Skip to main content

Advertisement

Log in

Yeast communities in Sphagnum phyllosphere along the temperature-moisture ecocline in the boreal forest-swamp ecosystem and description of Candida sphagnicola sp. nov.

  • Original Paper
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

The effects of the temperature-moisture factors on the phylloplane yeast communities inhabiting Sphagnum mosses were studied along the transition from a boreal forest to a swamp biotope at the Central Forest State Biosphere Reserve (Tver region, Russia). We tested the hypothesis that microclimatic parameters affect yeast community composition and structure even on a rather small spatial scale. Using a conventional plating technique we isolated and identified by molecular methods a total of 15 species of yeasts. Total yeast counts and species richness values did not depend on environmental factors, although yeast community composition and structure did. On average, Sphagnum in the swamp biotope supported a more evenly structured yeast community. Relative abundance of ascomycetous yeasts was significantly higher on swamp moss. Rhodotorula mucilaginosa dominated in the spruce forest and Cryptococcus magnus was more abundant in the swamp. Our study confirmed the low occurrence of tremellaceous yeasts in the Sphagnum phyllosphere. Of the few isolated ascomycetous yeast and yeast-like species, some were differentiated from hitherto known species in physiological tests and phylogenetic analyses. We describe one of them as Candida sphagnicola and designate KBP Y-3887T (=CBS 11774T = VKPM Y-3566T = MUCL 53590T) as the type strain. The new species was registered in MycoBank under MB 563443.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Andrews JH, Harris RF (2000) The ecology and biogeography of microorganisms on plant surfaces. Annu Rev Phytopathol 38:145–180

    Article  PubMed  Google Scholar 

  • Baas Becking L (1934) Geobiologie of inleiding tot de milieukunde. W.P. van Stockum and Zoon, The Hague

    Google Scholar 

  • Bass D, Howe A, Brown N, Barton H, Demidova M, Michelle H, Li L, Sanders H, Watkinson SC, Willcock S, Richards TA (2007) Yeast forms dominate fungal diversity in the deep oceans. Proc Biol Sci 274:3069–3077

    Article  PubMed  CAS  Google Scholar 

  • Beijerinck M (1913) Oxydation des Manganocarbonates durch Bakterien und Schimmelpilze. Folia Microbiol (Delft) 2:123–134

    Google Scholar 

  • Botha A (2006) Yeasts in soil. In: Rosa CA, Péter G (eds) Biodiversity and ecophysiology of yeasts. The yeast handbook. Springer, New York, pp 221–240

    Chapter  Google Scholar 

  • Brandão LR, Libkind D, Vaz AB, Espírito Santo LC, Moliné M, de García V, van Broock M, Rosa CA (2011) Yeasts from an oligotrophic lake in Patagonia (Argentina): diversity, distribution and synthesis of photoprotective compounds and extracellular enzymes. FEMS Microbiol Ecol 76:1–13

    Article  PubMed  Google Scholar 

  • Butinar L, Spencer-Martins I, Gunde-Cimerman N (2007) Yeasts in high Arctic glaciers: the discovery of a new habitat for eukaryotic microorganisms. Anton Van Leeuwenhoek 91:277–289

    Article  Google Scholar 

  • Clement M, Posada D, Crandall K (2000) TCS: a computer program to estimate gene genealogies. Mol Ecol 9:1657–1660

    Article  PubMed  CAS  Google Scholar 

  • Coelho MA, Almeida JM, Martins IM, da Silva AJ, Sampaio JP (2010) The dynamics of the yeast community of the Tagus river estuary: testing the hypothesis of the multiple origins of estuarine yeasts. Anton Van Leeuwenhoek 98:331–342

    Article  Google Scholar 

  • Connell L, Redman R, Craig S, Scorzetti G, Iszard M, Rodriguez R (2008) Diversity of soil yeasts isolated from South Victoria Land, Antarctica. Microb Ecol 56:448–459

    Article  PubMed  CAS  Google Scholar 

  • de García V, Brizzio S, Libkind D, Buzzini P, van Broock M (2007) Biodiversity of cold-adapted yeasts from glacial meltwater rivers in Patagonia, Argentina. FEMS Microbiol Ecol 59:331–341

    Article  PubMed  Google Scholar 

  • Dlauchy D, Tornai-Lehoczki J, Sedláček I, Audy M, Péter G (2011) Debaryomyces psychrosporus sp. nov., a yeast species from a Venezuelan cave. Anton van Leeuwenhoek 99:619–628

    Article  Google Scholar 

  • Fonseca A, Inacio J (2006) Phylloplane yeasts. In: Rosa CA, Peter G (eds) Biodiversity and Ecophysiology of Yeasts. The Yeast Handbook. Springer-Verlag, New York, pp 263–303

    Chapter  Google Scholar 

  • Ganter PF, Cardinali G, Giammaria M, Quarles B (2004) Correlations among measures of phenotypic and genetic variation within an oligotrophic asexual yeast, Candida sonorensis, collected from Opuntia. FEMS Yeast Res 4:527–540

    Article  PubMed  CAS  Google Scholar 

  • Glushakova AM, Chernov IYu (2010) Seasonal dynamics of the structure of epiphytic yeast communities. Microbiology 79:830–839

    Article  CAS  Google Scholar 

  • Glushakova A, Maximova I, Kachalkin A, Yurkov A (2010) Ogataea cecidiorum sp. nov., a methanol-assimilating yeast isolated from galls on willow leaves. Anton van Leeuwenhoek 98:93–101

    Article  CAS  Google Scholar 

  • Herrera CM, Canto A, Pozo MI, Bazaga P (2010) Inhospitable sweetness: nectar filtering of pollinator-borne inocula leads to impoverished, phylogenetically clustered yeast communities. Proc Biol Sci 277:747–754

    Article  PubMed  Google Scholar 

  • Inacio J, Ludwig W, Spencer-Martins I, Fonseca A (2010) Assessment of phylloplane yeasts on selected Mediterranean plants by FISH with group- and species-specific oligonucleotide probes. FEMS Microbiol Ecol 71:61–72

    Article  PubMed  CAS  Google Scholar 

  • Inácio J, Pereira P, de Carvalho M, Fonseca A, Amaral-Collaço MT, Spencer-Martins I (2002) Estimation and diversity of phylloplane mycobiota on selected plants in a Mediterranean-type ecosystem in Portugal. Microb Ecol 44:344–353

    Article  PubMed  Google Scholar 

  • Kachalkin AV (2010) New data on the distribution of some psychrophilic yeasts in the Moscow region. Microbiology 79:843–847

    Article  PubMed  CAS  Google Scholar 

  • Kachalkin AV, Glushakova AM, Yurkov AM, Chernov IYu (2008) Characterization of yeast groupings in the phyllosphere of Sphagnum mosses. Microbiology 77:474–481

    Article  CAS  Google Scholar 

  • Katoh K, Misawa K, Kuma K, Miyata T (2002) MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform (describes the FFT-NS-1, FFT-NS-2 and FFT-NS-i strategies). Nucleic Acids Res 30:3059–3066

    Article  PubMed  CAS  Google Scholar 

  • Kurtzman CP, Fell JW (1998) The yeasts, a taxonomic study, 4th edn. Elsevier Science Publishers, Amsterdam

    Google Scholar 

  • Lachance MA, Starmer WT, Rosa CA, Bowles JM, Barker JSF, Janzen DH (2001) Biogeography of the yeasts of ephemeral flowers and their insects. FEMS Yeast Res 1:1–8

    PubMed  CAS  Google Scholar 

  • Lachance MA, Dobson J, Wijayanayaka DN, Smith AM (2010) The use of parsimony network analysis for the formal delineation of phylogenetic species of yeasts: Candida apicola, Candida azyma, and Candida parazyma sp. nov., cosmopolitan yeasts associated with floricolous insects. Anton van Leeuwenhoek 97:155–170

    Article  CAS  Google Scholar 

  • Lachance MA, Boekhout T, Scorzetti G, Fell JW, Kurtzman CP (2011) Candida Berkhout (1923). In: Kurtzman CP, Fell JW, Boekhout T (eds) The yeasts, a taxonomic study, 5th edn. Elsevier, Amsterdam, pp 987–1278

    Chapter  Google Scholar 

  • Libkind D, Brizzio S, Ruffini A, Gadanho M, van Broock M, Sampaio JP (2003) Molecular characterization of carotenogenic yeasts from aquatic environments in Patagonia, Argentina. Anton van Leeuwenhoek 84:313–322

    Article  CAS  Google Scholar 

  • Libkind D, Ruffini A, van Broock M, Alves L, Sampaio JP (2007) Biogeography, host specificity, and molecular phylogeny of the basidiomycetous yeast Phaffia rhodozyma and its sexual form, Xanthophyllomyces dendrorhous. Appl Environ Microbiol 73:1120–1125

    Article  PubMed  CAS  Google Scholar 

  • Libkind D, Moline M, Sampaio JP, van Brook M (2009) Yeasts from high-altitude lakes: influence of UV radiation. FEMS Microbiol Ecol 69:353–362

    Article  PubMed  CAS  Google Scholar 

  • Libkind D, Moliné M, Sommaruga R, Sampaio JP, van Broock M (2011) Phylogenetic distribution of fungal mycosporines within the Pucciniomycotina (Basidiomycota). Yeast 28:619–627

    Article  PubMed  CAS  Google Scholar 

  • Liti G, Carter DM, Moses AM, Warringer J, Parts L, James SA, Davey RP, Roberts IN, Burt A, Koufopanou V, Tsai IJ, Bergman CM (2009) Population genomics of domestic and wild yeasts. Nature 458:337–341

    Article  PubMed  CAS  Google Scholar 

  • Maksimova IA, Chernov IYu (2004) Community structure of yeast fungi in forest biogeocenoses. Microbiology 73:474–481

    Article  CAS  Google Scholar 

  • Maksimova IA, Yurkov AM, Chernov IYu (2009) Spatial structure of epiphytic yeast communities on fruits of Sorbus aucuparia L. Biol Bull 36:613–618

    Article  Google Scholar 

  • Martorell P, Fernández-Espinar MT, Querol A (2005) Sequence-based identification of species belonging to the genus Debaryomyces. FEMS Yeast Res 5:1157–1165

    Article  PubMed  CAS  Google Scholar 

  • McGill BJ, Etienne RS, Gray JS, Alonso A, Anderson MJ, Benecha HK, Enquist BJ, Green JL, He F, Hurlbert AH, Magurran AE, Marquet PA, Maurer BA, Ostling A, Soykan CU, Ugland KI, White EP (2007) Species abundance distributions: moving beyond single prediction theories to integration within an ecological framework. Ecol Lett 10:995–1015

    Article  PubMed  Google Scholar 

  • Meyer KM, Leveau JH (2011) Microbiology of the phyllosphere: a playground for testing ecological concepts. Oecologia: doi: 10.1007/s00442-011-2138-2

  • Moliné M, Flores MR, Libkind D, Diéguez Mdel C, Farías ME, van Broock M (2010) Photoprotection by carotenoid pigments in the yeast Rhodotorula mucilaginosa: the role of torularhodin. Photochem Photobiol Sci 9:1145–1151

    Article  PubMed  Google Scholar 

  • Montenegro G, Portaluppi MC, Salas FA, Díaz MF (2009) Biological properties of the Chilean native moss Sphagnum magellanicum. Biol Res 42:233–237

    Article  PubMed  Google Scholar 

  • Moore MM, Breedveld MW, Autor AP (1989) The role of carotenoids in preventing oxidative damage in the pigmented yeast, Rhodotorula mucilaginosa. Arch Biochem Biophys 270:419–431

    Article  PubMed  CAS  Google Scholar 

  • Morris CE (2001) Phyllosphere. In: Encyclopedia of life sciences. Nature Publishing Group, London, pp 1–8

  • Nagahama T, Hamamoto M, Nakase T, Takami H, Horikoshi K (2001) Distribution and identification of red yeasts in deep-sea environments around the northwest Pacific Ocean. Anton van Leeuwenhoek 80:101–110

    Article  CAS  Google Scholar 

  • Nagatsuka Y, Saito S, Sugiyama J (2008) Ogataea neopini sp. nov. and O. corticis sp. nov., with the emendation of the ascomycete yeast genus Ogataea, and transfer of Pichia zsoltii, P. dorogensis, and P. trehaloabstinens to it. J Gen Appl Microbiol 54:353–365

    Article  PubMed  CAS  Google Scholar 

  • Nix SS, Burpee LL, Jackson KL, Buck JW (2008) Short-term temporal dynamics of yeast abundance on the tall fescue phylloplane. Can J Microbiol 54:299–304

    Article  PubMed  CAS  Google Scholar 

  • Nix-Stohr S, Burpee LL, Buck JW (2008) The influence of exogenous nutrients on the abundance of yeasts on the phylloplane of turfgrass. Microbiol Ecol 55:15–20

    Article  Google Scholar 

  • Painter TJ (1998) Carbohydrate polymers in food preservation: an integrated view of the Maillard reaction with special reference to discoveries of preserved foods in Sphagnum-dominated peat bogs. Carbohyd Polym 36:335–347

    Article  CAS  Google Scholar 

  • Posada D, Crandall KA (1998) Modeltest: testing the model of DNA substitution. Bioinformatics 14:817–818

    Article  PubMed  CAS  Google Scholar 

  • Pozo MI, Herrera CM, Bazaga P (2011) Species richness of yeast communities in floral nectar of southern Spanish plants. Microbiol Ecol 61:82–91

    Article  Google Scholar 

  • Rasmussen S, Wolff C, Rudolph H (1995) Compartmentalization of phenolic constituents in Sphagnum. Phytochemistry 38:35–39

    Article  CAS  Google Scholar 

  • Rydin H, Gunnarsson G, Sundberg S (2006) The Role of Sphagnum in peatland development and persistence. In: Wieder RK, Vitt DH (eds) Boreal peatland ecosystems. Springer-Verlag, Berlin, pp 47–66

    Chapter  Google Scholar 

  • Stamatakis A, Hoover P, Rougemont J (2008) A rapid bootstrap algorithm for the RAxML web-servers. Syst Biol 75:758–771

    Article  Google Scholar 

  • Swofford DL (1998) PAUP*. Phylogenetic analysis using parsimony (*and other methods). Version 4. Sinauer Associates, Sunderland

    Google Scholar 

  • Taylor JW, Turner E, Townsend JP, Dettman JR, Jacobson D (2006) Eukaryotic microbes, species recognition and the geographic limits of species: examples from the kingdom Fungi. Philos Trans R Soc Lond B Biol Sci 361:1947–1963

    Article  PubMed  Google Scholar 

  • Thormann MN, Rice AV (2007) Fungi from peatlands. Fungal Divers 24:241–299

    Google Scholar 

  • Turchetti B, Buzzini P, Goretti M, Branda E, Diolaiuti G, D’Agata C, Smiraglia C, Vaughan-Martini A (2008) Psychrophilic yeasts in glacial environments of Alpine glaciers. FEMS Microbiol Ecol 63:73–83

    Article  PubMed  CAS  Google Scholar 

  • Unterseher M, Jumpponen A, Öpik M, Tedersoo L, Moora M, Dormann C, Schnittler M (2011) Species abundance distributions and richness estimations in fungal metagenomics—lessons learned from community ecology. Mol Ecol 20:275–285

    Article  PubMed  Google Scholar 

  • van Breemen N (1995) How Sphagnum bogs down other plants. TREE 10:270–275

    PubMed  Google Scholar 

  • Wardle DA, Nilsson M-C, Zackrisson O, Gallet C (2003) Determinants of litter mixing effects in a Swedish boreal forest. Soil Biol Biochem 35:827–835

    Article  CAS  Google Scholar 

  • Whipps JM, Hand P, Pink D, Bending GD (2008) Phyllosphere microbiology with special reference to diversity and plant genotype. J Appl Microbiol 105:1744–1755

    Article  PubMed  CAS  Google Scholar 

  • Whitaker RJ (2006) Allopatric origins of microbial species. Philos Trans R Soc Lond B Biol Sci 361:1975–1984

    Article  PubMed  Google Scholar 

  • Whittaker RH (1960) Vegetation of the Siskiyou mountains, Oregon and California. Ecol Monogr 30:279–338

    Article  Google Scholar 

  • Yarrow D (1998) Methods for the isolation, maintenance and identification of yeasts. In: Kurtzman CP, Fell JW (eds) The yeasts. A taxonomic study, 4th edn. Elsevier, Amsterdam, pp 77–100

    Chapter  Google Scholar 

  • Yurkov AM, Chernov IYu, Tiunov AV (2008a) Influence of Lumbricus terrestris earthworms on the structure of the yeast community of forest litter. Microbiology 77:107–111

    Article  CAS  Google Scholar 

  • Yurkov AM, Aubri J, Begerow D (2008b) The diversity of Sphagnum related yeasts in Southern Germany. Yeast Newslett 58:21. (http://publish.uwo.ca/%7Elachance/Zy08572.pdf. Accessed 20 Aug 2011)

    Google Scholar 

  • Yurkov AM, Vustin MM, Tyaglov BV, Maksimova IA, Sineokiy SP (2008c) Pigmented basidiomycetous yeasts are a promising source of carotenoids and ubiquinone Q-10. Microbiology 77:1–6

    Article  CAS  Google Scholar 

  • Yurkov AM, Kemler M, Begerow D (2011) Species accumulation curves and incidence-based species richness estimators to appraise the diversity of cultivable yeasts from beech forest soils. PLoS ONE 6:e23671

    Article  PubMed  CAS  Google Scholar 

  • Yurkov AM, Kemler M, Begerow D (2012) Assessment of yeast diversity in soils under different management regimes. Fungal Ecol 5:24–35

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Chernov IYu (Moscow State University, Russia), Daniel H-M (BCCM/MUCL, Belgium), Schäfer AM (Ruhr-Universität Bochum, Germany) and three anonymous reviewers for their valuable suggestions on the manuscript. This work was supported by the Russian Foundation for Fundamental Research (RFBR) 10-04-00332-a and the German Research Foundation (DFG) YU 152-1/1. We thank Glushakova AM for providing a strain for the analysis and Maksimova IA for line drawings.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aleksey V. Kachalkin.

Additional information

A. V. Kachalkin and A. M. Yurkov contributed equally to the manuscript.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

Supplementary material 1: Pairwise genetic distances (p-values) within the Candida glaebosa clade obtained withNJ (black) and ML (grey) algorithms (EPS 417 kb)

10482_2012_9710_MOESM2_ESM.eps

Supplementary material 2: Parsimony network analysis of the LSU (D1/D2 domains) rDNA and the ITS region of Candida sphagnicola and other species comprising Candida glaebosa clade. The GenBank accession numbers are identical with those depicted in Fig. 5. Each connecting line represents one substitution, numbers indicate a position in the alignment and each small circle represents a missing intermediate sequence. The rectangle indicates the sequences identified as ancestral by the analysis. Gray dashed line represents a connection between the two networks when the option “connect all” is used (EPS 457 kb)

Supplementary material 3 (DOC 33 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kachalkin, A.V., Yurkov, A.M. Yeast communities in Sphagnum phyllosphere along the temperature-moisture ecocline in the boreal forest-swamp ecosystem and description of Candida sphagnicola sp. nov.. Antonie van Leeuwenhoek 102, 29–43 (2012). https://doi.org/10.1007/s10482-012-9710-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-012-9710-6

Keywords

Navigation