Scholar 

  • Oliveira, M., Ribeiro, H., Delgado, J. L., & Abreu, I. (2009). The effects of meteorological factors on airborne fungal spore concentration in two areas differing in urbanisation level. International Journal of Biometeorology, 53(1), 61–73. doi:10.1007/s00484-008-0191-2.

    Article  CAS  Google Scholar 

  • Paolucci, T., Bernardini, L., Ferretti, R., & Visconti, G. (1999). MM5 real-time forecast of a catastrophic event on May, 5 1998. Il Nuovo Cimento, 12, 727–736.

    Google Scholar 

  • Recio, M., Del Mar Trigo, M., Docampo, S., Melgar, M., García-Sánchez, J., Bootello, L., & Cabezudo, B. (2011). Analysis of the predicting variables for daily and weekly fluctuations of two airborne fungal spores: Alternaria and Cladosporium. International Journal of Biometeorology. doi:10.1007/s00484-011-0509-3.

  • Rodrìguez-Rajo, F. J., Iglesias, I., & Jato, V. (2005). Variation assessment of airborne Alternaria and Cladosporium spores at different bioclimatical conditions. Mycological Research, 109(4), 497–507. doi:10.1017/S0953756204001777.

    Google Scholar 

  • Sabariego, S., Diaz De la Guardia, C., & Alba, F. (2000). The effects of meteorological factors on the daily variation of airborne fungal spores in Granada (southern Spain). International Journal of Biometeorology, 44, 1–5.

    Article  CAS  Google Scholar 

  • Srivastava, A. K., & Wadhwani, K. (1992). Dispersion and allergenic manifestation of Alternaria airspora. Grana, 31, 61–66.

    Article  Google Scholar 

  • Staub, T. (1991). Fungicide resistance: Practical experience with antiresistance strategies and the role of integrated use. Annual review of Phytopathology, 29, 421–442.

    Article  CAS  Google Scholar 

  • Stennett, P. J., & Beggs, P. J. (2004). Alternaria spores in the atmosphere of Sydney, Australia, and relationships with meteorological factors. International Journal of Biometeorology, 49, 98–105.

    Article  CAS  Google Scholar 

  • Stephen, E., Raffery, A. E., & Dowding, P. (1990). Forecasting spore concentrations: A time series approach. International Journal of Biometeorology, 34, 87–89.

    Article  CAS  Google Scholar 

  • Tomassetti, B., Angelosante Bruno, A., Pace, L., Verdecchia, M., & Visconti, G. (2009). Prediction of Alternaria and Pleospora concentrations from the meteorological forecast and artificial neural network in L’Aquila, Abruzzo (Central Italy). Aerobiologia, 25, 127–136.

    Article  Google Scholar 

  • Tomassetti, B., Giorgi, F., Verdecchia, M., & Visconti, G. (2003). Regional model simulation of hydrometeorological effects of the Fucino Lake on the surrounding region. Annales Geophysicae, 25, 127–136.

    Google Scholar 

  • Troen, I., & Mahrt, L. (1986). A simple model of the atmosphere boundary layer: Sensitivity to surface evaporation. Boundery-Layer Meteorology, 37, 129–148.

    Article  Google Scholar 

  • Zhang, D. L., Chang, H. R., Seaman, N. L., Warner, T. T., & Fritsch, J. M. (1986). A two-way interactive nesting procedure with variable terrain resolution. Monthly Weather Review, 114, 1330–1339.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barbara Tomassetti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tomassetti, B., Lombardi, A., Cerasani, E. et al. Mapping of Alternaria and Pleospora concentrations in Central Italy using meteorological forecast and neural network estimator. Aerobiologia 29, 55–70 (2013). https://doi.org/10.1007/s10453-012-9262-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10453-012-9262-2

Keywords

Navigation