Skip to main content
Log in

Characterization of fungi causing lesion blight on Papaver dubium in Iran

  • Original Paper
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

Papaver dubium (common name, blindeyes, Papaveraceae) is widespread throughout Europe and America and is an important weed in western Iran. Since 2009, a blight disease has occurred in several areas in Hamedan Province, Iran, causing significant damage to plants of P. dubium. Small, yellow–brown lesions appeared on lower leaves and eventually expanded to the whole plant, resulting in necrosis and complete wilting. This study was conducted to identify the causal agent(s) of the blight disease on blindeyes plants. On the basis of cultural and microscopic characters, as well as representative DNA sequence data of the 5.8S rRNA (ITS), partial LSU rRNA partial β-tubulin (TUB2), and partial G3PD genes, 82 isolates were identified as follows: Ascochyta pisi M. A. Libert. (42), Neodidymelliopsis longicolla L.W. Hou, Crous & L. Cai. (28), and Allophoma zantedeschiae (Dippen.) Q. Chen & L. Cai (12). Pathogenicity tests in the greenhouse showed that all the isolates of A. pisi and Neod. longicolla caused typical spots on inoculated blindeyes plants, and the fungi were successfully re-isolated from the symptomatic tissues. Based on the high isolation frequency for A. pisi, and the severity of symptoms induced by this species in pathogenicity tests, this fungus was indicated as the major pathogen causing the blight disease on blindeyes. It has potential as a biocontrol agent against P. dubium. To the best of our knowledge, Al. zantedeschiae and Neod. longicolla observed in this study are new taxa for the mycobiota of Iran.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abeln ECA, Stax AM, de Gruyter J, Van der AHA (2002) Genetic differentiation of Phoma exigua varieties by means of AFLP fingerprints. Mycol Res 106:419–427

    Article  CAS  Google Scholar 

  • Ahmadi AR, Muosavi SK, Ghiasvand M, Hasanvand A (2013) Investigation flora and distribution of weed species of field peas (Cicer arietinum L.) in Khorramabad. Intl J Farm Alli Sci 2:537–543

    Google Scholar 

  • Aveskamp MM, de Gruyter J, Crous PW (2008) Biology and recent developments in the systematics of Phoma, a complex genus of major quarantine significance. Fungal Divers 31:1–18

    Google Scholar 

  • Aveskamp MM, Verkley GJM, de Gruyter J, Murace MA, Perelló A, Woudenberg JHC, Groenewald JZ, Crous PW (2009) DNA phylogeny reveals polyphyly of Phoma section Peyronellaea and multiple taxonomic novelties. Mycologia 101:363–382

    Article  CAS  PubMed  Google Scholar 

  • Aveskamp MM, de Gruyter J, Woudenberg JHC (2010) Highlights of the Didymellaceae: a polyphasic approach to characterise Phoma and related pleosporalean genera. Stud Mycol 65:1–60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berbee ML, Pirseyedi M, Hubbard S (1999) Cochliobolus phylogenetics and the origin of known, highly virulent pathogens, inferred from ITS and glyceraldehyde-3- phosphate dehydrogenase gene sequences. Mycologia 91(6):964–977

    Article  CAS  Google Scholar 

  • Boerema GH (1993) Contributions towards a monograph of Phoma (Coelomycetes)—II. Section Peyronellaea. Persoonia 15:197–221

    Google Scholar 

  • Boerema GH, de Gruyter J, Noordeloos ME (2004) Phoma identification manual. Differentiation of specific and infra-specific taxa in culture. CABI Publishing, Wallingford

    Book  Google Scholar 

  • Chen Q, Jiang JR, Zhang GZ, Cai L, Crous PW (2015) Resolving the Phoma enigma. Stud Mycol 82:137–217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Q, Hou LW, Duan WJ, Crous PW, Cai L (2017) Didymellaceae revisited. Stud Mycol 87:105–159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chilvers MI, Rogers JD, Dugan FM, Stewart JE, Chen W, Peever TL (2009) Didymella pisi sp. nov., the teleomorph of Ascochyta pisi. Mycol Res 113:391–400

    Article  CAS  PubMed  Google Scholar 

  • Crous PW, Phillips AJL, Baxter AP (2000) Phytopathogenic fungi from South Africa. University of Stellenbosch, Stellenbosch, p 358

    Google Scholar 

  • Cullen J (1966) Papaveraceae in Flora Iranica (ed. Rechinger KH). Graz Austria 34:1–25

    Google Scholar 

  • Cullen DW, Toth IK, Boonham N, Walsh K, Barker I, Lees AK (2007) Development and validation of conventional and quantitative polymerase chain reaction assays for the detection of storage rot potato pathogens, Phytophthora erythroseptica, Pythium ultimum, Phoma foveata. J Phytopathol 155:309–315

    Article  CAS  Google Scholar 

  • De Gruyter J, Aveskamp MM, Woudenberg JHC, Verkley GJM, Groenewald JZ, Crous PW (2009) Molecular phylogeny of Phoma and allied anamorph genera: towards a reclassification of the Phoma complex. Mycol Res 133:508–519

    Article  Google Scholar 

  • De Gruyter J, Woudenberg JHC, Aveskamp MM, Verkley GJM, Groenewald JZ, Crous PW (2010) Systematic reappraisal of species in Phoma section paraphoma, pyrenochaeta and pleurophoma. Mycologia 102:1066–1081

    Article  PubMed  Google Scholar 

  • De Gruyter J, Woudenberg JHC, Aveskamp MM, Verkley GJM, Groenewald JZ, Crous PW (2012) Rediposition of Phoma-like anamorphs in Pleosporales. Stud Mycol 75:1–36

    Article  PubMed Central  Google Scholar 

  • Doidge EM (1950) The South African fungi and lichens to the end of 1945. Bothalia 5:1–1094

    Google Scholar 

  • Goldblatt P (1974) Systematic studies in Papaver section oxytona. Ann Mo Bot Gard 61:264–298

    Article  Google Scholar 

  • Goodwin PH (2001) A molecular weed–mycoherbicide interaction: Colletotrichum gloeosporioides f. sp. malvae and round-leaved mallow, Malva pusilla. Can J Plant Pathol 23:28–35

    Article  CAS  Google Scholar 

  • Gorter GJMA (1977) Index of plant pathogens and the diseases they cause in cultivated plants in South Africa. Sci Bull 392:1–177

    Google Scholar 

  • Gorter GJMA (1981) Index of plant pathogens (II) and the diseases they cause in wild growing plants in South Africa. Republic South Africa Department Agriculture Fish. Sci Bull 398:1–84

    Google Scholar 

  • Mathew FM, Goswami RS, Markell SG, Osborne L, Tande C, Ruden B (2010) First Report of Ascochyta blight of field pea caused by Ascochyta pisi in South Dakota. Plant Dis 94(6):789

    Article  Google Scholar 

  • Melnik VA (2000) Key to the fungi of the genus Ascochyta Lib. (Coelomycetes). Mitt Biol Bundesanst Land- Forstwirtsch Vol 379, Biologische Bundesanstalt für Land- und Forstwirtschaft in Berlin und Braunschweig, Parey, Berlin

  • Melnik VA, Pystina KA (1995) Novitates de micromycetibus reservati Svirensis inferioris. Novosti Sist Nizsh Rast 30:29–36

    Google Scholar 

  • Murray MG, Thomson WF (1980) Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res 8:4321–4325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nazer Kakhki SH, Minbashi Moeini M, Hassan Nejad S, Jafary H, Aleefard M (2013) Weed population incides in irrigated wheat fields of Zanjan province of Iran. Pakistan J Weed Sci Res 19:123–156

    Google Scholar 

  • Orieux L, Felix S (1968) List of plant diseases in Mauritius. Phytopathological 7:1–48

    Google Scholar 

  • Page RD (1996) TreeView: an application to display phylogenetic trees on personal computers. Comput Appl Biosci 12:357–358

    CAS  PubMed  Google Scholar 

  • Punithalingam E (1979) Graminicolous Ascochyta species. Mycol Papers 142:1–214

    Google Scholar 

  • Punithalingam E, Holliday P (1972) Ascochyta pisi. CMI descriptions of pathogenic fungi and bacteria, no. 334. The Eastern Press Ltd., London

  • Rannala B, Yang Z (1996) Probability distribution of molecular evolutionary trees: a new method of phylogenetic inference. J Mol Evol 43:304–311

    Article  CAS  PubMed  Google Scholar 

  • Rehner SA, Samuels GJ (1994) Taxonomy and phylogeny of Gliocladium analysed from nuclear large subunit ribosomal DNA sequences. Mycol Res 98:625–634

    Article  CAS  Google Scholar 

  • Richardson MJ (1990) An annotated list of seed-borne diseases. International Seed Testing Association, Zurich, p 387

    Google Scholar 

  • Rodriguez F, Oliver JF, Marin A, Medina JR (1990) The general stochastic model of nucleotide substitutions. J Theor Biol 142:485–501

    Article  CAS  PubMed  Google Scholar 

  • Ronquist FR, Huelsenbeck JP (2003) MrBayes3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574

    Article  CAS  PubMed  Google Scholar 

  • Ronquist FM, Teslenko M, van der Mark P, Ayres DL, Darling A, Höhna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol 61:539–542

    Article  PubMed  PubMed Central  Google Scholar 

  • Sharma S, Kolte S (1994) Effect of soil-applied NPK fertilizers on severity of black spot disease (Alternaria brassicae) and yield of oilseed rape. Plant Soil 167:313–320

    Article  CAS  Google Scholar 

  • Swofford DL (2003) PAUP phylogenetic analysis using parsimony (and other methods). Version 4. Sinauer Associates, Sunderland

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Templeton GE, Smith Jr RJ (1977) In: Horsfall JG, Cowling EB (eds) Plant diseases: an advanced treatise. Academic Press, New York, pp 167–176

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vilgalys R, Hester M (1990) Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. J Bacteriol 172:4238–4246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • White TJ, Bruns T, Lee S, Taylor J (1990) In: Innis A, Gelfand DH, Sninsky JJ (eds) PCR protocols. Academic Press, San Diego, pp 315–322

Download references

Acknowledgements

This research was funded by the Research Council of Bu-Ali Sina University, Hamedan, Iran. We would like to thank Dr Jafar Abdollahzadeh from the Faculty of Agriculture, University of Kurdistan, for facilitating the dissecting microscope with a digital camera.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Doustmorad Zafari.

Ethics declarations

Conflict of interest

No conflict of interest declared.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Razaghi, P., Zafari, D. Characterization of fungi causing lesion blight on Papaver dubium in Iran. Antonie van Leeuwenhoek 111, 437–455 (2018). https://doi.org/10.1007/s10482-017-0966-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-017-0966-8

Keywords

Navigation