Skip to main content
Log in

Alternaria spores in the air across Europe: abundance, seasonality and relationships with climate, meteorology and local environment

  • OriginalPaper
  • Published:
Aerobiologia Aims and scope Submit manuscript

Abstract

We explored the temporal and spatial variations in airborne Alternaria spore quantitative and phenological features in Europe using 23 sites with annual time series between 3 and 15 years. The study covers seven countries and four of the main biogeographical regions in Europe. The observations were obtained with Hirst-type spore traps providing time series with daily records. Site locations extend from Spain in the south to Denmark in the north and from England in the West to Poland in the East. The study is therefore the largest assessment ever carried out for Europe concerning Alternaria. Aerobiological data were investigated for temporal and spatial patterns in their start and peak season dates and their spore indices. Moreover, the effects of climate were checked using meteorological data for the same period, using a crop growth model. We found that local climate, vegetation patterns and management of landscape are governing parameters for the overall spore concentration, while the annual variations caused by weather are of secondary importance but should not be neglected. The start of the Alternaria spore season varies by several months in Europe, but the peak of the season is more synchronised in central-northern Europe in the middle of the summer, while many southern sites have peak dates either earlier or later than northern Europe. The use of a crop growth model to explain the start and peak of season suggests that such methods could be useful to describe Alternaria seasonality in areas with no available observations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Agrios, G. N. (1997). Plant pathology. San Diego: Academic Press.

    Google Scholar 

  • Balkovic, J., van der Velde, M., Schmid, E., Skalsky, R., Khabarov, N., Obersteiner, M., et al. (2013). Pan-European crop modelling with EPIC: Implementation, up-scaling and regional crop yield validation. Agricultural Systems, 120, 61–75.

    Article  Google Scholar 

  • Beggs, P. J. (2004). Impacts of climate change on aeroallergens: Past and future. Clinical and Experimental Allergy, 34, 1507–1513.

    Article  CAS  Google Scholar 

  • Behbod, B., Sordillo, J. E., Hoffman, E. B., Datta, S., Webb, T. E., Kwan, D. L., et al. (2015). Asthma and allergy development: Contrasting influences of yeasts and other fungal exposures. Clinical and Experimental Allergy, 45, 154–163.

    Article  CAS  Google Scholar 

  • Berman, D. (2011). Climate change and aeroallergens in South Africa. Current Allergy and Clinical Immunology, 24, 65–71.

    Google Scholar 

  • Burbach, G. J., Heinzerling, L. M., Edenharter, G., Bachert, C., Bindslev-Jensen, C., Bonini, S., et al. (2009). GA(2)LEN skin test study II: clinical relevance of inhalant allergen sensitizations in Europe. Allergy, 64, 1507–1515.

    Article  CAS  Google Scholar 

  • Burshtein, N., Lang-Yona, N., & Rudich, Y. (2011). Ergosterol, arabitol and mannitol as tracers for biogenic aerosols in the eastern Mediterranean. Atmospheric Chemistry and Physics, 11, 829–839.

    Article  CAS  Google Scholar 

  • Bush, R. K., & Prochnau, J. J. (2004). Alternaria-induced asthma. Journal of Allergy and Clinical Immunology, 113, 227–234.

    Article  Google Scholar 

  • Cecchi, L., D’amato, G., Ayres, J. G., Galan, C., Forastiere, F., Forsberg, B., et al. (2010). Projections of the effects of climate change on allergic asthma: the contribution of aerobiology. Allergy, 65, 1073–1081.

    CAS  Google Scholar 

  • Cooter, E. J., Bash, J. O., Benson, V., & Ran, L. (2012). Linking agricultural crop management and air quality models for regional to national-scale nitrogen assessments. Biogeosciences, 9, 4023–4035.

    Article  CAS  Google Scholar 

  • Corden, J. M., Millington, W. M., & Mullins, J. (2003). Long-term trends and regional variation in the aeroallergen Alternaria in Cardiff and Derby UK—Are differences in climate and cereal production having an effect? Aerobiologia, 19, 191–199.

    Article  Google Scholar 

  • Crameri, R., Garbani, M., Rhyner, C., & Huitema, C. (2014). Fungi: The neglected allergenic sources. Allergy, 69, 176–185.

    Article  CAS  Google Scholar 

  • Dales, R. O. B. E., Cakmak, S. A. B. I., Burnett, R. I. C. H., Judek, S. T. A. N., Coates, F. R. A. N., & Brook, J. E. F. F. (2000). Influence of ambient fungal spores on emergency visits for asthma to a regional children’s hospital. American Journal of Respiratory and Critical Care Medicine, 162, 2087–2090.

    Article  CAS  Google Scholar 

  • Damialis, A., Mohammad, A., Halley, J., & Gange, A. (2015a). Fungi in a changing world: Growth rates will be elevated, but spore production may decrease in future climates. International Journal of Biometeorology, 59, 1157–1167.

    Article  Google Scholar 

  • Damialis, A., Vokou, D., Gioulekas, D., & Halley, J. M. (2015b). Long-term trends in airborne fungal-spore concentrations: A comparison with pollen. Fungal Ecology, 13, 150–156.

    Article  Google Scholar 

  • De Linares, C., Belmonte, J., Canela, M., de la Guardia, C. D., Alba-Sanchez, F., Sabariego, S. A., & Nso-Perez, S. (2010). Dispersal patterns of Alternaria conidia in Spain. Agricultural and Forest Meteorology, 150, 1491–1500.

    Article  Google Scholar 

  • Deen, W., Swanton, C. J., & Hunt, L. A. (2001). A mechanistic growth and development model of common ragweed. Weed Science, 49, 723–731.

    Article  CAS  Google Scholar 

  • Denning, D. W., Pashley, C. H., Hartl, D., Wardlaw, A., Godet, C., Giacco, S. D., et al. (2014). Fungal allergy in asthma—state of the art and research needs. Clinical Biochemistry, 4, 1–23.

    Google Scholar 

  • Draxler, R., Stunder, B., Rolph, G., & Stein, A., & Taylor, A. (2014). Hysplit4 users guide. Revision September 2014. http://www.arl.noaa.gov/documents/reports/hysplit_user_guide.pdf.

  • Dupuy, N. (2007). Lecture de spores fongiques. Technical Report, Reseau National de Surveillance Aerobiolique, Lyon.

  • Escuredo, O., Seijo, M., Fernández-González, M., & Iglesias, I. (2011). Effects of meteorological factors on the levels of Alternaria spores on a potato crop. International Journal of Biometeorology, 55, 243–252.

    Article  Google Scholar 

  • European Commission. (2005). Image2000 and CLC2000 products and methods. European Commission, Joint Research Center (DG JRC), Institute for Environment and Sustainability, Land Management Unit, I-21020 Ispra, VA.

  • Fernández-Rodríguez, S., Sadyś, M., Smith, M., Tormo-Molina, R., Skjøth, C. A., Maya-Manzano, J. M., et al. (2015). Potential sources of airborne Alternaria spp. spores in South-west Spain. Science of the Total Environment, 533, 165–176.

    Article  Google Scholar 

  • Friesen, T. L., De Wolf, E. D., & Francl, L. J. (2001). Source strength of wheat pathogens during combine harvest. Aerobiologia, 17, 293–299.

    Article  Google Scholar 

  • Galán, C., Smith, M., Thibaudon, M., Frenguelli, G., Oteros, J., Gehrig, R., et al. (2014). Pollen monitoring: Minimum requirements and reproducibility of analysis. Aerobiologia, 30, 385–395.

    Article  Google Scholar 

  • Gioulekas, D., Damialis, A., Papakosta, D., Spieksma, F., Giouleka, P., & Patakas, D. (2004). Allergenic fungi spore records (15 years) and sensitization in patients with respiratory allergy in Thessaloniki-Greece. J Invest Allergo Clin Imm, 14, 225–231.

    CAS  Google Scholar 

  • Gravesen, S. (1979). Fungi as a cause of allergic disease. Allergy, 34, 135–154.

    Article  CAS  Google Scholar 

  • Gravesen, S., Frisvad, J. C., & Samson, R. A. (1994). Microfungi: Munksgaard. Copenhagen: Denmark. ISBN 9788716114365.

    Google Scholar 

  • Grewling, Ł., Šikoparija, B., Skjøth, C. A., Radišić, P., Apatini, D., Magyar, D., et al. (2012). Variation in Artemisia pollen seasons in Central and Eastern Europe. Agricultural and Forest Meteorology, 160, 48–59.

    Article  Google Scholar 

  • Grinn-Gofron, A., & Strzelczak, A. (2008). Artificial neural network models of relationships between Alternaria spores and meteorological factors in Szczecin (Poland). International Journal of Biometeorology, 52, 859–868.

    Article  Google Scholar 

  • Gundel, P. E., Garibaldi, L. A., Helander, M., & Saikkonen, K. (2013). Symbiotic interactions as drivers of trade-offs in plants: Effects of fungal endophytes on tall fescue. Fungal Diversity, 60, 5–14.

    Article  Google Scholar 

  • Gyldenkærne, S., Ambelas Skjøth, C., Hertel, O., & Ellermann, T. (2005). A dynamical ammonia emission parameterization for use in air pollution models. Journal Geophysical Research, 110, 1–14. doi:10.1029/2004JD005459.

    Article  Google Scholar 

  • Hatzipapas, P., Kaloskak, K., Dara, A., & Christias, C. (2002). Spore germination and appressorium formation in the entomopathogenic Alternaria alternata. Mycological Research, 106(11), 1349–1359.

    Article  Google Scholar 

  • Hauptman, T., Pitcairn, C. E. R., de Groot, M., Ogris, N., Ferlan, M., & Jurc, D. (2013). Temperature effect on Chalara fraxinea: Heat treatment of saplings as a possible disease control method. Forest Pathology, 43, 360–370.

    Google Scholar 

  • Helfer, S. (2014). Rust fungi and global change. New Phytologist, 201, 770–780.

    Article  CAS  Google Scholar 

  • Hirst, J. M. (1952). An automatic volumetric spore trap. Annals of Applied Biology, 39, 257–265.

    Article  Google Scholar 

  • Hoose, C., & Möhler, O. (2012). Heterogeneous ice nucleation on atmospheric aerosols: A review of results from laboratory experiments. Atmospheric Chemistry and Physics Discussions, 12, 12531–12621.

    Article  Google Scholar 

  • Iglesias, I., Rodríguez-Rajo, F., & Méndez, J. (2007). Evaluation of the different Alternaria prediction models on a potato crop in A Limia (NW of Spain). Aerobiologia, 23, 27–34.

    Article  Google Scholar 

  • Käpyla, M., & Penttinen, A. (1981). An evaluation of the microscopial counting methods of the tape in Hirst–Burkard pollen and spore trap. Grana, 20, 131–141.

    Article  Google Scholar 

  • Karrer, G., Skjøth, C. A., Šikoparija, B., Smith, M., Berger, U., & Essl, F. (2015). Ragweed (Ambrosia) pollen source inventory for Austria. Science of the Total Environment, 523, 120–128.

    Article  CAS  Google Scholar 

  • Kasprzyk, I., Rodinkova, V., Sauliene, I., Ritenberga, O., Grinn-Gofron, A., Nowak, M., et al. (2015). Air pollution by allergenic spores of the genus Alternaria in the air of central and eastern Europe. Environmental Science and Pollution Research, 22, 9260–9274.

    Article  CAS  Google Scholar 

  • Kasprzyk, I., & Worek, M. (2006). Airborne fungal spores in urban and rural environments in Poland. Aerobiologia, 22, 169–176.

    Article  Google Scholar 

  • Kirtman, B., Power, S. B., Adedovin, J. A., Boer, G. J., Bojarju, R., Camiloni, I., et al. (2013). Near-term climate change: Projections and predictability. In T. F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, & P. M. Midgley (Eds.), Climate Change 2013: The physical science basis. Contribution of Working Group I to the fifth assessment report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press.

    Google Scholar 

  • Knutsen, A. P., Bush, R. K., Demain, J. G., Denning, D. W., Dixit, A., Fairs, A., et al. (2012). Fungi and allergic lower respiratory tract diseases. Journal of Allergy and Clinical Immunology, 129, 280–291.

    Article  Google Scholar 

  • Makra, L., Santa, T., Matyasovszky, I., Damialis, A., Karatzas, K., Bergmann, K. C., et al. (2010). Airborne pollen in three European cities: Detection of atmospheric circulation pathways by applying three-dimensional clustering of backward trajectories. Journal Geophysical Research. doi:10.1029/2010JD014743.

    Google Scholar 

  • Mari, A., Schneider, P., Wally, V., Breitenbach, M., & Simon-Nobbe, B. (2003). Sensitization to fungi: Epidemiology, comparative skin tests, and IgE reactivity of fungal extracts. Clinical and Experimental Allergy, 33, 1429–1438.

    Article  CAS  Google Scholar 

  • Maya-Manzano, J., Fernández-Rodriguez, S., Hernández-Trejo, F., Díaz-Peres, G., Gonzalo-Garijo, Á., Silva-Palacios, I., et al. (2012). Seasonal Mediterranean pattern for airborne spores of Alternaria. Aerobiologia, 28, 515–525.

    Article  Google Scholar 

  • McMaster, G. S., & Wilhelm, W. W. (1997). Growing degree-days: One equation, two interpretations. Agricultural and Forest Meteorology, 87, 291–300.

    Article  Google Scholar 

  • Nilsson, S., & Persson, S. (1981). Tree pollen spectra in the Stockholm region (Sweden), 1973–1980. Grana, 20, 179–182.

    Article  Google Scholar 

  • Oerke, E. C., & Dehne, H. W. (2004). Safeguarding production-losses in major crops and the role of crop protection. Crop Protection, 23, 275–285.

    Article  Google Scholar 

  • Olesen, J. E., & Plauborg, F. (1995). MVTOOL version 1.10 for developing MARKVAND. SP Rep. 27, Danish Institute of Plant and Soil Science, Tjele.

  • Paldy, A., Bobvos, J., Fazekas, B., Manyoki, G., Malnasi, T., & Magyar, D. (2014). Characterisation of the pollen season by using climate specific pollen indicators. Central European Journal of Occupational and Environmental Medicine, 20, 199–214.

    Google Scholar 

  • Pashley, C., Fairs, A., Edwards, R., Bailey, J., Corden, J., & Wardlaw, A. (2009). Reproducibility between counts of airborne allergenic pollen from two cities in the East Midlands, UK. Aerobiologia, 25, 249–263.

    Article  Google Scholar 

  • Poorter, H., van de Vijver, C. A. D. M., Boot, R. G. A., & Lambers, H. (1995). Growth and carbon economy of a fast-growing and a slow-growing grass species as dependent on nitrate supply. Pland and Soil, 171(2), 217–227.

    Article  CAS  Google Scholar 

  • Sadyś, M., Skjøth, C. A., & Kennedy, R. (2014). Back-trajectories show export of airborne fungal spores (Ganoderma sp.) from forests to agricultural and urban areas in England. Atmospheric Environment, 84, 88–99.

    Article  Google Scholar 

  • Sadyś, M., Skjøth, C. A., & Kennedy, R. (2015). Determination of Alternaria spp. habitats using 7-day volumetric spore trap. Hybrid Single Particle Lagrangian Integrated Trajectory model and geographic information system. Urban Climate, 14, 429–440.

    Article  Google Scholar 

  • Seifert, K., Morgan-Jones, G., Gams, W., & Kendrick, B. (2011). The genera of hyphomycetes. CBS Biodiversity Series no. 9: 1–997, CBS-KNAW Fungal Biodiversity Centre, Utrecht.

  • Šikoparija, B., Pejak-Šikoparija, T., Radišić, P., Smith, M., & Soldevilla, C. G. (2011). The effect of changes to the method of estimating the pollen count from aerobiological samples. Journal of Environmental Monitoring, 13, 384–390.

    Article  Google Scholar 

  • Simmons, E. G. (2007). Alternaria. An identification manual (1st ed.). CBS Biodiversity Series. Utrecht

  • Skjøth, C. A., Baker, P., Sadyś, M., & Adams-Groom, B. (2015). Adams-Groom B. (2015). Pollen from alder (Alnus sp.), birch (Betula sp.) and oak (Quercus sp.) in the UK originate from small woodlands. Urban Climate, 14, 414–428.

    Article  Google Scholar 

  • Skjøth, C. A., Smith, M., Šikoparija, B., Stach, A., Myszkowska, D., Kasprzyk, I., et al. (2010). A method for producing airborne pollen source inventories: An example of Ambrosia (ragweed) on the Pannonian Plain. Agricultural and Forest Meteorology, 150, 1203–1210.

    Article  Google Scholar 

  • Skjøth, C. A., Sommer, J., Frederiksen, L., & Gosewinkel Karlson, U. (2012). Crop harvest in Denmark and Central Europe contributes to the local load of airborne Alternaria spore concentrations in Copenhagen. Atmospheric Chemistry and Physics, 12, 11107–11123.

    Article  Google Scholar 

  • Smith, M., Jäger, S., Berger, U., Šikoparija, B., Hallsdottir, M., Sauliene, I., et al. (2014). Geographic and temporal variations in pollen exposure across Europe. Allergy, 69, 913–923.

    Article  CAS  Google Scholar 

  • Smith, M., Skjøth, C. A., Myszkowska, D., Uruska, A., Malgorzata, P., Stach, A., et al. (2008). Long-range transport of Ambrosia pollen to Poland. Agricultural and Forest Meteorology, 148, 1402–1411.

    Article  Google Scholar 

  • Stepalska, D., & Wolek, J. (2009). Intradiurnal periodicity of fungal spore concentrations (Alternaria, Botrytis, Cladosporium, Didymella, Ganoderma) in Cracow, Poland. Aerobiologia, 25, 333–340.

    Article  Google Scholar 

  • Su’udi, M., J-M, Park, Park, S. R., Hwang, D. J., Bae, D. J., Kim, S., & Ahn, I. P. (2013). Quantification of Alternaria brassicicola infection in the Arabidopsis thaliana and Brassica rapa subsp. pekinensis. Microbiology, 159, 1946–1955.

    Article  Google Scholar 

  • Suzuki, R. (2014) Hierarchical clustreing with p values via multiscale bootstrap resampling. CRAN.

  • Suzuki, R., & Shimodaira, H. (2006). Pvclust: an R package for assessing the uncertainty in hierarchical clustering. Bioinformatics, 22, 1540–1542.

    Article  CAS  Google Scholar 

  • R Core Team and Contributors Worldwide. (2015). The R Stats Package. https://stat.ethz.ch/R-manual/R-patched/library/stats/html/00Index.html.

  • TheLancet. (2008). Allergic rhinitis: Common, costly, and neglected. The Lancet, 371, 2057.

    Article  Google Scholar 

  • Thibaudon, M., Šikoparija, B., Oliver, G., Smith, M., & Skjøth, C. A. (2014). Ragweed pollen source inventory for France—the second largest centre of Ambrosia in Europe. Atmospheric Environment, 83, 62–71.

    Article  CAS  Google Scholar 

  • Toth, B., Csosz, M., Szabo-Hever, A., Simmons, E. G., Samson, R. A., & Varga, J. (2011). Alternaria hungarica sp., a minor foliar pathogen of wheat in Hungary. Mycologia, 103, 94–100.

    Article  Google Scholar 

  • Zhang, Y., Bielory, L., Cai, T., Mi, Z., & Georgopoulos, P. (2015). Predicting onset and duration of airborne allergenic pollen season in the United States. Atmospheric Environment, 103, 297–306.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Dr. C. A. Skjøth is supported by European Commission through a Marie Curie Career Integration Grant (Project ID CIG631745 and Acronym SUPREME). Dr. C. H. Pashley is supported by the Midlands Asthma and Allergy Research Association (MAARA) and the National Institute for Health Research Leicester Respiratory Biomedical Research Unit. Dr. S. Fernández-Rodríguez and Dr. R. Tormo-Molina are supported by Regional Government Science Foundation of the Junta de Extremadura through the two projects: PRI06A190, PRI BS10008. Dr. A. Damialis has been supported by the Research Committee of the Aristotle University of Thessaloniki (Excellence Fellowships of Postdoctoral Researchers, 2011). Dr. I. Kasprzyk and Dr. M. Jędryczkaare supported by National Science Centre Project No. N N305 321,737. The views expressed are those of the author(s) and not necessarily those of the European Commission, the NHS, the NIHR or the Department of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. A. Skjøth.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 35 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Skjøth, C.A., Damialis, A., Belmonte, J. et al. Alternaria spores in the air across Europe: abundance, seasonality and relationships with climate, meteorology and local environment. Aerobiologia 32, 3–22 (2016). https://doi.org/10.1007/s10453-016-9426-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10453-016-9426-6

Keywords

Navigation